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Preface

Between Rationality and a Hard Place: In Honour
of Werner Güth

The first ultimatum game, conducted by Werner Güth and collaborators in
the late 1970s in Cologne, marks a crucial point in the history of modern
economics – the point at which game theory lost its innocence. Suddenly,
there was a chasm – between the beauty and elegance of the theory of games
on the one hand, and the dour facts of behaviour observed in games on the
other. In between: a void.

In the decades that followed, the economics literature slowly started filling
this gap. Evolutionary game theory, preference evolution, learning mod-
els, models of bounded rationality with and without optimization, and,
of course, more and more systematic experimental evidence – all these
approaches flourished, competing with as well as complementing each other.
Yet, compared to other fields, progress has not been particularly fast and the
task before us is still immense. The task is, of course, to understand behaviour,
and understanding is not easy. Life between hyperrationality on the one
hand and simple facts on the other is not easy. There are no fixed axioms,
and there is no fast-track methodology. There are many ways that can and
need to be tried. Unavoidably, most of these are arduous, and some turn
out to be dead ends. Looking for new routes that fill the void needs an
adventurous spirit, fearlessness, creativity and stubbornness.

Werner Güth is among the few who have been endowed with plenty of all
these qualities, and he used them to great effect. His journey since the 1970s
has been nothing but amazing. To stick to the metaphor, he has not only
discovered many new ways and broadened others but has also invented new
techniques for finding and building new routes. In particular, his work on
preference evolution, the ‘indirect evolutionary approach’ he first studied
with Menahem Yaari, appears to be to Economics what the Golden Gate
Bridge is to San Francisco: beautiful and useful in equal measure.

This volume collects sixteen articles written in honour of Werner Güth. In
their variety they reflect the spectrum of approaches towards understanding

xi



xii Preface

strategic behaviour that, at least for now, necessarily coexist. Each is inspiring
on its own, and together they illustrate what life is like between rationality
and a hard place – there are plenty of new insights but also contradictions.
And this is what makes this volume exciting.

The volume begins with Reinhard Selten’s model of qualitative reason-
ing on comparitive statics, a bounded-rationality approach that helps us
to understand and model chains of economic arguments. Chapter 2, by
Tilman Börgers and Antonio J. Morales, also presents a model of bounded
rationality, though one that is build on optimization: agents use a learn-
ing algorithm that, subject to a complexity constraint, maximizes expected
utility. Chapter 3, by Daniel Friedman and Nirvikar Singh, employs Güth’s
indirect evolutionary approach (which mixes elements of ‘orthodox’ game
theory and ‘blind’ evolutionary dynamics) to study how vengefulness may
have evolved in small groups. Chapters 4 and 5 move even further towards
orthodox theory. In Chapter 4, Siegfried K. Berninghaus and Bodo Vogt
study endogenous network formation in co-ordination problems. It is shown
how different social structures emerge, depending on intricate aspects of the
payoff structure of the underlying game. In Chapter 5, Helmut Bester uses
the theory of signalling in games (which requires comparatively sophisti-
cated Bayesian updating) to study why job rationing may occur when firms
provide specific training. This sequence of chapters – moving towards ever
stronger rationality assumptions – then leads to Jörgen Weibull’s devilishly
provocative Chapter 6, in which he questions whether conventional eco-
nomic experiments have ever really tested game theory. This is a contribu-
tion with a pronounced methodological flavour, and so are the following
two chapters. In Chapter 7, Hartmut Kliemt and Axel Ockenfels present a
dialogue between an orthodox economist, an economic psychologist, and
a second economist who is an adherent of bounded rationality. The reader
might guess how much agreement prevails between the three. Chapter 8,
by Colin F. Camerer, Teck-Hua Ho and Juin Kuan Chong, is the longest and
broadest in this volume. It presents an up-to-date overview of ‘behavioural
game theory’, coupling an index of players’ bounded rationality (their steps
of thinking) with a learning model. It provides many applications within a
very rigorous framework.

The second half of the volume is devoted to new experimental evidence.
In Chapter 9, John H. Kagel studies double auctions with stochastic supply
and demand schedules. Interestingly, he finds that (hyperrational) Bayesian
Nash equilibrium models can organize his data better than non-strategic
models. In Chapter 10, James E. Parco, Amnon Rapoport, Darryl A. Seale,
William E. Stein and Rami Zwick study bilateral bargaining in multistage
games. Again, standard equilibrium predictions work well, in particular for
experienced players. Bargaining in the presence of an arbitration mechanism
is analysed in Chapter 11 by Gary E. Bolton and Elena Katok. Studying amore
complex bargaining problem than earlier papers, they show how arbitration
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can help to reduce conflicts in the long run by way of simplyfying the com-
plexity of the task (which highlights a dimension of mechanism design that
is neglected in orthodox approaches). In Chapter 12, Juan-Camilo Cardenas,
T. K. Ahn and Elinor Ostrom study the effects of communication in common-
pool resource dilemmas. Rather than being carried out in the laboratory,
their experiments were conducted with villagers in rural Colombia, which
offers many interesting insights that could not otherwise have been gained.
Chapter 13, by Martin Dufwenberg, Uri Gneezy and Aldo Rustichini, ana-
lyses an important dimension of human life that is typically defined away
in economic theory: the role of gender. Specifically, they study gender dif-
ferences in prize competitions (where they appear negligible) and in other
forms of competition, where success can reveal ‘talent’ (and where they are
significant). Chapter 14 contains, somewhat unusually, a contribution by
the man this volume honours. Werner Güth and Menahem E. Yaari started
a joint project on parity, sympathy and reciprocity more than a decade ago;
the second author has now finally completed it (surprising the first author).
It is a startling illustration of both authors’ creativity and far-sightedness
that the chapter reads extremely freshly despite the long publication
lag. Chapter 15 brings together (for the first time) three Güth pupils,
Manfred Königstein and Wieland Müller as well as myself. Studying
Stackelberg games, they show that deviations from orthodox predictions are
caused not only by subjects who dislike unfair outcomes but also by others
who actually enjoy inequality. Finally, Chapter 16 contains an interview
with Alvin E. Roth, going back to the days just after the first ultimatum game
experiment and sketching a history of continual learning from it until the
present day.

Steffen Huck
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1
Boundedly Rational Qualitative
Reasoning on Comparative Statics
Reinhard Selten

Introduction

The purpose of this chapter is to throw light on the structure of verbal
economic reasoning as we find it in newspaper articles on questions of eco-
nomic policy, or in the non-mathematical economic literature. Presumably,
the thinking of practical decision-makers in business and public administra-
tion has a similar structure. A better understanding of this structure seems to
be important for the development of a realistic theory of boundedly rational
economic behaviour.

In verbal economic reasoning one often finds statements of the following
kind: ‘An increase of X causes an increase of Y’ or ‘An increase of X causes a
decrease of Y’. Such descriptions of causal relationships are qualitative in the
sense that they concentrate on directions of change; nothing is said on the
quantitative strength of the effect.

Qualitative reasoning proceeds directly from qualitative assumptions to
qualitative conclusions. In this connection, it is necessary to emphasize the
word ‘directly’. Mathematical modelling may also pursue the goal to reach
qualitative conclusions on the basis of quantitative assumptions. Sometimes
theorists do not want to determine more than the sign of partial derivatives
with respect to parameters. Qualitative reasoning avoids the intermediate
step of formulating a quantitative model.

A Bayesian decision-maker has no use for qualitative reasoning. In order
to find the decision parameters that maximize expected utility, one needs
a quantitative model and a subjective probability distribution over its
unknown structural parameters. Purely qualitative information is usually
insufficient. Nevertheless, even mathematical theorists aim at qualitative
conclusions. This suggests that such conclusions are valuable for decision-
makers in view of their boundedly rational decision procedures. A boundedly
rational decision-maker may be interested primarily in which direction a
decision parameter should be adjusted. After the answer to this qualitative

1



2 Boundedly Rational Qualitative Reasoning

question has been obtained, the parameter can be adjusted cautiously in the
indicated direction.

Qualitative reasoning does not mean that quantitative information is
ignored completely. The selection of those causal relationships that are taken
seriously may be guided by quantitative information. Thus the influence of
some variables may be neglected because of their quantitative insignificance.
In fact, statistical figures are oftenmentioned in verbal discussions butmainly
in order to argue that something is important or unimportant. Only rarely
are such numbers combined andmanipulated by arithmetical operations.

In this chapter, attention is concentrated on qualitative reasoning about
comparative statics. Qualitative reasoning can also be applied to dynamic
problems, but not much will be said about this here.

In the psychological literature, the idea has been proposed that human
reasoning is based on mental models (Gentner, 1983; Johnson-Laird, 1983).
In the next section, the concept of the causal diagram will be introduced.
Causal diagrams can be looked upon asmental models underlying qualitative
reasoning on comparative statics. They can also be described as belief systems
composed of simple qualitative statements.

The view of qualitative reasoning proposed here will be exemplified by the
Newsweek article ‘Saving, Not the AmericanWay’ by Rich Thomas (Newsweek,
8 January 1990, pp. 42–3).

The concept of a causal diagram

Consider a policy question such as this: what happens if the income tax rate
is increased? In order to answer such questions by qualitative reasoning, one
needs a qualitative belief system. In this chapter, we shall restrict our atten-
tion to qualitative belief systems formed by a finite set of simple statements
of the form (a) or (b):

(a) Ceteris paribus a change of x causes a change of y in the same direction;
and

(b) Ceteris paribus a change of x causes a change of y in the opposite
direction.

In the case of (a) we speak of a positive influence of x on y, and in the case of
(b) of a negative influence of x on y.

A qualitative belief system composed of a finite set of statements of the
form (a) or (b) can be described by a causal diagram. Formally, a causal diagram
is a finite signed and directed graph with some additional properties that
are specified later. The full definition will be given after the introduction of
some auxiliary notions.

The nodes x� y� � � � of a causal diagram correspond to variables, and a
directed link from x to y represents a causal influence. The influence is
positive if the sign is ‘+’ and negative if it is ‘−’.
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A causal chain from x1 to xn is a sequence of at least two nodes x1� � � � � xn
together with n−1 links from xi to xi+1 for i = 1� � � � � n−1. A causal chain
is called positive if the number of its links with a negative sign is even, and
it is called negative if this number is odd. A loop is a causal chain with the
property that x1 = xn holds for its nodes x1� � � � � xn.

Qualitative reasoning on the basis of a causal diagram is little more than
the evaluation of signs of causal chains. We say that x exerts an indirect
causal influence on y if there is at least one causal chain from x to y. This
influence is positive if all causal chains from x to y are positive, and negative
if all these chains are negative. It may also happen that the diagram exhibits
positive as well as negative causal chains from x to y. In this case, we say that
x has an indefinite influence on y. An indefinite influence does not justify a
conclusion of the form (a) or (b). Positive and negative causal influences are
definite. A causal diagram is called balanced if all indirect causal influences
are definite.

A causal diagram need not be balanced. However, indefinite indirect influ-
ences do not provide answers to qualitative policy questions. Therefore, one
can expect that belief structures described by causal diagrams are formed in
a way that avoids indefiniteness as far as possible, at least where it matters
for decision-makers. This works in the direction towards balance.

The graph structure of a causal diagram has to be complemented by add-
itional information about the strategic possibilities and themotivation of the
decision-maker. In order to describe the strategic possibilities, a subset of the
nodes of the causal diagram is specified as a set of instruments. An instrument
represents a variable controlled by the decision-maker. An instrument xmust
have the property that no direct causal influence is exerted on x.

In order to describe the motivation, a subset of nodes must be specified as
a set of goals. Goals are interpreted as variables whose increase is valued by
the decision-maker. In this chapter, attention will be concentrated on the
case of only one goal. In the presence of several goals, one would have to
answer the question of how goal conflicts are solved in qualitative decision-
making. One could try to do this with the help of aspiration adaptation
theory (see Selten, 1998). No attempt to do this will be made here, since our
subject matter is qualitative reasoning rather than decision-making.

We now present a formal definition of a causal diagram: a causal diagram
is a finite signed and directed graph together with two non-empty subsets of
nodes, a set of instruments and a set of goals. The following conditions must
be satisfied:

(a) There is at most one link from one node to another;
(b) There are no loops;
(c) An instrument is a node x such that there is no link from a node y to x

(however, not all such nodes must be instruments); and
(d) For every instrument x there is at least one causal chain to a goal y.
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Condition (a) means that the direct ceteris paribus influence of one variable
on another is specified unambiguously. The absence of loops required by
(b) is a property that has been observed by Axelrod (1976) in his studies
on qualitative reasoning in Structure of Decision. Axelrod does not look at
causal diagrams but rather at undirected signed graphs which are used to
describe opinions expressed by speeches of politicians. The use of such graph
structures for the purpose of representing opinion structures goes back to the
paper entitled ‘Symbolic Psycho-Logic’ by Abelson and Rosenberg (1958).
Perhaps the most striking result of Axelrod was the absence of loops. The
causal diagram does not just represent positive and negative connections,
but also expresses causal relationships through the directions of links. An
instrument is thought of as a variable controlled by the decision-maker. It
is therefore natural to require that no causal influences other than the will
of the decision-maker are exerted on an instrument.

In my paper entitled ‘Investitionsverhalten im Oligopolexperiment’
(Selten, 1967), the definition of a causal diagram was further restricted by
the condition that there should be no influences on other variables exerted
by goals. This condition seems to be unnecessarily restrictive and is therefore
not a part of the definition proposed here.

An instrument without any indirect influence on any goal would be irrele-
vant for decisions on policy questions. Therefore, condition (d), which was
absent from Selten (1967) is included in the definition of the causal diagram.
One might want to require the stronger property that every instrument
indirectly influences every goal, but this would be unnecessarily restrictive.
In fact, a study by Williamson and Wearing (1996) indicates that economic
opinions of lay people are often described by diagrams with several com-
ponents without any connection to one other.

Williamson and Wearing investigated the economic opinions of many lay
people in Australia, with very interesting results. In their highly remarkable
paper they describe ‘cognitive models’ similar to causal diagrams, but also
different in important respects. Thus, not only variables but also ‘needs’,
such as for example, ‘government should encourage Australians to work’
are represented as nodes of the graph. Links may express relatedness or unre-
latedness as well as positive or negative causal connections. In this way,
Williamson andWearing obtain a close agreement with the verbal statements
of their subjects. The concept of a causal diagram restricts itself to positive and
negative causal links between variables. In this way, one obtains clear quali-
tative descriptions of the perceived causal structure. The causal diagram is a
mental model about the underlying reality rather than a detailed elaboration
of all opinions, including evaluations and action recommendations.

The basic idea of a causal diagram is very simple and I would not be
surprised to be told that it can be found in the literature before 1967. In the
newer literature, sometimes explicit use of a causal diagram is made – for
example, in the book by Frederic Vester (1990) Ausfahrt Zukunft. However,
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Vester adds an additional feature to the causal diagram that is not really
qualitative. Each link has a degree of strength. There are finitely many levels
of this degree of strength.

The fact that there seems to be a widespread use of causal diagrams and
similar graph structures suggests that it is a natural tool for the description
of qualitative causal reasoning. It is maybe necessary to pay more attention
to this formal structure even if it is a very simple one.

The causal diagram of a Newsweek article

Figure 1.1 shows a causal diagram constructed on the basis of a Newsweek
article by Rich Thomas (8 January 1990) with the title ‘Saving, Not the
American Way’. Before this diagram can be explained in detail it is necessary
to say something about the structure of this article. First, it is shown with the
help of statistical figures that the US savings rate is very low in comparison
to that in Germany and Japan. In view of this situation, it had been proposed
to create new tax incentives for saving.

In the diagram, the only goal variable considered is growth, even though
the word ‘growth’ is not explicitly mentioned in the text. However, after
the discussion of the high savings rate in Germany and Japan, we find the
following remark: ‘Has this saving led to better living standards? In Germany,
incomes have increased over the past 20 years, inflation is negligible and the
Deutsche Mark has become Europe’s most powerful currency. Japan, too, has
emerged as an economic superpower.’ Since living standards are connected
to growth, it seems to be justified to look at growth as the goal variable. The
text focuses on investment rather than growth. But it seems to be assumed
that an increase of investment leads to a higher growth rate. Therefore, in
the diagram, the influence of investment on growth is positive.

In the diagram, some of the influences are indicated by lines with solid
black arrowheads. The variables tax incentives for saving, savings, funds
available for investment, interest rate, investment and growth, as well as the
lines with solid black arrowheads reflect the main argument for a positive
indirect influence of tax incentives for savings on growth. We refer to this
part of the diagram as the main diagram.

The lines with white arrowheads represent other influences and critical
objections to the main argument. In most cases these influences involve
variables outside the main diagram.

A ‘+’ or ‘−’ on a line represents a direct influence and indicates whether
this influence is positive or negative. Numbers indicate quotations that sup-
port the relevant influence. These quotations are listed below the diagram
in Figure 1.1.

The main diagram has two positive causal chains from the instrument
variable ‘tax incentives for saving’ to the goal variable ‘growth’. Obvi-
ously, the main diagram is balanced. If the causal chain from savings over
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Savings of the
rest of the

world

Pension plans
health and 
disability
insurance

Funds available
for investment

Consumption Growth

Interest rate Investment

Tax rises or
spending

cuts

 Savings

Proportion of
old people

in the
population

Delayed
budged
deficits

Tax incentives
for savings

+
(2)

–
(3)

–
(3)

–
(4)

+
(2)

+
(4)

+   (7)

–   (5)

+   (9)

+   (6)

+   (8)

+
(1)

+   (4)

Quotations from the text of the article

(1) Tax law which generally benefits borrowing far more than saving and is in part
responsible (for the decline in savings) � � � Most of the coming proposals assume
that tax policy can motivate people to save more.

(2) Savings regardless where deposited act as a pool of money that businesses can tap
for new plants, equipment and employees.

(3) Greater savings keep interest rates lower, making it cheaper to borrow in the United
States.

(4) Because of these advantages [(2) and (3)] most economists dismiss the commonly
held view that curbing consumption would drag the economy into a recession.

(5) In addition, the slide in savings is ‘a byproduct of our social progress’ says Harvard
economics Professor Lawrence Summers. The spread of pension plans, health and
disability insurance and large increases in social security benefits have vastly reduced
the need of many Americans to save.

(6) Edward Yardeni of Prudential-Bache Securities Inc. says the aging population will
push the savings rate above 10 percent.

(7) Critics say the plan would eventually cost the treasury billions of dollars. ‘What you’re
really doing is planting a lot of delayed budget deficits � � � says Henry Aaron of the
Brookings Institution’.

(8) Critics like Aaron believe that tax incentives are a poor way to attack the low savings
rate in any case. They argue that balancing the budget – a tax rise or spending cuts –
would accomplish the same aims.

(9) John Makin of the American Enterprise Institute says that the rest of the world is
saving so much and investing it in this country that the U.S. savings rate isn’t as
relevant as before.

Figure 1.1 Causal diagram of the Newsweek article and quotations from it
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consumption on growth were not to be dismissed by quotation (4), the bal-
ance of the main diagram would be destroyed, since tax incentives would
then have a negative influence on growth via the causal chain involving
consumption.

We now discuss the influences of the causal diagram following the num-
bering of the quotations. Tax incentives for savings supposedly have a posi-
tive influence on savings. This is clearly indicated by quotation (1). The
causal chain from ‘savings’ over ‘funds available for investment’ to ‘invest-
ment’ reflects quotation (2). The causal chain ‘savings’ over the ‘interest rate’
to ‘investment’ is suggested by quotation (3), even if the second influence
from the interest rate to investment is not mentioned explicitly. However,
the words ‘making it cheaper to borrow in the United States’ suggest that
more would be borrowed and invested if interest rates were lower. We have
already discussed the influence of investment on growth, which is implied
by the text but not expressed explicitly. Quotation (4) also gives a hint
about growth as a goal because it is seen as a bad side effect that curbing
consumption would drag the economy into a recession.

After having discussed the main diagram and the dismissed causal chain
from ‘savings’ over ‘consumption’ to ‘growth’, we now turn our attention
to the remaining causal influences.

The negative influence of ‘pension plans etc.’ on ‘savings’ is offered as an
explanation for a lower savings rate compared to a time in the past when
there was less social security. Of course, this explanation is dubious in view
of the fact that the social security system of Germany is by no means less
well developed than that of the United States.

One of the critical remarks reported in the article was the objection that
tax incentives for savings create delayed budget deficits. This means that
attention is directed to future budget balances as a second goal neglected
by the main argument. Another objection is based on the opinion that
the growing proportion of older people will lead to an increased savings
rate, and that therefore tax incentives are not necessary. A third objection
recommends a tax rise and a spending cut instead of tax incentives in order
to raise savings, and is understood as including not only private but also
public savings or dissavings. A fourth criticism points to the importance
of foreign savings for investment and denies the significant influence of
domestic savings. The positive influence of consumption on growth is also
mentioned as a possible counter-argument. The balance of the main diagram
would be destroyed by the inclusion of this influence.

Concluding remarks

The article by Rich Thomas discussed above is very well reasoned and there-
fore naturally lends itself to description by a causal diagram. Unfortunately,
not every journalist writes that well. In many newspaper articles it is hard
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to find any reasoning to work with. However, the author has found it useful
to translate discussions of policy questions into causal diagrams, and has
taught this technique in courses on bounded rationality. The causal dia-
gram formalizes the structure of qualitative reasoning about comparative
statics.

Theories of qualitative reasoning about dynamical systems have been pro-
posed in the artificial intelligence literature (Bobrow, 1985). The articles
collected in the book by Bobrow concern physical systems, but the method
can also be applied to economic systems. In fact, the old business cycle theor-
ies in vogue before mathematical models became popular were based almost
exclusively on qualitative arguments. The methods described in Bobrow’s
book throw light on these theories. It would be interesting to say more about
the effect of qualitative reasoning on dynamic economic systems, but this
cannot be discussed here: the author hopes that he will be able to do this
elsewhere.
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Complexity Constraints and
Adaptive Learning: An Example
Tilman Börgers and Antonio J. Morales∗

Introduction

Experimental research suggests that it is very difficult for most people to
make optimal decisions if their payoffs are affected by a sequence of random
shocks that are independent and identically distributed (i.i.d.). Many subjects
never learn to make optimal choices; others do, but take a very long time.

A simple experimental set-up, in which results of the type outlined in the
previous paragraph have been obtained, is as follows: subjects repeatedly
choose between two actions, say ‘Left’ or ‘Right’. Payoffs can have only two
values: one (‘success’), or zero (‘failure’). In each trial, one of the two choices
is successful, and the other one fails. After each trial, subjects observe which
choice was successful in that trial, and which choice was not successful. The
probability that one of the two actions, say ‘Left’, is successful is � < 0�5,
whereas the other action, say ‘Right’, has probability 1−� > 0�5 of being
successful. Success in one trial is stochastically independent of success in
any other trial. Subjects are not informed about the stochastic process that
determines the success of different choices. Note that if this process were
known, then expected payoff maximization would mean that the action
with the higher likelihood of success would be chosen in each trial.

This binary choice experiment has been conducted by experimental psy-
chologists for a very long time (see Myers, 1976, and Winter, 1982, for
surveys). One of the most prominent findings in the older literature was that
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birthday. The first author was Werner Güth’s student as an undergraduate at the
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anonymous referee for their comments. Tilman Börgers’ research was supported
financially by the ESRC through the grant awarded to the Centre for Economic
Learning and Social Evolution (ELSE) at University College London. Antonio J.
Morales acknowledges financial support fromMCYT and FEDER grant number BEC
2002-02852.

9



10 Complexity Constraints and Adaptive Learning

subjects probability match instead of optimize (Grant et al., 1951). By this, the
literature meant that, in the long run, the fraction of trials in which subjects
chose the more successful action equalled the probability of success of that
action, that is, 1−� (using the above notation).

Whether probability matching is really a robust finding has been ques-
tioned regularly (see, for example, Edwards, 1961; Peterson and Ulehla,
1965; and Shanks et al., 2002). These authors have found that subjects
who are given enough time to learn, who receive sufficiently informat-
ive feedback, and who are incentivized with sufficiently large monetary
rewards come closer to optimization than the theory of probability matching
suggests.

The most recent experiments we know of in this context are those of
Shanks et al. (2002). In one treatment, they gave twelve subjects the oppor-
tunity to make choices in the binary choice problem described above over
1,500 periods. They found that out of those twelve subjects, seven eventu-
ally optimized. These subjects took, however, a very long time to optimize.
Typically, the subjects needed about 1,000 trials before settling for the best
choice.1

While probability matching thus does not seem to be a robust experi-
mental finding, Shanks et al.’s data also show that a more general point
remains valid: subjects find it hard to make optimal choices in i.i.d. envir-
onments. Some subjects never do (in experimentally observed time frames);
and others take a very long time.

In this chapter we are concerned with the question of what explains
subjects’ poor performance in the binary choice task with i.i.d. shocks.
The theory we propose rests on the assumption that, when facing any
learning task, people use a learning algorithm that is optimal in a suit-
able sense in some environments. This algorithm will be embedded in
people’s brains. Therefore, it will have been shaped by evolution. This
makes our assumption of optimality of the learning algorithm not entirely
implausible.

The most prominent model of optimal learning in economics is that of
Bayesian learning. However, it is very hard to match observed learning
behaviour with a Bayesian model. If people hold subjective prior beliefs
about the nature of the stochastic process they are confronting, which
attaches at least some positive probability to the possibility that this process
is i.i.d., and if their prior beliefs are not biased in favour of either of the two
alternatives, then Bayesian learning typically implies very fast convergence
to the payoff maximizing action.

We therefore explore a new hypothesis. It is that subjects are using a
learning algorithm that maximizes expected utility subject to a complex-
ity constraint. We model the complexity constraint as the requirement
that subjects need to use a learning algorithm that can be implemen-
ted by a stochastic automaton with a very small number of states.
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Intuitively, we interpret the number of states as a measure of the amount of
memory, or of attention, that the decision-maker allocates to the learning
problem.

The formal setting we study is the learning task described above. As a first
and crude formalization of our idea, we restrict attention to the extreme case
that the decision-maker’s prior places probability one on the event that the
environment is i.i.d., and that all that is needed to learn is which of the two
choices has the higher chance of success. Another extreme assumption we
make is that the decision-maker wants to use an automaton with two states
only. However, we do give the decision-maker some flexibility by allowing
the use of an automaton with random transitions.

We calculate the optimal strategy of the decision-maker in this set-up,
and find that it is very simple: in each period, the decision-maker acts as
if what was successful yesterday will also be successful today. Thus, if ‘Left’
was successful in the last trial, then it will be chosen again in the next trial.
If ‘Right’ was successful in the last trial, then the decision-maker will choose
‘Right’ in the next trial.

Notice that an implication of this algorithm is that, from period 2 onwards,
the probability that the decision-maker will choose any particular action
is equal to the probability that this action is successful. Thus our model
predicts probability matching.

At this stage, however, our theory is not meant to fit the data in a quan-
titative sense. Although the particular model we have investigated predicts
probability matching, we are aware that this is not what most subjects do
in the long run in the experiments. A more general analysis of the role of
complexity constraints, and a closer look at the data, are needed before we
can draw any conclusions about the relevance of complexity constraints
for experimentally observed learning behaviour in the binary choice experi-
ment. Such an analysis needs to consider more general priors, as well as
complexity constraints that are less tight than the ones assumed here. This
chapter is meant as a tentative exploration.

The paper that is most closely related to our work is Winter (1982). Winter
pointed out that limited memory decision-making may lead to probability
matching or similar choice behaviour. However, Winter did not study the
optimaluseofagivenamountof limitedmemory.Hemadeexogenousassump-
tions about how a given limitedmemorywould be used. By contrast, ourwork
considers theoptimaluseof agivenamountofmemory.Weshowthatoptimal
use of a very small amount of memory leads to probability matching.

Kalai and Solan (2003) have presented a general study of optimal finite
stochastic automata for Markov decision problems. What we present here is
close to being an example of Kalai and Solan’s general framework, and we
explain later in more detail the connection between our work and theirs.
Schlag (2002) has also studied several desirable properties of simple learning
algorithms in i.i.d. environments. However, he focuses on non-Bayesian
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criteria, whereas we use entirely orthodox Bayesian criteria to evaluate
different algorithms.

This chapter is structured as follows. In the next section we describe the
set-up for our analysis. In the third section we present our main results. The
fourth section comments on the results, and the final two sections contain
proofs.

Set-up

There is a single decision-maker. Time is discrete, and the time horizon is
infinite, so that the time periods are: t = 1�2�3� � � � . In every period t , the
decision-maker chooses one of two actions which, for concreteness, we now
label as: ‘take an umbrella’, or ‘don’t take an umbrella’. After the decision-
maker has taken the decision, a random event occurs: it either rains, or it
doesn’t. The probability that it will rain is independent of the period, and
the occurrence of rain in any one period is stochastically independent from
the occurrence of rain in any other period. In other words, rain is an i.i.d
event.

The decision-maker knows that rain is i.i.d., but does not know the prob-
ability of rain. This probability can be either ‘low’ or ‘high’. If it is low, then
it is equal to some probability � ∈ �0�0�5	. If it is high, then it is equal to the
complementary probability, that is, 1−�. This particular specification of the
probabilities makes our calculations simple (see below). The prior probability
the decision-maker attaches to the possibility that the probability of rain is
low is 0.5, and the same probability is attached to the possibility that the
probability of rain is high.

In each period, the decision-maker first chooses the action, and then
observes whether it rains. S/he can thus learn about the probability of rain.
Observe that this is not a bandit problem. The decision-maker’s observation
in each period is independent of his/her action, whereas in a bandit problem
the decision-maker’s observation would depend on his/her action.

The decision-maker’s payoff in each period depends on his/her action and
on the state of the world. Figure 2.1 shows actions in rows, states in columns,
and each entry indicates the decision-maker’s von Neumann Morgenstern
utility if the row action is taken, and the column state occurs. The decision-
maker’s objective is to maximize the expected discounted value of his/her
payoffs. S/he uses a discount factor 
 ∈ �0�1	.

Rain

Umbrella

No umbrella

No rain

1 0

0 1

Figure 2.1 The payoff matrix
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Optimal strategies

We begin by describing the optimal strategy for the decision-maker if the
complexity of the strategy is of no concern to that person. The follow-
ing result follows from the simple calculations of conditional probabilities
which we shall carry out in the proof of Proposition 1 below. The result is a
consequence of the symmetry of our model with respect to actions.

Proposition 1: If there is no complexity constraint, then the optimal strategy
of the decision-maker is as follows:

(i) In period 1 choose some arbitrary action.
(ii) In periods t � 2 count the number tR of earlier periods in which it rained,

and the number tN of earlier periods in which it did not rain. If tR > tN ,
then take your umbrella. If tN > tR, then do not take your umbrella. If
tR = tN , then take some arbitrary action.

In other words, this strategy simply says that the decision-maker’s updated
probability of rain in any period is equal to the relative frequency of rain
in the past. The decision-maker takes optimal actions with respect to these
beliefs.

Remark 1: What will this decision-maker’s behaviour look like? Let us
denote by et the ex ante probability that the decision-maker makes the object-
ively ‘wrong’ decision in period t – that is, that s/he chooses to take his/her
umbrella even though the probability of rain is �, or that s/he leaves his/her
umbrella even though the probability of rain is 1−�. In period 1, independ-
ent of the decision-maker’s choice, e1 = 0�5. In period 2, the decision-maker
makes a wrong choice if and only if the weather in period 1 was of the type
that is objectively less frequent. Hence, the decision-maker makes the wrong
choice with probability e2 = �. Clearly, as t increases, et decreases, because
the decision-maker has more information. The weak law of large numbers,
moreover, implies: limt→� et = 0. Finally, by the strong law of large numbers,
with probability 1 there will be some random time t̃ such that, in all periods
t > t̃ , the decision-maker will make the ‘right’ decision.

Remark 2: What is the decision-maker’s expected utility? Denote by ut
his/her expected utility in period t , where expected values are taken from
the ex ante perspective. Then:

ut = �1− et 	�1−�	+ et�

Clearly, in period 1 we have: ut = 0�5, independent of which action the
decision-maker chooses. In period 2, expected utility is: u2 = �1−�	2 +�2.
As et is decreasing in t , it follows that ut is increasing in t . The weak law
of large numbers implies that in the long run we have: limt→� ut = 1−�.
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The present value of the decision-maker’s expected utility will depend on
the discount factor 
. But as 
→ 1, the present value, if normalized in the
standard way through multiplication by the factor �1−
	, will converge to
1−�. On the other hand, as 
→ 0, the present value will converge to 0.5.

A decision-maker who adopts the above, fully rational strategy has to
keep track of the difference between the number of rainy days and the
number of dry days. This difference can be any integer number. In this sense,
it is required that there is an infinite number of possible states in which
the memory of this decision-maker can be. For some decision-makers, this
might demand more attention and memory space than they want to allocate
to this problem. Such decision-makers might look for a simpler strategy.
Motivated by this consideration, we shall next study a decision-maker who
is only willing to choose strategies that can be implemented using a finite
automaton.

We shall make the extreme assumption that the number of states of the
automaton that implements the decision-maker’s strategy has to be two.
Note that, for a non-trivial analysis, the number of states must not be smaller
than two, because each state will have to be assigned some (possibly mixed)
action, and if there is only one state, then the decision-maker’s behaviour
has to be constant for ever. Thus we study the case in which the strategy
has to be implemented by an automaton with the minimal number of states
that allows a non-trivial learning process.

The two states of the automaton are ‘umbrella’ (U ) and ‘no umbrella’
(N). If the decision-maker is in the state ‘umbrella’, then s/he takes his/her
umbrella. If s/he is in the state ‘no umbrella’, then the umbrella is left at
home.

One of the two states will be chosen as the initial state. We shall study
below the optimal choice of the initial state. We shall also study the optimal
choice of the transition rule. The transition rule determines, as a function
of the current state (and of the weather that the decision maker experi-
ences) what his/her state in the next period is going to be. We shall allow
for stochastic transition rules – that is, rules where the next state is a ran-
dom variable that depends only on the current state, and on the weather
experienced in the current period.

Kalai and Solan (2003) have demonstrated that a finite automaton with
stochastic transitions can sometimes achieve a larger expected utility than a
finite automaton with deterministic transitions. They also demonstrate that
nothing is gained if actions, conditional on the state, are allowed to be
stochastic. Their set-up is different from ours in that they do not allow
for discounting, but their observation that stochastic transitions may be
superior, and that randomization conditional on the state is redundant, are
also true in our context. With regard to the first point, we shall provide an
example in the fourth section, below. As for the second point, Kalai and
Solan’s proof can easily be adapted to our context.
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Umbrella No umbrella

If no rain: qN

If rain: qR

If rain: pR

If no rain: pN

Figure 2.2 The two-state automaton

We now provide some formal notation for our two-state automaton. We
shall denote the probability that the decision-maker changes his/her state, if
the current state is ‘umbrella’, and if it has rained, by pR. If the current state is
‘umbrella’, and it does not rain, then the probability that the decision-maker
changes his/her state is pN . In both cases, the decision-maker stays in the state
‘umbrella’ with the complementary probability. The exit probabilities from
state ‘no umbrella’ are qR (if it rains) and qN (if it doesn’t rain). Again, the
state is left unchanged with the complementary probability. Figure 2.2 gives
a simple graphical representation of the finite automata we are studying.

For a given finite automaton it is straightforward to calculate the decision-
maker’s expected utility. The next Proposition, which we shall prove in the
final section of the chapter, describes the finite automaton for which this
expected utility is maximized.

Proposition 2: The optimal transition probabilities are

pR = 0� pN = 1� qR = 1� pN = 0�

Any probability distribution over initial states is optimal.

This automaton implements the strategy according to which the decision-
maker assumes that tomorrow’s weather will be the same as yesterday’s, and
acts accordingly. Thus, the decision-maker has adaptive expectations.
Remark 3: We emphasized above the importance of allowing for stochastic

transitions. Proposition 2, however, says that in our example, it is optimal not
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to choose stochastic transitions. It is not at all trivial that in our example
stochastic transitions turn out not to be optimal. In the fourth section below
we give a simple example that is similar to the set-up of our chapter, but in
which stochastic transitions do turn out to be optimal.

Remark 4: What will this decision-maker’s behaviour look like? In period 1
s/he will choose some arbitrary action. From period 2 onwards, s/he
will exhibit the behaviour that the psychology literature calls probability
matching – that is, s/he will choose the correct action with probability 1−�,
that is, the probability with which it is successful, and s/he will choose the
wrong action with the complementary probability, that is, �. To see this,
suppose for example, that rain is infrequent – that is, that it occurs with
probability �, and suppose that we are in period t . Then the probability that
the decision-maker observed no rain in period t−1 is 1−�. Thus, in period
t , s/he will take the correct action, with probability 1−�.

If we denote again by et the ex ante probability that the decision-maker
makes the objectively ‘wrong’ decision, then we have et = 0�5, if t = 1; and
et = � if t � 2. Compare this with the performance of a decision-maker
who adopts the strategy described in Proposition 1. In periods 1 and 2, this
decision-maker will have the same error rates. But from period 3 onwards
the fully rational decision-maker has a further declining error rate, which
converges to zero as t tends to infinity, whereas the decision-maker in Prop-
osition 2 has a constant error rate. He does not ‘learn’ any further.

Remark 5: What is the decision-maker’s expected utility? As before, denote
expected utility in period t by ut . Then: ut = 0�5 if t = 1, and ut = �1−�	2+�2

if t �2. The present value of the decision-maker’s expected utility will depend
on the discount factor 
. But as 
→ 1, the present value, if normalized in
the standard way through multiplication by the factor �1−
	, will converge
to �1−�	2+�2. On the other hand, as 
→ 0, the normalized present value
will converge to 0.5.

In Figure 2.3 we plot the loss in expected utility that the decision-
maker suffers if s/he uses a two-state automaton rather than the uncon-
strained optimal strategy. We pick three values of the discount factor 
,
and then illustrate for these how the expected utility loss depends on the
probability �.

Figure 2.3 shows that, for all three values of 
, the expected utility loss
is small if � is close to 0. The intuitive reason is that, in this case it is
easy to learn, and even the two-state automaton will almost always pick out
the optimal action. Expected utility loss is also small if � is close to 0.5.
In this case, learning is difficult, but it does not matter much, because the
two actions yield almost the same expected utility. Correspondingly, the
expected utility loss is largest for some interior value of �. Figure 2.3 also
shows that the expected utility loss is increasing in 
. The intuition for this
is that as 
 increases, the future becomes more important, and therefore the
incentive for accurate learning increases.
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Figure 2.3 Expected utility loss because of the complexity constraint

Comments

Two important aspects of the automaton in Proposition 2 are, first, that the
initial state does not matter, and second, that transitions are deterministic,
rather than stochastic. We now give a very simple example of a setting in
which the optimal automaton has neither of these properties. The purpose
of this section is twofold. First, we seek to illustrate that the result of the
previous section is somewhat surprising. Second, we wish to show that a
fully developed theory of learning by boundedly rational agents will have
to be more complicated than the example constructed in this chapter. The
example we give below is generalized and analysed in more detail, in Börgers
and Morales (2004).

Example: There are two actions, A and B. The payoffs for each action are
deterministic, but unknown. Each action’s deterministic payoff can be either
0, 1 or 2. The decision-maker assigns probability 1/3 to each of these events.
The payoffs of the two actions are stochastically independent.

Note that this example is a proper bandit problem. The decision-maker’s
observations depend on his/her actions. Suppose that the decision-maker
uses an automaton with only two states, one for each action. Then the
optimal automaton can easily be calculated to be the following (see Börgers
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and Morales, 2004): the automaton will select one of the two states as the
initial state, say A. If the payoff is 0, the automaton will always switch states.
If the payoff is 2, then the automaton will always stay in the current state.
If the payoff is 1, and the current state is B, then the automaton will always
stay in that state. The reason is that the automaton can be in state B only if
payoff in state A was either 0 or 1. Thus, if in state B the payoff 1 is received,
it is not worth switching back to A. Note how the automaton ‘remembers’
that it chose A first. It does not matter what the initial state is, but it does
matter that it is not random.

The most interesting feature of the optimal automaton arises if payoff 1 is
received in state A. Then the optimal transition to B is potentially stochastic.
A simple calculation shows that the optimality probability with which the
decision-maker switches to B is then:

p=min

{
1�

√
1−



2

}

For 
 close to 1 the decision-maker will thus experiment when s/he is in
state A and receives payoff 1.

Intuitively, if the decision-maker receives payoff 1 when s/he first plays
A, and if s/he is very patient, then s/he has an incentive to experiment with
action B to find out whether B perhaps yields payoff 2. If B yields payoff 1 or
2, then the decision-maker would like to stay with B, but if it yields payoff
0 the decision-maker would wish to return to A. The problem is that state
A is used both for the initial choice, and for the choice of A if the decision-
maker has been disappointed by B. Thus, in state A, the decision-maker does
not ‘remember’ whether s/he has already experimented with B or not. The
randomization ensures that some experimentation occurs if the decision-
maker plays A for the first time and receives 1, but that, on the other hand,
A is played at least for some proportion of the time if B yields payoff 0.

Notice that the decision-maker, as described in the previous paragraph,
suffers from ‘absent-mindedness’ in the sense of Piccione and Rubinstein
(1997). Our result is therefore reminiscent of their finding that, with absent-
mindedness randomization may be strictly optimal. In our example, in con-
trast to theirs, the absent-mindedness arises endogenously.

This example indicates that our results generalize only to a limited extent.
One might conjecture that both of the important features of our optimal
automaton – that is, that the initial state is irrelevant, and that transitions
are non-stochastic, survive in settings in which there are only two possible
payoff levels. We have, however, not proved this conjecture.

Proof of Proposition 1

Denote the decision-maker’s subjective probability that the frequency of
rain is low – that is, that it occurs with probability �, at the beginning of
period t by �t . Consider the evolution of the decision-maker’s beliefs. If the
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decision-maker observes rain in period t , then his/her subjective probability
that rain is infrequent is in the next period:

�t+1 =
�t�

�t�+ �1−�t	�1−�	

If s/he observes no rain in period t , then his/her subjective probability that
rain is infrequent is in the next period:

�t+1 =
�t�1−�	

�t�1−�	+ �1−�t	�

Suppose the decision-maker observed rain in period t , and then no rain in
period t +1. Using the above two equations, one can easily verify that the
decision-maker’s beliefs in period t + 2 will be the same as they were in
period t :

�t+2 = �t

The same holds if s/he observes first no rain, and then rain.
Now suppose that the decision-maker starts out with beliefs �1 = 0�5, and

observes a sequence of periods of rain (R) and no rain (N), such as the
sequence ‘RRNNRNNNRN’. Note that any such sequence, as long as it does
not contain only Rs or only Ns, must contain a pair of adjacent periods such
that it rained in one of those periods, but not in the other. Our calculations
above imply that the final beliefs of the decision-maker are the same, inde-
pendent of whether these two adjacent periods are present in the sequence,
or whether they are taken out. For example, in the above sequence we can
eliminate the second entry, R, and the third entry, N, without affecting the
final beliefs of the decision-maker: ‘RNRNNNRN’.

A finite number of steps of the type described in the previous paragraph
are enough to reduce any finite sequence of Rs and Ns which either consists
only of Rs, or only of Ns, or which consists of no entries at all. If the final
sequence consists only of Rs, then the original sequence had more periods
of rain than of no rain, and the length of the final sequence is simply the
difference between the number of rainy periods and the number of periods
without rain in the original sequence. The analogous statement is true if the
final sequence consists only of Ns. If the final sequence has no entries at all,
then the original sequence had an equal number of rainy and dry periods.

If the reduced sequence has only Rs, then the subjective probability of
rain, after Bayesian updating of the beliefs given the observations available,
will be more than 0.5. If it has only Ns, then the subjective probability of
rain will be less than 0.5. Finally, if it has no entries at all, then the subjective
probability of rain will be the same as it was initially, that is, 0.5.

Because choices do not affect what the decision-maker learns, the decision-
maker should choose in every period t whatever is optimal according to �t .
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Thus, any choice is optimal if �t = 0�5. If �t < 0�5, then it will be optimal to
bring the umbrella, and if �t > 0�5, it will be optimal to leave the umbrella
at home. We have thus proved Proposition 1.

Proof of Proposition 2

Proof strategy

We shall prove that the transition probabilities indicated in Proposition 2
are optimal if it is assumed that the initial state is U . By symmetry, it then
follows that these transition probabilities are also optimal if it is assumed
that the initial state is N. Moreover, symmetry also implies that the maximal
achievable utility is the same for both initial states. Thus, we can deduce that
with optimally chosen transition probabilities, every probability distribution
over initial states is optimal, and the proposition is proven.

Calculating the expected utility

Denote by V�
U (resp. V�

R ) the decision-maker’s expected utility if s/he is in
state U (resp. R) and the true probability of rain is �. Define V1−�

U and V1−�
R

analogously. If the true probability of rain is �, then the expected utilities
satisfy:

V�
U = ��1+pR
V

�
N + �1−pR	
V

�
U 	+ �1−�	�0+pN
V

�
N + �1−pN	
V

�
U 	

V�
N = ��0+qR
V

�
U + �1−qR	
V

�
N 	+ �1−�	�1+qN
V

�
U + �1−qN	
V

�
N 	

The solution of these two equations is:

V�
U = 1

1−


�1−
	�+
���1−�	pR+ �1−�	2pN +�2qR+��1−�	qN	

1−
+
��pR+ �1−�	pN +�qR+ �1−�	qN	

V�
N = 1

1−


�1−
	�1−�	+
���1−�	pR+ �1−�	2pN +�2qR+��1−�	qN	

1−
+
��pR+ �1−�	pN +�qR+ �1−�	qN	

If the true probability of rain is 1−�, then the expected utilities satisfy:

V1−�
U = �1−�	�1+pR
V

1−�
N + �1−pR	
V

1−�
U 	+ ��0+pN
V

1−�
N

+ �1−pN	
V
1−�
U 	

V1−�
N = �1−�	��0+qR
V

1−�
U + �1−qR	
V

1−�
N 	+ ��1+qN
V

1−�
U

+ �1−qN	
V
1−�
N 	
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The solution of these two equations is:

V1−�
U = 1

1−

�1−
	�1−�	+
���1−�	pR+�2pN + �1−�	2qR+��1−�	qN	

1−
+
��1−�	pR+�pN + �1−�	qR+�qN	

V1−�
N = 1

1−

�1−
	�+
���1−�	pR+�2pN + �1−�	2qR+��1−�	qN	

1−
+
��1−�	pR+�pN + �1−�	qR+�qN	

As indicated above, under the heading ‘Proof strategy’, we focus on the
case in which the decision-maker chooses as the initial state U . His/her
expected utility is then:

U = 1
2
�V�

U +V1−�
U 	

Maximizing U is the same as maximizing

V = 2�1−
	U = A+B

where

A= �1−
	�+
���1−�	pR+ �1−�	2pN +�2qR+��1−�	qN	

1−
+
��pR+ �1−�	pN +�qR+ �1−�	qN	

and

B= �1−
	�1−�	+
���1−�	pR+�2pN + �1−�	2qR+��1−�	qN	

1−
+
��1−�	pR+�pN + �1−�	qR+�qN	
�

In the following, we shall study how pR, pN , qR and qN should be chosen so
as to maximize V .

Switch after success only if you always switch after failure

We begin by demonstrating the following claim:

Claim 1: In the optimum, if the decision-maker switches with positive prob-
ability after a successful choice, then s/he switches after unsuccessful choices
with Probability 1. Formally:

pR > 0⇒ pN = 1

and

qN > 0⇒ qR = 1

We prove only the first implication. The second follows by an analogous
argument. Observe that A depends on the value of �pR + �1−�	pN , but
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different values of pR and pN which give rise to the same �pR + �1−�	pN
lead to the same value of A. Moreover, A is increasing in �pR+ �1−�	pN . In
the same way, B only depends on �1−�	pR+�pN . Moreover, B is decreasing
in �1−�	pR+�pN . Thus, when choosing pR and pN , the decision-maker will
prefer among all combinations that give rise to a given value of �pR+�1−�	p

those combinations that minimize �1−�	pR +�pN . Thus, whenever it is
possible to achieve the given value of �pR + �1−�	pN by choosing pN > 0
but pR = 0, the decision-maker will do so. The decision-maker will choose a
positive pR only if even a choice of pN = 1 will not give rise to the sought
value of �pR+ �1−�	pN . The first implication in Claim 1 thus follows.

Switch after failure only with probability zero or with
probability 1

We next demonstrate the following claim:

Claim 2: In the optimum, the probability that the decision-maker switches state
after a successful choice is either zero or one, that is:

pR ∈ 0�1�

and

qN ∈ 0�1��

We prove only the first of the two claims. The second claim can be proved
analogously. To prove the claim we show that the following implication
holds:

�V

�pR
= 0⇒ �2V

��pR	
2
> 0�

This implies that any stationary point of the objective function V is a local
minimum. This immediately implies that the value of pR which maximizes
V must be one of the two boundary values.

We begin by evaluating the derivatives involved:

�A

�pR
= 
��1−2�	�1−
+
�qR+
�1−�	qN	

�1−
+
��pR+ �1−�	pN +�qR+ �1−�	qN		
2

�2A

��pR	
2
=− 2
2�2�1−2�	�1−
+
�qR+
�1−�	qN	

�1−
+
��pR+ �1−�	pN +�qR+ �1−�	qN		
3

�B

�pR
=− 
�1−�	�1−2�	�1−
+
�1−�	qR+
�qN	

�1−
+
��1−�	pR+�pN + �1−�	qR+�qN		
2

�2B

��pR	
2
= 2
2�1−�	2�1−2�	�1−
+
�1−�	qR+
�qN	

�1−
+
��1−�	pR+�pN + �1−�	qR+�qN		
3
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We now assume that
�V

�pR
= 0, i.e.

�A

�pR
=− �B

�pR
, and we seek to prove:

�2V

��pR	
2
> 0

⇔ 2
2�1−�	2�1−2�	�1−
+
�1−�	qR+
�qN	

�1−
+
��1−�	pR+�pN + �1−�	qR+�qN		
3

>
2
2�2�1−2�	�1−
+
�qR+
�1−�	qN	

�1−
+
��pR+ �1−�	pN +�qR+ �1−�	qN		
3

⇔− 2
�1−�	

1−
+
��1−�	pR+�pN + �1−�	qR+�qN	

�B

�pR

>
2
�

1−
+
��pR+ �1−�	pN +�qR+ �1−�	qN	

�A

�pR

Now we use the assumption
�A

�pR
= − �B

�pR
, and divide the left-hand side by

− �B

�pR
and the right hand side by

�A

�pR
. It is easily verified that these expres-

sions are positive.

2
�1−�	

1−
+
��1−�	pR+�pN + �1−�	qR+�qN	

>
2
�

1−
+
��pR+ �1−�	pN +�qR+ �1−�	qN	

⇔ 2
�1−�	�1−
+
��pR+ �1−�	pN +�qR+ �1−�	qN		

−2
��1−
+
��1−�	pR+�pN + �1−�	qR+�qN		 > 0

⇔ �1−
+
pN +
qN	�1−2�	 > 0

which is evidently true.
We now summarize what we have learned above. If the decision-maker

is in state U , s/he either switches with some probability if there has been
no rain: pN ∈ �0�1�, and never switches if there has been rain: pR = 0, or
he switches in both cases with probability 1: pR = pN = 1. Similarly, if the
decision-maker is in state N, s/he either switches with some probability if
there has been rain: qN ∈ �0�1�, and never switches if there has been no rain:
qR = 0, or switches in both cases with probability 1: qN = qR = 1.
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Never switch after success

Claim 3: In the optimum, the probability that the decision-maker switches state
after a successful choice is zero, that is:

pR = qN = 0

We begin by proving: pR = 0. As the previous subsection showed, the only
alternative candidate for an optimal value of pR is: pR = 1. As indicated at
the end of the previous subsection, we know that pR = 1 can be optimal
only if pN = 1. Thus we shall assume that pN = 1. We shall show that for all
constellations of qR and qN that haven’t yet been ruled out, it will be better
to choose pR = 0 rather than pR = 1.
As indicated at the end of the previous subsection, there are two types

of possible constellations of qR and qN . The first is: qR ∈ �0�1� and qN = 0.
The second is: qR = qN = 1. We focus on the first of these constellations, and
calculate the difference between the value of V if pR = 1 and the value of V
if pR = 0, as:


�1−2�	
(

��
�qR+1−
	

�1+
�qR	�1−
��1−qR		

− �1−�	�
qR�1−�	+1−
	

�1+
�1−�	qR	�1−
�1−�	�1−qR		

)

To prove that this is negative we need to show:

�1−�	�
qR�1−�	+1−
	

�1+
�1−�	qR	�1−
�1−�	�1−qR		
>

��
�qR+1−
	

�1+
�qR	�1−
��1−qR		

But note that the left-hand side is the same expression as the right-hand
side, except that we have replaced � by 1−�. Thus, if we can show that
the right-hand side is strictly increasing in �, it follows that the left-hand
side is larger than the right-hand side. To show this, we calculate the partial
derivative:

�

(
� �
�qR+1−
	

�1+
�qR	�1−
��1−qR		

)/
��

= 1−
+qR
��2−�
2	+q2R

2�2�
+1	

�1+
�qR	
2�1−
��1−qR		

2

Clearly, this derivative is positive. Thus, the claim follows.
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The second constellation of values of qR and qN to consider is: qR = qN = 1.
We calculate again the difference between the value of V if pR = 1, and the
value of V if pR = 0. It is:


�1−2�	
(

�

�1+
	�1+
�1−�		
− 1−�

�1+
	�1+
�	

)

=− 
�1−2�	2

�1+
�	�1+
−
�	
< 0

which is clearly negative, and thus pR = 0 is also in this case optimal. Thus
we can conclude that in the optimum we shall have: pR = 0.
We now show that the optimal choice of qN is qN = 0. As the previ-

ous subsection showed, the only alternative candidate for an optimal value
of qN is: qN = 1. As indicated at the end of the previous subsection, we
know that qN = 1 can be optimal only if qR = 1. Thus, we shall assume
that qR = 1. We shall show that for all constellations of pR and pN which
have not yet been ruled out, it will be better to choose qN = 0 rather than
qN = 1.

As indicated at the end of the previous subsection, there are two types
of possible constellations of pR and pN . The first is: pN ∈ �0�1� and pR = 0.
The second is: pN = pR = 1. But the argument we gave above has ruled out
the second constellation. Thus we shall assume the first one. We calcu-
late the difference between the value of V if qN = 1 and the value of V
if qN = 0, as:


2pN�1−2�	
(

�2

�1+
��pN − �1−�	�1−qR			�1−
+
��pN + �1−�	qR		

− �1−�	2

�1+
��1−�	pN −��1−qR			�1−
+
��1−�	pN +�qR		

)

This is negative if:

�1−�	2

�1+
��1−�	pN −��1−qR			�1−
+
��1−�	pN +�qR		

>
�2

�1+
��pN − �1−�	�1−qR			�1−
+
��pN + �1−�	qR		

The term on the left-hand side of this inequality is the same as the term on
the right-hand side, except that � has been replaced by 1−�. Thus it suffices
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to show that the term on the right-hand side is increasing in �. For this,
we calculate the partial derivative:

�
�2

�1+
��pN − �1−�	�1−qR			�1−
+
��pN + �1−�	qR		

/
��

= ��1−
�1−qR		��
+2
qR�1−�	+2�
pN +2�1−
		

�1+
��pN − �1−�	�1−qR			
2�1−
+
��pN + �1−�	qR		

2

which is positive. Thus we can conclude that the optimal choice is: qN = 0.

Switching probabilities after failure are state-independent

It remains to consider the optimal values of pN and qR. We begin by showing:

Claim 4: In the optimum, the probability that the decision-maker switches state
after an unsuccessful choice is independent of the state, that is:

pN = qR

We assume that pN = p−� and qR = p+�. If we calculate the value of V for
� �= 0, and subtract the value for �= 0, we find:

−
� �1−2�	2�4
2�p��1−�	+ �1−
	2+
�1−
	�p+�		

�1−
+
�p−�	+2
��	�1−
�1−p	+ �1−2�	
�	�1−
�1−p		

which is negative. Therefore, �= 0 is optimal.

Switch after failure with Probability 1

We can now complete our proof by showing the following claim:

Claim 5: In the optimum, the probability that the decision-maker switches state
after an unsuccessful choice is 1:

pN = qR = 1

Setting pR = qN = 0, and pN = qR = p, we obtain for V :

V = �1−
	+2
�1−2��1−�		p

1−
�1−p	

Therefore:

�V

�p
= 
�1−
	�1−2�	2

�1−
�1−p		2
> 0

It follows that p= 1 is the optimal value.
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Note

1 We would like to thank David Shanks, Richard Tunney and John McCarthy for
making their data available to us. They ran a number of different treatments.
The one to which we refer here is the one in which subjects received monetary
incentives, and in which they received no feedback information beyond the pay-
off received in each round: that is, their ‘Experiment 3 (payoff and no feedback
condition)’.
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3
Vengefulness Evolves in Small Groups
Daniel Friedman and Nirvikar Singh∗

Introduction

After a century of neglect, economists since the 1980s have begun to write
extensively about social preferences. The vast majority of the articles so
far have focused on altruism or positive reciprocity. Only a few examine
the dark side – negative reciprocity or vengefulness. When a person harms
you (or your family or friends), you may choose to incur a substantial per-
sonal cost to harm that person in return. Vengeance deserves serious study
because it has major economic and social consequences, both positive and
negative. For example, workers’ negative reciprocity at the Decatur plant
threatened to bring down Firestone Tyres (Krueger and Mas, 2004); terrorists
often explain their actions as revenge against the oppressor; and successful
corporate cultures succeed in forestalling petty acts of vengeance and other
sorts of dysfunctional office politics.

A taste for vengeance, the desire to ‘get even’, is so much a part of daily life
that it is easy to miss the evolutionary puzzle. We shall argue that indulging
a taste for vengeance in general reduces material payoff or fitness. Without
countervailing forces, vengefulness would have died out long ago, or would
never have appeared in the first place.

Why, then, does vengeance exist? Economists’ natural response is to think
of vengeance as the punishment phase of a repeated game strategy sup-
porting altruism. The models supporting this view are now taught to all
Economics Ph.D. students and many undergraduates, and for good reason.
Yet they hardly capture the whole story. The standard models have no place
for the powerful emotions surrounding vengeance, and their predictions

∗ While the ideas took shape for this chapter and its companions, we benefited
greatly from the conversations with Ted Bergstrom, Robert Boyd, Bryan Ellickson,
Jack Hirshleifer, Peter Richerson, Donald Wittman, and participants at the UC
Davis conference on Preferences and Social Settings, 18–19 May 2001. Steffen Huck
and an anonymous referee offered valuable guidance in writing the chapter, and
the work of Werner Güth provided inspiration.
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do not match up especially well with everyday experience. One often sees
vengeance when the discount factor is too small to support rational pun-
ishment (for example, in one-off encounters with strangers), and often the
rational punishment fails to appear (for example, when a culprit apologizes
sincerely).

This chapter explores a different class of models. We consider repeated
interactions in the context of small groups that enforce social norms. The
norms are modelled not as traits of individual group members, but rather as
traits of the group itself. We show that such group traits naturally support
efficient levels of the taste for vengeance when encounters outside the group
are also important. However, the model discloses two further problems. The
threshold problem asks how vengeance can evolve from low values where
it has a negative fitness gradient. The mimicry problem asks why cheap
imitators do not evolve who look like highly vengeful types but do not
bear the costs of actually wreaking vengeance. We argue that small-group
interactions can overcome both problems.

The next section sets the stage with a simple illustration of the ‘funda-
mental social dilemma’: evolution supports behaviour that is individually
beneficial but socially costly. We mention the standard devices for resolving
the dilemma – genetic relatedness and repeated interactions – but focus on
the more recent device of social preferences under the indirect evolution
approach, as pioneered by Güth and Yaari (1992). The third section lays out
the issues in more detail. It presents a simple Trust game, very similar to that
analysed by Güth and various co-authors, and uses that game to lay out the
social dilemma, and the threshold and mimicry problems.

The fourth and fifth sections are the heart of our analysis. We explain the
role of group traits, their relationship to individual fitness, the time-scales
governing their evolution, and how they can overcome the threshold and
mimicry problems. The fifth section presents a more formal argument that
group traits adjust behaviour in small groups towards a socially optimal level.
The sixth section offers an extended discussion of how our approach relates
to existing literature, and the seventh concludes with remarks on remaining
open issues.

Vengefulness as an evolutionary puzzle

Figure 3.1 illustrates the fundamental social dilemma in terms of net material
benefit �x > 0	 or cost �x < 0	 to ‘Self’ and benefit or cost �y > 0 or < 0	 to
counter-parties, denoted ‘Other’.1 Social dilemmas arise from the fact the
Self’s fitness gradient is the x-axis while, in contrast, the social efficiency
gradient is along the 45-degree line. Social creatures (such as humans) thrive
on co-operation, by which we mean devices that support efficient altruistic
outcomes in ii + and that discourage inefficient opportunistic outcomes in
iv −. Such co-operation arises from devices that somehow internalize Other’s
costs and benefits.
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II. Altruism
e.g. favours,
parental investment

IV. Opportunism
e.g. shirking,
predation and parasitism

III. Vengeance
e.g. strikes, feuds

I. Mutual Gains
e.g. symbiosis,
market exchange

Other’s
benefit

Other’s
cost

Self’s
cost

Self’s
benefit

Social
loss

Social
gain

II

II–

IV–

IV+

r = 1/8

x

y

C

D

O

Figure 3.1 Payoffs to self and other

Quadrant iii is anomalous; indeed, Cipolla (1976) refers to such behaviour
as ‘stupidity’. Behaviour producing quadrant iii outcomes harms both Self
and Other, contrary to efficiency as well as self-interest. How can it persist?
We shall argue that the threat of visits to quadrant iii (wreaking vengeance)
helps to discipline opportunistic behaviour and encourages co-operation.
But first we mention two other, better-known, devices that can serve the
same purpose: genetic relatedness and repeated interactions.

Genetic relatedness

Biologists emphasize the device of genetic relatedness. If Other is related to
Self to degree r > 0, then a positive fraction of Other’s payoffs are internalized
via ‘inclusive fitness’ (Hamilton, 1964) and iso-fitness lines take the form
�x+ ry = k�. For example, the unusual genetics of insect order Hymenoptera
lead to r = 3/4 between full sisters, so it is no surprise that most social insects
(including ants and bees) belong to this order, and that the workers are
sisters. For humans and most other species, r is only 1/2 for full siblings and
for parent and child, 1/8 for first cousins, and becomes zero exponentially for
more distant relations. On average, r is rather small in human interactions,
as in the steep dashed line in Figure 3.1, since we typically have only a few
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children, but work and live in groups with dozens of individuals. Clearly,
non-genetic devices are needed to support human social behaviour.

Repeated interactions

Economists emphasize devices based on repeated interaction, as in the ‘folk
theorem’ (Fudenberg and Maskin, 1986; Sethi and Somanathan, 2003). Sup-
pose that Other returns the benefit (’positive reciprocity’) with probability
and delay summarized in discount factor 
 ∈ �0�1	. Then that fraction of
other’s payoffs is internalized (Trivers, 1971) and evolution favours behav-
iour that produces outcomes on higher iso-fitness lines �x+ 
y = k��2 This
device can support a large portion of socially efficient behaviour when 
 is
close to 1 – that is, when interactions between two individuals are symmet-
rical, predictable and frequent. But humans specialize in exploiting one-off
opportunities with a variety of different partners, and here 
 is small, as
in the same steep dashed line. Other devices are needed to explain such
behaviour.

Other regarding preferences and indirect evolution

Our focus is on other-regarding preferences. For example, suppose Self gets
a utility increment of ry. Then Self partially internalizes the material exter-
nality, and will choose behaviour that attains higher indifference curves
�x+ ry = k�. Friendly preferences, r ∈ �0�1�, can thus explain the same range
of behaviour as genetic relatedness and repeated interaction.3 However, by
itself the friendly preference device is evolutionarily unstable: those with
lower positive r will tend to make more personally advantageous choices,
gain higher material payoff (or fitness), and displace the friendlier types.
Friendly preferences therefore require the support of other devices.

Vengeful preferences rescue friendly preferences. Self’s material incentive
to reduce r disappears when others base their values of r on Self’s previous
behaviour and employ r < 0 if Self is insufficiently friendly. Such visits to
quadrant iii will reduce the fitness of less friendly behaviour and thus boost
friendly behaviour. But visits to quadrant iii are also costly to the avenger,
so less vengeful preferences seem fitter. What then supports vengeful pref-
erences: who guards the guardians?

In answering this question, our analysis must pass the following theoretical
test: people with the hypothesized preferences receive at least as muchmater-
ial payoff (or fitness) as people with alternative preferences. Otherwise, the
hypothesized preferences would disappear over time, or would never appear
in the first place. In a seminal piece, Güth and Yaari (1992) described this test
as indirect evolution, because evolution operates on preference parameters
that determine behaviour rather than operating directly on behaviour. Pre-
cursors of this idea include Becker (1976), and Rubin and Paul (1979), but it
was after Güth and Yaari’s work that the literature expanded hugely, includ-
ing papers such as those by Dekel et al. (1998), Huck and Oechssler (1999),
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Kockesen et al. (2000), Ely and Yilankaya (2001), Samuelson and Swinkels
(2001), and Possajennikov (2002a, 2002b). Many of these papers focus
on positive reciprocity rather than negative reciprocity, or vengeance. For
example, the key issue in Güth et al. (2001) is the cost of observing Other’s
true preferences for positive reciprocity (or altruism; in their game the two
cannot be distinguished).

Modelling issues

We discuss the leading approaches to modelling social preferences, and then
lay out a canonical Trust game. Using this game, we present the evolutionary
problems of viability, threshold and mimicry.

Social preferences

Twomain approaches can be distinguished in the recent literature. The distri-
butional approach is exemplified in the Fehr and Schmidt (1999) inequality
aversion model, the Bolton and Ockenfels (2000) mean-preferring model,
and the Charness and Rabin (2001) social maximin model. These models
begin with a standard selfish utility function and add additional terms cap-
turing Self’s response to how own payoff compares to other’s payoffs. In
Fehr – Schmidt, for example, my utility decreases (increases) linearly in your
payoff when it is above (below) my own payoff. Put another way, I am altru-
istic when I am ahead and spiteful when I am behind you, irrespective of
what you might have done to put me ahead or behind.

The other main approach is to model reciprocity in equilibrium. Build-
ing on the Geanakoplos et al. (1989) model of psychological games, Rabin
(1993) constructs a model of reciprocity in two-player normal form games,
extended by Dufwenberg and Kirchsteiger (1999), as well as Falk and
Fischbacher (2001), to somewhat more general games. The basic idea is that
my preferences regarding your payoff depend on my beliefs about your
intentions – for example if I believe you tried to increase my payoff then
I will want to increase yours. Such models are usually intractable. Levine
(1998) improves tractability by replacing beliefs about others’ intentions by
estimates of others’ type.

We favour a further simplification. Model reciprocal preferences as state-
dependent: my attitude towards your payoffs depends on my state of mind –
for example, friendly or vengeful, and your behaviour systematically alters
my state of mind. This state-dependent Other-regarding approach is con-
sistent with Sobel (2000) and is hinted at in some other papers including
Charness and Rabin (2001). The approach is quite flexible and tractable, but
in general requires a psychological theory of how states of mind change.
Fortunately, a very simple rule will suffice for our present purposes: you
become vengeful towards those who betray your trust, and otherwise have
standard selfish preferences.
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Empirical evidence is now accumulating that compares the various
approaches. Cox and Friedman (2002), for example, review about two
dozen recent papers. Some authors of the distributional models find evid-
ence favouring their models, but all other authors find evidence mainly
favouring state-dependent or reciprocal models. Our own reading of the
evidence convinces us to focus on state-dependent preferences (that is, posi-
tive and negative reciprocity), while noting that distributional preferences
may also be part of the picture.

The trust game

The first step in developing these ideas is to model the underlying social
dilemma explicitly. Many variants of the prisoner’s dilemma and public
goods games are reasonable choices. For expository purposes, we prefer a
simple extensive form version of the prisoner’s dilemma known as the Trust
game, introduced in Güth and Kliemt (1994), and Romer (1995).

Panel A of Figure 3.2 presents the basic game, with payoffs graphed in
Figure 3.1. Player 1 (Self) can opt out (N) and ensure zero payoffs to both
players. Alternatively, Self can trust (T) player 2 (Other) to co-operate (C),
giving both a unit payoff and a social gain of 2. However, Other’s payoff is
maximized by defecting (D), increasing his payoff to 2 but reducing Self’s
payoff to−1 and the social gain to 1. The basic game has a unique Nash equi-
librium found by backward induction (or iterated dominance): Self chooses
N because Other would choose D if given the opportunity, and social gains
are zero. (Of course, one can pick more general parameterizations of the
game, but these simple numbers suffice for our purposes.)

To this underlying game we add a punishment technology and a pun-
ishment motive, as shown in Panel B. Self now has the last move and can
inflict harm (payoff loss) h on Other at personal cost ch. The marginal cost
parameter c captures the technological opportunities for punishing others.

Self’s punishment motive is given by state-dependent preferences.4 If
Other chooses D, then Self receives a utility bonus of � ln h (but no fitness
bonus) from Other’s harm h. In other states, utility is equal to own pay-
off. The motivational parameter � is subject to evolutionary forces and is
intended to capture an individual’s temperament – for example, suscept-
ibility to anger. See Frank (1988) for an extended discussion of such
traits. The functional forms for punishment technology and motivation are
convenient (we shall see shortly that � parameterizes the incurred cost) but
are not necessary for the main results. The results require only that the
chosen harm and incurred cost are increasing in � and have adequate range.
Using the notation ID to indicate the event ‘Other chooses D’, we write

Self’s utility function in terms of own payoff x and the reduction h in other’s
payoff as U = x+ �ID ln h. When facing a ‘culprit’ �ID = 1	, Self chooses h
to maximize U = −1− ch+ � ln h. The unique solution of the first order
condition is h∗ = �/c and the incurred cost is indeed ch∗ = �. For the moment
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Figure 3.2 Fitness payoffs

assume that Other correctly anticipates this choice. Then we obtain the
reduced game in Panel C. For selfish preferences ��= 0	 it coincides with the
original version in Panel A with unique Nash equilibrium (N, D) yielding
the inefficient outcome (0, 0). For � > c, however, the transformed game has
a unique Nash equilibrium �T�C	 yielding the efficient outcome (1, 1). The
threat of vengeance rationalizes Other’s co-operation and Self’s trust.

The viability problem

Consider evolution of the vengeance parameter � in an unstructured popula-
tion. Assume, for simplicity, that themarginal punishment cost c is constant.
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Again for simplicity (and perhaps realism), assume that, given the current
distribution of � within the population, behaviour adjusts rapidly towards
Nash equilibrium, but that there is at least a little bit of behavioural and
observational noise.

Noise is present because equilibrium is not quite reached, or just because
the world is uncertain. For example, Self may intend to choose N but may
twist an ankle and find him/herself depending on Other’s co-operative
behaviour. Similarly, Other may intend to choose C but oversleeps or gets
tied up in traffic. Such considerations can be summarized in a behavioural
noise amplitude e � 0. Also, Other may imperfectly observe Self’s true ven-
geance level �. Thus assume that Other’s perception of � includes an obser-
vational error with amplitude a� 0.

The key task is to compute Self’s (expected) fitness W���a� e	 for each
value of � at the relevant short-run equilibrium, given the observational
and behavioural noise. First consider the case a= e = 0, where � is perfectly
observed and behaviour is noiseless. Recall from the previous section that
in this case the short run equilibrium (N, D) with payoff W = 0 prevails for
� < c, and (T, C) withW = 1 prevails for � > c. ThusW���0�0	 is the unit step
function at � = c. One can show (Friedman and Singh, 2003b) that with a
little behavioural noise (small e > 0) the step function slopes down, and with
a little observational noise (small a > 0) the sharp corners are rounded off,
as in Figure 3.3. In this case, a high level of vengefulness �� > c+a	 brings
high fitness and thus is viable.

The threshold problem

How will vengeful traits evolve in the Self population? It is inappropri-
ate to assume standard replicator dynamics or monotone dynamics for a

_
v

0

1

c

a = e = 0

a = 0 < ea, e > 0

Figure 3.3 Fitness W as a function of vengefulness v

Note: For a = e = 0, the fitness function is a unit step function at � = c. Up to first order in
behavioural noise amplitude e, the fitness function for a = 0 has slope −e on the first segment
and −2e on the second segment. For signal noise amplitude a > 0, the fitness function is the
convolution of the a = 0 fitness function with the signal noise density function. It has a local
maximum at v = 0 and a global maximum near v = c+a (solid dots) and a minimum near v = c−a

(open circle).
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continuous trait like ��5 Stochastic dynamics, such as noisy fictitious play, or
the Kandori et al. (1993)/Young (1993) dynamic also apply to traits with dis-
crete alternatives, such as eye colour, but have no natural application to traits
with many ordered levels. Biological theorists from Wright (1949) through
Eshel (1983) and Kaufman (1993) have routinely modelled continuous traits
in terms of a fitness landscape in which evolution pushes the evolving trait �
uphill. That is, selective pressure tends to increase (decrease) the level of the
trait when higher (lower) levels are fitter. The underlying idea–that change
is usually local and large jumps are rare–would seem to apply to a prefer-
ence trait such as vengefulness as well as to standard biological traits such
as height or foot speed (Friedman and Yellin, 1997).

Applying landscape dynamics to the fitness landscape in Figure 3.3, we see
that evolution pushes � downwards towards 0 in the subpopulation initially
below a level near c− a, and pushes � in the rest of the subpopulation to
a level near c+ a. Thus evolution in this case should lead to two types of
individual. One type is just sufficiently vengeful to deter inefficient defec-
tion and has fitness W ≈ 1−2e. The other type, recognizably different, is
completely unvengeful and therefore unable to support co-operation. It has
fitness W ≈−e.

There is a serious problem for the more vengeful type: how could it evolve
from low values given the negative fitness gradient? How would a positive
fraction of the subpopulation ever achieve levels above c− a in the first
place? We refer to this as the threshold problem, and will outline a solution
in the next section.

The mimicry problem

Putting aside the threshold problem for the moment, assume that there are
indeed two stable types – a vengeful type with � near c+a, and an unvengeful
type with � near 0. The observational error amplitude, a, is small, so Other
usually identifies Self’s true type correctly. But the error amplitude itself is
subject to evolutionary forces, creating what we shall call the mimicry or
Viceroy problem.

An instructive example is a game played by butterflies and insect-eating
birds. A butterfly can hide from birds (analogous to strategy N) or fly about
freely (T), and the bird can prey on it (D) or leave it alone (C). Monarch
butterflies (Danaus plexippus) feed on toxic milkweed and so are very unpal-
atable �� > c	. Their striking Halloween markings (orange and black) make
them easy for birds to avoid as in the efficient deterrence equilibrium (T, C).
However, in Santa Cruz and many other areas where Monarchs are com-
mon, an unrelated species called the Viceroy (Limenitis archippus) has evolved
markings that are almost identical to the Monarch’s, a situation that bio-
logists call Batesian mimicry. The Viceroys free-ride on the Monarch’s high
� reputation and are even fitter because they do not bear the dietary cost.
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Note that we have not described evolutionary equilibrium in the butterfly–
bird game. Although evolution favours population growth of Viceroys when
scarce, it does not favour either species once the Viceroys become common.
At that point it is worthwhile for hungry birds to sample the butterflies and
spit out the unpalatable. An interior equilibrium with both Viceroys and
Monarchs is possible if Monarchs can survive being spit out. If Monarchs
cannot survive the experience, then two other evolutionary equilibria seem
plausible: one where the Monarchs migrate ahead of Viceroys so the latter
remains relatively scarce, and a second (called Müllerian mimicry), where
Viceroys also evolve unpalatability. The field evidence for all three equilibria
seems inconclusive.6

The mimicry or Viceroy problem surely arises in the extended Trust game.
An individual with actual � = 0 who could convincingly mimic � > c would
gain a fitness increment of approximately �1+�	e over the object of his/her
mimicry, and an increment of approximately 1−e over his/her candid clone.
Such increments are irresistible, evolutionarily speaking, so the assumption
of near observability (small a) cannot be maintained in evolutionary equi-
librium without some mechanism to suppress mimicry. We shall discuss
possible mechanisms in the next section.

Group interactions and group traits

We do not know any way to overcome the threshold problem and the Vice-
roy problem within the context of unstructured interactions in a large popu-
lation. Group interactions suggest an appealing solution to the threshold
problem. Much of this section explicates the idea of group traits, which help
solve the basic viability problem as well as the mimicry problem.

A solution to the threshold problem

Standard game theory shows how repeat interaction within a small group
improves the adaptive value of sub-threshold �. Suppose Other expects that
s/he and Self will switch roles from time to time, and that s/he can expect
Self to reciprocate his current choice (C or D) into the indefinite future.
Summarizing the probability and delay of reciprocation in the discount
parameter 
, Other compares an immediate payoff 2−�/c and continuation
value 0 if s/he chooses D, to immediate payoff 1 and continuation value

+ 
2 + 
3 + � � � = 
/�1− 
	 if s/he chooses C. Simple calculations reveal
that it is advantageous to choose C if 
 > 1

2 in the � = 0 case, and if 
 >
�c−�	/�2c−�	 in case of positive �. The latter expression decreases towards 0
as � increases towards c. Thus small increments of � < c increase the range of
Other, who will find it in his/her interest to play C. This boosts Self’s fitness
and (depending on the distribution of 
 within the group) can more than
offset the increment’s fitness cost (of order −e, as seen earlier).

Repeat interaction can also reduce the marginal cost of punishing culprits
within the group. One does not have to retaliate immediately and directly,
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as assumed in Panels B and C of Figure 3.2. Instead, one can tell other group
members about the culprit, and they can choose other partners for mutually
productive activities at little or no cost to anyone except the culprit. If so, the
effective value of c is quite small within the group. (Later we shall describe
another group punishment technology with even lower cost.) Thus, within
the group, the threshold is lower and moderate positive values of � have
positive incremental fitness, and the threshold problem is solved.

Interactions with outsiders and the mimicry problem

At first it seems that similar considerations also solve the mimicry or Vice-
roy problem. Given a lot of repeat interaction and communication among
group members, and a small amount of behavioural noise, a player’s true
� would soon be revealed to his/her group. Mimicry is not viable in this
setting, but reputations are. Thus there are devices for overcoming first-order
co-operation and second-order enforcement problems within the group.

The real problem arises from players’ interactions outside the group.
Assume, as might be reasonable, that a typical individual does not have sig-
nificant repeat interaction with any particular person outside the group, but
that the interactions with all people outside the group collectively do have a
significant effect on his/her fitness.7 Assume also that individuals can assess
fairly reliably any individual’s group affiliation and know the reputation of
the group.8 Then we have a free-rider problem with respect to group reputa-
tion. Each individual would benefit from using low � in interactions outside
the group, but the group’s reputation, and hence its members’ fitness, would
suffer. The group must in some way regulate its members’ behaviour or
things would unravel. We hypothesize that groups themselves possess traits
that evolve to solve such problems.

Note that social groups, unlike butterflies, use conscious mechanisms to
control mimicry. Gangs may have secret handshakes and other codes of
communication, but these are relevant only for identifying membership
within the group. In Indian villages, one aspect of enforcing caste distinc-
tions involves codes of dress and bodily decoration, so that lower castes
cannot mimic upper castes, in general interactions, including with third
parties. In that case, the higher caste is protecting its group reputation. In
large, anonymous settings such as towns and cities, these codes are harder, if
not impossible, to enforce, and mimicry is more common, with lower castes
redefining their identities to claim higher caste status.9

Three different responses to the Viceroy problem now present themselves.
The first, and the one most familiar to economists, would be the use of
costly signalling. In the standard signalling model, one type (say, High) has
a lower cost of signalling than another type (say, Low), and in a separat-
ing equilibrium, the Low type chooses not to mimic the High type. For
example, ‘toughness’ may be signalled by acquiring tattoos, which would be
too painful for those who are not ‘tough’. Depending on the parameters of
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the situation, however, there may also be pooling equilibria, where the two
types cannot be distinguished. In the kinds of situations we are interested in
(across-group interactions where group reputations matter), signalling might
be enforced by the group, when group benefits to signalling exceed indi-
vidual benefits. As noted, certain kinds of dress codes and bodily decorations
may be enforced within groups.10

A second possible response to the Viceroy problem is evasion, so that
mimicry is avoided by physical separation. This is plausible in the context
of migratory butterflies, but it is not clear how relevant it might be for
human groups. One might also conceive of evasion and pursuit taking place
in the space of characteristics, with the mimicked species or group evolving
new traits as the old ones lose their distinctiveness. This would be akin
to a dynamic signalling model, where multiple signals are possible: as the
signalling characteristics of the Viceroy evolve towards those of theMonarch,
the Monarch may evolve new distinguishing markers. Note once more that
in the non-human species case, the evolution is necessarily through genetic
mutation and selection, whereas in the case of human groups, conscious
choices are involved, in choosing signal levels – evolution in the latter case
would be cultural, and could be the result of learning.

The third possible response to the Viceroy problem is that of group enforce-
ment. Here, we mean enforcement across groups, rather than within groups,
which we discussed in the context of the signalling model. Thus high-caste
groups may be willing to incur the costs of punishing low-caste groups that
try to mimic them in encounters with third parties. The benefits are protec-
tion of reputation, and fitness gains associated with that protection. Note
that this enforcement also requires overcoming free-rider problems within
the group, but, as we have discussed, within-group interactions that are
frequent allow repeated game mechanisms to come into play.

Group traits and individual fitness

We need to discuss the relevant traits before working out any of these
responses in detail. A group trait is a characteristic of the group rather than
an individual characteristic. Perhaps the sort of group trait most discussed
in recent literature is a convention or norm: a Nash equilibrium of a co-
ordination game in which it is in each member’s interest to play a certain
way, given that the other group members are doing so – for example, observe
the Sabbath on Saturdays. But this is unnecessarily restrictive. Majority rule
and primogeniture (or school mascots such as aggies or banana slugs) are
group traits that need not be modelled as Nash equilibria of individual
behaviour. Similarly for group traits such as use of a particular flag design,
or language, or (closer to home) peer review protocols or the use of special
jargon. Group traits are often discussed in the context of corporate culture
and organizational routines (Nelson and Winter, 1982). Recent experiments
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by Weber and Camerer (2003) demonstrate that some facets of organiza-
tional culture are created by organization members but survive changes in
individual membership of organizations.11

The relevant group traits for the present discussion are prescriptions for
how individuals should behave in social dilemmas. Such prescriptions, when
widely shared by group members, are group traits that are logically distinct
from (but that co-evolve with) the individual traits that determine actual
behaviour. For example, the group trait might be the shared belief that the
appropriate level of the vengeance parameter is 3 and (as we shall see in
the next section) that group trait might be in evolutionary equilibrium with
actual behaviour being governed by the individual trait with a somewhat
lower value, say � = 2.

One can imagine several different mechanisms by which group traits affect
the fitness of an individual’s traits. Perhaps the mechanism most familiar
to game theorists is higher-order punishment strategies: deviations of actual
behaviour from prescriptions are punished, as are failures to punish, failures
to punish non-punishers, and so on, ad infinitum. We prefer to emphasize
a different mechanism, mediated by status (for example, Catanzaro, 1992;
Nisbett andCohen, 1996). Themechanismhas two parts: (a) the group’s traits
and the individual’s behaviour affect status; and (b) status affects fitness.

To elaborate on (a),we recognize that statusmaydependon individual traits
of all sorts, including age, sex, birth order and parental status. In all societies
we know about, it also depends on contribution to local public goods. Local
public goods include access to resources such as water supplies, sites for shel-
ter and foraging, and military capabilities. Also included are intangibles such
as the group’s reputation among other groups, and its internal cohesiveness.
Adherence to thegroup’sprescribed levelofvengefulness�n contributes to that
group’s internal cohesiveness and external reputation. Thus it is reasonable to
postulate that, other things being equal, an individual will have higher status
when his/her behaviour reflects � closer to �n. Such behaviour upholds the
group’s identity; see Akerlof and Kranton (2000).

Part (b) is straightforward. The group allocates many rival resources;
depending on the context, these might include marriage partners, home
sites, access to fishing holes and plots of land. Status is a device for selecting
among the numerous co-ordination equilibria: the higher-status individuals
get the first choice on available home sites and so on. The model in the
next section uses a single parameter t to combine the sensitivity of fitness
to status with the sensitivity of status to behaviour.

Evolution of group traits

Several authors recently have discussed the evolution of individual traits
whose fitness depends on their prevalence in the group (for example, Sober
and Wilson, 1998) and other authors have discussed the evolution of con-
ventions (for example, Young, 1993), but our question is a bit different.
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Unlike individual traits such as �, group traits cannot differ across individu-
als within a group: all know how they are supposed to behave in that group,
and know the likely consequences of a deviation. Individuals of various sorts
may enter or leave a group, and the group may grow or shrink, but these
changes have no direct impact on group traits. Rather, over time, a particu-
lar group’s trait may drift or occasionally change abruptly, as the members’
common understanding reacts to experience.

A detailed micro-dynamic evolutionary model for a group trait would
have to consider the joint time path of the traits across groups and group
sizes. Such detail seems awkward and unnecessary. We need to know which
group traits will displace others, but it does not much matter whether the
displacement occurs through changes in group size, or through the num-
bers of groups. It seems sufficient to use aggregate dynamics that track the
population shares for each group trait.

In specifying even aggregate dynamics one must consider a variety of
transmission mechanisms for group traits, including imitation, proselytiza-
tion, migration and conquest, as well as fertility and mortality. It is possible
for horizontal transmission to increase the share of a group trait that reduces
fitness (for example, encouraging tobacco consumption), but we do not
believe that such considerations play a central role for the group traits of
present interest. For simplicity we shall just hypothesize that the population
shares respond positively to the average fitness of its members relative to the
overall population average.

The relevant group traits here are prescriptions for responding to culprits
and imitators from other groups, and for responding to deviations from
the first-level prescriptions. Prescriptions for all permutations and combina-
tions could be cumbersome, but are largely irrelevant for present purposes.
Given the devices discussed earlier that ensure a high degree of co-operation
within the group, the relevant group traits can be summarized in two
parameters: the prescribed degree of vengefulness �n towards culprits (or
imitators) outside the group, and the tolerance parameter t for dealing with
deviations from �n by group members.

Recall from the previous section that deviations x= �−�n from prescribed
behaviour are dealt with by reducing status, which leads to an adverse redis-
tribution of resources and reduced fitness for the deviator. We assume simply
that the fitness reduction ��x	 is smooth and convex (that is, the incre-
mental fitness reduction increases with the magnitude of the deviation)
and is minimized with value 0 at x= 0. The second order Taylor expansion
approximation can therefore be written ��x� t	 = x2/�2t	, where deviations
are treated less harshly the larger the tolerance parameter t > 0.

Evolutionary time-scales and equilibrium

A few remarks may be in order about fitness, monotone dynamics and time-
scales. The analysis becomes very simple if there is a hierarchy of time-scales,
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so only one sort of trait is evolving significantly in any time-scale. One
can assume that individual levels of � adjust rapidly within the genetically
feasible range �0� �max�; the idea is that people learn and accommodate them-
selves to the group’s meme within a short period – say, weeks or months.
For example, according to stories in the media, children raised in Belfast and
Beirut taken to the USA have no problems in adapting within a few months
to the US norm, and then readapting when they return home. Group traits
also adjust, but in the medium-run of years to decades. The capacity for
vengeful behaviour �max can be thought of as mainly genetic, and thus it
too can adjust in the long run, over several generations.

The dynamics are trivial in this case, because in each time scale only a
single scalar variable is adjusting, the fitness functions are single peaked, and
the direction of change is immediate from the definition of fitness. First,
individual values of � converge to the level that maximizes individual fitness
given �n and t . Then �n adjusts (for t fixed) to the level that maximizes the
group average fitness given the error and noise rates and �max; the individual
�’s trail along with the adjustments in �n. (To be a bit more sophisticated,
one could let t adjust at the same time, or separately, and possibly also allow
the error and noise rates to evolve.) Finally, if the values of � are constrained
by �max, then it too evolves, with the other variables moving in its wake.

Of course, time-scales are not in fact so hierarchical, and there may be non-
trivial co-evolution of individual � (social regulation of emotions), group
traits, and emotional capacity. We conjecture that such co-evolution would
not affect the relevant evolutionary equilibria nor alter their stability in the
present case, although it certainly can in more general settings.

Results

We shall now sketch how efficient norms of vengeance might evolve in
our setting. We use the extended Trust game with observational and behav-
ioural errors, as in Figure 3.2, and assume that Self and Other belong to
different groups. For reasons discussed above in connection with Figure 3.3,
we assume a two-point distribution of types for Self: they can either have
vengeance parameter 0 or � > c. We study a separating Perfect Bayesian
Equilibrium (PBE). As shown in Friedman and Singh (2003b), this requires
that the proportion of vengeful types of Self encountered by Other is neither
too small nor too large. The intuition is that, if there are too few vengeful
types, then Other has an insufficient incentive ever to co-operate, whereas
if there are too many vengeful types, there is a pooling equilibrium with only
trust and co-operation.

The fitness payoffs and probabilities in separating equilibrium are sum-
marized in Table 3.1. Note that the probability � combines two error pos-
sibilities: an accurate observation followed by a behavioural error, and an
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Table 3.1 Fitness and probabilities in separating PBE

Fitness payoff Equilibrium probability
Choice Self, Other Strategies: (NT, DC)

(N, .) 0, 0 e
� > 0 (T, C) 1, 1 (1− e)(1−�)

(T, D) −�1+�	�2−�/c �1− e	�

(N, .) 0, 0 1− e
� = 0 (T, C) 1, 1 e�

(T, D) −1, 2 e�1−�	

Notes: Other observes s= 1 with probability a in (0, 1
2 ) when v = 0, and

observes s = 0 with probability a when v > 0. Other chooses his/her less-
preferred action with probability �= a�1− e	+ e�1−a	= e+a−2ae.

observation error followed by intended behaviour. To the fitness payoffs in
Table 3.1, we add the consequences of the social norm, the group trait. If
the individual vengeance parameter, �, deviates from the group norm, �n,
then the individual suffers a fitness loss, through loss of status, given by
��x� t	 = x2/�2t	, where x = �− �n. Incorporating this additional term, then,
using the payoffs and probabilities in Table 3.1, the vengeful Self’s expected
fitness is given by:

W�v��n	= 0�e+1��1− e	�1−�	− �1+�	��1− e	�+���−�n	��1− e	�

The short-run dynamics push the individual’s vengeance parameter
towards the value that maximizes individual expected fitness at the given
social norm. A simple calculation yields the first-order condition �′��−�n	=
1. In the quadratic case, the condition reduces � = �n− t . Thus, in short-run
(hence also in medium- and long-run) equilibrium, groups enjoin an exag-
gerated version of the optimal �, but the individually optimal � prevails.
That optimum is as in Figure 3.3, since group reputations have only a small
observational error.

Note the comparative statics: the punishment technology for out-group
interactions is parameterized by the relevant c, and the prevailing � tracks
the optimum given that value of c. Thus the model implies that easier
detection and punishment of culprits will lower people’s taste for the amount
of punishment in medium- and long-run equilibrium. Also, higher tolerance
t in a group correlates with higher �n, although there is not really a causal
relationship either way.

In the analysis to this point, we can assume that everyone in Self’s group
is identical, so that �n− t is also the group average vengeance parameter. But
this group average evolves in the medium run. To see how, first note that
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status losses represented by the function ��x� t	 net out to 0 for the group,
and so average fitness is:

Wg��̄	= 0�e+1��1− e	�1−�	− �1+ �̄	��1− e	�

The subtlety for medium-run dynamics is that the observational error amp-
litude is negatively related to the level of the group average vengeance
parameter. That is, a = A��̄	 for some decreasing function A. For the func-
tional form A��	 = 0�5exp�−�/b	�12 and many other specifications, Wg��̄	

is single-peaked at some optimal level �0 of the group average vengeance
parameter �̄.

The group optimum �0 is characterized by first order condition A′��0	
�2+ �0	+A��0	 = 0. This expression can be solved explicitly for the given
parametric versions of A and � to yield the simple expressions �0 = b−2 and
�n = t+b−2. In general, evolution in the medium run pushes the group trait
��n� �	 so as to increase Wg��̄	. Without corner solutions or multiple peaks
in the group fitness function,13 the group trait will evolve so that it supports
an optimal level of vengefulness in interactions outside the group.

We close this section with some caveats. Our result is partial equilibrium
in that it takes as given the behavioural error rate e, the observational error
function A, the marginal punishment cost c, and a sufficiently large upper
bound �max on vengefulness to avoid corner solutions. We have already
pointed out, in the previous section, that the upper bound is not a problem
in the long run. Also, we have not worked out how the entire distribution
of vengeance parameters over different groups might evolve. Various groups
may differ in their environments and the frequency of their interactions
with each other. For example, pastoral and agricultural groups might end
up with different equilibrium levels of vengeance (Nisbett and Cohen, 1996,
and references therein).

Related literature

Ours is not the only analysis of vengefulness. Elster (1989) was perhaps
the first to highlight vengeance as a problematic economic issue, and to
suggest the importance of social norms in overcoming this problem. Since
then, several authors have encountered the viability problem in one form
or another, and have found ways to finesse it.

Rosenthal (1996) considers a limited form of vengeance in which a player
can detect culprits and shun them after the first encounter. The payoffs of
such players (called TBV for ‘trust but verify’) are all reduced by verification
costs. Rosenthal begins with a basic-stage game like ours and then modifies
it by expressing payoffs as present values of the continuing relationship. The
harm a TBV player inflicts on a culprit is the present value of payoffs the
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culprit forgoes after the initial temptation payoff. The punishment cost is
the present value of verification less the present value of the avoided (sucker
payoff) loss, which for relevant parameter values is negative. Thus punish-
ment brings a net personal benefit and the all-C strategy (corresponding to
our �= 0 player) does not weakly dominate the TBV strategy. Rosenthal finds
several NE for his 3×3 symmetric game, and all-D need not be the only stable
equilibrium. For certain parameter configurations, there is an interior NE
that is stable under some (but not all) monotone dynamics. Unfortunately,
no such stable equilibrium would exist under our maintained assumption
that vengeance is costly and cannot reduce the sting of the sucker payoff.

Huck and Oechssler (1999) deal with the problem in a richer context than
ours. In the ‘ultimatum game’ they study, players interact in small groups
and have two roles, each played for half the time. In one role (’responder’)
they can pursue a costly vengeance strategy. Since there are only two possible
offers, shading of punishments is not possible. With finite populations (or
infinite populations interacting in small groups), delivering punishments
may increase an individual’s relative fitness, although it lowers absolute
fitness. As the dynamics in their model are driven solely by relative fitness,
the vengeful trait survives. However, there is no continuous evolvable trait
in their model, which would be analogous to our vengeance parameter, �.

Sethi and Somanathan (1996) offer two attempts to get around the viability
problem. First, they define stability to include neutral stability, not requiring
convergence back to an equilibrium point following a small perturbation
(that is, they do not require local asymptotic stability). In their model there
is a continuum of neutrally stable equilibria with no culprits. Following a
perturbation (a small invasion of culprits) the state moves along the con-
tinuum away from a vertex. Eventually, following sufficiently many such
perturbations, the state leaves the equilibrium set and ultimately converges
back to the all-D equilibrium. Thus, from a long-run evolutionary viewpoint,
their other equilibria really are not stable, and their vengeful strategies are
not viable. Implicitly recognizing this problem, Sethi and Somanathan refer
in an appendix to a second approach, from Binmore and Samuelson (1999),
in which the evolutionary dynamic is perturbed by a continuing stream of
mutants in fixed positive proportions. The perturbed dynamic has a single
asymptotically stable equilibrium point instead of the continuum of neut-
rally stable equilibria, but it has a very shallow basin of attraction and is
supported by an arbitrary convention on the composition of mutants.

The solution we have proposed to the viability problem is related to the
two-level model for the evolution of co-operation as exposited in Sober and
Wilson (1998) and Frank (1998). These authors note that, using a tautology
known as the Price equation (Price, 1970),14 one can demonstrate the pos-
sibility that a socially beneficial but dominated strategy (call it C) might
survive in evolutionary equilibrium when group interactions are important.
The idea in their analysis is that groups with a high proportion of C players
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have higher average fitness and thus grow faster than groups with a smaller
proportion, and this effect maymore than offset C’s decline in relative preva-
lence within each particular group. The necessary conditions for C to survive
(it can never eliminate D but may be able to coexist in equilibrium) are
rather stringent. Besides the obvious condition that the group effect favour-
ing C must be stronger than the individual effect favouring the dominant
strategy D, it must also be the case that the groups dissolve and remix suffi-
ciently often, and that the new groups have sufficiently variable proportions
of C and D players. These special conditions may be met for some parasites,
but seem quite implausible as a genetic explanation of human co-operation.
Richerson and Boyd (1998) point out that genetic group selection in humans
is implausible because of relatively rapid cross-group gene flow rates. Indeed,
Sober andWilson devote much of their book to discussing cultural norms for
rewarding co-operative behaviour and punishing uncooperative behaviour.
They avoid the viability problem by assuming in essence that c is 0 (1998;
see p. 151 for the most explicit discussion of this point).

Bowles and Gintis (1998) consider the genetic evolution of vengeance
in the context of a voluntary contribution game. They assume a direct tie
between two discrete traits, a preference for punishing shirkers (analogous to
our �) and a preference for helping a team of co-operators. Their argument
is a version of two-level selection as in Sober and Wilson, and again is rather
delicate. In an essay on the rise of the nation state in the last millennium,
Bowles (1998) uses a version of the same model that allows for cultural and
genetic coevolution. Gintis (2000) focuses on group extinction threats. In
his model, strong reciprocity is favoured in between-group selection, since
it increases group survival chances.

Still other approaches are possible; for example, Bowles and Gintis (2001)
and Sethi and Somanathan (2001). The first of these papers shares some ideas
with Bowles and Gintis (1998), in a model of team production with mutual
monitoring. A sufficient proportion of ‘strong reciprocators’, who gain sub-
jective payoffs from punishing shirkers, leads to a more co-operative out-
come. Sethi and Somanathan use a variant of reciprocal preferences, which
place negative weight on the payoffs of materialists (those with conven-
tional selfish preferences) and positive weight on the payoffs of sufficiently
altruistic individuals. Such preferences do better evolutionarily than purely
altruistic or spiteful preferences.

Another way to avoid the viability problem is to assume that individu-
als with higher values of � encounter D play less frequently. Frank (1987)
discusses this possibility informally, and formally models the evolution of
a visible altruistic (rather than vengeful) trait. Under some specifications of
how the frequency of co-operators depends on � it is not hard to show that
there is a positive level of � that maximizes fitness. Indeed, if each indi-
vidual’s � were observable, then those with higher � might encounter D play
less frequently (as in Frank’s 1988 discussion) and thus maintain equal or
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higher fitness.15 This ‘green beard’ solution,16 of course, ignores the mimicry
problem.

Henrich and Boyd (2001) argue that the negative gradient or threshold
problem can be overcome within groups if more popular behaviour tends to
be imitated, even when this conformity effect is very weak. Groups with this
trait would achieve better internal co-operation, and displace other groups.
The issue in Henrich and Boyd is the same as here – why people would
bear the personal cost to punish defectors. The paper notes the game theory
device of higher-order punishments – for example, second-order is punish-
ing those who don’t punish defectors. The modelling goal is to stabilize
punishments at finite order, and the key insight is that under reasonable
conditions the need (hence the cost) for higher-order punishment decreases
exponentially as the order increases. If conformist transmission has a posi-
tive constant impact, then even if it is rather small it can reverse the negative
payoff gradient at some sufficiently high order of punishment, and hence
stabilize lower orders of punishment and co-operation. This does seem to be
a possible solution, but its appeal to an economist is reduced by two con-
siderations. First, if conformist transmission is modelled explicitly, it might
be difficult to make it independent of the order. For example, if third-order
punishments are relevant, an imitator would only rarely observe the differ-
ence between his/her own third-order behaviour and that of the majority.
The transmission rate parameter alpha thus might also decline exponen-
tially in the punishment order and may never reverse the negative payoff
gradient. Second, economists tend to think that actual payoffs trump con-
formity when they point in opposite directions. (Psychologists and other
social scientists are unlikely to share this prejudice.)

A variation on the repeated interaction scenario is one where co-operative
acts are credibly communicated to others, who are then more likely to be
co-operative in interactions with the first individual. This version is referred
to as ‘indirect reciprocity’ (for example, Fehr and Henrich, 2003), and has
been discussed or modelled by Alexander (1987) and Nowak and Sigmund
(1997), for example. Nowak and Sigmund model (and simulate numeric-
ally) indirect reciprocity as ‘image scoring’, in which an individual’s score
increases when s/he helps someone who needs it, and decreases when such
help is not offered. This process is thought of as taking place in social groups
that are small enough to allow members to track everyone else’s scores.
Leimar and Hammerstein (2000) have suggested that image scoring by itself
is not individually rational, and offered alternative simulations that call its
evolutionary robustness into question.

Finally, we should note how this chapter fits with our own earlier work.
Much of the material comes from our 1999 working paper. The underlying
game there, and in our 2001a and 2003a papers, however, is a simultaneous-
move prisoner’s dilemma rather than the Trust game. Our 2003b paper is
based on the Trust game, but considers only interactions in a large population
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with no group structure, and obtains equilibria with no optimality prop-
erties parallel to those obtained here. It considers alternative assumptions
on the observational error function A��	 and focuses on a Gaussian rather
than exponential form, and analyses the resulting second-order conditions
in detail. The 2003a paper allows for somewhat more complex group inter-
actions and perceptions than in this chapter, and includes a more detailed
discussion of reputation and status issues, and of relevant biological con-
straints on vengeance. As this chapter, it obtains an optimality result based
on the marginal logic of trading off the cost of individual retaliation and the
impact on status within the group. None of our previous papers treats the
threshold and mimicry problems.

Discussion

We have argued that small-group interactions play a crucial role in the
evolution of vengeful preferences. The most relevant and problematic inter-
actions across groups (a) are not frequent enough to support the use of
repeated game or related mechanisms for reciprocity, yet (b) are important
enough in the aggregate to affect fitness. We showed how small groups can,
at low cost to the group, enforce specific norms of vengeance on their mem-
bers. Status is key: those who depart further from the group norm suffer
greater reductions in status, which ultimately decreases their fitness. Indi-
vidual adherence to group norms, while imperfect, can be strong enough
in evolutionary equilibrium to sustain co-operative outcomes in inter-group
encounters. Thus small groups can overcome the basic viability problem for
vengeance.

Earlier we presented a simple argument on how small groups overcome the
threshold problem.Within small groups, even a small degree of vengefulness
can help support repeated game equilibria. We also discussed how status-
mediated group enforcement can also discipline mimicry by outsiders as well
as by group members.

Our approach has focused most directly on the problem of the evolution
and persistence of vengefulness, and we believe that it provides some new
insights. Nevertheless, our discussion has finessed many important ques-
tions. Here are two methodological questions that we have not addressed in
this chapter:

(i) Other-regarding preferencesmay involve a host of contingencies besides
whether Other belongs to Self’s own group and whether s/he is a culprit.
What theoretical discipline, as well as empirical evidence, can keep
such models sharp and tractable? Indirect evolution dictates that the
requisite preferences must aid fitness in a variety of situations, and the
answer to this question may require identifying canonical games that
best capture human experience.
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(ii) Introducing a group structure on interactions and allowing groups a
very low-cost punishment strategy creates a huge set of possible evolu-
tionary equilibria, larger even than in the ‘folk theorem’. What selection
criteria can be brought to bear on the model to narrow down the set
of equilibria? Friedman and Singh (2003b) introduced the concept of
Evolutionary Perfect Bayesian Equilibrium, which is one approach to
answering this question.

Finally, we provide some broader perspective on our approach to model-
ling the appearance and persistence of vengefulness. We have used the exist-
ence of well-functioning norms within small groups to support the long-run
use of vengeful behaviour in across-group interactions. The analogy we can
offer is to a trellis or scaffolding, where either structure supports the growth
or erection of something else. The difference between a trellis and scaffold-
ing is that the latter is temporary, whereas the former is permanent. In that
sense, group traits or norms in our model act as a trellis. Without them,
the kind of behaviour that we posit would erode, as, over time, individuals
would find it beneficial to shade their vengefulness.

Some aspects of within-group interactions, however, have the character-
istics of scaffolding – in particular, in overcoming the threshold problem
because a small amount of vengefulness increases the range of discount
factors for which co-operation works in repeated settings. Once the threshold
is crossed, other factors sustain the level � > c. Of course, the repeated inter-
actions can still play a role in enforcing the norms that matter for sustaining
vengefulness. We would like to suggest that this perspective, of one set of
traits, whether cultural or biological, providing direct support for another
trait to develop, is a useful idea in general discussions of coevolution. In
particular, distinguishing between trellises and scaffoldings can be helpful
in understanding the relationship between present and past.

Notes

1 For simplicity, we neglect here possible effects on third parties, such as customers
of a cartel. Extensions of the present diagram could replace ‘other’ by ‘average of
everyone else affected’ or could look explicitly at all affected types.

2 Another way to think about it is that, with positive reciprocity (or genetic related-
ness), one takes a weighted average of the first outcome (in ii + or iv +) and the
reciprocal outcome (reflected through the 45-degree line, as Self and Other are
interchanged, so now in iv + or ii +). This gives an outcome in the mutual gains
quadrant i if the weight 
 (or r) on the reciprocal outcome is sufficiently large.

3 Indeed, in principle we could have r > 1 and explain inefficient altruistic behav-
iour. The golden rule (‘love thy neighbour as thyself’) value r = 1 seems to be a
practical upper bound, however, since no evolutionary devices that we know of
will tend to push it higher.
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4 Other’s utility function here is simply own payoff. If we were focusing on friendli-
ness instead of vengeance, we might write Other’s utility function with a positive
component for Self’s payoff when Self chooses T. This would also lead to an
efficient Nash equilibrium if the relevant coefficient r exceeds 0.5. Güth has pro-
duced a series of papers with various co-authors that develop the evolutionary
implications of such friendly (or positively reciprocal) preferences.

5 Oechssler and Riedel (2000) deal with evolutionary dynamics in continuous
games, and point out some difficulties with evolutionary stability if the strategy
space is continuous. In our case, it is the preference trait that is continuous, so
again the situation we analyse is somewhat different.

6 See Kapan (2001) and the references therein.
7 Fehr and Henrich (2004) argue forcefully that this is the usual situation for con-

temporary hunter-gatherer groups as well as for our Paleolithic ancestors.
8 Across-group encounters are also frequent, but a given individual will encounter a

specific non-group member only very sporadically. An individual in such encoun-
ters cannot reliably signal his/her true � because outward signs can bemimicked at
low cost, but neither (because of the large numbers of sporadic personal encoun-
ters) can s/he easily establish a reputation for his/her true �. A specific assumption
that would capture these considerations is that the perceived vengeance para-
meter of one’s opponent �e is equal to the true value � in encounters within the
group, but in encounters outside the group �e = ��̄+ �1−�	E�̄+ �, an idiosyn-
cratic error plus the weighted average of the partner’s group average �̄ and overall
population average E �̄, with the weight � on the group average an increasing
function of group size. The idea is that �e is a Bayesian posterior, with sample
information on any individual overwhelming priors for internal matches, and
sample information on the relevant group being important for external matches.
Implicit in this formulation is a theory of group size. Very large groups would
violate the assumptions that everyone knows everyone well, and that everyone
monitors the all-C equilibrium, so there are diseconomies of scale. At the margin,
these diseconomies should balance the economies arising from the dependence
of � on group size. We shall not attempt to develop such a theory here, but will
simply assume the existence of moderate-sized groups.

9 M. N. Srinivas termed this process ‘Sanskritization’ – see, for example, Srinivas
(2002).

10 See Akerlof (1983) for several seminal essays that model enforcement in this
context, as well as Henrich and Boyd (2001) for a more recent contribution. In
such cases, the costs of enforcement are amajor concern. Fines are an enforcement
mechanism whose cost to a group is near zero (or perhaps negative). Elinor
Ostrom, in a communication with the first author, offered the example of cow
jails in Nepal. Cows grazing in the wrong places are ‘jailed’ and the owner has to
pay a fine. Until the owner does so, the community gets the cow’s milk. Hence
the enforcement cost is negative, that is, the community (apart from the owner)
gets a small net benefit from punishing the norm violator.

11 In these experiments, the relevant dimension of organizational culture is a spe-
cialized homemade language developed by organization members to complete
a task efficiently. This kind of group trait is not relevant for encounters with
outsiders, but only for within-group interactions. Corporate dress codes would
matter for outsiders, but are copied very easily. However, it is easy to think of
being ‘hard-nosed’ as a corporate trait that might be valuable in dealings with
outsiders, difficult to imitate, and enforced by internal norms of status.
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12 Note that the factor 0.5 ensures that, as vengefulness goes to 0, the observation
becomes completely noisy, which is as it should be.

13 Our papers discussed at the end of the permultimate section show that corner
solutions disappear in the long-run equilibrium and that multiple peaks do not
arise in the interesting cases.

14 The Price equation uses the definition of covariance to decompose the change
in prevalence of a trait into two components, for example, the direct effect from
individual fitness and an indirect effect incorporating the spillovers within the
group.

15 We have offered a somewhat more complex resolution of the viability problem
because we believe that the relationship between � and the frequency of encoun-
tering co-operators arises mainly at the group level rather than at the individual
one. We have argued that, within well-functioning groups, D behaviour is rare,
and dealing with it is not an important source of fitness differences. Presumably D
behaviour is encountered more frequently with partners outside one’s own group,
and we believe that here group reputations are the key, not individual signals or
individual reputations. We have also suggested how within-group mechanisms
might control the Viceroy problem.

16 This term is from Dawkins (1976), and is a used as a fanciful but striking example
of identifiability. A certain type of individual is identified by a green beard, and
no other type of individual is able to mimic that, even when it is strongly in their
evolutionary interest.
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4
Network Formation and
Co-ordination Games
Siegfried K. Berninghaus and Bodo Vogt∗

Introduction

Co-ordination games attracted many theoretically and experimentally
orientated economists during the 1990s (see, for example, van Huyck et al.,
1990; Cooper et al., 1992; Berninghaus and Schwalbe, 1996a; Young, 1998).
In our paper we consider simple symmetric normal form 2×2 games which
are characterized by having two equilibria in pure strategies. If such a 2×2
game is played in large populations with players who are randomly matched
pairwise an equilibrium selection problem may arise. We know from the
theoretical (for example, Boyer and Orleans, 1992) and the experimental lit-
erature (for example, Cooper et al., 1992) that in case of pure co-ordination
games both symmetric equilibria may be candidates for strategy selection. In
co-ordination games with two asymmetric equilibria still less is known about
strategy choice in experimental games. Conventions might sometimes help
to solve co-ordination problems (Lewis, 1969; Young, 1993; Berninghaus,
2003). By following conventions, players are guided to select a particular
equilibria and therefore avoid co-ordination failures. In real-world societies,
conventions will not arise spontaneously but rather result from a long-run
evolutionary process.

The problem of the evolution of conventions in large populations has
often been considered under a particular assumption concerning neighbour-
hood structures or local interaction structures in the populations (see, for
example, Blume, 1993, Ellison, 1993, Berninghaus and Schwalbe, 1996a,
1996b; Eshel et al., 1998). In such a framework, a member of the population
is not supposed to be randomly matched with any other member of the
population, but is only matched with members of the member’s neighbour-
hood that is a proper subset of the whole population. The neighbourhoods

∗ The essential ideas in this chapter were developed during a research stay at the
Max Planck Institute in Jena by both authors. We are grateful to Werner Güth, the
Director of this institute, for his generous intellectual and financial support.
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of the players constitute a local interaction structure or sometimes called
a network structure on the population. Much of the research in this field
has been devoted to populations with exogenously fixed local interaction
structures imposed on the population.1 In recent research this restrictive
assumption has been relaxed, and players allowed to choose their neigh-
bours in each period for themselves (see, Jackson and Wolinsky, 1996; Bala
and Goyal, 2000; Goyal and Vega-Redondo, 2002). In these models, local
interaction structures are regarded as resulting from individual decisions and
not as being exogeneously imposed.

In this chapter we consider two types of 2× 2 bimatrix games played
in a population; that is, we consider both pure co-ordination games and
Hawk/Dove (H/D) games as well. In pure co-ordination games, equilibria
in pure strategies are characterized by the requirement that players choose
the same strategy, while Hawk/Dove games equilibria in pure strategies
are characterized by the requirement that both players choose different
strategies (aymmetric equilibria). Hawk/Dove games have a long tradition
in evolutionary game theory. Maynard Smith and Price (1973) developed
their famous equilibrium concept, the evolutionary stable state (ESS), for
these types of game. In an evolutionary framework, one has the following
interpretation in mind. Two members of a species are randomly matched
to compete for the same territory. If both members choose the Hawk
strategy this results in territory fighting, with serious wounds for both.
If they choose the Dove strategy they share the territory after some kind
of ritual fighting. The only Nash equilibria in pure strategies are the
asymmetric strategy configurations (Hawk, Dove) resp. (Dove, Hawk). The
only symmetric equilibrium is the mixed strategy equilibrium, which can
be shown to be the unique ESS of the game. Successful co-ordination in
large populations is much more interesting in Hawk/Dove games than in
pure co-ordination games, since each player wants to be matched only with
players who employ only the opposite strategy.

Co-ordination in large populations with pure co-ordination games has
been studied extensively since the early 1990s (see, for example, the experi-
mental literature of van Huyck et al. 1990; Cooper, 1999). A survey on exper-
imental results has been written by Ochs (1995). A recent survey on the
experimental literature, in which co-ordination problems are considered in
populations with network formation, can be found in Kosfeld (2003). How-
ever, we do not know of comparable studies for Hawk/Dove games. We argue
that successful co-ordination in large populations is much more interesting
in Hawk/Dove games than in pure co-ordination games, since each player
wants to be matched only with players employing only the opposite strategy
(in a 2×2 H/D game).

It is the main aim of this chapter to analyse which types of network and
distributions of strategies chosen in the bimatrix game will be compatible
in an equilibrium when players are allowed simultaneously to select their
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neighbours in the population and the strategy in the base game. Decision-
making is supposed to be deterministic. Opening a new link to a member of
the population is supposed to generate constant connection costs per link
for the agent who initiates the link. It will be shown that the relative size of
linking costs compared with the payoffs of the 2×2 game has an impact on
the resulting equilibrium network in the population. We know only of sim-
ilar work on this topic by Goyal and Vega-Redondo (2002). They concentrate
on pure co-ordination games in which equilibrium selection problems arise.
Themain contribution of Goyal/Vega-Redondo is to analyse stochastic stable
states of the process of network formation for pure co-ordination games by
allowing mutation at the individual level of strategy and partner choice. It is
well known from the literature on stochastic stability (for example, Kandori
et al., 1993; Young, 1993) that the equilibrium selection problem can be
solved by letting the mutation rate approach zero.

Our model is a purely static one. We consider simultaneous network link-
ing choice and action choice in the co-ordination game to be elements of
an appropriated formalized one-shot game. It is the main aim of our study
to analyse the impact of the particular underlying 2×2 base game on the
resulting equilibrium network structure. The resulting equilibrium networks
are characterized by non-directed graphs. Depending on the particular value
of linking costs, we obtain different graphs for pure co-ordination and for
Hawk/Dove games. Our work can be considered to be an extension of pure
network formation approaches (for example, Bala and Goyal, 2000) in which
pure network decision-making is considered abstracting from any strategic
decision-making in 2×2 base games. And it can also be regarded in some
sense as an extension of some aspects of Goyal and Vega-Redondo’s results
(2002) since additionally we consider Hawk/Dove games as a further class of
co-ordination games.2

Model description and results

Hawk/Dove games

We consider a set I = 1� � � � � n� of n agents who are engaged in playing a
Hawk/Dove game with all their neighbours. If two players i and j are linked
with each other they play the Hawk/Dove game as a one-shot game. The
Hawk/Dove game is a symmetric 2×2 normal form game�HD = ��H�·	�with
� �= X�Y� which is characterized by the payoff table with a > b > c > d > 0,
that is, Y is called the ‘Dove strategy’ and X is called the ‘Hawk strategy’.

X Y

d, d a, c

c, a

X

Y b, b

Figure 4.1 Payoff matrix of a Hawk/Dove game
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We do not impose a fixed network structure on the population of players,
but assume that networks can be built up by individual decision-making.
More precisely, we assume that all players participate in a network game. An
individual strategy in the network game of player i is a vector of ones and
zeros gi ∈ 0�1�n−1. We say that player i wants to establish a link to player
j if gij = 1, otherwise it is equal to zero. A link between two players allows
both players to play the simple Hawk/Dove game �HD. Note that a bilateral
connection between two players is supposed to be already established if at
least one player wants to open it.3

Each strategy configuration g = �g1� � � � � gn	 generates a directed graph
denoted by �g , where the vertices represent players and a directed edge
between i and j, that is, gij = 1, signals that i plans to open a link with j. The
neighbours of player i, given a network �g is defined to be the set of players
to whom i wants to open a link (direct neighbors, gij = 1) and the players
who want to open a link with i (that is, gji = 1). By utilizing the notation
ḡij �=maxgij� gji� we simply define the set of neighbours as follows:

Ni��g 	 �=  j � ḡij = 1�

The cardinality of this set is given by ni��g 	 �= �Ni��g 	�.
Obviously, the set of neighbours need not concide with the set of direct

neighbours that depends only on i’s strategy network strategy vector gi. We
define the set of direct neighbours of i as follows:

Nd
i �gi	 �=  j � gij = 1�

The cardinality of the set of direct neighbours is defined by ndi �gi	 �= �Nd
i �gi	�.

We suppose that it is not costless to establish a link with another player.
Therefore, the total payoff of player i is composed of the aggregate payoff
player i can extract from playing with his/her neighbours and the costs of
establishing links to her direct neighbors. Let k denote the constant linking
costs. Since the payoff player i can extract from playing the Hawk/Dove
game depends on his/her own strategy choice, the strategy choice of his/her
(direct) neighbours and the network generated by g, we define:

∏X

i
��−i� g	 �= d

∑
j∈Ni��g 	

1�j=X+a
∑

j∈Ni��g 	

1�j=Y −kndi �gi	

∏Y

i
��−i� g	 �= c

∑
j∈Ni��g 	

1�j=X+b
∑

j∈Ni��g 	

1�j=Y −kndi �gi	

where
∏X

i �·	 resp.
∏Y

i �·	 denotes the payoff a player choosing X resp. Y can
gain and � = ��−i� �i	 denotes the vector of actions4 �i ∈ X�Y� for the H/D
game. We assume that each player selects the same action against all other
players in his neighbourhood.5 An important consequence of our payoff
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definition is player i may benefit from a connection to j although s/he does
not have to pay for it (that is, gij = 0, but gji = 1).
Furthermore, we utilize the following payoff convention:

CONVENTION: When g generates the empty network – that is, a network in
which all players are isolated, we suppose that the relationship holds.

∏�·	
i
�·� g	≡ 0

We model the strategic situation of a player in a population as a non-
cooperative game in which individual strategies are composed of the sim-
ultaneous choice of neighbours i ∈ I and actions �i ∈ X�Y� in the bilateral
H/D game. This non-cooperative game in normal form is a tupel:

� = S1� � � � � Sn�P1�·	� � � � � Pn�·	�

with strategy sets Si �= 0�1�n−1 × X�Y� and payoff functions Pi � S1× � � �×
Sn −→ IR where we have Pi�s	 �= �

�i
i ��−i� g	. Each strategy configuration

s= �s1� � � � � sn	 in � induces a network represented by a directed graph�g .
It remains to consider which network structures �g and action config-

urations � in � will prove to be stable? Our notion of stability is purely
non-cooperative. We utilize a canonical extension of the Nash concept.

DEFINITION 1 The strategy configuration s∗ = �g∗��∗	 in � is an equi-
librium if

∀i � Pi�s
∗
−i� s

∗
i 	≥ Pi�s

∗
−i� si	 for si ∈ Si

In an equilibrium, no player has an incentive either to change his/her neigh-
bours or to change his/her action choice �∗

i or to change both unilaterally.
It follows immediately from the equilibrium definition that we need not

consider as equilibrium candidates configurations g = �g1� � � � � gn	 in which
two players simultaneously have a bilateral link with each other; that is, if
gij = gji = 1 holds for a pair of players i� j ∈ I . Then either i or j could improve
their payoffs by dropping the link and saving linking costs k. Strategy con-
figurations s that do not exhibit this property will be called simple.

DEFINITION 2 A strategy configuration s = �g��	 is called simple if the
following relation holds:

∀i� j � ḡij = 1 =⇒ gij ·gji = 0
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Obviously, a simple strategy configuration s always generates a simple graph
(which has no loops, and two vertices are connected by at most one directed
edge). In the following theorems we refer only to simple networks without
mentioning them explicitly.

In Theorem 1 below we characterize equilibrium network structures and
action configurations s∗ in a population playing the Hawk/Dove game.

THEOREM 1 Given a HD-game � , then the following statements hold:

(a) If k > a then the unique equilibrium network �g∗ is the empty network and
the action choice of each player in the Hawk/Dove game is not determined.

(b) If k < d then the unique equilibrium network �g∗ is the complete graph. In
the complete graph no uniform choice of either X or Y is possible as an
equilibrium action choice. Let n∗

X resp. n∗
Y denote the number of players

choosing X resp. Y as an equilibrium choice in the complete network then
these numbers are determined by the relationship:

n�a−b	− �a−b	

a−b+ c−d
< n∗

X <
n�a−b	+ �c−d	

�a−b+ c−d	
(4.1)

and n∗
Y = n−n∗

X.
(c) If the relationships d < k < c hold, then an equilibrium network �g∗ is

a graph whose vertices can be partitioned into two non-empty sets I1 of
X players and I2 of Y players, such that all vertices in I1 are connected
with all vertices in I2 but not with each other while all vertices in I2 are
also connected with each other. Again uniform action choice is not possible
in equilibrium and the number of players choosing X (n∗

X) has to satisfy
the condition:

�n−1	�a−b	+nXj �k−d		

a−b+ c−d
< n∗

X <
n�a−b	+ �c−k	

a−b+ c−k
(4.2)

and n∗
Y = n−n∗

X, where n
X
j denotes the number of direct links to X players

of a Y player indexed by j.
(d) If the relation c < k < b holds, then �g∗ is a graph where each vertex in a set

I1 (X players) is connected with all vertices in I2 (Y players) but not with
vertices in I1, while all vertices in I2 are also connected with each other. Fur-
thermore,Y playersdonothavedirect linkswithX players.Again,nouniform
action choice can be part of an equilibrium. n∗

X has to satisfy the condition

n∗
X >

�n−1	�a−b	

a−b+ c−d
� (4.3)

(e) If b < k < a then an equilibrium network �g∗ is characterized either by a
bipartite graph with n∗

X�n
∗
Y > 0 which is characterized by the following

property: only X players in I1 have direct links to Y players in I1, that
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is, g∗ij = 1 for i ∈ I1 and j ∈ I2 while we have g∗ji = 0 for j ∈ I2� i ∈ I1 and,
furthermore, g∗jm = 0 for j�m ∈ I2 resp. j�m ∈ I1. Or the equilibrium network
is the empty graph where n∗

X = n.

PROOF:
(a) Suppose there exists at least one link between two players i and j, that is,

ḡ∗ij =1. Since k is supposed to be larger than themaximumpayoff a player
can gain from the Hawk/Dove game, the net payoff from each link is
negative irrespective of the individual action choices in the Hawk/Dove
game. Therefore, establishing no link to any other player results in
maximum individual payoff equal to 0 according to our convention on
payoffs. Payoff is independent of a player’s action choice and, therefore,
action choice is not determined.

(b) Since opening a new connection to either an X player or a Y player
results in positive net payoffs, it pays to open as many links as possible
where it has to be taken into account that a player i should only open
a link to j if gji = 0, otherwise payoffs do not have the Nash property.

Obviously, no uniform action configuration (n∗
X = n or n∗

Y = n) is in
equilibrium, since any player i could switch to the opposite action and
increase his/her payoff. Now let us consider the case n∗

X�n
∗
Y > 0. For

a player choosing X, the payoff has to be higher than for choosing Y .
Then the following condition has to be satisfied:6

�n∗
X−1	d+n∗

Ya > �n∗
X−1	c+n∗

Yb ⇐⇒ �n∗
X−1	�c−d	 < n∗

Y�a−b	�

Analogously, for a player choosing Y , the following inequality holds:

n∗
Xd+ �n∗

Y −1	a < n∗
Xc+ �n∗

Y −1	b ⇐⇒ n∗
X�c−d	 > �n∗

Y −1	�a−b	�

By substituting n∗
Y = n−n∗

X we obtain from these inequalities the rela-
tionships:

n∗
X <

n�a−b	+ �c−d	

a−b+ c−d

and

n∗
X >

n�a−b	− �a−b	

a−b+ c−d

which are equivalent to condition (4.1).
(c) Suppose inequality d < k < c holds. Then it will not pay for an X player

to be connected with other X players, since it will give him/her negative
payoff. However, a Y player may open as many connections as possible
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provided there is not already another player who opened a link to
him/her. The resulting graph can therefore be partitioned into two sets
of vertices I1 (X players), whose elements are connected with each vertex
of I2 (Y players), and each element of I2 is, moreover, connected with
each other member of I2. Note that we only consider connections that
are initiated by exactly one player (because of the required simplicity
of a Nash network).

Uniform action choice is not possible in equilibrium since any player
could benefit from either switching from X to Y resp. from Y to X. To
determine the equilibrium number n∗

Y of Y resp. n∗
X of X players we first

consider the decision problem of an X player i who can switch from
X to Y and open new connections to the remaining n∗

X X players. This
will not be profitable for an X player if the following condition holds:

n∗
Ya−nYi k > n∗

Yb−nYi k+ ��n∗
X−1	c− �n∗

X−1	k�

where nYi denotes the number of direct links of X player i and the
expression in square brackets denotes the net benefits of i from opening
(as a Y player) new links to the remaining X players.7 This condition is
equivalent to:

n∗
X <

n�a−b	+ c−k

a−b+ c−k

When a Y player j changes his/her action to X s/he will simultaneously
have at the same time to drop all direct links to X players, otherwise,
these links would result in negative net benefits. Let us denote by nYj
(resp. nXj ) the number of direct links of j to Y players (resp. X play-
ers) then a Y player j will not change his/her action choice when the
following relationship holds:

�nX−nXj 	d+ �nY −1	a−nYj k < nXc+ �nY −1	b−nYj k−nXj k

⇐⇒ nX >
n�a−b	− �a−b	+nXj �k−d	

a−b+ c−d

Both inequalities for n∗
X together imply Condition (4.2).

(d) Now suppose that c < k< b holds. Then it follows from the arguments of
the proof of part (c) that each X player will only connect to all Y players.
Y players, however, will only connect with Y players, since any other
link will give them negative payoffs. Therefore, the graph generated by
g∗ is a graph where the whole set of vertices can be partitioned into two
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non-empty sets I1 (X players) and I2 (Y players) such that all elements
of I1 are connected only to all elements of I2 and all elements of I2 are
connected with one another.8 Obviously, no uniform action choice can
be part of an equilibrium.

For anX player it isnotprofitable todeviate toY , since the relationship:

n∗
Ya−n∗

Yk > n∗
Yb−n∗

Yk

holds by assumption (a > b). For a Y player j the following condition
has to be satisfied:9

n∗
Xc+ �n∗

Y −1	b−nYj k > n∗
Xd+ �n∗

Y −1	a−nYj k�

where nYj denotes the number of direct links of player j to other Y

players. This condition can easily be transformed into condition (4.3).
(e) Consider a Y player. His/her maximum payoff is equal to b which can

be reached by playing with other Y players. However, because of k > b,
a Y player cannot extract positive net payoffs from any connection
(with either an X or a Y player). Therefore, in an equilibrium network,
Y players cannot have direct neighbours. The maximum payoff of an
X player is equal to a, which can only be reached by being matched
with a Y player. Furthermore, X can extract only a positive net payoff
from being linked to a Y player (as his/her direct neighbour). By being
linked to another X player s/he obtains a negative net payoff. Therefore,
a candidate for an equilibrium network is a graph where the vertice set
can be partitioned into two sets I1 (of X players) and I2 (of Y players)
such that each X player is actively connected with all Y players. But
there are non other direct links in the population. The number of action
choices n∗

X�n
∗
Y > 0 is not determined in equilibrium since it does not

pay for any player in the equilibrium network to switch actions.10

Obviously, uniform choice of Y is not possible in equilibrium, since
each player can benefit from switching to X and build up links to at least
one of the remaining Y players. Uniform choice of X is only possible
when the resulting equilibrium network is the empty graph.

Q.E.D

REMARKS

(i) Note that in part (b) of the theorem, a complete graph may be generated
by many different individual Nash configurations g which only have to
be simple.11 As an extreme case one could consider a complete graph
in which there is one player who need not open any link with the
remaining �n−1	 players, since they all want to be linked with him/her.
Indeed, one can easily check that this is also an equilibrium network.
Similar conclusions hold for the equilibrium networks in parts (c) and (d)
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of the theorem. When a link between two players exists it may not
matter which player opened the link. Consequently, in equilibrium
networks, payoffs may vary significantly from one player to the next
even if they choose similar actions. However, there exist some con-
figurations (for example, the direct links of X players with Y players
in part (d) of the theorem) which induce unique directions of links
between players.

(ii) The result of (d) shows that all Dove players are connected with
each other but do not have direct links to Hawk players. This is an
interesting situation, in which a ‘Dove network’ is stabilized by some
Hawk ‘invaders’. Note that the Doves in this network are playing non-
equilibrium strategies of the one-shot H/D game. Such a constellation
can only occur when decision making in H/D games is embedded in a
network formation problem.

(iii) Our result in part (e) has an interesting economic interpretation. We
see that part of the population (Y players in I2) is subsidized by the
remaining part of the population (X players in I1). Y players benefit
from playing with X players without bearing the linking costs.

(iv) It is well known in the theory of network formation (see Bala and
Goyal, 2000; Goyal and Vega-Redondo, 2002) that so called star-shaped
network structures may be stable equilibria in a particular model of
a strategic neighbour’s choice. In a star-shaped structure, one player
(the ‘centre’ of the star) is connected with the rest of the population,
and the remaining players are linked exclusively to the ‘centre’ player.
Our bipartite graph (in part (e)) can be interpreted as a generalization
of the star-shaped structure such that in our structure we have finitely
many (≥ 1) ‘centre’ players.

We illustrate the main results on network formation by the drawing in
Figure 4.2. In (c) and (d), the population is partitioned into two subpop-
ulations I1 = 1�4� and I2 = 2�3�5�6�, where either links between these
populations are possible in both directions (part (c)) or links are only dir-
ected from I1 to I2 players (part (d)). Part (a) shows an example of an empty
network, while part (b) shows an example of a complete network.

Pure co-ordination games

In this section we assume that if two players, i and j, are linked with
each other they play a pure co-ordination game. The symmetric 2×2 pure
co-ordination game is a symmetric normal form game �C = ��H�·	� with
� �= X�Y� which is characterized by the payoff table with a > b > c > d > 0
and �b− d	 > �a− c	, that is �Y�Y	 is the payoff-dominant equilibrium and
�X�X	 is the risk-dominant equilibrium.

As in the previous section, we do not impose a fixed network structure
on the population of players, but assume that networks can be built up



Siegfried K. Berninghaus and Bodo Vogt 65

4

5

3

2
1

(a) (b)

(c) (d)

4

3

2

1

4

5
6

32
1

4

5
6

32
1

Figure 4.2 Equilibrium networks in parts (a)–(d) of Theorem 1
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Figure 4.3 Payoff matrix of a pure co-ordination game

by individual decisions. All members of the population are supposed to be
players of the network game � , introduced in the previous section. It has
the same formal structure as before, with the restrictions concerning the
numerical payoffs of the 2×2 base game being changed. In Theorem 2 we
shall show that the resulting equilibrium network structures will be changed
completely by altering the payoff structure of the underlying base game from
a Hawk/Dove type game to a pure co-ordination game.

THEOREM 2 Given a network game � where the underlying 2×2 game is a
pure coordination Game.

(a) If k > a, then the unique equilibrium network �g∗ is the empty network
and the action choice of each player in the pure co-ordination game is not
determined.
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(b) If k < d holds, then the unique equilibrium network �g∗ is the complete
graph and �∗ is given either by �∗ = �X� � � � �X	 or by �∗ = �Y� � � � �Y	.
That is, either all players choose the equilibrium strategy X or all players
choose the equilibrium strategy Y .

(c) If d < k < c holds, then the equilibrium is the one obtained in part (b).
(d) If the relationship c < k < b holds, then either the equilibrium is the one

obtained in part (b) or an equilibrium configuration s∗ induces a discon-
nected graph�g∗ with two components, where each component is a complete
graph and players in one component (I1) choose action X, players in the
other component (I2) choose action Y . The number of X players n∗

X has to
satisfy the condition:

n�a−k	+ �b−d	+nXi �k−d	

a+b−k−d
<n∗

X <
n�a− c	− �a− c	+nYj �c−k	

a+b−k− c
(4.4)

for all i ∈ I1 and j ∈ I2, where n
X
i (nYj ) denotes the number of direct links

of X player i with other X players (direct links of Y player j with other Y
players).

(e) If the relationship b < k < a holds, then an equilibrium network �g∗ is the
complete graph with all players choosing Y . An alternative equilibrium is
the empty graph with all players choosing X.

PROOF:
(a) The same argument as in Theorem 1.
(b) The arguments concerning equilibrium network formation for k < d

are analogous to Theorem 1. Since each connection to another player
increases a player’s payoff, s/he tries to open as many links as possible,
provided the resulting network is a simple one. Therefore, the complete
graph is the only candidate for an equilibrium network. If all players
choose X or Y , this is obviously an equilibrium action choice. It can
easily be seen that nX > 0 and nY > 0 is not compatible with an equilib-
rium configuration in the network game. Suppose nX�nY > 0, then for
an X player resp. Y player, the following relationships must hold:

�n∗
X−1	b+n∗

Yc > �n∗
X−1	d+n∗

Ya ⇐⇒ �n∗
X−1	�b−d	 > n∗

Y�a− c	

⇐⇒ n∗
X−1
n∗
Y

>
�a− c	

�b−d	

n∗
Xb+ �n∗

Y −1	c < n∗
Xd+ �n∗

Y −1	a ⇐⇒ n∗
X�b−d	 < �n∗

Y −1	�a− c	

⇐⇒ n∗
X

n∗
Y −1

<
�a− c	

�b−d	

which implies

n∗
X

n∗
Y −1

<
n∗
X−1
n∗
Y

a contradiction.
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(c) Suppose that d < k < c holds. It is obvious that the equlibria of part (b)
are also equilibria in this case. If some players select X and some select
Y , the following holds. A Y player makes positive profits when s/he is
connected with another Y player while s/he extracts negative payoffs
(d−k < 0) when opening a link to an X player. However, s/he benefits if
an X player wants to open a link with him/her. On the other hand, an
X player benefits from opening as many links as possible (with X and
Y players as well).

The incentives of an X and a Y player to deviate are: For an X player
i it is not profitable for him/her to switch to Y , dropping his/her links
with X players if the following inequality holds:

�n∗
X−1	b+n∗

Yc−nXi k−n∗
Yk > �n∗

X−1−nXi 	d+n∗
Ya−n∗

Yk

where nXi is the number of direct links an X player i has established to
other X players. This inequality is equivalent to:

n∗
X >

n�a− c	+ �b−d	+nXi �k−d	

�a− c+b−d	

For a Y player the following condition has to be satisfied:

n∗
Xd+ �n∗

Y −1	a−nYj k > n∗
Xb+ �n∗

Y −1	c−nYj k

which is equivalent to the inequality

n∗
X <

n�a− c	− �a− c	

a− c+b−d

Both restrictions on n∗
X obviously cannot be satisfied simultaneously.

We only have equilibria of the type obtained in part (b).
(d) As in cases (b) and (d), the complete graph with all players selecting

either X or Y is an equilibrium. If some players select X and some select
Y , the following holds. For X players it is profitable to build up as many
links as possible with other X players. The same argument holds for
Y players. All other links result in a payoff loss (either �c− k	 < 0 or
�d−k	 < 0	. In order to have no incentive for an X player to deviate it
suffices to consider the effects of an action switch from X to Y together
with opening links to all Y players. Such a deviation is not profitable
when the inequality12

�n∗
X−1	b−nXi k > n∗

Ya−n∗
Yk+ �n∗

X−1−nXi 	d

is satisfied, which is equivalent to

n∗
X >

n�a−k	+ �b−d	+nXi �k−d	

a+b−k−d
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For a Y player, an analogous restriction holds:

�n∗
Y −1	a−nYj k > n∗

Xb−n∗
Xk+ �n∗

Y −1−nYj 	c

which can be transformed equivalently into

n∗
X <

n�a− c	− �a− c	+nYj �c−k	

a+b−k− c

Both restrictions on n∗
X imply condition (4.4).

(e) Since a > k > b, it only pays for an individual player to choose Y and
to look for as many Y player connections as possible. However, this
argument only works when at least one player in the population selects
Y . If all players choose X, the best reply of each individual player is to
shut down all connections with the remaining players.

Q.E.D

REMARKS

(i) The result in parts (d) and (e) of Theorem 2 seems to have some features
in common with the literature on ‘equilibrium selection by migration’
(for example, Ely, 1995; Bhaskar and Vega-Redondo, 1996). In these
models, players can move to different locations where they play a
simple 2× 2 co-ordination game with each player at the same loca-
tion. As a main result it can be demonstrated that all players move
to the same location where the payoff-dominant equilibrium will be
played provided the migration costs are low enough. In our framework,
we have the opposite implications of communication costs. Moderate
communication costs prevent players from co-ordination failure and
let players build up isolated groups in which they choose the same
action. If communication costs are large enough to make coordination
onX unprofitable, then players select the payoff-dominant equilibrium
in one completely connected group.

(ii) We know from theoretical and experimental work on equilibrium selec-
tion in co-ordination games that there exist many situations in which
players do not select the payoff-dominant equilibrium (see, for example,
Kandori et al., 1993; Berninghaus and Schwalbe, 1996a; Cooper, 1999).
In our framework it can be guaranteed that the payoff-dominant equi-
librium in the co-ordination game is selected if connection costs are
‘large enough’. This is made precise by the condition on k in part (e)
of Theorem 2.

(iii) Our results in Theorem 2 are close to the results of the ‘static’ part
of the paper by Goyal and Vega-Redondo (2002 – see proposition 1
and proposition 2). In addition we point explicitly to the conditions
that equilibrium action distributions have to satisfy. This is important
particularly for disconnected networks, where some players belong to
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the group of X players while the remaining ones belong to the group
of Y players that is isolated from the former group. Obviously, such
an action distribution cannot be stable if there is at least one player
who can gain higher payoffs by joining the other group and switch-
ing strategies. Our inequality (4.4) is a sufficient condition which just
prevents players from group and action switching.

We illustrate the equilibrium network of part (d) (Theorem 2) in Figure 4.4.
The empty network and the complete network (see parts (a) and (b) of The-
orem 2) have already been illustrated in Figure 4.3. Part (d) represents the
disconnected networks where both subpopulations (of X resp. Y players) are
completely isolated. This result (part (d)) follows from the size of commu-
nication costs that make co-ordination failures very costly.

(d)

5
6

32

4

1

Figure 4.4 Equilibrium network in part (d) of Theorem 2

Concluding remarks

Our results in Theorems 1 and 2 show clearly the impact of communication
costs and the type of the base game on network formation. As a main
conclusion we state that one cannot separate the network linking decision
from the action decision in a particular base game. Strategy choice in a
population of players depends crucially on the communication (==linking)
costs and the numerical payoff constellations in the base game.

Our framework is still rather simple and completely static. It can be
extended in many ways. First, it is certainly not very realistic to assume that
players will find an equilibrium in such a complicated one-shot network
game � in one period. We need to find an extension of our simple static
model to a dynamic strategy adaptation process in which players change
their decisions (network and actions decisions) according to some well-
defined adaptation rules. One could also incorporate into such a dynamic
process themore or less plausible assumption that players show a lower speed
of adaptation in their network decisions than in their action decisions (in
the base game). For example, one could model that neighbourhood decisions
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are revised every 5th period, while action decisions may be changed in every
period.13

In communication network games it is often assumed that one player can
reach many players by one direct link to another player provided this player
is connected with many other players via direct or indirect links. It is not
easy to justify such an assumption in game networks, where all relationships
are only bilateral (at least for two-person games). Nevertheless, it seems to
be interesting to ‘experiment’ with this assumption. One could assume, for
example, that opening a link to a player would guarantee access to his/her
‘club’ of direct and indirect neighbours. A similar assumption has been made
in pure communication networks (Berninghaus et al., 2003). Many other
variants of access to a player’s neighbourhood are possible.

Finally, one can think of substituting the simple 2 × 2 symmet-
rical co-ordination games by more complex ones, either by asymmetric
co-ordination games or by N ×N coordinations games (for N > 2). Which
equilibrium networks could be expected in such models?

Notes

1 For example, players are supposed to be located on a circle or a grid.
2 Note, however, that the main aim of Goyal and Vega-Redondo is to analyse

stochastic stable states, which is different from our framework.
3 This assumption and its extensions have been discussed extensively in the litera-

ture on network formation (see Jackson and Wolinsky, 1996; and Bala and Goyal,
2000). At a first glance it seems to be strange that a player has to accept the offer
of any other player to play. However, this assumption simplifies the model con-
siderably. Moreover, Berninghaus and Vogt (2003) show that by this assumption
one obtains results that do not differ significantly from a model in which both
players have to agree before a link is opened. Goyal and Vega-Redondo (2002)
argue that positive payoffs in the base game suffice to induce a rational player to
agree to play with a partner who just opened a link to him/her. By refusing to
play, he/she would in fact lose payoff.

4 To avoid notational confusion, we follow the convention to call ‘strategies’ in the
H/D game as ‘actions’ in the more general network game.

5 Clearly, this is a simplifying assumption which makes our results tractable.
6 Since the equilibrium network we consider is the complete graph, we simplify

notation and omit total connection cost in calculating total payoffs.
7 Note that it is required to check additional payoffs of opening new links to all

remaining X players. Because of the assumption �c−k	 > 0 (in part (c)) each direct
link of a Y player to an X player generates a positive net benefit.

8 Remember that each connection between members in I2 in a Nash network is
only generated by exactly one direct link.

9 Note that nYj k denotes the linking costs with the remaining Y players. A Y player
j need only consider action switching from Y to X. It does not pay to change the
links with the remaining players.

10 Indeed, the payoff of an X player is equal to n∗
y�a−k	 > 0. By switching to Y s/he

can gain either negative or zero net benefits. The same conclusion holds for a Y
player.
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11 When we talk about unique equilibrium networks (for example, in part (b) of
Theorem 1) these networks are unique in being regarded as non-directed graphs.
In fact, such non-directed graphs may be generated by many different simple
directed graphs.

12 In calculating the payoff generated by deviation, note that (a) building up new
links to all Y players generates communication costs equal to n∗

Yk; and (b) a
deviating X player still has �n∗

X −1−nXi 	 X players who have direct links with
him/her. From each of these players s/he will extract an individual payoff of equal
to d.

13 Recently, Goyal and Vega-Redondo (2002) proposed a dynamic analysis of net-
work formation by analysing stochastic stable states in the population of players.
In the tradition of Kandori et al. (1993) resp. Young (1993) they introduce a
stochastic mutation term into the network formation decision problem. By letting
the mutation term converge to zero the authors determine (very) long-run equi-
libria of action and network choice. This is an important contribution in evolu-
tionary game theory; however, we believe that this method is more appropriate to
study equilibrium selection problems than dynamic strategy adaptation processes.
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5
Specific Skills, Imperfect Information
and Job Rationing
Helmut Bester ∗

Introduction

This chapter is about job rationing and segmented labourmarkets. It analyses
labour market equilibrium when job applicants cannot observe directly the
amount of specific training that is provided by different firms. But employ-
ees become aware of the quality of training and their productivity as the
employment relationship evolves. This is important because specifically-
trained workers enjoy a bargaining advantage; an employer would incur
a loss in output if he replaced his trained workforce with new employ-
ees. As a result of their bargaining position, the trained workers’ wage is
related positively to their productivity. Job applicants are therefore inter-
ested in identifying those firms that provide a large amount of specific
training. It is shown that a firm’s wage offer to untrained workers may
signal information about the training it provides. This informational role
of wages is the reason why they may not adjust to equilibrate demand
and supply for all jobs. Under imperfect information, different jobs may
be associated with different present values of lifetime income. In such an
equilibrium, there is job rationing and unequal treatment among identical
workers.

According to Becker’s (1962) argument, employer and employee will share
the costs of, and the returns to, specific training.1 This solution gives
both parties an incentive not to terminate the relationship unilaterally
and impose a capital loss on the other party. This arguments reasoning
is that long-term wage contracts have to be self-enforcing. Wages have
to be compatible with the incentives and the bargaining position of each
party, period by period. This is the case if the surplus from co-operation is
shared at each stage. As a result, the wage paid for trained labour depends
on its productivity within the firm. Under perfect information, employees

∗ I wish to thank two anonymous referees for helpful suggestions.
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know their future wages, so untrained workers accept a lower wage if
they are to receive higher incomes after being trained. In equilibrium they
are indifferent between the lifetime income of different jobs. Rationing
or unequal treatment is not compatible with competition under perfect
information.

It appears reasonable, however, to assume that employees are not perfectly
informed about the quality of a job when applying for it.2 In this situation,
firms may use their wage offers to untrained workers as a signal to reveal
information about themselves. The resulting equilibrium involves high-
productivity firms rationing workers. These firms cannot lower their wages
because this would make them indistinguishable from low-productivity
firms. Workers who are rejected at jobs with a large amount of specific
training have to accept employment in firms with less training and lower
incomes. These features resemble the distinction between ‘primary’ and
‘secondary’ sectors in Doeringer and Piore’s (1971) dual labour market
theory.3

As in the present model, asymmetric information plays a key role also in
two other explanations of job rationing.4 Imperfect information about the
firm’s technology has been incorporated into the implicit contract model
of Azariadis (1975) and Bailey (1974). Under the informational assump-
tions, the firm’s employment strategy becomes a signal for its profitability.
The optimal contract may then entail ex post inefficiencies like invol-
untary underemployment.5 However, the implicit contract model fails to
explain ex ante rationing; in equilibrium, the market for employment con-
tract clears and there is no unequal treatment.6 The second category of
models assumes that employers cannot directly observe or control their
employees’ productivity. In these models, lower wages reduce the worker’s
productivity because of either adverse selection or incentive effects.7 This
‘efficiency wage’ argument explains why firms may not wish to cut wages
even in the presence of excess demand. This chapter differs from these
approaches mainly because workers rather than firms represent the less
informed side of the labour market. Productivity is fixed within each
firm and is not affected by wage payments. The firm’s unobservable char-
acteristics determine the structure of equilibrium. The model not only
explains the possibility of rationing but also predicts that its occurrence
is closely related to the amount of specific on-the-job training in different
industries.

In the next section we develop a stylized model of a labour market with
firm-specific training. The third section analyses the benchmark as equi-
librium under perfect information, where job applicants can observe the
amount of training in each type of firm. In the fourth section we describe
competition under imperfect information: and as the fifth section shows,
in this situation the competitive outcome may involve job rationing and a
segmented labour market. The sixth section concludes.
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The model

In a two-period economy, there are Lworkers and two types of firms, indexed
� = a�b. The number of firms of type � is N�. Labour is the only input to
produce homogeneous output, and each firm can employ one worker each
period. The production technology of firm � is described by Y� = �Y�1�Y�2	,
where Y�1 and Y�2 is the output from employing a worker at dates 1 and 2,
respectively. If no worker is hired, output is zero. Workers acquire specific
skills in the first period through on-the-job training. Therefore, Y�2 is higher
than Y�1 if at date 2 the same worker is employed as in the period before.
But because training is specific, a new employee can produce only Y�1 at any
date.

There is a perfect credit market. Workers and producers can borrow and
lend at the exogenously given interest rate �1−�	/�; that is, they have the
common discount factor �. Let w� = �w�1�w�2	 denote the wages paid by firm
� to its employee in Periods 1 and 2. Then its overall profit is given by:

���w�	= Y�1−w�1+��Y�2−w�2� (5.1)

The worker’s lifetime income from the wage profile w� is:

U�w�	=w�1+�w�2 (5.2)

The worker’s reservation wage for employment in any of the two industries
is � per period. Therefore, the worker will accept wage offer w� only if
U�w�	� �1+�	�. The alternative income �may either represent the worker’s
utility from leisure or the wage paid by firms without on-the-job training.

The firms’ technology is taken to satisfy:

Y�1 <�< Y�2�Y�1+�Y�2 > �1+�	� (5.3)

Moreover, it will be assumed that:

Na < L� Nb < L� Na+Nb > L (5.4)

As Y�1 < �, training is costly in the first employment period. Therefore,
replacing a trained worker in the second period is not profitable for a firm.
This simplifies our analysis of the second-period equilibrium because there
is no ‘secondary market’ for trained workers outside their current employ-
ment. But, at the social discount rate �, training increases the present value
of output because of its second-period return. Under assumption (5.4), all
workers receive jobs with training only if both types of firms operate. Yet
producers have to compete for labour and some firms will not be able to
operate.
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Finally, type a and type b firms differ according to the following
assumption:

Ya2 > Yb2 (5.5)

Firms of type a are more productive at the second date than type b firms. In
the following section, which analyses the perfect information equilibrium,
we do not need a condition on the first-period productivity differential
Ya1 −Yb1. In the fifth section, however, we shall show that job rationing
occurs under asymmetric information if Yb1 is not too large relative to Ya1.

Equilibrium under perfect information

A worker who is employed in either industry a or b, enjoys a bargaining
position in Period 2. If the firm replaces the worker, then it incurs a loss in
output of at least Y�2−Y�1. Hence, employer and employee find themselves
in a situation of bilateral monopoly, and the wage rate w�2 depends on the
outcome of a bargaining process. If co-operation is not achieved, then the
worker quits and receives the alternative income �. It is not profitable for the
producer to hire an untrained worker at date 2. An untrained worker would
produce Y�1 and require a wage of at least �. By Equation (5.3) this would
render losses to the firm. Thus the best response of the firm is to stop oper-
ating after its employee quits. Accordingly, the surplus from co-operation
amounts to Y�2 −�. This surplus is shared so that the worker receives a
fraction 1−
 of it. A specific value for the parameter 
 might be obtained
from either axiomatic or non-cooperative approaches to bargaining theory.8

Instead of deriving an explicit solution to the bargaining problem, it will be
convenient to consider 
 as exogenous and to assume simply that 0< 
< 1.
Given 
, second-period wages in the �-type firms are equal to:

w̃�2 = �1−
	�Y�2−��+� (5.6)

In the second period, wages are related positively to productivity; by Equa-
tion (5.5), they are higher in sector a than in sector b.

An equilibrium of the economy specifies, for each industry �, the wage
rates w� and the number of firms n� that in fact employ a worker. While
second-period wages are the outcome of the bargaining process described
above, first-period wages are determined competitively. Under perfect
information, workers are able to distinguish the two types of prospective
employers. When hired by a producer of type �, they know that their future
wage will be w̃�2, as given by Equation (5.6). Given the firms’ first-periodwage
quotations, the workers choose among jobs to maximize income. Producers
act as Bertrand–Nash competitors. They take the behaviour of workers as
being fixed and seek to maximize profits through their own offers. An equi-
librium is attained if no firm has an incentive to change its wage contract.
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It is straightforward to compute the equilibrium ŵ�� n̂�� under perfect
information. In equilibrium, it must be the case that n̂a+ n̂b = L. Otherwise,
workers would earn their reservation income only, and U�w�	 = �1+�	�

would imply ���w�	 > 0 for both types’ �. This is, however, inconsistent with
equilibrium: by Equation (5.4) there are some firms that do not produce.
These could make a positive profit by offering slightly higher wages to attract
workers. The same argument shows that profits must be zero for at least one
type of �. In equilibrium, workers will be indifferent between ŵa and ŵb,
and so the wage bill to hire a worker for two periods is the same in each
industry. Accordingly, firms with a higher present value of output Y�1+�Y�2

will earn positive profits, whereas the others make zero profits. Each of the
more productive firms employs a worker in equilibrium. The less efficient
ones are indifferent between operating or not; they employ all workers who
do not have a job in the more productive firms.

The zero-profit condition together with Equation (5.6) determines the
first-period wage in the less-productive sector. From Equation (5.6) and
U�ŵa	= U�ŵb	 it follows that:

ŵb1− ŵa1 = �1−
	��Ya2−Yb2� (5.7)

First-period wages are inversely related to second-period productivity in each
sector, and by assumption (5.5) one has ŵa1 < ŵb1. Workers employed by type
a firms have steeper age earnings profiles than their colleagues in sector b.

Competition under imperfect information

Under imperfect information, workers cannot distinguish producers of type
a and b directly at the first date. However, a worker learns about his/her
employer’s identity while being employed. On-the-job training not only
raises the employee’s productivity, but it alsomakes him/her aware of his/her
future output as a trained worker. Since the employee knows about the
producer’s type at date 2, bargaining about second-period wages is in no way
different from perfect information, so that wa2 and wb2 are again determined
by Equation (5.6).

But, condition (5.7) may no longer be incentive compatible when informa-
tion is asymmetric. Because ŵa1 is lower than ŵb1, type b producers could
seek to reduce their wage costs by misrepresenting their identity. This would,
of course, unravel the equilibrium ŵ�� n̂��.

The environment of the economy is common knowledge under imperfect
information. In Period 1, producers compete for workers. In addition to their
wage offer w�1, they may also advertise their type in order to inform the
worker about his/her future wage prospects. Of course, the worker will regard
such a message as informative only if no gain can be made by an untruthful
announcement. Let S = s� s̄� denote the set of possible signalling activities.
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We shall adopt the convention that, if some firm wishes to advertise that it
is of type a, it will choose the signal s̄. No firm is interested in revealing that
it is type is b. Therefore, the selection of smay simply be taken to imply that
the employer is not interested in making a statement about the company’s
type. There are no costs associated with advertising either s or s̄.

Workers are interested in identifying firms of type a because these yield
higher second-period incomes. Their job choice will depend on their beliefs
about the identity of employers. These beliefs are specified for all pos-
sible wage offers w1 and messages s ∈ S. Formally, they are represented by
a function ��·	 such that ��w1� s	 ∈ �0�1� denotes the worker’s probability
assessment that the wage offer w1, together with the signal s, comes from
a type a firm. In accordance with the notion of a ‘sequential equilibrium’,
as introduced by Kreps and Wilson (1982), the beliefs � allow us to identify
the workers’ optimal behaviour for any strategy chosen by the employers.
Each worker selects among all available offers to maximize expected utility.
Whenever two firms adopt an identical strategy, they are equally likely to
attract workers.

At date 1,each firm selects a strategy �w1� s	; then the workers apply for
jobs. Given a system of beliefs �∗, the allocation w∗

� � n
∗
��� and the firms’

choices of signals s∗��� constitute an equilibrium under imperfect information if
no producer of either type � can increase expected profits through another
wage offer w1 �= w∗

�1 or message s �= s∗�. In addition, �∗ has to be consistent
with the equilibrium outcome.

If the workers can distinguish the two types of firms by the different wage-
signalling choice they make, the equilibrium is separating and �∗ satisfies
�∗�w∗

a1� s
∗
a	=1 and �∗�w∗

b1� s
∗
b	=0.9 Otherwise, pooling occurs and the workers’

beliefs coincide with the actual fractions of type a and b firms in the market
so that �∗�w∗

a1� s
∗
a	 = �∗�w∗

b1� s
∗
b	 = Na/�Na+Nb	. In the pooling equilibrium,

workers are indifferent between all job offers, and each firm has the same
probability of attracting an employee.

The definition of equilibrium imposes no restrictions upon beliefs which
are conditioned on firm strategies that are not chosen in equilibrium. This
indeterminacy of out-of-equilibrium beliefs typically leads to multiple equi-
libria in games with imperfect information. In order to avoid this problem
we shall impose a further, economically reasonable restriction on �∗ by
adopting the ‘intuitive citerion’ of Cho and Kreps (1987). This criterion is
based on the following argument. Let some firm select an out-of-equilibrium
strategy �w1� s	. The workers should conclude that this offer is made by a
type a firm if the following two conditions are satisfied:

(i) Should �w1� s	 attract a worker, then choosing �w1� s	 is advantageous
for the firm if it is of type a; and

(ii) If the firm is of type b, then it cannot gain by proposing �w1� s	 even
when a worker applies for this offer.
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In equilibrium, the expected profit of a type � producer is n∗
���w

∗
�	/N�,

because his/her offer attracts a worker with probability n∗
�/N�. Accordingly,

�∗ satisfies the intuitive criterion if:

�a�w1�w
∗
a2	 >

n∗
a

Na

�a�w
∗
a	 (5.8)

and

�b�w1�w
∗
b2	�

n∗
b

Nb

�b�w
∗
b	

implies

�∗�w1� s	= 1� for all s ∈ S

In the following, the term ‘equilibrium’ will be used only if the associated
beliefs �∗ are consistent with the intuitive criterion (5.8).

Separating equilibria and job rationing

Job rationing occurs when some workers receive certain jobs and others do
not, and the latter are worse off. This may happen if wages act as a signalling
mechanism and fail to equilibrate demand and supply.When several workers
apply for a job, the employer selects one of them at random and rejects
the others. The latter may then proceed to seek employment in another
firm. Obviously, rationing can occur at most in the separating equilibrium
because in the pooling equilibrium the worker is indifferent between all
job offers. The separating equilibrium entails rationing if U�w∗

a	 > U�w∗
b	.

Since by assumption (5.4) only a fraction of all workers can be employed in
the a industry, some of them are denied a type a job and have to console
themselves with a type b job.

The purpose of our analysis is to show that these features are a charac-
teristic of the equilibrium when the parameters of the model satisfy the
following condition:

�
�Ya2−Yb2� > Yb1−Ya1 (5.9)

This requires that the second-period productivity differential between type
a and type b firms is sufficiently large. Inequality (5.9) holds if, and only if,
�a�w1� w̃a2	 > �b�w1� w̃b2	 for all w1.

We now show that under condition (5.9) there is a separating equilibrium
with the following features: Wages and employment in the first period are:

w∗
a1 =w∗

b1 = Yb1+�
�Yb2−��� n∗
a =Na�n

∗
b = L−Na (5.10)
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The firms’ second-period wages �w∗
a2�w

∗
b2	 are determined by the bargaining

solution (5.6), and their signalling choices are given by �s∗a� s
∗
b	= �s̄� s	.10 This

outcome is supported by the following beliefs �∗: every wage offer above w∗
�1

is considered to come from type a employers; every offer beloww∗
�1 is believed

to originate from type b producers. If w∗
�1 is offered, then s̄ is regarded as a

signal of type a and s as a signal of type b. Notice that U�w∗
a	 > U�w∗

b	 because
w∗
a1 =w∗

b1 and w∗
a2 >w∗

b2 Therefore, a worker prefers to be employed in a type
a firm. This implies that the equilibrium outcome involves job rationing.

Indeed, it is easily verified that Equation (5.10) describes an equilibrium.
The wage w∗

�1 is chosen such that firms of type b earn zero profits. They
are indifferent between operating or not, and have no incentive to mis-
represent their identity. Each type a producer operates in equilibrium; by
Equation (5.9) the producer earns positive profits. Neither s/he nor a type
b producer can gain by offering a different first-period wage. This is so
because no worker would accept a wage below w∗

�1. According to the worker’s
beliefs, such an offer would yield even less income than U�w∗

b	. Finally, �
∗

is consistent with the equilibrium outcome and satisfies requirement (5.8).
Indeed, since n∗

a = Na, a type a producer could gain the most by offering a
first-period wage w1 <w∗

a1. Consequently, �a�w1� w̃a2	 > n∗
a��w

∗
a	/Na implies

�b�w1� w̃b2	 > n∗
b��w

∗
b	/Nb. This precludes that a type a firm can appeal to the

intuitive criterion when it offers a first-period wage w1 �= w∗
a1. By showing

that Equation (5.10) represents in fact the only allocation that can be sup-
ported as an equilibrium if Equation (5.9) holds, we establish the following
result:

PROPOSITION 1 Let condition (5.9) be satisfied. Then there exists a unique
equilibrium. This equilibrium is separating and exhibits job rationing at type
a firms.

PROOF First, it will be shown that the equilibrium must be separating.
Suppose the equilibrium were pooling. Then n∗

a/Na = n∗
b/Nb < 1. Define

wo
1 such that �b�w

o
1� w̃b2	 = n∗

b�b�w
∗
b	/Nb. Note that wo

1 > w∗
a1 = w∗

b1. Using
Equation (5.9), it is easily verified that �a�w

o
1� w̃a2	 > n∗

a�a�w
∗
a	/Na. It thus

follows from Equation (5.8) that �∗�wo
1� s	= 1. With these beliefs, the worker

prefers the offer �wo
1� s	 to �w∗

a1� s
∗
a	 so that �wo

1� s	 certainly attracts a worker.
But then �a�w

o
1� w̃a2	 > n∗

a�a�w
∗
a	/Na is inconsistent with expected profit

maximization, a contradiction.
Second, it will be shown that n∗

b < Nb. Suppose n
∗
b =Nb. Then profit maxi-

mization implies:

n∗
a�a�w

∗
a	/Na ��a�w

∗
b1�w

∗
a2	� �b�w

∗
b	� n∗

a�b�w
∗
a1�w

∗
b2	/Na (5.11)

Adding these inequalities yields:

n∗
a��a�w

∗
a	−�b�w

∗
a1�w

∗
b2	�/Na ��a�w

∗
b1�w

∗
a2	−�b�w

∗
b	 (5.12)
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By Equation (5.9), �a�w
∗
a	−�b�w

∗
a1�w

∗
b2	 = �a�w

∗
b1�w

∗
a2	−�b�w

∗
b	 > 0. There-

fore Equation (5.12) implies that n∗
a = Na. But then n∗

a + n∗
b = Na +Nb > L,

a contradiction to Equation (5.4).
Since the equilibrium is separating, �∗�w∗

b1� s
∗
b	= 0. As n∗

b <Nb, competition
among the type b firms then implies ��w∗

b	 = 0. This proves w∗
b1 = Yb1 +

�
�Yb2−��.
Next, it will be shown thatw∗

a1 =w∗
b1. Since�b�w

∗
b	= 0, anyw∗

a1 <w∗
b1 would

certainly be imitated by the type b firms. This proves w∗
a1 � w∗

b1. Suppose
w∗
a1 > w∗

b1. Then any w∗
b1 < w1 < w∗

a1 satisfies �a�w1�w
∗
a2	 > n∗

a�a�w
∗
a	/Na and

�b�w1�w
∗
b2	� n∗

b�b�w
∗
b	/Nb so that, by Equation (5.8), �∗�w1� s	= 1. Therefore,

the worker prefers �w1� s	 to �w∗
b1� s

∗
b	, and �w1� s	 certainly attracts a worker.

Since �w1� s	 generates higher expected profits to firms of type a than �w∗
a1� s

∗
a	,

this contradicts expected profit maximization. This proves w∗
a1 =w∗

b1.
Finally, one must have n∗

a = Na because U�w∗
a	 > U�w∗

b	. This shows that
Equation (5.10) is the only equilibrium allocation, and that the equilibrium
must be separating if Equation (5.9) holds.

Q.E.D.

The separating equilibrium displays a segmented labour market. Access to
type a jobs is restricted, and the equilibrium produces a discriminatory wage
differential. The informational role of wages keeps producers of type a from
eliminating excess demand by lowering wages. The profit function of these
firms is discontinuous at w∗

a1. Profits are positive for wa1 =w∗
a1, but vanish to

zero with a small wage reduction. The reason is the change in the workers’
beliefs. They consider any wage offer below w∗

a1 as being made by type b

firms and as less attractive than available offers from competing producers.
Imperfect information creates a downward rigidity of wages which makes
rationing compatible with equilibrium.

To compare the equilibrium outcome under perfect and imperfect
information, notice that Ya1+�Ya2 >Yb1+�Yb2 by condition (5.9). Thus type
a firms are more productive than type b firms, not only in the second period
but also from the perspective of overall efficiency over the two periods.
Therefore, type b firms earn zero profits and offer the same first-period wage
under both perfect and imperfect information. Accordingly, the workers
employed by type b firms are equally well off in both situations. Yet, firms
of type a earn lower profits under imperfect information because they can
no longer realize the first-period wage differential in Equation (5.7). Instead,
they have to offer the same wages as type b firms. As a result, it is the
employees in type a firms who gain at the cost of their employers from the
informational imperfection of the labour market.

Proposition 1 identifies a range of parameter constellations which must
lead to a separating equilibrium with job rationing. It is worth noting that in
the case of more than two firm types, rationing may also occur when some
subset of types is pooled. Indeed, it may happen that all producers whose
job offers create excess demand are pooled into one group. Firms within this
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group have no strict incentive to distinguish themselves from other members
of the group; they only wish to be separated from outsiders with rather low
second-period productivities. It should be clear, however, that rationing can
occur only when there is at least some degree of information revelation
in equilibrium. This can be ensured by conditions that are analogous to
Equation (5.9).

Conclusion

This chapter has studied the labour market equilibrium in an economy
with imperfect information about specific on-the-job training. We have
shown that the resulting equilibrium may involve the high productivity
firms rationing workers. These firms cannot lower their wage without being
perceived by the workers to be low productivity firms, in which future wages
are low. Because of its informational role, the wage rate fails to equilibrate
the market in the traditional sense.

In the two-period model in this chapter there is no uncertainty at date 2
and rationing occurs only at date 1. But the present analysis may easily
be embedded into an overlapping generations model in which each young
generation is confronted with job rationing. Of course, such amodel requires
persistent uncertainty about the firms’ future productivities. Asymmetric
information of this type could be generated through successive industry-
specific shocks about which the producers are better informed than the
workers. After all, it seems reasonable to assume that the employer knows
more about the future prospects of the business than does the employee.

Notes

1 For a formal analysis of the sharing model, see Hashimoto (1981). The interaction
between general and specific investments in the sharing model is analysed in
Kessler and Lülfesmann (2000), who show that the possibility of providing specific
training leads the employer to invest in general human capital.

2 The literature on labour markets distinguishes between two possible sources of
asymmetric information: in, for example, Hart (1983) the firms have private
information about their technological characteristics, whereas in Weiss (1980), for
example, the workers have private information about their productivity. Our model
assumes asymmetric information of the first type.

3 A survey of segmented labour market theories is given by Cain (1976).
4 A model of asymmetric information in which firm-specific training interacts with

on-the-job screening is studied in Bac (2000).
5 A survey is given by Hart (1983) and Rosen (1985). Depending on workers’ prefer-

ences, these models may result in overemployment as well as underemployment;
see, for example, Azariadis (1983), Green and Kahn (1983) or Cooper (1983).

6 Such an equilibrium is described in Holmstrom (1983).
7 A survey of these so-called ‘efficiency wage models’ is given by Yellen (1984) and

Weiss (1990). An example of the adverse selection model is Weiss (1980); as an
example of the incentive model, see Miyazaki (1984).
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8 See, for example, Nash (1950) or Rubinstein (1982). The non-cooperative approach
would incorporate the worker’s alternative income � according to the ‘outside
option’ principle, see Sutton (1986). It is not important to assume that 
 is the
same in each firm. The essential condition is thatw�2 and Y�2 are positively related.

9 We confine our analysis to symmetric equilibria, in which all firms of the same
type select an identical strategy.

10 The firms’ signals �s∗a� s∗b	 serve to avoid the open set problem that arises because,
as long as wa1 >w∗

b1, a type a firm can increase its profit by slightly reducing wa1.
The intuitive criterion requires the worker to consider the reduced wage as an offer
of a type a firm because �b�wa1�w

∗
b2	 < 0. As a result, the type a firm would like to

set wa1 as close to w∗
b1 as possible without becoming indistinguishable. Allowing

firms to advertise their type is thus simply a way to eliminate the discontinuity
in beliefs that occurs as the type a wage converges with the type b wage from
above. The problem disappears if the set of possible wage offers is finite. Type b
firms would then quote the highest first-period wage at which they do not lose
money; type a firms would quote the next available offer above that.
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6
Testing Game Theory
Jörgen W. Weibull∗

Introduction

An important development in economics is the emergence of experimental
economics, and Werner Güth has been one of its pioneers. Moving from
armchair theorizing to controlled laboratory experiments may be as import-
ant a step in the development of economic theory as it once was for the
natural sciences to move from Aristotelian scholastic speculation to modern
empirical science.1

The first experiments in game theory were carried out in the early 1950s.
However, a new wave of game experiments began in the mid 1970s, and
Güth et al. (1982) pioneered experimental work on so-called ultimatum bar-
gaining situations. For surveys of such experiments, and for introductions to
experimental game theory more generally, see Güth and Tietz (1990), Bolton
and Zwick (1995), Kagel and Roth (1995), Zamir (2000), the special issue of
the Journal of Economic Theory in 2002 devoted to experimental game theory,
and Camerer (2003).

The present chapter discusses some methodological and conceptual issues
that arise when non-cooperative game theory is used for positive analysis of
human strategic interaction. In particular, in the experimental literature, it
has many times been claimed that certain game-theoretic solutions – such
as Nash equilibrium and subgame perfect equilibrium – have been violated
in laboratory experiments.2 While it may well be true that human subjects
do not behave according to these solutions in many situations, few experi-
ments actually provide evidence for this. Especially in the early literature,

∗ This chapter is amajor revision of SSEWP 382 ofMay 2000. I am grateful for helpful
comments from Ana Ania, Geir Asheim, Kaushik Basu, Larry Blume, Vincent Craw-
ford, Martin Dufwenberg, David Easley, Tore Ellingsen, Ernst Fehr, Jean-Michel
Grandmont, Thorsten Hens, Jens Josephson, Donzhe Li, Sendhil Mullainathan,
Rosemarie Nagel, Al Roth, Maria Saez-Marti, Larry Samuelson, Martin Shubik, Jon-
Thor Sturlason, Sylvain Sorin, Fernando Vega-Redondo and Shmuel Zamir, and to
seminar participants at presentation of various drafts of the chapter.
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experimentalists did not make any effort to elicit the subjects’ preferences,
despite the fact that these preferences constitute an integral part of the
very definition of a game. Instead, it has been customary simply to assume
that subjects care only about their own material gains and losses. In later
studies, subjects’ preferences were allowed also to depend on the ‘fairness’
of the resulting vector of material gains and losses to all subjects. However,
recent experiments, discussed below, suggest that even this is sometimes too
restrictive – subjects’ ranking of alternatives may depend on other parts of
the game form, a phenomenon here called ‘context dependence’.

In applications of non-cooperative game theory, the game is not only
meant to represent the strategic interaction as viewed by the analyst, but
also as viewed by the players – it is even assumed quite frequently that the
game is common knowledge to the players. Indeed, a variety of epistemic
models have been built in order to analyse the rationality and knowledge
assumptions involved in game-theoretic analysis – under the classical inter-
pretation that the game in question is played exactly once by rational players.
The extent and exact form of knowledge assumed on behalf of the players
varies across game forms, solutions, and on the epistemic model in ques-
tion, see Tan and Werlang (1988), Reny (1993), Aumann (1995), Aumann
and Brandenburger (1995), Ben-Porath (1997) and Asheim (2002). Being
deductive, such epistemic models of games can, of course, not be empiric-
ally falsified as such, only their assumptions, which are known to be strong
idealizations. So what, then, can be tested? One can test whether the the-
oretical predictions are at least approximately correct in environments that
approximate the assumptions. Such testing is important, because this is the
way game theory is used in economics and the other social sciences.3

This chapter is somewhat discursive and philosophical, and contains no
theorems. I hope, though, that it sheds some light on the very definition
of a non-cooperative game, on the empirically relevant possibilities of con-
text dependent preferences and interpersonal preference dependence, on
backward induction and on incomplete information modelling. The inter-
ested reader is recommended to read Levine (1998), Sprumont (2000), Ray
and Zhou (2001) and Binmore et al. (2002) for other discussions of some of
these, and related, issues (connections to these earlier studies are commented
briefly on below).

The discussion is organized as follows. The second section pins down
some terminology and notation. In particular, a notion of ‘game protocol’
is introduced. The third section applies this machinery to a class of very
simple ultimatum bargaining situations. The fourth section discusses back-
ward induction more generally, and in particular how to reconcile it with
context-dependent preferences. The fifth section discusses briefly interper-
sonal preference dependence, the sixth section shows how the model in
Levine (1998) can be used to address the issues discussed in the two preced-
ing sections, and the seventh section concludes.
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Games and game protocols

The present discussion is focused on a slight generalization of finite games
in extensive form, as defined in Kuhn (1950, 1953).4 Such a game is a math-
ematical object that contains as its basic structure a directed tree, consisting
of a finite number of nodes (or vertices) and branches (or edges). A play, �, of
the game is a ‘route’ through the tree, starting at its initial node and ending
at one of the end nodes, �. A node k′ is a successor of a node k if there is play
that leads first to k and then to k′. Moreover, each end node is reached by
exactly one play of the game, and each play reaches exactly one end node.
Let � denote the set of end nodes, and T the set of plays. We then have
��� = �T �<+�.

The set of non-end nodes is partitioned into player subsets, and each
player subset in turn is partitioned into information sets for that player
role. In each information set, the number of outgoing branches from each
node is the same, and the set of outgoing branches from an information
set is divided into equivalence classes, the moves available to the player at
that information set, so that every equivalence class contains exactly one
outgoing branch from each node in the information set. A choice in an
information set is a probability distribution over the moves available at
the information set. In games with exogenous random moves, one of the
players is ‘nature’, and all information sets for this ‘non-personal’ player are
singleton sets with fixed probabilities attached to each outgoing branch.

A pure strategy for a personal player role is a function that assigns one
move to each of the role’s information sets. The outcome of a strategy
profile is the probability distribution induced on the set � of end-nodes, or,
equivalently, on the set T of plays.

Since humans sometimes exhibit social preferences – that is, our choices
are in part driven by concern for others, it is useful to allow for the possibility
of passive players (or dummy players) – that is, player roles with empty player
sets, but where the player may be affected by the choices made by other,
active, players. Relevant examples are the so-called dictator games, where
one player is active and one is passive. More generally, an active player may
be passive in certain subgames and yet influence active players’ preferences
in the subgame.

The ingredients described so far together make up a game form.

Games

A game form becomes a game when the (personal) player roles are endowed
with preferences. More exactly, in standard non-cooperative game theory,
each player i = 1�2� � � � � n is assumed to have preferences over the unit
simplex:

���	= ��T	=
{
p ∈����

+ �
���∑
i=1

pi = 1

}
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of lotteries over end nodes, or, equivalently, plays, satisfying the von
Neumann – Morgenstern axioms.5 Hence, for each player i there exists a real-
valued function �i with domain�, or T , such that player i prefers one lottery
over another if and only if the expected value of the function �i is higher in
the first lottery than in the second. Such a function �i � �→� (unique up to
a positive affine transformation) will here be called the Bernoulli function of
player i. The number �i ��	 is usually called the payoff to player i at end node
�.6 If� is a game form, then the pair � = ����	, where � denotes a combined
Bernoulli function � � �→�n, constitutes a finite extensive-form game.

Game protocols

In virtually all applications of game theory, including laboratory experi-
ments, each play results in well-defined material consequences for the play-
ers. In applications to economics, and in most laboratory experiments, these
material consequences are monetary gains or losses, in which case these are
usually called monetary payoffs – not to be confounded with game theorists’
definition of payoffs as Bernoulli function values.

In order to facilitate discussions of the effects of changed material or
monetary payoffs, it is useful to introduce a name for game forms with
specified material consequences. Hence, by a game protocol is here meant a
pair ��� 	, where  is a function that maps end nodes �∈� (or, equivalently,
plays � ∈ T) to material consequences c ∈ C, for some set C rich enough to
represent relevant aspects of the material consequences in question. If the
material consequences are monetary gains and losses to the n players in the
game form, then we may thus take C to be a subset of �n.7

The formal machinery of non-cooperative game theory does not require
that a player’s payoff value �i ��	 at an end node � be a function of the
material consequences at that node. Indeed, two plays resulting in identical
material payoffs to all players may well differ in terms of information sets
reached, choices made or not made during play and so on – aspects that may
be relevant for players’ preferences and hence influence their Bernoulli func-
tions. Standard game theory only requires the existence of a Bernoulli func-
tion �i for each (personal) player i. Indeed, several laboratory experiments
have convincingly – though perhaps not surprisingly for the non-economist
– shown that human subjects’ preferences are not driven only by their own
monetary payoffs.8

Mini ultimatum protocols

A class of game protocols that have been much studied in the laboratory
are those associated with ultimatum bargaining protocols. These two-player
game protocols represent strategic interactions where the subject in role A,
the proposer, makes a suggestion to the subject in role B, the responder, about
how to split a fixed sum of money. The responder may accept or reject the
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proposal. If accepted, the sum is split as proposed. If rejected, both subjects
receive nothing.

Figure 6.1 shows the game protocol of such a simplified strategic interac-
tion, a mini ultimatum protocol, where 100 tokens are to be divided between
two parties, a proposer and a responder. The proposer has only two choices,
either to keep x tokens for him/herself, the outside option, or to offer the
responder 100−y tokens. In the latter case, the responder has a binary choice,
whether to accept or reject the division �y�100−y	. If B rejects the proposal,
both players receive zero tokens. Hence, the game form has three plays:
T = �1� �2� �3�. In play �1, A chooses the division �x�100−x	 and play stops
at end node �1. In play �2, A proposes the division �y�100−y	, B accepts this
and play stops at end node �2. In play �3, A proposes �y�100−y	, B rejects
this and play stops at �3. The numbers x and y are fixed and given, and
known by the player subjects, where 0 < x < y < 100. At the end of the
experiment, tokens are exchanged for money, at a pre-set exchange rate.

In the early experimental literature it was presumed that the payoff val-
ues �i ��	 to the subjects are monotone functions of their own monetary
payoffs. Hence, in strategic interactions like this, it was claimed that non-
cooperative game theory predicts play �2, namely, that A will propose the
division �y�100−y	 and that B will accept this. This is, of course, the unique
subgame-perfect equilibrium of the game that defined by such preferences.
The implicit hypothesis in this early literature is fivefold:

H1: the responder prefers play �2 over play �3;
H2: the responder is rational in the sense of playing optimally, according

to his/her preferences;
H3: the proposer knows that H1 and H2 hold (or at least believes that they

hold with a sufficiently high probability);
H4: the proposer prefers �2 over �1; and
H5: the proposer is rational in the sense of acting optimally, in accordance

with his/her knowledge and preferences.9

(x,100 – x )

(y,100 – y )

(0,0)

A

B

Figure 6.1 A mini ultimatum game protocol
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A large number of laboratory experiments with more complex ultimatum
bargaining situations of this sort have shown that many proposer subjects
instead offer sizeable shares to the responder, and that many responder
subjects reject small shares if offered. In the present mini ultimatum game
protocol, this corresponds to plays �1 and �3. Such findings were initially
interpreted as rejections of the subgame perfection solution concept. What
was rejected was the combined preference-cum-knowledge hypothesis H1–
H5 given above. This is not surprising, since neither hypothesis H1 nor H3
is true for all subjects.

In the present example, let �A be a proposer subject’s preferences over
the set ���	, and let �B be a responder subject’s preferences over the same
set. For example, suppose x = 50 and y = 90. A subject in player role A

may then have the preference �2 �A �1 �A �3, and the subject in role B may
have the preference �1 �B �3 �B �2.

10 Indeed, such preferences are consistent
with many subjects’ behavior in laboratory experiments. All games in the
associated game class (that is, with compatible Bernoulli functions) have the
50/50 split – that is, play �1, as the unique subgame perfect outcome.

In an experimental study of a variety of mini ultimatum protocols slightly
more complex than the one in Figure 6.1, Falk et al. (2003) found that the
responder rejection rate (across 90 subjects) depends not only on the current
offer they faced, but also on the ‘outside option’ available to the proposer.11

In the context of the present example: B’s ranking of plays �2 and �3 may
well depend on the material consequences of play �1.

As indicated above, this observation has implications for backward induc-
tion arguments: a change in one part of a game protocol may change players’
preferences in another part, even if the first part cannot be reached from the
second. This issue is addressed in the next section.

Backward induction

In a given game form �, let K0 be the subset of nodes k such that (i) k is
either a move by nature or k� is an information set of a personal player;
and (ii) no information set in � contains both a successor node and a non-
successor node to k. Each node k ∈K0 is the initial node of a subform, a game
form �k. For any such node k, let the associated subprotocol be defined as
the game protocol ��k� k	, where  k is the restriction of  to the subset
�k ⊂� of end nodes that succeed node k. So far, so good. The subtlety arises
when we try to define subgames, since for any given subprotocol there are
two distinct candidates claiming that name.

First, there is the following definition of a subgame: if � = ����	 is a game
and k ∈ K0, then the subgame at k is the game �k = ��k� �̃	, where �̃ is the
restriction of � to the subset �k. In other words, the Bernoulli function
values in �k coincide with those in � at all end nodes in�k. This is the context-
dependent definition of a subgame. In this definition, players’ preferences



Jörgen Weibull 91

in the subgame, represented by �̃, may depend on parts of the full game
protocol ��� 	 outside the subprotocol ��k� k	 in question. For example, �̃
may depend on choices available along the unique play leading up the node
k and/or on material payoffs at end nodes not in �k. This approach treats
the full game protocol as the relevant context for all players’ decisions at all
points in the game protocol.

A second candidate for the title of ‘subgame’ at a node k ∈ K0 is the game
�o = ��k��

o	 that is obtained if the subprotocol ��k� k	 is played in isolation –
that is, beginning at node k as the initial node and without the ‘context’ of
the rest of ��� 	. We shall call �o = ��k��

o	 the isolated subgame at k.
As an illustration of this distinction, consider the subform in Figure 6.1

beginning at the node k where player B has to accept or reject the pro-
posal �y�100−y	. Viewed in isolation, this is a one-player game protocol,
where the unique active player �B	 has a binary choice of either (a) receiv-
ing 100− y tokens while y tokens are given to a passive player A; or (b)
no tokens to either of the two players. I guess an overwhelming majority
of subjects in this isolated game protocol would choose the first option.
However, we know that many subjects in player role B in the full game
protocol in Figure 6.1 choose the second option. Taking their behaviour as
indicating their revealed preference, this means that �̃ �= �o. Indeed, it is an
empirical question whether �o = �̃. The above-mentioned observations in
Falk et al. (2003), if taken as revealed preferences, show that �̃ �= �o. Hence,
the distinction between the two definitions of subgames may be critical.

Since the full game protocol is supposed to represent the relevant decision
context for the players’ decision-making, it is this author’s opinion that
backward induction should be applied to the full game protocol, with all
players’ preferences defined in this protocol. In particular, when applying
subgame perfection, one should use the context-dependent definition of a
subgame, and not that of an isolated subgame. Formally, a subgame perfect
equilibrium is then a strategy profile that induces a Nash equilibrium on
every subgame �k = ��k� �̃	.

However, much of the game-theoretic literature seems to ignore this dis-
tinction. For a recent example, see Ray and Zhou (2001), where it is assumed
implicitly that �̃ = �o.12 However, other researchers have provided experi-
mental evidence against backward induction when carried out in terms of
the isolated subgames – that is, by using �o instead of �̃; see Binmore et al.
(2002). Hence, what they reject is the combined hypothesis that the sub-
jects’ play is compatible with backward induction, as described here, and
that their preferences satisfy �̃ = �o.

Note that the suggested approach – to base backward induction (and all
other analysis) on the preferences in the full game protocol – is not a cri-
tique of ‘Kuhn’s algorithm’, the usual way of solving finite games of perfect
information by way of successively replacing each final decision node in
the game tree by an end node with a payoff vector that equals the expected
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payoff vector achieved by some optimal move by the player at the decision
node in question. All that is suggested here is that the payoffs should then
be Bernoulli function values as defined from players’ preferences in the full
game protocol.

Context dependence in preference formation may have many causes. It
may be that human subjects in player roles have opinions about actions
taken and not taken on the way to the information set in question, with
or without regard to the possible intentions behind those actions. It may
also be that players have social preferences that depend on options available
to others outside the subprotocol in question. However, for the purposes of
game-theoretic analysis, it does not matter what the causes are, as long as
players’ preferences in the full game protocol are well defined. The analyst’s
task of eliciting the preferences of subjects in player roles of a given game
protocol is in general not easy. It is particularly difficult if subjects have
interpersonally dependent preferences – that is, if their rankings of outcomes
depend in part on their expectations of other player subjects’ rankings of
outcomes, which depend on those other subjects’ expectations of the others’
rankings, and so on – which is the topic of the next two sections.

Interpersonal preference dependence

The elicitation of players’ preferences raises a fundamental issue in the very
definition of a game, namely whether a player’s preferences may depend on
(knowledge of, or beliefs about) another player’s preferences, which in turn
may depend on (knowledge of, or beliefs about) the first player’s preferences
and so on. Such potential interpersonal preference dependence is disturbing,
since it makes the domain of preferences unclear – the game protocol is then
not an exhaustive representation of the interactive situation – and yet such
interdependence might realistically exist in some interactions.

Example

In order to illustrate this possibility, consider the game protocol in Fig-
ure 6.2.13 Here, a mini ‘dictator game’ form follows the tossing of a fair coin
deciding which of the two players should be the ‘dictator’. The game form
has four plays: �1, where A is the dictator and decides that they get 50 tokens
each; �2, where A is the dictator and decides that s/he will get 70 tokens
while B will get only 10; �3, where B is the dictator and decides that they
will get 50 tokens each; and, finally, �4, where B is the dictator and decides
that he will get 70 tokens while A will get only 10. (The token sum is thus
100 in the even splits and 80 in the uneven splits.)

Suppose there is one subject in each of the two player roles, and the
experimentalist wants to elicit their preferences in order to identify the
game they are playing. Suppose the experimentalist is able to find out each
subject’s ordinal preference ranking of the four plays in the above game
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A

(50, 50)

(70, 10)

(50, 50)

(10, 70)

Figure 6.2 A mini random dictator game protocol

protocol. Suppose the subject in player role A ranks play �1 (being dictator
and splitting 50/50) highest, while the subject in role B ranks �4 first (being
the dictator and keeping 70 for him/herself). Can the experimentalist then
conclude that, if the game (or more precisely, game class) were known by
both subjects, the subjects would play according to their stated preferences?
Not necessarily. Suppose, for example, that the subject in player role A, when
learning about B’s ‘selfish’ preference, changes his/her own ranking and now
prefers to keep 70 tokens for him/herself if called upon to act as dictator.

Suppose now that the experimentalist anticipates this possibility of prefer-
ence interdependence, and therefore instead proceeds as follows: the experi-
mentalist asks subject A to state his/her ordinal ranking of the four plays for
each of the 24 possible (strict) ordinal rankings that B may have, and simi-
larly for subject B. Having done this, the experimentalists looks for matching
preference orderings – that is, a pair of orderings such that each subject’s
ordering applies to the other subject’s ordering. In this way, the experimen-
talist may end up with no matching pairs, one matching pair, or several
matching pairs. For example, subject A may rank play �1 (being dictator
and splitting 50/50) highest if B prefers play �3 (being dictator and split-
ting 50/50) over play �4, and similarly for subject B. Presumably, two such
subjects would not change their own rankings even when told the other’s.
However, the same two subjects might also have another matching pair of
rankings, such as A ranking play �2 (being dictator and keeping 70 tokens for
him/herself) highest if subject B prefers play �4 (being dictator and keeping
70 tokens for him/herself) over play �3, and similarly for subject B. This cor-
responds to a behaviourally distinct class of games, so the experimentalist
eventually has two distinct game classes for one and the same game protocol
and pair of subjects.
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Games of incomplete information

Can this kind of preference interdependence be avoided by way of mod-
elling the interaction as a game of incomplete information, and using the
Harsanyi approach of transforming that game into a ‘meta game’ of com-
plete but imperfect information, with a common prior? The feasibility of
this programme seems to be an empirical question, for two reasons. First, it
is an empirical question if such a game exists for given subjects in the player
roles of a given game protocol, since interpersonal preference dependence
may also arise in the resulting meta game of imperfect information: sub-
jects may alter their own rankings of outcomes once they learn about the
others’ rankings.14 Second, it is doubtful if human subjects will understand
the meta game constructed in this way, since such a game is usually quite
abstract, nor is it clear that they will agree on a common prior. In view of
these difficulties, the game theorist may abandon direct preference elicita-
tion, and work under the (falsifiable) hypothesis that the subjects act as if
they were players with hypothesized preferences in such a meta game. The
subsequent section illustrates that route by way of applying the simple and
yet rich incomplete-information model of interpersonal preference depend-
ence suggested by David Levine (1998). As will be seen, a certain form of
individual preference elicitation is possible even in that setting.

Altruism-driven interpersonal preference dependence

In a two-player game protocol, such as those in Figures 6.1 and 6.2, let xA ��	
and xB ��	 be the monetary payoffs to the two players, A and B, at each
end-node � ∈�. The players are drawn from the same population (of, say,
subject in an experiment). The type space is a subset ! of �, and players’
types are i.i.d. draws from a c.d.f. F � !→ �0�1�.15 In the game protocol of the
associated meta game, where ‘nature’ first chooses the two players’ types, an
end node is a triplet ���a�b	 ∈�×!2, where a and b are A’s and B’s types,
and � is the set of end nodes in the underlying, or ‘basic’, game protocol
that neglects nature’s draws of player types (as in Figures 6.1 and 6.2).

The Bernoulli functions of players A and B in this meta game, when A is
of type a and B is of type b, are taken to be of the form:

�A ���a�b	= xA ��	+W �a�b	xB ��	 (6.1)

and

�B ���a�b	= xB ��	+W �b�a	xA ��	 (6.2)

where W � !2 → � is a function that attaches a relative weight to the other
player’s material payoff (compared with the unit weight attached to the
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player’s own material payoff). A positive weight thus represents altruism
towards the other player while a negative weight represents spite. Levine
(1998) uses the following functional form:

W ����′	= �+��′

1+�
∀�� �′ ∈! (6.3)

where � ∈ �0�1� is a parameter that reflects interpersonal preference depend-
ence: the weight W ����′	 placed on the other player’s material payoff
depends non-negatively on the other player’s type �′ and is more sensitive
to the other player’s type the larger that � is.

Mini ultimatum games

Let us first apply this approach to the game protocol in Figure 6.1, for
0 < x < y < 100. Suppose thus that ‘nature’ first chooses the two players’
types and reveals each player’s type privately to the player in question. In
the notation of Figure 6.1, an outcome in the meta-game protocol is a triplet
���a�b	, where � ∈ �1��2��3�, a is A’s type and b is B’s type.

Let � ∈ �0�1�, and let F � �→ �0�1� be a c.d.f. with finite mean value �̄.
Player A’s Bernoulli function is then:

�A ��1� a�b	= x+ a+�b

1+�
�100−x	 (6.4)

�A ��2� a�b	= y+ a+�b

1+�
�100−y	 (6.5)

and �A ��3� a�b	= 0 for all a and b. Player B’s Bernoulli function is similarly
defined:

�B ��1� a�b	= 100−x+ b+�a

1+�
x (6.6)

�B ��2� a�b	= 100−y+ b+�a

1+�
y (6.7)

and �B ��3� a�b	= 0 for all a and b.
Note, however, the informational asymmetry in the two player’s expecta-

tion formation at their respective decision nodes in Figure 6.1. While player
A has not yet seen B take any action when making her choice, player B,
when making his choice, has observed that A has chosen not to take her
outside option �x�100−x	.

The above description specifies a meta game of complete but imperfect
information, defined by the following data: x, y, � and F.

Suppose we have laboratory data for given monetary payoffs x and y, and
for human subjects who have been matched randomly and anonymously to
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play the two player roles. Let p= �p1� p2� p3	 ∈���1��2��3�	 be the empirical
outcome in the underlying game protocol; that is, the observed population
frequencies of the three plays of the game protocol in Figure 6.1. What such
outcomes are consistent with sequential equilibrium in the meta game?16

Clearly the empirical outcome is a random variable and hence cannot be
expected to agree exactly with the theoretically predicted outcome. How-
ever, for a sufficiently large subject pool, it should not differ too much, and,
moreover, when changing material payoffs x and y, one may study eco-
nometrically if the empirical outcome moves in the theoretically predicted
direction.

In order to answer such questions we now turn to an investigation of
the sequential rationality and consistency conditions that constitute the
definition of sequential equilibrium. It is sequentially rational for player B
to reject the offer �y�100− y	 if and only if this choice gives at least the
same conditionally expected utility as accepting the offer. Hence, rejection
is sequentially rational if and only if

100−y+ b+�EB�a�

1+�
y ≤ 0 (6.8)

where EB�a� is B’s conditional expectation of A’s type a ∈!, given that A has
chosen to offer �y�100−y	 instead of taking the outside option �x�100−x	.
Inequality (6.8) may equivalently be written as b ≤ b∗, where

b∗ = −�1+�	
100−y

y
−�EB�a� (6.9)

In other words, it is sequentially rational for player B to reject the offer if B
is sufficiently spiteful, given B’s belief about A’s type.

Let q denote the rejection rate of subjects in player role B, that is, the
conditional equilibrium probability that a subject in role B will reject the
offer �y�100−y	 if made. We then have q = F�b∗	, or, more explicitly:

q = F

[
−�1+�	

100−y

y
−�EB�a�

]
(6.10)

Secondly, it is sequentially rational for player A to forego the outside
option if and only if the expected utility of doing so is no less than the
expected utility to A of instead offering �y�100− y	. In the latter case, the
offer is accepted with probability 1−q. Hence, the outside option is optimal
for A if and only if

x+ a+�E
0
A�b�

1+�
�100−x	≥ �1−q	

[
y+ a+�E

1
A�b�

1+�
�100−y	

]
(6.11)
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where E
0
A�b� is A’s unconditional expectation of B’s type, and E

1
A�b� is A’s

conditional expectation of B’s type, given that B accepts the offer �y�100−y	

if made. Inequality (6.11) is equivalent with a≤ a∗, where

a∗ = �1+�	
�1−q	y−x+���1−q	�100−y	E1

A�b�− �100−x	E0
A�b��

y−x+ �100−y	q
(6.12)

Having considered sequential rationality, let us now turn to the consist-
ency condition in the definition of sequential equilibrium. This condition
determines the three expectations above. First, it requires that B’s condi-
tional expectation of A’s type, if B is called upon to make a move, equals the
conditional mean-value of A’s type a, given that a≤ a∗:

EB�a�=G�a∗	� (6.13)

where G: R → R is the truncated mean-value function associated with F,
defined by

G�t	= 1
F�t	

∫ t

−�
sdF�s	 (6.14)

Secondly, consistency requires player A’s unconditional expectation of B’s
type to equal the unconditional mean- value under F:

E
0
A�b�= � (6.15)

If A chooses the outside option, then A’s expectation of B’s type should equal
the subject pool’s average type.

Thirdly, consistency requires A’s conditional expectation of B’s type if B
accepts the offer �y�100−y	 to equal the conditional mean-value of B’s type
b, given that b > b∗:

E
1
A�b�=

�−qG�b∗	
1−q

(6.16)

In order to facilitate the exposition, suppose that ! = R and that F is con-
tinuous and strictly increasing.17 Let

"�x�y� q	=G

[
�1+�	�y−x−yq	−���100−y	G�F−1�q	�q+ �x−y	��

y−x+ �100−y	q

]
(6.17)

Equation (6.10) may then be re-written as

q = F

[
−�1+�	

100−y

y
−�" �x� y� q	

]
(6.18)



98 Testing Game Theory

a fixed-point equation in the rejection rate q. Given the meta-game data x,
y, � and F, the right-hand side defines a continuous function of q that maps
the closed unit interval into itself, and thus has at least one fixed point. This
equation is necessary for a rejection rate q to be compatible with sequential
equilibrium in this model. Conversely, if q is a fixed point of equation (6.18),
then EB�a� and E

1
A�b� are uniquely determined by equations (6.10) and (6.16),

and these in turn uniquely determine the critical types a∗ and b∗, hence
determining a sequential equilibrium.

Figure 6.3 below shows the graphs of the left-hand side (the 45-degree
line) and the right-hand side (the three curves) in equation (6.18), in the
special case when F is the uniform distribution on the interval �−1�1���= 0�5
and y = 80, for x = 20 (the lowest curve), 35 (the middle curve) and 50
(the highest curve), respectively.18 We see that the associated equilibrium
rejection rates are approximately q = 0�34, 0.38 and 0.46, respectively. This

0
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X

Figure 6.3 The fixed-point equation for the rejection rate

monotonicity is in qualitative agreement with the empirical findings in Falk
et al. (2003): the more ‘generous’ the outside option is, in comparison with
the offer �y�100−y	, the more likely it is that the responder will accept the
latter. It is as if the responder more easily ‘forgives’ the proposer for not
offering �x�100−x	 the smaller x is (recall that x < y by hypothesis).19

By varying thematerial payoffs x and y and recording the associated empir-
ical rejection rates, q̃�x� y	, equation (6.18) can be used to pin down � and F
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for a given subject pool—under the hypothesis, of course, that the model
is valid. In this sense, indirect aggregate preference elicitation is possible.
Indeed, also certain individual preference elicitation is possible. To see this,
suppose estimates �̃ and F̃ have been obtained as mentioned above. If records
of individual subjects’ actions have been kept, then further estimation and
testing of the model at an individual level can be done by way of inequalities
(6.9) and (6.12), as applied to the proposer and responder roles for different
values of x and y. For each subject j, Let !j ⊂ ! be the subset of parameter
values � that satisfy these conditions for subject j, for all values of x and y
in the experimental data. The set !j is either empty or a non-empty interval
(determined by j’s choices for different values of x and y). If !j = # for some
subject j, then the model together with its estimates (�̃ and F̃) is empirically
rejected. If, however, !j �= # for all subjects j, then interval-valued estimates
of all subjects’ types have been obtained.20 In the latter case it would be
interesting to see whether such individual estimates have predictive power
for the same subject’s behavior in other game protocols.

Mini random dictator games

Turning to the game protocol in Figure 6.2, suppose that ‘nature’ not only
chooses who will be the dictator, but also both players’ types. In the notation
of Figure 6.2, an outcome in the meta-game protocol is thus a triplet ���a�b	,
where � ∈ �1��2��3��4�, a is A’s type and b is B’s type. Let � ∈ �0�1�, and
let F � �→ �0�1� be a c.d.f. with finite mean value �̄. Player A’s Bernoulli
function is then defined by:

�A ��1� a�b	= �A ��3� a�b	= 50+50
a+�b

1+�
(6.19)

�A ��2� a�b	= 70+10
a+�b

1+�
(6.20)

�A ��4� a�b	= 10+70
a+�b

1+�
(6.21)

and analogously for B.
Suppose, first, that both players’ types are common knowledge. Then

player A, if selected to be the dictator, will choose 50/50 if and only if a+�b≥
�1+�	/2. Similarly, player B, if selected to be the dictator, will choose 50/50
if and only if b+�a ≥ �1+�	/2. Hence each player’s decision will depend
in part on the other’s type. In the context of the present example, it seems
reasonable to constrain players’ types to lie between zero and one; that is,
! = �0�1	. Figure 6.4 shows how the unit square !2 is divided into four
regions by the two players’ indifference lines (the diagram has been drawn
for � = 1/2). Note, in particular, that there are type combinations �a�b	 for
which one player will choose 50/50 when selected to be the dictator, despite
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Figure 6.4 Players’ indifference lines in the space of type pairs

the fact (known by that player) that the other player, if called upon, would
have chosen 70 for him/herself. (These are the regions NW and SE of the
intersection of the two indifference lines.)

Second, suppose that each player’s type is his or her private information.
In sequential equilibrium, either of the two players, if selected to be the
dictator, will choose 50/50 if and only if his or her own type � is at least
�1+�	/2−��̄, where �̄ is the the mean value under F. If � = 0, then this
condition is independent of the other’s expected type �̄, while for positive �,
the condition depends on the other’s type and it is met more easily the
higher is the other’s expected type.

Concluding remarks

The methodological issues discussed here are relevant for an array of other
game protocols than the few examples discussed here. For example, one
may ask if prisoner’s dilemma game protocols indeed are prisoner’s dilemma
games for all pairs of human players. For example, in the light of the many
experiments based on such protocols, it is not impossible that some indi-
viduals in fact prefer the play �C�C	 to the play �D�C	 even in the role of
Player 1, although their own material payoff is then lower.21

A related empirical question is whether a repeated game protocol results
in a repeated game, since the latter requires that preferences over plays
are additively separable in the material payoffs in each round – a stringent
requirement on preferences. Suppose, for example, that a prisoner’s dilemma
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protocol is repeated ten times in a laboratory setting, and that the subjects
are paid the sum of their material gains after the last round. Will they behave
as if they were striving to maximize the sum of their material gains, even
if they were exhibiting such preferences in the one-shot prisoner’s dilemma
protocol?

It was shown above how Levine’s (1998) model allows for certain inter-
personal preference dependence in game protocols. In particular, it can
explain why responders’ rejection rate in ultimatum game protocols may
depend on the proposer’s outside options. While players’ preferences in this
approach are driven by altruism and spite, there may well be other reasons
why some subjects reject small offers. A responder subject may, for example,
want to punish the proposer’s action, irrespective of the proposer’s possible
motives, because the action violates some ‘norm’ supported by the responder.
This would not be a case of interpersonal preference dependence, but of
context-dependent preferences, as discussed in the fourth section above.
Indeed, Fehr and Gächter (2003) reported empirical evidence, in the context
of a public-good provision game protocol, that suggests such explanations.
Further analysis of preferences of this type seems highly relevant for our
understanding of much social behaviour.

An even more basic issue, not discussed here, but yet of great import-
ance for the relevance of game theoretic analysis for predictive purposes,
is whether human subjects reason in a way that is consistent with any
form of backward induction. Johnson et al. (2002) provide evidence that
a significant fraction of human subjects in laboratory experiments do not
even care to inform themselves of the material consequences in distant parts
of the game protocol, although such information would be necessary for
backward induction reasoning (and despite the fact that the subject can
inform him/herself at no other cost than that of touching a computer key).22

(See Costa-Gomes et al. (2001) for similar evidence concerning normal-form
games.) Such behaviour is clearly at odds with current game theory – another
major challenge for future research.

To sum up, I would like to thank Werner Güth for his pioneering experi-
mental studies of the predictive power of non-cooperative game theory. For
economic theorists, the huge amount of experimental work done since the
1980s should be good news: while many theoretical presumptions have been
challenged, new theoretical ideas can now be tested in the many labora-
tories around the world, hopefully leading us to better models of economic
behaviour.

Notes

1 The likelihood of success, however, may be smaller, in view of the complexity of
human choice behaviour and strategic interaction.

2 The number of citations that could be made here is so large that any selection
would be arbitrary.
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3 In recent years, evolutionary alternatives to these epistemic models have been
developed. However, those models are not discussed here.

4 See Ritzberger (2002) for a rigorous definition and analysis of finite extensive-form
games.

5 Standard game theory can thus be criticized for its reliance on the von Neumann
– Morgenstern axioms – an empirically valid critique that will not be discussed
here, however.

6 By contrast, a payoff function usually means the induced mapping from strategy
profiles to Bernoulli function values.

7 This is similar to consumer theory, where the consumption space is supposed to
be rich enough to represent all relevant aspects of consumption alternatives.

8 For prominent examples, see Güth, et al. (1982); Binmore et al. (1985), Ochs and
Roth (1989), Fehr and Schmidt (1999), Bolton and Ockenfels (2000), Brandts and
Solà (2001), Binmore et al. (2002), Falk et al. (2003).

9 In more complex games, hypotheses H2 and H5, which here seem innocuous,
may in fact be highly implausible. For example, in chess we know that H2 and
H5 do not hold: no human player knows how to play optimally (presuming a
strict preference for winning) from all game positions on the board.

10 Here each play is shorthand notation for the lottery that places unit probability
mass on it.

11 In Falk et al. (2003), the ‘outside option’ was also subject to the responder’s
acceptance.

12 Similarly, Sprumont (2000) presumes preferences in normal-form games to be
context independent in the same way: a player’s ranking of pure strategies in a
subset remains the player’s ranking in the reduced game in which these subsets
are the full strategy sets.

13 I am grateful to Al Roth for suggesting this game protocol, which is simpler than
the one I originally used.

14 This existence problem is distinct from the related existence problem analysed in
Mertens and Zamir (1985).

15 Levine (1998) sets ! = �−1�+1	, and assumes F to have finite support.
16 Levine (1998) sets ! = �−1�+1	, and assumes F to have finite support (see note

above), while we here allow for the possibility that F has infinite support. We
thus here deal with a potentially infinite extensive form. Despite this, I will
speak of sequential equilibrium rather than perfect Bayesian equilibrium, since
the extension is here evident.

17 If these assumptions are not made, a fixed-point equation for the critical type b∗

can be likewise derived, and this equation can be used to determine the rejection
rate q and other observables.

18 The algebraic operations performed above apply also to this case, although this
distribution function does not have full support.

19 In a slightly more complex game protocol, where also the proposer’s “outside
option” was subject to the responder’s approval, Falk et al. (2002) found that the
rejection rate q to a given offer �y�100−y	 increases when the proposer’s share x
of the outside option �x�100−x	 was increased. More exactly, they found this for
y = 80 and x= 50 and x= 20, respectively.

20 One further test is to see whether this collection of interval estimates, one for
each subject, is consistent with F̃ in the sense that, for every � ∈ !, the number
of subjects j with intervals !j that intersect �−�� �� approximates NF̃��	, where N
is the total number of subjects in the experiment.
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21 Empirical support for this hypothesis has been found in preliminary experimental
work by M. Kosfeld, E. Fehr and the author.

22 Indifference to material consequences at distant nodes makes sense if a subject
does not care at all about material payoffs, or holds beliefs that they differ so little
across plays that it is better to save effort by not hitting the computer key than
to find out these material payoffs.
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7
A Dialogue Concerning the Nature
of Rationality
Hartmut Kliemt and Axel Ockenfels∗

Introduction

In the spirit of David Hume’s ‘dialogues concerning natural religion’ this
dialogue presents several views on the nature of rationality and its role
in economics. Definite solutions of problems are not on offer. There may,
however, be a range of persuasive reasons to prefer some views over others.

Dramatis personae

MAX: An orthodox economist who believes that rationality depends on
whether the consequences of choice can be viewed as (if) the outcome of
maximization under constraints according to given preferences.

PSYCHE: An economic psychologist and adherent of bounded rationality
who insists on ‘true’ explanations in terms of behavioural laws and rejects
‘as if’ accounts of rationality.

BORA: An ‘enlightened’ adherent of bounded rationality who believes in
the ‘rational’ in ‘boundedly rational’ and tries to steer a middle course
between the more extreme positions of MAX and PSYCHE.

SCENE: Two economists and a psychologist sit together in the autumn of 2002
when the breaking news is that the Nobel Prize for Economics has been awarded
to Daniel Kahneman and Vernon Smith.

Economists and psychologists

MAX: Have you heard that the Nobel Prize in Economics has been awarded
to Daniel Kahneman and Vernon Smith?

∗ We thank Anthony de Jasay, Björn Frank and two anonymous referees for very
helpful comments.
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PSYCHE: No, but that is great news! Not unexpectedly, and clearly not
undeservedly, it has been awarded to Vernon Smith. And I am particularly
delighted that the committee chose to include a psychologist. Neverthe-
less, it is a pity that none of the several runners-up have been included.

MAX: Indeed, when it comes to traditions and to putting a premium on
seminal work in experimental economics, the Sauermann–Selten school
should be held in the highest esteem. Reinhard Selten would at least have
been a real economist who knows what rationality stands for. Including a
psychologist sent the wrong signals.

PSYCHE: But Reinhard Selten and his followers were themselves demanding
that economics should be based on behavioural laws. Even though they
were in the forefront of working out the full rationality approach, they
were often more radical critics of the prevailing rational choice paradigm
of economics than many psychologists. In fact, the Sauermann–Selten
school delivered the strongest arguments for including a psychologist.

BORA: It should not be forgotten that Reinhard Selten has always insisted
on working ‘both sides of the street’, so to speak. On the one hand, there
is a philosophical interest in explicating what it means to participate in
a strategic interaction as a rational actor along with other rational actors,
and, on the other, the interest of explaining actual behaviour in real-world
interactions between human actors.

PSYCHE: I do not object to separating the two issues. However, it seems
puzzling to me what the role of a theory of fully rational behaviour could
be in the explanation of real behaviour. The two seem to be so much apart
that I cannot see how the gulf – rather than the street – between them
could conceivably be bridged.

MAX: Of course, the model of fully rational behaviour is not realistic in the
strict sense of the term. Like all models of science, it is an abstraction or
useful idealization. As the idealized laws of physics apply only approxi-
mately in, say, the presence of friction, so do the idealized laws of ration-
ality apply only approximately in the presence of cognitive constraints.
In that sense, rationality as utility maximization under constraints should
be regarded an approximately true idealization of real behaviour.

BORA: I do not think that the analogy between ‘laws of physics’ and ‘laws
of rationality’ really works. Think of game theory as an example here. The
game theorist must assume that game theory itself is ‘absorbed’ by the
players. The players follow its precepts and each knows that the other does
so. Their predictions of the behaviour of other players are not based on
behavioural laws but rather on game theoretic inferences, assuming that
the other players are acting on the basis of the same theory they them-
selves apply. In a strict sense, the term ‘game theory’ is not about behav-
iour but rather about the reasoning of human beings who are deemed
to be rational by the theory if and only if they themselves apply that
theory.
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PSYCHE: Pure game theory, as you rightly characterize it, adopts what phil-
osophers such as P. F. Strawson used to call a participant’s attitude, as
opposed to an objective one. That is, it analyses from the internal point
of view of a participant rather than from the external point of view of
an onlooker – what K. R. Popper called ‘the logic of the situation’. All
actors use the prescriptions of the theory of rational behaviour to develop
predictions of what other actors will do.

MAX: We should not forget here, too, that the economist Oskar
Morgenstern was a thoroughly subjectivist Austrian economist who was
particularly interested in how our theories about the world might affect
what goes on in that world. He was ‘absorbed’ by the idea of ‘theory
absorption’. This idea, rather than any approximation of real behaviour,
is the key to understanding classical game theory.

PSYCHE: But classical game theory has no model of the mental processes in
which its logic is applied, and affects social reality. What matters is the
correctness of inferences drawn by rational individuals rather than the
inference process itself. In that sense, pure game theory is logical rather
than psychological or behavioural. The immediate consequence is that
the inferences from rationality models like those of classical game theory
cannot serve as approximations of behavioural laws.

MAX: Nevertheless, pure game theory can define, or rather ‘explicate’, what
rationality (or more precisely rational choice-making) in interactive situ-
ations ideally means. The concept of rationality in interactive situations is
theory-dependent. An absorbable theory of rationality is prescribing how
to maximize utility in interactive situations simultaneously to all actors.
And it does so without providing a reason to deviate from the theory or its
prescriptions if all actors act according to that theory and share common
knowledge that they do. This is a minimum requirement of coherence
that must be met by any theory of rationality. Unless it is fulfilled, no
reflective equilibrium can be reached.

PSYCHE: But this, as the concept of a reflective equilibrium indicates, is a
purely philosophical exercise. Theory absorption of this kind is concerned
with ‘logical’ and conceptual coherence rather than with behaviour. It is
completely unrelated to real human behaviour. We need to learn how
such theories of ideal rationality relate to real behaviour.

BORA: Indeed, if we want to understand economic decision-making we need
to bring economics closer to psychology, or to build psychology into
economics, so to speak. Experimental economics is a step in that direction.

MAX: I partly agree with this. But, unlike psychology, economics is not
concerned so much with the process of making choices per se, but rather
with the outcome of such processes. It appears to me that, especially
within economic institutions, the predictions of game theory often work
sufficiently well without addressing the underlying complicated andmessy
mental processes. Taking them into account creates somuch chaos that the
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psychologist might indeed find new clients among formerly remarkably
healthy and sober-minded economists.

BORA: If we become as preoccupied with all the minute facts and details of
cognitive processes as the psychologists we shall in the end break down
economics into bits and pieces without greatly improving its predictive
value. The strength of economics is its unity of perspective. Economics
avoids the chaos of realm-dependent psychological theories, and thereby
stands out in the crowd of disparate psychological and social theories.

PSYCHE: I have heard the latter argument again and again – and I disagree.
In practice, economic theories are not less disparate than psychological
theories, although the reasons are quite different. In psychology, the dif-
ferent camps have their own hypotheses about the reasoning processes
that affect behaviour in a given environment. In economics, the differ-
ent camps typically have their own hypotheses about the environmental
factors that affect behaviour, given rational decision processes. There are
probably hundreds, if not thousands, of economic theories on bargaining,
growth, unemployment and so on, each coming to different, often oppos-
ite, solutions for very similar problems, but all under the same umbrella –
called rationality or rational choice.

MAX: But unlike cognitive processes, environmental aspects of a theory are
in principle observable objectively.

PSYCHE: You sound a bit like an old-fashioned behaviourist who does not
believe in the legitimacy of using theoretical terms. All interesting theories
contain terms with an extension that is unobservable directly.

BORA: Also, unfortunately, looking at environmental parameters does not
tell the whole story. Economic theories based on rationality typically also
depend on, say, individual knowledge and beliefs, and unobservable indi-
vidual preference parameters such as risk aversion and impatience that
further add to the plethora of rationality models. Thus, in fact, economics
shares more drawbacks with psychology thanmany economists are willing
to concede. It is an illusion brought about by putting everything into the
single mould of maximization that economics describes a single animal
while psychology takes us to the zoo.

MAX: Yes, both economics and psychology must deal with the subtleties of
the behaviour of human beings who are endowed with complex brains.
No theory will ever be in a position to deal in full with these complexities.
My claim is not that economics does this perfectly, but rather that it fares
better than its competitors.

BORA: As always, the proof of the pudding will be in the eating, and as far
as this is concerned I suspect that some variety in our theoretical diet may
serve us best. For example, when we are dealing with non-market beha-
viour, a greater dose of psychology may be necessary, while a somewhat
stricter rational choice and maximization under constraints approach may
lead to a better understanding of market processes.
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Market behaviour

MAX: The economists’ understanding of market equilibrium is cast exclu-
sively in terms of external constraints and observable responses of market
participants.

BORA: Experiments tend to show that, under proper conditions, market
equilibria emerge from a process in which traders behave ‘as if’ led by
an invisible hand. Market equilibria are typically unintended results of
human action that are not to be explained as the outcomes of human
design. Therefore, when it comes to markets, I’d shift the focus on the
‘rationality’ of results rather than the rationality of the decision-making
processes.

MAX: I prefer to restrict the primary extension of the term ‘rational’ to
choice-making and the behaviour stemming from it. To refer to results
of choice-making as ‘rational’ is a secondary use of the term. Results are
individually rational if they cannot be improved by individual maximizing
behaviour.

PSYCHE: But what about the choice-making leading to the results? If we
expect that results cannot be rational unless brought about by rational
choice-making, a closer look reveals thatmarket equilibrium in these envir-
onments is reached despite the fact that actors are not fully rational. Even
so-called ‘zero-intelligence traders’ could do it. Rationality as a behavioural
premise is unnecessary, and we do not need such smuggled-in dubious
figures such as Homo oeconomicus when it comes to an explanation of how
markets work. The explanation in the last resort relies mostly on insights
into the workings of institutions rather than into human motives.

MAX: My requirement that rational results cannot be improved on by indi-
vidually rational behaviour is impervious to such criticisms.

BORA: How can there be an institutional explanation without minimal
behavioural rules? In fact, even the zero-intelligence traders Psyche is
talking about respond to incentives, because if they don’t and instead
execute obviously non-rational strategies, equilibrium is not reached. Far-
sighted maximization with perfect information about all constraints, con-
sequences and options is an unnecessary assumption, but we must assume
that human beings seize opportunities once they ‘stumble’ on them. And,
as Adam Smith already had it, the desire to improve our situation is with
us from the cradle to the grave even though we might not always know
how to fulfil that desire optimally.

MAX: I see it from a slightly different perspective. For markets to work, you
only need individuals at the margins who respond properly to incentives.
Market outcomes are not affected somuch by intra-marginal irrationalities.
Game theory analyses incentive structures, and since most humans – both
in the lab and in the field – respond to incentives, game theory is in most
circumstances a useful tool to capture behaviour.
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BORA: So, if an economist approaches markets s/he can use the rational
choice model as a useful instrument for predicting those ‘intelligent
outcomes’. Because I know that markets work in general as if populated
by fully rational individuals, I can rely on the model of fully rational
behaviour to predict what will happen in a specific market. In that sense,
Homo oeconomicus and economics as a predictive science are going hand
in hand.

MAX: And, for thatmatter, they are going stronger than other social sciences
that are allegedly more empirically minded but not very well-integrated
bodies of knowledge.

PSYCHE: But your confidence that your predictions will work depends on
the fact that you can explain why markets work in terms other than the
rational choices of all participants. Markets lead to rationally desirable
results because they are robust against many deficiencies in individual
rationality as well as against, let’s say ‘anomalies’ – like fully rational or
fully selfish behaviour.

MAX: Still, it is true that one can use the rational choice model for predic-
tions. The possibility of prediction is all that matters when it comes to
acting in markets and to improving markets themselves by acts of institu-
tional design.

BORA: With respect to markets, I agree. But I hesitate when we try to go
beyond markets. There, Homo oeconomicus may not help any more. Think,
for example, of the repeated prisoner’s dilemma game. The prediction, by
backward induction, is that there will be no co-operation at all as long as
the number of rounds to be played is finite and known to be finite. To my
knowledge, there is not a single experiment that supports this prediction.

PSYCHE: But are we not adherents of the methodologically individualist
view that, in all market as well as non-market contexts, the same rational
individuals interact? And would that not rule out the use of one model
of behaviour for market contexts and a different model for non-market
contexts?

BORA: I can in principle think of models that include non-rational and
probably non-selfish elements. For example, there are models that capture
seemingly disparate sets of behavioural patterns across institutional envir-
onments, such as markets and public goods’ settings. But this involves, of
course, a departure from standard economic modelling. So I am slightly
reluctant here, as are many economists. But it is at least good to see that
more and more economists care about the robustness of their models with
respect to the rationality and motivational requirements.

PSYCHE: The analysis of repeated prisoner’s dilemma games, for example,
is clearly not robust as it rests on common knowledge of rationality and
selfishness. Even, say, a single ‘crazy’ decision-maker in a large population
of fully rational and selfish players would imply co-operative behaviour
across the board until the last rounds of play.
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MAX: What you deem to be crazy is in the last resort part of a wonder-
ful idealized model. Without claiming to be realistic, the model teaches
us a lesson about the principles that may be expected in some form or
other to rule the social world. The ideal model informs us that in social
reality there may be a rather delicate interplay of incomplete information
and motivational types. Even completely selfish and rational players have
good reasons to behave co-operatively in a world with a few fair-minded
players.

PSYCHE: Well, this sounds exciting, but the reality is that, if you allow non-
standard preferences to enter the model, folk theorems show that basically
everything can happen, even in finite games. Game theory has nothing
to offer here.

BORA: In fact, these models quickly become so complex that undergraduate
economics students cannot understand them, given their cognitive limi-
tations as boundedly rational individuals. So they are typically taught the
simple message that, in a population of rational decision-makers it is best
never to co-operate. This is terribly misleading.

Motivations

PSYCHE: Let’s get a bit more focused here. Outside market contexts much
evidence seem to speak loudly against classical Homo oeconomicus. For
example, think of the one-off ultimatum game – themost intensely studied
lab game besides the prisoner’s dilemma game – how would you explain
the results of this ‘experimentum crucis’ on opportunistic motivation? Why
in all the world would Homo oeconomicus in the responder role reject posi-
tive sums of money if s/he is assured s/he will never meet the proposer
again, and perhaps even knows that the experiment is performed accord-
ing to what experimenters call the ‘double blind’ procedure?

MAX: I agree that we as economists cannot ignore such evidence. The ori-
ginal findings of Werner Güth and his collaborators that positive offers
deemed too low by the responder in ultimatum game experiments are
rejected turned out to be very robust, although many colleagues tried hard
to rescue the standard model’s prediction. There is no way to explain ulti-
matum game behaviour in terms of rational choice as long as one sticks
to monetary rewards as the crucial motivating factor.

BORA: It sometimes appears to me that almost everything we know about
bounded rationality comes from very simple lab games where arguments
in favor of truly boundedly rational decision-making have the least bite,
and where reduction of complexity, as postulated by advocates of bounded
rationality, can hardly be observed. In the ultimatum and many other
experimental games, the set of alternatives is as clear as it can be. It is hard
to imagine a responder rejecting a positive offer just because of a cognitive
misperception of the pecuniary consequences. I guess, if this were the case,
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there would be no room at all for the term ‘rational’ in ‘boundedly rational
behaviour’. Motivations other than themaximization ofmonetary rewards
must play a crucial role in such rational choice-making.

MAX: You are fighting a straw man here. I do not deny that ever since
Spinoza there have been some social theorists who seemed to suggest
that selfish opportunism would guide behaviour in every instance. But
even Spinoza’s godfather, Hobbes, violated that assumption, and so did
all later founding fathers of economics – including, of course, the Adam
of economics himself: Adam Smith.

BORA: Homo oeconomicus is characterized merely by rationality assumptions
in the sense of consistency rather than by being motivated exclusively by
selfish motives. Homo oeconomicus, as I would perceive him/her, can be
selfish or unselfish, an idealist, a materialist or whatever. As long as his/her
preferences are given, and comply with certain axioms of consistency,
economics can run its course.

MAX: In fact, if we include motives other than maximization of pecuniary
rewards we can very well explain the results of ultimatum game experi-
ments and the like in a maximization paradigm. Human individuals are
no doubt motivated by aims such as fairness. As Lionel Robbins rightly
insisted, economics is about the rational choice of means to given ends,
while on the rationality of the ends themselves it must remain silent.
Whatever the ends, as long as they are treated as given, economics can
explain observed behaviour within its means – ends framework. In fact, we
can often identify motives by asking ourselves what would be maximized
by observed behaviour.

PSYCHE: But that smells of ‘ad hocery’. The results of the ultimatum game
experiments are not coherent with the standard theory, and so some add-
itional motives are wheeled in to fix the problem. You observe less unequal
results than would be expected according to standard rational choice
models based on selfish motives of maximizing pecuniary payoffs, and
then introduce an additional preference for equity and so on. This seems
dangerously close to explaining the sleepiness of opium-smoking indi-
viduals by the soporific power of opium.

BORA: Any theory with some predictive value, be it a rational or a psycho-
logical theory, needs to deal with and to specify motivational forces. As far
as this is concerned, the often heard ‘ad hocery’ protest applies across the
board, and cannot serve to disqualify economic approaches in particular.
Other measures for the quality of a model are needed.

Constructing preferences

PSYCHE: The economists’ concept of rationality is relying on the old idea of
given preferences. There is no room for a model of the decision-making
apparatus of the individual. The decision-making individual is, at the last
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resort, represented by his or her preferences and the assumption that the
individual tries to maximize the satisfaction of those preferences. Once
s/he knows the preferences, the economist allegedly can predict choices
as maximizing preference satisfaction under knowledge and other con-
straints. This explains why economists quite mistakenly believe that they
do not need a psychological theory of how preferences are formed and
decisions are in fact made.

BORA: If I want to predict the effects of a bullet fired by a gun I do not
need to rely on a description at the level of the molecules forming the
bullet. If I want to predict the effects of human rational decision-making
I do not need to go down to the level of psychological processes all the
time. I should rather choose the adequate level leading to the most fruitful
approach. And starting from preferences is more often than not a useful
approach. As in all good empirical science, we try to formulate theories
that are as general as possible and as specific as necessary.

MAX: Maximization according to given preferences is and will always be at
root of the economic enterprise because it is at the root of rational behav-
iour. We just need to use richer utility functions than the traditional ones.
The latter were dominated unduly by preferences for monetary rewards.
But after appropriate enlargement of the motivational basis, maximization
of utility functions explains behaviour. At least this is what should explain
behaviour. Sound economic explanations of interaction in terms of rational choice
rely on maximization.

PSYCHE: The methodological individualism of economists like you is a
strange thing. Think about it: in economic theory there is no model of the
individual as a decision-maker, no model of his/her deliberation process.
There is only the allegedly given preference order that serves as a shorthand
symbol representing the individual and his/her decision-making process
as maximization.

MAX: Indeed, since we are interested chiefly in human interaction we treat
the human individual more or less as a black box.

BORA: But as economists we make quite a lot of assumptions about the
motives that are operative inside that box, so to speak, and are guiding
its behaviour. We do factor in empirical information about the human
individual, his or her motives and preferences, and the influence of these
on overt behaviour.

PSYCHE: This has nothing to do with the real decision-making processes
that lead to individual choice-making. Preferences are not given but rather
construed in the decision-making process. People sometimes don’t exactly
know what they want. Sometimes there may be no rates of substitution
between the level of fulfilment of multiple goals. A theory of bounded
rationality deals with the cognitive process of analysis, including the emer-
gence of, say, aspirations and the construction of the model and the alter-
natives as they are perceived. Bounded rationality is not just a combination
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of objective rules plus some inner constraints as it has been modelled quite
often recently.

MAX: You seem to say that preferences are construed by the decision-maker
at the same time as s/he is analysing a situation. But if preferences are
not given independently of the decision-making process itself it becomes
impossible for an external observer to predict individual choices in a gen-
eral way.

BORA: If preferences and models of specific situations cannot be disen-
tangled, how can there be general theories at all? The advantage of eco-
nomics is that it formulates general theories of social interaction that
detract from the specific individual and from what is dependent on the
minute details of situations. Leaving certain things unaddressed is of the
essence of generalization.

PSYCHE: We cannot avoid forming theories that in some way try to look
into the black box of human motivation, and of cognitive processes that
generate actions, because cognitive limits affect behaviour.

BORA: I see your point. We should not, however, underestimate the flexi-
bility of non-cooperative game theory here. In the end, the concept
of a non-cooperative game model boils down to the assumption that
everything that is not subject to individual choice-making is modelled
explicitly as part of the rules of the game. If it is not on paper, so to speak,
it is not there. On the other hand, whatever is written on paper by the
non-cooperative game theorist is assumed to be in the minds of the players
and nothing more than that.

PSYCHE: But that means that, apart from the simplest cases of games, the
game model must be based on a far-fetched and indeed absolutely unreal-
istic knowledge assumption.

BORA: Though this is true, the ignorance of an actor can itself be modelled
explicitly as part of the rules of the game. Ignorance of the preferences
or aims of other players can be modelled by fictitious moves of nature
determining the types of other players. Which type of player is in fact
playing a game need not be part of the common knowledge of the decision-
makers. The assumption of common knowledge must apply only at some
ultimate or basic level. At that level players must commonly know what
they are ignorant of, as otherwise the game would not be well defined.

PSYCHE: But imagine how complicated such a game tree must necessarily
become. It seems outrageously unrealistic if we ascribe the knowledge of
such a tree to a human individual.

BORA: Sure, but rationality is a theoretical, or rather a philosophical,
concept. Realism is not necessarily among itsmerits. If we tried to apply the
model directly to the world, very subtle differences in knowledge assump-
tions could render any seemingly irrational behaviour rational in an appro-
priately specified non-cooperative game model. And vice versa, hardly any
behavioural observation can be ruled out by non-cooperative game theory
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as such. Precisely for this reason the language of non-cooperative game
theory may be used for a reconstruction of boundedly rational behaviour
by modelling explicitly all phenomena of boundedness.

PSYCHE: I have even heard that in this philosophical account personal play-
ers can, or rather must, be split up into agents.

BORA: Yes, at each decision node there is another new one. The agent
is simply identified with the preference order that is prevalent at that
node. All assumptions we make about the decision-making of the person,
including the internal mental processes of that personal decision-maker
are represented as part of the rules of the game.

PSYCHE: But even at the philosophical level I would object because in the
last resort preferences are still treated as given. They are exogenous to the
model but should become endogenous.

MAX: In the standard account, preferences are part of the rules of the game.
But even if you do not treat preferences as part of the rules of the game
you could model the process in which the preferences are formed as part
of the rules of the game.

BORA: Still, within an economic approach, the ultimate aims or ends of the
actors must be exogenous to our modelling efforts and in that sense be
given.

MAX: In any model we must treat something as being exogenous. As econo-
mists we must stick to the principle that in normative as well as descriptive
analyses we treat ends as being given.

BORA: Perhaps a psycho-biological theory of the formation of aims ends or
values may be used to inform us about factors that must be included in
the rules of any of the games we analyse. There is a general part of the
rules of any game that humans play, and human nature itself brings that,
so to speak, into play.

MAX: Whatever we want to assume, we can represent it as part of the
rules of the game and then analyse the game according to maximization
assumptions.

PSYCHE: I do not deny that such possibilities may conceivably exist. But
this only implies that we first need to form a sound empirical theory
of how individual preferences are formed. Once we have such a theory
we could introduce additional assumptions about constraints, such as to
model behaviour as if it were maximizing. However, I do not see what
this additional step could be good for except to serve the methodological
prejudices of economists.

BORA: A theory of preference formation would be desirable. Once you have
such a theory you can build it into the rules of any game. This is, no
doubt, an ambitious and complex endeavour, regardless of whether a full
rationality or bounded rationality approach is taken.

MAX: In any case, desirability is not the issue here – but practicability and
fruitfulness in theory formation are. For all practical purposes of economic
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theory formation it seemsbest to start frompreferences thatmaybeexpected
to prevail among actors in some context. Experimental economics, obser-
vations in the field and so on provide some information about prevailing
preferences and prevailing cognitive constraints on the maximization of
preference satisfaction.Once such information is availablewe can represent
those preferences by utility functions and proceedwith a conventional eco-
nomic analysis in terms of utilitymaximization under constraints.

A good theory

PSYCHE: Is there any methodological reason why one should explain all
behaviour in terms of utility maximization? Are there any ends of theor-
izing that can be reached if we comply with such a ‘technological norm’
of doing economic science?

MAX: There are several reasons why we should not give up lightly the frame-
work of utilitymaximization that has served us so well. First, there is a body
of economic theory that has been developed within this framework. The
unity and continuity of argument is a value in itself for science. It facili-
tates the incorporation of new knowledge into a body of old, determines
what questions should be asked, and how answers should be evaluated.
Second, since every theory is falsified in one way or another, it does not
make sense to throw away a theory simply because there are some falsify-
ing experiences. Third, besides coherence with observations, the simplicity
of a theory weighs heavily in its favour. As a tool of organizing experiences
and predicting results, standard economic theory based on the assumption
of maximization under constraints has worked, and still works, well.

PSYCHE: I believe that in the end the value of a theory depends crucially on
the truth of its basic laws. As far as this is concerned it is simply untrue
that human beings maximize a well-defined utility function.

BORA: Likemanagement in general, rational self-management of the human
individual is ‘management by exception’ rather than maximizing behav-
iour. Since human beings do respond to incentives and more often than
not can learn how to respond best to similar incentive systems to which
they are exposed repeatedly, the conclusions suggested by the maximiza-
tion assumption point generally in the right direction.

PSYCHE: But sometimes they do so in ways that must seem ‘perverse’ from a
traditional economic point of view. Just think of the example of providing
monetary incentives to donate blood; as a result of this you may find less
willingness to donate.

MAX: As far as I know, the evidence on this as discussed in the so-called
Titmuss versus Arrow debate is not really convincing.

PSYCHE: Still, there are examples of crowding-out as documented in psych-
ology and in economic disciplines such asmanagement and organizational
studies.



Hartmut Kliemt and Axel Ockenfels 117

BORA: But this is the great exception rather than the rule. The overwhelming
evidence outside of research searching for crowding-out effects is that
people respond to external incentives – perhaps not always fully rationally,
but at least in the direction that standard economic theory predicts.

MAX: Economists typically insist only on the plain fact that human behav-
iour as a rule is sensitive to relative prices. Most of our predictions depend
qualitatively only on such simple truths. It is an interesting anomaly if
we observe such phenomena as the crowding-out of intrinsic motivation
by extrinsic incentives. But it should not be forgotten that it is simply
what it is – an anomaly. To base a theory of human behaviour on such
exceptions amounts to almost the same thing as building a theory of
rational entrepreneurial behaviour on a sample of individuals who became
bankrupt.

PSYCHE: Is it so anomalous to become bankrupt?
MAX: It is not. Still, we would not develop the prescriptive elements of a

theory of rational behaviour by idealizing and suggesting an imitation of
the rules purportedly applied by those who failed.

BORA: Yes, something may be said in favour of not abandoning economic
theory prematurely. The speed of light is also an anomaly in Newtonian
physics, nevertheless standard mechanics works very well for all practical
earthly purposes. Therefore, for practical purposes, we had better stick to
it unless we have something better to put in its place.

MAX: And just ask yourself why Newtonian physics is up to the present
day regarded as such a tremendous success. This is precisely because it can
subsume seemingly vastly diverse phenomena as the fall of an apple from
a tree as well as the movement of planets around the sun under the same
law of gravitation. That economics, like physics, provides a unified theory
that can exhibit common structures of the world and our experience is
the essence of good science. Where is the psychological theory that might
replace traditional economics in providing such a unified account of social
phenomena?

BORA: It is not by chance that classical social philosophers and classical
economists were in former times frequently used the expression ‘an econ-
omy of nature’. Typically, this economy emerges if there is an objective
criterion of success that determines, along with some kind of inheritable
characteristic, how many of some competing entities will be represented
in successive generations. Only the best-adapted variants, emerging from
the variation of inheritable traits, will eventually survive and things will
look as if they were ordered deliberately.

MAX: A competitive market in which bankruptcy is well-defined, and so
is profit, will show the same characteristics. As long as some individuals
hit on the maximizing strategies by chance (or deliberately) all the others
will have to follow suit or fail. Selection and adaptation are forces that
operate at all levels of organization, social or natural. Their outcomes can
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be predicted by the economic model, since they appear as if brought about
by maximization under constraints.

PSYCHE: But there is a difference between spurious unification resulting from
describing things arbitrarily in ways that make them look similar, and a
unity of experience based on common empirical laws. The explanation
that you offer for the apparent unity of our experience is basically an
evolutionary one.

BORA: I have no complaints about that except that it has nothing to do
with an explanation in terms of individually rational behaviour. In such
evolutionary accounts of behaviour as became popular among traditional
economists, the fact that behaviour appeared to be rationally chosen is
explained. Rational choice-making is not itself an explanatory factor.

MAX: Be that as it may, as a tool of making predictions in a wide variety of
situations, economics fares much better than its competitors.

PSYCHE: My criterion of better or worse science seems to be quite different
from that applied by economists like you. As an empirically minded psych-
ologist I subscribe to a realistic view of science. Ultimately a theory is the
better if it better represents the true facts of the world and the laws that
govern it. What are your criteria of better or worse science?

MAX: Like other complicated things, theories are evaluated along several
dimensions. The claim that, in evaluating theories, only their truthmatters
seems as single-minded to me as the claim that good explanations of
human behaviour must be formulated in terms only of the fully rational
pursuit of selfish motives.

PSYCHE: Still, if I grant for the sake of the argument that criteria other than
truth are relevant for the evaluation of theories, what exactly do you have
in mind?

BORA: All models are false, so the distinction between false and true models
is not helpful. But you seem to ask whether, at least, a ‘truer’ model is a bet-
ter model. Not necessarily! Even if the sole motivation of a model-builder
is to find the truth, s/he wouldn’t necessarily build a model that captures
it in as many facets as possible. This is because the truth is likely to be so
complex that any single model reflecting it in some detail will be incom-
prehensible. I guess you will agree that a ‘truemodel’ of boundedly rational
decision-making, for example, needs to include cognitive, motivational,
adaptive and other bounds of decision-making such as neuro-biological
constraints. To my knowledge, no such model (and not even an attempt
to combine all these aspects) exists, even though considerable knowledge
has been accumulated in each of these fields. Such a model would simply
not be able to convey a useful picture of the truth. So, even if truth is the
ultimate aim, it is not the only measure of a good theory.

MAX: Besides, when it comes to modelling, economists tend not to be
interested so much in the truth but rather in features such as simplicity,
generality, elegance and predictive value.
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PSYCHE: But the generality of economic theory may be bought at the price of
rendering it either devoid of all content as in the case of non-cooperative
game theory, or by using all sorts of ad hoc assumptions, as in explaining
non-opportunistic behaviour. What we need are robust theories of what
is going to happen in classes of situations characterized by certain general
features that are sufficient for certain phenomena to occur.

MAX: Where are the robust non-ad-hoc psychological theories that are at the
same time general? With few exceptions, disproportionately coming from
the German experimental economics tradition, I have hardly seen any
general account of bounded rationality. What I know of are experimental
studies and the like that all lead to very strongly domain-dependent and
short-range theories. There is no theory of boundedly rational behaviour;
at best there are fragments of it, and programmatic visions of what might
and perhaps should be done.

BORA: There are promising and interesting beginnings, but the market for
publications still does not always reward these efforts. Part of the hesitant
reactions of many economists to these new approaches may be a large,
though sunk, investment in standard theory. But the Nobel Prize for 2002
will attract more good researchers who, I am confident, will dig the tunnel
from both ends: from one end using traditional economic theory, and
on the other with the help of the bits and pieces of empirical evidence
derived from game experiments and psychology. I estimate that by, say,
2054, there will be a point where psychology becomes more like economic
theory, and economic theory more like psychology.
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Introduction

Game theory is a mathematical system for analysing and predicting how
humans behave in strategic situations. Standard equilibrium analyses assume
that all players: (1) form beliefs based on an analysis of what others might do
(strategic thinking); (2) choose the best response given those beliefs (optim-
ization); and (3) adjust best responses and beliefs until they are mutually
consistent (equilibrium).

It is widely accepted that not every player behaves rationally in complex
situations, so assumptions (1) and (2) are sometimes violated. For explaining
consumer choices and other decisions, rationality may still be an adequate
approximation even if a modest percentage of players violate the theory.
But game theory is different: the players’ fates are intertwined. The presence
of players who do not think strategically or optimize, even if there are very
few such players, can change what rational players should do. As a result,
what a population of players is likely to do when some are not thinking
strategically and optimizing can only be predicted by an analysis that uses
the tools of (1)–(3) but accounts for bounded rationality as well, preferably
in a precise way.1

An alternative way to define the equilibrium condition (3) is that players
are never surprised when the strategies of other players are revealed. Defined
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this way, it seems unlikely that equilibrium (3) is reached instantaneously in
one-shot games. Indeed, in the modern view, equilibrium should be thought
of as the limiting outcome of an unspecified learning or evolutionary process
that unfolds over time.2 In this view, equilibrium is the end of the story of
how strategic thinking, optimization, and equilibration (or learning) work,
not the beginning (one-shot) or the middle (equilibration).

This chapter has three goals. First we develop an index of bounded ration-
ality which measures players’ steps of thinking and uses one parameter to
specify how heterogeneous a population of players is. Coupled with best
response, this index makes a unique statistical prediction of behaviour in
any one-shot game. Second, we develop a learning algorithm (called a self-
tuning EWA – experience-weighted attraction) to compute the path of equi-
libration. The algorithm generalizes both fictitious play and reinforcement
models, and has shown greater empirical predictive power than those mod-
els in many games (adjusting for complexity, of course). Consequently, the
self-tuning EWA can serve as an empirical device for finding the behavioural
resting point as a function of the initial conditions. Third, we show how the
index of bounded rationality and the learning algorithm can be extended
to understand repeated game behaviours such as reputation building and
strategic teaching. The idea is to present new, procedurally-rational models
inspired by data, in the spirit of Werner Güth’s (for example, Güth, 2000)
many, many contributions of a similar kind.

Our approach is guided by three stylistic principles: precision, general-
ity and empirical discipline. The first two are standard desiderata in game
theory; the third is a cornerstone in experimental economics.

Precision

Because game theory predictions are sharp, it is not hard to spot likely
deviations and counter-examples. Until recently, most of the experimental
literature consisted of documenting deviations (or successes) and presenting
a simple model, usually specialized to the game at hand. The hard part is to
distil the deviations into an alternative theory that is as precise as standard
theory and can be applied widely. We favour specifications that use one or
two free parameters to express crucial elements of behavioural flexibility,
because people are different. We also prefer to let data, rather than our
intuition, specify parameter values.3

Generality

Much of the power of equilibrium analyses, and their widespread use, comes
from the fact that the same principles can be applied to many different
games, using the universal language of mathematics. Widespread use of the
language creates a dialogue that sharpens theory and accumulates worldwide
know-how. Behavioural models of games are also meant to be general, in
the sense that the models can be applied to many games with minimal
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customization. The insistence on generality is common in economics, but is
not universal. Many researchers in psychology believe that behaviour is so
context-specific that it is impossible to have a common theory that applies to
all contexts. Our view is that we cannot know whether general theories fail
until they are applied widely. Showing that customized models of different
games fit well does not mean there isn’t a general theory waiting to be
discovered that is even better.

It is noteworthy that, in the search for generality, the models we describe
below typically fit dozens of different data sets, rather than just one or two.
The number of subject periods used when games are pooled is usually several
thousand. This does not mean the results are conclusive or unshakeable. It
just illustrates what we mean by a general model. The emphasis on explain-
ing many data sets with a single model is also meant to create a higher
standard for evaluating models of learning (and limited cognition as well).
When an investigator reports only a single experiment and a learning model
customized to explain those data, it is hard to take such models seriously
until their generality has been explored by applying them to other games.

Empirical discipline

Our approach is heavily disciplined by data. Because game theory is about
people (and groups of people) thinking about what other people and groups
will do, it is unlikely that pure logic alone will tell us what will happen. As
the physicist Murray Gell-Mann supposedly said, ‘Think how hard physics
would be if particles could think.’ It is even harder if we do not watch what
‘particles’ do when interacting. Or, as Thomas Schelling (1960, p. 164) wrote,
‘One cannot, without empirical evidence, deduce what understandings can
be perceived in a nonzero-sum game of maneuver any more than one can
prove, bypurely formal deduction, that a particular joke is bound tobe funny.’

Our insistence on empirical discipline is shared by others, past and present.
Von Neumann and Morgenstern (1944) thought that ‘the empirical back-
ground of economic science is definitely inadequate � � � it would have been
absurd in physics to expect Kepler and Newton without Tycho Brahe, – and
there is no reason to hope for an easier development in economics’. Fifty
years later, Eric Van Damme (1999) had a similar thought:

Without having a broad set of facts on which to theorize, there is a
certain danger of spending too much time on models that are mathem-
atically elegant, yet have little connection to actual behavior. At present
our empirical knowledge is inadequate and it is an interesting question
why game theorists have not turned more frequently to psychologists
for information about the learning and information processes used by
humans.

The data we use to inform theory are experimental. Laboratory environ-
ments provide crucial control of what players know, when they move, and
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what their payoffs are, which is crucial because game-theoretic predictions are
sensitive to these variables (see Crawford, 1997). As in other lab sciences, the
idea is touse lab control to sort outwhich theoriesworkwell andwhichdonot,
then use them later to help understand patterns in naturally-occurring data.
In this respect, behavioural game theory resembles data-driven fields such as
labor economics or finance more than does analytical game theory. The large
body of experimental data accumulated since the 1980s (and particularly over
the late 1990s early 2000s; see Camerer, 2003) is a treasure trove that can be
used to sort out which simple parametricmodels fit well.

While the primary goal of behavioural game theory models is to make
accurate predictions when equilibrium concepts do not, it can also circum-
vent two central problems in game theory: refinement and selection. Because
we replace the strict best-response (optimization) assumption with stochastic
better-response, all possible paths are part of a (statistical) equilibrium. As
a result, there is no need to apply subgame perfection or propose belief
refinements (to update beliefs after zero-probability events where Bayes’ rule
is useless). Furthermore, with plausible parameter values, the thinking and
learning models often solve the long-standing problem of selecting one
of several Nash equilibria, in a statistical sense, because the models make
a unimodal statistical prediction rather than predicting multiple modes.
Therefore, while the thinking-steps model generalizes the concept of equi-
librium, it can also be more precise (in a statistical sense) when equilibrium
is imprecise (see Lucas, 1986).4

We shall make three remarks before proceeding. First, while we do believe
the thinking, learning and teaching models in this chapter do a good job of
explaining some experimental regularity parsimoniously, many other mod-
els are actively being explored.5 The models in this chapter illustrate what
most other models also strive to explain, and how they are evaluated.

The second remark is that these behavioural models are shaped by data
from game experiments, but are intended for eventual use in areas of eco-
nomics where game theory has been applied successfully. We shall return
to a list of potential applications in the conclusion, but to whet the reader’s
appetite, here is a preview. Limited thinking models might be useful in
explaining price bubbles, speculation and betting, competition neglect in
business strategy, simplicity of incentive contracts, and persistence of nom-
inal shocks in macroeconomics. Learning might be helpful for explaining
evolution of pricing, institutions and industry structure. Teaching can be
applied to repeated contracting, industrial organization, trust-building, and
policy-makers setting inflation rates.

Thethirdremark isabouthowtoreadthis longchapter.Thesecondandthird
sections, on learning and teaching, are based on published research and an
unpublishedpaper introducing theone-parameter self-tuningEWAapproach.
We chose some examples to highlightwhat themodels do andhow they com-
pare to other models, and also use this opportunity to comment briefly on
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methodology. The first section, on the cognitive hierarchy thinking model,
is newer. Our 2002 working paper has many additional results. A short paper
(Camerer et al., 2003) reports some brief results.

We put all three into one paper to show the ambitions and sweep of behavi-
ouralgametheory. It isno longer thecase thatgametheory isabroadenterprise
that has solved all the hard problems, and behavioural game theory has just
nibbled at some minor anomalies, with no underlying theoretical principles.
Formal behaviouralmodels, sharply honed on data, have been proposed in all
thecentral issues innon-cooperativegametheory–Howwillpeopleplayanew
game? How do they learn? Do they behave differently when they are playing
against others repeatedly? A natural question is how the models of thinking,
learning and teaching fit together. The short answer is that the learningmodel
is a mathematical special case of teaching in which all players are adaptive
rather than sophisticated. The thinking and teachingmodels are not designed
to fit together, since the cognitive hierarchy model is designed to apply to
one-shot games (whereplanning for future roundsdoesnotmatter) and teach-
ing is clearly for repeated games. One could presumably unify the models by
mapping increasing steps of strategic thinking into increasingdegrees of soph-
istication, but we have not done so. Or calling the thinking steps ‘rules’ and
allowingplayers to learn in thedomainof rules is awayofunifying the two (for
example, Stahl, 1996). Since the models are so parsimonious there is no great
saving indegreesof freedombyunifying them,but itwouldbe important,both
scientifically and practically, to know if there is a close link.

A cognitive hierarchy thinking model and bounded
rationality measure

The cognitive hierarchy (CH) model is designed to predict behaviour in
one-shot games and to provide initial conditions for models of learning.
The model uses an iterative process which formalizes Selten’s (1998, p. 421)
intuition that ‘the natural way of looking at game situations � � � is not based
on circular concepts, but rather on a step-by-step reasoning procedure’.

We begin with notation. Strategies have numerical attractions that determ-
ine the probabilities of choosing different strategies through a logistic
response function. For player i, there are mi strategies (indexed by j) which
have initial attractions denoted A

j
i�0	. Denote i’s jth strategy by s

j
i, chosen

strategies by i and other players (denoted − i) in period t as si�t	 and s−i�t	,
and player i’s payoffs of choosing s

j
i by �i�s

j
i� s−i�t		.

A logit response rule is used to map attractions into probabilities:

P
j
i �t+1	= e�·A

j
i�t	∑mi

k=1 e
�·Aki �t	

(8.1)

where � is the response sensitivity.6
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We model thinking by characterizing the number of steps of iterated
thinking that subjects do, and their decision rules.7 In the CH model some
players, using zero steps of thinking, do not reason strategically at all. (Think
of these players as being fatigued, clueless, overwhelmed, uncooperative, or
simply more willing to make a random guess in the first period of a game
and learn from subsequent experience than to think hard before learning.)
We assume that zero-step players randomize equally over all strategies.

Players who do one step of thinking do reason strategically. What exactly
do they do? We assume they are ‘over-confident’ – though they use one step,
they believe others are all using zero steps. Proceeding inductively, players
who use K steps think all others use zero to K−1 steps.

It is useful to ask why the number of steps of thinking might be lim-
ited. One answer comes from psychology. Steps of thinking strain ‘working
memory’, where items are stored while being processed. Loosely speaking,
working memory is a hard constraint. For example, most people can remem-
ber only about five to nine digits when shown a long list of digits (though
there are reliable individual differences, correlated with reasoning ability).
The strategic question: ‘If she thinks he anticipates what she will do what
should she do?’ is an example of a recursive ‘embedded sentence’ of the sort
that is known to strain working memory and produce inference and recall
mistakes.8

Reasoning about others might also be limited, because players are not
certain about other players’ payoffs or degree of rationality. Why should
players think others are rational? After all, adherence to optimization and
instant equilibration is a matter of personal taste or skill. But whether other
players do the same is a guess about the world (and iterating further, a guess
about the contents of another player’s brain or a firm’s boardroom activity).

The key challenge in thinking steps models is pinning down the frequen-
cies of K-step thinkers, f�K	. The constraint on working memory suggests
that the relative fraction of K−1 step thinkers doing one more step of think-
ing, f�K	/f�K−1	, should be declining in K. For example, suppose the relative
proportions of 2-step thinkers and 3-step thinkers is proportional to 1/3, the
relative proportions of 5- and 6-step thinkers is proportional to 1/6, and in
general f�K	/f�K−1	 ∝ 1/K. This axiom turns out to imply that f�K	 has a
Poisson distribution with mean and standard deviation � (the frequency of
level K types is f�K	 = e−� �K

K! ). Then � is an index of the degree of bounded
rationality in the population.

The Poisson distribution has three appealing properties: it has only one
free parameter (�); since Poisson is discrete it generates ‘spikes’ in predicted
distributions reflecting individual heterogeneity (other approaches do not9);
and for sensible � values the frequency of step types is similar to the fre-
quencies estimated in earlier studies (see Stahl and Wilson, 1995; Ho et al.,
1998; and Nagel et al., 1999). When we compare Poisson-constrained distri-
butions f�K	 to a 7-parameter free distribution, with f�0	� f�1	� � � � � f�7	 each a
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separate parameter, the Poisson distribution fits only about 1 per cent worse
in log-likelihood terms in most data sets (see Camerer et al., 2002b), so it is
a very close approximation to a freer distribution.

Figure 8.1 shows four Poisson distributions with different � values. Note
that there are substantial frequencies of steps 0–3 for � around one or two.
There are also very few higher-step types, which is plausible if the limit on
working memory has an upper bound.

Modelling heterogeneity is important, because it allows the possibility that
not every player is rational. The few studies that have looked carefully found
fairly reliable individual differences, because a subject’s step level or decision
rule is fairly stable across games (Stahl and Wilson, 1995; Costa-Gomes et al.,
2001). Including heterogeneity can also improve learning models by start-
ing them off with enough persistent variation across people to match the
variation seen among actual people.

To make the CHmodel precise, assume players know the absolute frequen-
cies of players at lower levels from the Poisson distribution. But since they
do not imagine higher-step types, there is missing probability. They must
adjust their beliefs by allocating the missing probability in order to com-
pute sensible expected payoffs to guide choices. We assume players divide
the correct relativeproportionsof lower-step types by

∑K−1
c=1 f�c	 so the adjusted

frequenciesmaintain the same relative proportions but add up to one.
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Given this assumption, players using K > 0 steps are assumed to compute
expected payoffs given their adjusted beliefs, and use those attractions to
determine choice probabilities according to

A
j
i�0�K	=

m−i∑
h=1

�i

(
s
j
i� s

h
−i
)
×
{
K−1∑
c=0

[
f�c	∑K−1
c=0 f�c	

×Ph
−i�1�c	

]}
(8.2)

where Aj
i�0�K	 and Pl

i �1�c		 are the attraction of level K in Period 0, and the
predicted choice probability of lower level c in Period 1.

As a benchmark, we also fit quantal response equilibrium (QRE), defined
by:

A
j
i�0�K	=

m−i∑
h=1

�i�s
j
i� s

h
−i	×Ph

−i�1	 (8.3)

P
j
i �1	=

e�·A
j
i�0	∑mi

h=1 e
�·Ahi �0	

(8.4)

When � goes to infinity, QRE converges to the Nash equilibrium. QRE is
closely related to a thinking-steps model in which K-step types are ‘self-
aware’ and believe there are other K-step types, and � goes to infinity.

Fitting the model

As a first pass, the thinking-steps model was fitted to data from three studies
in which players made decisions in matrix games once for each without
feedback (a total of 2,558 subject-games).10 Within each of the three data
sets, a common � was used, and best-fitting � values were estimated, both
separately for each game and fixed across games (maximizing log likelihood).
Our working paper (Camerer et al., 2002b) contains many more games and
more model comparisons.

Table 8.1 reports � values for each game separately, common � and � from
the thinking-steps model, and measures of fit for the thinking model and
QRE – the log likelihood (LL) (which can be used to compare models) and
the mean of the squared deviations (MSD) between predicted and actual
frequencies.

QRE fits a little worse than the thinking model in all three data sets.11 This
is a hint that a self-awareness model is not necessarily more accurate than
one with extreme over-confidence.

Estimated values of � are quite variable in the Stahl and Wilson data, but
fairly consistent in the others.12 In the latter two sets of data, estimates are
clustered around one and two, respectively. Imposing a common � across
games only reduces fit very slightly (even in the Stahl and Wilson games13).
The fact that the cross-game estimates are the most consistent in the Costa-
Gomes et al. (2001) games, which have the most structural variation among
them, is also encouraging.
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Table 8.1 Estimates of thinking model � and fit statistics, three matrix game
experiments

Stahl and Cooper and Costa-Gomes
Wilson (1995) Van Huyck (2003) et al. (2001)

Game-specific � estimates

Game 1 18.34 1.14 2.17
Game 2 2.26 1.04 2.21
Game 3 1.99 0.00 2.22
Game 4 4.56 1.25 1.44
Game 5 5.53 0.53 1.81
Game 6 1.70 0.80 1.58
Game 7 5.55 1.17 1.08
Game 8 2.03 1.75 1.94
Game 9 1.79 1.88
Game 10 8.79 2.66
Game 11 7.33 1.34
Game 12 21.46 2.30
Game 13 2.36

Common � 8.44 0.81 2.22
Common � 9.06 190.58 15.76

Fit statistics (thinking steps model)

MSD (pooled) 0.0257 0.0135 0.0063
LL (pooled) −1115 −1739 −555

Fit statistics (QRE)

MSD (QRE) 0.0327 0.0269 0.0079
LL (QRE) −1176 −1838 −599

Note: In Costa-Gomes et al. (2001) the games are labelled and 2b-2×2, 3a-2×2, 3b-2×2, 4b-3×2,
4c-3×2, 5b-3×2, 8b-3×2, 9a-4×2, 4a-2×3, 4d-2×3, 6b-2×3, 7b-2×3 and 9b-2×4.

Furthermore, while the values of � we estimate are often quite large, the
overall frequencies themodel predicts are close to the data. Thatmeans that a
near-best-responsemodelwith amixture of thinking steps can fit a little better
than aQREmodel, which assumes stochastic response but has only one ‘type’.
The heterogeneitymay therefore enablemodellers to use best-response calcu-
lations and still make probabilistic predictions, which is enormously helpful
analytically. The large estimated values of � also mean that � can be set to a
large value, or simply assume best-response of K > 1-step types, which is a big
computational saving and fits almost as well (Camerer et al. 2002a).

Figures 8.2 and 8.3 show how accurately the CH and Nash models fit the
data from the three matrix-game data sets. In each figure, the data points are
separate strategies from each of the games. Figure 8.2 shows that the data and
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fits are reasonably good, while Figure 8.3 shows that the Nash predictions
(which are often zero or 1, pure equilibria, are reasonably accurate, though
not as close as the thinking-model predictions). Since � is consistently around
1–2, the CH model with a single � could be an adequate approximation to
first-period behaviour in many different games. To see how far the model can
take us, we investigated it in two other classes of games – games with mixed
equilibria, and binary entry games. The next section describes results from
entry games (see the Appendix on page 163 for details on mixed games).

Market entry games

Consider binary entry games in which there is capacity c (expressed as a
fraction of the number of entrants). Each of many entrants decides simul-
taneously whether to enter or not. If an entrant thinks that fewer than c per
cent will enter, s/he will enter; if s/he thinks more than c per cent will enter,
s/he stays out.

There are three regularities in many experiments based on entry games
such as this one (see Ochs, 1999; Seale and Rapoport, 2000; Camerer, 2003,
ch. 7): (i) entry rates across different capacities c are closely correlated with
entry rates predicted by (asymmetric) pure equilibria or symmetric mixed
equilibria (that is, about c per cent of the people enter when capacity is c);
(ii) players slightly over-enter at low capacities and under-enter at high
capacities; and (iii) many players use noisy cut-off rules in which they stay
out for most capacities below some cut-off c∗ and enter for most higher
capacities.

Let us apply the CH thinking model with best response. Step zero players
enter half the time. This means that when c < 0�5, 1-step thinkers stay out,
and when c > 0�5 they enter. Players doing 2 steps of thinking believe the
fraction of zero steppers is f�0	/�f�0	+ f�1		= 1/�1+�	. Therefore, they enter
only if c > 0�5 and c > 0�5+�

1+� , or when c < 0�5 and c > 0�5
1+� . To make this

more concrete, suppose � = 2. Then 2-step thinkers enter when c > 5/6 and
1/6 < c < 0�5. What happens is that more steps of thinking ‘iron out’ steps
in the function relating c to overall entry. In the example, 1-step players
are afraid to enter when c < 1/2. But when c is not too low (between 1/6
and 0.5) the 2-step thinkers perceive room for entry because they believe
the relative proportion of zero-steppers is 1/3 and those players enter half
the time. Two-step thinkers stay out for capacities between 0.5 and 5/6, but
they enter for c > 5/6 because they know half of the (1/3) zero-step types
will randomly stay out, leaving room even though 1-step thinkers always
enter. Higher steps of thinking smooth out steps in the entry function even
further.

The surprising experimental fact is that players can co-ordinate entry reas-
onably well, even in the first period. (‘To a psychologist’, Kahneman (1988)
wrote, ‘this looks like magic.’) The thinking-steps model provides a possible
explanation for this magic and can account for the other two regularities for
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reasonable � values. Figure 8.4 plots entry rates from the first block of two
studies for a game similar to the one above (Sundali et al., 1995; Seale and
Rapoport, 1999). Note that the number of actual entries rises almost mono-
tonically with c, and entry is above capacity at low c and below capacity at
high c.

Figure 8.4 also shows the CH entry function N�all��	�c	 for � = 1�5 and 2.
Both functions reproduce monotonicity and the over- and under-capacity
effects. The thinking-steps models also produces approximate cut-off rule
behaviour for all higher thinking steps except two. When � = 1�5, step 0
types randomize, step 1 types enter for all c above 0.5, step 3–4 types use cut-
off rules with one ‘exception’, and levels 5 and above use strict cut-off rules.
This mixture of random, cut-off and near-cut-off rules is roughly what is
observed in the data when individual patterns of entry across c are measured
(see, for example, Seale and Rapoport, 1999).

The model can also be used to do some simple theory. For example, in
Camerer et al., 2002b (and Camerer, Ho and Chong, 2003) we show that
the entry function is monotonic (that is, N�all��	�c	 is increasing in c) if
1+2� < e� , or � < 1�25. (The same condition guarantees that the conditional

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9
Capacity (out of 10)

P
er

ce
nt

ag
e 

en
tr

y

Entry = capacity Experimental data τ = 1.5 τ = 2

Figure 8.4 How entry varies with capacity (c), data and thinking-steps model



132 Behavioural Game Theory: Thinking/Learning/Teaching

entry functions including only up to K-step players get increasingly close to
the equilibrium entry as K rises.)

Thinking steps and cognitive measures

Since the CH model is a cognitive model, it gives an account of some treat-
ment effects and shows how cognitive measures, such as response times and
information acquisition, can be correlated with choices.

Belief-prompting

Some studies show that asking players for explicit beliefs about what others
will do moves their choices, moving them closer to equilibrium (compared
to a control in which beliefs are not prompted – see, for example, Costa-
Gomes and Weizsacker, 2003). A simple example reported in Warglien et al.
(1998) is shown in Table 8.2. Best-responding 1-step players think others are
randomizing, so they will choose X, which pays 60, rather than Y , which
has an expected payoff of 45. Higher-step players choose Y .

Without belief-prompting, 70 per cent of the row players choose X. When
subjects are prompted to articulate a belief about what the column players
will do, 70 per cent choose the dominance-solvable equilibrium choice Y .
Croson (2000) reports similar effects. In experiments on beauty contest
games, we found that prompting beliefs also reduced dominance-violating
choices modestly. Schotter et al. (1994) founda relateddisplayeffect – showing
a game in an extensive-form tree led tomore subgame perfect choices.

Belief-prompting can be interpreted as increasing all players’ thinking by
one step. To illustrate, assume that since step zeros are forced to articulate
some belief, they move to step 1. Now they believe others are random so
they choose X. Players previously using one or more steps now use two or
more. They believe column players choose L so they choose Y . The fraction
of X play is therefore because former zero-step thinkers now do one step
of thinking. This is just one simple example, but the numbers match up
reasonably well14 and it illustrates how belief-prompting effects could be
accommodated within the thinking-steps model.

Similarly, Cooper and Kagel (2003b) report that two-person teams play sig-
nalling games more strategically (and transfer learning better) than individu-
als (though see Kocher and Sutter, forthcoming). This might be understood

Table 8.2 How belief-prompting promotes dominance-solvable
choices by row players

Column player Without belief With beliefRow move
L R prompting prompting

X 60,20 60,10 0.70 0.30
Y 80,20 10,10 0.30 0.70

Source: Warglien et al. (1998).



Colin F. Camerer, Teck-Hua Ho, Juin Kuan Chong 133

formally in terms of a model in which the highest-step player ‘teaches’ the
lower-step player.

Information look-ups

Camerer et al. (1993), Costa-Gomes et al. (2001), Johnson et al. (2002), and
Salmon (2003) measure directly the information subjects acquire in a game
by putting payoff information in boxes which must be clicked open using a
computer mouse. The order in which boxes are opened, and for how long
they are open, gives a ‘subject’s-eye view’ of what players are looking at,
and should be correlated with thinking steps. Indeed, Johnson et al. show
that how much time players spend looking ahead to future ‘pie sizes’ in
alternating-offer bargaining is correlated with the offers they make. Costa-
Gomes et al. show that look-up patterns are correlated with choices that
result from various (unobserved) decision rules in normal-form games. These
correlations means that a researcher who simply knew what a player had
looked at could, to some extent, forecast that player’s offer or choice. Both
studies also showed that information look-up statistics helped to answer
questions that choices alone could not.15

Summary

A simple cognitive hierarchy model of thinking steps attempts to predict
choices in one-shot games and provide initial conditions for learningmodels.
We propose a model which incorporate discrete steps of thinking, and the
frequencies of players using different numbers of steps is Poisson-distributed
with mean �. We assume that players at level K> 0 cannot imagine players at
their level or higher, but they understand the relative proportions of lower-
step players and normalize them to compute expected payoffs. Estimates
from three experiments on matrix games show reasonable fits for � around
1–2, and � is fairly regular across games in two of three data sets. Values of
� = 1�5 also fits data from fifteen games with mixed equilibria and reproduces
key regularities from binary entry games. The thinking-steps model also
creates natural heterogeneity across subjects. When best response is assumed,
the model generally creates ‘purification’ in which most players at any step
level use a pure strategy, but a mixture results because of the mixture of
players using different numbers of steps.

Learning

By the mid-1990s, it was well-established that simple models of learning
could explain some movements in choice over time in specific game and
choice contexts.16 Therefore, the issue is not whether simple models of learn-
ing can capture some aspects of movement in experimental data – that issue
was well-settled (the answer is Yes) by the late 1990s. The bigger challenge
taken up since then is to see how well a specific parametric model can
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account for finer details of the equilibration process in a very wide range of
games.

This section describes a one-parameter theory of learning in decisions
and games called functional EWA (or self-tuning EWA for short; also called
‘functional EWA’ or ‘EWA lite’ to emphasize its simple functions). Self-tuning
EWA predicts the time path of individual behaviour in any normal-form
game. Initial conditions can be imposed or estimated in various ways. We use
initial conditions from the thinking-steps model described in the previous
section. The goal is to predict both initial conditions and equilibration in
new games in which behaviour has never been observed, with minimal free
parameters (the model uses one parameter, �).

Parametric EWA learning: interpretation, uses and limits

Self-tuning EWA is a relative of the parametric model of learning called
experience-weighted attraction (EWA) (Camerer and Ho, 1998, 1999). As in
most theories, learning in EWA is characterized by changes in (unobserved)
attractions based on experience. Attractions determine the probabilities
of choosing different strategies through a logistic response function. For
player i, there are mi strategies (indexed by j) which have initial attractions
denoted Aj

i�0	. The thinking steps model is used to generate initial attractions
given parameter values � and �.

To avoid complications with negative payoffs, we rescale payoffs by sub-
tracting by the minimum payoff so that rescale payoffs are always weakly
positive. Define an indicator function I�x� y	 to be zero if x �= y and one if
x= y. The EWA attraction updating equation is:

A
j
i�t	=

#N�t−1	Aj
i�t−1	+ �
+ �1−
	I�s

j
i� si�t		��i�s

j
i� s−i�t		

N�t−1	#�1−�	+1
(8.5)

and the experience weight (the ‘EW’ part) is updated according to N�t	 =
N�t−1	#�1−�	+1.17 Notice that the term �
+ �1−
	I�s

j
i� si�t		� implies that

a weight of one is put on the payoff term when the strategy being reinforced
is the one the player chose (sji = si�t	), but the weight on forgone payoffs
from unchosen strategies (sji �= si�t	) is 
. (When forgone payoffs are not
known exactly, averaging possible values or using historical rules can be
used as proxies.18) Attractions are mapped into choice probabilities using a

logit response function P
j
i �t +1	 = e

�·Aj
i
�t	

∑mi
k=1 e

�·Ak
i
�t	

(where � is the response sensi-

tivity). The subscript i, superscript j, and argument t + 1 in P
j
i �t + 1	 are

reminders that the model aims to explain every choice by every subject in
every period.19

In implementing the model, we shall typically take strategies to be stage-
game strategies. However, it is often likely that a strategy could be history-
dependent or have some other form, which should be considered in future
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work. Furthermore, transfer of learning across games is an interesting topic
we have not explored (but see Cooper and Kagel, 2003a).

Each EWA parameter has a natural interpretation.
The parameter 
 is the weight placed on forgone payoffs. Presumably it

is affected by imagination (in psychological terms, the strength of coun-
terfactual reasoning or regret, or in economic terms, the weight placed on
opportunity costs and benefits), or reliability of information about forgone
payoffs (Heller and Sarin, 2000).

The parameter # decays previous attractions because of forgetting or, more
interestingly, because agents are aware that the learning environment is
changing and deliberately ‘retire’ old information (much as firms junk old
equipment more quickly when technology changes rapidly).

The parameter � controls the rate at which attractions grow. When �= 0,
attractions are weighted averages and grow slowly; but when when �= 1
attractions cumulate. We originally included this variable because some
learning rules used cumulation and others used averaging. It is also a rough
way to capture the distinction in machine learning between ‘exploring’ an
environment (low �), and ‘exploiting’ what is known by locking in to a good
strategy (high �) (see, for example, Sutton and Barto, 1998).

The initial experience weight N�0	 is like a strength of prior beliefs in
models of Bayesian belief learning. (Imposing N�0	 < 1

1+#�1−�	 guarantees that
N�t	 is increasing, which is sensible.) It plays a minimal empirical role, so it
is set to N�0	= 1 in our current work.

EWA is a hybrid of two widely-studied models, reinforcement and belief
learning. In reinforcement learning, only payoffs from chosen strategies are
used to update attractions and guide learning. In belief learning, players do
not learn about which strategies work best; they learn about what others
are likely to do, then use those updated beliefs to change their attractions
and hence which strategies they choose (see Brown, 1951; Fudenberg and
Levine, 1998). EWA shows that reinforcement and belief learning, which
were often treated as being fundamentally different, are in fact related in a
non-obvious way, because both are special kinds of reinforcement rules.20

When 
= 0, the EWA rule is a simple reinforcement rule.21 When 
= 1 and
�= 0, the EWA rule is equivalent to belief learning using weighted fictitious
play.22

It is important to be very clear about what the EWA formulation means
and does. First, one thing EWA suggests is that general learning can be
thought of as a splice of two different cognitive processes: in one process,
strategies that are chosen are automatically (and fully) reinforced; and in
the other, players think about the forgone payoffs they would have gained
from choosing other strategies and reinforce them less strongly (with weight

). Many kinds of behaviour are now attributable to the behaviour of two
kinds of system (see, for example, Kahneman, 2003): one system is very
fast, automatic, pattern-orientated and sometimes subconscious (similar to
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our perceptual system), and can work in parallel (for example, people can
perceive sounds and images at the same time); the other is slow, deliberate,
conscious, invokes abstract rules and cognition (logic, arithmetic), and works
serially. Put very roughly, 
 represents the strength of the second, more
deliberative, process which generates counterfactual answers to the question
‘Could I have done better with another strategy?’ Furthermore, seen in the
dual-process light, reinforcement learning can be interpreted as suggesting
that the second process does not start (which may be appropriate for animals
with minimal cortical apparatus for deliberation, or for people under time
pressure), while belief learning suggests that the second process completely
overrides the rapid instinctive response of the first process.

Second, EWA provides a way of checking whether a simple model is too
simple. Obviously, every model is a simplification that permits counter-
examples. So making imperfect predictions is no reason to abandon a model.
But imperfections are a reason to ask whether adding features to a model
can improve its predictions. EWA is one way of doing precisely this.

Forgone payoffs are the fuel that runs EWA learning. They also provide
an indirect link to ‘direction learning’ and imitation. In direction learning,
players move in the direction of observed best response (Selten and Stöcker,
1986). Suppose players follow EWA but do not know forgone payoffs, and
believe those payoffs are monotonically increasing between their choice si�t	
and the best response. If they also reinforce strategies near their choice si�t	
more strongly than strategies that are further away, their behaviour will look
like direction learning. Imitating a player who is similar and successful can
also be seen as a way of heuristically inferring high forgone payoffs from
an observed choice and moving in the direction of those higher payoffs.
However, this is probably not the whole story about ‘observational learning’,
which is a fruitful area of research (see, for example, Duffy and Feltovich,
1999; Armantier, 2004).23

The relationships of various learning rules can be shown visually in a cube
showing configurations of parameter values (see Figure 8.5). Each point in
the cube is a triple of EWA parameter values that specify a precise updating
equation. The corner of the cube with # = � = 0� 
 = 1 is Cournot best-
response dynamics. The corner � = 0�# = 
 = 1, is standard fictitious play.
The vertex connecting these corners, 
 = 1� � = 0, is the class of weighted
fictitious play rules (see, for example, Fudenberg and Levine, 1998). The
vertices with 
 = 0 and � = 0 or 1 are averaging and cumulative choice
reinforcement rules.

The biologist Francis Crick (1988) said, ‘in nature a hybrid is often sterile,
but in science the opposite is usually true’. As Crick suggests, the point of
EWA is not simply to show a surprising relationship among othermodels, but
also to improve their fertility for explaining patterns in data by combining
the bestmodelling ‘genes’. In reinforcement theories, received payoffs get the
most weight (in fact, all the weight24). Belief theories assume implicitly that



Colin F. Camerer, Teck-Hua Ho, Juin Kuan Chong 137

0.2
0.4

0.6
0.8

1.0

0.00.0

0.2

0.4

0.6

0.8

1.0

0.
00

0.
25

0.
50

0.
75

1.
00

ρ

Cumulative
reinforcement
(δ = 0, ρ = 1,any φ)

Average reinforcement
(δ = 0, ρ = 0,any φ)

Cournot (δ = 1, ρ = φ = 0)
Weighted fictitious play
(δ = 1, ρ = 0, any φ)

Fictitious play
(δ = φ = 1, ρ = 0)

δ

φ

Note: The arrows indicate where the various learning models are, as special cases,
in the EWA framework. The points represent empirical estimates for various games.

Figure 8.5 The EWA learning cube: learning models and empirical estimates

forgone and received payoffs are weighted equally. Rather than assuming
that one of these intuitions about payoff weights is right and the other is
wrong, EWA allows both intuitions to be true. When 0 < 
 < 1, received
payoffs can gain more weight, but forgone payoffs also get some weight.

The EWA model has been estimated by ourselves and many others on
about 40 data sets (see Camerer et al., 2002). The hybrid EWAmodel predicts
more accurately in many cases than do the special cases of reinforcement
and weighted fictitious play, except in games with mixed-strategy equilib-
rium, where reinforcement does equally well.25 It is extremely important to
emphasize that, in our model estimation and validation, we always penal-
ize the EWA model in ways that are known to generally make the adjusted
fit worse if a model is too complex (that is, if the data are in fact gener-
ated by a simpler model).26 Furthermore, econometric studies show that,
if the data were generated by simpler belief or reinforcement models, then
EWA estimates would generally correctly identify that fact for many games
and reasonable sample sizes (see Cabrales and Garcia-Fontes, 2000; Salmon,
2001), although Wilcox (2003) finds that heterogeneity in all model para-
meters lowers the estimate of 
 in mixed-equilibrium games (which may
explain why low values of 
 often fit well in these games). Since EWA is
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capable of identifying behaviour consistent with special cases, when it does
not, then the hybrid parameter values are improving in fit.

Figure 8.5 also shows estimated parameter triples from 20 data sets. Each
point is an estimate from a different game. If one of the special case theor-
ies is a good approximation to how people generally behave across games,
estimated parameters should cluster in the corner or vertex corresponding
to that theory. In fact, parameters tend to be sprinkled around the cube,
although many (typically mixed-equilibrium games) cluster in the averaged
reinforcement corner with low 
 and �. The dispersion of estimates in the
cube raises an important question: is there regularity in which games gener-
ate which parameter estimates? A positive answer to this question is crucial
for predicting behaviour in brand new games.

This concern is addressed by a version of EWA, self-tuning EWA, which
replaces free parameters with deterministic functions #i�t	� 
i�t	� �i�t	 of
player i’s experience up to period t . These functions determine parameter
values for each player and period. The parameter values are then used in
the EWA updating equation to determine attractions, which then determine
choices probabilistically. Since the functions also vary across subjects and
over time, they have the potential to inject heterogeneity and time-varying
‘rule learning’, and to explain learning better than models with fixed para-
meter values across people and time. And since self-tuning EWA has only
one parameter that must be estimated (�),27 it is especially helpful when
learning models are used as building blocks for more complex models that
incorporate sophistication (some players think others learn) and teaching,
as we discuss in the section below.

The decay rate # is sometimes interpreted as forgetting, an interpretation
carried over from reinforcement models of animal learning. Certainly for-
getting does occur, but the more important variation in #i�t	 across games is
probably a player’s perception of how quickly the learning environment is
changing. The function #i�t	 should therefore ‘detect change’. As in physical
change detectors (for example, security systems or smoke alarms), the chal-
lenge is to detect change when it is really occurring, but not falsely mistake
noise for change too often.

The core of the #i�t	 change-detector function is a ‘surprise index’, which
is the difference between other players’ recent strategies and their strategies
in previous periods. To make exposition easier, we describe the function for
games with pure-strategy equilibria (suitably modified for games with mixed
equilibria, as noted below). First define a history vector, across the other
players’ strategies k, which records the historical frequencies (including the
last period) of the choices by other players of sk−i. The vector element hki �t	

is
∑t
�=1 I�s

k−i �s−i ��		
t

.28 The recent ‘history’ rki �t	 is a vector of 0s and 1s which
has a 1 for strategy sk−i = s−i�t	 and 0s for all other strategies sk−i (that is,
rki �t	 = I�sk−i� s−i�t		). The surprise index Si�t	 simply sums up the squared
deviations between the cumulative history vector hki �t	 and the immediate
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recent history vector rki �t	; that is, Si�t	 ≡
∑m−i

k=1�h
k
i �t	− rki �t		

2. Note that this
surprise index varies from zero (when the last strategy the other player chose
is the one they have always chosen before) to two (when the other player
chose a particular strategy ‘for ever’ then suddenly switches to something
brand new). The change-detecting decay rate is #i�t	= 1−0�5 ·Si�t	. Because
Si�t	 is between zero and two, # is always (weakly) between one and zero.

The numerical boundary cases illuminate intuition: if the other player
chooses the strategy s/he has always chosen before, then Si�t	 = 0 (player i
is not surprised) and #i�t	= 1 (player i does not decay the lagged attraction
at all, since what other players did throughout is informative). If the other
player chooses a new strategy that was never chosen before in a very long
run of history, Si�t	 = 2 and #i�t	 = 0 (player i decays the lagged attraction
completely and ‘starts over’). Note that, since the observed behaviour in
period t is included in the history hki �t	, #i�t	 will typically not dip to zero.
For example, if a player chose the same strategy for each of nine periods and
a new strategy in period 10, then Si�t	 = �0�9−0	2+ �1−0�1	2 = 2 ·0�81 and
#i�t	= 1−0�5�2 ·0�81	= 0�19.

In games with mixed equilibria (and no pure equilibria), a player should
expect other players’ strategies to vary. Therefore, if the game has a mixed
equilibrium with W strategies that are played with positive probability (that
is, W is the cardinality of the smallest support of any Nash strategy), the
surprise index defines recent history over a window of the last W periods
(for example, in a game with four strategies that are played in equilibrium,

W = 4). Then rki �t	=
∑m−i

k=1

[∑t
�=t−W+1 I�s

k−i �s−i ��		
W

]
.29

A sensible property of Si�t	 is that the surprisingness of a new choice should
depend not only on how often the new choice has been chosen before,
but also on how variable previous choices have been. Incorporating this
property requires # to be larger when there is more dispersion in previous
choices, which is guaranteed by squaring the deviations between current
and previous history. (Summing absolute deviations between ri�t	 and hi�t	,
for example, would not have this property.) If previously observed relative
frequencies of strategy k are denoted fk, and the recent strategy is h, then the
surprise index is �1− fh	

2 +∑
k �=h�fk −0	2. Holding fh constant, this index is

minimized when all frequencies fk with k �= h are equal. In the equal-fk case,
the surprise index is Si�t	 = �m−i−1	/m−i and #i�t	 = �m−i+1	/2m−i, which
has a lower bound of 0.5 in games with large m−i (many strategies).

The opposite case is when an opponent has previously chosen a single
strategy in every period, and suddenly switches to a new strategy. In this
case, #i�t	 is 2t−1

t2
. This expression declines gracefully towards zero as the

string of identical choices up to period t grows longer. (For t = 2�3�5 and
10, the #i�t	 values are 0.75, 0.56, 0.36, and 0.19.) The fact that the # values
decline with t expresses the principle that a new choice is a bigger surprise
(and should have an associated lower #) if it follows a longer string of identical
choices that are different from the surprising new choice. It also embodies
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the idea that dipping #i�t	 too low is a mistake which should be avoided
because it erases the history embodied in the lagged attraction. So #i�t	 only
dips low when opponents have been choosing one strategy reliably for a
very long time, and then switch to a new one.

Another interesting special case is when unique strategies have been played
in every period up to t−1, and another unique strategy is played in period t .
(This is often true in games with large strategy spaces.) Then #i�t	= 0�5+ 1

2t ,
which starts at 0.75 and asymptotes at 0.5 as t increases.

The calculations above show that in the first few periods of a game, #i�t	

will not dip much below 1 (because the tth period experience is included
in the recent history ri�t	 vector as well as being part of the cumulative
history hi�t	). But in these periods players often learn rapidly. Since it makes
sense to start with a low value of #i�0	 to express players’ responsiveness
in the first few periods, in the empirical implementation, we smooth the
#i�t	 function by starting at #i�0	= 0�5, and gently blending in the updated
values according to #̂i�t	≡ 0�5/t+ �t−1	#i�t	/t .
The other self-tuning EWA functions are less empirically important and

interesting so we mention them only briefly. The function 
i�t	 = #i�t	/W .
Dividing by W pushes 
i�t	 towards zero in games with mixed equilibria,
which matches estimates in many games (see Camerer et al., 2003).30 Tying

i�t	 to the change detector #i�t	 means that chosen strategies are reinforced
relatively strongly (compared to unchosen ones) when change is rapid. This
reflects a ’status quo bias’ or ’freezing’ response to danger (which is virtually
universal across species, including humans). Since �i�t	 controls how sharply
subjects lock in to choosing a small number of strategies, we use a ’Gini
coefficient’ – a standard measure of dispersion often used to measure income
inequality – over choice frequencies.31�32

Self-tuning EWA has three advantages. First, it is easy to use because it
has only one free parameter (�). Second, parameters in self-tuning EWA
naturally vary across time and people (as well as across games), which can
capture heterogeneity and mimic ’rule learning’ in which parameters vary
over time (see, for example, Stahl, 1996, 2000; Salmon, 2001). For example,
if # rises across periods from 0 to 1 as other players stabilize, players are
effectively switching from Cournot-type dynamics to fictitious play. If 
 rises
from 0 to 1, players are effectively switching from reinforcement to belief
learning. Third, it should be easier to theorize about the limiting behaviour
of self-tuning EWA than about some parametric models. A key feature of
self-tuning EWA is that, as a player’s opponent’s behaviour stabilizes, #i�t	

goes toward 1 and (in games with pure equilibria) 
i�t	 does too. If � = 0,
self-tuning EWA then automatically turns into fictitious play; and a lot is
known about theoretical properties of fictitious play.

Self-tuning EWA predictions

In this section we compare in-sample fit and out-of-sample predictive accur-
acy of different learning models when parameters are estimated freely, and
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check whether self-tuning EWA functions can produce game-specific para-
meters similar to estimated values. We use seven games: games with unique
mixed strategy equilibrium (Mookerjhee and Sopher, 1997); R&D (research
and development) patent race games (Rapoport and Amaldoss, 2000); a
median-action order statistic co-ordination game with several players (Van
Huyck et al., 1990); a continental-divide co-ordination game, in which con-
vergence behaviour is extremely sensitive to initial conditions (Van Huyck
et al., 1997); a ‘pots game’ with entry into two markets of different sizes
(Amaldoss and Ho, in preparation); dominance-solvable p-beauty contests
(Ho et al., 1998); and a price-matching game (called ‘traveller’s dilemma’ by
Capra et al., 1999).

Estimation method

The estimation procedure for self-tuning EWA is sketched briefly here (see
Ho et al., 2001 for details). Consider a game where N subjects play T rounds.
For a given player i of CH step-level c, the likelihood function of observing
a choice history of si�1	� si�2	� � � � � si�T −1	� si�T 	� is given by:

�T
t=1P

si�t	
i �t �c	 (8.6)

The joint likelihood function L of observing all players’ choices is given by:

L��	=�N
i

{
K∑
c=1

f�c	×�T
t=1P

si�t	
i �t	

}
(8.7)

where K is set to a multiple of � rounded to an integer. Most models are
’burnt in’ by using first-period data to determine initial attractions. We
also compare all models with burnt-in attractions with a model in which
the thinking steps model from the previous section is used to create initial
conditions and combined with self-tuning EWA. Note that the latter hybrid
uses only two parameters (� and �) and does not use first-period data at all.

Given the initial attractions and initial parameter values,33 attractions
are updated using the EWA formula. Self-tuning EWA parameters are then
updated according to the functions above and used in the EWA updating
equation. Maximum likelihood estimation is used to find the best-fitting
value of � (and other parameters, for the other models) using data from
the first 70 per cent of the subjects. Then the value of � is frozen and used
to forecast behaviour of the entire path of the remaining 30 per cent of
the subjects. Payoffs were all converted to dollars (which is important for
cross-game forecasting).

In addition to self-tuning EWA (one parameter), we estimated the paramet-
ric EWA model (five parameters), a belief-based model (weighted fictitious
play, two parameters) and the two -parameter reinforcement models with
payoff variability (Erev et al., 1999; Roth et al., 2000), and QRE.
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Model fit and predictive accuracy in all games

The first question we ask is how well models fit and predict on a game-
by-game basis (that is, parameters are estimated separately for each game).
Some authors fix a set of parameters for several games and see how well
predictions do based on those parameters. But it is impossible to know from
such an exercise whether there is a better set of parameters, or how much
the best-fitting parameters truly vary across games. By allowing parameter
to vary across games we can both find out how well a single parameter
would do (by looking at variation across games – if variation is low a single
parameter would be fine, or we can restrict the parameter to have a common
value and see how badly the fit degrades), and have some guidance as to
which parameters fit best in which games.

An alternative method is to simulate the entire path of play and compare
some statistics of the simulated path with statistics of the data (e.g., Roth
and Erev 1995). We have done this in several publications and do not draw
different conclusions from those drawn from the estimation method below
(see, for example, Camerer et al., 1998; Camerer, Hsia and Ho, 2002; and
Camerer, 2003, ch. 6). Furthermore, note that if the statistic that is used
is the conditional relative frequency (that is, frequencies conditioned on all
actual histories), it makes no difference whether the conditioned histories
are determined by the actual data, or paths are first simulated, then the
paths which match the data histories are selected for conditional-frequency
comparison. The simulation method will give exactly the same results as the
method we use. Furthermore, if the frequencies that are compared are not
conditioned on histories, then the model can be doing poorly on capturing
some kind of history-dependence but appear to fit well on the unconditioned
frequencies.34

For out-of-sample validation we report both hit rates (the fraction of most-
likely choices that are picked) and log likelihood (LL). (Keep in mind that
these results forecast a holdout sample of subjects after model parameters
have been estimated on an earlier sample and then ’frozen’. If a complex
model is fitting better within a sample purely because of spurious overfitting,
it will in fact predict less well out of sample.) Results are summarized in
Table 8.3.

Across games, parametric EWA is as good as all other theories or better,
judged by hit rate, and has the best LL in four games. Self-tuning EWA also
does well on hit rate in six out of seven games. Reinforcement is competitive
on hit rate in five games, and best in LL in two. Belief models are often
inferior on hit rate and never best in LL. QRE clearly fits the worst.

Combining self-tuning EWA with a thinking steps model to predict initial
conditions (rather than using the first-period data), a two-parameter com-
bination is only a little worse in hit rate than self-tuning EWA, and slightly
worse in LL.
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Table 8.3 Out-of-sample accuracy of learning models

Thinking stEWA EWA Weighted Reinf. QRE
+stEWA fict. play with PV

Game %Hit LL %Hit LL %Hit LL %Hit LL %Hit LL %Hit LL

Cont’l divide (7) 45 −483 47 −470 47 −460 25 −565 45 −557 5 −806
Med. action (14) 71 −112 74 −104 79 −83 82 −95 74 −105 49 −285
p-BC (1) 8 −2119 8 −2119 6 −2042 7 −2051 6 −2504 4 −2497
Pricing (0.8) 43 −507 46 −445 43 −443 36 −465 41 −561 27 −720
Mixed games (21) 36 −1391 36 −1382 36 −1387 34 −1405 33 −1392 35 −1400
Patents (18) 64 −1936 65 −1897 65 −1878 53 −2279 65 −1864 40 −2914
Pot games (50) 70 −438 70 −436 70 −437 66 −471 70 −429 51 −509

Pooled 50 −6986 51 −6852 49 −7100 40 −7935 46 −9128 36 −9037

KS p-BC 6 −309 3 −279 3 −279 4 −344 1 −346

Notes: Sample sizes are 315, 160, 580, 160, 960, 1760, 739, 4674 (pooled), 80; The best fits for each game and criterion printed in bold; hit
rates statistically indistinguishable from the best (by the McNemar test) also in bold. Numbers in parentheses after each game name in col. 1
are hit rates from a random model; comparing hit rates in the ‘%Hit’ columns indicates how much better the models are doing than random
prediction.
Source: Ho et al. (2001).
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The penultimate row of Table 8.3, ‘pooled’, shows results when a single set
of common parameters is estimated for all games (except for game-specific
�35). If self-tuning EWA is capturing parameter differences across games
effectively, it should predict especially accurately, compared to other models,
when games are pooled. It does so: when all games are pooled, self-tuning
EWA predicts out-of-sample better than other theories, by both statistical
criteria.

Some readers of our functional EWA paper were concerned that, by search-
ing across different specifications wemay have overfitted the sample of seven
games we reported. To check whether we did, we announced at conferences
in 2001 that we would analyse all the data people sent us by the end of that
year and report the results in a revised paper. Three samples were sent and we
have analysed one so far – experiments by Kocher and Sutter (forthcoming)
on p-beauty contest games played by individuals and groups. The KS results
are reported in the last row of Table 8.3 (‘KS p-BC’). The game is the same
as the beauty contests we studied (except for the interesting complication of
group decision-making, which speeds equilibration), so it is not surprising
that the results replicate the earlier findings: belief and parametric EWA fit
best by LL, followed by self-tuning EWA, and reinforcement and QRE mod-
els fit worst. This is a small piece of evidence that the solid performance of
self-tuning EWA (while being worse than belief learning on these games) is
not entirely caused by overfitting on our original seven-game sample.

Now we shall show predicted and relative frequencies for three games
that highlight differences among models. In other games the differences are
minor or hard to see with the naked eye.36

Dominance-solvable games: beauty contests

In beauty contest games, each of n players chooses xi ∈ �0�100�. The average
of their choices is computed and whichever player is closest to p< 1 times the
average wins a fixed prize (see Nagel, 1999, for a review). The unique Nash
equilibrium is zero. (The games get their name from a passage in Keynes
(1936) about how the stock market is like a special beauty contest in which
people judge who others will think is beautiful.) These games are a useful
way to measure the steps of iterated thinking players seem to use (since
higher steps will lead to lower number choices). Experiments have been run
with exotic subject pools such as Ph.D.s and CEOs (Camerer, 1997), and
in newspaper contests with very large samples (Nagel et al., 1999). The res-
ults are generally robust, although specially-educated subjects (for example,
professional game theorists) choose, not surprisingly, closer to equilibrium.

We analyse experiments run by Ho et al. (1998).37 The data and relat-
ive frequencies predicted by each learning model are shown in Figure 8.6.
Figure 8.6(a) shows that while subjects start around the middle of the dis-
tribution, they converge steadily downwards towards zero. By Period 5, half
the subjects chose numbers 1–10.
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(a) Empirical frequency
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(b) Self-tuning EWA
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(c) Parametric EWA
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(d) Belief-based
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(e) Choice reinforcement with PV
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(f) Quantal response

Figure 8.6 Predicted frequencies for p-beauty contest

The EWA, belief and thinking – self-tuning EWA model all capture the
basic regularities although they underestimate the speed of convergence.
(In the next section we add sophistication – some subjects know that
others are learning and ’shoot ahead’ of the learners by choosing lower
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numbers – which improves the fit substantially.) The QRE model is a dud in
this game, and reinforcement also learns far too slowly because most players
receive no reinforcement.38

Games with multiple equilibria: continental divide game

VanHuyck et al. (1997) studied a co-ordination gamewithmultiple equilibria
and extreme sensitivity to initial conditions, which we call the continental
divide game (CDG). The payoffs in the game are shown in Table 8.4. Subjects
play in cohorts of seven people. Subjects choose an integer from 1 to 14,
and their payoff depends on their own choice and on the median choice of
all seven players.

The payoff matrix is constructed so that there are two pure equilibria (at
3 and 12) which are Pareto-ranked (12 is the better one). Best responses to
different medians are in bold. The best-response correspondence bifurcates
in themiddle: if themedian starts at 7 virtually any sort of learning dynamics
will lead players toward the equilibrium at 3. If the median starts at 8 or
above, however, learning will eventually converge to an equilibrium of 12.
Both equilibrium payoffs are shown in bold italics. The payoff at 3 is about
half as much as at 12, so which equilibrium is selected has a large economic
impact.

Figure 8.7 shows empirical frequencies (pooling all subjects) and model
predictions.39 The key features of the data are: bifurcation over time from
choices in the middle of the range (5–10) to the extremes, near the equilib-
ria at 3 and 12; and late-period choices are more clustered around 12 than
around 3. There is also an extreme sensitivity to initial conditions (which is
disguised by the aggregation across sessions in Figure 8.7(a)): namely, five
groups had initial medians below 7 and all five converged toward the inef-
ficient low equilibrium. The other five groups had initial medians above 7
and all five converged towards the efficient high equilibrium. This path-
dependence shows the importance of a good theory of initial conditions
(such as the thinking steps model). Because a couple of steps of think-
ing generates a distribution concentrated in the middle strategies 5–9, the
thinking-steps models predicts that initial medians will sometimes be above
the separatrix 7 and sometimes below. The model does not predict precisely
which equilibrium will emerge, but it predicts that both high and low equi-
libria will sometimes emerge.

Notice also that strategies 1–4 are never chosen in early periods, but are
chosen frequently in later periods. Strategies 7–9 are chosen frequently in
early periods but rarely chosen in later periods. Like a sportscar, a good
model should be able to capture these effects by ‘accelerating’ low choices
quickly (going from zero to frequent choices in a few periods) and ‘braking’
midrange choices quickly (going from frequent choices to zero).

QRE fits poorly because it predicts no movement (it is not a theory of
learning, of course, but simply a static benchmark that is tougher to beat
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Table 8.4 Payoffs in ‘continental divide’ experiment

Median choice

Choice 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 45 49 52 55 56 55 46 −59 −88 −105 −117 −127 −135 −142
2 48 53 58 62 65 66 61 −27 −52 −67 −77 −86 −92 −98
3 48 54 60 66 70 74 72 1 −20 −32 −41 −48 −53 −58
4 43 51 58 65 71 77 80 26 8 −2 −9 −14 −19 −22
5 35 44 52 60 69 77 83 46 32 25 19 15 12 10
6 23 33 42 52 62 72 82 62 53 47 43 41 39 38
7 7 18 28 40 51 64 78 75 69 66 64 63 62 62
8 −13 −1 11 23 37 51 69 83 81 80 80 80 81 82
9 −37 −24 −11 3 18 35 57 88 89 91 92 94 96 98

10 −65 −51 −37 −21 −4 15 40 89 94 98 101 104 107 110
11 −97 −82 −66 −49 −31 −9 20 85 94 100 105 110 114 119
12 −133 −117 −100 −82 −61 −37 −5 78 91 99 106 112 118 123
13 −173 −156 −137 −118 −96 −69 −33 67 83 94 103 110 117 123
14 −217 −198 −179 −158 −134 −105 −65 52 72 85 95 104 112 120

Note: Best replies in bold.
Source: Van Huyck et al. (1997).
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Figure 8.7 Predicted frequencies for continental divide

than Nash). Reinforcement with PV fits well. Belief learning does not repro-
duce the asymmetry between sharp convergence to the high equilibrium
and flatter frequencies around the low equilibrium. The reason why is dia-
gnostic of a subtle weakness in belief learning. Note from Table 8.4 that the
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payoff gradients around the equilibria at 3 and 12 are exactly the same –
choosing one number too high or low ‘costs’ $0.02; choosing two numbers
too high or low costs $0.08, and so on. Since belief learning computes expec-
ted payoffs, and the logit rule means only differences in expected payoffs
influence choice probability, the fact that the payoff gradients are the same
means the spread of probability around the two equilibria must be the same.
Self-tuning EWA, parametric EWA and the reinforcement models generate
the asymmetry with low 
.40

Games with dominance-solvable equilibrium:
price-matching with loyalty

Capra et al. (1999) studied a dominance-solvable price-matching game. In
their game, two players simultaneously choose a price between 80 and 200.
Both players earn the low price. In addition, the player who names the lower
price receives a bonus of R and the players who names the higher price pays
a penalty R. (If the prices they choose are the same, the bonus and penalty
cancel and players just earn the price they named.) You can think of R as
a reduced-form expression of the benefits of customer loyalty and word-of-
mouth which accrue to the lower-priced player, and the penalty is the cost
of customer disloyalty and switching away from the high-price firm. We like
this game because price-matching is a central feature of economic life. These
experiments can also, in principle, be tied to field observations in future
work.

Their experiment used six groups of 9–12 subjects. The reward/penalty R

had six values (5, 10, 20, 25, 50, 80). Subjects were rematched randomly.41

Figure 8.8 shows empirical frequencies and model fits for R = 50 (where
the models differ most). A wide range of prices are named in the first round.
Prices gradually fall, being 91–100 in Rounds 3–5, 81–90 in Rounds 5–6, and
towards the equilibrium of 80 in later rounds.

QRE predicts a spike at the Nash equilibrium of 80.42 The belief-based
model predicts the direction of convergence, but overpredicts numbers in
the interval 81–90 and underpredicts choices of precisely 80. The problem is
that the incentive in the traveller’s dilemma is to undercut the other player’s
price by as little as possible. Players only choose 80 frequently in the last
couple of periods; before those periods it pays to choose higher numbers.

EWA models explain the sharp convergence in late periods by cumulating
payoffs and estimating 
= 0�63 (for self-tuning EWA). Players who chose 80
while others named a higher price could have earned more by undercutting
the other price, but weighting that higher forgone payoff by 
 means their
choice of 80 is reinforced more strongly, which matches the data.

Reinforcement with payoff variability has a good hit rate because the
highest spikes in the graph often correspond with spikes in the data. But the
graph shows that predicted learning is much more sluggish than in the data
(that is, the spikes are not high enough). Because #= 1 and players are not
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Figure 8.8 Predicted frequency for traveller’s dilemma (Reward= 50)

predicted to move toward ex post best responses, the model cannot explain
why players learn to choose 80 so rapidly.

Economic value of learning models

Since the 1980s, the concept of economic engineering has emerged as being
increasingly important from its start in the late 1970s (see Plott, 1986).
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Experimentation has played an important role in this emergence (see Plott,
1997; Rassenti et al., 2001). For the practice of economic engineering, it is
useful to have a measure of how much value a theory or design creates. For
policy purposes, increases in allocative efficiency are a sensible measure, but
for judging the private value of advice to a firm or consumer other measures
are more appropriate.

Camerer and Ho (2001) introduced a measure called ‘economic value’.
Schelling (1960, p. 98) wrote, ‘a normative theory must produce strategies
that are at least as good as what people can do without them’. Inspired by his
definition, the economic value of a theory is how much model forecasts of
behaviour of other players improve the profitability of a particular player’s
choices. This measure treats a theory as being like the advice service that
professionalssell(forexample,consultants).Thevalueofatheoryisthedifference
intheeconomicvalueoftheclient’sdecisionswithandwithouttheadvice.

Besides being a businessperson’s measure, economic value is a way of
measuring the degree of disequilibrium in economic terms. Note that, in
equilibrium, the economic value of a learning theory is zero or negative
by definition (since players are already guessing perfectly accurately what
others will do). A bad theory, which implicitly ‘knows’ less than the subjects
themselves do about what other subjects are likely to do, will have negative
economic value.

Furthermore, do not conclude, mistakenly, that if a learning theory has
economic value it does not describe how people in fact learn. The economic
value assumes that an objective observer uses the theory to make a forecast
and best-responds to it – in our terms below, such a person is ‘sophistic-
ated’. So if the model describes accurately how adaptive players (who are
not sophisticated) learn, it will have economic value. It is true, however,
that a model of sophisticated players should not have economic value (since
the advice it gives should already be known to the players, by definition of
sophistication).

To measure economic value, we use model parameters and a player’s
observed experience through period t to generate model predictions about
what others will do in t+1. These predictions are used to compute expected
payoffs from strategies, and recommend a choice with the highest expected
value. We then compare the profit from making that choice in t+1 (given
what other players did in t +1) with profit from the target player’s actual
choice. Economic value is a goodmeasure because it uses the full distribution
of predictions about what other players are likely to do, and the economic
impact of those possible choices. These measures do not control for the
boomerang effect of how a recommended choice would have changed future
behaviour by others, but this effect is small in most games.43

Data from six games are used to estimate model parameters and make
recommendations in the seventh game, for each of the games separately.
Table 8.5 shows the overall economic value – the percentage improvement
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Table 8.5 Economic value of learning theories (percentage improvement in payoffs)

Game self-tuning parametric Belief- Reinf.- QRE(%)
EWA(%) EWA(%) based(%) PV(%)

cont’l divide 5.0 5.2 4.6 −9�4 −30�4
median action 1.5 1.5 1.2 1.3 −1�0
p-Beauty contest 49.9 40.8 26.7 −7�2 −63�5
price matching 10.3 9.8 9.4 3.4 2.7
mixed strategies 7.5 3.0 1.1 5.8 −1�8
patent race 1.7 1.2 1.3 2.9 1.2
pot games −2�7 −1�1 −1�3 −1�9 9.9

Note: Highest economic value for each game is displayed in bold type.

(or decline) in payoffs of subjects from following a model recommendation
rather than their actual choices. The highest economic value for each game is
printed in bold. Most models have positive economic value. The percentage
improvement is small in some games because even clairvoyant advice would
not raise profits much.44

Self-tuning EWA and EWA usually add the most value (except in pot
games, where only QRE adds value). Belief learning has positive economic
value in all but one game. Reinforcement learning adds the most value
in patent races, but has negative economic value in three other games.
(Reinforcement underestimates the rate of strategy change in continental
divide and beauty contest games, and hence gives bad advice.) QRE has
negative economic value in four games.

Summary

This section reports a comparison among several learning models on seven
data sets. The new model is self-tuning EWA, a variant of the hybrid EWA
model in which estimated parameters are replaced by functions entirely
determined by data. Self-tuning EWA captures a predictable cross-game vari-
ation in parameters and hence fits better than other models when common
parameters are estimated across games. A closer look at the continental divide
and price-matching games shows that belief models are close to the data on
average but miss other features (the asymmetry in convergence toward each
of the two pure equilibria in the continental divide game, and the sharp con-
vergence on the minimum price in price-matching). Reinforcement predicts
well in co-ordination games and predicts the correct price often in price-
matching (but with too little probability). However, reinforcement predicts
badly in beauty contest games. It is certainly true that for explaining some
features of some games, the reinforcement and belief models are adequate.
But self-tuning EWA is easier to estimate (it has one parameter instead of two)
and explains subtler features other models sometimes miss. It is also never
fits poorly (relative to other games), which is the definition of robustness.
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Sophistication and teaching

The learning models discussed in the previous section are adaptive and
backward-looking: Players only respond to their own previous payoffs and
knowledge about what others did. While a reasonable approximation, these
models leave out two key features: adaptive players do not use information
about other players’ payoffs explicitly (though subjects in fact do45); and
adaptive models ignore the fact that when the same players are matched
together repeatedly, their behaviour is often different than it is when they
are not rematched together, generally in the direction of greater efficiency
(see, for example, Van Huyck et al., 1990; Andreoni and Miller, 1993; Clark
and Sefton, 1999).

In this section, adaptive models are extended to include sophistication
and strategic teaching in repeated games (see Stahl, 1999; and Camerer et al.,
2002a, for details). Sophisticated players believe that others are learning and
anticipate how those others will change in deciding what to do. In learning
to shoot at a moving target, for example, soldiers and fighter pilots learn to
shoot ahead, towards where the target will be, rather than shoot at the target
where it is when they aim. They become sophisticated.

Sophisticated players who also have strategic foresight will ‘teach’ – that
is, they choose current actions which teach the learning players what to
do, in a way that benefits the teacher in the long run. Teaching can either
be mutually beneficial (trust-building in repeated games) or privately bene-
ficial but socially costly (entry-deterrence in chain-store games). Note that
sophisticated players will use information about the payoffs of others (to
forecast what others will do), and will behave differently depending on how
players are matched, so adding sophistication can conceivably account for
the effects of information and matching that adaptive models miss.46

Sophistication

Let us begin with myopic sophistication (no teaching). The model assumes
a population mixture in which a fraction � of players are sophisticated
and 1−� are adaptive. (It is possible to imagine a model with degrees of
sophistication, as well, or learning to become sophisticated, as in Stahl,
1999.) To allow for possible over-confidence, sophisticated players think
that a fraction �1−�′	 of players are adaptive and the remaining fraction
�′ of players are sophisticated, like themselves.47 Sophisticated players use
the self-tuning EWA model to forecast what adaptive players will do, and
choose strategies with high expected payoffs, given their forecast and their
guess about what sophisticated players will do. Denoting choice probabilities
by adaptive and sophisticated players by P

j
i �a� t	 and P

j
i �s� t	, attractions for

sophisticates are:

A
j
i�s� t	=

m−i∑
k=1

��′Pk
−i�s� t+1	+ �1−�′	Pk

−i�a� t+1	�×�i�s
j
i� s

k
−i	 (8.8)
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Note that, since the probability Pk
−i�s� t + 1	 is derived from an analogous

condition for A
j
i�s� t	, the system of equations is recursive. Self-awareness

creates a whirlpool of recursive thinking which means that QRE (and Nash
equilibrium) are special cases in which all players are sophisticated and
believe others are too (�= �′ = 1).
An alternative structure one could study links steps of sophistication to the

steps of thinking used in the first period. For example, define zero learning
steps as using self-tuning EWA; one step is best-responding to zero-step
learners; two steps is best-responding to choices of one-step sophisticates,
and so forth. We think this model can produce results similar to the recursive
one we report below, and it replaces � and �′ with � from the theory of
initial conditions so reducing the entire thinking–learning–teaching model
to just two parameters.

We estimate the sophisticated EWA model using data from the p-beauty
contests introduced above. Table 8.6 reports results and estimates of import-
ant parameters (with bootstrapped standard errors in parentheses). For inex-
perienced subjects, adaptive EWA generates Cournot-like estimates (#̂ = 0
and 
̂ = 0�90). Adding sophistication increases #̂ and improves LL substan-
tially both in and out of sample. The estimated fraction of sophisticated
players is 24 per cent and their estimated perception �̂′ is zero (and is insig-
nificant), showing over-confidence (as in the thinking-steps estimates from
the previous section).48

Experienced subjects are those who play a second 10-period game with
a different p parameter (the multiple of the average that creates the target

Table 8.6 Sophisticated and adaptive learning model estimates for the p-beauty
contest game

Inexperienced subjects Experienced subjects

Sophisticated Adaptive Sophisticated Adaptive
EWA EWA EWA EWA

# 0.44 0.00 0.29 0.22
�0�05	∗ (0.00) (0.03) (0.02)


 0.78 0.90 0.67 0.99
(0.08) (0.05) (0.05) (0.02)

� 0.24 0.00 0.77 0.00
(0.04) (0.00) (0.02) (0.00)

�′ 0.00 0.00 0.41 0.00
(0.00) (0.00) (0.03) (0.00)

LL
In sample −2095.32 -2155.09 −1908.48 -2128.88
Out of sample −968.24 -992.47 −710.28 -925.09

Note: ∗Standard errors in parentheses.
Source: Camerer et al. (2002b).
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number). Among experienced subjects, the estimated proportion of sophist-
icates increases to �̂= 77 per cent. Their estimated perceptions also increase,
but are still over-confident (�̂′ = 41 per cent). The estimates reflect ‘learning
about learning’: subjects who played one 10-period game came to realize that
an adaptive process is occurring; and most of them anticipate that others
are also learning when they play again.

Strategic teaching

Sophisticated players matched with the same players repeatedly often have
an incentive to ‘teach’ adaptive players by choosing strategies with poor
short-run payoffs that will change what adaptive players do, in a way that
benefits the sophisticated player in the long run. Game theorists have shown
that strategic teaching could select one of many repeated-game equilibria
(teachers will teach the pattern that benefits them) and could give rise to
reputation formation without the complicated apparatus of Bayesian updat-
ing of Harsanyi-style payoff types (see Fudenberg and Levine, 1989; Watson,
1993; Watson and Battigali, 1997). This section of our chapter describes a
parametric model which embodies these intuitions, and tests it with experi-
mental data. The goal is to show how the kinds of learning models described
in the previous section can be extended parsimoniously to explain beha-
viour in more complex games which are, perhaps, of even greater economic
interest than games with random matching.

Consider a finitely-repeated trust game, first studied by Camerer and
Weigelt (1988). A borrower B wants to borrow money from each of a series
of lenders denoted Li �i = 1� � � � �N	. In each period a lender makes a single
lending decision (Loan or No Loan). If the lender makes a loan, the borrower
either repays or defaults. The next lender in the sequence, who observed all
the previous history, then makes a lending decision. The payoffs used in the
experiments are shown in Table 8.7.

There are in fact two types of borrowers. As in post-Harsanyi game theory
with incomplete information, types are expressed as differences in borrower
payoffs which the borrowers know but the lenders do not (though the prob-
ability of a given borrower is each type is commonly known). The honest (Y)
types infact receivemoremoneyfromrepayingtheloan,anexperimenter’sway

Table 8.7 Payoffs in the borrower–lender trust game

Lender strategy Borrower strategy Payoffs to lender Payoffs to borrower

Normal (X) Honest (Y)

Loan Default −100 150 0
Repay 40 60 60

No loan (No choice) 10 10 10

Source: Camerer and Weigelt (1988).
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of inducing preferences like those of a personwhohas a social utility for being
trustworthy (see Camerer, 2003, ch. 3 and references therein). The normal (X)
types, however, earn 150 from defaulting and only 60 from repaying. If they
wereplayingjustonceandwantedtoearnthemostmoney, theywoulddefault.

In the standard game-theoretic account, paying back loans in finite games
arisesbecausethere isasmallpercentageofhonest typeswhoalways repay.This
givesnormal-typeborrowers an incentive to repayuntil close to the end,when
they begin to usemixed strategies and default with increasing probability.

Whether people in fact play these sequential equilibria is important to
investigate, for two reasons. First, the equilibria impose consistency between
optimalbehaviourbyborrowersandlenders,andBayesianupdatingoftypesby
lenders (based on their knowledge and anticipation of the borrowers’ strategy
mixtures); whether reasoning or learning can generate this consistency is an
open behavioural question (see Selten, 1978). Second, the equilibria are very
sensitive to the probability of honesty (if it is too low, the reputational equilib-
ria disappear and borrowers should always default), and alsomake counterin-
tuitive comparative statics predictions that are not confirmed in experiments
(for example, Neral andOchs, 1992; Jung et al., 1994).

In the experiments, subjects play many sequences of eight periods. The
eight-period game is repeated to see whether equilibration occurs across
many sequences of the entire game.49 Surprisingly, the earliest experiments
showed that the pattern of lending, default and reactions to default across
experimental periods within a sequence is roughly in line with the equi-
librium predictions. Typical patterns in the data are shown in Figure 8.9.
Sequences are combined into ten-sequence blocks (denoted ‘sequence’) and
average frequencies are reported from those blocks. Periods 1� � � � �8 denote
periods in each sequence. The figures show relative frequencies of no loan and
default (conditional on a loan). Figure 8.9(a) shows that, in early sequences,
lenders start by making loans in early periods (that is, there is a low fre-
quency of no loan), but they rarely lend in periods 7–8. In later sequences
they have learned always to lend in early periods and rarely in later periods.
Figure 8.9(b) shows that borrowers rarely default in early periods, but usually
default (conditional on getting a loan) in periods 7–8. The within-sequence
pattern becomes sharper in later sequences.

The general patterns predicted by equilibrium are therefore present in the
data.Butgiventhecomplexityof theequilibrium,howdoplayersapproximate
it? Camerer andWeigelt (1988) concluded their paper as follows:

the long period of disequilibrium behavior early in these experiments
raises the important question of how people learn to play complic-
ated games. The data could be fit to statistical learning models, though
new experiments or new models might be needed to explain learning
adequately. (pp. 27–8)

The teaching model is a ‘new model’ of the sort Camerer and Weigelt had
in mind. It is a boundedly rational model of reputation formation in which
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Figure 8.9 Empirical and predicted frequencies for borrower–lender trust game

the lenders learn whether to lend or not. They do not update borrowers’
types and do not anticipate borrowers’ future behaviour (as in equilibrium
models); they just learn.

In the teaching model, a proportion of borrowers are sophisticated and
teach; the rest are adaptive and learn from experience but have no strategic
foresight. The teachers choose strategies that are expected (given their beliefs
about how borrowers will react to their teaching) to give the highest long-run
payoffs in the remaining periods.

A sophisticated teaching borrower’s attractions for sequence k after period
t are specified as follows (j ∈ repay�default� is the borrower’s set of strategies):

A
j
B�s� k� t	=

No Loan∑
j′=Loan

P
j′
L �a� k� t+1	 ·�B�j� j

′	

+max
Jt+1

{
T∑

v=t+2

No Loan∑
j′=Loan

P̂
j′
L �a� k� v�jv−1 ∈ Jt+1	 ·�B�jv ∈ Jt+1� j

′	

}
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The set Jt+1 specifies a possible path of future actions by the sophist-
icated borrower from round t + 1 until end of the game sequence. That
is, Jt+1 =  jt+1� jt+2� � � � � jT−1� jT � and jt+1 = j.50 The expressions P̂j′

L �a� k�$�j$−1	

are the overall probabilities of either getting a loan or not in the future
period $, which depends on what happened in the past (which the teacher
anticipates).51 Pj

B�s� k� t+1	 is derived from A
j
B�s� k� t	 using a logit rule.

The updating equations for adaptive players are the same as those used
in self-tuning EWAs, with two twists. First, since lenders who play in later
periods know what has happened earlier in a sequence, we assume that
they learnt from the experience they witnessed as though it had happened
to them.52 Second, a lender who is about to make a decision in Period
5 of Sequence 17, for example, has two relevant sources of experience on
which to draw – the behaviour seen in Periods 1–4 in Sequence 17, and
the behaviour seen in the Period 5s of the previous sequences (1–16). Since
both kinds of experience could influence the lender’s current decision, we
include both, using a two-step procedure. After Period 4 of Sequence 17, for
example, attractions for lending and not lending are first updated, based
on the Period 4 experience. Then attractions are partially updated (using
a degree of updating parameter �) based on the experience in Period 5 of
the previous sequences.53 The parameter � is a measure of the strength of
‘peripheral vision’ – glancing back at the ‘future’ Period 5s from previous
sequences to help guess what lies ahead.

Of course, it is well known that repeated-game behaviour can arise in
finite-horizon games when there are a small number of ‘unusual’ types (who
act as though the horizon is unlimited), which creates an incentive for
rational players to behave as if the horizon is unlimited until near the end
(for example, Kreps and Wilson, 1982). But specifying why some types are
irrational, and how many there are, makes this interpretation difficult to
test. In the teaching approach, which ‘unusual’ type the teacher pretends
to be arises endogenously from the payoff structure: they are Stackelberg
types, who play the strategy they would choose if they could commit to it.
For example, in trust games, they would like to commit to repaying; but in
entry-deterrence, they would like to commit to fighting entry.

The model is estimated using repeated game trust data from Camerer
and Weigelt (1988). In Camerer et al. (2002a), we used parametric EWA to
model behaviour in trust games. This model allows two different sets of
EWA parameters for lenders and borrowers. In this chapter we use self-
tuning EWA tomodel lenders and adaptive borrowers so the model has fewer
parameters.54 Maximum likelihood estimation is used to estimate parameters
on 70 per cent of the sequences in each experimental session, then behaviour
in the holdout sample of 30 per cent of the sequences is forecast using the
estimated parameters.

As a benchmark alternative to the teaching model, we estimated an agent-
based version of QRE suitable for extensive-form games (see McKelvey and
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Palfrey, 1998). Agent-based QRE is a good benchmark because it incorporates
the key features of repeated-game equilibrium – strategic foresight, accur-
ate expectations about actions of other players, and Bayesian updating –
but assumes stochastic best-response. We use an agent-based form in which
players choose a distribution of strategies at each node, rather than using
a distribution over all history-dependent strategies. We implement agent
QRE (AQRE) with four parameters – different �s for lenders, honest borrow-
ers and normal borrowers, and a fraction �, the percentage of players with
normal-type payoffs who are thought to act as if they are honest (reflecting
a ‘homemade prior’ which can differ from the prior induced by the exper-
imental design55). (Standard equilibrium concepts are a special case of this
model when �s are large and � = 0, and fit much worse than does AQRE).
The implemention in our 2002 paper is itself a small contribution since it is
quite complex to estimate AQRE in these games.

The models are estimated separately on each of the eight sessions to gauge
cross-session stability. Since pooling sessions yields similar fits and parameter
values, we report only those pooled results in Table 8.8 (excluding the �

values). The interesting parameters for sophisticated borrowers are estimated
to be �̂ = 0�89 and �̂ = 0�93, which means that most subjects are classified
as teachers and they put a lot of weight on previous sequences. The teach-
ing model fits in-sample and predicts better out-of-sample than AQRE by a
modest margin (and does better in six out of eight individual experimental
sessions), predicting about 75 per cent of the choices correctly. The AQRE fits
reasonably well too (72 per cent correct) but the estimated ‘homemade prior’
� is 0.91, which is absurdly high. (Earlier studies estimated numbers around
0.1–0.2.) The model basically fits best by assuming that all borrowers simply
prefer to repay loans. This assumption fits most of the data but it mistakes

Table 8.8 Model parameters and fit in repeated trust games

Statistic Model

Self-tuning EWA+ Agent
teaching QRE

In-sample Hit rate (%) 76.5% 73.9%
Calibration �n= 5757	 log-likelihood −2975 −3131

Out-of-sample Hit rate (%) 75.8% 72.3%
Validation �n= 2894	 log-likelihood −1468 −1544

Parameters Estimates

Cross-sequence learning � 0.93 –
Percentage of teachers � 0.89 –
Homemade prior p(honest) � – 0.91
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teaching for a pure repayment preference. As a result, it does not predict the
sharp upturn in defaults in Periods 7–8, which the teaching model does.56

Figure 8.9(c)–(d) show average predicted probabilities from the teaching
model for the no-loan and conditional default rates. No-loan frequencies
are predicted to start low and rise across periods, as they in fact do, though
the model underpredicts the no-loan rate in general. The model predicts
the increase in default rate across periods reasonably well, except for under-
predicting default in the last period.

The teaching approach is a boundedly-rational alternative to type-based
equilibrium models of reputation formation.57 It has always seemed improb-
able that players are capable of the delicate balance of reasoning required to
implement the type-basedmodels, unless they learn the equilibrium through
some adaptive process. The teaching model is one parametric model of that
adaptive process. It retains the core idea in the theory of repeated games –
namely, strategic foresight – and consequently respects the fact that match-
ing protocols matter. And since the key behavioural parameters (� and �)
appear to be near 1, restricting attention to these values should make the
model workable for doing theory.

Summary

In this section we introduced the possibility that players can be sophistic-
ated – that is, they believe others are learning. (In future work, it would be
interesting to link steps of iterated thinking, as in the first section, to steps
of sophisticated thinking.) Sophistication links learning theories to equilib-
rium ones if sophisticated players are self-aware. Adding sophistication also
improves the fit of data from repeated beauty-contest games. Interestingly,
the proportion of estimated sophisticates is around a quarter when subjects
are inexperienced, but rises to around three-quarters when they play an
entire 10-period game for a second time, as if the subjects learn about learn-
ing. Sophisticated players who know they will be rematched repeatedly may
have an incentive to ‘teach’, which provides a boundedly rational theory of
reputation formation. We apply this model to data on repeated trust games.
The model adds only two behavioural parameters, representing the fraction
of teachers and how much ‘peripheral vision’ learners have (and some nuis-
ance � parameters), and predicts substantially better than a quantal response
version of equilibrium.

Conclusion

In the introduction we stated that the research programme in behavioural
game theory has three goals: (i) to create a theory of one-shot or first-period
play using an index of bounded rationality measuring steps of thinking; (ii)
to predict features of equilibration paths when games are repeated; and (iii) to
explain why players behave differently when matched together repeatedly.58
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The models described in this chapter illustrate ways to understand these
three phenomena. There are many alternative models (especially of learn-
ing). The models described here are just some examples of the style in which
ideas can be expressed, and how data are used to test and modify them.

Keep in mind that the goal is not to list deviations from the Nash equi-
librium and stop there. Deviations are just hints. The goal is to develop
alternative models which are precise, general and disciplined by data – that
is, some day game theory might be taught beginning with behavioural mod-
els and ending with analytical concepts such as equilibrium and its many
refinements. All such models deserve to be called ‘game theory’, except
that these models are behavioural – rooted in psychological regularity and
sharpened by having to explain data – while analytical models are simply
useful fictional answers to questions about how players of varying degrees
of hypothetical rationality behave.

The thinking-steps model posits a Poisson distribution (with mean �) of
numbers of thinking steps, along with decision rules for what players using
each number of steps will do. Studies with simple matrix games, beauty
contests (unreported), mixed games, and entry games all show that values
of � around 1.5 can fit data reasonably well (and never worse than the Nash
equilibrium). The model is easy to use because players can be assumed to
best-respond and the model usually makes realistic probabilistic predictions
because the mixture of thinking steps types creates a population mixture
of responses. The surprise is that the same model, which is tailor-made to
produce spikes in dominance-solvable games, can also fit data from games
with pure and mixed equilibria using roughly the same �.

The second section compared several adaptive learning models. For
explaining simple trends in equilibration, many of these models are close
substitutes. However, it is useful to focus on where models fail if the goal
is to improve them. The EWA hybrid was created to include the psycholo-
gical intuitions behind both reinforcement learning (received payoffs receive
more weight than forgone payoffs) and belief learning (both types of payoff
receive equal weight). If both intuitions were compelling enough for people
to want to compare them statistically, then a model that had both intuitions
in it should be better still (and generally, it is). Self-tuning EWA uses one
parameter (�) and substitutes functions for parameters. The major surprise
here is that functions such as the change-detector #i�t	 can reproduce differ-
ences across games in which parameter values fit best. This means that the
model can be applied to brand-new games (when coupled with a thinking-
steps theory of initial conditions) without having to make a prior judgement
about which parameter values are reasonable, and without positing game-
specific strategies. The interaction of learning and game structure creates
reasonable parameter values automatically.

In the third section we extended the adaptive learning models to include
sophisticated players who believe that others are learning. Sophistication
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improves fit in the beauty contest game data. (Experienced subjects seem to
have ‘learned about learning’ because the percentage of apparently sophist-
icated players is higher and convergence is faster.) Sophisticated players who
realize they are matched with others repeatedly often have an incentive to
‘teach’, as in the theory of repeated games. Adding two parameters to adapt-
ive learning was used to model learning and teaching in finitely-repeated
trust games. While trustworthy behaviour early in these games is known
to be rationalizable by Bayesian – Nash models with ‘unusual’ types, the
teaching model creates unusual types from scratch. Teaching also fits and
predicts better than more forgiving quantal response forms of the Bayesian –
Nash type-based model. The surprise here is that the logic of mutual con-
sistency and type updating is not needed to produce accurate predictions in
finitely-repeated games with incomplete information.

Potential applications

A crucial question is whether behavioural game theory can help to explain
naturally-occurring phenomena. We conclude the chapter with some spec-
ulations about the sorts of phenomena precise models of limited thinking,
learning and teaching could illuminate.

Bubbles

Limited iterated thinking is potentially important because, as Keynes and
many others have pointed out, it is not always optimal to behave rationally
if you believe others are not. For example, prices of assets should equal their
fundamental or intrinsic value if rationality is common knowledge (Tirole,
1985). But when the belief that others might be irrational arises, bubbles can
too. Besides historical examples such as Dutch tulip bulbs and the $5 trillion
tech-stock bubble in the 1990s, experiments have shown such bubbles even
in environments in which the asset’s fundamental value is controlled and
commonly known.59

Speculation and competition neglect

The ‘GrouchoMarx theorem’ says that traders who are risk-averse should not
speculate by trading with each other even if they have private information
(since the only person who will trade with you may be better-informed).
But this theorem rests on unrealistic assumptions of common knowledge of
rationality and is violated constantly by massive speculative trading volume
and other kinds of betting, as well as in experiments.60

Players who do limited iterated thinking, or believe others are not as smart
as themselves, will neglect competition in business entry (see Camerer and
Lovallo, 1999; Huberman and Rubinstein, 2000). Competition neglect may
partly explain why the failure rate of new businesses is so high. Managerial
hubris, over-confidence and self-serving biases correlated with costly delay
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and labour strikes in the lab (Babcock et al., 1995) and in the field (Babcock
and Loewenstein, 1997) can also be interpreted as players not believing that
others always behave rationally.

Incentives

In a thorough review of empirical evidence on incentive contracts in organ-
izations, Prendergast (1999) notes that workers typically react to simple
incentives, as standard models predict. However, firms do not usually imple-
ment complex contracts, which should elicit greater effort and improve effi-
ciency. Perhaps the firms’ reluctance to bet on rational responses by workers
is evidence of limited iterated thinking.

Macroeconomics

Woodford (2001) notes that in Phelps–Lucas ‘islands’ models, nominal
shocks can have real effects, but their predicted persistence is too short
compared to effects in data. He shows that imperfect information about
higher-order nominal gross domestic product (GDP) estimates – beliefs about
beliefs, and higher-order iterations – can cause longer persistence which
matches the data. However, Svensson (2001) notes that iterated beliefs are
probably constrained by computational capacity. If people have a projection
bias, their beliefs about what others believe will be too much like their own,
which undermines Woodford’s case. On the other hand, in the thinking-
steps model, players’ beliefs are not mutually consistent so there is higher-
order belief inconsistency which can explain longer persistence. In either
case, knowing precisely how iterated beliefs work could help to inform a
central issue in macroeconomics – persistence of the real effects of nominal
shocks.

Learning

Other phenomena are evidence of a process of equilibration or learning. For
example, institutions for matching medical residents and medical schools,
and analogous matching in college sororities and college bowl games,
developed over decades and often ‘unravel’ so that high-quality matches
occur before some agreed-upon date (Roth and Xing, 1994). Bidders in eBay
auctions learn to bid late to hide their information about an object’s com-
mon value (Bajari and Hortacsu, 2003). Consumers learn over time what
products they like (Ho and Chong, 2003). Learning in financial markets
can generate excess volatility and returns predictability, which are otherwise
anomalous in rational expectations models (Timmerman, 1993). We are cur-
rently studying evolution of products in a high-uncertainty environment
(electronics equipment) for which thinking-steps and learning models are
proving useful.
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Teaching

Teaching in repeated games may prove to be the most potentially useful tool
for economics, because it is essentially an account of how bounded rational-
ity can give rise to some features of repeated-game behaviour, where stand-
ard theory has been applied widely. The teaching model could be applied
to repeated contracting, employment relationships, alliances among firms,
industrial organization problems (such as pricing games among perennial
rivals, and entry deterrence) and macroeconomic models of policy-maker
inflation-setting. For example, the teaching model could be applied to the
Kydland – Prescott model of commitment in which the public learns about
inflation from past history (using the self-tuning EWA rule described in the
Appendix) and unemployment is determined by an expectational Phillips
curve. Since policy-makers face a temptation to choose surprisingly high
inflation to lower unemployment, they can either act myopically or ‘teach’
the public to expect low inflation which is Pareto-optimal in the long-run
(see Sargent, 1999). A model similar to self-tuning EWA applied to hyperin-
flations is Marcet and Nicolini (2003).

Appendix: thinking models applied to mixed games
and entry games

Games with mixed equilibria
A good model of thinking steps should be able both to account for deviations from
the Nash equilibrium (as in the games above), and reproduce the successes of the Nash
equilibrium. A domain in which the Nash equilibrium does a surprisingly good job
is in games with unique mixed equilibria. It is hard to beat the Nash equilibrium in
these games because (as we shall see) the correlation with data is in fact very good
(around 0.9) so there is little room for improvement. Instead, the challenge is to see
how well a thinking-steps model which bears little resemblance to the algebraic logic
of equilibrium mixing can approximate behaviour in these games.

Early tests in the 1960s and 1970s (mostly by psychologists) appeared to reject
the Nash equilibrium as a description of play in mixed games. As others have noted
(for example, Binmore et al., 2001), these experiments were incomplete in important
dimensions and hence inconclusive. Financial incentives were very low or absent;
subjects typically did not play other human subjects (and often were deceived about
playing other people, or were instructed only vaguely about how their computer
opponents played); and pairs were often matched repeatedly so that (perceived) detec-
tion of temporal patterns permitted subjects to choose non-equilibrium strategies.
Under conditions ideal for equilibration, however, convergence was rapid and sharp.
Kaufman and Becker (1961), for example, asked subjects to specify mixtures and told
them that a computer program would then choose a mixture to minimize the sub-
jects’ earnings. Subjects could maximize their possible gains by choosing the Nash
mixture. After playing five games, more than half learned to do so. More recent exper-
iments are also surprisingly supportive of the Nash equilibrium (see Binmore et al.,
2001; Camerer, 2002, ch. 2). The data are supportive in two senses: (i) equilibrium
predictions and actual frequencies are closely correlated, when taken as a whole (for
example, strategies predicted to be more likely are almost always played more often);



Colin F. Camerer, Teck-Hua Ho, Juin Kuan Chong 165

and (ii) it is hard to imagine any parsimonous theory that can explain the modest
deviations.

We applied a version of the thinking model in which K−step thinkers think all
others are using K− 1 steps along with best response to see whether it could pro-
duce predictions as accurate as Nash in games with mixed equilibria. This model is
extremely easy to use (just start with step-zero mixtures and compute best responses
iteratively). Furthermore, it creates natural ‘purification’: players using different think-
ing steps usually choose pure strategies, but the Poisson distribution of steps generates
a mixture of responses, and hence a probabilistic prediction.

Model predictions are compared with data from fifteen games with unique mixed
equilibria, reported in Camerer (2002, ch. 2).61 These games are not a random or
exhaustive sample of recent research but there are enough observations that we are
confident the basic conclusion will be overturned by adding more studies. Note that
we use data from all the periods of these games rather than the first period only. (In
most cases, the first-period data are rarely reported, and there is usually little trend
over time in the data.)

Figure 8.A1 plots actual frequencies on the ordinate (y) axis against either mixed-
strategy equilibrium predictions or thinking-steps predictions on the abscissa (x) axis.
Each data point in Figure 8.A1 represents a single strategy from a different game
(pooling across all periods to reduce sampling error).62

In Figure 8.A1, the value of � is common across games (1.46) and minimizes mean
squared deviations between predicted and actual frequencies. When values are estim-
ated separately for each game to minimize mean squared deviations, the values across
the games (in the order they are listed above) are 0.3, 0.3, 0.3, 2.2, 2.5, 0.1, 1.8, 2.3,
2.9, 2.7, 0.5, 0.8, 1.6, 1.5, 1.9. The lower values occur in games where the actual
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mixtures are close to equal across strategies, so that a distribution with � = 0 fits well.
When there are dominated strategies, which are usually rarely played, much higher �
values are needed, since low � generates a lot of random play and frequent dominance
violation. The simple arithmetical average across the fifteen games is 1.45, which is
very close to the best-fitting common � = 1�46. Figure 8.A1 shows two regularities:
both thinking-steps (circles in the plot) and equilibrium predictions (triangles) have
very high correlations (above 0.8) with the data, though there is substantial scatter,
especially at high probabilities. (Keep in mind that sampling error means there is an
upper bound on how well any model could fit – even the true model that generated
the data.) The square root of the mean squared deviation is around 0.10 for both
models.

While the thinking-steps model with common � is a little less accurate than the
Nash equilibrium (the game-specific model is more accurate), the key point is that
the same model that can explain Nash deviations in dominance-solvable games and
matrix games fits almost as well with a value of � close to those estimated in other
games.

Table 8.A1 shows a concrete example of how the thinking model is able to approx-
imate mixture probabilities. The game is Mookerjhee and Sopher’s (1997) 4×4 game.
Payoffs are shown as wins �+	 or losses �−	 (�2/3	+means a 2/3 chance of winning)
in the upper left cells. The rightmost columns show the probabilities with which
row players using different thinking steps choose each of the four row strategies. To
narrate a little, zero-step players randomize (each is played with probability of 0.25);
one-step players best-respond to a random column choice and choose row strategy 3
with probability of 1, and so on. First notice that the weakly dominated strategy (4) is
only chosen by a quarter of zero-step players (since it is never the best response against
players who randomize), which generates a small amount of choice that matches
the data. Notice also that the best responses tend to lurch around as thinking-steps
changes. When these are averaged over thinking-steps frequencies, a population mix-
ture results. Furthermore, one of the quirkiest features of mixed equilibrium is that
one player’s mixture depends only on the other player’s payoffs. This effect also
occurs in the thinking steps models, because a K-step row player’s payoffs affect row’s
best responses, which then affect a K+1-step column player’s best response. So one
player’s payoffs affect the other’s strategies indirectly. Table 8.A1 also shows the MSE
(mixed equilbrium) prediction, the data frequencies and overall frequencies from the
thinking-steps model when � = 2�2. The model fits the data more closely than MSE
for row players (it accounts for underplay of row 2 strategy and overplay of strategy
3) and is as accurate as MSE for column players. As noted in the text, the point is not
that the thinking-steps model outpredicts MSE – it cannot, because MSE has such a
high correlation – but simply that the model that explains behaviour in dominance-
solvable, matrix and entry games also generates mixtures of players playing near-pure
strategies that are close to outcomes in mixed games.

Market entry games
Analysis of the simple entry game described in the text proceeds as follows. Step 0s
randomize so f�0	/2 level 0s enter. Define the relative proportion of entry after
accounting up through level k as N�k	. Define a Boolean function B�X	= 1 if X true,
B�X	= 0 if X false. Level 1s enter iff 1/2< c. Therefore, total entry ‘after’ Level 1 types
are accounted for is N�1	 = f�0	/2+B�N�0	/�f�0	/2	 > c�f�1	. Total entry after Level k
type is therefore N�k	 = f�0	/2+∑k

n=1 f�n	B�N�n−1	/�
∑k

m=1 f�m		 > c�. A given c and
� then generates a sequence of cumulated entry rates which asymptotes as k grows
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Table 8.A1 How thinking steps fits mixed-game data

Row Strategies 1–4 Column thinking steps 0–5 MSE Data Thinking
strategies 1 2 3 4 Step 0 1 2 3 4 5 Model

1 + – – + 0.25 0 0.5 1 0 0 0.375 0.32 0.37
2 – – + + 0.25 0 0 0 1 0 0.25 0.17 0.14
3 – + �2/3	+ �2/3	+ 0.25 1 0.5 0 0 1 0.375 0.43 0.46
4 – – �1/3	+ + 0.25 0 0 0 0 0 0 0.08 0.03
Steps
0 0.25 0.25 0.25 0.25
1 0.5 0.5 0 0
2 1 0 0 0
3 0 0 1 0
4 0 0.5 0.5 0
5 0.5 0.5 0 0
6 1 0 0 0
7 0 0 1 0
MSE 0.375 0.25 0.375 0
Data 0.38 0.31 0.27 0.04
Thinking 0.46 0.23 0.28 0.03

Source: Mookerjhee and Sopher (1997) 4×4 game.



168 Behavioural Game Theory: Thinking/Learning/Teaching

large. Define a function N�all��	�c	 as the overall rate of entry, given �, for various
capacities of c.

The data reported in the text come from experiments by Sundali et al. (1995) and
Seale and Rapoport (2000). Their game is not precisely the same as the one analyzed
because, in their game, entrants earn 1+2�c− e	 (where e is the number of entrants)
and non-entrants earn 1. They used twenty subjects with odd values of c�1�3� � � � 19	.
To compute entry rates reported in Figure 8.A1 we averaged entry for adjacent c values
(that is, averaging 1 and 3 yields a figure for c = 2 matching c = 0�1, averaging 3
and 5 yields a figure for c = 4 corresponding to c = 0�2 and so on). Obviously, the
analysis and data are not perfectly matched, but we conjecture that the thinking-steps
model can still match data closely and reproduce the three experimental regularities
described in the text; whether this is true is the subject of ongoing research.

Notes

1 Our models are related to important concepts such as rationalizability, which
weakens the mutual consistency requirement, and behaviour of finite automata.
The difference is that we work with simple parametric forms and concentrate on
fitting them to data.

2 In his thesis proposing a concept of equilibrium, Nash himself suggested that
equilibrium might arise from some ‘mass action’ that adapted over time. Taking
up Nash’s implicit suggestion, later analyses filled in details of where evolutionary
dynamics lead (see Weibull, 1995; Mailath, 1998).

3 While great triumphs of economic theory come from parameter-free models (for
example, Nash equilibrium), relying on a small number of free parameters is more
typical in economicmodelling. For example, nothing in the theory of intertemporal
choice pins a discount factor 
 to a specific value. But if a wide range of phenomena
are consistent with a value such as 0.95, for example, then as economists we are
comfortable working with such a value despite the fact that it does not emerge
from axioms or deeper principles.

4 Lucas (1986) makes a similar point in macroeconomic models. Rational expect-
ations often yield indeterminacy, whereas adaptive expectations pin down a
dynamic path. Lucas writes: ‘The issue involves a question concerning how collec-
tions of people behave in a specific situation. Economic theory does not resolve the
question � � � It is hard to see what can advance the discussion short of assembling a
collection of people, putting them in the situation of interest, and observing what
they do’ (p. S421).

5 Quantal response equilibrium (QRE), a statistical generalization of Nash, almost
always explains the direction of deviations from Nash and should replace Nash
as the static benchmark to which other models are routinely compared. Stahl and
Wilson (1995), Capra (1999) and Goeree and Holt (2003) have models of limited
thinking in one-shot games which are similar to ours. Jehiel (2002) proposes a
concept of limited foresight in games in which analogy is used to truncate complex
games. There are many learning models. Self-tuning EWA generalizes some of them
(though reinforcement with payoff variability adjustment is different; see Erev
et al., 1999). Other approaches include rule learning (Stahl, 1996, 2000), and earlier
artificial intelligence (AI) tools such as genetic algorithms or genetic programming
to ‘breed’ rules (see Jehiel, forthcoming). Finally, there are no alternative models
of strategic teaching that we know of but this is an important area others should
examine.
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6 Note the timing convention – attractions are defined before a period of play; so
the initial attractions Aj

i�0	 determine choices in Period 1, and so on.
7 This concept was first studied by Stahl and Wilson (1995) and Nagel (1995), and

later by Ho, et al. (1998). A 1993 working paper by Debra Holt that also pioneered
this approach was published in 1999. See also Sonsino et al. (2000).

8 Embedded sentences are those in which subject–object clauses are separated by
other subject–object clauses. A classic example is: ‘The mouse that the cat that the
dog chased bit ran away’. To answer the question ‘Who got bitten?’ the reader
must keep in mind ‘the mouse’ while processing the fact that the cat was chased
by the dog. Limited working memory leads to frequent mistakes in recalling the
contents of such sentences or answering questions about them (Christiansen and
Chater, 1999). This notation makes it easier: ‘The mouse that (the cat that [the
dog chased] bit) ran away’.

9 A natural competitor to the thinking-steps model for explaining one-shot games
is quantal response equilibrium (QRE) (see McKelvey and Palfrey, 1995, 1998;
Goeree and Holt, 1999a). Weiszacker (2003) suggests an asymmetric version
equivalent to a thinking-steps model in which one type thinks others are more
random than s/he is. More cognitive alternatives are the theory of thinking trees
of Capra (1999) and the theory of ‘noisy introspection’ of Goeree and Holt (2004).
In Capra’s model, players introspect until their choices match those of players
whose choices they anticipate. In Goeree and Holt’s theory, players use an iter-
ated quantal response function with a response sensitivity parameter equal to
�/tn where n is the discrete iteration step. When t is very large, their model cor-
responds to one in which all players do one-step and think others do zero. When
t = 1 the model is QRE. All these models generate unimodal distributions so they
need to be expanded to accommodate heterogeneity. Further work should try to
distinguish different models, or investigate whether they are similar enough to
be close modelling substitutes.

10 The data are 48 subjects playing 12 symmetric 3×3 games (Stahl and Wilson,
1995); 187 subjects playing 8 2×2 asymmetric matrix games (Cooper and Van
Huyck, 2003); and 36 subjects playing 13 asymmetric games ranging from 2×2
to 4×2 (Costa-Gomes et al., 2001).

11 While the common-� models have one more free parameter than QRE, any reas-
onable information criterion penalizing the LL would select the thinking model.

12 When � is set to 100 the � estimates become very regular, around 2, which suggests
that the variation in estimates is caused by poor identification in these games.

13 The differences in LL across game-specific and common � are 0.5, 49.1 and 9.4.
These are marginally significant (apart from Cooper–Van Huyck).

14 Take the over-confidence K−1 model. The 70 per cent frequency of X choices
without belief-prompting is consistent with this model if f�0��	/2+ f�1��	= 0�70,
which is satisfied most closely when � = 0�55. If belief-prompting moves all think-
ing up one step, then the former zero-steppers will choose X and all others choose
Y . When � = 0�55 the fraction of level zeros is 29 per cent, so this simple model
predicts 29 per cent choice of X after belief-prompting, close to the 30 per cent
that is observed.

15 Information measures are crucial to resolving the question of whether offers that
are close to equal splits are equilibrium offers which reflect fairness concerns,
or reflect at limited look-ahead and heuristic reasoning. The answer is both (see
Camerer et al., 1993; Johnson et al., 2002). In the Costa-Gomes (2001) study, two
different decision rules always led to the same choices in their games, but required
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different look-up patterns. The look-up data were able therefore to classify players
according to decision rules more conclusively than could choices alone.

16 To name only a few examples, see Camerer (1987) in markets for risky assets
(partial adjustment models); Smith et al. (1988) in finitely-lived asset markets
(Walrasian excess demand); McAllister (1991) in co-ordination games (reinforce-
ment); Camerer and Weigelt (1993) in stochastically-lived assets (entrepreneurial
stockpiling); Roth and Erev (1995) in bargaining and best-shot public goods games
(reinforcement learning); Ho and Weigelt (1996) in extensive-form co-ordination
games (reinforcement and belief learning); and Camerer and Cachon (1996) in
co-ordination games (Cournot dynamics).

17 The parameter � is different from the one used in our original paper and is
equivalently called ‘kappa’ in our recent working papers.

18 We have also applied slight variants of the model to extensive-form centipede
games (Ho et al, 1999), extensive-form signalling games (Anderson and Camerer,
2001); and bilateral call markets with private values (Camerer et al., 2002). Adapt-
ing the model to extensive forms and incomplete information requires making
very slight further assumptions, but the three studies we have done show that
the same basic framework can be used successfully. In extensive-form games the
model needs to estimate forgone payoffs for branches of the game tree that are
not reached. In the papers listed above, we do this using historical information,
some average of the minimum and maximum payoffs (in signalling and centi-
pede games), or ‘clairvoyance’ (the other player’s stated conditional response to
the unchosen path in the tree, in centipede games). Any of these assumptions
fit equally well. In the bilateral call markets we ‘spill over’ reinforcement from
one private value to neighbouring private values (this kind of generalization is
assumed in belief learning), but the strength of spillover depends on how close
the private values are; see also Roth and Erev (1995).

19 Other models aim to explain choices aggregated at some level. Of course, models
of this sort can sometimes be useful. But our view is that a parsimonious model
that can explain very fine-grained data can probably explain aggregated data well
too, while the opposite may not be true, so the harder challenge is to explain
fine-grained data.

20 See also Cheung and Friedman, 1997, pp. 54–5; Fudenberg and Levine, 1998,
pp. 184–5; and Ed Hopkins, 2002.

21 See Bush and Mosteller, 1955; Harley, 1981; Cross, 1983; Arthur, 1991; McAllister,
1991; Roth and Erev, 1995; Erev and Roth, 1998.

22 When updated fictitious play beliefs are used to update the expected payoffs of
strategies, precisely the same updating is achieved by reinforcing all strategies
by their payoffs (whether received or forgone). The beliefs themselves are an
epiphenomenon that disappear when the updating equation is written expected
payoffs rather than beliefs.

23 Weber (forthcoming) also finds that players’ choices change over time, as if they
are learning, even with no feedback about what others have done (that is, even
when they choose strategies repeatedly with no feedback). He suggests that players
are using their own previous choices as a kind of pseudo-experience.

24 Taken seriously, reinforcement models also predict that learning paths will look
the same whether players know their full payoff matrix or not. This prediction
is rejected in all the studies that have tested it – for example, Mookerjhee and
Sopher, 1994; Rapoport and Erev, 1998; Van Huyck et al., 2001.
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25 In mixed games, no model improves much on the Nash equilibrium (and often
does not improve on quantal response equilibrium at all, and parameter identi-
fication is poor; see Salmon, 2001).

26 Typically, we penalize in-sample likelihood functions using the Akaike and
Bayesian information criteria, which subtract a penalty of one, or log(n), times the
number of degrees of freedom from the maximized likelihood. More persuasively,
we rely mostly on out-of-sample forecasts which will be less accurate if a more
complex model simply appears to fit better because it overfits in sample.

27 Note that, if your statistical objective is to maximize hit rate, � does not matter
and so self-tuning EWA is a zero-parameter theory given initial conditions.

28 Note that, if there is more than one other player, and the distinct choices by
different other players matter to player i, then the vector is an n−1-dimensional
matrix if there are n players.

29 In a naturally-occurring application where the equilibrium structure is not known
to the modeller, it is easy to create some statistic that proxies for W , such as the
number of strategies that have been chosen more than 25 per cent of the time
in the previous eight periods. Such a rule will often overestimate W in empirical
application, biasing #i�t	 upwards compared to the value created by knowing
W exactly. Since letting #i�t	 dip too low, and discarding history irretrievably is
a bigger mistake than keeping too much history, such an adjustment typically
should not be a big mistake.

30 If one is uncomfortable assuming subjects act as if they know W , you can easily
replace W by some function of the variability of others’ choices to proxy for W .

31 Formally, �i�t	 = 2× 
∑mi

k=1 f
�k	
i �t	× mi−k

mi−1 � where f ki �t	 are ranked from the lowest
to the highest.

32 In our recent work we have switched to a model in which 
 is 1 for strategies that
are better (or equally good) responses to the current strategy, and zero for worse
responses. This in fact fits a little worse than 
i�t	 = #i�t	/W , but has a sensible
interpretation in terms of direction learning and dual-system dynamics. We also
fix �= 0 in recent work, since allowing the flexible �i�t	 function adds little to fit.

33 The initial parameter values are #i�0	 = �i�0	 = 0�5 and 
i�0	 = #i�0	/W . These
initial values are averagedwith period-specific values determined by the functions,
weighting the initial value by 1

t
and the functional value by t−1

t
.

34 For example, suppose half the players choose ABABAB � � � in a game, and half
choose BABAB � � � . Then a model which says that A is chosen half the time will
fit perfectly in every period, even though it does not predict the transition from
A to B and vice versa accurately at all.

35 The parameter � seems to vary reliably across games in ways that are not easily
adjusted for by rescaling payoffs to common inflation-adjusted currency levels.

36 More details are in Ho et al., 2001, and corresponding graphs for all games can be
seen at http://www.bschool.nus.edu.sg/ depart/mk/fbacjk/ewalite/ewalite.htm.

37 Subjects were 196 undergraduate students in computer science and engineering
in Singapore. Each group played ten times together twice, with different values of
p in the two 10-period sequences. (One sequence used p > 1 and is not included.)
We analyse a subsample of their data with p= 0�7 and 0�9, from groups of size 7.
This subsample combines groups in a ’low experience’ condition (the game is the
first of two they play) and a ‘high experience’ condition (the game is the second
of two, following a game with p > 1).

38 Reinforcement can be speeded up in such games by reinforcing unchosen
strategies in some way, as Roth and Erev (1995) did in market games, which is
why EWA and belief learning do better.
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39 Their experiment used ten cohorts of seven subjects each, playing for fifteen
periods. At the end of each period subjects learned the median, and played again
with the same group in a partner protocol. Payoffs were the amounts on the table,
in pennies.

40 At the high equilibrium, the payoffs are larger and so the difference between
the received payoff and 
 times the foregone payoff will be larger than at the
low equilibrium. (Numerically, a player who chooses 3 when the median is 3
earns $0.60 and has a forgone payoff from 2 or 4 of $0.58 ·
. The corresponding
figures for a player choosing 12 are $1.12 and $1�10 ·
. The differences in received
and forgone payoffs around 12 and around 3 are the same when 
 = 1, but the
difference around 12 grows larger as 
 falls (for example, for the self-tuning EWA
estimate 
̂= 0�69, the differences are $0.20 and $0.36 for 3 and 12). Cumulating
payoffs rather than averaging them ‘blows up’ the difference and produces sharper
convergence at the high equilibrium.

41 They also had a session with R = 10 but in this session one subject sat out each
round so we dropped it to avoid making an ad hoc assumption about learning in
this unusual design. Each subject played ten times (and played with a different R
for five more rounds; we use only the first ten rounds).

42 As � rises, the QRE equilibria move sharply from smearing probability through-
out the price range (for low �) to a sharp spike at the equilibrium (higher �).
No intermediate � can explain the combination of initial dispersion and sharp
convergence at the end so the best-fitting QRE model essentially makes the Nash
prediction.

43 In beauty contests and co-ordination games, payoffs depend on the mean or
median of fairly large groups (7–9 except in 3-person entry games), so switching
one subject’s choice to the recommendation would probably not change themean
or median and hence would not change future behaviour much. In other games,
players are usually paired randomly so the boomerang effect again is muted. We
are currently redoing the analysis to simply compare profits of players whose
choices frequently matched the recommendation with those who rarely did. This
controls for the boomerang effect and also for a Lucas critique effect in which
adopting recommendations would change the behaviour of others and hence
the model parameters used to derive the recommendations. A more interesting
correction is to run experiments in which one or more computerized subjects in
fact use a learning model to make choices, and compare their performance with
that of actual subjects.

44 For example, in the continental divide game, ex-post optimal payoffs would have
been 892 (pennies per player) if players knew exactly what the median would be,
and subjects in fact earned 837. EWA and self-tuning EWA generate simulated
profits of 879–882, which is only an improvement of 5 per cent over 837, but
is 80 per cent of the maximum possible improvement from actual payoffs to
clairvoyant payoffs.

45 Partow and Schotter (1993), Mookerjee and Sopher (1994), Cachon and Camerer
(1996).

46 Sophistication may also have the potential to explain why players sometimes
move in the opposite direction to that predicted by adaptive models (Rapoport,
1999), and why measured beliefs do not match up well with those predicted by
adaptive belief learning models (Nyarko and Schotter, 2002).

47 To truncate the belief hierarchy, the sophisticated players believe that the other
sophisticated players, like themselves, believe there are �′ sophisticates.
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48 The gap between apparent sophistication and perceived sophistication shows
the empirical advantage of separating the two. Using likelihood ratio tests, we
can clearly reject both the rational expectations restriction � = �′ and the pure
overconfidence restriction �′ = 0, although the differences in log-likelihood are
not large.

49 Borrower subjects do not play consecutive sequences, which removes their incent-
ive to repay in the eighth period of one sequence so they can get more loans in
the first period of the next sequence.

50 To economize on computing, we search only paths of future actions that always
have default following repay because the reverse behaviour (repay following
default) generates a lower return.

51 Formally, P̂
j′
L �a� k�$�j$−1	 = P̂LoanL �a� k� v − 1�jv−1	 · Pj′L �a� k�$��Loan� j$−1		 +

P̂NoLoanL �a� k�$−1�j$−1	 ·Pj
′
L �a� k�$��NoLoan� j$−1		.

52 This is called ‘observational learning’ (see Duffy and Feltovich, 1999; Armentier,
2004). Without this assumption, the model learns far move slowly than do the
lenders, so it is clear that they are learning from observing others.

53 The idea is to create an ‘interim’ attraction for Round t�B
j
L�a� k� t	, based on the

attraction A
j
L�a� k� t−1	 and payoff from Round t , then incorporate experience in

Round t+1 from previous sequences, transforming BjL�a� k� t	 into a final attraction
A
j
L�a� k� t	. See Camerer et al. (2002) for details.

54 We use four separate �s for honest borrowers, lenders, normal adaptive borrowers
and teaching borrowers, an initial attraction for lending A(0), and the spillover
parameter � and teaching proportion �.

55 See Camerer and Weigelt (1988); Palfrey and Rosenthal (1988); McKelvey and
Palfrey (1992).

56 In our current extension of the Camerer et al. (2002) paper on strategic teaching,
we impose a value of � that was measured independently in a separate experiment
on one-shot trust games. It is around 0.20, much lower than the estimate of 0.91,
and when this measured number is used instead of letting � be a free parameter,
AQRE degrades rather badly.

57 One direction we are pursuing is to find designs or tests that distinguish the
teaching and equilibrium updating approaches. The sharpest test is to compare
behaviour in games with types that are fixed across sequences with types that
are ‘refreshed’ independently in each period within a sequence. The teaching
approach predicts similar behaviour in these two designs, but type-updating
approaches predict that reputation formation dissolves when types are refreshed.

58 A fourth enterprise fits utility functions that reflect social preferences for fairness
or equality. This important area is not discussed in this chapter.

59 See Smith et al., 1988; Camerer and Weigelt, 1993; and Lei et al., 2001.
60 See Sonsino et al., 2000; Sovik, 2000.
61 The studies, in the order in which � estimates are reported below, are Malcolm

and Lieberman (1965), O’Neill (1987), Rapoport and Boebel (1992), Bloomfield
(1994), Ochs (1995, games with 9 and 4 payoffs), Mookerjhee and Sopher (1997),
Rapoport and Almadoss (2000, r = 8, 20), Binmore et al. (2001), Tang (2001, games
3 and 1), games 1, 3, 4. Readers please let us know of published studies we have
overlooked; we plan to include them in a later draft.

62 In each game, data from those n−1 out of the n possible strategies with the most
extreme predicted equilibrium probabilities are used to fit the models. Excluding
the n th strategy reduces the dependence among data points, since all n frequen-
cies (and predictions) obviously add up to one.
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Double Auction Markets with
Stochastic Supply and Demand
Schedules: Call Markets and
Continuous Auction Trading
Mechanisms
John H. Kagel ∗

Introduction

Performance under two different double auction trading mechanisms is
investigated: a call market and a continuous double auction trading mech-
anism. Both auctions are two-sided, with several buyers and several sellers.
A call market is a discrete tradingmechanism in which buyers (sellers) submit
a single bid (offer) in each trading period and the market clears according to
well-defined rules of who trades and at what prices. In a continuous double
auction, trades can occur at any time in the trading period, with buyers and
sellers free to update unaccepted bids and offers continuously. Both trading
mechanisms have wide applications in field settings, and have also been
the subject of intense experimental study (see Holt, 1995, for a survey of
experimental work).

This chapter adds to the literature through an experimental investigation
of double auction (DA) markets, in which buyers’ valuations and sellers’
costs are randomly drawn in each trading period. Although this procedure is
common practice in experimental studies of one-sided auctions, it is rarely
employed in experimental studies of DA markets, as these typically involve
stationary supply and demand schedules. A random value environment is
natural for investigating Bayesian–Nash equilibrium theories of price forma-
tion in DAmarkets (Wilson, 1987; Satterthwaite andWilliams, 1989a, 1989b;
Friedman, 1991) since traders are assumed to have incomplete information
regarding each other’s valuations. In contrast, with stationary supply and
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demand schedules, traders effectively acquire complete information regard-
ingmarket clearing price and quantity after several trading periods. Arguably,
random valuation procedures are also (i) more representative of field settings,
since supply and demand schedules are rarely, if ever, stationary from one
period to the next; and (ii) provide the appropriate vehicle for examining the
Hayek (1945) hypothesis – that markets are capable of achieving (close to)
the competitive equilibrium (CE) price and quantity resulting from truthful
revelation – as this hypothesis is intended to apply to markets where traders
have incomplete information regarding the CE.

Behaviour is studied in markets with two buyers and two sellers �m = 2	
and in markets with eight buyers and eight sellers �m = 8	. The call market
studied is the buyer’s bid double auction (BBDA) (Satterthwaite andWilliams,
1989a, 1989b) in which fully rational traders achieve near 100 per cent
efficiency with m = 8 (ibid., 1989a). The continuous double auction (CDA)
trading mechanism studied uses New York stock exchange rules but no
specialists book. The analysis proceeds on two levels: (i) comparisons of
efficiency and price convergence between the two mechanisms and com-
pared to outcomes in markets with stationary supply and demand schedules;
and (ii) comparisons of behaviour with theoretical predictions for the two
mechanisms.

Both trading mechanisms achieve relatively high efficiency levels
(75 per cent or higher) even in thin markets with m= 2. The CDA achieves
substantially higher average efficiency levels than the BBDA both in markets
with m = 2 (87 per cent versus 77.1 per cent average efficiency) and with
m= 8 (95.1 per cent versus 88.9 per cent). There are no significant differences
in price levels, relative to the CE norm, between the two institutions, with
both large and small numbers of traders. Thus, consistent with received wis-
dom from experiments with stationary supply and demand schedules (Holt,
1995), CDA outcomes are close to the CE level in markets with stochastic
supply and demand schedules, and achieve higher efficiency levels than
a sealed-bid trading mechanism.1 However, unlike markets with stationary
supply and demand schedules, there is no tendency for efficiency or prices
to converge to the CE level with increased trader experience within an exper-
imental session. Rather, if anything, the data suggest greater deviations from
the CE norm in the small markets with two buyers and two sellers.

The key theoretical prediction for the BBDA, higher efficiency with
increased numbers of traders, is satisfied, with remarkably high efficiency
levels (94 per cent) observed for experienced traders with m = 8. However,
buyers tend to bid more than predicted, particularly with m= 2, and sellers
do not follow consistently the dominant strategy of offering at cost (typic-
ally offering at above cost). The first result is consistent with bidding above
the risk-neutral Nash equilibrium (RNNE) in one-sided, first-price, private-
value auctions (behaviour that has sometimes been attributed to risk aver-
sion). The second result is consistent with deviations from the dominant



John H. Kagel 183

bidding strategy in one-sided, second-price, private-value auctions and in
uniform price, multiple unit auctions. Deviations from the dominant bid-
ding strategy are attributed to (i) the non-transparency of the strategy; and
(ii) the relatively small costs associated with the deviations. Experimental
sessions in which computerized sellers follow the dominant bidding strategy
of offering at cost are used to test if the limited degree of strategic buyer
misrepresentation observed might be in response to sellers’ errors at offering
above cost. There is no evidence to support this conjecture.

Contrasting theoretical predictions of the Wilson (1987) and Friedman
(1991) models of the CDA price formation process are compared with those
of zero intelligence (ZI) traders (Gode and Sunder, 1993). Consistent with
both theWilson and Friedmanmodels, there is a strong tendency for higher-
valued buyers and lower-cost sellers to trade first. Although these propen-
sities are significantly less than the Wilson and Friedman model predictions,
they are greater than in the ZI simulations. Further, there are fewer units
traded in the experiments for all market sizes than in the ZI simulations. The
net result is that much of the inefficiency found inmarkets withm= 2 results
from fewer units traded than the CE level predicts, as both the Wilson and
Friedman models imply. Finally, there is a clear tendency for price changes
to be correlated negatively within an auction period, which is inconsistent
with both the Friedman and Wilson specifications, but is similar to what is
found in ZI simulations. However, the average absolute price changes are
substantially smaller than in the ZI simulations, and the opportunity to
arbitrage prices is quite limited.

There have been a handful of earlier studies of DA markets with ran-
dom supply and demand schedules, all of which have focused on testing
Bayesian–Nash equilibrium models of price formation in DA markets (Cason
and Friedman (1993, 1996) for continuous double auctions; Kagel and Voght,
(1993) and Cason and Friedman (1997) for call markets).2 In addition to
reporting results from a new data set, this chapter differs from these earlier
reports by comparing performance explicitly across the BBDA and the CDA.3

I also employ more extreme variation in the number of traders within the
CDA.4 One important result of this manipulation is that it reveals that inef-
ficiencies in small markets result from too few trades occurring relative to the
CE model prediction, as the Bayesian–Nash equilibrium trading models pre-
dict. In contrast, in larger markets inefficiencies result from too many units
trading. I offer some conjectures as to the basis for these differences resulting
from market size.

The plan of this chapter is as follows: the next section characterizes the
theoretical implications of the Bayesian–Nash equilibrium models for the
two trading mechanisms studied. These are contrasted with predictions for
‘zero intelligence’ traders (Gode and Sunder, 1993), as this provides a useful
benchmark for completely non-strategic behaviour. The third section out-
lines the experimental procedures. The results of the experiment are reported
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in the fourth section, and a brief concluding section summarizes our main
results.

Theoretical implications

The buyer’s bid double auction mechanism

The BBDA (Satterthwaite and Williams, 1989a, 1989b) is a call market where
bids and offers are collected from traders, supply and demand schedules are
constructed, a market clearing price is established, and trades are executed
at the market clearing price. In the BBDA, each buyer (seller) draws a single
redemption value, x2i�x1i	, from a known probability distribution F2�F1	

defined on the interval �x� x̄�. In the BBDA, buyers who get to trade earn
profits equal to �x2i−p	, where p is the market price. Sellers who get to trade
earn profits equal to �p−x1i	. Buyers and sellers who do not trade earn zero
profits.

In the BBDA, price is selected at the upper endpoint of the closed inter-
val determining the market clearing-price, with all trade occurring at this
price. This is determined as follows: all bids and offers are arranged in non-
decreasing order s1 ≤ s2 ≤ � � � ≤ s2m, where m is the number of buyers and
sellers in the market (the number of buyers is assumed to equal the num-
ber of sellers, as in the experiment). Price is set at p = sm+1. In the case
where a single bid/offer uniquely determines sm+1, supply is exactly equal
to demand, and every buyer whose bid is at least p purchases an item and
every seller whose offer is less than p sells the item. In a case where at least
two bids/offers equal sm+1, demand may exceed supply. The BBDA then pre-
scribes that items are allocated, beginning with the buyer who bid the most
and working down the list of buyers whose bids are at least p. If a point
is reached where two or more buyers submitted identical bids and there is
insufficient supply to serve them (excess demand), then the available supply
is rationed among these bidders using a lottery that assigns each buyer an
equal chance of receiving an item.5

Satterthwaite and Williams (1989a) demonstrate that each seller in the
BBDA has a dominant strategy to offer at cost �x1i	. In response to this, buyers
bid less than their reservation value �x2i	. This strategic misrepresentation
causes the BBDA to be ex post inefficient. However, the amount of buyer
misrepresentation decreases rapidly as market size increases: with uniform
distributions of traders’ redemption values, and risk-neutral buyers, expected
efficiency increases from 92.6 per cent with m = 2 to 99.6 per cent with
m = 8 (ibid., 1989a; where efficiency is defined as realized consumer and
producer surplus as a percentage of the maximum possible consumer and
producer surplus). The buyer’s bid function underlying this rapid increase
in efficiency, given a uniform distribution of redemption values, is:

bi =
m

m+1
x2i (9.1)
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In contrast, using a simple fixed price rule, with prices set at the midpoint of
the distribution functions underlying redemption values, efficiency increases
at a substantially slower rate (from 78.1 per cent with m= 2, to 85.4 per cent
with m= 8; ibid., 1989a).

Figure 9.1 illustrates two cases of the BBDA with m = 4. In Figure 9.1(a),
Buyers 4 and 3 and Sellers 1 and 2 trade at a price set by Seller 3’s offer (note
that Seller 3 does not trade here). In Figure 9.1(b), again Buyers 4 and 3 and
Sellers 1 and 2 trade, but in this case price is set at Buyer 3’s bid.6

The BBDA provides an explicit trading procedure that achieves efficiency
levels quite close to those that could be achieved using an optimal revelation
mechanism (Myerson and Satterthwaite, 1983). However, unlike optimal
revelation mechanisms, the BBDA does not require a change in the mech-
anism’s rules as the underlying distribution of valuations and costs change.
Further, although Satterthwaite and Williams (1989a) do not analyse the
effects of limitations on agents rationality and information processing on
auction outcomes, they argue that ‘our result that all equilibrium strategies
of the BBDA in a large market are close to truthful revelation suggests that
cognitive limitations are unimportant in large markets’ (ibid., p. 479). This
implication does not necessarily follow, however, should it be the case that
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equilibrium strategies are hard to understand, and there are simpler strategies
that appear intuitively reasonable but are far from truthful revelation.7

The continuous double auction mechanism

In a CDA trades can occur any time in a trading period, with prices free to
vary from one trade to the next. Wilson (1987) models the CDA price forma-
tion process as a sequential equilibrium of an extensive form game in which
traders privately draw a single redemption value from a commonly-known
joint distribution. The model is concerned with the price formation process
within a given trading period.8 The basic idea is that traders play a waiting
game, but they are impatient as a result of possible pre-emption of gains by
other traders. At some point, a trader makes a ‘serious’ offer, one that has a
positive probability of being accepted in a sequential equilibrium. If this offer
is not accepted immediately, the trader making the offer steadily improves
it until it is accepted, as in a Dutch auction (other traders remain passive
during this process). One of the striking predictions of the model is that, at
any point in time, transactions occur between the highest-value buyer and
the lowest-cost seller remaining in the market. Further, inefficiencies result
strictly from lost trading opportunities as lower-value buyers and higher-cost
sellers, who would trade in the absence of strategic considerations, fail to
trade in the time allotted.

In principle, the Wilson model is capable of making very precise predic-
tions regarding who trades and when. However, as Cason and Friedman
(1993) point out, it is not practical to test these predictions, as solutions to
the model are defined implicitly by a nested set of partial differential equa-
tions whose boundary conditions at each stage are derived recursively from
the solution to subsequent-stage partial differential equations (with some
arbitrariness as to the final stage specification), and no numerical algorithms
are presently available to solve the equations even for very simple value dis-
tributions and simple sets of auxiliary hypotheses. Nevertheless, the model
has a number of reasonably precise qualitative implications that can readily
be tested; for example, as already stated, inefficiencies result strictly from
lost trading opportunities, and transactions occur between the highest-value
buyer and lowest-cost seller remaining in the market.

Friedman (1991) develops a Bayesian game-against-nature model of the
CDA trading process. According to Friedman, agents are boundedly rational
with limited strategic capabilities. Agents carry with them reservation prices
for buying and selling based on their valuations. Sellers are willing to under-
cut the standing market price as long as they can do so without selling
below their reservation price, and they accept the market bid whenever it
is greater than their reservation price; buyers behave analogously. To com-
plete the model, Friedman (1991) employs a drastic simplification: traders
are assumed to ignore the impact of their own current bids and offers on
subsequent bids and offers. This ‘game-against-nature’ assumption, together
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with Bayesian updating and auxiliary assumptions similar to Wilson’s (for
example, risk neutrality), give reservation prices as solutions to the optimal
stopping problem associated with current estimates of ‘nature’s’ bid and
offer generating process.

If the reservation prices associated with trader valuations were known,
the Friedman model could be solved for precise bids, asks and acceptances.
Without this, the model still has a number of distinctive qualitative implic-
ations, several of which are quite similar to the Wilson model’s predictions:
(i) early transactions will be between higher-value buyers and lower-cost
sellers; and (ii) efficiencies are close to 100 per cent, with inefficiencies
resulting from lost trading opportunities as lower-value buyers and higher-
cost sellers, who would trade in the absence of strategic considerations, fail
to trade in the time allotted. Other qualitative predictions differ from the
Wilson model. The one I look at is that changes in transaction prices will be
positively correlated, with this effect being most pronounced for early trades.
This positive correlation between price changes results from the fact that, as
traders’ beliefs change in response to new bids and offers, their reservation
prices shift unexpectedly. These unanticipated shifts in bids and offers can
be shown to result in positively correlated changes in transaction prices.
In contrast, the Wilson model implies zero correlation between changes in
transactions prices, since auto-correlation between prices would open up
opportunities for price arbitrage that fully rational agents would exploit.9

Zero intelligence traders

Gode and Sunder (1993) show that for the CDA, zero intelligence (ZI)
traders achieve remarkably high efficiency levels (between 95 per cent and
100 per cent), often achieving higher efficiencies than human traders in the
first period of an experiment with stationary supply and demand schedules.
ZI traders are completely non-strategic, with sellers offering at or above cost
(but no higher than x) and buyers bidding at or below resale values (but no
lower than x).10 Bids and offers are determined randomly within these inter-
vals, with traders churning out bids and offers repeatedly. Employing New
York stock exchange rules, so that if a bid (offer) is to have standing in the
market it must improve on the current market bid (offer), bids and offers are
selected at random from traders. A transaction occurs whenever a new bid
(offer) exceeds (is less than) the current market offer (bid), with the trans-
action price determined by the current market offer (bid). ZI traders are fast
enough, relative to the market period time constraint, that transactions stop
when there is no longer any room for mutually profitable trades to occur.

As already noted, for the CDA, ZI traders achieve remarkably high
efficiency levels. However, unlike the Wilson and Friedman models, ineffi-
ciencies result from too much (rather than too little) trading. As such, extra-
marginal traders (those traders whose redemption values lie just beyond
the CE) get to trade, or extra-marginal traders displace infra-marginal
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traders who would get to trade at a CE outcome. As in the Wilson and
Friedman models, with ZI traders, early transactions tend to occur between
higher-value buyers and lower-cost sellers. But these effects are less pro-
nounced. For ZI traders, transaction prices are independent draws from a
distribution that changes over time as successful traders leave the market.
Cason and Friedman (1993) show that this implies negative auto-correlation
between changes in transaction prices, in contrast to the Friedman model’s
prediction of positive auto-correlation.

Kagel and Vogt (1993) show that ZI traders achieve very low efficiency
levels in the BBDA, considerably lower than achieved with a fixed-price rule
set at the mid-point of the interval from which valuations are drawn.11 The
reason for the poor efficiency outcomes (relative to behaviour) in the BBDA
is that the static (one-shot) nature of the game does not permit ZI traders
to correct for bids and offers within an auction period when they fail to
find trading partners (and ZI traders do not learn across auction periods).
In contrast, the dynamic CDA permits ZI traders to make virtually unlim-
ited numbers of bids and offers within the time constraint for trading, so
that ‘bad’ bids and offers (those that do not result in trades) are easily over-
come by new bids and offers resulting in profitable (and relatively efficient)
transactions. That is, the CDA permits ‘bad’ bids and offers to be corrected,
whereas the BBDA does not, so that ZI traders perform better in the former
than in the latter.

ZI traders are employed as a reference point against which to evaluate
behaviour in CDAs since (i) they provide a useful benchmark for completely
non-strategic behaviour; and (ii) the algorithm achieves very high efficiency
levels in the CDA and, according to Cason and Friedman (1993, 1996), it
predicts quite well the volume of transactions, the order of transactions
relative to redemption values, and the auto-correlation in transaction prices
within a givenmarket period. In contrast, for the BBDA, we document briefly
the extremely poor efficiency outcomes for ZI compared to real traders, and
then drop the use of ZI traders as a reference point, since it is clear that it is
hopelessly inadequate for organizing behaviour in these auctions.

Experimental procedures

Redemption values were drawn randomly from a uniform distribution
�0�$5�00�, with new random draws in each trading period. The parameters
of the distribution were read out loud as part of the instructions and were
posted publicly. Each experimental session consisted of a pre-announced
number of trading periods. For inexperienced subjects there were two dry
runs (with no money at stake) after the instructions were read.

The goal was to recruit sixteen subjects for each experimental session.
Markets with equal numbers of buyers and sellers were used throughout. Auc-
tion markets withm= 2 andm= 8 were conducted under both mechanisms.
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In markets withm= 2 traders were randomly assigned to a new small market
group in each trading period.

Six BBDA sessions were conducted, three with live sellers and buyers, and
three with live buyers and computerized sellers. In both cases, two inex-
perienced subject sessions were conducted first, followed by a third session
recruiting subjects from the first two sessions.12 In the sessions with compu-
terized sellers, it was announced that ‘sellers’ were following the dominant
strategy of offering at cost.

Five CDA sessions were conducted. The first two used inexperienced sub-
jects. This was followed by three experienced subject sessions, recruiting
subjects from the first two sessions and using subjects who had first partici-
pated in a CDA as part of a classroom teaching exercise.13 In one of the
experienced-subject sessions only twelve subjects arrived on time, and in the
other only fourteen were there on time. These sessions were run as planned,
with the large market auctions employingm= 6 andm= 7, respectively, and
the small market auctions employing m = 2 (in the session with fourteen
subjects, one small auction market operated with m= 3).

The BBDA auctions used a dual market bidding procedure. With dual
market bidding, using the same redemption values, traders first participate
in a market with m = 2, but before the market clearing price is established,
they play again in a market with m = 8. Payment is made in only one
of the two markets, which is determined randomly after both sets of bids
and offers have been submitted.14 In determining the effect of increases in
the number of traders on behaviour, the dual market technique minimizes
the extraneous variability resulting from changes in redemption values and
the subject population. That is, it operationalizes responses to ceteris paribus
changes in the number of traders, since the same subjects bid with exactly the
same redemption values, with only m changing. The dual market technique
has been employed to good effect in one-sided auctions, resulting reliably in
increased bidding with increased numbers of bidders in first-price, private-
value auctions (Dyer et al., 1989; Battalio et al., 1990). In order to simplify
instructions as much as possible, auctions with inexperienced subjects began
with several periods of bidding in a single market before introducing the
dual market technique.

The BBDA auctions used software developed explicitly for this purpose.
Although there were no restrictions on bids or offers, the instructions did
point out that the only possible way to lose money was to bid (offer) above
(below) valuation (cost). Following each auction period, all bids and offers
were reported back to traders for the market(s) in which they participated,
along with the underlying redemption values (individual subject IDs were
suppressed). In addition, all traders learnt the market price, the number
of transactions, and their own earnings. Finally, in the auctions with live
buyers and live sellers, halfway through the session subjects switched roles,
with buyers becoming sellers and vice versa.
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The CDA auctions were conducted using a modified version of software
developed by Shyam Sunder at Carnegie Mellon University. This software
did not permit multiple market bidding (which can get rather cumbersome
in a CDA), so an ABA design was employed, with agents first bidding in a
single large market, then bidding in one of several small markets, followed by
bidding in a single largemarket. Here, too, there were no restrictions that bids
(offers) had to be less (greater) than or equal to valuations (costs). However,
as in the BBDA, the instructions pointed out that the only possible way to
lose money was to bid (offer) above (below) valuation (cost). The computer
program provides a graphical representation of bids, offers and transaction
prices, along with a ticker-tape reporting of the same information. There was
no switching of roles between buyers and sellers in these auctions, as the
software did not readily permit it, and the software and ticker-tape feedback
were sufficiently unfamiliar to subjects that a number of them asked to play
the same role on returning for a second session (we accommodated these
requests as much as possible).15

For both mechanisms, subjects were provided with a starting capital bal-
ance of $5.00, in lieu of a participation fee, against which any potential net
losses would be subtracted. Although buyers (sellers) should never bid above
(below) their redemption value (cost) under either mechanism, there were
occasional mistakes in the early auction periods in the CDA which resulted
in losses, and a number of bids (offers) of this sort throughout the BBDA
that resulted in occasional losses. However, no subject’s cash balance ever
dropped much below $5.00.

Experimental results

BBDA auctions

Table 9.1 reports measures of market performance for the BBDA auctions
with live buyers and live sellers. For sessions 1 and 2, which used inexperi-
enced bidders, we have dropped the first several (8) auction periods (which
involved bidding in a single auction market). Two efficiency measures are
reported in the top part of Table 9.1: the first measure computes efficiency in
each auction period separately and takes the average of these efficiencymeas-
ures (excluding those auctions with m= 2, in which the maximum possible
consumer and producer surplus was zero). The second measure sums realized
consumer and producer surplus across auction periods and divides by the
sum of the maximum possible consumer and producer surplus.16 The second
measure is the one employed in Satterthwaite and Williams (1989a) in com-
puting the expected increase in efficiency under the BBDA with increases in
m. The first measure provides some indication of the variation in efficiency
between auction periods, and accentuates the improvements in efficiency
resulting from increases in m.
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Table 9.1 Measures of market performance: BBDA efficiency

Efficiency
BBDA auction number Average across auction periods Sum of surplus across auction periods
(no. auction periods)a (standard error of mean)

m=2 m=8 m=2 m=8
Actual Predicted Actual Predicted Actual Predicted Actual Predicted

1 0�752 0�780 0�832 0�989 0�843 0�924 0�871 0�993
(16) �0�076	 �0�056	 �0�047	 �0�005	

2 0�786 0�795 0�875 0�998 0�870 0�939 0�885 1�00
(16) �0�052	 �0�054	 �0�047	 �0�002	

3× 0�774 0�784 0�935 0�996 0�890 0�942 0�940 0�996
(25) �0�047	 �0�046	 �0�019	 �0�002	

Average 0�771 0�786 0�889 0�995 0�871 0�936 0�906 0�996
�0�033	 �0�029	 �0�021	 �0�002	

Quantity deviations from CE prediction Price deviations from CE prediction
(standard error of mean) (standard error of mean)

m=2 m=8 m=2 m=8
Actual Predicted Actual Predicted Actual Predicted Actual Predicted

1 −0�132 −0�340 0�125 −0�438 0�229 0�031 0�151 0�015
(16) �0�066	 �0�066	 �0�180	 �0�128	 �0�072	 �0�026	 �0�046	 �0�010	

2 −0�226 −0�264 −0�625 −0�063 0�079 0�020 0�136 0�000
(16) �0�064	 �0�061	 �0�155	 �0�063	 �0�031	 �0�015	 �0�042	 �0�000	

3× −0�179 −0�295 −0�080 −0�240 0�051 0�020 0�061 0�006
(25) �0�051	 �0�052	 �0�114	 �0�087	 �0�023	 �0�012	 �0�035	 �0�005	

Average −0�179 −0�299 −0�175 −0�246 0�111 0�023 0�107 0�007
�0�034	 �0�034	 �0�091	 �0�058	 �0�025	 �0�010	 �0�023	 �0�004	

Notes: a With m= 2 there are 4 auction markets operating simultaneously in each auction period.
b Negative numbers indicate fewer trades than the CE prediction with truthful revelation.
c Positive numbers indicate prices are higher than the CE prediction with truthful revelation.
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Both measures show similar results. In all cases, actual efficiency is less
than predicted based on Satterthwaite andWilliams’ equilibrium analysis for
idealized (risk-neutral) traders. These differences are small, however, particu-
larly withm= 2, where the average efficiency across auction periods measure
is not significantly different from the BBDA prediction. Differences between
realized and idealized efficiency become larger, and achieve statistical signifi-
cance with m= 8. Note, however, that realized efficiencies are closest to the
BBDA prediction for experienced traders (session 3x), suggesting that experi-
ence may improve performance under this mechanism. Finally, in all three
sessions, efficiency increases with increases inm, as the theory predicts, with
the largest increase occurring in the session with experienced traders.

Realized efficiency is much higher than with ZI traders, who achieve con-
sistently low efficiencies averaging 0.3 and 0.35 with m = 2 and m = 8,
respectively (using the sum of the surplus measure).17 Thus, efficiency is
considerably closer to the level predicted for perfectly rational (risk-neutral)
traders than for completely non-strategic, ZI traders. Realized efficiency is
also considerably higher than with a fixed price rule of $2.50, where effi-
ciency averages 0.79 and 0.84 with m = 2 and m = 8, respectively (again,
using the sum of the surplus measure). One way to view the fixed price rule is
as a clumsy instrument that is bound to achieve 100 per cent efficiency with
increases in m, as the dominant strategy of bidding (offering) at redemption
values is completely transparent.18 In contrast, the BBDA opens up the pos-
sibility of achieving substantially higher efficiency with small numbers of
traders, while at the same time creating the possibility that the trading rules
are so complicated that traders fail to respond to the strategic possibilities,
or respond incorrectly to them. Consequently, what this comparison shows
is that, while human traders do not respond in an idealized fashion to the
BBDA mechanism, ‘mistakes’ are not large enough, or frequent enough, to
offset the promised improvements in efficiency relative to a fixed price rule.

The lower part of Table 9.1 shows the price and quantity data underlying
these efficiency results. With the exception of session 1 with m = 8, the
quantity traded is always below the CE prediction, and prices are always
above the CE prediction, so that price and quantity deviations are consistent,
directionally, with the BBDA predictions. However, quantity traded is usually
a little greater than the BBDA’s predictions, and prices are consistently, and
substantially, greater than the BBDA’s predictions. As shown below, the latter
results from sellers’ tendencies to offer at above-cost and buyers’ tendencies
to bid closer to valuations than the BBDA predicts.

Table 9.2 shows individual trader’s bids and offers relative to the BBDA’s
predictions. With m= 2, buyers bid significantly more than the risk-neutral
BBDA predicts, as they bid an average of $0.28 below their valuations com-
pared to the BBDA prediction of bidding $0.81 below valuations. Not shown
in Table 9.2 is that with m = 8 there was a small, but statistically signific-
ant, increase in bids relative to valuations averaging $0.08 (compared to
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Table 9.2 Individual subject behaviour in the BBDA

Buyers’ misrepresentation:a mean Sellers’ misrepresentation:b

values across subjects mean values across subjects
(standard error of the mean) (standard error of the mean)
m=2 m=8 m=2 m=8

BBD auction Actual Predicted Actual Predicted Actual Actual
number

1 0�242 0�800 0�099 0�267 0�222 0�144
�0�199	 �0�039	 �0�197	 �0�013	 �0�113	 �0�120	

2 0�326 0�765 0�342 0�255 0�351 0�391
�0�045	 �0�034	 �0�124	 �0�011	 �0�079	 �0�083	

3× 0�271 0�853 0�184 0�284 0�164 0�073
�0�052	 �0�029	 �0�064	 �0�010	 �0�098	 �0�121	

Average 0�280 0�806 0�208 0�269 0�245 0�203
�0�078	 �0�028	 �0�080	 �0�007	 �0�056	 �0�065	

Notes: a Buyers’ misrepresentation = (resale value − bid).
b Sellers’ misrepresentation = (offer − cost); truthful revelation is a dominant strategy for
sellers.

a predicted increase of $0.54).19 This small increase in realized bids, along
with the sharp increase in predicted bids, resulted in bids being much closer
to the risk-neutral BBDA prediction with m = 8 (average reduction in bids
relative to valuations of $0.21 versus the BBDA prediction of $0.27 shown
in Table 9.2).

Bidder behaviour in the BBDA has a number of similarities to behaviour in
one-sided private-value auctions. The overbidding relative to the risk-neutral
BBDA prediction with m = 2 is not unlike the overbidding relative to the
RNNE found in one-sided, first-price sealed-bid auctions. The overbidding
in one-sided, private-value auctions is most extreme with small numbers
of bidders, in which case it is not uncommon for bidders to take home
50 per cent or less of predicted RNNE profits (see Kagel and Roth (1992),
table 4). Some of the overbidding in one-sided, first-price auctions may be a
result of risk aversion, and some may be the result of buyers’ misperceptions
and/or inexperience (see Kagel (1995) for a review of the experimental liter-
ature on this point). Some of these same forces are likely to be at work in the
BBDA as well. Also, increases in bidding with increased numbers of rivals is
reliably reported in one-sided, first-price private-value auctions. This result
is replicated in the BBDA as well.

Table 9.2 shows that sellers failed to follow the dominant strategy of
offering at cost, usually offering at above cost. Not reported in Table 9.2 is
that several (6) sellers offered within $0.10 of cost in 90 per cent or more of
the auctions. In contrast, none of the buyers ever bid within $0.10 of their
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valuations 90 per cent of the time or more. This suggests that the dominant
bidding strategy had some (weak) drawing power in these auctions.

Deviations from the dominant offer strategy are not unexpected, as devi-
ations from dominant bidding strategies are reported in one-sided, second-
price private-value auctions (Kagel et al., 1987; Kagel and Levin, 1993) and in
one-sided, multiple-unit, uniform-price auctions (Cox et al., 1985). As with
the one-sided auctions, the dominant offer strategy is far from transparent
in the BBDA. Further, the expected cost of deviating from the dominant
strategy was relatively small, averaging $0.05 per auction period ($0.11 con-
ditional on selling), so that sellers were close to playing best responses.20

As such, any trial and error search process that might be expected to help
subjects find the dominant offer strategy would generate relatively weak
feedback effects.21

Given the extent of seller misrepresentation reported, it is not clear that
buyers should bid according to (1). Further, it is possible that the smaller
than predicted under-revelation on the part of buyers constitutes a (possibly
mistaken) strategic response to sellers offering at above cost. The BBDAs with
computerized sellers were designed to investigate the latter question. The
answer, in short, is that bidder behaviour is quite similar to auctions with
live sellers. With m = 2, buyers bid significantly more than the risk-neutral
BBDA predicts (average buyer misrepresentation of $0.37 compared to the
BBDA prediction of $0.82). In contrast, with m = 8, there were minimal
differences between predicted and actual misrepresentation ($0.266 actual
versus $0.272 predicted). Both patterns are quite similar to those reported in
Table 9.2 for BBDA auctions with live sellers.

CDA auctions

Table 9.3 reports measures of market performance for the CDAs. For Sessions
1 and 2, with inexperienced bidders, the first several (5) auction periods
have been dropped as there is some tendency for mistakes (bidding above
valuation or offering at below cost) to occur in these periods as a result of
unfamiliarity with the software. As already noted, we also use ZI traders as
the reference point since (i) ZI traders do such a good job of organizing much
CDA trading data; and (ii) because of the absence of point predictions for
both the Wilson and Friedman models.

Efficiency measures are reported in the top part of Table 9.3. In auc-
tions with m = 2, average efficiency across auction periods is quite high
and significantly above the level reported under the BBDA mechanism
(t = 2�11� p < 0�05, two-tailed t-test). However, efficiency is significantly
below the ZI benchmark. With m = 8, efficiency tends to increase relative
to markets with m= 2 (the one exception is Session 7 using the sum of the
surplus measure). Using the average across auction periods measure, with
m= 8, average efficiency is higher than in the BBDA auctions with live sellers
(t = 1�82� p < 0�10, two-tailed t-test), while being essentially the same as in
the ZI simulations.22
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Table 9.3 Measures of market performance: CDA

Efficiency
CDA auction number Average across auction periods Sum of surplus across auction periods
(no. auction periods)a (standard error of mean)

m=2 m=8 m=2 m=8
Actual ZI Actual ZI Actual ZI Actual ZI

7 0.825 0.962 0.939 0.955 0.963 0.957 0.942 0.956
(32/7) (0.077) (0.009) (0.042) (0.006)

8 0.923 0.968 0.977 0.951 0.941 0.965 0.978 0.951
(32/11) (0.047) (0.009) (0.016) (0.004)

9× 0.899 0.946 – – 0.939 0.936 – –
(24/0) (0.060) (0.015)

10× 0.927 0.967 – – 0.902 0.959 – –
(16/0) (0.040) (0.013)

11× 0.804 0.965 0.938 0.954 0.898 0.954 0.959 0.954
(32/17) (0.068) (0.010) (0.005) (0.004)

Average 0.870 0.962 0.951 0.953 0.932 0.954 0.961 0.953
(0.028) (0.005) (0.026) (0.025)
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Table 9.3 (Continued)

Quantity deviations from Average absolute price deviation from CE prediction
CE predictionb (standard (standard error of mean)
error of mean)

CDA auction number Average based on individual Average based on average auction
(no. auction periods) transactions (standard error period price (standard error

of mean) of mean)
m=2 m=8 m=2 m=8 m=2 m=8

Actual ZI Actual ZI Actual ZI Actual ZI Actual ZI Actual ZI

7 −0.125 0.142 0.143 0.343 0.106 0.065 0.097 0.300 0.113 0.054 0.089 0.091
(32/7) (0.110) (0.032) (0.340) (0.043) (0.070) (0.023) (0.046) (0.021) (0.079) (0.020) (0.043) (0.014)

8 0.0 0.081 0.363 0.436 0.073 0.024 0.131 0.297 0.075 0.010 0.071 0.086
(32/11) (0.053) (0.023) (0.152) (0.038) (0.048) (0.007) (0.045) (0.017) (0.050) (0.004) (0.037) (0.011)

9× −0.130 0.087 – – 0.018 0.041 – – 0.004 0.020 – –
(24/0) (0.072) (0.026) (0.013) (0.015) (0.004) (0.009)

10× 0.0 0.013 – – 0.0 0.032 – – 0.0 0.015 – –
(16/0) (0.0) (0.013) (0.0) (0.016) (0.0) (0.010)

11× −0.143 0.086 0.118 0.426 0.049 0.060 0.127 0.226 0.053 0.047 0.062 0.051
(32/17) (0.085) (0.024) (0.146) (0.031) (0.033) (0.017) (0.037) (0.011) (0.037) (0.015) (0.033) (0.006)

Average −0.085 0.087 0.200 0.413 0.054 0.046 0.122 0.263 0.054 0.031 0.070 0.070
(0.036) (0.012) (0.107) (0.021) (0.020) (0.077) (0.024) (0.009) (0.021) (0.060) (0.021) (0.006)

Notes: a Number of auction periods with m= 2 followed by auction periods with m= 8.
b Negative numbers indicate fewer trades than the CE prediction with truthful revelation.
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Although efficiency levels are quite high, unlike CDAs with stationary
supply and demand schedules, there is no tendency for market efficiency
to improve with replication within a given experimental session (and even
some tendency for efficiency to decrease with experience in markets with
m= 2). The evidence for this is twofold. First, we ran a number of different
regression specifications with auction period as a right-hand side variable,
finding no systematic patterns in the data (no continuous improvements
or drop-offs in efficiency over time). Second, for each experimental market
we identified the median efficiency level for that market (100 per cent in
all cases) and counted the frequency with which efficiency deviated from
the median in the first half compared to the second half of the auction
within a given experimental session. We then pooled the data for the large
markets �m≥ 6	 and for the small markets �m= 2	, separately, and conducted
a simple binomial test for significant differences in deviations from the
median. There were no significant differences between halves in the large
markets (44 per cent – 11 out of 25 – of the deviations occurred in the second
half of the sessions, p> 0�10, two-tailed t-test). However, in the markets with
m= 2�66�7 per cent of the deviations (18 out of 27) occurred in the second
half of the sessions, which is significantly different from the 50 per cent
reference point at the 10 per cent level (two-tailed-test).

Unlike auctions with stationary supply and demand schedules, there is no
reason to expect efficiency to increase over time within a given experimental
session, as traders must search to find mutually beneficial trades in each
auction period with past realizations being no help in the search process.
From this perspective, the apparent decrease in efficiency in the small mar-
kets is somewhat puzzling. Perhaps it is a statistical aberration. Alternatively,
it could be that traders are learning to behave more strategically over time,
which implies missed trading opportunities and reduced efficiency. This
would be consistent with the overall pattern of more strategic play observed
in markets with fewer numbers of traders (discussed in some detail below).

The lower part of Table 9.3 shows the price and quantity data underlying
these efficiency results. With m= 2, average quantity traded is significantly
below the CE model’s prediction, consistent with the Wilson and Friedman
models’ predictions. In contrast, with m = 2, ZI traders always trade more
than the CE model predicts.23 With m= 8, people trade a little above the CE
model’s prediction but still below the ZI level. That is, with the increase in the
number of traders, valuations are congested enough in the neighbourhood
of the CE that excess numbers of mutually profitable trades reliably occur.
But the number of such trades is still less than in the ZI simulations.24

One possible explanation for why there are fewer trades than the CE level
with m = 2 and excess numbers of trades with m = 8 is that agents play
the game the way Wilson and Friedman suggest, but there are errors in
implementing these strategies. With the increase in m there is increased
congestion which, in conjunction with a constant error rate, is enough to
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result in more trades than the CE level or the Wilson and Friedman models
(without errors) predict. This is supported by the fact that, in experimental
session 9x, with m= 6, in one-third of all auctions (5 out of 15) there were
fewer units traded than the CE model predicts, and there were no auctions
with more units traded. In contrast, in the ZI simulations all deviations
from the CE output level involve more units traded. This conjecture is also
supported by the ZI simulations themselves. In going from ZI simulations
with m= 2 to m= 8, the underlying stochastic bidding strategies have been
held constant (bid a random number within one’s budget constraint), but
there is increased bidder congestion. The net result is that in 8.7 per cent of
the simulated auction markets with m= 2 there are units traded in excess of
the CE, compared to 39.4 per cent with m= 8.

With m = 2, average absolute price deviations do not differ significantly
from the ZI benchmark, and average less than $0.06 per auction from the
CE prediction. Although average absolute price deviations were $0.11 from
the CE in the corresponding BBDAs, these differences between institutions
are not significant at conventional levels �t = 0�89	. With m = 8, average
absolute price deviations were just over $0�12 per auction, well below the ZI
benchmark and only marginally higher than the price deviations observed
in the BBDA �$0�11	.25 Overall, price deviations from the CE level are rela-
tively small, as judged by the ZI benchmark and in comparison to the BBDA
auctions.26 This is somewhat surprising, to this investigator at least, given
the search process underlying the price formation process in these markets.
Finally, employing the same techniques used to evaluate changes in effi-
ciency over time to evaluate price convergence, we conclude that, unlike
markets with stationary supply and demand schedules, there is no tendency
for prices to converge to the CE outcome across market periods within an
experimental session.27 This is hardly surprising, since each auction period
essentially sets off a new search for mutually acceptable trading prices, with
minimal hints as to what is the relevant equilibrium price interval based on
past auction outcomes.

Tables 9.4 and 9.5 examine the pattern of transactions in CDAs. Table 9.4
reports rank order correlations between the order in which transactions
occurred with the ranking of traders’ redemption values. In both large and
small markets there are statistically significant correlations indicating that
the highest-value buyers and lowest cost sellers tend to trade first. In markets
with m= 2, the realized correlations are significantly stronger on the seller’s
side of the market than implied by the ZI simulations (80 per cent of the ZI
correlations fall between 0.16 and 0.82).28 In markets with m > 2, there is
essentially no difference between the strength of the experimental correla-
tions and the ZI simulations (pooled values are virtually the same). With the
notable exception of sellers’ correlations in sessions 8 and 10x with m = 2,
rank order correlations are well below 1.0, the predicted value of both the
Wilson and Friedman models.
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Table 9.4 Rank order correlations: transaction number and ranking of buyer valuations and seller costs

Experimental Small markets Large markets
session (prob=0) (prob=0)

Buyersb Sellersb Buyersb Sellersb

Actual ZIc Actual ZIc Actual ZIc Actual ZIc

7 0�25 0�36 0�50 0�59 0�51 0�33 0�37 0�28
�m= 8	a �0�23	 �0�06	 �0�01	 �0�05	 �< 0�01	 �0�05	 �0�06	 �0�04	

8 0�76 0�56 1�00 0�59 0�40 0�33 0�18 0�33
�m= 8	a �< 0�01	 �0�04	 �< 0�01	 �0�05	 �< 0�01	 �0�02	 �0�24	 �0�03	

9× 0�24 0�46 0�62 0�53 0�34 0�44 0�33 0�42
�m= 6	a �0�26	 �0�07	 �< 0�01	 �0�05	 �0�04	 �0�04	 �0�04	 �0�03	

10× 0�42 0�64 1�00 0�49 0�26 0�39 0�31 0�33
�m= 7	a �0�02	 �0�05	 �< 0�01	 �0�05	 �0�04	 �0�03	 �0�01	 �0�02	

11× 0�52 0�56 0�76 0�56 0�24 0�25 0�44 0�37
�m= 8	a �< 0�01	 �0�05	 �< 0�01	 �0�05	 �0�05	 �0�03	 �< 0�01	 �0�03	

Pooled 0�46 0�52 0�81 0�55 0�34 0�35 0�36 0�35
�< 0�01	 �0�03	 �< 0�01	 �0�02	 �< 0�01	 �0�02	 �< 0�01	 �0�01	

Notes: a Number of buyers and sellers in large market. Small markets m= 2.
b Buyers’ valuations ranked from 1 to m, starting with highest valuation; sellers’ costs ranked from 1 to m starting with lowest cost.
c Mean of ZI simulations with standard error of mean in parentheses.
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0Table 9.5 Consumer and producer surplus as a function of transaction ranka (values in cents)

Experimental Small markets: transaction order Large markets: transaction order
session 1 2 1 2 3 4

Actual ZI Actual ZI Actual ZI Actual ZI Actual ZI Actual ZI

7 261.7 205.9 151.6 137.2 259.3 255.8 284.1 239.0 239.1 216.8 148.0 165.6

�m= 8	b t = 1�63 t = 0�22 t = 0�09 t = 1�10 t = 0�53 t =−0�37
(0.10) (0.83) (0.93) (0.27) (0.60) (0.71)

8 234.2 219.0 48.0 93.2 268.9 251.2 208.5 232.6 226.6 197.7 167.6 180.1

�m= 8	b t = 0�66 t =−1�38 t = 0�54 t =−0�74 t = 0�88 t =−0�32
�0�51	 �0�18	 �0�59	 �0�46	 �0�38	 �0�75	

9× 247.8 208.7 142.7 135.7 278.5 258.6 211.0 207.4 201.4 156.1

�m= 6	b t = 1�63 t = 0�13 t = 0�73 t = 0�11 t = 1�03 ND
�0�10	 �0�89	 �0�47	 �0�92	 �0�30	

10× 168.7 171.4 79.0 170.8 254.8 261.6 220.9 221.8 170.3 196.4 204.6 160.3

�m= 7	b t =−0�08 t =−0�88 t =−0�27 t = 0�04 t =−1�01 t = 1�60
�0�93	 �0�42	 �0�79	 �0�97	 �0�31	 �0�11	

11× 201.4 172.7 97.6 110.2 307.3 264.7 197.7 240.0 237.3 201.7 187.0 165.9

�m= 8	b t = 1�14 t =−0�26 t = 1�61 t =−1�55 t = 1�25 t = 0�67
�0�25	 �0�79	 �0�11	 �0�12	 �0�21	 �0�50	

225.4 197.1 104.9 121.6 275.9 256.3 217.4 223.7 212.6 192.7 178.4 159.5
Average t = 2�28 t =−0�67 t = 1�52 t =−0�45 t = 1�33 t = 1�13

�0�03	 �0�51	 �0�13	 �0�66	 �0�18	 �0�26	

Maximum 240.5 65.8 388.0 252.7 154.5 94.1
possiblec (12.8) (20.6) (7.6) (12.4) (11.9) (17.6)

Notes: ND – no data
a T-tests for difference between actual and ZI surplus. Probability t = 0 in parentheses (2-tailed, t-test).
b Number of buyers and sellers in large market. Small markets m= 2.
c Maximum possible is conditional on the number of units actually traded. Standard errors of the mean reported in parentheses.
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Table 9.5 reports total consumer plus producer surplus by the order in
which trades occurred. In markets withm= 2, the first transaction generated
an average surplus of $2.25 compared to an average of $1.97 in the ZI
simulations (t = 2�28� p < 0�03, two-tailed t-test) and a maximum possible
surplus for the units traded of $2.41 per auction. Surplus generated is below
the ZI simulations for the second unit traded, but this is to be expected, since
withm=2 atmost two units can be traded. In the largemarkets, more surplus
is also generated on the first unit traded than in the ZI simulations, although
the difference in this case is not statistically significant at conventional
levels, and is well below the maximum possible surplus. Further, average
surplus decreases monotonically for later transactions and is higher than in
the ZI simulations for transactions 3 and 4 (but not for 2), which is weakly
consistent with the Wilson and Friedman models’ predictions.

Given the data in Tables 9.4 and 9.5, I conclude that there is a clear
tendency for higher-value buyers and lower-cost sellers to trade first, and for
more surplus to be generated in early transactions. Both of these tendencies
are stronger than in the ZI simulations, although the difference between
experimental and ZI data is only statistically significant with m= 2. As such,
I conclude that the pattern of transaction partners is closer to theWilson and
Friedman models than to a completely random trading process, although
there are still substantial deviations from the idealized pattern that both
models suggest.29

One aspect of these results worth speculating about is why the trading
partner pattern moves closer to the ZI prediction as m increases. One factor,
already mentioned, is that as m increases the average distance between
traders’ redemption values becomes smaller. As a result of this congestion,
given a constant noise level in actual transactions, relative to the trading pro-
cesses that Friedman or Wilson formulate, one would expect to see greater
deviations from the trading pattern predicted. Further, systematic increases
or decreases in traders’ impatience to transact can exaggerate or dampen this
effect. From the data in Tables 9.4 and 9.5 it appears that whatever tenden-
cies there are in this direction involve greater impatience to trade, since in
going from small to large markets, (i) reductions in the realized correlation
coefficients in Table 9.4 are more extreme, particularly for sellers, than the
changes in the ZI correlations (by definition ZI traders’ impatience does not
change as m increases); and (ii) the increase in consumer and producer sur-
plus on the first unit traded is somewhat larger for the ZI simulations than
for the experimental data (59.2 versus 50.5).

Table 9.6 reports the covariance of price changes within each auction
period for the large markets, and the average absolute size of these price
changes.30 As noted, the ZI model implies a negative covariance for price
changes of around −0�50, which is very close to what the ZI simulations
yield for the sample data. For sessions 8, 10 x and 11x, for which we have
a reasonable number of observations, the covariance in the actual price
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Table 9.6 Within auction period price changes: CDA, large markets

Experimental Covariance of price changes Average absolute price changesc

sessiona (standard error price change)
Actual ZIb Actual ZIb

(prob=0) (standard error
of mean)

7 −0�287 −0.445 25�9 91�8
(26) �0�34	 (0.04) �19�2	 �73�9	

8 −0�623 −0.506 35�2 92�4
(46) �< 0�01	 (0.03) �36�0	 �72�8	

9× −0�014 −0.532 16�1 93�4
(16) �0�97	 (0.03) �51�4	 �75�6	

10× −0�370 −0.487 36�0 86�4
(84) �0�02	 (0.03) �14�5	 �71�0	

11× −0�525 −0.502 40�4 87�9
(60) �< 0�01	 (0.03) �52�3	 �69�9	

Notes: a Number of price change observations in parentheses (actual data).
b Average over 20 simulations for each experimental session. Covariance of price changes=
Cov�Ut �Ut−1� where Ut = Pt −Pt−1 and Pt is the price of transaction t for a given action
period.

c Values are in cents.

changes is statistically significant at better than the 5 per cent level and
close to the level found in the ZI simulations. However, as the last two
columns in Table 9.6 show, average absolute price changes are substantially
larger in the ZI simulations than in the experimental data for each and
every experimental session. Thus, while the negative covariances reported
are consistent with the ZI benchmark (and earlier reports of negative price
change covariances in Cason and Friedman, 1993),31 average absolute price
changes are sharply lower than the ZI simulations suggest.

The negative covariances imply that price increases are followed consist-
ently by price decreases, which is clearly inconsistent with Friedman’s model.
To the extent that traders can profitably arbitrage these price changes, they
are also inconsistent with the Wilson specification. However, arbitrage is
difficult in these markets, since traders each have a single unit to trade and
no re-sales were permitted. Thus what room for arbitrage there is requires
agents to hold off a transaction until after the second unit has traded, since
prior to this traders do not have the information required to determine if
they could profit by holding out and getting a more favourable (expected)
price. But there is a positive probability of not being able to trade after two
units have been transacted – with m = 8, 6 per cent of the time there is no
third unit traded and 34 per cent of the time there is no fourth unit traded
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(the corresponding values are 19 per cent and 46 per cent if we pool the
data from m= 6 and 7 with the m= 8 sessions). The net expected profit for
a trader waiting to cash in on these arbitrage opportunities is approximately
$0.11 for the third unit traded and −$0�12 for the fourth unit traded.32 Thus
the arbitrage opportunities are limited and the incentives relatively small –
substantially smaller than if one were competing against true ZI traders. As
such, I count these results as slightly favouring the Wilson price formation
process compared to the Friedman model.

Summary and conclusions

This chapter experimentally investigates a call market trading mechanism
(the BBDA) and a CDA trading mechanism for two-sided markets. The
primary procedural innovation involves employing fully stochastic sup-
ply and demand schedules so that traders’ redemption values, along with
the CE price and quantity, vary stochastically between auction periods.
Fully stochastic supply and demand schedules are necessary to test recent
Bayesian–Nash equilibrium models of price formation developed for these
trading mechanisms and, arguably, provide the appropriate vehicle for test-
ing the Hayek (1945) hypothesis – that markets are able to achieve close
to CE price and quantity resulting from truthful revelation of redemption
values.

Both auction mechanisms achieve reasonably high efficiency levels
(75 per cent or higher) even in very thin markets with m = 2. Consistent
with received wisdom from experiments with stationary supply and demand
schedules, prices and efficiency in the CDA are close to the CE level, and
efficiency is higher than in the sealed bid trading mechanism (the BBDA).
However, unlike markets with stationary supply and demand schedules,
there is no tendency in the CDA for prices or efficiency to converge to the CE
level with increased trader experience within an auction session, and some
evidence suggesting reduced efficiency over time in markets with only two
buyers and two sellers. The latter may be attributed to increased strategic
play with increased experience in the small markets, which would result in
reduced efficiency relative to the CE level.

In the BBDA, efficiency levels are consistently closer to those implied by
idealized (risk neutral) traders (Satterthwaite and Williams, 1989a, 1989b)
than to non-strategic, ZI traders or a fixed price rule. Further, as predicted,
efficiency increases with increased numbers of traders. However, in small
markets, buyers consistently bid well above the risk-neutral prediction, even
with computerized sellers who followed the dominant strategy of offering
at cost. Further, real sellers tend to offer at above cost. The latter is largely
attributed to (i) the fact that the dominant bidding strategy is far from trans-
parent; and (ii) the relatively small cost associated with deviating from it.
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In the CDA with small markets, inefficiencies consistently resulted from
too few rather than too many trades relative to the CE level. This is consist-
ent with strategic bidding models of the price formation process (Wilson,
1987; Friedman, 1991) and contrary to the implications of the ZI (Gode and
Sunder, 1993) trading algorithm. Markets with larger numbers of buyers and
sellers (m= 8) consistently produce more trades than the CE level, but fewer
trades than implied by the ZI algorithm. Early transactions consistently pro-
ducedmore total surplus than later transactions, as theWilson and Friedman
models suggest. Further, the amount of surplus generated in early trades is
consistently greater than implied by the random trading process underlying
the ZI algorithm, with these differences being most pronounced in markets
with fewer traders. I conjecture that the closer conformity of behaviour to
non-strategic trading models with larger numbers of traders is caused by con-
gestion effects in conjunction with random variation in bidding strategies
that are not accounted for in the Wilson and Friedman models.

Notes

1 As Holt (1995) notes, these comparisons ignore costs associated with gathering
buyers and sellers and the greater time cost of conducting a CDA.

2 There have also been a number of hybrid implementations of random and station-
ary environments with buyers’ and sellers’ individual valuations changing from
period to period, but with aggregate supply and demand schedules remaining sta-
tionary (see Aliprantis and Plott (1991) for example), or with stationary supply and
demand schedules whose intercepts shift randomly so that equilibrium price varies
while equilibrium quantity is stationary (McCabe et al., 1993).

3 Since this chapter was first written, Cason and Friedman (1998) report an experi-
ment comparing a CDA mechanism and call-market mechanisms similar to the
BBDA, in markets with four buyers and four sellers.

4 Variation in number of traders is, among other things, essential to examining the
hypothesis that thicker markets promote economic efficiency.

5 The BBDA is a special case (where k = 1) of the more general k–DA mechanism
described in Rustichini et al. (1994) and Satterthwaite and Williams (1993).

6 Smith et al. (1982), using stationary supply and demand schedules, implement a
sealed-bid-offer trading mechanism that is close in spirit to the k–DA mechanism
with k= 0�5 (their PQ mechanism). However, in this experiment, buyers and sellers
had multiple units for sale and had to submit a single bid or offer for all units,
which results in important strategic differences between their game and the single
unit k – DA game.

7 I am grateful to my referee for this important counterpoint to Satterthwaite and
Williams’ argument.

8 Easley and Ledyard (1993) were the first to offer a theoretical model designed to
explain price formation in laboratory auction markets. Their model is concerned
primarily with how prices and quantities settle down to competitive equilibrium
levels across trading periods in markets with stationary supply and demand sched-
ules.

9 Cason and Friedman (1993) offer an additional qualitative difference between
the Friedman and Wilson models: this concerns which traders are involved
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in successive improvements of offers prior to the completion of a transaction.
I do not pursue this qualitative difference here, in part because I know of no way
of determining reliably when ‘serious’ bids and offers begin, which is what the
Wilson model requires.

10 These are budget-constrained ZI traders. Gode and Sunder also simulate perform-
ance of unconstrained ZI traders. Without budget constraints, buyers can and do
bid above value and sellers can and do offer at below cost, so that a number of
inefficient trades occur, resulting in sharply lower efficiency levels than in the
budget-constrained case.

11 Under the fixed price rule, traders are assumed to follow the dominant strategy
of truthful revelation. In cases where the market does not clear, the computer
randomly rations trade on the long side of the market.

12 Kagel and Vogt (1993) report an earlier set of BBDA auctions with live buyers and
sellers. The sessions here differ from these earlier ones through an enhanced set
of instructions that included diagrams and problems to help subjects to better
understand the BBDA rules. There are no major differences between behaviour
under the two sets of instructions.

13 The teaching exercise never discussed bidding strategies or models, but was used
to illustrate how markets operate and to operationalize the concepts of consumer
and producer surplus.

14 This eliminates any possibility of portfolio effects, with subjects hedging their
bets between the two auctions.

15 This is not to criticize the software, which is relatively user-friendly. Williams
(1980) reports that inexperienced subjects in computerized CDAs make more
mistakes and take longer to converge to the CE outcome than in auctions done by
hand. This is attributed to subjects needing to gain familiarity with the software.
In contrast, the mechanics underlying the BBDA are much easier for subjects to
deal with.

16 Withm= 2 there were occasional trades even when maximum possible consumer
and producer surplus was zero (this results from buyers bidding above value or
sellers offering below cost). These efficiency losses are not captured in the first
measure, but are incorporated into the second.

17 All ZI calculations consist of twenty simulations for each experimental auction
period.

18 This is the assumption underlying the calculations reported. This prediction
should, of course, be tested experimentally.

19 Treating average differences in individual subject bids with m = 2 and m= 8
as the unit of observation, there was an increase of $0.14 in session
1 (t = 1�99� df = 15� p < 0�05, 1-tailed paired t-test), a reduction of $0.02 in ses-
sion 2�t =−0�13	, an increase of $0.09 in market 3× �t = 2�18, df = 15� p < 0�025,
1-tailed paired t-test), and an overall increase in bids of $0.08 (t = 1�42� df = 47,
p < 0�10, 1-tailed, paired t-test).

20 Bidding is above the dominant strategy in one-sided buyers auctions. With sym-
metry this should translate into bidding below cost for sellers in the BBDA, as in
both cases it increases the chances of winning an item (when you do not want
to!). Similar to the results reported here, Cason and Friedman (1997) observe bid-
ding above cost for sellers in call markets where they have a dominant strategy
to bid their value. But they also find buyers bidding below value when they have
a dominant strategy to bid their value, unlike the pattern generally reported in
one-sided auctions.
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21 The basic reason for the low cost of deviating from the dominant offer strategy is
that adoption of the strategy would have no effect on who sells for 91 per cent of
all offers. These calculations are for m = 8. With m = 2, the corresponding costs
are $0.07 per auction ($0.16 conditional on trading), and adopting the dominant
strategy would have no effect on who sells for 89 per cent of all offers. Calculations
are based on each seller, in turn, adopting the dominant strategy, with all others
trading as they did.

22 Pooling the data from sessions 9 x �m = 6	 and 10x �m = 7	 with the m = 8 data
does not change this conclusion as efficiency averages 95.86 per cent with an
even smaller standard error of the mean.

23 With m= 2, in 18 out of 136 auctions the number of units traded deviated from
the CE quantity. In 14 of these 18 cases fewer units were traded than the CE
prediction. In contrast, ZI traders failed to trade at the CE quantity in 51 out of
680 simulations. All of these involved too many units traded. The Z statistic for
the frequency of over-trading in the ZI simulations versus the realized data is 7.05
�p < 0�01	.

24 Pooling the data from sessions 9 x �m = 6	 and 10x �m = 7	 with the m = 8 data
results in even fewer trades relative to the ZI benchmark as 9 x generates fewer
trades than even the CE benchmark; that is, it is closer to the m= 2 pattern than
the m= 8 pattern.

25 Pooling data from 9x and 10x with the m = 8 data leaves these conclusions
unaffected as prices averaged $0.125 versus $0.122 for the m= 8 sessions alone.

26 Friedman (1992) advocates averaging transactions prices within an auction period
and then computing average absolute price differences across auction periods to
put the data on a more comparable footing relative to call markets, which impose
a single price for all trades. This was not done here. Doing so makes very little
difference when m= 2, since there is usually only one unit traded. For the larger
markets this results in eliminating the difference between ZI price deviations and
realized price deviations, and results in marginally lower prices than observed in
the BBDAs.

27 Once again, the regression analysis shows no consistent time trends. The non-
parametric price deviation analysis yields median price deviations of zero in all
the small markets, and zero (or pennies above it) in the large markets. Of all price
deviations, 52.9 per cent (18/34) occur in the second-half sessions with m ≥ 6,
and 63.6 per cent (7/11) in the m = 2 sessions. Neither proportion is significant
at the 10 per cent (two-tailed)level.

28 This is based on twenty simulations for each small market. For sessions 8 and
10x, additional simulations were run to determine the likelihood that the sellers’
rank order correlation of 1.0 resulted from an unusual distribution of costs. In
Session 8, 6 simulations out of 100 resulted in a rank order correlation of 1.0,
and in session 10x, 2 simulations out of 100 produced this result. Thus, it is
quite unlikely that the correlations for 8 and 10x were a result of chance factors
alone.

29 Our conclusion in this respect differs from Cason and Friedman (1993 and 1996).
They report weak evidence that higher-value buyers and lower-cost sellers tend to
trade first, that gains from trade decrease as more units are transacted, and they
conclude that this pattern is consistent with the one implied by the ZI algorithm.
One reason our results differ from Cason and Friedman is that they did not have
any data for small markets �m = 2	 where the experimental data conform more
closely to the Friedman and Wilson models’ predictions.
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30 Cov �ut � ut−1	where ut = Pt−Pt−1 and Pt is the price of transaction t within a given
auction period. Note, under the CDA rules there was no specialists book, so that
after each transaction all existing bids and offers were cancelled, leaving no room
for the specialists’ book to contribute to the negative price change correlations
reported.

31 Although the data here shows no evidence for reductions in these negative price
correlations with experience, Cason and Friedman (1996) argue that a meta-
analysis, using their data, ours and some additional data, shows clear evidence of
such an effect.

32 As a buyer or seller there is only a 50 per cent chance of profiting on the third
unit as prices may increase or decrease. This yields an expected gain of $0.175
(50 per cent of the average absolute price difference). From this I have subtracted
half of the expected total surplus realized on the third unit traded (Table 9.5)
after multiplying by the probability of not trading with m = 8. Similar calcula-
tions are made for the fourth unit. These are approximate, ‘back of an envelope’
calculations.
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Introduction

Mechanisms that structure bargaining between a potential buyer and poten-
tial seller are of perpetual interest to both academics and practitioners. An
‘ideal bargaining mechanism’ would enable bargaining parties to reach an
agreement 100 per cent of the time when a deal is possible and collectively
realize all possible gains from trade. However, the only individually rational
way to achieve maximum efficiency would be for the bargaining parties
truthfully to reveal their private valuation, which is typically not in the play-
ers’ unilateral best interests. The result: bargaining parties end up ‘walking
away’ from a potentially profitable deal, especially when there is a narrow
trading range. The single-stage sealed-bid k-double-auction mechanism is no
exception. This particular trading mechanism requires that both buyer and
seller simultaneously and independently submit an offer to buy/sell (the
seller submits an ask s and the buyer submits a bid b). Each player has an
independent predetermined reservation value for the indivisible object of
potential trade denoted by �s and �b, for the seller and buyer, respectively.
Only when both parties have made their offers, are the offers revealed. If the
buyer is willing to pay at least as much as the seller is asking, trade occurs
at price p and gains from trade for the seller and buyer are p−�s and �b−p,
respectively. If there is no trade, then neither trader incurs any cost and the
gain for each is taken to be zero. Trade occurs at the price p= kb+ �1−k	s, if
b� s. If b< s, then no trade takes place and the buyer pays the seller nothing.
k �0 � k � 1	 is simply a parameter of the mechanism that determines the
trade price p. In this chapter we consider the case of k = 1/2, commonly
referred to as the ‘midpoint trading rule’ and implying that p = �b+ s	/2

∗ Our research was supported by a grant from the Hong Kong Grants Committee
(Project HKUST6225/99H). Special thanks to Maya Rosenblatt for her outstanding
assistance with data collection.
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(see Satterthwaite and Williams, (1989) and Parco (2003) for discussion of
the cases k = 0 and k = 1.)

Chatterjee and Samuelson (1983) constructed an equilibrium for this trad-
ing mechanism in which each player’s ask or bid is a (possibly piecewise)
linear function of his/her reservation value. At about the same time, Myerson
and Satterthwaite (1983) showed that this linear equilibrium has ex ante the
highest expected gain from trade of any equilibrium of any (suitably restric-
ted) bargainingmechanism (Leininger et al., 1989). These two seminal papers
were the first to explore the nature of equilibria in the double-auction and
establish properties that all equilibria must satisfy. They have had a strong
impact on the study of two-person bargaining under two-sided incomplete
information, and have given rise to considerable theoretical research (for
example, Leininger et al., 1989; Satterthwaite and Williams, 1989, 1993;
Brams and Kilgour, 1996; Ausubel et al., 2002). In addition, the 1983 paper
by Chatterjee and Samuelson has stimulated several experimental studies
of the double-auction mechanism (for example, Radner and Schotter, 1989;
Daniel et al., 1998; Rapoport et al., 1998; Seale et al., 2001; Parco, 2002;
Parco and Rapoport, 2003) that have provided qualified support to the linear
equilibrium.

The information assumptions of the double-auction are as follows. Each
trader’s reservation value is assumed to be a random variable whose value
is included in some interval. The reservation values of the seller and buyer,
�s and �b, are assumed to be drawn independently from the distribution
functions F and G defined over the respective intervals [�s��s] and [�b��b].
These two distributions are common knowledge to the traders. However, the
realization of �s is private information to the seller, and that of �b private
information to the buyer. Hence, when trade commences, each trader knows
his/her own reservation value with certainty but only the distribution of the
reservation values of the other trader.

Assume that both traders are risk-neutral.1 A pure strategy for the seller
is a function S�•	 that specifies an ask s = S��s	 for each of his/her possible
reservation values. Similarly, B�•	 is a pure strategy for the buyer that specifies
a bid b = B��b	 for each of his/her possible reservation values. A pair of
strategies (S�B) is a Bayesian–Nash equilibrium if B is a best reply to S and,
simultaneously, S is a best reply to B. S is a best reply to B if, conditional on
the seller’s knowledge of the buyer’s distribution G, the buyer’s bid strategy
B, and the realization of �s� S��s	maximizes his/her expected gain from trade
for each value of �s. The buyer’s best-response function is similarly defined.

It is known that the double-auction hasmultiple equilibria (Leininger et al.,
1989). Chatterjee and Samuelson constructed a piecewise linear equilibrium
solution (LES) for this two-sided incomplete information bargaining game. It
is known to be ex ante efficient when F and G are each uniform on the inter-
val [0, 1]. Experimental evidence from several bargaining experiments with
uniform distributions sharing the same support (Radner and Schotter, 1989;
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Valley et al., 2002) or with uniform distributions with unequal and overlap-
ping supports (Daniel et al., 1998, Rapoport et al., 1998; Seale et al., 2001)
have provided qualified support for the LES.

The sealed-bid k-double-auction is a very simple mechanism for single-
round, two-person bargaining under the simultaneous protocol of play. In
commenting on it, Chatterjee and Samuelson (1983) conceded that this
mechanism ‘fails to capture the pattern of reciprocal concessions observed in
everyday life’ (p. 849). Nevertheless, they justified it as a useful idealization
and a starting point for additional investigations, and then proceeded to
write: ‘A more general model would allow the bargainers multiple rounds
in which to exchange offers (potentially incurring “transaction” costs in the
process)’ (ibid., p. 849). This chapter reports the results of extending the
double-auction from one to two rounds, with simultaneous play on each
round. We focus on the asymmetric case – most common in practice – where
the distributions of the reservation values of the buyer and seller do not share
the same support and, consequently, one trader may have an information
advantage (in the sense described below) over the other.

The next section presents and discusses the extension of the double-
auction to two-round bargaining, where traders make offers simultaneously
in each round. Our main hypothesis is that, if payoffs are not discounted,
then in the first round of the bargaining process the traders will reveal limited
information about their reservation values and will not strike a deal, whereas
in the second and final stage they will play the Chatterjee–Samuelson (C–S)
linear equilibrium. We propose to test this hypothesis in an iterated two-
stage double-auction played by several groups of subjects who differ from
one another in their strategic sophistication. Our second hypothesis is that
strategically sophisticated bargainers will learn to reveal less information in
Round 1 faster than inexperienced bargainers. The third section describes
the experimental procedure and the different experimental conditions, and
the fourth presents the results on both the aggregate and individual levels.
The fifth section concludes.

The two-stage sealed-bid k-double auction

Multistage bargaining exhibits sequential rationality in a way that single-
stage mechanisms such as the double-auction does not. To illustrate this,
consider the case where F and G are each distributed uniformly on the
interval [0, 100]. Here, the LES specifies the following strategies for the buyer
and seller:2

b =
{
at most �b if 0� �b � 25

25/3+2�b/3 if 25< �b � 100
(10.1)
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and

s=
{
25+2�s/3 if 0� �s < 75

at least �s if 75� �s � 100
(10.2)

Now, consider the case where �s = 37�5 and �b = 49. Since �b � �s, there
is a potential gain to be realized if trade occurs. However, Equation (10.1)
and (10.2) imply that in equilibrium s= 50 and b = 41, and therefore trade
will not occur. Because the C–S strategies are invertible, if the buyer and seller
learn each other’s bid it is common knowledge to them after they fail to trade
that some unrealized gain from trade exists. Then, contrary to the rules of the
single-stage double-auction, they have an incentive to participate in at least
another round of bargaining. Linhart et al. (1992) conclude, ‘Consequently,
if bargaining is regarded as a voluntary activity, the double-auction rule that
bargaining is restricted to a single ask/bid pair lacks credibility’ (p. 7). We
therefore consider the case of a multistage double-auction with N rounds,
where the bids/asks on each round are made simultaneously. The value of N
is assumed to be common knowledge. This multistage simultaneous double-
auction (MSDA) differs from sequential bargaining with alternating offers, as
studied by Rubinstein (1982, 1985).

The MSDA asymmetric case

The MSDA experiment (described in the following section) was limited to
two rounds of offers and designed as an asymmetric double-auction, where
the buyer knew more about the reservation values of the seller than the
seller knew about the reservation values of the buyer. F was uniform over
[0, 100] and G uniform over [0, 200]. Because the support of F was included
in the wider support ofG (and both were uniform), the buyer is considered to
have had an ‘information advantage’ (Rapoport et al., 1998) over the seller.

The LES for the seller in the single-stage double-auction (see Daniel et al.,
(1998) and Rapoport and Fuller (1995), who used the same distributions F
and G) is linear in �s:

s= S��s	= 50+2�s/3 if 0� �s � 100 (10.3)

The LES for the buyer is piecewise linear in �b:

b = B��b	=



at most �b if 0� �b � 50

50+2��b−50	/3 if 50� �b � 150

350/3 if 150� �b � 200

(10.4)
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Because the seller never asks below 50, it does not matter what the buyer
does if 0� �b < 50. Figure 10.1 displays the LES functions in Equations (10.3)
and (10.4) for the buyer and seller.

Now we write the general equations for computing the LES for uniform
F and G. Assume that F is distributed uniformly on the interval �0��s�, G is
distributed uniformly on the interval ��b�200�, and 0��b ��s � 200. Assume
that k = 1/2, and denote the equilibrium solutions for the seller and buyer
by S∗ and B∗, respectively. Then (see Stein and Parco, 2001):

S∗��s	= 50+2��b−50	/3 if 0� �s <max�50��b	−50 (10.5)

S∗��s	= 50+2�s/3 if max�50��b	−50� �s �min�150��s	 (10.6)

B∗��b	= 50+2��b−50	/3 if max�50��b	� �b �min�150��s	+50 (10.7)

B∗��b	= 50+2�s/3 ifmin�150��s	+50< �b � 200 (10.8)

It is easy to verify that if �b = 0 and �s = 100, as in our experiment, then
Equations (10.5)–(10.8) reduce to Equations (10.3) and (10.4).

Consider a two-stage asymmetric MSDA with F = Uniform �0�100� and
G = Uniform �0�200�. Assume that players restrict themselves to Bayesian
updating that yields a uniform distribution: if the buyer bids b∗ � 0
and the seller asks s∗, then the seller revises the prior distribution of
�b to G′ = Uniform �b∗�200� and the buyer revises the prior of �s to
F ′ =Uniform �0�min �100� s∗	�.
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The following Proposition characterizes one possible equilibrium under
these assumptions.

PROPOSITION 1:
A subgame-perfect equilibrium is:

Stage 1: The buyer bids 0< b∗ � 50 and the seller asks s∗ � 350/3= 116�67
(b∗ can vary with �b and s∗ with �s).

Stage 2: The players use the LES strategy given in Equations (10.3)–(10.4).

PROOF:
First we consider the buyer’s response to the seller’s strategy as stated in the
Proposition. We already know that the Stage 2 strategy is an equilibrium for
that subgame. In Stage 1 the buyer bids some value b∗. The seller assumes
that the buyer is individually rational so that b∗ � �b. We assume the seller
will update the information about the buyer’s �b to the new interval �b∗�200�.
Using the stated strategy, the seller assumes that the distribution G′ is still
uniform over this interval. (The precise distribution depends on the method
the buyer uses to select his/her bid b∗.) The buyer knows that the seller is
using a uniform distribution for G′.
We now want to see if there is an incentive for the buyer to deviate

from his/her strategy. For any 0 < b∗ � 50, there is no chance for a Stage 1
agreement. However, we also need to determine if the revised information
in G′ will cause the seller to play a Stage 2 strategy different from the LES
in Equations (10.3)–(10.4). Given the distributions F and G′, the solution
of Equations (10.5) to (10.8) is the same as Equations (10.3) and (10.4).
To verify this fact, notice that the only change is that the value of �b, the
lower bound of the distribution of �b, changes from 0 to b∗. However, �b

appears on the right side of Equations (10.5), (10.6) and (10.7) only through
the expression max �50��b	. For any �b = b∗ � 50, Equation (10.5) does not
hold for any �s and can be ignored. Equation (10.6) reduces to (10.3), while
Equations (10.7) and (10.8) reduce to (10.4). So the seller’s strategy will not
change in Stage 2. Therefore, no change by the seller in Stage 2 and so no
incentive to change by the buyer in Stage 1.

On the other hand, if the buyer bids 50< b∗ � 350/3 in Stage 1, then the
seller’s strategy in Stage 2 will be given by Equations (10.5) and (10.6), with
�b = b∗:

s=
{
50+2�b∗ −50	/3 if 0� �s < b∗ −50

50+2�s/3 if b∗ −50� �s � 100
(10.9)

This function can easily be seen to be greater than or equal to the function
in Equation (10.3) for each �s. Thus the seller will never decrease, and will
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possibly increase, the asked value in Stage 2 compared to Equation (10.3).
Furthermore, Equation (10.9) yields amaximum asking price of 350/3. There-
fore the buyer concludes that (i) trying to make an agreement in Stage 1
(by bidding at least 350/3) is not advantageous since the seller will ask a
lower price in Stage 2; and (ii) bidding 50 < b∗ < 350/3 as a ‘signal’ to the
seller, knowing that an agreement will not be made in Stage 1, is also not
advantageous because it can cause the seller to increase the asking price in
Stage 2. Therefore the buyer is better off with b∗ � 50 in Stage 1 and waiting
until Stage 2 before making a serious bid.

Similar logic holds for the seller. Could the seller be better off asking less
than 350/3 in Stage 1? In order to try making a Stage 1 deal, the seller must
ask 50 or less. Let us assume the most favourable scenario for the seller,
consistent with the buyer’s strategy: the buyer bids b∗ = 50 for all �b and
the seller asks 50 for some �s. (We are even assuming that the buyer violates
individual rationality to make the most favourable case for the seller.) The
profit to the seller will then be 50− �s. The seller certainly will not want
to make a deal if �s > 50. If �s = 0, then the seller gets a profit of 50. We
need to compare this with the expected profit from a Stage 2 deal. From
Equations (10.3) and (10.4), and integrating the profit function over the
region where a deal will take place, after some algebra, it can be shown that
a seller with �s = 0 will expect to make a profit of 325/6. Since this exceeds
the (optimistic) profit of 50 from a Stage 1 deal, this seller should wait. For
any other �s < 50 a similar result can be shown: the optimistic Stage 1 profit
50−�s is less than the expected profit in Stage 2. So no Stage 1 deal should
be attempted.

Now we need to check the effect of an unsuccessful attempt by the seller
in Stage 1 on the buyer’s Stage 2 bid. If the seller asks s∗ � 100 in Stage 1,
then the buyer gains no information to update his/her prior over �s from
�0�100� and thus the buyer’s Stage 2 bid is still given by Equation (10.4).
Instead, if the seller asks for s∗ < 100 then, by assumption, the buyer will
update F to be uniform on �0� s∗�. Then the buyer’s Stage 2 strategy is given
by Equations (10.7) and (10.8), with �s = s∗ < 100:

b =
{
50+2��b−50	/3 if 50� �b < s∗ +50

50+2s∗/3 if s∗ +50� �b � 200
(10.10)

It is easy to see that Equation (10.10) will yield a smaller bid than Equa-
tion (10.4) for each value of �b. This is not to the seller’s advantage, so
s∗ < 100 will be avoided. (While any s∗ � 100 will give a best response to the
buyer’s bid we saw previously, s∗ � 350/3 was used to make sure the buyer
did not change his/her Stage 1 strategy.) Thus, the seller cannot profitably
deviate from the proposed strategy, concluding the proof.



216 Multistage Sealed-bid k-Double-Auctions

Method

Design considerations

Because our major purpose was to determine whether the addition of a
second round of bargaining alters the results of the single-stage double-
auction, we included a control condition in which subjects played the single-
stage double-auction game. Table 10.1 describes the experimental design. In
total, five groups of twenty subjects each (a total of 100 subjects) participated
in three different conditions: two groups of subjects in a Baseline (control)
condition; two in the Inexperienced condition; and one in the Sophisti-
cated condition. The Baseline and Inexperienced conditions each included
two separate groups of twenty subjects each. The Sophisticated condition
included only a single group.3

The question is often asked regarding how well the results of experiments
that almost always recruit college undergraduates to play for a couple of
hours for small or modest financial stakes generalize to workers in firms,
corporations forming alliances, firms bargaining with each other and so
on. As Camerer (2003) noted, these doubts about the generalizability and
relevance of the experimental findings should be taken as a demand for
more elaborate experiments, with subjects drawn from other populations
and games played for higher stakes, rather than a wholesale dismissal of
the experimental method. This criticism applies directly to two-person bar-
gaining. Casual observation suggests that people differ from one another in
the way they conduct trade and the strategies they employ in bargaining.
Sophisticated bargainers in the open markets in Hong Kong and other coun-
tries in South-East Asia typically behave quite differently from inexperienced
ones and are easy to spot in the marketplace. Indeed, a major purpose of
university courses on bargaining and negotiation is to inform students of
various bargaining mechanisms and tactics, teach them what to expect in
a range of bargaining situations, and instruct them how to negotiate effect-
ively. Responding to this challenge, we have made an attempt to recruit
subjects from two different populations. One population includes under-
graduate students, most commonly used in economic experiments, who are
not familiar with the double-auction mechanism and play for small finan-
cial gains. The other population includes strategically sophisticated Ph.D.

Table 10.1 Experimental design for the multistage bargaining game

Condition∗ No. of stages No. of groups No. of trials

Baseline 1 2 50
Inexperienced 2 2 50
Sophisticated 2 1 25

Notes: ∗In all three conditions, F ∼ uniform [0, 100], G ∼ uniform [0, 200], and
k = 1/2. Each group consists of ten buyers and ten sellers.
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students in economics who are familiar with the double-auction and play
for higher stakes.

Subjects

The Baseline condition included two groups of undergraduate students, each
comprising twenty subjects. All the students volunteered to participate in
the experiment for payoff contingent on performance. In addition, they
received partial class credit.

The two Inexperienced groups included subjects who were recruited from
the same undergraduate population through the same standard recruiting
procedures. None of the subjects had participated previously in bargain-
ing experiments using the double-auction mechanism. These subjects were
recruited through advertisements placed on public boards on campus prom-
ising payoff contingent on performance. They also received $5.00 show-up
fee for their participation.

The Sophisticated condition included twenty participants in a sum-
mer workshop on experimental economics sponsored by the International
Foundation of Experimental Economics and conducted at the Economic Sci-
ence Laboratory at the University of Arizona. The workshop lasted for a week.
The participants either already had a Ph.D. in economics or were working
towards it. All of themwere knowledgeable in game theory, experienced with
strategic thinking, and familiar with games under incomplete information.
Most of them had participated or supervised various laboratory experiments
in economics. Participants in the workshop were not reimbursed for their
travel expenses. Rather, they were afforded the opportunity to recover them
during the workshop through participation in a sequence of experiments,
typically two a day, with payoffs contingent on performance. Consequently,
subjects in this condition were paid 2.5 times higher than the Inexperienced
subjects, with a mean payoff of $61.00. It is interesting to note that the
Sophisticated subjects took more than twice the time to register their bids
and asks, and therefore completed only 25 (rather than 50) trials during
a slightly longer session. There is no doubt that they were highly motiv-
ated, approached the game seriously, deliberated on their decisions for much
longer than did the Inexperienced subjects, and attempted to make rational
decisions.

Procedure

The same procedure was used in all three conditions. On arrival, each subject
was asked to draw a chip from a bag containing chips numbered 1–20.
Subjects who drew a number between 1 and 10 were assigned the roles of
buyer, and those drawing a chip between 11 and 20 were assigned the roles
of seller. Trader roles were fixed during the entire duration of the experiment.
Communication between the subjects was strictly forbidden.
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The instructions (see Appendix on page 231) explained and illustrated the
MSDA. The subjects were instructed that they would participate in 50 trials,
and that their bargaining partners would be changed randomly from one trial
to another. The random assignment design was used in order to minimize
reputation effects. Knowing the number of trials (50) and number of traders
of the opposite role (10), a subject could figure out that s/he would be
paired with the same subject about five times. However, the identity of the
bargaining partner in any particular trial was not disclosed. Rapoport and
Fuller (1995), Daniel et al. (1998), Rapoport et al. (1998) and Seale et al.
(2001) implemented this type of procedure in previous studies.

All 50 trials (25 for the Sophisticated condition) were structured in exactly
the same way. At the beginning of Round 1, the computer assigned each
subject his or her reservation value. Then, the buyer (seller) was prompted
to state his/her bid (ask). Subjects were required to confirm their offers. They
could review their previous responses and outcomes in earlier trials by view-
ing a separate screen. Once all the twenty subjects had stated their offers in
Round 1, the computer compared them and determined for each pair separ-
ately whether an agreement had been reached. At the end of Round 1, each
subject was informed of his/her decision, the decision of his/her bargaining
partner in that round, and, if an agreement had been reached, the trade
price p and the earnings for the trial. In all three conditions, if an agreement
was reached in Round 1, then the trial terminated with traders realizing their
profit. In the two-stage conditions, if no agreement was reached in Round 1,
then the subjects moved to the second and final (costless) round (with the
same reservation values), which was structured in exactly the same way. No
public information about the decisions and outcomes of the other eighteen
subjects in the session was ever disclosed. The experiment was self-paced,
with the slowest subject in each trial dictating the pace. Each session lasted
two hours (2.5 hours for the Sophisticated condition). Once all the trials
were completed, each subject was paid separately, contingent on his/her
performance, and dismissed.

Results

This section is organized as follows. First, we compare groupswithin condition.
Finding no differences, we aggregate the results over groups and compare
the conditions to one another. Our results show that strategic sophistication
matters, and therefore that aggregation across conditions is not justified.
Second, for each round separately, we report individual bid and ask func-
tions, and then present the aggregate results. Our focus is on individual
behaviour. A major finding is that, to varying degrees, different populations
reveal their reservation values in Stage 1 during the early trials of the session.
However, in support of the main hypothesis of the chapter, over the course
of the session most subjects learn not to disclose information in Round 1.
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Within and between treatment comparisons

For each buyer in the Baseline condition we computed his/her mean bid
over the 50 trials. Comparison of Groups 1 and 2 failed to reject the null
hypothesis of equality in mean bids (t = 1�23� p > 0�1). Similarly, for each
seller in the Baseline condition we computed the mean ask across trials.
Comparison of Groups 1 and 2 also failed to reject the null hypothesis of
equality in mean offers (t = 0�55� p > 0�2). The Baseline condition replicates
Daniel et al.’s Experiment 1 (1998), where the same procedure and same
parameter values were used, and the subjects were drawn from a similar
population of inexperienced undergraduates. Comparison of the Baseline
condition with Daniel et al.’s Experiment 1 in terms of number of deals,
deviations from the LES, and achieved surplus also yielded no significant
differences (see Parco, 2002).

As mentioned earlier, given that F ∼ Uniform [0, 100] and G ∼ Uniform
[0, 200], the LES implies an intercept y = 50 and slopem= 2/3 for the seller’s
ask function across all his/her reservation values. The buyer’s bid function
is piecewise linear with slopes m = 1�0�m = 2/3, and m = 0 for the ranges
0� �b < 50�50� �b < 150, and 150� �b < 200, respectively, and correspond-
ing intercepts y = 0� y = 50, and y = 116�67. Simple linear regression was used
to test these hypotheses for the sellers, and a spline regression was used for
the buyers. The spline regression method uses ordinary least squares to find
the best-fitting piecewise linear function by adjusting the ‘knots’ joining the
segments at the predicted reservation values of �b = 50 and �b = 150 while
simultaneously adjusting the slopes of the three line segments.

Row 1 of Table 10.2 presents the results of these analyses (slope and inter-
cept) for the Baseline condition. Also presented in the table are the predicted
LES slopes and intercepts (last row). Inspection of the table shows that the
LES accounts for the buyers’ mean bids in the Baseline condition remarkably
well (compare, for example, the observed slope m = 0�96 to the predicted
slope m= 1�00 for the range 0 � �b < 50, the observed slope y = 0�58 to the

Table 10.2 Spline regression coefficients for buyers and sellers on Round 2 by exper-
imental condition for the present study and for Experiment 1 of Daniel et al. (1998)
(DSR)

Buyers Sellers

0� �b < 50 50� �b < 150 150� �b � 200 0� �s � 100

Condition Slope Interc. Slope Interc. Slope Interc. R2 Slope Interc. R2

Baseline 0�96 1�00 0�58 48�8 0�17 106�6 0�76 0�72 35�2 0�32
Sophisticated 1�09 −3�4 0�44 51�2 −0�03 95�6 0�90 0�59 40�1 0�58
Inexperienced 0�99 −0�6 0�53 48�8 0�09 102�2 0�76 0�60 44�0 0�39

LES 1�00 0 0�67 50�0 0 116�7 0�67 50�0
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predicted slope y = 2/3 for the range 50� �b < 150, and the observed slope
y = 0�17 to the predicted slope y = 0.). In contrast, the sellers were more
timid than predicted, as judged from the intercept (y = 35�2 rather than the
predicted y = 50) of their ask function. Figure 10.2 displays the best fitting
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OLS regression functions for the buyers and sellers in the Baseline condition.
For each trader class, the regression lines are displayed separately for trials
1–25 and trials 26–50. It is evident that there is not much difference between
the two blocks of twenty-five trials; that the LES accounts for the buyers’
bids very well; and that the sellers’ asks fall closer to the LES line than the
45-degree line that describes truth-telling behaviour. The latter result replic-
ates the findings of DSR.

We also observe no difference between the two groups in the Inexper-
ienced condition. For the two groups of buyers there was no significant
difference between the mean number of trades in Round 1 (p > 0�5) and
Round 2 (p > 0�2). Similarly for the two groups of sellers, there was no signi-
ficant difference in the number of agreements reached in Round 1 (p > 0�3)
and Round 2 (p > 0�2). A comparison of the two groups in terms of mean
payoffs for the entire session also showed no significant difference for the
buyers (p > 0�4) and sellers (p > 0�1). Consequently, the data from the two
Inexperienced groups were combined.

Comparisons of the Inexperienced and Sophisticated conditions revealed
highly significant differences (p < 0�001) between them in the number of
deals made in either Round 1 or Round 2, and in the mean individual payoffs
(stated in terms of the experimental currency). We shall describe and remark
on these differences after first examining the individual data.

Individual bids and asks: Round 1

Figure 10.3 exhibits the fifty Round 1 bids for each of the twenty Inexperi-
enced buyers. The reservation values (the same for all buyers but presented
in a different random order for each buyer) are displayed on the horizontal
axis, and the actual bids on the vertical axis. Superimposed on the indi-
vidual bids is a horizontal line at b = 50. Bids falling at or below this line
do not support the hypothesis of no revelation. Also recorded in each plot
is the number of deals (that could range from 0 to 50) struck by each buyer.
Figure 10.3 shows considerable between-subjects variation in the number of
Round 1 deals ranging from 0 (Buyers 11, 16, 18 and 20) to 22 (Buyer 6).

There are considerable individual differences in the individual bids in
Round 1. We hypothesized that Round 1 bids would not exceed 50. It is
clear from Figure 10.3 that, with six exceptions (Buyers 3, 4, 11, 16, 18 and
20) this hypothesis was not supported. Mean individual bids ranged from
12 (Buyer 18) to 87 (Buyer 6), with an overall mean of 42. There is no
way of telling from the individual plots which bids were made earlier and
whichmade later in the 50-trial sequence. Analysis of trial-to-trial mean bids,
that we report later, shows that bidding behaviour changed systematically –
in the direction of no revelation – as the subjects gained more experi-
ence with the MSDA mechanism and more information about the sellers’
behaviour.
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Figure 10.3 Bids by buyers in Round 1: inexperienced condition

Of particular interest are the individual bids of the ten Sophisticated buy-
ers. Using the same format as in Figure 10.3, the individual bids for Round 1
are exhibited in Figure 10.4. With no more than three exceptions, nine of
the ten buyers did not disclose their reservation values. The only exception
is Buyer 29. Only 16.4 per cent of the Round 1 bids exceeded 50, and all but
nine of these bids occurred in the first 10 trials. As a result of these bidding
patterns (and the asks of the sellers), 5 of the ten buyers (Buyers 21, 22,
24, 27, 28) never reached an agreement on Round 1, and five more (Buyers
23, 25, 26, 29, 30) reached only a single agreement (see Figure 10.4). These
results contrast sharply with those displayed in Figure 10.3 for the buyers



J. E. Parco, A. Rapoport, D. A. Seale, W. E. Stein, R. Zwick 223

Figure 10.4 Bids by buyers in Round 1: sophisticated condition

in the Inexperienced group. Clearly, the strategically sophisticated buyers
realized not to reveal information about their reservation values in Round 1.

Turning next to the sellers’ decisions, Figure 10.5 exhibits the fifty Round 1
asks for each of the twenty Inexperienced sellers. Note that the sellers’ reser-
vation values (horizontal axis) range between 0 and 100, whereas their asks
(vertical axis) range between 0 and 200. On only 62.6 per cent of all tri-
als �20× 50 = 1000	 were the Round 1 asks equal to or higher than 100.
Strong support for the main hypothesis is provided by Sellers 1, 3, 4, 13,
14 and 17, who made only a few offers below 100. But the majority of the
sellers violated the hypothesis on at least 50 per cent of the trials. Mean
Round 1 asks ranged between 60 (Seller 9) and 159 (Seller 14), with an overall
mean of 114.

Most of the sellers in the Sophisticated group submitted Round 1 asks of
between 90 and 120, with 59.2 per cent of all Round 1 offers being equal to or
higher than 100. However, we do not see as many low asks as in Figure 10.5.
Seller 27 consistently asked 160 on trials 1–25, and Seller 23 – possibly in
attempt to reveal her identity – made four outrageous offers (234, 911, 911,
911) on trials 14–17. But all other sellers exhibited more or less the same
offer patterns. Six of them (Sellers 21, 22, 24, 25, 26 and 30) consistently
made offers that varied from one another by no more than a few points, and
all around the 100 mark. With one exception (Seller 24), no seller reached
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Figure 10.5 Asks by sellers in Round 1: inexperienced condition

more than a single agreement in Round 1. We only observed similar patterns
with two of the twenty Inexperienced sellers (Sellers 3 and 17 in Figure 10.5).

Aggregate bids and asks: Round 1

Figure 10.7 displays separately for each of the two-stage conditions the run-
ning mean (in steps of 5) of Round 1 asks and bids over the course of the
experiment. Recall that the Sophisticated subjects completed only twenty-
five trials compared to fifty trials by the Inexperienced subjects. Two findings
stand out. First, across all trials, Sophisticated subjects were the most aggres-
sive, with buyers in this condition bidding about the same as the buyers in
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Figure 10.6 Asks by sellers in Round 1: sophisticated condition

the Inexperienced condition, whereas sellers in this condition asked signi-
ficantly more than did sellers in the Inexperienced condition. Second, there
is clear evidence of learning in both conditions. Sophisticated buyers started
out immediately in Round 1 with mean bids about 50 that decreased steadily
across the course of the experiment, stabilizing at about 23. Mean asks of the
Sophisticated sellers quickly increased to well above 100 by trial 7 and above
117 by trial 15. Inexperienced buyers also recognized the value of not reveal-
ing information, exhibiting behaviour very similar to that of the Sophis-
ticated buyers. In contrast, Inexperienced sellers made significantly lower,
less aggressive Round 1 asks, and continued to reveal information about
their reservation values throughout the entire course of the experiment.

The effects of learning and strategic sophistication manifested themselves
in the number of deals struck in Round 1. Table 10.3 reports the number of
deals made in Rounds 1 and 2 together (row 1), the number of deals made in
Round 1 only (row 2), and the percentage of Round 1 deals out of the total
number of deals (row 3). The results are presented separately for all the trials
(either 50 for the Inexperienced condition or 25 for the Sophisticated condi-
tion) in the left-hand panel of Table 10.3, and for the last 20 trials (in both
conditions) in the right-hand panel. In Round 1, Sophisticated subjects only
made 5 agreements, all occurring in the first two trials. In contrast, 20.1 per
cent of all deals made by the Inexperienced subjects were results of Round 1
agreements. Consistent with Figure 10.7, these percentages decreased with
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Figure 10.7 Running means of Round 1 asks and bids

Table 10.3 Number of deals by condition and round of play

No. of deals Across all trials Last 20 trials
Sophisticated Inexperienced Sophisticated Inexperienced

Rounds 1, 2 131 561 100 227
Round 1 5 113 0 26
Percentage 3.8% 20.1% 0% 11.5%

experience from 3.8 per cent to 0.0 per cent in the Sophisticated group, and
20.1 per cent to 11.5 per cent in the Inexperienced group in the last twenty
trials. Although the changes in the percentage of Round 1 deals across trials
are significant (Parco, 2002), nearly one in six Round 1 deals persisted,
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a result mainly of a handful of subjects, almost all of them Inexperienced
subjects, who continually made truthful or near truthful offers.

Individual bids and asks: Round 2

If the subjects reveal information about their reservation values in Round 1,
playing LES on Round 2 is no longer optimal. Therefore the hypothesis about
LES play in Round 2 is only testable with the Sophisticated subjects, who
mainly revealed no information in Round 1. Focusing again on individual
bids and asks, Figure 10.8 portrays the individual Round 2 bids for all ten
of the Sophisticated buyers. The similarity of the bid functions between the
ten buyers is striking. In nearly all cases, the buyers bid at or slightly below
the LES. In only two cases did a single buyer’s bid exceed the maximum LES
bid of 116.67. Buyer 25 bid 120 and 123 in Rounds 1 and 2, respectively.
We observe no cases where buyers’ bids exceeded their reservation values.

Compared to the buyers, Sophisticated sellers exhibited more between-
subject variability (see Figure 10.9). Like the buyers, there are no cases of
sellers submitting offers smaller than their reservation values. And with
the exception of Seller 27, who attempted to stand firm and resist being
pushed down by the anonymous, information-advantaged buyers, the vast
majority of the offers lie between the LES and truth-telling functions. The

Figure 10.8 Bids by buyers in Round 2: sophisticated condition
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Figure 10.9 Asks by sellers in Round 2: sophisticated condition

offers displayed in Figure 10.9 are indistinguishable from the individual
offers of the sellers in the Baseline condition (see Parco, 2002 for individual
plots), and the individual offers reported by DSR.

Aggregate bids and asks: Round 2

Although the LES is no longer optimal for players who reveal information
about their reservation values in Round 1, we present aggregate results
for both two-stage conditions. Table 10.2 reported the spline regression
coefficients for the Sophisticated (row 2) and Inexperienced (row 3) groups.
Consider first the Sophisticated buyers. Two bids of 1 (not displayed on the
individual plots in Figure 10.8) were made during Round 2 for reservation
values �b = 18 and �b = 32, resulting in a pushing down of the intercept
of the first segment of the regression line to y = −3�4. The slope value of
this line �m = 1�09	 is therefore an artefact because of these two outliers,
as in no case did any buyer bid above his/her reservation value. For the
mid-range bids �50 < �b � 150	, the slope �m = 0�44	, was smaller than the
predicted value m = 2/3, and smaller than that observed in the Baseline
condition. This indicates that either the buyer’s behaviour in Round 2 was
more aggressive than in the single-stage double-auction mechanism, or that
the Sophisticated buyers differ from the Baseline subjects. For the upper
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range of bids �150 � �b � 200	, the slope of the regression line �m = −0�03	
did not differ from 0, but the intercept �y = 95�6	 was significantly lower
�p < 0�0001	 than the LES predicted value of y = 116�7, testifying again to
the observation made earlier of aggressive buyer behaviour in comparison to
the LES.

The bids of the Inexperienced buyers, as a whole, did not differ from the
bids of the Sophisticated buyers. Only the percentage of variance accounted
for by the spline regression line decreased significantly, from 90 per cent
in the Sophisticated condition to 76 per cent. This reflects the larger
between-subjects variability in the behaviour of the Inexperienced buyers
observed in Figure 10.4.

Support for the LES prediction for Round 2 asks by the sellers was
considerably weaker. As shown by Table 10.2, mean asks did increase in
the reservation values across the range 0 � �s � 100, but the adjusted R2

values were considerably smaller than those for the buyers, ranging between
R2 = 0�39 for the Inexperienced sellers to R2 = 0�58 for the Sophisticated
sellers. In both groups, the slopes of the linear regression lines were
significantly smaller than predicted, as were the intercepts. The information
disparity hypothesis (Rapoport et al., 1998) that the information-advantaged
traders (buyers in our case) will ‘push down’ the information-disadvantaged
traders (sellers in our case) was supported in both conditions.

Discussion and conclusions

TheMSDA allows for several rounds of bargaining, in which asks and bids are
made simultaneously on each round. It does not capture the pattern of recip-
rocal concessions so often observed in economic transactions, where traders
respond to each other’s offers. At best, it captures elements of the pattern of
diplomatic or military bargaining, where the parties come to the negotiation
table with pre-prepared proposals, learn about each other’s proposals while
attempting to limit the revelation of the concessions they are willing tomake
in the future, and then depart to meet again for a subsequent round of bar-
gaining with possibly new proposals. The protracted bargaining between the
USA and North Korea following the Korean War in the early 1950s, between
the USA and North Vietnam in the early 1970s, and between Israel and the
Palestinian authorities that took place in Camp David during the late 1990s
all bear a resemblance to the MSDA. In many of such bargaining situations,
the cost of delay in reaching an agreement is small in comparison to themag-
nitude of the potential gains with a deadline on the length of the bargaining.

The traditional way of accounting for multistage bargaining is by
introducing a fixed discount factor 
 � 1, where 
 is interpreted as being
either the devaluation of profit from one round to another, or a fixed
probability of breakdown in negotiations. This chapter focuses on a special
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case of N = 2 and 
 = 1, and then constructs an equilibrium solution in
which players do not bargain seriously in Round 1, and then play the LES
in Round 2. Our results provide moderate support for equilibrium play.
Although players disclosed information about their reservation values in
Round 1, the rate of disclosure decreased steadily with experience. Similar
to the previous experimental studies of the single-stage double-auction,
the LES approximated the bid and ask functions in Round 2, with the
qualification that the traders who had the information advantage (buyers
in our case) played more aggressively than the LES, and consequently
succeeded in ‘pushing down’ the information-disadvantaged traders (sellers
in our case) below their LES functions.

These patterns of behaviour were more pronounced when the traders
were strategically sophisticated. Compare, for example, the inexperienced
subjects, who in the last twenty trials reached an agreement in Round 1 in
approximately 1 out of 9 trials, to the strategically sophisticated students
who reached no agreement after the second trial. Our results also show that
strategically sophisticated bargainers are considerably more homogenous
than naïve bargainers, and therefore their offers are more predictable.
Note that in our experiment the effects of strategic sophistication and
magnitude of payoff (2.5 higher for the Sophisticated condition) were
confounded. We cannot assess the differential effects of these two variables
on the significant differences between the two conditions in length of
deliberation before reaching a decision (more than twice as long in the
Sophisticated condition), mean payoff per trial, and different patterns of asks
and bids.

Additional limitations of the experimental design and data analysis, some
of them for practical reasons, should be noted. We have made no attempt
to account for the learning process (see, for example, Figure 10.7) by
testing alternative adaptive learning models competitively (see, for example,
Camerer (2003) for a brief review), or extending the adaptive learning
model for the single-stage double-auction, that was proposed, refined and
tested successfully by Daniel et al., Rapoport et al. and Seale et al., to the
MSDA. We have made no attempt to relate the bids/asks in Round 1 to
the ask/bids in Round 2, particularly in the case where subjects revealed
information about their reservation values in Round 1 and, not reaching an
agreement, proceeded to Round 2. We have made no attempt to compare
behaviour in the MSDA between fixed-pair and random-pair designs where,
under the fixed-pair design, reputation effects are possible as the same
traders play the stage game repeatedly. And we have made no attempt
to study the MSDA with N > 2 and 
 < 1 (for example, by introducing a
small and fixed probability of breakdown in the negotiations at the end of
each trial). We take these limitations as a challenge for extending theory
construction and experimental design, and improving data analysis in future
studies.
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Appendix: instructions for the two-stage bilateral
bargaining study

The present experiment is designed to study two-person bargaining between a
buyer and seller. If you make good decisions, you may earn a considerable amount
of money. The money you earn will be paid to you in cash at the end of the
session.

In case you have any questions while reading the instructions, please raise your
hand and the supervisor will come to help you.

Description of the task

Before the session begins, the subjects in the Laboratory will be divided randomly
into two equal size groups of Buyers and Sellers.

You will participate in 50 trials. On each trial, a Buyer and Seller will be randomly
paired and then bargain on the price of an unspecified object. Since you will
communicate with each other via the computer, you will not know your co-
bargainer’s identity nor will he/she know yours. You will play the same role (either
a Buyer or Seller) on all trials. However, the identity of your co-bargainer will be
changed randomly from trial to trial.

At the beginning of each trial the computer will display your reservation value for
the object. The reservation value represents how much the object is worth to you
on this trial. It will change from trial to trial.

Reservation values (stated in a fictitious currency called ‘francs’) are determined
randomly before each trial. For Buyers, reservation prices will range from 0 to 200
francs, with each value in this range equally likely. For Sellers they will range from
0 to 100 francs, with each value in this range equally likely. The ranges will be
shown graphically on the computer screen before each bargain begins (see the
display below). On each trial, you will know your own reservation value (assigned
to you by the computer) but not the exact reservation value of your co-bargainer
(you will only know that it is equally likely to be within a certain range).

Range of Possible Reservation Prices

Sellers

Buyers

100

0

0

200

How do you bargain on the price?

Each trial includes at most two rounds of play.

Round 1: On round 1, after the computer displays your reservation value, you will

have an opportunity to make a bid price (Buyer) or ask price (Seller) for the object.

If you are the Buyer, your bid price represents the price you propose to pay for the
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object. If you are the Seller, your ask price represents the price you propose to
accept for the object.

• If the Seller’s ask price is higher than the Buyer’s bid price, then no deal will be
struck on round 1 and both you and your co-bargainer will move to the second
round of the same trial.

• If the Seller’s ask price is equal to or lower than the Buyer’s bid price, then a
deal will be struck and you will end this trial in an agreement. The contract price
in this case is computed to be halfway between the buyer’s bid and the seller’s
ask prices:

contract price= (buyer’s bid price+ seller’s ask price)/2

Round 2: Round 2 has the same structure as round 1 with the only exception that
if no deal is struck, the trial ends in disagreement (and zero payoff to both traders).

In summary, on each trial, the buyer and seller make at most two decisions (bid
price for Buyer or ask price for Seller). These decisions determine whether an
agreement is reached, and if so at what contract price. An agreement may be
reached on round 1. If no agreement is reached on round 1, another opportunity
to reach an agreement is provided on round 2. If round 2 is reached, it may be
concluded with either an agreement or disagreement.

How are your earnings determined on each trial?

• If the trial ends in disagreement (because the Seller’s ask price exceeds the
Buyer’s bid price on both rounds of play), then you will earn nothing for this
trial.

• If the trial ends (on either round 1 or 2) in agreement (because the Seller’s ask
price is equal to or lower than the Buyer’s bid price), then your earnings will
be determined by the following formulas:

Buyer’s earnings= (Buyer’s reservation price−contract price)

Seller’s earnings= (contract price−Seller’s reservation price)

For the Buyer, her earnings are the difference between her valuation of the object
and the contract price. For the Seller, his earnings are the difference between the
contract price and his valuation of the same object.

Example: The following example illustrates the computations:

Suppose the Buyer is assigned a reservation price of 110 francs, and the Seller is
assigned a reservation price of 65 francs If the Buyer bids 90 francs and the seller
asks 80 francs (on either round 1 or round 2), then an agreement is reached at
a contract price of 85 francs ��90+80	/2	. Using the formulas given above, the
earnings are calculated to be:

Buyer’s earnings= �110−85	= 25

Seller’s earnings= �85−65	= 20

Please note the following. If the Buyer (in an effort to increase her payoff) decides
to lower her bid price from 90 to 80, while the Seller (with a similar motivation
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to increase his payoff) changes his ask price from 80 to 85, then no deal is struck
(because the Buyer’s bid price is less than the Seller’s ask price). In this case,
both traders will earn nothing on this trial. Hence, a tradeoff exists for both the
Buyer and the Seller. The more money they try to earn by decreasing their bid
price (Buyer) or increasing their ask price (Seller), the more likely it is that no
agreement will be reached. The key uncertainty is that each player does not know
the reservation price of the other. The traders only know the range from which
these prices are randomly selected.

Procedure

You will play a total of 50 trials. Each trial follows the same sequence: First, the
computer will randomly match you with another trader of the opposite type,
and will display your reservation value for the object (you will not know your co-
bargainer’s reservation price, only that it is equally likely to be included in a certain
range). Next, you will be asked to submit your bid price (Buyer) or ask price (Seller).
After both bargainers submit their offers, the computer will inform you of your
co-bargainer’s offer, and calculate your payoff if an agreement is reached. If an
agreement is not reached, you will have a second (and last) opportunity to strike
a deal on the second round of the same trial. If round 2 ends with disagreement,
your payoff for the trial is zero. After you review your payoffs, you will move to
the next trial, if it is not the last one.

Payment at the end of the session

At the end of the session, the computer will sum up all your earnings for the
50 trials. The supervisor will then pay you your earnings at the rate of 80 francs =
$1�00. Please raise your hand to indicate to the supervisor that you have completed
reading the instructions. The supervisor will then set your computer for the game.
Please be patient; the game will start when everyone is ready.

Notes

1 The assumption of risk-neutrality was relaxed by Chatterjee and Samuelson (1983),
who investigated the nature of the equilibria when both traders’ utility functions
display constant risk-aversion. Our justification for assuming risk-neutrality is
based in part on the theoretical argument of Rabin (2000) and in part on the
finding that previous experimental tests provided strong support to the joint
hypothesis of a Chatterjee – Samuelson linear equilibrium and risk-neutrality.

2 Individual rationality requires b � �b and s � �s, which are the only requirements
if 0� �b � 25 in Equation (10.1) or 75� �s � 100 in Equation (10.2).

3 It was not possible to have another group of ‘sophisticated’ players because of the
special circumstances under which they were recruited.
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The Role of Learning in Arbitration:
An Exploratory Experiment
Gary E. Bolton and Elena Katok∗

Introduction

Having an arbitrator decide the outcome of a negotiation avoids the losses
associated with a bargaining impasse. For example, in the public sector of
the USA, arbitration is commonly mandated for failed labour negotiations
to save the public the costs associated with, say, a police or firefighters’
strike.1 By definition, arbitration involves an outside party, the arbitrator,
with the authority to impose a binding settlement on the disputing parties.
(In contrast, a mediator is someone who can suggest, but not impose, a
settlement.) We say that there is a ‘dispute’ when bargaining ends without a
voluntary agreement. When we say ‘bargaining with arbitration’, we mean
a negotiation in which arbitration is required in case of dispute. We shall
focus here on repeated bargaining relationships, which is a common context
for binding arbitration.

Field evidence finds that having arbitration as a fallback lessens the like-
lihood that bargainers will reach a voluntary settlement (see, for example,
Currie and McConnell, 1991; Ashenfelter et al., 1992). The ‘overuse’ of arbit-
ration can have undesirable consequences. For example, since arbitrators
are often at an informational disadvantage, the imposed agreement may be
less efficient than a voluntary one (Crawford, 1982). An efficient multilevel
wage agreement, for example, may require detailed knowledge of both man-
agement and labour preferences. Also, having a third party settle a dispute
plausibly deteriorates the working relationship of the bargaining parties,
planting the seeds for additional problems and misunderstandings.

A critical question, then, is whether arbitration need necessarily impose
these drawbacks; that is, whether we can hope to avoid decreasing vol-
untary agreements through the clever design or implementation of the
arbitration process. The field evidence provides little hope that such can

∗ Both authors gratefully acknowledge the financial support of the National Science
Foundation.
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be accomplished, but of course this evidence focuses on existing mechan-
isms and practices. Theory provides no unequivocal answer either, in large
part because the reason bargainers have disputes in the first place is not
well understood. Complete information models of bargaining typically do
not predict dispute occurrence (Nash, 1950; Rubenstein, 1982). Incomplete
information models account for disputes, but in a way that has been called
into question by the data.2 Even if we simply assume that disputes happen,
however, it is not obvious why arbitration should aggravate the problem,
since using arbitration typically imposes both financial costs and risk costs
(in the form of uncertainty about what the arbitrator will do) on the nego-
tiators, giving them an incentive to avoid its use.

This chapter reports on an exploratory experiment in the spirit of Güth,
Ivanova Stenzel, Königstein, and Strobel (2003). The working hypothesis of
the investigation is that arbitration may in fact reduce the rate of dispute if
the process is targeted at simplifying the bargaining problem. We judge the
complexity of the bargaining problem by a criterion implicit in Schelling’s
(1963) conceptualization of bargaining as a struggle to commit to, and co-
ordinate on, a commonly understood focal point. Specifically, we study a
bargaining environment known to induce two focal points, each appealing
to the self-interest of a different bargainer. We then introduce an arbitra-
tion process that implements a settlement from a unimodal distribution
(as we shall explain, this model is thought to capture essential features of
the arbitration process). The hypothesis is that arbitration can simplify the
bargaining co-ordination problem if it signals the focal point for bargainer
co-ordination. In two of the treatments, the mode of the arbitration settle-
ment distribution focuses on one or the other ‘natural’ focal point in the
bargaining environment. In the third treatment, the distribution focuses on
a compromise outcome, in effect a ‘synthetic’ focal point, which one might
think bargainers would find attractive since it is a compromise between the
natural points. An interesting issue here is whether signalling a natural focal
point or a synthetic compromise point is equally effective at generating
co-ordination.

Two previous experiments and a new hypothesis

The inspiration for our working hypothesis is the findings of two previous
experiments. Since the new experiment also builds directly on the laboratory
designs of this previous work, we first describe the earlier experiments in
some detail.

Two previous arbitration experiments

Ashenfelter et al. (1992) report an experiment aimed at determining what
effect arbitration has on voluntary dispute rates. The experiment compared
bargaining with no arbitration to bargaining with three different arbitration
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mechanisms commonly used in the field. In conventional arbitration the arbi-
trator is free to impose any settlement s/he sees fit. In final offer arbitration
each bargainer submits a final offer to the arbitrator, who then imposes the
settlement s/he thinks most reasonable. In tri-offer arbitration the arbitrator
imposes one of three outcomes: either one of the bargainers’ final offers, or
the recommendation of a neutral fact-finder. Both of these latter types of
arbitrators are intended to give the bargaining parties an extra incentive to
find their own settlement, since both prevent the arbitrator from splitting
the difference between positions of the two sides, and in this sense increase
the risk of going to arbitration.

Bargaining in the Ashenfelter et al. experiment concerned a simple pie-
splitting task, with two bargainers who negotiated repeatedly. Bargainers
negotiated via a computer for up to five and a half minutes. The only moves
allowed were the posting or updating of an offer; the latest offer(s) posted
were visible to both bargainers. The voluntary negotiation ended when
posted offers matched or time ran out. The offers were simply a number
between 100 and 500. Each offer translated into a cash payoff. Bargainers
knew their own payoff but were not told their partners’, although, in fact,
the two schedules were symmetrical. Bargainers knew they would interact
with the same partner multiple times, though, to avoid end-game effects,
they were not told how many rounds of play there would be.

One of the novel aspects of this experiment was the method for simulating
arbitration awards, a method based on field studies of arbitrator behaviour
(Ashenfelter and Bloom, 1984; Ashenfelter, 1987). These studies suggest
that, because field bargainers usually have some say about who will arbi-
trate, arbitrators who are predictably biased towards either party relative to
other arbitrators tend to be vetoed by the disadvantaged party. Acceptable
arbitrators therefore tend to be ‘statistically interchangeable’: different arbi-
trators may make different awards, but there is little predictable difference.
This suggests that actual arbitration award processes are well approximated
by a simple stochastic draw from a fixed distribution – something that is
easy to implement in the lab. In the experiment, awards were always chosen
from a truncated normal distribution, with one bargainer being, on average,
modestly favoured. To give their subjects a feel for likely awards, the experi-
menters provided all the bargainers with a list of the arbitrator’s last 100
awards; for conventional arbitration, in fact a list of 100 random draws from
the distribution (an analogous method was used for final offer and tri-offer
arbitration). For conventional arbitration, the Ashenfelter et al. experiment
also tested the hypothesis that greater uncertainty costs, in the sense of
higher variance of arbitrator awards, diminishes the incidence of dispute.

The main finding of the experiment was that arbitration increases the
dispute rate robustly. The average rate of dispute without arbitration was
11.2 per cent, and for (high variance) conventional arbitration, this increased
to 28.4 per cent. For final offer arbitration, the rate of dispute was statistic-
ally significantly higher at 38.1 per cent. It was also higher for tri-offer offer
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arbitration, at 32.4 per cent, although not statistically. There was therefore
no evidence that final offer or tri-offer arbitration procedures decrease dis-
putes. The study also found that dispute rates were negatively correlated
with uncertainty costs.

Bolton and Katok (1998) presented an experiment that examined aspects
of bargainer behaviour where the arbitration safety net increased disputes.
The experiment focused specifically on conventional arbitration. The experi-
mental design paralleled that of Ashenfelter et al., with three notable excep-
tions. First, while Bolton and Katok’s experiment also featured a simple
pie-splitting problem, the bargaining game was more structured: bargainers
first made simultaneous proposals, and then either accepted the other bar-
gainer’s proposal or maintained their own (the same action space is used
in the new experiment; see the third section beginning on page 240). This
permitted a cleaner analysis of bargainer behaviour. Second, bargainers were
given complete information about one another’s payoffs, eliminating con-
founding with bargainer expectations of true payoffs. Third, while arbitra-
tion awards were modelled in the same way as in Ashenfelter et al., as a
truncated normal distribution, Bolton and Katok manipulated the location
of the distribution, so that some arbitrators made symmetrical awards while
others made asymmetrical ones. The experiment also manipulated the cost
of dispute in the sense of the size of the pie (or arbitrator award uncertainty);
that is, in some cases, going to arbitration led to a cost in the form of a
somewhat smaller pie to be awarded by the arbitrator.

In spite of these differences, the baseline results of this experiment were
comparable to those of Ashenfelter et al. Specifically, even though the bar-
gaining game differed with respect to information completeness of action
space structure, the dispute rate absent arbitration averaged 14.3 per cent.
The introduction of arbitration robustly increased the rate of dispute, ranging
in this experiment from 22.2 per cent to 67.3 per cent. The high end of the
range was reached for the arbitrator that made asymmetrical awards, sharply
favouring one bargainer. Both experiments found that higher dispute costs
were correlated negatively with dispute rate (Bolton and Katok with respect
to loss of bargaining pie as well as with respect to arbitrator award uncer-
tainty). Finally, both experiments found a high degree of heterogeneity with
respect to bargaining pair dispute rates.

The novel findings of the Bolton and Katok experiment began with
the observation that, for both with and without an arbitrator, bargainers
exhibited learning behaviour, with disputes going down as bargainers
repeatedly interacted. Field investigators also find learning effects in nego-
tiations (see, for example, Reder and Neumann (1980); Lester (1989); see
Bolton and Katok (1998) for more discussion of the field evidence). The two
important findings that emerged from an analysis of the learning trend were:
first, the learning is attributable to the incidence of past dispute; specifically,
the influence of a dispute on the probability of a future dispute was nega-
tive. The reason for this influence was that bargainers reacted to a dispute
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by moderating their demands in the next round of bargaining. The second
important finding spoke directly to the difference between bargaining with
and without arbitration. Specifically, when bargainers had arbitration as
a fallback, there was less moderation in their demands after a dispute; in
this sense, there was slower learning under arbitration. Hence arbitration
exhibited a version of what some commentators in the field literature on
arbitration call a narcotic effect; those parties who used arbitration in the
past seemed to lean more heavily on it in the future than those who had
not used it in the past.

A new hypothesis

The motivation for the new hypothesis begins with the observation that
both of the previous experiments focused on a simple pie-splitting nego-
tiation, with a natural 50–50 division focal point. Indeed, equal division
was the modal voluntary settlement in all the treatments in both experi-
ments – even when bargainers were not told one another’s payoffs, as in the
Ashenfelter experiment, and even when arbitrator awards favoured one or
the other bargainer (again, regardless of whether bargainers knew this for
sure). Hence the increase in disputes under arbitration might not be caused
by decreased dispute costs per se, but rather decreased dispute costs in a
negotiation environment where most people already have a strong precon-
ceived notion of what the outcome from negotiating should be. The fact that
Bolton and Katok observed that disputes were highest under an arbitrator
known to be biased towards one bargainer could be taken as evidence of
resistance to moving away from a commonly known focal point.

It seems plausible, then, that in a more complex bargaining environment,
one where there are multiple focal points, an arbitrator who selects a partic-
ular focal point for the bargainers might in fact decrease dispute rates, since
committing to that focal point is less costly, and so more credible, than
when an arbitration option is absent. The important implication is that
arbitration awards that might select between existing predilections could
conceivably help along the voluntary bargaining process, rather than hinder
it, as observed both in field studies and in the previous experiment.

The new experiment

In the new experiment, we use a bargaining game similar to that in Bolton
and Katok (1998). But we change the payoff space of the game in a way
that induces two natural but competing focal points. We then manipulate
arbitrator awards either to reinforce or not to reinforce one of the focal
points.

The new experiment had four treatments. In all four, bargainers were
paired with the same partner for twelve rounds of bargaining. In the No
Arbitrator treatment (NA), bargaining was without arbitration. Bargaining
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in the other three treatments, A50, A63 and A75, included a conventional
arbitration procedure, but the nature of arbitrator awards differed across
treatments. The bargaining game and arbitration mechanisms are described
in the next two segments.

Bargaining: the deadline game

In all treatments, bargaining pairs played the deadline game, a two-person,
two-stage negotiation concerning the division of 100 chips.3

Stage 1

Bargainers A and B simultaneously offer $A and $B, respectively, where $A�n	
equals the chips offered to n�n= A�B. Also, $A�A	+$A�B	= 100� similar for
$B. If offers are exactly compatible (that is, $A�A	= $B�A	 and $A�B	= $B�B		

then the game ends in agreement on the implied division; otherwise the
game proceeds to Stage 2.

Stage 2

After reviewing both Stage 1 offers, bargainers play the bi-matrix game as
in Figure 11.1, where a denotes accepting one’s partner’s offer (thereby
dropping one’s own offer); m denotes maintaining one’s own offer (thereby
holding out for partner to play a); and $arb�A	 is the payoff awarded to A by
the arbitrator. If both bargainers play a, then a coin flip decides which offer
becomes the settlement.

The lab treatments are distinguished by what happens in the case of dis-
pute, when both bargainers play m. In NA, both bargainers receive 0 chips.
In the other three treatments, the division of the 100 chips is determined
by a conventional arbitration procedure.

Arbitration

Following the procedure used in the earlier experiments, conventional arbi-
tration awards were determined by a random draw from a truncated normal
distribution. The location of the distribution differed across treatments. The

Bargainer B

a

a

υA with prob ½
υB with prob ½

υ B

Bargainer A

m

m

υA No arbitrator (NA):  0,0

Arbitration (A50, A63, A75):
Arbitrator imposes a settlement

Figure 11.1 Stage 2 of the deadline game
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number in the name of each treatment indicates the average award that
player A could expect if bargaining ended in dispute (see Figure 11.1). For
example, in A63, the average award gave 63 chips to bargainerA, and 37 chips
to bargainer B. In all cases, the standard deviation was set at 2.5 chips (this
is only approximate because of the truncation at 0 and 100, but the error is
negligible). The particular locations of the arbitrator distributions, at 50, 63
and 75, were each intended to implement a natural or synthetic focal point,
as will become clear in the next segment.

Payoffs

Payoffs for the game involved the binary lottery first introduced by Roth et al.
(1981). The chips a bargainer receives in a settlement were effectively lottery
tickets; the more chips were obtained, the better the bargainer’s chance
of winning a monetary prize in his/her own personal lottery. Bargainer A
was assigned a monetary prize of $10, while bargainer B’s was $30. The
probability of winning a prize is equal to the proportion of tickets received.
For example, if A receives 55 tickets, then s/he has a 55 per cent chance of
winning $10, and a 45 per cent chance of winning nothing. A bargainer
with 0 tickets receives the prize of 0 with certainty.

The unequal payoffs and the lottery procedure create a tension between
two focal divisions of the chips; in this case, the 50–50 division, representing
an equal chance of winning a prize, and 75–25, representing an equal div-
ision of expected value. As we shall see, this tension leads to a significantly
different pattern of negotiations without arbitration than was observed in
the earlier experiments. It also creates a natural test bed for the hypothesis
we set out to investigate. Observe that the A50 and A75 arbitrators are
located at the natural focal points, whereas the A63 arbitrator is located at a
compromise, halfway between 50 and 75.

Using a binary lottery in conjunction with arbitration presents a com-
plication (although one that can be overcome). To see this, step back for
a moment to examine the costs associated with arbitration. These include
the out-of-pocket costs associated with presenting the case to the arbitrator,
and the implicit cost associated with the uncertainty over the final award.4

The existence of some sort of cost is crucial. Suppose, for example, that the
arbitrator always awards a 60–40 division (the larger portion going to bar-
gainer A), meaning there is no uncertainty cost. Suppose no further cost as
well. Then bargainers would be totally indifferent between settling 60–40
and having the arbitrator award 60–40. There would be no reason for bar-
gainers to avoid arbitration or to settle on anything other than 60–40. In the
Ashenfelter et al. (1992) experiment, an arbitration cost was imposed by the
uncertainty associated with arbitratior awards.5 But the binary lottery does
not necessarily induce a parallel uncertainty cost: Roth et al. (1981) show
that, for any given division of the binary lottery tickets, each bargainer’s
expected utility can be represented by the number of lottery tickets s/he



242 The Role of Learning in Arbitration

receives. Hence the expected utility from going to arbitration is equal to the
expected number of chips awarded by the arbitrator – independent of the
amount of uncertainty associated with the award. A binary lottery alone,
therefore, might induce no arbitration cost.

To avoid this difficulty, an out-of-pocket cost was imposed on bargain-
ers for failing to reach agreement. To avoid negative cash balances, an
‘agreement fee’ was awarded to each bargainer if they reached agreement on
how to divide the 100 chips. If bargainers did not reach agreement on their
own, each received an agreement fee of 0. It is important to note that the
agreement fee was also part of the negotiating pie without arbitration; that
is, NA bargainers received an agreement fee of 0 if they failed to reach agree-
ment. Hence the differences found between NA and arbitration negotiating
behaviour are not attributable to the agreement fee.6

The agreement fee was set at a relatively high $5. We favoured a high
fee because our purpose was to study learning behaviour, and there is
some reason to think that the rate of learning (if there is any) will be
correlated positively with the dispute cost.7 Because time limitations restrict
the number of bargaining rounds in a lab session, it is important to choose an
agreement fee sufficiently high to induce learning at a statistically observable
rate.8 More generally, the results of the experiment raise some interesting
issues concerning the cost of arbitration in the field, and these issues are
turned to in the discussion section.

Laboratory protocol

All subjects were Penn State University students, recruited through billboards
posted around the University Park campus. Participation required putting in
an appearance at a special place and time, and was restricted to one session.
Cash was the only incentive offered. The sample size for both the NA and
A63 treatments was 24 bargaining pairs; for A50 and A75 it was 25.

Games were played through a computer interface. On arriving at the lab,
participants read written instructions (see copy in Appendix 1 on page 253)
and then played some practice games with the computer as bargaining part-
ner. So as not to bias later play, the computer made decisions entirely at
random (participants knew this). A brief quiz was given to check for under-
standing of the computer operation, and the written instructions were read
aloud. Participants were then paired randomly and anonymously. To avoid
end game effects, the total number of games to be played was not revealed.

The binary lottery was explained to participants as part of the directions.
The computer automatically displayed both offers and their expected value
to each bargainer. At the conclusion of the session, one game was selected
randomly for payoff, and a lottery wheel was spun for each participant.
Participants were paid their earnings for the selected game plus a $5 show-up
fee (payment in cash).

For the arbitration treatments, bargainers were given a history of the arbi-
trator’s past awards – a list of 100 random draws from the appropriate normal
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distribution (see Appendix 1), and were told to expect similar decisions in
the future. The list included the average for the 100 draws (50 for both
bargainers in A50; 63 for A and 37 for B in A63; and 75 for A and 25 for B
in A75). As with previous experiments, no mention was made of the actual
randomization process.

Results

We first take a descriptive tour of the data concerning dispute rates, to
provide the reader with a sense of prominent features and important trends.
We then apply a statistical model developed by Bolton and Katok (1998) to
analyse the learning trends that are in evidence. Finally, we take a look at
how arbitration affects voluntary settlements.

A preliminary analysis

The descriptive data on dispute rates are summarized in Table 11.1, and
Figures 11.2 and 11.3. Each exhibit provides a somewhat different perspec-
tive on the pattern of disputes. Table 11.1 breaks out dispute rates by treat-
ment for early, middle, late, and all rounds of negotiation. Observe first that
dispute rates for NA are about 25 per cent across all rounds. This is about
twice as high as that found by Bolton and Katok (1998) for their simpler,
no arbitration bargaining game. Also observe that all-round dispute rates are
higher for the A63 arbitrator than for NA, but are in fact lower for A50, and
a bit higher for A75. Hence the results of this experiment are quite different
from those of previous experiments. Also note that the rate of dispute is
time-dependent. For the arbitration treatments, dispute rates are highest in
the early rounds. Since they do not account for this trend, simple statist-
ical tests on the significance of the differences across treatments tend not

Table 11.1 Dispute rate by early, middle and late rounds (standard error)

Treatment Number of
pairs

Rounds All
rounds

1 to 4 5 to 8 9 to 12

NA 24 0�250 0�250 0�240 0�247
�0�0602	 �0�0673	 �0�0647	 �0�1111	

A50 25 0�310 0�200 0�160 0�223
�0�0768	 �0�0456	 �0�0454	 �0�1002	

A63 24 0�427 0�271 0�323 0�340
�0�0681	 �0�0581	 �0�0745	 �0�1165	

A75 25 0�310 0�250 0�220 0�260
�0�0564	 �0�0500	 �0�0391	 �0�0849	
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Figure 11.2 Dispute rate by round

to register significance. The formal statistical model we present in the next
subsection will show that the initial propensity towards dispute is statistic-
ally higher in the arbitration treatments, but that this changes in the later
rounds.

Figure 11.2 provides a round-by-round look at dispute rates, and illustrates
that the dispute trend depends on the treatment. For NA, dispute rates
rise modestly over time. In contrast, dispute rates clearly fall for all three
arbitration treatments. The model in the following subsection will quantify
these trends and confirm statistical significance. Again, this distinguishes
our experiment from previous studies where either no trend was reported
or bargainers were found to learn more quickly to avoid disputes without
arbitration than with arbitration. In the next subsection we shall investigate
the nature of these trends for the present data and present trend corrected
estimates of dispute rates for the final rounds of play.

Figure 11.3 exhibits the number of disputes by bargaining pair. Consistent
with the previous studies, there is a high degree of bargainer heterogeneitywith
respect to the propensity to have disputes. More formally, regressing last six
round dispute rates on first six rounds rates indicates a significant positive
coefficient of correlation for each of the treatments (unit = bargaining pair,
p < 0�02 for all treatments apart from A50, where p = 0�064). The statistical
model in the following subsection will block for heterogeneity.
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*Note: Some bargaining pairs never have disputes.



246 The Role of Learning in Arbitration

A learning model

To test our hypothesis, we would like to estimate formally, and then to
compare across treatments, both the initial propensity to dispute and the
learning rates. Following Bolton and Katok (1998), we describe two alter-
native models of the learning effect, and then compare their fit to the data.
The better fitting model is then used to test our main hypothesis.

The first model, taken as the baseline, is a simple round-effects model:

di�j�t = �i�j+�jAj+�j �t−1	+�i�j�t (11.1)

where di�j�t is the probability that pair i of treatment j will have a dispute in
round t ; �i�j is the pair fixed effect; Aj is the increase in the initial propensity
to dispute resulting from arbitration treatment j �ANA = 0	; the �js and the
�js are parameters to be estimated; and �i�j�t is an error term.

The round-effects model attributes learning to the amount of experience
bargainers have–that is, the model hypothesizes that simply playing the
game more often influences the probability of dispute. By this model,
learning may stem from something as straightforward as increased famil-
iarity with the rules of the game, although the model is broad enough to
accommodate a number of other hypotheses.

An alternative, more precise, hypothesis is that it is the history of game
outcomes (dispute or settlement) that influences the probability of dispute;
this is attributing learning to the kind of experience bargainers have, and is
in keeping with field studies that emphasize the lag effect of disputes on out-
comes (for example, Butler and Ehrenberg (1981) use a similar formulation).
Consider, then, the outcome effects model:

di�j�t = �i�j+
jDi�j�t +�jSi�j�t +�i�j�t (11.2)

where Di�j�t is the total number of disputes that �i� j	 had through round t−1;
Si�j�t is the total number of (non-arbitrated) settlements through t −1; the

js and the �js are parameters, and �i�j�t is an error term. Equation (11.2)
posits that each outcome has a permanent incremental impact on the prob-
ability of dispute (where ‘permanent’ means lasting for the duration of the
experiment).9

The formulation in Equation (11.2) also has the advantage of affording a
straightforward test of round learning against outcome learning. To see this,
note that:

Di�j�t +Si�j�y ≡ t−1

So Equation (11.1) is equivalent to Equation (11.2) if 
j = �j. We can then
test the null hypothesis of round learning against the alternative of outcome
learning by estimating Equation (11.2) and checking whether the constraint

j = �j can be rejected.
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It is convenient to define:

Ki�j�t ≡Di�j�t −Si�j�y

Equation (11.2) can then be expressed as Equation (11.1) plus the terms
�jKi�j�t added to the right-hand side:

di�j�t = �i�j+�jAj+�j�t−1	+�jKi�j�t +�i�j�t (11.3)

where the �js are parameters. Testing round learning against outcome
learning then reduces to testing whether �j = 0; rejecting is equivalent to
rejecting the round-effect model in favour of the outcome model.

We present estimates obtained from least square dummy variable (LSDV)
regression. The advantage of this approach is that estimates can be inter-
preted directly as probabilities. The drawback is that predicted probabilities
are not constrained to the admissible range. Estimates for a fixed-effect logit
model, however, lead to results that are comparable to those obtained with
LSDV. (Random effect models are rejected by the data, or in some cases, tests
indicate fixed effects are favoured.)

The estimates in column (1) of Table 11.2 are for a model including just
pair fixed effects. Dropping the fixed effects and running column (1) with

Table 11.2 A comparison of round and outcome effect models: LSDV coefficient
estimates (standard error)

(1) (2) (3)
The baseline Rounds effects Outcome
model: pair model: effects model:
fixed effects equations (4.1) equations (4.3)

Mean pair fixed effect ��	 0�267∗∗∗ 0�232∗∗∗ 0�240∗∗∗

�0�0112	 �0�0424	 �0�0472	

Initial effect ��j	 � j = arbitration − 0�131∗∗∗ 0�159∗∗∗

�0�0488	 �0�0545	

Round effect ��j	 � j = NA − 0�002 −0�007
arbitration �0�0065	 �0�0085	

− −0�014∗∗∗ −0�035∗∗∗

�0�0037	 �0�0047	

Outcome effect ��j	 � j = NA − − −0�017
arbitration �0�0110	

− − −0�048∗∗∗

�0�0066	

R2 0�306 0�315 0�348
n= 1176 (12 rounds for 98 pairs)

Note: ***Two-tailed test is significant at 0.025 level.
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just a constant yields an R2 of just 0.01, indicative of the large explana-
tory role of bargaining pair heterogeneity. Column (2) presents estimates
of the round model. The round variable for the arbitration treatments is
strongly significant �p < 0�001	, but not for NA �p = 0�736	, all consistent
with what we observed in Figure 11.2. As one would expect, the addition
of round variables has a big impact on the estimate of the initial effect
resulting from arbitration, increasing it from insignificantly above 0 to a
very significant 13.1 per cent �p = 0�019	. The �K terms are added to the
model in column (3). The term for NA is not quite significant �p = 0�112	,
but the one for arbitration is strongly significant �p < 0�001	. The test of the
restriction that both K terms are equal to 0 is rejected �p< 0�001	. So learning
from outcomes is a better fit with the data than the baseline round-effect
model. Bolton and Katok (1998) came to a similar conclusion with their
data. Finally, the interested reader is referred to column (1) in Table 11.A1
in Appendix 2 on page 255–6. This version of the round-effect model breaks
out initial effects and learning trends by treatment. Using this model, the
hypothesis that all three arbitration treatments have similar learning trends
cannot be rejected �p= 0�610	. Similarly, the restriction that all three initial
arbitration treatment effects are identical cannot be rejected �p= 0�290	.

The full outcome model (Equation 11.2) is estimated in column (2) of
Table 11.A1 Appendix 2. The coefficients for the Di�j�t variables are all nega-
tive, implying that the influence of a disagreement is to make future dis-
agreement less likely; that is, bargaining pairs appear to learn from their
‘mistakes’. The coefficients for the Si�j�t are all positive, although two of the
four are not significant and all are of modest size relative to the disagree-
ment coefficients. To economize on the exposition, Table 11.3 estimates the
outcome model dropping the settlement variables. What we have to say is
true for the model with settlements, estimated in Table 11.A1 in Appendix 2.

Column (1) of Table 11.3 provides a comparison of the influence of past
disagreements on future disagreements for NA as well as the pooled arbitra-
tion treatments. Both coefficients are negative, although the coefficient for
the arbitration variable is highly significant �p < 0�001	, while the one for
NA is smaller and not significant �p = 0�322	. So there is more learning to
avoid disputes from past mistakes in the arbitration treatments.

Column (2) tests whether learning is different between the natural focal
points versus the synthetic compromise focal point. For the natural focal
points, the coefficient is highly negative �p < 0�001	. The coefficient for
� A63 is the estimated difference the synthetic point makes; it is positive and
significant �p < 0�001	, indicating that there is less learning from mistakes
for A63. Interestingly, the natural focal points are more effective at inducing
learning than is the synthetic compromise focal point.

Column (3) permits an examination of whether there is any difference
between the effectiveness of the two natural focal points.While the influence
of A50 is somewhat larger than A75, a test of the restricted regression model
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Table 11.3 Analysis of the disagreementsmodel: LSDV coefficient estimates (standard
error)

(1) (2) (3)

Mean pair fixed effect ��	 0�268∗∗∗ 0�268∗∗∗ 0�268∗∗∗

�0�0315	 �0�0310	 �0�0310	

Initial effect ��j	 � j = arbitration 0�127∗∗∗ 0�147∗∗∗ −
�0�0373	 �0�0369	

A50 − − 0�141∗∗∗

�0�0460	

A63 − − 0�170∗∗∗

�0�0472	

A75 − − 0�135∗∗∗

�0�0463	

Past disagreements �
j	 � j = NA −0�016 −0�016 −0�016
�0�0169	 �0�0166	 �0�0166	

Arbitration −0�073∗∗∗ − −
�0�0094	

Natural focal point − −0�113∗∗∗ −
�0�0114	

� A63 0�072∗∗∗ −
�0�0118	

A50 − − −0�129∗∗∗

�0�0184	

A63 − − −0�049∗∗∗

�0�0140	

A75 − − −0�093∗∗∗

�0�0175	

R2 0�344 0�348 0�369
n= 1176 (12 rounds for 98 pairs)

Note: ***Two-tailed test significant at the 0.025 level.

finds that the difference is not significant �p= 0�451	. So there is no strong
evidence that one natural focal point is more effective at inducing learning
than the other.

Finally, we use Column (3) in Table 11.3 to test whether the trend-
corrected dispute rates under arbitration are statistically the same in the final
round of play as for NA. Predicting the 12th-round estimates for average
dispute rate and associated standard errors, we find that the trend-corrected
dispute rate for A50 is estimated at 8.6 per cent, and is statistically lower than
the trend-corrected estimate of 22.6 per cent for NA (two-tailed p= 0�012).
This results is robust to the inclusion of settlements in the model (that
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is, robust to using column (2) in Table 11.A1 in Appendix 2; two-tailed
p= 0�025). For A75, the trend corrected estimate of the Round 12 dispute rate
is 12.5 per cent, which is weakly significantly different from NA (two-tailed
p= 0�076). The result, however, is not robust to the inclusion of settlements
two-tailed p = 0�281). For A63, the trend-corrected estimate of the Round
12 dispute rate is 25.8 per cent, and this is not statistically different from
NA, either with or without settlements; variables in the model (two-tailed
p > 0�600 for both models). To summarize, there is robust evidence that last-
round dispute rates for A50 are lower than for NA, some evidence that this is
true for A75, and while trend-corrected A63 rates are estimated to be slightly
higher for NA, they are not statistically so.

Settlements

What effect do the arbitrators have on settlements? Figure 11.4 displays
settlements for each treatment, across all rounds. The graphs are broken out
by the natural ‘basin’ for each of the arbitration processes. In NA, we see that
equal division splits dominate equal expected value splits by about a 3-to-1
margin, while compromise solutions account for only about 10 per cent of
all outcomes. This portrait changes little for A50, while for A63 and A75 we
see substantial movements towards the basin implied by the arbitrator award
distribution. A contingency table test of the data underlying Figure 11.3
rejects the hypothesis that all treatments exhibit the same distribution of
settlements �p < 0�001	. Note, however, that while the basin implied by the
arbitrator is modal for both natural focal points, it is not for A63. There is

NA

A63

65.9%
g=217

10.6%
23.5%

47.9%

29.5%
22.6%

<=55 56 to 69 >=70

< = 55 56 to 69 > = 70

g = 190

68.7%
g = 233 

A50

8.6%
22.7%

< = 55 56 to 69 > = 70

A75

g = 222

28.8%
18.5%

52.7%

< = 55 56 to 69 > = 70

Figure 11.4 A comparison of settlements
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apparently greater resistance to the decisions of the A63 arbitrator than to
the others, and this may account for the slower learning we found in the
models discussed on page 000.

Comparing early (first six) to late (last six) settlements finds little change
in distribution for NA, A50 and A75 treatments �p > 0�180 in all three cases).
There is a weakly significant change for A63 �p= 0�096	. Interestingly, most
of the movement in A63 is towards equal divisions; these rise from 42 per
cent to 53 per cent of the total, whereas compromise solutions rise from 28
per cent to just 30 per cent.

Concluding remarks

To summarize, the analysis of the experiment produced five findings: (i) the
introduction of arbitration initially increases the rate of dispute; (ii) but arbit-
ration generally induces a learning effect not observed absent arbitration;
(iii) outcome learning fits the data better than round learning; (iv) learning
under either focal point arbitrator is faster than under the arbitrator posi-
tioned between the focal points – the compromise arbitrator; and (v) by the
twelfth round, the dispute rate is lower under both focal point arbitrators –
clearly significantly lower under one – than under no arbitration.

The explanation for these results we offer is that arbitration has two effects.
First, the lower dispute costs that accompany arbitration initially induce
more aggressive bargaining which leads to initially higher dispute rates. But
arbitration also has a beneficial impact on disputes: in the experiment, it
converts a game with two focal equilibria to a game with one, simplifying
the co-ordination task, which speeds up learning. Interestingly, arbitration is
more effective when the arbitrator is located at either focal point than when
located at the compromise position. In terms of behaviour, this is primarily
because of slower adjustment to disputes in the second stage. One poten-
tial explanation is that there is some interplay between initial bargaining
positions and expectations of concession. The compromise solution requires
both sides to make concessions from their ‘natural’ opening offers: all things
being equal, I would prefer my partner make a concession first. Hence an
expectation of the other side making a concession may slow down the rate
of concession for both bargainers.

The major implication is that, while a short-term increase in dispute rates
from the introduction of arbitration may be inevitable, a long-term increase
is not. There are two important caveats: first, the laboratory experiment was
done under very stable conditions. Specifically, both the bargaining prob-
lem and arbitrator behaviour were consistent across rounds. Disruption of
either across time could conceivably disrupt the learning process that lowers
disputes. Even if this is so, however, the experiment’s results suggest a new
explanation for why arbitration should increase disputes. Second, arbitrator
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behaviour in the experiment is transparent, in the sense that a brief history of
awards conveys a pattern to bargainers. A second explanation for the differ-
ence in learning rates between focal arbitrators and compromise arbitrators
suggests that this may be crucial: The arbitrator’s favouritism towards one
or the other bargainer’s behaviour was probably easy for bargainers to com-
prehend (although perhaps hard for some to accept), while the reasoning
for the compromise arbitrator may have been harder to grasp.

Finally, the results of the experiment are suggestive of the potential gains
to be made from a more precise modelling of Schelling’s concept of nego-
tiation as a struggle to establish commitments and the role of focal points
in this process. A better theoretical understanding of the basic mechanics
of bargaining, particularly an understanding of why some negotiations end
in an impasse, would facilitate greatly the development of more effective
dispute resolution techniques, ones with fewer undesirable side effects.

Notes

1 See Lester (1984) for a description of how these systems work.
2 See, for example, the field evidence from Card (1990). Roth (1995) observes that

dispute rates reported by complete and incomplete information experiments and
those reported by field studies are all quite similar. He concludes that this ‘raises
some question about whether the incomplete information models are focusing on
the underlying cause of disagreement’, (p. 294).

3 This game was analysed by Harsanyi (1977). Crawford (1982) explains bargaining
disputes using a modified version. Roth and Schoumaker (1983) use the game in
a lab study of bargainer expectations. Bolton (1997) identifies limit-evolutionarily
stable equilibria.

4 Bloom (1981) analyses the role of costs in arbitration. Some analysts identify a
third cost associated with the potential damage done to a relationship when the
parties are unable to settle a dispute on their own.

5 Of course, this assumes that bargainers behave in a risk-averse manner. Bolton
(1995) provides evidence that this is indeed the case.

6 A somewhat more complex method of imposing an arbitration cost – one that
combines elements of both out-of-pocket and uncertainty costs – would be to
have the arbitrator award less than the entire 100 chips, thus effectively charging
each bargainer chances in the lottery. The approach was rejected on the grounds
that it would complicate the interpretation of the results significantly: if each
bargainer is charged the same number of chips, then, because of the difference in
the size of prizes, the cost of arbitration is effectively three times larger (in expected
value terms) for bargainer B then for A. Such a sizeable difference might greatly
complicate the comparison of learning rates. On the other hand, equating the cost
of arbitration across bargainers would require us to charge A three times as many
chips as B. A modest cost of $3 (in expected value terms) would imply a truncation
of the arbitrator awards at 30 chips for bargainer A. The size of the mass point at
the truncation would differ significantly across arbitration treatments, and again
might greatly complicate comparison across arbitration mechanisms.

7 The adaptive learning models studied in the context of the ultimatum bargaining
game by Roth and Erev (1995) and Gale et al. (1995) suggest that bargainers whose
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payoffs vary more widely with their strategy choice learn more rapidly than those
facing a smaller variance.

8 To minimize the role of boredom or fatigue in subject behaviour, lab sessions were
restricted to a maximum of 90minutes. The rationale for choosing twelve rounds of
negotiation is that it was the maximum number of rounds that fitted comfortably
into the maximum period.

9 Estimates of (11.2) incorporating temporary lags indicate that these variables have
no substantial explanatory power. Bolton and Katok (1998) provide a detailed
discussion of the formulation used and how it compares to formulations that have
been applied to field data.

Appendix 1: written instructions provided to subjects

General. Please read the instructions carefully. If at any time you have questions or
problems, raise your hand and the monitor will be happy to assist you. From now
until the end of the session, unauthorized communication of any nature with other
participants is prohibited.

At the end of the session, you will be paid a $5 cash show-up fee. During the session,
you will play a series of bargaining games with another participant. Each game gives
you an opportunity to earn additional cash.

Description of the Bargaining Game. The game involves two bargainers, Player A and
Player B. They must decide how to divide 100 (abstract) chips. The game is played in
two stages:

Stage 1. Each bargainer proposes a division of the chips. The computer will display
both proposals simultaneously, meaning that neither bargainer will be able to see
the other bargainer’s proposal before making their own.

Stage 2. After reviewing both proposals, each bargainer decides whether to ‘accept’
the other bargainer’s proposal or to ‘maintain’ their own proposal. The computer
will display both decisions simultaneously, meaning that neither bargainer will be
able to see the other bargainer’s decision before making their own. At this point,
are there any questions?

Chip Division Rules. The decisions made in Stages 1 and 2 determine how the chips
are divided:

– If one bargainer ‘accepts’ and the other ‘maintains’, then the maintaining bar-
gainer’s proposal is agreed upon, and this determines the division of the chips.

– If both bargainers ‘accept’, then, using a process that is equivalent to a coin flip,
the computer randomly chooses one bargainer’s proposal as the agreed upon
one.

– If both bargainers ‘maintain’, then the game ends in disagreement. Each bar-
gainer receives zero (0) chips. At this point, are there any questions?

Role Assignments. You will have the same role, Player A or Player B, for all games.
Your role is determined by the ‘A’ or ‘B’ that precedes the cubicle number you drew
when you entered the room. Your role will also appear on your computer screen during
games.
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Pairing Procedure. You will be paired with the same person for all games. This person
will be selected at random from the group of participants in the room who have
the opposite role that you have. All pairings are anonymous: you will not know
the identity of the person you are playing, nor will they know yours, nor will these
identities be revealed after the session is completed. At this point, are there any
questions?

Bargaining Record. Several blank ‘Bargaining Records’ are provided in your folder. At
the conclusion of each game fill out one of these forms. Completed forms provide you
with a history of your past games, and you may reference them at any time during
the session.

Selection of the Payoff Game. You will be paid for one game. We will play more than
one game. The one that you are paid for – the payoff game – will be selected by a
lottery after all games have been completed. Each game has an equal chance of being
selected as the payoff game, so it is in your interest to make as much as you can in
each and every game. Immediately upon conclusion of the session, you will be paid
your earnings in cash. Earnings are kept confidential.

Earning Cash from the Payoff Game. Players earn cash from the payoff game in two
ways:

1. If the payoff game ended in agreement, then each bargainer automatically receives
a $4 agreement fee. If the payoff game ended in disagreement (this happens only when
both bargainers played ‘maintain’, and both received 0 chips), then each bargainer
receives a $0 agreement fee.
2. In addition to the agreement fee, the chips you earn for the payoff game give you
a chance to win an additional prize. For every game, the value of player A’s prize will
be $8, and the value of Player B’s prize will be $32.

After the payoff game has been chosen, each player will spin the wheel behind me.
The wheel is labeled with numbers 1 through 100. When you spin the wheel, each
number has an equal chance of being selected. Each chip you earn in the payoff game
gives you one chance of winning your prize. For example, if you earn 10 chips for the
payoff game, your winning numbers on the wheel will be numbers 1 through 10. So
when the wheel is spun, if it stops on a number 1 through 10, you win your prize.
If it stops on any other number, you do not win. As a second example, if you earn
80 chips for the payoff game, your winning numbers on the wheel will be numbers
1 through 80. So when the wheel is spun, if it stops on a number 1 through 80, you
win your prize. If it stops on any other number, you do not win. Note that if you earn
0 chips for the payoff game, then you have no chance of winning your prize.

To further explain how your cash earnings are determined, let’s give the wheel a spin.
Spin wheel. The wheel has stopped on number x. Suppose this were your spin. Had
you earned x or more chips from the payoff game you would win your prize and your
earning would be

Player A earnings if wins spin: Player B earnings if wins spin:

Prize= $10 Prize= $30
Agreement Fee= 5 Agreement Fee= 5
Show-up Fee= 5 Show-up Fee= 5

TOTAL EARNINGS $20 TOTAL EARNINGS $40
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Had you earned less than x chips from the payoff game you would not win your prize
and your earnings would be

Player A earnings if does not win spin: Player B earnings if does not win spin:

Agreement Fee= 5 Agreement Fee= 5
Show-up Fee= 5 Show-up Fee= 5

TOTAL EARNINGS $10 TOTAL EARNINGS $10

If you did not make an agreement for the payoff game, then you would receive only
the $5 show-up fee. At this point, are there any questions?

Average Value. For your convenience, the computer will automatically display the
average value of the chips in a proposal. The average value is the average amount a
bargainer would win on each spin if the wheel were spun many times. For example,
with many spins of the wheel, a player with 10 chips wins her prize, on average, 10
per cent of the time. Hence, the average value to a Player A of a proposal giving her
10 chips would be 10 per cent (or .10) ×$8= $0�80. On the other hand, the average
value of 10 chips to a Player B would be 10 per cent (or .10) ×$32= $3�20. Note that
the calculation of the average value does not include the agreement fee. At this point,
are there any questions?

Scratch paper and a pen have been provided (in your folder) for any further calcula-
tions you might wish to perform or if you wish to make private notes.

Consent Forms. If you wish to participate in this study, please read and sign the
accompanying consent form. Please note: In order to collect your earnings from the
game, you must stay until the end of the session, which will last about 90 minutes.
We will now come around to collect the consent forms.

Appendix 2

Table 11.A1 Alternative approach to analysis in Table 11.2 (standard error)

(1) (2)

Mean pair fixed effect ��	 0�232∗∗∗ 0�234∗∗∗

�0�0478	 �0�0404	

Initial effect ��j	 � j = A50 0�112∗ 0�126∗∗

�0�0689	 �0�0568	

A63 0�191∗∗∗ 0�189∗∗∗

�0�0676	 �0�0574	

A75 0�091 0�093
�0�067	 �0�0566	

Round effect ��j	 � j = NA 0�002 −
�0�0065	

A50 −0�019∗∗∗ −
�0�0064	
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A63 −0�013∗∗ −
�0�0065	

A75 −0�010 −
�0�0064	

Past disagreements �
j	 � j = NA − −0�024
�0�0174	

A50 − −0�148∗∗∗

�0�0200	

A63 − −0�053∗∗∗

�0�0151	

A75 − −0�135∗∗∗

�0�0206	

Past agreements (�j): j = NA − 0�011
�0�0081	

A50 − 0�019∗∗∗

�0�0083	

A63 − 0�007
�0�0092	

A75 − 0�036∗∗∗

�0�0094	

R2 0�325 0�381

n = 1176 (12 rounds for 98 pairs)

Notes: ∗ Two-tailed test is significant at 0.10 level; ∗∗0.05 level; ∗∗∗0.025 level.
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Communication and Co-operation
in a Common-Pool Resource
Dilemma: A Field Experiment
Juan-Camilo Cardenas, T. K. Ahn and Elinor Ostrom∗

Introduction

One tenet of classical, rational choice theory as used in non-cooperative
game theory is that all players use the same model of rationality for them-
selves as well as for all other players. The assumption of homogeneous,
self-interested actors helps theorists to model how individuals would make
choices. One justification for positing homogeneous, rational, egoistic actors
has been evolutionary theory (Dawkins, 1976). That is, even if individuals
tried out different ways of behaving, only those who made decisions con-
sistent with rational egoistic decisions would maximize returns. In a highly
competitive environment, those who maximize returns are more likely to
survive in the long run. Long ago, Armen Alchian (1950) made a cogent
theoretical argument that, in a highly competitive market, selection pressure
would weed out those market participants who did not maximize profits.
Extensive experimental studies of behaviour in competitive market settings
have supported the use of the classical, rational choice model as the only
model of individual choice needed in this setting to make empirically sup-
ported predictions (Smith, 1962; Plott, 1986). Thus, continuing to use the
classical model when analysing competitive markets has both strong theor-
etical and empirical support.

In the early 1980s, however, Werner Güth and colleagues began a series
of experiments on the ultimatum game, which challenged the capability

∗ We appreciate the support of the National Science Foundation (Grant No. SES
0232072). Juan-Camilo Cardenas expresses his gratitude for a Research and Writ-
ing Grant from the John D. and Catherine T. MacArthur Foundation, and from
the MacArthur Norms and Preferences Network, who funded the field experi-
ments. The enthusiasm of Maria Claudia Lopez, Diana Maya, Ana Maria Roldan,
Lilliana Mosquera and Pablo Ramos in the field made the fieldwork possible. We
are appreciative of the friendly hospitality of the Colombian villagers who par-
ticipated in this study. Patty Lezotte once again did a superb job of editing this
manuscript for us.
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of the classical model to explain behaviour in some non-market settings
(see, for example, Güth et al., 1982; Güth, 1995a). In an ultimatum exper-
iment, a ‘Proposer’ makes a take-it-or-leave-it proposal for how to divide
an amount of money, and a ‘Responder’ chooses to accept the offer (in
which case the division is made as proposed) or reject it (in which case
neither of them receives any funds). The game-theoretic prediction is that
the Proposer should offer the smallest positive amount and the Responder
should accept anything above zero. Nothing could be clearer in theory. Güth
and his colleagues, however, found that neither prediction was substanti-
ated in the lab (Güth, 1995a). In experiments that have been replicated
many times in many countries, Proposers tend to offer between 40 per cent
and 60 per cent and Responders tend to reject any offer below 20 per cent
(see Camerer, 2003, tables 2.2 and 2.3, where data from fifteen experiments
is summarized).1

Equally dramatic findings have come from experimental studies examin-
ing behaviour in social dilemmas including public goods (Isaac et al., 1985;
Isaac and Walker, 1988) and common-pool resources (Walker et al., 1990;
Ostrom et al., 1992; Casari and Plott, 2003). The theoretical prediction in
social dilemma games is that players will not make decisions that would lead
to a group optimum. Rather, players are predicted to play strategies leading
to a suboptimal Nash equilibrium. Simply allowing the players to commu-
nicate with one another without external enforcement of agreements does
not change this prediction. Behaviour in public good and common-pool
resource experiments, however, deviates substantially from the Nash equi-
librium strategies when subjects are merely allowed to communicate with
one another (Ostrom and Walker, 1991).

Given repeated findings from carefully designed and replicated experi-
ments, multiple scholars have now concluded that the assumption of the
classical model about homogeneous, own-payoff maximizing players cannot
explain behaviour in a wide variety of non-market settings. A substantial
number of alternative theories have been proposed to explain these findings.
Many of the alternatives assume that players take the payoffs made to other
players into account (either positively or negatively) in their own utility func-
tion (see, for example, Fischbacher et al., 2001; Bolton and Ockenfels, 2000).
Further, in addition to assuming that players may be other-regarding, a key
assumption is that the ‘nature of the other-regarding capacity could differ
from person to person’ (Casari and Plott, 2003, p. 243).

Güth’s indirect evolutionary approach is an important theoretical step
toward understanding how individuals, who do not maximize their own
immediate payoffs, could survive in games with ‘rational egoists’ who do
pursue the predicted strategy (Güth and Kliemt, 1998). Güth has identified
a key factor that facilitates the evolution of co-operative or fair behaviour.
This is the ability, on the part of the fair-minded types of players, to make
contingent decisions (Güth and Yaari, 1992; Güth, 1995b; Güth et al., 2000).
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In other words, Güth and his colleagues have posited the existence of more
than one type of player.

Brosig (2002) classified players using techniques developed by social psy-
chologists (Liebrand, 1984; McClintock and Liebrand, 1988) into altruists
(who maximized others’ payoffs), individualists (who maximized their own
payoffs), and co-operative types (who maximized the sum of joint payoffs).
In a four-player repeated public-good game, Kurzban and Houser (2003) find
three types of players: free riders (20 per cent of their sample of 84 subjects),
unconditional co-operators (13 per cent), and conditional co-operators
(67 per cent). They found that the strategies of these three types of players
were stable across an initial round of plays as well as in an additional set of
three games played after the first set was completed.

Assuming heterogeneity of types of players has recently become some-
what more accepted as scholars have tried to make coherent explanations of
the extensive non-market experimental research conducted since the 1980s
(Ostrom, 1998). As soon as one assumes that multiple types of players exist,
however, it becomes more difficult to predict how players will in fact behave,
either in the field or in an experimental laboratory. A key problem is that
while one can assume that each individual knows his/her own type, how do
participants know the types of those with whom they interact in a laboratory
or field setting? How does a conditional co-operator know s/he is interact-
ing with other conditional co-operators? Do the internal weights of a utility
function remain constant over time without regard to the type of situation
that players are in, or the behaviour of others in a particular situation?

A consistent finding across experimental studies in common-pool resource
and public good settings is that being able to engage in face-to-face com-
munication is a major factor enhancing the proportion of individuals who
co-operate, thus producing higher group payoffs (Orbell et al., 1988; Ostrom
and Walker, 1991; Ledyard, 1995; Kollock, 1998; Kopelman et al., 2002).
In a meta-analysis of more than 100 experiments, Sally (1995) finds that
face-to-face communication significantly raises the rate of co-operation in
two-person games. We speculate that there is something about face-to-
face communication that increases the capacity of individuals to identify the
types of players with whom they are interacting. This does not imply, how-
ever, that identifying the types or intentions of others in a group guarantees
co-operation. Through a group discussion, a conditional co-operator may in
fact detect that there are fewer conditional co-operators than s/he originally
thought, and therefore adopt a strategy of not co-operating so as to avoid the
bad payoff associated with unilateral co-operation among defectors.

For some time, scholars have been trying to sort out the various aspects
of the communication process within experiments to better understand its
impact (Dawes et al., 1977; Messick and Brewer, 1983; Dawes et al., 1990). In
a recent effort, Kollock (1998) summarizes the evidence for four factors that
Messick and Brewer (1983) had earlier suggested as being plausible reasons
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for communication to enhance co-operation levels. These are: (i) commu-
nication helps players to detect the actions that others are most likely to
take (or, as we develop below, detect the types of players with whom they
are interacting); (ii) it allows players to make promises or commitments;
(iii) it allows a process of moralization among players; and (iv) it can create
or reinforce a sense of group identity. Kopelman et al. (2002) review these
potential explanations in the psychology literature and conclude that the
hypothesis suggesting that group discussions tended primarily to elicit a
commitment to co-operation had the most consistent empirical support (see
also Kerr and Kaufman-Gilliland, 1994; Bouas and Komorita, 1996). Frank
(1988) had speculated that the more co-operative types of players were also
more likely to signal their type, as well as to recognize the types of other
players with whom they were paired. Brosig (2002) confirms Frank’s specu-
lations by first classifying players, then allowing them to communicate with
each other, and finally asking them to predict the likely strategies of the
other players.

Several scholars have stressed the importance of players being able to study
each others’ faces as a key part of detecting their types. Scharlemann et al.
(2001) and Eckel and Wilson (2003), for example, explored the reaction of
individuals to seeing the face with whom they were supposedly interact-
ing in a laboratory setting. Their results support the power of smiles as a
mechanism to allow players to read the intentions of others and therefore to
create trustworthiness. In their design there is no face-to-face communica-
tion, but information about facial expressions are used as treatment variables
among strangers. They are able to explain variations in behaviour within
trust game situations, and show that when players are shown pictures of smil-
ing individuals, they respond with more trust and co-operation. Although
the pictures are not of the actual people with whom they are interacting,
the facial expression does induce behavioural changes in ways that are con-
sistent with the literature explaining how humans use such information to
detect intentions by others (Frank, 1988; Schmidt and Cohn, 2001).

Bohnet and Frey (1999) explored whether it was what people said to one
another or simply seeing one another that made a crucial difference to
the level of co-operation in prisoner’s dilemma games. They found that
communication is not always required to increase levels of co-operation.
Silent identification of who would be involved in an experiment was by itself
sufficient to increase the level of co-operation. They found that the variance
in behaviour was greater once face-to-face communication was substituted
for silent identification prior to the experiment.

Other scholars who have been interested in separating out the communica-
tion aspect from the face-to-face aspect examined the impact of allowing
people to communicate via computerized messages. Rocco and Warglein
(1996) replicated the common-pool resource experiment of Ostrom et al.
(1994) and obtained very similar results when they allowed subjects to
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communicate on a face-to-face basis. On the other hand, allowing individu-
als to communicate via e-mail messages was much less effective in enhancing
co-operation than allowing people to engage in face-to-face communication
(see also Frohlich and Oppenheimer, 1998).

In another study, Bochet et al. (2002) compare face-to-face communication
with the exchange of messages through computer terminals. Players had
the opportunity to send messages to the rest of their group members, as
numerical ‘possible’ allocations or as verbal communication, followed by
their actual decisions. The authors confirm the effectiveness of pre-play, face-
to-face communication, but also find that the verbal and anonymous chat
room with open verbal exchange was almost as effective as the face-to-face
case. They point out that the results are potentially in contradiction with the
findings by Rocco (1998) and Frolich and Oppenheimer (1998), who found
that e-mail communication was not as effective as the face-to-face exchange.
Bochet and co-authors suggest that e-mail creates a different environment
from that of a chat room, with more difficult and slower feedback to be able
to elicit intentions by other players.

Even after all the speculation and previous empirical research, the role of
communication in enhancing co-operation has not yet been fully explained,
especially in more complex games involving more than two players. From
conducting many dilemma experiments involving more than two players
(and listening to the recorded tapes and reading the transcripts of these
experiments), we speculate that a great deal of the communication is devoted
to two group tasks. The first task is problem clarification among the players.
The second task is type-detection (see Simon and Gorgura (2003) for an
analysis of the content of the common-pool resource experiments conducted
at Indiana University).

The first task of problem identification is non-trivial when more than two
players are involved. Group discussions allow players to teach the confused
players among their group about the structure of incentives and the trade-
offs between individual and group outcomes that exist in a dilemma setting.
Ostrom et al. (1994, p. 151) suggest from the transcripts of their experiments
that the discussions focused on determining the maximum possible yield
and how to achieve it. Two of the main characteristics of the production
function of common-pool resources, their partial excludability and partial
subtractability, sometimes imply a complicated task for individual players.
For example, it can be the case that no dominant strategies exist regarding
the level of individual appropriation. Therefore, the same individual level
could be either beneficial or harmful for group or individual outcomes.
Working out the best group strategy, however, does not guarantee that play-
ers would pursue it, since the incentives to deviate from group optimum are
at the core of the dilemma.

The second task, we argue, is type-detection. Once subjects have used their
communication time to work out the structure of the situation and what
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would be the best joint outcome, they frequently turn to a discussion of
what each person thinks everyone should do. They tend to make promises
to one another by looking each other in the face as they are discussing
their promises. Individuals begin to size up the trustworthiness and
co-operativeness of the other individuals with whom they are situated and
choose a best response accordingly.

McCabe and Smith (2003) suggest a cognitive model of goodwill account-
ing where players use a set of mental modules that allows players to gather
information from the environment and from the other players to inform their
decision to trust or reciprocate. One of these is closely related to the first task
we suggest that groups accomplish through face-to-face communication –
namely, to clarify the link between the subset of individual actions needed
to obtain a group beneficial outcome. The other two modules in the McCabe
and Smith cognitive model, the ‘friend-or-foe’ and the ‘cheat detection’, are
associated with our argument that group discussions allow individuals to
update their accounting of the goodwill they may have received from the
other players with whom they interact. Through these modules, each player
gathers crucial information about the others’ intentions. Each player is also
aware that if other players use the samemodules, the player needs to send the
correct signals so that the others’ goodwill accounting is updated according to
thebeststrategythatoptimizespayoffs forall.Otherwise, theywillbeperceived
as a cheat and no goodwill will be extended.

However, there are a few particular conditions specific to the problem we
are studyinghere; that is, groups sharing a common-pool resourceworthhigh-
lighting. First, group size is almost always larger than two, which increases the
complexity of the information processing about the others and about type-
detection. Second, as in many social dilemmas, such a process occurs within
anenvironmentof repeatedroundsrather thaninaone-shotgame.Also,many
of these situations involve a fixed group of players who interact through the
game by having only partial knowledge of the individual decisions made in
previous rounds, usually observing only average or aggregate outcomes given
the large personal cost of observing individual actions.

In this chapter, we shall review evidence from recent experiments on
common-pool resources conducted in the field to explore the existence of the
mechanisms just described, and to illustrate the effectiveness of communica-
tion as an enhancing mechanism for co-operation. The features of the exper-
imental design offer some particularities regarding the subject pool, the com-
position of the groups, and the institutional environments being compared.

Experimental design

The experiments reported here were conducted in villages in rural Colombia
where participants were not only familiar with the use of common-pool
resources – such as fisheries, water or firewood – but also knew each other and
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had a prior history of reputation building before the experimental sessions.
Therefore we can also assume that there would be a high probability of meet-
ing each other after the experimental session ended. This wouldmake the use
of type-detection and reading of intentions by players during the experiment
more salient than when participants were total strangers, as in the case of col-
lege students, where anonymity and confidentiality of individual choices are
common.Also,we expect greater heterogeneity of types in terms of rationality
and familiarity with the task to be brought by participants.2

Our experimental design is very simple. In a session of twenty rounds, each
of five players in a group has to decide a level of extraction between 1 and
8 units of a resource during two stages of ten rounds each. We framed the
situation as one in which individual households have to decide about the
extraction level of a resource such as fish, firewood or water. In each round, a
monitor collected decisions and recorded them privately and confidentially.
The monitor added the individual extraction levels and announced the total
extraction for the group in that round. By knowing the group extraction and
their own individual extraction, players were asked to calculate their indi-
vidual earnings according to the payoff table3 (see Appendix on page 279).
However, players did not know the individual decisions of the others in
the group, just their aggregate extraction. This procedure was repeated for
twenty rounds. At the end of all the rounds, earnings were added for each
participant, and each was privately paid in cash.

In the payoff table, one observes that increasing one’s extraction yields
higher individual earnings, but aggregate extraction decreases them, as is
typical in any common-pool resource setting. Assuming a rational maxi-
mization of individual payoffs among material payoff-maximizers in a non-
cooperative game, the Nash equilibrium is located at the bottom-right corner
of the table, where each player obtains 320 points. The social optimum
occurs when all players choose one unit as their level of extraction, yielding
758 points for each player.

The data that follows were gathered in a series of thirty-four sessions
conducted between the years 2000 and 2002 in different villages of
Colombia where people depend in part on the use of a local ecosystem.
Each experimental session was conducted with five participants, all of
whom lived in the same village. Groups were randomly formed, but we
avoided members of the same household participating in the same session.
We assume that the subjects in these field experiments would have some
prior information about their neighbours in their session that they would
probably use strategically in their decisions – namely, for detecting the
intentions of the other four players.

Experimental treatments: baseline versus one-shot versus
repeated face-to-face communication

All thirty-four sessions were run in twenty rounds, split into two stages. After
the instructions were read aloud and questions answered, we started with at
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least one or two practice rounds. After the practice rounds, we initiated the
experiment. During the first stage of ten rounds, all sessions were run under
the same set of rules. The subjects were notified that the experiment would
last at least ten rounds, and that during these rounds no communication
among themselves would be allowed. The villagers were seated in a circle
facing outwards so that the privacy of the decisions could be maintained.
Once the ten rounds were over, the monitor announced that a second stage
was about to start, under a new set of rules, for another ten rounds. None
of the groups knew in advance during the first ten rounds the type of new
rules for the second stage of the game.

We distributed the thirty-four sessions across three different treatment
designs. For eight of the sessions we used a baseline treatment where the
second stage was run under identical conditions – that is, decisions were
made privately and no communication was allowed among the players. This
is our Baseline (B) treatment. For another thirteen sessions, our One-shot
communication (OSC) treatment, the subjects were allowed to have a single,
face-to-face open discussion for five minutes before Round 11, but none
thereafter. They were asked to turn their seats 180 degrees so that they
could see each other during the discussion time.4 Once the discussion had
concluded, they had to turn their seats to face outwards again, and proceed
with their individual, confidential decisions for the rest of the stage. These
thirteen groups were told in advance that such a discussion would happen
only once before Round 11, and that for the rest of the rounds they would
make their private decisions under the same no-communication rule.

For the remaining thirteen groups, our Repeated communication (RC)
treatment, we replicated the previous design, but groups were allowed to
have face-to-face communication before each of the rounds from 11 to 20.
Players were still asked to turn round after their face-to-face discussions and
to make their decisions in private at the end of each round. Table 12.1
summarizes the experimental design, sample sizes, and treatments.

Conjectures about the effects of communication

The literature discussed in the Introduction, supporting the effectiveness of
face-to-face communication in experimental studies from psychology and
economics, coincides with the overall finding that humans are more likely
to co-operate in social dilemmas after communication among players, even
under non-binding agreements, and incomplete information about the indi-
vidual choices of the others in the group. Which of the four mechanisms
discussed in the introduction – detection of others’ actions, making of prom-
ises, moralization, or building of group identity – induces co-operation, or
whether all four are important, however, is still not agreed. If communic-
ation induces changes in individual behaviour, we should expect a signifi-
cant change after Round 11 in both experiments involving communication
in comparison to the Baseline treatment, where no communication was
allowed for all twenty rounds.
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Table 12.1 Treatments, designs and sample sizes

Treatment Number of Number of Stage 1 Stage 2 (10 rounds)
sessions people (10 rounds) New rule Round 11 Rounds 12–20

(B) Baseline 8 40 X1�X2� � � � X10 (No change –
control)

X11 X12�X13� � � � X20

(OSC) One-shot
communication

13 65 X1�X2� � � � X10 1 face-to-face
group discussion
(t = 11 only)

(C–X)11 X12�X13� � � � X20

(RC) Repeated
communication

13 65 X1�X2� � � � X10 Face-to-face
communication
before each round
decision

(C–X)11 (C–X)12, (C–X)13� � � � (C–X)20

Total 34 170
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Regarding the OSC versus the RC treatments, it is difficult to predict with
precision what differences there should be during the second stage. Some
of the mechanisms through which communication may work could come
into play from the very first round of communication and remain over time
with no need for reinforcement. Others may require more than one group
discussion. Earlier common-pool resource experiments did find one-shot
communication substantially less effective than repeated communication
(Ostrom et al., 1994).

In our experiments in the field, we observe that, in addition to the four
reasons that have already been posited for the efficacy of communication,
the RC design allows participants first to clarify with each other the nature of
the task and to identify collectively the socially optimum solution. Only after
the structure of incentives is clarified and the optimal solution is identified
do participants appear to engage in some of the other mechanisms, such as
group identity, verbal commitment to the others, and ultimately the attempt
to detect what they expect the others to do in the following round.

Experimental results

This section reports the experimental results. In the following discussions,
B denotes the Baseline treatment in which no communication was allowed
in any of the 20 rounds. OSC denotes One-shot communication treatment,
in which a one-time communication was allowed between Stages 1 and
2–that is, between Rounds 10 and 11. RC denotes Repeated communica-
tion treatment, in which communication was allowed before each round of
Stage 2.

Figure 12.1 plots the average levels of extraction in the three treatments
with 95 per cent confidence intervals. Confidence intervals are shown to help
readers see whether the differences in average levels between two treatments
are significant; if two confidence intervals for a given round overlap, the
difference is not significant at the 95 per cent confidence level. The average
extraction levels in the B treatment are marked with circles, those in the OSC
treatment with rectangles, and those in the RC treatment with triangles.
As the figure shows, the average extraction levels in the first stage (Rounds
1 to 10) are very close to one another and not significantly different from
each other. Thus the confidence levels are shown only for the second stage,
where the differences are more pronounced.

Figure 12.1 shows that the average behaviours in different treatments
are generally consistent with our conjectures outlined in the previous sec-
tions. That is, communication does help to reduce the extraction level
and achieve higher levels of efficiency. Furthermore, repeated commu-
nication is more effective than one-shot communication. As the con-
fidence intervals illustrate, however, substantial variance exists across
sessions of each treatment. Appendix Figures 12.A1, 12.A2 and 12.A3
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Figure 12.1 Average extraction over rounds (baseline, one-shot and repeated
communication)

(see pages 280–82) present the average extraction levels in each session.
Notice, from Figure 12.1, that the average extraction levels in all three treat-
ments are above the socially efficient level of 1, but well below the equilib-
rium prediction of 8.

Table 12.2 provides the results of Wilcoxon rank-sum difference of means
tests for selected pair-wise comparisons of average group-level extraction.
We are comparing here the average group extractions rather than individual
levels of extraction. For example, the first row shows that the average per-
round group-level extraction in the final three rounds of Stage 1 is 22.08 in
the B treatment and 23.04 in the OSC treatment. The p-value of 0.7720 in
the last column indicates that these two averages are not significant.

We have chosen to compare the average group-level extraction in the final
three rounds of Stage 1, the first three rounds of Stage 2, and the final three
rounds of Stage 2. There are many other candidates for comparison, but we
have chosen these three segments for the following reasons. First, the average
extraction levels in the final three rounds of Stage 1 are compared to see
whether the groups in different treatments are truly comparable. That is, it is
possible that different treatments were assigned by accident to groups with
different characteristics. If this were the case, differences across treatments
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Table 12.2 Pair-wise comparisons of average group extraction levels

Rounds Treatments compared Average group extraction P-values

B versus OSC 22.08 versus 23.04 0.7720
8–10 B versus RC 22.08 versus 23.79 0.3840

OSC versus RC 23.04 versus 23.79 0.4113

B versus OSC 23.25 versus 13.85 0.0030
11–13 B versus RC 23.25 versus 13.51 0.0030

OSC versus RC 13.85 versus 13.51 0.9386

B versus OSC 24.04 versus 17.63 0.1110
18–20 B versus RC 24.04 versus 12.56 0.0007

OSC versus RC 17.63 versus 12.56 0.0723

Note: B = baseline treatment with no communication; OSC = One-shot communication; RC =
Repeated communication. Number of observations is equal to the number of groups in each
treatment: 8 in B; 13 in OSC; and 13 in RC.

in Stage 2 would not be because of different levels of communication, but
rather because of the differences of group characteristics that are irrelevant
for our research purposes. Second, the first three rounds of Stage 2 have
been chosen to see the immediate effect of communication compared to the
non-communication environment in Stage 1. Third, the final three rounds
of Stage 2 have been chosen to see the long-run effects of one-shot and
repeated communication.

As the first set of three comparisons shows, there were no differences
across treatments at the end of the first stage. We obtained the same results
when we tested the significance of differences in Round 10 only, or for all
ten rounds of Stage 1. The second set of tests shows that communication
generated immediate positive effects. That is, both the groups in OSC and
RC reduced their extraction levels significantly compared to the groups in
the B treatment. The difference between OSC and RC was not significant at
all �p = 0�9386	. The third set of comparisons shows that, in the long run,
only the groups in RC treatment were able to sustain the reduced levels of
extraction. That is, the extraction level of the groups in OSC increased over
time so that the difference in the average group-level extraction between B
and OSC was no longer significant towards the end of Stage 2 �p= 0�1110	.
The groups in RC treatment, however, were able to sustain the lower levels of
extraction over time. In fact, not only is the average group-level extraction
of RC in the final three rounds of Stage 2 significantly lower than that in B
�p= 0�0007	, it is also significantly lower than that in OSC �p= 0�0723	.

While Table 12.2 shows the difference across treatments, there are vari-
ations across groups in each treatment (see Appendix Table 12.A1 and Fig-
ures 12.A1, 12.A2, and 12.A3 on pages 279–82). In particular, it is worth
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noting that the effects of One-shot communication and Repeated commu-
nication manifest in different ways in different groups. Thus, while the
average group-level extraction increased over time in OSC, some groups
were able to maintain or achieve very low levels of extraction (see groups
VCX13 and VCX15 in Appendix Figure 12.A2 on page 281, for example).
Similarly, while the average group-level extraction across groups in RC was
significantly lower than those in B or OSC, some groups in RC achieved
mutual co-operation immediately after communication was allowed, and
maintained the beneficial mutual co-operation successfully over time (see
groups GCX5_t1 and PCCX5_t3 in Appendix Figure 12.A3 (see page 282),
for example). It then took several rounds to reduce the extraction level for
other groups (group CHCX5_+11 in Appendix Figure 12.A3, for example).
Still other groups were not quite successful in maintaining consistently lower
levels of extraction even with repeated communication (see groups GCX5_+2
and PPCX5_t2 in Appendix Figure 12.A2, for example).

On average, however, outcomes in the RC treatment groups were more
efficient than in the OSC groups. Although in both treatments all groups
reduced their extraction level in Round 11, groups in the OSC treatment
increased the extraction levels over time after the initial communication.
By the end of the second stage, the average group extraction in the OSC
treatment was about four units higher than in the RC treatment, although
it was still almost ten units below the group extraction in the B treatment.
When comparing the extraction levels in the beginning and at the end of
the second stage in each treatment, we find that only the OSC treatment
shows a trend (from low to high), while the B treatment shows consistently
high levels of extraction and the RC treatment shows consistently low levels
of extraction over the rounds.

A more detailed look at the change in decisions by players over time
provides us with the information about the underlying individual-level
behaviour that resulted in the group-level patterns over time. In Figure 12.2,
we present histograms of the fraction of individuals with different extraction
levels, by round and by treatment for the second stage of the experiment.
The first columns of the histograms show that the extraction levels in the
baseline treatment are spread widely between the minimum of 1 and the
maximum of 8 in each of the ten rounds.

On the other hand, the distribution of extraction levels in OSC treatment
is initially skewed toward lower levels, implying that most players chose to
co-operate with others immediately following the One-shot communication.
Over time, however, many low extractors switch to medium- or high-level
extractions. Thus, by the final rounds of the second stage, the distribution
is much flatter than that in the initial rounds. The third histogram of each
column shows that the distribution remains skewed over time. That is, the
switchmade by initial low-level extractors to high-levels of extraction did not
happen in the RC treatment. The distribution pattern in OSC is closer to that
in RC in the initial rounds, but becomes more similar to that of B over time.
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The initial similarity and subsequent divergence between OSC and RC
indicates that the differences after Round 11 between the two treatments
are less likely because of the effects of communication on clarifying group
incentives (what is best for group?), but rather because of the effects of
communication on signalling and reinforcing co-operative intentions and
behaviour. We have also argued that type-detection should be more effective
during the RC treatment thanwith the OSC treatment. In the OSC treatment,
a player would construct a preliminary distribution of types and would
not have further information after each subsequent round to update this
estimated distribution about the other four group members. This creates a
higher error in detection of types than in RC, where players improve their
estimate over rounds. Watching facial expressions, as well as hearing the
discussions, allows players to compare commitments in the previous round
with average outcomes obtained in that round and therefore update their
estimates.

Our experiments involve people in villages who face the common-pool
resource problem on a daily basis, providing one way of testing the external
validity of earlier common-pool resource experiments utilizing undergradu-
ate students. Running experiments in the field also presents challenges for
the researcher. The fact that each of the groups is composed of five people
from the same village implies that pre-play and ex-post incentives may come
into play. Cardenas (2003a) discusses these elements in detail and suggests
that there are valuable lessons that can be learnt when one takes into account
the village-specific conditions.

One exercise with the current data illustrates some of these issues. As
shown in Figure 12.1 and the Appendix (see pages 279–82), groups in the
same treatment show large variances among them. This variation across
groups persists during the second stage and shows that, even within treat-
ments, some groups were able to achieve substantially higher levels of
co-operation than others. What accounts for this within-treatment
variation? We conjecture that part of the reason is the heterogeneity of types
and the particular composition of each group. It is reasonable to assume that
each subject in a group had prior information about the other four players
in the group – a significant difference from the typical experiments with
student subjects – acquired during their daily interactions with others in
the village. Thus we hypothesize that the baseline composition of different
types in each group was more or less known to each member of a group,
and this knowledge, in turn, generated correlation between group members’
behaviour in the first and second stages.

To test this, Figure 12.3 plots the correlation between the average extrac-
tion level in the final three rounds of the first stage (Rounds 8 to 10) and
those in the final three rounds of the second stage (Rounds 18 to 20) for each
of the thirty-four groups. Groups in the B (OSC, RC) treatment are marked
by circles (rectangles, triangles) and the Pearson correlation coefficients are
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calculated for each treatment. The figure and the correlation coefficients
suggest that, particularly for the B and OSC treatments, the variation in
the levels of co-operation at the end of the second stage can be explained
by the level of co-operation at the end of the first stage.5 Notice that even
in the absence of communication, some groups in the B treatment maintain
low levels of extraction in both first and second stages. We interpret the
high correlations between the behaviour in the first and second stages as
evidence that subjects in the field experiments brought knowledge into the
lab about the composition of types in a group and their likely behaviour.

Though not reported in this chapter, a replication of the current experi-
ment utilizing student subjects did not show the levels of correlation
between the behaviour in the first and second stages. The experiment did,
however, replicate the positive effects of communication in both the OSC
and RC treatments. The fact that in experiments with villagers, group behav-
iour in the first stage can explain group behaviour in the second stage. That
is not the case in experiments with student subjects, which indicates that
our subjects in the field used information they had about the types of others
in the group and brought that into the experiment.

Communication and co-operation: a look at the
transcripts

We speculated earlier that at least two tasks are accomplished when players
communicate with each other. First, a group discussion allows the subjects
to clarify the nature of the dilemma and to make explicit agreements about
group-orientated goals – in this case, that lower levels of extraction yield
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higher individual and group returns. The second task we posited is type-
detection, which we discuss below.

With a non-linear functional form and five players, it can be a confusing
task for some of the participants to know for sure what is the optimum
strategy for them to pursue. In such a setting, participants need to discuss
alternative strategies to determine the best one available to them. Examples
from the transcripts of the audiotapes during the first round of communica-
tion for several groups illustrate how they pursued this task. In this dialogue
between two players during the opening of the first round of communica-
tion, one of them explains the nature of the relationship between total
extraction level and individual earnings, while the other begins to under-
stand the dilemma:

Player 1: We run out of points, but we end up with more earnings if at
least, let’s say, we choose 1, it adds to 5; another example we all
play 2, it adds to 10, so you think, say, about choosing 2.

Player 2: Number 2 � � �

Player 1: Then 10 minus 2 equals 8.
Player 2: 8.
Player 1: Then by choosing 2, it yields more points the lower numbers we

choose.
Player 2: The lower our number, more points we get.
Player 1: Let’s put that number here � � � there, more points this way.
Player 2: Yes, so that we � � �
Player 1: It is better to get more points, the more points the better, the

lower the points we choose, the number right here will favour us
in the table there.

In another village, where shrimp-fishing is very common, we observe a
similar pattern in the opening round of group discussion. Further, notice
the metaphor they use for the first round of group discussion when referring
to fishing in kilos (kilograms) as the units of extraction in the experiment:

Player A: 2 kilos.
Player B: Tomorrow I am going to fish 2 kilos.
Player C: Tomorrow, 1 kilo.
Player A: Well, my thing is to be in agreement; that is, with the word of

my friend here, if you know what I mean; to me, let us catch a
kilo each so that it does not turn scarce later on, and then with
pleasure it is good to come back the next day and catch another
kilo and that way we don’t run out of shrimp; if we catch 5 or 4
kilos the next day we go out there and there is no more; so, to
me, I say we catch a kilo each.
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Player B: Yes, that’s the way, easy so that it stays good, that’s the idea, the
gasoline.

Player C: And then, when the kids go fishing tomorrow they will have their
chance to catch a kilo each, otherwise look how we are now.

Player A: We all agree.
Several players at same time: Yes, don’t worry.

In this second case, the group discussion allowed the players to relate the
exercise to their own shrimp-fishing activity and easily find a strategy that
will make sense regarding the need for extracting small quantities of the
resource to yield higher returns to the players.

In the other sessions for which we have audio recordings, we observe
a regular sequential pattern during the conversations. The pattern could
be described as a sequence of the following steps for building an effective
agreement for co-operation:

Step 1 Identification of the goal for the group and clarification to all group
members that a lower level of aggregate extraction can increase
individual earnings. In most cases, one or two players make these
comments.

Step 2 An agreement or ratification of the need for every player to choose a
low level of extraction. In several cases, it was as explicit as agreeing
that one unit per player would achieve the maximum earnings for
the group. In other cases, it was more frequent to observe agreements
such as ‘low numbers for extraction’.

This pattern occurred for most sessions during Round 11 in the second
stage under communication. The first round of discussion usually focused
primarily on these first two elements. We found no reference to the detection
of types during the first round of group discussion.

However, during the next rounds (12–20) for those groups that were
allowed repeated communication in the RC treatment, we observed at least
two more steps or kinds of interventions by players:

Step 3 Reinforcement of an agreement that members had previously made.
In several cases of repeated communication, we observed a perman-
ent call by some in the group to maintain a low level of extraction.
Others brought up the comparison of rounds with higher and lower
yields in the payoffs table, or how detrimental it was for the group
that one player increased his or her extraction to obtain higher pay-
offs.

Step 4 Discussions about types and type-detection strategies. Often, some
players would argue that total extraction was high in previous
rounds, and that somebody was probably increasing his or her level
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of extraction, causing damage to the rest of the group. For some
groups, such a call was at times directed at someone in particular,
usually when group members knew each other well.

For the latter case, we were able to observe examples like the following
dialogue in one of the sessions under repeated communication:

Player X: The idea, the idea is that we all choose 1 in all rounds, I think
that � � � We are all expecting to make some gains here.

Player Y: Of course!
Player X: Therefore everybody gets together � � � That means there is no

God, as long as no one breaks the trust.
Player Z: The thing is trusting the other.
Player Y: No, I’m all set.
Player X: That is, we all know each other, no not knowing others, no one

wants to partner with no one, so that everyone chose 1 and that’s
it, that’s it.

Player Y: Ha, ha, yes.
Player Z: It is like a mirror work.
Player Y: Beware! It makes me giggle, I know that after a while � � � I’m

going to be one of those � � �
Player X: Look, if anyone cheats now that we start adding the group

total � � �
Player Y: We will end up knowing � � �
Player X: It is going to be right here, at the moment when the total adds

to more than five, at that moment someone cheated.
Player Z: Someone � � �
Player X: At that moment we will know, and well, we will understand.
Player Y: We will know that � � �
Player X: We will know that � � � anyway, well, let’s choose 1 and that’s it,

and we all gain and ready.
Player Y: Listen � � �
Player X: The sum will always have to be five.

In this case, they gave each other several warnings on how easy it would
be to detect if someone had cheated from the initial agreement of each
choosing one unit for a group total of five units. By stressing an ethical
responsibility for each player, the absence of a God, and the importance of
trust, they were stressing their expectations that others would keep to the
agreement and, if not, that they would know who had defected. In fact, days
after the conclusion of the sessions, and because the experimenter usually
holds workshops with the community members to show preliminary results
and discuss parallels with their actual common-pool resources, we observed
that many participants had already identified who from the different groups
acted more selfishly during the experiments even though care was taken to
make payments in private.
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Conclusion

We have approached the problem of co-operation in common-pool resource
dilemmas by first exploring the role of face-to-face communication in a
repeated game setting. We posit that communication helps players to choose
a strategy that improves their payoffs above those predicted by the con-
ventional model of a Nash equilibrium. The consistent finding is that
face-to-face communication has a powerful effect on increasing trust and
co-operation in experimental settings. As we discuss in the Introduction, a
complex set of factors affects likely outcomes. Group identity, reputation
building, creation of normative feelings, fear of social ostracism, and the
emergence of commitments are examples of factors explaining why com-
munication works. We suggest that communication also helps players to
improve their capacity to detect the types of other group members.

In the experiments presented here, we allowed villagers from the same
community to engage in a face-to-face discussion during the second stage of
a common-pool resource situation. This gave the players, we argue, an oppor-
tunity to update their priors about the types of players within their groups
and choose their extraction level accordingly. As discussed in our model, bet-
ter type-detection does not guarantee greater levels of co-operation. Detect-
ing a sufficiently large number of rational egoists in a group will induce
conditional co-operators to act as egoists to reduce their losses if they were to
act cooperatively. In fact, in a few groups, the levels of co-operation achieved
during the Repeated communication rounds were low, but they were very
high for most others. Further, there might be information that players had
about their fellow group members carried over from their earlier experience
with each other that might have played a role in their decisions during the
second stage, once the group had agreed on a strategy for increasing aggre-
gate earnings. This was the case not only for some groups under OSC but
also for RC, as shown in the individual sessions’ graphs in the Appendix
figures on pages 280–82.

Nevertheless, on average, communication helped groups to reduce total
extraction and to increase group and individual earnings. The gains were
much higher if the communication was repeated. In the OSC treatment, we
found no reference in the recorded discussions to detection of intentions
by individual players in the discussions of Round 11. The feedback in every
round about group outcomes, and the face-to-face interaction, helped players
to create a better accounting for the types in the rest of the group.

Given the short duration of the experiment, it is not very likely that some
subjects in fact changed their types. What is more likely to have happened is
that communication made it common knowledge that there are conditional
co-operators in a group. Game-theoretic models show that when there are
conditional co-operators, egoists have incentives to co-operate until near the
end of a repeated game (Kreps et al., 1982). Communication plays two roles
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in this context. First, it allows conditional co-operators to express their inten-
tions. Announcing their preferences may be regarded as cheap talk. But there
is evidence that humans do a pretty good job of judging whether someone
is telling the truth (see Ahn, Janssen, and Ostrom, 2004, for a review of the
literature). Brosig (2002) explores how individuals are capable of recognizing
the types and how such recognition and signaling of one’s own type help,
particularly cooperators, to detect the type of their anonymous partner. Fur-
ther, she finds that pre-play communication induces not only co-operators
but also individualistic types to act co-operatively and therefore increase the
gains from social exchange.

Once the existence of conditional co-operators becomes common know-
ledge, there still remains the problem of equilibrium selection among
all players. That is, even with a substantive proportion of conditional
co-operators, universal defection is still an equilibrium. Players need to be
convinced that others would co-operate, and that others also think that a
sufficient number of other group members would also co-operate and so
on (Chwe, 2001). That is, in addition to the existence of the conditional
co-operators, the play of co-operative equilibrium also needs to be estab-
lished as common knowledge. Repeated face-to-face communication is the
most effective means of achieving such common knowledge, as the increased
rates of co-operation in repeated communication setting of the reported
experiment show.

Further work will follow. Separating type-detection from other confound-
ing effects at work under communication is a natural next step in our
research. Also, classifying individual decisions data into the three types we
discuss will shine some light on how group co-operation may emerge and
be sustained under different rules or institutional environments. Individual-
level data in many of these experiments show that players change their
strategies over time within the same session. The evidence from these experi-
ments in the field, while not testing preference evolution directly, is con-
sistent with two necessary assumptions of Güth’s indirect, evolutionary
approach: first, that conditional co-operators exist; and second, that they
engage in efforts to detect the presence of other conditional co-operators.
Communication is one of the major techniques for group dynamics to
emerge, leading to higher levels of co-operation in dilemma and trust games
when there are multiple types of players. Repeated face-to-face commu-
nication helps to establish the existence of conditional co-operators in a
group who can then develop common knowledge that they will play the
co-operative equilibrium in a repeated game.
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Appendix

Table 12.A1 Payoffs table experimental design

My level of extraction Their Average

1 2 3 4 5 6 7 8 Extraction

T
h

ei
r 

Ex
tr

ac
ti

on
 L

ev
el

4 758 790 818 840 858 870 878 880 1

5 738 770 798 820 838 850 858 860 1

6 718 750 778 800 818 830 838 840 2

7 698 730 758 780 798 810 818 820 2

8 678 710 738 760 778 790 798 800 2

9 658 690 718 740 758 770 778 780 2

10 638 670 698 720 738 750 758 760 3

11 618 650 678 700 718 730 738 740 3

12 598 630 658 680 698 710 718 720 3

13 578 610 638 660 678 690 698 700 3

14 558 590 618 640 658 670 678 680 4

15 538 570 598 620 638 650 658 660 4

16 518 550 578 600 618 630 638 640 4

17 498 530 558 580 598 610 618 620 4

18 478 510 538 560 578 590 598 600 5

19 458 490 518 540 558 570 578 580 5

20 438 470 498 520 538 550 558 560 5

21 418 450 478 500 518 530 538 540 5

22 398 430 458 480 498 510 518 520 6

23 378 410 438 460 478 490 498 500 6

24 358 390 418 440 458 470 478 480 6

25 338 370 398 420 438 450 458 460 6

26 318 350 378 400 418 430 438 440 7

27 298 330 358 380 398 410 418 420 7

28 278 310 338 360 378 390 398 400 7

29 258 290 318 340 358 370 378 380 7

30 238 270 298 320 338 350 358 360 8

31 218 250 278 300 318 330 338 340 8

32 198 230 258 280 298 310 318 320 8
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Notes

1 See also Carpenter and Cardenas (2003) for a further survey of experimental studies
of ultimatum, dictator and trust experiments with non-student subjects across
several countries and cultures.

2 For an example on how heterogeneity regarding the actual wealth and occupation
of experimental subjects is used strategically in similar experiments in the field, see
Cardenas (2003b). There it is shown that, as the distance in wealth across group
players increases, the levels of co-operation during face-to-face communication
rounds decreases.

3 The table used by players works as follows. Each column corresponds to the indi-
vidual level of extraction. Once the monitor has announced the total for the group,
each player is able to subtract his/her individual extraction from the total to obtain
‘their level of extraction’, that is, the row in the table with which the player is able
to realize earnings in that specific round. The values in the cells are based on a pay-
off function in which extraction increases individual earnings at a decreasing rate,
and where group extraction reduces individual earnings at a linear rate, producing
the typical common-pool resource dilemma as in the model used in the previous
section. The values in the cells correspond to Col.$ pesos at an exchange rate, at
the time, of about Col.$2700/1$US.

4 The open discussions did not allow them, however, to agree to transfer points or
earnings once the experiment was concluded, replicating the work of Ostrom, et al.
(1994).

5 A multiple regression using the average levels of extraction in Rounds 8 to 10
for each group as the dependent variable, with the independent variables being
the average level of extraction in Rounds 18 to 20 and dummy variables for the
particular treatment as independent variables, generates a positive and significant
coefficient. The adjusted R-square value for the regression is slightly higher than 0.5.
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Price Competition: The Role
of Gender and Education
Martin Dufwenberg, Uri Gneezy and Aldo Rustichini ∗

Introduction

‘Tell me and I forget, teach me and I remember, involve me and I learn.’
These famous words of Benjamin Franklin seem to aptly capture the spirit in
which Werner Güth, our hero of the occasion here, interacts with others.1

Consider, for example, his own explanation of how he brings the implied
perspective to the classroom:

I teach experimental economics completely differently compared to other
things, I teach it in an ‘apprentice’ fashion. I use learning-by-doing in
small groups from the start. This is a very nice aspect of experimental
economics actually.2

But Werner involves other people outside the classroom too. Browsing
through his publication list, we find more co-authors than we are able to
count. We know for a fact that interacting with Werner is a learning experi-
ence, and a lot of fun, not least from 1995–7 when we were on the CentER
faculty at Tilburg University, which Werner often visited.

The research we report on in this chapter derives from projects we started
in the Tilburg days, concerning price competition on the one hand and
gender effects on the other. Our research objectives are to examine the
impact on price competition of, respectively, gender and education. We shall
discuss these two issues in turn.

Gender and competition

Gender gaps are observed in a variety of economic and social environ-
ments. Recent research has pointed out various differences between men

∗ We are grateful to a referee who provided valuable comments. The research was
supported by the NSF grant No. 0318378 and GIF (Gneezy) and NSF/SES-0136556
(Rustichini).
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and women that may be important in economic interaction. We shall focus
on a specific one:3 when competition is introduced into an environment
in which there is no gender gap in performance, the different reaction to
competition by men and women might create a gap (Gneezy et al., 2003;
Gneezy and Rustichini, 2003). In particular, when men and women com-
pete in the same group of players, men exhibit more competitiveness than
women. These results have been derived from contexts where winning is
associated with a high payoff: for example, the experiment described in
Gneezy et al. (2003) used a winner-take-all design in which the participant
with the highest performance is the only one paid, and the amount won
equals the total payment to subjects in the non-competitive treatment.

This evidence agrees with the general idea found in evolutionary psych-
ology, that gender gaps derive from the different position of the genders
in the reproductive process: since males can mate successfully with many
different women, at small cost, they face large reproductive gains from com-
peting intensely with other males. Females, on the other hand, can mate
successfully only once per period, and thanks to the competition of males
they are likely to find at least one mate. Hence their attention is not devoted
so much to winning over other females, but rather to selecting the right
partner.4

It is reasonable to think that the same effect (stronger competition among
males) holds in environments where conditions similar to the reproduct-
ive ‘game’ are present: stronger competition produces a larger prize. This
qualification (a larger prize for more competitive behaviour) is important,
and offers an indirect test of the explanation we have just recalled. If the
condition that higher competition provides a higher prize is missing, then
the difference in competitive behaviour should vanish. That is, of course,
unless one thinks that the preference for competition is a blind force, obli-
vious to the advantages (for example, in terms of reproductive fitness) that
competition might provide.

To test these predictions we need a game where strong competition
provides a low payoff to the winner. Such is the case in Bertrand models
of price competition, where stronger competition leads to a smaller (in fact,
at equilibrium, the smallest possible) prize. We use a simple Bertrand game,
similar to that introduced by Dufwenberg and Gneezy (2000), and examine
whether men and women make different choices.

Education and competition

Our second research objective concerns the impact of education. There is
much interest in experimental economics concerning the impact of experi-
ence on behaviour. The most common means by which experience is
obtained is by letting subjects perform some decision task many times, so
that they gain familiarity with the situation. Our experiment, by contrast,
may be seen as an exploration of the impact of another form of experience:
experience by education.
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Education may matter not only by increasing familiarity with a situation,
but also by ‘suggesting a solution’ to the subjects. In the particular case of
Bertrand price competition, the classical solution is precise and stark, elim-
inating competitors’ profits. Perhaps educated subjects, on balance, move
in that direction? The experiment comprises one session of each of two
treatments, which differ in terms of whether or not the participants had
been taught the theory of Bertrand oligopoly. We test whether and how this
matters to behaviour.

Outline of the chapter

The chapter proceeds as follows: in the next section we describe the experi-
mental design and specify our hypotheses. In the third section we describe
the results of a first experiment, in the fourth section we present the results
of a different experimental design, aimed at testing the robustness of the
results and the fifth section concludes.

The experimental design

In this section we present (in three subsections) the game that we examine,
the design of the experiment and our treatments, and finally the hypotheses
we test.

The Bertrand game

The core of the experiment is the following game, similar to that introduced
by Dufwenberg and Gneezy (2000): each one of a large (and commonly
known) set of players chooses a number from the set 0�1� � � � �1000�. The
player who chooses the lowest number wins as many units (Swedish kronor,
in our case) as the number bid, and the others make no money.5 If there are
ties for the winning bid, these are split equally among the winners.

The game may be interpreted as a Bertrand duopoly market with price
competition: the players are firms; the chosen numbers are prices; and the
payoffs are profits. Admittedly, this account of real-life price competition
is stylized. Yet the key feature of such interaction is present in the game:
a tension between incentives for high prices that lead to high profits and
incentives for low prices that undercut those of competitors.

An attractive feature of the game is its simplicity. It can easily be explained
verbally to participants in an experiment without the use of complicated
payoff tables.

Assuming that the competitors wish to maximize expected profit, the
game has a unique Nash equilibrium in undominated strategies, in which
each competitor chooses a price of 1. There are additional Nash equilibria,
in which two or more players use the weakly dominated strategy of 0, but
from an economic point of view all equilibria are similar: the firms make
almost no profit relative to what is available in the market.
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Design and treatments

Subjects played the game described only once. The experiment consisted
of two separate sessions, each conducted in two different microeconomics
classes at Stockholm University. In their course the students were introduced
to basic tools of game theory, a fair amount of time was spent doing or
discussing experiments, and a few lectures were devoted to topics of indus-
trial organization. The first session took place in the autumn of 2000, at
the beginning of the very first lecture and before the students had had any
exposure to the core topics of the course. The second session (with a differ-
ent class) took place in the autumn of 2001, in the end of a lecture towards
the end of the course and after the students had been introduced to the core
topics. In particular, they had been taught the theory of Bertrand oligopoly.

This explains how we manipulated the level of education of the subjects.
The other key feature of our design concerns the participants’ gender, which
we needed to record. When the experiment started, each student received an
instruction (see the Appendix on page 295) describing the game. The instruc-
tion sheet informed students that participation entailed stating a ‘code num-
ber’ consisting of the student’s initials plus the last four digits of his/her
Swedish social security number. Such numbers have ten digits, specifying
year-month-day of birth plus four digits where the penultimate one is even
for a woman and odd for a man. Our design made crucial use of this last fea-
ture. It allowed us to separate the data according to the gender of the player.6

Our design generates four categories of observation, depending on the
gender of a participant, and on the level of his/her education. Table 13.1
summarizes how many observations we have for each category.

Hypotheses

In a recent line of research, Gneezy et al. (2003) and Gneezy and Rustichini
(2003) found that men react more strongly to competition incentives than
do women. In particular, whenmen and women compete, men exhibit more
competitiveness than women.7

In the price competition game, the lower the chosen prices, the fiercer is
the competition in the market. If men care about winning per se more than
women, we should observe significantly lower price offers from men. We
test the following hypothesis:
H1: Men and women choose the same prices

Table 13.1 Number of observations

Uneducated Educated

Female 33 31
Male 37 41
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Our second hypothesis is related to the influence of education on behav-
iour. One may take two perspectives on this issue. First, as explained in the
beginning of the second section of this chapter, the Bertrand model makes
a stark prediction that entails fierce competition and very low prices. One
may thus expect that exposure to the microeconomics course moves prices
downwards.

Second, education may matter simply because it helps subjects to become
more familiar with a situation. In this case there would be no a priori reason
to expect the prices to move in a particular direction. The null hypothesis
we test is the following:
H2: The same prices are chosen regardless of the level of education

Results

The two hypotheses cannot be rejected. Let us look at the details.

The distribution of prices is dispersed, although concentrated on the
lower values

The mode and median for the overall sample are both 100, and the mean is
250. There is also a bump in the distribution at high values, with 7.75 per cent
of the offers in the 900–1000 range. Such choices are far from equilibrium;
the percentage of subjects playing the equilibrium strategy is in the overall
sample is 4.93 per cent (seven subjects), with 5.5 per cent (four subjects) in
the sample of non-educated subjects and 4.3 per cent (three subjects) in the
sample of educated subjects.

There is no significant difference in the behaviour of subjects across
gender

This conclusion holds in several different tests. The Mann–Whitney test for
the overall set gives a p-value of 0.63. Even if one focuses on special subsets
of the prices, the behaviour is indistinguishable: for example, there is no
significant difference across genders in the proportion of subjects placing a
price lower than 100 (the values are 55.1 and 54.6 for male and female sub-
jects, respectively). The distribution of bids according to gender is presented
in Figure 13.1.

The difference across education is weak

The non-parametric tests on the price variable shows no significant dif-
ference between the two groups (of educated and non-educated subjects)
(p = 0�187 for the Mann–Whitney test). But a simple analysis of the histo-
grams seems to indicate that the prices are more concentrated among the
low values for the educated group than for the non-educated. A way to study
this difference is to study the distribution of a variable separating high prices
and low prices (say, equal to one when the price is low, and zero otherwise).
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Figure 13.1 Distribution of bids by gender

The difficulty is to find a convincing cutoff price. We observe that 54.93 per
cent of the prices for the overall population are below 100, and choose this
as the cutoff. One has to note, however, that different cutoffs (50 and 200)
do not give a significant difference across education levels. Similarly, the
upper tail (900 to 1000) does not give significant differences (p= 0�6130). If
the cutoff price is chosen to be 100 (corresponding to the lowest 10 per cent)
then the non-parametric analysis confirms that there is a significant differ-
ence between the frequency of low prices in the educated and non-educated
population (p = 0�0301). It is interesting to note that even conditional on
low (less than 100) price offers, the distribution of price across genders is
not significantly different (p= 0�59 in the Mann–Whitney test).8 Figure 13.2
presents the bids according to the level of education.
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Figure 13.2 Distribution of bids by education
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The gender results are robust to alternative designs

The lack of gender effects suggests that some robustness check may be war-
ranted. We therefore ran two additional experiments checking the basic
result.

Both experiments were run at the University of Minnesota in autumn
2003. The subjects were undergraduate students in economics, who had just
begun to learn the basic concepts. They had no familiarity with the concept
of market games, or Bertrand competition, so they would correspond to
the non-educated subjects in the previous experiment. Subjects were asked
to report several personal characteristics, including gender, after they had
chosen the price. They did not know in advance that they were going to
be asked these questions. No special incentive to answer was provided, but
none of the subjects refused to answer, in either of the two experiments.

In the first group of thirty-four subjects (sixteenmen and eighteen women)
the design was similar to the basic design discussed earlier: subjects made
simultaneous offers of prices between 0 and 100 dollars. The lowest offer
was paid an amount exactly equal to the offer (that is, one dollar offered
was one dollar paid), with ties split.

The distribution of price offers was concentrated at the low end. Over a
range from 0 to 100, the mean was 9.14 (10.93 for men; 7.55 for women),
the median 4 (5.5 for men; 4 for women) and the mode 1 (1 for men and
1 for women); 55 per cent of the offers were 4 dollars or less. The difference
across gender (for example, in the in the average offer) is not statistically
significant (p= 0�49 in the Mann–Whitney test that the distribution of prices
of the two genders are the same).

The fact that prices are concentrated at the low end suggests that both
in this experiment and in the previous one a potential gender difference
might be hidden under the general pattern of low price offers. An alternative
design was developed to address this potential limitation. In this design,
subjects could make an offer ranging from 0 to 200 dollars. Then two out
of the participants were selected randomly, and the price offers of these two
subjects compared: the subject among the two with the lowest offer got a
payment equal to the offer.

An experiment according to this design was again run among under-
graduate students at the University of Minnesota, in a population similar
to the one of the previous experiment. The sample was of 462 students
(258 men and 204 women). The results according to gender are presented
in Figure 13.3.

The distribution of price offers was indeed less concentrated in the lower
end: over a range from 0 to 200, the mean was 76.6 (70.8 for men; 76.6 for
women), the median 75 (70.5 for men; 75 for women) and the mode 75
(75 for men and 75 for women). Only 4.7 per cent of the offers are below
8 dollars. This is a price distribution that is not concentrated on low values,
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so there is room for gender differences to appear. But again, the price distri-
bution is not significantly different across genders. This is clear from the data
on the mean, median and mode; moreover p = 0�20 in the Mann–Whitney
test of the hypothesis that the price offer differs across genders.

This game too shares the feature, although to a lesser degree, that winning
is associated with low price. We conclude that there is no significant gender
difference in the price offers in a simultaneous Bertrand competition game.

Discussion

The primary aim of this chapter was to test the hypothesis that different
preferences in competition across genders is not likely to be present if one
important condition is missing: that more competitive behaviour is more
likely to gain a higher prize for the winner. This condition is clearly missing
in the Bertrand games that we studied. The results show that the possibility
of winning is not of itself enough to induce more competitive behaviour in
male subjects.

The lack of difference in behaviour between genders in this specific experi-
ment does not contradict the explanations that are usually provided for
the more competitive behaviour of men, or the results in existing experi-
mental literature on gender differences in competition. Competition there
(for example in Gneezy et al., 2003) is understood as the differential perform-
ance in a task where effort and talent have to be provided. The outcome in
the task might then be interpreted (at least by the subject who is informed of
this outcome) as a social signal of skill or talent. In the present experiment,
although the interaction between the subjects is ‘competitive’, the inform-
ation about personal talent is absent. In addition, the winner in this game
gets the lowest possible prize, so competition does not appear to be a way of
selecting a winner, but rather a sucker who (although earning slightly more
than other participants) is willing to take such small bait.

An important gender issue has been left open by the present study, and
should be a subject of future research. Genders may differ with respect to
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the degree of risk aversion (see, for example, Eckel and Grossman, 2003).
A subject in our game is choosing a price facing the price distribution induced
by the other players. The results of the experiment justify a belief that this
price distribution is not concentrated near the equilibrium (price equal to 1).
Let ��p	 be the probability that the lowest price among the opponents’ prices
is larger than p, so that � is decreasing. The choice of a price is the choice
among a set of lotteries indexed by p, where the p lottery gives a prize equal
to p with probability ��p	, and a prize of 0 dollars with probability 1−��p	.
(This avoids the possibility of tied winners, at price p+1.) Consider now
two subjects, one man and one woman, who have the same belief about the
price distribution. If the woman is less competitive but more risk averse, she
might choose the same price as the man, because the effect of preference for
competition and risk aversion go in opposite ways. While it seems unlikely
that the two effects balance so precisely in the different populations we have
tested, to produce behaviour that only looks the same, further analysis of
these two characteristics is important.

A second aim of our chapter was to examine the effect of economic edu-
cation on behaviour. This effect is, as we have seen, more subtle than the
effects of gender. Education has some effect: low prices (with respect to the
cutoff of 100) are significantly more frequent after education than they were
before. Subjects who have been told the theory of Bertrand competition, and
who have thus beenmade aware of the idea that there will be cut-throat price
competition, choose somewhat lower prices. In this way, education seems
to bring subjects closer to the prediction of the Nash equilibrium concept.
But this effect is weak, if anything. In addition, this effect is the same across
genders.

Against the backdrop of this result, in closing this chapter we connect
again to the issue concerning the difference between teaching and involving.
We have shown that education may have very little effect on behaviour in
a price-competition context. By contrast, it is well known that, if subjects
interact over and over again in such games, then behavior tends to change
over time.9 This difference is indicative that being taught and being involved
implies different forms of experience, just as Franklin said.

Appendix

Instructions (translated from Swedish)

You are invited to participate in an experiment where you may make money. All
students in this room have received instructions with identical wording. Please do
not talk to anyone during the duration of the experiment.

The task of each participant in the experiment is to choose a whole number in the

interval from 0 to 1000. You must thus choose one of the numbers 0, 1, 2, 3,� � � ,

and so on up to the number 1000.
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Money will be paid out as follows: One of the participants who has chosen the
lowest number will win as many kronor as the number he/she chose. The parti-
cipant to be paid will be determined by a random draw. Those participants who
do not choose the lowest number will not receive any money.

The person who wins money should contact the experimenter in his office before
20 October 2000, and the money will then be paid.

You participate in the experiment by responding to and handing in the following:

I CHOOSE THE FOLLOWING NUMBER: . . . . . . . . . . . . . . . . .

MY INITIALS ARE: . . . . . . . . . . . . . . . . .

THE LAST FOUR DIGITS OF MY SOCIAL SECURITY NUMBER ARE: . . . . . . . . . . . . . . . .

Notes

1 In this connection, we note that Werner is in good company with at least one other
famous experimental economist: Vernon Smith quoted and celebrated Franklin in
his toast at the 2002 Nobel Banquet.

2 The quote is from Güth (2002), an interview with Fredrik Andersson and Håkan
Holm.

3 Among those gender gaps we do not focus on, let us mention that in some situations
women are more risk-averse thanmen (for a survey, see Eckel and Grossman, 2003).
For a more popular discussion of differences between men and women, and the
evolutionary reasons for these, see Pinker (2002).

4 For a modern exposition of the view of evolutionary psychology on this point, see
Daly and Wilson (2001) or Buss (1999).

5 At the time of the experiment, there were approximately ten kronor to the euro,
or to the dollar.

6 For example, a person with social security number 440202-5678 must be male. The
technique has been used previously by Dufwenberg and Muren (2000). The winner
of the game was entitled to private payment by visiting Martin Dufwenberg’s office
during the following weeks. However, the winner’s code number was publicly
announced in class. This implies that the degree of anonymity between subjects
was relatively low. A code number does not automatically reveal identity, but with
some effort one might be able to work this out.

7 While we base our hypothesis on the results of the previous studies, the design
there was different in many aspects from the current design. For example, in this
chapter, subjects do not make real effort, but rather choose a number. Still there
is a cost associated with each choice: a more competitive choice corresponds to a
lower payoff.

8 Our finding of a weak effect of education accords with results discussed by Rubin-
stein (1999, pp. 156, 167–8) (obtained in collaboration with six graduate students)
where ‘the responses of economics students to daily strategic situations before and
after a course in game theory’ showed little difference.

9 See Plott (1989) or Holt (1995) for surveys on experimental IO that cover the topic,
or Dufwenberg and Gneezy (2000), who show this for game similar to that studied
here.
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Parity, Sympathy and Reciprocity
Werner Güth and Menahem E. Yaari∗

Introduction

In this chapter, we consider the results of an experiment in which subjects
had deviated systematically from the pursuit and maximization of personal
gain. We hypothesize that these departures from self-seeking behaviour are
caused by one or more of the following factors: (a) Parity (also known as
inequality aversion): in choosing among actions, individuals may be attempt-
ing to promote equality of outcomes, even at the cost of some reduction in
unilateral personal gain; (b) Sympathy (also known as altruism): in choosing
among actions, individuals may be taking into account not only their own
unilateral gains (or losses) but also the gains (or losses) of others; (c) Reci-
procity: in choosing among actions, individuals may be motivated, to some
extent, by a desire to apply measure for measure – that is, to reward kindness
and unkindness in like manner.

Significant departures of decision-makers from purely self-seeking behav-
iour have been noted, and studied, for a long time (see Dawes and Thaler,
1988). Experimental investigations of such departures date back at least fifty
years (see Sally (1995) for a fairly recent survey).

Parity (‘inequality aversion’) has been recognized as a possible motiv-
ational factor in several experimental settings (see, for example, Bolton,
(1991); Fehr and Schmidt, (1999); Bolton and Ockenfels, (2000)). In some
cases, a concern for parity, or equity, is assumed to exist only when the
decision-maker’s position is inferior, relative to that of his/her opponent
(‘one-sided inequality aversion’). In other cases, this concern is assumed to
operate symmetrically, regardless of who is holding the advantage – oneself
or one’s opponent.

∗ This chapter is an essay that was written, largely, in the early 1990s, based on
experimental evidence gathered in the late 1980s. The second author, whose hes-
itancy had prevented its publication until now, wishes, by presenting it here, to
pay a debt of affection and gratitude to the first author.
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Sympathy (the capacity to ‘feel with one’s neighbour as with oneself’) has
enjoyedprominence since antiquity.DavidHume thought that sympathywas
at the basis of the virtues that characterize any civilized society. Experimen-
tally, sympathy (sometimes labelled ‘altruism’) has oftenbeenused to account
for co-operative behaviour that cannot be rationalized on the basis of self-
interest alone (see, for example, Dawes and Thaler, 1988; Cooper et al., 1996).

Finally, reciprocity (‘measure for measure’) has also long been identified
as a force that motivates behaviour, and has been treated as such in several
recent theories of human interaction (see, for example, Rabin, 1993; Fehr
et al., 1997; Bolton and Ockenfels, 2000).

Background

Consider two sums of money, say a dollars and � dollars, and think of a as
being quite a bit larger than �. Figure 14.1 shows a 2-player game-form in
which the outcomes are dollar payments to be received by the two players.

If each player’s evaluation of outcomes is strictly in accordance with
his/her dollar earnings (the higher, the better) then this game-form becomes
a simple run-of-the-mill Prisoner’s Dilemma. We shall refer to preferences
of this type (determined solely, and monotonically, by one’s own monetary
earnings) as self-seeking. Experimental interactions can easily be designed,
where subjects play out this game-form, and this has been done many times
(for a survey see, for example, Roth, 1995, section IIIA). When this is done,
one finds that, as the ratio a/� increases, subjects tend to opt, systemat-
ically and with increasing frequency, for the ‘co-operative’ strategy pair
(C, C). Under self-seeking preferences, C is a strongly dominated strategy,
so observing the strategy pair (C, C) would seem to indicate that behaviour
is either irrational or non-self-seeking.

C D

C     a         a – ε a + ε

a + εD – ε   0         0

Figure 14.1 Two-player game form

Various arguments have been proposed for why people play C in the
above game-form. In some notable cases (see Rabin, 1993), these arguments
have been ‘interactive’ in nature – that is, they have to do with the player’s
expectation of what his/her opponent is going to do. Something like the
following: ‘I expect my opponent to play C. Given this expectation, for me
to play D would be mean. Therefore, I should play C.’ Conversely, a player’s
deliberation might go, say, as follows: ‘I expect my opponent to play D.
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Given this expectation, the problem with my playing C is not so much the
loss of a measly � (with D, 0 is all I would get) but rather my coming out
the sucker, which I abhor. For this reason, I should play D.’ In both cases,
the underpinning of the final outcome – (C, C) in the first, (D, D) in the
second – rests with ‘interactive’ considerations; that is, with what players
expect their opponents to do. In this chapter, we deliberately neutralize
these interactive considerations, hoping thereby to isolate the pure effects of
parity, sympathy and reciprocity. (In the latter case, we shall consider players
moving in sequence, so a minimal interactive element will be retained.) If
we take the game-form shown in Figure 14.1 and ‘dissect’ it into two separate
game-forms, we get what is shown in Figure 14.2.

C     a         a 

D

C

D 0 0

    a         a 

    – ε       – ε

      – ε–ε

   0          0 a + ε

a + ε

a + ε

a + ε

Figure 14.2 Dissecting the game

The two resulting game-forms, on the right, are extremely primitive. Only
one of the two players has a move, and that move alone determines both
players’ monetary payments. Primitive encounters of this type are sometimes
referred to as ‘dictator games’ (see Bolton and Ockenfels, 2000). The question
ofwhatone’s opponent is expected todobecomes either empty (opponenthas
no move) or moot (I have no move). Thus, ‘interactive’ considerations are no
longer relevant. Nevertheless, in our experimental setting, the ‘cooperative’
move C is observed surprisingly often, with increasing frequency as the ratio
a/� increases. How can one account for this evidence, given that repeated play
was completely ruled out? We claim that such an account would have to rely
on the introduction on non-self-seeking elements – such as parity, sympathy
and reciprocity – into the players’ preferences; that is, into the ways by which
players convert game-forms into outright games.

The experimental setting

The subjects whose responsesmake up the evidence that will be reported here
were 1st-year and 2nd-year students at the HebrewUniversity of Jerusalem. In
a certain week during the academic year, experimenters were allowed to take
over the last half-hour of class sessions in two large enrolment courses, namely
‘Introduction toLogic’ and ‘Introduction toConstitutional Law’. The students
who were in attendance were invited to spend the remaining class time par-
ticipating in a simple and ‘potentially fairly lucrative’ experiment. They were
told that, by the end of the period, each one of them would have earned,
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possibly, as much as five times the University’s official hourly student wage,
andthataverageearningswere in factguaranteed toexceed twice that standard
hourly wage. In each of the classes approached in this manner, two or three
studentsdecidednot toparticipate,withtherest stayingonfor theexperiment.
Therewere248subjects inall,dividedaboutequallybetweenLogicandConsti-
tutionalLaw.Eachsubjectwasgivenasetof instructions,describing three tasks
to be performed. To complete a task, the subject had to select an action from a
‘menu’ consisting of a small number (usually two) of simple available actions,
and then to carry out the selected action. Physically, the actions consisted in
positioning a coloured sticker in some designated space.

In each of the three tasks, the subject was in fact a player in a 2-player
set-up. The game-forms to be playedwere fully specified, but presumably only
theplayers (subjects) themselvescouldconvert thesegame-forms intooutright
games. In all the game-forms, players were completely anonymous vis-à-vis
each other – that is, players never knew who their opposing players were. In
all cases, the opposingplayerwas described, in the subject’s instructions sheet,
as ‘another person, also participating in this experiment.’ And the next sen-
tence was: ‘There is no way for you to know the identity of this other person,
just as there is no way for this person to know your own identity.’ Subjects
knew, broadly, that the experiment was being carried out in several large class
sessions, over several days. But they did not know which courses, nor how
many courses, would be involved. Thus, the only inference a subject could
draw was that the person on the opposite side was a student in one of the
large-attendancecoursesof theHebrewUniversity.Moreover, itwasmadeclear
to the subjects that opponents were selected through randommatchings and
that, in any two tasks, a player would in all likelihood be dealing with two
different randomly selected individuals on the opposing side.

In two out of three tasks (to be labelled Task A and Task B) the game-form
being played was degenerate, in the sense that only one player, the subject,
had a move, with the other player accepting the consequences passively. In
the third task (Task C), interaction was genuine, albeit strategically rather
primitive.

Tasks A and B: description and results

In the second section, above, we discussed a ‘dissected’ (or ‘sliced’) version of
the prisoner’s dilemma – that is, game-forms obtained when one considers
each column of the prisoner’s dilemma separately (see Figure 14.2). The first
two tasks our subjects were asked to performwere designed to capture the pat-
terns of behaviour when such primitive game-forms are being played out. The
subjects’ choice of problems in Tasks A and Bwere as shown in Figure 14.3.

It will be noticed that earnings in these tasks differ somewhat from the rel-
evant payoffs in Figure 14.1 (−�has been replaced by 0 in Task A, and a+�has
been replaced by a in Task B). This was because of our concern not to stretch
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Task A        Task B 

Figure 14.3 Tasks A and B

credibility by making statements such as ‘somebody you don’t know will be
giving up somemoney’. Substantively, the change is of no consequence.

The actions labelled here as C and D were identified in the experiment in
terms of the colours of two stickers, with one of the stickers to be chosen
and placed in some designated space. There was no reason to suppose that
the stickers’ colours, in themselves, affected the subjects’ choices in any
way. (In fact, the same colour was used to designate C in some cases and D
in others.) It is therefore safe to assume that subjects judged the available
actions solely by their consequences. The consequence of any given action
was a pair of monetary payments, to be made by the experimenter after
the completion of the experiment. All the payments, exactly as described in
the subject’s instructions sheet, were to be made fully and squarely, without
lotteries, auctions or other hanky-panky. The payees in all cases were, first,
the subject him/herself and, second, some other unidentified person. There
was no way for the subject and this other person to obtain any information
about each other, save for the fact that both of them were participants in the
experiment. In Figure 14.3, the first and second components of the outcome
pair are the amount to be earned by the subject and by ‘the other person’,
respectively. All payments were denominated in new Israeli shekels (NIS).1

The results obtained for Tasks A and B are given in Table 14.1.

Table 14.1 Data for Tasks A and B

Task A Task B

C D C D

a (NIS) � (NIS) N % N % a (NIS) � (NIS) N % N %

5 0.10 46 85 8 15 10 0.10 37 71 15 29
5 0.25 40 78 11 22 10 0.25 26 74 9 26
5 0.50 71 81 17 19 10 0.50 58 62 36 38
5 0.75 19 68 9 32 10 0.75 26 59 29 41
5 1.00 16 59 11 41 10 1.00 9 39 14 61

All parameter 192 77 56 23 All parameter 156 63 92 37
values values
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Tasks A and B: analysis

The evidence contained in Table 14.1 is obviously incompatible with subjects
being strictly self-seeking. Moreover, the design of the experiment makes it
virtually impossible to attribute this departure from self-seeking behaviour to
considerations of repeated interaction or long-term reputation. It is therefore
to be concluded that, in choosing among actions, subjects had taken into
account not only payments due to be made to themselves but also payments
due to be made to other individuals, about whom they knew very little. Let
(x� y) be the outcome of an action being contemplated by the subject, with
x and y being the monetary payment levels for the subject and for the other
individual, respectively. Our hypothesis was that subjects would evaluate
such an outcome by calculating the quantity:

U�x� y	= �1−�	x+�y−%�x−y�

Where � and % (0 � � � 1 and % � 0) are, respectively, the subject’s ‘coef-
ficient of sympathy’ and ‘coefficient of parity’. The coefficient of sympathy
measures the subject’s sensitivity to ‘what’s happening to the other fellow’,
and the coefficient of parity measures the subject’s sensitivity to inequality.
The condition � = %= 0 characterizes a purely self-seeking subject.

Notice that in Task A, both sympathy and parity tend to push the subject
towards the co-operative action, C. That is, in Task A, as the values of � and
% become higher, choosing C becomes more likely. In Task B, on the other
hand, sympathy still works in the direction of reinforcing C, while parity
now works in the opposite direction – that is, higher values of % tend to
reinforce self-seeking behaviour. This fact makes it possible to use our data to
separate out the effects of sympathy and parity. Our hypothesis concerning
the evaluation of outcomes by the subjects may in fact be rewritten as
follows:

U�x� y	=
{
�1−�	x+�y if x� y

�1−�	x+�y if x� y

where � = � + % and � = � − %. Clearly, Task A involves � while Task B
involves �. Consider a subject whose sympathy and parity coefficients are
given, accordingly, by � = ��+�	/2 and % = ��−�	/2. In task A, this sub-
ject would choose the action C if � � �/�a+ �	 and, similarly, in Task B,
s/he would choose C if � � �/�a+ �	. Table 14.1 contains evidence on the
frequency of subjects choosing C or D in both tasks. It follows, therefore,
that Table 14.1 contains the frequencies with which the inequalities � � t

and � � t are satisfied, for various values of t . In short, Table 14.1 contains
information about the distributions of � and � in the population from which
our subjects were drawn. We can, in fact, use Table 14.1 to obtain 5 points
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Figure 14.4 Distribution of � and �

on the distribution of � and 5 points on the distribution of �. These points
are drawn in Figure 14.4.

The points in Figure 14.4 can be used to estimate two distribution func-
tions, one for � and one for �, using linear regression. The estimated distri-
bution functions, obtained in this way, are also drawn in Figure 14.4.

Let the distribution functions of � and � be denoted F� and F�, respectively.
The regression equations that have been estimated were:

F��t	= c+at

F��t	= c+bt

The two equations were constrained to have a common intercept, c. Removal
of this constraint – that is, allowing the two equations to have separate
intercepts, yields an insignificant difference between the two estimated inter-
cepts. Theoretically, equality of the two intercepts is a consequence of our
comonotonicity assumption (see below).

The results of estimating the regression coefficients in the above equations
were as follows:

c = 0�164 �t-value 5�07	

a= 1�039 �t-value 3�48	

b = 4�065 �t-value 6�84	
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All the coefficients are significant at the 0.01 level, and the overall fit is quite
good (R2 = 0�87, adjusted R2 = 0�83). The estimated distribution functions
for � and � (with the coefficients rounded off slightly) come out as:

F��t	=min0�16+ t�1�

F��t	=min0�16+4t�1�

We now proceed to use these equations in order to retrieve the distribu-
tions of the preference characteristics � and %, recalling that � = ��+�	/2
and % = ��−�	/2. In order to do this, we must say something about the
degree of dependence among the variables being studied. Postulating inde-
pendence is clearly inappropriate, because we expect sensitivity to the posi-
tion of the other to go hand-in-hand (at least to some extent) with sensitivity
to inequality. In the absence of an estimate for the strength of this coher-
ence of tendencies, we postulate complete dependence. More precisely, we
suppose the two tendency variables, � and %, to be (strictly) co-monotone. By
this we mean that the inequality:

��i−�j	�%i−%j	 > 0

holds whenever (�i −�j	 �= 0, where �i and %i are, respectively, the �-value
and %-value for some individual i, and similarly �j and %j for some indi-
vidual j. In other words, ordering the individuals according to their �-values
leads to the same ranking as ordering them according to their %-values.
Another way of expressing this is to say that there exists a strictly increasing
function, say f , such that %= f��	.

Given the co-monotonicity of � and %, we turn now to the other two
(‘synthetic’) variables, � and �. Clearly, � and � are also co-monotone, as are
� and %. This follows immediately from the definition, �= �+%. As for the
other variable, �, its definition is given by �= �−%, which neither implies
nor contradicts the co-monotonicity of � with the other variables. We do
know, however, that there exists a real function, say g, such that � = g��	.
While g is not, a priori, an increasing function, all we need to do is to exhibit
an increasing function g such that the equation � = g��	 agrees with the
distributions of � and �, as estimated above. In other words, we wish to find
g such that F��t	 = F��g�t		 holds for all t . This leads to g�t	 = t/4, which is
strictly increasing. We are now in a position to write the equation �= �/4,
which, together with the relationships � = ��+�	/2 and % = ��−�	/2, can
now be used to retrieve the distribution functions of � and %, to be denoted
F� and F%. The result is:

F��t	=min0�16+1�6t�1�

F%�t	=min0�16+2�7t�1�
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for 0� t � 1. The population from which our subjects were drawn may thus
be characterized in the following way. There is a hard core (an atom) of pure
self-seekers (that is, individuals satisfying � = %= 0) comprising one-sixth of
the population. The remaining five-sixths exhibit the properties of sympathy
and parity – that is, they have positive �s and %s, with the �-values and
%-values of this remaining five-sixths of the population being uniformly
distributed. By our co-monotonicity assumption, sympathy and parity go
hand-in-hand – that is, the two variables are perfectly correlated. The highest
possible value of � (that is, the upper bound of the support of �), as estimated
from our raw (unrounded) data, is given by 0.505, which is remarkably close
to the theoretical maximum, � = 1/2 (� = 1/2 is the case of an agent who
regards a dollar paid to oneself and a dollar paid to the other person as equally
desirable – ‘Love Thy Neighbour as Thyself’.) As for the parity coefficient,
%, the highest possible value allowed by our estimated distribution is given,
approximately, by %= 1/3. In other words, the highest degree of inequality-
aversion occurs when an individual is willing to pay 1 dollar to correct a
3-dollar gap in incomes. The average utility function implied by our data that
is, the utility U , as defined above, using the estimated means of � and %,
comes out to be:

Uav�x� y	= 0�78x+0�22y−0�14�x−y�

We know of no a priori discussion of parity and sympathy that would tell
us whether this representation of an average individual is ‘reasonable’ or
not. It should be remembered also that the subjects in our experiment were
informed that ‘the person on the opposing side’ was also someone partici-
pating in the same experiment. All our estimates and results are, of course,
specific to this context.

Task C

In Tasks A and B, subjects were dealing with degenerate game-forms, where
strategic interaction was altogether absent. The game-form of Task C, in
contrast, involved genuine interaction, albeit very limited in scope. The tree
diagram in Figure 14.5 describes the simple setting in which the subjects
found themselves:

Each subject was assigned the role of either Opener (Player I) or Responder
(Player II). Once again, subjects were informed that the person playing the
other role was also a participant in the experiment, whose identity was to
remain unknown, and for whom the subject’s own identity would equally
remain unknown. Subjects in the role of Player I were asked to perform their
selected action by placing a sticker in a designated space, using the colour of
the sticker to indicate the action being taken (L or R in Figure 14.5). Subjects
in the role of Player II were asked to submit strategies, by placing two coloured
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Figure 14.5 Task C

stickers in designated spaces, each sticker indicating what the action should
be, given the colour that Player I will have selected. It was natural for the
subjects to think in terms of strategies, in view of the information that the
person on the other side was someone who was going to be matched to you
(that is, to the subject) at random, after the entire experiment had been run.
It was possible, therefore, that the of the opponent’s opening move had not
even been played at the time of the subject’s own action. Thus, specifying
the selected action conditionally, for every possible opening move of the
opponent, was clearly seen to be the only way.

Note that Player II in Task C is in fact facing a situation that is the same as
that of the decision-maker in Task A. Indeed, Player II’s choice is between a
‘co-operative’ move, which would result in both him/herself and the person
on the other side receiving equal positive payments, and a ‘defecting’ move,
which yields a somewhat greater payment to oneself but inflicts a loss on
the person on the other side. This is true at both nodes where Player II has a
move. The difference is that at the left-hand node the stakes are uniformly
higher than at the right-hand node, by a factor k > 1. Thus, all that Player
I’s move does is to determine the size of the stakes. Moving left, by Player I,
can be thought of as ‘being trusting’ and moving right as ‘being cautious’.
As before, all payments were denominated in new Israeli shekels (NIS), and
specifically with values a = 5, 10 and � = 0�50, 1. The values of the scale
factor were set at k = 2, 3. Taking all the combinations of these parameter
values yielded a 2×2×2 design, so subjects were divided at random into
eight groups of roughly equal size, with each group filling one of the cells in
the 2×2×2 design. On average, about thirty subjects were assigned to each
cell, divided about equally between those in the role of Player I (Opener) and
Player II (Responder).2 Subjects who are uniformly self-seeking would always
play R (‘cautious’) in the role of Player I and (DR�DL) in the role of Player II –
that is, they would play out the unique subgame perfect equilibrium of the
game in which individually received money payments act as payoffs. As we
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Table 14.2 Data, Task C

Parameters Player I (Opener) Player II (Responder)

a � k R L CRCL CRDL DRCL DRDL

1 5 0.5 2 3 (20) 12 (80) 8 (62) 1 (8) 2 (15) 2 (15)
2 5 1 2 2 (14) 12 (86) 7 (58) 1 (8) 1 (8) 3 (25)
3 5 0.5 3 4 (29) 10 (71) 9 (60) 2 (13) 2 (13) 2 (13)
4 5 1 3 4 (24) 13 (76) 7 (44) 2 (13) 2 (13) 5 (31)
5 10 0.5 2 1 (7) 14 (93) 11 (65) 1 (6) 0 (0) 5 (29)
6 10 1 2 4 (24) 13 (76) 12 (67) 0 (0) 3 (17) 3 (17)
7 10 0.5 3 2 (11) 16 (89) 14 (93) 0 (0) 0 (0) 1 (7)
8 10 1 3 2 (14) 12 (86) 8 (53) 3 (20) 0 (0) 4 (27)

Overall 22 (18) 102 (82) 76 (63) 10 (8) 10 (8) 25 (21)

already know, from Tasks A and B, subjects were not uniformly self-seeking,
and this observation was reinforced by the results for Task C, which are
summarized in Table 14.2 (numbers in parentheses are percentages).

In our analysis of Tasks A and B, we had assumed that an individual
evaluates an action that yields x shekels to him/herself and y shekels to the
person on the other side by calculating the quantity:

U�x� y	= �1−�	x+�y−%�x−y�

where the pair (��%) designates the individual’s type. Adopting this frame-
work also for Task C, we find that an individual of type (��%) in the role
of Player II (Responder) would play (CR�CL) if �1− 2�	/�� +%	 � a/�, and
�DR�DL	 otherwise. (Note that this condition is independent of the scale
factor k.) Given the distributions of � and %, as estimated above, and
given our co-monotonicity assumption, the predicted behaviour pattern for
Player II (the Responder) would be as specified in Table 14.3. In order to
facilitate comparison with the observed data, each cell in Table 14.3 con-
tains both the predicted frequency (at the lower left) and the observed
frequency (at the upper right). Observed frequencies have been calculated,
in each case, by pooling together the data for the two values of the scale
parameter k.

The hypothesis underlying the predicted frequencies in Table 14.3 is not
the hypothesis that we had formulated at the outset for task C. We did
not expect the framework developed for Tasks A and B to be adequate for
explaining behaviour in Task C. Rather, we had expected that, in Task C,
subjects in the role of Player II would display a tendency to reciprocate,
a tendency that cannot come into play in the interaction-free settings of
Tasks A and B but can (and would, we thought) come into play in Task C.
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Table 14.3 Player II’s strategies

Parameter values Frequencies of Player II’s strategies (in %)

a � CRCL CRDL DRCL DRDL

5 0.50
61 11 14 14

75 0 0 25

5 1
51 10 10 29

67 0 0 33

10 0.50
79 3 0 18

79 0 0 21

10 1
60 10 8 22

75 0 0 25

An agent is said to engage in reciprocity if s/he tends to be kind to an
opponent who is perceived to have been kind and co-operative, and to be
unkind – even vindictive – to an opponent who is perceived to have been
unkind and disregarding. Consider an agent in the role of Player II in Task
C. We expected that, in this situation, at least some subjects would regard
the opening move L of Player I as kind and trusting, and the opening move
R of Player I as unkind and distrusting. These subjects (we thought) would
then tend to reciprocate, by rewarding a trusting opponent and snubbing
a distrusting one. In our setting, reciprocity would be exhibited through
Player II’s use of the strategy (DR�CL), which one might refer to as the recip-
rocating strategy. Our hypothesis was that the frequency of appearance of
this response strategy (DR�CL), would be positive and significantly greater
than the frequency of appearance of its mirror image (CR�DL), which we
had expected to be negligible. Under reciprocity, the frequencies of the two
‘straight’ strategies (CR�CL) and (DR�DL), would both be lower than the val-
ues predicted by the model of Tasks A and B, with both reductions together
making up the frequency of the reciprocating strategy (DR�CL). In the event
(see Table 14.3), subjects in the role of Player II did select the reciprocating
strategy in about 8 percent of the cases, on average, but a similar number
of subjects opted for the mirror-image strategy (CR�DL), thereby displaying
a pattern that seems to run contrary to reciprocity. The case for reciprocity
in our data, if there is one, is very weak at best. Possibly this is because the
opening move R is not being perceived by Responders as necessarily being
unkind.
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Now let us consider the behaviour of Player I (the Opener). The choice
as to whether to play R or L clearly hinges on Player I’s assessment of who
it is out there, at the opposite side of the interaction. The first hypothesis
to be checked out in this respect is rational expectations. Under rational
expectations, one assumes that the agent in the role of Player I takes the
distribution of types in the population as given and picks an action optim-
ally, given this distribution and given his/her type. One then proceeds to
check whether the distribution of agents implicit in the observed actions of
subjects in the role of Player I coincides with the underlying distribution,
which Player I had taken as given. In the present context, rational expecta-
tions will have been confirmed if the distribution of types that was derived
above for Tasks A and B were a fixed point of this kind. Checking the data,
we find that this is not the case. Indeed, if the subjects in the role of Player I

had known that the distribution of types was as described in the previous
section, then they would all play L (‘trusting’) regardless of their own type –
that is, even a strictly self-seeking Player I would play L. While our data do
show the rates of playing L to be quite high, they fall far short of 100 per
cent L in all cases.

Given the failure of rational expectations, we are led to consider the fol-
lowing alternative hypothesis: when contemplating the question of who
it could be, sitting out there at the opposite end of the interaction,
the subject’s answer might be ‘it’s probably someone more or less like
myself’. This leads us to the hypothesis that a subject of type (��%) in
the role of Player I will act on the assumption that the opponent (Player
II) is also of type (��%). We refer to this naïve mode of forming expect-
ations regarding the opponent’s type as the egomorphic expectations hypo-
thesis.

It is straightforward to calculate what an agent of type (��%) would do,
in the role of Player I, if s/he assumed the opponent to be of the same
type. Using the distribution of types derived in the previous section, one
can determine, for each parameter configuration, the predicted frequencies
with which the two actions, L and R, will be selected. This calculation comes
out as follows: for parameter values (a��� k), a fraction �a+8�	/�6a+12�	
of the population will play R (‘cautious’), independently of the value of
the scale parameter k. A comparison of these predicted frequencies with
observed frequencies is displayed in Table 14.4. (Observed frequencies reflect
a pooling of responses over the two values of the parameter k.)

We see that the move R (‘cautious’) is observed systematically less fre-
quently than would be predicted under egomorphic expectations. However,
when we consider the four parameter configurations separately, we find
that in each case the difference between the observed frequency and the
predicted frequency is not statistically significant. In this sense we are
entitled to conclude that the egomorphic expectations hypothesis has been
confirmed.
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Table 14.4 Predicted and observed behaviour by Player I

Parameter values Frequency (in %) of Move R (‘Cautious’)
by Player I

a � Predicted Observed

5 0.50 25 24
5 1 31 26

10 0.50 21 18
10 1 25 19

Relevance

Even after its recent triumphs, experimental work in economics is still viewed
with suspicion, in some quarters, on the grounds of relevance. The argu-
ment runs roughly as follows: evidence regarding the behaviour of subjects
in experimental settings may be of considerable interest to psychologists
studying individual behaviour per se. Impeccable and robust as their findings
might be, these findings can only be taken as evidence of how subjects tend
to behave in the given experimental setting. In a market setting, the very
same subjects may well behave differently, if only because in the marketplace
a person’s very livelihood is at stake, and this can never be the case in an
experiment. Thus, experimental evidence becomes ‘economically irrelevant’
almost by definition.

Similar scepticism can presumably be voiced in the present context: it
is true that we find subjects veering off systematically from self-seeking
behaviour, but in a market setting ‘things are serious’, so these very subjects
may well revert to being strict self-seekers. Presumably, this would render our
findings economically irrelevant. Quite surprisingly – and inadvertently –
we find ourselves in possession of evidence on this issue.

Let us recall some of the design features of our experiment. Subjects who
had participated in the experiment were entitled to receive certain monetary
payments. The exact amount due to any given subject was determined not
only by this subject’s own action, but also by the actions of others, who
would be matched to this subject later. Thus, payments could only be made
after a delay, a day or two after the conclusion of all the experimental
sessions. This was clearly the only way to guarantee that everyone received
his/her due. Subjects were therefore instructed to write their names on their
completed task sheets, and their instructions told them that they could
collect their individually calculated earnings at some designated office on
campus at any time during working hours in the week following the running
of the experiments.

What happened was this: at the very start of the payment week, a queue of
people anxious to collect their rightful earnings formed, outside the door of
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the designated payment office. After the people in the queue had been paid,
individuals continued turning up steadily throughout the working hours,
with the pace of arrivals slackening off gradually. This process continued
throughout the week. At the week’s end, it became apparent that only about
70 per cent of the subjects had in fact turned up to collect their earnings. It
therefore became necessary to declare an extension of the payment deadline,
so another week was allowed for subjects to come and collect their money.
This decision was announced clearly and conspicuously on all the appropri-
ate bulletin boards. Most of the remaining subjects did show up within the
extension period, but a small residual, consisting of about 5 per cent of all
subjects, never did turn up to collect their rightful earnings. (It was decided
not to pursue these remaining subjects individually.)

This course of events made it possible for us to explore the relationship, if
any, between ‘taking money seriously’ and a person’s tendency to veer away
from strictly self-seeking behaviour. Consider the view that non-self-seeking
behaviour is a kind of frivolity that will tend to disappear ‘when things get
serious’. If this view is correct, then the more seriously the subject regards
monetary earnings, the less likely this subject would be to depart from strictly
self-serving actions. Fortunately, our observations made it possible for us to
test this hypothesis in a straightforward manner. We defined two integer-
valued variables, t and s, such that ti is subject i’s time of arrival to collect
his/her earnings, and si is the number of i’s non-self-seeking moves (‘moves
to the left’) in Tasks A, B, and C. (The exact definitions of t and s are
simple and unimportant.) On calculating the correlation between these two
variables, we found exactly nothing: no statistical relationship whatsoever
was found to exist between acting selfishly and taking money seriously.
People who were very eager to meet their money were as likely to depart from
self-seeking behaviour as were people who were extremely relaxed about it.

Conclusion

The fact that people do not always act in a purely self-interested manner has
long been recognized. But a detailed analysis of such behaviour, with a view
to identifying the systematic elements in it (if any) is only recently being
attempted. Our intent, in the present chapter, has been to try to contribute
to this newly emerging research effort.

Notes

1 At the time, the official rate of exchange was approximately 1.00 NIS = 0.50 US$.
2 In the course of running the experiment, discrepancies developed in some cases

between numbers of Openers and numbers of matching Responders. In these cases,
final payments were determined by randomly forming a few 2-to-1 matchings.
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Fairness in Stackelberg Games
Steffen Huck, Manfred Königstein and Wieland Müller

Introduction

In experiments, it is often observed that subjects do not play according to the
subgame perfect equilibrium (SPE). There is overwhelming evidence for this
claim coming from sequential bargaining games. In its simplest form, the
ultimatum game, introduced by Güth et al. (1982), the Proposer is predicted
to claim (almost) the entire pie for him/herself while the Responder should
accept all positive offers. Contrary to this prediction, one usually observes
that the modal offer made by Proposers is a 50–50 split, and that Responders
reject substantial positive offers.

Further evidence for the failure of the SPE to predict behaviour in sequen-
tial games comes from Stackelberg duopoly markets. Huck et al. (2001) report
on an experiment designed to compare Stackelberg and Cournot duopoly
markets with quantity competition. Amain findingof this study is that Stack-
elberg markets yield, as predicted, higher outputs than do Cournot markets.
However, leaders’ output is much lower than predicted, and followers’ empir-
ical reaction function is far from the rational reaction function. In fact, the
observed reaction function is sometimes even upward-sloping.

One reason for subjects’ reluctance to play according to the SPE might
be that payoffs in the SPE are unequal. In fact, in the ultimatum game,
the Proposer is predicted to receive almost the entire pie, leaving (virtually)
nothing for the Responder. In the linear Stackelberg game implemented in
Huck et al. (2001) the Stackelberg leader is supposed to produce twice as
much as the Stackelberg follower. This implies a payoff for the leader that is
twice as high as that of the follower.

It has been argued that social preferences might interfere with subgame
perfect behaviour. For example, Binmore et al. (2002) ask whether, given
payoff-interdependent preferences, players respect backward induction. For
this purpose, they split backward induction into its component parts: sub-
game consistency and truncation consistency. They analyse both conditions
by comparing the outcomes of two-stage bargaining games with one-stage
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games with varying rejection payoffs. They find systematic violations of both
subgame and truncation consistency. Johnson et al. (2002) analyse whether
it is the subjects’ limited computation ability or their social preferences that
are responsible for the failure of backward induction. They run experiments
on a two-person, three-period, alternating-offer bargaining game and show
that both social preferences and the fact that many subjects do not instinct-
ively apply backward induction are responsible for the failure of the SPE
prediction to emerge.

In this chapter we add another piece to the mosaic by asking the following
question: what happens in a Stackelberg duopoly in which payoffs in the
SPE are equal? We report on experiments testing this hypothesis. We find
that equalizing the payoffs in the SPE outcome drives behaviour closer to
the SPE prediction. However, the effect is moderate and the behaviour of
both, leaders and followers, is still distinctively different from the SPE.

This deviationmay be explained by the players’ fairnessmotives. Assuming
preferences described by Fehr and Schmidt (1999) we find an aversion to
disadvantageous inequality. Interestingly, however, some participants seem
to enjoy advantageous inequality, a motivation that is usually discarded in
the literature as being irrelevant.

Markets, treatments and procedures

Consider the following duopoly market. Two firms, the Stackelberg leader L
and the Stackelberg follower F, face linear inverse demand:

p�Q	=max30−Q�0� Q = qL+qF

while linear costs are given by:

C�qi	= 6qi i = L�F

First, the Stackelberg leader decides on its quantity qL, then – knowing qL –
the Stackelberg follower decides on its quantity qF . The SPE solution is given
by qL = 12 and the follower’s best-reply function qF�qL	= 12− 1

2q
L, yielding

qF = 6 in equilibrium. This implies payoffs �L = 72 and �F = 36. Joint-profit
maximization implies an aggregate output of QJ = 12, and symmetric joint-
profit maximization implies qJ = 6 (�J = 72).1

Huck et al. (2001) implemented the above market in the laboratory. We
refer to these data as treatment SYM, since the payoff functions of the players
are symmetric. In the experiment, the participants got a payoff table (see
Huck et al., 2001) in which all possible combinations of quantity choices and
the corresponding profits were shown. The numbers given in the payoff table
were measured in a fictitious currency. Each firm could choose a quantity
from the set 3�4� � � � �15�. The payoff table was generated according to the
demand and cost functions given above.2
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In a second treatment (treatment ASYM) we implement a duopoly market
as described above, but with asymmetric cost functions:

CL�qL	= 6qL−18 and CF�qF	= 6qF +18

Introducing fixed costs does not change the theoretical predictions as
worked out above. Specifically, SPE quantities are still qL = 12 and qF = 6.
However, it does influence the distribution of payoffs across players. SPE pay-
offs are now qL = qF = 54� that is, our manipulation of the payoff functions
induces equal SPE payoffs.

In the data analysis below we investigate whether behaviour varies
between treatments. If participants were rational, money-maximizing agents,
we should observe no difference, since the players should choose SPE quan-
tities in both treatments. But we predict that in treatment ASYM the leader’s
quantity is higher and the follower’s quantity lower than in treatment SYM.
We interpret this as evidence for fairness motives, since this shift in behav-
iour partially compensates the cost asymmetry induced in treatment ASYM.

Both treatments employed a fixed matching scheme. The experiments for
treatment SYM were conducted at Humboldt University in Berlin in June and
July 1998. They were run in three sessions with 18, 14, and 16 participants,
respectively. Thus, in total, 48 subjects (24 pairs) participated in these experi-
ments. The experiments for treatment ASYM were conducted at University
College London in February and March 2002 when a total of 40 subjects
(20 pairs) participated in three sessions �12+10+18	. At both locations, sub-
jects were either recruited randomly from a pool of potential participants or
invited to participate via leaflets distributed around the University campus.

All experiments were run with pen and paper. Subjects were seated such
that communication was prevented between players. The player positions
of a leader or follower were randomly assigned to subjects and remained
constant throughout the entire experiment. Each session consisted of ten
rounds, with individual feedback between rounds. Sessions lasted between
60 and 75 minutes. Subjects’ average earnings in treatment SYM were DM
15.67 (including a flat payment of DM 5) (about us $9 at the time of the
experiment). Subjects’ average earnings in treatment ASYMwere £9 (including
a flat payment of £4) which was about us $14 at the time of the experiment.

After reading the instructions, participants were allowed to ask the experi-
menters questions privately. In the instructions (see Huck et al., 2001) sub-
jects were told that they were to act as a firm which, together with another
firm, produces an identical product and that, in each round, both have to
decide what quantity to produce. Before the first round started, subjects were
asked to answer a control question (which was checked) in order to make
sure that everybody fully understood the payoff table.

The firms were labelled A (Stackelberg leader) and B (Stackelberg follower).
In each of the ten rounds the Stackelberg leaders received a decision sheet
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on which they had to note their code number and their decision by entering
one of the possible quantities in a box. These sheets were then passed on
to the subjects acting as followers. Subjects were not able to observe how
the Stackelberg leaders’ decision sheets were allocated to the followers. After
collecting the sheets from the Stackelberg leaders, one experimenter left the
room to collate the sheets into their final order.

Followers also had to enter their code number, and then made their
decision on the same sheet. In doing so, they immediately had complete
information about what happened in the course of the actual round. After
the round, the sheets were collected and passed back to the Stackelberg lead-
ers who now also had information about this round’s play. Again, one of the
experimenters left the room with the decision sheets. After the collection of
the sheets, the next round started.

Results

Table 15.1 provides essential summary statistics at an aggregate level for both
treatments. Recall that the outcome in the SPE is �qL� qF	= �12� 6	. The first
column in Table 15.1 reveals that average individual quantities in treatment
SYM are �9�13�7�92	 whereas they are �10�12� 7�31	 in treatment ASYM. Thus,
in treatment ASYM both players’ quantities are closer to SPE quantities than
in treatment SYM. At the same time, these shifts (increase in leader quantity
and decrease in follower quantity) compensate partially for the leader’s cost
disadvantage that has been introduced by treatment ASYM. Total quantity is
lower and total profits higher in treatment SYM.

Total output

Recall that industry output in the SPE outcome is 18, whereas in the Cournot
outcome it is 16. Moreover, all individual quantity combinations summing
up to 12 maximize joint profit. Figure 15.1 shows the distribution of total
outputs in the two treatments. There is one key observation to be made in
this figure. The most frequent industry output in treatment SYM is QJ = 12
(15 per cent of all case). In contrast to that, in treatment ASYM there is only

Table 15.1 Aggregate data (averages)

Treatment Individual quantity Total quantity Total profits

SYM 9.13/7.92 17.05 118.49
(2.67/2.00) (3.67) (45.99)

ASYM 10.12/7.31 17.43 114.50
((3.03/2.44)) (3.79) (39.89)

Note: Standard deviations in parentheses.
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Figure 15.1 Distribution of total output (all rounds)

one such outcome (or 0.5 per cent of all cases) and the most frequent output
coincides with the SPE output of 18 (19 per cent of all cases). Thus, whereas
joint-profit maximization plays a significant role in treatment Sm, it is not
an issue in treatment ASYM.
This finding is natural if the players entertain fairness motives. Namely, in

treatment SYM joint-profit maximization can be achieved by equal-quantity
choices of 6 by both players, which induces equal payoffs of 72. In treat-
ment ASYM, quantity choices of 6 by both players also maximize joint profit
but induce unequal payoffs (�L = 56��F = 90). Furthermore, all quantity
combinations that sum to 12 induce unequal payoffs. We conclude that a
joint-profit maximizing and fair outcome is harder to achieve in treatment
ASYM than in treatment SYM. This compares to Mason et al. (1992) who report
on a series of (simultaneous choice) Cournot duopolies with either symmet-
ric or asymmetric costs and find that subjects in asymmetric experiments are
significantly less co-operative than subjects in symmetric experiments. The
Stackelberg duopoly is per se an asymmetric game because of the sequen-
tiality of choices. None the less, co-operation (joint-profit maximization)
may be achieved more easily with symmetric cost (treatment SYM). As the
comparison of our two treatments shows, joint-profit maximization is pos-
sible in Stackelberg markets as long as it is feasible with equal payoffs. We
summarize this in:

OBSERVATION 1 There is substantially more joint-profit maximization in
treatment SYM where this is feasible with equal payoffs for both players.
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Leaders’ behaviour

Table 15.1 revealed that leaders in treatment ASYM choose on average one
unit more than leaders in treatment SYM (10.12 versus 9.13). More evidence
is provided in Figure 15.2 showing histograms of the leaders’ choices over all
ten rounds. In treatment SYM the most frequent choice of leaders is 6 (with
more peaks at quantities 12 and 8). However, in treatment ASYM the mode
of leaders’ choices is 12.

To investigate the behaviour of leaders in more detail, we estimate the
panel regression model:

qLit = �0+�1TREAT +vi+�it

where qLit is the individual quantity set by leader firm i in period t , �i is
the subject-specific random error component and �it is the overall error
component. We include TREAT, which is a dummy variable indicating the
treatment. That is, TREAT = 0 if the decision stems from treatment SYM and
TREAT = 1 for decisions coming from treatment ASYM. The result is as follows
(t-statistics in parentheses)

qLit = �0 + �1TREAT + vi + �it
9�133 0�982
�27�18	 �1�97	
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Since the coefficient �1 is positive and significant, we have statistical
support3 for:

OBSERVATION 2 Leaders in treatment ASYM produce significantly more
than leaders in treatment SYM.

Followers’ behaviour

To assess followers’ behaviour more thoroughly, we estimate the following
panel regression model:

qFit = �0+�1q
L
it +�2TREAT +�3TREAT ×qLit +vi+�it

where qFit is the individual quantity set by follower firm i in period t , qLit is
the quantity of the leader in period t with whom follower i was matched.
All other variables are as above. The result is as follows:

qFit = �0 + �1q
L
it + �2TREAT + �3TREAT ×qLit +vi+�it

6.349 0.172 1.428 −0.218
(11.10) (3.14) (1.76) (−2.99)

The estimated reaction function in treatment SYM is qF�qL	 = 6�349+
0�172qL. It has a much lower intercept than the rational reaction function
and is upward sloping. In contrast, in treatment ASYM the reaction function
is qF�qL	= 7�777−0�046qL. It has a higher intercept and is more or less flat.4

On average, it seems, followers simply choose roughly the Cournot quantity
qC = 8. Both reaction functions are shown in Figure 15.3.

OBSERVATION 3 The empirical reaction function in treatment ASYM has a
higher intercept and a lower slope than the reaction function in treatment
SYM. In particular, whereas the reaction function in treatment SYM is
upward sloping, it is essentially flat in treatment ASYM.
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Figure 15.3 Observed reaction functions in treatments SYM (thin line) and ASYM
(thick line)
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Discussion and concluding remarks

In both treatments, SYM and ASYM, individual quantities deviate substan-
tially from the predicted SPE levels. The leader’s quantity is lower and the
follower’s quantity is higher than in SPE. Moreover, the behaviour of both
players differs between treatments, which is inconsistent with SPE. A possible
explanation for our findings are fairness motives of the experimental par-
ticipants. Fair allocations in distribution conflicts (for example, in sequential
bargaining games) may be characterized as allocations in which a player’s
share of a joint outcome is proportional to his/her contribution to the out-
come. This is known as equity theory (see, for example, Homans, 1961;
Güth, 1994). The Stackelberg game is not a pure distribution conflict, since
production of the joint outcome cannot be separated from its distribution.
Furthermore, equity theory does not account for the fact that the leader
has a strategic advantage compared to the follower.5 Nevertheless, the par-
ticipants may entertain perceptions of fairness. In treatment SYM equal pay-
offs should be perceived as the fair outcome of the game, since equal quantity
choices (contributions to joint outcome) induce equal payoffs. Empirically,
the leader earns somewhat more than the follower, which resembles the
partial first-mover exploitation that has been observed repeatedly in ulti-
matum games. In treatment ASYM, the follower is favoured and the leader
is disfavoured compared to treatment SYM. Taking a fairness perspective we
predicted and found a decrease of the follower’s quantity and an increase in
the leader’s quantity.

Fairness motives have been combined with rational choice theory by
appropriate assumptions about the utility functions of players. An example
is the model by Fehr and Schmidt (1999) which allows for advantageous and
disadvantageous inequality aversion. Huck et al. (2001) analysed the impli-
cations of the Fehr – Schmidt model for the behaviour in the Stackelberg
market with symmetric cost (that is, treatment SYM). Accordingly, follower
behaviour can be explained by aversion to disadvantageous inequality –
that is, a positive value of the parameter � in the terminology of Fehr and
Schmidt (1999). Followers are willing to give up some amount of money
in order to reduce the gap between their own (low) payoffs and the lead-
ers’ (higher) payoffs. Interestingly, however, Huck et al. (2001) also report
that some players seem to enjoy advantageous inequality – that is, they
exhibit a negative value for the parameter � – a motivation that has been
ruled out as being irrelevant by Fehr and Schmidt. To some extent, we repro-
duce these findings in treatment ASYM. There are leaders who produce more
than they should if they were money-maximizers and if they anticipated
follower behaviour correctly. This is evidence of disadvantageous inequality
aversion. But there are also followers who choose higher quantities than
their money-maximizing quantity, which increases the gap between their
own high payoffs and the leaders’ lower payoffs. These participants seem to
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enjoy advantageous inequality. This evidence is intriguing, but identification
of individual preference characteristics would require further analysis that
accounts, for example, for possible repeated game dynamics. These issues
are beyond the scope of this chapter and are left for further studies.

Appendix: translated instructions

Instructions used in Huck et al., 2001.
Welcome to our experiment! Please read these instructions carefully! Do not talk to
your neighbours and be quiet during the entire experiment. If you have a question,
let us know. Queries will be answered privately.

In our experiment you can earn different amounts of money, depending on your
behaviour and that of other participants who are matched with you.

You play the role of a firm which produces the same product as another firm
in the market. Both firms always have to make a single decision, namely what
quantities they want to produce. In the attached table [not printed here], you can
see the resulting profits of both firms for all possible quantity combinations.

The table is read as follows: the head of the row represents one firm’s quantity
(Firm A) and the head of the column represents the quantity of the other firm
(Firm B). Inside the little box where row and column intersect, Firm A profit
matching this combination of quantities is up to the left and Firm B profit matching
these quantities is down to the right. The profit is denoted in a fictitious unit of
money we call Taler.

So far, so simple. But how do you make your decision? Take a look at your code
number: if it starts with an A, you are an A firm, if it starts with a B, you are a B
firm. The procedure is that the A firm always starts. This means that the A firm
chooses its quantity (selects a line in the table) and the B firm is informed about
the A firm’s choice. Knowing the quantity produced by the A firm, the B firm
decides on its quantity (selects a column in the table). The B firm then, of course,
already knows its own profit. The A firm will be informed about it (or rather about
B’s choice). The decisions are marked on a separate decision-sheet, which we shall
hand out soon to all participants with role A.

During the entire experiment, anonymity among participants and instructors
will be maintained, since your decisions will only be identified by your code
number. You therefore have to keep your code card carefully. Only when you show
the code card later will you receive your payment.

Concerning the payment, note the following: at the end of the experiment two
of the ten rounds will be randomly chosen to count for payment. The sum of your
profits in Taler of these two rounds above determines your payment in DM. For
each ten Taler you will be paid 1 DM. In addition to this, you will receive 5 DM
independent of your profits in the ten rounds.

Notes

1 In an equivalent (simultaneous) Cournot market, Nash equilibrium play implies
qC = 8.

2 Because of the discreteness of the strategy space, such a payoff table typically
induces multiple equilibria. To avoid this, the bi-matrix representing the payoff
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table was manipulated slightly. By subtracting one payoff unit in 14 of the 169
entries we ensured the uniqueness of both the Cournot–Nash equilibrium and the
subgame perfect Stackelberg equilibrium.

3 That leaders choose higher quantities in treatment ASYM than in treatment SYM
can also be validated by a robust statistical test using a player’s average quantity
choice across ten periods as unit of analysis. A one-tailed Mann–Whitney U-test
rejects the null-hypothesis at the 5 per cent level �N = 44� p= 0�028	.

4 The slope coefficient differs significantly between treatments, but is not signific-
antly different from zero in treatment ASYM.

5 That the equity concept may be ambiguous and may be operationalized differently
is shown in, for example, Königstein (2000).
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16
Learning from (and in) the
Ultimatum Game: An Interview
with Alvin E. Roth
Steffen Huck

SH: Al, do you remember when you heard or read about the ultimatum game for
the first time? And can you describe what you first thoughts about the results were
back then?

AR: I don’t recall when I first heard about the ultimatum game, which
is a kind of testimony to how important a role it plays in contemporary
economic thought. Like the prisoner’s dilemma, one can’t recall not know-
ing of it. But I certainly already knew of it shortly after the publication of
Güth, Schmittberger and Schwarz (1982), since Werner came to visit us in
Pittsburgh around that time. (I recall that he and I went running in the park
by my house, and he was in better shape than I was � � � )

And were you surprised? Some people’s immediate reaction was after all that the
results had to be wrong � � �

Well, no, I don’t think I was surprised (except that he ran faster ☺) Remem-
ber, I had been doing bargaining experiments too, and seeing that fairness
mattered – for example, in my 1979 paper with Mike Malouf, or my 1982
paper with Keith Murnighan (or the 1981 paper with both of them). We also
saw a lot of what appeared to be fairness-related disagreements, particularly
in Roth and Murnighan (1982). But I certainly recall that some people’s
immediate, and not so immediate, reaction was as you describe. Years later,
at a famous university that I won’t name, when I was presenting the results
of the (1991) four-country study of ultimatum games and markets, I was
surprised to find that almost my whole talk was given over to answering
sceptical questions about the basic ultimatum game results.

What do you think is the most important impact the ultimatum game had on the
profession? And do you believe we would think differently today about any topic
had it never been conducted?

It’s hard to imagine that economists would think as they do about fairness
if not for the ultimatum game. It affected our ideas about the robustness
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and importance of people’s ideas about fairness. Ultimatum game results
have also entered some formal theories of fairness as parameter values (I’m
thinking here in particular of the work of Bolton and Ockenfels, 2000). And,
of course, they helped to focus our ideas about perfect equilibria and simple
monetary preferences, and helped to get us thinking about other kinds of
models to explain the ultimatum game results and unify them with other
things we noticed that didn’t quite fit standard models.

And outside the game theory and experimental econ community? In many branches
of the economics literature people still seem quite happy to stick to the orthodox
model � � �

Well, I’m not sure that, in many branches of economics, they shouldn’t be
happy with the orthodox model. I was once asked to respond at a conference
in Torino to Amos Tversky’s question ‘Why are economists so reluctant to
abandon the rational model?’ My reply was called ‘Individual Rationality as
a Useful Approximation � � � ’, and the idea was that we like some models
because they are simple, even if they are not exactly correct – that is, we like
some models because they are useful approximations. And then we have to
ask, for what tasks are they useful, despite not being exactly correct, and
for which tasks does the fact that they aren’t correct make them not so
useful. For example, the model of the earth as perfectly round is obviously
false, and useless for planning your next mountain-climbing vacation. But
it’s a very useful approximation for computing the earth’s orbit; much more
useful, in fact, then the more realistic and complex model of the earth as
a rough-surfaced oblate spheroid. So, for some purposes we should use the
round earth model, and for some we should abandon it. In the same way,
if I’m interested in why the interest rate on bonds is sensitive to how far in
the future they mature, the orthodox economic model might be the right
one. So, I think that, as experimenters, our job isn’t over when we show
that some prediction from received theory is false, or even when we propose
another model that better accounts for some of our results. Part of our job
is to help think about when our results imply that standard models won’t
be good approximations, not only in the lab but in the world, and to offer
evidence that our new models are sufficiently robust so that they can be
useful approximations.

In your first contribution to the ultimatum literature with Jack Ochs you discovered
a substantial amount of disadvantageous counter-offers – a similar phenomenon
to rejections in the one-stage ultimatum game. Did this come as a surprise to you
or was it expected?

It did come as a surprise. Some of the earlier papers reporting experiments
motivated by the ultimatum game had suggested that the simplicity of the
ultimatum game made it somehow ‘special’, and that, in multi-period bar-
gaining games, we might see behaviour that looked more like perfect equilib-
rium, and less like fairness or other distributional concerns playing a really
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big role. So we were quite surprised to see bargainers rejecting unequal splits,
only to come back the next period to propose a division of the discounted
pie that, if accepted, would give them even less than they had declined. And
once we found this in our data, we went back and looked at the data from
those earlier experiments, and found it there too. So the ultimatum game
turned out not to be so special after all, just especially simple, and a good
tool with which to investigate hypotheses about bargaining.

Around that time you also stressed that a model where some players have other
elements in their utility function besides absolute payoffs might be a good way to
account for the data, and that was pretty much what Gary Bolton came up with
in his 1991 paper. Can you describe to what extent your views were captured by
Gary’s model at the time?

Gary Bolton was one of the most independent students I’ve ever had, so I
don’t want to claim to have influenced him too much, although my views
have certainly been influenced by his work. He had been our research assist-
ant for the experiments reported in Ochs and Roth (1989) and so he was
certainly familiar with those results and our views on them. Regarding a the-
ory of fairness, I don’t think Jack Ochs and I intended to do more than note
that, if one thought that people had preferences that were revealed by their
choices, then the disadvantageous counter-offers meant that people pre-
ferred more equal distributions even if that meant receiving smaller personal
payoffs. Gary’s 1991 paper reported how he had tried to formalize a theory
of fairness in his dissertation, and he and Axel Ockenfels proposed a much
more comprehensively articulated theory in their 2000 paper.

Werner was, of course, very much opposed to any of this tinkering with utility
functions. Yet though his work on the so-called indirect evolutionary approach he
made it possible to study why agents might have such non-standard preferences.
Basically, one might say that his later work enable evolutionary justifications of
Gary’s model. Do you see any irony in this?

No, no irony, just some convergence. I think that’s to be expected with
debates that are about how to interpret a set of facts. I recall that my early
discussions about these things with Werner were a lot like the joke about
economists and sociologists, which says that economists study how people
make choices, and sociologists study why people don’t have any choices.
But lots of the same facts can be organized within a framework of fixed pref-
erences, or a framework of social norms, or of boundedly rational learning,
or of evolution. So debates over frameworks aren’t strictly speaking empir-
ical debates, but rather debates about which ways of looking at things will
unify the broadest classes of phenomena most usefully, and provide the
most interesting and insightful predictions.

There are now several papers taking particular models, such as Bolton and Ockenfels
or Fehr and Schmidt (1999), or variants of both, to applied problems – for example,
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in mechanism design and contract theory. Do you find this risky – in particular,
if these models are not supported by new additional data but simply take, say,
inequality aversion as a fact?

Sure it’s risky, everything new is risky. But it’s also risky not to explore
new things. Experimenters certainly know that we have to test predictions
that aren’t yet supported by data. So as long as we don’t claim more than
we’re entitled to, I think it’s inevitable, and good, that the implications of
new theories will be explored in applications. And evaluating the success of
these efforts will help us figure out which of these new theories are useful
approximations, and for what � � �

Let me come back to the early 1990s, when there was also the debate about the
best-shot game and Werner argued that the inefficiency of equal splits was key
to understanding the difference between the two games. Today Gary Charness
and Matt Rabin (2002) advocate again the role of efficiency in their approach
to modelling social preferences. On the other hand, you and Vesna Prasnikar
argued that the difference between the two games was mainly due to different
off-equilibrium properties of the game. Have you ever reassessed your views on
that?

Often. I think that observation was the beginning of my interest in models
of learning. The ultimatum game, the best-shot game, and the multi-player
market game we studied (also in our four-country experiment) all had similar
perfect equilbria, at which one player got essentially everything. If you think
of players as having to learn to play a game from experience, then the whole
landscape of the payoff surface starts to matter, and not just the equilibria. If
players don’t start playing a game by playing equilibria, thenwhat they learn,
and how fast, depends on the feedback they get away from equilibrium.

So the mid-1990s saw you putting more and more emphasis on the role of learning,
in particular in your work with Ido Erev (1998) and also later in your Econometrica
article on high-stake ultimatum games with Bob Slonim (1998). A key feature in
the latter is that, with high stakes, rejection rates decline over time, which is picked
up by proposers who get less generous. While this is in line with simple learning
models one might alternatively suspect that responders get increasingly frustrated.
If you put somebody in an adverse environment, say a repressive country, they
might rebel initially and get tired later – which I would rather model as a change
in preferences. But I reckon you won’t agree on this.

How I would feel about you modelling a change in behaviour as a change in
preferences would probably depend on how you modelled it, and whether
your model allowed me to successfully predict other changes of behaviour in
different environments. That is what I like about the learning models: they
allow us to predict a broad range of behaviour with a single, simple model.
So, for the ultimatum game, the learning models predict that responders
will learn to reject small offers more slowly than proposers will learn not
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to make them. The reason is that whether a responder accepts or rejects
a small offer doesn’t make much difference in his payoff – since the offer
is small. So it doesn’t change his behaviour quickly, and if he has some
initial propensity to reject small offers, this can persist for a long time. But
a proposer who has a small offer rejected earns zero, while if he has a more
moderate offer accepted he earns a lot, and so if a more moderate offer has
a higher chance of acceptance, that can have a big effect on his payoff, and
hence on his subsequent behaviour. We tried a direct test of this in Cooper,
Feltovich, Roth and Zwick (2003), in which we reported an experiment in
which Responders played the ultimatum game twice as often as Proposers.
(That is, in each session there were twice as many Proposers as Responders,
and half the Proposers played in each round.) So, when a Proposer was
making his tenth offer, a Responder was responding to his twentieth. This
essentially had the effect of letting the Responders learn at twice their usual
speed compared to Proposers. And, as predicted by simple learning models,
this increased the speed at which Responders learned to accept lower offers,
relative to the speed at which Proposers learned not to make them.

But Responders’ behaviour does not only depend on the feedback they get about
their own payoff but also on what they know about the Proposers’ payoffs. And one
way of reading experiments such as Gary Bolton’s work with Klaus Abbink, Karim
Sadrieh and Fang Fang Tang (2001) is that they refute simple adaptive learning
models by showing that behaviour is sensitive to changes in the informational
structure that are irrelevant for those models.

Certainly, one can refute any simple model if the proposition being tested is
that it predicts all observed behaviour perfectly. But if you think of a model
as a useful approximation, the fact that it can be refuted doesn’t necessarily
change your beliefs: approximations are not exactly correct, so sometimes
their predictions are wrong: they leave things out. In this respect, simple
models are sort of like dancing bears: the wonder of it is not that the bear
dances as well as a person, but that it dances at all. So, there are many things
that can’t be accounted for by a simple reinforcement model of learning.
Thank goodness you and I and the rest of humanity are a bit more complex
than that. The attraction of simple learning models is how much they can
explain. And the attraction of the simplest, reinforcement learning models,
which use only a player’s own experience, and not his other information, is
that they show just howmuch you can predict even without using that extra
information. That’s especially important in view of how much information
we normally assume players have in game theoretic models, even, of course,
in games of incomplete information. And it makes reinforcement learning
models potentially applicable to a broad range of economic environments,
since players always get some feedback from their own actions, but they may
or may not know other player’s actions, options, payoffs, etc. (Think about
trying to apply a theory of fairness to a situation in which you don’t know
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others’ payoffs, for example � � � ) Of course, being potentially applicable to a
broad range of environments is only a virtue if the predictions you get when
you ignore other information when players have it aren’t too bad. That’s
why it has been encouraging to look at reinforcement learning models in
high information situations as well as the low information environments
they might seem to be designed for.

So, we shouldn’t spend too much time on ‘horse races’ comparing the predict-
ive power of different models in a given set of situations, but rather explore the
boundaries of the domains on which specific models do a good job?

I don’t think I’m prepared to say that one of those is a good thing and
the other is not. But I definitely like simple models that are robust, and
can be used for prediction, rather than models with lots of parameters or
special cases that can be fit[ted] to many circumstances, but that have little
predictive value.

Let me get back to your work with Cooper, Feltovich and Zwick (2003). That was
your most recent piece on ultimatum games. Is it also going to be your last one?

The future is the hardest thing to predict, isn’t it? The ultimatum game has
proved to be so useful that I don’t dare predict that I’ll never study it again.
Right now, I don’t have any purely ultimatum game experiments planned.
But one thing we’ve learned from Werner and the ultimatum game is that a
simple, well-formulated game can be an exceptionally useful research tool.
So, with Uri Gneezy and Ernan Haruvy (2003), and Brit Grosskopf (2003), I’ve
written two papers that deal with a related game we call the reverse ultimatum
game. In the two-person version, one Proposer plays with one Responder.
The Proposer proposes a division of (in our experiments) 25 tokens to the
Responder. If the Responder accepts, then the game ends with this division as
the outcome. If the Responder rejects the offer, the Proposer is then allowed
to make another offer, as long as that offer is strictly higher by a minimum
increment (1 token), and as long as both players’ proposed shares remain
strictly positive. In addition, the Proposer may end the bargaining at any
point, in which case both players receive 0. That is, the game ends either
when the responder accepts a proposal, or when, following a rejection, the
proposer declines to make a better offer.1 We call this a ‘reverse’ ultimatum
game because the Responder gets to issue incremental ‘reverse’ ultimata to
the Proposer, of the form ‘increase your offer or we’ll both get zero’. And it’s
easy to verify that the unique subgame perfect equilibrium of this game gives
all but one token to the Responder, so it is the reverse of the ultimatum game
in that respect also. Not surprisingly, if the Responder rejects all the ‘fair’
offers, he may find that the Proposer declines to continue bargaining, and
so, as in the ultimatum game, the observed outcomes are much nearer equal
divisions than the perfect equilibrium. But this game, and variants withmore
than one Responder, prove to be easier to manipulate than the ultimatum
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game, with treatments that reverse the perfect equilibrium prediction. So we
have found it to be a useful tool for studying issues related to deadlines (if
there’s a deadline, the Proposer can convert a reverse ultimatum game into
an ultimatum game), and some issues relating to the design of ‘right of first
refusal’ contracts.

Al, one final question: is there any specific message you want to convey to Werner?

You mean, aside from ‘Happy birthday’? I hope he keeps running fast for a
long time to come.

Note

1 The game also ends if the responder rejects an offer of 24 tokens, since the Proposer
cannot make another offer without decreasing his/her own share to zero, and the
rules require that all shares be positive.
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