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Statistical Models: Theory and Practice

This lively and engaging textbook explains the things you have to know

in order to read empirical papers in the social and health sciences, as well as

the techniques you need to build statistical models of your own. The author,

David A. Freedman, explains the basic ideas of association and regression,

and takes you through the current models that link these ideas to causality.

The focus is on applications of linear models, including generalized

least squares and two-stage least squares, with probits and logits for binary

variables. The bootstrap is developed as a technique for estimating bias and

computing standard errors. Careful attention is paid to the principles of sta-

tistical inference. There is background material on study design, bivariate re-

gression, and matrix algebra. To develop technique, there are computer labs

with sample computer programs. The book is rich in exercises, most with

answers.

Target audiences include advanced undergraduates and beginning grad-

uate students in statistics, as well as students and professionals in the social

and health sciences. The discussion in the book is organized around published

studies, as are many of the exercises. Relevant journal articles are reprinted

at the back of the book. Freedman makes a thorough appraisal of the statisti-

cal methods in these papers and in a variety of other examples. He illustrates

the principles of modeling, and the pitfalls. The discussion shows you how

to think about the critical issues—including the connection (or lack of it)

between the statistical models and the real phenomena.

Features of the book

• Authoritative guide by a well-known author with wide experience in teach-

ing, research, and consulting

• Will be of interest to anyone who deals with applied statistics

• No-nonsense, direct style

• Careful analysis of statistical issues that come up in substantive applica-

tions, mainly in the social and health sciences

• Can be used as a text in a course or read on its own

• Developed over many years at Berkeley, thoroughly class tested

• Background material on regression and matrix algebra

• Plenty of exercises

• Extra material for instructors, including data sets and MATLAB code for

lab projects (send email to solutions@cambridge.org)
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Foreword to the Revised Edition

Some books are correct. Some are clear. Some are useful. Some are

entertaining. Few are even two of these. This book is all four. Statistical
Models: Theory and Practice is lucid, candid and insightful, a joy to read.

We are fortunate that David Freedman finished this new edition before his

death in late 2008. We are deeply saddened by his passing, and we greatly

admire the energy and cheer he brought to this volume—and many other

projects—during his final months.

This book focuses on half a dozen of the most common tools in applied

statistics, presenting them crisply, without jargon or hyperbole. It dissects

real applications: a quarter of the book reprints articles from the social and

life sciences that hinge on statistical models. It articulates the assumptions

necessary for the tools to behave well and identifies the work that the as-

sumptions do. This clarity makes it easier for students and practitioners to

see where the methods will be reliable; where they are likely to fail, and

how badly; where a different method might work; and where no inference is

possible—no matter what tool somebody tries to sell them.

Many texts at this level are little more than bestiaries of methods, pre-

senting dozens of tools with scant explication or insight, a cookbook,

numbers-are-numbers approach. “If the left hand side is continuous, use a

linear model; fit by least-squares. If the left hand side is discrete, use a logit

or probit model; fit by maximum likelihood.” Presenting statistics this way

invites students to believe that the resulting parameter estimates, standard

errors, and tests of significance are meaningful—perhaps even untangling

complex causal relationships. They teach students to think scientific infer-

ence is purely algorithmic. Plug in the numbers; out comes science. This

undervalues both substantive and statistical knowledge.

To select an appropriate statistical method actually requires careful

thought about how the data were collected and what they measure. Data

are not “just numbers.” Using statistical methods in situations where the un-

derlying assumptions are false can yield gold or dross—but more often dross.

Statistical Models brings this message home by showing both good and

questionable applications of statistical tools in landmark research: a study

of political intolerance during the McCarthy period, the effect of Catholic

schooling on completion of high school and entry into college, the relation-

ship between fertility and education, and the role of government institutions

in shaping social capital. Other examples are drawn from medicine and
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epidemiology, including John Snow’s classic work on the cause of cholera—

a shining example of the success of simple statistical tools when paired with

substantive knowledge and plenty of shoe leather. These real applications

bring the theory to life and motivate the exercises.

The text is accessible to upper-division undergraduates and beginning

graduate students. Advanced graduate students and established researchers

will also find new insights. Indeed, the three of us have learned much by

reading it and teaching from it.

And those who read this textbook have not exhausted Freedman’s ap-

proachable work on these topics. Many of his related research articles are

collected in Statistical Models and Causal Inference: A Dialogue with the
Social Sciences (Cambridge University Press, 2009), a useful companion to

this text. The collection goes further into some applications mentioned in the

textbook, such as the etiology of cholera and the health effects of Hormone

Replacement Therapy. Other applications range from adjusting the census

for undercount to quantifying earthquake risk. Several articles address the-

oretical issues raised in the textbook. For instance, randomized assignment

in an experiment is not enough to justify regression: without further assump-

tions, multiple regression estimates of treatment effects are biased. The col-

lection also covers the philosophical foundations of statistics and methods

the textbook does not, such as survival analysis.

Statistical Models: Theory and Practice presents serious applications

and the underlying theory without sacrificing clarity or accessibility. Freed-

man shows with wit and clarity how statistical analysis can inform and how

it can deceive. This book is unlike any other, a treasure: an introductory

book that conveys some of the wisdom required to make reliable statistical

inferences. It is an important part of Freedman’s legacy.

David Collier, Jasjeet Singh Sekhon, and Philip B. Stark

University of California, Berkeley



Preface

This book is primarily intended for advanced undergraduates or begin-

ning graduate students in statistics. It should also be of interest to many

students and professionals in the social and health sciences. Although writ-

ten as a textbook, it can be read on its own. The focus is on applications of

linear models, including generalized least squares, two-stage least squares,

probits and logits. The bootstrap is explained as a technique for estimating

bias and computing standard errors.

The contents of the book can fairly be described as what you have to

know in order to start reading empirical papers that use statistical models. The

emphasis throughout is on the connection—or lack of connection—between

the models and the real phenomena. Much of the discussion is organized

around published studies; the key papers are reprinted for ease of reference.

Some observers may find the tone of the discussion too skeptical. If you

are among them, I would make an unusual request: suspend belief until you

finish reading the book. (Suspension of disbelief is all too easily obtained,

but that is a topic for another day.)

The first chapter contrasts observational studies with experiments, and

introduces regression as a technique that may help to adjust for confounding

in observational studies. There is a chapter that explains the regression line,

and another chapter with a quick review of matrix algebra. (At Berkeley, half

the statistics majors need these chapters.) The going would be much easier

with students who know such material. Another big plus would be a solid

upper-division course introducing the basics of probability and statistics.

Technique is developed by practice. At Berkeley, we have lab sessions

where students use the computer to analyze data. There is a baker’s dozen of

these labs at the back of the book, with outlines for several more, and there

are sample computer programs. Data are available to instructors from the

publisher, along with source files for the labs and computer code: send email

to solutions@cambridge.org.

A textbook is only as good as its exercises, and there are plenty of them

in the pages that follow. Some are mathematical and some are hypothetical,

providing the analogs of lemmas and counter-examples in a more conven-

tional treatment. On the other hand, many of the exercises are based on

actual studies. Here is a summary of the data and the analysis; here is a
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specific issue: where do you come down? Answers to most of the exercises

are at the back of the book. Beyond exercises and labs, students at Berkeley

write papers during the semester. Instructions for projects are also available

from the publisher.

A text is defined in part by what it chooses to discuss, and in part by

what it chooses to ignore; the topics of interest are not to be covered in one

book, no matter how thick. My objective was to explain how practitioners

infer causation from association, with the bootstrap as a counterpoint to the

usual asymptotics. Examining the logic of the enterprise is crucial, and that

takes time. If a favorite technique has been slighted, perhaps this reasoning

will make amends.

There is enough material in the book for 15–20 weeks of lectures and

discussion at the undergraduate level, or 10–15 weeks at the graduate level.

With undergraduates on the semester system, I cover chapters 1–7, and in-

troduce simultaneity (sections 9.1–4). This usually takes 13 weeks. If things

go quickly, I do the bootstrap (chapter 8), and the examples in chapter 9.

On a quarter system with ten-week terms, I would skip the student presenta-

tions and chapters 8–9; the bivariate probit model in chapter 7 could also be

dispensed with.

During the last two weeks of a semester, students present their projects,

or discuss them with me in office hours. I often have a review period on

the last day of class. For a graduate course, I supplement the material with

additional case studies and discussion of technique.

The revised text organizes the chapters somewhat differently, which

makes the teaching much easier. The exposition has been improved in a

number of other ways, without (I hope) introducing new difficulties. There

are many new examples and exercises.

Acknowledgements
I’ve taught graduate and undergraduate courses based on this material for
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in those courses were helpful and supportive. I would also like to thank Dick
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Doug Rivers, Mike Roberts, Don Ylvisaker, and PengZhao, along with several

anonymous reviewers, for many useful comments. Russ Lyons and Roger

Purves were virtual coauthors; David Tranah was an outstanding editor.



1
Observational Studies and Experiments

1.1 Introduction

This book is about regression models and variants like path models,
simultaneous-equation models, logits and probits. Regression models can be
used for different purposes:

(i) to summarize data,
(ii) to predict the future,

(iii) to predict the results of interventions.

The third—causal inference—is the most interesting and the most slippery. It
will be our focus. For background, this section covers some basic principles
of study design.

Causal inferences are made from observational studies, natural exper-
iments, and randomized controlled experiments. When using observational
(non-experimental) data to make causal inferences, the key problem is con-
founding. Sometimes this problem is handled by subdividing the study pop-
ulation (stratification, also called cross-tabulation), and sometimes by mod-
eling. These strategies have various strengths and weaknesses, which need
to be explored.
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In medicine and social science, causal inferences are most solid when
based on randomized controlled experiments, where investigators assign sub-
jects at random—by the toss of a coin—to a treatment group or to a control
group. Up to random error, the coin balances the two groups with respect to
all relevant factors other than treatment. Differences between the treatment
group and the control group are therefore due to treatment. That is why causa-
tion is relatively easy to infer from experimental data. However, experiments
tend to be expensive, and may be impossible for ethical or practical reasons.
Then statisticians turn to observational studies.

In an observational study, it is the subjects who assign themselves to
the different groups. The investigators just watch what happens. Studies on
the effects of smoking, for instance, are necessarily observational. However,
the treatment-control terminology is still used. The investigators compare
smokers (the treatment group, also called the exposed group) with nonsmokers
(the control group) to determine the effect of smoking. The jargon is a little
confusing, because the word “control” has two senses:

(i) a control is a subject who did not get the treatment;
(ii) a controlled experiment is a study where the investigators decide

who will be in the treatment group.

Smokers come off badly in comparison with nonsmokers. Heart attacks,
lung cancer, and many other diseases are more common among smokers.
There is a strong association between smoking and disease. If cigarettes
cause disease, that explains the association: death rates are higher for smokers
because cigarettes kill. Generally, association is circumstantial evidence for
causation. However, the proof is incomplete. There may be some hidden
confounding factor which makes people smoke and also makes them sick.
If so, there is no point in quitting: that will not change the hidden factor.
Association is not the same as causation.

Confounding means a difference between the treatment and con-
trol groups—other than the treatment—which affects the response
being studied.

Typically, a confounder is a third variable which is associated with exposure
and influences the risk of disease.

Statisticians like Joseph Berkson and R. A. Fisher did not believe the
evidence against cigarettes, and suggested possible confounding variables.
Epidemiologists (including Richard Doll and Bradford Hill in England, as
well as Wynder, Graham, Hammond, Horn, and Kahn in the United States)
ran careful observational studies to show these alternative explanations were
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not plausible. Taken together, the studies make a powerful case that smoking
causes heart attacks, lung cancer, and other diseases. If you give up smoking,
you will live longer.

Epidemiological studies often make comparisons separately for smaller
and more homogeneous groups, assuming that within these groups, subjects
have been assigned to treatment or control as if by randomization. For ex-
ample, a crude comparison of death rates among smokers and nonsmokers
could be misleading if smokers are disproportionately male, because men are
more likely than women to have heart disease and cancer. Gender is there-
fore a confounder. To control for this confounder—a third use of the word
“control”—epidemiologists compared male smokers to male nonsmokers,
and females to females.

Age is another confounder. Older people have different smoking habits,
and are more at risk for heart disease and cancer. So the comparison between
smokers and nonsmokers was made separately by gender and age: for ex-
ample, male smokers age 55–59 were compared to male nonsmokers in the
same age group. This controls for gender and age. Air pollution would be
a confounder, if air pollution causes lung cancer and smokers live in more
polluted environments. To control for this confounder, epidemiologists made
comparisons separately in urban, suburban, and rural areas. In the end, expla-
nations for health effects of smoking in terms of confounders became very,
very implausible.

Of course, as we control for more and more variables this way, study
groups get smaller and smaller, leaving more and more room for chance
effects. This is a problem with cross-tabulation as a method for dealing with
confounders, and a reason for using statistical models. Furthermore, most
observational studies are less compelling than the ones on smoking. The
following (slightly artificial) example illustrates the problem.

Example 1. In cross-national comparisons, there is a striking correlation
between the number of telephone lines per capita in a country and the death
rate from breast cancer in that country. This is not because talking on the
telephone causes cancer. Richer countries have more phones and higher
cancer rates. The probable explanation for the excess cancer risk is that
women in richer countries have fewer children. Pregnancy—especially early
first pregnancy—is protective. Differences in diet and other lifestyle factors
across countries may also play some role.

Randomized controlled experiments minimize the problem of con-
founding. That is why causal inferences from randomized con-
trolled experiments are stronger than those from observational stud-
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ies. With observational studies of causation, you always have to
worry about confounding. What were the treatment and control
groups? How were they different, apart from treatment? What
adjustments were made to take care of the differences? Are these
adjustments sensible?

The rest of this chapter will discuss examples: the HIP trial of mammography,
Snow on cholera, and the causes of poverty.

1.2 The HIP trial

Breast cancer is one of the most common malignancies among women in
Canada and the United States. If the cancer is detected early enough—before
it spreads—chances of successful treatment are better. “Mammography”
means screening women for breast cancer by X-rays. Does mammography
speed up detection by enough to matter? The first large-scale randomized
controlled experiment was HIP (Health Insurance Plan) in NewYork, followed
by the Two-County study in Sweden. There were about half a dozen other
trials as well. Some were negative (screening doesn’t help) but most were
positive. By the late 1980s, mammography had gained general acceptance.

The HIP study was done in the early 1960s. HIP was a group medical
practice which had at the time some 700,000 members. Subjects in the experi-
ment were 62,000 women age 40–64, members of HIP, who were randomized
to treatment or control. “Treatment” consisted of invitation to 4 rounds of
annual screening—a clinical exam and mammography. The control group
continued to receive usual health care. Results from the first 5 years of fol-
lowup are shown in table 1. In the treatment group, about 2/3 of the women
accepted the invitation to be screened, and 1/3 refused. Death rates (per 1000
women) are shown, so groups of different sizes can be compared.

Table 1. HIP data. Group sizes (rounded), deaths in 5 years of
followup, and death rates per 1000 women randomized.

Group Breast cancer All other
size No. Rate No. Rate

Treatment
Screened 20,200 23 1.1 428 21
Refused 10,800 16 1.5 409 38
Total 31,000 39 1.3 837 27

Control 31,000 63 2.0 879 28
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Which rates show the efficacy of treatment? It seems natural to compare
those who accepted screening to those who refused. However, this is an ob-
servational comparison, even though it occurs in the middle of an experiment.
The investigators decided which subjects would be invited to screening, but
it is the subjects themselves who decided whether or not to accept the invita-
tion. Richer and better-educated subjects were more likely to participate than
those who were poorer and less well educated. Furthermore, breast cancer
(unlike most other diseases) hits the rich harder than the poor. Social status
is therefore a confounder—a factor associated with the outcome and with the
decision to accept screening.

The tip-off is the death rate from other causes (not breast cancer) in the
last column of table 1. There is a big difference between those who accept
screening and those who refuse. The refusers have almost double the risk of
those who accept. There must be other differences between those who accept
screening and those who refuse, in order to account for the doubling in the
risk of death from other causes—because screening has no effect on the risk.

One major difference is social status. It is the richer women who come
in for screening. Richer women are less vulnerable to other diseases but more
vulnerable to breast cancer. So the comparison of those who accept screening
with those who refuse is biased, and the bias is against screening.

Comparing the death rate from breast cancer among those who accept
screening and those who refuse is analysis by treatment received. This analy-
sis is seriously biased, as we have just seen. The experimental comparison is
between the whole treatment group—all those invited to be screened, whether
or not they accepted screening—and the whole control group. This is the
intention-to-treat analysis.

Intention-to-treat is the recommended analysis.

HIP, which was a very well-run study, made the intention-to-treat analysis.
The investigators compared the breast cancer death rate in the total treatment
group to the rate in the control group, and showed that screening works.

The effect of the invitation is small in absolute terms: 63 − 39 = 24
lives saved (table 1). Since the absolute risk from breast cancer is small, no
intervention can have a large effect in absolute terms. On the other hand, in
relative terms, the 5-year death rates from breast cancer are in the ratio 39/63 =
62%. Followup continued for 18 years, and the savings in lives persisted
over that period. The Two-County study—a huge randomized controlled
experiment in Sweden—confirmed the results of HIP. So did other studies
in Finland, Scotland, and Sweden. That is why mammography became so
widely accepted.
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1.3 Snow on cholera

A natural experiment is an observational study where assignment to
treatment or control is as if randomized by nature. In 1855, some twenty
years before Koch and Pasteur laid the foundations of modern microbiology,
John Snow used a natural experiment to show that cholera is a waterborne
infectious disease. At the time, the germ theory of disease was only one
of many theories. Miasmas (foul odors, especially from decaying organic
material) were often said to cause epidemics. Imbalance in the humors of the
body—black bile, yellow bile, blood, phlegm—was an older theory. Poison
in the ground was an explanation that came into vogue slightly later.

Snow was a physician in London. By observing the course of the disease,
he concluded that cholera was caused by a living organism which entered the
body with water or food, multiplied in the body, and made the body expel
water containing copies of the organism. The dejecta then contaminated food
or reentered the water supply, and the organism proceeded to infect other
victims. Snow explained the lag between infection and disease—a matter of
hours or days—as the time needed for the infectious agent to multiply in the
body of the victim. This multiplication is characteristic of life: inanimate
poisons do not reproduce themselves. (Of course, poisons may take some
time to do their work: the lag is not compelling evidence.)

Snow developed a series of arguments in support of the germ theory. For
instance, cholera spread along the tracks of human commerce. Furthermore,
when a ship entered a port where cholera was prevalent, sailors contracted the
disease only when they came into contact with residents of the port. These
facts were easily explained if cholera was an infectious disease, but were hard
to explain by the miasma theory.

There was a cholera epidemic in London in 1848. Snow identified the
first or “index” case in this epidemic:

“a seaman named John Harnold, who had newly arrived by the Elbe
steamer from Hamburgh, where the disease was prevailing.” [p. 3]

He also identified the second case: a man named Blenkinsopp who took
Harnold’s room after the latter died, and became infected by contact with the
bedding. Next, Snow was able to find adjacent apartment buildings, one hard
hit by cholera and one not. In each case, the affected building had a water
supply contaminated by sewage, the other had relatively pure water. Again,
these facts are easy to understand if cholera is an infectious disease—but not
if miasmas are the cause.

There was an outbreak of the disease in August and September of 1854.
Snow made a “spot map,” showing the locations of the victims. These clus-
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tered near the Broad Street pump. (Broad Street is in Soho, London; at the
time, public pumps were used as a source of drinking water.) By contrast,
there were a number of institutions in the area with few or no fatalities. One
was a brewery. The workers seemed to have preferred ale to water; if any
wanted water, there was a private pump on the premises. Another institution
almost free of cholera was a poor-house, which too had its own private pump.
(Poor-houses will be discussed again, in section 4.)

People in other areas of London did contract the disease. In most cases,
Snow was able to show they drank water from the Broad Street pump. For
instance, one lady in Hampstead so much liked the taste that she had water
from the Broad Street pump delivered to her house by carter.

So far, we have persuasive anecdotal evidence that cholera is an infec-
tious disease, spread by contact or through the water supply. Snow also used
statistical ideas. There were a number of water companies in the London of
his time. Some took their water from heavily contaminated stretches of the
Thames river. For others, the intake was relatively uncontaminated.

Snow made “ecological” studies, correlating death rates from cholera in
various areas of London with the quality of the water. Generally speaking,
areas with contaminated water had higher death rates. The Chelsea water
company was exceptional. This company started with contaminated water,
but had quite modern methods of purification—with settling ponds and careful
filtration. Its service area had a low death rate from cholera.

In 1852, the Lambeth water company moved its intake pipe upstream
to get purer water. The Southwark and Vauxhall company left its intake pipe
where it was, in a heavily contaminated stretch of the Thames. Snow made
an ecological analysis comparing the areas serviced by the two companies in
the epidemics of 1853–54 and in earlier years. Let him now continue in his
own words.

“Although the facts shown in the above table [the ecological analysis]
afford very strong evidence of the powerful influence which the drinking of
water containing the sewage of a town exerts over the spread of cholera, when
that disease is present, yet the question does not end here; for the intermixing
of the water supply of the Southwark and Vauxhall Company with that of
the Lambeth Company, over an extensive part of London, admitted of the
subject being sifted in such a way as to yield the most incontrovertible proof
on one side or the other. In the subdistricts enumerated in the above table
as being supplied by both Companies, the mixing of the supply is of the
most intimate kind. The pipes of each Company go down all the streets,
and into nearly all the courts and alleys. A few houses are supplied by one
Company and a few by the other, according to the decision of the owner or
occupier at that time when the Water Companies were in active competition.
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In many cases a single house has a supply different from that on either side.
Each company supplies both rich and poor, both large houses and small;
there is no difference either in the condition or occupation of the persons
receiving the water of the different Companies. Now it must be evident that,
if the diminution of cholera, in the districts partly supplied with improved
water, depended on this supply, the houses receiving it would be the houses
enjoying the whole benefit of the diminution of the malady, whilst the houses
supplied with the [contaminated] water from Battersea Fields would suffer
the same mortality as they would if the improved supply did not exist at all.
As there is no difference whatever in the houses or the people receiving the
supply of the two Water Companies, or in any of the physical conditions
with which they are surrounded, it is obvious that no experiment could have
been devised which would more thoroughly test the effect of water supply
on the progress of cholera than this, which circumstances placed ready made
before the observer.

“The experiment, too, was on the grandest scale. No fewer than three
hundred thousand people of both sexes, of every age and occupation, and of
every rank and station, from gentlefolks down to the very poor, were divided
into groups without their choice, and in most cases, without their knowledge;
one group being supplied with water containing the sewage of London, and
amongst it, whatever might have come from the cholera patients; the other
group having water quite free from such impurity.

“To turn this grand experiment to account, all that was required was
to learn the supply of water to each individual house where a fatal attack of
cholera might occur.” [pp. 74–75]

Snow’s data are shown in table 2. The denominator data—the number of
houses served by each water company—were available from parliamentary
records. For the numerator data, however, a house-to-house canvass was
needed to determine the source of the water supply at the address of each
cholera fatality. (The “bills of mortality,” as death certificates were called at
the time, showed the address but not the water source for each victim.) The
death rate from the Southwark and Vauxhall water is about 9 times the death
rate for the Lambeth water. Snow explains that the data could be analyzed as

Table 2. Death rate from cholera by source of water. Rate per
10,000 houses. London. Epidemic of 1854. Snow’s table IX.

No. of Houses Cholera Deaths Rate per 10,000

Southwark & Vauxhall 40,046 1,263 315
Lambeth 26,107 98 37
Rest of London 256,423 1,422 59
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if they had resulted from a randomized controlled experiment: there was no
difference between the customers of the two water companies, except for the
water. The data analysis is simple—a comparison of rates. It is the design of
the study and the size of the effect that compel conviction.

1.4 Yule on the causes of poverty

Legendre (1805) and Gauss (1809) developed regression techniques to
fit data on orbits of astronomical objects. The relevant variables were known
from Newtonian mechanics, and so were the functional forms of the equations
connecting them. Measurement could be done with high precision. Much
was known about the nature of the errors in the measurements and equations.
Furthermore, there was ample opportunity for comparing predictions to real-
ity. A century later, investigators were using regression on social science data
where these conditions did not hold, even to a rough approximation—with
consequences that need to be explored (chapters 4–9).

Yule (1899) was studying the causes of poverty. At the time, paupers
in England were supported either inside grim Victorian institutions called
“poor-houses” or outside, depending on the policy of local authorities. Did
policy choices affect the number of paupers? To study this question, Yule
proposed a regression equation,

(1) �Paup = a + b×�Out + c×�Old + d×�Pop + error.

In this equation,

� is percentage change over time,
Paup is the percentage of paupers,
Out is the out-relief ratio N/D,
N = number on welfare outside the poor-house,
D = number inside,

Old is the percentage of the population aged over 65,
Pop is the population.

Data are from the English Censuses of 1871, 1881, 1891. There are two�’s,
one for 1871–81 and one for 1881–91. (Error terms will be discussed later.)

Relief policy was determined separately in each “union” (an administra-
tive district comprising several parishes). At the time, there were about 600
unions, and Yule divided them into four kinds: rural, mixed, urban, metropol-
itan. There are 4×2 = 8 equations, one for each type of union and time period.
Yule fitted his equations to the data by least squares. That is, he determined
a, b, c, and d by minimizing the sum of squared errors,∑ (

�Paup − a − b×�Out − c×�Old − d×�Pop
)2
.
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The sum is taken over all unions of a given type in a given time period, which
assumes (in effect) that coefficients are constant for those combinations of
geography and time.

Table 3. Pauperism, Out-relief ratio, Proportion of Old, Population.
Ratio of 1881 data to 1871 data, times 100. Metropolitan Unions,
England. Yule (1899, table XIX).

Paup Out Old Pop

Kensington 27 5 104 136
Paddington 47 12 115 111
Fulham 31 21 85 174
Chelsea 64 21 81 124
St. George’s 46 18 113 96
Westminster 52 27 105 91
Marylebone 81 36 100 97
St. John, Hampstead 61 39 103 141
St. Pancras 61 35 101 107
Islington 59 35 101 132
Hackney 33 22 91 150
St. Giles’ 76 30 103 85
Strand 64 27 97 81
Holborn 79 33 95 93
City 79 64 113 68
Shoreditch 52 21 108 100
Bethnal Green 46 19 102 106
Whitechapel 35 6 93 93
St. George’s East 37 6 98 98
Stepney 34 10 87 101
Mile End 43 15 102 113
Poplar 37 20 102 135
St. Saviour’s 52 22 100 111
St. Olave’s 57 32 102 110
Lambeth 57 38 99 122
Wandsworth 23 18 91 168
Camberwell 30 14 83 168
Greenwich 55 37 94 131
Lewisham 41 24 100 142
Woolwich 76 20 119 110
Croydon 38 29 101 142
West Ham 38 49 86 203
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For example, consider the metropolitan unions. Fitting the equation to
the data for 1871–81, Yule got

(2) �Paup = 13.19 + 0.755�Out − 0.022�Old − 0.322�Pop + error.

For 1881–91, his equation was

(3) �Paup = 1.36 + 0.324�Out + 1.37�Old − 0.369�Pop + error.

The coefficient of �Out being relatively large and positive, Yule concludes
that out-relief causes poverty.

Let’s take a look at some of the details. Table 3 has the ratio of 1881
data to 1871 data for Pauperism, Out-relief ratio, Proportion of Old, and
Population. If we subtract 100 from each entry in the table, column 1 gives
�Paup in the regression equation (2); columns 2, 3, 4 give the other variables.
For Kensington (the first union in the table),

�Out = 5 − 100 = −95, �Old = 104 − 100 = 4, �Pop = 136 − 100 = 36.

The predicted value for �Paup from (2) is therefore

13.19 + 0.755×(−95)− 0.022×4 − 0.322×36 = −70.

The actual value for �Paup is −73. So the error is −3. As noted before, the
coefficients were chosen by Yule to minimize the sum of squared errors. (In
chapter 4, we will see how to do this.)

Look back at equation (2). The causal interpretation of the coefficient
0.755 is this. Other things being equal, if �Out is increased by 1 percent-
age point—the administrative district supports more people outside the poor-
house—then �Paup will go up by 0.755 percentage points. This is a quan-
titative inference. Out-relief causes an increase in pauperism—a qualitative
inference. The point of introducing �Pop and �Old into the equation is to
control for possible confounders, implementing the idea of “other things be-
ing equal.” For Yule’s argument, it is important that the coefficient of �Out
be significantly positive. Qualitative inferences are often the important ones;
with regression, the two aspects are woven together.

Quetelet (1835) wanted to uncover “social physics”—the laws of human
behavior—by using statistical technique. Yule was using regression to infer
the social physics of poverty. But this is not so easily to be done. Confounding
is one problem. According to Pigou, a leading welfare economist of Yule’s
era, districts with more efficient administrations were building poor-houses
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and reducing poverty. Efficiency of administration is then a confounder,
influencing both the presumed cause and its effect. Economics may be another
confounder. Yule occasionally describes the rate of population change as a
proxy for economic growth. Generally, however, he pays little attention to
economics. The explanation:

“A good deal of time and labour was spent in making trial of this idea, but
the results proved unsatisfactory, and finally the measure was abandoned
altogether.” [p. 253]

The form of Yule’s equation is somewhat arbitrary, and the coefficients
are not consistent across time and geography: compare equations (2) and (3)
to see differences across time. Differences across geography are reported
in table C of Yule’s paper. The inconsistencies may not be fatal. However,
unless the coefficients have some existence of their own—apart from the
data—how can they predict the results of interventions that would change the
data? The distinction between parameters and estimates is a basic one, and
we will return to this issue several times in chapters 4–9.

There are other problems too. At best, Yule has established association.
Conditional on the covariates, there is a positive association between�Paup
and �Out. Is this association causal? If so, which way do the causal arrows
point? For instance, a parish may choose not to build poor-houses in response
to a short-term increase in the number of paupers, in which case pauperism
causes out-relief. Likewise, the number of paupers in one area may well be
affected by relief policy in neighboring areas. Such issues are not resolved
by the data analysis. Instead, answers are assumed a priori. Yule’s enterprise
is substantially more problematic than Snow on cholera, or the HIP trial, or
the epidemiology of smoking.

Yule was aware of the problems. Although he was busily parceling out
changes in pauperism—so much is due to changes in the out-relief ratio, so
much to changes in other variables, and so much to random effects—there
is one deft footnote (number 25) that withdraws all causal claims: “Strictly
speaking, for ‘due to’ read ‘associated with.’”

Yule’s approach is strikingly modern, except there is no causal diagram
with stars to indicate statistical significance. Figure 1 brings him up to date.
The arrow from�Out to�Paup indicates that�Out is included in the regres-
sion equation explaining�Paup. “Statistical significance” is indicated by an
asterisk, and three asterisks signal a high degree of significance. The idea
is that a statistically significant coefficient differs from zero, so that �Out
has a causal influence on �Paup. By contrast, an insignificant coefficient is
considered to be zero: e.g.,�Old does not have a causal influence on�Paup.
We return to these issues in chapter 6.
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Figure 1. Yule’s model. Metropolitan unions, 1871–81.

∆Paup

∆Old∆Out ∆Pop

*** ***

Yule could have used regression to summarize his data: for a given time
period and unions of a specific type, with certain values of the explanatory
variables, the change in pauperism was about so much and so much. In other
words, he could have used his equations to approximate the average value of
�Paup, given the values of�Out,�Old,�Pop. This assumes linearity. If we
turn to prediction, there is another assumption: the system will remain stable
over time. Prediction is already more complicated than description. On the
other hand, if we make a series of predictions and test them against data, it
may be possible to show that the system is stable enough for regression to
be helpful.

Causal inference is different, because a change in the system is contem-
plated—an intervention. Descriptive statistics tell you about the data that you
happen to have. Causal models claim to tell you what will happen to some
of the numbers if you intervene to change other numbers. This is a claim
worth examining. Something has to remain constant amidst the changes.
What is this, and why is it constant? Chapters 4 and 5 will explain how to
fit regression equations like (2) and (3). Chapter 6 discusses some examples
from contemporary social science, and examines the constancy-in-the-midst-
of-changes assumptions that justify causal inference by statistical models.
Response schedules will be used to formalize the constancy assumptions.

Exercise set A

1. In the HIP trial (table 1), what is the evidence confirming that treatment
has no effect on death from other causes?

2. Someone wants to analyze the HIP data by comparing the women who
accept screening to the controls. Is this a good idea?

3. Was Snow’s study of the epidemic of 1853–54 (table 2) a randomized
controlled experiment or a natural experiment? Why does it matter that
the Lambeth company moved its intake point in 1852? Explain briefly.
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4. WasYule’s study a randomized controlled experiment or an observational
study?

5. In equation (2), suppose the coefficient of�Out had been −0.755. What
would Yule have had to conclude? If the coefficient had been +0.005?

Exercises 6–8 prepare for the next chapter. If the material is unfamiliar, you
might want to read chapters 16–18 in Freedman-Pisani-Purves (2007), or
similar material in another text. Keep in mind that

variance = (standard error)2.

6. Suppose X1, X2, . . . , Xn are independent random variables, with com-
mon expectation µ and variance σ 2. Let Sn = X1 + X2 + · · · + Xn.
Find the expectation and variance of Sn. Repeat for Sn/n.

7. SupposeX1, X2, . . . , Xn are independent random variables, with a com-
mon distribution: P(Xi = 1) = p and P(Xi = 0) = 1 − p, where
0 < p < 1. Let Sn = X1 + X2 + · · · + Xn. Find the expectation and
variance of Sn. Repeat for Sn/n.

8. What is the law of large numbers?

9. Keefe et al (2001) summarize their data as follows:

“Thirty-five patients with rheumatoid arthritis kept a diary for 30
days. The participants reported having spiritual experiences, such
as a desire to be in union with God, on a frequent basis. On days that
participants rated their ability to control pain using religious coping
methods as high, they were much less likely to have joint pain.”

Does the study show that religious coping methods are effective at con-
trolling joint pain? If not, how would you explain the data?

10. According to many textbooks, association is not causation. To what
extent do you agree? Discuss briefly.

1.5 End notes for chapter 1

Experimental design is a topic in itself. For instance, many experiments
block subjects into relatively homogeneous groups. Within each group, some
are chosen at random for treatment, and the rest serve as controls. Blinding is
another important topic. Of course, experiments can go off the rails. For one
example, see EC/IC Bypass Study Group (1985), with commentary by Sundt
(1987) and others. The commentary makes the case that management and
reporting of this large multi-center surgery trial broke down, with the result
that many patients likely to benefit from surgery were operated on outside the
trial and excluded from tables in the published report.
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Epidemiology is the study of medical statistics. More formally, epide-
miology is “the study of the distribution and determinants of health-related
states or events in specified populations and the application of this study to
control of health problems.” See Last (2001, p. 62) and Gordis (2004, p. 3).

Health effects of smoking. See Cornfield et al (1959), International
Agency for Research on Cancer (1986). For a brief summary, see Freedman
(1999). There have been some experiments on smoking cessation, but these
are inconclusive at best. Likewise, animal experiments can be done, but there
are difficulties in extrapolating from one species to another. Critical commen-
tary on the smoking hypothesis includes Berkson (1955) and Fisher (1959).
The latter makes arguments that are almost perverse. (Nobody’s perfect.)

Telephones and breast cancer. The correlation is 0.74 with 165 coun-
tries. Breast cancer death rates (age standardized) are from

http://www-dep.iarc.fr/globocan/globocan.html

Population figures, counts of telephone lines (and much else) are available at

http://www.cia.gov/cia/publications/factbook

HIP. The best source is Shapiro et al (1988). The actual randomiza-
tion mechanism involved list sampling. The differentials in table 1 persist
throughout the 18-year followup period, and are more marked if we take cases
incident during the first 7 years of followup, rather than 5. Screening ended
after 4 or 5 years and it takes a year or two for the effect to be seen, so 7 years
is probably the better time period to use.

Intention-to-treat measures the effect of assignment, not the effect of
screening. The effect of screening is diluted by crossover—only 2/3 of the
women came in for screening. When there is crossover from the treatment
arm to the control arm, but not the reverse, it is straightforward to correct
for dilution. The effect of screening is to reduce the death rate from breast
cancer by a factor of 2. This estimate is confirmed by results from the Two-
County study. See Freedman et al (2004) for a review; correcting for dilution
is discussed there, on p. 72; also see Freedman (2006b).

Subjects in the treatment group who accepted screening had a much
lower death rate from all causes other than breast cancer (table 1). Why?
For one thing, the compliers were richer and better educated; mortality rates
decline as income and education go up. Furthermore, the compliers probably
took better care of themselves in general. See section 2.2 in Freedman-Pisani-
Purves (2007); also see Petitti (1994).

Recently, questions about the value of mammography have again been
raised, but the evidence from the screening trials is quite solid. For reviews,
see Smith (2003) and Freedman et al (2004).
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Snow on cholera. At the end of the 19th century, there was a burst of
activity in microbiology. In 1878, Pasteur published La théorie des germes et
ses applications à la médecine et à la chirurgie. Around that time, Pasteur and
Koch isolated the anthrax bacillus and developed techniques for vaccination.
The tuberculosis bacillus was next. In 1883, there were cholera epidemics in
Egypt and India, and Koch isolated the vibrio (prior work by Filippo Pacini
in 1854 had been forgotten).

There was another epidemic in Hamburg in 1892. The city fathers turned
to Max von Pettenkofer, a leading figure in the German hygiene movement of
the time. He did not believe Snow’s theory, holding instead that cholera was
caused by poison in the ground. Hamburg was a center of the slaughterhouse
industry: von Pettenkofer had the carcasses of dead animals dug up and hauled
away, in order to reduce pollution of the ground. The epidemic continued
until the city lost faith in von Pettenkofer, and turned in desperation to Koch.

References on the history of cholera include Rosenberg (1962), Howard-
Jones (1975), Evans (1987), Winkelstein (1995). Today, the molecular biol-
ogy of the cholera vibrio is reasonably well understood. There are surveys by
Colwell (1996) and Raufman (1998). For a synopsis, see Alberts et al (1994,
pp. 484, 738). For valuable detail on Snow’s work, see Vinten-Johansen et al
(2003). Also see http://www.ph.ucla.edu/epi/snow.html.

In the history of epidemiology, there are many examples like Snow’s
work on cholera. For instance, Semmelweis (1860) discovered the cause
of puerperal fever. There is a lovely book by Loudon (2000) that tells the
history, although Semmelweiss could perhaps have been treated a little more
gently. Around 1914, to mention another example, Goldberger showed that
pellagra was the result of a diet deficiency. Terris (1964) reprints many of
Goldberger’s articles; also see Carpenter (1981). The history of beriberi
research is definitely worth reading (Carpenter, 2000).

Quetelet. A few sentences will indicate the flavor of his enterprise.

“In giving my work the title of Social Physics, I have had no other aim
than to collect, in a uniform order, the phenomena affecting man, nearly as
physical science brings together the phenomena appertaining to the material
world. . . . in a given state of society, resting under the influence of certain
causes, regular effects are produced, which oscillate, as it were, around a
fixed mean point, without undergoing any sensible alterations. . . .

“This study . . . has too many attractions—it is connected on too many
sides with every branch of science, and all the most interesting questions in
philosophy—to be long without zealous observers, who will endeavour to
carry it farther and farther, and bring it more and more to the appearance of
a science.” (Quetelet 1842, pp. vii, 103)



Observational Studies and Experiments 17

Yule. The “errors” in (1) and (2) play different roles in the theory. In (1),
we have random errors which are unobservable parts of a statistical model. In
(2), we have residuals which can be computed as part of model fitting; (3) is
like (2). Details are in chapter 4. For sympathetic accounts of the history, see
Stigler (1986) and Desrosières (1993). Meehl (1954) provides some well-
known examples of success in prediction by regression. Predictive validity
is best demonstrated by making real “ex ante”—before the fact—forecasts
in several different contexts: predicting the future is a lot harder than fitting
regression equations to the past (Ehrenberg and Bound 1993).

John Stuart Mill. The contrast between experiment and observation
goes back to Mill (1843), as does the idea of confounding. (In the seventh
edition, see Book III, Chapters VII and X, esp. pp. 423 and 503.)

Experiments vs observational studies. Fruits-and-vegetables epidemi-
ology is a well-known case where experiments contradict observational data.
In brief, the observational data say that people who eat a vitamin-rich diet
get cancer at lower rates, “so” vitamins prevent cancer. The experiments say
that vitamin supplements either don’t help or actually increase the risk.

The problem with the observational studies is that people who eat (for
example) five servings of fruit and vegetables every day are different from
the rest of us in many other ways. It is hard to adjust for all these differences
by purely statistical methods (Freedman-Pisani-Purves, 2007, p. 26 and note
23 on p. A6). Research papers include Clarke and Armitage (2002), Virtamo
et al (2003), Lawlor et al (2004), Cook et al (2007). Hercberg et al (2004)
get a positive effect for men not women.

Hormone replacement therapy (HRT) is another example (Petitti 1998,
2002). The observational studies say that HRT prevents heart disease in
women, after menopause. The experiments show that HRT has no benefit.
The women who chose HRT were different from other women, in ways that
the observational studies missed. We will discuss HRT again in chapter 7.

Ioannidis (2005) shows that by comparison with experiments, across a
variety of interventions, observational studies are much less likely to give
results which can be replicated. Also see Kunz and Oxman (1998).

Anecdotal evidence—based on individual cases, without a systematic
comparison of different groups—is a weak basis for causal inference. If there
is no control group in a study, considerable skepticism is justified, especially
if the effect is small or hard to measure. When the effect is dramatic, as
with penicillin for wound infection, these statistical caveats can be set aside.
On penicillin, see Goldsmith (1946), Fleming (1947), Hare (1970), Walsh
(2003). Smith and Pell (2004) have a good—and brutally funny—discussion
of causal inference when effects are large.
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The Regression Line

2.1 Introduction

This chapter is about the regression line. The regression line is important
on its own (to statisticians), and it will help us with multiple regression in
chapter 4. The first example is a scatter diagram showing the heights of 1078
fathers and their sons (figure 1). Each pair of fathers and sons becomes a dot
on the diagram. The height of the father is plotted on the x-axis; the height of
his son, on the y-axis. The left hand vertical strip (inside the chimney) shows
the families where the father is 64 inches tall to the nearest inch; the right hand
vertical strip, families where the father is 72 inches tall. Many other strips
could be drawn too. The regression line approximates the average height of
the sons, given the heights of their fathers. This line goes through the centers
of all the vertical strips. The regression line is flatter than the SD line, which
is dashed. “SD” is shorthand for “standard deviation”; definitions come next.

2.2 The regression line

We have n subjects indexed by i = 1, . . . , n, and two data variables x
and y. A data variable stores a value for each subject in a study. Thus, xi is
the value of x for subject i, and yi is the value of y. In figure 1, a “subject”
is a family: xi is the height of the father in family i, and yi is the height of



The Regression Line 19

Figure 1. Heights of fathers and sons. Pearson and Lee (1903).
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the son. For Yule (section 1.4), a “subject” might be a metropolitan union,
with xi = �Out for union i, and yi = �Paup.

The regression line is computed from five summary statistics: (i) the
average of x, (ii) the SD of x, (iii) the average of y, (iv) the SD of y, and
(v) the correlation between x and y. The calculations can be organized as
follows, with “variance” abbreviated to “var”; the formulas for y and var(y)
are omitted.

(1) x = 1

n

n∑
i=1

xi, var x = 1

n

n∑
i=1

(xi − x)2,
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(2) the SD of x is sx = √
var x,

(3) xi in standard units is zi = xi − x

sx
,

and the correlation coefficient is

(4) r = 1

n

n∑
i=1

(
xi − x

sx
•
yi − y

sy

)
.

We’re tacitly assuming sx �= 0 and sy �= 0. Necessarily, −1 ≤ r ≤ 1: see
exercise B16 below. The correlation between x and y is often written as
r(x, y). Let sign(r) = +1 when r > 0 and sign(r) = −1 when r < 0. The
regression line is flatter than the SD line, by (5) and (6) below.

(5) The regression line of y on x goes through the point of averages
(x, y). The slope is rsy/sx . The intercept is y − slope · x .

(6) The SD line also goes through the point of averages. The slope
is sign(r)sy/sx . The intercept is y − slope · x .

Figure 2. Graph of averages. The dots show the average height
of the sons, for each value of father’s height. The regression line
(solid) follows the dots: it is flatter than the SD line (dashed).
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The regression of y on x, also called the regression line for predicting y from
x, is a linear approximation to the graph of averages, which shows the average
value of y for each x (figure 2).

Correlation is a key concept. Figure 3 shows the correlation coefficient
for three scatter diagrams. All the diagrams have the same number of points
(n = 50), the same means (x = y = 50), and the same SDs (sx = sy = 15).
The shapes are very different. The correlation coefficient r tells you about the
shapes. (If the variables aren’t paired—two numbers for each subject—you
won’t be able to compute the correlation coefficient or regression line.)

Figure 3. Three scatter diagrams. The correlation measures the
extent to which the scatter diagram is packed in around a line. If
the sign is positive, the line slopes up. If sign is negative, the line
slopes down (not shown here).
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If you use the line y = a + bx to predict y from x, the error or residual
for subject i is ei = yi − a − bxi , and the MSE is

1

n

n∑
i=1

e2
i .

The RMS error is the square root of the MSE. For the regression line, as will
be seen later, the MSE equals (1− r2) var y. The abbreviations: MSE stands
for mean square error; RMS, for root mean square.

A Theorem due to C.-F. Gauss. Among all lines, the regression line
has the smallest MSE.

A more general theorem will be proved in chapter 3. If the material in
sections 1–2 is unfamiliar, you might want to read chapters 8–12 in Freedman-
Pisani-Purves (2007).
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2.3 Hooke’s law
A weight is hung on the end of a spring whose length under no load is a.

The spring stretches to a new length. According to Hooke’s law, the amount

of stretch is proportional to the weight. If you hang weight xi on the spring,

the length is

Yi = a + bxi + εi , for i = 1, . . . , n.(7)

Equation (7) is a regression model. In this equation, a and b are constants that

depend on the spring. The values are unknown, and have to be estimated from

data. These are parameters. The εi are independent, identically distributed,

mean 0, variance σ 2. These are random errors, or disturbances. The variance

σ 2 is another parameter. You choose xi , the weight on occasion i . The

response Yi is the length of the spring under the load. You do not see a, b, or

the εi .

Table 1 shows the results of an experiment on Hooke’s law, done in a

physics class at U.C. Berkeley. The first column shows the load. The second

column shows the measured length. (The “spring” was a long piece of piano

wire hung from the ceiling of a big lecture hall.)

Table 1. An experiment on Hooke’s law.

Weight (kg) Length (cm)

0 439.00

2 439.12

4 439.21

6 439.31

8 439.40

10 439.50

We use the method of least squares to estimate the parameters a and b.

In other words, we fit the regression line. The intercept is

â
.= 439.01 cm.

A hat over a parameter denotes an estimate: we estimate a as 439.01 cm. The

slope is

b̂
.= 0.05 cm per kg.

We estimate b as 0.05 cm per kg. (The dotted equals sign “
.=” means nearly

equal; there is roundoff error in the numerical results.)
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There are two conclusions. (i) Putting a weight on the spring makes

it longer. (ii) Each extra kilogram of weight makes the spring about 0.05

centimeters longer. The first is a (pretty obvious) qualitative inference; the

second is quantitative. The distinction between qualitative and quantitative

inference will come up again in chapter 6.

Exercise set A
1. In the Pearson-Lee data, the average height of the fathers was 67.7 inches;

the SD was 2.74 inches. The average height of the sons was 68.7 inches;

the SD was 2.81 inches. The correlation was 0.501.

(a) True or false and explain: because the sons average an inch taller

than the fathers, if the father is 72 inches tall, it’s 50–50 whether the

son is taller than 73 inches.

(b) Find the regression line of son’s height on father’s height, and its

RMS error.

2. Can you determine a in equation (7) by measuring the length of the

spring with no load? With one measurement? Ten measurements? Ex-

plain briefly.

3. Use the data in table 1 to find the MSE and the RMS error for the

regression line predicting length from weight. Which statistic gives a

better sense of how far the data are from the regression line? Hint: keep

track of the units, or plot the data, or both.

4. The correlation coefficient is a good descriptive statistic for one of the

three diagrams below. Which one, and why?

2.4 Complexities
Compare equation (7) with equation (8):

Yi = a + bxi + εi ,(7)

Yi = â + b̂xi + ei .(8)
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Looks the same? Take another look. In the regression model (7), we can’t
see the parameters a, b or the disturbances εi . In the fitted model (8), the
estimates â, b̂ are observable, and so are the residuals ei . With a large sample,
â
.= a and b̂

.= b, so ei
.= εi . But

.= �= =
The ei in (8) is called a residual rather than a disturbance term or random
error term. Often, ei is called an “error,” although this can be confusing.
“Residual” is clearer.

Estimates aren’t parameters, and residuals aren’t random errors.

The Yi in (7) are random variables, because the εi are random. How are
random variables connected to data? The answer, which involves observed
values, will be developed by example. The examples will also show how
ideas of mean and variance can be extended from data to random variables—
with some pointers on going back and forth between the two realms. We
begin with the mean. Consider the list {1, 2, 3, 4, 5, 6}. This has mean 3.5
and variance 35/12, by formula (1). So far, we have a tiny data set. Random
variables are coming next.

Throw a die n times. (A die has six faces, all equally likely; one face
has 1 spot, another face has 2 spots, and so forth, up to 6.) Let Ui be the
number of spots on the ith roll, for i = 1, . . . , n. TheUi are (better, are mod-
eled as) independent, identically distributed random variables—like choosing
numbers at random from the list {1, 2, 3, 4, 5, 6}. Each random variable has
mean (expectation, aka expected value) equal to 3.5, and variance equal to
35/12. Here, mean and variance have been applied to a random variable—the
number of spots when you throw a die.

The sample mean and the sample variance are

(9) U = 1

n

n∑
i=1

Ui and var {U1, . . . , Un} = 1

n

n∑
i=1

(Ui − U)2.

The sample mean and variance in (9) are themselves random variables. In
principle, they differ from E(Ui) and var(Ui), which are fixed numbers—the
expectation and variance, respectively, of Ui . When n is large,

(10) U
.= E(Ui) = 3.5, var {U1, . . . , Un} .= var (Ui) = 35/12.

That is how the expectation and variance of a random variable are estimated
from repeated observations.
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• Random variables have means; so do data sets.
• Random variables have variances; so do data sets.

The discussion has been a little abstract. Now someone actually throws
the die n = 100 times. That generates some data. The total number of spots
is 371. The average number of spots per roll is 371/100 = 3.71. This is not
U , but the observed value of U . After all, U has a probability distribution:
3.71 just sits there. Similarly, the measurements on the spring in Hooke’s
law (table 1) aren’t random variables. According to the regression model, the
lengths are observed values of the random variables Yi defined by (7).

In a regression model, as a rule, the data are observed values of
random variables.

Now let’s revisit (8). If (7) holds, the â, b̂, and ei in (8) can be viewed
as observable random variables or as observed values, depending on context.
Sometimes, observed values are called realizations. Thus, 439.01 cm is a
realization of the random variable â.

There is one more issue to take up. Variance is often used to measure
spread. However, as the next example shows, variance usually has the wrong
units and the wrong size: take the square root to get the SD.

Example 1. American men age 18–24 have an average weight of 170
lbs. The typical person in this group weighs around 170 lbs, but will not
weigh exactly 170 lbs. The typical deviation from average is . The
variance of weight is 900 square pounds: wrong units, wrong size. Do not
put variance into the blank. The SD is

√
variance = 30 lbs. The typical

deviation from average weight is something like 30 lbs.

Example 2. Roll a die 100 times. Let S = X1 + · · · +X100 be the total
number of spots. This is a random variable, with E(S) = 100×3.5 = 350.
You will get around 350 spots, give or take or so. The variance of S
is 100×35/12

.= 292. (The 35/12 is the variance of the list {1, 2, 3, 4, 5, 6},
as mentioned earlier.) Do not put 292 into the blank. To use the variance,
take the square root. The SE—standard error—is

√
292

.= 17. Put 17 into
the blank. (The SE applies to random variables; the SD, to data.)

The number of spots will be around 350, but will be off 350 by something
like 17. The number of spots is unlikely to be more than two or three SEs
away from its expected value. For random variables, the standard error is the
square root of the variance. (The standard error of a random variable is often
called its standard deviation, which can be confusing.)
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2.5 Simple vs multiple regression

A simple regression equation has on the right hand side an intercept
and an explanatory variable with a slope coefficient. A multiple regression
equation has several explanatory variables on the right hand side, each with
its own slope coefficient. To study multiple regression, we will need matrix
algebra. That is covered in chapter 3.

Exercise set B

1. In equation (1), variance applies to data, or random variables? What
about correlation in (4)?

2. On page 22, below table 1, you will find the number 439.01. Is this a
parameter or an estimate? What about the 0.05?

3. Suppose we didn’t have the last line in table 1. Find the regression of
length on weight, based on the data in the first 5 lines of the table.

4. In example 1, is 900 square pounds the variance of a random variable?
or of data? Discuss briefly.

5. In example 2, is 35/12 the variance of a random variable? of data?
maybe both? Discuss briefly.

6. A die is rolled 180 times. Find the expected number of aces, and the
variance for the number of aces. The number of aces will be around

, give or take or so. (A die has six faces, all
equally likely; the face with one spot is the “ace.”)

7. A die is rolled 250 times. The fraction of times it lands ace will be
around , give or take or so.

8. One hundred draws are made at random with replacement from the box
1 2 2 5 . The draws come out as follows: 17 1 ’s, 54 2 ’s,

and 29 5 ’s. Fill in the blanks.

(a) For the , the observed value is 0.8 SEs above the ex-
pected value. (Reminder: SE = standard error.)

(b) For the , the observed value is 1.33 SEs above the
expected value.

Options (two will be left over):

number of 1’s number of 2’s number of 5’s sum of the draws

If exercises 6–8 cover unfamiliar material, you might want to read chapters
16–18 in Freedman-Pisani-Purves (2007), or similar material in another text.

9. Equation (7) is a . Options:
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model parameter random variable

10. In equation (7), a is . Options (more than one may be right):

observable unobservable a parameter a random variable

Repeat for b. For εi . For Yi .

11. According to equation (7), the 439.00 in table 1 is . Options:

a parameter
a random variable
the observed value of a random variable

12. Suppose x1, . . . , xn are real numbers. Let x = (x1 + · · · + xn)/n. Let
c be a real number.

(a) Show that
∑n
i=1 (xi − x) = 0.

(b) Show that
∑n
i=1 (xi − c)2 = [∑n

i=1 (xi − x)2
]+ n(x − c)2.

Hint: (xi − c) = (xi − x)+ (x − c).

(c) Show that
∑n
i=1 (xi−c)2, as a function of c, has a unique minimum

at c = x.

(d) Show that
∑n
i=1 xi

2 = [∑n
i=1 (xi − x)2

]+ nx2.

13. A statistician has a sample, and is computing the sum of the squared
deviations of the sample numbers from a number q. The sum of the
squared deviations will be smallest when q is the . Fill in the
blank (25 words or less) and explain.

14. Suppose x1, . . . , xn and y1, . . . , yn have means x, y; the standard devi-
ations are sx > 0, sy > 0; and the correlation is r . Let

cov(x, y) = 1
n

∑n
i=1 (xi − x)(yi − y).

(“cov” is shorthand for covariance.) Show that—

(a) cov(x, y) = rsxsy .
(b) The slope of the regression line for predicting y from x is

cov(x, y)/var(x).

(c) var(x) = cov(x, x).
(d) cov(x, y) = xy − x y.
(e) var(x) = x2 − x2.

15. Suppose x1, . . . , xn and y1, . . . , yn are real numbers, with sx > 0 and
sy > 0. Let x∗ be x in standard units; similarly for y. Show that
r(x, y) = r(x∗, y∗).
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16. Suppose x1, . . . , xn and y1, . . . , yn are real numbers, with x = y = 0
and sx = sy = 1. Show that 1

n

∑n
i=1(xi + yi)

2 = 2(1 + r) and
1
n

∑n
i=1(xi − yi)

2 = 2(1 − r), where r = r(x, y). Show that

−1 ≤ r ≤ 1.

17. A die is rolled twice. Let Xi be the number of spots on the ith roll for
i = 1, 2.

(a) Find P(X1 = 3 |X1 +X2 = 8), the conditional probability of a 3
on the first roll given a total of 8 spots.

(b) Find P(X1 +X2 = 7 |X1 = 3).

(c) FindE(X1 |X1+X2 = 6), the conditional expectation ofX1 given
that X1 +X2 = 6.

18. (Hard.) Suppose x1, . . . , xn are real numbers. Suppose n is odd and the
xi are all distinct. There is a unique medianµ: the middle number when
the x’s are arranged in increasing order. Let c be a real number. Show
that f (c) =∑n

i=1 |xi−c|, as a function of c, is minimized when c = µ.
Hints. You can’t do this by calculus, because f isn’t differentiable.
Instead, show that f (c) is (i) continuous, (ii) strictly increasing as c
increases for c > µ, i.e., µ < c1 < c2 implies f (c1) < f (c2), and
(iii) strictly decreasing as c increases for c < µ. It’s easier to think
about claims (ii) and (iii) when c differs from all the x’s. You may as
well assume that the xi are increasing with i. If you pursue this line
of reasoning far enough, you will find that f is linear between the x’s,
with corners at the x’s. Moreover, f is convex, i.e., f [(x + y)/2] ≤
[f (x)+ f (y)]/2.

Comment. If −f is convex, then f is said to be concave.

2.6 End notes for chapter 2

In (6), if r = 0, you can take the slope of the SD line to be either sy/sx
or −sy/sx . In other applications, however, sign(0) is usually defined as 0.

Hooke’s law (7) is a good approximation when the weights are relatively
small. When the weights are larger, a quadratic term may be needed. Close to
the “elastic limit” of the spring, things get more complicated. Experimental
details were simplified. For data sources, see pp. A11, A14 in Freedman-
Pisani-Purves (2007).

For additional material on random variables, including the connection
between physical dice and mathematical models for dice, see

http://www.stat.berkeley.edu/users/census/rv.pdf
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Matrix Algebra

3.1 Introduction

Matrix algebra is the key to multiple regression (chapter 4), so we review
the basics here. Section 4 covers positive definite matrices, with a quick
introduction to the normal distribution in section 5. A matrix is a rectangular
array of numbers. (In this book, we only consider matrices of real numbers.)
For example, M is a 3 × 2 matrix—3 rows, 2 columns—and b is a 2 × 1
column vector:

M =
( 3 −1

2 −1
−1 4

)
, b =

(
3

−3

)
.

The ij th element of M is written Mij , e.g., M32 = 4; similarly, b2 = −3.
Matrices can be multiplied (element-wise) by a scalar. Matrices of the same
size can be added (again, element-wise). For instance,

2×
( 3 −1

2 −1
−1 4

)
=
( 6 −2

4 −2
−2 8

)
,

( 3 −1
2 −1

−1 4

)
+
( 3 2

4 −1
−1 1

)
=
( 6 1

6 −2
−2 5

)
.
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An m×n matrix A can be multiplied by a matrix B of size n×p. The
product is an m×p matrix, whose ikth element is

∑
j AijBjk . For example,

Mb =
( 3×3 + (−1)×(−3)

2×3 + (−1)×(−3)
(−1)×3 + 4×(−3)

)
=
( 12

9
−15

)
.

Matrix multiplication is not commutative. This may seem tricky at first, but
you get used to it. Exercises 1–2 (below) provide a little more explanation.

The matrix 0m×n is an m×n matrix all of whose entries are 0. For
instance,

02×3 =
(

0 0 0
0 0 0

)
.

The m×m identity matrix is written Im or Im×m. This matrix has 1’s on the
diagonal and 0’s off the diagonal:

I3×3 =
( 1 0 0

0 1 0
0 0 1

)
.

If A is m×n, then Im×m×A = A = A×In×n.
An m×n matrix A can be “transposed.” The result is an n×m matrix

denoted A′ or AT . For example,( 3 −1
2 −1

−1 4

)T
=
(

3 2 −1
−1 −1 4

)
.

If A′ = A, then A is symmetric.
If u and v are n×1 column vectors, the inner product or dot product is

u · v = u′×v. If this is 0, then u and v are orthogonal: we write u⊥ v. The
norm or length of u is ‖u‖, where ‖u‖2 = u · u. People often write |u| instead
of ‖u‖. The inner product u · v equals the length of u, times the length of v,
times the cosine of the angle between the two vectors. If u⊥ v, the angle is
90◦, and cos(90◦) = 0.

For square matrices, the trace is the sum of the diagonal elements:

trace

(
1 2
5 3

)
= 4.

Exercise set A

1. Suppose A is m×n and B is n×p. For i and j with 1 ≤ i ≤ m and
1 ≤ j ≤ p, let ri be the ith row of A and let cj be the j th column of B.
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What is the size of ri? of cj ? How is ri × cj related to the ij th element
of A×B?

2. Suppose A is m×n, while u, v are n×1 and α is scalar. Show that
Au ∈ Rm, A(αu) = αAu, and A(u + v) = Au + Av. As they say, A
is a linear map from Rn to Rm, where Rn is n-dimensional Euclidean
space. (For instance, R1 is the line and R2 is the plane.)

3. If A is m× n, check that A+ 0m×n = 0m×n + A = A.

For exercises 4 and 5, let

M =
( 3 −1

2 −1
1 −4

)
.

4. Show that I3×3M = M = MI2×2.

5. Compute M ′M and MM ′. Find the trace ofM ′M and the trace ofMM ′.
6. Find the lengths ofu and v, defined below. Are these vectors orthogonal?

Compute the outer product u×v′. What is the trace of the outer product?

u =
( 1

2
−1

)
, v =

( 1
2
4

)
.

3.2 Determinants and inverses

Matrix inversion will be needed to get regression estimates and their
standard errors. One way to find inverses begins with determinants. The
determinant of a square matrix is computed by an inductive procedure:

det(4) = 4, det

(
1 2
5 3

)
= (1×3)− (2×5) = −7,

det

( 1 2 3
2 3 1
0 1 1

)
= 1×det

(
3 1
1 1

)
− 2×det

(
2 3
1 1

)
+ 0×det

(
2 3
3 1

)
= 1×(3 − 1)− 2×(2 − 3)+ 0×(2 − 9) = 4.

Here, we work our way down the first column, getting the determinants of
the smaller matrices obtained by striking out the row and column through each
current position. The determinants pick up extra signs, which alternate +
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and −. The determinants with the extra signs tacked on are called cofactors.
With a 4×4 matrix, for instance, the extra signs are

+ − + −
− + − +
+ − + −
− + − +

 .
The determinant of a matrix is

∑n
i=1 ai1ci1, where aij is the ij th element in

the matrix, and cij is the cofactor. (Watch it: the determinants have signs of
their own, as well as the extra signs shown above.) It turns out that you can
use any row or column, not just column 1, for computing the determinant. As
a matter of notation, people often write |A| instead of det(A).

Let v1, v2, . . . , vk be n × 1 vectors. These are linearly independent if
c1v1 + c2v2 + · · · + ckvk = 0n×1 implies c1 = · · · = ck = 0. The rank of a
matrix is the number of linearly independent columns (or rows—has to be the
same). If n > p, an n×p matrix X has full rank if the rank is p ; otherwise,
X is rank deficient. An n×nmatrixA has full rank if and only if det(A) �= 0.
Then the matrix has an inverse A−1:

A×A−1 = A−1×A = In×n.

Such matrices are invertible or non-singular. The inverse is unique; this
follows from existence. Conversely, if A is invertible, then det(A) �= 0 and
the rank of A is n.

The inverse can be computed as follows:

A−1 = adj(A)/ det(A),

where adj(A) is the transpose of the matrix of cofactors. (This is the classical
adjoint.) For example,

adj

(
1 2
5 3

)
=
(

3 −2
−5 1

)
,

adj

( 1 2 3
2 3 1
0 1 1

)
=
(
a b c

d e f

g h i

)
,

where

a = det

(
3 1
1 1

)
, b = − det

(
2 3
1 1

)
, c = det

(
2 3
3 1

)
. . . .
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Exercise set B

For exercises 1–7 below, let

A =
(

1 2
5 3

)
, B =

( 1 2 3
2 3 1
0 1 1

)
, C =

( 1 2
2 4
3 6

)
.

1. Find adj(B). This is just to get on top of the definitions; later, we do all
this sort of thing on the computer.

2. Show that A×adjA = adjA×A = det(A)×In. Repeat, for B. What is
n in each case?

3. Find the rank and the trace of A. Repeat, for B.

4. Find the rank of C.

5. If possible, find the trace and determinant of C. If not, why not?

6. If possible, find A2. If not, why not? (Hint: A2 = A×A.)

7. If possible, find C2. If not, why not?

8. If M is m×n and N is m×n, show that (M +N)′ = M ′ +N ′.
9. Suppose M is m×n and N is n×p.

(a) Show that (MN)′ = N ′M ′.
(b) Suppose m = n = p, and M,N are both invertible. Show that

(MN)−1 = N−1M−1 and (M ′)−1 = (M−1)′.
10. SupposeX is n×p with p ≤ n. IfX has rank p, show thatX′X has rank

p, and conversely. Hints. Suppose X has rank p and c is p×1. Then
X′Xc = 0p×1 ⇒ c′X′Xc = 0 ⇒ ‖Xc‖2 = 0 ⇒ Xc = 0n×1.

Notes. The matrix X′X is p×p. The rank is p if and only if X′X is
invertible. The ⇒ is shorthand for “implies.”

11. If A is m×n and B is n×m, show that trace(AB) = trace(BA). Hint:
the iith element of AB is

∑
j AijBji , while the jj th element of BA is∑

i BjiAij .

12. If u and v are n×1, show that ‖u+ v‖2 = ‖u‖2 + ‖v‖2 + 2u · v.

13. If u and v are n×1, show that ‖u + v‖2 = ‖u‖2 + ‖v‖2 if and only if
u ⊥ v. (This is Pythagoras’ theorem in n dimensions.)

14. Suppose X is n×p with rank p < n. Suppose Y is n×1. Let β̂ =
(X′X)−1X′Y and e = Y −Xβ̂.

(a) Show that X′X is p×p, while X′Y is p×1.

(b) Show that X′X is symmetric. Hint: look at exercise 9(a).

(c) Show that X′X is invertible. Hint: look at exercise 10.
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(d) Show that (X′X)−1 is p×p, so β̂ = (X′X)−1X′Y is p×1.

(e) Show that (X′X)−1 is symmetric. Hint: look at exercise 9(b).

(f) Show that Xβ̂ and e = Y −Xβ̂ are n×1.

(g) Show that X′Xβ̂ = X′Y , and hence X′e = 0p×1.

(h) Show that e ⊥ Xβ̂, so ‖Y‖2 = ‖Xβ̂‖2 + ‖e‖2.

(i) If γ is p×1, show that ‖Y −Xγ ‖2 = ‖Y −Xβ̂‖2 + ‖X(β̂ − γ )‖2.
Hint: Y −Xγ = Y −Xβ̂ +X(β̂ − γ ).

(j) Show that ‖Y −Xγ ‖2 is minimized when γ = β̂.

(k) If β̃ is p×1 with Y −Xβ̃ ⊥ X, show that β̃ = β̂. Notation: v ⊥ X

if v is orthogonal to each column ofX. Hint: what isX′(Y −Xβ̃)?
(l) Is XX′ invertible? Hints. By assumption, p < n. Can you find an

n×1 vector c �= 0n×1 with c′X = 01×p?

(m) Is (X′X)−1 = X−1(X′)−1?

Notes. The “OLS estimator” is β̂, where OLS is shorthand for “or-
dinary least squares.” This exercise develops a lot of the theory for
OLS estimators. The geometry in brief: X′e = 0p×1 means that e is
orthogonal—perpendicular—to each column of X. Hence Ŷ = Xβ̂

is the projection of Y onto the columns of X, and the closest point in
column space to Y . Part (j) is Gauss’ theorem for multiple regression.

15. In exercise 14, suppose p = 1, so X is a column vector. Show that
β̂ = X ·Y/‖X‖2.

16. In exercise 14, suppose p = 1 and X is a column of 1’s. Show that
β̂ is the mean of the Y ’s. How is this related to exercise 2B12(c), i.e.,
part (c), exercise 12, set B, chapter 2?

17. This exercise explains a stepwise procedure for computing β̂ in exer-
cise 14. There are hints, but there is also some work to do. LetM be the
first p− 1 columns of X, soM is n×(p− 1). Let N be the last column
of X, so N is n×1.

(i) Let γ̂1 = (M ′M)−1M ′Y and f = Y −Mγ̂1 .

(ii) Let γ̂2 = (M ′M)−1M ′N and g = N −Mγ̂2 .

(iii) Let γ̂3 = f · g/‖g‖2 and e = f − gγ̂3 .

Show that e ⊥ X. (Hint: begin by checking f ⊥ M and g ⊥ M .)
Finally, show that

β̂ =
(
γ̂1 − γ̂2γ̂3

γ̂3

)
.
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Note. The procedure amounts to (i) regressing Y on M , (ii) regressing
N on M , then (iii) regressing the first set of residuals on the second.

18. Suppose u,v are n×1; neither is identically 0. What is the rank of u×v′?

3.3 Random vectors

Let U =
(
U1
U2
U3

)
, a 3×1 column vector of random variables. Then

E(U) =
(
E(U1)

E(U2)

E(U3)

)
, a 3×1 column vector of numbers. On the other hand,

cov(U) is 3×3 matrix of real numbers:

cov(U) = E

{(
U1 − E(U1)

U2 − E(U2)

U3 − E(U3)

)(
U1 − E(U1) U2 − E(U2) U3 − E(U3)

)}
.

Here, cov applies to random vectors, not to data (“cov” is shorthand for
covariance). The same definitions can be used for vectors of any size.

People sometimes use correlations for random variables: the correlation
between U1 and U2, for instance, is cov(U1, U2)/

√
var(U1)var(U2).

Exercise set C

1. Show that the 1,1 element of cov(U) equals var(U1); the 2,3 element
equals cov(U2, U3).

2. Show that cov(U) is symmetric.

3. If A is a fixed (i.e., non-random) matrix of size n×3 and B is a fixed
matrix of size 1×m, show that E(AUB) = AE(U)B.

4. Show that cov(AU) = Acov(U)A′.
5. If c is a fixed vector of size 3×1, show that var(c′U) = c′cov(U)c and

cov(U + c) = cov(U).

Comment. If V is an n×1 random vector, C is a fixed m×n matrix, and D
is a fixed m×1 vector, then cov(CV +D) = Ccov(V )C′.
6. What’s the difference between U = (U1 + U2 + U3)/3 and E(U)?

7. Suppose ξ and ζ are two random vectors of size 7×1. If ξ ′ζ = 0, are ξ
and ζ independent? What about the converse: if ξ and ζ are independent,
is ξ ′ζ = 0?
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8. Suppose ξ and ζ are two random variables with E(ξ) = E(ζ ) = 0.
Show that var(ξ) = E(ξ2) and cov(ξ, ζ ) = E(ξζ ).

Notes. More generally, var(ξ) = E(ξ2) − [E(ξ)]2 and cov(ξ, ζ ) =
E(ξζ )− E(ξ)E(ζ ).

9. Suppose ξ is an n×1 random vector withE(ξ) = 0. Show that cov(ξ) =
E(ξξ ′).
Notes. Generally, cov(ξ) = E(ξξ ′)−E(ξ)E(ξ ′) and E(ξ ′) = [E(ξ)]′.

10. Suppose ξi, ζi are random variables for i = 1, . . . , n. As pairs, they are
independent and identically distributed in i. Let ξ = 1

n

∑n
i=1 ξi , and

likewise for ζ . True or false, and explain:

(a) cov(ξi, ζi) is the same for every i.
(b) cov(ξi, ζi) = 1

n

∑n
i=1(ξi − ξ)(ζi − ζ ).

11. The random variable X has density f on the line; σ and µ are real
numbers. What is the density of σX + µ? of X2? Reminder: if X has
density f , then P(X < x) = ∫ x−∞ f (u)du.

3.4 Positive definite matrices

Material in this section will be used when we discuss generalized least
squares (section 5.3). Detailed proofs are beyond our scope. An n×n orthog-
onal matrixR hasR′R = In×n. (These matrices are also said to be “unitary.”)
Necessarily, RR′ = In×n. Geometrically, R is a rotation, which preserves
angles and distances; R can reverse certain directions. A diagonal matrix
D is square and vanishes off the main diagonal: e.g., D11 and D22 may be
non-zero but D12 = D21 = 0. An n×n matrix G is non-negative definite if

(i) G is symmetric, and
(ii) x′Gx ≥ 0 for any n vector x.

The matrix G is positive definite if x′Gx > 0 for any n vector x except
x = 0n×1. (Non-negative definite matrices are also called “positive semi-
definite.”)

Theorem 1. The matrix G is non-negative definite if and only if there
is a diagonal matrix D whose elements are non-negative, and an orthogonal
matrix R such that G = RDR′. The matrix G is positive definite if and only
if the diagonal entries of D are all positive.

The columns ofR are the eigenvectors ofG, and the diagonal elements of
D are the eigenvalues. For instance, if c is the first column ofR and λ = D11,
then Gc = cλ. (This is because GR = RD.) It follows from theorem 1 that
a non-negative definite G has a non-negative definite square root, G1/2 =
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RD1/2R′, where the square root ofD is taken element by element. A positive
definite G has a positive definite inverse, G−1 = RD−1R′. (See exercises
below.) If G is non-negative definite rather than positive definite, that is,
x′Gx = 0 for some x �= 0, then G is not invertible. Theorem 1 is an
elementary version of the “spectral theorem.”

Exercise set D

1. Which of the following matrices are positive definite? non-negative
definite? (

2 0
0 1

) (
2 0
0 0

) (
0 1
1 0

) (
0 0
1 0

)

Hint: work out (u v)

(
a b

c d

)(
u

v

)
= (u v)

[(
a b

c d

)(
u

v

)]
.

2. Suppose X is an n×p matrix with rank p ≤ n.
(a) Show that X′X is p×p positive definite. Hint: if c is p×1, what

is c′X′Xc?
(b) Show that XX′ is n×n non-negative definite.

For exercises 3–6, suppose R is an n×n orthogonal matrix andD is an n×n
diagonal matrix, with Dii > 0 for all i. Let G = RDR′. Work the exercises
directly, without appealing to theorem 1.

3. Show that ‖Rx‖ = ‖x‖ for any n×1 vector x.

4. Show that D and G are positive definite.

5. Let
√
D be the n×n matrix whose ij th element is

√
Dij . Show that√

D
√
D = D. Show also that R

√
DR′R

√
DR′ = G.

6. LetD−1 be the matrix whose ij th element is 0 for i �= j , while the iith
element is 1/Dii . Show that D−1D = In×n and RD−1R′G = In×n.

7. Suppose G is positive definite. Show that—

(a) G is invertible and G−1 is positive definite.
(b) G has a positive definite square root G1/2.
(c) G−1 has a positive definite square root G−1/2.

8. Let U be a random 3×1 vector. Show that cov(U) is non-negative
definite, and positive definite unless there is a 3 × 1 fixed (i.e., non-
random) vector such that c′U = c′E(U) with probability 1. Hints. Can
you compute var(c′U) from cov(U)? If that hint isn’t enough, try the



38 Chapter 3

case E(U) = 03×1. Comment: if c′U = c′E(U) with probability 1,
then U − E(U) concentrates in a fixed hyperplane.

3.5 The normal distribution

This is a quick review; proofs will not be given. A random variable X
is N(µ, σ 2) if it is normally distributed with mean µ and variance σ 2. Then
the density of X is

1

σ
√

2π
exp
[
−1

2

(x − µ)2

σ 2

]
, where exp(t) = et .

If X is N(µ, σ 2), then (X − µ)/σ is N(0, 1), i.e., (X − µ)/σ is standard
normal. The standard normal density is

φ(x) = 1√
2π

exp
(− 1

2
x2) .

Random variablesX1, . . . , Xn are jointly normal if all their linear combi-
nations are normally distributed. IfX1, X2 are independent normal variables,
they are jointly normal, because a1X1 +a2X2 is normally distributed for any
pair a1, a2 of real numbers. Later on, a couple of examples will involve
jointly normal variables, and the following theorem will be helpful. (If you
want to construct normal variables, see exercise 1 below for the method.)

Theorem 2. The distribution of jointly normal random variables is
determined by the mean vector α and covariance matrix G; the latter must
be non-negative definite. If G is positive definite, the density of the random
variables at x is(

1√
2π

)n 1√
detG

exp
[

− 1

2
(x − α)′G−1(x − α)

]
.

For any pairX1, X2 of random variables, normal or otherwise, ifX1 and
X2 are independent then cov(X1, X2) = 0. The converse is generally false, al-
though counter-examples may seem contrived. For normal random variables,
the converse is true: if X1, X2 are jointly normal and cov(X1, X2) = 0, then
X1 and X2 are independent.

The central limit theorem. With a big sample, the probability distribution
of the sum (or average) will be close to normal. More formally, suppose
X1, X2, . . . are independent and identically distributed with E(Xi) = µ and
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var(Xi) = σ 2. Then Sn = X1 + X2 + · · · + Xn has expected value nµ and
variance nσ 2. To standardize, subtract the expected value and divide by the
standard error (the square root of the variance):

Zn = Sn − nµ

σ
√
n

.

The central limit theorem says that if n is large, the distribution of Zn is
close to standard normal. For example,

P
{|Sn−nµ| < σ√

n} = P {|Zn| < 1} → 1√
2π

∫ 1

−1
exp
(
−1

2
x2
)
dx

.= 0.6827.

There are many extensions of the theorem. Thus, the sum of independent
random variables with different distributions is asymptotically normal, pro-
vided each term in the sum is only a small part of the total. There are also
versions of the central limit theorem for random vectors. Feller (1971) has
careful statements and proofs, as do other texts on probability.

Terminology. (i) Symmetry is built into the definition of positive definite
matrices. (ii) Orthogonal matrices have orthogonal rows, and the length of
each row is 1. The rows are said to be “orthonormal.” Similar comments
apply to the columns. (iii) “Multivariate normal” is a synonym for jointly
normal. (iv) Sometimes, the phrase “jointly normal” is contracted to “nor-
mal,” although this can be confusing. (v) “Asymptotically” means, as the
sample size—the number of terms in the sum—gets large.

Exercise set E

1. Suppose G is n×n non-negative definite, and α is n×1.

(a) Find an n×1 vector U of normal random variables with mean 0
and cov(U) = G. Hint: let V be an n× 1 vector of independent
N(0, 1) variables, and let U = G1/2V .

(b) How would you modify the construction to get E(U) = α?

2. Suppose R is an orthogonal n×n matrix. If U is an n×1 vector of IID
N(0, σ 2) variables, show that RU is an n×1 vector of IID N(0, σ 2)

variables. Hint: what is E(RU)? cov(RU)? (“IID” is shorthand for
“independent and identically distributed.”)

3. Suppose ξ and ζ are two random variables. If E(ξζ ) = E(ξ)E(ζ ),
are ξ and ζ independent? What about the converse: if ξ and ζ are
independent, is E(ξζ ) = E(ξ)E(ζ )?
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4. If U and V are random variables, show that cov(U, V ) = cov(V ,U)
and var(U + V ) = var(U) + var(V ) + 2cov(U, V ). Hint: what is
[(U − α)+ (V − β)]2?

5. Suppose ξ and ζ are jointly normal variables, with E(ξ) = α, var(ξ) =
σ 2, E(ζ ) = β, var(ζ ) = τ 2, and cov(ξ, ζ ) = ρστ . Find the mean and
variance of ξ + ζ . Is ξ + ζ normal?

Comments. Exercises 6–8 prepare for the next chapter. Exercise 6 is covered,
for instance, by Freedman-Pisani-Purves (2007) in chapter 18. Exercises 7
and 8 are covered in chapters 20–21.

6. A coin is tossed 1000 times. Use the central limit theorem to approximate
the chance of getting 475–525 heads (inclusive).

7. A box has red marbles and blue marbles. The fraction p of reds is
unknown. 250 marbles are drawn at random with replacement, and 102
turn out to be red. Estimate p. Attach a standard error to your estimate.

8. Let p̂ be the estimator in exercise 7.
(a) About how big is the difference between p̂ and p?
(b) Can you find an approximate 95% confidence interval for p?

9. The “error function” ? is defined as follows:

?(x) = 2√
π

∫ x

0
exp(−u2)du.

Show that ? is the distribution function of |W |, where W is N(0, σ 2).
Find σ 2. If Z is N(0, 1), how would you compute P(Z < x) from ??

10. If U,V are IID N(0, 1), show that (U + V )/
√

2, (U − V )/
√

2 are IID
N(0, 1).

3.6 If you want a book on matrix algebra

Blyth TS, Robertson EF (2002). Basic Linear Algebra. 2nd ed. Springer.
Clear, mathematical.

Strang G (2005). Linear Algebra and Its Applications. 4th ed. Brooks Cole.
Love it or hate it.

Meyer CD (2001). Matrix Analysis and Applied Linear Algebra. SIAM.
More of a conventional textbook.

Lax PD (2007). Linear Algebra and its Applications. 2nd ed. Wiley.
Graduate-level text.



4
Multiple Regression

4.1 Introduction

In this chapter, we set up the regression model and derive the main results
about least squares estimators. The model is

(1) Y = Xβ + ε.

On the left, Y is an n×1 vector of observable random variables. The Y vector
is the dependent or response variable; Y is being “explained” or “modeled.”
As usual, Yi is the ith component of Y .

On the right hand side, X is an n×p matrix of observable random
variables, called the design matrix. We assume that n > p, and the design
matrix has full rank, i.e., the rank of X is p. (In other words, the columns of
X are linearly independent.) Next, β is a p×1 vector of parameters. Usually,
these are unknown, to be estimated from data. The final term on the right
is ε, an n×1 random vector. This is the random error or disturbance term.
Generally, ε is not observed. We write εi for the ith component of ε.

In applications, there is a Yi for each unit of observation i. Similarly,
there is one row in X for each unit of observation, and one column for each
data variable. These are the explanatory or independent variables, although
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seldom will any column ofX be statistically independent of any other column.
Orthogonality is rare too, except in designed experiments.

Columns ofX are often called covariates or control variables, especially
if they are put into the equation to control for confounding; “covariate” can
have a more specific meaning, discussed in chapter 9. Sometimes, Y is called
the “left hand side” variable. The columns in X are then (surprise) the “right
hand side” variables. If the equation—like (1.1) or (2.7)—has an intercept,
the corresponding column in the matrix is a “variable” only by courtesy: this
column is all 1’s.

We’ll write Xi for the ith row of X. The matrix equation (1) unpacks
into n ordinary equations, one for each unit of observation. For the ith unit,
the equation is

(2) Yi = Xiβ + εi .

To estimate β, we need some data—and some assumptions connecting
the data to the model. A basic assumption is that

(3) the data on Y are observed values of Xβ + ε.

We have observed values for X and Y, not the random variables themselves.
We do not knowβ and do not observe ε. These remain at the level of concepts.
The next assumption:

(4) The εi are independent and identically distributed, with mean 0 and
variance σ 2.

Here, mean and variance apply to random variables not data; E(εi) = 0, and
var(εi) = σ 2 is a parameter. Now comes another assumption:

(5) If X is random, we assume ε is independent of X. In symbols, ε
�
X.

(Note:
� �= ⊥.) Assumptions (3)-(4)-(5) are not easy to check, because ε is

not observable. By contrast, the rank of X is easy to determine.
A matrix X is “random” if some of the entries Xij are random variables

rather than constants. This is an additional complication. People often prefer
to condition on X. Then X is fixed; expectations, variances, and covariances
are conditional on X.

We will estimate β using the OLS (ordinary least squares) estimator:

(6) β̂ = (X′X)−1X′Y,

as in exercise 3B14 (shorthand for exercise 14, set B, chapter 3). This β̂ is a
p×1 vector. Let

(7) e = Y −Xβ̂.
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This is an n×1 vector of “residuals” or “errors.” Exercise 3B14 suggests the
origin of the name “least squares:” a sum of squares is being minimized. The
exercise contains enough hints to prove the following theorem.

Theorem 1.
(i) e ⊥ X.

(ii) As a function of the p×1 vector γ , ‖Y −Xγ ‖2 is minimized when
γ = β̂.

Theorem 2. OLS is conditionally unbiased, that is, E(β̂|X) = β.

Proof. To begin with, β̂ = (X′X)−1X′Y : see (6). The model (1) says
that Y = Xβ + ε, so

β̂ = (X′X)−1X′(Xβ + ε)

= (X′X)−1X′Xβ + (X′X)−1X′ε
= β + (X′X)−1X′ε.

For the last step, (X′X)−1X′X = (X′X)−1(X′X) = Ip×p and Ip×pβ = β.
Thus,

(8) β̂ = β + η where η = (X′X)−1X′ε.

Now E(η|X) = E
(
(X′X)−1X′ε

∣∣X) = (X′X)−1X′E(ε|X). We’ve condi-
tioned on X, so X is fixed (not random). Ditto for matrices that only depend
on X. They factor out of the expectation (exercise 3C3). What we’ve shown
so far is

(9) E(β̂|X) = β + (X′X)−1X′E(ε|X).
Next, X

�
ε by assumption (5): conditioning on X does not change the dis-

tribution of ε. But E(ε) = 0n×1 by assumption (4). Thus, E(β̂|X) = β,
completing the proof.

Example 1. Hooke’s law (section 2.3, i.e., section 3 in chapter 2). Look
at equation (2.7). The parameter vector β is 2×1:

β =
(
a

b

)
.

The design matrix X is 6×2. The first column is all 1’s, to accommodate
the intercept a. The second column is the column of weights in table 2.1. In
matrix form, then, the model is Y = Xβ + ε, where
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Y =


Y1
Y2
Y3
Y4
Y5
Y6

 , X =


1 0
1 2
1 4
1 6
1 8
1 10

 , ε =


ε1
ε2
ε3
ε4
ε5
ε6

 .

Let’s check the first row. Since X1 = (
1 0
)
, the first row in the matrix

equation says that Y1 = X1β + ε1 = a + 0b + ε1 = a + ε1. This is
equation (2.7) for i = 1. Similarly for the other rows.

We want to compute β̂ from (6), so data on Y are needed. That is where
the “length” column in table 2.1 comes into the picture. The model says that
the lengths of the spring under the various loads are the observed values of
Y = Xβ + ε. These observed values are

439.00
439.12
439.21
439.31
439.40
439.50

 .

Now we can compute the OLS estimates from (6).

β̂ = (X′X)−1X′Y

=




(
1 1 1 1 1 1
0 2 4 6 8 10

)


1 0
1 2
1 4
1 6
1 8
1 10






−1(
1 1 1 1 1 1
0 2 4 6 8 10

)


439.00
439.12
439.21
439.31
439.40
439.50


=
(

439.01 cm
.05 cm/kg

)
.

Exercise set A

1. In the regression model of section 1, one of the following is always true
and the other is usually false. Which is which, and why?

(i) ε ⊥ X (ii) ε
�
X
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2. In the regression model of section 1, one of the following is always true
and the other is usually false. Which is which, and why?

(i) e ⊥ X (ii) e
�
X

3. Does e ⊥ X help validate assumption (5)?

4. Suppose the first column of X is all 1’s, so the regression equation has
an intercept.

(a) Show that
∑
i ei = 0.

(b) Does
∑
i ei = 0 help validate assumption (4)?

(c) Is
∑
i εi = 0? Or is

∑
i εi around σ

√
n in size?

5. Show that (i) E
(
ε′ε
∣∣X) = nσ 2 and (ii) cov

(
ε
∣∣X) = E

(
εε′
∣∣X) =

σ 2In×n.

6. How is column 2 in table 2.1 related to the regression model for Hooke’s
law? (Cross-references: table 2.1 is table 1 in chapter 2.)

7. Yule’s regression model (1.1) for pauperism can be translated into matrix
notation: Y = Xβ + ε. We assume (3)-(4)-(5). For the metropolitan
unions and the period 1871–81:

(a) What are X and Y ? (Hint: look at table 1.3.)

(b) What are the observed values of X41? X42? Y4?

(c) Where do we look in (X′X)−1X′Y to find the estimated coefficient
of �Out?

Note. These days, we use the computer to work out (X′X)−1X′Y . Yule
did it with two slide rules and the “Brunsviga Arithmometer”—a pin-
wheel calculating machine that could add, subtract, multiply, and divide.

4.2 Standard errors

Once we’ve computed the regression estimates, we need to see how
accurate they are. If the model is right, this is pretty easy. Standard errors
do the job. The first step is getting the covariance matrix of β̂. Here is a
preliminary result.

(10) cov(β̂|X) = (X′X)−1X′cov
(
ε|X)X(X′X)−1.

To prove (10), start from (8):

β̂ = β + (X′X)−1X′ε.

Conditionally, X is fixed; so are matrices that only involve X. If you keep
in mind that X′X is symmetric and (AB)′ = B ′A′, exercises 3C4–5 will
complete the argument for (10).
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Theorem 3. cov(β̂|X) = σ 2(X′X)−1.

Proof. The proof is immediate from (10) and exercise A5.

Usually, σ 2 is unknown and has to be estimated from the data. If we
knew the εi , we could estimate σ 2 as

1

n

n∑
i=1

ε2
i .

But we don’t know the ε’s. The next thing to try might be

1

n

n∑
i=1

e2
i .

This is a little too small. The ei are generally smaller than the εi , because β̂
was chosen to make the sum of the e2

i as small as possible. The usual fix is
to divide by the degrees of freedom n− p rather than n:

(11) σ̂ 2 = 1

n− p

n∑
i=1

e2
i .

Now σ̂ 2 is conditionally unbiased (theorem 4 below). Equation (11) is the
reason we need n > p not just n ≥ p. If n = p, the estimator σ̂ 2 is undefined:
you would get 0/0. See exercise B12 below.

The proof that σ̂ 2 is unbiased is a little complicated, so let’s postpone it
for a minute and look at the bigger picture. We can estimate the parameter
vector β in the model (1) by OLS: β̂ = (X′X)−1X′Y . Conditionally on X,
this estimator is unbiased, and the covariance matrix is σ 2(X′X)−1. All is
well, except that σ 2 is unknown. We just plug in σ̂ 2, which is (almost) the
mean square of the residuals—the sum of squares is divided by the degrees
of freedom n− p not by n. To sum up,

(12) ĉov(β̂|X) = σ̂ 2(X′X)−1.

The variances are on the diagonal. Variances are the wrong size and have the
wrong units: take the square root of the variances to get the standard errors.
(What are the off-diagonal elements good for? You will need the off-diagonal
elements to compute the standard error of, e.g., β̂2 − β̂3. See exercise B14
below. Also see theorem 5.1, and the discussion that follows. )
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Back to the mathematics. Before tackling theorem 4, we discuss the
“hat matrix,”

(13) H = X(X′X)−1X′,

and the “predicted” or “fitted” values,

(14) Ŷ = Xβ̂.

The terminology of “predicted values” can be misleading, since these are
computed from the actual values. Nothing is being predicted. “Fitted values”
is better.

The hat matrix is n×n, because X is n×p, X′X is p×p, (X′X)−1 is
p×p, and X′ is p×n. On the other hand, Ŷ is n×1. The fitted values are
connected to the hat matrix by the equation

(15) Ŷ = X(X′X)−1X′Y = HY.

(The equation, and the hat on Y , might explain the name “hat matrix.”) Check
these facts, with In×n abbreviated to I :

(i) e = (I −H)Y .

(ii) H is symmetric, and so is I −H .

(iii) H is idempotent (H 2 = H ), and so is I −H .

(iv) X is invariant under H , that is, HX = X.

(v) e = Y −HY ⊥ X.

Thus, H projects Y into colsX, the column space of X. In more detail,
HY = Ŷ = Xβ̂ ∈ colsX, and Y − HY = e is orthogonal to colsX by (v).
Next,

(vi) (I −H)X = 0.

(vii) (I −H)H = H(I −H) = 0. Hint: use fact (iii).

Theorem 4. E(σ̂ 2|X) = σ 2.

Proof. We claim that

(16) e = (I −H)ε.

Indeed, by facts (i) and (vi) about the hat matrix,

(17) e = (I −H)Y = (I −H)(Xβ + ε) = (I −H)ε.
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We write H̃ for In×n −H , and claim that

(18) ‖e‖2 = ε′H̃ ε.

Indeed, H̃ is symmetric and idempotent—facts (ii) and (iii) about the hat
matrix—so ‖e‖2 = e′e = ε′H̃ 2ε = ε′H̃ ε, proving (18). Check that

E(ε′H̃ ε|X) = E
( n∑
i=1

n∑
j=1

εiH̃ij εj
∣∣X)(19)

=
n∑
i=1

n∑
j=1

E(εiH̃ij εj |X) =
n∑
i=1

n∑
j=1

H̃ijE(εiεj |X).

The matrix H̃ is fixed, because we conditioned on X, so H̃ij factors out of
the expectation.

The next step is to simplify the double sum on the right of (19). Condi-
tioning on X doesn’t change the distribution of ε, because ε

�
X. If i �= j ,

then E(εiεj |X) = 0 because εi and εj are independent with E(εi) = 0. On
the other hand, E(εiεi |X) = σ 2. The right hand side of (19) is therefore
σ 2trace(H̃ ). Thus,

(20) E(ε′H̃ ε|X) = σ 2
n∑
i=1

H̃ii = σ 2trace(H̃ ).

By (18) and (20),
E(‖e‖2|X) = σ 2trace(H̃ ).

Now we have to work out the trace. Remember,H = X(X′X)−1X′ and
H̃ = In×n −H . By exercise 3B11,

trace(H) = trace
[
(X′X)−1X′X

] = trace(Ip×p) = p.

So trace(H̃ ) = trace(In×n −H) = trace(In×n)− trace(H) = n− p. Now

(21) E
(‖e‖2

∣∣X) = σ 2(n− p).

To wrap things up,

E
(
σ̂ 2
∣∣X) = 1

n− p
E
(‖e‖2

∣∣X) = 1

n− p
σ 2(n− p) = σ 2,

completing the proof of theorem 4.
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Things we don’t need

Theorems 1–4 show that under certain conditions, OLS is a good way to
estimate a model; also see theorem 5.1 below. There are a lot of assumptions
we don’t need to make. For instance—

• The columns of X don’t have to be orthogonal to each other.
• The random errors don’t have to be normally distributed.

Exercise set B

The first five exercises concern the regression model (1)–(5), and Xi denotes
the ith row of the design matrix X.

1. True or false: E(Yi |X) = Xiβ.

2. True or false: the sample mean of the Yi’s is Y = n−1∑n
i=1 Yi . Is Y a

random variable?

3. True or false: var(Yi |X) = σ 2.

4. True or false: the sample variance of the Yi’s is n−1∑n
i=1(Yi −Y )2. (If

you prefer to divide by n− 1, that’s OK too.) Is this a random variable?

5. Conditionally onX, show that the joint distribution of the random vectors
(β̂ − β, e) is the same for all values of β. Hint: express (β̂ − β, e) in
terms of X and ε.

6. Can you put standard errors on the estimated coefficients inYule’s equa-
tion (1.2)? Explain briefly. Hint: see exercise A7.

7. In section 2.3, we estimated the intercept and slope for Hooke’s law.
Can you put standard errors on these estimates? Explain briefly.

8. Here are two equations:

(i) Y = Xβ + ε (ii) Y = Xβ̂ + e

Which is the regression model? Which equation has the parameters and
which has the estimates? Which equation has the random errors? Which
has the residuals?

9. We use the OLS estimator β̂ in the usual regression model, and the
unbiased estimator of variance σ̂ 2. Which of the following statements
are true, and why?

(i) cov(β) = σ 2(X′X)−1.

(ii) cov(β̂) = σ 2(X′X)−1.

(iii) cov(β̂|X) = σ 2(X′X)−1.
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(iv) cov(β̂|X) = σ̂ 2(X′X)−1.

(v) ĉov(β̂|X) = σ̂ 2(X′X)−1.

10. True or false, and explain.

(a) If you fit a regression equation to data, the sum of the residuals is 0.
(b) If the equation has an intercept, the sum of the residuals is 0.

11. True or false, and explain.
(a) In the regression model, E(Ŷ |X) = Xβ̂.
(b) In the regression model, E(Ŷ |X) = Xβ.
(c) In the regression model, E(Y |X) = Xβ.

12. If X is n×n with rank n, show that X(X′X)−1X′ = In×n, so Ŷ = Y .
Hint: is X invertible?

13. Suppose there is an intercept in the regression model (1), so the first
column of X is all 1’s. Let Y be the mean of Y . Let X be the mean of
X, column by column. Show that Y = Xβ̂.

14. Let β̂ be the OLS estimator in (1), where the design matrix X has full
rank p < n. Assume conditions (4) and (5).

(a) Find var( β̂1 − β̂2 |X), where β̂i is the ith component of β̂.

(b) Suppose c is p×1. Show that E(c′β̂|X) = c′β and var(c′β̂|X) =
σ 2c′(X′X)−1c.

15. (Hard.) Suppose Yi = a + bXi + εi for i = 1, . . . , n, the εi being IID
with mean 0 and variance σ 2, independent of the Xi . (Reminder: IID
stands for “independent and identically distributed.”) Equation (2.5)
expressed â, b̂ in terms of five summary statistics: two means, two SDs,
and r . Derive the formulas for â, b̂ from equation (6) in this chapter.
Show also that, conditionally on X,

SE â = σ√
n

√
1 + X

2

var(X)
, SE b̂ = σ

sX
√
n
,

where

X = 1

n

n∑
i=1

Xi, var(X) = 1

n

n∑
i=1

(Xi −X)2, s2
X = var(X).

Hints. The design matrixM will be n×2. What is the first column? the
second? Find M ′M . Show that det(M ′M) = n2var(X). Find (M ′M)−1

and M ′Y .
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4.3 Explained variance in multiple regression

After fitting the regression model, we have the equation Y = Xβ̂ + e.
All the quantities are observable. Suppose the equation has an intercept, so
there is a column of 1’s in X. We will show in a bit that

(22) var(Y ) = var(Xβ̂)+ var(e).

To define var(Y ), think of Y as a data variable:

(23) var(Y ) = 1

n

n∑
i=1

(Yi − Y )2.

Variances on the right hand side of (22) are defined in a similar way: var(Xβ̂)
is called “explained variance,” and var(e) is “unexplained” or “residual” vari-
ance. The fraction of variance “explained” by the regression is

(24) R2 = var(Xβ̂)/var(Y ).

The proof of (22) takes some algebra. Let u be an n×1 column of
1’s, corresponding to the intercept in the regression equation. Recall that
Y = Xβ̂ + e. As always, e ⊥ X, so e = 0. Now

(25) Y − Yu = Xβ̂ − Yu+ e.

Since e ⊥ X and e ⊥ u, equation (25) implies that

(26) ‖Y − Yu‖2 = ‖Xβ̂ − Yu‖2 + ‖e‖2.

Since e = 0,

(27) Y = Xβ̂ = Xβ̂ :

see exercise B13. Now ‖Y − Yu‖2 = nvar(Y ) by (23); ‖Xβ̂ − Yu‖2 =
nvar(Xβ̂) by (27); and ‖e‖2 = nvar(e) because e = 0. From these facts
and (26),

(28) nvar(Y ) = nvar(Xβ̂)+ nvar(e).

Dividing both sides of (28) by n gives equation (22), as required.



52 Chapter 4

San Francisco

Sacramento

Stockton

The math is fine, but the concept is a little peculiar. (Many people talk
about explained variance, perhaps without sufficient consideration.) First, as
a descriptive statistic, variance is the wrong size and has the wrong units.
Second, well, let’s take an example. Sacramento is about 78 miles from San
Francisco, as the crow flies. Or, the crow could fly 60 miles East and 50 miles
North, passing near Stockton at the turn. If we take the 60 and 50 as exact,
Pythagoras tells us that the squared hypotenuse in the triangle is

602 + 502 = 3600 + 2500 = 6100 miles2.

With “explained” as in “explained variance,” the geography lesson can be
cruelly summarized. The area—squared distance—between San Francisco
and Sacramento is 6100 miles2, of which 3600 is explained by East.

The analogy is exact. Projecting onto East stands for (i) projecting Y
and X orthogonally to the vector u that is all 1’s, and then (ii) projecting the
remainder of Y onto what is left of the column space of X. The hypotenuse
of the triangle is Y − Yu, with squared length ‖Y − Yu‖2 = nvar(Y ). The
horizontal edge is Xβ̂ − Yu, with ‖Xβ̂ − Yu‖2 = nvar(Xβ̂). The vertical
edge is e, and ‖e‖2 = nvar(e). The theory of explained variance boils
down to Pythagoras’ theorem on the crow’s triangular flight. Explaining the
area between San Francisco and Sacramento by East is zany, and explained
variance may not be much better.

Although “explained variance” is peculiar terminology, R2 is a useful
descriptive statistic. High R2 indicates a good fit between the data and the
equation: the residuals are small relative to the SD of Y . Conversely, low
R2 indicates a poor fit. In fields like political science and sociology, R2 <

1/10 is commonplace. This may indicate large random effects, difficulties in
measurement, and so forth. Or, there may be many important factors omitted
from the equation, which might raise questions about confounding.
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Association or causation?

R2 measures goodness of fit, not the validity of any underlying causal
model. For example, over the period 1950–1999, the correlation between the
purchasing power of the United States dollar each year and the death rate from
lung cancer in that year is −0.95. So R2 = (−0.95)2 = 0.9, which is a lot
bigger than what you find in run-of-the-mill regression studies of causation.
If you run a regression of lung cancer death rates on the purchasing power of
the dollar, the data will follow the line very closely.

Inflation, however, neither causes nor prevents lung cancer. The pur-
chasing power of the dollar was going steadily downhill from 1950 to 1999.
Death rates from lung cancer were generally going up (with a peak in 1990).
These facts create a high R2. Death rates from lung cancer were going up
because of increases in smoking during the first half of the century. And the
value of the dollar was shrinking because, well, let’s not go there.

Exercise set C
1. (Hard.) For a regression equation with an intercept, show that R2 is the

square of the correlation between Ŷ and Y .

4.4 What happens to OLS if the assumptions break down?

If E(ε|X) �= 0n×1, the bias in the OLS estimator is (X′X)−1X′E(ε|X),
by equation (9). If E(ε|X) = 0n×1 but cov(ε|X) �= σ 2In×n, OLS will be
unbiased. However, theorem 3 breaks down: see equation (10) and section
5.3 below. Then σ̂ 2(X′X)−1 may be a misleading estimator of cov(β̂|X).

If the assumptions behind OLS are wrong, the estimator can be
severely biased. Even if the estimator is unbiased, standard errors
computed from the data can be way off. Significance levels would
not be trustworthy, for these are based on the SEs (section 5.6
below),

4.5 Discussion questions

Some of these questions cover material from previous chapters.

1. In the OLS regression model—

(a) Is it the residuals that are independent from one subject to another,
or the random errors?

(b) Is it the residuals that are independent of the explanatory variables,
or the random errors?
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(c) Is it the vector of residuals that is orthogonal to the column space
of the design matrix, or the vector of random errors?

Explain briefly.

2. In the OLS regression model, do the residuals always have mean 0?
Discuss briefly.

3. True or false, and explain. If, after conditioning on X, the disturbance
terms in a regression equation are correlated with each other across
subjects, then—

(a) the OLS estimates are likely to be biased;
(b) the estimated standard errors are likely to be biased.

4. An OLS regression model is defined by equation (2), with assumptions
(4) and (5) on the ε’s. Are the Yi independent? identically distributed?
Discuss briefly.

5. You are using OLS to fit a regression equation. True or false, and explain:

(a) If you exclude a variable from the equation, but the excluded vari-
able is orthogonal to the other variables in the equation, you won’t
bias the estimated coefficients of the remaining variables.

(b) If you exclude a variable from the equation, and the excluded vari-
able isn’t orthogonal to the other variables, your estimates are going
to be biased.

(c) If you put an extra variable into the equation, you won’t bias the es-
timated coefficients—as long as the error term remains independent
of the explanatory variables.

(d) If you put an extra variable into the equation, you are likely to bias
the estimated coefficients—if the error term is dependent on that
extra variable.

6. True or false, and explain: as long as the design matrix has full rank, the
computer can find the OLS estimator β̂. If so, what are the assumptions
good for? Discuss briefly.

7. DoesR2 measure the degree to which a regression equation fits the data?
Or does it measure the validity of the model? Discuss briefly.

8. Suppose Yi = aui + bvi + εi for i = 1, . . . , 100. The εi are IID with
mean 0 and variance 1. The u’s and v’s are fixed not random; these two
data variables have mean 0 and variance 1: the correlation between them
is r . If r = ±1, show that the design matrix has rank 1. Otherwise,
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let â, b̂ be the OLS estimators. Find the variance of â; of b̂; of â − b̂.

What happens if r = 0.99? What are the implications of collinearity for

applied work? For instance, what sort of inferences about a and b are

made easier or harder by collinearity?

Comments. Collinearity sometimes means r = ±1; more often, it

means r
.= ±1. A synonym is multicollinearity. The case r = ±1 is

better called exact collinearity. Also see lab 7 at the back of the book.

9. True or false, and explain:

(a) Collinearity leads to bias in the OLS estimates.

(b) Collinearity leads to bias in the estimated standard errors for the

OLS estimates.

(c) Collinearity leads to big standard errors for some estimates.

10. Suppose (Xi , Wi , εi ) are IID as triplets across subjects i = 1, . . . , n,

where n is large; E(Xi ) = E(Wi ) = E(εi ) = 0, and εi is independent

of (Xi , Wi ). Happily, Xi and Wi have positive variance; they are not

perfectly correlated. The response variable Yi is in truth this:

Yi = aXi + bWi + εi .

We can recover a and b, up to random error, by running a regression of

Yi on Xi and Wi . No intercept is needed. Why not? What happens if

Xi and Wi are perfectly correlated (as random variables)?

11. (This continues question 10.) Tom elects to run a regression of Yi on Xi ,

omitting Wi . He will use the coefficient of Xi to estimate a.

(a) What happens to Tom if Xi and Wi are independent?

(b) What happens to Tom if Xi and Wi are dependent?

Hint: see exercise 3B15.

12. Suppose (Xi , δi , εi ) are IID as triplets across subjects i = 1, . . . , n,

where n is large; and Xi , δi , εi are mutually independent. Furthermore,

E(Xi ) = E(δi ) = E(εi ) = 0 while E(Xi
2) = E(δi

2) = 1 and E(εi
2) =

σ 2 > 0. The response variable Yi is in truth this:

Yi = aXi + εi .

We can recover a, up to random error, by running a regression of Yi on

Xi . No intercept is needed. Why not?
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13. (Continues question 12.) Let c, d, e be real numbers and let Wi =
cXi + dδi + eεi . Dick elects to run a regression of Yi on Xi and Wi ,
again without an intercept. Dick will use the coefficient of Xi in his
regression to estimate a. If e = 0, Dick still gets a, up to random
error—as long as d �= 0. Why? And what’s wrong with d = 0?

14. (Continues questions 12 and 13.) Suppose, however, that e �= 0. Then
Dick has a problem. To see the problem more clearly, assume that n is
large. Let Q = (XW ) be the design matrix, i.e., the first column is the
Xi and the second column is the Wi . Show that

Q′Q/n .=
(
E(X2

i ) E(XiWi)

E(XiWi) E(W 2
i )

)
, Q′Y/n .=

(
E(XiYi)

E(WiYi)

)
.

(a) Suppose a = c = d = e = 1. What will Dick estimate for the
coefficient of Xi in his regression?

(b) Suppose a = c = d = 1 and e = −1. What will Dick estimate for
the coefficient of Xi in his regression?

(c) A textbook on regression advises that, when in doubt, put more
explanatory variables into the equation, rather than fewer. What do
you think?

15. There is a population consisting ofN subjects, with data variables x and
y. A simple regression equation can in principle be fitted by OLS to the
population data: yi = a + bxi + ui , where

∑N
i=1 ui =∑N

i=1 xiui = 0.
Although Harry does not have access to data on the full population,
he can take a sample of size n < N , at random with replacement:
n is moderately large, but small relative to N . He will estimate the
parameters a and b by running a regression of yi on xi for i in the
sample. He will have an intercept in the equation.

(a) Are the OLS estimates biased or unbiased? Why? (Hint: is the true
relationship linear?)

(b) Should he believe the standard errors printed out by the computer?
Discuss briefly.

16. Over the period 1950–99, the correlation between the size of the popu-
lation in the United States and the death rate from lung cancer was 0.92.
Does population density cause lung cancer? Discuss briefly.
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17. (Hard.) Suppose X1, . . . , Xn are dependent random variables. They
have a common mean, E(Xi) = α. They have a common variance,
var(Xi) = σ 2. Let rij be the correlation between Xi and Xj for i �= j .
Let

r = 1

n(n− 1)

∑
1≤i �=j≤n

rij

be the average correlation. Let Sn = X1 + · · · +Xn.

(a) Show that var(Sn) = nσ 2 + n(n− 1)σ 2r .

(b) Show that var
(Sn
n

)
= 1

n
σ 2 + n− 1

n
σ 2r.

Hint for (a):

[ n∑
i=1

(Xi − α)
]2 =

n∑
i=1

(Xi − α)2 +
n∑

1≤i �=j≤n
(Xi − α)(Xj − α).

Notes. (i) There are n(n− 1) pairs of indices (i, j)with 1 ≤ i �= j ≤ n.
(ii) If n = 100 and r = 0.05, say, var(Sn/n) will be a lot bigger than
σ 2/n. Small correlations are hard to spot, so casual assumptions about
independence can be quite misleading.

18. Let � stand for the percentage difference from 1871 to 1881 and let
i range over the 32 metropolitan unions. Yule’s model (section 1.4)
explains �Paup i in terms of �Out i , �Old i , and �Pop i .

(a) Is option (i) below the regression model, or the fitted equation?
What about (ii)?

(b) In (i), is b a parameter or an estimate? What about 0.755 in (ii)?

(c) In (i), is εi an observable residual or an unobservable error term?
What about ei in (ii)?

(i) �Paup i = a + b×�Out i + c×�Old i + d×�Pop i + εi,

the εi being IID with mean 0 independent of the explanatory variables.

(ii) �Paup i = 13.19 + 0.755�Out i − 0.022�Old i − 0.322�Pop i + ei,

the ei having mean 0 with e orthogonal to the explanatory variables.
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19. A box hasN numbered tickets; N is known; the mean µ of the numbers
in the box is an unknown parameter; the variance σ 2 of the numbers in
the box is another unknown parameter. We draw n tickets at random
with replacement: X1 is the first draw, X2 is the second draw, . . . , Xn
is the nth draw. Fill in the blanks, using the options below:
is an unbiased estimator for . Options:

(i) n (ii) σ 2 (iii) E(X1)

(iv)
X1 +X2 + · · · +Xn

n

(v) None of the above

20. (This continues question 19.) Let

X = X1 +X2 + · · · +Xn

n
.

True or false:

(a) The Xi are IID.

(b) E(Xi) = µ for all i.

(c) E(Xi) = X for all i.

(d) var(Xi) = σ 2 for all i.

(e)
(X1 −X)2 + (X2 −X)2 + · · · + (Xn −X)2

n
= σ 2.

(f)
(X1 −X)2 + (X2 −X)2 + · · · + (Xn −X)2

n

.= σ 2 if n is large.

21. Labrie et al (2004) report on a randomized controlled experiment to
see whether routine screening for prostate cancer reduces the death rate
from that disease. The experimental subjects consisted of 46,486 men
age 45–80 who were registered to vote in Quebec City. The investigators
randomly selected 2/3 of the subjects, inviting them to annual screening.
The other 1/3 of the subjects were used as controls. Among the 7,348
men who accepted the invitation to screening, 10 deaths from prostate
cancer were observed during the first 11 years following randomization.
Among the 14,231 unscreened controls, 74 deaths from prostate cancer
were observed during the same time period. The ratio of death rates
from prostate cancer is therefore

10/7,348

74/14,231
= 0.26,
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i.e., screening cuts the death rate by 74%. Is this analysis convincing?
Answer yes or no, and explain briefly.

22. In the HIP trial (chapter 1), women in the treatment group who refused
screening were generally at lower risk of breast cancer. What is the
evidence for this proposition?

4.6 End notes for chapter 4

Conditional vs unconditional expectations. The OLS estimate involves
an inverse, (X′X)−1. If everything is integrable, then OLS is uncondition-
ally unbiased. Integrability apart, conditionally unbiased is the stronger and
more useful property. In many conventional models, X′X is relatively con-
stant when n is large. Then there is little difference between conditional and
unconditional inference.

Consistency and asymptotic normality. Consider the OLS estimator β̂
in the usual model (1)–(5). One set of regularity conditions that guarantees
consistency and asymptotic normality of β̂ is the following: p is fixed, n is
large, the elements of X are uniformly o(

√
n), and X′X = nV + o(n) with

V a positive definite p×p matrix. Furthermore, under this set of condi-
tions, the F -statistic is asymptotically χ2

p0
/p0 when the null hypothesis holds

(sections 5.6–7). For additional discussion, see

http://www.stat.berkeley.edu/users/census/Ftest.pdf

Explained variance. One point was elided in section 3. If Q projects
orthogonally to the constant vectors, we must show that the projection ofQY
on QX is Xβ̂ − Y . To begin with, QY = Y − Y and QX = X − X. Now
Y − Y = Xβ̂ − Y + e = (X − X)β̂ + e = (QX)β̂ + e because Y = Xβ̂.
Plainly, e ⊥ QX, completing the argument.

The discussion questions. Questions 7 and 16 are about the interpretation
of R2. Questions 8–9 are about collinearity: the general point is that some
linear combinations of the β’s will be easy to estimate, and some—the c′β
with Xc

.= 0—will be very hard. (Collinearity can also make results more
sensitive to omitted variables and to data entry errors.) Questions 10–15
look at assumptions in the regression model. Question 11 gives an example
of omitted-variables bias when W is correlated with X. In question 14,
if W is correlated with δ, then including W creates endogeneity bias (also
called simultaneity bias). Question 15 is a nice test case: do the regression
assumptions hold in a sampling model? Also see discussion question 6 in
chapter 5, and

www.stat.berkeley.edu/users/census/badols.pdf
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Questions 3 and 17 show that independence is the key to estimating
precision of estimates from internal evidence. (Homoscedasticity—the as-
sumption of constant variance—is perhaps of lesser importance.) Of course,
if the mode of dependence is known, adjustments can be made. Generally,
such things are hard to know; assumptions are easy to make. Questions 18–
20 review the distinction between parameters and estimates; questions 21–22
review material on design of experiments from chapter 1.

Data sources. In section 3 and discussion question 16, lung cancer death
rates are for males, age standardized to the United States population in 1970,
from the American Cancer Society. Purchasing power of the dollar is based
on the Consumer Price Index: Statistical Abstract of the United States, 2000,
table 767. Total population is from Statistical Abstract of the United States,
1994, 2000, table 2; the 1994 edition was used for the period 1950–59.

Spurious correlations. Hendry (1980, figure 8) reports an R2 of 0.998
for predicting inflation by cumulative rainfall over the period 1964–75: both
variables were increasing steadily. (The equation is quadratic, with an adjust-
ment for autocorrelation.) Yule (1926) reports an R2 of 0.9 between English
mortality rates and the percentage of marriages performed in the Church of
England over the period 1886–1911: both variables were declining. Hans
Melberg provided the citations.



5
Multiple Regression: Special Topics

5.1 Introduction

This chapter covers more specialized material, starting with an optimal-
ity property for OLS. Generalized Least Squares will be the next topic; this
technique is mentioned in chapter 6, and used more seriously in chapters
8–9. Then comes normal theory, featuring t , χ2, and F . Finally, there is an
example to demonstrate the effect of data snooping on significance levels.

5.2 OLS is BLUE

The OLS regression model says that

(1) Y = Xβ + ε,

where Y is an n × 1 vector of observable random variables, X is an n × p

matrix of observable random variables with rank p < n, and ε is an n × 1
vector of unobservable random variables, IID with mean 0 and variance σ 2,
independent of X. In this section, we’re going to drop the independence as-
sumptions about ε, and make a weaker—less restrictive—set of assumptions:

(2) E(ε|X) = 0n×1 , cov(ε|X) = σ 2In×n .

Theorems 1–4 in chapter 4 continue to hold (exercise A2 below).
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The weaker assumptions will be more convenient for comparing GLS
(Generalized Least Squares) to OLS. That is the topic of the next section.
Here, we show that OLS is optimal—among linear unbiased procedures—
in the case where X is not random. Condition (2) can then be stated more
directly:

(3) E(ε) = 0n×1 , cov(ε) = σ 2In×n.

Theorem 1. Gauss-Markov. Suppose X is fixed (i.e., not random).
Assume (1) and (3). The OLS estimator is BLUE.

The acronym BLUE stands for Best Linear Unbiased Estimator, i.e., the
one with the smallest variance. Let γ = c′β, where c is p×1: the parameter
γ is a linear combination of the components of β. Examples would include
β1, or β2 − β3. The OLS estimator for γ is γ̂ = c′β̂ = c′(X′X)−1X′Y . This
is unbiased by (3), and var(γ̂ ) = σ 2c′(X′X)−1c. Cf. exercise A1 below. Let
γ̃ be another linear unbiased estimator for γ . Then var(γ̃ ) ≥ var(γ̂ ), and
var(γ̃ ) = var(γ̂ ) entails γ̃ = γ̂ . That is what the theorem says.

Proof. A detailed proof is beyond our scope, but here is a sketch. Recall
that X is fixed. Since γ̃ is by assumption a linear function of Y , there is an
n×1 vector d with γ̃ = d ′Y = d ′Xβ + d ′ε. Then E(γ̃ ) = d ′Xβ by (3).
Since γ̃ is unbiased, d ′Xβ = c′β for all β. Therefore,

(4) d ′X = c′.

Let q = d −X(X′X)−1c, an n×1 vector. So

(5) q ′ = d ′ − c′(X′X)−1X′.

(Why is q worth thinking about? Because γ̃ − γ̂ = q ′Y .) Multiply (5) on
the right by X:

q ′X = d ′X − c′(X′X)−1X′X(6)

= d ′X − c′ = 01×p
by (4). From (5), d ′ = q ′ + c′(X′X)−1X′. By exercise 3C4,

var(γ̃ ) = var(d ′ε)
= σ 2d ′d
= σ 2[q ′ + c′(X′X)−1X′][q +X(X′X)−1c

]
= σ 2[q ′q + c′(X′X)−1c

]
= σ 2q ′q + var(γ̂ ).
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The cross-product terms dropped out: q ′X(X′X)−1c = c′(X′X)−1X′q = 0,
because q ′X = 01×p—and X′q = 0p×1—by (6). Finally, q ′q =∑i q

2
i ≥ 0.

The inequality is strict unless q = 0n×1, i.e., γ̃ = γ̂ . This completes the
proof.

Exercise set A

1. Let β̂ be the OLS estimator in (1), where the design matrix X has full
rank p < n. Assume (2).

(a) Show that E(Y |X) = Xβ and cov(Y |X) = σ 2In×n. Verify that
E(β̂|X) = β and cov(β̂|X) = σ 2(X′X)−1.

(b) Suppose c is p×1. Show that E(c′β̂|X) = c′β and var(c′β̂|X) =
σ 2c′(X′X)−1c.

Hint: look at the proofs of theorems 4.2 and 4.3. Bigger hint: look at
equations (4.8–10).

2. Verify that theorems 4.1–4 continue to hold, if we replace conditions
(4.4–5) with condition (2) above.

5.3 Generalized least squares

We now keep the equation Y = Xβ + ε, but change assumption (2) to

(7) E(ε|X) = 0n×1, cov(ε|X) = G,

whereG is a positive definite n×nmatrix. This is the GLS regression model
(X is assumed n×p with rank p < n). So the OLS estimator β̂OLS can be
defined by (4.6) and is unbiased given X by (4.9). However, the formula for
cov(β̂OLS|X) in theorem 4.3 no longer holds. Instead,

(8) cov(β̂OLS|X) = (X′X)−1X′GX(X′X)−1.

See (4.10), and exercise B2 below. Moreover, β̂OLS is no longer BLUE. Some
people regard this as a fatal flaw.

The fix—if you knowG—is to transform equation (1). You multiply on
the left by G−1/2, getting

(9)
(
G−1/2Y

) = (G−1/2X
)
β + (G−1/2ε

)
.

(Why does G−1/2 make sense? See exercise 3D7.) The transformed model
hasG−1/2Y as the response vector,G−1/2X as the design matrix, andG−1/2ε

as the vector of disturbances. The parameter vector is still β. Condition (2)
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holds (with σ 2 = 1) for the transformed model, by exercises 3C3 and 3C4.
That was the whole point of the transformation—and the main reason for
introducing condition (2).

The GLS estimator for β is obtained by applying OLS to (9):

β̂GLS =
[(
G−1/2X

)′(
G−1/2X

)]−1(
G−1/2X

)′
G−1/2Y.

Since (AB)′ = B ′A′ and G−1/2G−1/2 = G−1,

(10) β̂GLS = (X′G−1X)−1X′G−1Y.

Exercise B1 below shows that X′G−1X on the right hand side of (10) is
invertible. Furthermore,X is n×p, soX′ is p×n whileG andG−1 are n×n.
Thus, X′G−1X is p×p: and β̂GLS is p×1, as it should be. By theorem 4.2,

(11) the GLS estimator is conditionally unbiased given X.

By theorem 4.3 and the tiniest bit of matrix algebra,

(12) cov(β̂GLS|X) = (X′G−1X
)−1
.

There is no σ 2 in the formula: σ 2 is built into G. In the case of fixed X, the
GLS estimator is BLUE by theorem 1.

In applications, G is usually unknown, and has to be estimated from
the data. (There are some examples in the next section showing how this is
done.) Constraints have to be imposed on G. Without constraints, there are
too many covariances to estimate and not enough data. The estimate Ĝ is
substituted forG in (10), giving the feasible GLS or Aitken estimator β̂FGLS:

(13) β̂FGLS = (X′Ĝ−1X)−1X′Ĝ−1Y.

Covariances would be estimated by plugging in Ĝ for G in (12):

(14) ĉov(β̂FGLS|X) = (X′Ĝ−1X
)−1
.

Sometimes the “plug-in” covariance estimator ĉov is a good approximation.
But sometimes it isn’t—if there are a lot of covariances to estimate and not
enough data to do it well (chapter 8). Moreover, feasible GLS is usually
nonlinear. Therefore, β̂FGLS is usually biased, at least by a little. Remember,

β̂FGLS �= β̂GLS.
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Exercise set B

1. If the n×p matrix X has rank p < n and G is n×n positive definite,
show that G−1/2X has rank p; show also that X′G−1X is p×p positive
definite, hence invertible. Hint: see exercise 3D7.

2. Let β̂OLS be the OLS estimator in (1), where the design matrix X has
full rank p < n. Assume (7), i.e., we’re in the GLS model. Show that
E(Y |X) = Xβ and cov(Y |X) = G. Verify that E(β̂OLS|X) = β and
cov(β̂OLS|X) = (X′X)−1X′GX(X′X)−1.

3. Let β̂GLS be the GLS estimator in (1), where the design matrix X has
full rank p < n. Assume (7). Show in detail that E(β̂GLS|X) = β and
cov(β̂GLS|X) = (X′GX)−1.

5.4 Examples on GLS

We are in the GLS model (1) with assumption (7) on the errors. The first
example is right on the boundary between GLS and FGLS.

Example 1. Suppose Γ is a known positive definite n×n matrix and
G = λΓ , where λ > 0 is an unknown parameter. Because λ cancels in
equations (9)–(10), the GLS estimator is β̂GLS = (X′Γ −1X)−1X′Γ −1Y . This
is “weighted” least squares. Because Γ is fixed, the GLS estimator is linear
and unbiased given X; the conditional covariance is λ(X′Γ −1X)−1. More
directly, we can compute β̂GLS by an OLS regression of Γ −1/2Y on Γ −1/2X,
after which λ can be estimated as the mean square residual; the normalization
is by n− p. OLS is the special case where Γ = In×n.

Example 2. Suppose n is even, K is a positive definite 2×2 matrix, and

G =


K 02×2 · · · 02×2

02×2 K · · · 02×2
...

...
. . .

...

02×2 02×2 · · · K

 .
The n× n matrix G has K repeated along the main diagonal. Here, K is
unknown, to be estimated from the data. Chapter 8 has a case study with this
sort of matrix.

Make a first pass at the data, estimating β by OLS. This gives β̂(0), with
residual vector e = Y −Xβ̂(0). EstimateK using mean products of residuals:

K̂11 = 2

n

n/2∑
j=1

e2
2j−1 , K̂22 = 2

n

n/2∑
j=1

e2
2j , K̂12 = K̂21 = 2

n

n/2∑
j=1

e2j−1e2j .
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(Division by n− 2 is also fine.) Plug K̂ into the formula for G, and then Ĝ
into (10) to get β̂(1), which is a feasible GLS estimator called one-step GLS.
Now β̂ depends on K̂ . This is feasible GLS, not real GLS.

The estimation procedure can be repeated iteratively: get residuals off
β̂(1), use them to re-estimate K , use the new K̂ to get a new Ĝ. Now do
feasible GLS again. Voilà: β̂(2) is the two-step GLS estimator. People
usually keep going, until the estimator settles down. This sort of procedure
is called “iteratively reweighted” least squares.

Caution. Even with real GLS, the usual asymptotics may not apply.
That is because condition (2) is not a sufficient condition for the
central limit theorem, and (7) is even weaker. Feasible GLS adds
another layer of complexity (chapter 8).

Constraints. In the previous section, we said that to estimate G from
data, constraints had to be imposed. That is becauseG has n variances along
the diagonal, and n(n − 1)/2 covariances off the diagonal—far too many
parameters to estimate from n data points. What were the constraints in
example 1? Basically, G had to be a scalar multiple of Γ , so there was only
one parameter in G to worry about—namely, λ. Moreover, the estimated
value for λ didn’t even come into the formula for β̂.

What about example 2? Here, G11, G33, . . . are all constrained to be
equal: the common value is called K11. Similarly, G22, G44, . . . are all
constrained to be equal: the common value is calledK22. Also,G12,G34, . . .

are all constrained to be equal: the common value is calledK12. By symmetry,
G21 = G43 = · · · = K21 = K12. The remaining Gij are all constrained to
be 0. As a result, there are three parameters to estimate: K11, K22, and K12.
(Often, there will be many more parameters.) The constraints help explain
the form of K̂ . For instance, ε1, ε3, . . . all have common variance K11. The
“ideal” estimator for K11 would be the average of ε2

1 , ε
2
3 , . . . . The ε’s are

unobservable, so we use residuals.
Terminology. Consider the model (1), assuming only that E(ε|X) =

0n×1. Suppose too that the Yi are uncorrelated given X, i.e., cov(ε|X) is a
diagonal matrix. In this setup, homoscedasticity means that var(Yi |X) is the
same for all i, so that assumption (2) holds—although σ 2 may depend on
X. Heteroscedasticity means that var(Yi |X) isn’t the same for all i, so that
assumption (2) fails. Then people fall back on (7) and GLS.

Exercise set C

1. Suppose Ui are IID for i = 1, . . . , m with mean α and variance σ 2.
Suppose Vi are IID for i = 1, . . . , n with mean α and variance τ 2. The
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mean is the same, but variance and sample size are different. Suppose
the U ’s and V ’s are independent. How would you estimate α if σ 2

and τ 2 are known? if σ 2 and τ 2 are unknown? Hint: get this into
the GLS framework by defining εj = Uj − α for j = 1, . . . , m, and
εj = Vj−m − α for j = m+ 1, . . . , m+ n.

2. Suppose Y = Xβ+ε. The design matrixX is n×pwith rankp < n, and
ε
�
X. The εi are independent withE(εi) = 0. However, var(εi) = λci .

The ci are known positive constants.

(a) If λ is known and the ci are all equal, show that the GLS estimator
for β is the p×1 vector γ that minimizes∑

i (Yi −Xiγ )
2.

(b) If λ is known, and the ci are not all equal, show that the GLS
estimator for β is the p×1 vector γ that minimizes∑

i (Yi −Xiγ )
2/var (Yi |X).

Hints: In this application, what is the ith row of the matrix equation
(9)? How is (9) estimated?

(c) If λ is unknown, show that the GLS estimator for β is the p× 1
vector γ that minimizes∑

i (Yi −Xiγ )
2/ci .

3. (Hard.) There are three observations on a variable Y for each individual
i = 1, 2, . . . , 800. There is an explanatory variable Z, which is scalar.
Maria thinks that each subject i has a “fixed effect” ai and there is a
parameter b common to all 800 subjects. Her model can be stated this
way:

Yij = ai + Zijb + εij for i = 1, 2, . . . , 800 and j = 1, 2, 3.

She is willing to assume that the εij are independent with mean 0. She
also believes that the ε’s are independent of the Z’s and var(εij ) is the
same for j = 1, 2, 3. But she is afraid that var(εij) = σ 2

i depends on the
subject i. Can you get this into the GLS framework? What would you
use for the response vector Y in (1)? The design matrix? (This will get
ugly.) With her model, what can you say about G in (7)? How would
you estimate her model?
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5.5 What happens to GLS if the assumptions break down?

If E(ε|X) �= 0n×1, equation (10) shows the bias in the GLS estimator
is (X′G−1X)−1X′G−1E(ε|X). If E(ε|X) = 0n×1 but cov(ε|X) �= G, then
GLS will be unbiased but (12) breaks down. If G is estimated from data but
does not satisfy the assumptions behind the estimation procedure, then (13)
may be a misleading estimator of cov(β̂FGLS|X).
5.6 Normal theory

In this section and the next, we review the conventional theory of the
OLS model, which conditions on X—an n×p matrix of full rank p < n—
and restricts the εi to be independent N(0, σ 2). The principal results are the
t-test and the F -test. As usual, e = Y − Xβ̂ is the vector of residuals. Fix
k = 1, . . . , p. Write βk for the kth component of the vector β. To test the null
hypothesis that βk = 0 against the alternative βk �= 0, we use the t-statistic:

(15) t = β̂k/ŜE ,

with ŜE equal to σ̂ times the square root of the kkth element of (X′X)−1. We
reject the null hypothesis when |t | is large, e.g., |t | > 2. For testing at a fixed
level, the critical value depends (to some extent) on n − p. When n − p is
large, people refer to the t-test as the “z-test:” under the null, t is close to
N(0, 1). If the terminology is unfamiliar, see the definitions below.

Definitions. U ∼ N(0, 1), for instance, means that the random variable
U is normally distributed with mean 0 and variance 1. Likewise, U ∼ W

means thatU andW have the same distribution. SupposeU1, U2, . . . are IID
N(0, 1). We write χ2

d for a variable distributed as
∑d
i=1 U

2
i , and say that χ2

d

has the chi-squared distribution with d degrees of freedom. Furthermore,

Ud+1/

√
d−1

∑d
i=1 U

2
i

has Student’s t-distribution with d degrees of freedom.

Theorem 2. With independent N(0, σ 2) errors, the OLS estimator β̂
has a normal distribution with mean β and covariance matrix σ 2(X′X)−1.
Moreover, e

�
β̂ and ‖e‖2 ∼ σ 2χ2

d with d = n− p.

Corollary. Under the null hypothesis, t is distributed as U
/√
V/d,

where U
�
V , U ∼ N(0, 1), V ∼ χ2

d , and d = n − p. In other words,
if the null hypothesis is right, the t-statistic follows Student’s t-distribution,
with n− p degrees of freedom.
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Sketch proof of theorem 2. In the leading special case,X vanishes except
along the main diagonal of the top p rows, where Xii = 1. For instance, if
n = 5 and p = 2,

X =


1 0
0 1
0 0
0 0
0 0

 .
The theorem and corollary are pretty obvious in the special case, because
Yi = βi + εi for i ≤ p and Yi = εi for i > p. Consequently, β̂ consists of
the first p elements of Y, cov(β̂) = σ 2Ip×p = σ 2(X′X)−1, and e consists
of p zeros stacked on top of the last n− p elements of Y.

The general case is beyond our scope, but here is a sketch of the argument.
The key is finding a p×p upper triangular matrix M such that the columns
of XM are orthonormal. To construct M, regress column j on the previous
j − 1 columns (the “Gram-Schmidt process”). The residual vector from this
regression is the part of column j orthogonal to the previous columns. SinceX
has rankp, column 1 cannot vanish; nor can column j be a linear combination
of columns 1, . . . , j − 1. The orthogonal pieces can therefore be normalized
to have length 1. A bit of matrix algebra shows this set of orthonormal vectors
can be written as XM , where Mii �= 0 for all i and Mij = 0 for all i > j ,
i.e., M is upper triangular. In particular, M is invertible.

Let S be the special n×pmatrix discussed above, with the p×p identity
matrix in the top p rows and 0’s in the bottom n− p rows. There is an n×n
orthogonal matrixR withRXM = S. To getR, take the p×nmatrix (XM)′,
whose rows are orthonormal. Add n−p rows to (XM)′, one row at a time, so
the resulting matrix is orthonormal. In more detail, let Q be the (n− p)×n
matrix consisting of the added rows, so R is the “partitioned matrix” that
stacks Q underneath (XM)′:

R =
(
(XM)′
Q

)
.

The rows of R are orthonormal by construction. So

Q[(XM)′]′ = QXM = 0(n−p)×p.

The columns of XM are orthonormal, so (XM)′XM = Ip×p. Now

RXM =
(
(XM)′
Q

)
XM =

(
(XM)′XM
QXM

)
=
(

Ip×p
0(n−p)×p

)
= S,

as required.
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Consider the transformed regression model (RY ) = (RXM)γ + δ,
where γ = M−1β and δ = Rε. The δi are IID N(0, σ 2): see exercise
3E2. Let γ̂ be the OLS estimates from the transformed model, and let
f = RY − (RXM)γ̂ be the residuals. The special case of the theorem
applies to the transformed model.

You can check that β̂ = Mγ̂ . So β̂ is multivariate normal, as required
(section 3.5). The covariance matrix of β̂ can be obtained from theorem 4.3.
But here is a direct argument: cov(β̂) = Mcov(γ̂ )M ′ = σ 2MM ′. We
claim that MM ′ = (X′X)−1. Indeed, RXM = S, so XM = R′S. Then
M ′X′XM = S′RR′S = S′S = Ip×p. Multiply on the left by M ′−1 and on
the right by M−1 to see that X′X = M ′−1M−1 = (MM ′)−1. Invert this
equation: (X′X)−1 = MM ′, as required.

For the residuals, e = R−1f , where f was the residual vector from
the transformed model. But R−1 = R′ is orthogonal, so ‖e‖2 = ‖f ‖2 ∼
σ 2χ2

n−p: cf. exercise 3D3. Independence is the last issue. In our leading
special case, f

�
γ̂ . Thus, R−1f

�
Mγ̂ , i.e., e

�
β̂, completing a sketch

proof of theorem 2.

Suppose we drop the normality assumption, requiring only that the εi
are independent and identically distributed with mean 0 and finite variance
σ 2. If n is a lot larger than p, and the design matrix is not too weird, then β̂
will be close to normal—thanks to the central limit theorem. Furthermore,
‖e‖2/(n− p)

.= σ 2. The observed significance level—aka P-value—of the
two-sided t-test will be essentially the area under the normal curve beyond
±β̂k/ŜE. Without the normality assumption, however, little can be said about
the asymptotic size of

√
n
{
[‖e‖2/(n−p)]−σ 2

}
: this will depend onE(ε4

i ).

Statistical significance

IfP < 10%, then β̂k is statistically significant at the 10% level, or barely
significant. If P < 5%, then β̂k is statistically significant at the 5% level, or
statistically significant. If P < 1%, then β̂k is statistically significant at the
1% level, or highly significant. When n−p is large, the respective cutoffs for
a two-sided t-test are 1.64, 1.96, and 2.58: see page 309 below. If β̂j and β̂k
are both statistically significant, the corresponding explanatory variables are
said to have independent effects on Y : this has nothing to do with statistical
independence.

Statistical significance is little more than technical jargon. Over the
years, however, the jargon has acquired enormous—and richly undeserved—
emotional power. For additional discussion, see Freedman-Pisani-Purves
(2007, chapter 29).
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Exercise set D

1. We have an OLS model with p = 1, and X is a column of 1’s. Find
β̂ and σ̂ 2 in terms of Y and n. If the errors are IID N(0, σ 2), find the
distribution of β̂ − β, σ̂ 2, and

√
n(β̂ − β)/σ̂ . Hint: see exercise 3B16.

2. Lei is a PhD student in sociology. She has a regression equation Yi =
a + bXi + Ziγ + εi . Here, Xi is a scalar, while Zi is a 1×5 vector
of control variables, and γ is a 5 × 1 vector of parameters. Her theory
is that b �= 0. She is willing to assume that the εi are IID N(0, σ 2),
independent of X and Z. Fitting the equation to data for i = 1, . . . , 57
by OLS, she gets b̂ = 3.79 with ŜE = 1.88. True or false and explain—

(a) For testing the null hypothesis that b = 0, t
.= 2.02. (Reminder:

the dotted equals sign means “about equal.”)

(b) b̂ is statistically significant.

(c) b̂ is highly significant.

(d) The probability that b �= 0 is about 95%.

(e) The probability that b = 0 is about 5%.

(f) If the model is right and b = 0, there is about a 5% chance of
getting |b̂/ŜE| > 2.

(g) If the model is right and b = 0, there is about a 95% chance of
getting |b̂/ŜE| < 2.

(h) Lei can be about 95% confident that b �= 0.

(i) The test shows the model is right.

(j) The test assumes the model is right.

(k) If the model is right, the test gives some evidence that b �= 0.

3. A philosopher of science writes,

“Suppose we toss a fair coin 10,000 times, the first 5000 tosses
being done under a red light, and the last 5000 under a green light.
The color of the light does not affect the coin. However, we would
expect the statistical null hypothesis—that exactly as many heads
will be thrown under the red light as the green light—would very
likely not be true. There will nearly always be random fluctuations
that make the statistical null hypothesis false.”

Has the null hypothesis been set up correctly? Explain briefly.

4. An archeologist fits a regression model, rejecting the null hypothesis that
β2 = 0, with P < 0.005. True or false and explain:
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(a) β2 must be large.

(b) β̂2 must be large.

5.7 The F -test

We are in the OLS model. The design matrix X has full rank p < n.
The εi are independent N(0, σ 2) with ε

�
X. We condition on X. Suppose

p0 ≥ 1 and p0 ≤ p. We are going to test the null hypothesis that the last p0
of the βi’s are 0: that is, βi = 0 for i = p − p0 + 1, . . . , p. The alternative
hypothesis is βi �= 0 for at least one i = p − p0 + 1, . . . , p. The usual test
statistic is called F , in honor of Sir R. A. Fisher. To define F , we need to fit
the full model (which includes all the columns of X) and a smaller model.

(A) First, we fit the full model. Let β̂ be the OLS estimate, and e the
residual vector.

(B) Next, we fit the smaller model that satisfies the null hypothesis:
βi = 0 for all i = p−p0 +1, . . . , p. Let β̂(s) be the OLS estimate
for the smaller model.

In effect, the smaller model just drops the last p0 columns of X; then β̂(s) is
a (p − p0)×1 vector. Or, think of β̂(s) as p ×1, the last p0 entries being 0.
The test statistic is

(16) F =
(‖Xβ̂‖2 − ‖Xβ̂(s)‖2

)
/p0

‖e‖2/(n− p)
.

Example 3. We have a regression model

Yi = a + bui + cvi + dwi + fzi + εi for i = 1, . . . , 72.

(The coefficients skip from d tof because e is used for the residual vector
in the big model.) The u, v,w, z are just data, and the design matrix has
full rank. The εi are IID N(0, σ 2). There are 72 data points and β has 5
components:

β =


a

b

c

d

f

 .
So n = 72 and p = 5. We want to test the null hypothesis that d = f = 0.
So p0 = 2 and p−p0 = 3. The null hypothesis leaves the first 3 parameters
alone but constrains the last 2 to be 0. The small model would just drop w
and z from the equation, leaving Yi = a + bui + cvi + εi for i = 1, . . . , 72.
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To say this another way, the design matrix for the big model has 5
columns. The first column is all 1’s, for the intercept. There are columns for
u, v,w, z. The design matrix for the small model only has 3 columns. The
first column is all 1’s. Then there are columns for u and v. The small model
throws away the columns for w and z. That is because the null hypothesis
says d = f = 0. The null hypothesis does not allow the columns forw and z
to come into the equation. To compute Xβ̂(s), use the smaller design matrix;
or, if you prefer, use the original design matrix and pad out β̂(s) with two 0’s.

Theorem 3. With independent N(0, σ 2) errors, under the null hypoth-
esis,

‖Xβ̂‖2 − ‖Xβ̂(s)‖2 ∼ U, ‖e‖2 ∼ V, F ∼ U/p0

V/(n− p)
,

where U
�
V , U ∼ σ 2χ2

p0
, and V ∼ σ 2χ2

n−p.

A reminder on the notation: p0 is the number of parameters that are
constrained to 0, while β̂(s) estimates the other coefficients. The distribution
of F under the null hypothesis is Fisher’s F -distribution, with p0 degrees of
freedom in the numerator and n−p in the denominator. The σ 2 cancels out.
We reject when F is large, e.g., F > 4. For testing at a fixed level, the critical
value depends on the degrees of freedom in numerator and denominator. See
page 309 on finding critical values.

The theorem can be proved like theorem 2; details are beyond our scope.
Intuitively, if the null hypothesis is right, numerator and denominator are both
estimating σ 2, so F should be around 1. The theorem applies to any p0 of
the β’s; using the last p0 simplifies the notation. If p0 and p are fixed while
n gets large, and the design matrix behaves itself, the normality assumption
is not too important. If p0, p, and n − p are similar in size, normality may
be an issue. A careful (graduate-level) treatment of the t- and F -tests and
related theory will be found in Lehmann (1991ab). Also see the comments
after lab 5 at the back of the book.

“The” F-test in applied work

In journal articles, a typical regression equation will have an intercept
and several explanatory variables. The regression output will usually include
an F -test, with p − 1 degrees of freedom in the numerator and n − p in
the denominator. The null hypothesis will not be stated. The missing null
hypothesis is that all the coefficients vanish, except for the intercept.

If F is significant, that is often thought to validate the model. Mistake.
The F -test takes the model as given. Significance only means this: if the
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model is right and the coefficients are 0, it was very unlikely to get such a
big F -statistic. Logically, there are three possibilities on the table. (i) An
unlikely event occurred. (ii) Or the model is right and some of the coefficients
differ from 0. (iii) Or the model is wrong. So?

Exercise set E

1. SupposeUi = α+δi for i = 1, . . . , n. The δi are independentN(0, σ 2).
The parameters α and σ 2 are unknown. How would you test the null
hypothesis that α = 0 against the alternative that α �= 0?

2. Suppose Ui are independentN(α, σ 2) for i = 1, . . . , n. The parameters
α and σ 2 are unknown. How would you test the null hypothesis that
α = 0 against the alternative that α �= 0?

3. In exercise 1, what happens if the δi are IID with mean 0, but are not
normally distributed? if n is small? large?

4. InYule’s model (1.1), how would you test the null hypothesis c = d = 0
against the alternative c �= 0 or d �= 0? Be explicit. You can use
the metropolitan unions, 1871–81, for an example. What assumptions
would be needed on the errors in the equation? (See lab 6 at the back of
the book.)

5. There is another way to define the numerator of the F -statistic. Let e(s)

be the vector of residuals from the small model. Show that

‖Xβ̂‖2 − ‖Xβ̂(s)‖2 = ‖e(s)‖2 − ‖e‖2.

Hint: what is ‖Xβ̂(s)‖2 + ‖e(s)‖2?

6. (Hard.) George uses OLS to fit a regression equation with an intercept,
and computes R2. Georgia wants to test the null hypothesis that all the
coefficients are 0, except for the intercept. Can she compute F fromR2,
n, and p? If so, what is the formula? If not, why not?

5.8 Data snooping

The point of testing is to help distinguish between real effects and chance
variation. People sometimes jump to the conclusion that a result which is sta-
tistically significant cannot be explained as chance variation. However, even
if the null hypothesis is right, there is a 5% chance of getting a “statistically
significant” result, and there is 1% chance to get a “highly significant” result.
An investigator who makes 100 tests can expect to get five results that are
“statistically significant” and one that is “highly significant,” even if the null
hypothesis is right in every case.
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Investigators often decide which hypotheses to test only after they’ve
examined the data. Statisticians call this data snooping. To avoid being
fooled by statistical artifacts, it would help to know how many tests were run
before “statistically significant” differences turned up. Such information is
seldom reported.

Replicating studies would be even more useful, so the statistical analysis
could be repeated on an independent batch of data. This is commonplace in
the physical and health sciences, rare in the social sciences. An easier option
is cross validation: you put half the data in cold storage, and look at it only
after deciding which models to fit. This isn’t as good as real replication but
it’s much better than nothing. Cross validation is standard in some fields, not
in others.

Investigators often screen out insignificant variables and refit the equa-
tions before publishing their models. What does this data snooping do to
P -values?

Example 4. Suppose Y consists of 100 independent random variables,
each being N(0, 1). This is pure noise. The design matrix X is 100 × 50.
All the variables are independent N(0, 1). More noise. We regress Y on
X. There won’t be much to report, although we can expect an R2 of around
50/100 = 0.5. (This follows from theorem 3, with n = 100 and p0 = p =
50, so β̂(s) = 050×1.)

Now suppose we test each of the 50 coefficients at the 10% level, and
keep only the “significant” variables. There will be about 50×0.1 = 5 keep-
ers. If we just run the regression on the keepers, quietly discarding the other
variables, we are likely to get a decentR2—by social-science standards—and
dazzling t-statistics. One simulation, for example, gave 5 keeper columns out
of 50 starters inX. In the regression of Y on the keepers, the R2 was 0.2, and
the t-statistics were −1.037, 3.637, 3.668, −3.383, −2.536.

This is just one simulation. Maybe the data set was exceptional? Try
it yourself. There is one gotcha. The expected number of keepers is 5, but
the SD is over 3, so there is a lot of variability. With more keepers, the R2 is
likely to be better; with fewer keepers, R2 is worse. There is a small chance
of having no keepers at all—in which case, try again. . . .

R2 without an intercept. If there is no intercept in a regression equation,
R2 is defined as

(17) ‖Ŷ‖2/‖Y‖2.



76 CHAPTER 5

Exercise set F

1. The number of keeper columns isn’t binomial. Why not?

2. In a regression equation without an intercept, show that 1 − R2 =
‖e‖2/‖Y‖2, where e = Y − Ŷ is the vector of residuals.

5.9 Discussion questions

Some of these questions cover material from previous chapters.

1. Suppose Xi are independent normal random variables with variance 1,

for i = 1, 2, 3. The means are α +β, α +2β , and 2α +β, respectively.

How would you estimate the parameters α and β?

2. The F-test, like the t-test, assumes something in order to demonstrate

something. What needs to be assumed, and what can be demonstrated?

To what extent can the model itself be tested using F? Discuss briefly.

3. Suppose Y = Xβ + ε where

(i) X is n× p of rank p, and

(ii) E(ε|X) = γ , a non-random n×1 vector, and

(iii) cov(ε|X) = G, a non-random positive definite n×n matrix.

Let β̂ = (X ′X)−1 X ′Y . True or false and explain:

(a) E(β̂|X) = β.

(b) cov(β̂|X) = σ 2(X ′X)−1.

In (a), the exceptional case γ ⊥ X should be discussed separately.

4. (This continues question 3.) Suppose p > 1, the first column of X is all

1’s, and γ1 = · · · = γn .

(a) Is β̂1 biased or unbiased given X?

(b) What about β̂2?

5. Suppose Y = Xβ + ε where

(i) X is fixed not random, n× p of rank p, and

(ii) the εi are IID with mean 0 and variance σ 2, but

(iii) the εi need not be normal.

Let β̂ = (X ′X)−1 X ′Y . True or false and explain:

(a) E(β̂) = β.

(b) cov(β̂) = σ 2(X ′X)−1.

(c) If n = 100 and p = 6, it is probably OK to use the t-test.

(d) If n = 100 and p = 96, it is probably OK to use the t-test.
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6. Suppose that X1, X2, . . . , Xn, δ1, δ2, . . . , δn are independent N(0, 1)
variables, and Yi = X2

i − 1 + δi. However, Julia regresses Yi on Xi .
What will she conclude about the relationship between Yi and Xi?

7. Suppose U and V1, . . . , Vn are IID N(0, 1) variables; µ is a real num-
ber. Let Xi = µ + U + Vi . Let X = n−1∑n

i=1Xi and s2 =
(n− 1)−1∑n

i=1(Xi −X)2.

(a) What is the distribution of Xi?
(b) Do the Xi have a common distribution?
(c) Are the Xi independent?
(d) What is the distribution of X? of s2?
(e) Is there about a 68% chance that |X − µ| < s/√n?

8. Suppose Xi are N(µ, σ 2) for i = 1, . . . , n, where n is large. We use X
to estimate µ. True or false and explain:

(a) If the Xi are independent, then X will be around µ, being off by
something like s/

√
n; the chance that |X − µ| < s/

√
n is about

68%.

(b) Even if the Xi are dependent, X will be around µ, being off by
something like s/

√
n; the chance that |X − µ| < s/

√
n is about

68%.

What are the implications for applied work? For instance, how would
dependence affect your ability to make statistical inferences about µ?
(Notation: X and s2 were defined in question 7.)

9. Suppose Xi has mean µ and variance σ 2 for i = 1, . . . , n, where n is
large. These random variables have a common distribution, which is not
normal. We use X to estimate µ. True or false and explain:

(a) If the Xi are IID, then X will be around µ, being off by something
like s/

√
n; the chance that |X − µ| < s/√n is about 68%.

(b) Even if the Xi are dependent, X will be around µ, being off by
something like s/

√
n; the chance that |X − µ| < s/

√
n is about

68%.

What are the implications for applied work? (Notation: X and s2 were
defined in question 7.)

10. Discussing an application like example 2 in section 4, a social scientist
says “one-step GLS is very problematic because it simply downweights
observations that do not fit the OLS model.”

(a) Does one-step GLS downweight observations that do not fit the
OLS model?
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(b) Would this be a bug or a feature?

Hint: look at exercises C1–2.

11. You are thinking about a regression model Y = Xβ + ε, with the usual
assumptions. A friend suggests adding a columnZ to the design matrix.
If you do it, the bigger design matrix still has full rank. What are the
arguments for putting Z into the equation? Against putting it in?

12. A random sample of size 25 is taken from a population with mean µ.
The sample mean is 105.8 and the sample variance is 110. The computer
makes a t-test of the null hypothesis that µ = 100. It doesn’t reject the
null. Comment briefly.

5.10 End notes for chapter 5

BLUEness. If X is random, the OLS estimator is linear in Y but not
X. Furthermore, the set of unbiased estimators is much larger than the set of
conditionally unbiased estimators. Restricting to fixed X makes life easier.
For discussion, see Shaffer (1991). There is a more elegant (although perhaps
more opaque) matrix form of the theorem; see, e.g.,

http://www.stat.berkeley.edu/users/census/GaussMar.pdf

Example 1. This is the textbook case of GLS, with λ playing the role of
σ 2 in OLS. What justifies our estimator for λ? The answer is that theorem 4.4
continues to hold under condition (5.2); the proof is essentially the same. On
the other hand, without further assumptions, the normal approximation is
unlikely to hold for β̂GLS: see, e.g.,

http://www.stat.berkeley.edu/users/census/cltortho.pdf

White’s correction for heteroscedasticity. Also called the “Huber-White
correction.” It may seem natural to estimate the covariance of β̂OLS given X
as (X′X)−1X′ĜX(X′X)−1, where e = Y −Xβ̂OLS is the vector of residuals
and Ĝij = eiej : see (8). However, e ⊥ X. So X′e = e′X = 0 and the
proposed matrix is identically 0. On the other hand, if the εi are assumed
independent, the off-diagonal elements of Ĝ would be set to 0. This often
works, although Ĝii can be so variable that t-statistics are surprisingly non-
t-like (see notes to chapter 8). With dependence, smoothing can be tried. A
key reference is White (1980).

Fixed-effects models. These are now widely used, as are “random-effects
models” (where subjects are viewed as a random sample from some super-
population). One example of a fixed-effects model, which illustrates the
strengths and weaknesses of the technique, is Grogger (1995).
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Asymptotics for t and F . See end notes for chapter 4, and

http://www.stat.berkeley.edu/users/census/Ftest.pdf

Data snooping. The simulation discussed in section 8 was run another
1000 times. There were 19 runs with no keepers. Otherwise, the simulations
gave a total of 5213 t-statistics whose distribution is shown in the histogram
below. A little bit of data-snooping goes a long way: t-statistics with |t | > 2
are the rule not the exception—in regressions on the keeper columns. If we
add an intercept to the model, “the” F -test will give off-scale P -values.

 –8  –6  –4 –2 0 2 4 6 8

Replication is the best antidote (Ehrenberg and Bound 1993), but repli-
cation is unusual (Dewald et al 1986, Hubbard et al 1998). Many texts
actually recommend data snooping. See, e.g., Hosmer and Lemeshow (2000,
pp. 95ff): they suggest a preliminary screen at the 25% level, which will
inflate R2 and F even beyond our example. For an empirical demonstration
of the pitfalls, see Austin et al (2006).

An informal argument to show that R2 .= 0.5 in example 4. If Y is
an n vector of independent N(0, 1) variables, and we project it onto two
orthogonal linear spaces of dimensions p and q, the squared lengths of the
projections are independent χ2 variables, with p and q degrees of freedom,
respectively. Geometrically, this can be seen as follows. Choose a basis for
first space and one for the second space. Rotate Rn so the basis vectors for
the two linear spaces become unit vectors,

u1, . . . , up

and
up+1, . . . , up+q,

where

u1 = (1, 0, 0, 0, . . .), u2 = (0, 1, 0, 0, . . .), u3 = (0, 0, 1, 0, . . .), . . . .

The distribution of Y is unchanged by rotation. The squared lengths of the
two projections are Y 2

1 + · · · + Y 2
p and Y 2

p+1 + · · · + Y 2
p+q .
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For the application in example 4, put n = 100 and p = q = 50. Con-

dition on the random design matrix X . The first linear space is cols X .

The second linear space consists of all vectors in R100 that are orthogonal

to cols X . The same idea lurks behind the proof of theorem 2, where p = 1,

q = n − 1, and the first linear space is spanned by a column of 1’s. A similar

argument proves theorem 3. Unfortunately, details get tedious when written

out.

Corrections for multiple testing. In some situations, there are proce-

dures for controlling the “false discovery rate” due to multiple testing: see,

e.g., Benjamini and Hochberg (1995). Other authors recommend against any

adjustments for multiple testing, on the theory that adjustment would reduce

power. Such authors never quite explain what the unadjusted P-value means.

See, e.g., Rothman (1990) or Perneger (1998).

The discussion questions. Questions 3–6 look at assumptions in the

regression model. Questions 7–9 reinforce the point that independence is the

key to estimating precision of estimates from internal evidence. Question 10

is based on Beck (2001, pp. 276–77). In question 6, the true regression is

nonlinear: E(Yi |Xi ) = Xi
2 − 1. Linear approximation is awful. On the

other hand, if Yi = Xi
3, linear approximation is pretty good, on average. (If

you want local behavior, say at 0, linear approximation is a bad idea; it is

also bad for large x ; nor should you trust the usual formulas for the SE.)

We need the moments of Xi to make these ideas more precise (see below).

The regression of Xi
3 on Xi equals 3Xi . The correlation between Xi

3 and

Xi is 3/
√

15 = 0.77. Although the cubic is strongly nonlinear, it is well

correlated with a linear function. The moments can be used to get explicit

formulas for asymptotic bias and variance, although this takes more work.

The asymptotic variance differs from the “nominal” variance—what you get

from X ′ X . For additional detail, see

www.stat.berkeley.edu/users/census/badols.pdf

Normal moments. Let Z be N (0, 1). The odd moments of Z vanish, by

symmetry. The even moments can be computed recursively. Integration by

parts shows that E(Z2n+2) = (2n + 1)E(Z2n). So

E(Z2) = 1, E(Z4) = 3, E(Z6) = 5 × 3 = 15, E(Z8) = 7 × 15 = 105 . . . .
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Path Models

6.1 Stratification

A path model is a graphical way to represent a regression equation or
several linked regression equations. These models, developed by the geneti-
cist Sewell Wright, are often used to make causal inferences. We will look
at a couple of examples and then explain the logic, which involves response
schedules and the idea of stability under interventions.

Blau and Duncan (1967) are thinking about the stratification process
in the United States. According to Marxist scholars of the time, the US is
a highly stratified society. Status is determined by family background and
transmitted through the school system. Blau and Duncan have data in their
chapter 2, showing that family background variables do influence status—
but the system is far from deterministic. The US has a permeable social
structure, with many opportunities to succeed or fail. Blau and Duncan go
on to develop the path model shown in figure 1 on the next page, in order to
answer questions like these:

“how and to what degree do the circumstances of birth condition sub-
sequent status? and, how does status attained (whether by ascription
or achievement) at one stage of the life cycle affect the prospects for a
subsequent stage?” [p. 164]
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Figure 1. Path model. Stratification, US, 1962.

V

X
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Y
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.224

.279 .440 .115

.394

.281
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.818

.753

Y SON’S OCC
W SON’S 1st JOB
U SON’S ED
X DAD’S OCC
V DAD’S ED

The five variables in the diagram are son’s occupation, son’s first job,
son’s education, father’s occupation, and father’s education. Data come from
a special supplement to the March 1962 Current Population Survey. The
respondents are the sons (age 20–64), who answer questions about current job,
first job, and parents. There are 20,000 respondents. Education is measured
on a scale from 0 to 8, where 0 means no schooling, 1 means 1–4 years
of schooling, . . . , 8 means some post-graduate education. Occupation is
measured on Duncan’s prestige scale from 0 to 96. The scale takes into
account income, education, and raters’ opinions of job prestige. Hucksters
and peddlers are near the bottom of the pyramid, with clergy in the middle
and judges at the top.

The path diagram uses standardized variables. Before running regres-
sions, you subtract the mean from each data variable, and divide by the stan-
dard deviation. After standardization, means are 0 and variances are 1; fur-
thermore, variables pretty much fall in the range from −3 to 3. Table 1 shows
the correlation matrix for the data.

How is figure 1 to be read? The diagram unpacks to three regression
equations:

(1) U = aV + bX + δ,
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Table 1. Correlation matrix for variables in Blau and Duncan’s path model.

Y W U X V

Son’s occ Son’s 1st job Son’s ed Dad’s occ Dad’s ed

Y Son’s occ 1.000 .541 .596 .405 .322
W Son’s 1st job .541 1.000 .538 .417 .332
U Son’s ed .596 .538 1.000 .438 .453
X Dad’s occ .405 .417 .438 1.000 .516
V Dad’s ed .322 .332 .453 .516 1.000

W = cU + dX + ε,(2)

Y = eU + fX + gW + η.(3)

Equations are estimated by least squares. No intercepts are needed because
the variables are standardized. (See exercise C6 for the reasoning on the
intercepts; statistical assumptions will be discussed in section 5 below.)

In figure 1, the arrow fromV toU indicates a causal link, andV is entered
by Blau and Duncan on the right hand side of the regression equation (1) that
explains U . The path coefficient 0.310 next to the arrow is the estimated
coefficient â of V . The number 0.859 on the “free arrow” (that points into
U from outside the diagram) is the estimated standard deviation of the error
term δ in (1). The free arrow itself represents δ.

The other arrows in figure 1 are interpreted in a similar way. There
are three equations because three variables in the diagram (U,W, Y ) have
arrows pointing into them. The curved line joining V and X is meant to
indicate association rather than causation: V and X influence each other, or
are influenced by some common causes not represented in the diagram. The
number on the curved line is just the correlation between V and X (table 1).

The Census Bureau (which conducts the Current Population Survey used
by Blau and Duncan) would not release raw data, due to confidentiality con-
cerns. The Bureau did provide the correlation matrix in table 1. As it turns
out, the correlations are all that is needed to fit the standardized equations.
We illustrate the process on equation (1), which can be rewritten in matrix
form as

(4) U = M
(a
b

)
+ δ,

where U and δ are n×1 vectors, while M is the n× 2 “partitioned matrix”

M = (V X) .
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In other words, the design matrix has one row for each subject, one column
for the variable V, and a second column for X. Initially, father’s education is
in the range from 0 to 8. After it is standardized to have mean 0 and variance 1
across respondents, V winds up (with rare exceptions) in the range from −3
to 3. Similarly, father’s occupation starts in the range from 0 to 96, but X
winds up between −3 and 3. Algebraically, the standardization implies

(5)
1

n

n∑
i=1

Vi = 0,
1

n

n∑
i=1

V 2
i = 1.

Similarly for X and U . In particular,

(6) rVX = 1

n

n∑
i=1

ViXi

is the data-level correlation between V and X, computed across respondents
i = 1, . . . , n. See equation (2.4).

To summarize the notation, the sample size n is about 20,000. Next,
Vi is the education of the ith respondent’s father, standardized. And Xi is
the father’s occupation, scored on Duncan’s prestige scale from 0 to 96, then
standardized. So,

M ′M =
( ∑n

i=1 V
2
i

∑n
i=1 ViXi∑n

i=1 ViXi
∑n
i=1X

2
i

)
= n

(
1 rVX

rVX 1

)
= n

(
1.000 0.516

0.516 1.000

)
.

(You can find the 0.516 in table 1.) Similarly,

M ′U =
(∑n

i=1 ViUi∑n
i=1XiUi

)
= n

(
rVU

rXU

)
= n

(
0.453

0.438

)
.

Now we can use equation (4.6) to get the OLS estimates: â
b̂

 = (M ′M)−1M ′U =
(

0.309

0.278

)
.

These differ in the 3rd decimal place from path coefficients in figure 1, prob-
ably due to rounding.

What about the numbers on the free arrows? The residual variance in a
regression equation—the mean square of the residuals—is used to estimate
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the variance of the disturbance term. Let σ̂ 2 be the residual variance in (1).
We’re going to derive an equation that can be solved for σ̂ 2. As a first step,
let δ̂ be the residuals after fitting (1) by OLS. Then

1 = 1

n

n∑
i=1

U2
i because U is standardized(7)

= 1

n

n∑
i=1

(
âVi + b̂Xi + δ̂i

)2
= â

2 1

n

n∑
i=1

V 2
i + b̂2 1

n

n∑
i=1

X2
i + 2 â b̂

1

n

n∑
i=1

ViXi + 1

n

n∑
i=1

δ̂2
i .

Two cross-product terms were dropped in (7). This is legitimate because the
residuals are orthogonal to the design matrix, so

2 â
1

n

n∑
i=1

Viδ̂i = 2 b̂
1

n

n∑
i=1

Xiδ̂i = 0.

Because V and X were standardized,

1

n

n∑
i=1

V 2
i = 1,

1

n

n∑
i=1

X2
i = 1,

1

n

n∑
i=1

ViXi = rVX .

Substitute back into (7). Since σ̂ 2 is the mean square of the residuals δ̂,

(8) 1 = â2 + b̂2 + 2 â b̂ rVX + σ̂ 2.

Equation (8) can be solved for σ̂ 2. Take the square root to get the SD.
The SDs are shown on the free arrows in figure 1. With a small sample,
this isn’t such a good way to estimate σ 2, because it doesn’t take degrees of
freedom into account. The fix would be to multiply σ̂ 2 by n/(n− p). When
n = 20,000 and p = 3 or 4, this is not an issue. If n were a lot smaller, in
standardized equations like (1) and (2) with two variables, the best choice for
p is 3. Behind the scenes, there is an intercept being estimated. That is the
third parameter. In an equation like (3), with three variables, take p = 4. The
sample size n cancels when computing the path coefficients, but is needed
for standard errors.

The large SDs in figure 1 show the permeability of the social struc-
ture. (Since variables are standardized, the SDs cannot exceed 1—exercise 4
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below—so 0.753 is a big number.) Even if we know your family background
and your education and your first job, the variation in the social status of your
current job is 75% of the variation in the full sample. Variation is measured
by SD not variance: variance is on the wrong scale.

The big SDs are a good answer to the Marxist argument, and so is
the data analysis in Blau and Duncan (1967, chapter 2). As social physics,
however, figure 1 leaves something to be desired. Why linearity? Why the
same coefficients for everybody? What about variables like intelligence or
motivation? And where are the mothers??

Now let’s return to standardization. Standardizing might be sensible if
(i) units are meaningful only in comparative terms (e.g., prestige points), or
(ii) the meaning of units changes over time (e.g., years of education) while
correlations are stable.

If the object is to find laws of nature that are stable under intervention,
standardizing may be a bad idea, because estimated parameters would depend
on irrelevant details of the study design (section 2 below). Generally, the
intervention idea gets muddier with standardization. It will be difficult to hold
the standard deviations constant when individual values are manipulated. If
the SDs change too, what is supposed to be invariant and why? (Manipulation
means an intervention, as in an experiment, to set a variable at the value chosen
by the investigator: there is no connotation of unfairness.)

For descriptive statistics, with only one data set at issue, standardizing is
really a matter of taste: do you like pounds, kilograms, or standard units? All
variables are similar in scale after standardization, which may make it easier
to compare regression coefficients. That could be why social scientists like
to standardize.

The terminology is peculiar. “Standardized regression coefficients” are
just coefficients that come from fitting the equation to standardized vari-
ables. Similarly, “unstandardized regression coefficients” come from fitting
the equation to the “raw”—unstandardized—variables. It is not coefficients
that get standardized, but variables.

Exercise set A

1. Fit the equations in figure 1; find the SDs. (Cf. lab 8, back of book.)

2. Is a in equation (1) a parameter or an estimate? 0.322 in table 1? 0.310
in figure 1? How is 0.753 in figure 1 related to equation (3)?

3. True or false, and explain: after fitting equation (1), the mean square of
the residuals equals their variance.
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4. Prove that the SDs in a path diagram cannot exceed 1, if variables are

standardized.

5. When considering what figure 1 says about permeability of the social

system, should we measure variation in status by the SD, or variance?

6. In figure 1, why is there no arrow from V to W or V to Y ? In principle,

could there be an arrow from Y to U?

7. What are some important variables omitted from equation (3)?

8. The education variable in figure 1 takes values 0, 1, . . . , 8. Does that

have any implications for linearity in (1)? What if the education vari-

able only took values 0, 1, 2, 3, 4? If the education variable only took

values 0 and 1?

6.2 Hooke’s law revisited
According to Hooke’s law (section 2.3), if weight x is hung on a spring,

and x is not too large, the length of the spring is a + bx + ε. (Near the elastic

limit of the spring, the physics will be more complicated.) In this equation, a
and b are physical constants that depend on the spring, not the weights. The

parameter a is the length of the spring with no load. The parameter b is the

length added to the spring by each additional unit of weight. The ε is random

measurement error, with the usual assumptions.

If we were to standardize, the crucial slope parameter would depend on

the weights and on the accuracy of the device used to measure the length

of the spring. To see this, let v > 0 be the variance of the weights used

in the experiment. Let σ 2 be the variance of ε. Let s2 be the mean square

of the residuals (normalized by n, not n − p). The standardized regression

coefficient is

b̂
√

v

b̂2v + s2

.= b

√
v

b2v + σ 2
,(9)

by exercise 2 below. The dotted equals sign means “approximately equal.”

The standardized regression coefficient tells us about a parameter—the

right hand side of (9)—that depends on v and σ 2. But v and σ 2 are features

of the measurement procedure, not the spring. The parameter we want to

estimate is b, which tells us how the spring responds when the load is manip-

ulated. The unstandardized b̂ works like a charm; the standardized b̂ could

be misleading. More generally, if a regression coefficient is stable under

interventions, standardizing is not a good idea—stability will get lost in the

shuffle. That is what (9) shows.

Standardize coefficients only if there is a good reason to do so.
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Exercise set B

1. Is v in equation (9) the variance of a data variable, or a random variable?
What about σ 2?

2. Check that the left hand side of (9) is the standardized slope. Hint: work
out the correlation coefficient between the weights and the lengths.

3. What happens to (9) if σ 2 .= 0? What would that tell us about springs
and weights?

6.3 Political repression during the McCarthy era

Gibson (1988), reprinted at the back of the book, is about the causes of
McCarthyism in the United States—the great witch-hunt for Reds in public
life, particularly in Hollywood and the State Department. With the opening
of Soviet archives, it became pretty clear there had been many agents of
influence in the US, but McCarthy probably did more harm than all of them
put together.

Was repression due to the masses or the elites? Gibson argues that elite
intolerance is the root cause. His chief piece of empirical evidence is the
path diagram in figure 2, redrawn from the paper. The unit of analysis is the
state. The dependent variable is a measure of repressive legislation in each
state (table 1 in the paper, and note 4). The independent variables are mean
tolerance scores for each state, derived from the “Stouffer survey of masses
and elites” (table A1 in the paper, and note 8). The “masses” are just ordinary
people who turn up in a probability sample of the population. “Elites” include

Figure 2. Path model. The causes of McCarthyism. The free arrow
pointing into Repression is not shown.

–.06

–.35**

Repression

Elite
tolerance

Mass
tolerance
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school board presidents, commanders of the American Legion, bar association

presidents, and trade union officials, drawn from lists of community leaders

in medium-size cities (Stouffer 1955, pp. 17–19).

Data on masses were available for 36 states; on elites, for 26 states.

Gibson computes correlations from the available data, then estimates a stan-

dardized regression equation. He says,

“Generally, it seems that elites, not masses, were responsible for the

repression of the era. . . . The beta for mass opinion is −.06; for elite

opinion, it is −.35 (significant beyond .01).”

His equation for legislative scores is

Repression = β1 Mass tolerance + β2 Elite tolerance + δ.(10)

Variables are standardized. The two straight arrows in figure 2 represent

causal links: mass and elite tolerance affect repression. The estimated coeffi-

cients are β̂1 =−0.06 and β̂2 =−0.35. The curved line in figure 2 represents

an association between mass and elite tolerance scores. Each one can influ-

ence the other, or both can have some common cause. The association is not

analyzed in the diagram.

Gibson is looking at an interesting qualitative question: was it the masses

or the elites who were responsible for McCarthyism? To address this issue by

regression, he has to quantify everything—tolerance, repression, the causal

effects, and statistical significance. The quantification is problematic. More-

over, as social physics, the path model is weak. Too many crucial issues are

left dangling. What intervention is contemplated? Are there other variables

in the system? Why are relationships linear? Signs apart, for example, why

does a unit increase in tolerance have the same effect on repression as a unit

decrease? Why are coefficients the same for all states? Why are states sta-

tistically independent? Such questions are not addressed in the paper. (The

paper is not unique in this respect.)

McCarthy became a force in national politics with a speech attacking

the State Department in 1950. The turning point came in 1954, with public

humiliation in the Army-McCarthy hearings. Censure by the Senate followed

in 1957. Gibson scores repressive legislation over the period 1945–65, long

before McCarthy mattered, and long after (note 4 in the paper). The Stouffer

survey was done in 1954, when the McCarthy era was ending. The timetable

does not hang together.

Even if all such issues are set aside, and we allow Gibson the statistical

assumptions, there is a big problem. Gibson finds that β̂2 is significant and

β̂1 is insignificant. But this does not impose much of a constraint on the

difference β̂2 − β̂1. The standard error for the difference can be computed



90 Chapter 6

from data in the paper (exercise 4 below). The difference is not significant.
Since β2 = β1 is a viable null hypothesis, the data are not strong enough to
distinguish elites from masses.

The fitting procedure is also worth some attention. Gibson used GLS
rather than OLS because he “could not assume that the variances of the ob-
servations were equal”; instead, he “weighted the observations by the square
root of the numbers of respondents within the state” (note 9 in the paper).
This confuses the variance of Yi with the variance of Xi . When observations
are independent, but var(Yi |X) differs from one i to another, β̂ should be
chosen (exercise 5C2) to minimize∑

i (Yi −Xiβ̂)
2/var (Yi |X).

Gibson’s Yi is the repression score. The variance of Yi has nothing to do
with the Stouffer survey. Therefore, weighting the regression by the number
of respondents in the Stouffer survey makes little sense. The number of
respondents affects the variance of Xi , not the variance of Yi .

Exercise set C

1. Is the −0.35 in figure 2 a parameter or an estimate? How is it related to
equation (10)?

2. The correlation between mass and elite tolerance scores is 0.52; between
mass tolerance scores and repression scores, −0.26; between elite toler-
ance scores and repression scores, −0.42. Compute the path coefficients
in figure 2.

Note. Exercises 2–4 can be done on a pocket calculator, but it’s easier with a
computer: see lab 9 at the back of the book, and exercise 4B14. Apparently,
Gibson used weighted regression; exercises 2–4 do not involve weights. But
see http://www.stat.berkeley.edu/users/census/repgibson.pdf.

3. Estimate the SD of δ in equation (10). You may assume the correlations
are based on 36 states but you need to decide if p is 2 or 3. (See text for
Gibson’s sample sizes.)

4. Find the SEs for the path coefficients and their difference.

5. The repression scale is lumpy: scores go from 0 to 3.5 in steps of 0.5
(table 1 in the paper). Does this make the linearity assumption more
plausible, or less plausible?

6. Suppose we run a regression of Y on U and V, getting

Y = â + b̂U + ĉV + e,
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where e is the vector of residuals. Express the standardized coefficients
in terms of the unstandardized coefficients and the sample variances of
U,V, Y .

6.4 Inferring causation by regression

The key to making causal inferences by regression is a response schedule.
This is a new idea, and a complicated one. We’ll start with a mathematical
example to illustrate the idea of a “place holder.” Logarithms can be defined
by the equation

(11) log x =
∫ x

1

1

z
dz for 0 < x < ∞.

The symbol ∞ stands for “infinity.” But what does the x stand for? Not
much. It’s a place holder. You could change both x’s in (11) to u’s with-
out changing the content, namely, the equality between the two sides of the
equation. Similarly, z is a place holder inside the integral. You could change
both z’s to v’s without changing the value of the integral. (Mathematicians
refer to place holders as “dummy variables,” but statisticians use the language
differently: section 6 below.)

Now let’s take an example that’s closer to regression—Hooke’s law
(section 2). Suppose we’re going to hang some weights on a spring. We do
this on n occasions, indexed by i = 1, . . . , n. Fix an i. If we put weight x on
the spring on occasion i, our physicist assures us that the length of the spring
will be

(12) Yi,x = 439 + 0.05x + εi .

If we put a 5-unit weight on the spring, the length will be 439+0.05×5+εi =
439.25 + εi . If instead we put a 6-unit weight on the spring, the length will
be 439.30 + εi . A 1-unit increase in x makes the spring longer, by 0.05
units—causation has come into the picture. The random disturbance term εi
represents measurement error. These random errors are IID for i = 1, . . . , n,
with mean 0 and known variance σ 2. The units for x are kilograms; the units
for length are centimeters, so εi and σ must be in centimeters too. (Reminder:
IID is shorthand for independent and identically distributed.)

Equation (12) looks like a regression equation, but it isn’t. It is a response
schedule that describes a theoretical relationship between weight and length.
Conceptually, x is a weight that you could hang on the spring. If you did,
equation (12) tells you what the spring would do. This is all in the subjunctive.
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Formally, x is a place holder. The equation gives length Yi,x as a function
of weight x, with a bit of random error. For any particular i, we can choose
one x, electing to observe Yi,x for that x and that x only. The rest of the
response schedule—the Yi,x for the other x’s—would be lost to history.

Let’s make the example a notch closer to social science. We might not
know (12), but only

(13) Yi,x = a + bx + εi ,

where the εi are IID with mean 0 and variance σ 2. This time, a, b, and σ 2

are unknown. These parameters have to be estimated. More troublesome:
we can’t do an experiment. However, observational data are available. On
occasion i, weightXi is found on the spring; we just don’t quite know how it
got there. The length of the spring is measured as Yi . We’re still in business,
if

(i) Yi was determined from the response schedule (13), soYi = Yi,Xi =
a + bXi + εi , and

(ii) theXi’s were chosen at random by Nature, independent of the εi’s.

Condition (i) ties the observational data to the response schedule (13),
and gives us most of the statistical conditions we need on the random errors:
these errors are IID with mean 0 and variance σ 2. Condition (ii) is exogeneity.
Exogeneity—X

�
ε—is the rest of what we need. With these assumptions,

OLS gives unbiased estimates for a and b. Example 4.1 explains how to set
up the design matrix. Conditions (4.1–5) are all satisfied.

The response schedule tells us that the parameter b we’re estimating has
a causal interpretation: if we intervene and change x to x′, then y is expected
to change by b(x′ − x). The response schedule tells us that the relation is
linear rather than quadratic or cubic or . . . . It tells us that interventions won’t
affect a or b. It tells us the errors are IID. It tells us there is no confounding: X
causes Y without any help from any other variable. The exogeneity condition
says that Nature ran the observational study just the way we would run an
experiment. We don’t have to randomize. Nature did it for us. Nice.

What would happen without exogeneity? Suppose Nature puts a big
weight Xi on the spring whenever εi is large and positive. Nasty. Now OLS
over-estimates b. In this hypothetical, the spring doesn’t stretch as much as
you might think. Measurement error gets mixed up with stretch. (This is
“selection bias” or “endogeneity bias,” to be discussed in chapters 7 and 9.)
The response schedule is a powerful assumption, and so is exogeneity. For
Hooke’s law, the response schedule and exogeneity are reasonably convinc-
ing. With typical social science applications, there might be some harder
questions to answer.
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The discussion so far is about a one-dimensional x, but the generalization
to higher dimensions is easy. The response schedule would be

(14) Yi,x = xβ + εi,

where x is 1×p vector of treatments and β is a p×1 parameter vector. Again,
the errors εi are IID with mean 0 and variance σ 2. In the next section, we’ll
see that path models put together several response schedules like (14).

A response schedule says how one variable would respond, if you
intervened and manipulated other variables. Together with the ex-
ogeneity assumption, the response schedule is a theory of how the
data were generated. If the theory is right, causal effects can be
estimated from observational data by regression. If the theory is
wrong, regression coefficients measure association not causation,
and causal inferences can be quite misleading.

Exercise set D

1. (This is a hypothetical; SAT stands for Scholastic Achievement Test,
widely used for college admissions in the US.) Dr. Sally Smith is doing a
study on coaching for the Math SAT. She assumes the response schedule
Yi,x = 450 + 3x + δi . In this equation, Yi,x is the score that subject i
would get on the Math SAT with x hours of coaching. The error term δi
is normal, with mean 0 and standard deviation 100.

(a) If subject #77 gets 10 hours of coaching, what does Dr. Smith expect
for this subject’s Math SAT score?

(b) If subject #77 gets 20 hours of coaching, what does Dr. Smith expect
for this subject’s Math SAT score?

(c) If subject #99 gets 10 hours of coaching, what does Dr. Smith expect
for this subject’s Math SAT score?

(d) If subject #99 gets 20 hours of coaching, what does Dr. Smith expect
for this subject’s Math SAT score?

2. (This continues exercise 1; it is still a hypothetical.) After thinking
things over, Dr. Smith still believes that the response schedule is linear:
Yi,x = a + bx + δi , the δi being IID N(0, σ 2). But she decides that her
values for a, b, and σ 2 are unrealistic. (They probably are.) She wants
to estimate these parameters from data.

(a) Does she need to do an experiment, or can she get by with an
observational study? (The latter would be much easier to do.)
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(b) If she can use observational data, what else would she have to
assume, beyond the response schedule?

(c) And, how would she estimate the parameters from the observational
data?

6.5 Response schedules for path diagrams

Path models are often held out as rigorous statistical engines for inferring
causation from association. Statistical techniques can indeed be rigorous—
given their assumptions. But the assumptions are usually imposed on the data
by the analyst: this is not a rigorous process. The assumptions behind the
models are of two kinds: (i) causal and (ii) statistical. This section will lay
out the assumptions in more detail. A relatively simple path model is shown
in figure 3, where a hypothesized causal relationship between Y and Z is
confounded by X.

Figure 3. Path model. The relationship between Y and Z is con-
founded by X. Free arrows leading into Y and Z are not shown.

Y Z
 

X

This sort of diagram is used to draw causal conclusions from observa-
tional data. The diagram is therefore more complicated than it looks: cau-
sation is a complicated business. Let’s assume that Dr. Alastair Arbuthnot
has collected data on X, Y , and Z in an observational study. He draws the
diagram shown in figure 3, and fits the two regression equations suggested
by the figure:

Y = â + b̂X + error, Z = ĉ + d̂X + êY + error

Estimated coefficients are positive and significant. He is now trying to explain
the findings to his colleague, Dr. Beverly Braithwaite.
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Dr. A So you see, Dr. Braithwaite, if X goes up by one unit, then Y
goes up by b̂ units.

Dr. B Quite.

Dr. A Furthermore, if X goes up by one unit with Y held fixed, then Z
goes up by d̂ units. This is the direct effect of X on Z. [“Held
fixed” means, kept the same; the “indirect effect” is through Y .]

Dr. B But Dr. Arbuthnot, you just told me that ifX goes up by one unit,
then Y will go up by b̂ units.

Dr. A Moreover, if Y goes up by one unit withX held fixed, the change
in Y makes Z go up by ê units. The effect of Y on Z is ê.

Dr. B Dr. Arbuthnot, hello, why would Y go up unless X goes up?
“Effects”? “Makes”? How did you get into causation?? And
what about my first point?!?

Dr. Arbuthnot’s explanation is not unusual. But Dr. Braithwaite has
some good questions. Our objective in this section is to answer her, by
developing a logically coherent set of assumptions which—if true—would
justify Dr. Arbuthnot’s data analysis and his interpretations. On the other
hand, as we will see, Dr. Braithwaite has good reason for her skepticism.

At the back of his mind, Dr. Arbuthnot has two response schedules de-
scribing hypothetical experiments. In principle, these two experiments are
unrelated to one another. But, to model the observational study, the experi-
ments have to be linked in a special way. We will describe the two experiments
first, and then explain how they are put together to model Dr.Arbuthnot’s data.

(i) First hypothetical experiment. Treatment at level x is applied to a
subject. A response Y is observed, corresponding to the level of treatment.
There are two parameters, a and b, that describe the response. With no
treatment (x = 0), the response level for each subject will be a, up to random
error. All subjects are assumed to have the same value for a. Each additional
unit of treatment adds b to the response. Again, b is the same for all subjects
at all levels of x, by assumption. Thus, when treatment is applied at level x,
the response Y is assumed to be

(15) a + bx + random error.

For example, colleges send students with weak backgrounds to summer boot-
camp with mathematics drill. In an evaluation study of such a program, x
might be hours spent in math drill, and Y might be test scores.

(ii) Second hypothetical experiment. In the second experiment, there are
two treatments and a response variable Z. There are two treatments because
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there are two arrows leading into Z. The treatments are labeled X and Y in
figure 3. Both treatments may be applied to a subject. In Experiment #1, Y
was the response variable. But in Experiment #2, Y is one of the treatment
variables: the response variable is Z.

There are three parameters, c, d, and e. With no treatment at all (x =
y = 0), the response level for each subject will be c, up to random error.
Each additional unit of treatment X adds d to the response. Likewise, each
additional unit of treatment Y adds e to the response. (Here, e is a parameter
not a residual vector.) The constancy of parameters across subjects and levels
of treatment is an assumption. Thus, when the treatments are applied at levels
x and y, the response Z is assumed to be

(16) c + dx + ey + random error.

Three parameters are needed because it takes three parameters to specify the
linear relationship (16), an intercept and two slopes.

Random errors in (15) and (16) are assumed to be independent from
subject to subject, with a distribution that is constant across subjects: the
expectation is zero and the variance is finite. The errors in (16) are assumed
to be independent of the errors in (15). Equations (15) and (16) are response
schedules: they summarize Dr. Arbuthnot’s ideas about what would happen
if he could do the experiments.

Linking the experiments. Dr. Arbuthnot collected the data onX, Y,Z in
an observational study. He wants to use the observational data to figure out
what would have happened if he could have intervened and manipulated the
variables. There is a price to be paid.

To begin with, he has to assume the response schedules (15) and (16).
He also has to assume that the X’s are independent of the random errors
in the two hypothetical experiments—“exogeneity.” Thus, Dr. Arbuthnot is
pretending that Nature randomized subjects to levels of X. If so, there is no
need for experimental manipulation on his part, which is convenient. The
exogeneity of X has a graphical representation: arrows come out of X in
figure 3, but no arrows lead into X.

Dr. Arbuthnot also has to assume that Nature generates Y from X as if
by substituting X into (15). Then Nature generates Z as if by substituting X
and Y—the very same X that was the input to (15) and the Y that was the
output from (15)—into (16). Using the output from (15) as an input to (16)
is what links the two equations together.

Let’s take another look at this linkage. In principle, the experiments
described by the two response schedules are separable from one another.
There is no a priori connection between the value of x in (15) and the value
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of x in (16). There is no a priori connection between outputs from (15) and
inputs to (16). However, to model his observational study, Dr. Arbuthnot
links the equations “recursively.” He assumes that one value of X is chosen
and used as an input for both equations; that the Y generated from (15) is
used as an input to (16); and there is no feedback from (16) to (15).

Given all these assumptions, the parameters a, b can be estimated by
regression of Y on X. Likewise, c, d, e can be estimated by regression of
Z on X and Y . Moreover, the regression estimates have legitimate causal
interpretations. This is because causation is built into the response sched-
ules (15) and (16). If causation were not assumed, causation would not be
demonstrated by running the regressions.

One point of Dr. Arbuthnot’s regressions is to estimate the direct effect
ofX on Z. The direct effect is d in (16). IfX is increased by one unit with Y
held fixed—i.e., kept at its old value—then Z is expected to go up by d units.
This is shorthand for the mechanism in the second experiment. The response
schedule (16) says what happens to Z when x and y are manipulated. In
particular, y can be held at an old value while x is made to increase.

Dr. Arbuthnot imagines that he can keep the Y generated by Nature,
while replacing X by X + 1. He just substitutes his values (X + 1 and Y )
into the response schedule (16), getting

c + d(X + 1)+ eY + error = (c + dX + eY + error
)+ d.

This is what Z would have been, if X had been increased by 1 unit with Y
held fixed: Z would have been d units bigger.

Dr. Arbuthnot also wants to estimate the effect e of Y on Z. If Y is
increased by one unit with X held fixed, then Z is expected to go up by e
units. Dr. Arbuthnot thinks he can keep Nature’s value forX, while replacing
Y by Y + 1. He just substitutesX and Y + 1 into the response schedule (16),
getting

c + dX + e(Y + 1)+ error = (c + dX + eY + error
)+ e.

This is whatZ would have been, if Y had been increased by 1 unit withX kept
unchanged: Z would have been e units bigger. Of course, even Dr. Arbuthnot
has to replace parameters by estimates. If e = 0—or could be 0 because ê is
statistically insignificant—then manipulating Y should not affect Z, and Y
would not be a cause of Z after all. This is a qualitative inference. Again, the
inference depends on the response schedule (16).

In short, Dr. Arbuthnot uses the observational data to estimate parame-
ters. But when he interprets the results—for instance, when he talks about the
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“effects” ofX and Y onZ—he’s thinking about the hypothetical experiments
described by the response schedules (15)-(16), not about the observational
data themselves. His causal interpretations depend on a rather subtle model.
Among other things, the same response schedules, with the same parameter
values, must apply (i) to the hypothetical experiments and (ii) to the obser-
vational data. In shorthand, the values of the parameters are stable under
interventions.

To state the model more formally, we would index the subjects by a
subscript i in the range from 1 to n. In this notation, Xi is the value of X for
subject i. The level of treatment #1 is denoted by x, and Yi,x is the response
for variable Y when treatment at level x is applied to subject i, as in (15).
Similarly, Zi,x,y is the response for variable Z when treatment #1 at level x
and treatment #2 at level y are applied to subject i, as in (16). The response
schedules are interpreted causally.

• Yi,x is what Yi would be if Xi were set to x by intervention.
• Zi,x,y is what Zi would be if Xi were set to x and Yi were set to y

by intervention.

Figure 3 unpacks into two equations, which are more precise versions
of (15) and (16), with subscripts for the subjects:

Yi,x = a + bx + δi,(17)

Zi,x,y = c + dx + ey + εi .(18)

The parameters a, b, c, d, e and the error terms δi, εi are not ob-
served. The parameters are assumed to be the same for all subjects. There
are assumptions about the error terms—the statistical component of the as-
sumptions behind the path diagram:

(i) δi and εi are independent of each other within each subject i.
(ii) These error terms are independent across subjects i.

(iii) The distribution of δi is constant across subjects i; so is the distribu-
tion of εi . (However, δi and εi need not have the same distribution.)

(iv) δi and εi have expectation zero and finite variance.
(v) TheXi’s are independent of the δi’s and εi’s, whereXi is the value

of X for subject i in the observational study.

Assumption (v) says that Nature choosesXi for us as if by randomization.
In other words, the Xi’s are “exogenous.” By further assumption, Nature
determines the response Yi for subject i as if by substituting Xi into (17):

Yi = Yi,Xi = a + bXi + δi .
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The rest of the response schedule— Yi,x for x �= Xi—is not observed. Af-
ter all, even in an experiment, subject i would be assigned to one level of
treatment. The response at other levels would not be observed.

Similarly, we observe Zi,x,y only for x = Xi and y = Yi . The response
for subject i is determined by Nature, as if by substitutingXi and Yi into (18):

Zi = Zi,Xi,Yi = c + dXi + eYi + εi .

The rest of the response schedule remains unobserved, namely, the responses
Zi,x,y for all the other possible values of x and y. Economists call the unob-
served Yi,x and Zi,x,y potential outcomes. The model specifies unobservable
response schedules, not just regression equations.

The model has another feature worth noticing: each subject’s responses
are determined by the levels of treatment for that subject only. Treatments
applied to subject j do not affect the responses of subject i. For treating
infectious diseases, this is not such a good model. (If one subject sneezes,
another will catch the flu: stop the first sneeze, prevent the second flu.) There
may be similar problems with social experiments, when subjects interact with
each other.

Figure 4. The path diagram as a box model.

δX ε

Y = a + b +

Z = c + d + e +

The box model in figure 4 illustrates the statistical assumptions. Inde-
pendent random errors with constant distributions are represented as draws
made at random with replacement from a box of potential errors (Freedman-
Pisani-Purves 2007). Since the box remains the same from one draw to
another, the probability distribution of one draw is the same as the distribu-
tion of any other. The distribution is constant. Furthermore, the outcome of
one draw cannot affect the distribution of another. That is independence.
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Figure 4 also shows how the two hypothetical causal mechanisms—
response schedules (17) and (18)—are linked together to model the observa-
tional data. Let’s take this apart and put it back together. We can think about
each response schedule as a little machine, which accepts inputs and makes
output. There are two of these machines at work.

• First causal mechanism. You feed an x—any x that you like—into
machine #1. The output from the machine is Y = a+bx, plus a random
draw from the δ-box.

• Second causal mechanism. You feed x and y—any x and y that you
like—into machine #2. The output from the machine isZ = c+dx+ey,
plus a random draw from the ε-box.

• Linkage. You don’t feed anything into anything. Nature chooses X at
random from theX-box, independent of the δ’s and ε’s. She putsX into
machine #1, to generate a Y . She puts the same X—and the Y she just
generated—into machine #2, to generateZ. You get to see (X, Y, Z) for
each subject. This is Dr. Arbuthnot’s model for his observational data.

• Estimation. You estimate a, b, c, d, e by OLS, from the observational
data, namely, triples of observed values on (X, Y, Z) for many subjects.

• Causal inference. You can say what would happen if you could get your
hands on the machines and put an x into machine #1. You can also say
what would happen if you could put x and y into machine #2.

You never do touch the machines. (After all, these are purely theoretical
entities.) Still, you seem to be free to use your own x’s and y’s, rather than the
ones generated by Nature, as inputs. You can say what the machines would
do if you chose the inputs. That is causal inference from observational data.
Causal inference is legitimate because—by assumption—you know the social
physics: response schedules (17) and (18).

What about the assumptions? Checking (17) and (18), which involve
potential outcomes, is going to be hard work. Checking the statistical as-
sumptions will not be much easier. The usual point of running regressions is
to make causal inferences without doing real experiments. On the other hand,
without the real experiments, the assumptions behind the models are going
to be iffy. Inferences get made by ignoring the iffiness of the assumptions.
That is the paradox of causal inference by regression, and a good reason for
Dr. Braithwaite’s skepticism.

Path models do not infer causation from association. Instead, path mod-
els assume causation through response schedules, and—using additional sta-
tistical assumptions—estimate causal effects from observational data. The
statistical assumptions (independence, expectation zero, constant variance)
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justify estimating coefficients by ordinary least squares. With large samples,
standard errors, confidence intervals, and significance tests would follow.
With small samples, the errors would have to follow a normal distribution in
order to justify t-tests.

Evaluating the statistical models in chapters 1–6. Earlier in the book,
we discussed several examples of causal inference by regression—Yule on
poverty, Blau and Duncan on stratification, Gibson on McCarthyism. We
found serious problems. These studies are among the strongest in the social
sciences, in terms of clarity, interest, and data analysis. (Gibson, for example,
won a prize for best paper of the year—and is still viewed as a landmark study
in political behavior.) The problems are built into the assumptions behind the
statistical models.

Typically, a regression model assumes causation and uses the data
to estimate the size of a causal effect. If the estimate isn’t sta-
tistically significant, lack of causation is inferred. Estimation and
significance testing require statistical assumptions. Therefore, you
need to think about the assumptions—both causal and statistical—
behind the models. If the assumptions don’t hold, the conclusions
don’t follow from the statistics.

Selection vs intervention

The conditional expectation of Y given X = x is the average of Y for
subjects with X = x. (We ignore sampling error for now.) The response-
schedule formalism connects two very different ideas of conditional expec-
tation: (i) selecting the subjects with X = x, versus (ii) intervening to set
X = x. The first is something you can actually do with observational data.
The second would require manipulation. Response schedules crystallize the
assumptions you need to get from selection to intervention. (Intervention
means interrupting the natural flow of events in order to manipulate a vari-
able, as in an experiment; the contrast is with passive observation.)

Selection is one thing, intervention is another.

Structural equations and stable parameters

In econometrics, “structural” equations describe causal relationships.
Response schedules give a clearer meaning to this idea, and to the idea of
“stability under intervention.” The parameters in a path diagram, for instance,
are defined through response schedules like (17) and (18), separately from
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the data. By assumption, these parameters are constant across (i) subjects
and (ii) levels of treatment. Moreover, (iii) the parameters stay the same
whether you intervene or just observe the natural course of events. Response
schedules bundle up these assumptions for us, along with similar assumptions
on the error distributions. Assumption (iii) is sometimes called “constancy”
or “invariance” or “stability under intervention.”

Regression equations are structural, with parameters that are sta-
ble under intervention, when the equations derive from response
schedules.

Ambiguity in notation

Look back at figure 3. In the observational study, there is an Xi for
each subject i. In some contexts, X just means the Xi for a generic subject.
In other contexts, X is the vector whose ith component is Xi . Often, X is
the design matrix. This sort of ambiguity is commonplace. You have to pay
attention to context, and figure out what is meant each time.

Exercise set E

1. In the path diagram below, free arrows are omitted. How many free ar-
rows should there be, where do they go, and what do they mean? What
does the curved line mean? The diagram represents some regression
equations. What are the equations? the parameters? State the assump-
tions that would be needed to estimate the parameters by OLS. What
data would you need? What additional assumptions would be needed to
make causal inferences? Give an example of a qualitative causal infer-
ence that could be made from one of the equations. Give an example of
a quantitative causal inference.

U

V X Y

2. With the assumptions of this section, show that a regression of Yi on Xi
gives unbiased estimates, conditionally on the Xi’s, of a and b in (17).
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Show also that a regression ofZi onXi and Yi gives unbiased estimates,
conditionally on theXi’s and Yi’s, of c, d, and e in (18). Hints. What are
the design matrices in the two regressions? Can you verify assumptions
(4.2)–(4.5)? [Cross-references: (4.2) is equation (2) in chapter 4.]

3. Suppose you are only interested in the effects of X and Y on Z; you are
not interested in the effect of X on Y . You are willing to assume the
response schedule (18), with IID errors εi , independent of the Xi’s and
Yi’s. How would you estimate c, d, e? Do the estimates have a causal
interpretation? Why?

4. True or false, and explain.
(a) In figure 1, father’s education has a direct influence on son’s occu-

pation.
(b) In figure 1, father’s education has an indirect influence on son’s

occupation through son’s education.
(c) In exercise 1, U has a direct influence on Y .
(d) In exercise 1, V has a direct influence on Y .

5. Suppose Dr. Arbuthnot’s models are correct; and in his data, X77 =
12, Y77 = 2, Z77 = 29.
(a) How much bigger would Y77 have been, if Dr. Arbuthnot had inter-

vened, setting X77 to 13?
(b) How much bigger would Z77 have been, if Dr. Arbuthnot had in-

tervened, setting X77 to 13 and Y77 to 5?

6. An investigator writes, “Statistical tests are a powerful tool for deciding
whether effects are large.” Do you agree or disagree? Discuss briefly.

6.6 Dummy variables

A “dummy variable” takes the value 0 or 1. Dummy variables are used
to represent the effects of qualitative factors in a regression equation. Some-
times, dummies are even used to represent quantitative factors, in order to
weaken linearity assumptions. (Dummy variables are also called “indicator”
variables or “binary” variables; programmers call them “flags.”)

Example. A company is accused of discriminating against female em-
ployees in determining salaries. The company counters that male employees
have more job experience, which explains the salary differential. To explore
that idea, a statistician might fit the equation

Y = a + bMAN + c EXPERIENCE + error.
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Here, MAN is a dummy variable, taking the value 1 for men and 0 for women.
EXPERIENCE would be years of job experience. A significant positive value
for b would be taken as evidence of discrimination.

Objections could be raised to the analysis. For instance, why does EX-
PERIENCE have a linear effect? To meet that objection, some analysts would
put in a quadratic term:

Y = a + bMAN + c EXPERIENCE + d EXPERIENCE2 + error.

Others would break up EXPERIENCE into categories, e.g.,

category 1 under 5 years
category 2 5–10 years (inclusive)
category 3 over 10 years

Then dummies for the first two categories could go into the equation:

Yi = a + bMAN + c1 CAT1 + c2 CAT2 + error.

For example, CAT1 is 1 for all employees who have less than 5 years of
experience, and 0 for the others. Don’t put in all three dummies: if you do,
the design matrix won’t have full rank.

The coefficients are a little tricky to interpret. You have to look for
the missing category, because effects are measured relative to the missing
category. For MAN, it’s easy. The baseline is women. The equation says
that men earn b more than women, other things equal (experience). For
CAT1, it’s less obvious. The baseline is the third category, over 10 years of
experience. The equation says that employees in category 1 earn c1 more
than employees in category 3. Furthermore, employees in category 2 earn c2
more than employees in category 3.

We expect c1 and c2 to be negative, because long-term employees get
higher salaries. Similarly, we expect c1 < c2. Other things are held equal
in these comparisons, namely, gender. (Saying that Harriet earns −$5,000
more than Harry is a little perverse; ordinarily, we would talk about earning
$5,000 less: but this is statistics.)

Of course, the argument would continue. Why these categories? What
about other variables? If people compete with each other for promotion, how
can error terms be independent? And so forth. The point here was just to
introduce the idea of dummy variables.

Types of variables

A qualitative or categorical variable is not numerical. Examples include
gender and marital status, values for the latter being never-married, married,
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widowed, divorced, separated. By contrast, a quantitative variable takes nu-
merical values. If the possible values are few and relatively widely separated,
the variable is discrete; otherwise, continuous. These are useful distinctions,
but the boundaries are a little blurry. A dummy variable, for instance, can
be seen as converting a categorical variable with two values into a numerical
variable taking the values 0 and 1.

6.7 Discussion questions

Some of these questions cover material from previous chapters.

1. A regression of wife’s educational level (years of schooling) on hus-
band’s educational level gives the equation

WifeEdLevel = 5.60 + 0.57×HusbandEdLevel + residual.

(Data are from the Current Population Survey in 2001.) If Mr. Wang’s
company sends him back to school for a year to catch up on the latest
developments in his field, do you expect Mrs. Wang’s educational level
to go up by 0.57 years? If not, what does the 0.57 mean?

2. In equation (10), δ is a random error; there is a δ for each state. Gibson
finds that β̂1 is statistically insignificant, while β̂2 is highly significant
(two-tailed). Suppose that Gibson computed hisP -values from the stan-
dard normal curve; the area under the curve between −2.58 and +2.58
is 0.99. True or false and explain—

(a) The absolute value of β̂2 is more than 2.6 times its standard error.

(b) The statistical model assumes that the random errors are indepen-
dent across states.

(c) However, the estimated standard errors are computed from the data.

(d) The computation in (c) can be done whether or not the random errors
are independent across states: the computation uses the tolerance
scores and repression scores, but does not use the random errors
themselves.

(e) Therefore, Gibson’s significance tests are fine, even if the random
errors are dependent across states.

3. Timberlake and Williams (1984) offer a regression model to explain
political oppression (PO) in terms of foreign investment (FI), energy
development (EN), and civil liberties (CV). High values of PO corre-
spond to authoritarian regimes that exclude most citizens from political
participation. High values of CV indicate few civil liberties. Data were
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collected for 72 countries. The equation proposed by Timberlake and
Williams is

PO = a + bFI + cEN + dCV + random error,

with the usual assumptions about the random errors. The estimated co-
efficient b̂ of FI is significantly positive, and is interpreted as measuring
the effect of foreign investment on political oppression.

(a) There is one random error for each so there are
random errors in all. Fill in the blanks.

(b) What are the “usual assumptions” on the random errors?

(c) From the data in the table below, can you estimate the coefficient
a in the equation? If so, how? If not, why not? What about b?

(d) How can b̂ be positive, given that r(FI, PO) is negative?

(e) From the data in the table, can you tell whether b̂ is significantly
different from 0? If so, how? If not, why not?

(f) Comment briefly on the statistical logic used by Timberlake and
Williams. Do you agree that foreign investment causes political
oppression? You might consider the following points. (i) Does CV
belong on the right hand side of the equation? (ii) If not, and you
drop it, what happens? (iii) What happens if you run a regression
of CV on PO, FI, and EN?

The Timberlake and Williams data. 72 countries. Corre-
lation matrix for political oppression (PO), foreign invest-
ment (FI), energy development (EN), and civil liberties
(CV) .

PO FI EN CV
PO 1.000 −.175 −.480 +.868
FI −.175 1.000 +.330 −.391
EN −.480 +.330 1.000 −.430
CV +.868 −.391 −.430 1.000

Note. Regressions can be done with a pocket calculator, but it’s easier
with a computer. We’re using different notation from the paper.

4. Alba and Logan (1993) develop a regression model to explain residential
integration. The equation is Yi = Xiβ+ δi , where i indexes individuals
and Xi is a vector of three dozen dummy variables describing various
characteristics of subject i, including—
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AGE GROUP under 5, 5–17, . . .
HOUSEHOLD TYPE married couple, . . .

INCOME LEVEL under $5,000, $5,000–$10,000, . . .
EDUCATIONAL LEVEL grammar school, some high school, . . . .

The parameter vector β is taken as constant across subjects within each
of four demographic groups (Asians, Hispanics, non-Hispanic blacks,
non-Hispanic whites). The dependent variable Yi is the percentage of
non-Hispanic whites in the town where subject i resides, and is the same
for all subjects in that town. Four equations are estimated, one for each
of the demographic groups. Estimation is by OLS, with 1980 census
data on 674 suburban towns in the NewYork metropolitan area. TheR2’s
range from 0.04 to 0.29. Some coefficients are statistically significant
for certain groups but not others, which is viewed as evidence favoring
one theory of residential integration rather than another. Do the OLS
assumptions apply? If not, how would this affect statistical significance?
Discuss briefly.

5. Rodgers and Maranto (1989) developed a model for

“the complex causal processes involved. . . . [in] the determinants of
publishing success. . . . the good news is that academic psychologists
need not attend a prestigious graduate program to become a produc-
tive researcher. . . . the bad news is that attending a nonprestigious
PhD program remains an impediment to publishing success.”

The Rodgers-Maranto model (figure 7 in the paper) is shown in the
diagram below.

ABILITY
GPQ

QFJ

CITES

PREPROD

PUBSSEX

.62

.28

.34

.42

.41

.16

.22

.25

.12

.13

.14

The investigators sent questionnaires to a probability sample of 932
members of theAmerican PsychologicalAssociation who were currently
working as academic psychologists, and obtained data on 241 men and
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244 women. Cases with missing data were deleted, leaving 86 men and
76 women. Variables include—

SEX respondent’s gender (a dummy variable).

ABILITY measures selectivity of respondent’s undergraduate insti-
tution, respondent’s membership in Phi Beta Kappa, etc.

GPQ measures the quality of respondent’s graduate institution,
using national rankings, publication rates of faculty, etc.

QFJ measures quality of respondent’s first job.

PREPROD respondent’s quality-weighted number of publications
before the PhD. (Mean is 0.8, SD is 1.6.)

PUBS number of respondent’s publications within 6 years after
the PhD. (Mean is 7, SD is 6.)

CITES number of times PUBS were cited by others. (Mean is
20, SD is 44.)

Variables were standardized before proceeding with the analysis. Six
models were developed but considered inferior to the model shown in
the diagram. What does the diagram mean? What are the numbers on
the arrows? Where do you see the good news/bad news? Do you believe
the news? Discuss briefly.

6. A balance gives quite precise measurements for the difference between
weights that are nearly equal. A, B, C, D each weigh about 1 kilogram.
The weight of A is known exactly: it is 53 µg above a kilogram, where
a µg is a millionth of a gram. (A kilogram is 1000 grams.) The weights
of B, C, D are determined through a “weighing design” that involves 6
comparisons shown in the table below.

Comparison Difference in µg

A and B vs C and D +42
A and C vs B and D −12
A and D vs B and C +10
B and C vs A and D −65
B and D vs A and C −17
C and D vs A and B +11

According to the first line in the table, for instance, A and B are put on
the left hand pan of the balance; C and D on the right hand pan. The
difference in weights (left hand pan minus right hand pan) is 42 µg.

(a) Are these data consistent or inconsistent?
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(b) What might account for the inconsistencies?

(c) How would you estimate the weights of B, C, and D?

(d) Can you put standard errors on the estimates?

(e) What assumptions are you making?

Explain your answers.

7. (Hard.) There is a population of N subjects, indexed by i = 1, . . . , N .
Associated with subject i there is a number vi . A sample of size n is
chosen at random without replacement.

(a) Show that the sample average of the v’s is an unbiased estimate of
the population average. (There are hints below.)

(b) If the sample v’s are denoted V1, V2, . . . , Vn, show that the proba-
bility distribution of V2, V1, . . . , Vn is the same as the probability
distribution of V1, V2, . . . , Vn. In fact, the probability distribution
of any permutation of the V ’s is the same as any other: the sample
is exchangeable.

Hints. If you’re starting from scratch, it might be easier to do part (b)
first. For (b), a permutation π of {1, . . . , N} is a 1–1 mapping of this set
onto itself. There areN ! permutations. You can choose a sample of size
n by choosing π at random, and taking the subjects with index numbers
π(1), . . . , π(n) as the sample.

8. There is a population of N subjects, indexed by i = 1, . . . , N . A
treatment x can be applied at level 0, 10, or 50. Each subject will be
assigned to treatment at one of these levels. Subject i has a response yi,x
if assigned to treatment at level x. For instance, with a drug to reduce
cholesterol levels, x would be the dose and y the cholesterol level at the
end of the experiment. Note: yi,x is fixed, not random.

Each subject i has a 1×p vector of personal characteristicswi , unaffected
by assignment. In the cholesterol experiment, these characteristics might
include weight and cholesterol level just before the experiment starts. If
you assign subject i to treatment at level 10, say, you observe yi,10 but
not yi,0 or yi,50. You can always observe wi . Population parameters of
interest are

α0 = 1

N

N∑
i=1

yi,0, α10 = 1

N

N∑
i=1

yi,10, α50 = 1

N

N∑
i=1

yi,50 .

[Question continues on next page.]
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The parameter α0 is the average result we would see if all subjects were
put into treatment at level 0. We could measure this directly, by assigning
all the subjects to treatment at level 0, but would then lose our chance to
learn about the other parameters.

Suppose n0, n1, n2 are positive numbers whose sum isN . In a “random-
ized controlled experiment,” n0 subjects are chosen at random without
replacement and assigned to treatment at level 0. Then n1 subjects are
chosen at random without replacement from the remaining subjects and
assigned to treatment at level 10. The last n2 subjects are assigned to
treatment at level 50. From the experimental data—

(a) Can you estimate the three population parameters of interest?

(b) Can you estimate the average response if all the subjects had been
assigned to treatment at level 75?

Explain briefly.

9. (This continues question 8.) Let Xi = x if subject i is assigned to
treatment at level x. A simple regression model says that given the
assignments, the response Yi of subject i is α+Xiβ+εi , where α, β are
scalar parameters and the εi are IID with mean 0 and variance σ 2. Does
randomization justify the model? If the model is true, can you estimate
the average response if all the subjects had been assigned to treatment
at level 75? Explain.

10. (This continues questions 8 and 9.) Let Yi be the response of subject
i. According to a multiple regression model, given the assignments,
Yi = α+Xiβ+wiγ+εi , wherewi is a vector of personal characteristics
for subject i (question 8); α, β are scalar parameters, γ is a vector of
parameters, and the εi are IID with mean 0 and variance σ 2. Does
randomization justify the model? If the model is true, can you estimate
the response if a subject with characteristics wj is assigned to treatment
at level 75? Explain.

11. Suppose (Xi, εi) are IID as pairs for i = 1, . . . , n, with E(εi) = 0 and
var(εi) = σ 2. Here Xi is a 1×p random vector and εi is a random
variable (unobservable). Suppose E(X′

iXi) is p×p positive definite.
Finally, Yi = Xiβ+εi where β is a p×1 vector of unknown parameters.
Is OLS biased or unbiased? Explain.

12. To demonstrate causation, investigators have used (i) natural experi-
ments, (ii) randomized controlled experiments, and (iii) regression mod-
els, among other methods. What are the strengths and weaknesses of
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methods (i), (ii), and (iii)? Discuss, preferably giving examples to illus-
trate your points.

13. True or false, and explain: if the OLS assumptions are wrong, the com-
puter can’t fit the model to data.

14. An investigator fits the linear model Y = Xβ + ε. The OLS estimate
for β is β̂, and the fitted values are Ŷ . The investigator writes down the
equation Ŷ = Xβ̂ + ε̂. What is ε̂?

15. Suppose the Xi are IID N(0, 1). Let εi = 0.025(X4
i − 3X2

i ) and Yi =
Xi + εi . An investigator does not know how the data were generated,
and runs a regression of Y on X.

(a) Show that R2 is about 0.97. (This is hard.)

(b) Do the OLS assumptions hold?

(c) Should the investigator trust the usual regression formulas for stan-
dard errors?

Hints. Part (a) can be done by calculus—see the end notes to chapter 5
for the moments of the normal distribution—but it gets a little intricate.
A computer simulation may be easier. Assume there is a large sample,
e.g., n = 500.

16. Assume the response schedule Yi,x = a + bx + εi . The εi are IID
N(0, σ 2). The variables Xi are IID N(0, τ 2). In fact, the pairs (εi, Xi)
are IID in i, and jointly normal. However, the correlation between
(εi, Xi) is ρ, which may not be 0. The parameters a, b, σ 2, τ 2, ρ are
unknown. You observe Xi and Yi = Yi,Xi for i = 1, . . . , 500.

(a) If you run a regression of Yi onXi , will you get unbiased estimates
for a and b?

(b) Is the relationship between X and Y causal?

Explain briefly.

17. A statistician fits a regression model (n = 107, p = 6) and tests whether
the coefficient she cares about is 0. Choose one or more of the options
below. Explain briefly.

(i) The null hypothesis says that β2 = 0.

(ii) The null hypothesis says that β̂2 = 0.

(iii) The null hypothesis says that t = 0.

(iv) The alternative hypothesis says that β2 �= 0.

(v) The alternative hypothesis says that β̂2 �= 0.
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(vi) The alternative hypothesis says that t �= 0.

(vii) The alternative hypothesis says that β̂2 is statistically significant.

18. Doctors often use body mass index (BMI) to measure obesity. BMI is
weight/height2, where weight is measured in kilograms and height in
meters. A BMI of 30 is getting up there. For American women age 18–
24, the mean BMI is 24.6 and the variance is 29.4. Although the BMI
for a typical woman in this group is something like , the BMI
of a typical woman will deviate from that central value by something
like . Fill in the blanks; explain briefly.

19. An epidemiologist says that “randomization does not exclude confound-
ing . . . confounding is very likely if information is collected—as it should
be—on a sufficient number of baseline characteristics. . . .” Do you agree
or disagree? Discuss briefly.

Notes. “Baseline characteristics” are characteristics of subjects mea-
sured at the beginning of the study, i.e., just before randomization. The
quote, slightly edited, is from Victora et al (2004).

20. A political scientist is studying a regression model with the usual as-
sumptions, including IID errors. The design matrix X is fixed, with full
rank p = 5, and n = 57. The chief parameter of interest is β2 −β4. One
possible estimator is β̂2 − β̂4, where β̂ = (X′X)−1X′Y . Is there another
linear unbiased estimator with smaller variance? Explain briefly.

6.8 End notes for chapter 6

Discussion questions. In question 5, some details of the data analy-
sis are omitted. Question 6 is hypothetical. Two references on weighing
designs are Banerjee (1975) and Cameron et al (1977); these are fairly tech-
nical. Question 16 illustrates endogeneity bias. Background for question
19: epidemiologists like to adjust for imbalance in baseline characteristics
by statistical modeling, on the theory that they’re getting more power—as
they would, if their models were right.

Measurement error. This is an important topic, not covered in the text.
In brief, random error in Y can be incorporated into ε, as in the example on
Hooke’s law. Random error inX usually biases the coefficient estimates. The
bias can go either way. For example, random error in a confounder can make
an estimated effect too big; random error in measurements of a putative cause
can dilute the effect. Biased measurements of X or Y create other problems.
There are ways to model the impact of errors, both random and systematic.
Such correctives would be useful if the supplementary models were good
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approximations. Arguments get very complicated very quickly, and benefits
remain doubtful (Freedman 1987, 2005). Adcock and Collier (2001) have a
broader discussion of measurement issues in the social sciences.

Dummy variable. The term starts popping up in the statistical literature
around 1950: see Oakland (1950) or Klein (1951). The origins are unclear,
but the Oxford English Dictionary notes related usage in computer science
around 1948.

Current Population Survey. This survey is run by the US Bureau of
the Census for the Bureau of Labor Statistics, and is the principal source
of employment data in the US. There are supplementary questionnaires on
other topics of interest, including computer use, demographics, and electoral
participation. For information on the design of the survey, see Freedman-
Pisani-Purves (2007, chapter 22).

Path diagrams. The choice of variables and arrows in a path diagram is
up to the analyst, as are the directions in which the arrows point, although some
choices may fit the data less well, and some choices may be illogical. If the
graph is “complete”—every pair of nodes joined by an arrow—the direction
of the arrows is not constrained by the data (Freedman 1997, pp. 138, 142).
Ordering the variables in time may reduce the number of options. There are
some algorithms that claim to be able to induce the path diagram from the
data, but the track record is not good (Freedman 1997, 2004; Humphreys and
Freedman 1996, 1999). Achen (1977) is critical of standardization; also see
Blalock (1989). Pearl (1995) discusses direct and indirect effects.

Response schedules provide a rationale for the usual statistical analysis
of path diagrams, and there seems to be no alternative that is much simpler.
The statistical assumptions can be weakened a little; see, e.g., (5.2). Figure 4
suggests that theX’s are IID. This is the best case for path diagrams, especially
when variables are standardized, but all that is needed is exogeneity. Setting
up parameters when non-IID data are standardized is a little tricky; see, e.g.,

http://www.stat.berkeley.edu/users/census/standard.pdf

The phrase “response schedule” combines “response surface” from statis-
tics with “supply and demand schedules” from economics (chapter 9). One
of the first papers to mention response schedules is Bernheim, Shleifer, and
Summers (1985, p. 1051). Some economists have started to write “supply
response schedule” and “demand response schedule.”

Invariance. The discussion in sections 4–5 assumes that errors are in-
variant under intervention. It might make more sense to assume that the error
distributions are invariant, rather than the errors themselves (Freedman 2004).
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Ideas of causation. Embedded in the response-schedule formalism is
the conditional distribution of Y , if we were to intervene and set the value of
X. This conditional distribution is a counter-factual, at least when the study
is observational. The conditional distribution answers the question, what
would have happened if we had intervened and set X to x, rather than letting
Nature take its course? The idea is best suited to experiments or hypothetical
experiments. (The latter are also called “thought experiments” or “gedanken
experiments.”) The formalism applies less well to non-manipulationist ideas
of causation: the moon causes the tides, earthquakes cause property values
to go down, time heals all wounds. Time is not manipulable; neither are
earthquakes or the moon.

Investigators may hope that regression equations are like laws of motion
in classical physics: if position and momentum are given, you can deter-
mine the future of the system and discover what would happen with different
initial conditions. Some other formalism may be needed to make this non-
manipulationist account more precise. Evans (1993) has an interesting survey
of causal ideas in epidemiology, with many examples. In the legal context,
the survey to read is Hart and Honoré (1985).

Levels of measurement. The idea goes back to Yule (1900). Stephens
(1946) and Lord (1953) are other key references.

Otis Dudley Duncan was one of the great empirical social scientists of
the 20th century. Blau and Duncan (1967) were optimistic about the use of
statistical models in the social sciences, but Duncan’s views darkened after
20 years of experience—

“Coupled with downright incompetence in statistics, paradoxically, we
often find the syndrome that I have come to call statisticism: the notion
that computing is synonymous with doing research, the naive faith that
statistics is a complete or sufficient basis for scientific methodology, the
superstition that statistical formulas exist for evaluating such things as
the relative merits of different substantive theories or the ‘importance’of
the causes of a ‘dependent variable’; and the delusion that decomposing
the covariations of some arbitrary and haphazardly assembled collec-
tion of variables can somehow justify not only a ‘causal model’ but also,
praise the mark, a ‘measurement model.’ There would be no point in
deploring such caricatures of the scientific enterprise if there were a
clearly identifiable sector of social science research wherein such falla-
cies were clearly recognized and emphatically out of bounds.” (Duncan
1984, p. 226)



7
Maximum Likelihood

7.1 Introduction

Maximum likelihood is a general (and, with large samples, very power-
ful) method for estimating parameters in a statistical model. The maximum
likelihood estimator is usually called the MLE. Here, we begin with textbook
examples like the normal, binomial, and Poisson. Then comes the probit
model, with a real application—the effects of Catholic schools (Evans and
Schwab 1995, reprinted at the back of the book). This application will show
the strengths and weaknesses of the probit model in action.

Example 1. N(µ, 1) with −∞ < µ < ∞. The density at x is

1√
2π

exp
[− 1

2
(x − µ)2

]
, where exp(x) = ex.

See section 3.5. For n independentN(µ, 1) variablesX1, . . . , Xn, the density
at x1, . . . , xn is

( 1√
2π

)n
exp
[− 1

2

n∑
i=1

(xi − µ)2
]
.
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The likelihood function is the density evaluated at the dataX1, . . . , Xn, viewed
as a function of the parameter µ. The log likelihood function is more useful:

Ln(µ) = −1

2

n∑
i=1

(Xi − µ)2 − n log
(√

2π
)
.

The notation makes it explicit that Ln(µ) depends on the sample size n and
the parameterµ. There is also dependence on the data, because the likelihood
function is evaluated at the Xi : look at the right hand side of the equation.

The MLE is the parameter value µ̂ that maximizes Ln(µ). To find the
MLE, you can start by differentiating Ln(µ) with respect to µ:

L′
n(µ) =

n∑
i=1

(Xi − µ).

Set L′
n(µ) to 0 and solve. The unique µ with L′

n(µ) = 0 is µ̂ = X, the
sample mean. Check that

L′′
n(µ) = −n.

Thus, X is the maximum not the minimum. (Here, L′
n means the derivative

not the transpose, and L′′
n is the second derivative.)

What is the idea? Let’s take the normal model for granted, and try to
estimate the parameter µ from the data. The MLE looks for the value of µ
that makes the data as likely as possible—given the model. Technically, that
means looking for the µ which maximizes Ln(µ).

Example 2. Binomial(1, p) with 0 < p < 1. Let Xi be independent.
Each Xi is 1 with probability p and 0 with remaining probability 1 − p, so
Xi has the Binomial(1, p) distribution. Let xi = 0 or 1. The probability that
Xi = xi for i = 1, . . . , n is

n∏
i=1

pxi (1 − p)1−xi .

The reasoning: due to independence, the probability is the product of n
factors. If xi = 1, the ith factor is Pp(Xi = 1) = p = pxi (1 − p)1−xi ,
because (1 − p)0 = 1. If xi = 0, the factor is Pp(Xi = 0) = 1 − p =
pxi (1 − p)1−xi , because p0 = 1. (Here, Pp is the probability that governs
the Xi’s when the parameter is p.) Let S = X1 + · · · +Xn. Check that

Ln(p) =
n∑
i=1

[
Xi logp + (1 −Xi) log(1 − p)

]
= S logp + (n− S) log(1 − p).
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Now

L′
n(p) = S

p
− n− S

1 − p

and

L′′
n(p) = − S

p2 − n− S

(1 − p)2
.

The MLE is p̂ = S/n.
If S = 0, the likelihood function is maximized at p̂ = 0. This is an

“endpoint maximum.” Similarly, if S = n, the likelihood function has an
endpoint maximum at p = 1. In the first case, L′

n < 0 on (0, 1). In the
second case, L′

n > 0 on (0, 1). Either way, the equation L′
n(p) = 0 has no

solution.

Example 3. Poisson(λ) with 0 < λ < ∞. Let Xi be independent
Poisson(λ). If j = 0, 1, . . . then

Pλ(Xi = j) = e−λ λj

j !

and

Pλ(Xi = ji for i = 1, . . . , n) = e−nλλj1+···+jn
n∏
i=1

1

ji!
,

where Pλ is the probability distribution that governs the Xi’s when the pa-
rameter is λ. Let S = X1 + · · · +Xn. So

Ln(λ) = −nλ+ S log λ−
n∑
i=1

log(Xi!) .

Now

L′
n(λ) = −n+ S

λ

and

L′′
n(λ) = − S

λ2 .

The MLE is λ̂ = S/n. (This is an endpoint maximum if S = 0.)

Example 4. Let X be a positive random variable, with Pθ(X > x) =
θ/(θ + x) for 0 < x < ∞, where the parameter θ is a positive real number.
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The distribution function of X is x/(θ + x). The density is θ/(θ + x)2. Let
X1, . . . , Xn be independent, with density θ/(θ + x)2. Then

Ln(θ) = n log θ − 2
n∑
i=1

log(θ +Xi).

Now

L′
n(θ) = n

θ
− 2

n∑
i=1

1

θ +Xi

and

L′′
n(θ) = − n

θ2 + 2
n∑
i=1

1

(θ +Xi)2
.

There is no explicit formula for the MLE, but you can find it by numerical
methods on the computer. (Computer labs 10–12 at the back of the book
will get you started on numerical maximization, or see the end notes for the
chapter; a detailed treatment is beyond our scope.) This example is a little
artificial. It will be used to illustrate some features of the MLE.

Remarks. In example 1, the sample meanX isN(µ, 1/n). In example 2,
the sum is Binomial(n, p) :

Pp(S = j) =
(
n

j

)
pj (1 − p)n−j .

In example 3, the sum is Poisson(nλ) :

Pλ(S = j) = e−nλ (nλ)j

j !
.

Definition. There is a statistical model parameterized by θ . The Fisher
information is Iθ = −Eθ

[
L′′

1(θ)
]
, namely, the negative of the expected value

of the second derivative of the log likelihood function, for a sample of size 1.

Theorem 1. Suppose X1, . . . , Xn are IID with probability distribution
governed by the parameter θ . Let θ0 be the true value of θ . Under regularity
conditions (which are omitted here), the MLE for θ is asymptotically normal.
The asymptotic mean of the MLE is θ0. The asymptotic variance can be
computed in three ways:

(i) I−1
θ0

/n,
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(ii) I−1
θ̂

/n,

(iii) [−L′′
n(θ̂)]

−1.

If θ̂ is the MLE and vn is the asymptotic variance, the theorem says that
(θ̂ − θ0)/

√
vn is nearly N(0, 1) when the sample size n is large—and we’re

sampling from θ0. (“Asymptotic” results are nearly right for large samples.)
The [−L′′

n(θ̂)] in (iii) is often called “observed information.” With option
(iii), the sample size n is built into Ln: there is no division by n.

The MLE can be used in multi-dimensional problems, and theorem 1
generalizes. When the parameter vector θ is p dimensional, L′(θ) is a p

vector. The j th component of L′(θ) is ∂L/∂θj . Furthermore, L′′(θ) is a
p×p matrix. The ij th component of L′′(θ) is

∂2L

∂θi ∂θj
= ∂2L

∂θj ∂θi
.

We’re assuming that L is smooth. Then the matrix L′′ is symmetric. We still
define Iθ = −Eθ

[
L′′

1(θ)
]
. This is now a p×p matrix. The diagonal elements

of I−1
θ0

/n give asymptotic variances for the components of θ̂ ; the off-diagonal
elements, the covariances. Similar comments apply to −L′′

n(θ̂)
−1.

What about independent variables that are not identically distributed?
Theorem 1 can be extended to cover this case, although options (i) and (ii)
for asymptotic variance get a little more complicated. For instance, option (i)
becomes {−Eθ0 [L′′

n(θ0)]}−1. Observed information is still a good option,
even if the likelihood function is harder to compute.

The examples. The normal, binomial, and Poisson are “exponential
families” where the theory is especially attractive (although it is beyond our
scope). Among other things, the likelihood function generally has a unique
maximum. With other kinds of models, there are usually several local maxima
and minima.

Caution. Ordinarily, the MLE is biased—although the bias is small with
large samples. The asymptotic variance is also an approximation. Moreover,
with small samples, the distribution of the MLE is often far from normal.

Exercise set A

1. In example 1, the log likelihood function is a sum—as it is in examples
2, 3, and 4. Is this a coincidence? If not, what is the principle?

2. (a) Suppose X1, X2, . . . , Xn are IID N(µ, 1). Find the mean and vari-
ance of the MLE for µ. Find the distribution of the MLE andcom-
pare to the theorem. Show that −L′′

n(µ̂)/n → Iµ. Comment: for
the normal, the asymptotics are awfully good.
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(b) If U is N(0, 1), show that U is symmetric: namely, P(U < y) =
P(−U < y). Hints. (i) P(−U < y) = P(U > −y), and
(ii) exp(−x2/2) is a symmetric function of x.

3. Repeat 2(a) for the binomial in example 2. Is the MLE normally dis-
tributed? Or is it only approximately normal?

4. Repeat 2(a) for the Poisson in example 3. Is the MLE normally dis-
tributed? Or is it only approximately normal?

5. Find the density of θU/(1−U), whereU is uniform on [0,1] and θ > 0.

6. Suppose the Xi > 0 are independent, and their common density is
θ/(θ + x)2 for i = 1, . . . , n, as in example 4. Show that θL′

n(θ) =
−n + 2

∑n
i=1 Xi/(θ + Xi). Deduce that θ → θL′

n(θ) decreases from
n to −n as θ increases from 0 to ∞. Conclude that Ln has a unique
maximum. (Reminder: L′

n means the derivative not the transpose.)

7. What is the median of X in example 4?

8. Show that the Fisher information in example 4 is 1/(3θ2).

9. Suppose Xi are independent for i = 1, . . . , n, with a common Poisson
distribution. Suppose E(Xi) = λ > 0, but the parameter of interest is
θ = λ2. Find the MLE for θ . Is the MLE biased or unbiased?

10. As in exercise 9, but the parameter of interest is θ = √
λ. Find the MLE

for θ . Is the MLE biased or unbiased?

11. Let β be a positive real number, which is unknown. Suppose Xi are
independent Poisson random variables, with E(Xi) = βi for i =
1, 2, . . . , 20. How would you estimate β?

12. SupposeX, Y, Z are independent normal random variables, each having
variance 1. The means are α+β, α+2β, 2α+β, respectively: α, β are
parameters to be estimated. Show that maximum likelihood and OLS
give the same estimates. Note: this won’t usually be true—the result
depends on the normality assumption.

13. Let θ be a positive real number, which is unknown. Suppose the Xi

are independent for i = 1, . . . , n, with a common distribution Pθ that
depends on θ : Pθ {Xi = j} = c(θ)(θ + j)−1(θ + j + 1)−1 for j =
0, 1, 2, . . . .What is c(θ)? How would you estimate θ? Hints on finding
c(θ). What is

∑∞
j=0 (aj − aj+1)? What is (θ + j)−1 − (θ + j + 1)−1?

14. Suppose Xi are independent for i = 1, . . . , n, with common density
1
2 exp(−|x − θ |), where θ is a parameter, x is real, and n is odd. Show
that the MLE for θ is the sample median. Hint: see exercise 2B18.
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7.2 Probit models

The probit model explains a 0–1 response variable Yi for subject i in
terms of a row vector of covariates Xi . Let X be the matrix whose ith row
is Xi . Each row in X represents the covariates for one subject, and each
column represents one covariate. Given X, the responses Yi are assumed to
be independent random variables, taking values 0 or 1, with

P(Yi = 0|X) = 1 −#(Xiβ), P (Yi = 1|X) = #(Xiβ).

Here, # is the standard normal distribution function and β is a parameter
vector. Any distribution function could be used: # is what makes it a probit
model rather than a logit model or an xxxit model.

Let’s try some examples. About one-third of Americans age 25+ read a
book last year. Strange but true. Probabilities vary with education, income,
and gender, among other things. In a (hypothetical) study on this issue,
subjects are indexed by i = 1, . . . , n. The response variable Yi is defined as
1 if subject i read a book last year, else Yi = 0. The vector of explanatory
variables for subject i is Xi = [1,EDi , INCi ,MANi]:

EDi is years of schooling completed by subject i.

INCi is the annual income of subject i, in US dollars.

MANi is 1 if subject i is a man, else 0. (This is a dummy variable:
section 6.6.)

The parameter vector β is 4×1. Given the covariate matrix X, the Yi’s are
assumed to be independent with P(Yi = 1) = #(Xiβ), where # is the
standard normal distribution function.

This is a lot like coin-tossing (example 2), but there is one major dif-
ference. Each subject i has a different probability of reading a book. The
probabilities are all computed using the same formula, #(Xiβ). The param-
eter vector β is the same for all the subjects. That is what ties the different
subjects together. Different subjects have different probabilities only because
of their covariates. Let’s do some special cases to clarify this.

Example 5. Suppose we know that β1 = −0.35, β2 = 0.02, β3 =
1/100,000, and β4 = −0.1. A man has 12 years of education and makes
$40,000 a year. His Xiβ is

−0.35 + 12×0.02 + 40,000× 1

100,000
− 0.1

= −0.35 + 0.24 + 0.4 − 0.1 = 0.19.

The probability he read a book last year is #(0.19) = 0.58.
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A similarly situated woman hasXiβ = −0.35+0.24+0.4 = 0.29. The
probability she read a book last year is #(0.29) = 0.61, a bit higher than the
0.58 for her male counterpart in example 5. The point of the dummy variable
is to add β4 to Xiβ for male subjects but not females. Here, β4 is negative.
(Adding a negative number is what most people would call subtraction.)

Estimation. We turn to the case where β is unknown, to be estimated
from the data by maximum likelihood. The probit model makes the indepen-
dence assumption, so the likelihood function is a product with a factor for
each subject. Let’s compute this factor for two subjects.

Example 6. Subject is male, with 18 years of education and a salary of
$60,000. Not a reader, he watches TV or goes to the opera for relaxation.
His factor in the likelihood function is

1 −#
(
β1 + 18β2 + 60,000β3 + β4

)
.

It’s 1 −# because he doesn’t read. There’s +β4 in the equation, because it’s
him not her. TV and opera are irrelevant.

Example 7. Subject is female, with 16 years of education and a salary
of $45,000. She reads books, has red hair, and loves scuba diving. Her factor
in the likelihood function is

#
(
β1 + 16β2 + 45,000β3

)
.

It’s # because she reads books. There is no β4 in the equation: her dummy
variable is 0. Hair color and underwater activities are irrelevant.

Since the likelihood is a product—we’ve conditioned on X—the log
likelihood is a sum, with a term for each subject:

Ln(β) =
n∑
i=1

(
Yi log

[
P(Yi = 1|Xi)

] + (1 − Yi) log
[
1 − P(Yi = 1|Xi)

])
=

n∑
i=1

(
Yi log

[
#(Xiβ)

] + (1 − Yi) log
[
1 −#(Xiβ)

])
.

Readers contribute terms with log [#(Xiβ)]: the log [1 − #(Xiβ)] drops
out, because Yi = 1 if subject i is a reader. It’s the reverse for non-readers:
Yi = 0, so log [#(Xiβ)] drops out and log [1−#(Xiβ)] stays in. If this isn’t
clear, review the binomial example in section 1.
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Given X, the Yi are independent. They are not identically distributed:
P(Yi = 1|X) = #(Xiβ) differs from one i to another. As noted ear-
lier, Theorem 1 can be extended to cover this case, although options (i)
and (ii) for asymptotic variance have to be revised: e.g., option (i) becomes
{−Eθ0 [L′′

n(θ0)]}−1. We estimate β by maximizing Ln(β). As in most appli-
cations, this would be impossible by calculus, so it’s done numerically. The
asymptotic covariance matrix is [−L′′

n(β̂)]
−1. Observed information is used

because it isn’t feasible to compute the Fisher information matrix analytically.
To get standard errors, take square roots of the diagonal elements.

Why not regression?

You probably don’t want to tell the world that Y = Xβ + ε. The reason:
Xiβ is going to produce numbers other than 0 or 1, and Xiβ + εi is even
worse. The next option might be P(Yi = 1|X) = Xiβ, the Yi being as-
sumed conditionally independent across subjects. That’s a “linear probability
model.” Chapter 9 has an example with additional complications.

Given data from a linear probability model, you can estimate β by fea-
sible GLS. However, there are likely to be some subjects with Xiβ̂ > 1, and
other subjects with Xiβ̂ < 0. A probability of 1.5 is a jolt; so is −0.3. The
probit model respects the constraint that probabilities are between 0 and 1.

Regression isn’t useless in the probit context. To maximize the likelihood
function by numerical methods, it helps to have a reasonable starting point.
Regress Y on X, and start the search from there.

The latent-variable formulation

The probit model is one analog of regression for binary response vari-
ables; the logit model, discussed below, is another. So far, there is no error
term in the picture. However, the model can be set up with something like an
error term. To see how, let’s go back to the probit model for reading books.

Subject i has a latent (hidden) variableUi . These are IIDN(0, 1) across
subjects, independent of the covariates. (Reminder: IID = independent and
identically distributed.) Subject i reads books if Xiβ +Ui > 0. However, if
Xiβ + Ui < 0, then subject i is not a reader. We don’t have to worry about
the possibility that Xiβ + Ui = 0: this is an event with probability 0.

Given the covariate matrix X, the probability that subject i reads books
is

P(Xiβ + Ui > 0) = P(Ui > −Xiβ) = P(−Ui < Xiβ).

Because Ui is symmetric (exercise A2),

P(−Ui < Xiβ) = P(Ui < Xiβ) = #(Xiβ).
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So P(Xiβ +Ui > 0) = #(Xiβ). The new formulation with latent variables
gives the right probabilities.

The probit model now has something like an error term, namely, the
latent variable. But there is an important difference between latent variables
and error terms. You can’t estimate latent variables. At most, the data tell
you Xiβ and the sign of Xiβ + Ui . That is not enough to determine Ui . By
contrast, error terms in a regression model can be approximated by residuals.

The latent-variable formulation does make the assumptions clearer. The
probit model requires the Ui’s to be independent of the Xi’s, and IID across
subjects. The Ui’s need to be normal. The response for subject i depends
only on that subject’s covariates. (Look at the formulas!)

The hard questions about probit models are usually ducked. Is IID
realistic for reading books? Not if there’s word-of-mouth: “Hey, you have to
read this book, it’s great.” Why are the β’s the same for everybody? e.g., for
men and women? Why is the effect of income the same for all educational
levels? What about other variables?

If the assumptions in the model break down, the MLE will be
biased—even with large samples. The bias may be severe. Also,
estimated standard errors will not be reliable.

Exercise set B

1. Let Z be N(0, 1) with density function φ and distribution function #

(section 3.5). True or false, and explain:

(a) The slope of # at x is φ(x).
(b) The area to the left of x under φ is #(x).
(c) P(Z = x) = φ(x).
(d) P(Z < x) = #(x).
(e) P(Z ≤ x) = #(x).
(f) P(x < Z < x + h)

.= φ(x)h if h is small and positive.

2. In brief, the probit model for reading says that subject i read a book last
year if Xiβ + Ui > 0.

(a) What are Xi and β?

(b) The Ui is a variable. Options (more than one may be
right):

data random latent dummy observable
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(c) What are the assumptions on Ui?

(d) The log likelihood function is a , with one
for each . Fill in the blanks using the options below, and
explain briefly.

sum product quotient matrix term
subject factor entry book variable

3. As in example 5, suppose we know β1 = −0.35, β2 = 0.02, β3 =
1/100,000, β4 = −0.1. George has 12 years of education and makes
$40,000 a year. His brother Harry also has 12 years of education but
makes $50,000 a year. True or false, and explain: according to the
model, the probability that Harry read a book last year is 0.1 more than
George’s probability. If false, compute the difference in probabilities.

Identification vs estimation

Two very technical ideas are coming up: identifiability and estimabil-
ity. Take identifiability first. Suppose Pθ is the probability distribution that
governs X. The distribution depends on the parameter θ . Think of X as
observable, so Pθ is something we can determine. The function f (θ) is
identifiable if f (θ1) �= f (θ2) implies Pθ1 �= Pθ2 for every pair (θ1, θ2) of pa-
rameter values. In other words, f (θ) is identifiable if changing f (θ) changes
the distribution of an observable random variable.

Now for the second idea: the function f (θ) is estimable if there is a
function g with Eθ [g(X)] = f (θ) for all values of θ , where Eθ stands for
expected value computed from Pθ . This is a cold mathematical definition:
f (θ) is estimable if there is an unbiased estimator for it. Nearly unbiased
won’t do, and variance doesn’t matter.

Proposition 1. If f (θ) is estimable, then f (θ) is identifiable.

Proof. If f (θ) is estimable, there is a function g with Eθ [g(X)] = f (θ)

for all θ . If f (θ1) �= f (θ2), then Eθ1 [g(X)] �= Eθ2 [g(X)]. So Pθ1 �= Pθ2 :
i.e., θ1 and θ2 generate different distributions for X.

The converse to proposition 1 is false. A parameter—or a function of
a parameter—can be identifiable without being estimable. That is what the
next example shows.

Example 8. Suppose 0 < p < 1 is a parameter; X is a binomial
random variable with Pp(X = 1) = p and Pp(X = 0) = 1 −p. Then

√
p is

identifiable but not estimable. To prove identifiability,
√
p1 �=√

p2 implies
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p1 �= p2. Then Pp1(X = 1) �= Pp2(X = 1). What about estimating
√
p, for

instance, by g(X)—where g is some suitable function? Well, Ep[g(X)] =
(1 −p)g(0)+pg(1). This is a linear function of p. But

√
p isn’t linear. So√

p isn’t estimable: there is no g with Ep[g(X)] = √
p for all p. In short,√

p is identifiable but not estimable, as advertised.

For the binomial, the parameter is one-dimensional. However, the defi-
nitions apply also to multi-dimensional parameters. Identifiability is an im-
portant concept, but it may seem a little mysterious. Let’s say it differently.

Something is identifiable if you can get it from the joint distribution
of observable random variables.

Example 9. There are three parameters, a, b, and σ 2. Suppose Yi =
a+bxi +δi for i = 1, 2, . . . , 100. The xi are fixed and known; in fact, all the
xi happen to be 2. The unobservable δi are IID N(0, σ 2). Is a identifiable?
estimable? How about b? a + 2b? σ 2? To begin with, the Yi are IID
N(a+2b, σ 2). The sample mean of the Yi’s estimates a+2b. Thus, a+2b
is estimable and identifiable. The sample variance of theYi’s estimates σ 2—if
you divide by 99 rather than 100. Thus, σ 2 is estimable and identifiable.

However, a and b are not separately identifiable. For instance, if a = 0
and b = 1, the Yi would be IID N(2, σ 2). If a = 1 and b = 0.5, the Yi
would be IID N(2, σ 2). If a = √

17 and b = (2 − √
17)/2, the Yi would be

IID N(2, σ 2). Infinitely many combinations of a and b generate exactly the
same joint distribution for the Yi . That is why information about the Yi can’t
help you break a + 2b apart, into a and b. If you want to identify a and b

separately, you need some variation in the xi .

Example 10. Suppose U and V are independent random variables: U
is N(a, 1) and V is N(b, 1), where a and b are parameters. Although the
sum U + V is observable, U and V themselves are not observable. Is a + b

identifiable? How about a? b? To begin with, E(U + V ) = a + b. So
a+b is estimable, hence, identifiable. On the other hand, if we increase a by
some amount and decrease b by the same amount, a + b is unchanged. The
distribution of U +V is also unchanged. Hence, a and b themselves are not
identifiable.

What if the Ui are N(µ, σ 2)?

Let’s go back to the probit model for reading books, and try N(µ, 1)
latent variables. Then β1 —the intercept—is mixed up with µ. You can
identify β1 + µ, but can’t get the pieces β1, µ. What about N(0, σ 2) for
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the latents? Without some constraint, parameters are not identifiable. For
instance, the combination σ = 1 and β = γ produces the same probability
distribution for the Yi given the Xi as σ = 2 and β = 2γ . Setting σ =
1 makes the other parameters identifiable. There would be trouble if the
distribution of the latent variables changed from one subject to another.

Exercise set C

1. If X is N(µ, σ 2), show that µ is estimable and σ 2 is identifiable.

2. Suppose X1, X2, and X3 are independent normal random variables.
Each has variance 1. The means areα, α+9β, andα+99β, respectively.
Are α and β identifiable? estimable?

3. Suppose Y = Xβ + ε, where X is a fixed n×p matrix, β is a p× 1
parameter vector, the εi are IID with mean 0 and variance σ 2. Is β
identifiable if the rank of X is p? if the rank of X is p − 1?

4. Suppose Y = Xβ + ε, where X is a fixed n×p matrix of rank p, and
β is a p× 1 parameter vector. The εi are independent with common
variance σ 2 and E(εi) = µi , where µ is an n×1 parameter vector. Is β
identifiable?

5. Suppose X1 and X2 are IID, with Pp(X1 = 1) = p and Pp(X1 = 0) =
1−p; the parameterp is between 0 and 1. Isp3 identifiable? estimable?

6. Suppose U and V are independent; U is N(0, σ 2) and V is N(0, τ 2),
where σ 2 and τ 2 are parameters. However, U and V are not observable.
Only U +V is observable. Is σ 2 + τ 2 identifiable? How about σ 2? τ 2?

7. If X is distributed like the absolute value of an N(µ, 1) variable, show
that:

(a) |µ| is identifiable. Hint: what is E(X2)?

(b) µ itself is not identifiable. Hint: µ and −µ lead to the same distri-
bution for X.

8. For incredibly many bonus points: suppose X is N(µ, σ 2). Is |µ| es-
timable? What about σ 2? Comments. We only have one observation
X, not many observations. A rigorous solution to this exercise might
involve the dominated convergence theorem, or the uniqueness theorem
for Laplace transforms.
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7.3 Logit models

Logits are often used instead of probits. The specification is the same,
except that the logistic distribution function/ is used instead of the normal#:

/(x) = ex

1 + ex
for − ∞ < x < ∞.

The odds ratio is p/(1 − p). People write logit for the log odds ratio:

logit p = log
p

1 − p
for 0 < p < 1.

The logit model says that the response variables Yi are independent given the
covariates X, and P(Yi = 1|X) = /(Xiβ), that is,

logit P(Yi = 1|X) = Xiβ.

(See exercise 6 below.) From the latent-variables perspective,

Yi = 1 if Xiβ + Ui > 0, but Yi = 0 if Xiβ + Ui < 0.

The latent variables Ui are independent of the covariate matrix X, and the
Ui are IID, but now the common distribution function of the Ui is /. The
logit model uses / where the probit uses #. That’s the difference. “Logistic
regression” is a synonym for logit models.

Exercise set D

1. Suppose the random variableX has a continuous, strictly increasing dis-
tribution function F. Show that F(X) is uniform on [0,1]. Hints. Show
that F has a continuous, strictly increasing inverse F−1. So F(X) < y

if and only if X < F−1(y).

2. Conversely, if U is uniform on [0,1], show that F−1(U) has distribution
function F. (This idea is often used to simulate IID picks from F.)

On the logit model

3. Check that the logistic distribution function / is monotone increasing.
Hint: if 1 −/ is decreasing, you’re there.

4. Check that /(−∞) = 0 and /(∞) = 1.

5. Check that the logistic distribution is symmetric, i.e., 1 − /(x) =
/(−x). Appearances can be deceiving. . . .
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6. (a) If P(Yi = 1|X) = /(Xiβ), show that logitP(Yi = 1|X) = Xiβ.
(b) If logitP(Yi = 1|X) = Xiβ, show that P(Yi = 1|X) = /(Xiβ).

7. What is the distribution of logU − log (1 − U), where U is uniform
on [0, 1]? Hints. Show that log u − log (1 − u) is a strictly increasing
function of u. Then compute the chance that logU − log (1 − U) > x.

8. For θ > 0, supposeX has the density θ/(θ+x)2 on the positive half-line
(0,∞). Show that log(X/θ) has the logistic distribution.

9. Show that ϕ(x) = − log(1 + ex) is strictly concave on (−∞,∞). Hint:
check that ϕ′′(x) = −ex/(1 + ex)2 < 0.

10. Suppose that, conditional on the covariates X, the Y ’s are independent
0–1 variables, with logit P(Yi = 1|X) = Xiβ, i.e., the logit model
holds. Show that the log likelihood function can be written as

Ln(β) = −
(

n∑
i=1

log
[
1 + exp(Xiβ)

])+
(

n∑
i=1

XiYi

)
β.

11. (This continues exercises 9 and 10: hard.) Show thatLn(β) is a concave
function of β, and strictly concave if X has full rank. Hints. Let the
parameter vector β be p × 1. Let c be a p × 1 vector with ‖c‖ >

0. You need to show c′L′′
n(β)c ≤ 0, with strict inequality if X has

full rank. Let Xi be the ith row of X, a 1×p vector. Confirm that
L′′
n(β) =∑

i
X′
iXi

ϕ′′(X
i
β), where ϕ was defined in exercise 9. Check

that c′X′
iXi

c ≥ 0 and ϕ′′(Xiβ) ≤ m < 0 for all i = 1, . . . , n, where m
is a real number that depends on β.

On the probit model

12. Let# be the standard normal distribution function (mean 0, variance 1).
Let φ = #′ be the density. Show that φ′(x) = −xφ(x). If x > 0, show
that ∫ ∞

x

zφ(z) dz = φ(x) and 1 −#(x) <

∫ ∞

x

z

x
φ(z) dz.

Conclude that 1 − #(x) < φ(x)/x for x > 0. If x < 0, show that
#(x) < φ(x)/|x|. Show that log# and log(1−#) are strictly concave,
because their second derivatives are strictly negative. Hint: do the cases
x > 0 and x < 0 separately.

13. (This continues exercise 12: hard.) Show that the log likelihood for the
probit model is concave, and strictly concave if X has full rank. Hint:
this is like exercise 11.



130 Chapter 7

7.4 The effect of Catholic schools

Catholic schools in the United States seem to be more effective than
public schools. Graduation rates are higher and more of the students get into
college. But maybe this is because of student characteristics. For instance,
richer students might be more likely to go to Catholic schools, and richer kids
tend to do better academically. That could explain the apparent effect. Evans
and Schwab (1995) use a probit model to adjust for student characteristics
like family income. They use a two-equation model to adjust for selection
effects based on unmeasured characteristics, like intelligence and motivation.
For example, Catholic schools might look better because they screen out less-
intelligent, less-motivated students; or, students who are more intelligent and
better motivated might self-select into Catholic schools. (The paper, reprinted
at the back of the book, rejects these alternative explanations.)

Data are from the “High School and Beyond” survey of high schools.
Evans and Schwab look at students who were sophomores in the original 1980
survey and who responded to followup surveys in 1982 and 1984. Students
who dropped out are excluded. So are a further 389 students who attended
private non-Catholic schools, or whose graduation status was unknown. That
leaves 13,294 students in the sample. Table 1 in the paper summarizes the
data: 97% of the students in Catholic schools graduated, compared to 79%
in public schools—an impressive difference.

Table 1 also demonstrates potential confounding. For instance, 79% of
the students in Catholic schools were Catholic, compared to 29% in pub-
lic schools—not a huge surprise. Furthermore, 14% had family incomes
above $38,000, compared to 7% in public schools. (These are 1980s dol-
lars; $38,000 then was equivalent to maybe $80,000 at the beginning of the
21st century.) A final example: 2% of the students in Catholic schools were
age 19 and over, compared to 8% in public schools. Generally, however,
confounding is not prominent. Table 2 has additional detail on outcomes by
school type. The probit results are in table 3. The bottom line: confounding
by measured variables does not seem to explain the different success rates for
Catholic schools and public schools. The imbalance in religious affiliation
will be taken up separately, below.

To define the model behind table 3 in Evans and Schwab, let the response
variable Yi be 1 if student i graduates, otherwise Yi is 0. Given the covariates,
the model says that graduation is independent across students. For student i,

(1) P (Yi = 1 |C,X) = #(Ciα +Xiβ),

where Ci = 1 if student i attends Catholic school, while Ci = 0 if student i
attends public school. Next,Xi is a vector of dummy variables describing per-
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sonal characteristics of student i—gender, race, ethnicity, family income. . . .
The matrix X on the left hand side of (1) has a row for each student and a
column for each variable: Xi is the ith row of X. Similarly, C is the vector
whose ith component is Ci . As usual, # is the standard normal distribution
function. The parameters α and β are estimated by maximum likelihood: α
is a scalar, and β is a vector. (We’re not using the same notation as the paper.)

For Evans and Schwab, the interesting parameter in (1) is α, which
measures the effect of the Catholic schools relative to the public schools,
all else equal—gender, race, etc. (It is the assumptions behind the model
that do the equalizing; “all else equal” is not a phrase to be treated lightly.)
The Catholic-school effect on graduation is positive and highly significant:
α̂ = 0.777, with an SE of 0.056, so t = 0.777/0.056

.= 14. (See table 3;
a t-statistic of 14 is out of sight, but remember, it’s a big sample.) The SE
comes from the observed information, [−L′′

n(α̂, β̂)]
−1.

For each type of characteristic, effects are relative to an omitted category.
(If you put in all the categories all the time, the design matrix will not have
full rank and parameters will not be identifiable.) For example, there is a
dummy variable for attending Catholic schools, but no dummy variable for
public schools. Attending public school is the omitted category. The effect
of attending Catholic schools is measured relative to public schools.

Family income is represented in the model, but not as a continuous
variable. Instead, there is a set of dummies to describe family income—
missing, below $7000, $7000–$12,000, . . . . (Respondents ticked a box on
the questionnaire to indicate a range for family income; some didn’t answer
the question.) For each student, one and only one of the income dummies
kicks in and takes the value 1; the others are all 0. The omitted category in
table 3 is $38,000+. You have to look back at table 1 in the paper to spot the
omitted category.

A student whose family income is missing has a smaller chance of grad-
uating than a student whose family income is $38,000+, other things being
equal. The difference is −0.111 on the probit scale: you see −0.111 in the
“probit coefficient” column for the dummy variable “family income missing”
(Evans and Schwab, table 3). The negative sign should not be a surprise. Gen-
erally, missing data is bad news. Similarly, a student whose family income is
below $7000 has a smaller chance of graduating than a student whose family
income is $38,000+, other things being equal. The difference is −0.300 on
the probit scale. The remaining coefficients in table 3 can be interpreted in a
similar way.

“Marginal effects” are reported in table 3 of the paper. For instance, the
marginal effect of Catholic schools is obtained by taking the partial derivative
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of #(Ciα̂ +Xiβ̂) with respect to Ci :

(2a)
∂

∂Ci

#(Ciα̂ +Xiβ̂) = φ(Ciα̂ +Xiβ̂)α̂,

where φ = #′ is the standard normal density. The marginal effect of the j th
component of Xi is the partial derivative with respect to Xij :

(2b) φ(Ciα̂ +Xiβ̂)β̂j .

But φ(Ciα̂ + Xiβ̂) depends on Ci,Xi . So, which values do we use? See
note 10 in the paper. We’re talking about a 17-year-old white female, living
with both parents, attending a public school. . . .

Marginal effects are interpretable if you believe the model, and the vari-
ables are continuous. Even if you take the model at face value, however, there
is a big problem for categorical variables. Are you making female students a
little more female? Are you making public schools a tiny bit Catholic??

The average treatment effect (at the end of table 3) is

(3)
1

n

n∑
i=1

[
#(α̂ +Xiβ̂)−#(Xiβ̂)

]
.

The formula compares students to themselves in two scenarios: (i) attends
Catholic school, (ii) attends public school. You take the difference in grad-
uation probabilities for each student. Then you average over the students in
the study: students are indexed by i = 1, . . . , n.

For each student, one scenario is factual; the other is counter-factual.
After all, the student can’t go to both Catholic and public high schools—
at least, not for long. Graduation is observed in the factual scenario only.
The calculation does not use observable outcomes. Instead, the calculation
uses probabilities computed from the model. This is OK if the model can be
trusted. Otherwise, the numbers computed from (3) don’t mean very much.

Latent variables

Equation (1) is equivalent to the following. Student i will graduate if

(4) Ciα +Xiβ + Vi > 0;

otherwise, i does not graduate. Remember, Yi = 1 in the first case, and 0
in the second. Often, the recipe gets shortened rather drastically: Yi = 1
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if Ciα + Xiβ + Vi > 0, else Yi = 0. Given the C’s and X’s, the latent
(unobservable) variables Vi are assumed to be IID N(0, 1) across subjects.
Latent variables are supposed to capture the effects of unmeasured variables
like intelligence, aptitude, motivation, parental attitudes. Evans and Schwab
derive equation (1) above from (4), but the “net benefit” talk justifying their
version of (4) is, well, just talk.

Response schedules

Evans and Schwab treat Catholic school attendance along with sex,
race, . . . as manipulable. This makes little sense. Catholic school atten-
dance might be manipulable, but many other measured variables are personal
characteristics that would be hard to change.

Apart from the measured covariates Xi , student i has the latent variable
Vi introduced above. The response schedule behind (4) is this. Student i
graduates if

(5) cα +Xiβ + Vi > 0;

otherwise, no graduation. Here, c can be set to 0 (send the kid to public school)
or 1 (send to Catholic school). Manipulating c doesn’t affect α, β,Xi, Vi—
which is quite an assumption.

There are also statistical assumptions:

(6) Vi are IID N(0, 1) across students i,

(7) the V ’s are independent of the C’s and X’s .

If (7) holds, then Nature is randomizing students to different combinations
of C and X, independently of their V ’s—another strong assumption.

There is another way to write the response schedule. Given the covariate
matrix X, the conditional probability that i graduates is #(cα +Xiβ). This
function of c says what the graduation probability would be if we intervened
and set c to 0. The probability would be #(Xiβ). The function also says
what the graduation probability would be if we intervened and set c to 1. The
probability would be #(α + Xiβ). The normal distribution function # is
relevant because—by assumption—the latent variable Vi is N(0, 1).

The response schedule is theory. Nobody intervened to set c. High
School and Beyond was a sample survey, not an experiment. Nature took its
course, and the survey recorded what happened. Thus, Ci is the value for c
chosen by Nature for student i.
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The response schedule may be just theory, but it’s important. The theory
is what bridges the gap between association and causation. Without (5), it
would be hard to draw causal conclusions from observational data. With-
out (6) and (7), the statistical procedures would be questionable. Parameter
estimates and standard errors might be severely biased.

Evans and Schwab are concerned that C may be endogenous, that is, re-
lated to V . Endogeneity would bias the study. For instance, Catholic schools
might look good because they select good students. Evans and Schwab offer
a two-equation model—our next topic—to take care of this problem.

The second equation

The two-equation model is shown in figure 1. The first equation—in its
response-schedule form—says that student i graduates if

(8) cα +Xiβ + Vi > 0;
otherwise, no graduation. This is just (5), repeated for convenience.

We could in principle set c to 1, i.e., put the kid in Catholic school. Or,
we could set c to 0, i.e., put him in public school. In fact, Nature chooses
c. Nature does it as if by using the second equation in the model. That’s the
novelty.

To state the second equation, let IsCati = 1 if student i is Catholic, else
IsCati = 0. Then student i attends Catholic school (Ci = 1) if

(9) IsCatia +Xib + Ui > 0;
otherwise, public school (Ci = 0). Equation (9) is the second equation in the
model: a is a new parameter, and b is a new parameter vector.

Nature proceeds as if by generating Ci from (9), and substituting this Ci

for c in (8) to decide whether student i graduates. That is what ties the two
equations together. The latent variables Ui and Vi in the two equations might
be correlated, as indicated by the dashed curve in figure 1. The correlation is
another new parameter, denoted ρ.

The statistical assumptions in the two-equation model are as follows.

(10) (Ui, Vi) are IID, as pairs, across students i .

(11) (Ui, Vi) are bivariate normal; Ui has mean 0 and variance 1; so
does Vi : the correlation between Ui and Vi is ρ .

(12) The U ’s and V ’s are independent of the IsCat’s and X’s .

Condition (12) makes IsCat and X exogenous (sections 6.4–5). The correla-
tion ρ in (11) is a key parameter. If ρ = 0, then Ci is independent of Vi and
we don’t need the second equation after all. If ρ �= 0, then Ci is dependent
on Vi , because Vi is correlated with Ui , and Ui comes into the formula (9)
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Figure 1. The two-equation model.

IsCat C Y

X

U VU, V  Correlated N(0,1) latent variables
IsCat  Is Catholic
C  Goes to Catholic high school
Y  Graduates from high school
X  Control variables:

 gender, race, ethnicity. . . .

that determines Ci . So, assumption (7) in the single-equation model breaks
down. The two-equation model (also called the “bivariate probit”) is supposed
to take care of the breakdown. That is the whole point of the second equation.

This isn’t a simple model, so let’s guide Nature through the steps she
has to take in order to generate the data. (Remember, we don’t have access
to the parameters α, β, a, b, or ρ—but Nature does.)

1. Choose IsCati and Xi .
2. Choose (Ui, Vi) from a bivariate normal distribution, with mean 0,

variance 1, and correlation ρ. The (Ui, Vi) are independent of the
IsCat’s and X’s. They are independent across students.

3. Check to see if inequality (9) holds. If so, setCi to 1 and send student
i to Catholic school. Else set Ci to 0 and send i to public school.

4. Set c in (8) to Ci .
5. Check to see if inequality (8) holds. If so, set Yi to 1 and make student

i graduate. Else set Yi to 0 and prevent i from graduating.
6. Reveal IsCati , Xi , Ci , Yi .
7. Shred Ui and Vi . (Hey, they’re latent.)
Evans and Schwab want to have at least one exogenous variable that

influences C but has no direct influence on Y . That variable is called an
“instrument” or “instrumental variable.” Here, IsCat is the instrument: it is
1 if the student is Catholic, else 0. IsCat comes into the model (9) for choos-
ing schools, but is excluded, by assumption, from the graduation model (8).
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Economists call this sort of assumption an “exclusion restriction” or an “iden-
tifying restriction” or a “structural zero.” In figure 1, there is no arrow from
IsCat to Y . That is the graphical tipoff to an exclusion restriction.

The exogeneity of IsCat andX is a key assumption. In figure 1, there are
no arrows or dotted lines connecting IsCat andX toU and V . That is how the
graph represents exogeneity. Without exogeneity assumptions and exclusion
restrictions, parameters are seldom identifiable; there are more examples in
chapter 9. (The figure may be misleading in one respect: IsCat is correlated
with X, although perfect collinearity is excluded.)

The two-equation model—equations (8) and (9), with assumptions (10)-
(11)-(12) on the latent variables—is estimated by maximum likelihood. Re-
sults are shown in line (2), table 6 of the paper. They are similar—at least for
school effects—to the single-equation model (table 3). This is because the
estimated value for ρ is negligible.

Exogeneity. This term has several different meanings. Here, we use
it in a fairly weak sense: exogenous variables are independent of the latent
variables. By contrast, endogenous variables are dependent on the latent
variables. Technically, exogeneity has to be defined relative to a model, which
makes the concept even more confusing. For example, take the two-equation
model (8)-(9). In this model, C is endogenous, because it is influenced by
the latent U . In (4), however, C could be exogenous: if ρ = 0, then C

�
V .

We return to endogeneity in chapter 9.

Mechanics: bivariate probit
In this section, we’ll see how to write down the likelihood function

for the bivariate probit model. Condition on all the exogenous variables,
including IsCat. The likelihood function is a product, with one factor for
each student. That comes from the independence assumptions, (10) and (12).
Take student i. There are 2 × 2 = 4 cases to consider: Ci = 0 or 1, and
Yi = 0 or 1.

Let’s start withCi = 1, Yi = 1. These are facts about student i recorded
in the High School and Beyond survey, as are the values for IsCati and Xi ;
what you won’t find on the questionnaire isUi or Vi . We need to compute the
chance that Ci = 1 and Yi = 1, given the exogenous variables. According to
the model—see (8) and (9)—Ci = 1 and Yi = 1 if

Ui > −IsCatia −Xib and Vi > −α −Xiβ.

So the chance that Ci = 1 and Yi = 1 is

(13) P
{
Ui > −IsCatia −Xib and Vi > −α −Xiβ

}
.
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The kid contributes the factor (13) to the likelihood. Notice that α appears
in (13), because Ci = 1.

Let’s do one more case: Ci = 0 and Yi = 1. The model says thatCi = 0
and Yi = 1 if

Ui < −IsCatia −Xib and Vi > −Xiβ.

So the chance is

(14) P
{
Ui < −IsCatia −Xib and Vi > −Xiβ

}
.

This kid contributes the factor (14) to the likelihood. Notice that α does not
appear in (14), because Ci = 0. The random elements in (13)-(14) are the
latent variablesUi and Vi , while IsCati andXi are treated as data: remember,
we conditioned on the exogenous variables.

Now we have to evaluate (13) and (14). Don’t be hasty. Multiplying
chances in (13), for instance, would not be a good idea—because of the
correlation between Ui and Vi :

P
{
Ui > −IsCatia −Xib and Vi > −α −Xiβ

} �=
P
{
Ui > −IsCatia −Xib

} •P
{
Vi > −α −Xiβ

}
.

The probabilities can be worked out from the bivariate normal density—
assumption (11). The formula will involve ρ, the correlation between Ui and
Vi . The bivariate normal density for (Ui, Vi) is

(15) φ(u, v) = 1

2π
√

1 − ρ2
exp

[
−u2 − 2ρuv + v2

2(1 − ρ2)

]
.

(This is a special case of the formula in theorem 3.2: the means are 0 and the
variances are 1.) So the probability in (13), for example, is∫ ∞

−α−Xiβ

∫ ∞

−IsCati a−Xib

φ(u, v) du dv .

The integral cannot be done in closed form by calculus. Instead, we
would have to use numerical methods (“quadrature”) on the computer. See the
chapter end notes for hints and references. After working out the likelihood,
we would have to maximize it—which means working it out a large number
of times. All in all, the bivariate probit is a big mess to code from scratch.
There is software that tries to do the whole thing for you, e.g., biprobit in
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STATA, proc qlim in SAS, or vglm in the VGAM library for R. However,
finding maxima in high-dimensional spaces is something of a black art; and
the higher the dimensionality, the blacker the art.

Why a model rather than a cross-tab?

Tables 1 and 3 of Evans and Schwab have 2 sexes, 3 racial groups
(white, black, other), 2 ethnicities (Hispanic or not), 8 income categories,
5 educational levels, 5 types of family structure, 4 age groups, 3 levels of
attending religious service. The notes to table 3 suggest 3 place types (urban,
suburban, rural) and 4 regions (northeast, midwest, south, west). That makes

2×3×2×8×5 × 5×4×3×3×4 = 345,600

types of students. Each student might or might not be Catholic, and might or
might not attend Catholic school, which gives another factor of 2×2 = 4.
Even with a huge sample, a cross-tab can be very, very sparse. A probit
model like equation (1) enables you to handle a sparse table. This is good.
However, the model assumes—without warrant—that probabilities are linear
and additive (on the probit scale) in the selected variables. Bad.

Let’s look more closely at linearity and additivity. The model assumes
that income has the same effect at all levels of education. Effects are the
same for all types of families, wherever they live. And so forth. Especially,
Catholic schools have the same additive effect (on the probit scale) for all
types of students.

Effects are assumed to be constant inside each of the bins that define a
dummy variable. For instance, “some college” is a bin for parent education
(Evans and Schwab, table 3). According to the model, one year of college
for the parents has the same effect on graduation rates as would two years of
college. Similar comments apply to the other bins.

Interactions

To weaken the assumptions of linearity and additivity, people some-
times put interactions into the model. Interactions are usually represented
as products. With dummy variables, that’s pretty simple. For instance, the
interaction of a dummy variable for male and a dummy for white gives you
a dummy for male whites. A “three-way interaction” between male, white,
and Hispanic gives you a dummy for male white Hispanics. And so forth.

If x, z, and the interaction term xz go into the model as explanatory
variables, and you intervene to change x, you need to think about how the
interaction term will change when x changes. This will depend on the value
of z. The whole point of putting the interaction term into the equation was to
get away from linearity and additivity.
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If you put in all the interactions, you’re back in the cross-tab, and don’t
have nearly enough data. With finer categories, there could also be a shortage
of data. In effect, the model substitutes assumptions (e.g., no interactions)
for data. If the assumptions are good, we’re making progress. Otherwise, we
may only be assuming that progress has been made. Evans and Schwab test
their model in several ways, but with 13,000 observations and a few hundred
thousand possible interactions, power is limited.

More on table 3 in Evans and Schwab

A lot of the coefficient estimates make sense. For instance, the probabil-
ity of a successful outcome goes up with parental education. The probability
of success is higher if the family is intact. And so forth. Some of the re-
sults are puzzling. Were blacks and Hispanics more likely to graduate in the
1980s, after controlling for the variables in table 3 of the paper? Compare,
e.g., Jencks and Phillips (1998). It is also hard to see why there is no income
effect on graduation beyond $20,000 a year, although there is an effect on
attending college. (The results in table 2 weaken this objection; the problems
with income may be in the data.) It is unclear why the test scores discussed in
table 2 are excluded from the model. Indeed, many of the variables discussed
in Coleman et al (1982) are ignored by Evans and Schwab, for reasons that
are not explained.

Coleman et al (1982, pp. 8, 103–15, 171–78) suggest that a substantial
part of the difference in outcomes for students at Catholic and public schools is
due to differences in the behavior of student peer groups. If so, independence
of outcomes is in question. So is the basic causal model, because changing
the composition of the student body may well change the effectiveness of the
school. Then responses depend on the treatment of groups not the treatment
of individuals, contradicting the model. (Section 6.5 discusses this point for
regression.) Evans and Schwab have a partial response to problems created
by omitted variables and peer groups: see table 4 in their paper.

More on the second equation

What the second equation is supposed to do is to take care of a possible
correlation between attending Catholic school and the latent variableV in (8).
The latent variable represents unmeasured characteristics like intelligence,
aptitude, motivation, parental attitudes. Such characteristics are liable to be
correlated with some of the covariates, which are then endogenous. Student
age is a covariate, and a high school student who is 19+ is probably not
the most intelligent and best motivated of people. Student age is likely to
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be endogenous. So is place of residence, because many parents will decide
where to live based on the educational needs of their children. These kinds of
endogeneity, which would also bias the MLE, are not addressed in the paper.

There was a substantial non-response rate for the survey: 30% of the
sample schools refused to participate in the study. If, e.g., low-achieving
Catholic schools are less likely to respond than other schools, the effect of
Catholic schools on outcomes will be overstated. If low-achieving public
schools are the missing ones, the effect of Catholic schools will be understated.

Within participating schools, about 15% of the students declined to re-
spond in 1980. There were also dropouts—students in the 1980 survey but
not the 1982/1984 followup. The dropout rate was in the range 10%–20%.
In total, half the data are missing. If participation in the study is endogenous,
the MLE is biased. The paper does not address this problem.

There is a troublesome exclusion restriction: IsCat is not used as an
explanatory variable in the graduation model. Evans and Schwab present
alternative specifications to address some of the modeling issues. In the end,
however, there remain a lot of question marks.

Exercise set E

1. In table 3 of Evans and Schwab, is 0.777 a parameter or an estimate? How
is this number related to equation (1)? Is this number on the probability
scale or the probit scale? Repeat for 0.041, in the FEMALE line of the
table. (The paper is reprinted at the back of the book.)

2. What does the −0.204 for PARENT SOME COLLEGE in table 3 mean?

3. Here is the two-equation model in brief: student i goes to Catholic school
(Ci = 1) if

IsCatia +Xib + Ui > 0,

and graduates if

Ciα +Xiβ + Vi > 0.

(a) Which parameter tells you the effect of Catholic schools?
(b) The Ui and Vi are variables. Options (more than one

may be right):

data random latent dummy observable

(c) What are the assumptions on Ui and Vi?

4. In line (2) of table 6 in Evans and Schwab, is 0.859 a parameter or an
estimate? How is it related to the equations in exercise 3? What about
the −0.053? What does the −0.053 tell you about selection effects in
the one-equation model?
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5. In the two-equation model, the log likelihood function is a ,
with one for each . Fill in the blanks using one of
the options below, and explain briefly.

sum product quotient matrix term
factor entry student school variable

6. Student #77 is Presbyterian, went to public school, and graduated. What
does this subject contribute to the likelihood function? Write your an-
swer using φ in equation (15).

7. Student #4039 is Catholic, went to public school, and failed to graduate.
What does this subject contribute to the likelihood function? Write your
answer using φ in equation (15).

8. Does the correlation between the latent variables in the two equations
turn up in your answers to exercises 6 and 7? If so, where?

9. Table 1 in Evans and Schwab shows the total sample as 10,767 in the
Catholic schools and 2527 in the public schools. Is this reasonable?
Discuss briefly.

10. Table 1 shows that 0.97 of the students at Catholic schools graduated.
Underneath the 0.97 is the number 0.17. What is this number, and how
is it computed? Comment briefly.

11. For bonus points: suppose the two-equation model is right, and you had
a really big sample. Would you get accurate estimates for α? β? the Vi?

7.5 Discussion questions

Some of these questions cover material from previous chapters.

1. Is the MLE biased or unbiased?

2. In the usual probit model, are the response variables independent from
one subject to another? Or conditionally independent given the explana-
tory variables? Do the explanatory variables have to be statistically
independent? Do they have to be linearly independent? Explain briefly.

3. Here is the two-equation model of Evans and Schwab, in brief. Student i
goes to Catholic school (Ci = 1) if

IsCatia +Xib + Ui > 0, (selection)

otherwise Ci = 0. Student i graduates (Yi = 1) if

Ciα +Xiβ + Vi > 0, (graduation)

otherwise Yi = 0. IsCati is 1 if i is Catholic, and 0 otherwise; Xi

is a vector of dummy variables describing subject i’s characteristics,
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including gender, race, ethnicity, family income, and so forth. Evans
and Schwab estimate the parameters by maximum likelihood, finding
that α̂ is large and highly significant. True or false and explain—

(a) The statistical model makes a number of assumptions about the
latent variables.

(b) However, the parameter estimates and standard errors are computed
from the data.

(c) The computation in (b) can be done whether or not the assumptions
about the latent variables hold true. Indeed, the computation uses
IsCati , Xi, Ci, Yi for i = 1, . . . , n and the bivariate normal density
but does not use the latent variables themselves.

(d) Therefore, the statistical calculations in Evans and Schwab are fine,
even if the assumptions about the latent variables are not true.

4. To what extent do you agree or disagree with the following statements
about the paper by Evans and Schwab?

(a) The paper demonstrates causation using the data: Catholic schools
have an effect on student graduation rates, other things being equal.

(b) The paper assumes causation: Catholic schools have an effect on
student graduation rates, other things being equal. The paper as-
sumes a specific functional form to implement the idea of causation
and other things being equal—the probit model. The paper uses
the data to estimate the size of the Catholic school effect.

(c) The graduation equation tests for interactions among explanatory
variables in the selection equation.

(d) The graduation equation assumes there are no interactions.

(e) The computer derives the bivariate probit model from the data.

(f) The computer is told to assume the bivariate probit model. What
the computer derives from the data is estimates for parameters in
the model.

5. Suppose high school students work together in small groups to study
the material in the courses. Some groups have a strong positive effect,
helping the students get on top of the course work. Some groups have
a negative effect. And some groups have no effect. Are study groups
consistent with the model used by Evans and Schwab? If not, which
assumptions are contradicted?

6. Powers and Rock (1999) consider a two-equation model for the effect
of coaching on SAT scores:
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Xi = 1 if Uiα + δi > 0, else Xi = 0; (assignment)

Yi = cXi + Viβ + σεi . (response)

Here, Xi = 1 if subject i is coached, else Xi = 0. The response
variable Yi is subject i’s SAT score; Ui and Vi are vectors of personal
characteristics for subject i, treated as data. The latent variables (δi, εi)
are IID bivariate normal with mean 0, variance 1, and correlation ρ;
they are independent of the U ’s and V ’s. (In this problem, U and V are
observable, δ and ε are latent.)

(a) Which parameter measures the effect of coaching? How would you
estimate it?

(b) State the assumptions carefully (including a response schedule, if
one is needed). Do you find the assumptions plausible?

(c) Why do Powers and Rock need two equations, and why do they
need ρ?

(d) Why can they assume that the disturbance terms have variance 1?

Hint: look at sections 7.2 and 7.4.

7. Shaw (1999) uses a regression model to study the effect of TV ads and
candidate appearances on votes in the presidential elections of 1988,
1992, and 1996. With three elections and 51 states (DC counts for this
purpose), there are 153 data points, i.e., pairs of years and states. Each
variable in the model is determined at all 153 points. In a given year
and state, the volume TV of television ads is measured in 100s of GRPs
(gross rating points). Rep.TV , for example, is the volume of TV ads
placed by the Republicans. AP is the number of campaign appearances
by a presidential candidate. UN is the percent undecided according to
tracking polls. PE is Perot’s support, also from tracking polls. (Ross
Perot was a maverick candidate.) RS is the historical average Republi-
can share of the vote. There is a dummy variable D1992, which is 1 in
1992 and 0 in the other years. There is another dummy D1996 for 1996.
A regression equation is fitted by OLS, and the Republican share of the
vote is

− 0.326 − 2.324×D1992 − 5.001×D1996

+ 0.430×(Rep. TV − Dem. TV ) + 0.766×(Rep. AP − Dem. AP )

+ 0.066×(Rep. TV − Dem. TV )×(Rep. AP − Dem. AP )

+ 0.032×(Rep. TV − Dem. TV )×UN + 0.089×(Rep. AP − Dem. AP )×UN

+ 0.006×(Rep. TV − Dem. TV )×RS + 0.017×(Rep. AP − Dem. AP )×RS

+ 0.009×UN + 0.002×PE + 0.014×RS + error.
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(a) What are dummy variables, and why might D1992 be included in
the equation?

(b) According to the model, if the Republicans buy another 500 GRPs
in a state, other things being equal, will that increase their share
of the vote in that state by 0.430 ×5

.= 2.2 percentage points?
Answer yes or no, and discuss briefly. (The 0.430 is the coefficient
of Rep. TV − Dem. TV in the second line of the equation.)

8. The Nurses’ Health Study wanted to show that hormone replacement
therapy (HRT) reduces the risk of heart attack for post-menopausal
women. The investigators found out whether each woman experienced a
heart attack during the study period, and her HRT usage: 6,224 subjects
were on HRT and 27,034 were not. For each subject, baseline mea-
surements were made on potential confounders: age, height, weight,
cigarette smoking (yes or no), hypertension (yes or no), and high choles-
terol level (yes or no).

(a) If the investigators asked you whether to use OLS or logistic re-
gression to explain the risk of heart attack in terms of HRT usage
(yes/no) and the confounders, what would be your advice? Why?

(b) State the model explicitly. What is the design matrix X? n? p?
How will the yes/no variables be represented in the design matrix?
What is Y ? What is the response schedule?

(c) Which parameter is the crucial one?

(d) Would the investigators hope to see a positive estimate or a nega-
tive estimate for the crucial parameter? How can they determine
whether the estimate is statistically significant?

(e) What are the key assumptions in the model?

(f) Why is a model needed in the first place? a response schedule?

(g) To what extent would you find the argument convincing? Discuss
briefly.

Comment. Details of the study have been changed a little for purposes
of this question; see chapter end notes.

9. People often use observational studies to demonstrate causation, but
there’s a big problem. What is an observational study, what’s the prob-
lem, and how do people try to get around it? Discuss. If possible, give
examples to illustrate your points.

10. There is a population of N subjects, indexed by i = 1, . . . , N . Each
subject will be assigned to treatment T or control C. Subject i has a
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response yTi if assigned to treatment and yCi if assigned to control. Each
response is 0 (“failure”) or 1 (“success”). For instance, in an experiment
to see whether aspirin prevents death from heart attack, survival over the
followup period would be coded as 1, death would be coded as 0. If you
assign subject i to treatment, you observe yTi but not yCi . Conversely,
if you assign subject i to control, you observe yCi but not yTi . These
responses are fixed (not random).

Each subject i has a 1×p vector of personal characteristicswi , unaffected
by assignment. In the aspirin experiment, these characteristics might
include weight and blood pressure just before the experiment starts.
You can always observe wi . Population parameters of interest are

αT = 1

N

N∑
i=1

yTi , αC = 1

N

N∑
i=1

yCi , αT − αC .

The first parameter is the fraction of successes we would see if all subjects
were put into treatment. We could measure this directly—by putting all
the subjects into treatment—but would then lose our chance to learn
about the second parameter, which is the fraction of successes if all
subjects were in the control condition. The third parameter is the dif-
ference between the first two parameters. It measures the effectiveness
of treatment, on average across all the subjects. This parameter is the
most interesting of the three. It cannot be measured directly, because
we cannot put subjects both into treatment and into control.

Suppose 0 < n < N . In a “randomized controlled experiment,” n sub-
jects are chosen at random without replacement and assigned to treat-
ment; the remaining N − n subjects are assigned to control. Can you
estimate the three population parameters of interest? Explain. Hint: see
discussion questions 7–8 in chapter 6.

11. (This continues question 10.) The assignment variable Xi is defined as
follows: Xi = 1 if i is in treatment, else Xi = 0. The probit model says
that given the assignments, subjects are independent, the probability
of success for subject i being #(Xiα + wiβ), where # is the standard
normal distribution function andwi is a vector of personal characteristics
for subject i.

(a) Would randomization justify the probit model?

(b) The logit model replaces # by /(x) = ex/(1 + ex). Would ran-
domization justify the logit model?
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(c) Can you analyze the data without probits, logits, . . .?

Explain briefly. Hint: see discussion questions 9–10 in chapter 6.

12. Malaria is endemic in parts of Africa. A vaccine is developed to protect

children against this disease. A randomized controlled experiment is

done in a small rural village: half the children are chosen at random to

get the vaccine, and half get a placebo. Some epidemiologists want to

analyze the data using the setup described in question 10. What is your

advice?

13. As in question 12, but this time, the epidemiologists have 20 isolated

rural villages. They choose 10 villages at random for treatment. In these

villages, everybody will get the vaccine. The other 10 villages will serve

as the control group: nobody gets the vaccine. Can the epidemiologists

use the setup described in question 10?

14. Suppose we accept the model in question 10, but data are collected on Xi

and Yi in an observational study, not a controlled experiment. Subjects

assign themselves to treatment (Xi = 1) or control (Xi = 0), and we

observe the response Yi as well as the covariates wi . One person suggests

separating the subjects into several groups with similar wi ’s. For each

group on its own, we can compare the fraction of successes in treatment

to the fraction of successes in control. Another person suggests fitting a

probit model: conditional on the X ’s and covariates, the probability that

Yi = 1 is �(Xiα + wiβ). What are the advantages and disadvantages

of the two suggestions?

15. Paula has observed values on four independent random variables with

common density fα,β(x) = c(α, β)(αx − β)2 exp[−(αx − β)2], where

α > 0, −∞ < β < ∞, and c(α, β) is chosen so that
∫ ∞
−∞ fα,β(x)dx =

1. She estimates α, β by maximum likelihood and computes the stan-

dard errors from the observed information. Before doing the t-test to

see whether β̂ is significantly different from 0, she decides to get some

advice. What do you say?

16. Jacobs and Carmichael (2002) are comparing various sociological the-

ories that explain why some states have the death penalty and some do

not. The investigators have data for 50 states (indexed by i) in years

t = 1971, 1981, 1991. The response variable Yit is 1 if state i has the

death penalty in year t , else 0. There is a vector of explanatory variables

Xit and a parameter vector β, the latter being assumed constant across
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states and years. Given the explanatory variables, the investigators as-
sume the response variables are independent and

log[− logP(Yit = 0|X)] = Xitβ.

(This is a “complementary log log” or “cloglog” model.) After fitting the
equation to the data by maximum likelihood, the investigators determine
that some coefficients are statistically significant and some are not. The
results favor certain theories over others. The investigators say,

“All standard errors are corrected for heteroscedasticity by White’s
method. . . . Estimators are robust to misspecification because the
estimates are corrected for heteroscedasticity.”

(The quote is slightly edited.) “Heteroscedasticity” means, unequal vari-
ances (section 5.4). White’s method is discussed in the end notes to
chapter 5: it estimates SEs for OLS when the ε’s are heteroscedastic,
using equation (5.8). “Robust to misspecification” means, works pretty
well even if the model is wrong.

Discuss briefly, answering these questions. Are the authors claiming
that parameter estimates are robust, or estimated standard errors? If
the former, what do the estimates mean when the model is wrong? If
the latter, according to the model, is var(Yit |X) different for different
combinations of i and t? Are these differences taken into account by the
asymptotic SEs? Do asymptotic SEs for the MLE need correction for
heteroscedasticity?

17. Ludwig is working hard on a statistics project. He is overheard muttering
to himself, “Ach! Schrecklich! So many Parameters! So little Data!”
Is he worried about bias, endogeneity, or non-identifiability?

18. Garrett (1998) considers the impact of left-wing political power (LPP)
and trade-union power (TUP) on economic growth. There are 25 years
of data on 14 countries. Countries are indexed by i = 1, . . . , 14; years
are indexed by t = 1, . . . , 25. The growth rate for country i in year t is
modeled as

a×LPPit + b×TUPit + c×LPPit ×TUPit + Xitβ + εit ,

whereXit is a vector of control variables. Estimates for a and b are neg-
ative, suggesting that right-wing countries grow faster. Garrett rejects
this idea, because the estimated coefficient c of the interaction term is
positive. This term is interpreted as the “combined impact” of left-wing
political power and trade-union power, Garrett’s conclusion being that
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the country needs both kinds of left-wing power in order to grow more
rapidly. Assuming the model is right, does c×LPP×TUP measure the
combined impact of LPP and TUP? Answer yes or no, and explain.

19. This continues question 18; different notation is used: part (b) might be
a little tricky. Garrett’s model includes a dummy variable for each of
the 14 countries. The growth rate for country i in year t is modeled as

αi + Zitγ + εit ,

whereZit is a 1×10 vector of explanatory variables, including LPP, TUP,
and the interaction. (In question 18, the country dummies didn’t matter,
and were folded intoX.) Beck (2001) uses the same model—except that
an intercept is included, and the dummy for country #1 is excluded. So,
in this second model, the growth rate in country i > 1 and year t is

α∗ + α∗
i + Zitγ

∗ + εit ;
whereas the growth rate in country #1 and year t is

α∗ + Z1t γ
∗ + ε1t .

Assume both investigators are fitting by OLS and using the same data.

(a) Why can’t you have a dummy variable for each of the 14 countries,
and an intercept too?

(b) Show that γ̂ = γ̂ ∗, α̂1 = α̂∗, and α̂
i
= α̂∗ + α̂∗

i for i > 1.

Hints for (b). Let M be the design matrix for the first model; M∗, for
the second. Find a lower triangular matrix L—which will have 1’s on
the diagonal and mainly be 0 elsewhere—such that ML = M∗. How
does this relationship carry over to the parameters and the estimates?

20. Yule used a regression model to conclude that outrelief causes pauperism
(section 1.4). He presented his paper at a meeting of the Royal Statistical
Society on 21 March 1899. Sir Robert Giffen, Knight Commander of
the Order of the Bath, was in the chair. There was a lively discussion,
summarized in the Journal of the Royal Statistical Society (Vol. LXII,
Part II, pp. 287–95).

(a) According to Professor FY Edgeworth, if one diverged much from
the law of normal errors, “one was on an ocean without rudder or
compass”; this normal law of error “was perhaps more universal
than the law of gravity.” Do you agree? Discuss briefly.
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(b) According to Sir Robert, practical men who were concerned with
poor-law administration knew that “if the strings were drawn tightly
in the matter of out-door relief, they could immediately observe a
reduction of pauperism itself.” Yule replied,

“he was aware that the paper in general only bore out conclu-
sions which had been reached before . . . but he did not think
that lessened the interest of getting an independent test of the
theories of practical men, purely from statistics. It was an ab-
solutely unbiassed test, and it was always an advantage in a
method that it was unbiassed.”

What do you think of this reply? Is Yule’s test “purely from statis-
tics”? Is it Yule’s methods that are “unbiassed,” or his estimates of
the parameters given his model? Discuss briefly.

7.6 End notes for chapter 7

Who reads books? Data are available from the August supplement to
the Current Population Survey of 2002. Also see table 1213 in Statistical
Abstract of the United States 2008.

Specification. A “specification” says what variables go into a model,
what the functional form is, and what should be assumed about the disturbance
term (or latent variable); if the data are generated some other way, that is
“specification error” or “misspecification.”

The MLE. For a more detailed discussion of the MLE, with the outline
of an argument for theorem 1, see

http://www.stat.berkeley.edu/users/census/mle.pdf

There are excellent graduate-level texts by Lehmann (1991ab) and Rao (1973),
with careful statements of theorems and proofs. Lehmann (2004) might be
the place to start: fewer details, more explanations. For exponential families,
the calculus is easier; see, e.g., Barndorff-Nielsen (1980). In particular, there
is (with minor conditions) a unique max.

The theory for logits is prettier than for probits, because the logit model
defines an exponential family. However, the following example shows that
even in a logit model, the likelihood may not have a maximum: theorems
have regularity conditions to eliminate this sort of exceptional case. Suppose
Xi is real and logit P(Yi = 1 |Xi = x) = θx. We have two independent data
points. At the first, X1 = −1, Y1 = 0. At the second, X2 = 1, Y2 = 1. The
log likelihood function is L(θ) = −2 log(1 + e−θ ), which increases steadily
with θ .
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Deviance. In brief, there is a model withp parameters. The null hypoth-
esis constrains p0 of these parameters to be 0. Maximize the log likelihood
over the full model. Denote the maximum by M . Then maximize the log
likelihood subject to the constraint, getting a smaller maximum M0. The
deviance is 2(M − M0). If the null hypothesis holds, n is large, and certain
regularity conditions hold, the deviance is asympotically chi-squared, withp0
degrees of freedom. Deviance is also called the “Neyman-Pearson statistic”
or the “Wilks statistic.” Deviance is the analog of F (section 5.7), although
the scaling is a little different. Details are beyond our scope.

The score test. In many applications, the score test will be more robust.
The score test uses the statistic

1

n
L′(θ̂0)I

−1
θ̂0

L′(θ̂0),

where θ̂0 is the MLE in the constrained model, and L′ is the partial deriva-
tive of the log likelihood function: L′ is viewed as a row vector on the left
and a column vector on the right. The asymptotic distribution under the
null hypothesis is still chi-squared with p0 degrees of freedom. Rao (1973,
pp. 415–20) discusses the various likelihood tests.

The information matrix. Suppose the Xi are IID with density fθ . The
jkth entry in the Fisher information matrix is

1

n

n∑
i=1

∂fθ (Xi)

∂θj

∂fθ (Xi)

∂θk

1

fθ (Xi)2
,

which can be estimated by putting θ = θ̂ , the MLE. In some circumstances,
this is easier to compute than observed information, and more stable. With
endpoint maxima, neither method is likely to work very well.

Identifiability. A constant function f (θ) is identifiable for trivial (and
irritating) reasons: there are no θ1, θ2 with f (θ1) �= f (θ2). Although many
texts blur the distinction between identifiability and estimability, it seemed
better to separate them. The flaw in the terminology is this. A parameter may
not be estimable (no estimator for it is exactly unbiased) but there could still
exist a very accurate estimator (small bias, small variance).

A technical side issue. According to our definition, f (θ) is identifiable if
f (θ1) �= f (θ2) implies Pθ1 �= Pθ2 . The informal discussion may correspond
better to a slightly stronger definition: there should exist a function φ with
φ(Pθ ) = f (θ); measurability conditions are elided.

The bigger picture. Many statisticians frown on under-identified mod-
els: if a parameter is not identifiable, two or more values are indistinguishable,
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no matter how much data you have. On the other hand, most applied problems
are under-identified. Identification is achieved only by imposing somewhat
arbitrary assumptions (independence, constant coefficients, etc.). That is one
of the central tensions in the field. Efforts have been made to model this
tension as a bias-variance tradeoff. Truncating the number of parameters
introduces bias but reduces variance, and the optimal truncation can be con-
sidered. Generally, however, the analysis takes place in a context that is
already highly stylized. For discussion, see Evans and Stark (2002).

Evans and Schwab. The focus is on tables 1–3 and table 6 in the paper.
In table 6, we consider only the likelihood estimates for line (2); line (1) re-
peats estimates from the single-equation model. Data from High School and
Beyond (HS&B) are available, under stringent confidentiality agreements,
as part of NELS—the National Educational Longitudinal Surveys. The ba-
sic books on HS&B are Coleman et al (1982), Coleman and Hoffer (1987).
Twenty years later, these books are still worth reading: the authors had real
insight into the school system, and the data analysis is quite interesting. Cole-
man and Hoffer (1987) include several chapters on graduation rates, admis-
sion to college, success in college, and success in the labor force, although
Evans and Schwab pay little attention to these data.

The total sample sizes for students in Catholic and public schools in ta-
ble 1 of Evans and Schwab appear to have been interchanged. There may be
other data issues too. See table 2.1 in Coleman and Hoffer (1987), which re-
ports noticeably higher percentages of students with incomes above $38,000.
Moreover, table 2 in Evans and Schwab should be compared with Coleman
and Hoffer (1987, table 5.3): graduation rates appear to be inconsistent.

Table 1.1 in Coleman et al (1982) shows a realized sample in 1980 of
26,448 students in public schools, and 2831 in Catholic schools. Evans and
Schwab have 10,767 in public schools, and 2527 in Catholic schools (after
fixing their table 1 in the obvious way). The difference in sample size for the
Catholic schools probably reflects sample attrition from 1980 to 1984, but
the difference for public schools seems too large to be explained that way.
Some information on dropout rates can be gleaned from US Department of
Education (1987). Compare also table 1.1 in Coleman et al (1982) with
table 2.9 in Coleman and Hoffer (1987).

Even without the exclusion restriction, the bivariate probit model in
section 4 may be identifiable; however, estimates are likely to be unstable.
See Altonji et al (2005), who focus on the exogeneity assumptions in the
model. Also see Briggs (2004), Freedman and Sekhon (2008).

The discussion questions. Powers and Rock are using a version of Heck-
man’s (1976, 1978, 1979) model, as are Evans and Schwab. The model is
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discussed with unusual care by Briggs (2004). Many experiments have been
analyzed with logits and probits, for example, Pate and Hamilton (1992).
In question 7, the model has been simplified a little. The Nurses’ Health
Study used a Cox model with additional covariates and body mass index
(weight/height2) rather than height and weight. The 6224 refers to women on
combined estrogen and progestin; the 27,034 are never-users. See Grodstein
et al (1996). The experimental evidence shows the observational studies to
have been quite misleading: Writing Group for the Women’s Health Initiative
Investigators (2002), Petitti (1998, 2002), Freedman (2008b).

Question 10 outlines the most basic of the response schedule models. A
subject has a potential response at each level of treatment (T or C). One of
these is observed, the other not. It is often thought that models are justified
by randomization: but see question 11. Question 12 points to a weakness
in response-schedule models: if a subject’s response depends on treatments
given to other subjects, the model does not apply. This is relevant to studies
of school effects. Question 18 looks at the “baseline model” in Garrett (1998,
table 5.3); some complications in the data analysis have been ignored.

Quadrature. If f is a smooth function on the unit interval [0,1], we
can approximate

∫ 1
0 f (x)dx by 1

n

∑n−1
j=0 f (

j
n
). This method approximates f

by a step function with horizontal steps; the integral is approximated by the
sum of the areas of rectangular blocks. The “trapezoid rule” approximates f
on the interval [ j−1

n
,
j
n

] by a line segment joining the point
( j−1

n
, f (

j−1
n
)
)

to
( j
n
, f (

j
n
)
)
. The integral is approximated by the sum of trapezoidal areas.

This is better, as the diagram illustrates. There are many variations (Simpson’s
rule, Newton-Cotes methods, etc.).

Other numerical methods. Suppose f is a smooth function on the line,
and we want to find x near x0 with f (x) = 0. “Newton’s method,” also called
the “Newton-Raphson method,” is simple—and often works. If f (x0)

.= 0,
stop. Otherwise, approximate f by the linear function f0(x) = a+b(x−x0),
where a = f (x0) and b = f ′(x0). Solve the linear equation f0 = 0 to get
a new starting point. Iterate. There are many variations on this idea. If you
want to read more about numerical methods, try—

Acton FS (1997). Numerical Methods That Work. Mathematical Asso-
ciation of America.
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Atkinson K (2005). Elementary Numerical Analysis. Wiley, 3rd ed.

Epperson JF (2007). An Introduction to Numerical Methods and Anal-
ysis. Wiley.

Lanczos C (1988). Applied Analysis. Dover Publications.

Strang G (1986). Introduction to Applied Mathematics. Wellesley-

Cambridge.

Acton and Lanczos are classics, written for the mathematically inclined.

Atkinson is a more like a conventional textbook; so is Epperson. Strang

is clear and concise, with a personal style, might be the place to start.

Logistic regression: the brief history. The logistic curve was originally

used to model population growth (Verhulst 1845, Yule 1925). If p(t) is the

population at time t , Malthusian population theory suggested an equation of

the form

1

p

dp

dt
= a − bp.

The solution is

p(t) = a

b
�(at + c),

where � is the logistic distribution function. (The first thing to check is that

�′/� = 1 − �.) The linear function a − bp on the right hand side of the

differential equation might be viewed by some as a first approximation to a

more realistic decreasing function.

In 1920, the population of the United States was 106 million, and models

based on the logistic curve showed that the population would never exceed

200 million (Pearl and Reed 1920, Hotelling 1927). As the US population

increased beyond that limit, enthusiasm for the logistic growth law waned,

although papers keep appearing on the topic. For reviews of population

models, including the logistic, see Dorn (1950) and Hajnal (1955). Feller

(1940) shows that normal and Cauchy distributions fit growth data as well as

the logistic.

An early biomedical application of logistic regression was Truett, Corn-

field, and Kannel (1967). These authors fit a logistic regression to data from

the Framingham study of coronary heart disease. The risk of death in the study

period was related to a vector of covariates, including age, blood cholesterol

level, systolic blood pressure, relative weight, blood hemoglobin level, smok-

ing (at 3 levels), and abnormal electrocardiogram (a dummy variable). There

were 2187 men and 2669 women, with 387 deaths and 271 subjects lost to

followup (these were just censored). The analysis was stratified by sex and

sometimes by age.
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The authors argue that the relationship must be logistic. Their model
seems to be like this, with death in the study period coded as Yi = 1, survival
as Yi = 0, and Xi a row vector of covariates. Subjects are a random sample
from a population. Given Yi = 1, the distribution of Xi is multivariate
normal with meanµ1. Given Yi = 0, the distribution is normal with the same
covariance matrix G but a different mean µ0. Then P(Yi = 1|Xi) would
indeed be logistic. This is easily verified, using Bayes’ rule and theorem 3.2.

The upshot of the calculation: logitP(Yi = 1|X) = α + Xiβ, where
β = G−1(µ′

1 − µ′
0) is the interesting parameter vector. The intercept is a

nuisance parameter, α = logitP(Yi = 1)+ 1
2

(
µ0G

−1µ′
0 − µ1G

−1µ′
1

)
. If

P(Xi ∈ dx|Yi = 1) = Cβ exp(βx)P (Xi ∈ dx|Yi = 0), conclusions are
similar; again, there will be a nuisance intercept.

According to Truett, Cornfield, and Kannel, the distribution of Xi has to
be multivariate normal, by the central limit theorem. But why is the central
limit theorem relevant? Indeed, the distribution of Xi clearly wasn’t normal:
(i) there were dummy variables in Xi , and (ii) data on the critical linear
combinations are long-tailed. Furthermore, the subjects were a population,
not a random sample. Finally, why should we think that parameters are
invariant under interventions??

Regression and causation. Many statisticians find it surprising that re-
gression and allied techniques are commonly used in the social and life sci-
ences to infer causation from observational data, with qualitative inference
perhaps more common than quantitative: X causes (or doesn’t cause) Y , the
magnitude of the effect being of lesser interest. Eyebrows are sometimes
raised about the whole idea of causation:

“Beyond such discarded fundamentals as ‘matter’ and ‘force’ lies still
another fetish amidst the inscrutable arcana of even modern science,
namely, the category of cause and effect. Is this category anything but
a conceptual limit to experience, and without any basis in perception
beyond a statistical approximation?” (Pearson 1911, p. vi)



8
The Bootstrap

8.1 Introduction

The bootstrap is a powerful tool for approximating the bias and standard
error of an estimator in a complex statistical model. However, results are
dependable only if the sample is reasonably large. We begin with some
toy examples where the bootstrap is not needed but the algorithm is easy to
understand. Then we go on to applications that are more interesting.

Example 1. The sample mean. Let Xi be IID for i = 1, . . . , n, with
mean µ and variance σ 2. We use the sample mean X to estimate µ. Is
this estimator biased? What is its standard error? Of course, we know by
statistical theory that the estimator is unbiased. We know the SE is σ/

√
n.

And we know that σ 2 can be estimated by the sample variance,

σ̂ 2 = 1

n

n∑
i=1

(Xi −X)2.

(With large samples, it is immaterial whether we divide by n or n− 1.)
For the sake of argument, suppose we’ve forgotten the theory but re-

member how to use the computer. What can we do to estimate the bias in
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X? to estimate the SE? Here comes the bootstrap idea at its simplest. Take
the data—the observed values of the Xi’s—as a little population. Simulate n
draws, made at random with replacement, from this little population. These
draws are a bootstrap sample. Figure 1 shows the procedure in box-model
format.

Figure 1. Bootstrapping the sample mean.

X1 X2 Xn. . .

X1
* X2

* Xn
*. . .

Let X∗
1, . . . , X

∗
n be the bootstrap sample. Each Xi will come into the

bootstrap sample some small random number of times, zero being a possible
number, and in random order. From the bootstrap sample, we could estimate
the average of the little population (the numbers in the box). The bootstrap
estimator is just the average of the bootstrap sample:

X
∗ = 1

n

n∑
i=1

X∗
i .

(Why estimate something that we know? Because that gives us a benchmark
for the performance of the estimator. . . .)

One bootstrap sample may not tell us very much, but we can draw many
bootstrap samples to get the sampling distribution of X

∗
. Let’s index these

samples by k. There will be a lot of indices, so we’ll put parens around the
k. In this notation, the kth bootstrap estimator is X(k): we don’t need both a
superscript ∗ and a subscript (k). Suppose we have N bootstrap replicates,
indexed by k = 1, . . . , N :

X(1), . . . , X(k), . . . , X(N) .

Please keep separate:
• N , the number of bootstrap replicates;
• n, the size of the real sample.

Usually, we can makeN as large as we need, because computer time is cheap.
Making n larger could be an expensive proposition.
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What about bias? On the computer, we’re resampling from the real
sample, whose mean is X. According to our rules of the moment, we’re not
allowed to compute E

(
X(k)

)
using probability theory. But we can approxi-

mate the expectation by

Xave = 1

N

N∑
k=1

X(k) ,

the mean of the N bootstrap replicates. What we’ll see is

Xave
.= X.

In our simulation, the expected value of the sample mean is the population
mean. The bootstrap is telling us that the sample mean is unbiased.

Our next desire is the SE of the sample mean. Let

V = 1

N

N∑
k=1

[
X(k) −Xave

]2
.

This is the variance of the N bootstrap replicates. The SD is
√
V , which tells

us how close a typical X(k) is to X. That’s what we’re looking for.

The bootstrap SE is the SD of the bootstrap replicates.

The bootstrap SE says how good the original X was, as an estimate for µ.
Why does this work? We’ve simulated k = 1, . . . , N replicates ofX, and

used the sample variance to approximate the real variance. The only problem
is this. We should be drawing from the distribution that the real sample came
from. Instead, we’re drawing from an approximation, namely, the empirical
distribution of the sample {X1, . . . , Xn}. See figure 1. If n is reasonably
large, this is a good approximation. If n is small, the approximation isn’t
good, and the bootstrap is unlikely to work.

Bootstrap principle for the sample mean. Provided that the sam-
ple is reasonably large, the distribution of X

∗ −X will be a good
approximation to the distribution of X − µ. In particular, the SD
of X

∗
will be a good approximation to the standard error of X.

On the computer, we imitated the sampling model for the data. We
assumed the data come from IID random variables, so we simulated IID data
on the computer—drawing at random with replacement from a box. This is
important. Otherwise, the bootstrap is doing the wrong thing. As a technical
matter, we’ve been talking rather loosely about the bootstrap distribution of
X

∗ −X, but the distribution is conditional on the data X1, . . . , Xn.
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The notation is a little strange, and so is the terminology. For instance,
Xave looks imposing, but it’s just something we use to check that the sample
mean is unbiased. The “bootstrap estimator” X

∗
is not a new estimator for

the parameter µ. It’s something we generate on the computer to help us
understand the behavior of the estimator we started with—the sample mean.
The “empirical distribution of the sample” isn’t a distribution for the sample.
Instead, it’s an approximation to the distribution that we sampled from. The
approximation puts mass 1/n at each of the n sample points. Lacking other
information, this is perhaps the best we can do.

Example 2. Regression. Suppose Y = Xβ + ε, where the design
matrix X is n×p. Suppose that X is fixed (not random) and has full rank.
The parameter vector β isp×1, unknown, to be estimated by OLS. The errors
ε1, . . . , εn are IID with mean 0 and variance σ 2, also unknown. What is the
bias in the OLS estimator β̂ = (X′X)−1X′Y ? What is the covariance matrix
of β̂? The answers, of course, are 0 and σ 2(X′X)−1; we would estimate σ 2

as the mean square of the residuals.
Again, suppose we’ve forgotten the formulas but have computer time on

our hands. We’ll use the bootstrap to get at bias and variance. We don’t want
to resample the Yi’s, because they’re not IID:E(Yi) = Xiβ differs from one i
to another, Xi being the ith row of the design matrix X. The εi are IID, but
we can’t get our hands on them. A puzzle.

Suppose there’s an intercept in the model, so the first column of X is
all 1’s. Then e = 0, where e = Y − Xβ̂ is the vector of residuals. We can
resample the residuals, and that’s the thing to do. The residuals e1, . . . , en
are a new little population, whose mean is 0. We draw n times at random with
replacement from this population to get bootstrap errors ε∗

1 , . . . , ε
∗
n . These

are IID and E(ε∗
i ) = 0. The ε∗

i behave like the ε
i
. Figure 2 summarizes the

procedure.

Figure 2. Bootstrapping a regression model.

e1 e2 en. . .

ε1
* ε2

* εn
*. . .
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The next step is to regenerate the Yi’s:

Y ∗ = Xβ̂ + ε∗.

Each ei comes into ε∗ some small random number of times (zero is a possible
number) and in random order. So e1 may get paired with X7 and X19. Or,
e1 may not come into the sample at all. The design matrix X doesn’t change,
because we assumed it was fixed. Notice that Y ∗ follows the regression
model: errors are IID with expectation 0. We’ve imitated the original model
on the computer. There is a difference, though. On the computer, we know
the true parameter vector. It’s β̂. We also know the true distribution of
the disturbances—IID draws from {e1, . . . , en}. So we can get our hands
on the distribution of β̂∗ − β̂, where β̂∗ is the bootstrap estimator β̂∗ =
(X′X)−1X′Y ∗.

Bootstrap principle for regression. With a reasonably large n, the
distribution of β̂∗ − β̂ is a good approximation to the distribution
of β̂ − β. In particular, the empirical covariance matrix of the β̂∗
is a good approximation to the theoretical covariance matrix of β̂.

What is an “empirical” covariance matrix? Suppose we generate N

bootstrap data sets, indexed by k = 1, . . . , N . For each one, we would have
a bootstrap OLS estimator, β̂(k). We have N bootstrap replicates, indexed
by k:

β̂(1), . . . , β̂(k), . . . .β̂(N).

The empirical covariance matrix is

1

N

N∑
k=1

[
β̂(k) − β̂ave

] [
β̂(k) − β̂ave

]′
, where β̂ave = 1

N

N∑
k=1

β̂(k) .

This is something you can work out. By way of comparison, the theoretical
covariance matrix depends on the unknown σ 2:

E
{[
β̂ − E(β̂)

][
β̂ − E(β̂)

]′} = σ 2(X′X)−1.

What about bias? As shown in chapter 4, there is no bias: E(β̂) = β.
In the simulation, β̂ave = β̂, apart from a little bit of random error. After all,
β̂—the estimated β in the real data—is what we told the computer to take as
the true parameter vector. And β̂ave is the average of N bootstrap replicates
β̂(k), which is a good approximation to E

[
β̂(k)
]
.
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On the computer, we imitated the sampling model for the data. By
assumption, the real data came from a regression model with fixed X and
IID errors having mean 0. That is what we had to simulate on the computer:
otherwise, the bootstrap would have been doing the wrong thing.

We’ve been talking about the bootstrap distribution of β̂∗ − β̂. This
is conditional on the data Y1, . . . , Yn. After conditioning, we can treat the
residuals—which were computed from Y1, . . . , Yn—as data rather than ran-
dom variables. The randomness in the bootstrap comes from resampling the
residuals. Again, the catch is this. We’d like to be drawing from the real dis-
tribution of the εi’s. Instead, we’re drawing from the empirical distribution
of the ei’s. If n is reasonably large and the design matrix is not too crazy, this
is a good approximation.

Example 3. Autoregression. There are parameters a, b. These are
unknown. Somehow, we know that |b| < 1. For i = 1, 2, . . . , n, we have
Yi = a+ bYi−1 + εi . Here, Y0 is a fixed number. The εi are IID with mean 0
and variance σ 2, unknown. The equation has a lag term, Yi−1: this is the Y
for the previous i. We’re going to estimate a and b by OLS, so let’s put this
into the format of a regression problem: Y = Xβ + ε with

Y =


Y1
Y2
...

Yn

 , X =


1 Y0
1 Y1
...

1 Yn−1

 , β =
(
a

b

)
, ε =


ε1
ε2
...

εn

 .

The algebra works out fine: the ith row in the matrix equation Y = Xβ + ε

gives us Yi = a+ bYi−1 + εi , which is where we started. The OLS estimator
is β̂ = (X′X)−1X′Y . We write â and b̂ for the two components of β̂.

But something is fishy. There is a correlation between X and ε. Look at
the second column of X. It’s full of ε’s, tucked away inside the Y ’s. Maybe
we shouldn’t use σ̂ 2(X′X)−1? And what about bias? Although the standard
theory doesn’t apply, the bootstrap works fine. We can use the bootstrap to
estimate variance and bias, in this non-standard situation where explanatory
variables are correlated with errors.

The bootstrap can be done following the pattern set by example 2, even
though the design matrix is random. You fit the model, getting β̂ and residuals
e = Y −Xβ̂. You freeze Y0, as well as

β̂ =
(
â

b̂

)
and e. You resample the e’s to get bootstrap disturbance terms ε∗

1 , . . . , ε
∗
n .
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The new point is that you have to generate the Y ∗
i ’s one at a time, using â, b̂,

and the ε∗
i ’s:

Y ∗
1 = â + b̂Y0 + ε∗

1 ,

Y ∗
2 = â + b̂Y ∗

1 + ε∗
2 ,

...

Y ∗
n = â + b̂Y ∗

n−1 + ε∗
n .

The first line is OK because Y0 is a constant. The second line is OK because
when we need Y ∗

1 , we have it from the line before. And so forth. So, we have
a bootstrap data set:

Y ∗ =


Y ∗

1
Y ∗

2
...

Y ∗
n

 , X∗ =


1 Y0
1 Y ∗

1
...

1 Y ∗
n−1

 , ε∗ =


ε∗

1
ε∗

2
...

ε∗
n

 .

Then we compute the bootstrap estimator, β̂∗ = (X∗′X∗)−1X∗′Y ∗. Notice
that we had to regenerate the design matrix because of the second column.
(That is why X∗ deserves its ∗.) The computer can repeat this procedure
many times, to get N bootstrap replicates. The same residuals e are used
throughout. But ε∗ changes from one replicate to another. So do X∗, Y ∗,
and β̂∗.

Bootstrap principle for autoregression. With a reasonably large n,
the distribution of β̂∗−β̂ is a good approximation to the distribution
of β̂−β. In particular, the SD of b̂∗ is a good approximation to the
standard error of b̂. The average of b̂∗ − b̂ is a good approximation
to the bias in b̂.

In example 3, there will be some bias: the average of the b̂∗’s will differ from
b̂ by a significant amount. The lag terms—the Y ’s from the earlier i’s—do
create some bias in the OLS estimator.

Example 4. A model with pooled time-series and cross-sectional vari-
ation. We combine example 3 above with example 2 in section 5.4. For
t = 1, . . . , m and j = 1, 2, we assume

Yt,j = aj + bYt−1,j + cWt,j + εt,j .
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Think of t as time, and j as an index for geographical areas. The Y0,j are
fixed, as are the W ’s. The a1, a2, b, c are scalar parameters, to be estimated
from the data, Wt,j , Yt,j for t = 1, . . . , m and j = 1, 2. (For each t and
j , Wt,j and Yt,j are scalars.) The pairs (εt,1, εt,2) are IID with mean 0 and
a positive definite 2×2 covariance matrix K . This too is unknown and to
be estimated. One-step GLS is used to estimate a1, a2, b, c—although the
GLS model (5.7) doesn’t hold, because of the lag term: see example 3. The
bootstrap will help us evaluate bias in feasible GLS, and the quality of the
plug-in estimators for SEs (section 5.3).

We have to get the model into the matrix framework. Let n = 2m. For
Y , we just stack up the Yt,j :

Y =



Y1,1
Y1,2
Y2,1
Y2,2
...

Ym,1
Ym,2


.

This is n×1. Ditto for the errors:

ε =



ε1,1
ε1,2
ε2,1
ε2,2
...

εm,1
εm,2


.

For the design matrix, we’ll need a little trick, so let’s do β next:

β =


a1
a2

b

c

 .

Now comes the design matrix itself: since Y is n×1 and β is 4×1, the
design matrix has to be n×4. The last column is the easiest: you just stack
the W ’s. Column 3 is also pretty easy: stack the Y ’s, with a lag. Columns 1
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and 2 have the dummies for the two geographical areas. These have to be
organized so that a1 goes with Yt,1 and a2 goes with Yt,2:

X =



1 0 Y0,1 W1,1
0 1 Y0,2 W1,2
1 0 Y1,1 W2,1
0 1 Y1,2 W2,2
...

...
...

...

1 0 Ym−1,1 Wm,1
0 1 Ym−1,2 Wm,2


.

Let’s check it out. The matrix equation is Y = Xβ + ε. The first line of
this equation says

Y1,1 = a1 + bY0,1 + cW1,1 + ε1,1 .

Just what we need. The next line is

Y1,2 = a2 + bY0,2 + cW1,2 + ε1,2 .

This is good. And then we get

Y2,1 = a1 + bY1,1 + cW2,1 + ε2,1 ,

Y2,2 = a2 + bY1,2 + cW2,2 + ε2,2 .

These are fine, and so all are the rest.
Now, what about the covariance matrix for the errors? It’s pretty easy to

check that cov(ε) = G, where the n×n matrix G has K repeated along the
main diagonal:

(1) G =


K 02×2 · · · 02×2

02×2 K · · · 02×2
...

...
. . .

...

02×2 02×2 · · · K

 .

Before going on to bootstrap the model, let’s pause here to review one-
step GLS—sections 5.3–4. You make a first pass at the data, estimating β

by OLS. This gives β̂OLS with a residual vector e = Y − Xβ̂OLS. We use e
to compute an estimate K̂ for K . (We’ll also use the residuals for another
purpose, in the bootstrap.) Then we use K̂ to estimate G. Notice that the
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residuals naturally come in pairs. There is one pair for each time period,
because there are two geographical areas. Rather than a single subscript on e
it will be better to have two, t and j , with t = 1, . . . , m for time and j = 1, 2
for geography. Let

et,1 = e2t−1 and et,2 = e2t .

This notation makes the pairing explicit.
Now K̂ is the empirical covariance matrix of the pairs:

(2) K̂ = 1

m

m∑
t=1

(
et,1
et,2

) (
et,1 et,2

)
.

Plug K̂ into the formula (1) for G to get Ĝ, and then Ĝ into (5.10) to get

(3) β̂FGLS = (X′Ĝ−1X)−1X′Ĝ−1Y.

This is one-step GLS. The “F” in β̂FGLS is for “feasible.” Plug Ĝ into the
right hand side of (5.12) to get an estimated covariance matrix for β̂FGLS,
namely,

(4) (X′Ĝ−1X)−1.

Feasible GLS may be biased, especially with a lag term. And (4) is
only an “asymptotic” formula: under some regularity conditions, it gives
essentially the right answers with large samples. What happens with small
samples? What about the sample size that we happen to have? And what
about the bias?? The bootstrap should give us a handle on these questions.

Resampling the Y ’s is not a good idea: see example 2 for the reasoning.
Instead, we bootstrap the model following the pattern in examples 2 and 3.
We freeze Y0,j and the W ’s, as well as

β̂FGLS =


â1
â2

b̂

ĉ


and the residuals e from the OLS fit. To regenerate the data, we start by
resampling the e’s. As noted above, the residuals come in pairs. The pairing
has to be preserved in order to capture the covariance between εt,1 and εt,2.
Therefore, we resample pairs of residuals (figure 3).
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Figure 3. Bootstrapping a model with pooled time-series and cross-
sectional variation.

e11 e12 e21 e22 em2em1. . .

ε12
*ε11

* ε22
*ε21

* εm1
* εm2

*. . .

More formally, we generate IID pairs (ε∗
i,1, ε

∗
i,2), choosing at random

with replacement from the paired residuals. The chance that (ε∗
t,1, ε

∗
t,2) =

(e7,1, e7,2) is 1/m. Ditto if 7 is replaced by 19. Or any other number. Since
we have a1 and a2 in the model,

∑m
s=1 es,1 =∑m

s=1 es,2 = 0. (For the proof,
e is orthogonal to the columns of X: the first two columns are the relevant
ones.) In other words, E(ε∗

t,1) = E(ε∗
t,2) = 0. We have to generate the

Y ∗
t,j ’s, as in example 3, one t at a time, using â1, â2, b̂, and the ε∗

t,j ’s:

Y ∗
1,1 = â1 + b̂Y0,1 + ĉW1,1 + ε∗

1,1 ,

Y ∗
1,2 = â2 + b̂Y0,2 + ĉW1,2 + ε∗

1,2 ,

Y ∗
2,1 = â1 + b̂Y ∗

1,1 + ĉW2,1 + ε∗
2,1 ,

Y ∗
2,2 = â2 + b̂Y ∗

1,2 + ĉW2,2 + ε∗
2,2 ,

and so forth. No need to regenerate Y0,j or the W ’s: these are fixed. Now
we bootstrap the estimator, getting β̂∗

FGLS. This means doing OLS, getting
residuals, then K̂∗ as in (2), then plugging K̂∗ into (1) to get Ĝ∗; finally,

(5) β̂∗
FGLS = (X∗′

Ĝ∗−1X∗)−1X∗′
Ĝ∗−1Y ∗.

We have to do this many times on the computer, to get some decent approxi-
mation to the distribution of β̂∗

FGLS − β̂. Notice the stars on the design matrix
in (5). When a bootstrap design matrix is generated on the computer, the
column with the Y ’s changes every time.

Bootstrap principle for feasible GLS. With a reasonably large n,
the distribution of β̂∗

FGLS − β̂FGLS is a good approximation to the
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distribution of β̂FGLS − β. In particular, the empirical covariance
matrix of β̂∗

FGLS is a good approximation to the theoretical covari-
ance matrix of β̂FGLS. The average of β̂∗

FGLS − β̂FGLS is a good
approximation to the bias in β̂FGLS.

More specifically, we would simulate N data sets, indexed by k =
1, . . . , N . Each data set would consist of simulated design matrix X(k) and a
simulated response vector Y(k). For each data set, we would compute Ĝ(k)

and a bootstrap replicate of the one-step GLS estimator,

β̂FGLS,(k) = [X ′
(k)

Ĝ
(k)

−1X
(k)

]−1X ′
(k)

Ĝ
(k)

−1Y
(k)
.

Some things don’t depend on k: for instance, Y0,j and Wt,j . We keep
β̂FGLS—the one-step GLS estimate from the real data—fixed throughout, as
the true parameter vector in the simulation. We keep the error distribution
fixed too: the box in figure 3 stays the same through all the bootstrap repli-
cations.

This is a complicated example, but it is in this sort of example that you
might want to use the bootstrap. The standard theory doesn’t apply. There will
be some bias, which can be detected by the bootstrap. There probably won’t
be any useful finite-sample results, although there may be some asymptotic
formula like (4). The bootstrap is also asymptotic, but it often gets there faster
than the competition. The next section has a real example, with a model for
energy demand. Work the exercises, in preparation for the example.

Exercise set A

1. LetX1, . . . , X50 be IIDN(µ, σ 2). The sample mean isX. True or false:
X is an unbiased estimate of µ, but is likely to be off µ by something
like σ/

√
50, just due to random error.

2. Let Xi(k) be IID N(µ, σ 2), for i = 1, . . . , 50 and k = 1, . . . , 100. Let

X(k) = 1

50

50∑
i=1

Xi(k) , s2
(k) = 1

50

50∑
i=1

[
Xi(k) −X(k)

]2
,

Xave = 1

100

100∑
k=1

X(k) , V = 1

100

100∑
k=1

[
X(k) −Xave

]2
.

True or false, and explain:
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(a) {X(k) : k = 1, . . . , 100} is a sample of size 100 from N(µ, σ 2/50).

(b) V is around σ 2/50.

(c) |X(k) −Xave| < 2
√
V for about 95 of the k’s.

(d)
√
V is a good approximation to the SE of X, where X was defined

in exercise 1.

(e) The sample SD of the X(k)’s is a good approximation to the SE
of X.

(f) Xave is N(µ, σ 2/5000).

3. (This continues exercise 2.) Fill in the blanks, and explain.

(a) Xave is nearly µ, but is off by something like . Options:

σ σ/
√

50 σ/
√

100 σ/
√

5000

(b) Xave is nearly µ, but is off by something like . Options:√
V

√
V /

√
50

√
V /

√
100

√
V /

√
5000

(c) The SD of the X(k)’s is around . Options:√
V

√
V /

√
50

√
V /

√
100

√
V /

√
5000

Exercises 1–3 illustrate the parametric bootstrap: we’re resampling from a
given parametric distribution, the normal. The notation looks awkward, but
will be handy later.

8.2 Bootstrapping a model for energy demand

In the 1970s, long before the days of the SUV, we had an energy crisis
in the United States. An insatiable demand for Arab oil, coupled with an
oligopoly, led to price controls and gas lines. The crisis generated another
insatiable demand, for energy forecasts. The Department of Energy tried to
handle both problems. This section will discuss RDFOR, the Department’s
Regional Demand Forecasting model for energy demand.

We consider only the industrial sector. (The other sectors are residential,
commercial, transportation.) The chief equation was this:

(6) Qt,j = aj + bCt,j + cHt,j + dPt,j + eQt−1,j + fVt,j + δt,j .

Here, t is time in years: t = 1961, 1962, . . . , 1978. The index j ranges over
geographical regions, 1 through 10. Maine is in region 1 and California in
region 10. On the left hand side, Qt,j is the log of energy consumption by
the industrial sector in year t and region j .

On the right hand side of the equation,Q appears again, lagged by a year:
Qt−1,j . The coefficient e of the lag term was of policy interest, because e
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was thought to measure the speed with which the economy would respond to
energy shocks. Other terms can be defined as follows.

• Ct,j is the log of cooling degree days in year t and region j . Every day
that the temperature is one degree above 65◦ is a cooling degree day:
energy must be supplied to cool the factories down. If we have 15 days
with a temperature of 72◦, that makes 15×(72 − 65) = 105 cooling
degree days. It’s conventional to choose 65◦ as the baseline temperature.
Temperatures are in Fahrenheit: this is the US Department of Energy.

• Ht,j is the log of heating degree days in year t and region j . Every day
that the temperature is one degree below 65◦ is a heating degree day:
energy must be supplied to heat the factories up. If we have 15 days with
a temperature of 54◦, that makes 15×(65 − 54) = 165 heating degree
days.

• Pt,j is the log of the energy price for the industrial sector in year t and
region j .

• Vt,j is the log of value added in the industrial sector in year t and region
j . “Value added” means receipts from sales less costs of production; the
latter include capital, labor, and materials. (This is a quick sketch of a
complicated national-accounts concept.)

• There are 10 region-specific intercepts, aj . There are 5 coefficients
(b, c, d, e, f ) that are constant across regions, making 10 + 5 = 15
parameters so far. Watch it: e is a parameter here, not a residual vector.

• δ is an error term. The (δt,j : j = 1, . . . , 10) are IID 10-vectors for
t = 1961, . . . , 1978, with mean 0 and a 10 ×10 covariance matrix K

that expresses inter-regional dependence.

• The δ’s are independent of all the right hand side variables, except the
lag term.

Are the assumptions sensible? For now, don’t ask, don’t tell: it won’t matter
in the rest of this section. (The end notes comment on assumptions.)

The model is like example 4, with 18 years of data and 10 regions rather
than 2. Analysts at the Department of Energy estimated the model by feasible
GLS, equation (3). Results are shown in column A of table 1. For instance,
the lag coefficient e is estimated as 0.684. Furthermore, standard errors
were computed by the “plug-in” method, equation (4). Results are shown
in column B. The standard error on the 0.684 is 0.025. The quality of these
plug-in standard errors is an issue. Bias is also an issue, for two reasons.
(i) There is a lag term. (ii) The covariance matrix of the errors has to be
estimated from the data.
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Feasible GLS is working hard in this example. Besides the 10 intercepts
and 5 slopes, there is a 10 × 10 covariance matrix that has to be estimated
from the data. The matrix has 10 variances on the diagonal and 45 covariances
above the diagonal. We only have 18 years of data on 10 regions—at best,
180 data points. The bootstrap will show there is bias in feasible GLS. It will
also show that the plug-in SEs are seriously in error.

We bootstrap the model just as in the previous section. This involves
generating 100 simulated data sets on the computer. We tell the computer to
take β̂FGLS, column A, as ground truth for the parameters. (This is a truth
about the computer code, not a truth about the economy.) What do we use for
the errors? Answer: we resample the residuals from the OLS fit. This is like
example 4, with 18 giant tickets in the box, each ticket being a 10-vector of
residuals. For instance, 1961 contributes a 10-vector with a component for
each region. So does 1962, and so forth, up to 1978.

When we resample, each ticket comes out a small random number of
times (perhaps zero). The tickets come out in random order too. For exam-
ple, the 1961 ticket might get used to simulate 1964 and again to simulate
1973; the 1962 ticket might not get used at all. What about the explanatory

Table 1. Bootstrapping RDFOR.

One-step GLS Bootstrap

(A) (B) (C) (D) (E) (F)
RMS RMS

Plug-in plug-in bootstrap
Estimate SE Mean SD SE SE

a1 −.95 .31 −.94 .54 .19 .43
a2 −1.00 .31 −.99 .55 .19 .43
a3 −.97 .31 −.95 .55 .19 .43
a4 −.92 .30 −.90 .53 .18 .41
a5 −.98 .32 −.96 .55 .19 .44
a6 −.88 .30 −.87 .53 .18 .41
a7 −.95 .32 −.94 .55 .19 .44
a8 −.97 .32 −.96 .55 .19 .44
a9 −.89 .29 −.87 .51 .18 .40
a10 −.96 .31 −.94 .54 .19 .42

cdd b .022 .013 .021 .025 .0084 .020
hdd c .10 .031 .099 .052 .019 .043

price d −.056 .019 −.050 .028 .011 .022
lag e .684 .025 .647 .042 .017 .034
va f .281 .021 .310 .039 .014 .029
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variables on the right hand side of (6), like cooling degree days? We just leave
them as we found them; they were assumed exogenous. Similarly, we leave
Q1960,j alone. The lag terms for t = 1961, 1962, . . . have to be regenerated
as we go.

For each simulated data set, we compute a one-step GLS estimate, β̂∗
FGLS.

This is a 15 ×1 vector (10 regional intercepts, 5 coefficients). The mean of
these vectors is shown in column C. For example, the coefficient of the lag
term is 14th in order, so ê∗ is the 14th entry in β̂∗

FGLS. The mean of the 100
ê∗’s is 0.647. The SD of the 100 bootstrap estimates is shown in column D.
For instance, the SD of the 100 ê∗’s is 0.042. The bootstrap has now delivered
its output, in columns C and D. We will use the output to analyze variance
and bias in feasible GLS. (Columns E and F will be discussed momentarily.)

Variance. The bootstrap SEs are just the SDs in column D. To review
the logic, the 100 ê∗’s are a sample from the true distribution—true within
the confines of the computer simulation. The mean of the sample is a good
estimate for the mean of the population, i.e., the expected value of ê∗. The
SD of the sample is a good estimate for the SD of ê∗. This tells you how far
the FGLS estimator is likely to get from its expected value. (If in doubt, go
back to the previous section.)

Plug-in SEs vs the bootstrap. Column B reports the plug-in SEs. Col-
umn D reports the bootstrap SEs. Comparing columns B and D, you see that
the plug-in method and the bootstrap are very different. The plug-in SEs are
a lot smaller. But, maybe the plug-in method is right and the bootstrap is
wrong? That is where column E comes in. Column E will show that the
plug-in SEs are a lot too small. (Column E is special; the usual bootstrap
stops with columns C and D.)

For each simulated data set, we compute not only the one-step GLS es-
timator but also the plug-in covariance matrix. The square root of the mean
of the diagonal is shown in column E. Within the confines of the computer
simulation—where the modeling assumptions are true by virtue of the com-
puter code—column D gives the true SEs for one-step GLS, up to a little
random error. Column E tells you what the plug-in method is doing, on av-
erage. The plug-in method is too small, by a factor of 2 or 3. Estimating
all those covariances is making the data work too hard. That is what the
bootstrap has shown us.

Bias. As noted above, the mean of the 100 ê∗’s is 0.647. This is some-
what lower than the assumed true value of 0.684 in column A. The difference
may look insignificant. Look again. We have a sample of size 100. The sam-
ple average is 0.647. The sample SD is 0.042. The SE for the sample average
is 0.042/

√
100 = 0.0042. (This SE is special: it measures random error in



The Bootstrap 171

the simulation, which has “only” 100 replicates.) Bias is highly significant,
and larger in size than the plug-in SE: see column B. The bootstrap has shown
that FGLS is biased.

Some details. The bootstrap is a bit complicated. Explicit notation may
make the story easier to follow. We’re going to have 100 simulated data sets.
Let’s index these by a subscript k = 1, . . . , 100. We put parens around k

to distinguish it from other subscripts. Thus, Qt,j,(k) is the log quantity of
energy demand in year t and region j , in the kth simulated data set. The
response vector Y(k) in the kth data set is obtained by stacking up theQt,j,(k).
First we have Q1961,1,(k), then Q1961,2,(k), and so on, down to Q1961,10,(k).
Next comes Q1962,1,(k), and so forth, all the way down to Q1978,10,(k). In
terms of a formula, Qt,j,(k) is the [10(t − 1961) + j ] th entry in Y(k), for
t = 1961, 1962, . . . and j = 1, . . . , 10.

There’s no need to have a subscript (k) on the other variables, like cooling
degree days or value added: these don’t change. The design matrix in the kth
simulated data set is X(k). There are 10 columns for the regional dummies
(example 4 had two regional dummies), followed by one column each for
cooling degree days, heating degree days, price, lagged quantity, value added.
These are all stacked in the same order as Y(k). Most of the columns stay the
same throughout the simulation, but the column with the lags keeps changing.
That is why a subscript k is needed on the design matrix.

For the kth simulated data set, we compute the one-step GLS estimator
as

(7) β̂FGLS,(k) = [X′
(k)Ĝ

−1
(k)X(k)

]−1
X′
(k)Ĝ

−1
(k)Y(k) ,

where Ĝ
(k)

is estimated from OLS residuals in a preliminary pass through the
kth simulated data set. Here is a little more detail. The formula for the OLS
residuals is

(8) Y
(k)

−X
(k)

[
X
(k)
′ X

(k)

]−1
X
(k)
′ Y

(k)
.

The OLS residual rt,j,(k) for year t and region j is the [10(t − 1961)+ j ]th

entry in (8). (Why r? Because e is a parameter.) For each year from 1961
through 1978, we have a 10-vector of residuals, whose empirical covariance
matrix is

K̂
(k)

= 1

18

1978∑
t=1961


rt,1,(k)
rt,2,(k)
...

rt,10,(k)

(rt,1,(k) rt,2,(k) · · · rt,10,(k)

)
.
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If in doubt, look back at example 4. String 18 copies of K̂
(k)

down the diagonal
of a 180×180 matrix to get the Ĝ

(k)
in (7):

Ĝ(k) =


K̂ 010×10 · · · 010×10

010×10 K̂ · · · 010×10
...

...
. . .

...

010×10 010×10 · · · K̂

 .

The kth replicate bootstrap estimator β̂FGLS,(k) in (7) is a 15-vector, with
estimates for the 10 regional intercepts followed by b̂(k), ĉ(k), d̂(k), ê(k), f̂(k).
The simulated estimate for the lag coefficient ê(k) is therefore the 14th entry
in β̂FGLS,(k). The 0.647 under column C in the table was obtained as

êave = 1

100

100∑
k=1

ê(k) .

Up to a little random error, this is E[ê(k)] , i.e., the expected value of the
one-step GLS estimator in the simulation. The 0.042 was obtained as√√√√ 1

100

100∑
k=1

(
ê(k) − êave

)2
.

Up to another little random error, this is the SE of the one-step GLS estimator
in the simulation. (Remember, e is a parameter not a residual vector.)

For each simulated data set, we compute not only the one-step GLS
estimator but also the plug-in covariance matrix

(9)
[
X′
(k)
Ĝ−1
(k)X(k)

]−1
.

We take the mean over k of each of the 15 diagonal elements in (9). The
square root of the means goes into column E. That column tells the truth
about the plug-in SEs: they’re much too small.

The squaring and unsquaring may be a little hard to follow, so let’s try a
general formula. We generate a sequence of variances on the computer. The
square root of each variance is an SE. Then

RMS SE =
√

mean (SE2) =
√

mean variance.
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Bootstrapping the bootstrap. Finally, what about the bootstrap? Does
it do any better than the asymptotics? It turns out we can calibrate the boot-
strap by doing an even larger simulation (column F). For each of our 100
simulated data sets [X(k), Y(k)], we compute the analog of column D. For this
purpose, each simulated data set spawns 100 simulated data sets of its own.
All in all, there are 1002 = 10,000 data sets to keep track of, but with current
technology, not a problem. For each simulated data set, we get simulated
bootstrap SEs on each of the 15 parameter estimates. The RMS of the simu-
lated bootstrap SEs is shown in column F. The bootstrap runs out of gas too,
but it comes a lot closer to truth (column D) than the plug-in SEs (column E).

As noted before, usual applications of the bootstrap stop with columns
C and D. Columns E and F are special. Column E uses the bootstrap to check
on the plug-in SEs. Column F uses the bootstrap to check on itself.

What is truth? For the simulation, column C gives expectations and
D gives SEs (up to a little random error). For the real data, these are only
approximations, because (i) the real world may not follow the model, and
(ii) even if it did, we’re sampling from the empirical distribution of the resid-
uals, not the theoretical distribution of the errors. If the model is wrong, the
estimates in column A of table 1 and their SEs in column B are meaningless
statistics. If the model is right, the estimates in column A are biased, and the
SEs in column B are too small. This is an extrapolation from the computer
model to the real world.

Exercise set B

1. There is a statistical model with a parameter θ . You need to estimate θ .
Which is a better description of the bootstrap? Explain briefly.

(i) The bootstrap will help you find an estimator for θ .
(ii) Given an estimator θ̂ for θ , the bootstrap will help you find the bias

and SE of θ̂ .

2. Which terms in equation (6) are observable, and which are unobservable?
Which are parameters?

3. Does the model reflect the idea that energy consumption in 1975 might
have been different from what it was? If so, how?

4. In table 1, at the end of column A, you will find the number 0.281. How
is this number related to equation (6)?

5. To what extent are the one-step GLS estimates biased in this application?
Which numbers in the table prove your point? How?

6. Are plug-in SEs biased in this application? Which numbers in the table
prove your point? How?
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7. Are bootstrap standard errors biased in this application? Which numbers

in the table prove your point? How?

8. Paula has observed values on four independent random variables with

common density fα,β(x) = c(α, β)(αx − β)2 exp[−(αx − β)2], where

α > 0, −∞ < β < ∞, and c(α, β) is chosen so that
∫ ∞
−∞ fα,β(x)dx =

1. She estimates α, β by maximum likelihood and computes the stan-

dard errors from the observed information. Before doing the t-test to

see whether β is significantly different from 0, she consults a statisti-

cian, who tells her to use the bootstrap because observed information is

only useful with large samples. What is your advice? (See discussion

question 7.15.)

9. (Hard.) In example 3, if 1 ≤ i < n, show that E(εi |X) = εi .

8.3 End notes for chapter 8

Terminology. In the olden days, boots had straps so you could pull them

on. The term “bootstrap” comes from the expression, to lift yourself up by

your own bootstraps.

Theory. Freedman (1981, 1984) describes the theoretical basis for apply-

ing the bootstrap to different kinds of regression models, with some asymp-

totic results.

Centering. In example 2, without an intercept, you would have to center

the residuals. Likewise, in example 4, you need the two regional intercepts

a1, a2. With RDFOR, it is the 10 regional intercepts that center the residuals.

Without centering, the bootstrap may be way off (Freedman 1981).

Which set of residuals? We could resample FGLS residuals. However,

Ĝ in (4) is computed from the OLS residuals. A comparison between asymp-

totics and the bootstrap seemed fairer if OLS residuals were resampled in the

latter, so that is what we did.

Autoregression. A regression of Yt on “lagged” values (e.g., Yt−1) and

control variables is called an “autoregression,” with “auto” meaning self: Y
is explained in part by its own previous values. With the autoregression in

example 3, if |b| < 1 the conventional theory is a good approximation when

the sample size is large; however, if |b| ≥ 1, the theory gets more complicated

(Anderson 1959). Bias in coefficient estimates due to lags is a well-known

phenomenon (Hurwicz 1950). Bias in asymptotic standard errors is a less

familiar topic.

RDFOR. The big problem with the bootstrap is that the residuals are too

small. For OLS, there is an easy fix: divide by n − p, not n. In a complicated
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model like RDFOR, what would you use for p? The right answer turns out
to depend on unknown parameters: feasible GLS isn’t real GLS. Using the
bootstrap to remove bias is tempting, but the reduction in bias is generally
offset by an increase in variance. Doss and Sethuraman (1989) have a theorem
which captures this idea.

Section 2 is based on Freedman and Peters (1984abc, 1985). Technically,
Pt,j is a price index and Qt,j is a quantity index. (“Divisia” indices were
used in constructing the data.) Further simulation studies show the bias in
FGLS is mainly due to the presence of the lag term.

RDFOR, developed by the Department of Energy, is somewhat unre-
alistic as a model for energy demand (Freedman-Rothenberg-Sutch 1983).
Among other things, P and δ can scarcely be independent (chapter 9). How-
ever, failures in the model do not explain bias in FGLS, or the poor behavior
of the plug-in SEs. Differences between columns A and C in table 1, or
differences among columns D-E-F, cannot be due to specification error. The
reason is this. In the computer simulation, the model holds true by virtue of
the coding.

In fact, the Department of Energy estimated the model using iteratively
reweighted least squares (section 5.4) rather than one-step GLS. Iteration
improves the performance of β̂, but the bias in the estimated SEs gets worse.
In other examples, iteration degrades the performance of β̂.

Plug-in SEs. These are more politely referred to as nominal or asymp-
totic SEs: “nominal” contrasts with “actual,” and asymptotics work when the
sample is large enough (see below).

Other papers. The bias in the plug-in SEs for feasible GLS is redis-
covered from time to time. See, e.g., Beck (2001) or Beck and Katz (1995).
These authors recommend White’s method for estimating the SEs in OLS
(end notes to chapter 5). However, “robust SEs” may have the same sort of
problems as plug-in SEs, because estimated covariance matrices can be quite
unstable. As a result, t-statistics will show unexpected behavior. Moreover,
in the applications of interest, feasible GLS is likely to give more accurate
estimates of the parameters than OLS.



9
Simultaneous Equations

9.1 Introduction

This chapter explains simultaneous-equation models, and how to esti-
mate them using instrumental variables (or two-stage least squares). These
techniques are needed to avoid simultaneity bias (aka endogeneity bias). The
lead example will be hypothetical supply and demand equations for butter in
the state of Wisconsin. The source of endogeneity bias will be explained, and
so will methods for working around this problem.

Then we discuss two real examples—(i) the way education and fertility
influence each other, and (ii) the effect of school choice on social capital.
These examples indicate how social scientists use two-stage least squares
to handle (i) reciprocal causation and (ii) self-selection of subjects into the
sample. (In the social sciences, two-stage least squares is often seen as the
solution to problems of statistical inference.) At the end of the chapter there
is a literature review, which puts modeling issues into a broader perspective.

We turn now to butter. Supply and demand need some preliminary
discussion. For an economist, butter supply is not a single quantity but a
relationship between quantity and price. The supply curve shows the quantity
of butter that farmers would bring to market at different prices. In the left
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Figure 1. Supply and demand. The vertical axis shows quantity;
the horizontal axis, price.

P

Q

Supply

P

Q

Demand

P

Q
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hand panel of figure 1, price is on the horizontal axis and quantity on the
vertical. (Economists usually do it the other way around.)

Notice that the supply curve slopes up. Other things being equal—
ceteris paribus, as they say—if the price goes up so does the quantity offered
for sale. Farmers will divert their efforts from making cheese or delivering
milk to churning butter. If the price gets high enough, farmers will start
buying suburbs and converting them back to pasture. As you can see from
the figure, the curve is concave: each extra dollar brings in less butter than
the dollar before it. (Suburban land is expensive land.)

Demand is also a relationship between quantity and price. The demand
curve in the middle panel of figure 1 shows the total amount of butter that
consumers would buy at different prices. This curve slopes down. Other
things being equal, as price goes up the quantity demanded goes down. This
curve is convex—one expression of “the law of diminishing marginal utility.”
(The second piece of cake is never as good as the first; if you will pay $10
for the first piece, you might only pay $8 for the second, and so forth: that is
convexity of P as a function of Q.)

According to economic theory, the free market price is determined by the
crossing point of the two curves. This “law of supply and demand” is illus-
trated in the right hand panel of figure 1. At the free market price, the market
clears: supply equals demand. If the price were set lower, the quantity de-
manded would exceed the quantity supplied, and disappointed buyers would
bid the price up. If the price were set higher, the quantity supplied would ex-
ceed the quantity demanded, and frustrated suppliers would lower their prices.
With price control, you just sell the butter to the government. That is why price
controls lead to butter mountains. With rent control, overt bidding is illegal;
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there is excess demand for housing, as well as under-the-counter payments
of one kind or another. Relative to free markets, politicians set rents too low
and butter prices too high.

Supply curves and demand curves are response schedules (section 6.4).
The supply curve shows the response of farmers to different prices. The
demand curve shows the response of consumers. These curves are somewhat
hypothetical, because at any given time, we only get to see one price and one
quantity. The extent to which supply curves and demand curves exist, in the
sense that (say) planetary orbits exist, may be debatable. For now, let us set
such questions aside and proceed with the usual theory.

Other things affect supply and demand besides price. Supply is affected
by the costs of factors of production, e.g., the agricultural wage rate and
the price of hay (labor and materials). These are “determinants of supply.”
Demand is affected by prices for complements (things that go with butter, like
bread) and substitutes (like olive oil). These are “determinants of demand.”
The list could be extended.

Suppose the supply curve is stable while the demand curve moves around
(left hand panel, figure 2). Then the observations—the market clearing prices
and quantities—would trace out the supply curve. Conversely, if the supply
curve shifts while the demand curve remains stable, the observations would
trace out the demand curve (middle panel). In reality, as economists see
things, both curves are changing, so we get the right hand panel of figure 2.
To estimate the curves, more assumptions must be introduced. Economists
call this “specifying the model.” We need to specify the determinants of
supply and demand, as well as the functional form of the curves.

Figure 2. Tracing out supply and demand curves. The vertical axis
shows quantity; the horizontal axis, price.
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Our model has two “endogenous variables,” the quantity and price of
butter, denoted Q and P . The specification will say how these endogenous
variables are determined by “exogenous variables.” The exogenous variables
in our supply equation are the agricultural wage rate W and the price H of
hay. These are the determinants of supply. The exogenous variables in the
demand equation are the prices F of French bread and O of olive oil. These
are the determinants of demand. For the moment, “exogeneity” just means
“externally determined” and “endogeneity” means “determined within the
model.” Technical definitions will come shortly.

We consider a linear specification. The model has two linear equations
in two unknowns, Q and P . For each time period t ,

Q = a0 + a1P + a2W + a3H + δt ,(1a) Supply

Q = b0 + b1P + b2F + b3O + εt .(1b) Demand

On the right hand side, there are parameters, the a’s and b’s. There is price P .
There are the determinants of supply in (1a) and the determinants of demand in
(1b). There are random disturbance terms δt and εt : otherwise, the data would
never fit the equations. Everything is linear and additive. (Linearity makes
things simple; however, economists might transform the variables in order
to get curves like those sketched in figures 1 and 2.) Notice the restrictions,
which are sensible enough: W , H are excluded from the demand equation;
F , O from the supply equation.

To complete the specification, we need to make some assumptions about
(δt , εt ). Error terms have expectation 0. As pairs, (δt , εt ) are independent and
identically distributed for t = 1, . . . , n, but δt is allowed to be correlated with
εt . The variance of δt and the variance of εt may be different. Equation (1a)
is a linear supply schedule; (1b) is a linear demand schedule. We should
write Qt,P,W,H,F,O instead of Q—after all, these are response schedules—
but inconsistency seems a better choice.

Each equation describes a hypothetical experiment. In (1a), we set
P,W,H,F,O, and observe how much butter the farmers bring to market.
By assumption,F andO have no effect on supply: they’re not in the equation.
On the other hand, P,W,H should have additive linear effects. In (1b), we
set P,W,H,F,O and observe how much butter the consumers will buy:
W and H should have no effect on demand, while P, F,O should have
additive linear effects. The disturbance terms are invariant under all interven-
tions. So are the parameters, which remain the same for all combinations of
W,H,F,O.

There is a third hypothetical experiment, which could be described by
taking equations (1a) and (1b) together. The exogenous variablesW,H,F,O
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can be set to any particular values of interest, perhaps within certain ranges,
and the two equations solved together for the two unknownsQ and P , giving
us the quantity and price we would see in a free market—with the prescribed
values for the exogenous variables.

So far, we have three hypothetical experiments, where we can set the
exogenous variables. In the social sciences, experiments are unusual. More
often, equations are estimated using observational data. Another assumption
is needed: that Nature runs experiments for us.

Suppose, for instance, that we have 20 years of data in Wisconsin.
Economists would assume that Nature generated the data as if by choosing
Wt,Ht , Ft ,Ot for t = 1, . . . , 20 from some joint distribution, independently
of the δ’s and ε’s. Thus, by assumption, Wt,Ht , Ft ,Ot are independent of
the error terms. This is “exogeneity” in its technical sense.

Nature substitutes her values for Wt,Ht , Ft ,Ot into the right hand side
of (1a) and (1b). She gets the supply and demand equations that are operative
in year t :

Q = a0 + a1P + a2Wt + a3Ht + δt ,(2a) Supply

Q = b0 + b1P + b2Ft + b3Ot + εt .(2b) Demand

According to the model—here comes the law of supply and demand—
the market price Pt and the quantity sold Qt in year t are determined as if by
solving (2a) and (2b) for the two unknowns Q and P :

(3a) Qt = a1(b0 + b2Ft + b3Ot + εt )− b1(a0 + a2Wt + a3Ht + δt )

a1 − b1
,

(3b) Pt = (b0 + b2Ft + b3Ot + εt )− (a0 + a2Wt + a3Ht + δt )

a1 − b1
.

We do not get to see the parameters or the disturbance terms. All we get
to see are Qt , Pt , and the exogenous variables Wt,Ht , Ft ,Ot . Our objective
is to estimate the parameters in (2a)-(2b), from these observational data. That
will tell us, for example, how farmers and consumers would respond to price
controls. The model allows us to make causal inferences from observational
data—if the underlying assumptions are right.

A regression of Qt on Pt and the exogenous variables leads to simul-
taneity bias, also called endogeneity bias, because there are disturbance terms
in the formula (3b) for Pt . Generally, Pt will be correlated with δt and εt .
In other words, Pt is endogenous. That is the new statistical problem. Of
course, Qt is endogenous too: there are disturbance terms in (3a).
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This section presented a simple econometric model with a supply equa-
tion and a demand equation—equations (2a) and (2b). The source of en-
dogeneity bias was identified: disturbance terms turn up in formulas (3ab)
for Qt and Pt . (These “reduced form” equations are of no further interest
here, although they may be helpful in other contexts.) The way to get around
endogeneity bias is to estimate equations (2a) and (2b) by instrumental vari-
ables rather than OLS. This new technique will be explained in sections 2
and 3. Section 7.4 discussed endogeneity bias in a different kind of model,
with a binary response variable.

Exercise set A

1. In equation (1a), should a1 be positive or negative? What about a2, a3?

2. In equation (1b), should b1 be positive or negative? What about b2, b3?

3. In the butter model of this section:

(a) Does the law of supply and demand hold true?
(b) Is the supply curve concave? strictly concave?
(c) Is the demand curve convex? strictly convex?

(Economists prefer log linear specifications. . . .)

4. An economist wants to use the butter model to determine how farmers
will respond to price controls. Which of the following equations is the
most relevant—(2a), (2b), (3a), (3b)? Explain briefly.

9.2 Instrumental variables

We begin with a slightly abstract linear model

(4) Y = Xβ + δ,

where Y is an observable n× 1 random vector, X is an observable n× p

random matrix, and β is an unobservable p×1 parameter vector. The δi are
IID with mean 0 and finite variance σ 2; they are unobservable random errors.
This is the standard regression model, except that X is endogenous, i.e., X
and δ are dependent. Conditional on X, the OLS estimates are biased by
(X′X)−1X′E(δ|X): see (4.9). This is simultaneity bias.

We can explain the bias another way. In the OLS model, we could have
obtained the estimator as follows: multiply both sides of (4) by X′, drop X′δ
because it’s small—E(X′δ) = 0—and solve the resulting p equations for the
p unknown components of β. Here, however, E(X′δ) �= 0.

To handle simultaneity bias, economists and other social scientists would
estimate (4) using instrumental-variables regression, also called two-stage
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least squares: the acronyms are IVLS and IISLS (or 2SLS, if you prefer
Arabic numerals). The method requires an n×q matrix of instrumental or
exogenous variables, with n > q ≥ p. The matrix will be denoted Z. The
matrices Z′X and Z′Z need to be of full rank, p and q respectively. If q > p,
the system is over-identified. If q = p, the system is just-identified. If
q < p, the case which is excluded by assuming q ≥ p, the system is under-
identified—parameters will not be identifiable (section 7.2). Let’s make a
cold list of the assumptions.

(i) X is n×p and Z is n×q with n > q ≥ p.
(ii) Z′X and Z′Z have full rank, p and q respectively.

(iii) Y = Xβ + δ.
(iv) The δi are IID, with mean 0 and variance σ 2.
(v) Z is exogenous, i.e., Z

�
δ.

Assumptions (i) and (ii) are easy to check from the data. The others are
substantially more mysterious.

The idea behind IVLS is to multiply both sides of (4) by Z′, getting

(5) Z′Y = Z′Xβ + Z′δ.

This is a least squares problem. The response variable is Z′Y . The design
matrix is Z′X and the error term is Z′δ. The parameter vector is still β.

Econometricians use GLS (example 5.1, p. 65) to estimate (5), rather
than OLS. This is because cov(Z′δ|Z) = σ 2Z′Z �= σ 2Iq×q (exercise 3C4).
Assumptions (i)-(ii) show thatZ′Z has an inverse; and the inverse has a square
root (exercise B1 below). We multiply both sides of (5) by (Z′Z)−1/2 to get

(6)
[
(Z′Z)−1/2Z′Y

] = [(Z′Z)−1/2Z′X
]
β + η, where η = (Z′Z)−1/2Z′δ.

Apart from a little wrinkle to be discussed below, equation (6) is the
usual regression model. As far as the errors are concerned,

(7) E(η|Z) = 0

because Z was assumed exogenous: see (iv)-(v). (You want to condition on
Z not X, because the latter is endogeneous.) Moreover,

cov(η |Z) = E
[
(Z′Z)−1/2Z′δδ′Z(Z′Z)−1/2 Z

]
(8)

= (Z′Z)−1/2Z′E
[
δδ′ Z

]
Z(Z′Z)−1/2

= (Z′Z)−1/2Z′σ 2In×nZ(Z′Z)−1/2

= σ 2(Z′Z)−1/2(Z′Z)(Z′Z)−1/2

= σ 2Iq×q .
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The big move is in the third line: E[δδ′|Z ] = σ 2 In×n , because Z was as-

sumed to be exogenous, and the δi were assumed to be IID with mean 0 and

variance σ 2: see (iv)-(v). Otherwise, we’re just factoring constants out of the

expectation and juggling matrices.

The OLS estimate for β in (6) is

β̃ = (M ′M)−1 M ′L ,(9)

where M = (Z ′Z)−1/2 Z ′X is the design matrix and L = (Z ′Z)−1/2 Z ′Y is

the response variable. (Exercise B1 shows that all the inverses exist.)

The IVLS estimator in the original system (4) is usually given as

β̂IVLS = [
X ′ Z(Z ′Z)−1 Z ′X

]−1
X ′ Z(Z ′Z)−1 Z ′Y.(10)

We will show that β̂ IVLS = β̃, completing the derivation of the IVLS estima-

tor. This takes a bit of algebra. For starters, because Z ′Z is symmetric,

M ′M = X ′ Z(Z ′Z)−1/2(Z ′Z)−1/2 Z ′X = X ′ Z(Z ′Z)−1 Z ′X,(11)

and

M ′L = X ′ Z(Z ′Z)−1/2(Z ′Z)−1/2 Z ′Y = X ′ Z(Z ′Z)−1 Z ′Y.(12)

Substituting (11) and (12) into (9) proves that β̂IVLS = β̃.

Standard errors are estimated using (13–14):

ĉov(β̂ IVLS|Z) = σ̂ 2
[
X ′ Z(Z ′Z)−1 Z ′X

]−1
,(13)

where

σ̂ 2 = ‖Y − Xβ̂ IVLS‖2/(n − p).(14)

Exercise C6 below provides an informal justification for definitions (13)–

(14), and theorem 1 in section 8 has some rigor. It is conventional to divide

by n − p in (14), but theorem 4.4 does not apply because we’re not in the

OLS model: see the discussion of “the little wrinkle,” below.

Equation (10) is pretty dense. For some people, it helps to check that all

the multiplications make sense. For instance, Z is n×q, so Z ′ is q×n. Then

Z ′Z and (Z ′Z)−1 are q ×q. Next, X is n× p, so X ′ is p×n. Thus, X ′ Z is

p×q and Z ′X is q× p, which makes X ′ Z(Z ′Z)−1 Z ′X a p× p matrix. What

about X ′ Z(Z ′Z)−1 Z ′Y ? Well, X ′ Z is p×q, (Z ′Z)−1 is q ×q, and Z ′Y is

q ×1. So X ′ Z(Z ′Z)−1 Z ′Y is p×1. This is pretty dense too, but there is a

simple bottom line: β̂IVLS is p×1, like it should be.
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Identification. The matrix equation (5) unpacks to q ordinary equations
inp unknowns—the components ofβ. (i) If q > p, there usually won’t be any
vector β that satisfies (5) exactly. GLS gives a compromise solution β̂IVLS.
(ii) If q = p, there is a unique solution, which is β̂IVLS: see exercise C5
below. (iii) If q < p, we don’t have enough equations relative to the number
of parameters that we are estimating. There will be many β’s satisfying (5).
That is the tipoff to under-identification.

The little wrinkle in (6). GivenZ, the design matrixM = (Z′Z)−1/2Z′X
is still related to the errors η = (Z′Z)−1/2Z′δ, because of the endogeneity of
X. This leads to small-sample bias. However, with luck,M will be practically
constant, and a little bit of correlated randomness shouldn’t matter. Theorem 1
in section 8 will make these ideas more precise.

Exercise set B

1. By assumptions (i)-(ii), Z′X is q×p of rank p, and Z′Z is q×q of rank
q. Show that:

(a) Z′Z is positive definite and invertible; the inverse has a square root.

(b) X′Z(Z′Z)−1Z′X is positive definite, hence invertible. Hint. Sup-
pose c is p×1. Can c′X′Z(Z′Z)−1Z′Xc ≤ 0?

Note. Without assumptions (i)-(ii), equations (10) and (13) wouldn’t
make sense.

2. Let Ui be IID random variables. Let U = 1
n

∑n
i=1 Ui . True or false,

and explain:

(a) E(Ui) is the same for all i.
(b) var(Ui) is the same for all i.
(c) E(Ui) = U .
(d) var(Ui) = 1

n

∑n
i=1 (Ui − U)2.

(e) var(Ui) = 1
n−1

∑n
i=1 (Ui − U)2.

9.3 Estimating the butter model

Our next project is to estimate the butter model using IVLS. We’ll start
with the supply equation (2a). The equation is often written this way:

(15) Qt = a0 + a1Pt + a2Wt + a3Ht + δt for t = 1, . . . , 20.

The actual price and quantity in year t are substituted for the free variables
Q and P that define the supply schedule. Reminder: according to the law
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of supply and demand in the model, Qt and Pt were obtained by solving the
pair of equations (2a)-(2b) for the two unknowns Q and P .

Let’s get (15) into the format of (4). The response variable Y is the
20×1 column vector of Qt ’s, and δ is just the column of δt ’s. To get β, we
stack up a0, a1, a2, a3. The design matrix X is 20×4. Column 1 is all 1’s,
to accommodate the intercept. Then we get a column of Pt ’s, a column of
Wt ’s, and a column of Ht ’s. Column 1 is constant, and must be exogenous.
Columns 3 and 4 are exogenous by assumption. But column 2 is endogenous.
That’s the new problem.

To get the matrix Z of exogenous variables, we start with columns 1, 3,
and 4 in X. But we need at least one more instrument, to make up for the
column of prices. Where to look? The answer is, in the demand equation.
Just add a column of Ft ’s and a column ofOt ’s. Both of these are exogenous,
by assumption. Now q = 5, and we’re good to go. The demand equation is
handled the same way: the extra instruments come from the supply equation.

Our model is a hypothetical, but one of the first applications of IVLS was
to estimate supply and demand equations for butter (Wright 1928, p. 316).
See Angrist and Krueger (2001) for discussion.

Exercise set C

1. An economist is specifying a model for the butter market in Illinois. She
likes the model that we used for Wisconsin. She is willing to assume that
the determinants of supply (wage rates and hay prices) are exogenous;
also that the determinants of demand (prices of bread and olive oil) are
exogenous. After reading sections 1–2 and looking at equation (10), she
wants to use OLS not IVLS, and is therefore willing to assume that Pt
is exogenous. What is your advice?

2. Let e = Y − Xβ̂IVLS be the residuals from IVLS. True or false, and
explain:

(a)
∑

i ei = 0.

(b) e ⊥ X.

(c) ‖Y‖2 = ‖Xβ̂IVLS‖2 + ‖e‖2.

(d) σ̂ 2 = ‖e‖2/(n− p).

3. Which is smaller, ‖Y −Xβ̂IVLS‖2 or ‖Y −Xβ̂OLS‖2? Discuss briefly.

4. Is β̂IVLS biased or unbiased? What about σ̂ 2 = ‖Y −Xβ̂IVLS‖2/(n−p)

as an estimator for σ 2?

5. (Hard.) Verify that β̂IVLS = (Z′X)−1Z′Y in the just-identified case
(q = p). In particular, OLS is a special case of IVLS, with Z = X.
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6. (Hard.) Pretend Z′X is constant. To motivate definition (13), show that

cov(β̂IVLS|Z) = σ 2[X′Z(Z′Z)−1Z′X
]−1

.

9.4 What are the two stages?

In the olden days, the model (4) was estimated in two stages.

Stage I. Regress X on Z. (This first-stage regression can be done one
column at a time.) The fitted values are X̂ = Zγ̂ , where γ̂ = (Z′Z)−1Z′X.

Stage II. Regress Y on X̂.

In short,

(16) β̂IISLS = (X̂′X̂
)−1

X̂′Y.

The idea: X̂ is almost a function ofZ, and has been “purged” of endogeneity.
By slightly tedious algebra, β̂IISLS = β̂IVLS. To begin the argument, let

HZ = Z(Z′Z)−1Z′. The IVLS estimator in (10) can be rewritten in terms of
HZ as

(17) β̂IVLS = (X′HZX)
−1X′HZY.

Since HZ is a symmetric idempotent matrix (section 4.2),

X′HZX = (HZX)
′(HZX) and X′HZY = (HZX)

′Y.

Substitute into (17):

(18) β̂IVLS = [(HZX)
′(HZX)]

−1(HZX)
′Y.

According to (18), regressing Y on HZX gives β̂IVLS. But that is also the
recipe for β̂IISLS: the fitted values in Stage I are HZX = X̂, because HZ is
the hat matrix which projects onto the column space of Z. The proof that
β̂IISLS = β̂IVLS is complete.

Likewise, ĉov in (13)-(14) is σ̂ 2X̂′X̂. If you just sit down and run
regressions, however, you may get the wrong SEs. The computer estimates
σ 2 as ‖Y − X̂β̂IISLS‖2/(n − p), but you want ‖Y − Xβ̂IISLS‖2/(n − p),
without the hat on the X. The fix is easy, once you know the problem:
compute the residuals as Y −Xβ̂IISLS. The algebra may be a little intricate,
but the message of this section is simple: old-fashioned IISLS coincides with
new-fangled IVLS.
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Invariance assumptions

Invariance assumptions need to be made in order to draw causal conclu-
sions from non-experimental data: parameters are invariant—unchanging—
under interventions, and so are errors or their distributions (sections 6.4–5).
Exogeneity is another concern. In a real example, as opposed to a hypothetical
about butter, real questions would have to be asked about these assumptions.
Why are the equations “structural,” in the sense that the required invariance
assumptions hold true? Applied papers seldom address such assumptions, or
the narrower statistical assumptions: for instance, why are errors IID?

The tension here is worth considering. We want to use regression to draw
causal inferences from non-experimental data. To do that, we need to know
that certain parameters and certain distributions would remain invariant if we
were to intervene. Invariance can seldom be demonstrated experimentally. If
it could, we probably wouldn’t be discussing invariance assumptions, at least
in that application. What then is the source of the knowledge?

“Economic theory” seems like a natural answer, but an incomplete one.
Theory has to be anchored in reality. Sooner or later, invariance needs em-
pirical demonstration, which is easier said than done. Outside of economics,
the situation is perhaps even less satisfactory, because theory is less well de-
veloped, interventions are harder to define, and the hypothetical experiments
are murkier.

9.5 A social-science example: education and fertility

Simultaneous equations are often used to model reciprocal causation—U

influences V , and V influences U . Here is an example. Rindfuss et al (1980)
propose a simultaneous-equations model to explain the process by which a
woman decides how much education to get, and when to have children. The
authors’ explanation is as follows.

“The interplay between education and fertility has a significant influ-
ence on the roles women occupy, when in their life cycle they occupy these
roles, and the length of time spent in these roles. . . . This paper explores the
theoretical linkages between education and fertility. . . . It is found that the
reciprocal relationship between education and age at first birth is dominated
by the effect from education to age at first birth with only a trivial effect in
the other direction.

“No factor has a greater impact on the roles women occupy than mater-
nity. Whether a woman becomes a mother, the age at which she does so, and
the timing and number of subsequent births set the conditions under which
other roles are assumed. . . . Education is another prime factor conditioning
female roles. . . .
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“The overall relationship between education and fertility has its roots at
some unspecified point in adolescence, or perhaps even earlier. At this point
aspirations for educational attainment as a goal in itself and for adult roles
that have implications for educational attainment first emerge. The desire for
education as a measure of status and ability in academic work may encourage
women to select occupational goals that require a high level of educational
attainment. Conversely, particular occupational or role aspirations may set
standards of education that must be achieved. The obverse is true for those
with either low educational or occupational goals. Also, occupational and
educational aspirations are affected by a number of prior factors, such as
mother’s education, father’s education, family income, intellectual ability,
prior educational experience, race, and number of siblings. . . .”

Rindfuss et al (their paper is reprinted at the back of the book) use a
simultaneous-equations model, with variables defined in table 1 below. There
are two endogenous variables, ED and AGE. The exogenous variables are

Table 1. Variables in the model (Rindfuss et al 1980).

The endogenous variables

ED Respondent’s education
(Years of schooling completed at first marriage)

AGE Respondent’s age at first birth

The exogenous variables

OCC Respondent’s father’s occupation
RACE Race of respondent (Black = 1, other = 0)
NOSIB Respondent’s number of siblings
FARM Farm background (coded 1 if respondent grew up

on a farm, else coded 0)
REGN Region where respondent grew up (South = 1, other = 0)
ADOLF Broken family (coded 0 if both parents present

when respondent was 14, else coded 1)
REL Religion (Catholic = 1, other = 0)
YCIG Smoking (coded 1 if respondent smoked before age 16,

else coded 0)
FEC Fecundability (coded 1 if respondent had

a miscarriage before first birth; else coded 0)

Notes: The data are from a probability sample of 1766 women 35–44
years of age residing in the continental United States. The sample was
restricted to ever-married women with at least one child. OCC was
measured on Duncan’s scale (section 6.1), combining information on
education and income. Notation differs from Rindfuss et al.
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OCC, . . . , FEC. The notes to the table describe the sample survey that col-
lected the data. The model consists of two linear equations in the two un-
knowns, ED and AGE:

ED = a0 + a1AGE + a2OCCi + a3RACEi + · · · + a10YCIGi + δi,(19a)

AGE = b0 + b1ED + b2FECi + b3RACEi + · · · + b10YCIGi + εi.(19b)

According to the model, a woman—indexed by the subscript i—chooses
her educational level EDi and age at first birth AGEi as if by solving the two
equations for the two unknowns. These equations are response schedules
(sections 6.4–5). The a0, a1, . . . , b0, b1, . . . are parameters, to be estimated
from the data. The terms in OCCi , FECi , . . . ,YCIGi take background factors
into account. The random errors (δi, εi) are assumed to have mean 0, and (as
pairs) to be independent and identically distributed from woman to woman.

The model allows δi and εi to be correlated; δi may have a different
distribution from εi . Rindfuss et al use two-stage least squares to fit the
equations. Notice that they have excluded FEC from equation (19a), and
OCC from equation (19b). Without these identifying restrictions, the system
would be under-identified (section 2 above).

The main empirical finding is this. The estimated coefficient of AGE in
(19) is not statistically significant, i.e., a1 could be zero. The woman who
dropped out of school because she got pregnant at age 16 would have dropped
out anyway. By contrast, b̂1 is significant. The causal arrow points from ED
to AGE, not the other way. This finding depends on the model. When looked
at coldly, the argument may seem implausible. A critique can be given along
the following lines.

(i) Assumptions about the errors. Why are the errors independent and
identically distributed across the women? Independence may be
reasonable, but heterogeneity is more plausible than homogeneity.

(ii) Omitted variables. Important variables have been omitted from
the model, including two that were identified by Rindfuss et al
themselves—aspirations and intellectual ability. (See the quotes at
the beginning of the section.) Since Malthus (1798), it has been
considered that wealth is an important factor in determining educa-
tion and marriage. Wealth is not in the model. Social class matters,
and OCC measures only one of its aspects.

(iii) Why additive linear effects?

(iv) Constant coefficients. Rindfuss et al are assuming that the same
parameters apply to all women alike, from poor blacks in the cities
of the Northeast to rich whites in the suburbs of the West. Why?
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(v) Are FEC, OCC, and so forth really exogenous?

(vi) What about the identifying restrictions?

(vii) Are the equations structural?

It is easier to think about questions (v–vii) in the context of a model
that restricts attention to a more homogeneous group of women, where the
only relevant background factors are OCC and FEC. The response schedules
behind the model are as follows.

ED = c + a1AGE + a2OCC + δ,(20a)

AGE = d + b1ED + b2FEC + ε .(20b)

What do these assumptions really mean? Two hypothetical experiments
help answer this question. In both experiments, fathers are assigned to jobs;
and daughters are assigned to have a miscarriage before giving birth to their
first child (FEC = 1), or not to have a miscarriage (FEC = 0).

Experiment #1. Daughters are assigned to the various levels of AGE.
ED is observed as the response. In other words, the hypothetical exper-
imenter chooses when the woman has her first child, but allows her to
decide when to leave school.

Experiment #2. Daughters are assigned to the various levels of ED.
Then AGE is observed as the response. The hypothetical experimenter
decides when the woman has had enough education, but lets her have a
baby when she wants to.

The statistical terminology is rather dry. The experimenter makes fathers
do one job rather than another: surgeons cut pastrami sandwiches and taxi
drivers run the central banks. Women are made to miscarry at one time and
have their first child at another.

The equations can now be translated. According to (20a), in the first
experiment, ED does not depend on FEC. (That is one of the identifying
restrictions assumed by Rindfuss et al.) Moreover, ED depends linearly
on AGE and OCC, plus an additive random error. According to (20b), in
the second experiment, AGE does not depend on OCC. (That is the other
identifying restriction assumed by Rindfuss et al.) Moreover, AGE depends
linearly on ED and FEC, plus an additive random error. Even for thought
experiments, this is a little fanciful.

We return now to the full model, equations (19a)-(19b). The data were
collected in a sample survey, not an experiment (notes to table 1). Rindfuss
et al must be assuming that Nature assigned OCC, FEC, RACE, . . . indepen-
dently of the disturbance terms δ and ε in (19a) and (19b). That assumption is
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what makes OCC, FEC, RACE, . . . exogenous. Rindfuss et al must further be
assuming that women chose ED and AGE as if by solving the two equations
(19a) and (19b) for the two unknowns, ED andAGE. Without this assumption,
simultaneous-equation modeling seems irrelevant. (The comparable element
in the butter model is the law of supply and demand.)

The equations estimated from the survey data should also apply to exper-
imental situations where ED and AGE are manipulated. For instance, women
who freely choose their educational levels and their times to have children
should do so using the same pair of equations—with the same parameter val-
ues and error terms—as women made to give birth at certain ages. These con-
stancy assumptions are the basis for causal inference from non-experimental
data. The data analysis in the paper doesn’t justify such assumptions. How
could it?

Without the response schedules that embody the constancy assumptions,
it is hard to see what “effects” might mean, apart from slopes of a plane that
has been fitted to survey data. It would remain unclear why planes should be
fitted by two-stage least squares, or what role the significance tests are playing.
Rindfuss et al have an interesting question, and there is much wisdom in
their paper. But they have not demonstrated a connection between the social
problem they are studying and the statistical technique they are using.

Simultaneous equations that derive from response schedules are struc-
tural. Structural equations hold for the observational studies in which the
data were collected—and for the hypothetical experiments that usually re-
main behind the scenes. Unless equations are structural, they have no causal
implications (section 6.5).

More on Rindfuss et al

Rindfuss et al make arguments to support their position, but their at-
tempts to justify the identifying restrictions look artificial. Exogeneity as-
sumptions are mentioned in Rindfuss and St. John (1983); however, a critical
step is missing. Variables labeled as “instrumental” or “exogenous,” like
OCC, FEC, RACE, . . . , need to be independent of the error terms. Why
would that be so?

Hofferth and Moore (1979, 1980) obtain different results using different
instruments, as noted by Hofferth (1984). Rindfuss et al (1984) say that

“instrumental variables. . . . require strong theoretical assumptions. . . .
and can give quite different results when alternative assumptions are
made. . . . it is usually difficult to argue that behavioral variables are truly
exogenous and that they affect only one of the endogenous variables but
not the other.” [pp. 981–82]
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Thus, results depend quite strongly on assumptions about identifying
restrictions and exogeneity, and there is no good way to justify one set of
assumptions rather than another. Bartels (1991) comments on the impact of
exogeneity assumptions and the difficulty of verification. Also see Altonji
et al (2005). Rindfuss and St. John (1983) give useful detail on the model.
There is an interesting exchange between Geronimus and Korenman (1993)
and Hoffman et al (1993) on the costs of teenage pregnancy.

9.6 Covariates

In the butter hypothetical, we could take the exogenous variables as
non-manipulable covariates. The assumption would be that Nature chooses
(Wt ,Ht , Ft ,Ot ) : t = 1, . . . , 20 independently of the random error terms
(δt , εt ) : t = 1, . . . , 20.

The error terms would still be assumed IID (as pairs) with mean 0, and
a 2×2 covariance matrix. We still have two hypothetical experiments: (i) set
the price P to farmers, and see how much butter comes to market; (ii) set the
price P to consumers and see how much butter is bought. By assumption,
the answer to (i) is

(21a) Q = a0 + a1P + a2Wt + a3Ht + δt ,

while the answer to (ii) is

(21b) Q = b0 + b1P + b2Ft + b3Ot + εt .

For the observational data, we would still need to assume that Qt and Pt in
year t are determined as if by solving (21a) and (21b) for the two unknowns,
Q and P , which gets us back to (2a) and (2b).

With Rindfuss et al, OCC, FEC, RACE, . . . could be taken as non-
manipulable covariates, eliminating some of the difficulty in the hypothetical
experiments. The identifying restrictions—FEC is excluded from (19a) and
OCC from (19b)—remain mysterious, as does the assumed linearity. How
could you verify such assumptions?

Often, “covariate” just means a right hand side variable in a regression
equation—especially if that variable is only included to control for a possible
confounder. Sometimes, “covariate” signifies a non-manipulable characteris-
tic, like age or sex. Non-manipulable variables are occasionally called “con-
comitants.” To make causal inferences from observational data, we would
have to assume that statistical relations are invariant to interventions: the
equations, the coefficients, the random error terms, and the covariates all stay
the same when we start manipulating the variables we can manipulate.
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9.7 Linear probability models

Schneider et al (1997) use two-stage least squares—with lots of bells and
whistles—to study the effects of school choice on social capital. (The paper
is reprinted at the back of the book; also see Schneider et al 2002.) “Linear
probability models” are used to control for confounders and self-selection.
The estimation strategy is quite intricate. Let’s set the details aside, and think
about the logic. First, here is what Schneider et al say they are doing, and
what they found:

“While the possible decline in the level of social capital in the United
States has received considerable attention by scholars such as Putnam and
Fukuyama, less attention has been paid to the local activities of citizens that
help define a nation’s stock of social capital . . . .giving parents greater choice
over the public schools their children attend creates incentives for parents as
‘citizen/consumers’ to engage in activities that build social capital. Our em-
pirical analysis employs a quasi-experimental approach . . . . the design of
governmental institutions can create incentives for individuals to engage in
activities that increase social capital . . . . active participation in school choice
increases levels of involvement with voluntary organizations. . . . School
choice can help build social capital.”

Social capital is a very complicated concept, and quantification is more of
a challenge than Schneider et al are willing to recognize. PTA membership—
one measure of social capital, according to Schneider et al—is closer to ground
level. (PTA means Parent-Teachers Association.) Schneider et al suggest that
school choice promotes PTA membership. They want to prove this by running
regressions on observational data. We’ll look at results in their tables 1–2.

The analysis involves about 600 families with children in school in New
York school districts 1 and 4. Schneider et al find that “active choosers” are
more likely to be PTA members, other things being equal. Is this causa-
tion, or self-selection? The sort of parents who exercise choice might be the
sort of parents who go to PTA meetings. The investigators use a two-stage
model to correct for self-selection—like Evans and Schwab, but with a linear
specification instead of probits.

There are statistical controls for universal choice, dissatisfaction, school
size, black, Hispanic, Asian, length of residence, education, employed, fe-
male, church attendance (table 2 in the paper). School size, length of res-
idence, and education are continuous variables. So is church attendance:
frequency of attendance is scaled from 1 to 7. The other variables are all
dummies. “Universal choice” is 1 for families in district 4, and 0 in district 1.
“Dissatisfaction” is 1 if the parents often think about moving the child to
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another school, and 0 otherwise: note 12 in the paper. The statistical controls
for family i are denoted Wi . (The paper uses different notation.)

The dummy variable Yi is 1 if family i exercises school choice. There is
another dummy Zi for PTA membership. The object is to show that in some
sense, Yi influences Zi . There are two instrumental variables, both dummy
variables: when choosing a school, did the parents think its values mattered?
did they think the diversity of the student body mattered? The instrumental
variables for family i are denoted Xi .

The assumptions

Each family (indexed by i) has a pair of latent variables (Ui, Vi), with
E(Ui) = E(Vi) = 0. The (Ui, Vi) are taken as IID across families i, but Ui

and Vi may be correlated. The (Ui, Vi) are supposed to be independent of
the (Xi,Wi). Equations (22)-(23) represent the social physics:

P {Yi = 1
∣∣X,W,U, V } = Xia +Wib + Ui,(22)

P {Zi = 1
∣∣Y,X,W,U, V } = cYi +Wid + Vi .(23)

Here, X is the n× 2 matrix whose ith row is Xi , and so forth. Given
X,W,U, V , the response variables (Yi, Zi) are independent in i.

Equation (22) is an “assignment equation.” The assignment equation
says how likely it is for family i to exercise school choice. Equation (23)
explainsZi in terms ofYi,Xi,Wi and the latent variablesUi, Vi . (Remember,
Yi = 1 if family i exercises school choice, and Zi = 1 if the parents are PTA
members.) The crucial parameter in (23) is c, the “effect” of active choice
on PTA membership. This c is scalar; a, b, d are vectors because Xi,Wi

are vectors. Equations (22) and (23) are called “linear probability models:”
probabilities are expressed as linear combinations of control variables, plus
latent variables that are meant to capture unmeasured personal characteristics.
In the bivariate probit model for Catholic schools, the assignment equation is
(7.9) and the analog of (23) is (7.4).

Equations (1) and (2) in the paper look different from (22) and (23).
They are different. In (1), well, Schneider et al aren’t distinguishing between
Y = 1 and P(Y = 1). Equation (2) in the paper has the same defect.
Furthermore, the equation is part of a fitting algorithm rather than a model.
The algorithm involves two-stage least squares. That is why “predicted active
chooser” appears on the right hand side of the equation. (“Active choosers”
are parents who exercise school choice: these parents choose a school for
their children other than the default local public school.)

Figure 3 is the graphical counterpart of equations (22)-(23). The arrows
leading into Y represent the variables on the right hand side of (22); the arrows
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Figure 3. PTA membership explained.

X Y Z

W

U VU, V  Correlated errors
X Instruments
Y Active chooser
Z PTA
W Statistical controls

leading intoZ represent the variables on the right hand side of (23). The dotted
line connecting U and V represents the (unknown) correlation between the
disturbance terms in the two equations. There is no arrow from X to Z: by
assumption, X is excluded from (23). There are no dotted lines connecting
the disturbance terms to X and W : by assumption, the latter are exogenous.

The vision behind (22) and (23) is this. Nature chooses (Ui, Vi) as IID
pairs from a certain probability distribution, which is unknown to us. Next—
here comes the exogeneity assumption—Nature chooses the Xi’s and Wi’s,
independently of theUi’s and Vi’s. Having chosen all these variables, Nature
then flips a coin to see if Yi = 0 or 1. According to (22), the probability
that Yi = 1 is Xia + Wib + Ui . Nature is supposed to take the Yi she just
generated, and plug it into (23). Then she flips a coin to see if Zi = 0 or 1.
According to (23), the probability that Zi = 1 is cYi +Wid + Vi .

We do not get to see the parameters a, b, c, d or the latent variables
Ui, Vi . All we get to see isXi,Wi, Yi, Zi . Schneider et al estimate c by some
complicated version of two-stage least squares: ĉ = 0.128 and ŜE = 0.064,
so t = 0.128/0.064 = 2 and P = 0.05. (See table 2 in the paper.) School
choice matters. QED.

The questions

This paper leaves too many loose ends to be convincing. Why are the
variables used as instruments independent of the latent variables? For that
matter, what makes the control variables independent of the latent variables?
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Why are the latent variables IID across subjects? Where does linearity come
from? Why are the parameters a, b, c, d the same for all subjects? What
justifies the identifying restriction—no X on the right hand side of (23)?

The questions keep coming. Table B1 indicates that the dummies for
dissatisfaction and district 4 were excluded from the assignment equation; so
was school size. Why? There are 580 subjects in the PTA model (table 1 in
Schneider et al). What about the other 400 + 401 − 580 = 221 respondents
(table A1)? Or the 113 + 522 + 225 + 1642 = 2502 non-respondents? At a
more basic level, what intervention are Schneider et al talking about? After
all, you can’t force someone to be an “active chooser.” And what suggests
stability under interventions? As with previous examples (Evans and Schwab,
Rindfuss et al) there is a disconnect between the research questions and the
data processing.

Exercise set D

Schneider et al is reprinted at the back of the book. The estimated coefficient
for school size reported in table 2 is −0.000; i.e., the estimate was somewhere
between 0 and −0.0005. When doing exercises 1 and 2, you may assume the
estimate is −0.0003.

1. Using the data in table 2 of Schneider et al, estimate the probability
that a respondent with the following characteristics will be a PTA mem-
ber: (i) active chooser, (ii) lives in district 1, (iii) dissatisfied, (iv) child
attends a school which has 300 students, (v) black, (vi) lived in dis-
trict 1 for 11 years before survey, (vii) completed 12 years of schooling,
(viii) employed, (ix) female, (x) atheist—never goes to church—never!!

2. Repeat, for a respondent who is not an active chooser but has otherwise
the same characteristics as the respondent in exercise 1.

3. What is the difference between the numbers for the two respondents in
exercises 1 and 2? How do Schneider et al interpret the difference?

4. Given the model, the numbers you have computed for the two respon-
dents in exercises 1 and 2 are best interpreted as . Options:

probabilities estimated probabilities estimated expected probabilities

5. What is it in the data that makes the coefficient of school size so close
to 0? (For instance, would −0.3 be feasible?)

6. Do equations (1) and (2) in the paper state the model?

7. (a) Does table 1 in Schneider et al show the sample is representative or
unrepresentative?

(b) What percentage of the sample had incomes below $20,000?
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(c) Why isn’t there an income variable in table 2? table B1?
(d) To what extent have Schneider et al stated the model? the statistical

assumptions?
(e) Are Schneider et al trying to estimate the effect of an intervention?

If so, what is that intervention?

9.8 More on IVLS

This section looks at some fine points in the theory of IVLS. Exercise
set E is hard, but depends only on the material in sections 2–4. After the exer-
cises, there are some computer simulations to illustrate the twists and turns;
IVLS is described in the multivariate normal case. There are suggestions for
further reading.

Some technical issues

(i) Initially, more instruments may be better; but if q is too close to n,
then X̂

.= X and IISLS may not do much purging.

(ii) The OLS estimator has smaller variance than IVLS, sometimes to
the extent that OLS winds up with smaller mean squared error than IVLS:

(simultaneity bias)2 + OLS variance < (small-sample bias)2 + IVLS variance.

There is a mathematical inequality for the asymptotic variance-covariance
matrices:

ĉov(β̂OLS|X) ≤ ĉov(β̂IVLS|Z)
whereA ≤ B means thatB−A is non-negative definite. As noted in exercise
C3, OLS has the smaller σ̂ 2. Next, Z(Z′Z)−1Z′ is the projection matrix onto
the columns of Z, so

Z(Z′Z)−1Z′ ≤ In×n,
X′Z(Z′Z)−1Z′X ≤ X′In×nX = X′X,
[X′Z(Z′Z)−1Z′X]−1 ≥ (X′X)−1.

Equation (13) completes the argument.

(iii) If the instruments are only weakly related to the endogenous vari-
ables, the randomness in Z′X can be similar in size to the randomness in X.
Then small-sample bias can be quite large—even when the sample is large
(Bound et al 1995).

(iv) If Z′Z is nearly singular, that can also make trouble.
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(v) Even after conditioning on Z, the means and variances of matrices
like [

X′Z(Z′Z)−1Z′X
]−1

can be infinite—due to the inverses. That is one reason for talking about
“asymptotic” means and variances.

(vi) Theoretical treatments of IVLS usually assume that n is large, p and
q are relatively small, Z′Z .= nA and Z′X .= nB, where A is q×q positive
definite and B is q×p of rank p. Difficulties listed above are precluded. The
IVLS estimator given by (10) is asymptotically normal; the asymptotic mean
is β and the asymptotic covariance is given by (13)-(14). Here is a formal
result, where N(0p×1, Ip×p) denotes the joint distribution of p independent
N(0, 1) variables.

Theorem 1. Let Zi be the ith row of Z, and let Xi be the ith row of
X. Suppose that the triplets (Zi,Xi, δi) are IID; that each random variable
has four moments; that Zi

�
δi ; that E(δi) = 0; that Yi = Xiβ + δi ; that

E(Z′
iZi

) is non-singular and E(Z′
iXi

) has rank p. Then

σ̂−1[X′Z(Z′Z)−1Z′X
]1/2(

β̂IVLS − β
)

is asymptotically N(0p×1, Ip×p) as n gets large.

Example 1. The scalar case. Let (Zi,Xi, δi) be IID triplets of scalar
random variables for i = 1, . . . , n. Each random variable has four moments,
and E(ZiXi) > 0. Assume E(δi) = 0 and Zi

�
δi . Let Yi = βXi + δi . We

wish to estimate β. In this model, Xi may be endogeneous. On the other
hand, we can instrumentXi byZi , becauseZi

�
δi . Theorem 1 can be proved

directly. First, β̂IVLS = Ji ZiYi
/
Ji ZiXi by exercise C5. Now substitute

βXi + δi for Yi to see that β̂IVLS − β = Ji Ziδi
/
Ji ZiXi . The Ziδi are IID

and E(Ziδi) = 0, so Ji Ziδi/
√
n is asymptotically normal by the central

limit theorem. Furthermore, ZiXi are IID and E(ZiXi) > 0, so Ji ZiXi/n

converges to a finite positive limit by the law of large numbers. For details
and an estimate of small-sample bias, see

http://www.stat.berkeley.edu/users/census/ivls.pdf

Exercise set E

1. A chance for bonus points. Three investigators are studying the following
model: Yi = Xiβ + εi for i = 1, . . . , n. The random variables are all
scalar, as is the unknown parameter β. The unobservable εi are IID
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with mean 0 and finite variance, but X is endogenous. Fortunately,
the investigators also have an n×1 vector Z, which is exogenous and
not orthogonal to X. Investigator #1 wishes to fit the model by OLS.
Investigator #2 wants to regress Y on X and Z; the coefficient of X in
this multiple regression would be the estimator for β. Investigator #3
suggests β̂ = Z′Y/Z′X. Which of the three estimators would you
recommend? Why? What are the asymptotics? To focus the discussion,
assume that (Xi, Yi, Zi, εi) are IID four-tuples, jointly normal, mean 0,
and var(Xi) = var(Zi) = 1. Assume too that n is large. As a matter of
notation, Yi is the ith component of the n×1 vector Y ; similarly for X.

2. Another chance for bonus points. Suppose that (Xi, Yi, Zi, εi) are in-
dependent four-tuples of scalar random variables for i = 1, . . . , n, with
a common jointly normal distribution. All means are 0 and n is large.
Suppose further that Yi = Xiβ + εi . The variables Xi, Yi, Zi are ob-
servable, and every pair of them has a positive correlation which is less
than 1. However, εi is not observable, and β is an unknown constant.
Is the correlation between Zi and εi identifiable? Can Z be used as an
instrument for estimating β? Explain briefly.

3. Last chance for bonus points. In the over-identified case, we could
estimate σ 2 by fitting (6) to the data, and dividing the sum of the squared
residuals by q − p. What’s wrong with this idea?

Simulations to illustrate IVLS

Let (Zi, δi, εi) be IID jointly normal with mean 0. Here, δi and εi are
scalars, but Zi is 1×q, with q ≥ 1. Assume Zi

�
(δi, εi), the components

of Zi are independent with variance 1, but cov(δi, εi) may not vanish. Let C
be a fixed q×1 matrix, with ‖C‖ > 0. Let Xi = ZiC + δi , a scalar random
variable: in the notation of section 2, p = 1. The model is

Yi = Xiβ + εi for i = 1, . . . , n.

We stack in the usual way: Yi is the ith component of the vector Y
and εi is the ith component of the vector ε, while Xi is the ith row of the
matrix X and Zi is the ith row of the matrixZ. Thus, Z is exogenous (Z

�
ε)

and X is endogenous unless cov(δi, εi) = 0. We can estimate the scalar
parameter β by OLS or IVLS and compare the MSEs. Generally, OLS will
be inconsistent, due to simultaneity bias; IVLS will be consistent. If n is
small or ‖C‖ is small, then small-sample bias will be an issue. We can also
compare methods for estimating var(εi).



200 Chapter 9

Ideally, IISLS would replace Xi by ZiC. However, C isn’t known. So
the estimator replaces Xi by ZiĈ, with Ĉ obtained by regressing X on Z.
Since X is endogenous, Ĉ is too: this is the source of small-sample bias.
When n is large, Ĉ

.= C, and the problem goes away. If p > 1, then Xi and
δi should be 1×p, β should be p×1, C should be q×p. We would require
q ≥ p and rank(C) = p.

Terminology. As the sample size gets large, a consistent estimator con-
verges to the truth; an inconsistent estimator does not. This differs from
ordinary English usage.

9.9 Discussion questions

These questions cover material from previous chapters.

1. An advertisement for a cancer treatment center starts with the headline
“Celebrating Life with Cancer Survivors.” The text continues,

“Did you know that there are more cancer survivors now than ever
before? . . . . This means that life after a cancer diagnosis can be a
reality. . . . we’re proud to be part of an improving trend in cancer
survival. By offering the tools for early detection, as well as the
most advanced cancer treatments available, we’re confident that the
trend will continue.”

Discuss briefly. What is the connection between earlier diagnosis and
increasing survival time after diagnosis?

2. CT (computerized tomography) scans can detect lung cancer very early,
while the disease is still localized and treatable by a surgeon—although
the efficacy of treatment is unclear. Henschke et al (2006) found 484
lung cancers in a large-scale screening program, and estimated the 5-
year survival rate among these patients as 85%. Most of the cancers
were resected, that is, surgically removed. By contrast, among patients
whose lung cancer is diagnosed when the disease becomes symptomatic
(e.g., with persistent cough, recurrent lung infections, chest pain), the
5-year survival rate is only about 15%. Do these data make a case for
CT screening? Discuss briefly.

3. Pisano et al (2005) studied the “diagnostic performance of digital versus
film mammography for breast cancer screening.” About 40,000 women
participated in the trial; each subject was screened by both methods.

“[The trial] did not measure mortality endpoints. The assumption
inherent in the design of the trial is that screening mammography
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reduces the rate of death from breast cancer and that if digital mam-
mography detects cancers at a rate that equals or exceeds that of
film mammography, its use in screening is likely to reduce the risk
of death by as much as or more than . . . film mammography.”

There was little difference in cancer detection rates for all women. How-
ever, for women with radiographically dense breasts (about half the sub-
jects and many of the cancers), the detection rate was about 25% higher
with digital mammography. This difference is highly significant.

(a) Granting the authors’ design assumption, would you recommend
digital or film mammography for women with radiographically
dense breasts? for other women?

(b) What do you think of the design assumption?

4. Headlined “False Conviction Study Points to the Unreliability of Evi-
dence,” the New York Times ran a story about the study, which

“examined 200 cases in which innocent people served an average
of 12 years in prison. A few types of unreliable trial evidence pre-
dictably supported wrongful convictions. The leading cause of the
wrongful convictions was erroneous identification by eyewitnesses,
which occurred 79 percent of the time.”

Discuss briefly. Is eyewitness evidence unreliable? What’s missing from
the story?

5. The New York Times ran a story headlined “Study Shows Marathons
Aren’t Likely To KillYou,” claiming that the risk of dying on a marathon
is twice as high if you drive it than if you run it. The underlying study
(Redelmeier and Greenwald 2007) estimated risks for running marathons
and for driving. The measure of risk was deaths per day. The study
compared deaths per day from driving on marathon days to deaths per day
from driving on control days without marathons. The rate on marathon
days was lower. (Roads are closed during marathons; control days were
matched to marathon days on day of the week, and the same time periods
were used; data on traffic fatalities were available only at the county
level.) The study concluded that 46 lives per day were saved by road
closures, compared to 26 sudden cardiac deaths among the marathon
runners, for a net saving of 20 lives. What’s wrong with this picture?
Comment first on the study, then on the newspaper article.

6. Prostate cancer is the most common cancer among American men, with
200,000 new cases diagnosed each year. Patients will usually consult
a urological surgeon, who recommends one of three treatment plans:
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surgical removal of the prostate, radiation that destroys the prostate, or

watchful waiting (do nothing unless the clinical picture worsens). A

biopsy is used to determine the Gleason score of the cancer, measuring

its aggressiveness; Gleason scores range from 2 to 10 (higher scores

correspond to more aggressive cancers). The recommended treatment

will depend to some extent on biopsy results. The side effects of surgery

and radiation can be drastic, and efficacy is debatable. So, as the pro-

fessionals say, “management of this cancer is controversial.” However,

patients tend to accept the recommendations made by their urologists.

Grace Lu-Yao and Siu-Long Yao (1997) studied treatment outcomes, us-

ing data from the Surveillance, Epidemiology and End Results (SEER)

Program. This is a cancer registry covering four major metropolitan ar-

eas and five states. The investigators found 59,876 patients who received

a diagnosis of prostate cancer during the period 1983–1992, and were

aged 50–79 at time of diagnosis. For these cases, the authors estimated

10-year survival rates after diagnosis. They chose controls at random

from the population, matched controls to cases on age, and estimated

10-year survival rates for the controls. Needless to say, only male con-

trols were used. Results are shown in the table below for cases with

moderately aggressive cancer (Gleason scores of 5–7).

(a) How can the 10-year survival rate for the controls depend on treat-

ment?

(b) Why does the survival rate in the controls decline as you go down

the table?

(c) In the surgery group, the cases live longer than the controls. Should

we recommend surgery as a prophylactic measure? Explain briefly.

(d) The 10-year survival rate in the surgery group is substantially bet-

ter than that in the radiation group or the watchful-waiting group.

Should we conclude that surgery is the preferred treatment option?

Explain briefly.

10-year survival (%)

Treatment Cases Controls

Surgery 71 64

Radiation 48 52

Watchful waiting 38 49

7. In 2004, as part of a program to monitor its first presidential election, 25

villages were selected at random in a certain area of Indonesia. In to-

tal, there were 25,000 registered voters in the sample villages, of whom
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13,000 voted for Megawati: 13,000/25,000 = 0.52. True or false, and
explain: the standard error on the 0.52 is

√
0.52 × 0.48/25. Or should

it be
√

0.52 × 0.48/25,000? Discuss briefly.

8. (Partly hypothetical.) Psychologists think that older people are happier,
as are married people; moreover, happiness increases with income. To
test the theory, a psychologist collects data on a sample of 1500 people,
and fits a regression model:

Happinessi = a + bUi + cVi + dWi + εi,

with the usual assumptions on the error term. Happiness is measured by
self-report, on a scale from 0 to 100. The average is about 50, with an
SD of 15. The dummy Ui = 1 if subject i is over 35 years of age, else
Ui = 0. Similarly, Vi = 1 if subject i is married, else Vi = 0. Finally,
Wi is the natural logarithm of subject i’s income. (Income is truncated
below at $1.) Suppose for parts (b–d) that the model is right.

(a) What are the usual assumptions?

(b) Interpret the coefficients b, c, d. What sign should they have?

(c) Suppose that, in the sample, virtually all subjects over the age of
35 are married; however, for subjects under the age of 35, about
half are married and half are unmarried. Does that complicate the
interpretation? Explain why or why not.

(d) Suppose that, in the sample, virtually all subjects over the age of 35
are married; further, virtually all subjects under the age of 35 are
unmarried. Does that complicate the interpretation? Explain why
or why not.

(e) According to the New York Times, “The [psychologists’] theory
was built on the strength of rigorous statistical and mathematical
modeling calculations on computers running complex algorithms.”
What does this mean? Does it argue for or against the theory?
Discuss briefly.

9. Yule ran a regression of changes in pauperism on changes in the out-relief
ratio, with changes in population and changes in the population aged 65+
as control variables. He used data from three censuses and four strata of
unions, the small geographical areas that administered poor-law relief.
He made a causal inference: out-relief increases pauperism. To make
this inference, he had to assume that some things remained constant
amidst changes. Can you explain the constancy assumptions?
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10. King, Keohane and Verba (1994) discuss the use of multiple regression
to estimate causal effects in the social sciences. According to them,

“Random error in an explanatory variable produces bias in the esti-
mate of the relationship between the explanatory and the dependent
variable. That bias takes a particular form: it results in the estima-
tion of a weaker causal relationship than is the case.” [p. 158]

Do you agree or disagree? Discuss briefly. (The authors have in mind a
model where Y = Xβ + ε, but the investigator observes X∗ = X + δ

rather than X, and regresses Y on X∗.)

11. Ansolabehere and Konisky (2006) want to explain voter turnout Yi,t in
county i and year t . LetXi,t be 1 if county i in year t required registration
before voting, else 0; let Zi,t be a 1×p vector of control variables. The
authors consider two regression models. The first is

(24) Yi,t = α + βXi,t + Zi,t γ + δi,t

where δi,t is a random error term. The second is obtained by taking
differences:

(25) Yi,t − Yi,t−1 = β(Xi,t −Xi,t−1)+ (Zi,t − Zi,t−1)γ + εi,t

where εi,t is a random error term. The chief interest is in β, whereas γ is
p×1 vector of nuisance parameters. If (24) satisfies the usual conditions
for an OLS regression model, what about (25)? And vice versa?

12. An investigator fits a regression model Y = Xβ + ε to the data, and
draws causal inferences from β̂. A critic suggests that β may vary from
one data point to another. According to a third party, the critique—even
if correct—only means there is “unmodeled heterogeneity.”

(a) Why would variation in β matter?

(b) Is the third-party response part of the solution, or part of the prob-
lem?

Discuss briefly.

13. A prominent social scientist describes the process of choosing a model
specification as follows.

“We begin with a specification that is suggested by prior theory and
the question that is being addressed. Then we fit the model to the
data. If this produces no useful results, we modify the specification
and try again, with the objective of getting a better fit. In short, the
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initial specification is tested before being accepted as the correct
model. Thus, the proof of specification is in the results.”

Discuss briefly.

14. A is assumed going into the data analysis; a is estimated
from the data analysis. Options:

(i) response schedule (ii) regression equation

15. Causation follows from the ; estimated effects follow from fitting
the to the data. Options:

(i) response schedule (ii) regression equation

16. True or false: the causal effect of X on Y is demonstrated by doing
something to the data with the computer. If true, what is the something?
If false, what else might you need? Explain briefly.

17. What is the exogeneity assumption?

18. Suppose the exogeneity assumption holds. Can you use the data to show
that a response schedule is false? Usually? Sometimes? Hardly ever?
Explain briefly.

19. Suppose the exogeneity assumption holds. Can you use the data to show
that a response schedule is true? Usually? Sometimes? Hardly ever?
Explain briefly.

20. How would you answer questions 18 and 19 if the exogeneity assumption
itself were doubtful?

21. Gilens (2001) proposes a logit model to explain the effect of general
political knowledge on policy preferences. The equation reported in the
paper is

prob(Yi = 1) = α + βGi +Xiγ + Ui,

where i indexes subjects; Yi = 1 if subject i favors a certain policy and
Yi = 0 otherwise; Gi measures subject i’s general political knowledge;
Xi is a 1×p vector of control variables; and Ui is an error term for
subject i. In this model, α and β are scalar parameters, the latter being
of primary interest; γ is a p×1 parameter vector. Did Gilens manage to
write down a logit model? If not, fix the equation.

22. Mamaros and Sacerdote (2006) look at variables determining volume of
email. Their study population consists of students and recent graduates
of Dartmouth; the study period year is one academic year. Let Yij be
the number of emails exchanged between person i and person j , while
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Xi is a 1×p vector describing characteristics of person i, and β is a
p×1 parameter vector. Furthermore, Xij is a 1×q vector describing
characteristics of the pair (i, j), and γ is a q×1 parameter vector. Let

exp(x) = ex, p(y|λ) = exp(−λ)λy/y!.

To estimate parameters, the authors maximize∑
1≤i<j≤n

log p
(
Yij
∣∣ exp (Xiβ +Xjβ +Xijγ )

)
as a function of β and γ , where n is the number of subjects. (Some
details are omitted.) Comment briefly on the data analysis.

23. Suppose Yi = a+bZi +cWi +εi , where the εi are IID with expectation
0 and variance σ 2. However, Wi may be endogeneous. Assume that
Zi = 0 or 1 has been assigned at random, so the Z’s are independent
of the W ’s and ε’s. Let b̂ be the coefficient of Z when the equation is
estimated by OLS. True or false and explain: b̂ is an unbiased estimate
of b.

24. Suppose Y = Xβ + ε, where Y and ε are n × 1, X is n × p of full
rank, the εi are IID with E(εi) = 0 and E(εi

2) = σ 2. Here, β and
σ 2 are parameters to be estimated from the data. However, X may be
endogenous. Let Z be exogenous, n × q, with q ≥ p. We assume
Z′Z and Z′X have full rank. Let eOLS = Y −Xβ̂OLS. Let eIVLS =
Y − Xβ̂IVLS. Let f = (Z′Z)−1/2Z′Y − (Z′Z)−1/2Z′Xβ̂IVLS. In the
first stage of IISLS, X is regressed, column by column, on Z; let X̂ be
the fitted values and K = X − X̂. As usual, ⊥ means orthogonality for
data vectors;

�
means statistical independence of random vectors. Say

whether each of the following statements is true or false:

ε ⊥ X ε ⊥ Z ε
�
X ε

�
Z

eOLS ⊥ X eOLS ⊥ Z eOLS
�
X eOLS

�
Z

eIVLS ⊥ X eIVLS ⊥ Z eIVLS
�
X eIVLS

�
Z

f ⊥ X f ⊥ Z f ⊥ (Z′Z)−1/2Z′X
f
�
X f

�
Z f

�
(Z′Z)−1/2Z′X

K ⊥ X K ⊥ Z K
�
X K

�
Z

If eOLS ⊥ X, then X is exogenous.
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If f ⊥ (Z′Z)−1/2Z′X, that provides support for the
assumed exogeneity of Z.

If f ⊥ (Z′Z)−1/2Z′X, then small-sample bias is 0.

25. Suppose Xi, δi, εi are independent normal variables, with expectation
0, for i = 1, 2, . . . , n. The variances are 1, σ 2, and τ 2 respectively.
Suppose

(26) Yi = bXi + δi,

(27) Wi = cYi + εi .

These equations reflect true causal relations; b and c are parameters. A
statistician fits

(28) Yi = dWi + eXi + ui

to the data.

(a) Are the subjects IID?

(b) Shouldn’t there be intercepts in the equations?

(c) Is (28) a good causal model?

(d) Can you choose the parameters so the R2 for (26) is low, while the
R2 for (28) is high?

(e) If the sample is large, find approximate values for d̂ and ê.

Explain briefly.

9.10 End notes for chapter 9

Further reading on econometric technique

Davidson R, MacKinnon JG (2003). Econometric Theory and Methods. Ox-
ford University Press. A standard graduate-level textbook. Broad coverage.
Theoretical.

Greene WH (2007). Econometric Analysis. 6th ed. Prentice Hall. A standard
graduate-level textbook. Broad coverage. Theoretical.

Kennedy P (2003). A Guide to Econometrics. 5th ed. MIT Press. Informal,
clear, useful.

Maddala GS (2001). Introduction to Econometrics. 3rd ed. Wiley (2001).
Chatty and clear.
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Theil H (1971). Principles of Econometrics. Wiley. This is a formal treat-
ment, but it is clear and accurate. On pp. 444, 451, Theil writes X for the
matrix of instrumental variables, Z for the endogenous variables, which is
opposite to the convention adopted here.

Wooldridge JM (2005). Introductory Econometrics. 3rd ed. Southwestern
College Publishers. A standard undergraduate textbook. Applied focus.

The New York Times. The articles mentioned in questions 4, 5, and 8 are
from 7/23/2007 page A1, 12/21/2008 page A27, and 12/12/2006 page D3,
respectively.

Indonesia. Question 7 draws on unpublished reports by Susan Hyde and
Thad Dunning, Yale University, describing work done for the Carter Center.

A case study. Many of the issues discussed in this chapter are illustrated
by DiNardo and Pischke’s critique of Krueger—

Krueger AB (1993). How computers have changed the wage structure: Evi-
dence from microdata, 1984–1989. Quarterly Journal of Econometrics 108:
33–60.

DiNardo JE, Pischke JS (1997). The returns to computer use revisited: Have
pencils changed the wage structure too? Quarterly Journal of Econometrics
112: 291–303.



10
Issues in Statistical Modeling

10.1 Introduction

It is an article of faith in much applied work that disturbance terms are
IID—Independent and Identically Distributed—across observations. Some-
times, this assumption is replaced by other assumptions that are more com-
plicated but equally artificial. For example, when observations are ordered in
time, the disturbance terms εt are sometimes assumed to follow an “autore-
gression,” e.g., εt = λεt−1 + δt , where now λ is a parameter to be estimated,
and it is the δt that are IID. However, there is an alternative that should al-
ways be kept in mind. Disturbances are DDD—Dependent and Differently
Distributed—across subjects. In the autoregression, for example, the δt could
easily be DDD, and introducing yet another model would only postpone the
moment of truth.

A second article of faith for many applied workers is that functions are
linear with coefficients that are constant across subjects. The alternative is
that functions are non-linear, with coefficients (or parameters more gener-
ally) that vary across subjects. The dueling acronyms would be LCC (Linear
with Constant Coefficients) and NLNC (Non-Linear with Non-constant Co-
efficients). Some models have “random coefficients,” which only delays the
inevitable: coefficients are assumed to be drawn at random from distributions
that are constant across subjects. Why would that be so?
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These articles of faith have had considerable influence on the applied
literature. Therefore, when reading a statistical study, try to find out what
kind of statistical analysis got the authors from the data to the conclusions.
What are the assumptions behind the analysis? Are these assumptions plau-
sible? What is allowed to vary and what is taken to be constant? If causal
inferences are made from observational data, why are parameters invariant
under interventions? Where are the response schedules? Do the response
schedules describe reasonable thought experiments?

For applied workers who are going to publish research based on statistical
models, the recommendation is to archive the data, the equations, and the
programs. This would allow replication, at least in the narrowest sense of the
term (Dewald et al 1986, Hubbard et al 1998). Assumptions should be made
explicit. It should be made clear which assumptions were checked, and how
the checking was done. It should also be made clear which assumptions were
not checked. Stating the model clearly is a good first step—and a step which
is omitted with remarkable frequency, even in the best journals.

Modelers may feel there are responses to some of these objections. For
example, a variety of relevant techniques have not been considered in this
book, including regression diagnostics, specification tests, and model selec-
tion procedures. These techniques might be helpful. For instance, diagnos-
tics are seldom reported in applied papers, and should probably be used more
often.

In the end, however, such things work only if there is some relatively lo-
calized breakdown in the modeling assumptions—a technical problem which
has a technical fix. There is no way to infer the “right” model from the
data unless there is strong prior theory to limit the universe of possible mod-
els. (More technically, diagnostics and specification tests usually have good
power only against restricted classes of alternatives: Freedman 2008d.) That
kind of strong theory is rarely available in the social sciences.

Model selection procedures like AIC (Akaike’s Information Criterion)
only work—under suitable regularity conditions—“in the limit,” as sample
size goes to infinity. Even then, AIC overfits. Therefore, behavior in finite
samples needs to be assessed. Such assessments are unusual. Moreover, AIC
and the like are commonly used in cases where the regularity conditions do
not hold, so operating characteristics of the procedures are unknown, even
with very large samples. Specification tests are open to similar objections.

Bayesian methods are sometimes thought to solve the model selection
problem (and other problems too). However, in non-parametric settings,
even a strictly Bayesian approach can lead to inconsistency, often because
of overfitting. “Priors” that have infinite mass or depend on the data merely



Issues in Statistical Modeling 211

cloud the issue. For reviews, see Diaconis and Freedman (1998), Eaton and
Freedman (2004), Freedman (1995).

The bootstrap

How does the bootstrap fit into this picture? The bootstrap is in many
cases a helpful way to compute standard errors—given the model. The boot-
strap usually cannot answer basic questions about validity of the model, but
it can sometimes be used to assess impacts of relatively minor failures in
assumptions. The bootstrap has been used to create chance models from data
sets, and some observers will find this pleasing.

The role of asymptotics

Statistical procedures are often defended on the basis of their “asymp-
totic” properties—the way they behave when the sample is large. See, for
instance, Beck (2001, p. 273): “methods can be theoretically justified based
on their large-[sample] behavior.” This is an oversimplification. If we have a
sample of size 100, what would happen with a sample of size 100,000 is not a
decisive consideration. Asymptotics are useful because they give clues to be-
havior for samples like the one you actually have. Furthermore, asymptotics
set a threshold. Procedures that do badly with large samples are unlikely to
do well with small samples.

With the central limit theorem, the asymptotics take hold rather quickly:
when the sample size is 25, the normal curve is a often a good approximation
to the probability histogram for the sample average; when the sample size is
100, the approximation is often excellent. With feasible GLS, on the other
hand, if there are a lot of covariances to estimate, the asymptotics take hold
rather slowly (chapter 8).

Philosophers’ stones in the early twenty-first century

Correlation, partial correlation, Cross lagged correlation, Princi-
pal components, Factor analysis, OLS, GLS, PLS, IISLS, IIISLS,
IVLS, FIML, LIML, SEM, GLM, HLM, HMM, GMM, ANOVA,
MANOVA, Meta-analysis, Logits, Probits, Ridits, Tobits, RESET,
DFITS, AIC, BIC, MAXENT, MDL, VAR, AR, ARIMA, ARFIMA,
ARCH, GARCH, LISREL, Partial likelihood, Proportional hazards,
Hinges, Froots, Flogs with median polish, CART, Boosting, Bag-
ging, MARS, LARS, LASSO, Neural nets, Expert systems, Bayesian
expert systems, Ignorance priors, WinBUGS, EM, LM, MCMC,
DAGs, TETRAD, TETRAD II. . . .
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The modelers’ response

We know all that. Nothing is perfect. Linearity has to be a good
first approximation. Log linearity has to be a good first approxi-
mation. The assumptions are reasonable. The assumptions don’t
matter. The assumptions are conservative. You can’t prove the as-
sumptions are wrong. The biases will cancel. We can model the
biases. We’re only doing what everybody else does. Now we use
more sophisticated techniques. If we don’t do it, someone else will.
What would you do? The decision-maker has to be better off with
us than without us. We all have mental models. Not using a model
is still a model. The models aren’t totally useless. You have to do
the best you can with the data. You have to make assumptions in
order to make progress. You have to give the models the benefit of
the doubt. Where’s the harm?

The difficulties in modeling are not unknown. For example, Hendry
(1980, p. 390) writes that “Econometricians have found their Philosophers’
Stone; it is called regression analysis and is used for transforming data into
‘significant’ results!” This seriously under-estimates the number of philoso-
phers’ stones. Hendry’s position is more complicated than the quote might
suggest. Other responses from the modeling perspective are quite predictable.

10.2 Critical literature

For the better part of a century, many scholars in many different disci-
plines have expressed considerable skepticism about the possibility of disen-
tangling complex causal processes by means of statistical modeling. Some of
this critical literature will be reviewed here. The starting point is the exchange
between Keynes (1939, 1940) and Tinbergen (1940). Tinbergen was one of
the pioneers of econometric modeling. Keynes expressed blank disbelief
about the development:

"No one could be more frank, more painstaking, more free from sub-
jective bias or parti pris than Professor Tinbergen. There is no one,
therefore, so far as human qualities go, whom it would be safer to trust
with black magic. That there is anyone I would trust with it at the present
stage, or that this brand of statistical alchemy is ripe to become a branch
of science, I am not yet persuaded. But Newton, Boyle and Locke all
played with alchemy. So let him continue.” (Keynes 1940, p. 156)

Other familiar citations in the economics literature include Liu (1960),
Lucas (1976), and Sims (1980). Lucas was concerned about parameters
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that changed under intervention. Manski (1995) returns to the problem of
under-identification that was posed so sharply by Liu and Sims: in brief, a
priori exclusion of variables from causal equations can seldom be justified, so
there will typically be more parameters than data. Manski suggests methods
for bounding quantities that cannot be estimated. Sims’ idea was to use low-
dimensional models for policy analysis, instead of complex high-dimensional
ones. Leamer (1978) discusses the issues created by inferring specifications
from the data, as does Hendry (1980). Engle, Hendry, and Richard (1983)
distinguish several kinds of exogeneity assumptions.

Heckman (2000) traces the development of econometric thought from
Haavelmo and Frisch onwards. Potential outcomes and structural parameters
play a central role, but “the empirical track record of the structural [modeling]
approach is, at best, mixed” [p. 49]. Instead, the fundamental contributions
of econometrics are the insights

“that causality is a property of a model, that many models may explain
the same data and that assumptions must be made to identify causal or
structural models. . . .” [p. 89]

Moreover, econometricians have clarified “the possibility of interrelation-
ships among causes,” as well as “the conditional nature of causal knowledge
and the impossibility of a purely empirical approach to analyzing causal ques-
tions” [pp. 89–90]. Heckman concludes that

“The information in any body of data is usually too weak to eliminate
competing causal explanations of the same phenomenon. There is no
mechanical algorithm for producing a set of ‘assumption free’ facts or
causal estimates based on those facts.” [p. 91]

Some econometricians have turned to natural experiments for the eval-
uation of causal theories. These investigators stress the value of strong re-
search designs, with careful data collection and thorough, context-specific,
data analysis. Angrist and Krueger (2001) have a useful survey.

Rational choice theory is a frequently-offered justification for statistical
modeling in economics and cognate fields. Therefore, any discussion of
empirical foundations must take into account a remarkable series of papers,
initiated by Kahneman and Tversky (1974), that explores the limits of rational
choice theory. These papers are collected in Kahneman, Slovic, and Tversky
(1982), Kahneman and Tversky (2000). The heuristics-and-biases program of
Kahneman and Tversky has attracted its own critics (Gigerenzer 1996). The
critique is interesting, and has some merit. But in the end, the experimental
evidence demonstrates severe limits to the power of rational choice theory
(Kahneman and Tversky 1996).
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The data show that if people are trying to maximize expected utility, they
don’t do it very well. Errors are large and repetitive, go in predictable di-
rections, and fall into recognizable categories. Rather than making decisions
by optimization—or bounded rationality, or satisficing—people seem to use
plausible heuristics that can be classified and analyzed. Rational choice the-
ory is generally not a good basis for justifying empirical models of behavior,
because it does not describe the way real people make real choices.

Sen (2002), drawing in part on the work of Kahneman and Tversky,
gives a far-reaching critique of rational choice theory, with many counter-
examples to the assumptions. The theory has its place, according to Sen, but
also leads to “serious descriptive and predictive problems” [p. 23]. Nelson
and Winter (1982) reached similar conclusions in their study of firms and
industries. The axioms of orthodox economic theorizing, profit maximization
and equilibrium, create a “flagrant distortion of reality” [p. 21].

Almost from the beginning, there were critiques of modeling in other
social sciences too. Bernert (1983) and Platt (1996) review the historical
development in sociology. Abbott (1997) finds that variables like income and
education are too abstract to have much explanatory power; so do models
built on those variables. There is a broader examination of causal modeling
in Abbott (1998). He finds that “an unthinking causalism today pervades our
journals and limits our research” [p. 150]. He recommends more empha-
sis on descriptive work and on smaller-scale theories more tightly linked to
observable facts—middle-range theories, in Robert Merton’s useful phrase.
Clogg and Haritou (1997) consider difficulties with regression, noting that
endogenous variables can all too easily be included as regressors. Hedström
and Swedberg (1998) present a lively collection of essays by a number of so-
ciologists who are quite skeptical about regression models. Rational choice
theory also takes its share of criticism.

Goldthorpe (1999, 2000, 2001) describes several ideas of causation and
corresponding methods of statistical proof, which have different strengths and
weaknesses. He is skeptical of regression, but finds rational choice theory to
be promising—unlike other scholars cited above. He favors use of descrip-
tive statistics to infer social regularities, and statistical models that reflect
generative processes. He finds the manipulationist account of causation to be
generally inadequate for the social sciences. Nı́ Bhrolcháin (2001) has some
particularly forceful examples to illustrate the limits of modeling.

Lieberson (1985) finds that in social science, non-experimental data are
routinely analyzed as if they had been generated experimentally, the typi-
cal mode of analysis being a regression model with some control variables.
This enterprise has “no more merit than a quest for a perpetual-motion ma-
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chine” [p. ix]. Finer-grain analytic methods are needed for causal inference,
more closely adapted to the details of the problem at hand. The role of
counter-factuals is explained (pp. 45–48).

Lieberson and Lynn (2002) are equally skeptical about mimicking ex-
perimental control through complex statistical models: simple analysis of
natural experiments would be preferable. Sobel (1998) reviews the literature
on social stratification, concluding that “the usual modeling strategies are
in need of serious change” [p. 345]. Also see Sobel (2000). In agreement
with Lieberson, Berk (2004) doubts the possibility of inferring causation by
statistical modeling, absent a strong theoretical basis for the models—which
rarely is to be found.

Paul Meehl was a leading empirical psychologist. His 1954 book has
data showing the advantage of using regression, rather than experts, to make
predictions. On the other hand, his 1978 paper, “Theoretical risks and tabular
asterisks: Sir Karl, Sir Ronald, and the slow progress of soft psychology,” saw
hypothesis tests—and cognate black arts—as stumbling blocks that slowed
the progress of psychology. Meehl and Waller (2002) discusses the choice
between two similar path models, viewed as reasonable approximations to
some underlying causal structure, but does not reach the critical question—
how to assess the adequacy of the approximations.

Steiger (2001) provides a critical review of structural equation models.
Larzalere et al (2004) offer a more general discussion of difficulties with
causal inference by purely statistical methods. Abelson (1995) has a distinc-
tive viewpoint on statistics in psychology. There is a well-known book on the
logic of causal inference, by Cook and Campbell (1979). Also see Shadish,
Cook, and Campbell (2002), who have among other things a useful discussion
of manipulationist versus non-manipulationist ideas of causation.

Pilkey and Pilkey-Jarvis (2006) suggest that quantitative models in the
environmental and health sciences are highly misleading. Also see Lom-
borg (2001), who criticizes the Malthusian position. The furor surrounding
Lomborg’s book makes one thing perfectly clear. Despite the appearance
of mathematical rigor and the claims to objectivity, results of environmental
models are often exquisitely tuned to the sensibilities of the modelers.

In political science, after a careful review of the evidence, Green and
Shapiro (1994) conclude “despite its enormous and growing prestige in the
discipline, rational choice theory has yet to deliver on its promise to advance
the empirical study of politics” [p. 7]. Fearon (1991) discusses the role
of counter-factuals. Achen (1982, 1986) provides an interesting defense of
statistical models; Achen (2002) is substantially more skeptical. Dunning
(2008) focuses on the assumptions behind IVLS.
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King, Keohane, and Verba (1994) are remarkably enthusiastic about
regression. Brady and Collier (2004) respond with a volume of essays that
compare regression methods to case studies. Invariance—together with the
assumption that coefficients are constant across cases—is discussed under
the rubric of causal homogeneity. The introductory chapter (Brady, Collier,
and Seawright 2004) finds that

“it is difficult to make causal inferences from observational data, espe-
cially when research focuses on complex political processes. Behind the
apparent precision of quantitative findings lie many potential problems
concerning equivalence of cases, conceptualization and measurement,
assumptions about the data, and choices about model specification. . . .
The interpretability of quantitative findings is strongly constrained by
the skill with which these problems are addressed.” [pp. 9–10]

There is a useful discussion in Political Analysis vol. 14, no. 3, summer, 2006.
Also see George and Bennett (2005), Mahoney and Rueschemeyer (2003).
The essay by Hall in the latter reference is especially relevant.

One of the difficulties with regression models is accounting for the ε’s.
Where do they come from, what do they mean, and why do they have the
required statistical properties? Error terms are often said to represent the
overall effects of factors omitted from the equation. But this characterization
has problems of its own, as shown by Pratt and Schlaifer (1984, 1988).

In Holland (1986, 1988), there is a super-population model—rather than
individualized error terms—to account for the randomness in causal models.
However, justifying the super-population model is no easier than justifying
assumptions about error terms. Stone (1993) presents a super-population
model with some observed covariates and some unobserved; this paper is
remarkable for its clarity.

Recently, strong claims have been made for non-linear methods that
elicit the model from the data, and control for unobserved confounders, with
little need for substantive knowledge (Spirtes-Glymour-Scheines 1993, Pearl
2000). However, the track record is not encouraging (Freedman 1997, 2004;
Humphreys and Freedman 1996, 1999). There is a free-ranging discussion of
such issues in McKim and Turner (1997). Other cites to the critical literature
include Oakes (1990), Diaconis (1998), Freedman (1985, 1987, 1991, 1995,
1999, 2005). Hoover (2008) is rather critical of the usual econometric models
for causation, but views non-linear methods as more promising.

Matching may sometimes be a useful alternative to modeling, but it is
hardly a universal solvent. In many contexts there will be little difference
between matching and modeling, especially if the matching is done on the



Issues in Statistical Modeling 217

basis of statistical models, or data from the matching are subjected to model-
based adjustments. For discussion and examples, see Glazerman, Levy, and
Myers (2003); Arceneaux, Gerber, and Green (2006); Wilde and Hollister
(2007); Berk and Freedman (2008); Review of Economics and Statistics,
February (2004) vol. 86, no. 1; Journal of Econometrics, March–April (2005)
vol. 125, nos. 1–2.

10.3 Response schedules

The response-schedule model is the bridge between regression and cau-
sation, as discussed in section 6.4. This model was proposed by Ney-
man (1923). The paper is in Polish, but there is an English translation by
Dabrowska and Speed in Statistical Science (1990), with discussion. Scheffé
(1957) gave an expository treatment. The model was rediscovered a number
of times, and was discussed in elementary textbooks of the 1960s: see Hodges
and Lehmann (1964, section 9.4). The setup is often called “Rubin’s model:”
see for instance Holland (1986, 1988), who cites Rubin (1974). That simply
mistakes the history.

Neyman’s model covers observational studies—in effect, assuming these
studies are experiments after suitable controls have been introduced. Indeed,
Neyman does not require random assignment of treatments, assuming in-
stead an urn model. The model is non-parametric, with a finite number of
treatment levels. Response schedules were developed further by Holland and
Rubin among others, with extensions to real-valued treatment variables and
parametric models, including linear causal relationships.

As demonstrated in chapters 6–9, response schedules help clarify the
process by which causation can be, under some circumstances, inferred by
running regressions on observational data. The mathematical elegance of
response schedules should not be permitted to obscure the basic issue. To
what extent are the assumptions valid, for the applications of interest?

10.4 Evaluating the models in chapters 7–9

Chapter 7 discussed a probit model for the effect of Catholic schools
(Evans and Schwab 1995). Chapter 9 considered a simultaneous-equation
model for education and fertility (Rindfuss et al 1980), and a linear prob-
ability model for social capital (Schneider et al 1997). In each case, we
found serious difficulties. The studies under review are at the high end of
the social science literature. They were chosen for their strengths, not their
weaknesses. The problems are not in the studies, but in the modeling technol-
ogy. More precisely, bad things happen when the technology is applied to real
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problems—without validating the assumptions behind the models. Taking as-
sumptions for granted is what makes statistical techniques into philosophers’
stones.

10.5 Summing up

In the social and behavioral sciences, far-reaching claims are often made
for the superiority of advanced quantitative methods—by those who manage
to ignore the far-reaching assumptions behind the models. In section 10.2, we
saw there was considerable skepticism about disentangling causal processes
by statistical modeling. Earlier in the book, we examined several well-known
modeling exercises, and discovered good reasons for skepticism. Some kinds
of problems may yield to sophisticated statistical technique; others will not.
The goal of empirical research is—or should be—to increase our understand-
ing of the phenomena, rather than displaying our mastery of technique.
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Hart HLA, HonoréAM (1985). Causation in the Law. 2nd ed. Oxford University
Press.

Heckman JJ (1976). The common structure of statistical models of truncation,
sample selection and limited dependent variables and a simple estimator for
such models. Annals of Economic and Social Measurement 5: 475–92.

Heckman JJ (1978). Dummy endogenous variables in a simultaneous equation
system. Econometrica 46: 931–59.

Heckman JJ (1979). Sample selection bias as a specification error. Econometrica
47: 153–61.

Heckman JJ (2000). Causal parameters and policy analysis in economics: A
twentieth century retrospective. The Quarterly Journal of Economics 115: 45–
97.

Hedström P, Swedberg R, eds. (1998). Social Mechanisms. Cambridge Univer-
sity Press.

Hendry DF (1980). Econometrics—alchemy or science? Economica 47: 387–
406. Reprinted as chapter 1 in DF Hendry (2000). Econometrics—Alchemy or
Science? Blackwell, Oxford.

Henschke CI, Yankelevitz DF, Libby DM et al (2006). The International Early
Lung Cancer Action Program Investigators. Survival of patients with stage I
lung cancer detected on CT screening. New England Journal of Medicine 355:
1763–71.

Hercberg S et al (2004). The SU.VI.MAX study: A randomized, placebo-
controlled trial of the health effects of antioxidant vitamins and minerals.
Archives of Internal Medicine 164: 2335–42.

Hodges JL Jr, Lehmann E (1964). Basic Concepts of Probability and Statistics.
Holden-Day, San Francisco. 2nd ed. reprinted by SIAM, Philadelphia (2005).

Hofferth SL (1984). A comment on “social determinants of age at first birth.”
Journal of Marriage and the Family 46: 7–8.

Hofferth SL, Moore KA (1979). Early childbearing and later economic well-
being. American Sociology Review 44: 784–815.

Hofferth SL, Moore KA (1980). Factors affecting early family formation: A
path model. Population and Environment 3: 73–98.



References 227

Hoffman SD, Foster EM, Furstenberg FF Jr (1993). Reevaluating the costs of
teenage childbearing. Demography 30: 1–13. Discussion, 281–96.

Holland PW (1986). Statistics and causal inference. Journal of the American
Statistical Association 8: 945–70 (with discussion).

Holland PW (1988). Causal inference, path analysis, and recursive structural
equation models. In C Clogg, ed. Sociological Methodology 1988, American
Sociological Association, Washington, DC, chapter 13.

Hoover KD (2008). Causality in economics and econometrics. In S Durlauf and
LE Blume, eds. The New Palgrave Dictionary of Economics. 2nd ed. Macmillan.

Hosmer DW, Lemeshow S (2000). Applied Logistic Regression. 2nd ed. Wiley.

Hotelling H (1927). Differential equations subject to error, and population es-
timates. Journal of the American Statistical Association 22: 283–314.

Howard-Jones N (1975). The Scientific Background of the International Sani-
tary Conferences 1851–1938. World Health Organization, Geneva.

Hubbard R, Vetter DE, Little EL (1998). Replication in strategic management:
Scientific testing for validity, generalizability, and usefulness. Strategic Man-
agement Journal 19: 243–54.

Humphreys P, Freedman DA (1996). The grand leap. British Journal for the
Philosophy of Science 47: 113–23.

Humphreys P, Freedman DA (1999). Are there algorithms that discover causal
structure? Synthese 121: 29–54.

Hurwicz L (1950). Least-squares bias in time series. In TC Koopmans, ed. Sta-
tistical Inference in Dynamical Economic Models. Wiley, New York, pp. 365–
83; also see p. 272.

IARC (1986). Tobacco Smoking. International Agency for Research on Cancer,
Monograph 38, Lyon. Distributed by Oxford University Press.

Ioannidis JPA (2005). Contradicted and initially stronger effects in highly cited
clinical research. Journal of the American Medical Association 294: 218–28.

Jacobs D, Carmichael JT (2002). The political sociology of the death penalty.
American Sociological Review 67: 109–31. The quote, slightly edited, is from
note 7, p. 117. The model is given on p. 116, although some of the details are
unclear.

Jencks C, Phillips M, eds. (1998). The Black-White Test Score Gap. Brookings
Institution Press, Washington, D.C.

Kahneman D, Slovic P, Tversky A, eds. (1982). Judgment under Uncertainty:
Heuristics and Biases. Cambridge University Press.

Kahneman D, Tversky A (1974). Judgment under uncertainty: Heuristics and
bias. Science 185: 1124–31.



228 STATISTICAL MODELS

Kahneman D, Tversky A (1996). On the reality of cognitive illusions. Psycho-
logical Review 103: 582–91.

Kahneman D, Tversky A, eds. (2000). Choices, Values, and Frames. Cambridge

University Press.

Keefe FJ, Affleck G, Lefebvre J, Underwood L, Caldwell DS, Drew J, Egert J,

Gibson J, Pargament K (2001). Living with rheumatoid arthritis: The role of

daily spirituality and daily religious and spiritual coping. The Journal of Pain
2: 101–10.

Keynes JM (1939). Professor Tinbergen’s method. The Economic Journal 49:

558–68.

Keynes JM (1940). Comment [on Tinbergen’s reply]. The Economic Journal
50: 154–56.

King G, Keohane RO, Verba S (1994). Designing Social Inquiry: Scientific
Inference in Qualitative Research. Princeton University Press.

Klein LR (1951). Estimating patterns of savings behavior from sample survey

data. Econometrica 19: 438–54.

Kunz R, Oxman AD (1998). The unpredictability paradox: Review of empirical

comparisons of randomised and non-randomised clinical trials. British Medical
Journal 317: 1185–90.

Labrie F et al (2004). Screening decreases prostate cancer mortality: 11-year

follow-up of the 1988 Quebec prospective randomized controlled trial. Prostate
59: 311–18.

Larzalere RE, Kuhn BR, Johnson B (2004). The intervention selection bias:

An underrecognized confound in intervention research. Psychological Bulletin
130: 289–303.

Last JM (2001). A Dictionary of Epidemiology. 4th ed. Oxford University

Press.

Lawless JF (2003). Statistical Models and Methods for Lifetime Data. 2nd ed.

Wiley-Interscience.

Lawlor DA, Smith GD, Bruckdorfer KR et al (2004). Those confounded vita-

mins: What can we learn from the differences between observational vs ran-

domised trial evidence. Lancet 363: 1724–27.

Leamer EE (1978). Specification Searches. Wiley.
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Answers to Selected Exercises

Chapter 1 Observational Studies and Experiments

Exercise Set A

1. In table 1, there were 837 deaths from other causes in the total treatment
group (screened plus refused) and 879 in the control group. Not much
different.

Comments. (i) Groups are the same size, so we can look at numbers or rates.
(ii) The difference in number of deaths is relatively small, and not statistically
significant.

2. This comparison is biased. The control group includes women who
would have accepted screening if they had been asked, and are therefore
comparable to women in the screening group. But the control group
also includes women who would have refused screening. The latter are
poorer, less well educated, less at risk from breast cancer. (A comparison
that includes only the subjects who follow the investigators’ treatment
plans is called “per protocol analysis,” and is generally biased.)

3. Natural experiment. The fact that the Lambeth Company moved its pipe
(i) sets up the comparison with Southwark & Vauxhall (table 2) and
(ii) makes it harder to explain the difference in death rates between the
Lambeth customers and the Southwark & Vauxhall customers on the
basis of some difference between the two groups—other than the water.
For instance, people were generally not choosing between the two water
companies on the basis of how the water tasted. If they had been, self-
selection and confounding would be bigger issues. The change in water
intake point is one basis for the view that the data could be analyzed as
if they were from a randomized controlled experiment.

4. Observational study. Hence the need for adjustment by regression.

5. (i) If −0.755, outrelief prevents poverty.
(ii) If +0.005, outrelief has no real effect on poverty.

6. (i) E(Sn) = nµ and var(Sn) = nσ 2.
(ii) E(Sn/n) = µ and var(Sn/n) = σ 2/n.
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7. (i) E(Sn) = np and var(Sn) = np(1 − p).
(ii) E(Sn/n) = p and var(Sn/n) = p(1 − p)/n.

NB. For many purposes, variance has the wrong size and the wrong units.
Take the square root of the variance to get the standard error.

8. The law of large numbers says that with a big sample, the sample average
will be close to the population average. More technically, letX1, X2, . . .

be independent and identically distributed with E(Xi) = µ. Then

(X1 + X2 + · · · + Xn)/n → µ

with probability 1.

9. Reverse causation is plausible: on the days when the joints don’t hurt,
subjects feel that religious coping worked.

10. Association is not the same as causation. The big issue is confounding,
and it is easy to get fooled. On the other hand, association is often a
good clue. Sometimes, you can make a very tight argument for causation
based on observational data. See text for discussion and examples.

Comments. If the material on experiments and observational studies is unfa-
miliar, you might want to read chapters 1, 2, and 9 in Freedman-Pisani-Purves
(2007). For more information on intention-to-treat and per-protocol analysis,
see Freedman (2006b).

Chapter 2 The Regression Line

Exercise Set A

1. (a) False. The son is likely to be shorter: the 50–50 point is

33.9 + 0.514×72
.= 70.9 inches.

To see this, use the regression line computed in part (b).
(b) The slope is 0.501×2.81/2.74

.= 0.514. The intercept is

68.7 − 0.514×67.7
.= 33.9 inches.

The RMS error is
√

1 − 0.5012×2.81
.= 2.43 inches.

Comment. The SD line says that sons are 1 inch taller than their fathers.
However, it is the regression line that picks off the centers of the vertical
strips, not the SD line, and the regression line is flatter than the SD line—the
“regression effect.” If the material on correlation and regression is unfamiliar,
you might want to read chapters 8–12 in Freedman-Pisani-Purves (2007).
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2. According to the model, if the weight xi = 0, the measured length is
Yi = a + εi �= a. In short, a cannot be determined exactly, due to
measurement error. With ten measurements, the average is a, plus the
average of the ten εi’s. This still isn’t a, but it’s closer.

3. If we take â = 439.01 and b̂ = 0.05, the residuals are −0.01, 0.01, 0.00,
0.00,−0.01,−0.01. The RMS error is the better statistic. It is about
0.008 cm. The MSE is 0.00007 cm2. Wrong size, wrong units. (Resid-
uals don’t add to 0 because â and b̂ were rounded.)

4. Use r for the left hand scatter plot. The middle one is U-shaped, and
the right hand one has two clouds of points stuck together: r doesn’t
reveal these features of the data. If in doubt, read chapter 8 in Freedman-
Pisani-Purves (2007).

Exercise Set B, Chapter 2

1. In equation (1), variance applies to data. So does correlation in (4).

2. These are estimates.

3. The regression line is y = 439.0100 + 0.0495x.

4. Data.

5. 35/12 starts life as the variance of the list {1, 2, 3, 4, 5, 6}, which could
be viewed as data. If you pick a number at random from the list, that’s
a random variable, whose variance is 35/12.

6. The expected value is 180×1/6 = 30, which goes into the first blank.
The variance is 180×(1/6)×(5/6) = 25. But it is

√
25 = 5 that goes

into the second blank.

7. The expected value is 1/6 = 0.167. The variance is (1/6)×(5/6)/250 =
0.000556. The SE is

√
0.000556 = 0.024, The expected value goes into

the first blank. The SE—not the variance—goes into the second blank.

8. (a) The observed value for the number of 1’s is 17. The expected value
is 100×1/4 = 25. The SE is

√
100×(1/4)×(3/4) = 4.33. The

observed number of 1’s is 1.85 SEs below expected. Eliminate the
“number of 1’s.”

The observed value for the number of 2’s is 54. The expected value
is 100×1/2 = 50. The SE is

√
100×(1/2)×(1/2) = 5. The

observed number of 2’s is 0.8 SEs above expected: the “number of
2’s” goes into the blank.

(b) The observed value for the number of 5’s is 29. The expected value
is 25. The SE is 4.33. The observed number of 5’s is 0.92 SEs
above expected. Eliminate the “number of 5’s.”
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The observed value for the sum of the draws is 17+108+145 = 270.
The average of the box is 2.5; the SD is 1.5. The expected value for
the sum is 100×2.5 = 250. The SE for the sum is

√
100×1.5 = 15.

The observed value is 1.33 SEs above the expected value: the “sum
of the draws” goes into the blank.

If this is unfamiliar ground, you might want to read chapter 17 in
Freedman-Pisani-Purves (2007).

9. Model.

10. a and b are unobservable parameters; εi is an unobservable random
variable; Yi is an observable random variable.

11. The observed value of a random variable.

12. (a)
∑n

1 (xi − x) = (∑n
1 xi

)− nx = nx − nx = 0.

(b) Just square it out:
n∑
1

(xi − c)2 =
n∑
1

[
(xi − x) + (x − c)

]2
=

n∑
1

[
(xi − x)2 + (x − c)2 + 2(xi − x)(x − c)

]
.

But
∑n

1

[
2(xi − x)(x − c)

] = 2(x − c)
∑n

1 (xi − x) = 0 by (a).

And
∑n

1 (x − c)2 = n(x − c)2.

(c) Use (b): (x − c)2 ≥ 0, with a minimum in c at c = x.

(d) Put c = 0 in (b).

13. Sample mean: see 12(c).

14. Part (a) follows from equation (4); part (b), from (5). Part (c) follows
from equation (1). For part (d),

(xi − x)(yi − y) = xiyi − xyi − xiy + x y.

So

cov(x, y) = 1

n

n∑
i=1

(xiyi − xyi − xiy + x y)

= 1

n

n∑
i=1

xiyi − x
1

n

n∑
i=1

yi − y
1

n

n∑
i=1

xi + x y

= 1

n

n∑
i=1

xiyi − x y − x y + x y
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= 1

n

n∑
i=1

xiyi − x y.

Part (e). Put y = x in (d) and use (c).

No answers supplied for exercises 15–16.

17. (a) P(X1 = 3 |X1 + X2 = 8) equals

P(X1 = 3, X2 = 5)

P (X1 + X2 = 8)
= 1/36

5/36
= 1/5.

(b) P(X1 + X2 = 7 |X1 = 3) = P(X2 = 4 |X1 = 3) = 1/6.
(c) Conditionally, X1 is 1, 2, 3, 4, or 5 with equal probability, so the

conditional expectation is 3.

Generally, P(A|B) = P(A and B)/P (B). If X1 and X2 are indepen-
dent, conditioning onX1 doesn’t change the distribution ofX2. Exercise
17 prepares for chapter 4. If the material is unfamiliar, you might wish
to read chapters 13–15 in Freedman-Pisani-Purves (2007).

18. Each term |xi − c| is continuous in c. The sum is too. Suppose x1 <

x2 < · · · < xn and n = 2m + 1 with m > 0. (The case m = 0 is pretty
easy; do it separately.) The median is xm+1. Fix j with m+ 1 ≤ j < n.
Let xj < c < xj+1. Now

f (c) =
j∑

i=1

(c − xi) +
n∑

i=j+1

(xi − c).

So f is linear on the open interval (xj , xj+1), with slope j − (n− j) =
2j − n > 0. (The case c > xn is similar and is omitted.) That is why f
increases to the right of the median. The slope increases with j , so f is
convex. The argument for the left side of c is omitted.

Chapter 3 Matrix Algebra

Exercise Set A

1. ri is 1×n, cj is n×1, and ri×cj is the ij th element of A×B.

No answers supplied for exercises 2–4. Exercise 2 is one explanation for
non-commutativity: if f, g are mappings, seldom will f (g(x)) = g(f (x)).
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5. M ′M =
(

14 −9
−9 18

)
and MM ′ =

( 10 7 7
7 5 6
7 6 17

)
.

Both matrices have the same trace. In fact, trace(AB) = trace(BA)
when both products are defined, as will be discussed later (exercise B11).

6. ‖u‖ = √
6 = 2.45 and ‖v‖ = √

21 = 4.58. The vectors are not
orthogonal: u′v = v′u = 1. The outer product is

uv′ =
( 1 2 4

2 4 8
−1 −2 −4

)
.

The trace is 1. Again, trace(uv′) = trace(v′u).

Exercise Set B, Chapter 3

No answers supplied for exercises 2–8 or 11–13.

1. The adjoint is

( 2 1 −7
−2 1 5
2 −1 −1

)
.

9. (a) Choose an i in the range 1, . . . , m and a k in the range 1, . . . , p. The
ik th element of MN is q = ∑

j MijNjk . So q is the ki th element
of (MN)′. Also, q is the ki th element of N ′M ′.

(b) For the first claim, MNN−1M−1 = MIp×pM
−1 = MM−1 =

Ip×p, as required. For the second claim, (M−1)′M ′ = (MM−1)′ =
I ′
p×p = Ip×p, as required; use part (a) for the first equality.

10. Let c be p × 1. Suppose X has rank p. Why does X′X have rank p?
If X′Xc = 0p×1, then—following the hints—c′X′Xc = 0 ⇒ ‖Xc‖2 =
0 ⇒ Xc = 0n×1 ⇒ c = 0p×1 because X has rank p. Conversely,
suppose X′X has rank p. Why does X have rank p? If Xc = 0n×1, then
X′Xc = 0p×1, so c = 0p×1 because X′X has rank p.

Review of terminology. Suppose M is m×n. Its columns are linearly inde-
pendent provided Mc = 0m×1 entails c = 0n×1 for any n vector c; similarly
for rows. By way of contrast, the columns of M are linearly dependent when
there is an n vector c �= 0n×1 with Mc = 0m×1. For instance, if the first
column of M vanishes identically, or the first column equals the difference
between the the second and third columns, then the columns ofM are linearly
dependent. Suppose X is n×p with n ≥ p. Then X has full rank if its rank
is p, i.e., the columns of X are linearly independent.
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14. Answers are given only for parts (l) and (m).
(l) No: X has row rank p, so there is a non-trivial n×1 vector c with

c′X = 01×p ⇒ X′c = 0p×1 ⇒ XX′c = 0n×1, and XX′ isn’t
invertible.

(m) No: X isn’t square because p < n. Only square matrices are
invertible.

Comment. In combination, parts (h)–(k) show that ‖Y − Xγ ‖ is minimized
when Y − Xγ ⊥ X. This is sometimes called the “projection theorem.”

15. BecauseX is a column vector,X′Y = X·Y andX′X = ‖X‖2; substitute
into the formula for β̂.

16. Substitute into 15. We’ve derived 2B12(c) from a more general result.

17. f is the residual vector when we regress Y on M . So f ⊥ M by 14(g).
Likewise, g is the residual vector when we regress N on M , so g ⊥ M .
Next, e is a linear combination of f and g, so e ⊥ M . And e ⊥ g: by 15,
e is the residual vector when we regress f on g. So e ⊥ g+Mγ̂2 = N .
Consequently, e ⊥ X = (M N). We’re almost there: Y = Mγ̂1 + f =
Mγ̂1 +gγ̂3 +e = Mγ̂1 + (N −Mγ̂2)γ̂3 +e = M(γ̂1 − γ̂2γ̂3)+Nγ̂3 +e

with e ⊥ X. QED by 14(k).

Comment. This result is sometimes called the “Frisch-Waugh” theorem by
econometricians. Furthermore, regressing the original vector Y on g has the
same effect as regressing f on g, since M ⊥ g.

18. The rank is 1, because there is one free column (or row).

Exercise Set C, Chapter 3

No answers supplied for exercises 1–4.

5. The first assertion follows from the previous exercise, but here is a direct
argument: c′U − E(c′U) = c′[U − E(U)], so

var(c′U) = E
{
c′[U − E(U)][U − E(U)]′c

}
= c′E

{
[U − E(U)][U − E(U)]′

}
c.

For the second assertion, U + c − E(U + c) = U − E(U), so

[U + c−E(U + c)][U + c−E(U + c)]′ = [U −E(U)][U −E(U)]′.

Take expectations.

Comment. Exercises 1–5 can be generalized to any number of dimensions.

6. U is a scalar random variable, while E(U) is a fixed 3×1 vector. The
mean is one thing and expectation is another, although “mean” is often
used to signify expectation.
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7. Neither proposition is true: P(ξ ⊥ ζ ) = 1 does not imply ξ

ζ , and

ξ

ζ does not imply P(ξ ⊥ ζ ) = 1. (Notation:


means indepen-

dence.)

Comment. Suppose ζ has a probability density, so P(ζ ∈ H) = 0 for any
6-dimensional hyperplane H . If P(ξ ⊥ ζ ) = 1, then ξ and ζ cannot be in-
dependent, because P(ζ ∈ x⊥ | ξ = x) = 1, where x⊥ is the 6-dimensional
hyperplane of vectors orthogonal to x. Conditioning on ξ changes the distri-
bution of ζ .

8. var(ξ) = E
{
[ξ −E(ξ)]2

}
and cov(ξ, ζ ) = E

{
[ξ −E(ξ)][ζ −E(ζ )]

}
.

But E(ξ) = E(ζ ) = 0.

9. cov(ξ) = E
{
[ξ − E(ξ)][ξ ′ − E(ξ ′)]

}
. But E(ξ) = E(ξ ′) = 0.

10. (a) True. The pairs are identically distributed, and therefore have the
same covariance.

(b) False. cov(ξi, ζi) is a theoretical quantity, computed from the joint
distribution. By contrast, 1

n

∑n
i=1 (ξi − ξ)(ζi − ζ ) is the sample

covariance. Comment: when the sample is large, the sample co-
variance will be close to the theoretical cov(ξi, ζi).

11. (i)
1

|σ |f
(x − µ

σ

)
for −∞ < x < ∞. If σ = 0 then σX+µ ≡ µ so

the “density” is point mass at µ.

(ii)
f (

√
x) + f (−√

x)

2
√
x

for 0 < x < ∞. If the function f is smooth,

the density in (ii) is f ′(0) at x = 0.

The calculus may be confusing. We’ll go through (i) when σ < 0. Let
Y = σX + µ. Then Y < y if X > y∗ where y∗ = −(y − µ)/|σ |.
So P(Y < y) = ∫∞

y∗ f (x)dx. Differentiate with respect to y, using the
chain rule. The density of Y at y is |σ |−1f (y∗), and y∗ = (y − µ)/σ .

Exercise Set D, Chapter 3

1. The first matrix is positive definite; the second, non-negative definite.

2. For (a), let c be a p×1 vector. Then c′X′Xc = ‖Xc‖2 ≥ 0, so X′X is
non-negative definite. If c′X′Xc = 0 for c �= 0p×1, then Xc = 0n×1
and X is rank deficient: a linear combination of its columns vanishes.
Contradiction. So X′X is positive definite. (Cf. exercise B10.) Part (b)
is similar.

Comment. If p < n, then XX′ cannot be positive definite: there is an n×1
vector c �= 0n×1 with c′X = 01×p; then c′XX′c = 0. See exercise B14(l).
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3. ‖Rx‖2 = (Rx)′Rx = x′R′Rx = x′x.

4. Let x be n×1 and x �= 0n×1. To show that x′Gx > 0, define y =
R′x. Then y �= 0n×1, and x = Ry. Now x′Gx = y′R′GRy =
y′R′RDR′Ry = y′Dy = ∑n

i=1 Diiy
2
i > 0.

No answers supplied for exercises 5–6.

7. Theorem 3.1 shows that G = RDR′, where R is orthogonal and D is
a diagonal matrix all of whose diagonal elements are positive. Then
G−1 = RD−1R′, G1/2 = RD1/2R′, and G−1/2 = RD−1/2R′ are
positive definite: exercises 4–6.

8. Let µ = E(U), a 3×1 vector. Then cov(U) = E[(U − µ)(U − µ)′],
a 3 × 3 matrix, call it M . So 0 ≤ var(c′U) = c′Mc and M is non-
negative definite. See exercise 3C5. If there is a 3 × 1 vector c �= 0
with c′Mc = 0, then var(c′U) = 0, so c′U = E(c′U) = c′µ with
probability 1.

Exercise Set E, Chapter 3

1. (a) Define U as in the hint. Then cov(U) = G1/2cov(V )G1/2 =
G1/2G1/2 = G. See exercise 3C4: G is symmetric.

(b) Try α + G1/2V .

2. Check that E(RU) = 0 and cov(RU) = Rcov(U)R′ = Rσ 2In×nR
′ =

σ 2RR′ = σ 2In×n by exercises 3C3–4. Then use theorem 3.2. (A
more direct proof shows that the density of RU equals the density of
U , because R preserves lengths in Euclidean n-space; the change-of-
variables formula is needed for integrals, in order to push this through.)

3. If ξ and ζ are jointly normal, the first proposition is good; if not, not. The
second proposition is true: if ξ and ζ are independent, their covariance is
0. (In this book, all expectations, variances, covariances . . . exist unless
otherwise stated.)

4. Answer omitted.

5. E(ξ + ζ ) = α + β. var(ξ + ζ ) = var(ξ) + var(ζ ) + 2cov(ξ, ζ ) =
σ 2 +τ 2 +2ρστ ; here, ρ is the correlation between the random variables
ξ, ζ . Any linear combination of jointly normal variables is normal.

6. The expected number of heads is 500. The variance is 1000 × 1
2 × 1

2 =
250. The SE is

√
250 = 15.81. The range 475–525 is −1.58 to 1.58 in

standard units, so the chance is almost the area under the normal curve
between −1.58 and 1.58, which is 0.886.
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Comment. The exact chance is 0.893, to three decimals. The normal curve is
an excellent approximation. With the coin and other variables taking integer
values, if the range is specified as “inclusive” you could add 0.5 at the right
and subtract 0.5 at the left to get even better accuracy. This is the “continuity
correction.” See, for instance, chapter 18 in Freedman-Pisani-Purves (2007).
If e.g. the variable takes only even values, or it takes fractional values, life
gets more complicated.

7. p̂ = 102/250 = 0.408, ŜE =
√

0.408×0.592/250 = 0.031.
NB. Variance has the wrong size and the wrong units. Take the square
root of the variance to get the SE.

8. (a) 0.031. (b) 0.408 ± 2×0.031. That’s what the SE does for a living.

9. σ 2 = 1/2. If e.g. x > 0, then P(Z < x) = 0.5 + 0.56(x/
√

2).

10. This is a special case of exercise 2.

Chapter 4 Multiple Regression

Exercise Set A

1. (ii) is true by assumption (5); ε ⊥ X is possible, but unlikely.

2. (i) is true by exercise 3B14(g). Since e is computed from X and Y ,
(ii) will be false in general.

3. No. Unless there’s a bug in the program, e ⊥ X. This has nothing to do
with ε


X.

Comments on exercises 1–3. In this book, orthogonality (⊥) is about a
pair of vectors, typically deterministic: u ⊥ v if their inner product is 0,
meaning the angle between them is 90◦. Independence (


) is about random

variables or random vectors: ifU

V , the conditional distribution ofV given

U doesn’t depend on U . If U,V are random vectors, then P(U ⊥ V ) = 1
often precludes U


V , because the behavior of V depends on U . In some

probability texts, if W1 and W2 are random variables, W1 ⊥ W2 means
E(W1W2) = 0, and this too is called “orthogonality.”

4. (a) e ⊥ X, so e is orthogonal to the first column in X, which says that∑
i ei = 0.

(b) No. If the computer does the arithmetic right, the sum of the resid-
uals has to be 0, which says nothing about assumptions behind the
model.

(c)
∑

i εi is around σ
√
n by the central limit theorem (section 3.5).
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5. To begin with, ε
�

X , so the conditioning is immaterial. For claim (i),

ε′ε = ∑
i ε2

i , so E(ε′ε) = ∑
i E(ε2

i ). But E(εi ) = 0. So E(ε2
i ) =

var(εi ) = σ 2 and
∑

i E(ε2
i ) = nσ 2. See (4), and exercise 3C8. For

claim (ii), cov(ε) = E(εε′) because E(εi ) = 0, as before. Now εε′ is

an n×n matrix, whose i j th element is εiε j . If i �= j , then E(εiε j ) =
E(εi )E(ε j ) = 0 × 0 = 0 by independence. If i = j , then E(ε2

i ) =
var(εi ) = σ 2: see above.

6. The second column in the table (lengths) should be the observed values

of Yi in equation (2.7), for i = 1, 2, . . . , 6. Cross-references: equation

(2.7) is equation (7) in chapter 2.

7. Look at equation (1.1) to see that β =

⎛⎜⎝
a
b
c
d

⎞⎟⎠, so p = 4. Next, look

at table 1.3. There are 32 lines in the table, so n = 32. There is an

intercept in the equation, so put a column of 1’s as the first column of

the design matrix X . Subtract 100 from each entry in table 1.3. After

the subtraction, columns 2, 3, 4 of the table give you columns 2, 3, 4

in the design matrix X ; column 1 of the table gives you the observed

values of Y .

The first column in the design matrix is all 1’s, so X41 = 1. The fourth

union is Chelsea. The second column in X is �Out, which also happens

to be the second column in the table. So X42 = 21 − 100 = −79 and

Y4 = 64 − 100 = −36. The estimated coefficient b̂ of �Out will be the

second entry in β̂ = (X ′X)−1 X ′Y , because b is the second entry in β;

that in turn is because �Out is the second thing in equation (1.1)—right

after the intercept.

Multidimensional scatter diagrams. Consider the partitioned matrix (X Y )

which stacks the response variable Y to the right of the design matrix X . If the

first column of X is a constant, ignore it in what follows. The other columns

of X , together with Y , define p variables—which correspond to dimensions

in the scatter diagram. The n rows of (X Y ) correspond to data points. In

section 2.2, there were two variables, so we plotted a two-dimensional scatter

diagram in figure 2.1. There were n = 1078 data points. Son’s height is

represented as a (very noisy) function of father’s height. (If all the columns

of X are variable, well, there are p + 1 variables to worry about.)

In exercise 7, there are four variables, so the “scatter plot” is four-dimensional.

Three dimensions correspond to the explanatory variables, �Out, �Old,

�Pop. The fourth dimension corresponds to the response variable �Paup.
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The response variable8Paup is visualized as a noisy function of8Out,8Old,
8Pop. There are n = 32 points in R4. For other purposes, it is convenient to
represent the data as 4 points inRn, with one point for each column of (X Y),
other than the column of 1’s. That is what we did in equations (2.1–4), and
in theorem 4.1. We will do it again many times in this chapter and the next:
n vectors are convenient for proving theorems.

Mathematicians are fond of “visualizing” things in many dimensions. Maybe
you get used to it with enough practice. However, for visualizing data, two-
dimensional scatter diagrams are recommended: e.g., plot Y against each of
the explanatory variables. Lab 3 below explains other diagnostics.

Exercise Set B, Chapter 4

1. True.

2. (i) True. (ii) Before data collection, Y is a random variable; afterwards,
it’s the observed value of a random variable.

3. True.

4. (i) True. (ii) Before data collection, the sample variance is a random
variable; afterwards, it’s the observed value of a random variable. (In
the exercise, we divided by n; for some purposes, it might be better to
divide by n − 1: most often, it doesn’t matter which divisor you use.)

5. β̂ − β = (X′X)−1X′ε and e = (I − H)ε. See equations (8) and (17).
Condition on X. The joint distribution of (X′X)−1X′ε and (I − H)ε

doesn’t depend on β: there’s no β in the formula.

6. Use formulas (10) and (11). Cf. lab 3 below.

7. Use formulas (10) and (11). Cf. exercise 15 below.

8. Formula (i) is the regression model. It has the parameters β and the
random errors ε.

9. (i) is silly: at least in frequentist statistics, parameters don’t have covari-
ances. (ii) is true if X is fixed, otherwise, trouble. (iii) is true. (iv) is
false. On the left, given X, we have a fixed quantity. On the right, σ̂ 2 is
still random given X, because σ̂ 2 depends on ε through Y , and ε


X.

(v) is true.

10. (b) is true. (a) is true if there is an intercept in the equation; or the
constant vectors are in the column space of X. Generally, however, (a)
is false.

11. (a) is silly, because—givenX—the right hand side is random and the left
hand side isn’t. (b) is true: Ŷ = Xβ̂, so E(Ŷ |X) = XE(β̂|X) = Xβ.
(c) is true because E(ε|X) = 0.
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12. Let H be the hat matrix. Exercise 3B9 shows that H = I . Then
Ŷ = HY = Y . Attention: this will not work if p < n.

13. Let e = Y − Xβ̂ be the residual vector. Now Y = Xβ̂ + e. But e = 0,

because e is orthogonal to the first column of X. So Y = Xβ̂+e = Xβ̂.
When we’re taking averages over rows, β̂ can be viewed as constant—
it’s the same for every row. (If we were talking about expectations, β̂
would not be constant.)

14. (a) var(β̂1−β̂2|X) = var(β̂1|X)+var(β̂2|X)−2cov(β̂1, β̂2|X), i.e., the
1,1 element of σ 2(X′X)−1, plus the 2,2 element, minus two times
the 1,2 element. This is a very useful fact: see, e.g., section 6.3.

(b) E(c′β̂|X) = c′E(β̂|X) = c′β by theorem 2. Next, var(c′β̂|X) =
c′cov(β̂|X)c = σ 2c′(X′X)−1c by exercise 3C4 and theorem 3.

15. The design matrix has a column of 1’s and then a column of Xi’s. Call
this matrix M . It will be convenient to use “bracket notation.” For
instance, 〈X〉 = n−1∑n

1 Xi , 〈XY 〉 = n−1∑n
1 XiYi , and so forth. By

exercise 2B14(d)-(e), with var and cov applied to data variables,

〈X2〉 = var(X) + 〈X〉2 and 〈XY 〉 = cov(X, Y ) + 〈X〉〈Y 〉. (∗)

Then

M ′M =
(

n
∑

i Xi∑
i Xi

∑
i X

2
i

)
= n

(
1 〈X〉

〈X〉 〈X2〉
)

and

M ′Y = n

( 〈Y 〉
〈XY 〉

)
.

With the help of equation (∗), it is easy to check that

det(M ′M) = n2(〈X2〉 − 〈X〉2) = n2var(X).

So

(M ′M)−1 = 1

nvar(X)

( 〈X2〉 −〈X〉
−〈X〉 1

)
and

(M ′M)−1M ′Y = 1

var(X)

( 〈X2〉〈Y 〉 − 〈X〉〈XY 〉
〈XY 〉 − 〈X〉〈Y 〉

)
.

Now to clean up. The slope is the 2,1 element of (M ′M)−1M ′Y , which
is

[〈XY 〉 − 〈X〉〈Y 〉]/var(X).
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By (∗),
〈XY 〉 − 〈X〉〈Y 〉 = cov(X, Y ).

So
slope = cov(X, Y )/var(X) = rsY /sX

as required. The intercept is the 1,1 element of (M ′M)−1M ′Y , which is

[〈X2〉〈Y 〉 − 〈X〉〈XY 〉]/var(X). (∗∗)
Use (∗) again to see that

〈X2〉〈Y 〉 − 〈X〉〈XY 〉 = [var(X) + 〈X〉2]〈Y 〉 − 〈X〉[cov(X, Y ) + 〈X〉〈Y 〉]
= var(X)〈Y 〉 − 〈X〉cov(X, Y ),

because the terms with 〈X〉2〈Y 〉 cancel. Substitute into (∗∗):
intercept = 〈Y 〉 − [〈X〉cov(X, Y )/var(X)

] = 〈Y 〉 − slope · 〈X〉
as required. The variance of the estimated slope is σ 2 times the 2,2
element of (M ′M)−1, namely,

σ 2/[nvar(X)]

as required. Since 〈X2〉 = var(X) + 〈X〉2 by (∗), the 1,1 element of
(M ′M)−1 is

〈X2〉
nvar(X)

= 1

n

[
1 + 〈X〉2

var(X)

]
.

The variance of the estimated intercept is obtained on multiplication by
σ 2, which completes the argument. (The variance of an estimate . . .

applies variance to a random variable, not data.)

Exercise Set C, Chapter 4

1. We know Y = Ŷ + e with e ⊥ X. So e ⊥ Ŷ and therefore 1
n

∑
i ŶiYi =

1
n

∑
i Ŷ

2
i . Since Y = Ŷ+e and

∑
i ei = 0, we also know that 1

n

∑
i Ŷi =

1
n

∑
i Yi . Now use exercise 2B14, where cov and var are applied to data

variables:

cov(Ŷ , Y ) =
(1

n

∑
i

ŶiYi

)
−
(1

n

∑
i

Ŷi

)(1

n

∑
i

Yi

)
=
(1

n

∑
i

Ŷ 2
i

)
−
(1

n

∑
i

Ŷi

)2

= var(Ŷ ).
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The squared correlation coefficient between Ŷ and Y is

cov(Ŷ , Y )2

var(Ŷ )var(Y )
= var(Ŷ )2

var(Ŷ )var(Y )
= var(Ŷ )

var(Y )
= R2.

Discussion questions, Chapter 4

1. The random errors are independent from one subject to another; residuals
are dependent. Random errors are independent of the design matrix X:
residuals are dependent on X. Residuals are orthogonal to X, random
errors are going to project into X, at least by a little.

For instance, suppose there is an intercept in the equation, i.e., a column
of 1’s in X. The sum of the residuals is 0: that creates dependence
across subjects. The sum of the random errors will not be 0 exactly—
that’s non-orthogonality. Since the residuals have to be orthogonal to
X, they can’t generally be independent of X.

2. If there is an intercept in the equation, the sum of the residuals has to
be 0; or if the column space of the design matrix includes the constant
vectors. Otherwise, the sum of the residuals will usually differ from 0.

3. (a) is false and (b) is true (section 4.4). Teminology: in the regression
model Y = Xβ + ε, the disturbance term for the ith subject is εi .

4. Conditionally on X, the Yi are independent but not identically dis-
tributed. For instance, E(Yi |X) = Xiβ differs from one i to another.
Unconditionally, if the rows of X are IID, so are the Yi ; if the rows of X
are dependent and differently distributed, so are the Yi .

5. All the assertions are true—assuming the original equation is OK. Take
part (c), for instance. The OLS assumptions would still hold, the true
coefficient of the extra variable being 0. (We’re tacitly assuming that
the new design matrix would still have full rank.)

6. The computer can find β̂ all right, but what is β̂ estimating? And what
do the standard errors mean? (The answers might well be, nothing.)

7. R2 measures goodness of fit. It does not measure validity. See text for
discussion and examples.

8. If r = ±1, then column 2 = c×column 1 + d. Since the columns have
mean 0 and variance 1, c = ±1 and d = 0, so the rank is 1. Suppose
|r| < 1. Let M = [u, v], i.e., column 1 is u and column 2 is v. Then

M ′M = n

(
1 r

r 1

)
, det (M ′M) = n2(1 − r2),
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(M ′M)−1 = 1

n

1

1 − r2

(
1 −r

−r 1

)
.

Here, we know σ 2 = 1. So

var(â) = var(b̂) = 1

n

1

1 − r2
,

var(â − b̂) = 1

n

2(1 + r)

1 − r2
= 1

n

2

1 − r
,

var(â + b̂) = 1

n

2(1 − r)

1 − r2
= 1

n

2

1 + r
.

See exercise 4B14(a). If r is close to 1, then var(â + b̂) is reason-

able, but the others are ridiculously large—especially var(â − b̂). When

collinearity is high, you cannot separate the effects of the variables.

Comment. If r is close to −1 , then a − b is the parameter that can be

reasonably well estimated. When there are several explanatory variables, the

issue is the multiple R2 between each variable and all the others. If one of

these R2’s is high, we have collinearity problems.

9. (a) and (b) are false, (c) is true.

10. Let’s set up the design matrix with one column for X , another for W ,

and no column of 1’s, i.e., no intercept. We’ll have a row for each

observation. Then the OLS assumptions are satisfied. That is why no

intercept is needed. If X and W are perfectly correlated, the computer

will complain: the design matrix only has rank 1. See question 8.

Terminology. “Fitting a regression equation,” “fitting a model,” and “running

a regression” are (slightly) colorful synonyms for computing OLS estimates.

A fitted regression equation is y = x β̂, where y is scalar, and x is a 1 × p
row vector. This expresses y as a linear function of x .

11. If Wi is independent of Xi , dropping it from the equation creates no bias,

but will probably increase the sampling error: the new disturbance term

is Wi b + εi , with larger variance than the old one. If Wi and Xi are

dependent, Tom’s estimate is subject to omitted-variable bias, because

the disturbance term Wi b + εi is correlated with Xi ,

Here are details on bias. Write X for the vector whose i th coordinate is

Xi ; likewise for Y and W . From exercise 3B15, Tom’s estimator will be

ã = X ·Y/‖X‖2. Now X · Y = a‖X‖2 + bX · W + X · ε. So

ã − a = bX · W/‖X‖2 + X · ε/‖X‖2.
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By the law of large numbers,X·W .= nE(XiWi), and ‖X‖2 .= nE(X2
i ).

By the central limit theorem,X· εwill be something like
√
nE(X2

i )E(ε
2
i )

in size. With a large sample, X· ε/‖X‖2 .= 0. Tom is left with omitted-
variables bias that amounts to bE(XiWi)/E(X

2
i ): his regression of Y

on X picks up the effect of the omitted variable W .

12. See the answer to 10.

13. See the answer to 10.

14. The assertions about the limiting behavior of Q′Q and Q′Y follow from
the law of large numbers. For example, the 2,1 element in Q′Y/n is
1
n

∑n
i=1 WiYi → E(WiYi). Write L and M for the limiting matrices, so

Q′Q/n → L and Q′Y/n → M . Check that

L =
(

1 c

c c2 + d2 + e2σ 2

)
and M =

(
a

ac + eσ 2

)
.

For example, M21 = ac + eσ 2 because

E(WiYi) = E
[
(cXi + dδi + eεi)(aXi + εi)

] = ac + eσ 2.

Now detL = d2 +e2σ 2, L−1 = 1

d2 + e2σ 2

(
c2 + d2 + e2σ 2 −c

−c 1

)
,

L−1M =
 a − ceσ 2

d2 + e2σ 2

eσ 2

d2 + e2σ 2

 .

When Dick includes a variable that is correlated with the error term, his
estimator will have endogeneity bias, which is −ceσ 2/(d2 + e2σ 2) in
this example.

Exogenous variables are independent of error terms; endogenous vari-
ables are dependent on error terms. Putting endogenous variables into
regression equations is bad. It’s often quite hard to tell whether a variable
is endogenous or exogenous, so putting extra variables into the equation
is risky. Chapter 9 discusses techniques for handling endogeneity, but
these depend on having a stockpile of variables known to be exogenous.

For part (c), putting another variable into the equation likely reduces the
sampling error in the estimates, and guards against omitted-variables
bias. On the other hand, if you do put in that extra variable, endogeneity
bias is a possibility, and collinearity may be more of a problem.
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15. Bias is likely and the standard errors are not trustworthy. Let {Xi , Yi :

i = 1, . . . , n} be the sample. Nothing says that E(Yi |Xi ) = a + bXi .

For instance, suppose that in the population, yi = xi
3.

Comment. The bias will be small when n is large, by the law of large numbers.

Even then, don’t trust the standard errors: see (10) for the reason.

16. Lung cancer rates were going up for one reason, the population was

going up for another reason. This is association, not causation.

Comment. Lung cancer death rates for men increased rapidly from 1950 to

1990 and have been coming down since then; cigarette smoking peaked in

the 1960s. Women started smoking later and stopped later, so their death

rates peaked about 10 years after the men. The population was increasing

steadily.

(: Maybe crowding affects women more than men :)

17. Answer omitted.

18. (i) is the model and (ii) is the fitted equation; b is the parameter and 0.755

is the estimate; εi is an unobservable error term and ei is an observable

residual.

Comment. In (i), the “mean” of εi is its expected value, E(εi ) = 0; the

“variance” is E(ε2
i ) = σ 2: we’re talking about random variables. In (ii), the

mean of the ei ’s is 1
n

∑n
i=1 ei = 0 and the variance would be 1

n

∑n
i=1 e2

i : we’re

talking about data. Ambiguity is resolved by paying attention to context.

19. The sample mean (iv) is an unbiased estimator for E(X1).

20. The statements are true, except for (c) and (e).

21. Analysis by treatment received can be severely biased, if the men who

accept screening are different from the ones who decline. Analysis by

intention to treat is the way to go (section 1.2).

Comment. Data in the paper can be used to do the intention-to-treat analysis

(see table below). Screening has no effect on the death rate. Apparently, the

kind of men who accept screening are at lower risk from the disease than

those who refuse, as noted by Ruffin (1999). The US Preventive Services

Task Force (2002) recommends against routine PSA screening.

Invitation Group Control Group

Number of Death Number of Death

men deaths rate men deaths rate

Screened 7348 10 14 1122 1 9

Not screened 23785 143 60 14231 74 52

Total 31133 153 49 15353 75 49

Data from figure 4 in Labrie et al (2004); deaths due to prostate cancer.



Chapter 5 253

22. In table 1.1, the rate for refusers is lower than for controls.

Chapter 5 Multiple Regression: Special Topics

Exercise Set A

Answers are omitted.

Exercise Set B, Chapter 5

1. Let c be p×1 with G−1/2Xc = 0. Then Xc = 0 by exercise 3D7; and
c = 0 because X has full rank. Consequently, G−1/2X has full rank,
and so does X′G−1X by exercise 3B10.

Answers to 2 and 3 are omitted

Exercise Set C, Chapter 5

1. To set this up in the GLS framework, stack the U ’s on top of the V ’s:

Y =



U1
U2
...

Um

V1
V2
...

Vn


.

The design matrix X is an (m+n)×1 column vector of 1’s. The random
error vector ε is (m+n)×1, as in the hint. The parameter α is scalar. The
matrix equation is Y = Xα + ε. Condition (2) does not hold, because
σ 2 �= τ 2. Condition (7) holds. The (m+n)×(m+n)matrixG vanishes
off the diagonal. Along the diagonal, the first m terms are all σ 2. The
last n terms are all τ 2. So G−1 is also a diagonal matrix. The first m
terms on the diagonal are 1/σ 2 while the last n terms are 1/τ 2. Check
that

X′G−1Y = 1

σ 2

m∑
i=1

Ui + 1

τ 2

n∑
j=1

Vi,

a scalar; and

X′G−1X = m

σ 2 + n

τ 2 ,
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another scalar. Use (10):

α̂GLS =

m

σ 2

1

m

m∑
i=1

Ui + n

τ 2

1

n

n∑
j=1

Vi

m

σ 2 + n

τ 2

.

This is real GLS not feasible GLS: the covariance matrix G is given,
rather than estimated from data. Notice that α̂GLS is a weighted average:
observations with bigger variances get less weight.

If σ 2 and τ 2 are unknown, they can be estimated by the sample vari-
ances; the estimates are plugged into the formula above. Now we have
feasible GLS not real GLS. (This is actually one-step GLS, and iteration
is possible.)

2. Part (a) is just theorem 4.1: the OLS estimator minimizes the sum of
squared errors. Part (b) follows from (9): Gii = λci , and the off-
diagonal elements vanish. So, the ith coordinate ofG−1/2Y is Yi/

√
λci .

The ith row ofG−1/2Xγ isXiγ /
√
λci . GLS is OLS, on the transformed

model. To find the GLS estimate, you need to find the γ that minimizes∑
i [(Yi−Xiγ )/

√
λci]2 = ∑

i (Yi−Xiγ )
2/(λci); compare (9). Part (c)

is similar; this is like example 1, with Γii = ci and Γij = 0 when i �= j .

3. To set this up in the GLS framework, let Y stack the Yij ’s. Put the 3
observations for subject #1 on top; then the 3 observations for #2; . . . ;
at the bottom, the 3 observations for #800. It will be a little easier to
follow the math if we write Yi,j instead of Yij :

Y =



Y1,1
Y1,2
Y1,3
Y2,1
Y2,2
Y2,3
...

Y800,1
Y800,2
Y800,3


.

This Y is 2400 ×1. Next, the parameter vector β stacks up the 800 fixed
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effects ai , followed by the parameter b:

β =


a1
a2
...

a800
b

 .

This β is 801×1. The design matrix has to be 2400×801. The first
800 columns have dummy variables for each subject. A dummy variable
is 0 or 1. Column 1, for instance, is a dummy variable for subject #1.
Column 1 equals 1 for subject #1, and is 0 for all other subjects. This
column stacks 3 ones on top of 2397 zeros:

1
1
1
0
0
0
...

0
0
0


.

Column 2 equals 1 for subject #2, and is 0 for all other subjects. This
column stacks 3 zeros, then 3 ones, then 2394 zeros:

0
0
0
1
1
1
...

0
0
0


.

And so forth. Column 800 equals 1 for subject #800, and is 0 for all
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other subjects. Column 800 stacks 2397 zeros on top of 3 ones:

0
0
0
0
0
0
...

1
1
1


.

The 801st—and last—column in the design matrix stacks up the Zij :

Z1,1
Z1,2
Z1,3
Z2,1
Z2,2
Z2,3
...

Z800,1
Z800,2
Z800,3


.

Let’s call this design matrixX (surprise). Here’s whatX looks like when
you put the pieces together:

X =



1 0 . . . 0 Z1,1
1 0 . . . 0 Z1,2
1 0 . . . 0 Z1,3
0 1 . . . 0 Z2,1
0 1 . . . 0 Z2,2
0 1 . . . 0 Z2,3
...

...
. . .

...
...

0 0 . . . 1 Z800,1
0 0 . . . 1 Z800,2
0 0 . . . 1 Z800,3


.

The matrix equation is Y = Xβ + ε. The dummy variables work with
the fixed effects ai and get them into the equation.
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Assumption (2) isn’t satisfied, because different subjects have different
variances. But (7) is OK. The 2400 × 2400 covariance matrix G is
diagonal. The first 3 elements on the diagonal are all σ 2

1 , corresponding
to subject #1. The next 3 are all σ 2

2 , corresponding to subject #2. And
so forth. If we knew the σ ’s, we could use GLS. But we don’t. Instead,
we use feasible GLS.

(i) Fit the model by OLS and get residuals e.
(ii) Estimate the σ 2

i . For instance, σ̂ 2
1 = (e2

1 + e2
2 + e2

3)/2, σ̂ 2
2 =

(e2
4 + e2

5 + e2
6)/2, . . . , σ̂ 2

800 = (e2
2398 + e2

2399 + e2
2400)/2. It’s better

to use 2 as the divisor, rather than 3, if you plan to get SEs from
(14); for estimation, the divisor doesn’t matter.

(iii) String the σ̂ 2
i down the diagonal to get Ĝ.

(iv) Use (13) to get the one-step GLS estimator.
(v) Iterate if desired.

Exercise Set D, Chapter 5

1. β̂ is the sample mean and σ̂ 2 is the sample variance, where you divide
by n − 1 rather than n. By theorem 2, the sample mean and sample
variance are independent, β̂ − β is N(0, σ 2/n), and σ̂ 2 is distributed
as σ 2χ2

n−1/(n − 1). Finally,
√
n(β̂ − β)/σ̂ is t with n − 1 degrees of

freedom.

Comments. (i) ŜE of β̂ is σ̂ /
√
n. (ii) The joint distribution of β̂ − β and σ̂ 2

doesn’t depend onβ, by exercise 4B5. (iii) Whenp = 1 and the design matrix
is just a column of 1’s, theorem 2 gives the joint distribution for the sample
mean and variance ofX1, . . . , Xn, theXi being IID normal variables—a result
of R. A. Fisher’s. (iv) The result doesn’t hold without normality. However,
for β̂ and t , the central limit theorem comes to the rescue when the sample is
reasonably large. The distribution of σ̂ 2 generally depends on fourth moments
of the parent distribution.

2. (a) True: 3.79/1.88
.= 2.02.

(b) True: P < 0.05. If you want to compute P , see page 309.
(c) False: P > 0.01.
(d) This is silly. In frequentist statistics, probability applies to random

variables not parameters. Either b = 0 or b �= 0.
(e) Like (d).
(f) True. This is what the P -value means. Contrast with (e).
(g) True. This is what the P -value means. Contrast with (d).
(h) This is silly. Like (d). Confidence intervals are for a different game.
(i) False: see (j)-(k).
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(j) True. You need the model to justify the probability calculations.
(k) True. The test assumes the model Yi = a + bXi + Ziγ + εi , with

all the conditions on the εi’s. The test only asks whether b = 0 or
b �= 0. The hypothesis that b = 0 doesn’t fit the data as well as the
other hypothesis, b �= 0.

If exercise 2 covers unfamiliar ground, read chapters 26–29 in Freedman-
Pisani-Purves (2007); confidence intervals are discussed in chapters 21 and 23.

3. The philosopher is a little mixed up. The null hypothesis must involve
a statement about a model. Commonly, the null restricts a parameter in
the model. For example, here is a model for the philosopher’s coin. The
tosses of the coin are independent. In the first 5000 tosses, the coin lands
heads on each toss with probability p1. In the last 5000 tosses, the coin
lands heads on each toss with probability p2. Null: p1 = p2. (That’s
the restriction.) Alternative: p1 �= p2. Here, p1 and p2 are parameters,
not relative frequencies in the data. The data are used to test the null,
not to formulate the null.

If |p̂1 − p̂2| is larger than what can reasonably be explained by “ran-
dom fluctuations,” we reject the null. The estimates p̂1, p̂2 are relative
frequencies in the data, not parameters. The philosopher didn’t pick up
the distinction between parameters and estimates.

Comment. The null is about a model, or the connection between data and a
model. See chapters 26 and 29 in Freedman-Pisani-Purves (2007).

4. Both statements are false. It’s pretty safe to conclude that β2 �= 0, but
if you want to know how big it is, or how big β̂2 is, look at β̂2. The
significance level P is small because t = β̂2/ŜE is big. That could be
because β̂2 is big, or because ŜE is small (or both). For more discussion,
see chapter 29 in Freedman-Pisani-Purves (2007).

Exercise Set E, Chapter 5

1. Use the t-test. This is a regression problem with p = 1. The design
matrix is a column of 1’s. See exercise 5D1. (The F -test is OK too:
F = t2, with 1 and n − 1 degrees of freedom.)

2. This is exercise 1, in disguise: δi = Ui − α.

3. For smalln, don’t use the t-test unless errors are normal. With reasonably
large n, the central limit theorem will take care of things.

Comment. Without normality, if n is small, you might consider using “non-
parametric methods.” See Lehmann (2006).
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4. Use the F -test with n = 32, p = 4, p0 = 2. (See example 3, where
p = 5.) The errors would need to be IID with mean 0 and finite variance.
Normality would help but is not essential.

5. ‖Xβ̂‖2 + ‖e‖2 = ‖Y‖2 = ‖Xβ̂(s)‖2 + ‖e(s)‖2.

6. Georgia’s null hypothesis has p0 = p − 1: all coefficients vanish but
the intercept. Her β̂(s) consists of Y stacked on top of p − 1 zeros. In
the numerator of the F -statistic,

‖Xβ̂‖2 − ‖Xβ̂(s)‖2 = ‖Xβ̂‖2 − nY
2 = nvar(Xβ̂) :

exercise 4B13. But var(Xβ̂) = R2var(Y ) and var(e) = (1−R2)var(Y )
by (4.22–24). The numerator of the F -statistic therefore equals

‖Xβ̂‖2 − ‖Xβ̂(s)‖2

p − 1
= n

p − 1
R2var(Y ).

Because e = 0, the denominator of F is

‖e‖2

n − p
= n

n − p
var(e) = n

n − p
(1 − R2)var(Y ).

So

F = n − p

p − 1

R2

1 − R2 .

Exercise Set F, Chapter 5

1. The β̂’s are dependent.

2. e ⊥ Ŷ so ‖Y‖2 = ‖Ŷ‖2 + ‖e‖2. From the definition, 1 − R2 =(‖Y‖2 − ‖Ŷ‖2
)
/‖Y‖2 = ‖e‖2/‖Y‖2.

Discussion questions, Chapter 5

1. Let εi = Xi − E(Xi). Use OLS to fit the model(
X1
X2
X3

)
=
( 1 1

1 2
2 1

)(
α

β

)
+
(
ε1
ε2
ε3

)
.

There is no intercept.
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2. TheF -test assumes the truth of the model, and tests whether some group
of coefficients are all 0. The F -test can be used to see if a smaller model
is OK, given that a larger model is OK. (But then how do you test the
larger model? Not with the F -test?!?)

3. Both assertions are generally false. As (4.9) shows, E(β̂|X) − β =
(X′X)−1X′γ . This won’t be 0, unless γ ⊥ X. According to (4.10),
cov(β̂|X) = (X′X)−1X′GX(X′X)−1. There is no σ 2 in this formula:
the εi have different variances, which appear on the main diagonal of G.

If you want (a) and (b) to be true, you need γ ⊥ X and G = σ 2In×n.

4. β̂1 is biased, β̂2 unbiased. This follows from exercise 3B17, but here
is a better argument. Let c �= 0. Suppose that γi = c for all i. The
bias in β̂ is c(X′X)−1X′1n×1 by (4.9). Let u be the p×1 vector which
is all 0’s, except that u1 = 1. Then c(X′X)−1X′1n×1 = cu, because
X′1n×1 = X′Xu. This in turn follows from the fact that Xu = 1n×1:
the first column of X is all 1’s.

Comment. There is some opinion thatE(εi) �= 0 is harmless, only biasing β̂1.
True enough—if E(εi) is the same for all i. Otherwise, there are problems.
That is the message of questions 3–4.

5. (a), (b), (c) are true: the central limit theorem helps with (c), because
you have 94 degrees of freedom. (d) is false: with 4 degrees of freedom,
you need normal errors to use t .

6. cov(Xi, Yi) = 0. If Julia regresses Yi on Xi , the slope will be 0, up
to sampling error. She will conclude there is no relationship. This
is because she fitted a straight line to curved data. Of course, if she
regressed Yi on Xi and Xi

2, she’d be a heroine.

7. The Xi all have the same distribution—normal with mean µ and vari-
ance 2. The Xi are not independent: they have U in common. Their
mean X = µ + U + V is N(µ, 1 + 1

n
). Thus, |X − µ| is around 1.

Next, Xi −X = Vi −V , so s2 is the sample variance of V1, . . . , Vn and
s2 ∼ χ2

n−1/(n − 1)
.= 1. So, (e) is false: sampling error in X is much

larger than s/
√
n.

Issues. (i) U is random, although it does not vary across subjects.
(ii) V is the average not the expectation. Indeed, V will be on the order
of ±1/

√
n, while E(V ) is exactly 0.

Moral. Without independence, s/
√
n isn’t good for much.

8. (a) is true and (b) is false, as shown in 7. You need to assume indepen-
dence to make the usual statistical calculations.
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9. (a) is true. With reasonably large samples, normality doesn’t matter
so much. The central limit theorem takes care of things. However, as
shown in the previous exercises, claim (b) is false—even for normal
random variables. You need to assume independence to make the usual
statistical calculations.

10. The social scientist is a little mixed up. The whole point of GLS is to
downweight observations with high variance—and on the whole, those
are the observations that are far from their expected values. Feasible
GLS tries to imitate real GLS: that means downweighting discrepant
observations. If Ĝ in (13) is a good estimate for G in (7), then FGLS
works like a champ. If not, not.

11. Putting Z into the equation likely reduces the sampling error in the
estimates, and guards against omitted-variables bias. On the other hand,
if you do put in Z, endogeneity bias is a possibility.

(: Omitted-variables bias + Endogeneity bias = Scylla + Charybdis :)

12. Something is wrong. The SE for the sample mean is
√

110/25
.= 2.10,

so t
.= 5.8/2.1

.= 2.76 and P
.= 0.01.

Chapter 6 Path Models

Exercise Set A

1. Answer omitted.

2. a is a parameter; the numbers are all estimates. The 0.753 is an estimate
for the standard deviation of the error term η in equation (3).

3. True. Variables are standardized, so the residuals automatically have
mean 0. The variance is the mean square. With these diagrams, it is
conventional to divide by n not n − p: this is fine if n is large and p is
small, which is the case here.

4. In matrix notation, after fitting, we get Y = Xβ̂ + e where e ⊥ X. So
‖Y‖2 = ‖Xβ̂‖2 + ‖e‖2. In particular, ‖e‖2 ≤ ‖Y‖2 and ‖e‖2/n ≤
‖Y‖2/n. Since Y is standardized, ‖Y‖2/n = 1.

Comments. (i) Here, it is irrelevant that X is standardized. (ii) If we divide
by n − p rather than n, then var(e) may exceed 1.

5. The SD. Variance is the wrong size (section 2.4).

6. These arrows were eliminated by assumption. (On the other hand, if
you put them in and compute the path coefficients from table 1, they’re
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pretty small.) There could in some sense be an arrow from Y to U ,
because people train themselves in order to get certain kinds of jobs. (A
dedicated path analyst might respond by putting in “plans” as a latent
variable driving education and occupation.)

7. Intelligence and motivation are mentioned in the text—as are mothers.
Other possibilities include race, religion, area of residence, . . . .

8. When Yi is lumpy, Y = Xβ + ε isn’t good, because Xiβ + εi can
usually take a lot of different values—β varies and εi is random additive
noise—whereas Yi takes only a few values.

Exercise Set B, Chapter 6

1. v is for data, σ 2 is for random variables.

2. Write the model as yi = a + bxi + εi ; the εi are IID with mean 0 and
variance σ 2, for i = 1, . . . , n. The fitted equation is

yi = â + b̂xi + ei . (∗)

Now

v = 1

n

n∑
i=1

(xi − x )2 and s2 = 1

n

n∑
i=1

e2
i .

Next, y = â + b̂ x because e = 0. Then yi − y = b̂(xi − x ) + ei . The
sample covariance between x and y is

1

n

n∑
i=1

(xi − x )(yi − y ) = 1

n

n∑
i=1

(xi − x )[b̂(xi − x ) + ei] = b̂v

because e = 0 and e ⊥ x. Similarly, the sample variance of y is
var(y) = b̂2v + s2. The standardized slope is the correlation between
x and y, namely,

cov(x, y)√
var(x)var(y)

= b̂v√
v(b̂2v + s2)

= b̂
√
v√

b̂2v + s2
.

3. Suppose b is positive (as it would be for a spring). If σ 2 is small, the
right side of (9) will be nearly 1, which tells us that the data fall along
a straight line. This is fine as far as it goes, but is not informative about
the stretchiness of the spring.
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Exercise Set C, Chapter 6

1. The −0.35 is an estimate. It estimates the parameter β2 in (10).

No answers supplied for exercises 2–4.

5. Lumpiness makes linearity a harder sell; see exercise A8.

6. Yi = â + b̂Ui + ĉVi + ei , so Y = â + b̂U + ĉV and Yi − Y =
b̂(Ui − U) + ĉ(Vi − V ) + ei . Then

Yi − Y

sY
= b̂

sU

sY

Ui − U

sU
+ ĉ

sV

sY

Vi − V

sV
+ ei

sY
.

The standardized coefficients are b̂sU/sY and ĉsV /sY .

Comment. If you normalize σ̂ 2 by n − p, the t-statistics for b̂ are the same
whether you standardize or not. Ditto for ĉ. If you want standardized coeffi-
cients to estimate parameters, the setup is explained in

http://www.stat.berkeley.edu/users/census/standard.pdf

Exercise Set D, Chapter 6

1. (a) 450 + 30 = 480. (b) 450 + 60 = 510.
(c) 450 + 30 = 480. (d) 450 + 60 = 510.

Comment. You get the same answer for both subjects. That assumption is
built into the response schedule.

2. All she needs is observational data on hours of coaching and Math SAT
scores for a sample of coachees—if she’s willing to assume the response
schedule and exogeneity of coaching hours. Exogeneity is the additional
assumption. She would estimate the parameters by running a regression
of Math SAT scores on coaching hours.

Comments. (i) Response schedules and exogeneity are very strong assump-
tions. People do experiments because these assumptions seem unrealistic.

(ii) The constant intercept is particularly unattractive here. Some researchers
might try a fixed-effects model, Yi,x = ai + bx + δi . The intercept ai varies
from one coachee to another, and takes individual ability into account. Some
investigators might assume that there was no relationship between ai and the
amount of coaching taken by i—although this assumption, like the constancy
of b, is not completely plausible. The “no-relationship” assumption can be
implemented in a random-effects model, where ai is chosen at random from
a population of possible intercepts. This is equivalent to the model we began
with, with a the average of the possible intercepts; ai−a goes into δi . In many
contexts, random-effects models are fanciful (Berk and Freedman 2003).
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Exercise Set E, Chapter 6

1. There would be two free arrows, one pointing into X and one into Y ,
representing the error terms in the equations for X and Y , respectively.
The curved line represents association. There are two equations: Xi =
a+bUi+cVi+δi andYi = d+eUi+fXi+εi . We assume that the δ’s are
IID with mean 0 and varianceσ 2; the ε’s are IID with mean 0 and variance
τ 2; the δ’s are independent of the ε’s. The parameters are a, b, c, d, e, f ,
also σ 2 and τ 2. You need Ui, Vi, Xi, Yi for many subjects i, with the
U ’s and V ’s independent of the δ’s and ε’s (exogeneity). You regress
X on U,V , with an intercept; then Y on U,X, again with an intercept.
There is no reason to standardize.

For causal inference, you would need to assume response schedules:

Xi,u,v = a + bu + cv + δi, (∗)
Yi,u,v,x = d + eu + f x + εi . (∗∗)

There is no v on the right hand side of (∗∗) because there is no arrow
leading directly from V to Y . You would need the usual assumptions on
the error terms, and exogeneity.

You could conclude qualitatively that X affects (or doesn’t affect) Y ,
depending on the significance of f̂ . You could conclude quantitatively
that if X is increased by one unit, other things being held equal (namely,
U and V ), then Y would go up f̂ units.

2. Answer omitted.

3. You just regress Z on X and Y . Do not standardize: for instance, you
want to estimate e. The coefficients have a causal interpretation, in view
of the response schedule. See section 6.4.

4. (a) False: no arrow from V to Y . (b) True. (c) True. (d) False.

5. (a) Use (17). The answer is b.
(b) Use (18). The answer is (13 − 12)d + (5 − 2)e = d + 3e.

Comments. (i) By assumption, intervening doesn’t change the parameters.
(ii) The effects would be estimated from the data as b̂ and d̂+3ê, respectively.

6. Disagree. The test tries to tell you whether an effect is zero or non-zero.
It does not try to tell you about the size of the effect. See exercise 5D4.
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Discussion questions, Chapter 6

1. You don’t expect much change in Mrs. Wang. What the 0.57 means is
this. If you draw the graph of averages for the data (figure 2.2), the dots
slope up, more or less following a line—the regression line. That line
has slope 0.57. So, let’s fix some number of years of education, call it
x, and compare two groups of women:

(i) all the women whose husband’s educational level was x years, and
(ii) all the women whose husband’s educational level was x + 1 years.

The second group should have higher educational level—higher by
around 0.57 years, on average (Freedman-Pisani-Purves, 2007, §10.2).

2. (a) True. (b) True. (c) True. (d) True. (e) False.
The computer is a can-do machine. It runs the regressions whether
assumptions are true or false. (Although even the computer has trouble
if the design matrix is rank-deficient.) The trouble is this. If errors
are dependent, the SEs that the computer spits out can be quite biased
(section 4.4). If the errors don’t have mean 0, bias in β̂ is another big
issue.

3. (a) country, 72.
(b) IID, mean 0, variance σ 2, independent of the explanatory variables.
(c) Can’t get â or the other coefficients without the data. You can

estimate the standardized equation from the correlations.
(d) Controlling for the other variables reversed the sign.
(e) The t-statistics (and signs) will be the same in the standardized

equation and the raw equation—you’re just changing the scale. See
exercise 6C6.

(f) Not clear why the assumptions make sense, or where a response
schedule would come from. What intervention are we talking
about?? Even if we set all such objections to one side, it is very
odd to have CV on the right hand side of the equation. Presumably,
as modelers would see things, CV is caused by PO; if so, it’s en-
dogenous. If you regress PO on FI and EN only, then FI has a tiny
beneficial effect. If you regress CV on PO, FI, and EN (or just on FI
and EN), then FI has a strong beneficial effect. The data show that
foreign investment is harmful only if you insist on a set of rather
arbitrary assumptions.

4. Take two people i and j in the same ethnic group, living in the same
town: δi = Yi − Xiβ, δj = Yj − Xjβ, and δi − δj = (Xj − Xi)β

because Yi = Yj . In this model, independence cannot be. The standard
errors and significance levels aren’t reliable. The analysis is off the rails.
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5. The diagram unpacks into five regression equations. The first equation
is GPQ = aABILITY+δ. The second is PREPROD = bABILITY+ε.
And so forth. The usual assumptions are made about the error terms.
The numbers on the arrows are estimated coefficients in the equations.
For instance, â = 0.62, b̂ = 0.25, etc.

The good news—from the perspective of Rodgers and Maranto—must
be the absence of an arrow that goes directly from GPQ to CITES, and
the small size of the path coefficients from GPQ to QFJ and QFJ to
PUBS or CITES. People will cite your papers even if you didn’t get
your PhD from a “prestigious graduate program.” The bad news seems
to be that GPQ has a positive indirect effect on CITES through QFJ. If
two researchers are equal on SEX and ABILITY, the one with the PhD
from Podunk University will have fewer CITES.

The news is less than completely believable. First of all, this is a very
peculiar sample. Who are the 86+76 = 162 people with data? Second,
what do the measurements mean? (For instance, ABILITY is all based
on circumstantial evidence—where the subject did the undergraduate
degree, what others thought of the subject as an undergraduate, etc.)
Third, why should we believe any of the statistical assumptions? Just
to take one example, PREPROD is going to be a small whole number
(0, 1, 2, . . .), and mainly 0. How can this be the left hand side variable
in a regression equation? Next, well, maybe that’s enough.

6. The data are inconsistent—measurement error. Let a be the exact weight
of A, b the exact weight of B, etc. It will be easier to use offsets from
a kilogram, so a = 53µg; b is the difference between the exact weight
of B and 1 kg, etc. The parameters are b, c, d. The first line in the table
says a + b − c − d + δ1 = 42, where δ1 is measurement error. So
b − c − d + δ1 = 42 − a = −11. The second line in the table says
a − b + c − d + δ2 = −12, so −b + c − d + δ2 = −12 − a = −65.
And so forth. Weights on the left hand balance pan come in with a plus
sign; on the right, with a minus sign. We set up the regression model in
matrix form as follows:

observed value of Y =


−11
−65
−43
−12
+36
+64

 , Y =


+1 −1 −1
−1 +1 −1
−1 −1 +1
+1 +1 −1
+1 −1 +1
−1 +1 +1


(
b

c

d

)
+


δ1
δ2
δ3
δ4
δ5
δ6

 .

In the last three rows, A is on the right, so you have to add 53 to the
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difference, not subtract. Assume the δ’s are IID with mean 0 and variance
σ 2—which in this application seems pretty reasonable. OLS gives b̂ =
33, ĉ = 26, ĉ = 44. The SEs are all estimated as 17. (There is a lot of
symmetry in the design matrix.) Units are µg.

Comment. You can do the regression with a pocket calculator, but it’s easier
on the computer.

7. Answer omitted.

8. The average response of the subjects assigned to treatment at level 0 is
an unbiased estimate of α0. This follows from question 7. The subjects
assigned to treatment at level 0 are a simple random sample of the pop-
ulation; the average of a simple random sample is an unbiased estimate
of the population average. Likewise for α10 and α50. You can’t get α75
without assuming a functional form for the response schedule—another
reason why people model things. On the other hand, if you get the
functional form wrong. . . .

9. Randomization doesn’t justify the model. Why would the response be
linear? For example, suppose that in truth, yi,0 = 0, yi,10 = 0, yi,50 =
3, yi,75 = 3. There is some kind of threshold, then the effect saturates.
If you fit a straight line to the data, you will look pretty silly. If the linear
model is right, yes, you can extrapolate to 75.

10. Like 9. See Freedman (2006b, 2008a) for additional discussion.

11. If E(Xiεi) = 0, OLS will be asymptotically unbiased. If E(εi |Xi) = 0,
OLS will be exactly unbiased. Neither of these conditions is given.
For instance, suppose p = 1, the Zi are IID N(0, 1). Let Xi = Zi ,
εi = Zi

3, and Yi = Xiβ + εi = βZi + Zi
3, where β is scalar. By

exercise 3B15 and the law of large numbers, the OLS estimator is

β̂ =
∑n

1 XiYi∑n
1 X

2
i

= β +
∑n

1 Z
4
i∑n

1 Z
2
i

→ β + E(Z4
i )

E(Z2
i )
.

The bias is about 3 because E(Z4
i ) = 3, E(Z2

i ) = 1. See end notes to
chapter 5.

12. Experiments are the best, because they minimize confounding. How-
ever, they are expensive, and they may be unethical or impossible to do.
Natural experiments are second-best. They’re hard to find, and data col-
lection is expensive. Modeling is relatively easy: you control (or look
like you’re controlling) for many confounders, and sometimes you get
data on a good cross section of the population you’re interested in. This
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point is worth thinking about, because in practice, investigators often
have very funny samples to work with. On the other hand, models need
a lot of assumptions that are hard to understand, never mind verify. See
text for examples and discussion.

13. False. The computer only cares whether the design matrix has full rank.

14. ε̂ must be 0, because Ŷ = Xβ̂ by definition.

15. The OLS assumptions are wrong, so the formulas for SEs aren’t trust-
worthy.

Discussion. The coefficient ofXi
2 in the definition of εi = Xi

4−3Xi
2 makes

E(εi) = 0. Odd moments of Xi vanish by symmetry, so E(Xiεi) = 0. The
upshot is this. The εi are IID, and E(Xi) = E(εi) = E(Xiεi) = 0. So
E{[Yi −a−bXi]2} = E{[−a+ (1−b)Xi + εi]2} = a2 + (b−1)2 +var(εi)
is minimized when a = 0 and b = 1. In other words, the true regression
line has intercept 0 and slope 1. The sample regression line is an estimate
of the true regression line. But εi is totally dependent on Xi . So the OLS
assumptions break down. When applied to the slope, the usual formula for
the SE is off by a factor of 3 or 4. (This is easiest to see by simulation, but
an analytic argument is possible.)

The scale factor 0.025 was chosen to get the high R2, which can be computed
using the normal moments (end notes to chapter 5). Asymptotically, the
sample R2 is [ cov(Xi, Yi)

SD(Xi)SD(Yi)

]2
. (∗)

This follows from the law of large numbers: the sample mean of the Xi

converges to E(Xi), likewise for the sample mean of Yi , and the second-
order sample moments. The quantity (∗) equals

cov(Xi, Yi)
2

var(Xi)var(Yi)
= 1

1 + 0.0252E
[(
Xi

4 − 3Xi
2
)2] = 0.9744.

Conclusion: R2 measures goodness of fit, not validity of model assumptions.
For other examples, see

http://www.stat.berkeley.edu/users/census/badols.pdf

16. The relationship is causal, but your estimates will be biased unlessρ = 0.

17. Choose (i) and (iv), dismiss the others. The null and alternative hypothe-
ses constrain parameters in the model. See answer to exercise 5D3.

18. 24.6,
√

29.4
.= 5.4. Take the square root to get the SD.
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19. The quote confuses bias with chance error. On average, across the
various splits into treatment and control, the two groups are exactly
balanced: no bias. With a randomized controlled experiment, there is
no confounding. On the other hand, for any particular split, there is likely
to be some imbalance. That will be part of the chance error in estimated
treatment effects. Moreover, looking at a lot of baseline variables almost
guarantees that some differences will be “significant” (section 5.8).

20. No. Use the Gauss-Markov theorem (section 5.2).

Chapter 7 Maximum Likelihood

Exercise Set A

1. No coincidence. When the random variables are independent, the like-
lihood function is a product, so the log likelihood function is a sum.

2. No answer supplied for (a). For (b), P(U < y) = ∫ y
−∞ φ(z)dz and

P(−U < y) = P(U > −y) = ∫∞
−y

φ(z)dz, where φ is the standard
normal density. The integrals are areas under φ, which is symmetric;
the areas are therefore equal. More formally, change variables in the
second integral, putting w = −z.

3. The MLE is S/n, where S is Binomial(n, p). This is only asymptotically
normal. The mean is p and the variance is p(1 − p)/n.

4. The MLE is S/n, where S is Poisson(nλ). This is only asymptotically
normal. The mean is λ and the variance is λ/n. Watch it: S/n isn’t
Poisson.

Comment. The normal, Poisson, and binomial examples are exponential
families in the “mean parameterization.” In such cases, the MLE is unbiased
and option (i) in the theorem gives the exact variance. Generally, the MLE is
biased and the theorem only gives approximate variances.

5. P {θU/(1 − U) > x} = P {U > x/(θ + x)} = 1 − [x/(θ + x)] =
θ/(θ + x), so the density is θ/(θ + x)2. This is one way to construct the
random variables in example 4, section 7.1.

6. The likelihood is θn/
∏n

1 [(θ + Xi)
2]. So

Ln(θ) = n log θ − 2
n∑
1

log(θ + Xi).
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Then

L′
n(θ) = n

θ
− 2

n∑
1

1

θ + Xi

.

θL′
n(θ) = n − 2

n∑
1

θ

θ + Xi

= n − 2
n∑
1

(
1 − Xi

θ + Xi

)
= −n + 2

n∑
1

Xi

θ + Xi

as required. But Xi/(θ + Xi) is a decreasing function of θ . Finally,
θL′

n(θ) tends to n as θ tends to 0, while θL′
n(θ) tends to −n as θ tends

to ∞. Hence θL′
n(θ) = 0 has exactly one root.

7. The median is θ .

8. The Fisher information is θ−2 − 2θ
∫∞

0 (θ + x)−4dx.

9. Let S = X1 + · · · + Xn. The MLE for λ is S/n, so the MLE for
θ is (S/n)2. This is biased: E[(S/n)2] = [E(S/n)]2 + var(S/n) =
λ2 + (λ/n) = θ + (

√
θ/n).

10. The MLE is
√
S/n. Biased.

Comment. Generally, if λ̂ is the MLE for a parameter λ, and f is a smooth
1–1 function, f (λ̂) is the MLE for f (λ). Even if λ̂ is unbiased, however, you
should expect bias in f (λ̂) unless f is linear. For math types, ifX is a positive
random variable with a finite mean, not a constant, then E(

√
X) <

√
E(X).

Generally, if f is strictly concave, E
(
f (X)

)
< f

(
E(X)

)
: this is Jensen’s

inequality.

11. Use the MLE. The likelihood function is

20∏
i=1

exp(−βi)
(βi)Xi

Xi!
.

You write down the log likelihood function, differentiate, set the deriva-
tive to 0, and solve: β̂ = ∑20

i=1 Xi/
∑20

i=1 i = ∑20
i=1 Xi/210.

Comment. In this exercise and the next one, the random variables are in-
dependent but not identically distributed. Theorem 1 covers that case, as
noted in text, although options (i) and (ii) for asymptotic variance get more
complicated. For instance, (i) becomes

{−Eθ0

[
L′′
n(θ0)

]}−1.
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12. The log likelihood function L(α, β) is

−1

2

[
(X − α − β)2 + (Y − α − 2β)2 + (Z − 2α − β)2 + 3 log(2π)

]
.

Maximizing L is the same as minimizing the sum of squared residuals.
(Also see discussion question 5.1.)

Comment. In the OLS model with IID N(0, σ 2) errors and a fixed design
matrix of full rank, the MLE for β coincides with the OLS estimator and is
therefore unbiased (theorem 4.2). The MLE for σ 2 is the mean square of the
residuals, with division by n not n−p, and is therefore biased (theorem 4.4).

13. c(θ) = θ : that’s what makes
∑∞

j=0 Pθ {Xi = j} = 1. Use the MLE
to estimate θ . (You should write down the log likelihood function and
differentiate it.)

14. Ln(θ) = −∑n
1 |Xi − θ |− 2 log n. This is maximized (because the sum

is minimized) when θ is the median. See exercise 2B18.

Exercise Set B, Chapter 7

1. All the statements are true, except for (c): the probability is 0.

2. (a) Xi is the 1×4 vector of covariates for subject i, namely, 1, EDi ,
INCi , MANi . And β is the 4×1 parameter vector in the probit
model: see text.

(b) random, latent.
(c) The Ui should be IID N(0, 1) and independent of the covariates.
(d) sum, term, subject.

3. False. The difference in probabilities is

H(0.29) − H(0.19) = 0.61 − 0.57 = 0.04.

Exercise Set C, Chapter 7

1. E(X) = µ so µ is estimable—the estimator is X. Next, var(X) = σ 2.
The distribution of X determines σ 2, so σ 2 is identifiable. Watch it:

(i) var(X) is computed not from X but from the distribution of X.
(ii) We only have one X, not a sample of X’s.

2. Both parameters are estimable: E(X1) = α, E[(X2 − X1)/9] = β.
(You would get smaller variances with OLS, but the exercise only asks
for unbiased estimators.)

3. If the rank is p, then β is estimable—use OLS—hence identifiable. If
the rank is p − 1, there will be a γ �= 0p×1 with Xγ = 0n×1. If β is
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any multiple of γ , we get the same distribution for Y = Xβ + ε = ε, so
β is not identifiable. That is why the rank condition is important.

4. Let δi be IID with mean 0 and variance σ 2. Let εi = µi + δi . Then
Y = (Xβ+µ)+ δ. So Xβ+µ is estimable. But the pieces Xβ,µ can’t
be separated. So, β isn’t identifiable.

Let’s take this more slowly. We choose values β(1) and µ(1) for β and
µ. Then we choose another value β(2) �= β(1) for β. Let

µ(2) = Xβ(1) + µ(1) − Xβ(2),

so Xβ(1) + µ(1) = Xβ(2) + µ(2). Call the common value λ.

Next, consider a poor statistician who knows the distribution of Y—
but not the parameters we used to generate the distribution. He cannot
tell the difference between (β(1), µ(1)) and (β(2), µ(2)). With the first
choice, Y is normal with E(Y ) = λ and cov(Y ) = σ 2In×n. With the
second choice, Y is normal with E(Y ) = λ and cov(Y ) = σ 2In×n.
The distribution of Y is the same for both choices. That is why β isn’t
identifiable. (Neither is µ.)

For regression models, the condition that E(ε|X) = 0n×1 is important.
This condition makesµ = 0n×1, soβ is identifiable from the distribution
of Y . (Remember that X is fixed, of full rank, and observable; the error
term ε is unobservable, as are the parameters β,µ, σ 2.)

5. p3 is identifiable. If p3 �= q3, then p �= q and

Pp(X1 = 1) �= Pq(X1 = 1).

However, p3 is not estimable. For the proof, let g be a function on pairs
of 0’s and 1’s. Then Ep{g(X1, X2)} is

p2g(1, 1) + p(1 − p)g(1, 0) + (1 − p)pg(0, 1) + (1 − p)2g(0, 0).

This is a quadratic function of p, not a cubic.

6. The sum of two independent normal variables is normal, so U + V is
N(0, σ 2 + τ 2). Therefore, σ 2 + τ 2 is identifiable, even estimable—
try (U + V )2 for the estimator—remember that E(U) = E(V ) = 0.
But σ 2 and τ 2 aren’t separately identifiable. If you want to add a little
something to σ 2, just subtract the same amount from τ 2; that won’t
change the distribution of U + V .

7. If W is N(µ, 1) and X ∼ |W |, then E(X2) = E(|W |2) = E(W 2) =
µ2 + 1.
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8. This question is well beyond the scope of the book, but the argument is
sketched, for whatever interest it may have.

|µ| is not estimable. Let f be a Borel function on (−∞,∞). Assume
by way of contradiction that E[f (µ+Z)] = |µ| for all µ, with Z being
N(0, 1): we can afford to set σ 2 = 1. So

E[f (µ + Z)] = 1√
2π

∫ ∞

−∞
f (µ + z) exp(−z2/2) dz = |µ|. (∗)

Let g(x) = f (x)e−x2/2. Set x = µ + z in (∗) to see that∫ ∞

−∞
eµxg(x) dx = √

2πeµ
2/2|µ|. (∗∗)

The idea is to show that the left side of (∗∗) is a smooth function of µ,
which is impossible at µ = 0: look at the right side of the equation!
We plan to differentiate the left side of (∗∗) with respect to µ, using
difference quotients—the value at µ + h minus the value at µ—with
0 < h < 1. Start with 0 < x < ∞. Because h → ehx is an increasing
convex function of h for each x,

0 <
e(µ+h)x − eµx

h
= eµx

ehx − 1

h
< eµx(ex − 1) < e(µ+1)x . (†)

Similarly, for each x < 0, the function h → −ehx is increasing and
concave, so

0 <
eµx − e(µ+h)x

h
= eµx

1 − ehx

h
< eµx |x| < e(µ−1)x . (‡)

Equation (∗∗) says that x → eµxg(x) ∈ L1 for all µ. So x →
eµxg+(x) ∈ L1 and x → eµxg−(x) ∈ L1 for allµ, where g+ is the pos-
itive part of g and g− is the negative part. Then x → e(µ±1)xg±(x) ∈ L1

for all choices of signs. Apply the dominated convergence theorem sep-
arately to four cases: (i) g+ on the positive half-line, (ii) g+ on the
negative half-line, (iii) g− on the positive half-line, (iv) g− on the neg-
ative half-line. Equations (†) and (‡) make this work. The conclusion
is, we can differentiate under the integral sign:

∂

∂µ

∫ ∞

−∞
eµxg(x) dx =

∫ ∞

−∞
eµxxg(x) dx
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where the integral on the right converges absolutely. If you look back
at (∗∗), there is a contradiction: |µ| is not differentiable at 0. The
conclusion: |µ| is not estimable.

σ 2 is not estimable from a sample of size 1. Let f be a Borel function on
(−∞,∞). Assume by way of contradiction that E[f (µ + σZ)] = σ 2

for all µ, σ . Let g(x) = f (−x); then E[g(µ + σZ)] = σ 2 for all
µ, σ too. We may therefore assume without loss of generality that f is
symmetric: if not, replace f by [f (x)+ g(x)]/2. Take the case µ = 0.
The uniqueness theorem for the Laplace transform says that f (x) = x2

a.e. But now we have a contradiction, becauseE[(µ+σZ)2] = µ2+σ 2

not σ 2. For the uniqueness theorem, see p. 243 in Widder (1946).

Comment. Let Z be N(0, 1). An easier version of the first part of exercise 8
might ask if there is a function f such that E[f (µ+ σZ)] = |µ| for all real
µ and all σ ≥ 0. There is no such f . (We proved a stronger assertion, using
only σ = 1.) To prove the weaker assertion—which will be easier—take
σ = 0, concluding that f (x) = |x| for all x. Then take µ = 0, σ = 1 to get
a contradiction. (This neat argument is due to Russ Lyons.)

Exercise Set D, Chapter 7

Most answers are omitted. For exercise 1, the last step is P {F(X) < y} =
P {X < F−1(y)} = F

(
F−1(y)

) = y. For exercise 7, the distribution is
logistic. For exercise 11, one answer is sketched in the hints. Here is a more
elegant solution, due to Russ Lyons. With ϕ as in exercise 9,

Ln(β) = ∑
i ϕ(Xiβ) + (

∑
i XiYi)β,

the last term being linear in β. If x, x∗ are real numbers, then

ϕ
(x + x∗

2

)
≥ ϕ(x) + ϕ(x∗)

2
(†)

by exercise 9, the inequality being strict if x �= x∗. Let β �= β∗. By (†),∑
i

ϕ
(
Xi

β + β∗

2

)
≥
∑
i

ϕ(Xiβ) + ϕ(Xiβ
∗)

2
. (‡)

If X has full rank, there is an i with Xiβ �= Xiβ
∗, and the inequality in (‡)

must be strict. Reminder: f is concave if f [(x+x∗)/2] ≥ [f (x)+f (x∗)]/2,
and strictly concave if the inequality is strict when x �= x∗. If f is smooth,
then f is strictly concave when f ′′(x) < 0.
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A useful formula: under the conditions of exercise 10, the likelihood
equation for the MLE is

n∑
i=1

Xi[Yi − pi(β)] = 0, where pi = exp(Xiβ)

1 + exp(Xiβ).

Exercise Set E, Chapter 7

1. 0.777 is an estimate for the parameter α. This number is on the probit
scale. Next, 0.041 is an estimate for another parameter in equation (1),
namely, the coefficient of the dummy variable FEMALE (one of the
covariates in Xi).

2. This number is on the probit scale. Other things being equal, students
whose parents have some college education are less likely to graduate
than students whose parents have a college degree. (Look at table 1 in
Evans and Schwab to spot the omitted category.) How much less likely?
The estimate is, 0.204 on the probit scale.

3. (a) α.
(b) random, latent.
(c) The Ui, Vi are IID as pairs across subjects i. They are bivariate

normal. Each has mean 0 and variance 1. They are independent of
all the covariates in both equations, namely, IsCat andX. ButUi, Vi
are correlated within subject i. Let’s call the correlation coefficient
ρ, for future reference.

4. 0.859 estimates the parameter α in the two-equation model. This is
supposed to tell you the effect of Catholic schools. The −0.053 esti-
mates the parameter ρ: see 3(c) above. This correlation is small and
insignificant, so—if the model is right—selection effects are trivial.

Comment. The 0.777 in exercise 1 and the 0.859 in exercise 4 both seem to be
estimating the same parameter α. Why are they different? Well, exercise 1 is
about the one-equation model and exercise 4 is about the two-equation model.
The models are different. The two estimates are similar because ρ̂ is close
to 0.

5. sum, term, student.

6. The factor is

P
{
U77 < −X77b andV77 > −X77β

} =
∫ ∞

−X77β

∫ −X77b

−∞
φ(u, v) du dv.
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There’s no a because this student isn’t Catholic. There’s no α because
this student didn’t attend a Catholic high school.

7. The factor is

P {U4039 < −a − X4039b and V4039 < −X4039β}

=
∫ −X4039β

−∞

∫ −a−X4039b

−∞
φ(u, v) du dv.

Notation. Integrals are read from the inside out. Take
∫ 2

0

∫ 1
0 φ(u, v) du dv.

First, you integrate with respect to u, over the range [0,1]. Then you integrate
with respect to v, over [0,2]. You might have to squint, to distinguish a from
α and b from β.

8. ρ is in φ: see equation (15).

9. Presumably, the two numbers got interchanged—a typo.

10. This is the standard deviation of the data—not the standard error:

√
0.97×0.03 = 0.17.

The standard deviation is a useful summary statistic for quantitative data,
not for 0’s and 1’s.

11. Unless the design matrix is a little weird, the MLE will be close to truth,
so you’d nail α, β. But even if you know α, β, you don’t know the latent
variables. For example, suppose subject i went to Catholic school and
graduated. According to the model, Vi > −Ciα − Xiβ. That’s quite a
range of possible values for Vi . In this respect, the probit model is less
satisfying than the regression model.

Discussion Questions, Chapter 7

1. The MLE is generally biased, but not always. In the normal, binomial,
and Poisson examples of section 1, the MLE is unbiased. But see exer-
cises 7A9–10 and lab 11 below.

Comment. When the sample size is large, the bias is small, and so is the
random error. (There are regularity conditions. . . .)

2. The response variables are independent conditionally on the covariates.
The covariates are allowed to be dependent across subjects. Covariates
have to be linearly independent, i.e., perfect collinearity is forbidden: if
one covariate was a linear combination of others, parameters would not
be identifiable. Covariates do not have to be statistically independent,
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nor do covariate vectors have to be orthogonal. From the modelers’
perspective, that is a great advantage: you can disentangle effects even
when the causes are mixed up together in various ways.

3. (a)-(b)-(c) are true, but (d) is false. If the model is wrong, the parameter
estimates may be meaningless. (What are we estimating?) Even if
meaningful, the estimates are liable to be biased; so are the standard
errors printed out by the computer.

4. (a) False. (b) True. (c) False. (d) True. (e) False. (f) True.

Comment. With respect to parts (a) and (b), the model does allow the effect
of Catholic schools to be 0. The data are used to reject this hypothesis. If the
model is right, the data show the effect to be large and positive.

5. Independence is violated. So is a more basic assumption—that a sub-
ject’s response depends only on that subject’s covariates and assignment.

6. (a) c. You could estimate the equations by maximum likelihood. (Here,
coaching is binary—you either get it, or not; the response Y is
continuous.)

(b) The response schedule is Yi,x = cx + Viβ + σεi , where x = 1
means coaching, and x = 0 means no coaching. Nature generates
the U,V, δ, ε according to the specifications given in the problem.
If Uiα + δi > 0, she sets Xi = 1 and Yi = Yi,Xi

= c+ Viβ + σεi :
subject i is coached, and scores Yi on the SAT. If Uiα + δi < 0,
Nature sets Xi = 0 and Yi = Yi,Xi

= Viβ + σεi : subject i is not
coached, and scores Yi on the SAT. The two versions of Yi differ by
c, the effect of coaching. (You only get to see one version.)

(c) The concern is self-selection. If the smart kids choose coaching, and
we just fit a response equation, we will over-estimate the effect of
coaching. The assignment equation (if it’s right) helps us adjust for
self-selection. The parameter ρ captures the dependence between
Xi and εi . This is just like Evans and Schwab, except that the
outcome variable (SAT score) is continuous.

(d) In the selection equation, the scale of the latent variable is not iden-
tifiable, so Powers and Rock set it to 1 (section 7.2). In the response
equation, there is a scale parameter σ .

Comment. Powers and Rock show, without any adjustment at all, that the
effect of coaching is small. Their tables suggest that confounding makes the
unadjusted effect an over-estimate. On the whole, the paper is persuasive as
well as interesting.

7. (a) A dummy variable is 0 or 1 (section 6.6): D1992 is 1 for observations
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in 1992 and 0 for other observations; it’s there in case 1992 was
special in some way.

(b) No. You have to take the interactions into account. If the Republi-
cans buy 500 GRPs in year t and state i, then Rep.TV goes up by 5,
and their share of the vote should go up by

5 × [
0.430 + 0.066×(Rep. AP − Dem. AP ) + 0.032×UN + 0.006×RS

]
where Rep. AP is evaluated in year t and state i, and likewise for
the other variables.

Comment. All other factors are held constant, and we’ve suspended disbelief
in the model. Shaw (1999, p. 352) interprets the coefficient 0.430 as meaning
that a 500 GRP buy of TV time yields a 2.2 percentage point increase in votes.

8. Use logistic regression not OLS, because the response variable is binary.
For the ith subject, let Yi = 1 if that subject experienced a heart attack
during the study period, else Yi = 0. The sample size is

n = 6,224 + 27,034 = 33,258.

The number of variables is p = 8 because there is an intercept, a treat-
ment variable, and six covariates. The design matrix X is 33,258 × 8.
Its ith row Xi is

[1 HRTi AGEi HEIGHTi WEIGHTi CIGSi HYPERi HICHOLi]

where

HRTi = 1 if subject i was on HRT, else HRTi = 0,
AGEi is subject i’s age,
HEIGHTi is subject i’s height,
WEIGHTi is subject i’s weight,
CIGSi = 1 if subject i was a smoker, else CIGSi = 0,
HYPERi = 1 if subject i had hypertension, else HYPERi = 0,
HICHOLi = 1 if subject i had high cholesterol levels, else
HICHOLi = 0.

The statistical model says that given the X’s, the Y ’s are independent,
and

log
P {Yi = 1|X}

1 − P {Yi = 1|X} = Xiβ.

The crucial parameter is β2, the HRT coefficient. The investigators want
β̂2 to be negative (HRT reduces the risk) and statistically significant. The
SE would be estimated from the observed information. Then a t-test
would be made.

The model is needed to control for confounding. For causal inference,
we also want a response schedule and an exogeneity assumption. All the
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usual questions are left open. Why these variables and that functional

form? Why are the coefficients constant across subjects? And so forth.

Comment. Salient missing variables are measures of status, like income.

Moreover, it could well be the more health-conscious women who are tak-

ing HRT, which requires medical supervision. In this example, experimental

evidence showed the observational data to be misleading (see the end notes

for the chapter).

9. In an experiment, the investigator assigns the subjects to treatment or

control. In an observational study, the subjects assign themselves (or are

assigned by some third party). The big problem is confounding. Possible

solutions include stratification and modeling. See text for discussion and

examples.

10. The fraction of successes in the treatment group is an unbiased estimate

of αT . The fraction of successes in the control group is an unbiased

estimate of αC . The difference is an unbiased estimate of αT − αC .

11. Each model assumes linear additive effects on its own scale—look at the

formulas. Randomization justifies neither model. Why would it justify

one rather than the other, to say nothing of all the remaining possibilities?

Just for example, treatment might help women, not men. Neither model

allows for this possibility. Of course you can—and probably should—

analyze the data without anything like logits or probits: see chapter 1,

especially tables 1 and 2. Also see Freedman (2006b, 2008a, 2008c).

12. Not a good idea. Here, one child’s outcome may well depend on neigh-

boring children’s assignments. (Malaria is an infectious disease, trans-

mitted by the Anopheles mosquito.)

13. Looks good so far.

14. Stratification is probably a better way to go—fewer assumptions. On the

other hand, the groups might be heterogeneous. With more covariates

used to define smaller groups, you may run out of data. Finally, with

stratification, there’s no way to estimate what would happen with other

values of covariates.

15. Maximum likelihood is a large-sample technique. With 400 observa-

tions, she’d be fine. With 4, the advice is, think again.

16. The quote might be a little mixed up. White’s correction is a way

of taking heteroscedasticity into account when computing standard er-

rors for OLS (end notes to chapter 5). The relevance to the MLE is

not obvious. The Yit will be heteroscedastic given the X ’s, because

var(Yit |X) = P(Yit = 0|X) × [1 − P(Yit = 0|X)] will depend on
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i and t . If the model is right—that’s a whole other issue—the MLE
automatically accounts for differences in P(Yit = 0|X) across i and t .

Comment. The investigators might have been thinking of Huber’s “sandwich
estimator” for the standard error, which is robust against certain kinds of
misspecification—although the MLE may then be quite biased. See Freed-
man (2006a).

17. Sounds like non-identifiability.

18. Even if the model is right, and c > 0, the combined effect of left-wing
power in country i and year t is

a × LPPit + b × TUPit + c × LPPit × TUPit , (∗)

which can be negative. It all depends on the size of a, b, c and LPPit ,
TUPit . Maybe the right wing has a point after all.

Comments. (i) With Garrett’s model, the combined effect (∗) of left-wing
power was to reduce growth rates for most years in most countries—contrary
to his opinion. (ii) The εit are random errors, with mean 0; apparently, Garrett
took these errors to be IID in time, but allowed covariance across countries.

19. In this exercise, LPP, TUP, and the interaction don’t matter—they are
folded into Z. To create Garrett’s design matrix M , which is 350×24,
stack the data as in exercise 5C3, with 25 observations on country #1—
ordered by year—at the top, then the observations for country #2, . . . .
The first 14 columns of M are the country dummies; αi is the coefficient
of the dummy variable for country i. Take L to be a 24×24 matrix with
1’s along the main diagonal; the first 14 entries in the first column are
also 1: all other entries are 0. You should check that ML gives Beck’s
design matrix. Now

[(ML)′(ML)]−1(ML)′Y = [L′(M ′M)L]−1L′M ′Y
= L−1(M ′M)−1(L′)−1L′M ′Y
= L−1(M ′M)−1M ′Y.

If β is Garrett’s parameter vector and β∗ is Beck’s, then β̂∗ = L−1β̂, so
β̂ = Lβ̂∗. (A more direct argument is possible too.)

20. In 1999, statisticians placed less reliance on the normal law of error than
they did in 1899. (What will things look like in 2099?) Yule is playing
a little trick on Sir Robert. If the OLS model holds, OLS estimates are
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unbiased. But why does the model hold? Choosing models is a rather
subjective business that goes well beyond the data—especially when
causation gets into the picture.

Chapter 8 The Bootstrap

Exercise Set A

1. True.

2. These statements are all true, illustrating the idea of the bootstrap. (Might
be even better, e.g., to divide by 99 not 100, but we’re not going to be
fussy about details like that.)

3. (a) σ/
√

5000. (b)
√
V /

√
100. (c)

√
V .

Reason for (b): Xave is the average of 100 IID X(k)’s whose sample
variance is V . In (c), there is no need for “around.”

Exercise Set B, Chapter 8

1. Choose (ii). See text.

2. The parameters are the 10 regional intercepts aj and the five coefficients
b, c, d, e, f . These are unobservable. So are the random errors δt,j .
Otherwise, everything is observable.

3. The disturbance term for 1975 could have been different, and then energy
consumption would have been different.

4. 0.281 is the one-step GLS estimate for the parameter f .

5. One-step GLS is biased, for estimating d, e, f : compare columns (A)
and (C). The bias in f̂ , for instance, is highly significant, and comparable
in size to the SE for f̂ . Not trivial.

6. Biased. Compare columns (D) and (E): see text.

7. Biased, although not as badly as the plug-in SEs. Compare columns (D)
and (F): see text.

8. The bootstrap is not reliable with such a small sample. With 40 obser-
vations, maybe. But with 4?!? Maybe Paula needs another idea.

9. εi = Yi − a − bYi−1 for all i. If 1 ≤ i < n, then Yi = Xi+1,2 and
Yi−1 = Xi,2 can be computed from X. So, εn


X, but the earlier εi are

completely dependent on X.
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Chapter 9 Simultaneous Equations

Exercise Set A

1. a1 should be positive. Supply increases with price. By contrast, a2 and
a3 should be negative. When the price of labor and materials goes up,
supply goes down.

2. b1 should be negative. Demand goes down as price goes up. Next, b2
should be negative. Demand goes down as the price of complements
goes up. You’re not going to spread butter on that ten-dollar piece of
bread, because you’re not going to eat that piece of bread in the first
place. Finally, b3 should be positive. Demand goes up as the price
of substitutes goes up. When olive oil costs $50 an ounce, you throw
caution to the winds and eat butter.

3. The law of supply and demand is built into the model as an assumption:
Qt and Pt are the market-clearing quantity and price. We got them by
solving the supply and demand equations in year t , i.e., by finding the
point where the supply curve crosses the demand curve. See figure 1,
and equations (2)-(3).

The supply curve is concave but not strictly concave. (It’s linear.) The
demand curve is convex but not strictly convex. (It’s linear too.) For
this reason among others, economists prefer log linear equations, like

logQ = a0 + a1 logP + a2 logW + a3 logH + δt ,

logQ = b0 + b1 logP + b2 logF + b3 logO + εt .

4. Equation (2a) is the relevant one: (2b) says how consumers would re-
spond. The reduced-form equations (3a) and (3b) say how quantity
and price would respond if we manipulated the exogeneous variables
Wt,Ht , Ft ,Ot . Notice that Pt does not appear on the right hand side of
(3a); and Qt does not appear on the right hand side of (3b).

Exercise Set B, Chapter 9

1. For part (a), let c be p×1. Then c′Z′Zc = ‖Zc‖2 ≥ 0. If c′Z′Zc = 0,
then Zc = 0 and Z′Zc = 0, so c = 0 because Z′Z has full rank (this
was given). Thus, Z′Z is positive definite. The rest of part (a) follows
from exercise 3D7. For (b), the matrix (Z′Z)−1 is positive definite, so

c′X′Z(Z′Z)−1Z′Xc ≥ 0.
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Equality entails Z′Xc = 0, hence c = 0, because Z′X has full rank
(this was given). Thus, X′Z(Z′Z)−1Z′X is positive definite, hence,
invertible (exercise 3D7).

2. (a) and (b) are true; (c), (d), and (e) are false.

Comment. With a large sample, the sample mean will be nearly the same as
E(Ui), and the sample variance will be nearly the same as var(Ui). But the
concepts are different—and with small or medium-sized samples, so are the
numbers (section 2.4).

Exercise Set C, Chapter 9

1. Don’t do that without further thought. According to the model, price
and quantity are endogenous. You might want to fit by OLS even so
(section 9.8), but you have to consider endogeneity bias.

2. Statements (a)-(b)-(c) are all false, unless there is some miracle of can-
cellation. The OLS residuals are orthogonal to X, but IVLS isn’t OLS.
Statement (d) is true by definition (14).

3. OLS always gives a better fit: see exercise 3B14(j). You do IVLS only
if there’s a model you believe in, you want to estimate the parameters in
that model, and are concerned about endogeneity bias.

(: OLS may be ordinary, but it makes the least of the squares :)

4. Biased. IVLS isn’t real GLS. We’re pretending that Z′X is constant.
But that isn’t right, at least, not exactly. As the sample size grows, the
bias will (with any luck) get small.

5. The p × p matrix Z′X has full rank, by assumption (ii) in section 9.2.
Hence, Z′X is invertible. By (10),

β̂IVLS = [
X′Z(Z′Z)−1Z′X

]−1
X′Z(Z′Z)−1Z′Y

= (Z′X)−1(Z′Z)(X′Z)−1X′Z(Z′Z)−1Z′Y
= (Z′X)−1Z′Y.

Watch it. This only works when q = p. Otherwise, Z′X isn’t square.

6. From (10),

β̂IVLS = [
X′Z(Z′Z)−1Z′X

]−1
X′Z(Z′Z)−1Z′Y = QY

where
Q = [

X′Z(Z′Z)−1Z′X
]−1

X′Z(Z′Z)−1Z′.

CHAPTER 9
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Now QX = Ip×p and Y = Xβ+ δ, so QY = β+Qδ. Since Q is taken
as constant (rather than random),

cov{β̂IVLS|Z} = σ 2QIn×nQ
′ = σ 2QQ′ = σ 2[X′Z(Z′Z)−1Z′X

]−1
.

Evaluating QQ′ is straightforward but tedious.

Comments. (i) This exercise is only intended to motivate equation (13), which
defines ĉov(β̂IVLS|Z). (ii) What really justifies the definition is theorem 1 in
section 9.8. (iii) If you want to make exercise 6 more mathematical, suppose
X happens to be exogenous (so IVLS is an unnecessary trip); condition on X
and Z.

Exercise Set D, Chapter 9

1. 0.128 − 0.042 − 0.0003×300 + 0.092 + 0.005×11
+0.015×12 − 0.046 + 0.277 + 0.041 + 0.336 = 0.931.

2. − 0.042 − 0.0003×300 + 0.092 + 0.005×11
+0.015×12 − 0.046 + 0.277 + 0.041 + 0.336 = 0.803.

Comment. In exercises 1 and 2, the parents live in district 1, so the universal-
choice dummy is 0: its coefficient (−0.035) does not come into the calcula-
tion. Frequency of church attendance is measured on a scale from 1 to 7, with
“never” coded as 1. The 0.931 is indeed too close to 1.00 for comfort. . . .

3. The difference is 0.128. This is the “effect” of school choice.

4. estimated expected probabilities. We’re substituting estimates for pa-
rameters in (23), and replacing the latent variable Vi by its expected
value, 0.

5. School size is a much bigger number than other numbers in the equation.
For example, −0.3×300 = −90. If the coefficient was −0.3, we’d be
seeing a lot of negative probabilities.

6. No. The left hand side variable has to be a probability, not a 0–1 vari-
able. Equation (2) in Schneider et al is about estimation, not modeling
assumptions.

7. Some of the numbers line up between the sample and the population,
but there are real discrepancies, e.g., on the educational level of par-
ents in District 4. In the sample, 65% have a high school education
or better, compared to 48% in the population. (The SE on the 65% is
something like 100% × √

0.48 × 0.52/333
.= 3%: this isn’t a chance

effect.) Schneider et al collected income data but elected not to use it.
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Why not? The intervention is left unclear in the paper, as is the model.

The focus is on estimation technique.

Exercise Set E, Chapter 9
1. Go with investigator #3, who is doing IVLS: exercise C5. Investigator

#1 is doing OLS, which is biased. Investigator #2 is a little mixed up.

To pursue that, we need some notation for the covariance matrix of

Xi , Zi , εi , Yi . This is a 4 × 4 matrix. The top left 3×3 corner in (∗)

shows the notation and assumptions. For example, σ 2 is used to denote

var(εi ), ψ to denote cov(Xi , Zi ), and θ to denote cov(Xi , εi ). Since Zi

is exogenous, cov(Zi , ε) = 0. The last row (or column) is derived by

math. For instance, var(Yi ) = β2var(Xi ) + var(εi ) + 2βcov(Xi , εi ) =
β2 + σ 2 + 2βθ .

⎛⎜⎜⎝
Xi Zi εi Yi

Xi 1 ψ θ β + θ

Zi ψ 1 0 βψ

εi θ 0 σ 2 σ 2 + βθ

Yi β + θ βψ σ 2 + βθ β2 + σ 2 + 2βθ

⎞⎟⎟⎠. (∗)

For investigator #2, the design matrix M has a column of X ’s and a

column of Z ’s, so

M ′M/n
.=

(
1 ψ

ψ 1

)
, M ′Y/n

.=
(

β + θ

βψ

)
,

(
1 ψ

ψ 1

)−1

= 1

1 − ψ2

(
1 −ψ

−ψ 1

)
,

(M ′M)−1 M ′Y .=
(

β + [
θ/(1 − ψ2)

]
−θψ/(1 − ψ2)

)
.

When n is large, the estimator for β suggested by investigator #2 is biased

by θ/(1 − ψ2). A much easier calculation shows the OLS estimator is

biased by θ . For the asymptotics of the IVLS estimator, see example 1

in section 8.

2. The correlation between Z and ε is not identifiable, so Z cannot be used

as an instrument. Here are some details. The basic thing is the joint

distribution of Xi , Zi , εi . (These are jointly normal random variables,
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mean 0, and IID as triplets.) The joint distribution is specified by its 3×3
covariance matrix. In that matrix, var(Xi), var(Zi) and cov(Xi, Zi) are
almost determined by the data (n is large). Let’s take them as known.
For simplicity, let’s take var(Xi) = var(Zi) = 1 and cov(Xi, Zi) =
1
2 . There are three remaining parameters in the joint distribution of
Xi, Zi, εi :

cov(Xi, εi) = θ , cov(Zi, εi) = φ, var(εi) = σ 2.

So the covariance matrix of Xi, Zi, εi is


Xi Zi εi

Xi 1 1
2 θ

Zi
1
2 1 φ

εi θ φ σ 2

. (†)

The other random variable in the system is Yi , which is constructed from
Xi, Zi, εi and another parameter β: Yi = βXi + εi . We can now make
a complete list of the parameters:

(i) cov(Xi, εi) = θ ,
(ii) cov(Zi, εi) = φ,

(iii) var(εi) = σ 2,
(iv) β.

The random variable εi is not observable. The observables areXi, Zi, Yi .
The joint distribution of Xi, Zi, Yi determines—and is determined by—
its 3×3 covariance matrix (theorem 3.2). This matrix can be computed
from the four parameters:


Xi Zi Yi

Xi 1 1
2 β + θ

Zi
1
2 1 1

2β + φ

Yi β + θ 1
2β + φ β2 + σ 2 + 2βθ

. (‡)

For example, the 2,3 element in the matrix (repeated as the 3,2 element)
is supposed to be cov(Yi, Zi). Let’s check. We’re given that E(Xi) =
E(Zi) = E(Yi) = E(εi) = 0. So

cov(Yi, Zi) = E(YiZi) = E[(βXi + εi)Zi],

which is

βE(XiZi) + E(Ziεi) = βcov(Xi, Zi) + cov(Zi, εi) = 1
2β + φ.



CHAPTER 9 287

The joint distribution of Xi , Zi , Yi determines—and is determined by—

the following three things:

(a) β + θ ,

(b) 1
2
β + φ,

(c) β2 + σ 2 + 2βθ .

That’s all you need to fill out the matrix (‡), and that’s all you can get

out of the data on Xi , Zi , Yi , no matter how large n is. There are three

knowns: (a)-(b)-(c). There are four unknowns θ, φ, σ 2, β. Blatant

non-identifiability.

To illustrate, let’s start with the parameter values shown in column #2

of the following table.

1 2 3

θ 1
2

3
2

φ 0 1
2

σ 2 1 3

β 2 1

Then (a) β +θ = 2.5, (b) 1
2
β +φ = 1.0, and (c) β2 +σ 2 +2βθ = 7.0.

Now, increase φ to 1
2
, as shown in column #3. Choose a new value for

β so (b) doesn’t change, a new θ so (a) doesn’t change, and σ 2 so

(c) doesn’t change. The new values are shown in column #3 of the

table. Both columns lead to the same numbers for (a), (b), (c), hence the

same joint distribution for Xi , Zi , Yi . That already demonstrates non-

identifiability, and there are many other possible choices. With column

#2, Z is exogenous: cov(Zi , εi ) = φ = 0. With column #3, Z is

endogenous: cov(Zi , εi ) �= 0. Exogeneity cannot be determined from

the joint distribution of the observables. That is the whole trouble with

the exogeneity assumption.

Comments. (i) This exercise is similar to the previous one. In that exercise,

cov(Zi , εi ) = 0 because Zi was given as exogenous; here, cov(Zi , εi ) = φ

is an important parameter because Zi is likely to be endogenous. There,

cov(Xi , Zi ) = ψ was a free parameter; here, we chose ψ = 1
2

(for no partic-

ular reason). There, we displayed the 4×4 covariance matrix of Xi , Zi , εi , Yi .

Here, we display two 3×3 covariance matrices. If you take φ = 0 and ψ = 1
2
,

the matrices (∗), (†), (‡) will all line up.
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(ii) For a similar example in a discrete choice model, see

http://www.stat.berkeley.edu/users/census/socident.pdf

(iii) There is a lot of econometric theorizing about instrumental variables.
What it boils down to is this. If you are willing to assume that some variables
are exogenous, you can test the exogeneity of others.

3. This procedure is inconsistent: it gives the wrong answer no matter how
much data you have. This is because you’re estimating σ 2 with only
q − p degrees of freedom.

Discussion. In principle, you can work everything out for the following
model, which has q = 2 and p = 1. Let (Ui, Vi, δi, εi) be IID in i. The
four-tuple (Ui, Vi, δi, εi) is jointly normal. Each variable has mean 0 and
variance 1. Although Ui , Vi , and (δi, εi) are independent, E(δiεi) = ρ �= 0.
Let Xi = Ui + Vi + εi and Yi = Xiβ + δi . The unknown parameters are
ρ and β. The observables are Ui, Vi, Xi, Yi . The endogenous Xi can be
instrumented by Ui, Vi . When n is large, β̂IVLS

.= β; the residual vector
from (4) is almost the same as δ. Now you have to work out the limitng
behavior of the residual vector from (6), and show that it’s pretty random,
even with huge samples. For detail on a related example with q = p = 1,
see

http://www.stat.berkeley.edu/users/census/ivls.pdf

Discussion questions, Chapter 9

1. Great ad. Perfect example of “lead time bias.” Earlier detection implies
longer life after detection, because the detection point is moved back-
wards in time—but we want longer life overall. For example, if detection
techniques improve for an incurable disease, there would an increase in
survival after detection—but no increase in lifespan. Useless.

2. Another great example of lead time bias. For discussion, see Freedman
(2008b).

3. Answer. Not a good study either. If it’s a tie overall, and the detection
rate is higher with dense breasts, it must be lower with non-dense breasts
(as can be confirmed by looking at the original paper). Moreover, digital
mammography might be picking up cancers that are not treatable. There
are significant practical advantages to digital mammography, but this
study doesn’t make the case.

4. More numerators without denominators. In how many cases did eye-
witness testimony lead to righteous convictions? What is the error rate
for other kinds of evidence?
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5. Suppose a marathon is run over road R in time period T in county C;
the road is closed for that period. The idea is that if the marathon had
not been run, there would have been traffic on road R in period T, with
additional traffic fatalities. Data are available at the county level only.
Suppose the controls are perfect (a doubtful assumption). Then we know
what the fatalities would have been in county C in period T, but for the
marathon. This is bigger than the actual number of fatalities. The study
attributes the difference to the traffic that would have occurred on road
R in period T, if the marathon had not been run.

The logic is flawed. For example, people elsewhere in the county may
decide not to drive during period T in order to avoid the congestion
created by the marathon, or they may be forced to drive at low speeds
due to the congestion, which would reduce traffic fatalities. To be sure,
there may be arguments to meet such objections. But, on the whole, the
paper seems optimistic.

As far as the headline is concerned, why are we comparing running to
driving? How about a comparison to walking, or reading a book?

6. (a) The controls are matched to cases within treatment, and average age
(for instance) depends on treatment. Age data are reported in the
paper, but the conclusion is pretty obvious from the survival rates
for the controls.

(b) See (a).
(c) Surgeons prefer to operate on relatively healthy patients. If you

have a serious heart condition, for instance, the surgeon is unlikely
to recommend surgery. Thus, the cases are generally healthier than
the age-matched controls.

(d) No. See (c). This is why randomized controlled experiments are
needed.

Comment. This is a very good paper, and the authors’ interpretations of
the data—which are different from the mistakes naturally made when
working the exercise—are entirely sensible. The authors also make an
interesting comparison of intention-to-treat with treatment-received.

7. Neither formula is good. This is a ratio estimate,

(Y1 + · · · + Y25)/(X1 + · · · + X25),

where Xi is the number of registered voters in village i and Yi is the
number of votes for Megawati. We’re not counting heads to estimate p
when a coin is flipped n times, so p̂(1 − p̂)/n is irrelevant.



290 Answers to Exercises

8. (a) The errors εi should be IID with mean 0, and independent of the
explanatory variables.

(b) The estimate b̂ should be positive: the parameter b says how much
happier the older people are, by comparison with the younger ones.
The estimate ĉ should be positive: c says how much happier the
married people are, by comparison with the unmarried. The esti-
mate d̂ should be positive: a 1% increase in income should lead to
an increase of d points on the happiness scale.

(c) Given the linearity assumption, this is not a problem.
(d) Now we have near-perfect collinearity between the age dummy and

the marriage dummy, so SEs are likely to be huge.
(e) The Times is a little confused, and who can blame them? (i) Calcu-

lations may be rigorous given the modeling assumptions, but where
do the assumptions come from?? For instance, why should Ui be
dichotomous, and why cut at 35? Why take the log of income? And
so forth. (ii) Sophistication of computers and complexity of algo-
rithms is no guarantee of anything, except the risk of programming
error.

9. The form of the equations, the parameter values, the values of the control
variables, and the disturbance terms have to be invariant under interven-
tions (section 6.4).

10. Disagree. Random error in a putative cause is liable to bias its coefficient
toward zero; random error in a confounder works the other way. With
several putative causes and confounders, the direction of bias is less
predictable. If measurement error is non-random, almost anything can
happen.

11. If (24) is OK, (25) isn’t, and vice versa. Squint at those error terms. For
example, εi,t = δi,t−δi,t−1. If the δ’s are IID, the ε’s aren’t. Conversely,
δi,t = εi,t + εi,t−1 + · · · . If the ε’s are IID, the δ’s aren’t.

12. (a) The model is wrong. (b) The third party is suggesting the heterogene-
ity should be modeled. This adds another layer of complexity, probably
doesn’t come to grips with the issues.

13. Yeah, right. By the time you’ve tried a few models, the P -values don’t
mean a thing, and you’re almost guaranteed to find a good-looking—but
meaningless—model. See section 5.8 and Freedman (2008d).

14. Put (i) in the first blank and (ii) in the second.

15. Put (i) in the first blank and (ii) in the second.

16. False: you need the response schedule.
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17. That the explanatory variables are independent of the error term.

18. Maybe sometimes. For example, if we know the errors are IID, a residual
plot might refute the linearity assumption.

19. Maybe sometimes. The statistical assumptions might be testable, up to
a point, but how would causation get into the picture? Generally, it’s
going to be a lot harder to prove up the assumptions than to disprove
them.

20. This is getting harder and harder.

21. Oops. The Ui is superfluous to requirements. We should (i) condition
on the exogenous variables, (ii) assume the Yi are conditionally inde-
pendent, and (iii) transform either the LHS or the RHS. Here is one
fix:

prob(Yi = 1|G,X) = P(α+βGi +Xiγ ), where P(x) = ex/(1+ex).

An alternative is to formulate the model using latent variables (section
7.3). The latentsUi should be independent in i with common distribution
function P, and independent of the G’s and X’s. Furthermore,

Yi = 1 if and only if α + βGi + Xiγ + Ui > 0.

But then, drop the “prob.”

22. The assumption that pairs are independent is built into the log likelihood—
otherwise, why is a sum relevant? This is a pretty weird assumption,
especially given that i is common to (i, j) and (i, k). And why Poisson??

23. No. Endogeneity bias will usually spread, affecting â and b̂ as well as
ĉ. For step-by-step instructions on how to do this problem and similar
ones, see

http://www.stat.berkeley.edu/users/census/biaspred.pdf

24. Layout of answers matches layout of questions.

F F F T
T F F F
F F F F
F F T
F F F
F T F F
F
F
F
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25. (a) Subjects are IID because the triples (Xi, δi, εi) are IID in i.
(b) Intercepts aren’t needed because all the variables have expectation 0.
(c) Equation (28) isn’t a good causal model. The equation suggests

that W is a cause of Y . Instead, Y causes W .

Preparing for (d) and (e)

Write [XY ] for lim 1
n

∑n
i=1 XiYi , and so forth. Plainly,

[XX] = 1, [XY ] = b, [YY ] = b2 + σ 2, [WX] = bc,

[WY ] = c(b2 + σ 2), [WW ] = b2c2 + c2σ 2 + τ 2.

(d) The asymptotic R2’s for (26) and (27) are therefore

b2

b2 + σ 2 and
c2(b2 + σ 2)

c2(b2 + σ 2) + τ 2 ,

respectively. The asymptotic R2 for (28) can be computed, with
patience (see below). But here is a better argument. The R2 for
(28) has to be bigger than the R2 for (27). Indeed, with simple
regression equations, R2 is symmetric. In particular, the R2 for
(27) coincides with the R2 for (∗):

Yi = fWi + vi . (∗)
But the R2 for (28) is bigger than the R2 for (∗): the extra variable
helps. So the R2 for (28) is bigger than the R2 for (27), as claimed.
Now fix b and τ 2 at any convenient values. Make σ 2 large enough
to get a small R2 for (26). Then make c large enough to get a big
R2 for (27) and hence (28).

(e) If we fit (28), the product moment matrix divided by n converges
to (

b2c2 + c2σ 2 + τ 2 bc

bc 1

)
.

The determinant of this matrix in is c2σ 2 + τ 2. The inverse is

1

c2σ 2 + τ 2

(
1 −bc

−bc b2c2 + c2σ 2 + τ 2

)
.

The limit of the OLS estimator is therefore

1

c2σ 2 + τ 2

(
1 −bc

−bc b2c2 + c2σ 2 + τ 2

)(
b2c + cσ 2

b

)
.
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So

d̂ → cσ 2

c2σ 2 + τ 2 , ê → bτ 2

c2σ 2 + τ 2 .

Comments. Putting effects on the right hand side of the equation is not
uncommon, and often leads to spuriously high R2’s. In particular, R2

does not measure the validity of a causal model. Instead, R2 measures
only strength of association.



The Computer Labs

Introduction

Labs are a key part of the course: the computations illustrate some of the
main ideas. At Berkeley, labs are set up for MATLAB in a UNIX environment.
The UNIX prompt is (usually) a percent sign. At the prompt, type matlab.
After a bit, MATLAB will load. Its prompt is >>. If you type edit at
the prompt, you get a program editor. Changes for WINDOWS are pretty
straightforward: you can launch MATLAB from the start menu, and get the
program editor by clicking on an icon in a toolbar. The directory names will
look different.

Don’t write MATLAB code or create data files in a word processing
package like WORD, because formatting is done with a lot of funny characters
that MATLAB finds indigestible. (You can work around this, but why bother?)
In UNIX, gedit is a straight-ahead program editor. In WINDOWS, you can
use notepad or wordpad, although TextPad is a better bet:

http://www.textpad.com

If you type helpdesk at the MATLAB prompt, you get a browser-
based help facility, with demos and tutorials. If you only want help on a
particular command, type help at the MATLAB prompt, followed by the
name of the command. For instance, help load . This works if you know
the name of the command. . . .

MATLAB runs interactively from the command prompt, and you can do
a lot that way. After a while, you may want to store commands in a text file.
This sort of file is called a “script file.” Script files make it easier to edit and
debug code. Script files end with the suffix .m, for instance, demolab.m.
If you have that file on your system, type demolab at the MATLAB prompt.
MATLAB will execute all the commands in the file. (There is an annoying
technicality: the file has to be in your working directory, or on the search path:
click on File and follow your nose, or type help path at the MATLAB
prompt, or—if all else fails—look at the documentation.)
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A lot of useful MATLAB features are illustrated indemolab.m, includ-
ing “function files,” which are special script files needed later in the course.
Some people like to read computer documentation, and MATLAB has pretty
good documentation. Or, you can just sit down at the keyboard and start
fooling around. Some people like to look at code: demolab.m—listed in
an appendix below—is for them.

When you are finished running MATLAB, type exit to end your ses-
sion, or quit the window. (In UNIX, quitting a window is a much more final
act than closing it.) Oh, by the way, what happens if your program goes
berserk and you need to stop it? Just hit control-C: hold down the control-
key, press C. That will return you to the command prompt. (Be patient, it
may take a minute for MATLAB to notice the interrupt.)

Data sets used in the labs, and sample code, are available at

http://www.stat.berkeley.edu/users/census/data.zip

Numerics

Computers generally do “IEEE arithmetic,” which isn’t exactly arith-
metic. There is roundoff error. MATLAB is usually accurate to 10−12. It
seldom does better than 10−16, although it can. Here is some output:

>> (sqrt(2))ˆ2-2

ans =

4.4409e-016

>>(sqrt(4))ˆ2-4

ans =

0

4.4409e-016 is MATLAB’s way of writing 4.4409×10−16. This is round-
off error.

Lab 1

Summary Statistics and Simple Regression

In this lab, you will calculate some descriptive statistics for Yule’s data
and do a simple regression. The data are in table 1.3, and in the file

yule.dat
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You need to subtract 100 from each entry to get the percent change. Refer to
chapter 1 for more information, or to yuledoc.txt.

1. Compute the means and SDs of 8Paup, 8Out, 8Pop, and 8Old.

2. Compute all 6 correlations between 8Paup, 8Out, 8Pop, and 8Old.

3. Make a scatter plot of 8Paup against 8Out.

4. Run a regression of 8Paup on 8Out, i.e, find the slope and intercept of
the regression line. You might also compute the SD of the residuals.

Useful MATLAB commands: load, mean, std, corrcoef,
plot(u,v,’x’).

Lab 2

An Exercise with MATLAB

1. Create a 4 × 3 matrix X and a 4 × 1 vector Y :

X =


1 −1 1
1 2 3
4 5 6
7 8 9

 , Y =


1
2
3
4

 .

2. Compute X′X, X′Y , detX′X, rank X, rank X′X.

3. Compute (X′X)−1.

4. Write a single line of MATLAB code to compute

β̂ = (X′X)−1X′Y.

Report β̂ as well as the code.

5. Let

A =
( 1 3 5 7

−1 2 9 −3
6 3 0 33

)
.

Compute trace AX and trace XA. Comment?

Useful MATLAB commands: A’, A+B, A-B, A*B, det, inv,
rank, trace, size . To create a matrix, type Q=[1 2 3; 4 5 6] ,
or do it on two lines:

Q=[1 2 3
4 5 6]
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Lab 3

Replicating Yule’s Regression

In this lab, you will replicateYule’s regression equation for the metropoli-
tan unions, 1871–81. See chapter 1. Fix the design matrix X at the values re-
ported in table 1.3. (Subtract 100 from each entry to get the percent changes.)
The data are in the file yule.dat. The file yuledoc.txt gives the vari-
able names. Yule assumed

8Paupi = a + b × 8Outi + c × 8Oldi + d × 8Popi + εi

for 32 metropolitan unions i. For now, suppose the errors εi are IID, with
mean 0 and variance σ 2.

1. Estimate a, b, c, d, and σ 2.

2. Compute the SEs.

3. Are these SEs exact, or approximate?

4. Plot the residuals against the fitted values. (This is often a useful diag-
nostic: if you see a pattern, something is wrong with the model. You
can also plot residuals against other variables, or time, or. . . .)

Useful MATLAB commands: ones(32,1), [A B].

For bonus points. If you get a different answer from Yule, why might that
be?

Lab 4

Simulation with MATLAB

1. Simulate observations on 32 IID normal variablesXi with meanµ = 15
and variance σ 2 = 100.

2. Calculate the sample mean X and the sample SD σ̂ of the data.

3. Repeat 1 and 2, 1000 times.

4. Plot a histogram of the 1000 X’s. Comment?

5. Plot a histogram of the 1000 σ̂ ’s. Comment?

6. Plot a scatter diagram of the 1000 pairs (X, σ̂ ). Comment?

7. Calculate the SD of the 1000 X’s. How does this compare to σ/
√

32?
Comment?
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Useful MATLAB commands: rand, randn, for...end, hist(x,25).

MATLAB loves matrices. It hates loops. Your code should include a couple
of lines like

FakeData=randn(32,1000);

Aves=mean(FakeData);

Put in the semicolons, or you will spend a lot of time watching random
numbers scroll by on the screen.

Random Numbers

Appearances notwithstanding, computers have no random elements.
MATLAB generates “pseudo-random” numbers—numbers which look pretty
random—by some clever numerical algorithm that is completely determinis-
tic. One consequence may take you by surprise. With any particular release
of the program, if you start a MATLAB session and type rand(1), you will
always get the same number. (With Release 13, the answer is 0.9501.) In par-
ticular, you might get exactly the same results as all the other students in the
class who are doing Lab 4. (Doesn’t seem random, does it?) A work-around,
if you care, is to burn some random numbers before doing a simulation—type
x=rand(abcd,1);, where abcd is the last four digits of your telephone
number.

Lab 5

The t-Test. Part 1.

Yule’s model is described in chapter 1, and in Lab 3. Fix the design
matrix X at the values reported in table 1.3. (Subtract 100 from each entry to
get the percent changes.) Suppose the errors εi are IID N(0, σ 2), where σ 2

is a parameter (unknown). Make a t-test of the null hypothesis that b = 0.
What do you conclude? If you were arguing with Yule at a meeting of the
Royal Statistical Society, would you want to take the position that b = 0 and
he was fooled by chance variation?

The t-Test. Part 2.

In this part of the lab, you will do a simulation to investigate the distri-
bution of

t = b̂/ŜE,

under the null hypothesis that b = 0.
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1. Set the parameters inYule’s equation (Lab 3) as follows: a = −40, b =
0, c = 0.2, d = −0.3, σ = 15. Fix the design matrix X as in Part 1.

2. Generate 32 N(0, σ 2) errors and plug them into the equation

8Paupi = −40 + 0 × 8Outi + 0.2 × 8Oldi − 0.3 × 8Popi + εi,

to get simulated values for 8Paupi , with i = 1, . . . , 32.

3. Regress the simulated 8Paup on 8Out,8Pop, and 8Old. Calculate b̂,
ŜE, and t .

4. Repeat 2 and 3, 1000 times.

5. Plot a histogram for the 1000 b̂’s, a scatter diagram for the 1000 pairs
(b̂, σ̂ ), and a histogram for the 1000 t’s.

6. What is the theoretical distribution of b̂? of σ̂ 2? of t? How close is the
theoretical distribution of t to normal?

7. Calculate the mean and SD of the 1000 b̂’s. How does the mean compare
to the true b? (“True” in the simulation.) How does the SD compare to
the true SE for b̂?

You need to compute (X′X)−1 only once, but σ̂ 2 many times. Your code will
run faster with more matrices and fewer loops. (As they say, vectorize your
code.) Try this:

beta=[-40 0 .2 -.3]’

sigma=15

betaSim=X\(X*beta*ones(1,1000)+sigma*randn(32,1000));

The backslash operator does the least squares fit.

For discussion. Would it matter if you set the parameters differently? For
instance, you could try a = 10, b = 0, c = 0.1, d = −0.5 and σ = 25.
What if b = 0.5? What if εi ∼σ × (χ2

5 − 5)/
√

10? The simulation in this lab
is for the size of the test. How would you do a simulation to get the power of
the test? (Size and power are defined below.)

A tangential issue. Plot a scatter diagram for the 1000 pairs (â, b̂). What
accounts for the pattern?

Hypothesis Testing

The discussion question in Part 2 of Lab 5 refers to size and power. To
review these ideas, and put them in context, let θ be a parameter (or parameter
vector). Write Pθ for the probability distribution of the random variables in
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the model, when the parameter is θ . The null hypothesis is a set of θ ’s; the
alternative is a disjoint set of θ ’s. Let T be a test statistic. We reject the null
if T > k, where k is the critical value, chosen so that Pθ (T > k) ≤ α for all
θ in the null. Here α is the size or level of the test. Power is Pθ (T > k) for
θ in the alternative. This will depend, among other things, on k and θ .

From the Neyman-Pearson perspective, the ideal test maximizes power—
the chance of rejecting the null when the null is false—while controlling the
size, which is the chance of rejecting the null when the null is true.

With the t-test in Lab 5, the parameter vector θ is a, b, c, d, σ 2. The null
is the set of θ ’s with b = 0. The alternative is the set of θ ’s with b �= 0. The
test statistic T is, surprise, |t |. If you want α = 0.05, choose k

.= 2. More
precisely—with normal errors—you want the k such that the area beyond ±k

under Student’s t-density with 28 degrees of freedom is equal to 0.05. The
answer to that riddle is 2.0484. . . . (See page 309.) For our purposes, the
extra precision isn’t worth the bother: k

.= 2 is just fine.
The observed significance level P or Pobs is Pθ (T > Tobs), where Tobs

is the observed value of the test statistic. If you think of Tobs as random
(i.e., before data collection), then Pobs is random. In Lab 5 and many similar
problems, if θ satisfies the null hypothesis, then Pobs is uniform on [0,1]: that
is, Pθ (Pobs < p) = p for 0 < p < 1. If the null is b ≤ 0 vs the alternative
b > 0, then T = t rather than |t |, and Pobs is uniform when b = 0. If b < 0
then Pθ (Pobs < p) < p for 0 < p < 1. With a one-sided null hypothesis,
Pobs is generally computed assuming b = 0 (the worst-case scenario).

Lab 6

The F-Test. Part 1.

Yule’s model is explained in chapter 1, and in Lab 3. Fix the design
matrix X at the values reported in table 1.3. (Subtract 100 from each entry to
get the percent changes.) Assume that the errors εi are IIDN(0, σ 2). Test the
null hypothesis that c = d = 0. Use the F -test, as explained in section 5.7.

1. Fit the big model and the small model toYule’s data by OLS and compute
the sums of squares that are needed for the test: ‖e‖2, ‖Xβ̂‖2, and
‖Xβ̂(s)‖2.

2. Calculate the F -statistic. What do you conclude?

3. Is ‖Y‖2 = ‖Xβ̂(s)‖2 + (‖Xβ̂‖2 − ‖Xβ̂(s)‖2
) + ‖e‖2? Coincidence or

math fact?

MATLAB tip. X(:,1:2) picks off the first two columns in X. Colons are
powerful.
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The F-test. Part 2.

In this part of the lab, you will use simulation to investigate the distri-
bution of the F -statistic for testing the null hypothesis that c = d = 0. You
should consider two ways to set the parameters:

(i) a = 8, b = 0.8, c = 0, d = 0, σ = 15

(ii) a = 13, b = 0.8, c = 0.1, d = −0.3, σ = 10

Fix the design matrixX as in Part 1. Simulate data from each set of parameters
to get the distribution of F .

For example, let’s look at (i). Generate 32 ε’s and use the equation

8Paupi = 8 + 0.8 × 8Outi + εi

to get simulated data on 8Paup. Calculate F . Repeat 1000 times and make
a histogram for the values of F . You can take the ε’s to be IID N(0, 152).

Repeat for (ii). Which set of parameters satisfies the null hypothesis and
which satisfies the alternative hypothesis? Which simulation tells you about
size and which about power?

For discussion. Would it matter if you set the parameters in (i) differently?
For instance, you could try a = 13, b = 1.8, c = 0, d = 0 and σ = 25.
Would it matter if you set the parameters in (ii) differently? What if the errors
aren’t normally distributed?

Vectorizing Code
These days, computers are very, very fast. It may not pay to spend a lot of

time writing tight code. On the other hand, if you are doing a big simulation,
and it is running like molasses, getting rid of loops is good advice. If you
have nested loops, make the innermost loop as efficient as you can.

Lab 7
Collinearity

In this lab, you will use simulation to examine the effect of collinearity.
To get started, you might think about r = 0.3 where collinearity is mild,
and r = 0.99 where collinearity is severe. If you feel ambitious, also try
r = −0.3 and r = −0.99.

1. Simulate 100 IID picks (ξi, ζi) from a bivariate normal distribution,
where E(ξi) = E(ζi) = 0, E(ξ2

i ) = E(ζ 2
i ) = 1, and E(ξiζi) = 0. Use

randn(100,2).
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2. As data, these columns won’t quite have mean 0, variance 1, or correla-
tion 0. (Why not?) Cleaning up takes a bit of work.

(a) Standardize ξ to have mean 0 and variance 1: call the result U .

(b) Regress ζ on U . No intercept is needed. (Use the backslash oper-
ator \ to do the regression.) Let e be the vector of residuals. So
e ⊥ U . Standardize e to have mean 0 and variance 1. Call the
result W .

(c) Let r be the correlation you want. Set V = rU + √
1 − r2W .

(d) Check that U and V have mean 0, variance 1, and correlation r—
exactly. (Exactly? or up to roundoff error?)

3. Simulate Yi = Ui + Vi + εi for i = 1, . . . , 100, where the εi are IID
N(0, 1). Use randn(100,1) to get the ε’s.

4. Fit the no-intercept regression equation

Yi = âUi + b̂Vi + residual

to your simulated data set.

5. Repeat 1000 times, keeping U and V fixed.

6. Plot histograms for â, b̂, â + b̂, and â − b̂.

7. There are four parameters of interest: a, b, a + b, a − b. What are their
true values? Which parameter is easiest to estimate? Hardest? Discuss
briefly.

For bonus points. Why don’t you need an intercept in 2(b)? in 3? Does
it matter whether you regenerate (U, V ) in step 4, rather than keeping them
fixed?

MATLAB tip. std(x) divides by n− 1, but std(x,1) divides by n. You
can work the lab either way: just be consistent.

Lab 8

Path Diagrams

In this lab, you will replicate part of Blau and Duncan’s path model
in figure 6.1. Equation (6.3) explains son’s occupation in terms of father’s
occupation, son’s education, and son’s first job. Variables are standardized.
Correlations are given in table 6.1.
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1. Estimate the path coefficients in (6.3) and the standard deviation of the
error term. How do your results compare with those in figure 6.1?

2. Compute SEs for the estimated path coefficients. (Assume there are
20,000 subjects.)

Lab 9
More Path Diagrams

In this lab, you will replicate Gibson’s path diagram, which explains
repression in terms of mass and elite tolerance (section 6.3). The correla-
tion between mass and elite tolerance scores is 0.52; between mass tolerance
scores and repression scores, −0.26; between elite tolerance scores and re-
pression scores, −0.42. (Tolerance scores were averaged within state.)

1. Compute the path coefficients in figure 6.2, using the method of sec-
tion 6.1.

2. Estimate σ 2. Gibson had repression scores for all the states. He had
mass tolerance scores for 36 states and elite tolerance scores for 26
states. You may assume the correlations are based on 36 states—this
will understate the SEs, by a bit—but you need to decide if p is 2 or 3.

3. Compute SEs for the estimates.

4. Compute the SE for the difference of the two path coefficients. You will
need the off-diagonal element of the covariance matrix: see exercise
4B14(a). Comment on the result.

Note. Gibson used weighted regression, this lab does not use weights (but
see http://www.stat.berkeley.edu/users/census/repgibson.pdf).

Lab 10
Maximum Likelihood

In this lab, you will compute the MLE by numerical maximization of
the log likelihood. Suppose that Xi are IID for i = 1, 2, . . . , 50. Their
common density function is θ/(θ + x)2 for 0 < x < ∞. The parameter θ
is an unknown positive constant. See example 4 in section 7.1. Data on the
Xi’s are in the file mle.dat. This is a complicated lab, which might take
two weeks to do.

1. Write down the formula for the log likelihood; plot it as a function of θ .

2. Find the MLE θ̂ by numerical maximization. It will be better to use
the parameter φ = log θ . If φ is real, θ = eφ > 0, so the positivity
constraint on θ is satisfied, and no constraint needs to be imposed on φ.
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3. Put a standard error on θ̂ . (See theorem 7.1, and exercise 7A8.)

Some useful MATLAB commands: fminsearch, log, exp.

fminsearch does minimization. (Minimizing −f is the same as maxi-
mizing f , although it’s a little more confusing.) Use the syntax

phiwant=fminsearch(@negloglike, start, [ ], x)

Here, phiwant is what you want—the parameter value that minimizes the
negative log likelihood. The MLE for θ is exp(phiwant). The at-sign
@ is MATLAB’s way of referring to functions. fminsearch looks for a
local minimum of negloglike near the starting point, start . The
log median of the data is a good choice for start. This particular negative
likelihood function has a unique minimum (exercise 7A6). The rationale for
the log median is exercise 7A7, plus the fact that φ = log θ . Starting at the
median or log median of the data is not a general recipe. Some versions of
MATLAB may balk at @: if so, try

phiwant=fminsearch(’negloglike’,...)

You have to write negloglike.m. This is a function file that computes the
negative log likelihood from phi and x, where phi is the parameter log θ
and x is the data—which you get from mle.dat. The call to fminsearch
passes the data x to negloglike.m. It does not pass the parameter phi
to negloglike.m: MATLAB will minimize over phi. The first line of
negloglike.m should be

function negll=negloglike(phi,x)

The rest of the file is MATLAB code that computes negll—the negative
log likelihood—from phi and x . At the end of negloglike.m , you need
a line of code that sets negll to the value that you have computed from
phiand x .

Just to illustrate syntax, here is a function file that computes (u + cos u)2

from u.

function youpluscosyoutoo=fun(u)
youpluscosyoutoo=(u+cos(u))ˆ2;

You would save these two lines of code as fun.m. If at the MATLAB
prompt—or in some other m-file—you type fun(3), MATLAB will return
(3 + cos 3)2 = 4.0401. If you type

fminsearch(@fun,1)

MATLAB will return −0.7391, the u that minimizes (u+cos u)2. The search
started at 1.
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Lab 11

Simulations for the MLE

In this lab, you will investigate the distribution of θ̂ , the maximum like-
lihood estimate of θ , for the model in Lab 10. You should be able to reuse
most of your code. This might be an occasion for loops.

1. Generate 50 IID variables Ui that are uniform on [0, 1]. Set θ = 25 and
Xi = θUi/(1−Ui). According to exercise 7A5, you now have a sample
of size 50 from the density θ/(θ + x)2.

2. Find the MLE θ̂ by numerical maximization.

3. Repeat 1000 times.

4. Plot a histogram for the 1000 realizations of θ̂ .

5. Calculate the mean and SD of the 1000 realizations of θ̂ . How does the
SD compare to 1/

√
50 · Iθ? (The Fisher information Iθ is computed in

exercise 7A8.) Comment?

6. For bonus points. Let t = (θ̂ − 25)/ŜE, where ŜE is computed either
from the Fisher information as in point 5, or from observed information.
Which version of t is more like a normal distribution?

7. Double or quits on bonus points. What happens to θ̂ if you double θ ,
from 25 to 50? What about Fisher information? observed information?

Lab 12

The Logit Model

In this lab, you will fit a logit model, using data from the 2001 Current
Population Survey. The data are in pac01.dat The data cover 13,803
individuals 16 years of age or older, in the five Pacific states of the US.
The variables and file layout are explained in pac01doc.txt in the same
directory.

The dependent variableY is 1 if the person is employed and at work (LABSTAT
is 1). Otherwise, Y = 0. The explanatory variables are age, sex, race, and
educational level. The following categories should be used:

Age: 16–19, 20–39, 40–64, 65 or above.

Sex: male, female. (Not much choice about this one.)

Race: white, non-white.

Educational level: not a high school graduate, a high school education
but no more, more than a high school education.
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For the baseline individual in the model, choose a person who is male, non-
white, age 16–19, and did not graduate from high school.

1. What is the size of the design matrix?

2. Use fminsearch to fit the model; report the parameter estimates.

3. Estimate the SEs; use observed information.

4. What does the model say about employment?

5. Why use dummy variables for education, rather than EDLEVEL as a
quantitative variable?

6. For discussion. Why might women be less likely to have LABSTAT =
1? Are LABSTAT codes over 4 relevant to this issue?

Where should fminsearch start looking? Read section 7.2! How to com-
pute the log likelihood function and its derivatives? Work exercises 7D9–10.

MATLAB tip. If U and V are m×n matrices, then U<V is an m×n matrix of
0’s and 1’s: there is a 1 in position (i, j) provided U(i,j)<V(i,j).

Numerical Maximization

Numerical maximization can be tricky. The more parameters there are,
the trickier it gets. As a partial check on the algorithm, you can start the
maximization from several different places. Another useful idea: if the com-
puter tells you the max is at [1.4517 0.5334 0.8515 ...], start the
search again—from a nearby point, like [1.5 0.5 0.8 ...].

Lab 13

Simultaneous Equations

In this lab, you will fit a model that has two simultaneous equations.
The model is the one proposed by Rindfuss et al for determining a woman’s
educational level (ED) and age at first birth (AGE). The model is described
in section 9.5; variables are defined in table 9.1. The correlation matrix is
shown at the top of the next page. Also see

rindcor.dat

In rindcor.dat, the upper right triangle is filled with 0’s: that way, MAT-
LAB can read the file. You may need to do something about all those 0’s.
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OCC RACE NOSIB FARM REGN ADOLF REL YCIG FEC ED AGE

OCC 1.000
RACE −.144 1.000
NOSIB −.244 .156 1.000
FARM −.323 .088 .274 1.000
REGN −.129 .315 .150 .218 1.000
ADOLF −.056 .150 −.039 −.030 .071 1.000
REL .053 −.152 .014 −.149 −.292 −.052 1.000
YCIG −.043 .030 .028 −.060 −.011 .067 −.010 1.000
FEC .037 .035 .002 −.032 −.027 .018 −.002 .009 1.000
ED .370 −.222 −.328 −.185 −.211 −.157 −.012 −.171 .038 1.000
AGE .186 −.189 −.115 −.118 −.177 .111 .098 −.122 .216 .380 1.000

Your mission, if you choose to accept it, is to estimate parameters in the
standardized equations that explain ED and AGE. Variables are standardized
to mean 0 and variance 1, so equations do not need intercepts. You do not have
the original data, but can still use IVLS (section 9.2) or IISLS (section 9.4).
IVLS might be easier. You have to translate equation (9.10) into usable form.
For example, Z′X/n becomes the q×p matrix of correlations between the
instruments and the explanatory variables. See section 6.1.

Keeping track of indices is irritating. Here is a useful MATLAB trick. Num-
ber the variables from 1 through 11: OCC is #1, . . ., AGE is #11. Let X
consist, e.g., of variables 11, 2 through 8, and 1 (i.e., AGE, RACE , . . . ,

YCIG, OCC). How do you get the correlation matrix M for X from the corre-
lation matrix C for all the variables in the system? Nothing is easier. You get
C by loading rindcor.dat and filling in the upper triangular part. Then
you type

idx=[11 2:8 1];
M=C(idx’,idx);

(Here, idx is just a name—ID numbers of variables in X.) Let Z consist,
e.g., of variables 9, 2 through 8, and 1 (i.e., FEC, RACE , . . . ,YCIG, OCC).
How do you get the matrix L of correlations between Z and X? You define
idz—that’s part of your job—then type L=C(idz’,idx). There is a row
of L for each variable in Z, and a column for each variable in X.

Any comment on the coefficients of the control variables (OCC, . . . , FEC)?

For bonus points

1. Rindfuss et al is reprinted at the back of the book. If your results differ
from those in the paper (table 2), why might that be?
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2. Find the asymptotic SEs. Hint: in equation (9.14),

‖Y − Xβ̂IVLS‖2 = ‖Y‖2 + β ′
IVLS(X

′X)βIVLS − 2(Y ′X)β̂IVLS .

Lab 14 and Beyond

Additional Topics

Additional labs can be based on the data-snooping simulation (section
5.8, end notes to chapter 5); on discussion questions 10–15 in chapter 4, 6 in
chapter 5, or 3, 6, 15 in chapter 6; on bootstrap example 4 in chapter 8; and on
the IVLS simulations in section 9.8. Replicating table 8.1 is also a worthwhile
activity. However, it takes a fair amount of coding effort to replicate column F,
and the resulting code may run very, very slowly: code should be debugged
using a small number of bootstrap replicates. An interesting supplementary
question: which is a better estimator for β, OLS or one-step GLS? In graduate
courses, there is a useful supplement to Lab 5.

The t-Test. Part 3.

Suppose the true model behind Yule’s data is

8Paupi = a+b1×8Outi+b2×(8Outi )
2+c×8Popi+d×8Oldi+εi, (†)

where the εi are IID N(0, σ 2) with σ = 10. However, Yule fits the linear
model with b2 constrained to 0, that is, he assumes

8Paupi = a + b × 8Outi + c × 8Popi + d × 8Oldi + εi . (‡)

How big would |b2| have to be to find the mistake, by looking at the residual
plot for the fit to (‡)?

Try to answer this question for the special case where all other parameters
are fixed: a = 13, b1 = 0.8, c = −0.3, d = 0.1. Choose a value for b2
and generate 32 errors εi from the normal distribution. Use this model to
construct simulated data on 8Paup. Now regress the simulated 8Paup on
8Out,8Pop,8Old and plot the residuals. You will need to make several
plots for each trial value of b2. (Why?)

1. Do standard errors take specification error into account?

2. Do the standard errors for the coefficients in Yule’s model (‡) measure
the uncertainty in predicting the results of intervention?

3. What are the implications?
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4. If you knew that the only plausible alternative to (‡)was (†), how would
you decide between the two specifications?

Terminology. A “specification” says what variables go into a model,
what the functional form is, and what should be assumed about the disturbance
term (or latent variable); if the data are generated some other way, that is
“specification error” or “misspecification.”

Statistical Packages

The labs are organized to help you learn what’s going on underneath the
hood when you fit a model. Statistical packages are organized to help you fit
standard models with a minimum of fuss—although software designers have
their own ideas about what “fuss” should mean to the rest of us. Recom-
mended packages include the MATLAB statistics toolbox, R, and SAS. For
instance, in release 13 of the MATLAB toolbox, you can fit a probit model
by the command

glmfit(X,[Y ones(n,1)], ’binomial’,’probit’)

Here, X is the design matrix, and Y is the response variable. MATLAB thinks
of [Y ones(n,1)] as describing n binomial variables, each with 0 or 1
success out of 1 trial. The first column in [Y ones(n,1)] tells it the
number of successes, and the second column tells it the number of trials.
There is a quirk in the code: you don’t put a column of 1’s into X . MATLAB
will do this for you, and two columns of 1’s is one too many. In version 1.9.0
of R,

glm(Y˜X1+X2,family=binomial(link=probit))

will fit a probit model. The response variable is Y , as above. There are two
independent variables, X1 and X2 . Again, an intercept is supplied for you.
The formula with the tilde, Y˜X1+X2, is just R’s way of describing a model
to itself: the dependent variable is Y; and there are two explanatory variables,
X1 and X2. The family=binomial(link=probit) tells it you have
a binomial response variable and want to fit a probit model. (Before you
actually do this, please read An Introduction to R—click on Help in the R
console, then on Manuals.)

What about statistical tables? The MATLAB statistics toolbox has “cdf”
and “icdf” functions that replace printed tables for the normal, t , F , and a
dozen other classical distributions. In R, check the section called “R as a set
of statistical tables” in An Introduction to R. Looking things up in printed
statistical tables is now like using a slide rule to multiply numbers.



Appendix: Sample MATLAB Code

This program has most of the features you will need during the semester.
It loads a data file small.dat listed at the end. It calls a function file
phi.m also listed at the end.

A script file—demolab.m

% demolab.m
% a line that starts with a percent sign
% is a comment
% at the UNIX prompt, type matlab...
% you will get the matlab prompt, >>
%
% you can type edit to get an editor
%
% help to get help
%
% helpdesk for a browser-based help facility
%
% emergency stop is .... control-c
%
% how to create matrices

x=[1 2
3 4
5 6]

y=[3 3
4 3
3 1]
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disp(’CR means carriage-return-- the "enter" key’)
qq=input(’hit cr to see some matrix arithmetic’);

% this is a way for the program to get input,
% here it just waits until you press the enter key,
% so you can look at the screen....

% names can be pretty long and complicated

twice x=2*x
x plus y=x+y
transpose x=x’
transpose x times y=x’*y

qq=input(’hit cr to see determinants and inverses’);

determinant of xTy=det(x’*y)
inverse of xTy=inv(x’*y)

disp(’hit cr to see coordinatewise multiplication,’)
qq=input(’division, powers.... ’);

x dotstar y=x.*y
x over y=x./y
x squared=x.ˆ2

qq=input(’hit cr for utility matrices ’);

ZZZ=zeros(2,5)
WON=ones(2,3)
ident=eye(3)

disp(’hit cr to put matrices together--’)
qq=input(’concatenation-- use [ ] ’);

concatenated=[ones(3,1) x y]

qq=input(’hit cr to graph log(t) against t ... ’);
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t=[.01:.05:10]’;
% start at .01, go to 10 in steps of .05

plot(t,log(t),’x’)
disp(’look at the graph!!!’)
disp(’ ’)
disp(’ ’)

disp(’loops’)
disp(’if ... then ... ’)
disp(’MATLAB uses == to test for equality’)
disp(’MATLAB will print the perfect squares’)
disp(’from 1 to 50’)
qq=input(’hit cr to go .... ’);

for j=1:50 %sets up a loop

if j==fix(sqrt(j))ˆ2

found a perfect square=j
% fix gets rid of decimals,
% fix(2.4)=2, fix(-2.4)=-2

end %gotta end the "if"

end %end the loop
% spaces and indenting make the code easier to read

qq=input(’hit cr to load a file and get summaries’);

load small.dat
ave cols 12=mean(small(:,1:2))
SD cols 12=std(small(:,1:2))

% small(:,1) is the first column of small...
% that is what the colon does
% small(:,1:2) is the first two columns
% matlab divides by n-1 when computing the SD

u=small(:,3);
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v=small(:,4);

% the semicolon means, don’t print the result

qq=input(’hit cr for a scatterplot... ’);
plot(u,v,’x’)

correlation matrix 34=corrcoef(u,v)
% look at top right of the matrix
% for the correlation coefficient

disp(’hit cr to get correlations’)
qq=input(’between all pairs of columns ’);

all corrs=corrcoef(small)

qq=input(’hit cr for simulations ’);

uniform random numbers=rand(3,2)
normal random numbers=randn(2,4)

disp(’so, what is E(cos(Z)|Z>0) when Z is N(0,1)?’)
qq=input(’hit cr to find out ’);
Z=randn(10000,1);
f=find(Z>0);
EcosZ given Z is positive=mean(cos(Z(f)))
trickier=mean(cos(Z(Z>0)))

disp(’come let us replicate,’)
qq=input(’might be sampling error, hit cr ’);
Z=randn(10000,1);
f=find(Z>0);
first shot was=EcosZ given Z is positive
replicate=mean(cos(Z(f)))

disp(’guess there is sampling error....’)

disp(’ ’)
disp(’ ’)
disp(’ ’)
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disp(’MATLAB has script files and function files ’)
disp(’mean and std are function files,’)
disp(’mean.m and std.m ’)
disp(’there is a function file phi.m’)
disp(’that computes the normal curve’)

qq=input(’hit cr to see the graph ’);
u=[-4:.05:4];
plot(u,phi(u))

A function file—phi.m

% phi.m
% save this in a file called phi.m
% first line of code has to look like this...
function y=phi(x)

y=(1/sqrt(2*pi))*exp(-.5*x.ˆ2);
% at the end, you have to compute y--
% see first line of code

small.dat

1 2 2 4
4 1 3 8.5
2 2 5 1
8 9 7.5 0.5
3 3 4 2
7 7 0.5 3
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Over three decades of research on citizen willingness to “put up with” polit-

ical differences has led to the conclusion that the U.S. public is remarkably

intolerant. Though the particular political minority that is salient enough to

attract the wrath of the public may oscillate over time between the Left and

the Right (e.g., Sullivan, Piereson, and Marcus 1982), generally, to be much

outside the centrist mainstream of U.S. politics is to incur a considerable risk

of being the object of mass political intolerance.

At the same time, however, U.S. public policy is commonly regarded as

being relatively tolerant of political minorities. Most citizens believe that all

citizens are offered tremendous opportunities for the expression of their polit-

ical preferences (e.g., McClosky and Brill 1983, 78). The First Amendment

to the U.S. Constitution is commonly regarded as one of the most uncompro-

mising assertions of the right to freedom of speech to be found in the world

(“Congress shall make no law . . .”). Policy, if not public opinion, appears to

protect and encourage political diversity and competition.

The seeming inconsistency between opinion and policy has not gone un-

noticed by scholars. Some argue that the masses are not nearly so intolerant

as they seem, in part due to biases in the questions used to measure intoler-

ance (e.g., Femia 1975) and in part because the greater educational opportu-

nity of the last few decades has created more widespread acceptance of polit-

ical diversity (e.g., Davis 1975; Nunn, Crockett, and Williams 1978). Most,

however, are willing to accept at face value the relative intolerance of the

mass public and the relative tolerance of public policy but to seek reconcil-

iation of the seeming contradiction by turning to the processes linking opin-

ion to policy. Public policy is tolerant in the United States because the pro-

cesses through which citizen preferences are linked to government action do

not faithfully translate intolerant opinion inputs into repressive policy outputs.

Just as in so many other substantive policy areas, public policy concerning the

rights of political minorities fails to reflect the intolerant attitudes of the mass

public.

Instead, the elitist theory of democracy asserts, policy is protective of po-

litical minorities because it reflects the preferences of elites, preferences that

tend to be more tolerant than those of the mass public. For a variety of rea-

sons, those who exert influence over the policymaking process in the United

States are more willing to restrain the coercive power of the state in its deal-

ings with political opposition groups. Thus there is a linkage between policy

and opinion, but it is to tolerant elite opinion, not to intolerant mass opinion.

Mass opinion is ordinarily not of great significance; public policy reflects elite

opinion and is consequently tolerant of political diversity. The democratic
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character of the regime is enhanced through the political apathy and immo-

bility of the masses, according to the elitist theory of democracy.1

The elitist theory nonetheless asserts that outbreaks of political

repression—when they occur—are attributable to the mass public. While the

preferences of ordinary citizens typically have little influence over public

policy—in part, perhaps, because citizens have no real preferences on most

civil liberties issues—there are instances in which the intolerance of the mass

public becomes mobilized. Under conditions of perceived threat to the status

quo, for example, members of the mass public may become politically ac-

tive. In the context of the general propensity toward intolerance among the

mass public, mobilization typically results in demands for political repres-

sion. Thus, the elitist theory of democracy hypothesizes that political repres-

sion flows from demands from an activated mass public.

The theory of “pluralistic intolerance”—recently proposed by Sullivan,

Piereson, and Marcus (1979, 1982) and Krouse and Marcus (1984)—provides

a nice explanation of the process through which mass intolerance is mobi-

lized (see also Sullivan et al.1985). The theory asserts that one of the primary

causes of political repression is the focusing of mass intolerance on a specific

unpopular political minority. To the extent that intolerance becomes focused,

it is capable of being mobilized. Mobilization results in demands for politi-

cal repression, demands to which policy makers accede. The authors claim

support for their theory from recent U.S. history:

“During the 1950s, the United States was undoubtedly a society characterized by

considerable consensus in target group selection. The Communist Party and its

suspected sympathizers were subjected to significant repression, and there seemed

to be a great deal of support for such actions among large segments of the political

leadership as well as the mass public. . . . The political fragmentation and the pro-

liferation of extremist groups in American politics since the 1950s has undoubt-

edly resulted in a greater degree of diversity in target group selection. If this is the

case, such a situation is less likely to result in repressive action, even if the mass

public is roughly as intolerant as individuals as they were in the 1950s (Sullivan,

Piereson, and Marcus 1982, 85, emphasis in original).”

Thus both the elitist theory of democracy and the theory of pluralistic intol-

erance are founded upon assumptions about the linkage between opinion and

policy.

Despite the wide acceptance of the elitist theory of democracy, there has

been very little empirical investigation of this critical linkage between opinion

and policy.2 Consequently, this research is designed as an empirical test of the
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policy implications of the widespread intolerance that seems to characterize

the political culture of the United States. Using data on elite and mass opinion

and on public policy in the states, the linkage hypothesis is tested. My focus is

on the era of the McCarthy Red Scare, due to its political and theoretical im-

portance. Thus I assess whether there are any significant policy implications

that flow from elite and mass intolerance.

Public Policy Repression
Conceptualization

A major impediment to drawing conclusions about the linkage between po-

litical intolerance and the degree of repression in U.S. public policy is that

rigorous conceptualizations and reproducible operationalizations of policy re-

pression do not exist. Conceptually, I define repressive public policy as statu-

tory restriction on oppositionist political activity (by which I mean activities

through which citizens, individually or in groups, compete for political power

[cf. Dahl 1971]) upon some, but not all, competitors for political power.3 For

example, policy outlawing a political party would be considered repressive,

just as would policy that requires the members of some political parties to

register with the government while not placing similar requirements on mem-

bers of other political parties. Though there are some significant limitations

to this definition, there is utility to considering the absence of political re-

pression (political freedom) as including unimpaired opportunities for all full

citizens

1. to formulate their preferences

2. to signify their preferences to their fellow citizens and the government

by individual and collective action

3. to have their preferences weighted equally in the conduct of the govern-

ment, that is, weighted with no discrimination because of the content or

source of the preference (Dahl 1971, 1–2).

That is the working definition to be used in this research.

Operationalizing Political Repression—the 1950s

There have been a few systematic attempts at measuring political repression

as a policy output of government. Bilson (1982), for instance, examined the

degree of freedom available in 184 polities, using as a measure of freedom

the ratings of the repressiveness developed by Freedom House. Dahl provides

system scores on one of his main dimensions of polyarchy (opportunities for

political opposition) for 114 countries as they stood in about 1969 (Dahl 1971,

232). In their various research reports Page and Shapiro (e.g., 1983) measure
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civil rights and civil liberties opinions and policies in terms of the adoption of

specific sorts of public policy. Typically, however, the endogenous concept in

most studies of state policy outputs is some sort of expenditure variable. (See

Thompson 1981 for a critique of this practice.) These earlier efforts can in-

form the construction of a measure of political repression in the policy outputs

of the American states.

The measure of policy repression that serves as the dependent variable

in this analysis is an index indicating the degree of political repression di-

rected against the Communist party and its members during the late 1940s

and 1950s. A host of actions against Communists was taken by the states, in-

cluding disqualifying them from public employment (including from teaching

positions in public schools); denying them access to the ballot as candidates,

and prohibiting them from serving in public office even if legally elected; re-

quiring Communists to register with the government; and outright bans on the

Party. Forced registration was a means toward achieving these ends.

Of the fifty states, twenty-eight took none of these actions against

Communists.4 Two states—Arkansas and Texas—banned Communists from

the ballot and from public employment, as well as banning the Party itself and

requiring that Communists register with the government. Another five states

adopted all three measures against the Communists, but did not require that

they register with the government. Pennsylvania, Tennessee, and Washing-

ton did not formally bar Communists from public employment but did out-

law the party and forbade its members from participating in politics. The re-

maining twelve states took some, but not all, actions against the Communists.

From these data, a simple index of political repression has been calculated.

The index includes taking no action, banning Communists from public em-

ployment, banning Communists from running candidates and holding pub-

lic office, and completely banning Communists and the Communist Party. A

“bonus” score of .5 was given to those states requiring that Communists reg-

ister with the government.5 Table 1 shows the scores of the individual states

on this measure.

This measure can rightly be considered to be a valid indicator of political

repression by the states.6 In asserting this I do not gainsay that the state has

the right—indeed, the obligation—to provide for its internal security. Conse-

quently, statutes that prohibit such actions as insurrection do not necessarily

constitute political repression. For instance, Texas made it unlawful to “com-

mit, attempt to commit, or aid in the commission of any act intended to over-

throw” the Texas government (Art. 6689-3A, Sec. 5). This section proscribes

action, not thought or speech, and is therefore not an appropriate measure

of political repression. However, the next subsection of the statute made it
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illegal to “advocate, abet, advise, or teach by any means any person to

commit” a revolutionary act. Indeed, even conspiracy to advocate is prohib-

ited (Art.6889-3A, Sec.5 [3]). This is indeed a constraint on the speech of po-

litical minorities and therefore is treated as repressive. As the action prohib-

ited moves beyond a specific, criminal behavior, the line between repressive

and nonrepressive legislation becomes less clear. Gellhorn (1952) commented,

“Traditionally the criminal law has dealt with the malefactor, the one who himself

committed an offense. Departing from this tradition is the recent tendency to as-

cribe criminal potentialities to a body of persons (usually, though not invariably,

the Communists) and to lay restraints upon any individual who can be linked with

the group. This, of course, greatly widens the concept of subversive activities,

because it results, in truth, in forgetting about activities altogether. It substitutes

associations as the objects of the law’s impact. Any attempt to define subversion

as used in modern statutes must therefore refer to the mere possibility of activity

as well as to present lawlessness.” (p. 360).

There can be little doubt as to the effectiveness of this anti-Communist

legislation. Not only were the Communist Party U.S.A. and other Communist

parties essentially eradicated, but so too were a wide variety of non-

Communists. It has been estimated that of the work force of 65 million,

13 million were affected by loyalty and security programs during the

McCarthy era (Brown 1958). Brown calculates that over 11 thousand individ-

uals were fired as a result of government and private loyalty programs. More

than 100 people were convicted under the federal Smith Act, and 135 people

were cited for contempt by the House Un-American Activities Committee.

Nearly one-half of the social science professors teaching in universities at the

time expressed medium or high apprehension about possible adverse reper-

cussions to them as a result of their political beliefs and activities (Lazarsfeld

and Thielens 1958). Case studies of local and state politics vividly portray the

effects of anti-Communist legislation on progressives of various sorts (e.g.,

Carleton 1985). The “silent generation” that emerged from McCarthyism is

testimony enough to the widespread effects—direct and indirect—of the po-

litical repression of the era (see also Goldstein 1978, 369–96).

Nor was the repression of the era a function of the degree of objective

threat to the security of the state. Political repression was just as likely to oc-

cur in states with virtually no Communists as it was to occur in states with

large numbers of Communists.7 The repression of Communists bore no rela-

tionship to the degree of threat posed by local Communists.

It might seem that the repression of Communists, though it is clearly

repression within the context of the definition proffered above, is not neces-

sarily “antidemocratic” because the objects of the repression are themselves



Table 1. Political Repression of Communists by American State Governments

Banned from Banned from Banned Scale

State Public Employment Politics Outright Score

Arkansas Yes Yes Yes 3.5

Texas Yes Yes Yes 3.5

Arizona Yes Yes Yes 3.0

Indiana Yes Yes Yes 3.0

Massachusetts Yes Yes Yes 3.0

Nebraska Yes Yes Yes 3.0

Oklahoma Yes Yes Yes 3.0

Pennsylvania No Yes Yes 3.0

Tennessee No Yes Yes 3.0

Washington No Yes Yes 3.0

Alabama Yes Yes No 2.5

Louisiana Yes Yes No 2.5

Michigan Yes Yes No 2.5

Wyoming Yes Yes No 2.5

Florida Yes Yes No 2.0

Georgia Yes Yes No 2.0

Illinois Yes Yes No 2.0

California Yes No No 1.0

New York Yes No No 1.0

Delaware No No No .5

Mississippi No No No .5

New Mexico No No No .5

Alaska No No No .0

Colorado No No No .0

Connecticut No No No .0

Hawaii No No No .0

Iowa No No No .0

Idaho No No No .0

Kentucky No No No .0

Kansas No No No .0

Maryland No No No .0

Maine No No No .0

Minnesota No No No .0

Missouri No No No .0

Montana No No No .0

North Carolina No No No .0

North Dakota No No No .0

New Hampshire No No No .0

New Jersey No No No .0

Nevada No No No .0

Ohio No No No .0

Oregon No No No .0

Rhode Island No No No .0

South Carolina No No No .0

South Dakota No No No .0

Utah No No No .0

Vermont No No No .0

Virginia No No No .0

West Virginia No No No .0

Wisconsin No No No .0

Note: The scale score is a Guttman score. A “bonus” of .5 was added to the scale added to the

scale if the state also required that Communists register with the government. See note 4 for

details of the assignments of scores to each state.
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“antidemocrats.” To repress Communists is to preserve democracy, it might

be argued. Several retorts to this position can be formulated. First, for

democracies to preserve democracy through nondemocratic means is illogi-

cal because democracy refers to a set of means, as well as ends (e.g., Dahl

1956, 1961, 1971; Key 1961; Schumpeter 1950). The means argument can

also be judged in terms of the necessity of the means. At least in retrospect

(but probably otherwise as well), it is difficult to make the argument that the

degree of threat to the polity from Communists in the 1940s and 1950s in any

way paralleled the degree of political repression (e.g., Goldstein 1978). Sec-

ond, the assumption that Communists and other objects of political repres-

sion are “antidemocratic” must be considered as an empirical question itself

in need of systematic investigation. As a first consideration, it is necessary to

specify which Communists are being considered, inasmuch as the diversity

among those adopting—or being assigned—the label is tremendous. Merely

to postulate that Communists are antidemocratic is inadequate. Third, the re-

pression of Communists no doubt has a chilling effect on those who, while

not Communists, oppose the political status quo. In recognizing the coercive

power of the state and its willingness to direct that power against those who

dissent, the effect of repressive public policy extends far beyond the target

group.

Public Opinion Intolerance
Conceptualization

“Political tolerance” refers to the willingness of citizens to support the ex-

tension of rights of citizenship to all members of the polity, that is, to allow

political freedoms to those who are politically different. Thus, “tolerance im-

plies a willingness to ‘put up with’ those things that one rejects. Politically, it

implies a willingness to permit the expression of those ideas or interests that

one opposes. A tolerant regime, then, like a tolerant individual, is one that

allows a wide berth to those ideas that challenge its way of life” (Sullivan,

Piereson, and Marcus 1979, 784). Thus, political tolerance includes support

for institutional guarantees of the right to oppose the existing regime, includ-

ing the rights to vote, to participate in political parties, to organize politically

and to attempt political persuasion. Though there may be some disagreement

about the operationalization of the concept, its conceptual definition is rela-

tively noncontroversial (see Gibson and Bingham 1982).

Operationalization

The simple linkage hypothesis is that where the mass public is more intoler-

ant, state public policy is more repressive. Though the hypothesis is simple,
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deriving measures of mass intolerance is by no means uncomplicated. In-

deed, the study of state politics continually confronts the difficulty of deriving

measures of state public opinion. Though there are five general alternatives—

ranging from simulations to individual state surveys—the only viable option

for estimating state-level opinion intolerance during the McCarthy era is to

aggregate national surveys by state.

The source of the opinion data is the Stouffer survey, conducted in 1954.

This survey is widely regarded as the classic study that initiated inquiry into

the political tolerance of elites and masses (even though earlier evidence ex-

ists, e.g., Hyman and Sheatsley 1953). Two independent surveys were ac-

tually conducted for Stouffer: one by the National Opinion Research Center

(NORC) and the other by the American Institute for Public Opinion (AIPO-

Gallup). This design was adopted for the explicit purpose of demonstrating

the accuracy and reliability of public opinion surveys based on random sam-

ples. Each agency surveyed a sample of the mass public and of the political

elites.8

Stouffer created a six-point scale to indicate political intolerance (see

Stouffer 1955, 262–69). The index is a Guttman scale based on the responses

to fifteen items concerning support for the civil liberties of Communists, so-

cialists, and atheists (see Appendix for details). The items meet conventional

standards of scalability and are widely used today as indicators of political

tolerance (e.g., Davis 1975; Nunn, Crockett, and Williams 1978; McCutcheon

1985; and the General Social Survey, conducted annually by NORC).

The process of aggregating these tolerance scores by state is difficult be-

cause the states of residence of the respondents in the Stouffer surveys were

never entered in any known version of the data set. Through an indirect pro-

cess, using the identity of the interviewer and the check-in sheets used to

record the locations (city and state) of the interviews conducted by each in-

terviewer, state of residence could be ascertained for the NORC half of the

Stouffer data set. The respondents were aggregated by state of residence to

create summary indicators of the level of intolerance in each of the states. The

Appendix reports the means, standard deviations, and numbers of cases and

primary sampling units for this tolerance scale for the states represented in the

NORC portion of the Stouffer survey. Evidence that this aggregation process

produces reasonably valid state-level estimates of political intolerance is also

presented.

Aggregating the elite interviews to the state level is in one sense more

perilous and in another sense less perilous. With a considerably small number

of subjects (758 in Stouffer’s NORC sample), the means become more un-

stable. On the other hand, the aggregation is not done for the purpose of est-

imating some sort of elite population parameter. The elites selected were in
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Figure 1. Relationships between Opinion and Policy

Mass
Tolerance

Repression

Elite
Tolerance

.52 (26)

−.06

−.35
−.42 (26)

−.26 (36)

Note: Boldfaced entries are bivariate correlation coefficients, with pairwise

missing data deletion. The nonboldfaced entries are standardized regression

coefficients from a weighted least squares analysis using listwise missing

data deletion. The numbers of caste are shown in parentheses.

no sense a random sample of state elites, so it makes little sense to try to make

inferences from the sample to some larger elite population. Instead, the elite

samples represent only themselves. The Appendix reports the state means,

standard deviations, and numbers of cases.

There is a moderate relationship between elite and mass opinion in the

state (r = .52). To the extent that we would expect elite and mass opinion in

the states to covary, this correlation serves to validate the aggregate measures

of opinion. The substantive implications of this correlation are considered

below.

The Simple Relationship between Opinion and Policy
Figure 1 reports the relationships between mass and elite political intolerance

and the adoption of repressive public policies by the states. There is a mod-

est bivariate relationship during the McCarthy era between mass opinion and

repressive public policy. In states in which the mass public was more intol-

erant, there tended to be greater political repression, thus seeming to support

the elitist theory. However, the relationship is somewhat stronger between

elite opinion and repression. From a weighted least squares analysis incor-

porating both elite opinion and mass opinion, it is clear that it is elite prefer-

ences that most influence public policy. The beta for mass opinion is −.06;

for elite opinion, it is −.35 (significant beyond .01).9 Thus political repression

occurred in states with relatively intolerant elites. Beyond the intolerance

of elites, the preferences of the mass public seemed to matter little.
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Table 2. The Influence of Elite and Mass Opinion on the Repression of

Communists (Percentages)

Elite Opinion Less Tolerant Elite Opinion More Tolerant

Mass Opinion Mass Opinion Mass Opinion Mass Opinion

Action Less Tolerant More Tolerant less Tolerant More Tolerant

Adopted repressive

legislation 71 100 33 39

Did not adopt

repressive legislation 29 0 67 62

Total 100 100 100 101∗

Number of cases 7 3 3 13

∗ Does not total 100 because of rounding error.

Table 2 reports a cross-tabulation of policy outputs with elite and mass

opinion. The opinion variables have been dichotomized at their respective

means. Though the number of cases shown in this table is small—demanding

caution in interpreting the percentages—the data reveal striking support for

the conclusion that elite opinion, not mass opinion, determines public policy.

In eight of the ten states in which elites were relatively less tolerant, repressive

legislation was adopted. In only six of the sixteen states in which elites were

relatively more tolerant was repressive legislation passed. Variation in mass

opinion makes little difference for public policy.10

It is a little surprising that elite opinion has such a significant impact on

policy repression. After all, elites tend to be relatively more tolerant than the

masses. Indeed, this finding is the empirical linchpin of the elitist theory of

democracy.11 This leads one to wonder just how much intolerance there was

among the elites in the Stouffer data.

The survey data in fact reveal ample evidence of elite intolerance. For

instance, fully two-thirds of the elites were willing to strip admitted Com-

munists of their U.S. citizenship (Stouffer 1955, 43). Indeed, one reading

of the Stouffer data is that elites and masses differed principally on the de-

gree of proof of Communist party membership necessary before repression

was thought legitimate. Much of the mass public was willing to accept a very

low level of proof of party membership (e.g., innuendo), while many elites

required a legal determination of Communist affiliation. Once convinced of

the charge, however, elites were very nearly as intolerant of Communists as

members of the mass public. Just as McClosky and Brill (1983) have more
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recently shown significant intolerance within their elite samples, there is

enough intolerance among these state elites to make them the driving force

in the repression of Communists. Thus it is plausible that elite intolerance

was largely responsible for the repressive policies of the era.

At the same time, there is little evidence that the communism issue was

of burning concern to the U.S. public. For instance, Stouffer reported that

“the number of people who said [in response to an open-ended question] that

they were worried either about the threat of Communists in the United States

or about civil liberties was, even by the most generous interpretation of oc-

casionally ambiguous responses, less than 1%” (Stouffer 1955, 59, empha-

sis in original). Only one-third of the subjects reported having talked about

communism in the United States in the week prior to the interview, despite

the fact that the Army-McCarthy hearings were in progress during a portion

of the survey period. Stouffer asserted, “For most people neither the inter-

nal Communist threat nor the threat to civil liberties was a matter of universal

burning concern. Such findings are important. They should be of interest to a

future historian who might otherwise be tempted, from isolated and dramatic

events in the news, to portray too vividly the emotional climate of America

in 1954” (Stouffer 1955, 72).

The issue of communism in the United States was of much greater con-

cern to the elites. Nearly two-thirds of them reported having talked about

communism in the United States during the week prior to the interview. When

asked how closely they followed news about Communists, fully 44% of the

mass sample responded “hardly at all,” while only 13% of the elite sample

was as unconcerned (Stouffer 1955, 84). Just as elites typically exhibit greater

knowledge and concern about public issues, they were far more attentive to

the issue of domestic Communists.

Thus it is difficult to imagine that the repression of the 1950s was in-

spired by demands for repressive public policy from a mobilized mass pub-

lic. Indeed, the most intense political intolerance was concentrated within that

segment of the mass public least likely to have an impact on public policy (see

also Gibson 1987). There can be no doubt that the mass public was highly

intolerant in its attitudes during the 1950s. Absent issue salience, however, it

is difficult to imagine that the U.S. people had mobilized sufficiently to have

created the repression of the era.12

The actual effect of mass opinion may be masked a bit in these data,

however. Perhaps it is useful to treat mass intolerance as essentially a con-

stant across the states during the McCarthy era. Because the mass public was

generally willing to support political repression of Communists, elites were

basically free to shape public policy. In states in which the elites were

relatively tolerant, tolerant policy prevailed. Where elites were relatively less
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tolerant, repression resulted. In neither case did mass opinion cause public

policy. Instead, policy was framed by the elites. Nonetheless, the willing-

ness of the mass public to accept repressive policies was no doubt important.

Thus, the policy-making process need not be seen as a “demand–input” pro-

cess with all its untenable assumptions but rather can be seen as one in which

the preferences of the mass public—perhaps even the political culture of the

state—set the broad parameters of public policy. In this sense, then, mass po-

litical intolerance “matters” for public policy.

We must also note that even if the broader mass public has little influ-

ence upon public policy, specialized segments of the public may still be im-

portant. For instance, there is some correlation (r = .31) between the number

of American Legion members in the state and political repression.13 Since the

American Legion had long been in the forefront of the crusade against com-

munism (see, e.g., American Legion 1937), it is likely that greater numbers

of members in the state translated into more effective lobbying power. Thus

particular segments of the mass public can indeed be mobilized for repressive

purposes.

I should also reemphasize the strong correlation between elite opinion

and mass opinion. This correlation may imply that elites are responsive to

mass opinion or that they mold mass opinion or that elite opinion is shaped

by the same sort of factors as shape mass opinion. Though it is not possible to

disentangle the causal process statistically, there is some evidence that both

elite and mass opinion reflect the more fundamental political culture of the

state. The correlation between a measure of Elazar’s state-level political cul-

ture and mass intolerance is −.68; for elite opinion the correlation is −.66.

In states with more traditionalistic political cultures both mass and elites tend

to be more intolerant. Moreover, there is some direct relationship between

political culture and political repression (r = .31). Perhaps elite and mass

preferences generally reflect basic cultural values concerning the breadth of

legitimate political participation and contestation. In the moralistic political

culture everyone should participate; only professionals should be active in the

individualistic culture; and only the appropriate elite in traditionalistic polit-

ical cultures (Elazar 1972, 101–2). Perhaps the political culture of the state

legitimizes broad propensities toward intolerance, propensities that become

mobilized during political crises.

One might also look at the data in Figure 1 from a very different perspec-

tive. Rather than mass opinion causing public policy, perhaps mass opinion

is caused by policy (cf. Page, Shapiro, and Dempsey 1987). To turn the elitist

theory on its head, it is quite possible that the U.S. mass public is in-

tolerant precisely because they have been persuaded and reinforced by the

intolerance of U.S. public policy. Through the intolerance of public policy,
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citizens learn that it is acceptable, if not desirable, to repress one’s political

enemies. Though I do not gainsay that there are significant norms in U.S. so-

ciety supportive of political tolerance (see Sniderman 1975), in practice citi-

zens have been taught by federal and state legislation that Communists should

not be tolerated. It is not surprising that many citizens have learned the lesson

well.14

This argument is somewhat at variance with those who argue that greater

exposure to the dominant cultural norms in the United States contributes to

greater political tolerance. If the norms are tolerant, then greater exposure

should create tolerance. But greater awareness of repressive norms—as ex-

pressed in public policies—should be associated with greater intolerance.

Thus the result of political activism, high self-esteem, and other qualities that

make us assimilate social norms will vary according to the nature of the norms

(see Sullivan et al. 1985).

The norms of U.S. politics are at once tolerant and intolerant. Certainly,

no one can doubt that support for civil liberties is a widely shared value. The

key question, however, is “civil liberties for whom?” The U.S. political cul-

ture has long distinguished between “true Americans” and others and has

always been willing to deny civil liberties to those who are “un-American.”

Foreign “isms” have repeatedly become the bogeymen in ideological conflict

in the United States. Thus, citizens learn that civil liberties are indeed important

to protect, but only for those who have a “legitimate” right to the liberty.

Thus the initial evidence is that political repression during the McCarthy

era was most likely initiated by elites even if the mass public in most states

would have acquiesced. These findings are not compatible with the elitist

views that mass intolerance threatens democracy and that elites are the car-

riers of the democratic creed.

The Political Culture of Intolerance and Repression

These findings may very well be limited to the specific historical era of

McCarthyism. Due to the unavailability of historical data on elite and mass

opinion it is difficult to judge whether earlier outbreaks of political repres-

sion can also be attributed to elite intolerance. Building on the discussion of

political culture above, however, it is possible to give this issue further con-

sideration.

Following World War I roughly one-half of the U.S. states adopted crim-

inal syndicalism statutes.15 For example, the statute adopted by California

shortly after World War I defined the crime as “any doctrine or precept

advocating, teaching or aiding and abetting the commission of crime, sabotage

(which word is hereby defined as meaning willful and malicious physical
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damage or injury to physical property), or unlawful acts of force and vio-

lence or unlawful methods of terrorism as a means of accomplishing a change

in industrial ownership or control, or effecting any political change” (Calif.

Statutes, 1919. Ch. 188, Sec. 1, p. 281). Though no opinion data exist for the

1920s, it is possible to examine the relationship between state-level political

culture and political repression during this earlier era.

The correlation between state political culture and the adoption of crim-

inal syndicalism statutes is .40 (N = 50) indicating once again that more

traditionalistic states were more likely to engage in political repression. That

this correlation is slightly stronger than the coefficient observed for the 1950s

might speak to the breakdown of homogeneous state cultures as the popula-

tion became more mobile in the twentieth century. In any event, we see in this

correlation evidence that the more detailed findings of the McCarthy era may

not be atypical.16

Discussion
What conclusions about the elitist theory of democracy and the theory of

pluralistic intolerance does this analysis support? First, I have discovered no

evidence that political repression in the U.S. stems from demands from

ordinary citizens to curtail the rights and activities of unpopular political mi-

norities. This finding differs from what is predicted by the elitist theory of

democracy. Second, I find some evidence of elite complicity in the repression

of the McCarthy era, a finding that is also incompatible with the eli-

tist theory. Generally, then, this research casts doubt on the elitist theory of

democracy.

Nor are these findings necessarily compatible with the theory of plural-

istic intolerance advocated by Sullivan, Piereson, and Marcus. Though polit-

ical intolerance in the 1950s was widespread and highly focused, there seems

to have been little direct effect of mass opinion on public policy. Like the eli-

tist theory of democracy, the theory of pluralistic intolerance places too much

emphasis on mass opinion as a determinant of public policy.

The “demand-input” linkage process implicitly posited by these theories

is probably their critical flaw. Early public opinion research that found high

levels of mass political intolerance too quickly assumed that mass intolerance

translated directly into public policy. The assumption was easy to make since

little was known of the processes linking opinions with policy. As linkage re-

search has accumulated, however, the simple hypothesis relating opinion to

policy has become increasingly untenable. The justification for studying mass

political tolerance therefore cannot be found in the hypothesis that survey re-

sponses direct public policy.
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At the same time, however, public opinion may not be completely irrel-

evant. Tolerance opinion strongly reflects the political cultures of the states,

and, at least in the 1950s, political culture was significantly related to levels

of political repression. Opinion is important in the policy process because it

delimits the range of acceptable policy alternatives. It may well be that mass

opinion is manipulated and shaped by elites; nonetheless, those who would

propose repressive policies in California face a very different set of political

constraints than those who propose repressive policies in Arkansas. This is

not to say that repression is impossible—indeed, California has a long history

of significant levels of political repression—but rather that the task of gaining

acceptance for repression is different under differing cultural contexts.

For over three decades now, political scientists have systematically stud-

ied public policy and public opinion. Significant advances have been made

in understanding many sorts of state policy outputs, and we have developed a

wealth of information about political tolerance. To date, however, little atten-

tion has been given to repression as a policy output, and even less attention

has been devoted to behavioral and policy implications of tolerance attitudes.

The failure to investigate the linkage between opinion and policy is all the

more significant because one of the most widely accepted theories in political

science—the elitist theory of democracy—was developed on the basis of an

assumed linkage between opinion and policy. I hope that this research, though

only a crude beginning, will serve as an early step in continuing research into

these most important problems of democracy.

Appendix: Measurement and Aggregation Error in the State-Level
Estimates of Mass Political Intolerance

Measurement

The measure of political tolerance employed here is an index originally con-

structed by Stouffer. He used fifteen items to construct the scale. Eleven of

the items dealt with communists; two with atheists (those who are against all

churches and religion); and two with socialists (those favoring government

ownership of all railroads and all big industries). Stouffer reported a coeffi-

cient of reproducibility of .96 for the scale, a very high level of reliability. He

also reported that reproducibility was approximately the same at all educa-

tional levels.

I decided to use Stouffer’s scale even though it includes items on atheists

and socialists (1) in order to maintain comparability to Stouffer’s re-

search, (2) because an identical scale was created from a survey in 1973

that is very useful for assessment of aggregation error, and (3) because the

scale is so reliable. Stouffer had a strong view of what his scale was measuring.
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He asserted, “But again let it be pointed out, this scale does not

measure . . . tolerance in general. It deals only with attitudes toward certain

types of nonconformists or deviants. It does not deal with attitudes toward

extreme rightwing agitators, toward people who attack minority groups, to-

ward faddists or cultists, in general, nor, of course, toward a wide variety of

criminals. For purposes of this study, the tolerance of nonconformity or sus-

pected nonconformity is solely within the broad context of the Communist

threat” (Stouffer 1955, 54, emphasis in original).

The Stouffer measures of tolerance have recently been criticized (e.g.,

Sullivan, Piereson, and Marcus 1982). Perhaps the most fundamental aspect

of this criticism is the assertion that the Stouffer items measure tolerance only

for a specific group and thus are not generalizable. Because Stouffer was con-

cerned only about intolerance of Communists, his findings may be time-

bound; as the objects of mass displeasure evolve, the Communist-based

approach to tolerance becomes less relevant and useful. This difficulty does

not affect my analysis of policy and opinion from the 1950s, however, because

Communists were probably a major disliked group for nearly all citizens in

the survey. For instance, only 256 out of 4,933 of the mass respondents were

willing to assert that someone believing in communism could still be a loyal

U.S. citizen. Even if Communists were not the least-liked group for all U.S.

citizens, they were certainly located in the “disliked-enough-not-to-tolerate”

range for nearly everyone. Thus the Stouffer measure of tolerance is a valid

and reliable indicator.

Aggregation Error

Table A-1 reports the state-level means, standard deviations, and numbers

of cases for the aggregation of elite and mass opinion. Not all states are in-

cluded in Table A-1 because survey respondents were not located in every

state. Since the Stouffer survey was not designed to be aggregated by state,

it is necessary to try to determine whether there is any obvious bias in the

state-level estimates. A few empirical tests can be conducted that, while not

assuaging all doubts about the aggregation process, may make us somewhat

more comfortable about using the state means.

The Stouffer survey was replicated in 1973 by Nunn, Crockett, and

Williams (1978). Their survey was very nearly an exact replication of the

Stouffer survey. In terms of the indicators of tolerance, it was an exact repli-

cation. Nunn, Crockett, and Williams were even extremely careful to repro-

duce Stouffer’s scaling methodology in creating a summary index of

intolerance (pp. 179–91). Thus it is possible to aggregate the same scale

variable by state and derive a measure of political tolerance for the early

1970s.
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Table A-I. State Mean Tolerance Scores, Mass Public, and Elites, NORC

Stouffer Survey, 1954

Mass Public Elites

Standard Number Number Standard Number

State Mean Deviation of Cases of PSUs Mean Deviation of Cases

California 4.47 1.50 174 4 5.09 1.43 65

Missouri 4.44 1.20 18 2 5.45 .69 11

New Jersey 4.41 1.43 61 1 4.90 1.28 60

Washington 4.33 1.44 52 2 5.14 .66 14

Iowa 4.26 1.42 23 1 – – –

Wisconsin 4.24 1.56 41 2 5.44 .87 25

Massachusetts 4.22 1.47 81 2 4.51 1.21 41

New York 4.21 1.40 273 6 5.06 1.08 81

Oregon 4.20 1.47 15 1 – – –

Colorado 4.13 1.46 23 1 5.29 1.33 14

Connecticut 4.12 1.17 17 1 5.17 .83 12

Nebraska 4.06 1.24 16 1 4.40 1.35 10

Minnesota 3.92 1.43 64 3 5.33 .96 27

Ohio 3.83 1.57 103 4 5.02 1.04 54

Illinois 3.81 1.55 86 2 4.97 1.39 39

Nevada 3.77 1.61 31 1 – – –

North Dakota 3.76 1.46 41 1 5.17 1.27 12

Pennsylvania 3.75 1.41 179 6 4.77 1.29 43

Michigan 3.75 1.34 163 4 4.92 1.26 38

Kansas 3.64 1.26 59 2 – – –

Florida 3.61 1.43 84 2 4.46 1.47 24

New Hampshire 3.58 1.71 19 1 5.36 1.03 11

Maryland 3.45 1.46 51 2 – – –

Idaho 3.45 1.65 22 1 5.15 1.07 13

Oklahoma 3.43 1.44 67 3 5.31 .85 13

Virginia 3.40 1.68 15 1 – – –

Indiana 3.36 1.32 129 5 4.61 1.40 36

Alabama 3.32 1.27 37 2 4.30 1.46 27

Texas 3.28 1.05 156 5 4.30 1.49 40

Louisiana 3.27 1.34 26 1 4.33 1.67 12

North Carolina 3.17 1.17 65 3 3.60 1.90 10

Tennessee 2.98 1.62 44 2 – – –

Georgia 2.86 1.39 50 3 – – –

Kentucky 2.86 1.25 22 1 4.77 1.39 26

West Virginia 2.34 .90 29 2 – – –

Arkansas 1.79 1.27 19 1 – – –

Average 3.65 1.40 65 2.3 4.88 1.22 29

With completely independent samples (including independent sampling

frames), one would not expect that there would be much of a correlation be-

tween the Stouffer and the Nunn, Crockett, and Williams state-level estimates.

Chance fluctuations in the distributions of primary sampling units (PSUs) per
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state would tend to attenuate the correlation between the state-level estimates.

(The average number of PSUs in Stouffer’s NORC survey is 2.3; for the Nunn,

Crockett, and Williams survey it is 7.8.) Yet the correlation between the es-

timates from the two surveys is a remarkable .63 (N = 29). If I were to ex-

clude the 1973 estimate for Connecticut, an estimate that shows that state to

be quite intolerant, then the correlation increases to .77 (N = 28). It is diffi-

cult to imagine an explanation for this correlation other than that it is due to

a common correlation with the true score for the state.

I have also investigated the relationship between state sample size and

number of primary sampling units and aggregation error. I first assumed that

differences between the t1 and t2 estimates of state opinion were due to aggre-

gation error. The residuals resulting from regressing t2 opinion on t1 opinion

represent this error; if squared, the residuals represent the total amount of er-

ror. The correlations between the squared residuals and t1 sample size and

number of PSUs are −.30 and −.27. The correlations between the residuals

and t2 sample size and number of PSUs are −.29 and −.29. These correla-

tions indicate that aggregation error is larger in states in which the number of

subjects and number of PSUs is smaller—a not unexpected finding. However,

since the relationships are modest, they do not undermine the basic aggrega-

tion procedure.

Another bit of evidence supporting the aggregation process comes from

the correlations of tolerance and political culture. The correlation between

Elazar’s measure of political culture and average state tolerance in the 1950s

is −.68. This correlation enhances my confidence in the utility of the state-

level estimates.

Another, very different tack that can be taken is to estimate the error

associated with the aggregation process. For each survey, I aggregated the

proportion of the respondents having twelve or more years of formal edu-

cation. These percentages can be compared to census estimates of the level

of education in the state. The comparison is not perfect due to two consid-

erations. First, the census data are themselves population estimates drawn

from survey samples. Second, the census reports the percentage of residents

over the age of twenty-five with twelve or more years of education. I as-

sume that those with twelve or more years of education have a high school

degree, although this might not be true for every single respondent. Moreover,

it is not possible to isolate those respondents twenty-five years and older in

the Stouffer survey. Nonetheless, the correlation for the 1950s data between

the survey and census estimates of education is a substantial .72 (N = 36).

While this correlation does not speak directly to the utility of the state-level

estimates of tolerance, it does suggest that aggregation from the survey to the

state is not completely inappropriate.
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The correlation between elite opinion in the 1950s and elite opinion in

the 1970s is .25 (.28 with a minimum-number-of-respondents requirement).

That the correlation is not higher is a bit worrisome, although it is not difficult

to imagine that there is greater flux in elite opinion over the two decades sep-

arating the two surveys than there is in mass opinion. Moreover, there were

some slight differences in the composition of the elite samples drawn in 1954

and 1973.

As a means of assessing the validity of the aggregation of elite opinion,

it is possible to compare elite tolerance with other elite attitudes. Erikson,

Wright, and McIver (1987) have developed a separate measure of the degree

of liberalism of state elites. The measure summarizes the ideological posi-

tions of the state’s congressional candidates, state legislators, political

party elites, and national convention delegates. As an overall index of the

liberalism–conservatism of state elites, they take the average score of the

Democrats and the Republicans. Thus each state receives a score indicating

the degree of liberalism-conservatism of state elites. Though most of the in-

dicators are drawn from the 1970s, the authors believe this to be a more stable

attribute of state elites. According to their index, the most conservative elites

are found in Mississippi; the most liberal elites are found in Massachusetts.

The correlation of state elite conservatism and political tolerance is −.46

(N = 26) for the Stouffer elites and −.22 (N = 29) for the Nunn, Crockett,

and Williams elites. Though liberalism-conservatism is conceptually distinct

from political tolerance, some solace can be taken in this correlation. The

aggregation process seems not to have introduced unexpected or obviously

biased estimates of state-level elite opinion.
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1. The elitist theory of democracy is actually an amalgam of the work

of a variety of theorists, including Berelson, Lazarsfeld, and McPhee (1954);

Kornhauser (1959); Lipset (1960); and Key (1961). The most useful anal-

ysis of the similarities and differences among the theories can be found in

Bachrach 1967. Some elite theorists emphasize the dominance and control

of public policy by elites, while other theorists emphasize the antidemocratic

tendencies of the mass public. The single view most compatible with the hy-

potheses tested in this article is Kornhauser’s (1959). The hypotheses are also

to be found in Dye and Zeigler 1987 (see also Dye 1976). Earlier empirical

work on the tolerance of elites and masses includes Berelson, Lazarsfeld, and

McPhee 1954; Lipset 1960; Prothro and Grigg 1960; and McClosky 1964. A

more recent analysis of some of the propositions of elitist theory can be found

in Gibson and Bingham 1984.

2. Linkage research is fairly common in other areas of substantive policy

(e.g., Erikson 1976; Weissberg 1978), but the only rigorous investigation of

civil liberties is that of Page and Shapiro (1983). They assessed the relation-

ship between change in opinion and change in policy, and found that in eight

of nine policy changes in the area of civil liberties there was opinion-policy

congruence. They also found that state policies were more likely to be con-

gruent with opinion than national policies, although the relationship did not

hold in the multivariate analysis. Though their analysis was conducted at the

national level, their findings seem to suggest that political repression results

from demands from the mass public.

3. This is similar to Goldstein’s definition, “Political repression consists

of government action which grossly discriminates against persons or organi-

zations viewed as presenting a fundamental challenge to existing power re-

lationships or key governmental policies, because of their perceived political

beliefs” (1978, xvi).

4. The source for these data is a 1965 study requested by a subcommit-

tee of the Committee on the Judiciary in the U.S. Senate. See also Library

of Congress, Legislative Reference Service, 1965; Gellhorn 1952; and Pren-

dergast 1950. Care must be taken in using the Legislative Reference Service

data because there are a variety of errors in the published report. Corrected

data, based on an examination of all of the relevant state statutes, are available

from the author.

The scores shown in Table 1 reflect actions taken by the state govern-

ments between 1945 and 1965. The decision to limit the policy measures to

this period is based on the desire to have some temporal proximity between
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the opinion and policy data. This decision has implications for the scores of

three states. Kansas and Wisconsin both barred Communists from political

participation in legislation adopted in 1941. This legislation is excluded from

Table 1. Arkansas is shown as having banned Communists from public em-

ployment, from politics and outright. Only the outright ban was adopted in

the 1945–65 period. Because a complete ban necessarily excludes Commu-

nists from public employment and from political participation, the score for

Arkansas is shown as 3.5.

5. These three items scale in the Guttman sense. That is, nearly all of

the states outlawing the Communist party also denied it access to the ballot

and public employment. Nearly all of the states that denied Communists ac-

cess to the ballot as candidates also made them ineligible for public employ-

ment. The registration variable does not, however, exhibit this pattern of cu-

mulativeness. Registration seems to have been a means of enforcing a policy

goal such as banning membership in the Party. Because registration can raise

Fifth Amendment self-incrimination issues, some states chose not to require

it. Statutes requiring registration are treated for measurement purposes as rep-

resenting a greater degree of commitment to political repression, and for that

reason the “bonus” points were added to the basic repression score.

6. Validity means not only that measures of similar concepts converge;

measures of dissimilar concepts must also diverge (Campbell and Fiske 1959).

Thus it is useful to examine the relationship between the repression measures

and measures of other sorts of policy outputs. Klingman and Lammers (1984)

have developed a measure of the “general policy liberalism” of the states.

General policy liberalism is a predisposition in state public policies toward

extensive use of the public sector and is thought to be a relatively stable at-

tribute. I would expect that political repression is not simply another form of

liberalism, and indeed it is not. The correlation between general policy liber-

alism and political repression during the 1950s is only −.18. Moreover, the

relationship between repression and a measure of New Deal social welfare

liberalism policy (see Holbrook-Provow and Poe 1987; Rosenstone 1983) is

only −.22. Repression occurred in states with histories of liberalism just about

as frequently as it did in states typically adopting conservative policies. Thus

the measure of repression is not simply a form of political liberalism, a finding

that contributes to the apparent validity of the measure.

7. This conclusion is based on figures compiled by Harvey Klehr on the

size of the Communist Party U.S.A. during the 1930s (Klehr 1984, tbl. 19.1

and personal communication with the author, 21 May 1986). The data are

from the Party’s own internal record. Klehr believes the data to be reason-

ably reliable, and others seem to agree (see, e.g., Glazer 1961, 208, n. 3; and
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Shannon 1959, 91). There is also a strong relationship between Party mem-

bership and votes for Communist candidates for public offices in the 1936

elections (as compiled by the American Legion 1937, 44), as well as a strong

relationship with FBI estimates of Party membership in the states in 1951

(U.S. Senate, Committee on the Judiciary 1956, 34).

8. Stouffer defined elites as those who hold certain positions of influence

and potential influence in local politics. The elite sample was drawn from

those holding the following positions: community chest chairmen; school

board presidents; library committee chairmen; Republican county chairmen;

Democratic county chairmen; American Legion commanders; bar association

presidents; chamber of commerce presidents; PTA presidents; women’s club

presidents; DAR regents; newspaper publishers; and labor union leaders.

9. Weighted least squares was used because I could not assume that the

variances of the observations were equal. Following Hanushek and Jackson

(1977, 151–52), I weighted the observations by the square root of the num-

bers of respondents within the state. The r -square from this analysis is .14.

The regression equation with unstandardized coefficients is: Y = 7.31 −
.14(mass opinion) − 1.11(elite opinion).

10. The data in Table 2 suggest that where the state elites are relatively

less tolerant, increases in mass tolerance are associated with an increase in po-

litical repression. Caution must be exercised in interpreting the percentages,

however, due to the small number of cases available. The data reveal that in

five of the seven states with a relatively less tolerant mass public, repressive

legislation was adopted, while in all three of the states with a relatively more

tolerant mass public repressive legislation was adopted. In the context of the

numbers of cases, I did not treat this difference as substantively significant.

11. It might be argued that elite opinion serves only to neutralize intoler-

ant mass opinion. This suggests an interactive relationship between elite and

mass opinion. Tests of this hypothesis reveal no such interaction. The impact

of elite opinion on public policy is not contingent upon the level of tolerance

of the mass public in the state.

12. Though it is a bit risky to do so, it is possible to break the policy

variable into time periods according to the date on which the legislation was

adopted. A total of sixteen states adopted repressive legislation prior to 1954;

ten states adopted repressive legislation in 1954 or later. The correlations

between pre-1954 repression and mass and elite tolerance, respectively,

are −.05, and −.35. Where elites were more intolerant, policy was more re-

pressive. Mass intolerance seems to have had little impact on policy.

The correlations change rather substantially for the post-1954 policy mea-

sure. There is a reasonably strong correlation between mass intolerance and
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repression (r = −.32) but little correlation with elite intolerance (r = −.13).

If one were willing to draw conclusions based on what are surely relatively

unstable correlations, based on limited numbers of observations, one might

conclude that early efforts to restrict the political freedom of Communists

were directed largely by elites, while later efforts were more likely to involve

the mass public. The initiative for political repression therefore was with the

elites, though the mass public sustained the repression once it was under way.

At the same time, however, the slight correlation between pre-1954 pol-

icy and mass intolerance suggests that mass opinion was not shaped by public

policy. Where policy was more repressive, opinion was not more intolerant.

The close temporal proximity here should give us pause in overinterpreting

this correlation, however.

13. Note that Stouffer found that the leaders of the American Legion

were the most intolerant of all leadership groups surveyed (Stouffer 1955, 52).

Indeed, the commanders interviewed were only slightly less intolerant than

the mass public.

14. At the same time, it should be noted that U.S. citizens became sub-

stantially more tolerant of Communists by the 1970s (e.g., Davis 1975; Nunn,

Crockett, and Williams 1978). This too might reflect changes in public policy,

as well as elite leadership of opinion. As the U.S. Supreme Court invalidated

some of the most repressive state and federal legislation of the McCarthy era,

and as U.S. political leaders (including Richard Nixon) sought improved for-

eign relations with Communist nations, it became less appropriate to support

the repression of Communists. These comments illustrate, however, the diffi-

culty of sorting out the interrelationships of opinion and policy and also reveal

that many efforts to do so border on nonfalsifiability.

15. Between 1917 and 1920, twenty-four states adopted criminal syndi-

calism statutes. There is some ambiguity in published compilations about the

number of states with such laws. Dowell (1969) lists twenty states with such

legislation, not counting the three states that adopted but then repealed syn-

dicalism laws. Dowell apparently overlooked Rhode Island, at least accord-

ing to the compilations of Chafee (1967) and Gellhorn (1952). On the other

hand, neither Chafee nor Gellhorn listed Colorado or Indiana as having such

statutes (though Chafee did list the states that had repealed their legislation).

This latter problem is in part a function of determining whether specific

statutes should be classified as banning criminal syndicalism. By 1937, three

states had repealed their statutes (although one of these—Arizona—apparently

did so inadvertently during recodification). As of 1981, seven of these states

still had the statutes on their books, and one additional state—Mississippi—

had passed such legislation (Jenson 1982, 167–75). For purposes of this
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analysis, Dowell’s twenty-three states and Rhode Island are classified as hav-

ing criminal syndicalism laws as of 1920.

16. It should also be noted that political culture is fairly stably related

to mass political intolerance. Estimates of state opinion were derived from

Roper data on an item about loyalty oaths asked in a 1937 survey. Opinion in

more traditionalistic states was more supportive of mandatory loyalty oaths

(r = −.44, N = 47). Similarly, the correlation between political culture and

the state aggregates from the Stouffer replication in 1973 (see the Appendix)

is −.58 (N = 35). These coefficients are nothing more than suggestive, but

they do suggest that political intolerance is a relatively enduring attribute of

state political culture.
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I. Introduction

More than ten years ago, James Coleman and his colleagues launched a na-

tional debate over the relative quality of public and Catholic schools

[Coleman and Hoffer 1987; Coleman, Hoffer, and Kilgore 1982]. Based on

their analysis of the High School and Beyond (HS&B) data, they concluded

that Catholic school students scored significantly higher than public school

students on standardized tests, even after controlling for differences in fam-

ily characteristics. Catholic schools in their study appeared to be particularly

effective with minority students.

Almost immediately, the Coleman results generated tremendous inter-

est among both policy analysts and academics. Academic journals devoted

special issues to their research on at least six different occasions (Harvard
Education Review in 1991; Phi Beta Kappa in 1981; Education Researcher
in 1981; and Sociology of Education in 1982, 1983, and 1985). Critics raised

a number of issues about their work. Several papers showed that the es-

timated magnitude of the Catholic school effect was very sensitive to the

choice of other independent variables (Lee and Bryk 1988; Noell 1982]. A

number of papers questioned whether the results were driven by a selection

bias. Since parents decide whether to send their children to public or Catholic

schools, it is inappropriate to estimate the effect of Catholic schools on test

scores with a single-equation model that treats school choice as an exogenous

variable [Goldberger and Cain 1982]. Others argued that the increase in test

scores between sophomore and senior years was so small that the Coleman

results had little relevance in the debate over school choice [Murnane 1984;

Alexander and Pallas 1985; Witte 1992].1 Based on his review of the

Coleman work and subsequent studies, Cookson [1993, p. 181] concluded

that “. . . once the background characteristics of students are taken into ac-

count, student achievement is not directly related to private school atten-

dance. The effects that were reported by Coleman and his associates are

too small to be of any substantive significance in terms of incrementally

improving student learning.”

Most of Coleman’s work and virtually all of the research that followed

focused on the effects of Catholic schools on test scores.2 In some ways it

is surprising that test scores have received so much attention while other

important education outcomes have not. Test scores have obvious limitations.

It has often been argued that standardized tests in general may be culturally,

racially, and sexually biased. Teachers may “teach to the test” and thus inflate

scores [Henig 1994]. On the other hand, students often gain little by doing

well on an exam and thus may not take the exam seriously. Standardized

tests can only measure a student’s ability to deal with a particular type of

question and cannot measure a student’s creativity or deeper problem-solving
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skills. The particular test included in the original Coleman work was a short

and relatively simple exam, and the results may not be indicative of school

performance. Perhaps most importantly, there is little evidence that raising

test scores has important economic consequences. The impact of test scores

on wages, for example, appears to be modest.3

This suggests that we consider alternative criteria to evaluate schools

that have important economic consequences. Card and Krueger [1994] ar-

gue that measures of educational attainment such as completing high school

and going on to college are particularly useful measures of schools’ suc-

cess. Unlike test scores, there is a great deal of evidence on the benefits of

additional education. Only 65 percent of young male high school dropouts

were employed in 1986 as compared with 85 percent of high school grad-

uates [Markety 1988]. Between 1980 and 1985 the unemployment rate for

males without a high school diploma was 35 percent higher than the rate for

high school graduates and five times as large as the rate for college graduates

[Murphy and Topel 1987]. The unemployment rate for young black males

without high school degrees was over 40 percent for most of the 1980s.

Wages and earnings are substantially lower for those high school dropouts

who do find work. In 1987 the median yearly income for 25-to-34 year-old

male full-time workers with a high school degree was 21.2 percent larger

than the value for those who had not finished high school [Levy and Mur-

nane 1992]. Hashimoto and Raisian [1985] and Weiss [1988] found that an

extra year of education that leads to a high school degree has a much larger

impact on wages than does an additional year of school that does not lead

to a degree. Real wages for young male high school dropouts declined by

23 percent between 1979 and 1988, while young male college graduates ex-

perienced a 7 percent real wage increase over the same period [Bound and

Johnson 1992]. High school dropouts are far more likely to commit crimes

[Thornberry, Moore, and Christenson 1985] and to use illegal drugs [Mensch

and Kandel 1988].

Thus, the debate over Catholic schools seems to have missed outcomes

with important economic implications. In this paper we have gone back to

the HS&B data and looked at the impact of a Catholic school education on the

probability of, first, finishing high school, and, second, starting college. We

have paid particular attention to the issue of selection bias. If students with

more ability or students from families that place a higher value on educa-

tion are more likely to attend Catholic schools, then single-equation models

would overstate the effects of a Catholic school education. Therefore, the

appropriate model must take this endogeneity into account. Because both of

our outcome measures and the treatment variable (a Catholic school dummy)

are dichotomous, we estimate a set of bivariate probit models.
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Our major conclusions are as follows. We find a great deal of support

for the argument that Catholic schools are more effective than public schools.

Single-equation estimates suggest that for the typical student, attending a

Catholic high school raises the probability of finishing high school or enter-

ing a four-year college by thirteen percentage points. Unlike single-equation

estimates of the effect of Catholic schools on test scores, these results are

qualitatively important and are robust. This Catholic school effect is very

large. It is twice as large as the effect of moving from a one- to a two-parent

family and two and one-half times as large as the effect of raising parents’

education from a high school dropout to a college graduate. In models where

we treat the decision to attend a Catholic school as an endogenous variable,

we find almost no evidence of selection bias. Bivariate probit estimates of

the average treatment effect of Catholic schools on high school graduation

and entering college are very similar to single-equation probit estimates.

Our bivariate probit model is properly identified if there is at least one

variable that is correlated with whether or not a student attends a Catholic

school but is uncorrelated with a student’s unobserved propensity to gradu-

ate from high school or start college. In most of our work we have used as our

instrument a dummy variable that equals 1 if the student is from a Catholic

family and 0 otherwise. The credibility of our bivariate probit results obvi-

ously hinges on our assumption that high school students who are Catholic

are no more likely to graduate from high school or to begin college than stu-

dents who are not Catholic. As we argue below, once we control for other

observed factors, it appears that being Catholic is not an important determi-

nant of most economic outcomes. We also present tests of overidentifying

restrictions that indicate that our instruments are valid and additional results

where we use the religious composition of the population in the county where

a student attends school as an alternative instrument.

In the next section we describe the HS&B data set and the basic vari-

ables we have used in our analysis. In Section III we present single-equation

probit estimates of high school completion and college entrance models.

In that section we also present a number of sensitivity tests of our single-

equation model. In Section IV we present bivariate probit models that treat

the decision to attend a Catholic school as an endogenous variable. We present

a brief summary and conclusions in the final section of the paper.

II. Data

Most of the data for our study were drawn from the HS&B survey, which

began in the spring of 1980. The original sample was chosen in two stages.

Over 1100 secondary schools were selected in the first stage. In the second

up to 36 sophomores and 36 seniors were selected from each of the sample
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schools. Certain types of schools, including public schools with high per-

centages of Hispanic students and Catholic schools with high percentages of

minority students, were oversampled. The original HS&B sample included

more than 30,000 sophomores and 28,000 seniors. Follow-up surveys of a

stratified random sample of the original sophomore cohort were conducted

in 1982, 1984, and 1986. Our sample is drawn from the 13,683 students who

were sophomores in 1980 and who were included in both the 1982 and 1984

follow-ups. We eliminated 389 students who attended private non-Catholic

schools or whose education level in 1984 is unknown. Thus, our final sample

includes 13,294 observations.

HS&B contains information on a wide range of topics including indi-

vidual and family background, high school experiences, and plans for the

future. Each student was also given a series of cognitive tests that measured

verbal and quantitative ability. The sophomore cohort completed these tests

in the initial 1980 survey and again in the first follow-up in 1982 (when most

were seniors).4 School questionnaires, which were completed by an official

in each participating school, provided information about dropout rates, staff,

educational programs, facilities, and services.

Table I presents definitions and summary statistics for some of the im-

portant variables we have used in our study.5 We classify students as public

or Catholic school students based on the school they attended as sophomores.

Our study focuses on two measures of educational attainment: high school

completion and the decision to begin college. We constructed both variables

from the 1984 follow-up data when many of the 1980 HS&B sophomores

would have been out of high school for two years. HIGH SCHOOL GRAD-
UATE is a dummy variable that equals 1 if the student had completed high

school by 1984. COLLEGE ENTRANT is a dummy variable that equals 1 if

the student had enrolled in a four-year college by February of 1984 (and did

not first enroll in a two-year college or a vocational training program). Since

graduating high school is a precondition for starting college, all of our work

defines the COLLEGE ENTRANT variable for only those students who have

a high school degree.6

Most of the family characteristics require little explanation. As can be

seen in Table I, data on family income and parents’ education are missing in

a significant number of cases. We suspect that these values are missing in a

nonrandom sample of the population. For example, graduation rates among

students where the parents’ education is missing are ten percentage points

lower than the rate for students where the education variable is available.7

We looked at a number of strategies to deal with this missing data prob-

lem including the estimation of a model suggested by Griliches, Hall, and

Hausman [1978] in which we treat nonreporting as an endogenous variable.
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Table I. Summary Statistics: High School and Beyond Data Set

Catholic Public

school school

mean and mean and

Variable name Definition (std. dev.) (std. dev.)

High School 0–1 dummy variable, = 1 if student 0.97 0.79

Graduate graduated from high school by (0.17) (0.41)

February of 1984

College 0–1 dummy variable, = 1 if first 0.55a 0.32a

Entrant postsecondary school attended (0.50) (0.47)

was 4-year college

Catholic 0–1 dummy variable, = 1 if the 0.79 0.29

Religion student is Catholic (0.41) (0.45)

% Catholic in Percent of the population in the 31.65 22.37

County county where the student attends (13.17) (16.82)

school that is Catholic

Female 0–1 dummy variable, = 1 if student 0.56 0.50

is female (0.50) (0.50)

Black 0–1 dummy variable, = 1 if student 0.15 0.13

is black (0.36) (0.34)

Hispanic 0–1 dummy variable, = 1 if student 0.22 0.22

is Hispanic (0.41) (0.41)

White 0–1 dummy variable, = 1 is student 0.61 0.58

is white, non-Hispanic (0.49) (0.49)

Other Race 0–1 dummy variable, = 1 if student 0.02 0.06

is other race (0.15) (0.24)

Family Income 0–1 dummy variable, = 1 if family 0.22 0.23

Missing income is not reported (0.41) (0.42)

Family Income 0–1 dummy variable, = 1 if family 0.03 0.07

< $7000 income < $7000 (0.16) (0.26)

Family Income 0–1 dummy variable, = 1 if family 0.07 0.11

$7000–$12,000 income ≥ $7000 and < $12, 000 (0.26) (0.31)

Family Income 0–1 dummy variable, = 1 if family 0.12 0.15

$12,000–$16,000 income ≥ $12,000 and < $16,000 (0.32) (0.35)

Family Income 0–1 dummy variable, = 1 if family 0.14 0.15

$16,000–$20,000 income ≥ $16,000 and < $20,000 (0.35) (0.35)

Family Income 0–1 dummy variable, = 1 if family 0.16 0.13

$20,000–$25,000 income ≥ $20,000 and < $25,000 (0.36) (0.33)

Family Income 0–1 dummy variable, = 1 if family 0.13 0.09

$25,000–$38,000 income ≥ $25,000 and < $38,000 (0.33) (0.29)

Family Income 0–1 dummy variable, = 1 if family 0.14 0.07

≥ $38,000 income ≥ $38,000 (0.35) (0.25)

Parent Education 0–1 dummy variable, = 1 if 0.09 0.19

Missing parents’ education not reported (0.29) (0.40)

Parent High 0–1 dummy variable, = 1 if parents’ 0.23 0.30

School Dropout highest education < high school (0.42) (0.46)

graduate

Parent High 0–1 dummy variable, = 1 if parents’ 0.19 0.20

School Graduate highest education is high school (0.39) (0.40)

graduate

Parent Some 0–1 dummy variable, = 1 if parent’s 0.28 0.19

College highest education is some college (0.45) (0.39)
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Catholic Public

school school

mean and mean and

Variable name Definition (std. dev.) (std. dev.)

Parent College 0–1 dummy variable, = 1 if parents’ 0.21 0.11

Graduate highest education is college (0.41) (0.31)

graduate

Single Mother 0–1 dummy variable, = 1 if student’s 0.12 0.15

household is headed by single (0.32) (0.35)

mother

Single Father 0–1 dummy variable, = 1 if student’s 0.03 0.05

household is headed by single (0.17) (0.21)

father

Natural Mother/ 0–1 dummy variable, = 1 if student 0.04 0.06

Stepfather lives with natural mother and

stepfather

(0.19) (0.24)

Both Natural 0–1 dummy variable, = 1 if student 0.76 0.62

Parents lives with both natural parents (0.43) (0.48)

Other Family 0–1 dummy variable, = 1 if student’s 0.06 0.12

Structure household has other structure (0.24) (0.32)

Age 16 0–1 dummy variable, = 1 if student is 0.03 0.03

≤ 16 years of age in February of

1982

(0.17) (0.17)

Age 17 0–1 dummy variable, = 1 if student is 0.63 0.49

17 years of age in February of 1982 (0.48) (0.50)

Age 18 0–1 dummy variable, = 1 if student is 0.32 0.40

18 years of age in February of 1982 (0.47) (0.49)

Age 19+ 0–1 dummy variable, = 1 if student is 0.02 0.08

19 years of age or older (0.15) (0.26)

Attends Religious 0–1 dummy variable, = 1 if student 0.69 0.44

Services Regularly attends church at least twice a (0.46) (0.50)

month

Attends Religious 0–1 dummy variable, = 1 if student 0.17 0.23

Services Occasionally attends church occasionally (0.38) (0.42)

Never Attends 0–1 dummy variable, = 1 if student 0.13 0.33

Religious Services never attends church (0.34) (0.47)

10th Grade Test Score Student’s sophomore score on stan- 30.06 24.53

dardized exam (14.63) (15.87)

Test Score Missing 0–1 dummy variable, = 1 if sopho- 0.08 0.16

more test score is missing (0.28) (0.37)

No. of obs. 10,767 2527

a. The COLLEGE ENTRANT means are conditional on having completed high school.

In the end we fell back on a straightforward approach of defining income and

parents’ education in terms of a set of dummy variables and including “miss-

ing data” as a category. We chose the highest income and highest education

groups as reference categories in order to facilitate the interpretation of the

results.
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Table I shows that, compared with Catholic school students, public

school students were more than seven times as likely to drop out of high

school and were just over half as likely to start college. That table also in-

dicates that the characteristics of Catholic school students suggest that they

were more likely to succeed in school. Public school students scored lower

on standardized tests and were far more likely to be eighteen years of age

or older, to come from low-income families, to have parents who had not

finished high school, and to live without their father. The basic question in

this paper is whether Catholic schools still have an important impact on high

school graduation and college entrance once we control for the effects of

these measured differences across students as well as any unmeasured dif-

ferences. Our sample includes significant numbers of Catholic students who

attend public schools and non-Catholic students who attend Catholic schools,

thus leaving open the possibility that we can separate the effects of religion

from the effects of a religious education.

One simple yet informative test is to compare education outcomes across

broad demographic and ability groups.8 These results parallel the discussion

in Coleman and Hoffer [1987, Chapter 4]. In Table II graduation and college

entrance rates are computed by ability, family income, parents’ education,

sex, and race. The table shows that the probability that a public school stu-

dent will graduate varied dramatically across groups. Among Catholic school

students, however, these differences were small. For example, the gradua-

tion rate for public school students whose parents were high school dropouts

was fourteen percentage points lower than the rate for public school students

whose parents were college graduates. Among Catholic school students this

difference was only four percentage points. As a consequence, the difference

in graduation rates between Catholic and public school students is smallest

among students with high test scores from high income, well-educated fam-

ilies. However, even for those groups, Catholic school students graduated at

higher rates than their public school counterparts.

As one would expect, there is far more heterogeneity across across de-

mographic groups in college entrance rates. Across all groups, however,

Catholic school students were more likely to begin college. As with the

high school graduation rates, the differences across sectors declines as abil-

ity, family income, and parents’ education increase, but there are still large

differences in college matriculation rates even for the top categories in all

groups.9

III. Probit Models of Educational Attainment

The literature on the effect of Catholic schools on the probability of graduat-

ing from high school and going to college has rarely gone beyond the sort of
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Table II. Educational Outcomes of High School Students by School Type

HIGH SCHOOL COLLEGE
GRADUATE ENTRANTa

Sample

Public

schools

Catholic

schools

Public

schools

Catholic

schools

Full sample 0.79 0.97 0.32 0.55

Sophomore Test Score Missing 0.71 0.98 0.22 0.50

Sophomore Test First Quartile 0.63 0.91 0.11 0.25

Sophomore Test Second Quartile 0.80 0.96 0.19 0.40

Sophomore Test Third Quartile 0.89 0.98 0.37 0.56

Sophomore Test Fourth Quartile 0.95 0.99 0.62 0.78

Parent Education Missing 0.65 0.92 0.16 0.40

Parent H.S. Dropout 0.77 0.95 0.22 0.41

Parent H.S. Degree 0.82 0.97 0.30 0.54

Parent Some College 0.87 0.98 0.44 0.62

Parent College Graduate 0.91 0.99 0.61 0.67

Family Income Missing 0.74 0.97 0.25 0.48

Family Income < $7000 0.64 0.91 0.19 0.36

Family Income $7000–$12000 0.76 0.92 0.23 0.44

Family Income $12000–$16000 0.81 0.98 0.29 0.51

Family Income $16000–$20000 0.84 0.97 0.33 0.49

Family Income $20000–$25000 0.84 0.96 0.38 0.57

Family Income $25000–$38000 0.87 0.99 0.47 0.70

Family Income ≥ $38000 0.86 0.98 0.52 0.66

Female 0.80 0.97 0.33 0.53

Male 0.78 0.97 0.31 0.58

Black 0.76 0.95 0.33 0.62

Hispanic 0.76 0.93 0.21 0.45

White 0.81 0.99 0.35 0.56

Other Race 0.84 0.98 0.38 0.56

a. The COLLEGE ENTRANT means are conditional on having completed high school.

simple cross tabulations in Table II. In this section we extend this literature

by examining the student’s decision to complete high school or enter college

by estimating a set of probit models.

A. Single-Equation Probit Models

In the high school graduation version of this model, let the indicator variable

Yi = 1 if student i completes high school, and let Yi = 0 otherwise. The

choice problem is described by the latent variable model.

Y ∗
i = Xiβ + Ciδ + εi , (1)
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where Y ∗
i is the net benefit a student receives from graduating high school,

Xi is a vector of individual characteristics, Ci is a Catholic school dummy

variable, and εi is a normally distributed random error with zero mean and

unit variance. Students will only graduate from high school if the expected

net benefits of completion are positive, and thus the probability that a student

finishes high school is

prob[Yi = 1] = prob[Xiβ + Ciδ + εi > 0] = �[Xiβ + Ciδ], (2)

where �[ ] is the evaluation of the standard normal cdf.

In all of our high school graduation and college entrance probit mod-

els, we use the set of individual and family characteristics listed in Table I,

dummy variables for urban and rural schools, and three indicators for cen-

sus regions. Maximum likelihood estimates of the high school completion

and college entrance models are reported in columns 1 and 3 of Table III.

To measure the qualitative importance of all our right-hand-side variables,

we report the marginal effect ∂prob(Yi = 1)/∂ Xi for a reference individual

in columns 2 and 4.10 For the CATHOLIC SCHOOL dummy variable, we

also report at the bottom of Table III the “average treatment effect” which

is the average difference between the probability that a student would grad-

uate from high school if he or she attended a Catholic high school and the

probability that student would graduate if he or she attended a public school.

Thus, if n is the sample size and β and δ are the maximum likelihood es-

timates of the parameters in equation (2), then the average treatment ef-

fect equals (1/n)
∑

i [�(Xiβ + δ) − �(Xiβ)]. We use the “delta” method

to calculate the variance of the marginal effects and average treatment

effects.

The results in Table III show that Catholic school students have a sub-

stantially higher probability of completing high school and entering a four-

year college than do public school students. Our reference individual’s prob-

ability of finishing high school would be twelve percentage points higher

if she went to a Catholic school than if she went to a public school. The

probability that she would enter college would be fourteen percentage points

higher. To place these results in perspective, the impact of Catholic schools

on high school completion is more than two and one-half times larger than

the effect of moving from the lowest to the highest income group, 50 per-

cent larger than the effect of moving from the lowest to the highest parents’

education category, and three times as large as the impact of moving from

a family headed by a single female to a two-parent family. The estimated

marginal effects for CATHOLIC SCHOOL reported in Table III are roughly

equal to the average treatment effects for the entire sample.11
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Table III. Probit Estimates of HIGH SCHOOL GRADUATE and COLLEGE
ENTRANT Models

HIGH SCHOOL COLLEGE
GRADUATE ENTRANT

Probit Marginal Probit Marginal

Independent variablea coefficient effectb coefficient effectb

Catholic School 0.777 0.117 0.384 0.144

(0.056) (0.014) (0.032) (0.012)

Female 0.041 0.006 0.021 0.008

(0.029) (0.004) (0.026) (0.010)

Black 0.132 0.020 0.170 0.064

(0.045) (0.007) (0.042) (0.014)

Hispanic 0.080 0.012 –0.160 –0.060

(0.037) (0.006) (0.036) (0.014)

Other Race 0.346 0.052 0.316 0.118

(0.067) (0.011) (0.060) (0.022)

Family Income Missing –0.111

(0.068)

–0.017

(0.010)

–0.382

(0.055)

–0.143

(0.021)

Family Income < $7000 –0.300

(0.078)

–0.045

(0.012)

–0.484

(0.080)

–0.181

(0.030)

Family Income –0.121 –0.018 –0.408 –0.153

$7000–$12,000 (0.073) (0.011) (0.063) (0.024)

Family Income –0.035 –0.005 –0.319 –0.119

$12,000–$16,000 (0.072) (0.011) (0.056) (0.021)

Family Income 0.000 0.000 –0.283 –0.106

$16,000–$20,000 (0.070) (0.010) (0.055) (0.020)

Family Income –0.035 –0.005 –0.196 –0.073

$20,000–$25,000 (0.072) (0.011) (0.055) (0.021)

Family Income 0.037 0.006 –0.025 –0.009

$25,000–$38,000 (0.077) (0.012) (0.057) (0.021)

Parent Education Missing –0.730

(0.061)

–0.110

(0.013)

–0.916

(0.052)

–0.342

(0.020)

Parent High School Dropout –0.522

(0.058)

–0.078

(0.011)

–0.855

(0.043)

–0.320

(0.017)

Parent High School Graduate –0.375 –0.056 –0.602 –0.225

(0.060) (0.011) (0.044) (0.015)

Parent Some College –0.204 –0.031 –0.290 –0.108

(0.062) (0.010) (0.042) (0.016)

Single Mother –0.255 –0.038 –0.060 –0.023

(0.041) (0.007) (0.042) (0.016)

Single Father –0.421 –0.063 –0.269 –0.101

(0.063) (0.010) (0.069) (0.026)

Natural Mother/Stepfather –0.286

(0.056)

–0.043

(0.009)

–0.263

(0.060)

–0.098

(0.023)

Other Family Structure –0.155 –0.023 –0.060 –0.023

(0.048) (0.007) (0.053) (0.020)

Age 16 0.611 0.092 0.655 0.245

(0.089) (0.015) (0.115) (0.043)
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HIGH SCHOOL COLLEGE
GRADUATE ENTRANT

Probit Marginal Probit Marginal

Independent variablea coefficient effectb coefficient effectb

Age 17 1.025 0.154 0.718 0.268

(0.050) (0.014) (0.087) (0.033)

Age 18 0.699 0.105 0.603 0.225

(0.050) (0.012) (0.088) (0.033)

Attends Religious Services 0.321 0.048 0.299 0.112

Regularly (0.035) (0.006) (0.035) (0.014)

Attend Religious Services

Occasionally

0.082

(0.039)

0.012

(0.006)

0.115

(0.041)

0.043

(0.015)

Intercept 0.388 –0.683

(0.093) (0.107)

Average treatment effect of 0.130 0.132

Catholic School (0.007) (0.011)

Log Likelihood –5155.26 –3297.87

Asymptotic standard errors are in parentheses. The number of observations in the HIGH
SCHOOL GRADUATE and COLLEGE ENTRANT models is 13,294 and 10,983, respectively.

a. Other exogenous variables include dummy variables for urban and rural schools, plus three

regional dummy variables.

b. Marginal effects are calculated for a seventeen–year old white female, living with both

natural parents where at least one parent has a high school degree and family income is

between $16,000 and $20,000, attends church regularly, and lives in a suburban area in the

south.

The other results in Table III are consistent with the literature in this

field. Females, students from wealthier families, students with better ed-

ucated parents, and students living with both natural parents are all more

likely to graduate from high school and enter college. Students who are at

least eighteen are far more likely to drop out of high school, largely because

these students are more likely to have repeated a grade, a clear signal that they

have struggled in school. The results on student age may also reflect, in part,

the fact that compulsory education laws are not binding for older students

[Angrist and Krueger 1991]. The effects of family income on high school

graduation is large for students from families with incomes below $12,000

(conditional on parents’ education), but increases in income beyond $12,000

seem to have little additional impact on the chances that a student will grad-

uate. In contrast, the probability of college entrance increases monotonically

as income rises. The results also show that although in the raw data blacks

and Hispanics drop out at higher rates than do whites, once we control for
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observed characteristics these groups are actually more likely to finish high

school.

B. Potential Omitted Variables Bias

In this section we ask whether our basic results are robust. Our primary

concern here is that we have omitted important (measurable) characteris-

tics of the student that are correlated with the Catholic school variable and

that, as a consequence, we have overstated the benefits of a Catholic school

education. The results of some of these sensitivity tests are shown in

Table IV. We reproduce the basic results from Table III in the first line of

Table IV.

We begin by asking whether including measures of student ability or

achievement would change our basic finding. While we would certainly ex-

pect to find that better students are more likely to finish high school and

start college, we are hesitant to include measures of ability or achievement

in our basic model since they are potentially endogenous variables. Here

we set these concerns aside for the moment and include in line (2) the stu-

dent’s sophomore score on the HS&B exams in the basic probit models. Not

surprisingly, test score is an excellent predictor of both measures of educa-

tional attainment. The t-statistic on the test score variable is over 13 in both

models. Including test score reduces the average treatment effect of Catholic

schools from 13.0 percentage points in the dropout model to 10.0 and from

13.2 to 11.1 in the college model. While the effect of Catholic schools is

still large in the second line of Table IV, we would argue that these models

probably understate the true effect of Catholic schools. The sophomore test

score is missing for over 1900 students. It is more likely to be missing for

public school students and for students with the highest ex post probability

of dropping out.12 Excluding these observations from the data set would then

drag the Catholic school coefficient downward. To illustrate this point more

clearly, in line (3) we set the test score equal to zero if the score is missing

and include a dummy that equals 1 if the score is missing but equals 0 other-

wise. In this specification, including test scores has little impact on our basic

conclusions. The average treatment effects in line (3) are very close to the

average treatment effects in line (1).13

We noted above that Catholic school students are more likely to come

from two-parent, high income, well-educated families; i.e., they have “bet-

ter” observed characteristics. Moreover, they attend schools with peers who,

on average, also have better observed characteristics. A number of authors

have found that a range of social outcomes is correlated with the quality
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of the peer group.14 Therefore, it is possible that we have overstated the ef-

fect of Catholic schools by ignoring peer group effects. We have calculated

a set of seven peer group measures for each school in our sample using data

from all students in the first wave of HS&B (and thus in many cases these

peer group measures are based on 72 students). Our peer group measures

equal the proportion of students in a school whose parents fall into four ed-

ucation categories and whose family falls into three income categories.15 In

line (4) of Table IV we include these peer group measures in our basic probit.

Although a number of the peer variables are statistically significant and ,in-

dicate that better peer groups do increase the probability of completing high

school and entering college, the coefficients on the CATHOLIC SCHOOL
dummy variable and the average treatment effects change very little.16

A number of previous studies have found that measures of the family’s

inputs to education are important determinants of a student’s score on stan-

dardized exams [Coleman, Hoffer, and Kilgore 1982; Coleman and Hoffer

1987; Noell 1982]. Coleman, for example, includes indicators for whether

the student’s family owns a calculator, an encyclopedia, more than 50 books,

or a typewriter. As the results in line (5) indicate, including these vari-

ables does reduce the impact of a Catholic school education, but the Catholic

school effect remains quite large. However, as with the test score data, there

are many missing observations for these variables. Letting the indicator vari-

ables equal zero if the value is missing and including four dummy variables

that equal one if the variable is missing, we see in line (6) that these four

family measures have little impact on the average treatment effect.17

Given the variation in state labor market conditions, compulsory school-

ing laws and state support for higher education, it is possible that there are

strong state effects in the models we have estimated. If these state effects are

correlated with the probability of attending a Catholic high school, they may

have led us to overstate the impact of a Catholic education on educational

attainment. HS&B does not identify the state in which a student lives. We

can, however, identify all of the students who live in the same state (although

we do not know which state that is). The Local Labor Market Indicators

for HS&B (1980–1982) supplemental file reports local labor market statis-

tics at the county, MSA, and state level for the years 1980–1982. There are

51 unique values for the product of all state level unemployment rates for the

three years. In line (7) of Table IV we include 50 state dummy variables in

the basic probit models. The marginal and average treatment effects in this

fixed-effects model are very similar to the estimates in line (1).18

Finally, we run one large model that includes the test scores and a

dummy for missing test scores, the seven peer group measures, the four
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measures of home inputs into education and indicators for missing values,

and 50 state dummy variables. Including all 67 of these variables decreases

the average treatment effect of a Catholic education on high school com-

pletion and college entrance by 8 and 17 percent, respectively. For both

dependent variables, however, the average treatment effect is still more than

ten percentage points. Our results, therefore, appear to be robust to rather

different model specification.

C. Catholic School Selectivity

Public schools must accept virtually all students who live within their atten-

dance boundaries, and in general it is very difficult for most public schools

to expel a student. Catholic schools, on the other hand, are free to select their

students and to expel students because of poor behavior or poor academic

performance. Thus, part of the Catholic school effect we have found could

be due to the way Catholic schools choose their students. They are in a better

position than public schools to avoid students who in the end are likely to

drop out.19

The bivariate probit models we present in the next section of the paper

can address this question. But we can also present some evidence on this

point within our single-equation framework. HS&B asked school officials

whether their schools used entrance exams as part of the admissions pro-

cess and whether there was a waiting list for the school. If school selection

does play an important role in explaining the success of Catholic schools,

then we would expect Catholic schools that use entrance exams or that have

waiting lists to have lower dropout rates than other Catholic schools. To test

this hypothesis, we interacted the Catholic school dummy variable with these

school characteristics. The results are presented in Table V. In both instances

we do not find a pattern that is consistent with the school selection hypoth-

esis. In all of the models in Table V, we are unable to reject the hypothesis

that there is no difference in graduation or college entrance rates across types

of Catholic schools.

D. Definition of the Dependent Variables

As a final sensitivity test in this section, we asked whether our results are

robust to alternative definitions of the dependent variables. We have rees-

timated our models allowing for more inclusive measures of high school

graduation and college completion. For example, we have estimated mod-

els where we count those with GED’s and those who received diplomas after

February of 1984 as high school graduates. Counting these students as high

school graduates increases the sample average graduation rate to 90.4 percent
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and decreases the Catholic school average treatment effect to eight percent-

age points. Given the recent work of Cameron and Heckman [1993], who

found that students earning a GED have poorer labor market outcomes than

regular high school graduates, it is not clear that equating these two groups

is appropriate. We also counted those who entered two-year colleges and

those entering any college after February of 1984 as college entrants. This

change in definition increases the mean of the dependent variable to 60 per-

cent, but the Catholic school average treatment effect remains roughly twelve

percentage points.20

IV. Testing for Selectivity Bias

All of the single-equation models we presented in the previous section treat

the decision to attend Catholic schools as exogenous. As Goldberger and

Cain [1982] and others argue (and Coleman acknowledges), selectivity bias

is potentially the most serious problem in the literature on the effectiveness

of private schools. The following example illustrates the nature of the error

that could arise. Consider a child whose parents care a great deal about his

welfare. We would expect this child to do well in school for two reasons.

First, his parents will see that he attends a better than expected school and will

be more willing to pay the cost of sending him to a private school. Second,

he will succeed in part because of factors that cannot be observed but are

under his parents’ control. They will spend more time reading to him, they

will stress the importance of good grades, and they will see that he does his

homework. A single-equation model would mistakenly attribute all of this

child’s success to his private school. More formally, our results would be

biased because the school choice variable in the high school completion and

college entrance equations would be correlated with the error term. Similar

problems will arise if Catholic schools are able to screen potential students

on factors such as a personal interview or they expel students on the basis of

poor behavior and academic performance.

A. A Bivariate Probit Model

In this section we outline a simple bivariate probit model that allows for these

possibilities. Following the latent variable model in equation (1), suppose

that the net benefits of attending Catholic school C∗
i can be written as

C∗
i = Ziγ + μi , (3)

where Zi is a vector of observables and μi is a random error. A family

will enroll a child in a Catholic school if the net benefits are positive; i.e., if

C∗
i > 0. To allow for the possibility that the unobserved determinants of a
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student’s performance and the unobserved determinants of a family’s deci-

sion to enroll their teenager in a Catholic school are correlated, we assume

that εi and μi are distributed bivariate normal, with E[εi ] = E[μi ] = 0,

var[εi ] = var[μi ] = 1 and cov[εi , μi ] = ρ. Because both decisions we

model are dichotomous, there are four possible states of the world (Yi = 0

or 1 and Ci = 0 or 1). The likelihood function corresponding to this set of

events is therefore a bivariate probit.

This system is identified if at least one variable in Zi is not contained

in Xi . Initially, we use as our instrument a dummy variable CATHOLIC
RELIGION that equals 1 if the student reports that she is Catholic and 0 oth-

erwise. Subsequently, we consider alternative instruments such as whether

a student attends school in a predominantly Catholic area and a set of in-

struments that we form by interacting CATHOLIC RELIGION with religious

attendance variables. We look at the validity of these variables as instruments

below.

The bivariate probit results are summarized in Table VI. We repeat the

basic single-equation results from Table III in lines (1) and (6) of Table VI.

In lines (2) and (7) we present the maximum likelihood (MLE) bivariate pro-

bit estimates using CATHOLIC RELIGION as an instrument and the same

right-hand variables we use in the basic single-equation models. In both the

high school graduate and college entrance models, the MLE estimates of

the marginal effect of Catholic schools and the average treatment effect are

quite close to the single-equation estimates. The MLE estimate of the cor-

relation coefficient ρ is negative in the high school completion model and

positive in the college model, but in both cases the estimate is small, impre-

cise, and thus statistically insignificant.

In the remainder of Table VI we look at the impact of adding state effects

and tenth grade test scores (variables that appeared to be important when we

looked at them in Table IV) to the bivariate probit model. These additional

variables have little impact on our basic conclusions in the dropout model.

The estimated average treatment effect in lines (3)–(5) is similar to the av-

erage treatment effect in (2). Our estimates of ρ are always statistically in-

significant. Adding tenth grade test scores to the college models (regardless

of whether we include state effects as well) reduces the average treatment ef-

fect and leads to an estimate of ρ which is positive and significantly different

from zero. Even in these models, however, attending a Catholic high school

increases the probability of entering college by more than seven percentage

points.

The last column of Table VI presents estimates of a somewhat different

econometric model. Although the bivariate probit model is straightforward

to estimate, the model is substantially more complicated than a standard
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Table VI. Maximum Likelihood Estimates of HIGH SCHOOL GRADUATE
and COLLEGE ENTRANT Bivariate Probit Model Using CATHOLIC

RELIGION as an Instrument

MLE estimates of bivariate

probit model

Coefficient 2SLS estimate

on Average of coefficient

Other variablesb CATHOLIC Marginal treatment on CATHOLIC
Model in Xi SCHOOL effectc effect ρ SCHOOL

High School Graduatea

(1) 0.777 0.117 0.130 0.096d

(0.056) (0.014) (0.007) (0.008)

(2) 0.859 0.133 0.141 –0.053 0.127

(0.115) (0.022) (0.014) (0.067) (0.024)

(3) 10th Grade Test Score and

Test Missing

0.678

(0.126)

0.078

(0.018)

0.114

(0.017)

0.028

(0.072)

0.103

(0.024)

(4) State Effects 0.911

(0.121)

0.142

(0.027)

0.144

(0.015)

–0.050

(0.072)

0.114

(0.024)

(5) 10th Grade Test Score,

Test Missing, and State

Effects

0.746

(0.132)

0.124

(0.028)

0.121

(0.016)

0.025

(0.077)

0.134

(0.030)

College Entranta

(6) 0.384 0.144 0.132 0.137d

(0.032) (0.012) (0.011) (0.011)

(7) 0.288 0.109 0.098 0.067 0.148

(0.079) (0.033) (0.028) (0.049) (0.030)

(8) 10th Grade Test Score and

Test Missing

0.211

(0.083)

0.078

(0.034)

0.064

(0.026)

0.124

(0.052)

0.098

(0.024)

(9) State Effects 0.341

(0.084)

0.110

(0.032)

0.115

(0.029)

0.056

(0.053)

0.092

(0.024)

(10) 10th Grade Test Score,

Test Missing, and State

Effects

0.277

(0.090)

0.071

(0.026)

0.082

(0.027)

0.113

(0.046)

0.098

(0.028)

Asymptotic standard errors are in parentheses.

a. Models (1) and (6) are single-equation estimates from Table III. To estimate models (4), (5), (9),

and (10), we deleted all states with no Catholic school students. The high school completion and

college entrance models contain 10,120 and 8470 observations, respectively. Both models contain

data from twenty states. Models (1), (2), and (3) contain 13,294 observations, and models (6), (7),

and (8) contain 10,983 observations.

b. Other exogenous variables include those listed in Table III

c. Marginal effects are calculated for the individual defined in Table III

d. Estimated CATHOLIC SCHOOL coefficient from a linear probability model.

two-stage least squares (2SLS) model one could estimate if all potentially

endogenous variables were continuous. Fortunately, Angrist [1991] has

shown that instrumental variable estimation is a viable alternative to the bi-

variate probit model. In the notation of equation (1) Angrist showed in a
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Monte Carlo study that if we ignore the fact that the dependent variable is

dichotomous and estimate

Yi = Xiβ + Ciδ + εi (4)

with instrumental variables (IV), the IV estimate of δ is very close to the

estimated average treatment effects calculated in a bivariate probit model. A

comparison of the third and fifth columns of Tables VI illustrate the Angrist

result. The 2SLS estimates of the Catholic school effect and the average

treatment effect are very similar in all of the models we have presented in

that table. We will take advantage of this result below where we focus on the

validity of our instruments.

B. The Validity of the Instruments

If CATHOLIC RELIGION is a valid instrument, then (i) it must be a deter-

minant of the decision to attend a Catholic School, but (ii) it must not be a

determinant of the decision to drop out of high school or to start college; i.e.,

it must not be correlated with the error term εi . Not surprisingly, it is easy to

show that it meets the first test. In a probit model that explains the probabil-

ity a student will attend a Catholic school, the t-statistic on the CATHOLIC
RELIGION variable is 36.3. In a simple OLS model where CATHOLIC
SCHOOL is regressed on CATHOLIC RELIGION, the R2 is 0.16.

Thus, the credibility of our bivariate probit results turns on our as-

sumption that high school students who are Catholic are no more likely to

graduate from high school or to begin college than otherwise identical stu-

dents who are not Catholic. There is little evidence from other studies that

would suggest that there are important differences in the education levels of

Catholics and non-Catholics. Taubman [1975, Table 3, p. 179], for example,

found that the level of education of Jews and Protestants was not significantly

different from the level of education of Catholics. Using the data appendix

in Tomes [1984], we find that Catholics and non-Catholics have virtually the

same average years of education (12.88 versus 12.64, respectively). How-

ever, in the raw HS&B data (that is, without accounting for variables that are

correlated with the Catholic religion variable), Catholic students are more

likely to finish high school and to go to college. In the full sample, 88.4 per-

cent of Catholics graduated from high school as compared with 79.0 percent

of non-Catholics. Among students who finished high school, 42.8 percent of

Catholics entered college as compared with 33.5 percent of non-Catholics.

These differences could lead us to estimate of the effect of a Catholic school

education that is large but possibly misleading.

The following simple calculation makes this point clear. With our dis-

crete instrument and assuming a bivariate linear model where the only
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right-hand-side variable is CATHOLIC SCHOOL, we can generate an instru-

mental variable estimate for the CATHOLIC SCHOOL effect through a com-

parison of means. Using the results in Wald [1940], the instrumental vari-

able estimate is simply the difference in graduation rates for Catholics and

non-Catholics, divided by the difference in the probability that Catholics and

non-Catholics attend Catholic high schools. In the full sample, 39.1 percent

of Catholics and 6.4 percent of non-Catholics go to Catholic schools. Thus,

the Wald instrumental variable estimate for the impact of Catholic schools in

the dropout model is (.884 − .790)/(.392 − .064) = .287. For the sample

that has completed high school, 43.1 percent of Catholics and 7.8 percent of

non-Catholics are in Catholic high schools, implying a Wald estimate for the

college entrance model of (.428 − .335)/(.431 − .078) = .263.

These raw numbers suggest that, on average, Catholics are better ed-

ucated than non-Catholics. This will pose a problem for our estimation if,

after controlling for other observed characteristics, the Catholic religion in-

strument is correlated with a student’s unobserved propensity to graduate

from high school or enter college. The most straightforward way to address

this issue is to include CATHOLIC RELIGION in the single-equation probits

we discussed in Table III. We recognize that this is not a formal test since

if the correct specification is a bivariate probit then single-equation models

are misspecified, but it does offer a clear sense of the patterns in the data. If

we include CATHOLIC RELIGION in a single-equation dropout model, its

estimated coefficient is positive but statistically insignificant. The estimated

marginal effect of the CATHOLIC RELIGION variable in that model is very

small compared with the effect of going to a Catholic school. Although this

is not a direct test of whether our instrument is valid, it does indicate that, as

a group, Catholics are no different from non-Catholics.

We performed three further tests in order to explore this issue. First, we

have constructed additional sets of instruments that recognize that there is

heterogeneity in the demand for Catholic schools among Catholics. These

models, for example, allow for the possibility that Catholics who attend

church regularly are more likely to send their children to Catholic schools

than are Catholics who rarely go to church. Second, following Neal [1994]

and Hoxby [1994], we have used a very different instrument: the propor-

tion of the population in the county where a student attends school that is

Catholic.21 They argue that it is probable that there will be more Catholic

schools in predominantly Catholic areas and thus students (given their ob-

servable characteristics) who live in such areas are more likely to attend a

Catholic school.22 There is no reason, however, to suspect that the proba-

bility that a student will finish high school or start college depends on her
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neighbors’ religion. Third, we have formed a final set of instruments by

combining the Catholic religion and Catholic population variables. The mod-

els, like the models that incorporate church attendance, allow for heterogene-

ity among Catholics (e.g., Catholics who live in heavily Catholic neighbor-

hoods are more likely to send their children to Catholic schools).

This research strategy is particularly attractive since it leads to several

models that are overidentified. In those models, we can use Newey’s [1985]

method of moments specification tests to look at the internal consistency of

the model; i.e., whether the variables we use as instruments can be excluded

from the structural equation. In a 2SLS model the test statistic is constructed

by regressing the estimated errors from the structural model of interest on

all exogenous variables in the system. The number of observations times the

uncentered R2 from this synthetic regression is distributed as χ2 with de-

grees of freedom equal to the number of instruments minus the endogenous

right-hand-side variables in the structural equation of interest. Here again, we

recognize that this is not a proper formal test. Although the Angrist [1991]

result allows us to accurately estimate the average treatment effect via 2SLS,

it is not clear that the assumptions necessary to perform the tests of overi-

dentifying restrictions are met when both Y and C are discrete. This class of

tests, however, is the best available diagnostic.

Table VII summarizes the estimates of models that rely on these alter-

native instruments. All of the models include the exogenous variables that

we included in the basic versions of our probits presented in Table III. In

lines (1) and (7) we repeat the estimates of the Catholic school effect from

lines (2) and (7) in Table VI. For the HIGH SCHOOL GRADUATE mod-

els, we first interact Catholic religion with the religious attendance variables.

Next, we use % CATHOLIC IN COUNTY as an instrument. We next use both

CATHOLIC RELIGION and % CATHOLIC IN COUNTY as instruments, and

then add the interaction of these variables to the previous model. Finally,

in line (6) we use % CATHOLIC IN COUNTY as our instrument and include

CATHOLIC RELIGION as a covariate in both the Catholic school and dropout

equations.

Our estimates of the Catholic school effect from the bivariate probit

models in lines (1)–(5) fall between 0.114 and 0.141. The 2SLS estimates

are quite similar to the bivariate probit estimates in all cases. We cannot

construct a test of overidentifying restrictions for the models in lines (1) and

(3) since those models are exactly identified. For the other three models,

however, all test statistics are well below their 95 percent critical value. The

2SLS estimate of the Catholic school effect in line (6) is consistent with

our other estimates, though this effect is measured imprecisely (the standard
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Table VII. System Estimates of HIGH SCHOOL GRADUATE and

COLLEGE ENTRANT Models with Alternative Instruments

Bivariate

probit estimates

of average Test of

treatment 2SLS overidentifying

effect, estimate of restrictions,

CATHOLIC CATHOLIC (d.o.f.), [95%

Instruments SCHOOL SCHOOL critical value]

High School Graduatea

(1) Catholic Religion 0.141 0.127

(0.014) (0.024)

(2) Catholic Religion × Attendance

at Religious Services

0.141

(0.013)

0.107

(0.022)

3.29 (2)

[5.99]

(3) % Catholic in County 0.114

(0.033)

0.130

(0.076)

(4) Catholic Religion and

% Catholic in County

0.139

(0.044)

0.127

(0.024)

0.10 (1)

[3.84]

(5) Catholic Religion, % Catholic in

County and Catholic Religion

× % Catholic in County

0.137

(0.014)

0.127

(0.024)

0.84 (2)

[5.99]

(6) % Catholic in Countyb 0.061 0.144

(0.038) (0.373)

College Entranta

(7) Catholic Religion 0.098 0.148

(0.028) (0.030)

(8) Catholic religion × Attendance at

Religious Services

0.122

(0.127)

0.167

(0.027)

6.3 (2)

[5.99]

(9) % Catholic in County 0.240 0.656

(0.053) (0.093)

(10) Catholic religion and % Catholic

in County

0.115

(0.037)

0.161

(0.029)

33.7 (1)

[3.84]

(11) Catholic Religion and Catholic

Religion × % Catholic in Countyc
0.071

(0.028)

0.104

(0.031)

0.81 (1)

[3.84]

Asymptotic standard errors are in parentheses. The number of observations in the HIGH
SCHOOL GRADUATE and COLLEGE ENTRANT models is 13,294 and 10,983, respectively.

a. Other exogenous variables include those listed in Table III.

b. CATHOlIC REliGION is included as an exogenous variable in the model.

c. % CATHOlIC IN COUNTY is included as an exogenous variable in the model.

error is more than ten times as large as the standard errors in most of the

first five models). The bivariate probit estimate of model (6) is somewhat

smaller than the other estimates in the upper panel of Table VII. It thus ap-

pears that our graduation results are fairly robust, though the results where

we depend on CATHOLIC RELIGION as an instrument are estimated more

precisely.
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The COLLEGE ENTRANT models in lines (7) through (10) parallel

the graduation models in lines (1) through (4). The COLLEGE ENTRANT
models are much more sensitive to the choice of instruments than are the

HIGH SCHOOL GRADUATE models. In particular, versions of the model

that use % CATHOLIC IN COUNTY as an instrument sometimes lead to re-

sults that are substantially different from the results we reported earlier. For

example, in line (9) where we use % CATHOLIC IN COUNTY as the sin-

gle instrument, the 2SLS estimate of CATHOLIC SCHOOL is implausibly

large. The tests of overidentifying restrictions in the college model where

we interact CATHOLIC RELIGION with the religious attendance variable is

slightly larger than the critical value (the p-value is approximately 0.043), but

the college model in line (10) clearly rejects the null hypothesis of internal

consistency.

We suspect that the problem is that Catholics are likely to live in states

where large numbers of students go on to college. To test this hypothesis,

we used the data files from the 1980–1982 October Current Population Sur-

veys and calculated state-level averages of the percent of 18 to 22 year-olds

who are enrolled in college. The raw correlation between these values and

the percent of the population in a state that is Catholic is 0.38 (p-value of

0.006). Because % CATHOLIC IN COUNTY may be capturing some unob-

served state characteristics in the college models, in line (11) we included it

as an exogenous variable and use CATHOLIC RELIGION and the interaction

CATHOLIC RELIGION and % CATHOLIC IN COUNTY as instruments. In

that model the estimated average treatment effect is 10.4 percent, and the

statistic required for the test of overidentifying restrictions is well below the

95 percent critical value.

C. Heterogeneity in the Catholic School Effect

We have also explored the impact of Catholic schools on different subgroups

of our sample, and thus, for example, we have estimated separate models for

blacks and whites and Catholics and non-Catholics. When we divide the sam-

ple into Catholics and non-Catholics, we clearly cannot use CATHOLIC RE-
LIGION as an instrument and thus must rely on % CATHOLIC IN COUNTY
to identify those bivariate probit models. As we showed in Table VII,

% CATHOLIC IN COUNTY led to several implausible results in the college

models. We therefore focus on high school graduation in this section of the

paper.

Table VIII presents estimates of the average treatment effect of a

Catholic school education for various subgroups. In the single-equation pro-

bits and bivariate probits where we use CATHOLIC RELIGION as an in-

strument, Catholic schools have a larger impact on students who have the
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Table VIII. Heterogeneity of the Average Treatment Effect, HIGH SCHOOL
GRADUATE Models

Average treatment effect,

CATHOLIC SCHOOLa

Bivariate probit estimates

with instructions:

Mean HIGH Single-

Number SCHOOL equation % CATHOLIC CATHOLIC
Sample of obs. GRADUATE probit IN COUNTY RELIGION

White 7831 0.826 0.141 0.086 0.128

(0.007) (0.039) (0.016)

Black 1833 0.803 0.134 0.111 0.146

(0.019) (0.101) (0.044)

Urbanb 3150 0.774 0.172 0.139 0.184

(0.016) (0.069) (0.037)

Suburban 6696 0.862 0.109 –0.003 0.120

(0.008) (0.052) (0.017)

Sophomore Test, 2842 0.658 0.213 0.113 0.242

First Quartile (0.025) (0.145) (0.051)

Sophomore Test, 2842 0.829 0.105 0.128 0.110

Second Quartile (0.016) (0.066) (0.087)

Sophomore Test, 2854 0.916 0.069 0.176 0.071

Third Quartile (0.010) (0.039) (0.020)

Sophomore Test, 2841 0.960 0.030 –0.217 0.012

Fourth Quartile (0.007) (0.188) (0.031)

Catholic 5104 0.884 0.107 0.328

(0.008) (0.033)

Non-Catholic 8190 0.790 0.145 0.072

(0.013) (0.098)

Asymptotic standard errors are in parentheses.

a. Other exogenous variables include those listed in Table III.

b. Schools in the South were deleted from this subsample because there were no urban Catholic

schools.

lowest probability of finishing high school: blacks, students in urban areas,

and students with low test scores. We still find, however, a large, statistically

significant Catholic school effect for white and suburban students. These re-

sults are in contrast to Neal [1994], who found that Catholic schools raise the

probability that urban black students will graduate but have little impact on

other groups of students.

Some of these patterns emerge in bivariate probits where we use

% CATHOLIC IN COUNTY as an instrument, though in general, these models



EVANS AND SCHWAB ON CATHOLIC SCHOOLS 369

are estimated less precisely. The effect on black and white students is similar,

but the average treatment effect for blacks is not significantly different from

zero. The pattern across test score groups is difficult to interpret, and the

Catholic school effect for Catholics is implausibly large. In all, these results

and the COLLEGE ENTRANT results in Table VII lead us to conclude that

while the argument in favor of using % CATHOLIC IN COUNTY to identify

the bivariate probit models is quite plausible, the actual gains from doing so

are not as clear as we had first hoped.23

V. Summary and Conclusions

Spurred by the work of Coleman et al., academics and policymakers have

been involved in a decade-long debate over the relative effectiveness of pub-

lic and private schools. This debate has been waged largely over a single

outcome measure: standardized test scores. But, as Card and Krueger [1992,

p. 37] have argued, “success in the labor market is at least as important a

yardstick for measuring the performance of the educational system as stan-

dardized tests.” In this paper we have looked at two measures of education

that are clearly linked to virtually every measure of success in the labor mar-

ket: the decisions to finish high school and go to college. We find that teens

enrolled in Catholic schools have a significantly higher probability of com-

pleting high school and starting college, that the results appear to be robust,

and that we cannot attribute the differences between sectors to sample selec-

tion bias. Catholic schools appear to have particularly large effects for ur-

ban students. This result has some potentially important policy implications

given the concern over the quality of public schools in many inner cities.

Most of our conclusions are consistent with other work on this problem in-

cluding Neal [1994], who uses a different data set but a similar econometric

approach, and Sander and Krautmann [1995] (which we learned of only after

finishing the research for this paper), who use the same data set, a somewhat

different econometric approach, and different instruments.

Our research leaves open a number of questions. First, it is possible that

further analysis of the HS&B data or other data will make the Catholic school

effect go away. For example, perhaps we have missed an important omitted

variables problem or possibly a different approach to selectivity bias will

yield different conclusions. Second, if Catholic schools are as effective as

our results suggest, then we are left with a puzzle: why do not more families

(particularly lower income Catholic families) make a fairly modest invest-

ment and send their children to a Catholic school? Third, if Catholic schools

are more effective than public schools, we need to know more about the

source of their effectiveness. Coleman et al. attribute this success to Catholic
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schools’ emphasis on discipline, attendance, and homework. Our research

does not address this issue, but it is an obvious next step. Finally, we need

to know whether it will ever be possible to apply the lessons we learn from

the Catholic schools to nonreligious private schools. In some ways, Catholic

schools are like other private schools—they must meet the test of the mar-

ket. But in other ways they are obviously fundamentally different, and it

is not clear that they succeed because of the importance of religion or the

discipline of competition.24
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Notes
1. Henig [1994], for example, found that out of 125 questions in HS&B

dealing with vocabulary, reading, mathematics, science, writing, and civics,

public school students improved by 7.16 items (from 67.07 as sophomores

to 74.23 as seniors), while Catholic school students improved by 8.98 items.

Thus, even before accounting for differences in family characteristics, Cole-

man’s Catholic school effect represents only 8.98 − 7.17 = 1.81 additional

correct answers.

2. For example, Chubb and Moe [1990], in their 318-page analysis of

effective schools, use test scores as virtually their sole measure of school

performance. Coleman does discuss differences in dropout rates briefly, but

the analysis is limited to simple cross tabulations of the data. Neal [1994]

and Sander and Krautmann [1995] are similar in some ways to this paper.

3. For a review of the effects of cognitive development on labor market

performance, see Hanushek, Rivkin, and Jamison [1992] and Bishop [1991].

4. The test score we report is the sum of the “formula” score on the

mathematics, vocabulary, and reading exams. Students received one point

for each correct answer and lost a fraction of a point for each incorrect an-

swer (where the fraction depends on the number of possible answers). The

maximum possible score on the 10TH GRADE TEST SCORE is 68.

5. All individual and school variables were constructed from either the

composite variables in the HS&B data set or were taken from the base-year

survey. The summary statistics in Table I are unweighted and thus do not

represent an accurate picture of 1980 high school sophomores. We have not

used sample weights in our econometric work.

6. The definition of these two outcome measures is not quite as straight-

forward as one might think. For example, we do not count students earning

GED’s as high school graduates. This is a reasonable restriction given re-

cent work by Cameron and Heckman [1993], who find that graduates with

GED’s do not perform as well in the labor market as students with regular

high school diplomas. Similarly, we do not count people who went to college

long after graduating from high school and people who attended a two-year

college as college students. Restricting our attention to students entering a

four-year college is arguable given work by Kane and Rouse [1993] who find

that credit hours from two- and four-year colleges are rewarded equally in

the workforce. Rouse [1995] also finds that, on net, community colleges in-

crease total years of schooling but do not alter the probability of obtaining

an undergraduate degree. As we demonstrate later, these assumptions are not

critical.

7. There is reason to believe that most of the missing income values are

from families with low income. Students were given a breakdown of family
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income by thirds and asked in what portion of the income distribution does

their family fall. Using sample weights from the second follow-up survey,

a total of 29 percent and 27 percent of the students reported being in the top

two-thirds of the income distribution, respectively, while only 13 percent said

that their family was in the bottom third (the rest did not respond).

8. The test quartiles were calculated for the entire sample using second

follow-up sample weights.

9. Bryk, Lee, and Holland [1993] found similar results for Catholic

schools in their analysis of the HS&B test score data. Using quantile re-

gression techniques, Evans and Schwab [1993] also found that the benefits

of a Catholic education on test scores are concentrated among the least able

students, students whose parents have little education and students from low-

income families.

10. We calculated the marginal effects for the “average” public school

student, who we defined as a seventeen-year-old white female, living with

both natural parents, in a family where at least one parent has a high school

diploma, family income is between $16,000 and $20,000, who attends reli-

gious services regularly, and who lives in a suburb in the south.

11. All of the college graduation models we present in this paper are

estimated on the subsample of students who graduated from high school.

Within the entire sample, 26 percent of the public school students and 53 per-

cent of the Catholic school students entered college. The average treatment

effect in the college model presented in Table III using the entire sample is

0.217 with a standard error of 0.020.

12. In our sample, the sophomore test score is missing for 20 percent

of the public school students and 11 percent of the Catholic school students.

High school completion rates are 84 percent for students with a valid test

score, but only 74 percent for students without a score.

13. The marginal effects are calculated for the reference individual de-

fined in Table Ill. In addition, we assume that this student’s test score equals

the median public school score in our sample. The marginal effects (standard

errors) for the 10TH GRADE TEST SCORE in the high school completion

and college entrance models are 0.004 (0.0002) and 0.013 (0.001), respec-

tively. These results suggest that a one-standard-deviation increase in the test

score over the median value (about a fifteen-point increase) would increase

high school completion and college entrance probabilities by six and twenty

percentage points, respectively.

14. See Jencks and Mayer [1990] for a review of the literature on peer

effects, and see Mayer [1991] for an estimate of the effects of peer groups

on high school completion rates. Both of these studies are concerned with

single-equation estimates of the effects of peers on the economic outcomes
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of teens. Evans, Oates, and Schwab [1992] argue that because families can

choose among schools and neighborhoods, a student’s peer group is a poten-

tially endogenous variable. We do not consider the endogeneity of the peer

measures in this paper.

15. HS&B did collect information at the school level which could be

used directly to form peer group measures. As with the test score data,

however, these variables are missing for many schools (especially public

schools). Although the peer group measures we constructed are based on

a sample rather than a census of students from a high school, the large num-

ber of observations per school should provide us with a good approximation

of the composition of the school. We have tested this argument by using this

same procedure to construct a measure of the proportion of the students in a

school who are black and comparing this estimate with the figure reported in

the school survey. The correlation coefficient for these two series is 0.97.

16. The marginal effects are calculated for a student who has an aver-

age public school value of the peer group variables. Because of space lim-

itations, we do not report the parameter estimates for all seven peer group

measures in both models. We note that the peer group variables measuring

parents’ education tended to be more important determinants of high school

completion and college entrance than measures of income. In fact, once we

included parents’ education, the peer measures for income became largely

insignificant. The marginal effects (standard errors) for the peer group vari-

ables measuring parents’ education in the high school completion model are

as follows: % PARENT EDUCATION MISSING −0.24 (0.06), % PARENT
EDUCATION LESS THAN HIGH SCHOOL −0.12 (0.05), % PARENT ED-
UCATION HIGH SCHOOL GRADUATE −0.11 (0.04), % PARENT EDU-
CATION SOME COLLEGE −0.20 (0.05). The corresponding values for the

college entrance model are −0.63 (0.10), −0.35 (0.07), −0.57 (0.05), −0.50

(0.08). The reference group in both models is the percent of students in the

school whose parents are college educated.

17. To calculate the marginal effects for these two models, we assume

that the individual owned all four items.

18. We calculated marginal effects for a student who lived in the state

with the most observations in our data set.

19. The evidence from the existing literature on the role of student se-

lection in the success of Catholic schools is somewhat mixed. Bryk, Lee,

and Holland [1993] argue that, in general, Catholic schools are not highly

selective in their admissions. They find that the typical Catholic school ac-

cepts 88 percent of the students who apply. They also argue that contrary to

widespread belief, very few students are expelled from Catholic schools for

either academic or disciplinary grounds. On average, Catholic high schools
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dismiss fewer than two students per year. Witte [1990] presents evidence that

Catholic schools do in fact screen admissions so that they are able to avoid

students who are likely to do poorly. For example, he finds that 55.5 percent

of Catholic school principals, as compared with only 8.4 percent of public

school principals, indicated that prior academic record was an important fac-

tor in admission decisions.

20. These results are available upon request.

21. The Association of Statistics of American Religious Bodies

(ASARB) provided us with data on the Catholic population by county. Their

data are drawn from a survey of over 200,000 congregations and churches

with total membership of nearly 115 million. See Quinn et al. [1982] for

a discussion of these data. With the ASARB data and data from the 1980

Census, we then constructed an estimate of the percent Catholic at the county

level. County identifiers are not available in the public use HS&B data.

We have entered into an agreement with the U. S. Department of Education

where we created a data set that included the percent Catholics in a county

and county FIPS codes. The contractor for the HS&B data set then merged

the data set we created with student identification numbers. In order to pro-

tect the confidentiality of the data, the percent Catholic in the county vari-

able was grouped (0.0–4.9 percent, 5.0–9.9 percent, etc.) and top-coded at

70 percent.

22. This hypothesis is easily validated. In a first-stage probit model

where CATHOLIC SCHOOL is the dependent variable, the coefficient on

% CATHOLIC IN COUNTY is .001 with a standard error of 3.1 × 10−4.

To put this result into perspective, moving a student from the twenty-fifth

percentile % CATHOLIC IN THE COUNTY to the seventy-fifth percentile

increases the probability that the student will attend a Catholic school by ten

percentage points.

23. Implicitly, we have treated % CATHOLIC IN COUNTY as an ex-

ogenous variable. It will be correlated with the error term in the outcome

equations if, for example, families that care a great deal about education

move to counties where many Catholics live in order to take advantage of the

availability of Catholic schools or lower tuition as a member of the parish.

This argument could explain the problems we have found when we try to use

this variable as an instrument.

24. There is substantial disagreement over this issue in the literature.

See, for example, Bryk, Lee, and Holland [1993] and Chubb and Moe [1990]

for two very different views.
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Abstract

The interplay between education and fertility has a significant influence on
the roles women occupy, when in their life cycle they occupy these roles,
and the length of time spent in these roles. The overall inverse relationship
between education and fertility is well known; but little is known about the
theoretical and empirical basis of this relationship. This paper explores
the theoretical linkages between education and fertility and then examines
the relationships between the two at three stages in the life cycle. It is
found that the reciprocal relationship between education and age at first birth
is dominated by the effect from education to age at first birth with only a triv-
ial effect in the other direction. Once the process of childbearing has begun,
education has essentially no direct effect on fertility; but it has a large indi-
rect effect through age at first birth.

No factor has a greater impact on the roles women occupy than maternity.

Whether a woman becomes a mother1, the age at which she does so, and the

timing and number of her subsequent births set the conditions under which

other roles are assumed. Some may deplore this situation and it may be

changing, but the dominance of motherhood continues to be a fact for the vast

majority of women. While there is clearly variance in this role dominance,

the assumption of nonfamilial roles varies markedly with the fact, timing,

and extent of maternity.

Education is another prime factor conditioning female roles. Educa-

tion is expected to impart values, aspirations, and skills which encourage and

facilitate nonfamilial roles. It is possible that better educated women may

assume less traditional role patterns than less-educated women with identical

fertility histories. However, it is also likely that education affects women’s

roles through differing patterns of fertility. This paper discusses some of

the possible linkages between education and fertility and reports analyses

bearing on: (1) the relationship between education and age at first birth,

(2) the effects of education on the timing of subsequent births, particularly

on the experience of short birth intervals, and (3) educational differences in

wanted family sizes.

Education–Fertility Linkage

Given the importance of the interplay between education and fertility for the

roles women occupy in industrialized societies, there has been surprisingly

little attention paid to the causal linkages between the two.2 In part, this may

be because the possible causal connection between fertility and education

is exceedingly complex. Some have assumed that education affects fertility

(e.g., Westoff and Ryder, 1977; Rindfuss and Sweet, 1977; Cho et al., 1970;
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Whelpton et al., 1966), and some have argued that fertility also affects edu-

cation (Waite and Moore, 1978).

Most of the theory and research concerned with education and fertility

conceptualizes both in terms of their end products: completed education

and children ever born. In fact, children come one at a time (usually), and ed-

ucation is completed a year at a time, sometimes a course at a time. Children

can come close together, or at intervals of 10, 15 or even 20 years. Formal

schooling can be completed without interruption; or it can be completed after

short or long interruptions (Davis and Bumpass, 1976). Models of education

and fertility should reflect the fact that education and fertility are processes

which take time to complete and which can intercept each other in complex

ways.

The overall relationship between education and fertility has its roots at

some unspecified point in adolescence, or perhaps even earlier. At this point

aspirations for educational attainment as a goal in itself and for adult roles

that have implications for educational attainment first emerge. The desire for

education as a measure of status and ability in academic work may encourage

women to select occupational goals that require a high level of educational

attainment. Conversely, particular occupational or role aspirations may set

standards of education that must be achieved. The obverse is true for those

with either low educational or occupational goals. Also, occupational and

educational aspirations are affected by a number of prior factors, such as

mother’s education, father’s education, family income, intellectual ability,

prior educational experiences, race, and number of siblings (for example, see

Hout and Morgan, 1975).

Occupational and educational aspirations are also reciprocally related to

evolving fertility preferences. These fertility preferences include both num-

ber and timing preferences, that is, whether a first birth is wanted ever and,

if so, when. The number and timing preferences may be related if, for ex-

ample, a desire for many children leads to a desire to begin childbearing as

soon as possible (Bumpass and Westoff, 1970). Moreover, the preference

for postponing a first birth may lead to interests in other areas which may

then lead to a decision not to have any children. There is evidence that re-

peated postponement of the first birth is a typical pattern among those who

are voluntarily childless (Veevers, 1973). Such preferences for timing are

necessarily vague, but nonetheless important. Some young women may wish

to have a baby as soon as possible, perhaps to establish an adult identity sep-

arate from their parents, or to fulfill strong nurturing needs. Such aspirations

among young women are likely to have a negative effect on evolving role

and educational aspirations. Similarly, a young woman who is sure she does

not want to have a child any time soon, if at all, may expand her role and
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educational aspirations accordingly. Influences in the opposite direction op-

erate as the threat of early fertility to educational attainment are recognized

and fertility desires are adjusted accordingly.

Both of these preference sets (occupational and educational aspirations

as well as fertility preferences) influence actual age and education at first

birth through a set of intervening variables3 that include the standard in-

termediate variables affecting exposure to intercourse, conception risk and

gestation and parturition (Davis and Blake, 1956; Bongaarts, 1978).

Adolescents with higher educational and occupational goals may choose

social patterns that are less likely to lead to early marriage, that is, “not want-

ing to go steady or get serious with boys,” because they want to go to col-

lege. They may be less willing to engage in intercourse because of the threat

of possible pregnancy to their educational or career plans. Sexually active

adolescents with high educational aspirations may be more likely to try to

control the risk of pregnancy through careful contraceptive use.

Adolescent women who desire early motherhood (and presumably early

marriage) are likely to follow social patterns that lead to early intensive emo-

tional involvement; and, when sexually active, this group may have rela-

tively low motivation to avoid pregnancy. Such patterns may lead indirectly

to lower educational achievement because of an early age at first birth.

Early marriage may have a direct effect on reducing educational attain-

ment,4 for example, when a girl leaves school in order to be married. These

social patterns also have an indirect effect on education through factors af-

fecting pregnancy and early age at first birth.

It should be noted that in the reciprocal relationship between education

and age at first birth, the effects of education on age at first birth can only

be the result of the intermediate variables discussed above (also, see Davis

and Blake, 1956; Bongaarts, 1978) whereas the effect of age at first birth on

education may also include a direct effect.

Both age and education at first birth can affect subsequent role and ed-

ucational aspirations, and subsequent preferences for the timing and number

of children. These subsequent aspirations and preferences are also recipro-

cally related. After the birth of their first child some women may find that

they wish to reduce their fertility goals, increase their occupational goals, and

return to school. Others who had planned on continuing their education may

decide to have more children, or to quickly become pregnant again, either

because of great satisfaction in the mother role, or because of a sense that it

is an all-consuming role that precludes other options, or because they are not

sure of what else to do.

Education, age at first birth, the possibly revised occupational and ed-

ucational aspirations, as well as timing and number preferences all affect
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various aspects of the intermediate variables in a process similar to that elab-

orated above with respect to the period before the first birth. The period prior

to the first birth includes an unmarried and sexually inactive period as well

as a married interval for most women. For most (but not all) women, the

period following the first birth begins within marriage. Some women will

not yet be married and others will have married and separated or divorced

by the time of the first birth. At the second birth, a woman may be never

married, currently married, widowed, divorced or separated (Rindfuss and

Bumpass, 1977). Marital instability is an important social factor in the social

patterns category in each segment to the extent that it affects other interme-

diate variables such as frequency of intercourse, periods of abstinence, and

use of contraceptives.

Fecundity is largely exogenous to the processes we are examining,

though it has a clear effect on the timing of the first birth and may medi-

ate the effect of age at first birth on subsequent fertility.

While these potential intersections in the relationship between education

and fertility warrant more intensive study, that is not our purpose in this paper.

The point we are attempting to make in the preceding discussion is that the

observed relationship between completed education and completed family

size is the cumulative outcome of a complex process that involves attitudes

and decisions about both education and fertility that may change as time

passes or as the woman moves from one stage to the next, and that it is

necessary to examine empirically the various stages in the process.

Data

The data used are from the 1970 National Fertility Study (NFS), a multi-

purpose study based on a national probability sample of 6,752 ever mar-

ried women under 45 years of age residing in the continental United States

(Westoff and Ryder, 1977). Complete birth and pregnancy histories were

obtained, thus permitting analysis of age at first birth and of birth intervals.

Unfortunately, a complete educational history was not obtained. Only edu-

cation at interview and education at marriage were obtained. This means that

we have to use education at marriage as a proxy for education at first birth.

For most women this is a reasonable proxy, since the correlation between

age at first birth and age at first marriage is 0.74. In order to check the

reasonableness of using education at marriage, we reran all the analyses

using education at interview, and results were unaffected. However, it should

be recognized that for younger mothers the first birth is likely to precede

the first marriage. Finally, it should be noted that there were no questions

asked about educational or occupational aspirations during the adolescent

and young adult years.
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Although not reported in detail here, wherever possible we have also ex-

amined data from the 1973 National Survey of Family Growth (FGS) (NCHS,

1978) (a national probability sample of 9,797 women under age 45 who had

ever been married or who were never married mothers in 1973), and essen-

tially comparable results were found in both data sets.

Education and Age at First Birth

In the absence of accurate data on the intermediate variables, the relationship

between the fertility and educational processes can be conceptualized as a

simple causal process. The aspirations, plans, and decisions (and “apparent”

nondecisions) leading to an early first birth may result in lowered educational

aspirations and achievement. Women who desire and obtain a high level of

education may adjust their fertility preferences accordingly. Both the educa-

tional and the first birth process are affected by a set of exogenous factors re-

flecting background characteristics and characteristics of early adolescence.

A model of these relationships is shown in Figure 1. The rationale for this set

of exogenous variables, and their effects on education and age at first birth,

is considered elsewhere (Rindfuss and St. John, 1979); in the present paper

we concentrate only on the relationship between education and age at first

birth. Table 1 indicates the measurement of these exogenous variables, and

the Appendix reports the zero-order correlations among all the variables in

Figure 1.

That the relationship between education and age at first birth should be

viewed as potentially reciprocal is often overlooked: one direction of causa-

tion is usually emphasized to the exclusion of the other. For example, Jaffe

(1977:22) asserts: “Pregnancy is the most common cause of school dropout

among adolescent girls in the U.S.” Others, however, contend that educa-

tion determines age at first birth; and, further, that women who get pregnant

while still in school do so to have an “acceptable” reason for dropping out of

school (Cutright, 1973). Since there is considerable overlap in the time when

women leave school and the time when they have their first child (median

age at first birth is currently about 22, and, of recent cohorts, 25% have their

first birth by the end of the 19th year), it is important to investigate the extent

to which the educational attainment process and age at first birth process are

reciprocally related.

The part of the model shown in Figure 1 of direct interest here is the re-

lationship between education and age at first birth. We allow for a reciprocal

relationship between these two variables, with each affected by other vari-

ables in the model as well. Age at first birth is computed from the date of

respondent’s birth and date of birth of respondent’s first child. Education,

as noted, is education at marriage, not education at first birth. In order to
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Figure 1. A Model of the Relationship between

Educational Attainment and the Beginning of

Motherhood.

DADSOCC

RACE

NOSIB

FARMBACK

REGNBACK

ADOLFAM

RELIGION

YOUNGCIG

FECUND

AGEFST

ED

ED = b0 + b1DADSOCC + b2RACE + b3NOSIB + b4FARMBACK 
+ b5REGNBACK + b6ADOLFAM + b7RELIGION

+ b8YOUNGCIG + b9AGEFST + U

^

AGEFST = c0 + c1RACE + c2NOSIB + c3FARMBACK 
+ c4REGNBACK + c5ADOLFAM + c6RELIGION

 + c7YOUNGCIG + c8FECUND + c9ED + V

^

estimate the reciprocal relationships between education and age at first birth,

instrumental variables are needed for each of the two endogenous variables—

that is, variables are needed which directly affect one of the endogenous vari-

ables but not the other, which are not causally determined by the endogenous

variables, and which are not correlated with the unspecified source of the en-

dogenous variable for which it is not an instrument (Duncan, 1975; Heise,

1975). As can be seen from Figure 1, fecundity is used as the instrument for

age at first birth and respondent’s father’s occupation as the instrument for ed-

ucation. Fecundity is measured by whether or not the respondent had a mis-

carriage prior to her first birth.5 A miscarriage before the first birth postpones

the first birth in a direct and obvious way: it takes time to conceive again

and carry that conception to successful parturition. It also gives the woman

a second chance if she wants to contracept. The additional time involved
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as the result of a miscarriage before the first birth can be substantial since ap-

proximately one-fourth of the women who have one miscarriage before their

first birth have two or more miscarriages before their first birth.

A miscarriage before the first birth should have no effect on education,

except indirectly through age at first birth. This would occur only if the

woman dropped out or was expelled from school prior to the miscarriage be-

cause of the pregnancy. If this were the case, then the miscarriage would

be correlated with the disturbances in the education equation and would be

unsuitable as an instrument. However, this is unlikely because the vast ma-

jority of miscarriages occur in the early months of a pregnancy, before it is

obvious to observers that the woman is pregnant, and often before the woman

knows that she is pregnant (see National Center for Health Statistics, 1966).

If the woman is unmarried, she is unlikely to notify the school that she is

pregnant until it becomes absolutely necessary. It is probably in part for this

reason that unmarried women often do not seek prenatal care until very late in

pregnancy (National Academy of Sciences, 1973). Furthermore, education

should not have any effect on whether or not there is a miscarriage before

the first birth. The only exception to this statement would involve a woman

obtaining an induced abortion in order to complete her education. However,

induced abortions are so grossly underreported in United States fertility sur-

veys that reported miscarriages are essentially spontaneous miscarriages.

That respondent’s father’s occupation affects respondent’s educational

attainment is well known (Alexander and Eckland, 1974; Blau and Duncan,

1967; Kerckhoff and Campbell, 1977; Sewell and Hauser, 1977) and does

not require further elaboration here. We also argue that father’s occupation

does not have a direct relationship with age at first birth. Rather, we would

argue that the relationship is indirect through education. It can be expected

that families of an orientation in which the father has a high status job would

be more likely to encourage daughters to postpone the first birth than fami-

lies of an orientation in which the father has a low status job. However, the

most likely explicit and implicit justification for this encouragement would

be to allow daughters time to complete their education, and thus the effect

on age at first birth would be indirect. However, there may also be an in-

tergenerational transmission of norms regarding age at first birth. (Leonetti

[1978] provides a good example of this in the case of Japanese–Americans.)

To the extent that socioeconomic status directly affects the intergenerational

transmission of norms regarding age at first birth—that is, in addition to the

indirect transmission through educational aspirations—then respondent’s fa-

ther’s occupation would not be a suitable instrument for education. Recent

work by Thornton (forthcoming) suggests that there is no direct transmission
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of fertility norms from parental status. Instead, this influence was transmitted

through the education of the offspnng.

In order to examine our assumption that parental socioeconomic status

does not have a direct effect on the transmission of norms regarding age at

first birth, we examined the determinants of ideal age at first birth. The 1970

NFS included the following question:

“Q. 3: What do you think is the ideal age for a woman to have her first
child?”

Although this question suffers from all the problems of “ideal” ques-

tions (Blake, 1966; Bumpass and Westoff, 1970; Rindfuss, 1974; Ryder and

Westoff, 1969) as well as some problems specific to this question (Rindfuss

and Bumpass, 1978), it does provide the best measure available for norms

regarding age at first birth. Using a sample of recently married women in

order to minimize the possibility that the responses to the question would

be affected by the cumulative maternal experience of the woman, we find

that, after other appropriate factors are controlled, father’s occupation has

no significant direct effect on the ideal age to have a first birth. This fur-

ther supports Thornton’s results and supports the theoretical argument that

parental socioeconomic status influences age at first birth only indirectly

through its effect on the offspring’s educational aspirations, and thus sup-

ports the use of father’s occupation as an instrument for education in our

model.

However, somewhat less consistent support was found in an examina-

tion of the 1971 National Survey of Young Women data. Since father’s oc-

cupation was not available, the relationship between father’s education and

ideal age at first birth was considered for this sample of teenagers 15–19

years of age. While most of the association is accounted for by educational

aspirations, ideal age at first birth is 0.4 years lower among the children of

high school graduates than among those of fathers who attended college, net

of other factors. While this modest net effect of father’s education cautions

our theoretical position, we would expect the net effect of father’s occupation

on ideal age at first birth to be considerably weaker.

Before presenting the results, it is necessary to discuss some of the vari-

ables which are not included in Figure 1 and the possible biases their exclu-

sion might introduce. The first is marriage. Although we recognized the role

of age at marriage in the earlier discussion in this paper (especially since it is

incorporated in sexual experience), it is age at first birth that is emphasized

both there and in our analysis here. Clearly, age at first marriage and age

at first birth are closely related, normatively and empirically. However, we

feel that the first birth has greater consequences for the life style and roles of

the woman (Rindfuss, 1979), and that the effects of the first birth are more
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permanent than those of first marriage. Marini (1978) has recently argued

that age at marriage is more important than age at first birth in the transition

to adulthood because age at marriage “usually sets a lower limit on the age at

which first birth occurs.” We disagree for the following reasons: In the first

place, motherhood frequently precedes first marriage. (And this is more

likely to be the case the younger the age at first birth.) Second, some people

may initiate the serious consideration of marriage on the basis of when they

want to begin parenthood, as reflected in the phrase “time to settle down and

start a family.” The high incidence of premarital intercourse argues against

the notion that age at first marriage sets a lower bound on exposure to the risk

of conception. Third, “becoming a parent” is the modal response of married

parents to the question of what marks the transition to adulthood (Hoffman,

1978). Fourth, parenthood is more permanent than marriage, particularly

for women since children tend to stay with the mother following a marital

disruption. Preston (1975) has estimated that almost half of the current mar-

riages will end in divorce; thus, women often move in and out of the wife

role. Finally, and perhaps most importantly, motherhood roles more severely

constrain other life options of a woman than do marital roles, especially dur-

ing the early childbearing years. For these reasons, our emphasis is on age at

first birth. Given the high correlation between age at first birth and age at first

marriage, and given that both are affected by similar exogenous variables, we

have not included both in the analysis. Furthermore, given the assumptions

of the model, the exclusion of age at first marriage will not bias our estimates

of the relative importance of the processes leading to educational attainment

and to the first birth.

In order to allow women sufficient time to get married (and, thus, be

eligible to be in the sample) and to have a first birth, the analysis of the

education-age at first birth relationship will be limited to women aged 35–44.

Most of those who will ever marry before the end of the reproductive period

are married by age 35. For example, the proportion of women ever married

increases from 0.873 at ages 25–29 to 0.926 at ages 30–34 to 0.941 at ages

35–39. But the proportion of women ever married increases only slightly to

0.946 at ages 40–44 (U.S. Bureau of the Census, 1972). The same holds true

for first births. Most of those who will ever give birth do so by age 35. For

example, 79.2% of the birth cohort of 1930–1934 had a live birth by ages 25–

29, 87.7% did so by ages 30–34, and 90.2% had a live birth by ages 35–39.

This percentage increased only slightly to 90.8% by ages 40–44. Less than

3% of the women in this birth cohort who had a live birth had it after age 35

(Heuser, 1976).

Childless women are excluded from this analysis at age at first birth.

Only a small proportion (less than 10%) of the married women in these



388 REPRINTED FROM THE AMERICAN SOCIOLOGICAL REVIEW

cohorts remained childless (Heuser, 1976). To the extent that postpone-

ment leads to voluntary childlessness (Veevers, 1973), this exclusion could

lead to a weaker estimated effect of age at first birth than actually exists.

However, childlessness in these cohorts was primarily a product of fecundity

impairments.

The model shown in Figure 1 includes background characteristics, as-

pects of early adolescence, and the reciprocal relationship between education

and age at first birth. Period factors are not included, and this needs to be kept

in mind when interpreting our results. The respondents in this analysis were

aged 35–44 in 1970. Taking 15 as the youngest age at first birth and 35 as

the oldest means that these women were having their first births from 1941

to 1970. During this long period, there were a number of events affecting the

timing of fertility, including World War II, the Korean War, and the Vietnam

War. Those women who postponed their first birth were, of course, exposed

to more of these period factors, which could affect the timing of their first

birth. Since so little is known about the nature of period factors that af-

fect the timing of fertility (Rindfuss et al., 1978), they cannot be explicitly

included in the analysis. Furthermore, the younger women in our sample

experienced the period factors at different ages than the older women in the

sample. To see if this would affect our results, we ran the model separately

for women aged 35–39 and 40–44. The results were virtually identical for

the two groups.

The work of Easterlin (1962; 1966 and 1973) and others suggests that

the financial status of the respondent’s family of orientation while the re-

spondent was an adolescent will affect the age at which she has her first

child. Unfortunately, we do not have a direct measure of the respondent’s

parents’ financial status while the respondent was an adolescent. However, a

number of background variables in the model, such as race, number of sib-

lings, farm background, regional background, and family composition when

respondent was 14, indirectly control for the respondent’s family’s financial

situation.

Further, the model shown in Figure 1 also does not include the labor

force experiences of women. As noted earlier, labor force experiences and

aspirations are likely to affect, and be affected by, childbearing and child-

bearing preferences. In fact, there is a long literature on this relationship

(see Waite and Stolzenberg, 1976; and Smith-Lovin and Tickamyer, 1978,

for recent summaries of this literature). Unfortunately, adequate labor force

participation information is not available.

Estimation of the effects shown in Figure 1 was accomplished by us-

ing two-stage least squares regression analysis (Goldberger, 1964; Johnston,

1972). The estimates were made using ordinary least squares in two steps,
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Table 2. Metric and Standardized Coefficients Measuring the Reciprocal

Relationship between Education and Age at First Birth, 1970 NFSa .

Independent Dependent Metric Standardized

Variable Variable Coefficient Coefficient

Education Age at First Birth 0.741∗ 0.429∗

Age at First Birth Education 0.075 0.130

Correlation of Disturbances (U and V): −0.255

a N = 1,766.
∗ Significant at 0.05.

making the appropriate corrections as outlined by Hout (1977). The results

are shown in Table 2.

This table shows only the results for the endogenous variables; results

for the complete model are reported and discussed elsewhere (Rindfuss and

St. John, 1979).

The effect of education on age at first birth is significant—both statisti-

cally and substantively. Each additional year of schooling results in the delay

of the first birth by approximately three-quarters of a year. However, the ef-

fect of age at first birth on education is not statistically significant; and even

if it were, the effect would be trivial substantively.

The results shown in Table 2 are based on the assumption of linear ef-

fects. It might be argued that the effect of age at first birth on education is

not linear. The inclination to have a birth at a very young age may have more

serious effects on educational plans than the preference to have a child at a

later age. The potential conflict between school and motherhood is greatest

at the younger ages at first birth. This suggests that a nonlinear age at first

birth effect on education should be specified. Such a specification should

force a difference of a year at the younger ages at first birth to be larger than

a difference of a year at the older ages at first birth. We used three differ-

ent transformations of age at first birth (AGEFST) to explore this possibility:

(1) LN (AGEFST), (2) 1/AGEFST, and (3) 1/(AGEFST)2. The model shown

in Figure 1 was reestimated for each of these three transformations. In each

case the results are the same as the linear model: age at first birth does not

have a significant effect on educational attainment.

Furthermore, there is some evidence to suggest that the family building

process may be different for whites and blacks. For example, blacks have

higher illegitimacy rates than whites (NCHS, 1977), and blacks appear to

rely more heavily on relatives to take temporary, but primary, care of children
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born to young mothers than whites (Rindfuss, 1977). In order to check for

a potential interaction with race, we reran the analysis separately for whites

and blacks.6 The important point for the present analysis is that, for both

blacks and whites, education has a strong and significant effect on age at first

birth, but age at first birth has an insignificant effect on education. Thus, our

results are unaffected by any racial interaction.

In the relationship between education and age at first birth, the prin-

cipal direction of causality is from education to age at first birth. Those

who have recently examined the relationship between education and age at

first marriage have found corroborating results (Marini, 1978; Alexander and

Eckland, 1978), namely, that education has a much stronger effect on age

at first marriage than age at first marriage has on education. Given the sheer

amount of time the mother role requires in contrast to the wife role, the timing

of the first birth has greater consequences for the roles women occupy. Yet, it

is interesting to note that (ignoring the differences between the samples used

here and those used by Marini [1978] and Alexander and Eckland [1978]),

age at first marriage appears to have a somewhat greater effect on education

than age at first birth. Even though age at first birth has a greater effect on the

roles occupied by women, age at first marriage could have a stronger effect

on educational attainment because first marriage schedules are younger and

more compact than first birth schedules. Thus, more marriages take place

during the years in which women are in school.

The finding that age at first birth has only a very small effect on educa-

tional attainment may seem paradoxical, given the social policy concern with

the pregnant girls who have to drop out of school and face reduced social op-

portunities as a consequence. Such a fate is unquestionably experienced by

some women, particularly those among the 3% to 6% of the American co-

hort that have had a first birth before age 17. But the fact is that the vast

majority of women do not get pregnant while they are enrolled in school.

Even among those who do become mothers at ages at which society expects

one to be in school, the direction of causality might run from education to

fertility. Zelnik and Kantner (1978) and Ross (1978) suggest that a signifi-

cant minority of premarital pregnancies were intentional. To further explore

this issue, we compared the age at leaving school7 with age at first birth for

women who become mothers at age 17 or younger. If leaving school and

the first birth occur in the same year, it is ambiguous which process domi-

nates. But for those who left school more than a year before their first birth,

one can assume that the educational process is affecting the fertility process.

Surprisingly, more than 40% of the women who had a first birth at age 17 or

less dropped out of school at least a year prior to becoming a mother—which

suggests that even at the very young ages at motherhood, the fertility process
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is being affected by the educational process.8 Further, there is longitudinal

evidence showing a negative relation between educational aspirations and

age at first birth (Marshall and Cosby, 1977; Card and Wise, 1978, Table 3),

which suggests that many of those who have a first birth while they are of

school age do so after deciding not to continue in school—and, perhaps, do

so to justify dropping out of school. Finally, Haggstrom and Morrison (1979)

find that among teenagers who do not drop out of high school, the effects of

adolescent parenthood on subsequent educational aspirations are extremely

small when other appropriate factors are controlled. All of this does not mean

that fertility never truncates education, but only that it does so rarely. In the

vast majority of the cases, education and educational aspirations determine

age at first birth.

It is important that scientific discourse clarify the difference between a

social policy concern that requires amelioration and the characterization of

the overall process in which that concern is embedded.

Education and the Lengths of Birth Intervals

As discussed in the first section of this paper, we would expect to find a

variety of reasons why women with more education would want to avoid

very short birth intervals and we would expect them to be more effective at

implementing their preferences. In this section we examine the relationship

between education and the probability of having a short interbirth interval.

Unlike the previous section, here, we assume that the direction of causality

runs from education to the length of birth intervals.9

The birth history information contained in the 1970 NFS allows us to

compute the length of each birth interval. Given the well-known difficulties

involved in the analysis of birth intervals (see Bumpass et al., 1977, for a

fuller discussion), we initially constructed life tables for each birth interval.

These preliminary life tables were constructed for intervals begun in the pe-

riod 1959–1968. By restricting the analysis to intervals begun in this period,

we avoid a young-age-at-initiation bias (see Rindfuss and Bumpass, 1979).

The preliminary life table analyses showed the expected positive rela-

tionship between education and length of intervals. However, this conclu-

sion is based on a bivariate analysis, and there are numerous other factors

affecting the length of birth intervals (e.g., Bumpass et al., 1978), and the

effects of these factors should be controlled. Unfortunately, the sample size

of the 1970 NFS (or the 1973 FGS) is far too small to permit the simultane-

ous control of all these factors by using conventional life table techniques.

Consequently, we used regression analysis to examine the probability of giv-

ing birth within a relatively short time interval—specifically, the probability

of giving birth within 18 months of the previous birth. Because the life table
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Table 3. Differentials in the Proportion Experiencing Birth Intervals of

18 Months or Less, for All Second, Third and Fourth Birth Intervals Begun

1959–1968, by Education, Gross and Neta Percentages: 1970 NFS

Second Birth Interval Third Birth Interval Fourth Birth Interval
Education at

Marriage N Gross Net N Gross Net N Gross Net

Total 2612 25 2236 19 1551 17

1–8 155 33 31 168 32 29 164 29 25

9–11 657 28 26 592 21 18 433 20 17

12 1218 24 23 1016 16 17 670 15 16

13–15 388 22 24 312 17 20 202 11 14

16+ 194 20 29 149 16 21 82 13 18

a Adjusted through a dummy variable regression analysis for the effects of race, religion, region,

age at first birth, marital status at first birth, contraceptive use before first birth, planning status

of first birth and smoking before age 16.

results suggested that the differences in interbirth interval length are greater

between adjoining categories at the lower educational categories than at the

higher educational categories, we used a variant of multiple regression anal-

ysis, Multiple Classification Analysis (Andrews et al., 1973), to see if this

pattern continued when other factors were controlled. The results are sum-

marized in Table 3.

Controlling for other factors that affect the length of interbirth intervals

eliminates much of the relationship between education and the probability

of having a short birth interval. Compare the gross and net columns for the

second, third and fourth birth intervals.10 The difference which remains after

controlling for other variables is primarily between those with a grade school

education and all others. Given that those with only a grade school education

are a small proportion of the population, and since the proportion with only

a grade school education is declining, the principal result to emerge from

Table 3 is that, when the effects of other factors are controlled, the respon-

dent’s education at first marriage has essentially no effect on the probability

of having a short second, third or fourth birth interval.11

Education and Fertility Preferences

As discussed earlier in this paper, educational preferences and fertility pref-

erences affect each other; and, since neither is fixed, their interrelationship

develops over time. To examine adequately this complex set of interrela-

tionships would require longitudinal data of the kind not currently available.

However, in the absence of the appropriate longitudinal data, it is still pos-

sible to examine part of the process by looking at the effect of education at
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marriage on fertility preferences at time of interview. Framed this way, the

causal direction is essentially unambiguous.

Education at marriage can affect fertility preferences in two ways. First,

education at marriage can have a direct effect on fertility preferences. Insofar

as increased education makes a larger variety of roles available to women, we

could expect education to have a direct and negative effect on fertility prefer-

ences. In addition, specific topics covered while in school might have a direct

negative effect on fertility preferences. Second, education at marriage can

have an indirect effect on fertility preferences through its effect on age at first

birth. As shown earlier, higher levels of educational attainment result in older

ages at first birth. An older age at first birth, in turn, leads to longer intervals

between births (Bumpass et al., 1978). Thus, education leads to older ages

at any given parity; and older ages at any given parity have a negative ef-

fect on the probability of wanting another child (Rindfuss and Bumpass,

1978).

The measure of fertility preferences used here, FERTPREF, is the sum

of the number of “wanted” children the woman had had by the time of the in-

terview plus the additional number of children she intended to have. For each

live birth, the woman was asked a series of questions to determine whether or

not, before that child was conceived, she wanted to have a birth of that order

at some time during her reproductive life (see Westoff and Ryder, 1977, for

a more detailed description). Such a series of questions minimizes the pos-

sibility of post factum rationalization of unwanted births (Rindfuss, 1974).

The additional number intended is obtained from a question asking the re-

spondent how many additional children she intended. This fertility prefer-

ence measure is coded in numbers of children and has a mean of 2.9, and a

standard deviation of 1.5.12

Because one of our interests is in the mediating effect of age at first birth,

the sample being analyzed is limited to mothers, that is, women who have

had at least one live birth. As in the previous two sections, in order to allow

women sufficient time to get married and have a first birth, younger women

are excluded from the analysis. The analysis in this section, like the age at

first birth analysis, will be restricted to respondents aged 35–44 at the time

of the interview. Because the full set of questions used in constructing our

fertility preference measure was not asked of postmarried women (i.e., those

widowed, divorced or separated at the time of the interview), the analysis

will be limited to currently married women. Finally, for ease of presentation,

the set of exogenous variables to be used here, in addition to education at

first marriage, is exactly the same as those shown in Figure 1 and described

in Table 1. We have experimented with other sets of exogenous variables and

with other definitions of the sample, and the results are similar in all cases.
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Figure 2. A Modela of the Relationship between Education and Marriage and

Fertility Preferences (Standardized Coefficients)b

ED

Other
exogenous
variablesa

AGEFST FERTPREF

0.316∗

−0.001

−0.211∗

0.
95

0

TOTAL EFFECT: ED → FERTPREF = −0.058

a The other exogenous variables in the model are: DADSOCC, RACE, NOSIB, FARMBACK, 
  REGNBACK, ADOLFAM, RELIGION, YOUNGCIG, AND FECUND. See Table 1 for a  
  description of the measurement of these variables. 
b N = 1,551. 
c Significant at 0.01. 

The results are summarized in Figure 2. In order to focus on the

education-fertility preference relationship, only the direct and indirect effects

of education are shown. It can be seen that the direct effect of education on

fertility preferences is trivial and insignificant. Virtually all of the effects of

education at marriage on fertility preferences operates through age at first

birth. Furthermore, the importance of age at first birth in influencing fertility

preferences at time of interview should be underscored. Although it is not

shown in Figure 2, age at first birth has a stronger direct effect on fertility

preferences measured at time of interview than any of the listed exogenous

variables. Thus, it appears that education affects fertility preferences by sort-

ing women into various ages at first birth.

For approximately four-fifths of these women, education at first mar-

riage is the same as education at interview; but one-fifth of these women

have attended school, since their first marriage (Davis and Bumpass, 1976).

For many women, this school attendance takes place a considerable time af-

ter the first marriage. For example, for women first married between 1951

and 1955 who returned to school after marriage, 62% last attended school

10 or more years after the first marriage. This additional schooling could

affect fertility preferences, or could be affected by fertility preferences. We

do not have the appropriate data to sort out these possibly reciprocal influ-

ences. But we did rerun the analysis in Figure 2 using education at inter-

view instead of education at marriage, and the results are suggestive. The

finding, as before, is that most of the relationships between education and

fertility preferences operate through age at first birth. However, the direct

relationship between education and fertility preferences is somewhat larger
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when education at interview is used than when education at first marriage is

used. Without being able to sort out the potential reciprocal effects, we can

only speculate that education after marriage operates to provide options that

would not otherwise be available, or is itself a response to (or simultaneous

with) a decision to terminate childbearing earlier than planned. This issue is

something that warrants further examination.

Conclusion
To summarize, the reciprocal relationship between education and age at first

birth is dominated by the effect from education to age at birth, with only a

trivial effect in the other direction.

Once the process of childbearing has begun, education has essentially

no direct effect on that process. Education has little direct effect on either

the length of interbirth interval or on fertility preferences. Work by Vaughn

and her colleagues (1977) shows that education has no direct effect on con-

traceptive efficacy. However, education has a significant indirect effect on

these various components of fertility because it is the major determinant of

age at the beginning of childbearing; in fact, education has a substantially

greater influence on age at first birth than any other variable (Rindfuss and

St. John, 1979). Thus, it is the postponing of motherhood that produces the

oft-observed negative bivariate relationship between education and children

ever born.

The powerful mediating effect of age at first birth is of interest in its own

right. Older ages at first birth lead to longer interbirth intervals (Bumpass

et al., 1978), more effective contraceptive use (Vaughn et al., 1977), and pre-

ferences for fewer children (as shown in the previous section of this

paper).

These results, particularly if they are supported by future research on

more recent cohorts, raise a set of interesting policy issues about which we

can only speculate at present. Because the postponement of something is al-

ways more amenable to policy initiatives than its prevention, policies aimed

at influencing age at first birth would be more likely to succeed than policies

aimed at directly influencing children ever born. Furthermore, how adoles-

cents spend their time has been accepted (although not universally) as some-

thing governments can legitimately influence—the military draft system is

the most obvious example.

We began with the observation that a major way education might af-

fect the roles women occupy is through altering the structure of childbearing

experience, given the dominance of mother roles. We conclude that such

educational effects as we can identify are explicable more in terms of ed-

ucation’s effect on age at first motherhood than in terms of other values or

aspirations that might derive from advanced schooling.
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Notes
1. Here, and throughout the paper, we use the term “mother” in its so-

cial rather than biological sense. The biological mother is the female who

gives birth to the child. The social mother need not be the biological mother;

but, typically, the two are the same. It is the social mother that has primary

responsibility for the care and nurture of the child. This role need not be oc-

cupied by a female, but, typically, it is. Also, the word “children” throughout

this paper is used in its social, rather than biological, sense.

2. The work of Holsinger and Kasarda (1976) for developing countries

is an exception.

3. In actual practice, we know of no case where all the intermediate

variables are adequately measured. Models are evaluated as if there were

direct effects, with researchers unable to specify the precise nature of the so-

cial and economic effects on fertility as they operate through the intermediate

variables.

4. Note, however, that Voss (1977) finds a negative effect of age at first

marriage on educational attainment. Marini (1978) argues, and we agree, that

this finding of Voss is the result of the lack of an adequate instrument for age

at first marriage.

5. There is some evidence that a history of miscarriage greatly increases

the chance that subsequent conceptions will be terminated by a miscarriage

(Funderburk et al., 1976; Shapiro et al., 1971). Given the unreliability with

which fetal losses are reported in pregnancy histories (Bumpass and Westoff,

1970) and given the fact that very early miscarriages are often unnoticed by

the woman, we experimented with alternative and more complex measures

of fecundity which incorporated information from the woman’s history sub-

sequent to the first birth. However, the simple measure of whether or not the
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woman had a miscarriage prior to the first birth proved to be the strongest

predictor of age at first birth, and this is the measure that has been used in the

final models.

6. Other nonwhites were not included.

7. Age at leaving school was computed by assuming a normal starting

age, and assuming that education is obtained one year at a time,

8. To further explore this issue, and to explore whether a gating mech-

anism existed, we reran the two-stage least squares analysis for women who

became mothers at a young age. Although caution is necessary in inter-

preting such an analysis because the variance of the endogenous variables

has been reduced, age at first birth does not have a significant effect on

education.

9. It should be noted, however, that it is possible that, for some women,

short interbirth intervals prevent the return to school. Virtually nothing is

known about returning to school after becoming a mother, although there has

been some research on education after marriage. Approximately one in five

women attend school after marriage; but the average addition to their educa-

tional attainment is relatively small: 1.0 years (Davis and Bumpass, 1976).

Whether this schooling takes place before or after the start of childbearing

is unknown. In order to minimize the possibility of education after the first

birth being affected by the pace of fertility, we have primarily used education

at marriage (rather than education at interview) for this analysis.

10. We follow the standard convention of indexing birth intervals by the

order of the fertile pregnancy terminating the interval. Thus, the second birth

interval is the interval terminated by the second fertile pregnancy.

11. The results in Table 3 are based on all birth intervals. Thus, both

wanted or intended intervals and unwanted or unintended intervals are in-

cluded. To make sure that the relationships shown in Table 3 were not the

result of differences in fertility intentions, we calculated a set of life ta-

bles for “intended” intervals, excluding the following two types of intervals:

(a) closed intervals that were closed by an unwanted birth, and (b) open inter-

vals where the respondent indicates she does not intend to have another child.

These results (not shown) are virtually identical to those shown in Table 3.

Also, in order to see if the finding was sensitive to the particular measure

of education used, we reran the analysis using respondent’s education at in-

terview, and then we reran it again using respondent’s husband’s education

at respondent’s first marriage. These alternative analyses lead to the same

conclusions.

12. It should be noted that there is little variance in fertility prefer-

ences. Three-fourths of the sample gave a preference of 2, 3 or 4. This, of

course, reduces the possibility of any variable significantly affecting fertility

preferences.
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Abstract

While the possible decline in the level of social capital in the United States
has received considerable attention by scholars such as Putnam and
Fukuyama, less attention has been paid to the local activities of citizens that
help define a nation’s stock of social capital. Scholars have paid even less
attention to how institutional arrangements affect levels of social capital.
We argue that giving parents greater choice over the public schools their
children attend creates incentives for parents as “citizen/consumers” to en-
gage in activities that build social capital. Our empirical analysis employs
a quasi-experimental approach comparing parental behavior in two pairs of
demographically similar school districts that vary on the degree of parental
choice over the schools their children attend. Our data show that, controlling
for many other factors, parents who choose when given the opportunity are
higher on all the indicators of social capital analyzed. Fukuyama has argued
that it is easier for governments to decrease social capital than to increase
it. We argue, however, that the design of government institutions can create
incentives for individuals to engage in activities that increase social capital.

The delivery of services by local governments involves a complex relation-

ship between the institutions that supply them and the citizens who use them.

To improve the delivery of public services, many reformers argue that gov-

ernments should imitate private markets by increasing the number of suppli-

ers and by “empowering” citizens to shop across this expanded choice set.

In this model, “citizen/consumers” become better consumers of public ser-

vices by becoming more informed about their options and by more carefully

selecting services that meet their preferences.

We suggest that the benefits of such market-like reforms can extend be-

yond the consumer behavior that has been the focus of previous analysis.

Specifically, we argue that by expanding the options people have over public

services, citizen/consumers can also become better citizens, and by so doing,

increase the nation’s stock of social capital. We test this hypothesis in the

context of public school choice—a set of reforms that increases the control

parents have over the selection of schools their children attend. These re-

forms are of long standing in some communities and are emerging in many

others. In this research, we show that the design of public institutions charged

with delivering education can affect the formation of social capital.

Social Capital and Local Citizenship
An intense scholarly debate recently has emerged concerning the role of so-

cial capital in economic and political development (e.g., Brehm and Rahn
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forthcoming; Fukuyama 1995; Granato, Inglehartand Leblang 1996a, 1996b;

Inglehart 1990; Jackman and Miller 1996a, 1996b; Lipset 1995; Putnam

1993, 1995a, 1995b; Swank 1996; Tarrow 1996).1 One theme in this de-

bate is that social capital may be important to strong democracies for the

same reasons that it is important for the functioning of strong economies:

High levels of social capital engender norms of cooperation and trust, reduce

transaction costs, and mitigate the intensity of conflicts.

While political scientists have only recently adopted the concept of so-

cial capital, the term has been used by sociologists for some time (see, e.g.,

Bourdieu 1980, Loury 1977). Coleman (1988, 1990) brought the term into

wider circulation and argued (1988, S101) that social capital is generated as

a byproduct of individuals engaging in forms of behavior that require socia-

bility. In his study of 20 subnational governments in Italy, Putnam (1993)

argued that the quality of governance is determined by the level of social

capital within a region. Fukuyama concurs (1995, 356):

“The ability to cooperate socially is dependent on prior habits, traditions, and

norms, which themselves serve to structure the market. Hence it is more likely

that a successful market economy, rather than being the cause of stable

democracy, is codetermined by the prior factor of social capital. If the latter is

abundant, then both markets and democratic politics will thrive, and the mar-

ket can in fact play a role as a school of sociability that reinforces democratic

institutions.”

While comparisons across nations and the identification of trends over

time are obviously important, less scholarly work has focused on how gov-

ernment policies affect the stock of social capital. This is especially true

for the analysis of the formation of social capital at the local level, where a

small but growing body of work has developed addressing the link between

government policies and social capital. Stone and his colleagues have been

examining the role of “civic capacity,” a concept similar to social capital, in

local economic development and the politics of education (see, e.g., Stone

1996). Berry, Portney, and Thomson (1993) examined the importance of

local community activity in the formation of social capital. And, in the con-

text of education, Astone and McLanahan (1991), Coleman and Schneider

(1993), and Lee (1993) have examined social capital as a function of the

interactions among administrators, teachers, parents, and children.

We follow the approach of Berry, Portney, and Thomson, who empha-

size the importance of communities where neighbors talk to each other about

politics. In these face-to-face meetings, these authors argue that “democracy

moves politics away from its adversarial norm, where interest groups square



SCHNEIDER ET AL ON SOCIAL CAPITAL 405

off in conflict and lobbyists speak for their constituents. Instead, the bonds

of friendship and community are forged as neighbors look for common so-

lutions to their problems” (1993, 3). (Also see Mansbridge 1980 on “uni-

tary democracy” and Barber 1984 on “strong democracy.”) Berry, Portney,

and Thomson’s emphasis on “face-to-face” interactions parallels Fukuyama’s

(1995) focus on “spontaneous sociability” and Putnam’s (1993) emphasis on

the role of networks and membership in voluntary and social organizations

as supports for representative democracy (see also the review by Diamond

1992).

In this article, we go beyond documenting levels of social capital by

identifying the effects of institutional arrangements governing the delivery

of education, the most important public good local governments provide, on

the formation of social capital. Whereas scholars have recognized the impor-

tance of schools in creating social capital for the next generation (see, e.g.,

Henig 1994, 201–3), for us, schools are also arenas in which social capital

can be generated among today’s parents.

We explore the relationship between schools and social capital by con-

sidering how school choice can influence parental behavior. Specifically,

we examine how school choice may increase levels of voluntary parental

involvement in the schools, face-to-face discussions between parents, and

levels of parental trust in teachers—behaviors that have all been identified

as components of social capital. We test these relationships empirically us-

ing a quasi-experimental design that allows us to isolate the link between

school choice and citizen behavior. Fukuyama has argued that “social capital

is like a ratchet that is more easily turned in one direction than another; it can

be dissipated by the actions of governments much more readily than those

governments can build it up again” (1995, 62). We show that institutional

arrangements that increase parental control over the schools their children

attend may be able to reverse that ratchet.

Some scholars are skeptical that government policies expanding choice

can increase social capital For example, Anderson argues that expanded cit-

izen choice, at best, will cultivate only a “passive understanding” of the de-

mands of democratic participation and that this “consumer’s skill” is not a

sufficient basis for “competent citizenship” (1990, 197–8). Carnoy (1993,

187) and Henig (1994, 222) both argue that school choice will increase the

social stratification between parents who are more involved and interested in

their children’s education and those who are not, fundamentally reducing the

ability of communities to address collective problems. And Handler (1996,

185) notes that while choice plans require parents to choose, they cannot

force parents to become actively engaged in school activities.



406 REPRINTED FROM THE AMERICAN POLITICAL SCIENCE REVIEW

In contrast, other scholars argue that choice and related reforms will fos-

ter social capital. As Ravitch (1994, 9) notes: “The act of choosing seems to

make parents feel more responsible and become more involved.” And Berry,

Portney, and Thomson (1993,294) cite the shift to parental control over lo-

cal schools in Chicago in the late 1980s as a rare example of a successful

attempt to get low-income parents more involved in local public affairs (also

see Handler 1996).

In the analysis that follows, we show that reforms introducing choice

can affect the level of social capital within communities. While our findings

are limited to one particular aspect of local communities—schools—they

provide important evidence that government or community-initiated policies

can indeed ratchet up the preexisting levels of social capital and enhance

the social fabric necessary for building and maintaining effective democracy.

And, we demonstrate that this can be done both in suburban communities,

where most Americans now live, and in inner-city neighborhoods, where the

stock of social capital may be most depleted and where its absence may have

the most deleterious effects (e.g., Berry, Portney, and Thomson 1993; Wilson

1987).

School Choice
School choice is perhaps the most widely discussed approach to address-

ing persistent problems in primary and secondary education in the United

States. School choice advocates, liberals and conservatives alike, contend

that changing the institutions governing school organization will improve

student performance by changing the incentives faced by educators and by

changing the behavior of students and parents (see Handler 1996, 9).2

It is possible to define school choice in such a way that it is already

the norm. Many families already use residential location to choose the pub-

lic schools their children attend. Even after the residential decision is made,

many private alternatives to public education are available and about 10%

of parents nationwide choose that option. School choice, however, is typi-

cally construed to involve policies that reduce the constraints that traditional

public schooling arrangements place on schools and students. (For a discus-

sion of distinctions among choice approaches, see Witte and Rigdon 1993.)

Most important, school choice policies are designed to break the one-to-one

relationship between residential location and the schools students attend.3

Responding to intense policy debates and the growing recognition of the

problems of American schools, over the past two decades a growing num-

ber of local school districts have changed the institutional frameworks gov-

erning the provision of local education giving parents expanded choice over
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the schools their children attend. We take advantage of this diffusion of the

innovation in school choice policy, employing a quasi-experimental approach

comparing parental behavior in two pairs of school districts that are demo-

graphically similar but vary on institutional arrangements. We analyze the

effects of choice on the formation of social capital in a matched pair of inner-

city school districts, one with a long history of extensive choice and one

without much choice. We then replicate this analysis in two suburban school

districts. In each matched pair, the populations are similar demographically,

but the institutional arrangements allowing parental choice over the schools

their children attend differ.

Our analysis is based on interviews of approximately 300 parents of

children in public school grades K–8 across four districts. (Appendix A de-

scribes the sample design.) Two of these are inner-city districts in New York

City: District 1, which has only recently introduced limited choice, and Dis-

trict 4, which has offered programs of choice for 20 years. The other two

are suburban communities in New Jersey: Morristown, which strictly main-

tains assignment to neighborhood schools, and Montclair, which has had a

program of choice since the 1970s.

We begin with a discussion of the two New York school districts, de-

scribing in detail the evolution of choice in District 4. We then present an

empirical analysis of effects of choice on social capital in the New York set-

ting. Finally, we replicate the analysis using our New Jersey sample.

District 4: A School Choice Innovator

District 4 is located in East or “Spanish” Harlem, one of the poorest com-

munities in New York City. The district serves roughly 12,000 students from

pre-kindergarten through the ninth grade. In the early 1970s, the district’s

performance was ranked the lowest of 32 city public school districts in math

and reading scores. Choice was part of a response to this poor performance.

Fliegel (1990) described the evolution of school choice in District 4

as resulting from “creative noncompliance” with New York City rules and

regulations. The factors shaping the emergence of the District 4 can be

traced back to the late 1960s when the administration of New York City’s

public school system was decentralized to allow for greater community con-

trol. Thirty-two separate community school districts were established, each

of which was governed by an elected community school board and by the

central Board of Education. High schools remained under the authority of

the Board of Education. Decentralization was supposed to promote greater

parental participation, but it has also led to problems with corruption, over-

politicization, and poor performance (Cookson 1994, 50–1).
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District 4 took full advantage of decentralization, in large part due to

the entrepreneurial efforts of Anthony Alvarado, district superintendent from

1972 until 1982. As Boyer (1992, 41–2) notes, Alvarado bent rules, attracted

outside grants, and won support from powerful teacher and principal unions.

When Alvarado took over as superintendent, District 4 ran 22 schools in 22

buildings. In 1974, the first alternative school, Central Park East Elementary,

was developed, followed by an alternative program for seventh and eighth

graders with serious emotional and behavioral problems and by the East

Harlem Performing Arts School, a program for fourth through ninth graders.

These schools were open to parental choice and, as minischools, they were

located within existing buildings where space was available. These schools

were given greater flexibility over staffing, use of resources, organization of

time, and forms of assessment.

The differences between the administration of these alternative schools

and the traditional schools led to complaints of favoritism from some teachers

and principals in the traditional schools. In response, new opportunities were

offered to develop alternate schools using funding from the Magnet Schools

Assistance Act (Wells 1993, 56). The district also exceeded its annual budget

for many years as these alternative schools were being developed (Henig

1994, 164).

The focus on educational goals was shaped by Seymour Fliegel, appoin-

ted District 4’s first director of alternative schools in 1976, who developed

small schools designed to provide students, parents, and professional staff

with flexibility and a sense of school “ownership” (Fliegel 1990, 209). Fliegel

also used choice to encourage this sense of ownership. During the late 1970s

and the 1980s more than 20 alternative schools were developed, many with

distinctive curricular themes. As the number of schools increased, the differ-

ences between schools became more apparent. With many new schools and

the potential for parents and students to make meaningful choices, Smith and

Meier (1995, 94) suggest that it “became hopeless” to tell parents or teachers

that their assignments would be determined bureaucratically. Thus, in 1982,

the district decided to provide all parents with choice. Sixteen neighborhood

elementary schools remained intact, with space reserved first for those living

in the designated zones. While the emphasis was placed on providing choice

at the junior high school level, the district also created a considerable number

of alternative elementary schools, many of them bilingual (Smith and Meier

1995, 94).

In District 4, all students must make an explicit choice about the

junior high school they will attend. Each sixth-grader receives a copy of a
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booklet describing the alternative junior high schools. Parents and students

attend orientation sessions led by the directors of various alternative schools

and are encouraged to visit the schools (Wells 1993, 55). Students and

their parents rank and discuss their six choices of junior high schools. Sixty

percent of the students in the district are accepted into their first-choice

school, 30% into their second-choice school, and 5% into their third-choice

school. The remaining 5% are placed in schools thought to be most appro-

priate for them (Boyer 1992, 52–3). To ensure that all students have viable

choices, District 4 administrators monitor the popularity of the various alter-

native schools, closing or restructuring less popular schools (Wells 1993, 55).

District 1: Limited Choice

Our other New York City research site is District 1 on Manhattan’s Lower

East Side. Largely Hispanic and poor, the residents of District 1 share many

characteristics with those of District 4. District 1 was created out of the Two

Bridges School District, one of most active districts in New York City’s fights

over school decentralization in the 1960s. Despite this high initial level of

community activism, the schools have foundered over the years. Following

the success of District 4, District 1 began experimenting with school choice,

and in 1992 created a small number of alternative schools.4

As a result of entrepreneurial efforts to develop choice, District 4 has de-

veloped a reputation in the city and in the nation as an innovative, successful

district. A sense of mission is evident among parents, teachers, and admin-

istrators. While there is some dispute about how much of the success can

be attributed to choice per se (see Henig 1994, 124–44), there is no question

that performance in District 4 improved from its original low level as choice

was implemented. In contrast, despite the high level of community activi-

ties during the push for decentralization, District 1 has faced considerable

administrative turnover and turmoil for the last few years.

We report some comparative data on the districts in Table 1. Both dis-

tricts are geographically compact, have large numbers of students from very

poor families (more than eight of ten students are eligible for free lunches),

and have a majority Hispanic student population.

The Survey Respondents

We contracted Polimetrics Laboratory for Political and Social Research, a

survey research facility at Ohio State University, to interview 400 residents

in each district in spring 1995, sampling parents (or the person in a household

who “makes the decisions about the education of children”). To focus on the
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Table 1. District 4 and District 1 Population and Sample Demographics

District 4 District 1

Population Sample Population Sample

Number of students 13,806 333 12,519 295

Number of schools 50 46 24 24

Hispanics 63% 68% 63% 71%

Blacks 33% 26% 12% 11%

Whites 2% 2% 10% 10%

Asian 1% 1% 13% 2%

Percentage in poverty 54% NA 49% NA

Income < $20,000 per year NA 67% NA 66%

Employed 35% 38% 48% 43%

High school degree or more 48% 65% 63% 65%

Single parent NA 61% NA 46%

Female 50% 90% 55% 87%

Source: For district information: School District Data Book Profiles. 1989–90.

NA: Since both districts are administrative units for the New York City school system rather

than, e.g., census designated units, some demographic data are not available.

schools controlled by the districts, the sample frame was limited to parents

with children in grades K–8.5 To randomize, respondents were asked to ans-

wer school-specific questions based on the experience of their child in grades

K–8 whose birthday came next in the calendar year.

As Table 1 illustrates, the sample of public school parents in each district

is fairly representative of the student population on many key demographic

variables. (We chose to interview parents of children who live in the districts

but attend private schools as these parents are exercising a form of choice.

However, they are not included in the analyses presented below. In District 1,

26% of the respondents sent their child to private school, compared to 17%

in District 4.)6

Overwhelmingly, we sampled females, both because there are many sin-

gle mothers in these districts and because we asked to speak with the person

in the family who makes the decisions about school. More than 60% of the

households were headed by a single parent in District 4, compared to 46%

in District 1, and in both districts, more than 85% of the respondents were

female.

Constructing the Models
With this background in place we now turn to our major goal: to assess the

degree to which giving parents more control over the schools their children
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attend increases their level of social capital. In our analysis we use four

measures of social capital, three of which are directly derived from Putnam

(1993) and Fukuyama (1995) and the fourth a logical extension.

The first measure is whether the parent is a member of the PTA. Putnam

uses declining participation in PTAs as one of his indicators of the erosion of

social capital.7 Second, we analyze a slightly broader measure of parental in-

volvement in the schools, asking parents if in the past year they had engaged

in any volunteer activities for their child’s school. The third measure we in-

vestigate is the number of other parents our respondent talked with about

school matters. We use this measure to reflect the “spontaneous sociabil-

ity” Fukuyama emphasizes as underlying social capital and the importance of

“face-to-face democracy” emphasized by Berry, Portney, and Thomson

(1993). Our final measure reflects the level of trust parents have in their

child’s teacher to do the “right thing” for their child.8 For Fukuyama the gen-

eral level of trust in society is the critical dimension of social capital, since

it lubricates economic, political and social transactions. In this research, we

concentrate on a single domain-specific dimension of trust (trust in teachers).

These activities not only are central to building social capital, they are also

critical to building good schools (see, e.g., Anson et al. 1991).

In our selection of independent variables, we measure elements of mo-

tivation, resources, time constraints, and school policies that Kerbow and

Bernhardt (1993, 116) argue are critical features of parental involvement in

the schools. Thus we employ variables related to individual demographic

characteristics as well as those related to the schools children are attending.

Three different types of institutional arrangements exist in the two cen-

tral city districts in our study. The oldest and most traditional form of school

organization is the neighborhood model, in which children are assigned to

schools based on residential location. The second is universal choice, which

characterizes the intermediate school system (grades 6–8) in District 4. Un-

der this type of arrangement all parents must choose a school for their chil-

dren (i.e., there is no “default” school). Finally, an “option demand” sys-

tem of choice (see Elmore 1991), which exists in both districts but is much

more developed in District 4, allows parents to select a school other than their

neighborhood school. We refer to those parents who have decided to exercise

choice as “active choosers.” About 20% of our sample fall into the universal

choice category (all in District 4), while about 9% of all of the sampled par-

ents in New York are active choosers.

Active choosers present us with the same fundamental problem faced

by any research on the behavior of parents in school choice settings—parents

choosing alternative schools may not be a random selection of all parents in
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a school district. And, if parents who self-select alternative schools are also

high on social capital then our results will be biased. While other studies have

acknowledged this problem and made various efforts to control for selection

bias (Chubb and Moe 1990; Coleman and Hoffer 1987; Coleman, Hoffer

and Kilgore, 1982; Smith and Meier 1995), we correct for it by construct-

ing a two-stage nonrandom assignment model, in which the first equation

models the assignment process and the second equation the “outcome.” The

method, described in Appendix B and based on the work of Heckman (1978),

Heckman, Hotz, and Dabos (1987) and Lord (1967, 1969), corrects for both

the nonrandom selection process and other econometric problems associated

with the use of dichotomous dependent variables (see Achen (1986) and Al-

varez and Brehm (1994) for discussions of the applicability of this method in

political science ).9

By limiting the possibility that parents likely to make active choices

are also likely to engage in other activities that we refer to as part of social

capital, the use of this methodology is critical to our argument that making

an active choice influences parental behavior.

As noted in detail in Appendix B, we begin with an explicit assignment

equation:

Active choosers = a + B[Demographics] + B[Values]

+ B[Diversity] + error, (1)

where Active choosers is a dichotomous variable indicating whether a par-

ent has elected an alternative school or program for their child (1 = yes,

0 = no); Demographics is a vector consisting of a set of dummy variables

for self-identified racial group membership (black, Hispanic, Asian—white

is the excluded category), a continuous variable measuring years of schooling

of the parent, a continuous variable reflecting the length of residence in the

school district, and a 7-point scale measuring frequency of church attendance

(1 = never, 7 = once per week). We also include two dichotomous variables

reflecting the gender of the respondent (1 = female) and whether or not the

respondent is employed (1 = yes). The racial, gender, and employment vari-

ables reflect the resources and demographic factors that may influence ac-

tivities related to social capital. Parental education level may be particularly

important—Putnam (1995b, 667) reports that it “is by far the strongest corre-

late . . . of civic engagement in all its forms.” The length of residence variable

reflects the argument advanced by Brehm and Rahn (forthcoming) and by

Putnam, who both argue that mobility decreases social capital. In addition,

Teske et al. (1993) found that length of residence affected knowledge of
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school policies. Church attendance is a control variable representing an al-

ternative form of interaction and involvement with the local community.

The Values and Diversity variables indicate whether a parent thought

either particular values or diversity as school attributes were important in

their choice of schools. In our survey parents were asked to name up to four

attributes they thought were most important in a school. Two attributes in

particular, the values espoused by the school and the diversity of the student

body, were considered important by parents of children in alternative pub-

lic schools but not by parents of children in neighborhood public schools.10

We therefore include these variables in the assignment equation for theoret-

ical reasons, as they are important predictors of active school choosers. We

have no theoretical reason, however to expect these variables to affect social

capital and, indeed, they are not empirically related to the activities we have

measured. These are used as exclusions in our outcome equation and provide

the necessary leverage for estimating the system of equations.11

Thus, as described in greater detail in Appendix B, we estimate this

assignment equation and the predicted value of the active chooser variable is

used in estimating the following outcome equation:

Social capital = a + B[“Predicted” active choosers]

+ B[School factors] + B[Demographics] + error, (2)

where Demographics are as noted in equation (1) and Values and Diversity
are excluded. “Predicted” active choosers is the estimated values from equa-

tion (1), transformed into a linear functional form following Goldberger (1964;

also see Achen 1986, Heckman 1978). School factors measure other as-

pects of the school environment. These factors include a variable measur-

ing the enrollment in the school the child attends, as smaller schools are

often considered to be better arenas for building social capital (Harrington

and Cookson 1992); a dummy variable ( = 1) when the respondent had

made a universal choice at the junior high level in District 4; and a mea-

sure of parental dissatisfaction with her child’s school.12 Previous research

(e.g., Witte 1991) has demonstrated that parental dissatisfaction is negatively

correlated with levels of parental involvement and participation in school

activities.

When the dependent variable in the outcome equation is continuous, as

in our analysis of the number of parents with whom a respondent has talked

about schools, the two-stage estimation technique is fairly straightforward.

When the dependent variable is a dichotomous variable, however, another

round of corrections is necessary because the disturbances are heteroskedas-

tic (see Appendix B; also see Achen 1986, 40–7). In our analysis of the other
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three measures of social capital we report these generalized two-stage least

squares (G2SLS) results. Note that since the results are generalized linear

probability estimates, the coefficients have a straightforward interpretation:

They represent the change in the probability of finding an event given a unit

change in the independent variable.

The Effects of Choice in the Central City
With these corrections in place, we are now able to estimate the effects of

school choice on the behavior of parents controlling for the nonrandom “as-

signment” across alternative schools.13 We present the results in Table 2.

Turning first to PTA membership, reported in the first column, we find strong

evidence that school choice affects this widely used measure of social capi-

tal: Ceteris paribus, participation in the PTA among active choosers is 13%

higher than among nonchoosers (p < .05), the largest effect in our model,

apart from gender.

The effects of some other variables are worth noting. First, note that as

the length of residence increases, so does participation in the PTA (p < .05,

using a one-tail test). Similarly, frequency of church attendance increases

participation in the PTA. These findings confirm empirically the arguments

presented by Putnam and Fukuyama, as well as findings by education re-

searchers (Kerbow and Bernhardt 1993, Muller and Kerbow 1993). Note too

that participation in the PTA increases with the level of parental education—

individual human capital and social capital flow together.

In the second column of Table 2, we turn to more general patterns of par-

ticipation in voluntary events. Here we find that active choosers are over 12%

more likely to engage in such activities than are nonchoosers. Paralleling

the results reported for PTA membership, church attendance and longer resi-

dence are associated with volunteering, as is more years of parental education.

We have shown that active participation in school choice increases lev-

els of involvement with voluntary organizations. We turn next to a measure

of “spontaneous sociability”—how many other parents do our respondents

engage in discussions about schools? The same cluster of variables emerges

as important: Ceteris paribus, active choosers talked with four more parents

than nonchoosers (see the third column of Table 2). Again, longer term res-

idents, more educated respondents, and frequent churchgoers talk with more

parents than do other respondents.

Finally, we examine trust in teachers. As shown in the final column of

Table 2, school factors dominate this model. Active choosers are almost 10%

more likely to trust teachers all or most of the time and universal choosers are

9% more likely to do so. In contrast, parents who are dissatisfied with their
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Table 2. The Effects of Choice on the Formation of Social Capital in Two

New York Districts

PTA Voluntary Parents Trust

Member Activities Talked to Teacher

Active chooser .128∗ .123∗ 4.053∗ .095∗

(.064) (.064) (2.295) (.049)

Universal choice –.035 .025 –.613 .096∗

(.066) (.062) (.651) (.056)

Dissatisfaction –.042 –.003 .234 –.239∗∗∗

(.041) (.040) (.404) (.039)

School size –.000 –.000 –.000 .000

(.000) (.001) (.001) (.000)

Black .092 .048 –.401 –.057

(.072) (.068) (1.30) (.044)

Hispanic –.068 –.021 .419 –.066

(.066) (.062) (1.22) (.036)

Asian .041 .149 1.61 .059

(.187) (.157) (2.47) (.097)

Length of residence .005∗ .005∗ .085∗∗ –.002

(.003) (.003) (.030) (.002)

Education .015∗∗ .020∗∗ .148∗ –.009∗

(.005) (.006) (.063) (.004)

Employed –.046 .031 .038 .033

(.044) (.042) (.427) (.029)

Female .277∗∗∗ .110 .370 –.052

(.056) (.067) (.708) (.036)

Attend church .041∗∗∗ .023∗∗∗ .242∗ .010

(.009) (.009) (.108) (.006)

Constant .336∗∗ .327∗∗ .739 1.05

(.129) (.135) (2.34) (.090)

N = 580, N = 580, N = 568, N = 578,

F = 66 F = 107 F = 4.4 F = 4.3

Note: Numbers in parentheses are adjusted standard errors. We do not report

R-squared statistics because in the adjustment process necessary to correct for

the nonrandom assignment problem, this statistic becomes inappropriate (see

Aldrich and Nelson 1994, 14–5).
∗ p ≤ .05; ∗∗ p ≤ .01; ∗∗∗ p ≤ .001
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child’s school and have considered moving the child to a different school are

24% less likely to trust their child’s teachers. Of the demographic factors,

only education is related to trust—but this relationship is negative.

Note also that while choosing significantly increases social capital on

all four dimensions we measure, school size is not related to any of these

measures. Harrington and Cookson (1992) have argued that the introduction

of smaller schools in District 4 was the most important innovation accounting

for the improvements found in the district. Our results differ—it is choice and

not school size that matters.

Taking Advantage of the Quasi-Experimental Design: Replicating
the New York Findings
Replication is one of the most powerful tools available for validating so-

cial scientific findings. In the next stage of our analysis, we take advantage

of our quasi-experimental design to replicate the results of our New York

study in another pair of school districts. This replication allows us to explore

the robustness of our findings by testing their sensitivity to changes in the

context of choice. In our next comparison, we explore the effects of com-

munity composition on our findings. In our first analysis, we demonstrated

that school choice fosters behavior that builds social capital among parents

in low-income central city school districts. Given the multitude of problems

facing central cities, this is obviously an important finding. The next ques-

tion is obvious: Does this relationship hold among suburban parents who

now make up a larger share of the American population than do those in the

central city?

Second, and more important for us, the institutional factors that define

the extent of school choice varies across our two sets of communities. In our

next “experiment,” we compare patterns of activities in a traditional neigh-

borhood school district (where no one can choose a school except by chang-

ing their residential location or by opting out of the public sector altogether)

with those in a universal choice district (where there are no neighborhood

schools). These institutional arrangements represent more extreme points on

the policy continuum than do those in District 1 and District 4. Are the re-

sults we found in New York replicated under these different community and

institutional conditions? Are the magnitude of the effects similar?

School Choice and Social Capital in Suburban Communities
To answer these questions we turn to our second paired set of communities,

Montclair and Morristown, New Jersey, two suburban communities within

commuting distance of New York City. Given the institutional arrangements
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governing the schools in these two districts, we can test the effects of univer-

sal choice directly, since everyone in Montclair’s public schools chooses and

no one in Morristown’s can.

Montclair and Morristown, New Jersey

In both communities, court-ordered desegregation decisions in the 1970s

led to fundamental changes in the school assignment mechanisms; however,

very different responses were developed to achieve racial balance. Montclair

adopted school choice, with parents given the right to choose schools from

kindergarten through the eighth grade (there is only one high school), with

choice constrained by racial balancing. In Morristown, residential zones

were created for neighborhood schools. These zones are frequently adjusted

so that each school in each zone has the same racial balance, but once set the

zones are strictly enforced.

School choice has been operating in Montclair for about as long as in

District 4. In 1969, the New Jersey Commissioner of Education ordered

Montclair to desegregate or lose state funding. A forced busing plan was im-

plemented in 1972, which caused conflict and considerable white flight. A

limited choice program was implemented in 1975 to try to encourage vol-

untary racial balancing by establishing magnet schools. Several changes

were made to the choice plan in Montclair, and in 1984 choice was intro-

duced to the whole district by the symbolic act of turning all schools into

magnets.

While choice was initially a solution to racial balancing, parents, teach-

ers, and administrators used it to promote competition and better schools

(Boyer 1992, 33). Parents in Montclair are provided with considerable infor-

mation about the schools. In choosing schools, parents request two options

and students are placed in their first choice if it matches the racial balanc-

ing goals. The schools are nearly uniformly good and about 95% of parents

receive their first choice (Strobert 1991, 56–7). Between 60 and 80% of stu-

dents are bused to their schools, but now such busing is voluntary.

Table 3 shows the demographics of the public school parents in these

two New Jersey districts, overall and for our surveyed sample of 400 parents

in each community.

Under the universal system of choice in Montclair, all parents are re-

quired to choose a school for their child. Therefore, it is not necessary to

specify the selection process as we did for the analyses of our New York City

parents—that is, no assignment equation is needed and the extensive correc-

tions noted in Appendix B are not necessary. Thus, the results reported in

Table 4 are the results of straightforward multivariate analyses. For compa-

rability with the linear probabilities reported in our analysis of New York,
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Table 3. Montclair and Morristown Population and Sample Demographics

Montclair Morristown

Population Sample Population Sample

Number of students 5850 356 5080 286

Number of schools 10 10 9 9

Hispanics 4% 3% 9% 7%

Blacks 36% 34% 17% 16%

Whites 56% 57% 70% 70%

Asian 3% 1% 4% 5%

Percentage in poverty 7% NA 6% NA

Income < $20,000 per year 16% 8% 21% 14%

Employed 59% 80% 58% 71%

High school degree or more 88% 98% 86% 94%

Single parent 11% 23% 23% 22%

Female 54% 78% 53% 76%

Source: For district information, School District Data Book Profiles, 1989–90.

we report the percentage point change for a unit change in the independent

variable (for the dummy variable, this is the effect of having the character-

istic [1] versus not having it [0]). Since all Montclair parents must choose

their children’s school and no one in Morristown public schools can choose

(except by moving), the coefficient of the dummy variable for Montclair rep-

resents the effects of universal choice, ceteris paribus.

The results in Table 4 show patterns consistent with those in our New

York analysis. Choosers are significantly more likely to engage all measures

of social capital—PTA membership, volunteering for a school activity, talk-

ing to people about schools, and trusting teachers—controlling for other im-

portant factors.14

School Choice Can Help Build Social Capital
At the heart of calls for the introduction of market-like reforms into the pub-

lic sector lies the belief that giving people choices over public goods will

increase efficiency. Research into the effects of reforming the “supply side”

of the provision of public goods has established that such competitive mech-

anisms can in fact pressure the producers of public goods to be more effi-

cient and more responsive (for local public goods, see, e.g., Ostrom 1972,

Schneider 1989, Schneider and Teske 1995, Tiebout 1956). Recently, schol-

ars have begun to study the effects of reforms on the demand-side of the

market, leading to debates about the level of information held by citizens
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Table 4. The Effects of Choice on the Formation of Social Capital in Two

New Jersey Districts

PTA Voluntary Parents Trust

Member Activity Talked To Teacher

(standard % (standard % (standard % (standard %

error) Change error) Change error) Change error) Change

Universal choice 0.35∗∗ 13% 0.21∗ 6% 1.24∗∗ 13% 0.28∗ 6%

(.11) (.13) (.38) (.14)

Black –0.55∗∗ –21% –0.48∗∗ –14% –3.38∗∗ –30% –0.41∗∗ –9%

(.13) (.14) (.44) (.15)

Hispanic –1.24∗∗ –45% –0.96∗∗ –34% –2.86∗∗ –12% 0.34 6%

(.29) (.26) (.91) (.38)

Asian –0.57 –22% 0.15 4% –3.49∗∗ –11% 0.49 8%

(.33) (.39) (1.17) (.55)

Length of –0.01 –0.07% 0.02∗∗ 0.6% 0.07∗∗∗ 9% 0.01 0.02%

residence (.01) (.01) (.03) (.01)

Education 0.09∗∗ 3% 0.06∗∗ 2% 0.31∗∗∗ 16% 0.03 0.5%

(.02) (.02) (.08) (.03)

Employed –0.07 –3% –0.06 –1% –0.78∗ –6% –0.27 –5%

(.14) (.16) (.47) (.18)

Female 0.40∗∗ 15% 0.52∗∗ 16% 1.22∗∗∗ 10% –0.02 –0.5%

(.13) (.14) (.44) (.16)

Attend church 0.09∗∗ 4% 0.06∗ 2% 0.24∗∗∗ 11% –0.01 –0.01%

(.03) (.03) (.08) (.03)

Dissatisfaction –1.76∗∗ –8% –0.01 –0.1% 0.51 6% –0.73∗∗ –18%

(.42) (.14) (.41) (.14)

Constant –0.92 –0.45 1.71 1.04

(.41) (.44) (1.4) (.49)

N = 629 N = 629 N = 626 N = 622

χ2 = 91

(.00)

χ2 = 61

(.00)

F = 14

(.00)

χ2 = 43

(.00)

Note: In the three probit equations the percentage point change figures indicate the effect of a change

from 0 to 1 for the dummy variables and represent the effect of a unit change for the nondummy variables.

For the regression equation (parents talked to) the percentage changes are calculated from the normalized

beta coefficients.
∗ p ≤ .05; ∗∗ p ≤ .01; ∗∗∗ p ≤ .001

and the levels necessary for markets for public goods to work (e.g., Lowery,

Lyons, and DeHoog 1995, Lyons, Lowry, and DeHoog 1992, Teske et al.

1993, 1995). This debate has focused on only a limited aspect of the be-

havior of the “citizen/consumer” in the market for public goods, revolving

around the question of whether competition can enhance the behavior of

citizens as consumers. We broaden the question by asking if government

policies that enhance choice over public goods can increase the capacity

of the citizen/consumer to act as a responsible, involved citizen. Our re-

sults show that in the domain we study, local public education, the answer

is yes.
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According to Putnam, societies can evolve two different equilibria as

they solve collective action problems. One equilibrium is built on a

“virtuous circle” that nurtures healthy norms of reciprocity, cooperation, and

mutual trust. The other relies on coercion and creates an environment in

which only kin can be trusted. Civic engagement is at the core of Putnam’s

concept of social capital because it breeds cooperation and facilitates coordi-

nation in governing. Public schools constitute a domain in which the virtuous

circle is essential for improving the quality of education. Hillary Rodham

Clinton (1996) has argued that “it takes a village” to raise a child. It may

also take a “village” to educate a child: High quality education is dependent

on parental involvement supported by high levels of community involvement.

In turn, higher quality education is associated with activities that build social

capital—a virtuous circle is created.

Our research shows that the design of the institutions delivering local

public goods can influence levels of social capital. No present statistical

method can fully correct for problems in estimation introduced by the com-

plex causal linkages that motivate our study. Our two-stage modeling, how-

ever, clearly addresses the biases introduced by the nonrandom “assignment”

of parents as active choosers in New York. Our research shows that in both

an urban and a suburban setting and under different institutional settings of

choice, the act of school choice seems to stimulate parents to become more

involved in a wide range of school-related activities that build social cap-

ital. Our results support arguments linking participation and urban democ-

racy and, within the domain of schools that we studied, are directly congruent

with Berry, Portney, and Thomson’s (1993, 254) claim that “increased par-

ticipation does lead to greater sense of community, increased governmental

legitimacy, and enhanced status of governmental institutions.”

Clearly, many factors affecting the formation of social capital are

individual-level characteristics effectively beyond the control of government

(e.g., social capital increases with church attendance and with length of res-

idence in a community). This fundamentally limits the role that govern-

ment can play in nurturing the formation of social capital. Despite this,

we believe that governmental policies can and do affect the level of so-

cial capital. The careful design of governmental institutions may be able

to reverse the ratchet that Fukuyama believes has only driven social capital

down.

Appendix A: Survey Methodology
We contracted the Polimetrics Research and Survey Laboratory at Ohio State

University to carry out the survey. To start, Polimetrics identified the zip
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codes in each of the four school districts. All listed telephone numbers for

each zip code were identified. From this, a list was developed using random

generation of the last two digits of the appropriate telephone exchanges, so

that unlisted numbers were included as well. All known business telephone

numbers were removed as they were not eligible to be interviewed. Then, a

random sample was taken of the remaining numbers.

To be eligible to be interviewed, respondents needed to live within the

school district, have children between grades K–8, be the adult responsible

for decisions affecting that child’s education, and identify the school their

child attended (which could be either a private school or a district public

school).

The actual interviews were conducted from March through June 1995.

The interviewers were given extensive training and some interviews were

conducted in Spanish. Interviews were monitored randomly and, to ensure

validity, 15% of all completed interviews were verified with respondents by

the supervisors.

The goal was to obtain 400 completed interviews in each of the four

districts. The following table shows the call dispositions in each district.

Table A-1. Disposition of Survey Telephone Calls

District 4 District 1 Montclair Morristown

Completed 400 401 408 395

Refusals 113 522 109 174

No final disposition 225 1,642 281 343

Nonhousehold 5,237 17,883 5,268 12,913

Ineligible 5,722 13,469 3,935 5,918

Appendix B: Correcting for Nonrandom Assignment
As Achen (1986) demonstrates, ordinary regression fails to produce unbiased

estimates of treatment effects in quasi-experiments when the “assignment”

to different conditions is not random (see LaLonde and Maynard 1987; Lord

1967, 1969; Heckman 1978; Heckman, Hotz, and Dabos 1987). Consequen-

tly, in addition to specifying the behavioral outcome, we must explicitly

model the assignment process. To deal with the dichotomous nature of three

of our dependent variables, we apply Achen’s generalized two-stage least

squares estimator (G2SLS). The steps for this estimation procedure, as well

as the standard 2SLS we employ to estimate our continuous outcome equa-

tion, are summarized below.
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Table B-1. Assignment (First-Stage) Equation: Active Public

School Choosers in New York

Coefficient Standard Error

Diversity .090∗ .038

Values .115∗∗ .037

Length of residence .005∗ .002

Years of schooling .006 .004

Black –.252∗∗∗ .048

Hispanic –.216∗∗∗ .045

Asian –.318∗∗ .116

Employed .079∗∗ .028

Female –.003 .043

Attend church –.003 .006

Constant .127 .114

∗ p ≤ .05; ∗∗ p ≤ .01; ∗∗∗ p ≤ .001

N = 584; F(10, 573) = 10.36; p = .000

The first stage consists of estimating the assignment equation. This can

be done in a straightforward manner by applying the linear probability model.

Goldberger’s (1964) two-step weighted estimator can be employed to correct

for the problems of ordinary least squares (OLS) regression with a dichoto-

mous dependent variable. Before calculating the weights, the predicted val-

ues outside the 0–1 interval from the OLS regression should be reset to the

bounds. It should also be noted that in order for the system of equations to be

estimated, at least one variable in the assignment equation must be excluded

from the outcome equation. This variable provides the necessary statistical

leverage to estimate the system, so its coefficient in the assignment equation

must be nonzero. See Table B-1 for the results of the assignment equation.

For the second stage, the forecast values of the treatment variable (the

dependent variable from the assignment equation) are inserted into the out-

come equation. When the dependent variable in this equation is continuous

(as in the case of our “spontaneous sociability” model) ordinary regression

can be applied. The resulting coefficients are 2SLS estimates. The only re-

maining step in the continuous variable case consists of correcting the stan-

dard errors of the coefficients. To accomplish this we first denote the variance

of the residuals from our OLS regression ω2. Next we generate a new forecast

value for the dependent variable by using the second-stage coefficients and
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the original variables. We then compute the variance of the new set of resid-

uals, σ 2, by taking the difference between the two equations. The standard

errors of the 2SLS coefficients are corrected by multiplying each standard

error by the square root of σ 2/ω2.

If the dependent variable in the outcome equation is dichotomous, as in

our three other models, additional steps are necessary. Once again we insert

the forecast values of the treatment variable into the outcome equation. After

applying OLS to the outcome equation we compute a new forecast value

for the dependent variable using the regression coefficients and the original

variables. Once again, predicted values outside the 0–1 interval are reset to

the bounds. Next we apply Goldberger’s two-step weighted estimator to the

outcome equation. The coefficients of the final estimation are the 2GSLS

estimates, but again, the reported standard errors are wrong. To correct them

we first denote the variance of the residuals from the final stage regression

as ω2. We then multiply each standard error by the square root of 1/ω2. We

report these corrected coefficients and standard errors in our tables. Note

too that once these corrections are implemented the R2 statistic is no longer

meaningful and is not reported for any of our New York models.
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Notes

1. The current debate in political science is focused on somewhat dif-

ferent issues than we address here. However, our research is directly relevant

to one central theme of that debate—the role of government in creating social

capital. In critiquing what he sees as a critical omission by Putnam (1993),

Tarrow (1996, 395) asks: “Can we be satisfied interpreting civic capacity as

a home-grown product in which the state has no role?” Similarly, Jackman

and Miller (1996a, 655) argue that a political institutional approach that en-

dogenizes civic culture can help explain differential political and economic

development.

2. Classic theoretical treatments include: Chubb and Moe 1990; Coons

and Sugarman 1978; Fantini 1973; Friedman 1955, 1962; Jencks 1966. For

reviews of school choice in practice, see Cookson 1994; Clune and Witte

1990; and Wells 1993.

3. These policies include publicly provided vouchers that can be used in

a variety of schools, both public and private (see, e.g., Lee 1991), the intro-

duction of magnet schools (see, e.g., Blank 1990), the introduction of charter

schools (see, e.g., Wohlstetter, Wenning, and Briggs 1995), and public school

choice plans such as those we analyze here.

4. In 1993, the New York City Board of Education established a new

policy of interdistrict choice. If space is available (usually it is not), students

can go to schools outside of their district. The Board did not mandate choice

programs within districts.

5. Recall that high schools in New York are run by the central Board of

Education.

6. The table in Appendix A shows that telephone interviewers had

greater difficulty completing interviews in District 1 than District 4; however,

as evident in Table l our samples of public school parents are nonetheless

representative of the population of the districts as a whole.

7. We recognize a limitation inherent in the cross-sectional nature of our

research design. Ideally, research on changes in social capital would employ

a longitudinal, interrupted time-series analysis, involving panel responses.

In this ideal research design, data would be collected prior to institutional

changes and, by interviewing the same subjects over time, researchers could

isolate the specific effect of institutional changes. Unfortunately, few re-

searchers had the foresight or the resources to conduct such a study; trade-

offs must inevitably be made. For example, Putnam (1993) used aggregate

level and (some would say) problematic measures of social capital (see, e.g.,

Jackman and Miller 1996a) and went beyond his data to explore historical

differences in the development of Italian regions. The trade-off in our case is

that while we can not gather detailed individual-level data on parents in these
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districts before they chose a school, we do have detailed individual mea-

sures today that our cross-sectional design allows us to test while controlling

for individual-level demographic and socioeconomic factors. With replica-

tion across four different institutional settings, our quasi-experimental design

provides a strong cross-sectional test of the causal relationships postulated in

the existing social capital literature.

8. Participation in the PTA and in voluntary activities is a dichotomous

variable, with 1 indicating membership in the PTA (52% report membership)

or voluntary activity (66% report such activity). As Verba, Schlozman, and

Brady (1995, 74–9) note and our data confirm, levels of voluntary activity in

social organizations are considerably higher in America than is participation

in electoral activities. The number of parents a respondent reported talking

with is a continuous variable based on the midpoints of categories presented

(mean = 4.5; s.d. = 4.6). Trust in teachers is operationalized as a dichoto-

mous variable (1 = trusts teachers most of the time or always [77% report

this level of trust]; 0 = never or only sometimes).

9. While it is also plausible that there could be a two-way or reciprocal

relationship between social capital and school choice, the timing of our re-

search design makes this unlikely: Parents made their school choice in spring

1994. They were not interviewed until spring 1995, during which time they

answered questions about activities during the previous school year. Thus,

they chose first and engaged in the activities we measured later.

10. Smith and Meier find that religion and race help explain why some

parents choose private schools for their children (1995, 71–2). Our values

and diversity variables for the public schools are closely related to these

concepts. Alternative schools in New York tend to emphasize themes and

pedagogical approaches that are based on particular social, educational, or

civic values. Diversity has a somewhat different meaning in districts where

two-thirds of the children are Hispanic.

11. To estimate two stage models there must be at least one exclusion in

the assignment equation. In other words, we must find at least one variable

that significantly influences assignment but not the outcome (Achen 1986,

38). We use these two variables, diversity and values, as exclusions.

12. Our specific measure, indicating whether or not the parent has often

thought about moving her child to another school, is a dummy variable coded

1 = yes, the parent has thought about moving her child to a different school.

We expect a negative relationship between this measure and our measures of

involvement in the schools.

13. While the two-stage results are the technically correct ones, we

should also note that these findings are robust with a simpler methodology.

Using a one-stage model, the results are essentially the same.
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14. We should also note that, for both urban and suburban districts,

parents who chose to send their children to private schools are significantly

more likely to engage in all of these social capital building activities than

public school parents and more so than even active public choosers, with the

exception of PTA involvement. This result is not surprising, and has been

documented in the literature on private schools.
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