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expenditures, the pursuit of efficiency has become a central objective of policy

makers within most health systems. However, the analysis and measurement

of efficiency is a complex undertaking, not least because of the multiple

objectives of health care organisations and the many gaps in information

systems. In response to this complexity, research in organisational efficiency

analysis has flourished. This book examines some of the most important

techniques currently available to measure the efficiency of systems and orga-

nisations, including data envelopment analysis and stochastic frontier analy-

sis, and also presents some promising new methodological approaches. Such

techniques offer the prospect of many new and fruitful insights into health

care performance. Nevertheless, they also pose many practical and methodo-

logical challenges. This is a timely critical assessment of the strengths and

limitations of efficiency analysis applied to health and health care.
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Preface

In response to the sizeable proportion of national income devoted to

the health care sector, policy makers in most high-income countries

have become increasingly concerned with improving the efficiency of

the health care sector. Meanwhile, econometricians, statisticians and

management scientists have been developing increasingly sophisti-

cated tools that seek to measure organisational efficiency. The ques-

tion therefore arises: do these techniques offer policy makers useful

tools with which to assess and regulate health care performance?

In collaboration with colleagues at the Centre for Health Economics

and elsewhere, we have been involved in many studies seeking to

address that question, and this book summarises our experience to

date. As the reader will see, our findings are equivocal. We find much

of value in the techniques of efficiency analysis, not least their rigour

and the insights they give into complex data sets. These virtues deserve

to be acknowledged. However, we also identify some important in-

tellectual weaknesses and practical difficulties associated with imple-

menting the techniques in health care, and we view with concern the

claims made for them by some of their more ardent advocates.

This book therefore seeks to offer a balanced critique of the current

state of the art of efficiency analysis as applied to health care. The

intention is to offer analysts and policy makers a coherent view of the

strengths and limitations of the techniques, both from a technical and

a policy perspective. We assume the reader is comfortable with rudi-

mentary mathematical exposition, but otherwise assume no familiar-

ity with the analytic material. The breadth of the intended readership

has nevertheless presented us with some challenges in choosing the

level of technical detail to include in the exposition, and the chapters

emphasise the technical and policy issues to different extents.

Chapters 1 and 2 offer a general introduction to the context and

principles underlying the development of efficiency analysis, and

should be accessible to all our intended readership. The core of the

xiii



technical exposition is contained in chapters 3 and 4 (stochastic fron-

tier analysis (SFA)) and chapters 5 and 6 (data envelopment analysis

(DEA)). They are intended to stand on their own if the reader is

interested in only one of the analytic approaches.

Chapter 7 offers a less technical comparison of the two techniques,

and chapter 8, an assessment of their major weaknesses from a policy

perspective. In the light of some of the concerns we raise, we present

some tentative proposals for complementary analytic approaches in

chapter 9. Finally, chapter 10 summarises what we feel is the current

‘state of the art’, emphasising our concern that – notwithstanding the

need for good quantitative evidence – effective regulation of health

care will always require a balanced range of analytic approaches.
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1|Efficiency in health care

1.1 Introduction

T
H E pursuit of efficiency has become a central objective of policy

makers within most health systems. The reasons are manifest.

In developed countries, expenditure on health care amounts to

a sizeable proportion of gross domestic product. Policy makers need to

be assured that such expenditure is in line with citizens’ preferences,

particularly when many sources of finance, such as tax revenues, are

under acute pressure. On the supply side, health technologies are chan-

ging rapidly, and the pressures to introduce new technologies are often

irresistible, even when there is uncertainty about cost-effectiveness.

On the demand side, aging populations pose challenges for the design

of health systems, and expectations are becoming ever more chal-

lenging. Finally, the revolution in information systems has made it

feasible to measure aspects of system behaviour – most notably clinical

activity – that until recently defied meaningful quantification.

The international concern was crystallised in the World Health

Report 2000 produced by the World Health Organization, which

was devoted to the determinants and measurement of health system

efficiency (World Health Organization 2000). The report stimulated

a wide-ranging international debate, and a great deal of controversy

(Williams 2001; Anand et al. 2002). However, its enduring legacy may

be that it has helped policy makers to focus on the objectives of their

health systems, on how achievement might be measured, and on

whether resources are being deployed efficiently. A subsequent inter-

national conference organised by the Organization for Economic Co-

operation andDevelopment has confirmed the universal policy concern

with performance measurement issues in health care (Smith 2002).

The analysis and measurement of efficiency is a complex under-

taking, especially when there exist conceptual challenges, multiple

objectives and great scope for measurement error. To address this
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complexity there has developed a flourishing research discipline of

organisational efficiency analysis. Following pioneering studies by

Farrell (1957), statisticians, econometricians and management scien-

tists have developed tools to a high level of analytic sophistication

that seek to measure the productive efficiency of organisations and

systems. This book examines some of the most important techniques

currently available to measure the efficiency of systems and organ-

isations. It seeks to offer a critical assessment of the strengths and

limitations of such tools applied to health and health care.

Throughout much of the book we take the view that health care

objectives are known and agreed, and much of the discussion also

assumes that the relative value placed on each objective is known. In

practice, objectives and priorities are highly contested, and often not

stated explicitly. A central purpose of this book is to examine how

efficiency might be measured in the knowledge of objectives, but

we also discuss the implications for efficiency analysis of failing to

address priority setting explicitly.

Notwithstanding the apparent simplicity of the concept, there is a

great deal of confusion in both popular and professional discussion

about what is meant by efficiency in health care. In this opening

chapter we first discuss the reasons for wishing to measure efficiency,

and then define the concepts of organisational efficiency deployed in

this book. Subsequently, we give a short summary of experience to

date in measuring efficiency in the health sector. The chapter ends

with an outline of the remainder of the book.

1.2 The demand for efficiency analysis in health care

The international explosion of interest in measuring the inputs, activ-

ities and outcomes of health systems can be attributed to heightened

concerns with the costs of health care, increased demands for public

accountability and improved capabilities for measuring performance

(Smith 2002). Broadly speaking, the policy maker’s notion of efficiency

can be thought of as the extent to which objectives are achieved in

relation to the resources consumed. There might also be some con-

sideration of external circumstances that affect the ability of the system

to achieve its objectives. This beguilingly simple notion of efficiency is

analogous to the economist’s concept of cost-effectiveness, or the

accountant’s concept of value for money. The potential customers for

2 Measuring Efficiency in Health Care



measures of efficiency include governments, regulators, health care

purchasers, health care providers and the general public.

Governments clearly have an interest in assessing the efficiency of

their health institutions. In all developed countries, public finance of

one sort or another is the single most important source of health

system funding, so national and local governments have a natural

requirement to ensure that finance is deployed effectively. It is there-

fore not surprising to find that methodologies that offer insights

into efficiency have attracted the interest of policy makers. Moreover,

in most industrialised countries, a large element of the health care

sector is provided by non-market organisations. Given the complexity

of the functions undertaken by such institutions, and in the absence of

the usual market signals, there is a clear need for instruments that offer

insights into performance. The search for such technologies has been

intensified by the almost universal concern with escalating health

care costs and increased public pressure to ensure that expenditure

on health systems is used effectively.

Given the absence of a competitive market in health care, all health

systems require a regulator of some sort. A regulator is most obviously

required when a significant proportion of health care is provided by

the for-profit sector. However, the regulatory function might be in-

corporated implicitly into government surveillance of the health sys-

tem if public provision predominates. As well as having an obvious

role in promoting public safety, effective regulation requires the deve-

lopment of measures of comparative performance in order to set a

level playing field for providers, a task to which efficiency models are

in principle well-suited. Such interest is of course not limited to the

health sector. For example, the UK water industry regulator (OFWAT)

makes extensive use of efficiency analysis in determining its regulatory

regime for water companies (Office of Water Services 1999).

Health care purchasers have a serious information difficulty when

negotiating contracts with providers. In the absence of any meaning-

ful market, they often find it difficult to judge whether providers are

offering good value for money. Even in a competitive environment, it

may be difficult for purchasers to discriminate between competing pro-

viders. Efficiency analysis can therefore help purchasers to understand

better the performance of their local providers relative to best practice,

and introduces an element of ‘yardstick competition’ into the purchas-

ing function (Schleifer 1985). Likewise, even in non-competitive

Efficiency in health care 3



health care systems, providers have a natural interest in seeking out

best practice and identifying scope for improvement.

Finally, there are increasing demands for offering the general public

reliable information about the performance of its national and local

health systems, and of individual providers (Atkinson 2005). Whilst

the evidence hitherto suggests that it is difficult to stimulate public

interest in this domain – and we are not aware of any major initiatives

involving efficiency analysis – there are strong accountability argu-

ments for seeking to place high-quality information in the public

domain in order to enhance debates about value for money.

1.3 Organisational efficiency

The focus of efficiency analysis is as an organisational locus of pro-

duction, often referred to as a decision-making unit (DMU). In health

care, examples of DMUs include entire health systems, purchasing

organisations, hospitals, physician practices and individual physi-

cians. The DMUs consume various costly inputs (labour, capital etc.)

and produce valued outputs. Efficiency analysis is centrally concerned

with measuring the competence with which inputs are converted into

valued outputs. In general, it treats the organisation as a black box,

and does not seek to explain why it exhibits a particular level of

efficiency (Fried, Lovell and Schmidt 1993).

The terms ‘productivity’ and ‘efficiency’ are often used interchange-

ably, which is unfortunate since they are not precisely the same thing.

Productivity is the ratio of some (or all) valued outputs that an organ-

isation produces to some (or all) inputs used in the production process.

Thus the concept of productivity may embrace but is not confined to

the notion of efficiency that is the topic of this book.

A starting point for examining the basic notion of efficiency is

shown in Figure 1.1, which illustrates the case of just one input and

one output. The line OC indicates the simplest of all technologies: no

fixed costs and constant returns to scale. A technically efficient orga-

nisation would then produce somewhere on this line, which can be

thought of as the production possibility frontier. Any element of

inefficiency would result in an observation lying strictly below the

line OC. For an inefficient organisation located at P0, the ratio

X0P0/X0P
�
0 offers an indication of how far short of the production

frontier it is falling, and therefore a measure of its efficiency level.

4 Measuring Efficiency in Health Care



Many other technologies are possible. For example, the curve OV

indicates a frontier with variable returns to scale. Up to the point P�
0,

the ratio of output to input decreases (increasing returns to scale), but

thereafter it increases (decreasing returns to scale).

The notion of a production frontier can be extended to multiple

outputs and a single input (say, costs). Figure 1.2 illustrates the case

with two outputs. For the given technology, the isocost curve CC gives

the feasible combination of outputs that can be secured for a given

input. At a higher level of costs the isocost curve moves out to C0C0.
These curves indicate the shape of the production possibility frontiers

at given levels of input. An inefficient DMU lies inside this frontier.

We define the marginal rate of transformation to be the sacrifice of

output 2 required to produce a unit of output 1, indicated at any

particular point on CC by the slope of the curve –(P2/P1). It is usually

assumed that – as in this figure – for a given level of input this becomes

steeper as the volume of output 1 produced increases.

Likewise, in input space, we examine the case of two inputs and one

output, as in Figure 1.3. The isoquant QQ indicates the feasible mix

of inputs that can secure a given level of output, with inefficient

DMUs lying beyond this curve.

Extending the analysis to the general case of multiple inputs and

multiple outputs, we define the overall efficiency eff0 of organisation

0 to be the ratio of a weighted sum of outputs to a weighted sum

of inputs. Mathematically, if organisation 0 consumes a vector of

Figure 1.1. Efficiency measurement under constant returns to scale.

Efficiency in health care 5



Figure 1.2. The case of two outputs.

Figure 1.3. The case of two inputs.

M inputs X0 and produces a vector of S outputs Y0, its overall

efficiency is measured by applying weight vectors U and V to yield:

eff 0 ¼

XS
s¼1

UsYs0

XM
m¼1

VmXm0

(1.1)

6 Measuring Efficiency in Health Care



where:

Ys0 is the amount of the sth output produced by organisation 0;

Us is the weight given to the sth output;

Xm0 is the amount of the mth input consumed by organisation 0;

Vm is the weight given to the mth input.

The weights U and V indicate the relative importance of an addi-

tional unit of output or input. On the input side, the weights V might

reflect the relative market prices of different inputs. It is often the

case – with the notable exception of capital inputs – that these can be

measured with some accuracy. Then, if the actual input costs incurred

by organisation 0 are C0, the ratio:

Ceff 0 ¼

XM
m¼1

VmXm0

C0
(1.2)

indicates the extent to which the organisation is purchasing its chosen

mix of inputs efficiently (that is, the extent to which it is purchasing its

chosen inputs at lowest possible prices).

However, the organisation may not be using the correct mix of

inputs. This can be illustrated using a simple two-input model. For

some known production process, the isoquantQQ in Figure 1.4 shows

the use of minimum inputs required to produce a unit of a single

output. The points P1 and P2 lie on the isoquant and therefore – given

the chosen mix of inputs – cannot produce more outputs.

When the unit costs of inputs are known, it is possible to examine

the input price (or allocative) efficiency of the two units. Suppose the

market prices are V�
1 and V�

2. Then the cost-minimising point on the

isoquant occurs where the slope is �V�
1/V

�
2 (shown by the straight

line BB). In Figure 1.4 this is the point P1, which is input-price

efficient. However, the point P2 is not efficient with respect to prices,

as a reduction in costs of P2P
�
2 is possible. The price efficiency of P2 is

therefore given by the ratio OP�
2/OP2.

Analogous arguments can be deployed to examine the allocative

efficiency of organisations in output space. Figure 1.5 illustrates the

case where a single input is used to produce two outputs. If the relative

values U1 and U2 of the outputs are known, and the production pos-

sibilities are given by the curve CC, then organisation P1 is producing

Efficiency in health care 7



at its allocatively efficient point while organisation P2 exhibits some

allocative inefficiency.

Although organisations may exhibit allocative inefficiency in pur-

chasing the wrong mix of inputs or producing the wrong mix of

outputs, we have so far explored only those organisations that lie on

the frontier of technical production possibilities. However, it is likely

that, particularly in a non-market environment, many organisations

are not operating on the frontier. That is, they also exhibit an element

Figure 1.4. Allocative efficiency with two inputs.

Figure 1.5. Allocative efficiency with two outputs.

8 Measuring Efficiency in Health Care



of technical inefficiency (also referred to as managerial inefficiency or

X-inefficiency).

This is illustrated in Figure 1.6 by the points P3 and P4. Organisation

P3 purchases the correct mix of inputs, but lies inside the isoquantQQ.

It therefore exhibits a degree of technical inefficiency, as indicated by

the ratio OP1/OP3. Organisation P4 both purchases an incorrect mix

of inputs and lies inside the isoquant QQ. Its technical inefficiency is

indicated by the ratio OP2/OP4. Thus its overall level of inefficiency

OP�
2/OP4 can be thought of as the product of two components: tech-

nical inefficiency OP2/OP4 and allocative inefficiency OP�
2/OP2.

We have so far assumed constant returns to scale. That is, the

production process is such that the optimal mix of inputs and outputs

is independent of the scale of operation. In practice there exist im-

portant economies and diseconomies of scale in most production

processes, so an important influence on eff0 (from equation 1.1) may

be the chosen scale of operation. This is illustrated in Figure 1.7 for

the case of one input and one output. The production frontier is

illustrated by the curve OV, which suggests regions of increasing and

decreasing returns to scale. The optimal scale of production is at the

point P* where the ratio of output to input is maximised. Although

lying on the frontier, the points P1 and P2 secure lower ratios because

they are operating below and above (respectively) the scale-efficient

point of production. They therefore exhibit levels of scale inefficiency

given by:

Figure 1.6. Technical and allocative inefficiency.
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Seff 1 ¼ OY1=OX1

OY�=OX� and Seff2 ¼ OY2=OX2

OY�=OX� (1.3)

1.4 Analytic efficiency measurement techniques

The fundamental building block of the economic analysis of organisa-

tional efficiency is the cost function (or its counterpart, the production

function). For the purposes of this exposition, we focus on the cost

function. This is probably more germane to the health care setting we

seek to analyse, in which it is usual to find multiple outputs quantified

on different measurement scales. The cost function simplifies the input

side of the production process by deploying a single measure of the

inputs used, rather than a vector. It indicates the minimum cost that an

organisation can incur in seeking to produce a set of valued outputs.

Using the notation introduced above, a cost function can be written in

general terms as C�
0 ¼ f(Y0). Analogously, the production function

models the maximum (single) output an organisation could secure,

given its mix of inputs.

The cost function combines all inputs into a single metric (costs),

and does not model the mix of inputs employed, or their prices. In

practice, the costs incurred by an organisation might be higher than

those implied by the cost function for three reasons. First, it may

purchase inputs at higher than market prices (cost inefficiency). Sec-

ond, given prevailing prices, it may employ an inefficient mix of inputs

Figure 1.7. Economies of scale.
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(allocative inefficiency). And third, it may not secure the maximum

output attainable given its inputs (technical inefficiency). However, if

no measures of physical inputs are available, and only aggregate

measures of costs are available, it is impossible to distinguish among

these causes of deviation from the cost function. Therefore, notwith-

standing its practical usefulness, a cost function offers little help with

detailed understanding of the input side of efficiency.

Inefficiency can be defined as the extent to which an organisation’s

costs exceed those predicted by the cost function (or the extent to

which its output falls short of that predicted by the production func-

tion). Inefficiency is inherently unobservable. This means that esti-

mates of efficiency have to be derived indirectly after taking account

of observable phenomena. This, very broadly, involves the following

process:

1. Observable phenomena, such as outputs and inputs (costs), are

measured.

2. Some form of relationship between these phenomena is specified. If

a parametric method is used and differences in cost are the focus

of the exercise, a cost function is estimated. If a non-parametric

method is used, an efficiency frontier is derived.

3. Efficient behaviour is then predicted on the basis of the definition

of technical efficiency.

4. The difference between each DMU’s observed data and the opti-

mum achievable as predicted by the cost function or frontier is then

calculated.

5. The difference (or some portion of it) is defined as inefficiency.

A number of analytic techniques have been developed to estimate

the form of cost and production frontiers and the associated ineffi-

ciency of individual organisations (Coelli, Rao and Battese 1998).

These are covered in the subsequent chapters of this book, and can

be divided into two broad categories: parametric methods, which use

econometric techniques to estimate the parameters of a specific func-

tional form of cost or production function, and non-parametric meth-

ods, which place no conditions on the functional form, and use

observed data to infer the shape of the frontier.

The pre-eminent form of parametric method now in use is stochastic

frontier analysis (SFA). This is similar to conventional regression ana-

lysis, but decomposes the unexplained error in the estimated function

Efficiency in health care 11



into two components: inefficiency (which, in the case of a cost func-

tion, will always be positive), and the more conventional two-sided

random error. Cost functions are used extensively in parametric ana-

lysis of efficiency because the alternative strategy – estimating models

with both multiple inputs and multiple outputs – is methodologically

challenging, and demanding in terms of data requirements. In contrast,

univariate cost functions (and production functions) can be readily

estimated using standard econometric methods, or straightforward

variants. Parametric methods are introduced in chapter 3.

Most non-parametric methods take the form of data envelop-

ment analysis (DEA) and its many variants. These were stimulated by

the pioneering work of Farrell (1957), later generalised by Charnes,

Cooper and Rhodes (1978). DEA uses linear programming methods

to infer a piecewise linear production possibility frontier, in effect

seeking out those efficient observations that dominate (or ‘envelop’)

the others. In contrast to parametric methods, DEA can handle multi-

ple inputs and outputs without difficulty. DEA is introduced in

chapter 5.

The distinctive focus of modern efficiency analysis is to seek – in

addition to estimating the frontier – to provide an estimate of how far

each observation falls short of the estimated frontier. This emphasis

on the residual for each observation marks an unusual departure from

conventional statistical and econometric analyses, which are in the

main preoccupied with estimated coefficients (that is, relationships

displayed by the population of observations as a whole) rather than

individual observations. This novel focus gives rise to important

methodological complications, to which we return in chapter 8.

1.5 Experience with efficiency analysis in health care

All of the efficiency measurement tools we use in this book reflect the

efficiency framework sketched above. The differences between the

techniques arise from various assumptions about what lies within

the control of the organisations under scrutiny, and the constraints

imposed by data availability. The central technical requirements of

efficiency analysis are that there exist an adequate number of com-

parable units of observation, and that the salient dimensions of per-

formance (inputs, outputs and environmental circumstances) are

satisfactorily measured.
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Given these requirements, health care offers, in many respects, good

opportunities for analysis. Entities such as insurers, purchasers,

hospitals, clinics, diagnostic laboratories and general practices are

present in large numbers in most health systems, and increasingly

comprehensive performance data are available. Therefore – from a

technical perspective – the feasibility of developing a wide range of

efficiency models is beyond question. Furthermore, governments, reg-

ulators, purchasers and the public are asking searching questions

about the performance of health care entities. Therefore, both the

supply of and demand for efficiency analysis is increasing. However,

compared with many other sectors of the economy, such as banks or

schools, the development of efficiency measures in health and health

care also poses enormous challenges, brought about by the complexity

of the production process, the multiplicity of outputs produced, the

strong influence of the organisational environment on performance,

and the frequent absence of relevant or reliable data.

Hollingsworth describes progress reported in the public literature

up to 2002 (Hollingsworth 2003). He examines published studies of

cost and production functions in health and health care where exam-

ination of efficiency variation is a central concern, and identifies 189

relevant studies. About 50 per cent are in the hospital sector, reflecting

its central policy importance and the ready availability of data. There

are also significant numbers of studies of physicians, pharmacies,

primary care organisations, nursing homes and purchasers. The great

majority of studies have used DEA and its variants, probably reflect-

ing its ease of use and flexibility. The use of SFA has become more

widespread recently, but it is more demanding in terms of modelling

and interpretive skills.

Early studies were content with merely estimating cost or produc-

tion functions and inferring the distribution of efficiency variations

from a cross-sectional sample. Recently, more creative uses of effi-

ciency analysis have been reported, addressing issues such as produc-

tivity changes over time, and the effect of ownership and other

institutional arrangements on efficiency.

1.6 This book

The purpose of this book is to describe economic and econometric

approaches to modelling efficiency in the health sector, and to assess
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the usefulness of analytic techniques for policy purposes. The text

draws on the authors’ experience with case studies from the UK, and

work for organisations such as the World Health Organization

and the OECD. The intention is to cover the material for an informed

but not necessarily specialist reader.

Chapter 2 covers principles of modelling, the purpose being to

provide a framework to aid understanding of the production process

employed by health care organisations. This entails consideration of

the outputs from, and inputs to, the production process. Outputs can

be defined as actions that seek to promote health system outcomes.

Traditionally health outcomes are thought of in terms of increases in

the length and quality of life. However, consideration must be given

to non-health outcomes of health systems, such as their ‘responsive-

ness’, a term that embraces concepts such as autonomy, privacy,

prompt attention, dignity and choice.

The input side is in some respects more straightforward. Although

some studies require detailed examination of physical inputs, it is

often enough to seek out costs as a proxy for inputs. Yet even here

difficulties arise. The complexity of health care often necessitates

detailed accounting rules to assign costs to particular activities or

functions. Furthermore, one of the fundamental difficulties encoun-

tered in most efficiency analyses in the health sector is the need to

adjust for uncontrollable external influences on performance. Such

‘risk adjustment’ is often essential, but methodologically extremely

challenging.

Chapter 3 comprises a detailed treatment of stochastic frontier

analysis of cross-sectional data. The chapter describes the key techni-

cal choices that have to be made when developing a stochastic frontier

model. A case study from the English hospital sector is described.

Chapter 4 describes how the stochastic frontier approach has been

extended to exploit panels of data, where each organisation is

observed more than once. Panel data give rise to exciting new possi-

bilities in the examination of efficiency, but also introduce methodo-

logical challenges. Various stochastic frontier models have been

developed for analysing panel data, and these are described and

applied to a case study.

Chapters 5 and 6 consider data envelopment analysis (DEA), which

applies non-parametric methods to efficiency analysis. Chapter 5 de-

scribes and illustrates the technique for cross-sectional data. Chapter 6
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considers DEAwhen panel data are available. Chapter 7 concludes the

expository material with a comparison of SFA and DEA.

Despite considerable recent advances in these analytical techni-

ques, there remain a number of unresolved methodological challenges

for efficiency analysis. These are discussed in chapter 8. Chapter 9

examines the potential for using other approaches to measuring or-

ganisational performance in a health setting, including the use of

seemingly unrelated regression to analyse multiple objectives, and

multilevel modelling techniques to exploit the hierarchical structure

of many health care data. Chapter 10 concludes with some of the key

challenges and messages for researchers, policy makers and regulators.
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2|The components of an
efficiency model

2.1 Introduction

T
H E R E are numerous conceptual and practical issues to be

clarified when seeking to undertake an empirical analysis of

efficiency in health care. In this chapter we shall set aside

philosophical issues concerning what is meant by ‘efficiency’, and

conform to the concept discussed in chapter 1. That is, an organisa-

tion’s efficiency is considered to be the ratio of the value of outputs it

produces to the value of inputs it consumes. Figure 2.1 summarises the

principles underlying this viewpoint. The organisation consumes a

series of  M physical resources, referred to as inputs, and valued in

total as X by society. Some transformation process takes place, the

details of which do not immediately concern us. This leads to the

production of  S outputs, which society values in aggregate as Y. Our

summary measure of ‘efficiency’ is the ratio of Y to X – what might be

more accurately referred to as cost-effectiveness.

Models of health care efficiency almost always entail considera-

tion of multiple outputs. Central to the calculation of Y is therefore

the relative weight Us attached to each output s . These weights re-

flect the relative importance attached to an additional unit of produc-

tion of each output, and allow us to calculate for organisation 0 the

valuation of outputs Y ¼ PS
s ¼1 U s Y s0 as discussed in chapter 1. In the

same way, when there are multiple inputs, the relative weight Vm

attached to input m allows us to calculate the valuation of inputs

X ¼ PM
m¼1VmXm0. If we have secure information on the magnitudes

of U and V we can readily compute the efficiency as the ratio Y/X. In

particular, in competitive markets, both U and V might be readily

observed as prices. In such circumstances there may be no need to use

the analytic techniques described in this book. Instead, comparative

efficiency can be readily computed using the exogenously observed

weights. However, in the health domain it is rarely the case that such
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prices are observed, particularly on the output side. It is in such

circumstances that the analytic techniques can be deployed in order

to furnish evidence on the weights U and V.

Although the framework is beguilingly simple, numerous complex

issues are raised when seeking to use it to develop operational models

of organisational efficiency in health care. The complexity involved

in developing an operational framework reflects the complexity of

the production process. The production of the majority of health care

outputs rarely conforms to a production-line type technology, where a

set of clearly identifiable inputs are used to produce a standard type of

output. Rather than a production line, most health care is tailor-made

to the specific needs of the individual recipient (Harris 1977). This

means that the production process is much less clearly defined and

there is the potential for considerable heterogeneity in what outputs

are produced and how this is done. Contributions to the care process

are often made by multiple agents or organisations, a ‘package’ of care

may be delivered over multiple time periods and in different settings,

and the responsibilities for delivery may vary from place to place and

over time.

The purpose of this chapter is therefore to discuss the conceptual

and practical issues that must be resolved in seeking to develop a satis-

factory empirical model of efficiency in the health care sector. We

address these model-building principles by considering five issues:

� What is the appropriate unit of analysis?

� What are the outputs of health care?

� What value should be attached to these outputs?

� What inputs are used in the production of these outputs and how

should these be valued?

� What environmental constraints are faced?

Figure 2.1. The naı̈ve model of organisational performance.
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We then discuss practical facets of undertaking efficiency analysis,

which is often constrained by the scope and nature of data availability.

2.2 Unit of analysis

It is important that the boundaries of any efficiency analysis should

be clearly defined. A fundamental question to ask is: what is the unit of

organisation in which we are interested? Any efficiency analysis should

have a clear idea of the entity it is examining, but should also recognise

that its achievements are likely to be influenced by the actions of other

organisations or by factors beyond its immediate control. This is

especially likely when multiple agencies or organisations are involved

in joint production. Three criteria should guide the choice of units.

1. The unit of analysis should capture the entire production process

of interest. This may entail defining artificial units of analysis if there

is variation among organisations in how the production process is

organised.

2. They should be ‘decision-making units’ (DMUs). In a strict sense

this requires that their function is to convert inputs into outputs, and

that the DMUs have discretion about the technological process by

which this conversion takes place. But a weaker definition of DMUs

requires only that they play an organising function, establishing the

rules and conditions to which producers have to adhere. This defini-

tion would allow government bodies to be considered as DMUs.

3. The units comprising the analytical sample should be compar-

able, particularly in the sense that they are seeking to produce the

same set of outputs.

Making these criteria operational is not always straightforward,

and the first and second, in particular, may conflict. This conflict is

most likely where the production process is characterised by varying

degrees of vertical integration. The pioneering work by Coase and

Williamson identified the desire to minimise transaction costs as a

factor in determining what range of the production process might be

under the control of a single organisation (Coase 1937; Williamson

1973). Under some circumstances, organisations might ‘vertically

integrate’ and assume control of the entire process. Under others,

organisations may prefer to ‘buy in’ inputs from organisations fur-

ther down the production process or ‘sell on’ to those further up the

chain. If, as Coase and Williamson argue, transaction costs explain
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the desirability of vertical integration, this should be recognised in

efficiency analysis.

Ensuring that the analytical DMU fully encompasses jointness in

production is particularly important in contexts where there is var-

iation in how the relative contributions to joint production are de-

fined. This variation may be a major driver of the relative efficiency

of DMUs. For example, suppose we are interested in analysing the

efficiency of care delivered to patients who suffer head injury. The

division of care between the trauma and orthopaedics (T&O) de-

partment and the intensive care unit (ITU) may differ substantially

between one place and the next, with some T&O departments hav-

ing invested more in step-down high-dependency beds in order to

relieve pressure on the ITU. If the unit of analysis is confined to

the T&O department and the contribution of the ITU is ignored,

those T&O departments that have made greater investments in high-

dependency beds will appear relatively inefficient, despite the joint

production process actually being more effective.

This raises the question of where the boundaries of the production

process should be drawn. At one extreme, the decision-making unit

could be thought of as the entire health system, defined by the World

Health Organization as ‘all the activities whose primary purpose is to

promote, restore or maintain health’ (World Health Organization

2000). This is perhaps the loosest definition of a DMU that it is

possible to adopt, but is one that was employed by the WHO in its

analysis of the relative performance of national health systems.

Yet while in principle it may often be desirable to adopt such a

‘whole-system’ approach, in practice it is usually infeasible and often

unhelpful because of the difficulties of defining the system, identify-

ing its primary decision-makers and specifying its inputs. It is there-

fore usual to circumscribe the analysis to more clearly defined

organisations within the health system.

At the opposite extreme to a whole-system approach, interest may

be on the actions of individuals or groups of individuals working

together within larger organisations. For example, we might be inter-

ested in the efficiency of individual general practitioners, or of the

general practice of which they are a part, or of trauma and ortho-

paedics specialities in hospitals. For several reasons, taking the indivi-

dual or team as the unit of analysis has much to recommend it in

comparison with larger organisational aggregations:
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� their activities and outputs are likely to be of a more limited range,

so comparability among units is more easily secured;

� dedicated inputs should be identifiable more accurately;

� the likelihood of assigning personal responsibility for performance

is higher, leading to greater promise that the analysis will secure

favourable change in behaviour.

But there are drawbacks to the analysis of individuals or teams

within organisations or even of organisations in isolation from the

other organisations with which they interact. Many outputs are pro-

duced by different teams working together. For example, staff from a

variety of hospital specialities contribute to providing care to each

patient admitted to hospital. Or the functioning of mental health

hospitals might be inherently linked to the actions of local social care

agencies. In such circumstances assessing the relative contribution of

each team or organisation is not straightforward.

Again, teams within organisations usually draw on joint resources.

For instance, some staff may work in more than one team, such as

when a urologist works partly in general surgery. It may be difficult to

determine accurately what proportion of this shared input is associated

with each team.

Thus, larger aggregations of individuals or teams may be appropri-

ate for analytical purposes when outputs are the result of joint pro-

duction decisions, even if this means that the analytical DMU does not

correspond precisely to a single organisational entity.

The final crucial criterion to guide the choice of analytical unit is that

the units being compared are seeking to deliver the same set of health

care outputs. As will be seen through the course of the book, strict

comparability is difficult to achieve: almost every organisation can claim

unique features that mark it as different. Yet if all such claims were

accepted, therewould be no legitimate basis for comparing organisations

at all. So evaluating the reasonableness of claims of ‘non-comparability’,

and taking them properly into account, are among the most challenging

political and technical tasks associated with efficiency measurement.

2.3 What are outputs in health care?

In competitive industries the physical output of the organisation is

usually a traded product. Of course, even in a reasonably homogeneous
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market, such products (say, a refrigerator) can vary enormously on

various dimensions of ‘quality’, such as reliability, looks and tempera-

ture range. The quality of the product is intrinsic to its social value,

but that value can be readily inferred by observing the price people

are prepared to pay. Usually, therefore, there is no need explicitly to

consider the ultimate ‘outcome’ of the product, in terms of the value

it bestows on the consumer.

In many parts of the economy, however, not only do prices not

exist, but outputs are difficult to define. In particular this is true for

many of the goods and services to which government spending is

devoted (Atkinson 2005). Defining the outputs of the health care

sector is particularly challenging. ‘Health’ is a complex concept for

which there has been no readily available valuation, and there is no

market for health in the conventional sense. In the context of effi-

ciency analysis, two fundamental issues need to be considered. How

should the outputs of the health care sector be defined? And what

value should be attached to these outputs?

Defining outputs of the health sector is problematic because health

care is rarely demanded for its own sake. Rather, demand derives from

the belief that health care will make a positive contribution to health

status. This suggests that health care outputs should properly be

defined in terms of the health outcomes produced. However, rarely

do organisations collect routine information about what health out-

comes they produce. More commonly the analyst is forced to rely on

comparing health care organisations in terms of the quantity and type

of activities they undertake. The remainder of this section considers

the issues and relative merits of using health outcomes and health

care activities as ways of measuring what health care organisations

produce.

2.3.1 Health outcomes

The output of health care can be considered in two broad categories:

� the additional health conferred on the patient; and

� broader patient satisfaction over and above that related to the

health effect.

The ‘outcomes’ of health care can then be considered to be the quality-

adjusted physical outputs.
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The case in favour of defining output in terms of health outcomes

is manifest. For most patients and carers, health gain is the central

indicator of the success of an intervention. A focus on outcomes

directs attention towards the patient (rather than the services provided

by the organisation). Moreover, some widely accepted measures of

health outcome (such as gains in quality-adjusted life years) are in-

dependent of the technologies used to deliver care, obviating the need

for detailed scrutiny of the physical actions of the organisations.

In principle the measure of health outcome should indicate the

‘value-added’ to health as a result of contact with the health system.

Such measures of added value are routinely deployed in other sectors,

such as school education. A central measure of school performance

is the contribution made to improving the educational attainment of

pupils. One measure of educational attainment is the exam grades

obtained. But exam grades are partly a function of the efforts of the

school and partly a reflection of the inherent ability of the pupil, and

there are great variations in the abilities of pupils taught by different

schools. Schools therefore cannot be compared solely on the basis of

crude exam results: a school that attracts pupils of high ability will

report better exam grades than one that caters for pupils of lesser

ability, even though both schools work equally hard and are equally

well organised. To make an appropriate comparison, the ability of

pupils must be separated from the school effect. This can be done by

measuring pupil ability at entry to each school, and then comparing

subsequent exam grades in relation to this baseline, yielding a measure

of educational ‘value-added’ (Goldstein and Spiegelhalter 1996).

While the concept of value-added is relatively straightforward in

the education sector, the construct has proved more challenging to

make operational in the health sector, because of the much greater

heterogeneity of service users and the intrinsic measurement difficul-

ties. The fundamental difficulty is that it is rarely possible to observe

a baseline, or counterfactual – the health status that would have

been secured in the absence of an intervention. Although health status

measurement is becoming increasingly routine in many health care

settings, it tends merely to involve comparisons of health states be-

fore and after the intervention. Yet the with/without and before/after

measures of the added value of treatment are unlikely to be equivalent.

Most importantly for our purposes, reliance on before/after measures

will tend to undervalue the contribution of organisations that focus
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primarily on interventions designed to slow deterioration in health

status rather than on those designed to make people better.

To see why, consider two alternative baselines against which to

compare post-intervention health status:

� The health status that the patient would have experienced had

there been no intervention. Let h0j be the health status if the indi-

vidual had not been treated. Then the outcome is measured as

Dh
00
j ¼ hjt � h0j .

� Pre-treatment health status. Let hjt�1 be the pre-treatment and hjt
the post-treatment health status so that the measured outcome is

D h
0
j ¼ hjt � hjt�1.

The choice of baseline will yield different estimates of the health effect

of interventions.

To illustrate this, consider two interventions, a and b, with the same

cost, suitable respectively for two individuals, A and B, who suffer

different conditions but who, prior to the intervention, have similarly

poor health status, hjt�1 ¼ 0:5, where j ¼ a,b.

For individual A, intervention a yields no change in health status

at time t relative to t�1, hence Dh
0
a ¼ 0, as shown in Figure 2.2. For

individual B, intervention b delivers an improvement in health status

such that hbt ¼ 0:7, hence Dh
0
b ¼ 0:2. On this basis an organisation

that treats proportionately more patients of type B will appear more

efficient – producing more health outcome – than one that treats

more of type A.

The true effect of the intervention is the change in health status

with and without the intervention. This is not measured by the change

in health status before and after treatment unless the individual’s

health without treatment would not have deteriorated (or improved).

Suppose that the natural, untreated, course of disease for the condi-

tions of individuals A and B differs. Untreated, the health status of

individual B would not change from one period to the next, with

h0b ¼ 0:5 shown by the horizontal dashed line in Figure 2.3. The net

treatment effect, therefore, amounts to Dh
00
b ¼ 0:2.

Individual A, in contrast, suffers a debilitating disease, likely to

result in a major deterioration in health status by time t, equivalent

to h0a ¼ 0:2 if untreated. The role of the intervention in this case is

not to improve health status, but to stabilise the condition. If the value

of interventions is assessed on the basis of this net treatment effect,
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intervention a would be more highly valued with Dh
00
a ¼ 0:3. Accord-

ingly, organisations that treat more type A patients would appear

more efficient.

The tension between before/after and with/without measurement

is, to a great extent, unresolvable because without-treatment health

profiles are rarely observable. The only practical option, then, is to rely

on before/after measurement, but to recognise that this has the poten-

tial to introduce bias into the comparative analysis and, accordingly,

to make a cautious interpretation of the results.

Figure 2.2. Change in health status: before and after intervention.

Figure 2.3. Change in health status: with and without intervention.
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A number of well-established measurement instruments have

been developed which could be used to collect before/after measures

of treatment effects, such as the EQ5D and SF36 (EuroQol Group

1990; Ware and Sherbourne 1992). Although there remain many

unresolved issues surrounding the precise specification and analysis

of such instruments, their use should be considered whenever there

are likely to be material differences in the clinical quality of different

organisations. Moreover, where organisations treat a heterogeneous

mix of patients, the use of a generic measure of health gain repre-

sents one way of adjusting for any differences in case mix between

organisations.

Quite apart from health gain, patients in developed countries are

becoming increasingly vocal in demanding that health care should

be responsive to concerns over and above the health outcomes result-

ing from treatments. This concern with the ‘patient experience’ covers

issues as diverse as promptness, autonomy, empowerment, privacy

and choice, and should also be incorporated into any efficiency ana-

lysis, particularly when there are large variations in the responsiveness

of organisations, such as in hospital waiting times in many publicly

funded health systems.

However, it is unusual for efficiency studies to incorporate such

information (Pedraja-Chaparro, Salinas-Jiménez and Smith 1999).

An important exception was the World Health Organization’s exam-

ination of the efficiency of national health systems (World Health

Organization 2000). In the World Health Report 2000, the WHO

developed the concept of the ‘responsiveness’ of the health system.

This seeks to reflect the extent to which the health system succeeds

in being user-oriented. However, although the World Health Report

2000 contained a useful discussion of the concept of responsiveness,

the WHO contribution was undermined by the weak measurement

methods used. More recent work with the World Health Survey is

seeking to address the issue of responsiveness more satisfactorily

(Üstün et al. 2003).

Notwithstanding the complexity of the concept of responsiveness,

many survey instruments are now being deployed routinely to mea-

sure the patient experience. These are often extensive in scope, and

therefore difficult to incorporate directly into an operational effi-

ciency analysis. However, they contain a great deal of information

that could be used, providing that the mass of data contained in the
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surveys can be condensed satisfactorily to a small number of summary

measures of responsiveness (Coulter and Magee 2003).

2.3.2 Health care activities

Although efficiency analysis should be based on the outcomes of care

discussed above, analysts are often constrained in practice to examin-

ing efficiency on the basis of measures of activities, for example in

the form of patients treated, operations undertaken or outpatients

seen. Such measures are manifestly inadequate, as they fail to capture

variations in the effectiveness (or quality) of the health care deliv-

ered. Yet, despite the growing move towards measuring the outcomes

of care, there is often no alternative to using such crude measures of

activity as proxies for health care outcomes. For example, some health

outcomes may take years to be realised, and it is clearly impractical

to wait for them to emerge before attempting to assess performance.

Furthermore, collection of outcome data may impose impractically

high costs on the health system. In such circumstances, it becomes

necessary to rely on measures of the activities of care as proxies for

outcome.

Measuring activities can also address a fundamental difficulty of

outcome measurement – identifying how much of the variation in

outcomes is directly attributable to the actions of the health care

organisation. For example, mortality after a surgical procedure is

likely to be influenced by numerous factors beyond the control of

health care. In some circumstances such considerations can be accom-

modated by careful use of risk adjustment methods (see section 2.6).

However, there is sometimes no analytically satisfactory way of ad-

justing for environmental influences on outcomes, in which case ana-

lysing instead the activities of care may offer a more meaningful

insight into organisational performance.

Reliance on counts of activities may be unproblematic when there

is good research evidence that the activities (such as an inpatient

procedure) lead, on average, to health improvement. Measuring such

activities will give a strong indication of expected health outcomes.

However, it is important to note that, when using such measures as

the basis for efficiency measurement, one is implicitly assuming that

there is no difference between organisations in the effectiveness with

which they implement the procedure. Where such differences are
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suspected, it becomes imperative to augment activity counts with

measures of the quality of outcome. Ideally these would indicate

health gain, but more readily measured proxies, such as mortality

rates or readmission rates, are often used instead for such purposes.

Thus, although the use of measures of activity is often the only

practical option available to the analyst, it is important to keep in

mind the limitations it imposes. In particular, one should beware of

two classes of misinterpretation that commonly result from the effi-

ciency analysis because of lost outcome information. First, all else

being equal, organisations that undertake more activities will be rated

as more efficient. But some organisations may have developed care

pathways and protocols that minimise the number of activities re-

quired to deliver care to a patient. This may eliminate unnecessary

diagnostic tests, for example, and may be an efficient way of organis-

ing care. However, an activity-based efficiency analysis will penalise

such organisations. Second, the effectiveness (or quality) of the health

care delivered is not captured by a count of activities. For instance, an

activity-based analysis will consider operating theatres that undertake

the same number of operations to be equivalent, even if patients are

more likely to suffer complications or die if treated in one theatre

rather than the other.

The efficiency literature examined in this book makes little distinc-

tion between activities, outputs and outcomes, referring loosely to all

as ‘outputs’. In the context of health care this is unfortunate, as it

suggests a lack of interest in seeking to move towards a concept of

efficiency based on outcomes. However, in the interests of conciseness,

and consistency with the literature, we shall refer throughout much

of the book to activities, outputs and outcomes as ‘outputs’.

2.4 Valuing health care outputs

Measuring the outputs produced by health care organisations would

be difficult enough if those organisations were seeking to provide a

single and relatively homogeneous product (such as a hip replacement

operation). But health care organisations are immensely complex

entities, undertaking numerous activities and therefore producing

multiple outputs. A further difficulty therefore emerges: how are we

to assess the relative value of different types of output (comparing, for

example, hip replacements with pacemaker insertions)? The use of
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generic measures of health gain is one approach to addressing this

problem, but as discussed above this is often infeasible.

What health care outputs are valued – and how much they are

valued – are in the first instance personal judgements, and there is

evidence to suggest that there is great variation among individual

citizens as to what is valued in health care. Some focus principally

on health gain, while others place great weight on aspects of respon-

siveness, such as being treated with dignity and respect, and being

able to make informed choices. For the purposes of meaningful com-

parison, in the absence of market valuations (such as prices), someone

on behalf of society has to decide what is valued. That is rarely a role

for analysts or researchers – rather, it is the legitimate role of politi-

cians. In developing an efficiency model, an important requirement is

to seek out a clear political statement on what is valued from legit-

imate stakeholders. This will usually take the form of some statement

of the objectives of the health system or its constituent organisations.

We shall discuss the issue of valuation at greater length in chapter 8.

2.5 Specifying inputs

The input side of efficiency analysis is usually considered less proble-

matic than the output side. Physical inputs can often be measured

more accurately than outputs, or can be summarised in the form of

a measure of costs. However, even the specification of inputs can

give rise to serious conceptual and practical difficulties in efficiency

analysis. This section briefly summarises some of the major issues.

A fundamental decision that must be taken is the level of disaggre-

gation of inputs to be specified. At one extreme, a single measure of

aggregate inputs (in the form of total costs) might be used. The effi-

ciency model then effectively becomes a cost function. This approach

assumes that the organisations under scrutiny are free to deploy inputs

efficiently, taking account of relative prices. Any failure to do so (price

inefficiency) will be reflected in a lower estimate of measured effi-

ciency. Use of a single measure of costs therefore takes a long-term

perspective as it assumes, for example, that organisations can freely

adopt an optimal mix of capital and labour.

It may also be important to consider a short-term perspective, in

which certain aspects of the input mix are considered beyond the

control of the organisation. In these circumstances, it becomes
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necessary to disaggregate the inputs to some extent in order to cap-

ture the different input mixes that organisations have inherited. In

particular, disaggregation of labour and capital may be required. We

consider these two classes of input in turn.

2.5.1 Labour inputs

Labour inputs can usually be measured with some degree of accuracy,

often disaggregated by skill level. An important issue is then how

much aggregation of labour inputs to use before pursuing an efficiency

analysis. Unless there is a specific interest in the deployment of differ-

ent labour types, it may be appropriate to aggregate into a single

measure of labour input, weighting the various labour inputs by their

relative wages. A central contribution of the techniques discussed in

this book is to offer evidence on efficiency when there is no direct

information on the relative value placed on inputs or outputs. Where

such evidence does exist, as for example on the market price of inputs,

there may be little merit in disaggregation unless there is a specific

interest in input allocative efficiency. Aggregation leads to a more

parsimonious model, thereby allowing the analyst to focus attention

on aspects of the production process where there is less secure

evidence on weightings.

However, there may be an interest in the relationship between

efficiency and the mix of labour inputs employed. Under such circum-

stances, a short-run model using measures of labour input disaggre-

gated by skill type may be valuable. Such modelling assumes that

organisations are constrained in their ability to alter skill mix, and

can yield useful policy recommendations about (say) substituting

one type of labour for another.

It may be that labour inputs are measured in either physical units

(hours of labour) or costs of labour. Which should be used in an

efficiency analysis depends on the context. The use of physical inputs

will fail to capture any variations in organisations’ wage rates. This

may be desirable (for example, if there are variations in pay levels

beyond the control of organisations) or undesirable (if there is be-

lieved to be input price inefficiency, in the form of different pay levels

for identical workers).

Although labour inputs can be measured readily at an organisa-

tional level, problems may arise if the purpose of the study is to

30 Measuring Efficiency in Health Care



examine the efficiency of sub-units within organisations, such as

operating theatres within hospitals. It becomes increasingly difficult

to attribute labour inputs, when the unit of observation within the

hospital becomes smaller (department, team, surgeon and patient).

Staff often work across sub-units, but information or financial sys-

tems cannot track their input across these units with any accuracy. In

particular, hospital specialists often work across specialities. For in-

stance, a general surgeon may have an interest in urology; or a plastic

surgeon may spend some time working in dermatology. Their mea-

sured contribution to each speciality then relies on arbitrary account-

ing choices that may vary considerably between units being compared.

Particular care should be exercised when developing organisational

efficiency models relying heavily for input measures on self-reported

allocations of professional time.

One final consideration on labour inputs is that organisations

may vary in the extent to which they ‘buy in’ certain services, rather

than directly employ labour. For example, some hospitals may pur-

chase cleaning services from independent contractors and have little

idea of the associated labour inputs. Cleaning services might therefore

appear as a ‘goods and services purchased’ input rather than labour

and capital inputs. If other hospitals directly employ cleaning person-

nel, it may be the case that such inputs are not being treated on a

strictly comparable basis. In such circumstances, the analyst may need

to resort to a single measure of inputs, in the form of total costs.

2.5.2 Capital inputs

Incorporating measures of capital into the efficiency analysis is more

challenging. This is partly because of the difficulty of measuring

capital stock and partly due to problems in attributing its use to any

particular period.

Measures of capital are often very rudimentary, and even mislead-

ing. For example, accounting measures of the depreciation of physical

stock usually offer little meaningful indication of capital consumed.

Indeed, in practice, analysts may have to resort to very crude mea-

sures; for example, the number of hospital beds or floorspace as

a proxy for physical capital. Furthermore, health care often invests

in important non-physical capital inputs, such as health promotion

efforts.
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In principle, an efficiency model should use the capital consumed in

the current period as an input to the production process. But capital is

by its nature deployed across time. On the one hand, contemporary

output may rely on capital investment that took place in previous

periods, while on the other, some current activities are investments

that are intended to contribute to future rather than contemporary

outputs.

The accounting difficulties capital inputs give rise to can be sum-

marised in the form of a diagram, as shown in Figure 2.4. In each

period, inputs are consumed and direct outputs emerge from the

organisation. A rudimentary efficiency analysis will examine the ratio

of outputs to inputs for only a single time period t. Yet crucially the

organisation in year t has enjoyed the benefits of past investments.

And it also leaves an ‘endowment’ for future periods in the form of

investments undertaken in this and preceding periods. The endow-

ment might be in the form of real capital (buildings or personnel) or

investment in health ‘capital’ through (say) preventive medicine. In

principle, the endowment may be an important aspect of both the

inputs to and outputs of the health system. In practice it can be very

difficult to measure.

A central issue in the treatment of capital is the extent to which

short-run or long-run efficiency is under scrutiny. In the short run, it

Figure 2.4. The dynamic nature of organisational performance.
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makes sense for organisations to take advantage of whatever invest-

ment infrastructure they have available, and to optimise subject to

any constraints imposed by that infrastructure. So, for example, short-

run efficiency should be judged in the light of the capital configuration

that a hospital has available. Yet in the longer run one might expect

the hospital to reconfigure its capital resources when this can bring

about efficiency improvements.

2.5.3 Summary

As with all modelling, efficiency models should be developed accord-

ing to the intentions of the analysis. If the interest is in narrow short-

run use of existing resources, then it may be relevant to disaggregate

inputs in order to reflect the resources currently at the disposal of

management. If a longer-term, less constrained analysis is required,

then a single measure of ‘total costs’ may be a perfectly adequate

indicator of physical organisational inputs.

2.6 Environmental constraints

In many contexts, a separate class of factor affects organisational

capacity, which we classify as the ‘environmental’ determinants of

performance. These are exogenous influences on the organisation’s

production function, beyond its control, that reflect the external en-

vironment within which it must operate. In particular, many of the

outcomes secured by health care organisations are highly dependent

on the characteristics of the population group they serve. For example:

� population mortality rates are heavily dependent on the demo-

graphic structure of the population under consideration;

� surgical outcomes are often highly contingent on the severity of

disease of patients;

� hospital performance may be related to how care is organised in

the local community;

� the performance of emergency ambulance services may depend on

local geography and settlement patterns.

There is often considerable debate as to which environmental fac-

tors can be considered ‘controllable’. For example, responses to the

World Health Report 2000 argued that the HIV/AIDS epidemic was
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important in the poor measured performance of many low-income

health systems, but had not been taken into account (World Health

Organization 2001). Conversely, the World Health Organization ar-

gued that control of the epidemic had been amenable to intervention,

and so efficiency should be judged without adjustment. In the same

vein, hospital outcomes may be strongly related to infection rates,

and there may be debate on the extent to which these are within the

hospital’s control. The analyst’s choice is likely to be heavily depen-

dent on whether the purpose of the analysis is short-run and tactical,

or longer-run and strategic. In many circumstances it will be appro-

priate to undertake both short-run and long-run analysis.

The performance of many health care organisations is in part de-

pendent on inputs from outside agencies, such as social care, hous-

ing organisations or private families. In principle we should recognise

this in modelling efficiency. For example, many patient outcomes

rely on the co-ordinated contributions of a number of organisations,

in the form of integrated care. If the performance of only one of these

organisations is under scrutiny, there may be a difficulty in identifying

the element of patient outcome that is attributable specifically to its

endeavours. The danger is either (i) its contribution towards inte-

grated care is ignored in the analysis (under-attribution) or (ii) the

contribution of other external agencies towards outcome is ignored

(over-attribution). Again, whether these external efforts should be

treated as exogenous depends on the extent to which the behaviour

of external agencies is amenable to influence by the organisation

under scrutiny.

Broadly speaking, there are three ways in which environmental

factors can be taken into account in efficiency analyses:

� restrict comparison only to organisations within a similarly con-

strained environment;

� model the constraints explicitly, as being analogous to ‘factors’ in

the production process;

� undertake risk adjustment.

The first approach to accommodating environmental influences is

to cluster organisations into similar ‘families’, using techniques such

as cluster analysis (Everitt, Landau and Leese 2001). The intention is

then to compare only like with like. Of course, this begs the question

as to what criteria are to be used to create the families. Statistical
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examination of the link between putative exogenous influences and

performance is often ruled out because efficiency too is correlated

with performance. Unless exogenous influences are known to be

entirely independent of efficiency levels, it becomes impossible to

determine whether a correlation with performance is reflecting exo-

genous influences or efficiency variations. The analyst will therefore

often have to resort to informed judgement in choosing the basis for

creating families.

A further problem with the use of families is that it will reduce

sample size, as it rules out extrapolation of performance of one type

of organisation as a basis for comparison with another type. This

may be appropriate to ensure robust comparisons, but with para-

metric methods can seriously affect the confidence with which effi-

ciency judgements can be made, for example by leading to smaller

samples and larger standard errors. Furthermore, of course, useful

lessons that organisations might learn from being compared to a more

heterogeneous sample will be lost.

The second approach is to incorporate environmental factors di-

rectly into the production model, often treating them as an exogenous

‘input’ analogous to labour or capital. This approach effectively gen-

eralises the clustering approach by allowing extrapolation from one

class of organisation to another. For example, an environmental factor

might be included as an explanatory variable in the parametric mod-

elling approach (chapter 3) or as an input or output in the non-

parametric approach (chapter 5). Whilst leading to a more general

specification of the efficiency model than the clustering approach, the

direct incorporation of environmental factors into the efficiency mod-

el leads to new modelling challenges that are discussed in detail in

the chapters that follow.

The final method to control for variation in environmental circum-

stances is the family of techniques known as ‘risk adjustment’. These

methods adjust organisational outputs for differences in circumstances

before they are deployed in an efficiency model, and are – where

feasible – often the most sensible approach to treating environmental

factors. In particular, they permit the analyst to adjust each output for

only those factors that apply specifically to that output, rather than

to use environmental factors as a general adjustment for all outputs.

Well-understood forms of risk adjustment include the various

types of standardised mortality rates routinely deployed in studies of
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population outcomes. These adjust observed mortality rates for the

demographic structure of the population, thereby seeking to account

for the higher risk of mortality among older people. Likewise, surgical

outcomes might be adjusted for the severity of risk factors, such

as age, co-morbidities and smoking status of the patients treated.

The methods of risk adjustment are often a highly efficient means

of controlling an output measure for a multiplicity of environmental

factors. The risk-adjusted output can then be entered into the effi-

ciency model without any further need to enter environmental fac-

tors. The methods of risk adjustment have been developed to a high

level of refinement (Iezzoni 2003). However, it must be noted that

risk adjustment usually has demanding data requirements, in the

form of information on the circumstances of individual patients. And

even when adequate data do exist it is often difficult to secure scien-

tific consensus on the most appropriate way of undertaking the risk

adjustment.

Including a factor in a risk-adjusted output measure should preclude

the need to consider the factor further in any efficiency analysis. It

therefore considerably simplifies the efficiency modelling process. Yet

it is important to bear in mind that conventional risk adjustment

usually requires the assumption that the sample average outcome for

a particular population group (say, population aged 65–74, non-

smoking) is a suitable benchmark against which individual or organi-

sational performance can be measured. If for some reason certain

population groups receive systematically poor care, it may be inap-

propriate to include such groups in the risk adjustment process, par-

ticularly if the intention is to highlight such underperformance and

promote better performance among practitioners caring for such

groups.

For example, in Australia, aboriginal population groups suffer

substantially poorer life expectancy than most other ethnic groups

(Zhao et al. 2004). Therefore, if standardised mortality rates are to

be used as an indicator of public health authorities’ performance, a

critical policy decision is whether or not to include aboriginal ethnic

origin in the risk adjustment process. If it is included, the effect of

ethnicity on health authority performance will not be identified ex-

plicitly. If it is not included, health authorities with large aboriginal

populations will exhibit poor outcomes, stimulating a debate as to

whether this is beyond health authority control. The technical choice
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of risk adjustment methodology should therefore be driven by the

policy intentions underlying the analysis.

One particularly important situation arises when organisations

have been allocated funds to deliver some standard level of care, for

example using risk-adjusted capitation formulae. The purpose of such

formulae is to adjust for legitimate environmental circumstances, so

that in principle all organisations are operating on a ‘level playing-

field’ (Smith 2003). In these special circumstances there may be no

need explicitly to consider any exogenous variables at all on the input

side. Efficiency analysis should focus solely on variations in organi-

sational outputs, as all inputs have been equalised. This argument,

of course, presumes that the funding formulae have been correctly

designed.

In chapter 8, we shall return to the issue of environmental con-

straints, with a discussion of the inferential implications arising from

how most SFA and DEA models deal with the issue.

2.7 Practical challenges

Notwithstanding the important model-building considerations dis-

cussed in this chapter, it is often the case that the most serious diffi-

culties for the analyst arise from the scope and nature of the available

data sources. Numerous difficulties can arise:

� In health care, there is often a serious lack of information on some

important dimensions of performance, most notably the quality of

care. This is especially problematic in efficiency analysis, when the

ambition is to present a rounded view of performance.

� Where measurement instruments are available, they may be incom-

plete or highly imperfect metrics with large random elements.

� Time series are often short, or interrupted by structural changes,

such as hospital mergers.

� As always, there may be missing data for some observations, lead-

ing to difficult technical choices as to whether to broaden the scope

of the model (and so effectively reduce sample size) or to use a more

circumscribed model with a larger sample.

� More generally, given the complexity of the production process in

much of health care, sample sizes may often be too small to draw

secure inferences on the nature of the preferred model.
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Such difficulties will be familiar to those working in most domains

of quantitative analysis. However, they can become particularly pro-

blematic in efficiency analysis because of the great attention placed

on unexplained variations from the estimated frontier.

These issues are discussed in more detail in chapter 8. Here we

merely emphasise the potentially high sensitivity of results to model

specification and data errors. This suggests a need for great attention

to sensitivity analysis, experimentation with different model specifica-

tions, and caution about drawing definitive judgements on the effi-

ciency of individual organisations. It is important to bear in mind that

a great deal of conventional uncertainty analysis merely models un-

certainty in the data, and not the implications of wrongly specifying

the underlying model (Smith 1997). Conventional measures of uncer-

tainty may therefore seriously overestimate the degree of confidence

in efficiency scores, and should be viewed with caution.

In short, data constraints will often circumscribe the ability to

answer the questions of health care regulators in their entirety. In-

stead, the analyst must adopt pragmatic solutions to otherwise infea-

sible modelling demands. Under these circumstances, it is imperative to

state what technical assumptions have beenmade, and to communicate

clearly the limitations of the analysis.

Figure 2.5. The broader context of efficiency analysis.
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2.8 Conclusions

The beguilingly simple notion of efficiency disguises a series of thorny

conceptual and methodological problems. Setting aside the obvious

measurement difficulties, the structural problem can be illustrated as

in Figure 2.5. Naı̈ve efficiency analysis involves examining the ratio

of health system outputs to health system inputs (the shaded boxes).

Yet system inputs should also incorporate previous investments (en-

dowments) and exogenous inputs (such as other organisations and

patient characteristics). And system outputs should also include en-

dowments for the future, joint outputs and outputs not directly related

to health, such as enhanced productivity.

It will never be feasible to accommodate all the issues summarised

in Figure 2.5 into an efficiency analysis. Rather, the analyst should

be aware of which factors are likely to be material for the application

under consideration, and seek to offer guidance on the implications

of serious omissions from the efficiency model.
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3|Stochastic frontier analysis ofcross-sectional data

3.1 Introduction

T
H I S chapter is concerned with the econometric approach to

efficiency measurement when the analyst has only a single

observation for each organisation – in other words, a cross-

sectional data set. The subsequent chapter discusses the panel data

techniques that can be used to exploit the additional information that

is available when organisations are observed at more than a single

point in time. When only cross-sectional data are available there are

two classes of econometric technique available for efficiency analysis:

corrected ordinary least squares (COLS) and stochastic frontier analy-

sis (SFA). Both follow the conventional statistical process of specifying

an econometric model of the general form:

yi ¼ aþ bxi þ ei (3.1)

where y indicates either output (Y) or cost (C); i indicates the number of

observations, i ¼ 1, . . . , I; a is a constant; x is a vector of explanatory

variables; and b captures the relationship between the dependent and

explanatory variables. The residual e represents the deviation between

the observed data and the relationship predicted by the explanatory

variables in the model. In most statistical or econometric models of

this form, the relationships between y and x are the primary focus.

Generally, the residual is not afforded attention in its own right, with

researchers interested only that it satisfies classical assumptions of

having zero mean and constant variance (Cook and Weisberg 1982).

In efficiency analyses, by contrast, the residual is often the only ‘para-

meter’ of interest – it is from the residual that estimates of efficiency

are derived. The difference between COLS and SFA rests upon the

interpretation accorded to the residual. In COLS, the entire residual

is interpreted as arising from inefficiency. In SFA, the residual

comprises a mixture of inefficiency and measurement error.
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3.2 Considerations in stochastic frontier analysis

There are a number of considerations when estimating an efficiency

model of the above form:

� whether to estimate a production or a cost function;

� whether to transform variables;

� whether to estimate a total or an average function;

� which explanatory variables to include;

� how to model the residual;

� how to extract the efficiency estimates.

These issues are discussed in the first half of the chapter before being

illustrated using case study material.

3.2.1 Whether to estimate a production or a cost function

The first decision facing the analyst is whether to estimate a production

or a cost function. If the purpose of the analysis is to explore differences

in output,  Y, the econometric model of (3.1) takes the revised form:

Yi ¼ a þ bxi þ e i (3.2)

In many industries, estimation of a production function poses serious

practical difficulties (Intriligator 1978). In particular, where organisa-

tions produce multiple outputs, it is a challenge to derive a composite

measure of output without loss of information. Most econometric

attempts to deal with this problem reduce to estimation of a single

output, conditioned in some way on the other outputs. This is not

particularly satisfactory because the estimates of efficiency tend to be

sensitive to which output is chosen to represent Y (Fernández, Koop

and Steel 2000). A different approach is described by these authors in

which Bayesian methods are implemented using a Markov chain

Monte Carlo algorithm to transform multiple outputs into an equiva-

lent univariate production function (Fernández, Koop and Steel 2000).

As will be shown in chapter 5, data envelopment analysis has a clear

advantage over econometric methods in its ability to handle multiple

outputs. In chapter 9, we describe the use of multivariate models to

analyse multiple objectives using econometric methods.

Faced with multiple outputs, most researchers find it more conve-

nient to work with a cost function because it allows a single dependent
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variable, cost (C), to be estimated. Information about different out-

puts can be included as a vector of explanatory variables Y ¼ Y(Y1,

Y2, . . . , YS), hence:

Ci ¼ aþ b1Yi þ b2xi þ ei (3.3)

If cost-minimising behaviour can be assumed, the cost function is

usually the dual of the production function, making the two ap-

proaches equivalent. However, duality does not hold for all functional

forms, particularly if higher-order powers are included (Burgess 1975;

Christensen and Greene 1976). Moreover, cost-minimising behaviour

may be a strong assumption in some sectors of the economy, such as

the health sector (Varian 1978).

3.2.2 Whether to transform variables

The second question concerns the form of the functional relationship

between the dependent and explanatory variables. This functional

form can be specified in a variety ofways, some of which are considered

later. For the moment, we focus on the implications of using variables

in their natural units or of transforming them into logarithmic form.

Using variables in their natural units assumes that the explanatory

variables are related linearly to the dependent variable. Suppose that

the main determinant of total hospital cost is the scale of activity,

measured by the number of inpatients treated. The model would yield

estimates of the relationship between cost and activity suggesting that,

whatever the scale of operation, an additional patient treated would

make the same contribution to total cost. This is illustrated as line

A in Figure 3.1.

The assumption of a constant rate of change in costs as the scale

of activity changes may not hold in practice. Marginal costs will be

higher than average costs in the presence of diminishing factor pro-

ductivity or decreasing returns to scale. In such circumstances, the

overall cost impact of, for instance, treating an additional patient,

would be lower in organisations with a small level of activity than in

those treating greater numbers. One way to model this relationship is

by taking logarithms of the variables. This may produce a function

similar to curve B in Figure 3.1. The interpretation of the coefficients

under a logarithmic form also change from natural units to elasticities

or percentage changes.

Stochastic frontier analysis of cross-sectional data 43



The Davidson–MacKinnon PE-test can be used to test for non-linear

functional forms (Davidson and MacKinnon 1985). Obviously,

other functional forms can be specified, for instance by including

higher-order powers of explanatory variables. The appropriateness

of their inclusion can be ascertained simply by application of a t-test.

3.2.3 Whether to estimate a total or an average function

The choice between working with total or average output/cost de-

pends on the assumptions made about the relationship between the

dependent and explanatory variables. Organisations can change their

output or cost levels in two ways: by changing the scale of production,

making proportionate changes in the quantities of inputs employed; or

by altering the mix of inputs used.

The impact of altering input quantities depends on the scale proper-

ties – or degree of homogeneity – of the function. The production

function is homogeneous of degree h if

khY ¼ f ðkx1; kx2Þ ¼ khf ðx1; x2Þ; for all k > 0;
for all x

(3.4)

where k is any scalar and x1 and x2 are different inputs. A special case

is where h ¼ 1, where the function is homogeneous of degree 1, or

linearly homogeneous. In this situation, the production function dis-

plays constant returns to scale, whereby a proportionate change in the

Figure 3.1. Linear and logarithmic functional forms.
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use of inputs leads to a change in output by the same proportion.

For instance, for an organisation operating under constant returns to

scale, doubling the use of inputs would lead to twice as much output.

Where h > 1, the function displays increasing returns to scale and

where h < 1, it displays decreasing returns to scale. Only in the

presence of constant returns to scale will the estimation of total and

average functions yield equivalent results.

Scale properties aside, estimation of an average function may be

preferable if the data being analysed are subject to heteroscedasti-

city. Heteroscedasticity arises if the variance of the residual ei is not

constant. The error term ei is based on an underlying probability

distribution, assumed to have zero mean and constant variance. Het-

eroscedasticity may occur where, for instance, the variance of the

residuals varies systematically with one of the explanatory variables,

such as size (Pindyck and Rubinfeld 1991). Observed data for (say)

larger organisations thus lie further from the regression line than

they do for small organisations, as illustrated in Figure 3.2. One

reason why this may occur is that the contribution made by labour

to output may be a function of skill e: Y ¼ eL. Staff are likely to have

different levels of skill, even if they are paid similarly, but this is

unlikely to be observable to the researcher. Smaller organisations will

experience less variation in e for the simple reason that they employ

fewer people, so their observed data will lie closer to the regression

line, with observations fanning out from the regression line as the size

of the workforce and, hence, output increases.

Heteroscedasticity has two implications. First, ordinary least squ-

ares (OLS) regression estimates will no longer provide minimum var-

iance (they will be inefficient) and so they will not provide ‘best’

estimates of the hypothesised relationship. Second, the estimated var-

iances of the OLS estimators will be biased, invalidating tests of

statistical significance.

If present, heteroscedasticity can be reduced by working with aver-

age rather than total functions because, by estimating the ratio of

output or cost to a deflating variable, the residual is more likely to

display homoscedasticity (Intriligator 1978). But in specifying an

average cost function a deflating variable has to be selected. One

option is to use a measure of organisational size, thereby making the

dependent variable an average cost per unit of size. Deflating by size

would be appropriate only in the presence of constant returns to scale.
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Alternatively, output might be used for deflating purposes, to make

the dependent variable cost per unit of output, say. This is problematic

in the context of multiple outputs because efficiency estimates will be

sensitive to which output is chosen for deflation. The total cost func-

tion has the advantage of incorporating the various types of output as

separate explanatory variables.

It is important to test for heteroscedasticity of the total function

before proceeding with deflation – if the undeflated series was homo-

scedastic, deflation would introduce heteroscedasticity because the

error term is transformed by deflation (Kuh and Meyer 1955). More-

over, the average function may not resolve the problem of biased

estimation (Hough 1985). Indeed, a new source of bias may arise

if the variable used for deflation on the left-hand side of the equation

as the denominator (say number of cases) is multicollinear with one of

the explanatory variables on the right-hand side of the equation (Kuh

and Meyer 1955).

There are other ways to deal with heteroscedasticity other than by

estimating an average function. Logarithmic functions are likely to be

Figure 3.2. Illustration of heteroscedastic data.
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less susceptible to heteroscedasticity because by transforming vari-

ables into their logarithmic form their distribution is likely to appro-

ach normalisation (Maddala 1988). Another approach is to correct

for heteroscedasticity using a robust estimator (White 1980).

3.2.4 Which explanatory variables to include

Explanatory variables, x, are used to explain differences among orga-

nisations in their observed levels of output or cost. The choice about

what constitute appropriate explanatory variables depends on the

purpose or perspective of the analysis. Broadly, the literature can be

divided into two camps: technological functions derived from the

theory of the firm; and behavioural functions that can be (loosely)

categorised as stemming from theories of regulation.

If the research interest is in analysing production from the perspec-

tive of the organisations under consideration, the neo-classical theory

of the firm is an appropriate framework. This type of specification

facilitates investigation of questions such as how output might vary

following changes in the level or mix of inputs. Candidate explanatory

variables will measure the input choices made by – or endogenous to –

the organisations themselves. These variables might be supplemented

by others measuring unavoidable organisational constraints that, in

the short term at least, are exogenous to managerial control.

In contrast, many efficiency studies are conducted from the pers-

pective of a regulator. The regulator might be interested in assessing

organisational effort and efficiency, recognising that organisations

face different and, sometimes, unavoidable operational or environ-

mental constraints. The regulatory objective will be to control for

these exogenous constraints before making judgements about the level

of effort expended. Endogenous factors that influence production or

costs, such as the choice about what technical production process to

employ, would be excluded from the model on the grounds that these

are decided by the organisation. The analytical task is to construct a

behavioural function that reflects feasible production possibilities

within a constrained environment (Smith 1981).

Many studies of health care organisations adopt a neo-classical

approach (Schmidt and Lovell 1980; Vitaliano 1987; Zuckerman,

Hadley and Lezzoni 1994; Linna 1998; Folland and Hofler 2001;

Rosko 2001). Here, the production function summarises a technical
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relationship among the maximum outputs attainable for different

combinations of all possible factors of production. For example,

suppose hospital output is measured as the total number of patients

treated (Y) and that there are two factors of production, labour (L)

and capital (K). Then the production function would be written as:

Y ¼ f ðL;KÞ (3.5)

where f(.) describes the functional relationship between output and

different mixes of labour and capital.

One of the most widely used production functions is the Cobb–

Douglas, which takes a logarithmic form and can be written as:

Y ¼ aLb1Kb2 (3.6)

and estimated as:

lnYi ¼ aþ b1lnLi þ b2lnKi þ ei (3.7)

where b1 and b2 are parameters describing the contributions to out-

put made by labour and capital respectively. The logarithmic form

allows these parameters to be interpreted as elasticities: a 1 per cent

increase in the amount of labour employed is predicted to lead to a

percentage increase in output to the value of b1.
Another commonly estimated production function is the transcen-

dental logarithmic function – the translog (Christensen, Jorgenson and

Lau 1973). The attraction of the translog is its flexibility – it can

approximate virtually any functional form (Intriligator 1978). The

translog is estimated by including squares and cross-products of the

explanatory variables. Thus the production function of (3.5) would

be estimated as:

lnYi ¼ aþ b1lnLi þ b2lnKi

þ 1

2
b3ðlnLiÞ2 þ 1

2
b4ðlnKiÞ2 þ b5lnLilnKi þ ei

(3.8)

If the parameters b3, b4 and b5 are not significantly different from

zero, the function reduces to a Cobb–Douglas.

One of the drawbacks of the translog is that there are likely to be a

large number of parameters to be estimated: for every additional

variable added to the model, it is necessary to include a squared term

and cross-products with the existing variables. If p represents the

sum of variables, the number of parameters amounts to approximately
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p(p þ 1)/2, with a consequent reduction in the degrees of freedom

available (Newhouse 1994). A compromise might be to include only

broad descriptions of the factors of production. For instance, estima-

tion may be based on total number of staff, rather than specific details

about medical or nursing staff complements, although this would

imply a loss of information relating to skill mix.

The cost function equivalent to the production function of (3.5) can

be written as:

C ¼ f ðY;w; rÞ (3.9)

where w and r represent input prices for labour (wages) and capital

(rent) respectively. The cost function equivalent to the Cobb–Douglas

production function is:

CðY;w; rÞ ¼ a0ðYwb1rb2Þ1=ðb1þb2Þ (3.10)

The elasticities b1 and b2 can be estimated from a linear model of the

following form:

lnCi ¼ aþ 1

b1 þ b2
lnYi þ b1

b1 þ b2
lnwi þ b2

b1 þ b2
lnri þ ei

(3.11)

where w and r are the unit prices of each factor of production. The

translog cost function can be expressed in the following manner

(Greene 2000):

lnCi ¼ aþ b0lnYi þ b1lnwi þ b2lnri

þ 1

2
b3ðlnYiÞ2 þ 1

2
b4ðlnwiÞ2 þ 1

2
b5ðlnriÞ2

þ b6lnYilnwi þ b7lnYilnri þ b8lnwilnri þ ei

(3.12)

This will correspond to the translog production function (3.8) only if

factor markets are competitive and the cost function displays constant

returns to scale, with total costs increasing proportionally when all

prices increase proportionally, given the level of output (Christensen

and Greene 1976). If these conditions do not hold, estimation will be

sensitive to the choice of a translog production function or translog

cost function (Burgess 1975).

Direct estimation of the production or cost function gives rise to

two potential problems. First, L and K are unlikely to be independent

of each other, leading to problems of multicollinearity. This makes it
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difficult to disentangle the separate contributions of each explanatory

variable to the dependent variable (Maddala 1988). Second, the ex-

planatory variables may be jointly determined (i.e. endogenous), im-

plying a simultaneous (two-way) relationship between the dependent

variable and the explanatory variables (Intriligator 1978). For in-

stance, the decision to expand output may imply the greater use of

inputs (cost) and the greater use of inputs (cost) may imply output

expansion. In effect, the two sides of the equation are jointly deter-

mined. These problems are not encountered under the alternative

approach to model specification, informed by the theory of regulation,

to which we now turn.

Regulators of industries that face little competition often wish to

exert downward pressure on costs by regulating prices or setting effi-

ciency targets. The regulator may wish to examine output or costs in

order to make inferences about the level of effort applied by the

organisations being regulated. Below average costs may be observed

in organisations that expend more effort in searching for and applying

efficient modes of operation. However, observed costs may not be

related to effort alone, particularly if firms face different operating

environments or other influences on their costs that are not subject to

managerial control. To be able to draw accurate inferences about the

relationship between output or costs and effort, the regulator would

want to include variables in the parametric model that control for

these exogenous influences (Schleifer 1985). In fact, it has been argued

that if the objective of the exercise is to make inferences about relative

efficiency, a necessary condition is that all variables included as re-

gressors are exogenous to managerial influence (Giuffrida, Gravelle

and Sutton 2000). The task for the analyst, then, is to determine which

are valid exogenous variables and over what time-frame the con-

straints are binding. Obviously, such constraints will be highly con-

text-specific and, in all likelihood, an area of contention between the

regulator and the regulated organisations.

3.2.5 How to model the residual

The specifications outlined thus far describe ‘sample average’ relation-

ships between output or costs and a set of explanatory variables. The

fundamental requirement for efficiency analysis is some indication

of what constitutes ‘best practice’. Farrell argues that it is possible
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to analyse technical efficiency by examining the residuals, ei, from
regression equations (Farrell 1957). In standard econometric analy-

sis, the residual would not be accorded special attention. Rather, it

represents merely the deviation between the observed data and the

relationship predicted by the model and can be interpreted as sta-

tistical error, caused by measurement inaccuracies or unobservable

heterogeneity.

However, Farrell suggested a different interpretation: the residual

can be used to describe the extent to which an organisation operates

from best practice. The difference between observed costs (or output)

and that predicted by a correctly specified model is due to inefficient

behaviour. In the case of a cost function, an organisation with a resi-

dual of zero is interpreted as displaying average efficiency, while org-

anisations with negative (positive) residuals are deemed to be of above

(below) average efficiency. (If Y represents output, the interpretations

are reversed).

This suggests that observations can be ranked according to their

average efficiency, as in an early study of National Health Service

(NHS) hospital costs (Feldstein 1967). The observation with a residual

lying the greatest distance below the cost function is defined as being

the most efficient in the sample. Given the relationship specified by

the model, its costs are lower than that for any other observation

in the sample. In this respect, the observation represents ‘best practice’

cost-minimising behaviour. Accordingly, the observation can be

thought of as lying on the ‘frontier’ of the sample.

This implies that a cost (or production) frontier can be estimated.

For a cost function, this is done by adding min(ei) to the intercept

and subtracting it from the residuals, a procedure referred to as cor-

rected ordinary least squares (COLS). The intention is to shift an OLS

regression line that originally fell through the centre of a cloud of

observed data so that it passes through the observation displaying

minimum cost. The process is reversed for a production function.

A stylised example of this procedure is illustrated in Figure 3.3 for

a single explanatory variable regressed on costs. The upper figure

shows the fitted OLS function through the set of observations. Under

the COLS approach, in the case of a cost function, the organisation

with the lowest residual value is defined as being fully efficient – its

costs are lower than those for any other observation, holding constant

the variables in the model. This implies that the COLS efficiency
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frontier is located by shifting the OLS regression line so that it passes

through this fully efficient observation. This is illustrated in the lower

half of the figure, where observation A is efficient. For an organisation

lying above the COLS frontier, it is predicted that it would be able

to reduce costs to the level predicted by the best-practice frontier

without having to reduce output. The inefficiency of such an organisa-

tion can be measured as the vertical distance between its observed

data and the frontier below, as shown for observation B.

Figure 3.3. Illustration of an OLS regression and COLS frontier.
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The COLS approach implies that the residual is due solely to

inefficiency. A contrasting viewpoint would be that the entire residual

is due to random influences or measurement error. For instance, this

interpretation would apply when analysing firms operating in a per-

fectly competitive environment, in which they are forced to operate

at minimum cost levels.

Recognising that there are these two diametrically opposed inter-

pretations of the residual it has been suggested that it might com-

prise both these components: inefficiency and random (stochastic)

error. The econometric technique known as stochastic frontier analy-

sis (SFA) has been developed to provide separate estimates of these

two components.

The key assumption underlying SFA is that the inefficiency compo-

nent and the random component of the residual will be distributed

differently. In particular, the random component is assumed to be

distributed normally, as is consistent with the classical OLS model. If

ei is normally distributed, all residual variance is interpreted as arising

from random noise and measurement error (Wagstaff 1989). If ei
is skewed, this is taken as evidence that there is inefficiency in the

sample (Schmidt and Lin 1984). Subject to ei being skewed, stochastic

frontier analysis decomposes the error term into two parts with zero

covariance:

ei ¼ vi þ ui; covðvi; uiÞ ¼ 0 (3.13)

The dual specification is defended on the grounds that each compo-

nent represents an economically distinct disturbance (Aigner, Lovell

and Schmidt 1977). vi can be interpreted as stochastic (random) events

not under the control of the organisation, such as climatic conditions

(Aigner, Lovell and Schmidt 1977), random equipment failure (Greene

1993), errors in identifying or measuring explanatory variables

(Timmer 1971) or just pure chance.

u is a non-negative term that captures the cost of inefficiency in

production, with ui defining how far the organisation operates above

the cost frontier. Diagrammatically, this might result in a cost function

similar to that depicted in Figure 3.4. The stochastic frontier has two

notable features. First, it does not correspond to the ‘line of best fit’

through the observations that would be produced by a simple linear

regression model. Second, the frontier does not (necessarily) pass

through the observation that has lowest cost, conditional upon model
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specification (observation A). This is because the frontier is estimated

after recognising that the difference between observed output and the

level of output predicted by the explanatory variables is not due solely

to inefficiency. Some of the difference may be due to measurement

error and omitted variables. In Figure 3.4, observation A lies below

the estimated frontier. The distance of this point from the stochastic

cost frontier is attributable to random error, vi. For observations lying

above the frontier, the distance comprises both measurement error

and inefficiency, as illustrated for observation B.

In estimating the stochastic frontier for cross-sectional data, it is

necessary to specify the distributional characteristics of the two com-

ponents of the residual. These distributions must be different in order

to distinguish them econometrically. In common with classical as-

sumptions it is usual to assume that vi is normally distributed with

zero mean and constant variance, hence vi � Nð0; s2i Þ.
No economic criteria are available to guide the choice of distribu-

tion to apply to ui (Schmidt and Sickles 1984). Standard computer

software allows four options: a half-normal, truncated normal, expo-

nential and gamma (Greene 2002). The half-normal is a special case

of the truncated normal and in some data sets statistical criteria can

be used to discriminate between these two options.

The ui must be observed indirectly since direct estimates of only

ei are available. The procedure for decomposing ei into its two

Figure 3.4. Illustration of a stochastic frontier.
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components vi and ui relies on considering the expected value of ui
conditional upon eið¼ vi þ uiÞ. Jondrow et al. (1982) were the first

to specify a half-normal distribution for the one-sided inefficiency

component and to derive the conditional distribution ðuijvi þ uiÞ.
Under this formulation of the half-normal distribution, the expected

mean value of inefficiency, conditional upon the composite residual, is

defined as:

E½uijei� ¼ sl

ð1þ l2Þ
fðeil=sÞ
Fð�eil=sÞ �

eil
s

� �
(3.14)

where s2 ¼ s2u þ s2v . l ¼ su=sv and captures inefficiency. Where l¼ 0,

every observation would lie on the frontier (Greene 1993). f(.) and
F(.) are, respectively, the probability density function and cumulative

distribution function of the standard normal distribution.

The truncated normal model is a more general form of the half-

normal, where u is distributed with a modal value of m (Stevenson

1980). The explicit form for the conditional expectation is obtained

by replacing the eil/s in the half-normal model with:

u�i ¼
eil
s

þ m
sl

(3.15)

If m is not significantly different from zero, the model collapses to the

half-normal.

If an exponential distribution is imposed, with a density function of

the general form f ðuiÞ ¼ yexp�yui , the conditional expectation is ex-

pressed as (Greene 1995):

E½uijei� ¼ ðei � ys2vÞ þ
svf½ðei � ys2vÞ=sv�
F½ðei � ys2vÞ=sv� (3.16)

in which y is the distribution parameter to be estimated.

The more general gamma distribution is formed by adding an ad-

ditional parameter P to the exponential formulation, such that

f ðuiÞ ¼ yp
GðPÞ u

P�1exp�yui with ui � G½y;P� (Greene 1990).

These formulations produce an unbiased but inconsistent estimator

of ui because, regardless of the sample size, the variance of the esti-

mate remains non-zero (Greene 1993). The inconsistency of the estima-

tor ui is unfortunate in view of the fact that the purpose of the estimation

is to approximate inefficiency. However, no improvements on this
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measure have yet been forthcoming in the literature for single-equation

cross-sectional studies.

The choice of distribution will yield different estimates of ineffi-

ciency, both in the sample as a whole and for individual organisations.

For example, the exponential distribution will impose a highly skewed

relationship, and in many data sets this will imply that most observa-

tions are clustered close to the frontier with a long tail of observations

further away.

Figure 3.5 provides a visual example of three distributions of ui,

together with the distribution from an OLS model, where vi and ui are

combined. These histograms are taken from the case study used in the

latter half of this chapter. The histograms are scaled such that esti-

mated efficiency increases along the horizontal axis. The COLS histo-

gram, in the top left-hand corner, suggests that few organisations are

Figure 3.5. Histograms showing (a) the residual from the OLS model;

(b) the inefficiency term from the half-normal model; (c) the inefficiency term

from the truncated model; (d) the inefficiency term from the exponential

model.
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efficient, with inefficiency distributed not quite normally among the

sample. The alternative specifications derived from the stochastic

frontier models imply that most organisations are (or are close to

being) relatively efficient as they are clustered to the right-hand side

of the distribution. The exponential distribution, in the bottom right-

hand corner, with its more pronounced negative skew, implies that

inefficiency is less widespread than is assumed under the alternative

specifications.

For most data sets, results will be more sensitive to the decision on

whether to estimate a stochastic frontier instead of a COLS frontier

and less sensitive to the choice of distribution of ui within the sto-

chastic frontier framework. Invariably COLS will yield lower levels

of average efficiency because the entire residual is attributed to

inefficiency (Schmidt 1985).

3.2.6 How to extract the efficiency estimates

The measure of efficiency for each organisation i, effi, depends on the

type of function estimated. Details of how to calculate predictions

for each organisation are given in Table 3.1 (Coelli 1996a). In the case

of a production function, effi will lie between 0 and 1. For the cost

function, values will fall between 1 and infinity, so when reporting

results it is usual to invert the values such that 0 < 1
effi

< 1. The effici-

ency estimates derived from a model with untransformed variables can

be interpreted as absolute distances from the frontier. Estimates from

a logarithmic model represent percentage distances from the frontier.

Table 3.1. Calculating individual efficiency estimates for

each organisation

Production or cost

function?

Logged dependent

variable? Efficiency

Production yes exp(�ui)

Cost yes exp(ui)

Production no (bxi � ui) / (bxi)
Cost no (bxi þ ui) / (bxi)
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3.3 Application to acute hospitals in England

The considerations discussed above in estimating an efficiency model

are illustrated using a data set and model specification developed

by the Department of Health in England to analyse the efficiency of

acute hospitals (Audit Commission and Department of Health 1999).

Data for 226 hospitals were compiled for the year 1995/96 from a

variety of publicly available sources (Söderlund and van der Merwe

1999). As discussed in section 2.3.2 we ideally wish to measure out-

comes of health care, but in the case of this data set we are constrained

to measuring health care activities. The variables in the data set are

described in more detail in the Appendix.

The dependent variable in the average cost function, AC, is a case

mix cost index, the ratio of actual costs to cost-weighted output. Out-

put includes inpatient admissions (adjusted for case mix differences),

outpatient visits and A&E attendances. This case mix cost index

has been regressed against a set of variables x that seek to explain

variations in index scores, using a model of the form:

ACi ¼ aþ b1xi þ ei (3.17)

The results from this equation are compared to those where total

costs, C, enter as the dependent variable, with the various dimensions

of output (inpatient admissions, outpatient and A&E attendances)

included as an additional vector of explanatory variables, Y:

Ci ¼ aþ b1xi þ b2Yi þ ei (3.18)

The variables included in the vector x conform to the regulatory rather

than the neo-classical framework discussed earlier. A neo-classical

formulation would require that the cost implications of choosing a

particular production process should be captured by the model para-

meters, not by the residual. The rationale for not including capital

and labour prices as explanatory variables is that the amount and mix

of inputs is determined by hospital managers, so any sub-optimality

arising from the employment of these resources should be considered

as indicative of inefficiency. In addition, within the NHS, factor prices

w and r are set through the central bargaining processes and, in

essence, display very little variation.

The ‘behavioural’ formulation adopted by the Department of

Health stems from a desire to isolate those cost-influencing factors
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over which hospitals have no control so that their influence on costs

can be eliminated when using the information to guide regulatory

policy. Cost differences remaining over and above those ‘explained’

by the econometric model are deemed to reflect differences in organi-

sational effort and the choice of what technical production process

to employ.

The variables included in the model are listed in Table 3.2, together

with descriptive statistics, for 226 hospitals. These data exclude out-

liers, identified by applying the DFFITS procedure to the total cost

function, and setting a cut-off point of DFFITS > 3(k/i)0.5 where k is

the number of parameters estimated and i the number of observations

(Söderlund and van der Merwe 1999).

Table 3.3 presents the regression results for the average cost func-

tion. The COLS model implies a mean level of ‘inefficiency’ of around

70 per cent, with the least efficient hospital estimated to be operating

at 50 per cent efficiency. The majority of variables are significant

influences on cost. For example, hospitals receiving more patients

transferred from other hospitals (TRANS-IN) or treating more pa-

tients with multiple problems (EP_SPELL) tend to have higher average

costs. Hospitals treating higher proportions of female (P-FEM), old

(P-60), and young (P-15) patients are more likely to incur lower aver-

age costs, these seemingly counter-intuitive results probably arising

from an overcompensation for these characteristics in the adjustment

for case mix complexity.

The coefficient of skewness,
ffiffiffiffiffi
b1

p
, suggests that the residuals are

significantly skewed. The COLS results are accompanied by the

stochastic cost frontier regression estimations, corresponding to the

half-normal, truncated normal and exponential error distributions.

The distribution parameters of both the half-normal and exponen-

tial models (l and y respectively) are significant, suggesting that these

models are an improvement on COLS estimation. In contrast, the

truncated normal model yields a value for m that is not significantly

different from zero, making it equivalent to the half-normal model.

The coefficients and the significance of the explanatory variables

are broadly similar across all specifications. This is to be expected,

since both the OLS estimates (which provide the starting values for

the iterations) and the maximum likelihood estimates used in the

stochastic frontier (SF) regressions are consistent estimators (Greene

1993).
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Table 3.3 indicates that the mean level of efficiency is similar across

the SF error distributions, ranging from 85 to 90 per cent. This is

considerably higher than was implied by the COLS model. This is ex-

pected because the COLS residual comprises both inefficiency and

random error and, hence, yields lower estimates of efficiency (Schmidt

1985).

The correlations between the point estimates of efficiency and the

relative rank of each hospital under each specification (with the ex-

ception of the truncated normal) are provided in Table 3.4. Two points

are noteworthy. First, estimates are more sensitive to the choice be-

tween a COLS and SF specification than they are to the choice con-

cerning the distribution of inefficiency within the SF framework.

Second, differences are greatest when comparing COLS and SF results

from an exponential distribution, as would be expected given the

highly skewed distribution adopted by the latter specification.

Regression results pertaining to the total cost function are reported

in Table 3.5, which includes measures of activity as additional expla-

natory variables. Treating an additional (case mix weighted) inpatient

is estimated to increase total costs by upwards of £900, with an

additional outpatient adding around £170 to total costs. Switching

from an average to a total cost function has some influence on the

significance of some of the explanatory variables but results are fairly

stable.

The estimates of the mean level of efficiency in the sample are sim-

ilar to those arising from estimating an average cost function. How-

ever, the distribution of efficiency is now wider, with the least efficient

hospitals having lower point estimates than was apparent under the

average cost function. Correlations of the efficiency estimates and

ranks across the different specifications of the total cost function are

provided in Table 3.6 and are similar to those under the average cost

specifications.

Table 3.7 presents the correlation coefficients relating to a compar-

ison of the efficiency estimates and ranks produced by the average and

total cost functions. These coefficients, while still significant, are

substantially lower than those reported in Tables 3.4 and 3.6. This

suggests that results for these data are more sensitive to the choice

between estimating a total or an average cost function than they are to

choices about how inefficiency is distributed.
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Of even greater significance is the choice of whether to work in

natural units or to use logarithmic transformations. Rather than spe-

cifying costs in original units, it is more conventional in productivity

and cost analyses to adopt a logarithmic functional form, thereby

relaxing the assumption that the rate of change in costs is constant

over the entire range to be evaluated (Breyer 1987). But by transform-

ing variables into logarithmic form, their distribution is likely to

approach normalisation and, by implication, the residual is also likely

to exhibit a less skewed distribution. Following logarithmic transfor-

mation of these data, OLS estimation yields a coefficient of skewness

suggesting that the residual is normally distributed, thereby making it

impossible to perform stochastic frontier analysis. In cases such as

this, all residual variance should be interpreted as noise (Wagstaff

1989). This result suggests that the appearance of ‘inefficiency’ in a

linear model might be banished following transformation.

3.4 Conclusions

This chapter has outlined the main issues involved in specifying an

econometric model to assess efficiency using cross-sectional data. The

analyst faces a number of decisions regarding the type of function to

be estimated, the functional form of the model, the choice of expla-

natory variables and how to model inefficiency. It may be possible to

apply statistical criteria to make some of these choices but for others

Table 3.4. Correlations across average cost specifications

Average cost COLS Half-normal Exponential

Scores

COLS 1.000

Half-normal 0.855* 1.000

Exponential 0.679* 0.934* 1.000

Ranks

COLS 1.000

Half-normal 0.916* 1.000

Exponential 0.839* 0.973* 1.000

Note:

* Significant at 0.01 level.

Stochastic frontier analysis of cross-sectional data 65
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there are no overarching statistical or economic criteria on which to

base the decision. In such cases, the appropriate strategy and the

robustness of results to alternative choices may depend on the purpose

of the analysis and the nature of the data.

Some of the problems confronting the analyst might be alleviated

if more data were available, particularly if organisations were ob-

served more than once. The advantages of panel data, and the tech-

niques available to analyse these data in the context of efficiency

measurement, are the subject of the next chapter.

Table 3.7. Correlations across average and total cost specifications

TC COLS TC Half-normal TC Exponential

Scores

AC COLS 0.523* 0.572* 0.549*

AC Half-normal 0.647* 0.778* 0.788*

AC Exponential 0.585* 0.743* 0.793*

Ranks

AC COLS 0.588* 0.731* 0.711*

AC Half-normal 0.639* 0.836* 0.838*

AC Exponential 0.611* 0.839* 0.843*

Note:

* Significant at 0.01 level.

Table 3.6. Correlations across total cost specifications

Total Cost COLS Half-normal Exponential

Scores

COLS 1.000

Half-normal 0.893* 1.000

Exponential 0.814* 0.981* 1.000

Ranks

COLS 1.000

Half-normal 0.887* 1.000

Exponential 0.832* 0.990* 1.000

Note:

* Significant at 0.01 level.
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4|Stochastic frontier analysis ofpanel data

4.1 Introduction

T
H E previous chapter discussed econometric approaches to ef-

ficiency analysis when only cross-sectional data are available.

Along with general issues of specifying the estimation model,

particular attention was drawn to the interpretation placed on the

residual and the assumptions required in order to extract estimates of

efficiency. Some of the strong assumptions required for efficiency ana-

lysis based on cross-sectional data may be relaxed if longitudinal data

are available, with organisations observed over several time periods.

Repeated observations of the same organisation make it possible to

control for unobservable organisation-specific attributes and, thereby,

to extract more reliable parameter estimates, both of the explanatory

variables and of the efficiency term. Specifically three shortcomings

of cross-sectional analysis can be addressed (Schmidt and Lin 1984).

First, recall from the previous chapter that, when only a single

observation is available per organisation, it is necessary, in order to par-

tition the composite error term, to specify how inefficiency is distribu-

ted among organisations. Standard software allows analysts to choose

truncated normal, half-normal, exponential and gamma distributions.

However, there is no economic basis for selecting one distribution over

another and the choice is somewhat arbitrary (Schmidt 1985).Repeated

observations of the same organisation can substitute for distributional

assumptions if the fixed-effects panel data estimator is used.

Second, under some formulations of the production model the in-

efficiency term, ui, and the explanatory variables, xi, are unlikely to be

independent. For instance, it is quite likely that if an organisation

knows its level of technical efficiency this will affect its choice of input

levels. By the same reasoning, a firmmaymake its input choices in order

to attain a specific level of efficiency. Again, use of the fixed-effects

estimator makes it possible to avoid the assumption of independence.
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Third, in cross-sections, only the entire residual, ei, can be estimated

consistently, with the variance of the conditional distribution of ui
failing to become zero as the sample size approaches infinity. With

panel data, adding more observations from the same organisation

generates more information about each organisation so that ui can

be estimated consistently as the number of observations over time

approaches infinity. That said, in many applications organisations

are not observed frequently enough for the benefit of consistency to

be realised (Kumbhakar and Lovell 2000).

The panel data model applied to a cost function takes the following

general form:

Cit ¼ aþ bxit þ uit þ vit ; uit � 0 (4.1)

where t indexes time, and uit captures inefficiency. Two broad ap-

proaches have emerged in order to estimate this model, distinguished

according to beliefs about whether or not efficiency varies across time

periods. Naturally, estimation is simplified if efficiency can be assumed

to be constant over time.

4.2 Time-invariant efficiency

In the presence of time-invariant efficiency, the model in (4.1) reduces

to:

Cit ¼ aþ bxit þ ui þ vit ; ui � 0 (4.2)

Three main methods have been used to estimate this model:

� fixed-effects, estimated using ordinary least squares;

� random-effects, estimated using generalised least squares;

� random-effects, estimated by maximum likelihood.

The fixed-effects (FE) estimator is equivalent to adding a dummy

variable for all but one organisation, with this remaining organisa-

tion identified by the constant term. This procedure generates a set

of organisation-specific intercepts, ai ¼ a þ ui (Schmidt and Lin

1984). Analogously to the COLS approach in the cross-sectional con-

text, the estimated frontier, â, is located by assuming that the org-

anisation with the lowest intercept is fully efficient (in the case of the

cost function), such that â ¼ miniðaiÞ. Estimates of ûi are derived

from ûi ¼ ai �miniðaiÞ. If the model is specified in natural units,
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organisation-specific estimates of technical efficiency, effi, are calcu-

lated as effit ¼ ðb̂xit þ ûiÞðb̂xitÞ�1. For logarithmic models the cal-

culation is effi ¼ exp(ûi) (Battese and Coelli 1988; Coelli and

Perelman 1996).

The FE estimator is attractive because it does not require the imposi-

tion of distributional assumptions about u, nor is it necessary to assume

that inefficiency is uncorrelated with the regressors. However, the

estimator does require there to be variation within organisations

over time in respect to the factors that explain the levels of cost or

output. In other words, the value of xmust vary for individual organi-

sations from one period to the next. If not, the FE estimator is suscep-

tible to two limitations, one common to all panel data applications,

the other particularly important in the stochastic frontier context.

First is the problem of attenuation bias, whereby measurement error

in the independent variables causes coefficient estimates to tend to-

wards zero. This problem is exacerbated by the FE estimator because

it eliminates a large amount of variation in the data. This can lead to

FE estimates being interpreted as having little or no effect (McKinnish

2000). Second, at the extreme, if there are organisational factors that

explain costs but which do not vary at all over time – such as the

operating environment – their influence will be captured by the orga-

nisation-specific term, ai. Thus, the FE estimator fails to distinguish

between time-invariant heterogeneity and inefficiency. This confound-

ing might be a serious shortcoming, with organisations being identi-

fied as more or less ‘efficient’ than they would be if the model was

correctly specified.

If one wishes to include time-invariant regressors this can be

achieved by using a random-effects (RE) estimator. Opting for the

RE one in preference to the FE one comes at a price: it is necessary

to impose distributional assumptions on u and to assume that there is

no correlation between the regressors and the ui’s. If one can accept

these assumptions (remembering that they were unavoidable in the

cross-sectional context) the random-effects model can be estimated by

either generalised least squares (GLS) or maximum likelihood estima-

tion (MLE). These two estimators are both more efficient than the

FE estimator, this informational advantage deriving from the dis-

tributional assumption imposed on u. Essentially, the random-effects

model assumes that organisational effects are random draws from

an underlying population. Accordingly, the RE estimator is able to
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utilise information about variation both within individual organ-

isations over time (within-variation) – as for the FE estimator – and

across different organisations in the sample (between-variation) –

unlike the FE estimator.

The choice between the GLS and maximum likelihood RE estima-

tors requires weighing further considerations, with the GLS estimator

requiring fewer distributional assumptions, but at the cost of being

less efficient than the maximum likelihood estimator.

Under GLS, the RE model to be estimated can be written as

(Kumbhakar and Lovell 2000):

Cit ¼ ½aþ EðuiÞ� þ bxit þ ½ui � EðuiÞ� þ vit
¼ a� þ bxit þ u�i þ vit ; ui � 0

(4.3)

where E(ui) is the mean estimate of technical efficiency. The GLS

estimator requires only weak assumptions about the shape and loca-

tion of the u, namely that the ui are randomly distributed with con-

stant mean and variance (Kumbhakar and Lovell 2000). Estimation

follows a two-step procedure in which ordinary least squares (OLS)

is first applied to obtain parameter estimates, including variance com-

ponents for vit and ui*. The parameters are then re-estimated in a

second stage by feasible GLS, using the OLS estimates as starting

values. The ui* can then be recovered as estimates of the mean residual

over time for organisation i:

û�
i ¼

1

T

X
t

ðCit � â�i � b̂xit Þ (4.4)

The estimates of ui are then derived as ûi ¼ miniðû�
i Þ þ û�

i , with tech-

nical efficiency estimates obtained as previously described for the FE

estimator. These estimates are consistent as the numbers of both

organisations and time periods approach infinity.

The earliest application of stochastic frontier analysis in the panel

data context employed the RE model estimated by maximum like-

lihood (Pitt and Lee 1981). This requires stronger assumptions about

the shape of the distribution of u than are needed for GLS estimation.

Here the model takes the form (Greene 1993):

Cit ¼ aþ bxit þ ui þ vit (4.5)

with ui distributed as ui � Nþðm;s2uÞ. Choices about distributional

shape have followed those made in the cross-sectional context, with
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Pitt and Lee formulating a half-normal likelihood function (Pitt and

Lee 1981) and Battese and Coelli generalising this to a truncated

normal (Battese and Coelli 1988). Estimation requires specification

of the likelihood function and derivation of the distribution of u

conditional upon the composite error in order to obtain organisation-

specific estimates of efficiency. Maximum likelihood estimates may

be sensitive to the iterative process and updating methods and even

rescaling the dependent variable can yield different parameter and

efficiency estimates. Particular care must be taken in applying this

technique to ensure that estimates reflect convergence to the global

rather than to a local maximum.

The choice, then, among these various estimators is not straightfor-

ward and requires weighing a set of distinct advantages and disadvan-

tages associated with each estimator, as summarised in Table 4.1. In

some contexts and for some data sets it may be possible to make an

unequivocal choice. The FE estimator is to be preferred if:

1. The analyst wishes to avoid imposing an assumption about how

efficiency is distributed.

2. There is evidence of correlation between the regressors and the ui.

The Hausman test can be used to check this possibility (Hausman

1978).

3. There are no time-invariant regressors to be included in the model.

4. The purpose of the estimation process is to generate inferences

about individual organisations. In such circumstances the assump-

tion that the effects are random draws from a population may be

unwarranted (Rice and Jones 1997).

4.2.1 Empirical application

In order to illustrate some of the models introduced in this chapter we

use data for acute hospitals in England observed over four financial

years from 1994/95 to 1997/98. The variables in the data set are

described in the Appendix. As would be expected, not every model

reviewed in the chapter can be applied: some are ruled out by the

characteristics of these particular data. For simplicity the panel is

balanced, with hospitals included only if data are available for all four

years. Four years’ worth of data is available for 185 hospitals, giving

a total of 740 observations. These data are summarised in Table 4.2.

Stochastic frontier analysis of panel data 73



T
a
b
le

4
.1
.
S
u
m
m
a
ry

o
f
ti
m
e-
in
v
a
ri
a
n
t
S
F
p
a
n
el

d
a
ta

m
o
d
el
s

T
im

e-
in
va

ri
an

t

ef
fi
ci
en
cy

A
ss
u
m
p
ti
o
n
s

A
d
va

n
ta
ge
s

D
is
ad

va
n
ta
ge
s

F
E
m
o
d
el

u
i
�

0
;
v i
t
�

N
(0
,
s

2 v
)

N
o
d
is
tr
ib
u
ti
o
n
a
l
a
ss
u
m
p
ti
o
n
s

re
q
u
ir
ed

fo
r
u
i

O
n
e
o
rg
a
n
is
a
ti
o
n
a
ss
u
m
ed

1
0
0
p
er

ce
n
t

ef
fi
ci
en
t

N
o

n
ee
d

to
a
ss
u
m
e

th
a
t

u
i

in
d
ep
en
d
en
t
o
f
x
it
a
n
d
v i
t

C
a
n
ex
a
ce
rb
a
te

a
tt
en
u
a
ti
o
n
b
ia
s

C
a
n
n
o
t
in
cl
u
d
e
ti
m
e-
in
v
a
ri
a
n
t
re
g
re
ss
o
rs

u
i
ca
p
tu
re
s
te
ch
n
ic
a
l
ef
fi
ci
en
cy

a
n
d
al
l

ti
m
e-
in
v
a
ri
a
n
t
ef
fe
ct
s

u
i
co
n
si
st
en
cy

re
q
u
ir
es

b
o
th

N
!

þ
1

a
n
d

T
!

þ1
R
E
m
o
d
el

G
L
S

u
i
�

0
;
v i
t
�

N
(0
,
s

2 v
)

W
ea
k
d
is
tr
ib
u
ti
o
n
a
l

a
ss
u
m
p
ti
o
n
s
o
n
u
i

A
ss
u
m
e
co
rr

(x
,
u
)
¼

0

u
i
co
n
st
a
n
t
m
ea
n
a
n
d

v
a
ri
a
n
ce

A
ll
o
w
s
ti
m
e-
in
v
a
ri
a
n
t

re
g
re
ss
o
rs

u
i
co
n
si
st
en
cy

re
q
u
ir
es

b
o
th

N
!

þ1
a
n
d

T
!

þ1
u
i
u
n
co
rr
el
a
te
d

w
it
h

x
it

a
n
d
v i
t

A
p
p
ro
p
ri
a
te

w
h
en

N
is

la
rg
e

a
n
d
T
is
sm

a
ll

R
E
m
o
d
el

M
L

u
i
�

0
;
u
i
�

N
þ
(m
,
s

2 u
);

v i
t
�

N
(0
,
s

2 u
).

M
o
st

ef
fi
ci
en
t
b
ec
a
u
se

ex
p
lo
it
s

m
o
st

d
is
tr
ib
u
ti
o
n
a
l

in
fo
rm

a
ti
o
n

R
eq
u
ir
es

st
ro
n
g
d
is
tr
ib
u
ti
o
n
a
l
a
ss
u
m
p
ti
o
n

fo
r
u

u
i
u
n
co
rr
el
a
te
d

w
it
h

x
it

a
n
d
v i
t

u
i
co
n
si
st
en
cy

re
q
u
ir
es

o
n
ly

T
!

þ1
A
ss
u
m
e
co
rr

(x
,
u
)
¼

0

E
st
im

a
te
s
m
a
y
re
fl
ec
t
co
n
v
er
g
en
ce

to
lo
ca
l

ra
th
er

th
a
n
g
lo
b
a
l
m
a
x
im

u
m



For illustrative purposes fairly straightforward models have been

specified, the intention being to maximise the amount of variation in

the ‘unexplained’ part of the model. There are two components to

the restrictive assumptions we have made. First, the dependent vari-

able, total cost (in £’000), is not adjusted for inflation. In health

care, a panel of only four years is likely to be too short to identify

major shifts of the production function, so in order to give the ap-

pearance of temporal change we illustrate the estimation techniques

using an undeflated cost series without including a time trend. This

matter is important only for the models that allow for time-varying

inefficiency.

Second, the model is estimated in linear form on a parsimonious

set of regressors. Total undeflated costs are regressed on a set of

variables capturing output (YS), with S being an output category. Only

Table 4.2. Descriptive statistics

Description Mean Std Dev. Minimum Maximum

Dependent variable

C (£’000) 1994/95 52,047 24,969 9,294 156,999

1995/96 55,053 26,491 10,944 166,176

1996/97 57,496 27,483 10,822 175,736

1997/98 59,835 28,926 11,919 182,184

Explanatory variables

INPATIENTS 1994/95 40,064 20,074 1,647 144,616

1995/96 40,278 18,641 4,477 110,569

1996/97 40,465 19,138 4,668 104,045

1997/98 41,711 20,276 3,469 107,242

OUTPATIENTS 1994/95 45,021 23,110 0 136,569

1995/96 47,981 25,107 0 130,538

1996/97 49,538 27,168 0 149,526

1997/98 50,803 26,619 0 146,721

A&E 1994/95 48,601 27,745 0 137,865

1995/96 48,098 28,396 0 157,042

1996/97 46,941 29,876 0 160,136

1997/98 48,473 31,285 0 165,145
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three types of output are included: the number of case mix weighted

inpatient admissions; first outpatient attendances; and visits to Acci-

dent and Emergency (A&E). The other variables included in the cross-

sectional model in the previous chapter are omitted from most of the

examples considered in this chapter. These variables are considered

exogenous to hospital control, and their omission implies that sub-

stantial heterogeneity among hospitals is not being accounted for.

Their omission has implications for the estimation of the amount of

efficiency considered present in the sample and, indeed, whether or

not it is possible to estimate these models in the first place. We shall

return to the issue of their omission later in the chapter.

Towards the end of the chapter we address the sensitivity of results

to decisions about how the dependent variable is defined, function

form, and the inclusion of additional explanatory variables.

Descriptive data for the four variables are presented in Table 4.2,

with the mean values for each year plotted in Figure 4.1. Over the

period, total undeflated costs in the average hospital increased by

15%. Activity also increased, but less rapidly. There was a 4% in-

crease in hospital admissions and a 13% increase in outpatient atten-

dances. Despite some year-on-year variation, visits to A&E were the

same at the end as at the beginning of the period. We analyse the data

in order to consider two questions:

� Was the increase in activity sufficient to offset the increase in costs?

If not, we would expect mean efficiency to have declined over the

period.

� Are estimates of the mean level of efficiency and the variation in

efficiency among hospitals sensitive to model specification?

We start with the time-invariant FE model specified by Schmidt and

Sickles (1984). Results are shown in the middle columns of Table 4.3.

Parameter estimates suggest that, for the average hospital, an addi-

tional hospital episode increases total cost by £195, an outpatient

attendance by £134 and an A&E visit by £9. These estimates are

considerably different from the OLS estimates taken as starting values

(£919, £296 and £41 respectively for the three activity categories).

The discrepancies may suggest attenuation bias or be due to there

being very little time variation (within-variation) in these data: 95% of

the variation in the data arises from differences between hospitals
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not within them over time. This lack of temporal variation reduces the

appeal of using the fixed-effects estimator.

Estimates of technical efficiency are shown at the foot of the table.

Average efficiency for the period as a whole is estimated to be 61%,

ranging from 24% to 100%. As this model is specified in natural units

it is possible to calculate technical efficiency for each year to give an

estimate of temporal change. However, temporal change is driven by

changes in the value of the regressors not ui, with technical efficiency

being calculated as effit ¼ ðb̂xit þ ûiÞðb̂xitÞ�1 when the model is cali-

brated in natural units. These estimates suggest that changes in activ-

ity were not sufficient to offset the cost increases, efficiency declining

from 63.6% in 1994/95 to 59.5% in 1997/98 (see Table 4.6).

Figure 4.1. Mean changes in costs and activity over time.
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By way of comparison, we estimate the RE model of Pitt and Lee

(Pitt and Lee 1981). There is a danger with the RE model that iteration

may not be to a global maximum, and this appears to be the case here,

as evidenced by the sensitivity of results to a change in the scale of

the dependent variable. When costs are measured in a similar scale to

the regressors (i.e. they are measured in £’000), mean efficiency is

estimated to be 77.9%, with the model taking fifty-three iterations to

converge. If costs remain in their original unit (£), the model converges

after eleven iterations, with mean efficiency estimated to be 74.2%.

In fact, for these data the RE model is inappropriate, with the Haus-

man test being significantly in favour of a fixed-effects specification

(w2 ¼ 245.84, p < 0.001).

4.3 Time-varying efficiency

Perhaps the most critical drawback of the time-invariant estimators

considered in the preceding sections is the assumption that organisa-

tional efficiency is constant over time. The assumption of a constant

level of efficiency is not particularly appealing in contexts where data

are observed over long periods or when there are expected to be

external influences that affect the temporal pattern of efficiency, such

as periodic regulatory initiatives. Indeed, the purpose of the analytical

exercise often is to explore the impact of such initiatives on organisa-

tional efficiency. In such situations, allowing efficiency to vary over

time is a necessary condition of analysis.

If efficiency is believed to vary over time, for whatever reason, the

challenge is howbest tomodel this. Twoquestions require consideration:

� What is the general pattern of efficiency change over time?

� Are individual organisations likely to experience different temporal

patterns of efficiency change?

The simplest approach to modelling temporal changes in efficiency

is to assume that the effect is the same for all organisations. There are

a number of ways that the model can be adapted to accommodate this

effect.

One possibility is to employ a two-way error components model, in

which inefficiency is separated into two components, one specific to

each organisation, ui, the other industry-wide but particular to each

period, gt:
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uit ¼ ui þ gt (4.6)

This formulation enriches the model only slightly, in that the temporal

effect is assumed identical for each organisation (Greene 1993).

A less restrictive assumption would be for the temporal pattern

of efficiency change to be the same for all organisations, but for the

magnitude to differ among organisations. This is not an unrealistic

scenario. In many contexts, the pattern of change may be common

across the industry, perhaps because of technological and knowledge

transfer among organisations. However, the pace of transfer may not

be uniform, with organisations differing in how quickly they em-

brace such advances. The specification proposed by Lee and Schmidt

captures this possibility (Lee and Schmidt 1993):

uit ¼ gðtÞui (4.7)

This is equivalent to introducing a set of dummy variables for time

interacted with the individual efficiency component. Lee and Schmidt

outline how the model is amenable to use of the fixed-effects estimator

and that a random-effects model can be estimated using GLS. If gt ¼ 1,

8t efficiency is constant over time. The virtue of this formulation is

that it is not necessary to impose any assumptions about how effi-

ciency changes over time. This specification is particularly appropri-

ate for short panels, but too many additional dummy variables are

introduced for the formulation to be of use in longer panels.

Kumbhakar proposed a similar formulation to that of Lee and

Schmidt, but rather than g(t) being represented by a set of dummy

variables, a distribution was imposed on the evolution of efficiency,

this being specified as an exponential function of time, gðtÞ ¼ ð1 þ
expðf1t þ f2t

2ÞÞ�1 (Kumbhakar 1990). This ensures that 0 � g(t) � 1

and, depending on the signs of f1 and f2, allows the function

to increase or decrease in a monotonic fashion, or to be convex or

concave.

A slightly different exponential specification was proposed by

Battese and Coelli, such that gðtÞ ¼ expð�fðt � TÞÞ (Battese and

Coelli 1992). Simplicity comes at the cost of imposing less flexibility

on the function, with interpretation of how efficiency changes over

time being restricted to decreasing at an increasing rate if f > 0,

increasing at an increasing rate if f < 0, and being time-invariant

if f ¼ 0. This model is estimated below.
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An alternative approach, suitable when the number of time periods

is large relative to the number of organisations, was proposed by

Cornwell, Schmidt and Sickles (1990). Under their formulation it is

necessary to specify how efficiency might be expected to evolve over

time. Cornwell et al. propose a quadratic specification and describe a

two-stage procedure for estimation of a fixed-effects model (although

when the ratio of organisations to time periods is small it is possible

to undertake estimation in a single stage). The first stage involves

estimation of the production model, taking the form cit ¼ bxit þ eit.
The residuals, êit, from this equation are then regressed on time under

the following formulation:

êit ¼ gi1 þ gi2t þ gi3t
2 (4.8)

This model requires estimation of an additional three parameters

per organisation, which can be cumbersome with large samples. The

fitted values from the above equation are interpreted as estimates of

ait. Analogously to a cost function estimated on cross-sectional data,

in the panel data context, at time t, the frontier ât and firm-specific

estimate of inefficiency, ûit, are calculated respectively as ât ¼ miniðait Þ
and ûit ¼ ait �miniðait Þ. This formulation makes it possible to test

assumptions about the nature of efficiency over time and across orga-

nisations. If, indeed, efficiency is time-invariant, this would imply that

gi2t ¼ gi3t
2 ¼ 0; 8i. If changes in efficiency – or technical changes – are

common across all organisations this would imply that gi2 ¼ g2, 8i and
gi3 ¼ g3, 8i.

4.3.1 Empirical application

Estimates from the Battese and Coelli specification (Battese and Coelli

1992) are presented in Table 4.4. Parameter estimates suggest that,

for the average hospital, an additional hospital episode increases total

cost by £822, an outpatient attendance by £293 and an A&E visit

by £88. While mean efficiency over the period as a whole is similar

to that for the Schmidt and Sickles (1984) specification where ui was

assumed time-invariant, the temporal gradient is now considerably

steeper because the values of both the regressors and ui are allowed to

vary over time. Average efficiency was estimated as being 65% in

1994/95. By 1997/98 this had fallen to 56%.

Stochastic frontier analysis of panel data 81



4.4 Unobserved heterogeneity

One of the key benefits of using panel data is the ability to control for

unobserved individual heterogeneity (Baltagi 2005). Organisations

may face different external constraints that influence the costs of

production but that are not within their control and that cannot be

measured directly. Hospital location is an example. Hospitals might

have higher costs because levels of sickness are greater among their

local population or because there is poor integration of care among

primary care providers. Often data on these location effects are

poorly measured, or only weak proxies are available. Cross-sectional

or time-series analyses are unable to control adequately for such

factors and produce biased estimates (Baltagi 2005). Standard panel

data models are able to overcome this deficiency, with unobserved

organisation-specific characteristics being captured by the fixed or

random effect.

When applied to stochastic frontiers, however, panel data models

can no longer be considered ‘standard’. The specifications described in

the preceding sections of this chapter have lost this attractive feature

of panel data estimators. This is because the fixed or random effect is

Table 4.4. Estimates from time-varying SF models

Total cost

Battese and Coelli

Coeff. s.e. t

CONSTANT �8,946,580 1,000,000 �894,653.00

INPATIENTS 822 26 31.23

OUTPATIENTS 293 19 15.67

A&E 88 12 7.57

f �0.123 0.012 �10.647

Log likelihood 12,735

Efficiency mean s.d. min. max.

1994/95 0.652 0.199 0.041 1.000

1995/96 0.624 0.225 0.037 1.000

1996/97 0.595 0.255 0.033 1.000

1997/98 0.565 0.288 0.029 1.000
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interpreted as arising solely from inefficiency. As in cross-sectional

efficiency analysis it has to be assumed that the stochastic frontier

model is specified correctly and that all relevant factors have been

observed accurately. In short, the specifications described previou-

sly in this chapter assume there to be no unobserved heterogen-

eity among organisations. If this assumption is false, the fixed or

random effect will contain a mixture of inefficiency and unobserved

heterogeneity.

Recent developments in the efficiency literature have sought to

address this shortcoming, recognising that the assumption is a strong

one. The general approach has been to specify separate expressions

to capture efficiency and unobserved heterogeneity. Greene has pio-

neered this line of work, describing both fixed- and random-effects

estimators that he describes as ‘true’ specifications of the stochastic

frontier model (Greene 2004; Greene 2005).

The ‘true’ FE model includes organisational dummies as an addi-

tional set of explanatory variables (Polachek and Yoon 1996; Greene

2004), the resulting specification being written as:

Cit ¼ bxit þ ai þ uit þ vit
uit � jNð0; s2uÞj; vit � Nð0; s2vÞ

(4.9)

Under the Schmidt and Sickles formulation of the FE model with time-

invariant inefficiency the fixed effects were interpreted as inefficiency

(Schmidt and Sickles 1984). In Greene’s ‘true’ FE model the fixed

effects capture unobserved heterogeneity (Greene 2004). The draw-

back of this specification is the incidental parameters problem, where-

by the number of parameters to be estimated increases with sample

size (the same problem afflicts the other specifications in which the

organisation is used to create a variable).

The ‘true’ RE model includes a random constant term, ai, which is a

time-invariant organisation-specific parameter that captures heteroge-

neity. Unlike the ‘true’ FE model it is necessary to specify the distribu-

tion of ai which Greene considers to be i.i.d. normal (Greene 2004). It

is also necessary to assume that the organisation-specific effects are

uncorrelated with the regressors. In recognition of this limitation,

Farsi, Filippini and Kuenzle have extended Greene’s ‘true’ RE model

using Mundlak’s formulation of a ‘within’ estimator’ to control for the

possibility of correlation between ai and the xit’s (Farsi, Filippini and

Kuenzle 2003).
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4.4.1 Empirical application

Greene provides two ‘true’ fixed-effects specifications of the stochastic

frontier in Limdep version 8.0, one of which assumes that efficiency is

time-invariant, with the second relaxing this assumption (Greene

2002). The former is specified as:

Cit ¼ bxit þ ai þ ui þ vit
ui � jNð0; s2uÞj; vit � Nð0; s2vÞ (4.10)

The latter is a two-way error components model, specified as:

Cit ¼ bxit þ ai þ ui þ gt þ vit
ui � jNð0; s2uÞj; vit � Nð0; s2vÞ (4.11)

Parameter and efficiency estimates for the two models are in Table

4.5. The final estimates are found after a large number of iterations,

suggesting the lack of a global maximum. The parameter estimates are

similar to those of the Battese and Coelli (1992) model.

The most striking change from previous models considered in this

chapter, as might be expected, is in the estimate of efficiency. The mean

level of efficiency was estimated to be around 60–75% in the preceding

models but, as Greene points out, these estimates contain a mixture of

inefficiency and unobserved heterogeneity. When this is taken into

account, mean efficiency over the entire period is estimated as being

92%, declining from 93.3% in 1994/95 to 89.6% in 1997/98. This

order of magnitude is similar to that reported when switching from a

COLS to the stochastic frontier approach in the cross-sectional context.

Given that the same argument applies in the panel data context, failure

to account for unobserved heterogeneity must be considered a serious

drawback.

That said, little reliance should be placed on these estimates, as both

models are highly unstable for these data, with no global maximum

being found. This is particularly a problem with the two-way error

components model. The majority of observations are estimated as

fully efficient, while a few are assessed as being located a great distance

from the frontier, as illustrated by the unfeasible negative minimum

values that have been produced, which influence the dramatic year-on-

year changes in the estimate of mean efficiency. The inability to locate

a global maximummay be due to the lack of variation in the data, itself

implying that hospitals may be operating at similar levels of efficiency.
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4.5 Summary and sensitivity analysis

For the purposes of illustration, this chapter has considered a simple

model in which costs are regressed against three measures of activity.

Two questions were posed of the data for 185 hospitals observed over

four years:

1. Was the increase in activity sufficient to offset the increase in costs?

2. Are estimates of the mean level of efficiency and the variation in

efficiency among hospitals sensitive to model specification?

Five competing models were applied to the data, three of which

assume time-invariant efficiency, these being:

� the Schmidt and Sickles FE model (S&S) (Schmidt and Sickles 1984)

� the Pitt and Lee RE model (P&L) (Pitt and Lee 1981)

� the Greene time-invariant ‘true’ FE model (True FE) (Greene 2004)

and two of which allow time-varying efficiency, these being

� the Battese and Coelli model (B&C) (Battese and Coelli 1992)

� the Greene ‘true’ two-way error components model (Two-way)

(Greene 2004)

These are not of equal suitability when applied to this data set. The

Pitt and Lee specification is ruled out by the Hausman test; the two

Greene models fail to converge to a global maximum.

The parameter and efficiency estimates from these five models are

reproduced in Table 4.6. All but the two-way error components model

suggest that efficiency declined over time. But even the mean efficiency

estimates differ considerably, implying that results are sensitive to how

efficiency is specified.

Various conditions have been imposed on the analysis so that these

data can serve their illustrative purpose. Relaxation of some of these

conditions in the ways which follow yields different conclusions:

� deflating costs;

� including additional regressors;

� estimating the model in logarithmic form.

First, the failure to deflate costs or to add a time trend gives the

impression of more temporal variation in the dependent variable
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than is in fact the case. This does not affect the models that assume

time-invariant inefficiency or the estimates of relative efficiency within

a particular year. However, for the time-varying models variation in

costs over time due to inflation will be captured by the uit. Thus the

industry-wide inefficiency will be overestimated.

Second, the chosen model is parsimonious, including only three

explanatory variables. Inclusion of additional variables, correspond-

ing to those in the specification used for the cross-sectional analysis

in the previous chapter, has a substantial effect, as shown in Table 4.7.

For the Schmidt and Sickles specification, mean efficiency increases

from around 61% to 74%. The other specifications fail to converge or

the inefficiency term is wrongly skewed.

Finally, the original model with just three explanatory variables is

estimated in logarithmic form. According to the FE model, mean

efficiency is around 79%, substantially higher than when specifying

the variables in natural units. The Greene true FE time-invariant

model converges successfully, and suggests higher levels of efficiency

than implied by the Schmidt and Sickles specification. This is to be

expected given that the Greene model includes both ai and ui. Greene’s

Table 4.6. Comparison of estimates from different models

Coefficients

Time-invariant Time-varying

S&S P&L True FE B&C Two-way

INPATIENTS 195 619 881 822 881

OUTPATIENTS 134 260 250 293 250

A&E 8 59 15 88 1

Mean efficiency

Year 1 63.6 93.3 65.2 76.8

Year 2 61.9 93.7 62.4 76.0

Year 3 60.5 89.7 59.5 98.9

Year 4 59.5 89.6 56.5 72.0

Overall 61.3 77.9 91.6 60.7 80.9

Comments iterations

>100

iterations

>100

iterations

>100
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Table 4.7. Sensitivity analysis of mean efficiency

Deflated

costs

Time-invariant Time-varying

S&S P&L True FE B&C Two-way

Year 1 63.6 86.8 73.5

Year 2 61.9 86.6 73

Year 3 60.5 82.1 72.5

Year 4 59.5 76.6 72

Overall 61.4 74.6 83.0 73.1

Comments iterations

>100

iterations

>100

unable to

converge

Additional

regressors

Time-invariant Time-varying

S&S P&L True FE B&C Two-way

Year 1 74.5 62.9

Year 2 73.4 60.6

Year 3 75 58.5

Year 4 74.2 56.5

Overall 74.3 72.6 59.6

Comments wrong skew iterations

>100

wrong skew

Logarithmic

Time-invariant Time-varying

S&S P&L True FE B&C Two-way

Year 1 85 78.1

Year 2 84.8 74.1

Year 3 84.2 69.9

Year 4 84.4 64.9

Overall 79.3 53.8 84.6 71.8

Comments singular

covariance

matrix

88 Measuring Efficiency in Health Care



two-way error components model cannot be estimated, however,

because the covariance matrix is singular.

The Battese and Coelli model also converges when estimation is

in logarithmic form, and suggests lower levels of efficiency than the

alternative specifications, with a more steeply declining time trend.

We return to our two original questions. First, was the increase in

activity sufficient to offset the increase in costs? With the exception of

the Battese and Coelli model applied to logarithmic data, none of the

time-varying models converged for these data. This failure may be

due to there being little variation among hospitals in their levels of

efficiency over time.

The second issue was whether estimates of the mean level of effi-

ciency and the variation in efficiency among hospitals are sensitive to

model specification. Indeed they are. The Schmidt and Sickles FE

model proved the most appropriate for these data, with the models

based on maximum likelihood failing to converge in many instances.

Estimates are also sensitive to specification choices, such as the choice

of explanatory variables and functional form.

4.6 Conclusions

In this and the preceding chapter we have discussed the key technical

choices that have to be made when developing a stochastic frontier

model. For many of these choices, the appropriate decision depends

on the objective of the analysis and on the nature of the data. Some

estimation decisions can be made on statistical grounds. However, the

statistical criteria developed to evaluate econometric models are rarely

suitable for assessing the suitability of stochastic frontier models,

simply because the focus of the latter is on placing an interpretation on

the residuals. In view of this, the analyst usually has to make recourse

to sensitivity analysis of the modelling approach. If estimates – or, at

least, rankings – of individual organisations are little affected by

alternative technical choices, greater confidence can be placed in the

results. Frequently, however, results are highly sensitive to the estima-

tion decisions made, as was so for the case studies of the cross-

sectional data considered in chapter 3 and of the panel data analysed

in this chapter.
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Given the challenges associated with model construction, such as

specification of functional form and identification and extraction of

efficiency estimates, an alternative strand of efficiency analysis has

been developed which supposedly allow the ‘data to speak for them-

selves’. Data envelopment analysis requires no prior specification of

the functional form, with the efficiency frontier positioned and

shaped by the data rather than by theoretical considerations. This

non-parametric technique is the subject of the next chapter.
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5|Data envelopment analysis

5.1 Introduction

D
ATA envelopment analysis (DEA) has become the dominant

approach to efficiency measurement in health care and in

many other sectors of the economy (Hollingsworth 2003).

While the parametric approach is guided by economic theory, DEA is

a data-driven approach. The location (and the shape) of the efficiency

frontier is determined by the data, using the simple notion that an

organisation that employs less input than another to produce the same

amount of output can be considered more efficient. Those observations

with the highest ratios of output to input are considered efficient, and

the efficiency frontier is constructed by joining these observations up in

the input-output space. The frontier thus comprises a series of linear

segments connecting one efficient observation to another. The construc-

tion of the frontier is based on ‘best observed practice’ and is therefore

only an approximation to the true, unobserved efficiency frontier.

Inefficient organisations are ‘enveloped’ by the efficiency frontier in

DEA. The inefficiency of the organisations within the frontier bound-

ary is calculated relative to this surface (Grosskopf and Valdmanis

1987; Charnes et al. 1994; Cooper, Seiford and Tone 2000). This

chapter outlines the distinctive features of the DEAmethodology, along

with key issues in specifying and judging the quality of a DEA model.

5.2 The DEA methodology

DEA literature traditionally uses the terminology of a decision-

making unit (DMU) for each of the units of analysis under scrutiny,

a term coined by Charnes, Cooper and Rhodes (1978) in their

seminal paper which introduced DEA. The DMU can reflect a whole

range of different levels in health care settings, including the entire

health care system (comparing countries) (Puig-Junoy 1998a), health
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regions or health districts (Ozcan and Cotter 1994; Gerdtham, Re-

hnberg and Tambour 1999), hospitals (Grosskopf and Valdmanis

1987), specific services or departments (Puig-Junoy 1998b; Hollings-

worth and Parkin 2001), and individual physicians (Chilingerian

1994). In this chapter, the choice of unit of analysis is taken as given,

and the methodology is described in relation to comparing a given set

of similar DMUs.

In this section, we examine within the context of DEA the various

notions of efficiency assuming a constant returns to scale production

technology. In section 5.3 we shall introduce the concept of variable

returns to scale and the notion of scale efficiency. In DEA we can

examine the efficiency of DMUs using either an input or an output

orientation. Input-oriented technical efficiency measures keep output

fixed and explore the proportional reduction in input usage which is

possible, while output-oriented technical efficiency measures keep

input constant and explore the proportional expansion in output

quantities that are possible. We now illustrate efficiency measurement

for DEA under each of these possibilities.

5.2.1 Input-oriented efficiency

Suppose a DMU uses two inputs (x1 and x2) to produce a single output

(y) as depicted in Figure 5.1. In the health care setting, we could for

example depict a hospital using two inputs (doctors and nurses) to

produce a single output (patients treated). Assuming diminishing mar-

ginal factor productivity, isoquants can be constructed that are convex

to the origin. Thus, along the frontier, reduced use of one input, say x1
(doctors), necessitates an increase (or no decrease) in the use of the

other input, x2 (nurses), in order to maintain the level of treatment

provided.

Assume that the curve ZZ0 represents the production frontier. All

DMUs lie on the production frontier (if they are efficient) or above it

(if they are inefficient). Using the input-orientation, DMUs which lie

above the production frontier could proportionally reduce their input

usage (x1 and x2) for a given output level (y). Thus hospital A could

proportionally reduce its use of doctors and nurses, given the amount of

treatment it provides, and move to a feasible and technically efficient

production point such as that adopted by hospital B.
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SS0 is a budget line, or isocost line, which reflects the ratio of prices

of the inputs (x1 and x2), in this case the relative price of labour. The

cost-efficient point of production is B0 where the marginal rate of

substitution of x1 for x2 is equal to the price ratio. Hospital A’s

production is currently above the production frontier which is clearly

inefficient (more inputs are required to produce the output at A than

if it were to move to a point such as B or B0). In DEA, technical

inefficiency is usually measured using the notion of the radialmeasure

of inefficiency, by comparing where the hospital is located in relation

to the production function (distance BA) with where it is located in

relation to the origin (distanceOA). The distance BA is the amount by

which all inputs (doctors and nurses) could be proportionally reduced

without a reduction in hospital admissions. This is expressed in per-

centage terms by the ratio BA/OA. The technical efficiency (TEIN) of

hospital A is then expressed as follows:

TEIN ¼ OB

OA
(5.1)

which is equal to 1 � BA/OA, and where the IN subscript denotes the

input orientation. Pure technical efficiency (TE) shows the deviation

from the production frontier ZZ0. This value lies between 0 and 1 with

a value of 1 indicating full technical efficiency (if hospital A produced

at a point such as B).

Figure 5.1. Technical and allocative efficiency under an input orientation.
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If the isocost can be specified – because input prices are known – it

can be used to calculate the allocative efficiency (AEIN) of the hospital

operating at point A by the following ratio:

AEIN ¼ OC

OB
(5.2)

where the distance CB is the reduction in production costs that would

occur if production were to take place at the allocatively (and techni-

cally) efficient point B0 instead of at the technically efficient, but

allocatively inefficient, point B. It thus represents the deviation from

the price-efficient point.

The extent to which a DMU incurs expenditure in excess of the

minimum feasible therefore comprises two components: technical

efficiency, which reflects the ability of a DMU to produce the max-

imum amount of output given a set of inputs, and allocative efficiency,

which reflects the ability of a DMU to use inputs in optimal propor-

tions given their respective prices. The product of these measures can

be combined to give a measure of total economic efficiency (EEIN)

such that:

EEIN ¼ TEIN � AEIN

¼ OB

OA
� OC

OB
¼ OC

OA

(5.3)

5.2.2 Output-oriented efficiency

An alternative exposition would be to examine efficiency measure-

ment under an output orientation. Suppose a hospital produces two

outputs (y1 and y2), for example inpatient treatments and outpatient

visits, from a single input (x), hospital staff, as depicted in Figure 5.2.

In this case ZZ0 represents the production possibility curve, the

upper bound of all the technically feasible production possibilities.

All hospitals lie on the production frontier (if they are efficient) or

below it (if they are inefficient). Using the output orientation, hospi-

tals which lie below the production frontier, such as hospital A, could

proportionally expand their output quantities (y1 and y2) of inpatient

treatments and outpatient visits, holding their level of input use (x),

hospital staff, constant. Under the existing technology, they could do

this up to a point such as B which is located on the production

boundary.
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If we had information about the relative value of the two outputs it

would be possible to construct the equivalent of an iso-revenue line,

shown here as SS0, which reflects the market value of the two outputs

(y1 and y2). The efficient point of production is B0 where ZZ0 is

tangential to the iso-revenue line.

The technical efficiency (TEOUT) of hospital A is expressed as:

TEOUT ¼ OA

OB
(5.4)

where the OUT subscript denotes the output orientation. The alloca-

tive efficiency (AEOUT) of the hospital is expressed as:

AEOUT ¼ OB

OC
(5.5)

Total economic efficiency (EEOUT) is given by:

EEOUT ¼ TEOUT � AEOUT

¼ OA

OB
� OB

OC
¼ OA

OC

(5.6)

In health care, output prices are seldom available, and so most studies

restrict the analysis to the calculation of technical efficiency and not

total economic efficiency.

All these measures of efficiency (technical, allocative and economic

efficiency) are bounded by 0 and 1. Because they are measured along a

ray from the origin to the observed production point, they hold

Figure 5.2. Technical and allocative efficiency under an output orientation.
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relative proportions of inputs (or outputs) constant. These radial

efficiency measures are units-invariant in the sense that changing the

units of measurement will not change the value of the efficiency

measure. Thus, for example, the results are invariant to whether the

input of nursing staff is measured in hours worked or months worked.

5.2.3 DEA formulation

The efficiency measures discussed above assume the production func-

tion of the fully efficient organisation is known. In practice this is

not the case and the efficient isoquant must be estimated from the data.

DEA assesses efficiency in two stages. First, a frontier is identified

based on either those organisations using the lowest input mix to pro-

duce their outputs or those achieving the highest output mix given their

inputs (i.e. the input or output orientation). Second, each organisation is

assigned an efficiency score by comparing its output/input ratio to that of

efficient organisations that form a piecewise linear ‘envelope’ of surfaces

in multidimensional space. If there areM inputs and S outputs, then the

production frontier becomes a surface in (MþS) dimensional space. The

efficiency of a DMU is the distance it lies from this surface – the max-

imum extent by which it could improve its outputs given its current level

of inputs (or reduce its inputs given its current level of outputs).

Efficiency in DEA is therefore defined as the ratio of a weighted sum

of outputs of a DMU divided by a weighted sum of its inputs, there-

fore corresponding closely to the notion of efficiency developed in

chapter 2. Technical efficiency (TE) is computed by solving for each

DMU the following mathematical programme:

max

XS
s¼1

us � ys0

XM
m¼1

vm � xm0

0
BBBB@

1
CCCCA (5.7)

subject to:

XS
s¼1

us � ysi

XM
m¼1

vm � xmi

� 1 i ¼ 1; ::::; I
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where:

ys0 ¼ quantity of output s for DMU0

us ¼ weight attached to output s; us > 0; s ¼ 1; :::; S
ys0 ¼ quantity of input m for DMU0

vm ¼ weight attached to input m; vm > 0; m ¼ 1; ::::;M

This mathematical programme seeks out for DMU0 the set of out-

put weights us and input weights vm that maximises the efficiency of

DMU0, subject to the important constraint that – when they are

applied to all other DMUs – none can have an efficiency greater than

1. The weights can take any non-negative value, and in general a

different set of weights is computed for each DMU. Thus, the weights

us and vm are a central feature of DEA. They are chosen to cast the

DMU in the ‘best possible light’, in the sense that no other set of

weights will yield a higher level of efficiency.

Equation 5.7 can be rewritten more succinctly as:

maxu;vðu0y0=v0x0Þ (5.8)

subject to:

u0yi=v0xi � 1 i ¼ 1; . . . ; I
u; v � 0

where u0 and v0 are vectors of output and input weights respectively.

In order to select the optimal weights, we estimate this equation as a

linear programming problem. This entails converting equation 5.8 into

a system of linear equations, set up such that a linear objective function

can be maximised subject to a set of linear constraints. The linear

programme seeks out values for u and v that maximise the efficiency

measure of the ith DMU, subject to the constraint that all efficiency

measures are no greater than 1. But this ratio formulation has an

infinite number of solutions, because if (u*, v*) is a solution, then so

too is (au*, av*) (Coelli, Rao and Battese 1998). We therefore impose

an additional constraint that either the numerator or the denomin-

ator of the efficiency ratio be equal to 1 (e.g. v0x ¼ 1). The problem

then becomes one of either maximising weighted output subject to

weighted input being equal to 1 or of minimising weighted input

subject to weighted output being equal to 1 (Parkin and Hollingsworth

1997). We can therefore rewrite equation 5.8 in the multiplier form

to reflect this transformation by adding a constraint as follows:
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maxm;nðm0y0Þ (5.9)

subject to:

n0xi ¼ 1

m0yi � n0xi � 0 i ¼ 1; :::; I

m; n � 0

This maximisation problem can also be expressed as an equivalent

minimisation problem, the advantage being that it involves fewer

constraints (Coelli, Rao and Battese 1998):

miny;ly0 (5.10)

subject to:

�yi þ Y l � 0
yxi � X l � 0
l � 0

where xi and yi are column vectors of inputs and outputs for each

of the I DMUs, X and Y are input and output matrices representing

the data for all the I DMUs, y is a scalar and l is a n � 1 vector of

constants. The value of y obtained will be the efficiency score for

DMU0 and satisfies y � 1, with a value of 1 indicating a point on

the frontier and hence a technically efficient DMU. The linear pro-

gramming problem must be solved separately for each DMU in the

sample in order to obtain a value of y for each DMU (Coelli, Rao and

Battese 1998). The objective of the linear programme is therefore to

seek the minimum y that reduces the input vector xi to yxi while

guaranteeing at least the output level yi.

This formulation of DEA yields weights l that are specific to each

unit. However, under this formulation the value li now reflects the

weight to be attached to DMUi in forming the efficient benchmark for

DMU0. Effectively, the point on the frontier with which DMU0 is

compared is formed by creating a composite ‘peer’ DMU comprising

a linear combination of all other DMUs, weighted in accordance with

the elements of l. Of course, only efficient DMUs will be assigned a

non-zero weight in the peer group. Those DMUs with a non-zero

weight are referred to as the efficient peers or comparators of DMU0.

In creating the efficient frontier, DEA yields specific input or out-

put targets for each DMU, depending on whether the input or output

98 Measuring Efficiency in Health Care



orientation has been used. For example, under input orientation, these

indicate the specific amounts by which a particular DMU should be

able to reduce its consumption of particular inputs without reducing

output. The input-output levels (xi
p, yi

p) on the estimated frontier are

the co-ordinates of the point used as a benchmark for evaluating

DMU i, yielding the ‘targets’ for DMU i. In principle, one could project

an inefficient DMU onto any part of the efficient frontier. In prac-

tice, the usual approach is to calculate (xi
p, yi

p) by undertaking ra-

dial contraction of input levels (if the input orientation is used) or

radial expansion of output levels (if the output orientation is used)

of DMU i. This approach preserves the input-output mix of DMUi,

which is therefore compared to a set of efficient peers that use similar

or identical input-output ratios, but at more efficient levels. Box 5.1

gives an example of how efficiency is measured as the distance of the

DMU to the piecewise linear surface, how inefficient DMUs are

compared to linear combinations of efficient benchmark DMUs, and

how targets can be set.

Box 5.1. An example of DEA

Assume there are five DMUs using one input to produce two outputs, as

shown in the table below. Note that they are operating under different

scales, so any attempt to draw the DEA isoquants can only be undertaken

after rescaling outputs to be output per unit of input (for example by

dividing each output by the level of input or as we do in this example

normalising outputs to 10 inputs).

DMU Input Output 1 Output 2

A 5 2 1

B 30 6 9

C 10 3 2

D 20 2 8

E 20 6 6

We can represent this diagrammatically, as in the figure below. This

shows the outputs produced from 10 units of input for each DMU. The

efficient frontier is the piecewise series of linear segments with the

associated vertical and horizontal extensions.

Data envelopment analysis 99



Box 5.1. (continued)

The DEA linear program is run for each DMU in turn, with inputs held

constant. It is verified that DMUs A, D and E are efficient. However, B has

an efficiency of 88.9%, indicated by the ratio OB/OB*. Its efficient

comparators are DMUs D and E, and its composite benchmark comprises

a weighted mix of 0.56 of DMU D and 0.94 of DMU E, represented by the

point B*. Similarly, the other inefficient DMU is C, the benchmark for

which comprises 1.20 of DMU A and 0.20 of DMU E. The table below

shows the outputs that the two inefficient units should be able to achieve if

they were to emulate their composite benchmark (after rescaling the

outputs back up to their original values of input).

DMU Input Output 1 Output 2

Actual B 30 6 9

Target B 30 6.75 10.13

Actual C 10 3 2

Target C 10 3.60 2.40

5.3 Considerations in data envelopment analysis

There are a number of considerations in estimating a DEA model:

� whether to assume constant or variable returns to scale;

� whether to assume an input or an output orientation;

� whether to apply weight restrictions;

� dealing with ‘slacks’;
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� model specification and judging the quality of a DEA model;

� how to adjust for environmental factors.

We consider these in turn.

5.3.1 Whether to assume constant or variable returns to scale

Thus far we have considered various measures of efficiency under

constant returns to scale (CRS), as assumed in the original DEA paper

(Charnes, Cooper and Rhodes 1978). Banker, Charnes and Cooper

(1984) extended this to accommodate a more flexible variable returns

to scale (VRS) model which may be appropriate when not all DMUs

can be considered to be operating at an optimal scale. In the health

care sector imperfect competition, constraints on finance, and regula-

tory constraints on entry, mergers and exits may often result in orga-

nisations operating at an inefficient scale. The choice of CRS or VRS is

therefore an important decision and relies on the analyst’s understand-

ing of the market constraints facing firms within a particular sector. If

the CRS technology is inappropriately applied when, say, all hospitals

are operating at a sub-optimal scale, then the estimates of technical

efficiency will be confounded by scale efficiency effects.

The CRS linear programming problem is easily extended to account

for VRS by adding to the convexity constraint in equation 5.10 (the

n � 1 vector l � 0) the further constraint:

XI

i¼1

li ¼ 1 (5.11)

To calculate scale inefficiency, both the CRS and VRS DEA models

are run on the same data, and any change in measured efficiency can

be attributed to the presence of scale inefficiency. This is illustrated in

the following example. Assume DMUA produces a single output (y),

for example hospital treatments, from a single input (x), hospital staff,

as depicted in Figure 5.3. This figure highlights the difference between

the two production frontiers (adapted from Coelli, Rao and Battese,

1998). The line from the origin OE depicts the CRS frontier whereas

the segmented line FGHIJ is the VRS frontier. Assuming an input

orientation, implying a reduction of input (x) in the horizontal

plane, the technical efficiency (TEIN,CRS) of DMUA with respect to

the constant returns to scale technology is then expressed as:
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TEIN ;CRS ¼ CBC

CA
(5.12)

where the IN subscript denotes the input orientation and the CRS

subscript denotes the constant returns to scale technology.

In contrast, the technical efficiency (TEIN,VRS) of DMUA with re-

spect to the variable returns to scale technology is expressed as:

TEIN ;VRS ¼ CBV

CA
(5.13)

where the VRS subscript denotes the variable returns to scale

technology.

Scale efficiency is then measured as the distance between the CRS

and VRS technologies, or:

SEIN ¼ CBC

CBV
(5.14)

and therefore:

TEIN ;CRS ¼ TEIN ;VRS � SEIN (5.15)

Again, all these efficiency measures are bounded by 0 and 1.

If we imagine Figure 5.3 in multidimensional space, the VRS tech-

nology forms a convex hull of intersecting planes which envelop the

data points, such as A and D, more tightly than the CRS approach,

where the frontier would extend from the origin. Thus, by introducing

Figure 5.3. Constant and variable returns to scale
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an additional constraint, VRS produces technical efficiency scores

which are greater than or equal to those obtained using CRS (Coelli

1996b; Parkin and Hollingsworth 1997).

The convexity constraint in equation 5.11 ensures that an ineffi-

cient DMU will usually be compared only with DMUs of a roughly

similar size. Thus the projected point for DMUA on the DEA frontier

will be a convex combination of other DMUs, such as G and H. This

convexity restriction implies that the efficient frontier is formed only

by interpolation between DMUs, and precludes extrapolation of

performance at one scale to a different scale. In contrast, the CRS

case permits extrapolation, with the result that DMUs may be com-

pared with others operating at substantially different scales. Thus

under CRS the l weights may sum to a value greater than (or less

than) 1.

In order to obtain an indication of whether a DMU is operating in

the area of increasing, or the area of decreasing, returns to scale, a

non-increasing returns to scale (NIRS) constraint can be added by

altering the convexity constraint in equation 5.11 to:

XI

i¼1

li � 1 (5.16)

In Figure 5.3 the NIRS frontier runs from the origin O to H and

then follows the VRS frontier HIJ. Scale inefficiencies can then be

determined (whether increasing or decreasing returns to scale) by

comparing the DMU’s technical efficiency score under the NIRS con-

straint (equation 5.11) to their technical efficiency score under the

NIRs constraint (equation 5.16). If they are not equal, increasing

returns to scale exist; if they are equal, then decreasing returns to scale

apply (Coelli, Rao and Battese 1998). DMUs between F andH such as

DMUA have increasing returns to scale whereas DMUs between H

and J such as DMUD have decreasing returns to scale. A DMU at point

C is scale-efficient under both CRS and VRS. More DMUs are there-

fore likely to be found efficient under VRS than CRS.

The choice of CRS or VRS will usually depend on the context and

purpose of the analysis, or whether short-run or long-run efficiency is

under scrutiny. For example, from a societal perspective, interest may

be in productivity regardless of the scale of operations, so CRS may

be more appropriate. From a managerial perspective, interest may be
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focused on the extent to which the scale of operations affects

productivity, so VRS may be preferred, particularly if it is believed

that DMUs are not operating at the optimal scale because of the time-

scale of operations or their location on a certain range of the produc-

tion function.

If the incorrect scale assumption is invoked in the modelling, it is

likely to have the greatest effect on efficiency estimates when sample

sizes are small, as with larger sample sizes there is a greater probability

of being able to form a comparison group with weights which con-

form to equation 5.11 and which exhibit efficiency which is close

to that of the unconstrained comparison group (Smith 1997). Thus

with smaller sample sizes, the choice of VRS or CRS becomes more

important.

A complication to the choice of CRS or VRS is that often data take

the form of ratios rather than absolute numbers as measures of inputs

and outputs in DEA. This is very common in health care. For example,

mortality rates, discharge rates, doctors per head of population, nurses

per occupied bed, proportion of expenditure on clinical supplies from

total expenditure, proportion of theatre time for hip replacement

operations from total theatre time are commonly used measures of

input or output. The essential point to note is that the use of such data

automatically implies an assumption of constant returns to scale,

because the creation of the ratio removes any information about the

size of the organisation.

Where a decision is made to use ratio data, Hollingsworth and

Smith (2003) show why it is essential to use the Banker, Charnes

and Cooper (1984) formulation of DEA, even though the ratio data

used implicitly assume constant returns to scale. The technical reason-

ing is as follows. If a ratio variable ysi for DMUi is calculated with

numerator psi and denominator qsi (i.e. ysi ¼ psi /qsi) then combining

the ratios for I DMUs should be achieved by computing the weighted

average :

y�s ¼
PI

i¼1 wipsiPI
i¼1 wiqsi

(5.17)

where wi are the weights on DMUi in creating the weighted average.

Thus the weights apply to both the numerator and the denominator.
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When DEA combines the ratios of I DMUs it creates the composite

ratio:

yds ¼
XI

i¼1

li
psi
qsi

(5.18)

For equations 5.17 and 5.18 to be equivalent, or for y�s to equal yds ,

the coefficients of psi in each of the combined ratios should be equal,

therefore:

wiPI
i¼1 wipsi

¼ li
psi

for all i (5.19)

This amounts to the Banker, Charnes and Cooper (1984) formulation

of equation 5.11:

XI

i¼1

li ¼ 1:

5.3.2 Whether to assume an input or an output orientation

Under CRS, the DEA results are the same whether an input orientation

or an output orientation is specified. However, under VRS the two are

not in general equivalent. The difference is illustrated in Figure 5.4,

using one input x and one output y with an inefficient DMU operating

at point C. Under VRS the technical efficiency measure for DMU C in

the input-orientation specification depends on the horizontal distance

from the frontier, and in the output-orientation specification on the

vertical distance from the frontier.

In algebraic terms, from Figure 5.4:

TEIN ;CRS ¼ AB

AC
¼ DC

DE
¼ TEOUT ;CRS (5.20)

where the IN and OUT subscripts denote, respectively, the input and

output orientation under CRS.

But:

TEIN ;VRS ¼ AB

AC
6¼ DC

DF
¼ TEOUT ;VRS (5.21)

The choice of orientation does not affect which observations are

identified as fully efficient, since the models will estimate exactly the
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same frontier (Coelli 1996b). The difference lies in the part of the

frontier to which the inefficient DMU is projected. Therefore, under

VRS, the choice of input or output orientation may be an important

consideration that will be affected by the analyst’s view on which

parameters managers are able to control. For instance, hospital speci-

alities may face a fixed quantity of inputs in any given period. Subject

to this resource constraint, managers must decide how many patients

to treat. This would imply that technical inefficiency is measured by

considering the extent to which outputs can be expanded propor-

tionately without altering the quantity of inputs. This suggests an

output-oriented measure of efficiency. On the other hand, contractual

arrangements with a hospital (say) may be specified in terms of a

target number of patients treated. The managerial problem might then

be better formulated by considering how much input quantities could

be reduced while still maintaining the output target. This would imply

an input-orientation to the problem.

5.3.3 Whether to apply weight restrictions

As discussed in Chapter 2, efficiency measurement requires the speci-

fication of a set of weights to the inputs and outputs, and in principle

we could a priori assign fixed weights to our inputs and outputs. For

example, let us assume we are evaluating the efficiency of hospitals,

producing two outputs (inpatients and outpatients), with the use of

Figure 5.4. Input and output orientation.
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two inputs (doctors and nurses). Suppose we impose fixed weights to

generate efficiency ratios, such as the following:

v1 (weight for doctors) : v2 (weight for nurses) ¼ 5 : 1

u1 (weight for outpatients) : u2 (weight for inpatients) ¼ 1 : 3

This fixed weights approach makes the efficiency calculations tri-

vial, and renders DEA unnecessary (Cooper, Seiford and Tone 2000).

It is, however, generally infeasible to assign fixed weights in health

care where many crucial values are unknown. Moreover, we may not

know how much of the estimated inefficiency reflects factors beyond

the hospitals’ control, an issue to which we return in sub-section 5.3.6.

In contrast to this fixed weights approach, conventional DEA al-

lows total flexibility in weights. The weights, which are specific to

each DMU, are chosen so that they place each DMU in the best

possible light. This means that the input-output ratio for each DMU

is maximised relative to that for all other DMUs. Therefore, if we were

to compare the results from our example above with fixed weights

(say the ratios of 5:1 and 1: 3 for inputs and outputs) to that of variable

weights under DEA, we would find that DEA will assign efficiency

scores greater than or equal to those using fixed weights (Cooper,

Seiford and Tone 2000).

DEA will allow a DMU on the frontier to assign very high weights

to the inputs and outputs for which the unit is particularly efficient

and very low weights to the other inputs and outputs. Indeed, one can

find in an unconstrained DEA that the highest efficiency score for a

DMU can be obtained only by assigning a zero weight to one or more

outputs on which it performs poorly. Extreme DMUs that excel at one

particular aspect of performance will be classified as efficient, irre-

spective of how they perform on other tasks they undertake (Doyle

and Green 1994). Thus if DEA is allowed complete freedom to choose

the weights for DMUs, factors of secondary importance may domi-

nate a DMU’s efficiency assessment or, alternatively, important factors

may be ignored in the analysis.

This consideration has led to various approaches to limit the flex-

ibility of the choice of weights on inputs and outputs in DEA. By

placing constraints on the weights, the region of search for those

weights is reduced and so a DMU’s efficiency cannot increase, and

may decrease, compared to the value obtained using unconstrained

DEA. Various authors have suggested ways of imposing restrictions on

the weights, including Charnes et al. (1989); Thompson et al. (1990),
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Wong and Beasley (1990), and Roll, Cook and Golany (1991). How-

ever, most of the effort has focused on the technical considerations of

weight restrictions rather than the economic theory underpinning the

rationale for such restrictions.

The degree of weight flexibility to be allowed depends on consid-

erations such as the extent to which DMUs are considered homoge-

neous. On the one hand, they may face the same input prices, produce

similar outputs and employ the same technologies (implying very

limited weight flexibility). On the other, they may enjoy the freedom

to vary local priorities, or there may be considerable uncertainty about

the appropriate weights, implying a need for greater weight flexibility.

The use of weight restrictions requires value judgements about the

relative importance of different outputs and about the relative oppor-

tunity cost of the inputs used. Thus weight restrictions can be criti-

cised on the grounds that they compromise some of the objectivity

implicit in the unrestricted DEA. However, there are many other value

judgements that go into the construction of a DEA model, including

the choice of inputs and outputs and the assumption that the implicit

weights chosen by DEA are acceptable (Allen et al. 1997; Pedraja-

Chaparro, Salinas-Jiménez and Smith 1997). We consider these issues

further in chapter 8.

A possible approach towards examining sensitivity to weight selec-

tion is the calculation of ‘cross-efficiencies’ (Doyle and Green 1994).

Once the unconstrained DEA set of weights has been chosen for a

particular DMU, that set is used to weight the inputs and outputs for

each of the other DMUs, yielding for each DMU a set of I efficiency

scores. This procedure is repeated for all DMUs, yielding a matrix of

cross-efficiencies. The usual DEA efficiency measurements for each

DMU are given along the leading diagonal of the matrix.

It is then possible to examine the range of efficiency scores secured

for each DMU, using all other DMU weights, and this offers some

indication of the robustness of the initial DEA efficiency estimate to

realistic changes in the weights, as adopted by other DMUs. However,

it should be noted that the set of weights that DEA selects to maximise

a DMU’s efficiency may not be unique, and thus the evaluation of the

other DMUs may depend to some extent on which of the solutions the

linear programme generates with the chosen software (Doyle and

Green 1994).
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5.3.4 Dealing with ‘slacks’

The optimal solution linear programme (equation 5.10) can include

what are termed ‘slacks’ in either the input or output constraints. For

constraints with non-zero slacks, the performance of the peer group

suggests that the DMU under scrutiny can improve beyond the level

implied by the overall efficiency estimate y. For such inputs (or out-

puts) the estimated frontier effectively runs parallel to the relevant

input or output axis in multidimensional space. To illustrate, sup-

pose we have two inputs (x1 and x2) to produce a single output (y).

Figure 5.5 shows four DMUs, where A and B represent inefficient

production units and C and D are efficient, forming the frontier. Thus

the inefficiency of units A and B is calculated asOB0/OB andOA0/OA

respectively. However, the radial projection for A does not encounter

the frontier interpolated between C and D, so is not naturally envel-

oped because the frontier is incomplete. Whether point A0 is an effi-

cient point is questionable, because one could still reduce the amount

of input x2 by the amount A0C. Any point along such artificial frontier

extensions (the broken lines in Figure 5.5) is always dominated by a

point on the edge of the frontier. For inefficient DMU A, the difference

in input x2 between these two points (A0 on the extension and C on the

frontier) is the slack associated with that input (Tofallis 2001).

We can envisage a similar situation in Figure 5.6 where we have two

outputs (y1 and y2) and a single input (x). DMUs A and B represent

inefficient production units and C, D and E are efficient, forming

the frontier. Thus the inefficiency of units A and B is calculated as

OA/OA0 and OB/OB0 respectively. A0C represents the ‘output slack’

or the amount by which output y1 can still be expanded.

Point A0 in both Figures 5.5 and 5.6 represents the Farrell (1957)

definition of efficiency, or the radial reduction in inputs (Figure 5.5)

or radial expansion in outputs (Figure 5.6) which is possible. A stricter

definition of efficiency is supplied by Koopmans (1951) who argues

that points such as A0 are not efficient. According to the Koopmans

definition, DMUs are technically efficient only if they operate on the

frontier (such as DMUs C and D) and all associated slacks are zero.

Failure to account for slack will result in an overestimation of

technical efficiency (using Farrell estimates) for those DMUs operating

with slack (such as DMU A). Furthermore, if the targets calculated for

inefficient DMUs (such as A) include the slack values, they may imply
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a significant change in the input/output mix (moving from a point

A0 to C) which may then result in the targets not being helpful or

practicable. In assessing how to deal with slacks, some commentators

have argued that DEA should not be used for ranking DMUs or for

target-setting (Tofallis 2001).

Other authors have proposed various ways of dealing technically

with slacks (Bessent et al. 1988; Torgerson, Forsund and Kittelesen

1996; Tofallis 2001). Ali and Seiford (1993) have proposed deriving

Koopmans, technical efficiency by means of a second-stage DEA

Figure 5.6. Efficiency measurement and output slacks.

Figure 5.5. Efficiency measurement and input slacks.
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linear programming problem which can be run to move from a point

such as A0 (Farrell-efficient) to C (Koopmans-efficient) on the frontier.

This is done by taking the y-value from the first-stage linear program-

ming problem and running a second-stage linear programming pro-

blem and setting the input and output slacks to zero. However, there is

a potential problem with this two-stage approach, namely that one

loses the units-invariant nature of the radial efficiency measures in

the second stage (thus changing the units of measurement of the inputs

or outputs will change the value of the efficiency measure). Units

invariance is one of the desirable properties of DEA.

Coelli (1998) has proposed a multistage DEA which involves the

solution of a sequence of radial linear programming problems to

identify efficient projected points which have an input/output mix as

close as possible to those inefficient points (such as A). The resultant

efficiency measures are also units-invariant.

While some authors have argued that Farrell efficiency measures

should be reported alongside non-zero input or output slacks to give

an accurate picture of efficiency, others have argued that slacks should

essentially be viewed as allocative inefficiency (Ferrier and Lovell

1990) and obtaining the Koopmans-efficient points is not important.

Coelli, Rao and Battese (1998) argue that slacks are an artefact of the

frontier construction method and conclude that an analysis of techni-

cal efficiency can reasonably use the Farrell radial efficiency scores.

The choice of dealing with slacks remains an unresolved issue.

5.3.5 Model specification and judging the quality of a
DEA model

Being a non-parametric technique, DEA has the advantage of requiring

no assumptions about the functional form of the production or cost

frontier.While this reduces the need for a theoretical exposition ofmodel

specification, it does not avoid the problem of how to assess the quality

of a DEA model – or how well it reflects reality. There are several

considerations, each of which is discussed in detail in this sub-section:

� DEA assumes no random noise or measurement error;

� results are sensitive to small samples and outlier observations;

� the inclusion or exclusion of certain variables can bias efficiency

estimates;
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� the more variables are included the less discriminating between

DMUs the model becomes;

� caution needs to be exercised with zero input output levels;

� sensitivity analysis may help to refine model specification.

We consider these in turn.

First, DEA is deterministic, which means there is no way to take

account of statistical error, random shocks or noise. Given that the

method is based on outlier observations, measurement error is a

potentially serious source of bias. The approach presupposes that all

variables are measured accurately and that any shortfall between a

DMU’s input-output ratio and the maximum predicted by the frontier

is attributable solely to inefficiency. Measurement error can have an

impact which is dependent on whether a DMU is incorrectly assigned

as efficient or inefficient. If the ‘incorrectly measured DMU’ is incor-

rectly assigned as efficient, the efficiencies of other DMUs for which it

is an efficient peer may be underestimated. On the other hand, if the

‘incorrectly measured DMU’ is incorrectly assigned as inefficient, the

DMUs which would otherwise have had the ‘incorrectly measured

DMU’ as their efficient peer, may have their efficiency ratings over-

estimated (Thanassoulis 2001).

There have been several applications of DEA using hospital data

where outputs are expressed in fairly crude terms, such as the number

of patients treated in medical or surgical specialities. Case mix within

these groupings may vary systematically across hospitals. Hospitals

with a more complex case mix will be estimated as being less efficient

than they would be if case mix were adequately accounted for. Given

that the DEA inefficiency score is likely to contain measurement error,

it may be best to consider it as an equivalent to the residual Ei from the

COLS model, introduced in chapter 3.

Second, results are sensitive to model specification, particularly in

small samples (Smith 1997). DEA generates efficiency scores for each

individual organisation by comparing it to peers that produce a com-

parable mix of outputs. If any output is unique to an organisation, it

will have no peers with which to make a comparison, irrespective of

the fact that it may produce other outputs in common. An absence

of peers results in the automatic assignation of full efficiency to the

DMU under consideration. Consequently, caution should be exercised

in accepting that DMUs classified as fully efficient actually are so.
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By the same token, individual efficiency scores may not be robust

in the presence of outlier observations and atypical input/output

combinations.

Some criteria do exist, however, for detecting especially influential

observations in DEA. One such is the ‘super-efficiency’ measure which

indicates the extent to which an efficient DMU lies beyond the frontier

that would have been estimated in its absence (Pedraja-Chaparro,

Salinas-Jiménez and Smith 1999).

Third, it is critical to be clear about what variables should be

classified and included as inputs to, or outputs from, the production

process. There is no agreed method of determining whether or not a

variable should be included in the model. Generally, the criteria of

exclusivity and exhaustiveness should hold for the choice of inputs

and outputs in a DEA model (Thanassoulis 2001). In other words, the

inputs alone must influence the outputs (exclusivity), and only those

outputs used in the model (exhaustiveness). The inputs and outputs

need, therefore, to be chosen such that the inputs capture all the

resources and the outputs capture all the activities or outcomes

deemed relevant for the particular efficiency analysis, subject to the

rule of exclusivity and exhaustiveness. In practice this may be quite

difficult to achieve and the implications of model misspecification

may be substantial.

For example, the exclusion of an important input or output can

result in severely biased results and an underestimate of efficiency,

because it may fail to recognise input constraints faced by some DMUs

(Smith 1997). Conversely, the addition of extraneous inputs or outputs

in DEA will tend to lead to overestimates of efficiency scores,

because an unnecessary constraint has been added into the linear

programme. The bias, however, tends to be much more modest

when including an extraneous variable than omitting a relevant

variable (Smith 1997). This consideration suggests that the criterion

of seeking a parsimonious model, often adopted in econometrics, is

less relevant for DEA. It may be safer to err on the side of inclusion

of irrelevant variables, rather than exclusion of important variables.

Fourth, not only the choice of but also the number of inputs and

outputs relative to the number of DMUs will affect efficiency evalua-

tions. The more variables are included, the less discriminating the

model becomes. The larger the number of input and output variables

used in relation to the number of DMUs in the model, the more DMUs
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will be assigned as fully efficient and hence the less discriminating the

DEA model will be. Banker et al. (1989) suggest as a rule of thumb

that the number of DMUs should be at least three times the number of

factors (inputs and outputs) in any DEA application, although there is

no analytic support for this rule (Pedraja-Chaparro, Salinas-Jiménez

and Smith, 1999).

Fifth, it is of course axiomatic that inputs and outputs in DEA

should be ‘isotonic’, in the sense that increased inputs should reduce

efficiency, whereas increased outputs increase efficiency, other things

being equal. If this is not the case, the analyst must first transform the

data so that they are isotonic. For example, ‘bad’ outputs such as

mortality rates or readmission rates might be transformed either by

inversion, or by subtracting the value of the variable from a large

positive number (Scheel 2001; Lewis and Sexton 2004).

Special caution needs to be exercised when zero input or output

levels are observed for some DMUs. For instance, if hospital activity in

a sample is measured using as one of the outputs Accident and Emer-

gency (A&E) attendances, but some hospitals in the sample do not

run A&E departments, then they will artificially be deemed less effi-

cient than those DMUs which do have A&E activity. Similarly, DMUs

using zero levels of some inputs may be artificially shown as more

efficient than they really are. There is no clear protocol for dealing

with this problem. Some users add a positive constant to the zero

input/output levels to make them positive, but results are sensitive to

the choice of constant (Thanassoulis 2001). Cooper, Seiford and Tone

(2000) describe a translation-invariant DEA model for use in such

cases where adding a constant to input or output levels will not

influence efficiency results.

Finally, sensitivity analysis may help to refine the model specifica-

tion. DEA offers no diagnostic statistics with which to judge whether

a model is misspecified. Analysts should therefore test a variety of

model specifications using sensitivity analysis to ascertain the robust-

ness of results, and construct data ranges within which results remain

unchanged. Bootstrapping may be a useful way to obtain an assess-

ment of the degree of certainty that exists around efficiency estimates

(Salinas-Jiménez, Pedraja-Chaparro and Smith 2003).

No clear protocol exists for what action should be taken if results

are found to be sensitive, other than appealing to the judgement of

the analyst. Ultimately the central concern when judging the quality
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of a DEA model is that it should be formulated in light of the purpose

for which the results will be used. The higher the regulatory stakes

(in the form of the expected cost of incorrect inferences), the more

caution and circumspection should be exercised.

5.3.6 How to adjust for environmental factors

Environmental variables describe factors which could influence the

efficiency of a DMU, but are not traditional inputs to the production

process and are assumed outside the control of the manager. They may

include various characteristics of health care organisations, such as

differences in ownership, location, the health needs of their patient

populations, the local health economy and community and primary

care services, or institutional constraints such as access to capital

resources.

Inadequately accounting for the environment in which DMUs oper-

ate may lead to seriously faulty conclusions. However, there remains

an active and unresolved debate about how to incorporate such en-

vironmental variables into DEA (Fried et al. 2002). If the sample can

be divided into sub-samples on the basis of the environmental variable

(e.g. public versus private hospitals), then an approach proposed by

Charnes, Cooper and Rhodes (1981) can be used. DEA is undertaken

for each sub-sample, and all observed data points are projected onto

their respective frontiers. A single DEA is then undertaken using the

projected points to assess any difference in the mean efficiency of the

two sub-samples.

However, environmental variables are not in general categorical.

An alternative approach is therefore to include an environmental

variable (either categorical or continuous) as one of the inputs in the

production model (using the Banker, Charnes and Cooper (BCC)

formulation) (Lovell 2000). In DEA this means that DMUs will only

be compared with other DMUs operating in identical or more adverse

environments. Those operating in the most adverse environments will

automatically be deemed efficient (Banker and Morey 1986; Coelli,

Rao and Battese 1998).

A third approach involves a two-stage analysis, whereby DEA is

solved using the traditional inputs and outputs, and the efficiency

scores from the first stage are then regressed on the environmental

variables (Ferrier and Valdmanis 1996). The DEA efficiency scores are
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then used as the dependent variable in a regression analysis. A cen-

sored Tobit regression model is often considered appropriate for these

data, as they are bounded at both ends of the 0–1 distribution.

Many analyses then ‘correct’ the efficiency scores by using the

estimated regression coefficients to adjust the efficiency scores for

the environmental factors (Bhattacharyya, Lovell and Sahay 1997)

so that the efficiency scores all correspond to a common level of en-

vironment, say the sample means. This approach is, however, proble-

matic because the efficiency scores used as the dependent variable are

serially correlated, and so the classical regression assumption of vari-

ables being independent and identically distributed is violated, there-

by invalidating standard approaches to inference (Simar and Wilson

2004). It is therefore inadvisable to draw firm conclusions using

conventional statistical tests from this analysis. Rather it might be

considered exploratory, indicating which environmental variables ap-

pear to have the most influence on performance. This information

could then be used to formulate a single-stage DEA model where the

environmental variable is included in the DEA model as an input or an

output (Coelli, Rao and Battese 1998).

Further suggested developments include a three-stage approach to

account for environmental effects (Fried, Schmidt and Yaisawarng

1999; Blank and Valdmanis 2005). The two-stage approach is ex-

tended by following the second stage Tobit regression with another

DEA evaluation in which the original data are adjusted to take ac-

count of the environmental impacts. There have been a number of

baroque refinements to these approaches, for instance running a dou-

ble DEA model (Lozano-Vivas, Pastor and Pastor 2002), running a

second-stage seemingly unrelated regression model to take account of

radial slacks and not just radial efficiency measures (Fried, Lovell and

vanden Eeckaut 1993), and running a second-stage SFA model fol-

lowed by a third-stage DEA model, to additionally take account of

stochastic noise (Fried et al. 2002).

The complexity of these recommendations, and the fierce demands

they make on data, are indicative of the complexity of the environ-

mental variable problem. There is no generally accepted method for

taking into account environmental variables in DEA models or for

testing whether an environmental variable has a significant influence

on the production process and the resultant efficiency estimation. For

health care, the issue is often likely to be the single biggest source of
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technical and policy debate, and it must therefore be treated with great

caution.

5.4 Application to acute hospitals in England

5.4.1 The methods and data

The considerations discussed above in estimating a DEA model are

illustrated using a sub-set of the cross-sectional data used in chapter 3.

Data for 171 hospitals with accident and emergency (A&E) depart-

ments are analysed in this chapter. The reason for excluding those

hospitals without A&E departments is that DEA cannot easily cope

with DMUs that produce zero amounts of some types of output.

We use total cost as the input and calculate technical efficiency scores

for hospitals. A range of outputs are considered, including inpatient

episodes, outpatient visits, A&E attendances, teaching, and research.

Since no information is available on the relative importance of certain

outputs, no weight restrictions are applied in the analysis. We also used

the multistage DEA (Coelli 1998) to obtain Koopmans efficiency esti-

mates with zero slacks.We use an input orientation, thus addressing the

question: ‘By how much can expenditure be proportionally reduced

without changing the output quantities?’

We employ the Banker, Charnes and Cooper (BCC) (1984) formula-

tion of the DEA model since we have ratio data for several variables.

Non-ratio variables when included in the DEA model effectively

mean that hospitals are compared only to other hospitals with the

same value for the variable in question.

In addition, one of the variables is non-isotonic, namely transfers

out of hospital. If patients end their care in one hospital with a transfer

to another hospital it is assumed that this represents an inability on

the part of the first hospital to meet the patient’s treatment needs.

Transfers into a hospital are likely to represent complex patients

referred from less capable institutions. These variables capture an

aspect of case mix and patient severity. In order to ensure that incen-

tives remain in place for hospitals not to ‘cream-skim’ low severity

patients by transferring them to other providers, we transform trans-

fers out of hospital so that both these variables move in the same

direction. This will encourage hospitals to increase efficiency whilst

still managing more complex cases. In this example, we chose unity
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as the positive reference number from which to subtract transfers

out of hospital.

Table 5.1 shows the descriptive statistics for the variables used in

the DEA models.

5.4.2 Model specifications

Five model specifications are considered. The different specifications

serve as a sensitivity analysis, to test whether the efficiency scores and

ranks remain stable when variables are removed or added. However,

while these specifications may have some intuitive appeal, they have

been chosen purely for illustrative purposes. In practice, if we were to

use this analysis for any purpose other than to illustrate the methodol-

ogy, we would need to estimate more model specifications and exam-

ine carefully the impact of the inclusion and exclusion of additional

variables. The five specifications are shown in Table 5.2.

Model 1 simply uses the three main treatment-related activities of

hospitals, while Model 2 adds teaching and research activity. Model 3

includes the full set of outputs over which hospital managers poten-

tially have control, at least in the short run. Model 4 is virtually

identical, except that it includes the ‘market forces factor’, a variable

that captures differences in factor prices across the country. We in-

clude this model to show an example of various ways of dealing with

this environmental factor. Finally Model 5 includes all available out-

put variables and environmental adjusters, including variables that

capture the configuration of the hospital. Arguably hospitals may be

able to alter these configuration factors in the long run, but it is

unlikely that managers may have much control over hospital size

and specialisation in the short term.

5.4.3 Results

Summary results from each of the five specifications are presented in

Table 5.3. As progressively more variables are added to the model, a

number of things happen: (i) more hospitals are assigned to the fron-

tier; (ii) mean sample efficiency increases; and (iii) the variance in

efficiency scores decreases. Two facets of the analytical technique

drive these results. First, progressively more of the heterogeneity

among hospitals is incorporated into the model, leaving less to be
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labelled as ‘inefficiency’. Second, as more variables are added, there

is an increased chance that previously ‘inefficient’ hospitals will

dominate on the added dimension and be promoted to the frontier

(Nunamaker 1985).

The results for Models 1 and 2 and for Models 3 and 4 are in close

agreement, unsurprisingly given the similarities of these two sets of

specifications. Figure 5.7 shows the distribution of efficiency scores

under each of the five specifications, with the distributions for Models

1 and 2 tracking each other closely, as do those for Models 3 and 4.

The distribution for the most comprehensive model (Model 5) is

clearly different, with most hospitals on the frontier and the remainder

not far off it. This illustrates that great care should be taken in

interpreting DEA results.

Alterations to model specification can impact not only on mean

sample estimates of efficiency but also on how DMUs compare with

one another. One way to consider this is by looking at how efficiency

scores are correlated across specifications. Table 5.4 shows the cor-

relation matrix between the efficiency scores from the five models.

The correlations between Models 1 and 2, and between 3 and 4, are

relatively high. But all correlate relatively poorly with Model 5, sug-

gesting that the inclusion of the additional explanatory variables has

a profound effect on the results.

We are also, however, interested in how the change in efficiency

scores impacts on the individual rankings of hospitals. Table 5.5 shows

the correlations between the rankings of hospitals obtained from the

efficiency scores. These are generally lower than the correlations for

Table 5.3. DEA model specifications and efficiency results

Model 1 Model 2 Model 3 Model 4 Model 5

Efficient 14 27 97 100 150

>90% 26 42 121 126 163

<50% 5 2 0 0 0

Mean 0.744 0.787 0.932 0.938 0.988

Std dev. 0.136 0.137 0.098 0.092 0.038

Min. 0.419 0.437 0.651 0.651 0.769

Max. 1.000 1.000 1.000 1.000 1.000
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the efficiency scores and show that individual hospitals can jump

significantly depending on the specification choice.

While there are fourteen hospitals that remain on the frontier across

all five specifications, there are also fourteen hospitals whose max-

imum change in ranking across the five specifications is more than

160 places (out of 171). In other words, for this latter group, such is

their sensitivity to the choice of specification that they shift from one

end of the ‘league table’ to the other. Table 5.6 illustrates sensitivity to

Figure 5.7. Distribution of efficiency scores for five DEA models.

Table 5.4. Correlations between efficiency scores

Model 1 Model 2 Model 3 Model 4 Model 5

Model 1 1

Model 2 0.7852 1

Model 3 0.4572 0.5490 1

Model 4 0.4244 0.5260 0.9698* 1

Model 5 0.2311 0.2327 0.5180 0.5448 1

Note:

* Significant at 0.01 level.
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specification for a selection of hospitals. Hospital A remains efficient

across all five specifications. In Model 2 when teaching and research

is included, both Hospitals B and C are assessed as being fully effi-

cient. Hospital D achieves relatively good rankings across all five

specifications, but when the larger number of outputs is introduced

in Model 3, it also moves onto the frontier. A similar pattern is evident

for Hospitals E and F. Hospital G, presumably, is in an area where

factor prices are high: when this is taken into account (through the

market forces factor), the hospital gets a high efficiency score. Hospi-

tal H performs relatively well on the main hospital activities, but

when the additional variables are included, while its efficiency score

improves, its ranking relative to other hospitals declines. Hospital I’s

pattern of performance is similar, but it is always relatively poorer

than H. Both hospitals, however, move to the frontier when all

the hospital adjusters are included in Model 5. Hospital J remains

inefficient across all specifications.

It is clear that the efficiency scores or ranks are not consistent across

the different specifications. It is important for the analyst to have a

clear understanding of the health care market under analysis and the

rationale for including or excluding certain variables. In order to

illustrate how these changes in efficiency scores and ranks come

about, we examine in more detail the data underlying Models 1 and

2 for the above ten hospitals, as shown in Table 5.7. Recall Model 1

includes the three treatment-related activities, whereas Model 2 also

includes teaching and research activities.

While Hospital A’s costs are higher than the sample average, its

outputs are also (apart from A&E) above average. Moreover, it clearly

Table 5.5. Correlations between efficiency ranks

Model 1 Model 2 Model 3 Model 4 Model 5

Model 1 1

Model 2 0.7762* 1

Model 3 0.3909 0.5350 1

Model 4 0.3735 0.5141 0.9710* 1

Model 5 0.1812 0.2233 0.4879 0.5006 1

Note:

* Significant at 0.01 level.
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outperforms most other hospitals on the outputs of teaching and

research. Hospital B performs better than Hospital C on Model 1

because its three outputs are very similar, but its costs are lower.

However, in Model 2 both Hospitals B and C move onto the frontier

because they excel at either research or both teaching and research.

We now examine the influence of the environmental factors on the

efficiency scores in DEA, by regressing the efficiency scores produced

by Model 3 against MFF, the market forces factor, as shown in

Table 5.8. The variable appears to be statistically insignificant, and

some would argue for its exclusion from the DEA analysis on this

basis. But because standard errors are biased, the statistical signifi-

cance may be incorrectly estimated – the omission would be equiva-

lent to committing a Type I statistical error. Moreover, we know from

Table 5.6 that the inclusion of the market forces factor, though per-

haps not significant for the sample in general, can be highly material

for particular hospitals, such as Hospital G. This cautions against the

use of second-stage analysis to infer the importance of variables for

individual DMUs in DEA.

5.5 Conclusions

This chapter has outlined the main issues involved in specifying a DEA

model to assess efficiency using cross-sectional data. The analyst faces

Table 5.8. Tobit model of DEA efficiency scores regressed against a

single environmental factor

Tobit estimates

Log likelihood¼
�44.4534

Number of obs. ¼ 171

L.R. w2(1) ¼ 0.24

Prob. > w2 ¼ 0.6241

Pseudo R2 ¼ 0.0027

Model 3 efficiency scores

Coeff. Std Err. t P > jtj [95% conf. interval]

MFF 0.0009 0.0019 0.49 0.627 �0.003, 0.005

Constant 0.9438 0.1642 5.75 0.000 0.620, 1.268

Std err. 0.1901 0.0179 (Ancillary parameter)

Obs. summary: 97 right-censored observations at Model 3 >¼ 1
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a number of decisions regarding the choice of inputs and outputs,

whether to assume constant or variable returns to scale, an input or

an output orientation, whether to apply weight restrictions, or control

for slacks, whether and how to adjust for environmental factors and

how to judge the quality of a DEA model. There are no statistical

criteria with which to discriminate in many of these choices and the

appropriate strategy may depend on the purpose of the analysis and

the nature of the data.

In summary:

� The most important role of DEA may be as a simple exploratory

analytic tool rather than as an instrument with which to extract

precise estimates of organisational efficiency.

� The principal technical virtues of DEA (compared to regression

methods) are its flexibility and its freedom from parametric assump-

tions.

� The principal drawback is that it offers little guidance on the quality

of the results it yields, so there is always room for disagreement on

the most appropriate DEA model.
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6|The Malmquist index

6.1 Introduction

W
H E N longitudinal data or panel data are available, the most

common approach in the data envelopment analysis litera-

ture is to apply a Malmquist index of the change in total

factor productivity (TFP). This chapter outlines the distinctive fea-

tures of the Malmquist index, along with key issues in specifying a

Malmquist DEA model. We describe some of the applications of

the Malmquist index in the health care sector, provide a graphical

illustration of the Malmquist methodology, and outline some consid-

erations when applying the Malmquist model, before turning to a case

study of acute hospitals in England.

Index numbers are used to measure the change in TFP and involve

the measurement of changes in the levels of output produced and input

used. The most popular indices are the Laspeyres, Paasche, Fisher and

Törnqvist (Laspeyres 1871; Paasche 1874; Fisher 1922; Törnqvist

1936). All index numbers measure the changes in the levels of a set of

variables between a base period and the current period. The Laspeyres

index uses the base period quantities or prices as weights, whereas the

Paasche index uses the current period weights. The Fisher index is the

geometric mean of these two indices. The Törnqvist index is often

presented in a log-change form and represents the weighted average

change in the log of the price or quantity of a particular commodity. In

order to use these indices in productivity measurement, they are usually

linked together to make annual comparisons of consecutive years to

measure productivity over a given period in what is called a chain index

(Coelli, Rao and Battese 1998).

Measuring productivity change by the Laspeyres, Paasche, Fisher or

Törnqvist indices requires quantity and price information as well as

assumptions about the structure of technology and the behaviour of

producers.
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Alternatively, change can be measured using a Malmquist produc-

tivity index (Malmquist 1953). This index was introduced into the

DEA literature by Caves, Christensen and Diewert (1982) and is based

on Malmquist’s proposal to construct quantity indices as ratios of

distance functions for use in consumption analysis. Distance functions

are representations of multi-output multi-input technologies which

require data only on input and output quantities (Färe et al. 1994).

The advantage of the Malmquist index over other TFP indices is

that the former does not require information on the prices of inputs

and outputs or technological and behavioural assumptions. This makes

the Malmquist index a particularly suitable tool for the analysis of

productivity change in the public sector, where output prices are not in

general available (Coelli, Rao and Battese 1998).

Unlike the other indices, however, the Malmquist index does require

the estimation of a representation of the production technology

(Coelli, Rao and Battese 1998; Kumbhakar and Lovell 2000). This

production technology may be a production frontier, or its dual, the

cost frontier. The choice of perspective depends on the problem to

be analysed.

A further advantage of the Malmquist approach is that, once the

production technology is estimated, one can decompose TFP change

into its component parts: efficiency change and technical change.

Malmquist indices can be calculated using either parametric meth-

ods (Nishimizu and Page 1982) or linear-programming DEA-type

methods. The methodology proposed by Färe et al. (1994) makes

operational the principles of theMalmquist index with non-parametric

methods. This method uses DEA to calculate distance functions to

produce the Malmquist TFP index and then decomposes this into

technical change and technical efficiency change components. This is

the approach described in this chapter and is the one which has been

most widely applied in the literature.

6.2 The Malmquist methodology

6.2.1 A graphical illustration

Assume a decision-making unit (DMU) uses a single type of input (x)

to produce a single type of output (y), as depicted in Figure 6.1. In the
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health care setting, we could for example depict Hospital A using a

single input (staff) to produce a single output (patients treated). We

measure the productivity change of Hospital A by examining its

efficiency in two time periods, t and tþ1, and also the technology

shift from t to tþ1. This is illustrated graphically in Figure 6.1, which

seeks to explain the Malmquist indices in intuitive form. In principle,

one can calculate a Malmquist index relative to either variable returns

to scale (VRS) or constant returns to scale (CRS) technology. The VRS

technology estimated by DEA in period t is represented by the frontier

StVRS , while the CRS technology is indicated by the line StCRS . Hospital

A consumes input xt and produces output yt in period t. Hospital

A moves to point (xtþ1, ytþ1) in period tþ1. The VRS technology in

period tþ1 is estimated by Stþ1
VRS, while the constant returns to scale

technology is indicated by the line Stþ1
CRS .

As mentioned, the Malmquist index is defined using distance func-

tions. Inefficiency is measured by the distance from the origin O, this

being the radial measure of inefficiency. For Hospital A, the distance

fp represents the technical inefficiency of the hospital relative to

the VRS technology in period t. Using an input orientation, this is

the amount by which input (staff) could be proportionally reduced

Figure 6.1. Illustration of productivity change with one input and one output.
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without a reduction in patients treated. This is expressed in percentage

terms by the ratio rf/rp.

DEA is used to estimate an overall hospital industry frontier St

based on the data from all hospitals in the sample. Each hospital is

then compared to this frontier. However, this overall frontier also

shifts over time, on account of technological change and innovation,

to Stþ1. The productivity change therefore measures how much closer

a hospital gets to the industry frontier (its efficiency change), as well as

how much the industry frontier shifts given each hospital’s input use

(its technical change). The Malmquist is therefore constructed by

measuring the change for Hospital A from point (xt, yt) to point

(xtþ1, ytþ1) measured with respect to the CRS and VRS technologies

using distance functions.

We can thus examine the Malmquist index, M, as comprising two

main elements, M ¼ E � T, where E is the technical efficiency change

and T the technical change. E can be further decomposed as follows:

M ¼ (P � S) � T, where P is the pure efficiency change, and S the scale

efficiency change.

The pure efficiency change P for Hospital A between periods t and

tþ1 is given by the ratio:

P ¼ ðse=sqÞ
ðrd=rpÞ (6.1)

This simply indicates the change in the hospital’s distance from the

current technically efficient frontier (under VRS) from one period to

the next.

The change in scale efficiency S is given by calculating the efficiency

of Hospital A relative to the CRS and VRS technology in each period,

as follows:

S ¼ ðsc=sqÞ
ðse=sqÞ

� ðrb=rpÞ
ðrf =rpÞ (6.2)

The technical efficiency change term E (E ¼ P � S) refers to efficiency

change calculated under CRS, while P is efficiency change calculated

under VRS. S captures the change in the deviation between the VRS

and CRS technologies.

The change in the scale-efficient technology indicated by the CRS

frontiers is estimated by:
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T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsg=sqÞ
ðsc=sqÞ �

ðrb=rpÞ
ðra=rpÞ

� �s
(6.3)

Note that while P was calculated relative to the VRS technology, the

frontier shift in T is measured relative to the constant returns to scale

technology.
The Malmquist index is constructed using these radial distance

functions. The Malmquist index is then given by:

M ¼ ðse=sqÞ
ðrd=rpÞ

ðsc=sqÞ
ðse=sqÞ

� ðrb=rpÞ
ðrf=rpÞ

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsg=sqÞ
ðsc=sqÞ �

ðrb=rpÞ
ðra=rpÞ

� �s (6.4)

or M ¼ (P � S) � T. That is, Hospital A’s productivity change is

expressed as the product of pure efficiency change, scale efficiency

change, and the change in technology.

6.2.2 The general form of the Malmquist index

The Malmquist index can be computed in either the input orientation,

as above (controlling for output use and measuring changes in input

use), or the output orientation (controlling for input use and measur-

ing changes in output levels) (Thanassoulis 2001). Following from

the previous concepts, Färe et al. (1994) define an output-oriented

Malmquist TFP change index Mtþ1
O :

Mtþ1
O ðXtþ1;Ytþ1;Xt;YtÞ

¼ Dt
OðXtþ1;Ytþ1Þ
Dt

OðXt;YtÞ
Dtþ1

O ðXtþ1;Ytþ1Þ
Dtþ1

O ðXt;YtÞ

" #1=2 (6.5)

where DO represents the component output distance functions in

periods t and tþ1. Equation 6.5 is the geometric mean of two

Malmquist productivity indices for periods t and tþ1. The first uses

reference technology corresponding to period t, whereas the second

does the same for period tþ1. This approach makes it unnecessary to

adopt an arbitrary choice of one or other period as the reference base.
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The most common way of formulating the Malmquist index is:

Mtþ1
O ðXtþ1;Ytþ1;Xt;YtÞ ¼ Dtþ1

O ðXtþ1;Ytþ1Þ
Dt

OðXt;YtÞ
Dt

OðXtþ1;Ytþ1Þ
Dtþ1

O ðXtþ1;Ytþ1Þ
Dt

OðXt;YtÞ
Dtþ1

O ðXt;YtÞ

" #1=2

or M ¼ E� T

(6.6)

A value for equation 6.6 of MO greater than 1 indicates positive TFP

growth from period t to period tþ1. A value for M0 of less than 1

indicates TFP decline between the two periods.

E (the ratio outside the brackets) represents the change in the

output-oriented Farrell technical efficiency levels between periods t

and tþ1:

E ¼ Dtþ1
O ðXtþ1;Ytþ1Þ
Dt

OðXt;YtÞ (6.7)

A value of 1 for E means the hospital has the same distance from the

frontier in both periods. A value greater than 1 means the hospital has

improved its efficiency in period tþ1 compared to period t in that it

has moved closer to the frontier. When the value is less than 1 the

hospital has moved further away from the frontier.

T reflects the changes in productivity levels due to technical progress

for the hospital sector. It is the geometric mean of the shift in technol-

ogy between the two periods, evaluated at Xtþ1 and Xt:

T ¼ Dt
OðXtþ1;Ytþ1Þ

Dtþ1
O ðXtþ1;Ytþ1Þ

Dt
OðXt;YtÞ

Dtþ1
O ðXt;YtÞ

" #1=2

(6.8)

A value of greater than 1 for T means the industry produces more

outputs in period tþ1 compared to period t, controlling for input

levels (given that the output orientation is being used). In other words,

the hospital sector has experienced productivity gains over time.

A frontier shift of less than 1 would equivalently represent productiv-

ity loss by the industry. When T ¼ 1 the industry has made neither a

productivity gain nor a loss.

Note that these distance metrics all measure Farrell radial efficiency

and ignore any slacks. Thus any gain or loss which is not captured by

the radial efficiency measures will not be captured by the Malmquist
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index (Thanassoulis 2001). This has led to some criticisms of the

Malmquist, but to date there has been no widely accepted solution

to this problem.

Where variable returns to scale (VRS) exist, it is possible to further

decompose the change in efficiency levels into two elements: that due

to pure technical efficiency change (P), and that due to scale efficiency

change (S). This is made operational by expressing equation 6.7 as

follows:

E ¼ Dtþ1
O ðXtþ1;Ytþ1Þ
Dt

OðXt;YtÞ ¼ Dtþ1
VRS ðXtþ1;Ytþ1Þ
Dt

VRS ðXt;YtÞ

Dtþ1
CRS ðXtþ1;Ytþ1Þ

Dtþ1
VRS ðXtþ1;Ytþ1Þ
Dt

CRS ðXt;YtÞ
Dt

VRS ðXt;YtÞ
;

or E ¼ P� S;

(6.9)

where the first expression reflects the change in efficiency relative to

the ‘true’ VRS frontier, and the second reflects the extent to which the

distance from the scale-efficient point on the VRS frontier (relative to

the notional CRS frontier) has changed. Again, if P is greater than 1 it

reflects efficiency gain in that the hospital is closer to the VRS frontier

in period tþ1 than it was to the VRS frontier in period t; the opposite

holds true for a value of P less than 1. A value of S greater than 1

implies the hospital has become more scale-efficient between the two

periods.

In order to calculate equation 6.5, it is necessary to consider its four

constituent distance functions. As mentioned, these distance functions

which make up the Malmquist can be computed using either linear-

programming type approaches such as DEA, which is the most com-

mon approach, or frontier econometric approaches such as stochastic

frontier analysis. The latter, however, require specific assumptions

about functional form whereas DEA does not. We therefore discuss

the use of the non-parametric DEA in solving these distance functions.

The application of DEA to the Malmquist index requires the solu-

tion of four linear programming problems, corresponding to the four

required distance functions, for each of the n DMUs under investiga-

tion, and in each pair of adjacent time periods t and tþ1 (Coelli, Rao

and Battese 1998). Thus, if we assume constant returns to scale, and

the output orientation, the function Dt
O(X

t,Yt) for DMU0 can be

The Malmquist index 135



considered by solving the following problem for each DMU in the

sample:

½Dt
OðXt;YtÞ��1 ¼ maxflf (6.10)

subject to

�fy0t þ Ytl � 0
x0t �Xtl � 0

l � 0

where x0t and y0t are the vectors of inputs and outputs, respectively,

associated with DMU0 and l is a flexible vector of weights to be

applied to the matrices Xt and Yt. The parameter N indicates the

maximum proportion by which all outputs of DMU0 can be expanded

such that (x0t, y0t/N) remains feasible, as indicated by the performance

of other DMUs (Xt, Yt).

The three remaining linear programming problems are variations of

(6.10):

½Dtþ1
O ðXtþ1;Ytþ1Þ��1 ¼ maxflf (6.11)

subject to

�fy0ðtþ1Þ þ Ytþ1l � 0
x0ðtþ1Þ �Xtþ1l � 0

l � 0

½Dt
OðXtþ1;Ytþ1Þ��1 ¼ maxflf (6.12)

subject to

�fy0ðtþ1Þ þ Ytl � 0
x0ðtþ1Þ �Xtl � 0

l � 0

½Dtþ1
O ðXt;YtÞ��1 ¼ maxflf (6.13)

subject to

�fy0t þ Ytþ1l � 0
x0t �Xtþ1l � 0

l � 0

In problems (6.12) and (6.13), notional efficiency calculations are

made for one period, taking as a reference base the production
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frontier corresponding to the other period. In these cases, the value

of f does not necessarily have to be greater than or equal to 1, as

must necessarily be the case when technical efficiency is calculated

using cross-sectional data. Thus, in equation 6.12 an observation in

period tþ1 is being compared with the production frontier for the

previous period. If technical progress has taken place, this observa-

tion can be located beyond the production frontier, leading to a value

of F less than 1.

The above equations yield estimates of distance functions under the

assumption of constant returns to scale. In order to decompose equa-

tion 6.9 into its component parts P and S, we solve two additional

linear programming problems (for each adjacent set of production

points). The variable returns to scale distance function estimates re-

quired for equation 6.9 are secured by adding to (6.10) and (6.11) the

constraint:X
n

ln ¼ 1 (6.14)

Thus we would calculate these two distance functions relative to a

VRS technology and not a CRS technology. One then uses both the

CRS and VRS estimates to calculate scale efficiency (Färe et al. 1994;

Coelli, Rao and Battese 1998).

6.3 Considerations in using the Malmquist index

One of the key considerations in applying a Malmquist index is that

longitudinal data are required for which inputs and outputs are mea-

sured consistently over time. In practice this requirement is often

difficult to achieve as health care data can easily be affected by

changes over time in technology, merger activity or changes in data

collection methods.

Another key consideration in applying a Malmquist is that scale

properties of the technology are very important. A Malmquist

index may not correctly measure TFP changes when VRS is assumed

(Grifell-Tatjé and Lovell 1995). While these authors argue for a new

TFP index which scales the Malmquist index by an additional term

which accounts for returns to scale, most authors argue that CRS

should be imposed when calculating a Malmquist TFP index (Coelli,

Rao and Battese 1998).
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Hence the DEA efficiencies in the Malmquist index are usually

computed using a constant returns to scale assumption irrespective

of the actual returns to scale characterising the production technology.

As we have seen, for DMUs not operating under CRS, we can decom-

pose their productivity change so that the impact of scale can be

estimated as in equation 6.9. Most applications take account of this

decomposition, calculating efficiencies relative to both CRS and VRS

technologies. Thus all productivity changes associated with scale are

captured in the index. If the Malmquist index is computed using a

constant returns to scale technology, the efficiency values are the same

irrespective of whether we assume an input or an output orientation

(Thanassoulis 2001). Thus input and output-oriented Malmquist in-

dices would be equivalent. This makes the decision for the analyst

somewhat more straightforward than when analysis is restricted to

cross-sectional data.

6.4 Previous literature on the Malmquist index in health care

An early application of the Malmquist index approach in the health

care sector, as applied to productivity changes in Swedish pharmacies,

was first reported by Färe et al. (1992). Since then, a modest number

of applications in the health care sector have emerged, including an

evaluation of health care reforms in Scotland (Maniadakis, Hollings-

worth and Thanassoulis 1999), studies in Finland (Linna and Häkki-

nen 1998), Sweden (Tambour 1997), and Austria (Sommersguter-

Reichmann 2000), an assessment of productivity changes in the ad-

ministration of primary health care (Giuffrida 1999), studies in Veter-

ans Administration hospitals in the United States (Burgess and

Wilson 1995), in the Spanish pharmaceutical industry (González

and Gascón 2004) and for community care in English county councils

(Salinas-Jiménez, Pedraja-Chaparro and Smith 2003), and an

assessment of reformed payment systems for diagnostic tests in Portu-

guese hospitals (Dismuke and Sena 1999). The approach has been

applied at various levels, from the overall health care system (Färe

et al. 1997), to the hospital level (Maniadakis and Thanassoulis 2000),

to the level of hospital department (Tambour 1997). Hollingsworth

(2003) provides a review of studies applying the Malmquist index in

health care.
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6.5 Application to acute hospitals in England

6.5.1 The methods and data

The Malmquist methodology is illustrated using the same data set as

described previously for acute hospitals in England and as outlined in

the Appendix. Data for 171 hospitals with A&E departments were

analysed for the four years 1994/95–1997/98 (Söderlund and van der

Merwe 1999). As before, the primary input is total cost and we take

an input orientation.

We used the availability of data in other years to impute the missing

data for some outpatient and Accident and Emergency data, assuming

the missing values on the outputs were the same as non-missing values

in adjacent periods, if these were available. This was the case for some

thirty-five hospitals.

Since the total cost variable now covers more than one year, we need

to take account of inflation to make the comparison over time more

appropriate for equivalent input usage. We have therefore deflated

total cost by the GDP deflator with the final year set as the base year.

The rest of the variables are identical to those used in chapter 5. Table

6.1 shows the means for the variables used in the Malmquist models

over the four years.

Total costs increased over the four years, as did many of the activity

variables. The change in sample means is illustrated in Figure 6.2.

6.5.2 Model specifications

Five model specifications were employed using the above-listed vari-

ables. The different specifications serve to illustrate whether the effi-

ciency scores and ranks and total factor productivity indices remain

stable when variables are removed or added in the Malmquist models.

We use the same specifications as in chapter 5. These are outlined

again in Table 6.2.

6.5.3 Results

The mean Malmquist TFP change index across the 171 hospitals for

each model is presented in Table 6.3. Between 10 and 31 hospitals

show either positive or no change in productivity across the five
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models, whereas between 140 and 161 hospitals show productivity

decline. The TFP indices lie on average between about 0.8 and 1.3,

although in all five models the majority of hospitals show TFP decline

over time.

Figure 6.3 shows a graphic illustration of the five TFP indices over

time. Models 1 and 2 yield nearly identical results, as do the TFP

indices for Models 3 and 4. In fact, these overlay each other. This is

unsurprising as only two new variables are added from Model 1 to

Model 2 and only one variable is added fromModel 3 toModel 4. The

general trend for all five indices suggests a drop in productivity be-

tween 1994/95 and 1995/96 and then an increase between 1995/96

and 1996/97 with some discrepancies between the models for the

interval 1996/97 to 1997/98. The basic Models 1 and 2 suggest a

slight increase in productivity whereas the fuller Models 3, 4 and 5

suggest a decline in productivity in the latter years of the series. These

results are not surprising since Models 1 and 2 contain only three to

five variables, whereas Models 3 to 5 contain fifteen to twenty-one

variables. The model specification therefore makes a great deal of

Figure 6.2. Mean expenditure and activity, 1994/95–1997/98.
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Table 6.2. Malmquist model specifications

Model Variable names Outputs included

1 INPATIENTS,

OUTPATIENTS, A&E

Inpatient episodes;

outpatient attendances;

A&E attendances

2 As for Model 1 plus

STUDENTS and

RESEARCH

Inpatient episodes;

outpatient attendances;

A&E attendances;

teaching; research

3 As for Model 2 plus

TRANS-IN, TRANS-

OUT, FCE, EMERINDX,

P-15, P-60, P-FEM,

EP_SPELL, FU-OUTPTS

and EMERGENCY

Inpatient episodes;

outpatient attendances;

A&E attendances;

teaching; research;

transfers in; transfers

out; inter-speciality

transfers; emergency

index; proportions of

young, old and female

patients; episodes,

outpatients and

emergencies per spell

4 As for Model 3 plus MFF Inpatient episodes;

outpatient attendances;

A&E attendances;

teaching; research;

transfers in; transfers

out; inter-speciality

transfers; emergency

index; proportions of

young, old and female

patients; episodes,

outpatients and

emergencies per spell;

market forces factor

5 As for Model 4 plus

AVBEDS, HEATBED,

SITES50B, ITINDX, and

HERF15

All outputs and

environmental adjusters
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difference to the TFP index and it is important for the analyst to

engage in a thorough sensitivity analysis and have a clear rationale

for the appropriate model specification.

As in chapter 5, we can assess the consistency of the five models by

looking at the correlation coefficients of the TFP scores across the five

specifications. As highlighted by Figure 6.3, the agreement is extre-

mely high between Models 1 and 2 and between Models 3 and 4

respectively. In fact, there is very little to distinguish Model 3 from

Model 4 which differs only by the MFF variable. Table 6.4 shows that

the correlation between Models 4 and 5 is also relatively high. The rest

of the correlations are very low.

We can decompose any Malmquist index into its constituent parts.

Figure 6.4 illustrates the Malmquist index for Model 2 divided into

efficiency change (relative to a CRS technology from equation 6.7),

technical change (the shift in technology from equation 6.8), scale

efficiency change (S from equation 6.9), overall TFP change (M in

equation 6.6), and pure efficiency change (relative to a VRS technol-

ogy) (P from equation 6.9). The Malmquist TFP (M) shows a decline

between the first two years, followed by a slight growth between

1995/96 and 1996/97 and again between 1996/97 and 1997/98. This

overall TFP movement seems to be driven to a large extent by a similar

pattern for technical change T (the frontier shifting). From 1995/96

onwards the results from this model suggest consistently strong tech-

nological progress in the hospital industry. More modest changes are

evident for technical efficiency change (E), pure efficiency change (P)

(both following similar paths except in the final year) and scale

efficiency change (s) which seems to show a relatively stable growth

pattern up to 1996/97 followed by a steeper fall.

Table 6.3. Malmquist TFP results

Model 1 Model 2 Model 3 Model 4 Model 5

Mean 0.948 0.948 0.963 0.963 0.937

Std dev. 0.040 0.041 0.059 0.059 0.051

Min. 0.851 0.820 0.810 0.810 0.795

Max. 1.190 1.186 1.350 1.347 1.125

>¼1 10 10 31 31 15

<1 161 161 140 140 156
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Overall, there appears to have been substantial change among this

sample of hospitals in the form of new production technologies. Of

course, the approach assumes a contemporaneous association between

changes in technology and productivity growth which may not hold

in reality, particularly if there are lags between investment in new

technologies and realising the benefits from those investments.

Measuring scale effects accurately in the hospital sector may also be

impeded by the fact that merger activity and the reconfiguration of

Figure 6.3. Malmquist TFP indices.

Table 6.4. Correlations between Malmquist TFP scores

Model 1 Model 2 Model 3 Model 4 Model 5

Model 1 1

Model 2 0.8966* 1

Model 3 0.2920 0.4062 1

Model 4 0.2928 0.4072 1.0000* 1

Model 5 0.2675 0.3746 0.8604* 0.8610* 1

Note:

* Significant at 0.01 level.
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hospitals can impact on the efficient scale of operation. Governments

often intervene in health care markets to try to achieve economies by

merging hospitals, and this was certainly the case in the sample of

hospitals analysed here.

Finally, the case study illustrates inconsistencies in Malmquist in-

dices across specifications. We thus examine whether hospitals change

their efficiency scores and rankings within a model specification

across time. In other words, are hospitals ranked differently in the

‘league table’ from one period to the next? Table 6.5 illustrates some

cases for a small sample of hospitals for Model 2 with respect to the

VRS technology.

Table 6.5 shows that Hospital A remains efficient over all four

years. Hospitals B and C also maintain consistently high rankings

over time. Hospitals D and E are also consistent over time, but are

both relatively less efficient. For Hospitals F to J, there appears to be

less consistency in efficiency scores and rankings over time. This may

appear somewhat surprising, since we are examining the same indivi-

dual hospital within the same model specification. For Hospital F the

highest efficiency rating is in Year 1 with ranking declining subse-

quently. For Hospital G Year 2’s rating is higher than the other three

years. For Hospitals H and I, Year 3 seems to be different, and for

Hospital J the ranking in Year 4 is higher.

Figure 6.4. Decomposition of Malmquist index for Model 2.

146 Measuring Efficiency in Health Care



It is clear that the efficiency scores and the relative rankings for

certain hospitals are not consistent over time. In order to examine how

these changes in efficiency scores and rankings come about, we ex-

plore in more detail the data underlying Model 2 for Hospital I (see

Table 6.6). Recall that Model 2 includes the three activities, inpatients

(INPATIENTS), outpatients (OUTPATIENTS) and A&E (A&E),

as well as teaching (STUDENTS) and research (RESEARCH). We

highlight in bold the sample means for each variable over time.

If we look at Year 3 (the year in which we have the jump in ranking

for Hospital I onto the efficiency frontier), we can see a large increase

in outpatient activity relative to the other years and the sample mean.

In Year 4, outpatient activity reverts back to previous levels. This

suggests the possibility of measurement error, to which DEA is parti-

cularly vulnerable. While it is clear that this is probably measurement

error in this example, it may be less easy to detect in other instances. It

is clear from these examples that this may not be an isolated case and a

difficult question for the analyst may be how to identify and deal with

this. One approach might be to remove obvious cases of measurement

error by replacing them with the moving average, or to assume them

constant with another year. But these ad hoc decisions need to be

traded off against the risk of spuriously replacing ‘correct’ data, and

Table 6.5. Individual hospital scores and rankings for each year for

Model 2

Year 1 Year 2 Year 3 Year 4

Hospital Score Rank Score Rank Score Rank Score Rank

A 1.000 1 1.000 1 1.000 1 1.000 1

B 0.979 29 0.972 32 0.937 38 0.937 35

C 0.991 23 0.949 38 0.959 32 0.929 38

D 0.626 164 0.591 169 0.598 165 0.600 161

E 0.513 171 0.527 171 0.466 171 0.436 171

F 1.000 1 0.674 162 0.597 167 0.610 159

G 0.869 64 1.000 1 0.753 113 0.769 83

H 0.883 55 0.916 51 1.000 1 0.714 113

I 0.849 78 0.888 66 1.000 1 0.698 120

J 0.701 147 0.813 107 0.789 95 1.000 1
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losing one of the main elements of DEA, which is the fact that it is

based on outlier observations. Notwithstanding these considera-

tions, this example illustrates how DEA and the Malmquist index

can be used as a data exploratory device. Apparent data anomalies

may then be used by health planners in discussions with individual

hospitals on ways to improve performance in specific areas, the

possible reasons for poor performance, and, of course, ways to

improve data collection.

6.6 Conclusions

This chapter has outlined the main features of a Malmquist model to

assess productivity change using panel data and non-parametric DEA

techniques.

There are clearly severe limitations with the illustrative example

employed in the case study. Aspects of hospital output which are

omitted in these models, such as unmeasured case mix, severity and

quality of care, could have a profound impact on the interpretation of

the results. Higher volume might be secured merely by compromising

on quality. Quality variables such as waiting times, patient satisfaction

measures, or those relating to patient outcomes such as successful

operations, morbidity and mortality rates, might be considered

important elements to include in these types of productivity analyses.

Data aside, the methodology has some unique strengths and weak-

nesses. The Malmquist index does not require price information,

making it especially suited to the health care setting where these data

are seldom available. Other advantages include the fact that no as-

sumption about functional form is required. Having said that, the

measures focus on technical efficiency and ignore the issue of alloca-

tive efficiency, which may be an important consideration in some

contexts. There have been developments towards a cost Malmquist

index when factor prices are available (Thanassoulis 2001).

The Malmquist index requires no behavioural assumptions about

cost minimisation or revenue maximisation and can be decomposed

into both technical change and technical efficiency change. The mod-

els therefore offer valuable insights into productivity change in an

industry. At a macro level, the approach is able to provide useful

insights into overall productivity trends. However, results are sensitive

to model specification, require careful interpretation and should never
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be used as the sole source of policy guidance or to pass definitive

judgement on individual organisations. The results are often unstable,

and while data deficiencies in the given data set may be partly respon-

sible, the volatility of individual DMUs over time may be exacerbated

by the boundary technique DEA which promotes the DMU to the

frontier in some years but not in others. One way to obtain an estimate

of the degree of uncertainty which exists around efficiency estimates is

to apply bootstrapping procedures or statistical methods of uncer-

tainty analysis (see sub-section 5.3.5). However, if the Malmquist

approach is viewed as an important but essentially exploratory form

of data analysis, it can have much to commend it in situations where

the alternative would be an absence of analytic insight.
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7|A comparison of SFA and DEA

7.1 Introduction

T
H E previous four chapters have examined stochastic frontier

analysis and data envelopment analysis in detail. We have

described the methodologies and touched on the main stren-

gths and limitations of each. In this chapter we compare the two

techniques. First, we consider why they might produce different esti-

mates of organisational efficiency. We then outline the other key

dimensions on which the techniques differ. This is followed by an

empirical comparison, using some of the cross-sectional data analysed

in the previous chapters. We conclude by making recommendations as

to how best to interpret organisational efficiency estimates according

to their sensitivity to analytical approach and modelling assumptions.

7.2 Why SFA and DEA produce different efficiency estimates

Many studies find that the results of applying SFA and DEA lack

consistency, even when exactly the same variables and data are used.

There are twomain reasons for discrepancies in the efficiency estimates

derived from the two broad analytical approaches:

� differences in how the techniques establish and shape the efficiency

frontier;

� differences in how the techniques determine how far individual

observations lie from the frontier.

Given that the true frontier is unobservable, the question arises as

to how best it should be approximated. Is the economic theory per-

taining to the analysis of efficiency sufficiently well-established to

outweigh the appeal of simply relying on best practice as revealed by

the data to hand?
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SFA appeals to economic theory when considering the shape of the

frontier and statistical criteria might be used to differentiate the ap-

propriateness of alternative functional relationships for particular

data sets. The theoretical underpinnings of SFA are derived mainly

from an extension of the theory of the firm, and the suitability of this

theory as a basis for efficiency analysis remains to be established. The

analytical models designed to analyse firm behaviour fit within the

standard economic paradigm, where interest lies in extracting sample

average parameter estimates. These might, for instance, provide in-

sight on the marginal contributions of labour and capital to output.

SFA models, in contrast, are formulated primarily to extract individual

estimates of efficiency from the ‘unexplained’ part of the model. This

means that statistical tests designed to examine standard econometric

models are incorrectly focused for determining the appropriateness

of SFA models. We shall discuss this issue in more detail in the next

chapter.

Advocates of DEA would argue that the problems of providing a

prior specification of functional form can be avoided by applying the

non-parametric technique. Here the frontier is defined solely by the

data: the outermost observations, given the scale of operation, are

defined as efficient. As such, the frontier is positioned and shaped by

the data, not by theoretical considerations. Consequently, DEA is

highly flexible, the frontier moulding itself to the data.

Thus, if the results of DEA and (say) a logarithmic stochastic

frontier correspond, it could be concluded that the frontier truly dis-

plays logarithmic properties for the data analysed. Where the results

deviate, this may be because the monotonic assumptions of the para-

metric function are too restrictive, and DEA is able to account for

segments of the frontier where a smooth relationship is not apparent

in the data. For those who approach efficiency measurement from an

empirical rather than a theoretical standpoint, the flexibility of func-

tional form offered by DEA would seem an attractive feature of the

technique. The drawback, however, is that the location of the DEA

frontier is sensitive to observations that may have unusual types, levels

or combinations of inputs and outputs. These will have a scarcity of

adjacent reference observations or ‘peers’, perhaps resulting in sec-

tions of the ‘frontier’ being unreliably estimated and inappropriately

positioned (Resti 1997).
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While DEA might be thought to win over the SFA method in terms

of the flexibility with which it determines the frontier, this benefit is

offset by how the technique interprets any distance from the frontier.

There are two key differences between DEA and SFA.

First, DEA assumes correct model specification and that all data

are observed without error. SFA allows for the possibility of model-

ling and measurement error. Consequently, if the two methods yield

an identical frontier, SFA efficiency estimates are likely to be higher

than those produced by DEA. If measurement error is thought to be

present, then SFA may be the more appropriate technique. In some

circumstances, it may be possible to sustain an argument that there

is no measurement error. Indeed, Kooreman argued, in applying DEA

to the nursing home setting, that ‘since the survey forms have been

filled out by the administrative staff of the nursing homes, who may

be assumed to be well-informed about their home, measurement

errors are likely to be small’ (Kooreman 1994). This assumption

may have less foundation in larger or more complex organisational

contexts (such as hospitals), and may be further undermined if those

responsible for data collection change their reporting behaviour in

the knowledge that the information they provide is to be used for

the purpose of efficiency assessment or reimbursement.

Second, DEA uses a selective amount of data to estimate indivi-

dual efficiency scores. DEA generates efficiency scores for each orga-

nisation by comparing it only to peers that produce a comparable

mix of outputs. This has two implications. First, if an output is

unique to an organisation, the organisation will have no peers with

which to make a comparison, irrespective of the fact that it may

produce other outputs in common. An absence of peers results in the

automatic assignation of full efficiency to the organisation under

consideration. Second, when assigning an inefficiency score to an

observation lying away from the frontier, only its peers are consid-

ered, with information pertaining to the remainder of the sample

discarded.

In contrast, SFA appeals to the full sample information when esti-

mating relative efficiency. In addition to making greater use of the

available data, this facet of the estimation procedure will make in-

dividual efficiency estimates more robust to the presence of outlier

observations and atypical input/output combinations.
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7.3 Other differences between SFA and DEA

SFA and DEA differ on a range of other dimensions, which may

influence the analyst’s choice of which technique to apply. Table 7.1

compares the techniques along some of these dimensions.

While SFA requires assumptions to be made about the functional

form and the error distribution, the validity of some of these assump-

tions is testable. These testsmaynot always produce definitive guidance.

If it is not possible to differentiate among competing functional forms

on statistical grounds, and individual estimates are sensitive to the

functional form applied, it would be inadvisable to draw firm conclu-

sions about their relative efficiency.However, at least SFA can be subject

to a testing process to eliminate some possible formulations. In contrast,

there are no standard tests to guide model construction in the DEA

framework (Pedraja-Chaparro, Salinas-Jiménez and Smith 1999).

To some extent, standard econometric tests might be applied to

guide the decision about which explanatory variables to include in

Table 7.1. Comparison of SFA and DEA

SFA DEA

Assumption about functional form Strong* None

Distinguish random error from

efficiency variation

Yes No

Test for inclusion of variables Imperfectly No

Allow for exogenous factors Yes Yes

Allow for multiple outputs Not readily Yes

Provides information on ‘peer’

organisations

Not automatically Yes

Vulnerable to outliers Moderately* Yes

Problems of multicollinearity Yes* No

Problems of endogeneity Yes* Yes

Problems of heteroscedasticity Yes* No

Vulnerable to small sample size Yes Moderately

Note:

* The assumption or problem is testable.

Source:

Adapted from Giuffrida and Gravelle (2001).
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the SFA model. However, this is not straightforward, given that most

of these tests rely on ascertaining what effect inclusion of an addi-

tional variable has on the characteristics of the unexplained (error)

component of the model. As mentioned, in SFA, unlike standard

econometric applications, the error itself is the major focus of interest,

thus undermining the usual testing procedures. More critically, DEA

has no way of testing whether particular variables make a significant

contribution to the model and should be included or not. We shall

return to the issue of how to judge model construction in chapter 8.

One of the key strengths of DEA over SFA is that it can readily

model multiple-output production processes. SFA is ill-suited to the

consideration of multiple outputs, but two methods of handling the

problem have been developed. The first is to estimate a cost function

rather than a production function, using duality theory to argue that

the two are equivalent. However, duality holds only if cost-minimising

behaviour can be assumed, which is unlikely to be the case given that

the purpose of the exercise is to identify departures from cost mini-

misation. The second approach is to condition one of the outputs

on the others in some way (see sub-section 3.2.1 for a discussion of

this) (Coelli and Perelman 1996; Paul, Johnston and Frengley 2000).

As with DEA, this approach imposes an implicit set of weights on

the outputs. In the SFA context, the output weights correspond to

sample average values and, again, this may not be appropriate when

sub-optimal behaviour is thought prevalent.

Both methods may be susceptible to the influence of outliers and

small sample sizes. DEA is more vulnerable to outliers, because of its

inherent process of ‘placing each DMU in the best possible light’. As

such, DMUs with unusual production processes can easily be pro-

moted to the efficiency frontier. Because SFA estimates are derived

from full sample information, the technique is less prone to outlier

influence. Of course, it may be that ‘outliers’ are the very organisa-

tions that are most inefficient, so excluding them on the basis of

statistical criteria may undermine the exercise altogether.

Small sample sizes do not prevent the application of DEA, but as with

all parametric estimation processes, SFA estimates are likely to be more

imprecise the smaller the sample size (Banker, Gadh and Gorr 1993).

In the next section we turn to our own case study to explore the

consistency of efficiency estimates derived from applying SFA and

DEA to acute hospitals in England.
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7.4 Comparison of different methodologies

7.4.1 The methods and data

We illustrate the comparison between the two techniques using a

cross-sectional data set, as described in chapters 3 and 5 for 171 acute

hospitals in the English NHS in 1997/98. The summary statistics for

the data set are shown in Table 7.2. A more detailed discussion of the

data set is in the Appendix.

7.4.2 Model specifications

There are two major specification decisions that are likely to have a

bearing on the results:

1. the choice of functional form, error distribution and returns to

scale; and

2. the model specification, notably which explanatory variables are

included.

We first specify a baseline model (Model 1) in which total cost is

used as the dependent variable in SFA and as the input in DEA. This

model includes three activities of hospitals as the SFA explanatory

variables and DEA outputs, these being inpatients, outpatients and

A&E attendances.

When applying SFA, Model 1 assumes a linear functional form

and a half-normal distribution for the error term. These assump-

tions are subject to sensitivity analysis, by comparing the results with

those obtained when a log-log functional form is applied and when a

truncated normal distribution is assumed for the error distribution.

Model 1 is estimated by DEA under variable returns to scale as-

suming an input orientation. As some of the variables in the data set

are ratios, the BCC formulation is applied (Banker, Charnes and

Cooper 1984) as the baseline model. The sensitivity of these results

is examined by comparison with efficiency estimates obtained under

the assumption of constant returns to scale.

We then compare the baseline Model 1 with results obtained by

varying the number of explanatory or output variables. Two, more

comprehensive models are specified, as shown in Table 7.3. Model 2
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adds teaching and research activity. Model 3 includes all available

output variables and environmental adjusters.

7.4.3 Results

Sensitivity to functional form, error distribution and returns to scale

Table 7.4 gives the efficiency scores for Model 1 under the various

specification assumptions. We test the sensitivity of the efficiency

estimates to our choice of the distributional assumption of the error

term in SFA and to our choice of returns to scale in DEA.

In general the average efficiency levels for DEA are lower than for

SFA. This is to be expected, since under SFA the error term is parti-

tioned into inefficiency and error, whereas under DEA the entire

shortfall is deemed inefficiency. On the whole the efficiency scores

for the truncated and half-normal specifications under SFA are quite

similar. The log-log SFA model produces a higher estimate of average

efficiency and lower variance. This reflects the normalisation of the

error that follows logarithmic transformation. As expected the effi-

ciency scores under DEAVRS are higher than under CRS, because the

VRS more tightly envelops the data, with more DMUs being placed

on the frontier.

Table 7.3. Model specifications

Model Variable names Outputs included

1 INPATIENTS,

OUTPATIENTS, A&E

Inpatient episodes, outpatient

attendances, A&E attendances

2 As for model 1 plus

STUDENTS, RESEARCH

Inpatient episodes, outpatient

attendances, A&E attendances,

teaching, research

3 As for model 2 plus TRANS-

IN, TRANS-OUT, FCE,

EMERINDX, P-15, P-60,

P-FEM, EP_SPELL, FU-

OUTPTS, EMERGENCY,

MFF, AVBEDS, HEATBED,

SITES50B, ITINDX,

HERF15

All outputs and environmental

adjusters
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Table 7.5 shows the correlations between the various efficiency

scores for the variants of the baseline model. As might be expected

there is a reasonable amount of internal consistency within each of the

two analytical techniques. However, the estimates derived from

the two DEA models are more weakly correlated with those from

the three SFA models.

In Table 7.6 we examine the efficiency scores and ranks for a few

hospitals to illustrate what happens to them under the different spe-

cification assumptions within a particular model. Hospitals A and

B remain consistently efficient across all specifications, whilst Hospi-

tals C, D and E remain consistently inefficient across all specifications.

The estimated efficiency of Hospitals F to J is sensitive to specification

choice. For Hospitals F and G there is consistency within the DEA

models and with the log-log model in SFA, but not with the two linear

SFA models. For Hospitals H to J there is little agreement within DEA,

Table 7.4. Model 1 efficiency scores

SFA efficiency scores

DEA efficiency

scores

Truncated Half-normal Log-log CRS VRS

Mean 0.838 0.797 0.919 0.669 0.744

Std dev. 0.104 0.119 0.052 0.123 0.136

Min. 0.192 0.124 0.535 0.356 0.419

Max. 0.981 0.977 0.988 1.000 1.000

Efficient DMUs 4 14

Table 7.5. Correlations of SFA and DEA efficiency scores for Model 1

Truncated Half-normal Log-log CRS VRS

Truncated 1

Half-normal 0.9753 1

Log-log 0.8410 0.7230 1

CRS 0.6808 0.5936 0.7341 1

VRS 0.5247 0.4402 0.5668 0.7706 1
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most likely because scale effects have an important influence on acti-

vities for these hospitals. This suggests that organisational estimates

of efficiency can be sensitive to modelling choices other than those

concerning the selection of explanatory or output variables.

Sensitivity to model specification – the choice of explanatory variables

We now examine what happens when we make comparisons across

different model specifications by progressively expanding the set of

explanatory or output variables in the SFA and DEA models, as shown

in Table 7.7. The three SFA models apply a linear functional form and

half-normal distribution for the error; the DEA models are estimated

under variable returns to scale.

Table 7.7 provides summary statistics of the efficiency scores for

each of the three specifications estimated by the two techniques. As

would be expected, mean efficiency increases as more variables are

added. For the DEA models, this is explained mainly by more hospi-

tals being placed on the frontier – as more variables are considered,

there is a greater chance that a previously ‘inefficient’ hospital will

dominate on the added dimension and thus be considered ‘efficient’.

In the most fully specified model (Model 3), 150 hospitals are on the

frontier, leaving only 21 inefficient hospitals, compared to 157 in

Model 1.

The increase in average efficiency as the SFA models become more

fully specified comes about because progressively more of the pre-

viously ‘unexplained’ composite error is now being captured by the

addition of new explanatory variables.

Table 7.7. Descriptive statistics for SFA and DEA efficiency scores

SFA efficiency scores DEA efficiency scores

Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

Mean 0.797 0.847 0.882 0.744 0.787 0.988

Std dev. 0.119 0.094 0.096 0.136 0.137 0.038

Min. 0.124 0.164 0.282 0.419 0.437 0.769

Max. 0.977 0.979 0.984 1.000 1.000 1.000

Efficient

DMUs

14 27 150
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There appear to be some major anomalies for individual hospitals,

with estimated efficiency being sensitive to how the models are speci-

fied. This is highlighted in Table 7.8 which illustrates the change in

efficiency scores and rankings across the two techniques for a select

few hospitals.

Hospitals A and B, for instance, remain at the top of the ‘league

table’, irrespective of the technique applied to measure their efficiency,

while Hospital C is consistently ranked near the bottom. However, for

Table 7.8. Individual hospital scores and rankings under various

specifications

Hospital

DEA-1 DEA-2 DEA-3

Score Rank Score Rank Score Rank

A 1.000 1 1.000 1 1.000 1

B 1.000 1 1.000 1 1.000 1

C 0.621 144 0.626 154 0.847 169

D 0.620 145 1.000 1 1.000 1

E 1.000 1 1.000 1 1.000 1

F 0.662 124 1.000 1 1.000 1

G 0.904 26 1.000 1 1.000 1

H 0.583 153 1.000 1 1.000 1

I 0.729 83 0.732 104 1.000 1

J 1.000 1 1.000 1 1.000 1

Hospital

SFA-1 SFA-2 SFA-3

Score Rank Score Rank Score Rank

A 0.967 4 0.979 1 0.977 5

B 0.973 2 0.979 2 0.974 6

C 0.693 146 0.756 153 0.761 161

D 0.736 129 0.964 7 0.978 4

E 0.725 134 0.887 56 0.878 111

F 0.777 104 0.945 14 0.940 41

G 0.738 127 0.877 70 0.804 150

H 0.672 152 0.917 35 0.956 18

I 0.474 168 0.603 169 0.285 170

J 0.399 169 0.539 170 0.698 166
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a vast array of hospitals in between, scores and rankings can jump

quite dramatically. Hospital D for instance, is penalised in the most

parsimonous model (Model 1) but is ranked more highly by the other

models. This probably reflects the omission of teaching and research,

which are important outputs for this hospital. Hospital E is consis-

tently efficient under DEA, but is sensitive to the specification choices

under SFA. Similar movements in scores and ranks are notable for

several other hospitals. In particular, Hospital J is consistently effi-

cient under DEA but generally considered inefficient under SFA. This

may happen because DEA assigns high weights to output dimensions

where inefficient hospitals are doing badly, in order to maximise the

hospitals’ efficiency score and ‘put them in the best light’.

7.5 Conclusions

The case study illustrates the two important sets of choices which need

to be made in the SFA and DEA models and which may have a large

impact on the results, namely the choice of functional form, error

distribution and returns to scale, and the choice of model specification

or explanatory variables to be included. Our sensitivity analysis has

not been extensive. In practice, it would be preferable to analyse a

broader range of modelling assumptions.

But despite the partial nature of the sensitivity analysis, it has

revealed clear inconsistencies among the different specifications and

methods. Caution is therefore warranted before drawing precise in-

terpretations of hospital efficiency scores and rankings, or placing

sole reliance on a single specification. If the results had been well

correlated, it might have suggested the techniques were equivalent,

but in practice the correlations were fairly poor across the two tech-

niques. Even when correlations are high, these average relationships

may mask substantial movements for individual organisations. Given

that the purpose of the exercise is often to derive individual, rather

than merely average, effects it is unwise to rely solely on examining

correlation coefficients to assess sensitivity to modelling assumptions.

Finally, irrespective of which approach is applied, good practice

would be to use confidence intervals around the efficiency estimates

to determine the reliability of the results and to decide whether statis-

tical differences in efficiency are significant or simply due to sampling

error (Jensen 2000). This can be done using statistical techniques for
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SFA (Horrace and Schmidt 1996; Street 2003) or resampling boot-

strap methods for DEA (Mooney and Duval 1993; Löthgren 1998;

Hirschberg and Lloyd 2000; Barth and Staat 2005).

Ultimately, though, there is no consensus in the literature on the

‘best method’ for estimating the efficiency frontier. Some commenta-

tors have argued that consensus is not necessary, as long as a set of

consistency conditions is met (Bauer et al. 1998). To the extent that

there is no a priori reason to prefer one technique over the other, it

seems prudent to analyse efficiency using a broad variety of methods

to ‘cross-check’ the results (Stone 2002). Bauer et al. (1998) argue that

the efficiency estimates should be consistent in their efficiency levels

(with comparable means, standard deviations and other distributional

properties), consistent in their rankings, consistent in their identifica-

tion of best and worst performers, and consistent over time. Rarely,

however, are these consistency conditions likely to be met, as is the

case for the data analysed in this chapter.

In view of such inconsistency, the efficiency scores derived from SFA

or DEA should not be interpreted as accurate point estimates of

efficiency, and it would be inappropriate to take action solely on the

basis of these estimates (Hadley and Zuckerman 1994; Newhouse

1994; Skinner 1994). Indeed, use of the techniques in isolation might

create a perverse incentive for organisations to act dysfunctionally to

improve their efficiency rating, such as by engaging in creative ac-

counting, political lobbying and alteration of the input/output mix

(Nunamaker 1985).

Rather, where estimates of relative efficiency are obtained, these

might be used as signals about where to direct more investigative

energy. For any given data set, comparison of the SFA and DEA

efficiency estimates will allow organisations to be sorted into three

groups. First, there will be a group where relative efficiency is sensitive

to the choice of technique. It would be inadvisable to draw firm

conclusions about their actual level of relative efficiency. Second, there

will be organisations that appear efficient whichever technique is

adopted and however the models are specified. Further analysis of

the working practices of these organisations may be informative if a

purpose or by-product of the exercise is to share best practice. How-

ever, because DEA assigns full efficiency to unusual observations (i.e.

those which do not have peers), the method may be labelling organi-

sations as efficient when it would be more appropriate to consider
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them as outliers. It may not be good practice to make policy recom-

mendations on the basis of outlier behaviour. Finally, there will be a

group of organisations that always appear inefficient, irrespective

of the measurement technique employed. These might be deserving

of greater scrutiny to ascertain the reasons why their performance

appears to fall short of that of their counterparts.

This sorting and exploratory use of the techniques is a more appro-

priate response than basing regulatory policy on the analytical find-

ings. The efficiency estimates are too sensitive to modelling choices

and too imprecise to justify taking them at face value, and it is best

not to expect the models to yield definitive statements about relative

efficiency. In the future, the techniques may evolve to such an extent

that more concrete recommendations may emanate from their appli-

cation. For this to occur, a number of fundamental issues must be

addressed. The next chapter considers four particularly challenging

areas where further research effort is required.
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8|Unresolved issues and challenges
in efficiency measurement

8.1 Introduction

I
N this chapter we discuss four of the most important issues that

arise when seeking to use efficiency models in the health care

sector: the weights used to indicate the values of different outputs;

how the efficiency models are constructed; the treatment of environ-

mental influences on performance; and dynamic aspects of efficiency.

8.2 Output weights

There are important questions relating to the objectives encompassed

by any index of efficiency, particularly when the analysis is to be used

for regulatory purposes. Is it legitimate for the central policy maker to

attach a uniform set of objectives to all organisations? If so, is it

further legitimate to apply a uniform set of weights to these objec-

tives? If so, how should they be chosen? If not, what is the extent of

legitimate variation, and who should choose? These are fundamental

issues, the answers to which determine whether or not creating a

single measure of organisational performance is warranted. In our

view, organisations can be ranked on efficiency only if the policy

maker may legitimately (i) set objectives and (ii) attach weights to

those objectives.

When comparing organizations that are charged with meeting social

objectives, the set of output weights ought to reflect societal values.

However, it is not a simple matter to derive such weights, particularly

when organisations face multiple objectives and there is disagreement

as to organisational priorities. Ultimately the selection of objectives in

the public services is a job for the politicians charged with reconciling

An earlier version of this material appeared in Smith and Street (2005).
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conflicting claims on public resources. The main role for analysts is to

clarify the choices required of policy makers, to provide evidence on

popular preferences, and to develop measurement instruments that

most faithfully reflect the chosen objectives. Note that policy makers

are effectively attaching a zero weight to any output that is excluded

from the efficiency index.

In order to clarify the role of weights, consider Figure 8.1, the econo-

mist’s traditional production possibility frontier FF for an organisation

producing two outputs y1 and y2, reflecting two societal objectives. Two

sets of preferences are illustrated by indifference curves I1I1 and I2I2,

giving rise to different preferred points of production. The slopes of these

curves at the points of tangency with FF reflect the relative valuations of

the two objectives. In this case, Individual 1 places a higher relative

valuation on objective y1 than Individual 2. In general, there will be no

agreement on what constitutes the preferred mix of outputs.

The use of the linear performance index implicit in efficiency ana-

lysis suggests that resolution of the trade-off problem should be guided

by maximising a linear function of the two outcome measures, which

are combined into a single composite indicator. The parallel lines in

Figure 8.2 indicate different values of a chosen composite indicator,

with scores increasing towards the top right-hand corner. Choice of

the point P* on the possibility frontier would be optimal in this

example, giving a composite score indicated by the line C1C1. Given

Figure 8.1. The production possibility frontier: different preferences lead to

different weights.
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the weights used in the composite indicator, choice of any other point

on the frontier would be considered inferior (allocatively inefficient).

In practice, few organisations will be precisely on the possibility

frontier. Rather, each will exhibit some level of technical inefficiency,

which leads to observed outputs lying within the area indicated by the

efficient frontier. In Figure 8.2, the point X indicates a realised level of

performance in one organisation. According to the composite indica-

tor, this secures a level of overall efficiency indicated by the line C2C2,

reflecting the fact that (i) the chosen mix of outputs diverges from the

‘optimal’ and (ii) performance lies within the frontier. The measure of

organisational efficiency can be represented by the ratio of the com-

posite scores indicated by lines C2C2 and C1C1, the extent to which

performance falls short of the maximum attainable and desired, this

being the product of technical and allocative efficiency. This argument

is readily extended to S outputs.

If we are unable to apply a uniform set of weights, there may never-

theless be circumstances in which all will agree that some organisations

performbetter than others. Figure 8.3 illustrates five organisationswith

identical expenditure levels and environmental circumstances. Under

most assumptions about preferences, Organisation A is unambiguously

inferior to Organisation D in the sense of being technically inefficient.

Furthermore, Organisation B is inferior to a linear combination of

organisations D and E, represented by the point B*. However, the

Figure 8.2. Composite scores indicated by the lines C1C1 and C2C2.
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ranking of the Organisations C, D and E lying on the observed frontier

depends on the relative weights we choose to apply to outputs y1 and y2.

This cannot be achieved without introducing a composite indicator

that reflects preferences for the two objectives.

In principle, the set of weights to be used in an efficiency index

could be derived from a range of sources, such as economic studies of

willingness to pay or conjoint analysis. An example (albeit the subject

of fierce criticism) was the survey undertaken by the World Health

Organization to infer the relative importance of health system outputs

(Williams 2001). However, rather than being externally agreed upon,

in most efficiency analysis studies the weights are generated as a by-

product of the statistical estimation process. Indeed, some see this as

an attractive feature of the methods (Cooper, Seiford and Tone 2000).

Within the parametric paradigm, it is not a trivial matter to take

account of multiple outputs. Approaches include the creation of a

single index of outputs, estimation of a cost function rather than a

production function, or the use of distance functions (Shephard 1970;

Coelli and Perelman 2000; Löthgren 2000). Irrespective of the ap-

proach, the estimated magnitude of the weight for each output usually

corresponds to the value implicit in the sample mean cost of producing

an additional unit of output s. Using a linear model, the weight bs
attached to output s indicates the value of an additional unit of that

output, which remains constant for all levels of attainment of ys. If a

Figure 8.3. Observed performance of five systems with identical expenditure

and environment.
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logarithmic model is used, bs indicates the percentage increase in

composite attainment implied by a one percent increase in ys. Hence

the parametric approach is conservative in the sense that it implies

that the existing expenditure choices of organisations (on average)

reflect the values placed by society on the outputs. If this is not true,

the estimated weights will not be appropriate.

As discussed in sub-section 5.3.3, in conventional DEA the weights,

Us, are allowed to vary freely, so that each organisation is evaluated in

the best possible light. Indeed one quite frequently finds in uncon-

strained DEA that the highest efficiency score for an organisation can

be secured simply by assigning a zero weight to one or more outputs

on which it performs poorly. There has therefore been some attention

to rules for restricting the flexibility of weight variations (Allen et al.

1997), but the efforts to date have been poorly informed by economic

theory, and mainly confined to technical considerations (Pedraja-

Chaparro, Salinas-Jimènez and Smith1997). The lack of a single set

of weights implies that it is never appropriate to rank DEA efficiency

scores in a conventional ‘league table’ format.

The assumptions underlying the derivation ofweights inDEAand SFA

are crucial to the judgements on efficiency they offer. It is, of course,

possible that the weights emerging from statistical studies correspond to

political preferences.However, we are not aware of any studies that have

sought to verify this. At the very least, we would suggest that there is a

need for careful dialogue between policy makers and analysts to ensure

that the methods used reflect policy requirements.

8.3 Modelling the production process

Having decided upon what objectives are to be considered, and their

relative importance, the next problem concerns how to model the

process by which these may be achieved and the constraints that limit

levels of attainment. That is, in the context of Figure 8.1, how is the

production possibility frontier to be formalised? The focus of interest

differs depending on whether one adopts a research perspective or a

managerial perspective.

The research interest in productivity models is predominantly in

the structure and determinants of the production process rather

than specific efficiency estimates for individual organisations. Count-

less research questions present themselves. For example: What is the
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marginal productivity of a factor of production? How do returns to

scale vary? What influence do external environmental factors have on

efficiency? What is the aggregate level of inefficiency in the sector?

These are all important questions with potentially important policy

implications. However, they all fit into the traditional empirical re-

search model in that they seek to identify aggregate (or sample aver-

age) patterns within the data. Modelling is usually a means to the end

of securing a more satisfactory aggregate model with which to address

the research questions.

In contrast, the managerial or policy interest is in the estimate of

efficiency for individual organisations. This estimate is derived from

the residual or organisation-specific effect, and the model parameters

are no longer the main interest. This switch of attention turns the

statistical model on its head. We believe that this may require a

fundamental rethink in modelling methodology.

Traditional statistical methodology seeks to develop an empirical

model that satisfies particular acceptability criteria, such as consistency

(as the sample size increases, does the estimate of interest converge to

its ‘true’ value?); unbiasedness (is the expected error in the estimate

zero?); efficiency (is the sampling variance of the estimate as small as

possible?); robustness (is the estimate robust to potential model mis-

specification, missing information and measurement error?); and par-

simony (is the model as simple as possible?). Although analysts

frequently use heuristics (such as the 95 per cent significance criterion),

the implications of technical choices for model estimation are generally

well understood, so that an informed observer can understand the

degree of certainty with which inferences can be made.

However, there is no guarantee that a statistical model that satisfies

such traditional modelling criteria is necessarily fit for the purpose of

inferring the efficiencies of individual organisations. To take just a

simple example, there might exist a small number of ambulance

authorities that suffer a cost disadvantage in their emergency function.

In developing an empirical model, the analyst might acknowledge this

possibility and test a measure of rurality as a potential independent

variable, perhaps using a conventional rule such as the 95 per cent

significance hurdle. The rurality variable may not pass this test, and

will be excluded so as to yield a more parsimonious model that passes

misspecification tests. In conventional modelling terms, the variable is

excluded from the preferred model on the grounds that it is immaterial.
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However, it may be highly material for the small number of ambu-

lance authorities whose residuals (and therefore efficiency estimates)

are adversely affected by its exclusion. Therefore the model may be

fit for its research purpose, but not for its managerial purpose.

Conversely, one could pay no attention to the parsimony criterion

and indiscriminately include all potential explanatory variables in the

productivity model. In the extreme, this might result in modelling the

performance of all observations without error, leading to the conclu-

sion that all are equally efficient. If, in reality, there is some variation

in efficiency, the inability to detect it arises because some of the

explanatory variables are correlated with efficiency. One therefore

needs a very clear idea of the production process and the constraints

upon that process if one is to model individual efficiency satisfactorily.

As with all modelling, the ideal is that technical choices should be

informed by the costs of incorrect inference. In all likelihood, every

organisation exhibits a level of inefficiency with respect to a true

production frontier that is unobservable. The managerial concern is

in the extent to which the chosen model misrepresents this true effi-

ciency. An underestimate of individual efficiency (analogous to a Type

1 error) may result in a number of mistaken managerial actions, such

as setting financial penalties, replacement of local management,

demanding infeasible improvement targets, or closure of the opera-

tion. An overestimate of efficiency (Type II error) may result in

complacency or mistaken designation of an organisation as a beacon

of excellence. Errors of either sign can arise from model misspecifica-

tion (omitted variables, functional form) or measurement errors. In

principle, productivity modelling methodology should reflect such

considerations, rather than relying exclusively on the statistician’s

traditional rule of thumb.

An obvious response to uncertainty about how best to represent the

underlying set of production possibilities or technological constraints is

to conduct sensitivity analysis. In DEA, this may involve changes to the

scaling assumptions and bootstrapping estimates to assess statistical

significance (Simar and Wilson 2004). In SFA, statistical techniques

allow different functional forms, different distributions of inefficiency

and the calculation of confidence intervals around inefficiency estimates

(Street 2003).

Clearly such analysis is good statistical practice (Goldstein and Spie-

gelhalter 1996). However, the extent to which results are robust to these
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choices depends on the complexity of the underlying production process.

In industries with a relatively simple production technology, it can be

expected that results are not highly sensitive to defensible variations in

technical choices. For instance, estimates of the efficiency of companies

providing water and sewerage services in the UK appear robust in the

face of sensitivity analysis (Office of Water Services 1999). In contrast,

and as typified by the example in chapter 7, different models applied to

health sector organisations rarely yield definitive or consistent conclu-

sions. Quite modest changes in the choice of analytic technique and

model specification lead to major changes in inference about efficiency,

reflecting the great complexity of health care and the importance of

idiosyncratic (unexplained) influences on performance (Harris 1977).

8.4 Environmental constraints

In addition to difficulties in specifying the production process, effi-

ciencymeasurement of health care organisations is further complicated

by the need to take account of influences on performance that lie out-

side organisational control. Numerous classes of factors may influence

measured levels of organisational attainment. These include:

� differences in the characteristics of citizens being served;

� the external environment – for example, geography, culture and

economic conditions;

� the activities of other related agencies, both within and outside the

health sector;

� the quality of resources being used, including the capital stock;

� different accounting treatments;

� data errors;

� random (or idiosyncratic) fluctuation;

� different organisational priorities;

� differences in efficiency.

In the short run, many of these factors are outside the control of the

organisations under scrutiny. These are commonly labelled ‘environ-

mental’ variables. In the longer term, a broader set of factors is

potentially under the control of the organisations, but the extent and

nature of this control will vary depending on the context. So, for

example, the short-run efficiency of a hospital should be judged in

the light of the capital configuration that it has available. Yet, in the

174 Measuring Efficiency in Health Care



longer run, one might expect the hospital to reconfigure its capital

resources when this is likely to lead (say) to lower unit costs.

In whatever way the uncontrollable environment is defined, it is

usually the case that some organisations operate in more adverse

environments than others, in the sense that external circumstances

make achievement of a given level of attainment more difficult. This

means that – for a given level of expenditure – the production possi-

bility frontiers of different organisations will not be identical. The

frontiers for organisations operating in difficult environments will lie

inside those of more favourably endowed organisations, and the en-

vironmental influences on organisational outputs should therefore be

incorporated into statistical models of efficiency.

In some circumstances, as mentioned in section 2.6, it may be

possible to simplify the ‘environmental’ problem if organisations (such

as health authorities or primary care trusts) have already been com-

pensated financially for environmental circumstances through a fund-

ing formula. A funding formula seeks to enable organisations to

deliver some ‘standard’ level of service, given environmental factors.

So, if the funding formula is doing its job properly, there is no need to

incorporate such factors into the productivity model. Indeed, all that

may be needed is to examine the extent to which the standards have

been secured. In short, one may need to examine only effectiveness,

and not incorporate inputs (either resources or environment) into

the model at all. However, in practice, most funding formulae com-

pensate only imperfectly for environmental factors (Smith, Rice and

Carr-Hill 2001).

There is an active debate about how to incorporate environmental

factors into DEA (Fried et al . 2002). As discussed in sub-section 5.3.6,

one option is to include an environmental variable as one of the inputs

in the production model. In DEA, this means that organisations will

be compared only with organisations operating in identical or more

adverse environments. Those operating in the most adverse environ-

ments will automatically be deemed 100 per cent efficient. Another

possibility is to estimate the model without environmental variables,

and incorporate them only in a second-stage analysis, which seeks to

explain efficiency scores as a statistical function of environment. This

is problematic given that the dependent variable (the efficiency scores)

will comprise a set of serially correlated values (Simar and Wilson

2004). As yet there is no generally accepted methodology for how to
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account for environmental variables in DEA models or how to test

whether an environmental variable is a ‘significant’ uncontrollable

influence on production possibilities.

With respect to SFA, when undertaking analysis from a regula-

tory perspective, a necessary condition is that all variables included

as regressors are indicators of environmental factors beyond organisa-

tional control (Giuffrida, Gravelle and Sutton 2000). Again, this

contrasts with the traditional approach to statistical model-building,

where the aim is to select a set of explanatory variables that best

explain variation in the dependent variable. It is quite likely that many

potential explanatory variables are indicators of both environmental

effects (which we would wish to include in the model) and policy or

efficiency effects (which we would wish to exclude from the model).

Most statistical modelling of efficiency relies on traditional variable

selection devices to test whether an environmental variable should be

included in the model. However, statistical modelling in these circum-

stances usually requires a great deal of knowledge of the context of the

problem and an element of judgement as to which variables to include.

Formal model selection devices are of limited use, and there is unlikely

to be consensus as to the most appropriate choice of model.

The model selection problem is compounded when using SFA,

because the analyst must make a joint decision regarding the variables

to include and the model’s error structure. Recall that unexplained

variation from predicted output is decomposed into two parts: sym-

metric random error and one-sided inefficiency. Suppose, therefore,

that we wish to test an environmental variable for inclusion in a SFA

model. It will be a candidate for inclusion if it ‘explains’ a material

proportion of the overall residual and therefore exhibits what is con-

ventionally termed a statistically significant model coefficient. How-

ever, the attribution of a statistically significant effect to the additional

explanatory variable may be for one or both of the following reasons:

1. It explains some of the random error. This implies that the original

model suffered from omitted-variable or functional-form misspeci-

fication.

2. It explains some of the inefficiency error. This implies that the

variable is correlated with the original estimates of inefficiency.

Whether the new variable should be included depends onwhether it is

judged to measure an unavoidable hindrance to reaching the estimated
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frontier (in which case it would be included) or some potentially

controllable characteristic of inefficient organisations (in which case

it would be omitted). There is no scientific guide to making this judge-

ment. It can be made only with reference to the context of the specific

production process under scrutiny.

8.5 Dynamic effects

One of the most problematic issues in productivity analysis is the

treatment of dynamic effects. Generally, organisations operate within

an historical context, drawing on past inheritances and making invest-

ments toward future performance. This implies that the production

process should be modelled in a dynamic fashion, in which contem-

porary performance is to some extent dependent on previous invest-

ment, and contemporary inputs are to some extent invested for future

outputs. This concept was introduced in sub-section 2.5.2.

The correct production model for examining current performance

should include among its inputs the endowment bequeathed to current

management by previous organisational efforts. This is a fiercely

complex issue, as many such organisational endowments defy satis-

factory measurement. For example, current performance of public

health efforts to improve morbidity rates among the population may

reflect previous efforts in disease prevention. In some senses these

previous efforts can be considered an uncontrollable ‘environmental’

influence on current managerial performance. Yet, in general, we have

no concrete way of quantifying this potentially important input, and

most studies ignore such factors.

Equally, some elements of current effort may be directed towards

future attainment. For example, investment in health promotion activ-

ities may not yield discernible achievements until years after the activ-

ities have been completed. Again, in principle, we should include such

endowments as an output from the current period. In practice, they are

extremely difficult to capture in efficiency assessments, especially as the

investment effort may itself contain an element of inefficiency.

The implication for efficiency analysis is that any cross-sectional

assessment of contemporary attainment should in principle accommo-

date the inherited endowment of previous actions, and the endowment

left for future management. Färe and Grosskopf (1996) develop a

dynamic programming framework that seeks to recognise inheritances
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and endowments in the context of DEA models, and demonstrate the

enormous complexity of the issues involved. In applying SFA it is

becoming feasible to model dynamic effects using panel data techni-

ques (Bond 2002). However, such modelling is likely to remain a

challenging endeavour, even given adequate data and estimation meth-

ods, and its usefulness for efficiency measurement has yet to be

assessed.

8.6 Conclusions

In this chapter we have raised four issues that require further con-

sideration before the techniques of efficiency analysis can be fit for the

purpose of regulation. Statements about relative organisational effi-

ciency cannot be made unless the organisations being compared pur-

sue a common set of prioritised objectives. The appropriateness of the

analytical model cannot be evaluated using standard testing proce-

dures, and the evaluative task is more demanding the more complex

the production process and the more heterogeneous the environmental

constraints each organisation faces. The historical context in which

organisations are located can rarely be fully appreciated by the analyst,

and this lack of knowledge places constraints on model construction

and interpretation.

The techniques of efficiency analysis described in the earlier chapters

require further development before they can adequately deal with these

issues. Moreover, alternative approaches exist that may offer greater

flexibility in model construction and novel insights into organisational

performance. We turn to these in the next chapter.
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9|Some alternative approaches to
measuring performance

9.1 Introduction

I
N the preceding chapters we have raised a number of concerns

about the use of both parametric and non-parametric methods to

draw conclusions about the relative efficiency of health care orga-

nisations. Many of these concerns relate to the fundamental problem

of trying to derive a composite measure of organisational performance

in contexts where multiple objectives are pursued or multiple outputs

produced. Other concerns relate to the difficulty of formulating a

coherent model of the production process and of ascertaining what

constitute the environmental constraints that each organisation faces.

In this chapter we consider some alternative approaches to analysing

the performance of health care organisations that seek to address some

of these issues. We must emphasise that these approaches are experi-

mental, and address only some of the concerns raised in the preceding

chapters. However, they do illustrate that, depending on the purpose

of the analysis, the potential exists to use a wider range of analytic

tools than traditionally recommended in the efficiency literature.

The techniques discussed in this chapter address two distinct issues:

the hierarchical form into which most health systems are organised,

and the pursuit of multiple objectives when there is little consensus

as to their relative priority. To this end, in section 9.2 we describe how

multilevel modelling can be used to gain insights into the impact of

different hierarchical levels on specific aspects of performance. Section

9.3 then examines the potential for using seemingly unrelated regres-

sions to model simultaneously a set of multiple performance measures.

In section 9.4 we indicate how these techniques can be integrated into

a multivariate, multilevel model of performance.

The material in this chapter draws on three published papers: Hauck, Rice and
Smith (2003); Martin and Smith (2005); and Hauck and Street (2005).
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9.2 Multilevel modelling

All health systems are organised hierarchically. Individual physicians

operate within clinical teams, which in turn may be based in depart-

ments, within hospitals, within administrative areas. A key policy

question that therefore arises is: to what level of the hierarchy are

variations in health system objectives attributable? Traditionally,

although many commentators make the distinction between macro-,

meso- and micro-level aspects of the health system, few analytic

studies seek to model these distinct levels explicitly. Most efficiency

analysis (including the examples in the preceding chapters) is under-

taken at the meso level of hospital or administrative authority.

However, statisticians have developed multilevel (or hierarchical)

models to reflect explicitly the multilevel nature of organisational

structures. These have been deployed extensively in the education

sector (Hill and Goldstein 1998), and there have been a number of

applications in health care (Rice and Jones 1997). The question this

chapter addresses is the extent to which multilevel models could be

used to shed new light on organisational performance. The statistical

models used to address the hierarchical structure are variations on the

familiar regression-based theme. However, the error term is decom-

posed into parts attributable to each level of the hierarchy. For exam-

ple, if the dependent variable is some measure of patient outcome

arising from hospital treatment, a simple two-level model yields esti-

mates of the ‘hospital effect’ on patient outcomes (after adjusting for

any independent measures of patient need) and the residual ‘individual

effect’. The insight of this section is that the estimate of the hospital

effect might be used as the basis of an organisational performance

indicator, and that failure to exploit the multilevel nature of the data

can lead to erroneous conclusions about organisational performance.

To illustrate, consider first the application of traditional meso-level

analysis to the three hospitals shown in Figure 9.1. Suppose the

measure of outcome for each of the three hospitals comprises a sum-

mary of the outcomes experienced by all patients treated in the hospi-

tal, for example the mortality rate. A conventional regression model,

with the hospital as the unit of observation, might take the following

form:

yj ¼ b0x0 þ bxj þ uj (9.1)
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Where yj are the average outcomes experienced by patients treated

in hospital j; b0x0 is a constant term and bxj is a vector of hospital-

level variables thought to explain patient outcomes over and above the

influence of the hospital, such as the average severity of the condition

suffered. The error term ūj is assumed to have zero mean and constant

variance, and can be interpreted as the vertical departure from the

mean regression line of the jth hospital. If this line is assumed to reflect

the expected level of hospital performance, these residuals can be used

as the basis for performance comparison (as in a corrected ordinary

least squares method (COLS)). The hospitals would therefore be

ranked C,A,B.

However, the average outcomes used in Figure 9.1 are derived from

individual patient data. The objective of multilevel methods is to ex-

ploit these individual-level data to best effect. Figure 9.2 shows, as

lower-case letters, the individual-level data on which the aggregates in

Figure 9.1 are based, indicating the hospital in which the patient was

treated. The multilevel methods identify the relationship between

input and outcome observed within hospitals (in this case constrained

to have equal slope) as indicated by the broken lines in Figure 9.2. The

hospital effect can now be interpreted as the vertical axis intercept of

each hospital slope, yielding a revised ranking of C,B,A.

Figure 9.1. Performance ranking using aggregate organisational data.
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In multilevel modelling the error term is therefore decomposed into

parts attributable to each level of the hierarchy. For example, if the

dependent variable is some measure of individual patient outcome

arising from hospital treatment, a simple two-level model can be

specified as follows:

yij ¼ b0x0 þ bxij þ uj þ eij (9.2)

where yij is the outcome for patient i in hospital j, i and j indicating the

two levels. Estimation will yield:

� parameter estimates, b0 and b, for the constant and for the vector of

independent variables in the model;

� an estimate, uj, of the ‘hospital effect’ on patient outcomes; and

� the residual ‘individual effect’ eij.

The parameter b0 can be interpreted as the level of performance in the

hospital with average values across the independent variables. The

terms uj and eij are error components such that uj is the random error

for the jth hospital and eij is the random error for the ith patient in the

jth hospital. These error components are assumed to have zero mean

and constant variances (s2u, s
2
e ). Small estimated values of uj represent

hospitals with close-to-average performance in securing patient out-

comes, after controlling for the set of independent factors included in

the model.

Figure 9.2. Changes in performance ranking based on hierarchical structure.
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We illustrate this using a model of the performance of the English

health system in 1991, when health care was organised hierarchically,

as shown in Figure 9.3. At the top of the hierarchy were the regional

health authorities, which were responsible for financing and super-

vising the performance of lower-level organisations, but had little

responsibility for direct patient care. Nested within the regions were

186 district health authorities, the organisations charged with plan-

ning and delivering hospital care and public health, each of which

covered a population of about 250,000. Individual-level data were not

available. However, data were available for 4,985 small areas, with

populations of around 10,000. These were merely geographical con-

structs, defined for electoral purposes, but without any organisational

identity so far as health services were concerned. These small areas

form the lowest level in our hierarchy.

We had available data for various dimensions of health system

performance and for the socio-demographic characteristics of the po-

pulations of the small areas. For this illustration we select the perfor-

mance measure ‘waiting time for routine surgery’, measured as the

ratio of actual waiting time (in days) to that which would be expected

given the age and gender of the patient and the hospital speciality to

Figure 9.3. Hierarchical data structure.
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which they had been referred. This standardised waiting time is our

measure of performance, y.

Waiting times might be influenced by factors over and above the

adjustments made in the standardisation procedure. We control for

some of these by including an index, x1, of the health needs of the

population in each small area. This needs index was developed for the

geographical allocation of National Health Service (NHS) acute sector

revenues. The index comprises various socio-demographic variables

that have been shown to be associated with the utilisation of acute

health care, as summarised in Table 9.1. It was used as the principal

basis of the geographic funding formula used in the English NHS

for ten years from 1995, and was therefore generally thought to be a

good general measure of the relative health care needs of geographic

populations, given contemporary data limitations.

We model three sources of geographical variation in waiting times:

differences in population characteristics, captured by the needs index;

systematic differences in the way regions and districts formulate and

implement health care policies; and random fluctuations. We therefore

specify a three-level random intercept model as follows:

yijk ¼ b0x0 þ b1x1ijk þ v0k þ u0jk þ e0ijk (9.3)

where yijk represents performance indicator y in the ith small area

within the jth district within the kth region, x0 is a constant and x1ijk
represents the needs index x1 in the ith small area. The parameters b0
and b1 can be interpreted as the mean intercept and the mean slope

across all small areas in all districts in all regions. The terms v0k, u0jk
and e0ijk are error components such that v0k is the random error

for the kth region, u0jk is the random error for the jth district within

the kth region and e0ijk is the random error for the ith small area

within the jth district within the kth region. All are assumed to have

Table 9.1. Socio-demographic data used in needs index

Standardised mortality ratio for ages 0–74

Standardised limiting long-standing illness ratio for ages 0–74

Proportion of pensionable age living alone

Proportion of economically active unemployed

Proportion of dependants in single-carer households
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zero mean and constant variance (s2v, s
2
u, s

2
e ). We can interpret v0k as

the parallel departure from the mean regression line (b0x0 þ b1x1ijk) of
the kth region, and u0jk as the jth-district departure from the kth

region in which the jth district is nested. Small estimated values of

v0k and u0jk represent regions and districts close to average perfor-

mance whilst large estimated values of v0k and u0jk represent regions

and districts that deviate markedly from average performance. Interest

lies in estimating the parameters b0, b1, s2v, s
2
u and s2e .

The analysis of the residual variances provides information on the

extent of variability in performance at different hierarchical levels.

The proportion of variance attributed to districts and regions can be

interpreted as a quantitative indicator of the degree to which health

authorities may be able to influence the observed performance mea-

sure. In order to obtain a quantitative measure of the proportion

attributed to the regional level in comparison to that for the district

and small-area levels we define the intra-class correlation coefficient

for regions:

rv ¼ s2vðs2v þ s2u þ s2e Þ�1 (9.4)

with 0 < rv < 1. The closer rv lies to 1 the larger the extent to which

the variance in the performance indicator (conditional on the needs

indicator) is attributable to the regional health authority level. Simi-

larly, the proportion attributed to the district level is given by:

ru ¼ s2uðs2v þ s2u þ s2e Þ�1 (9.5)

again with 0 < ru < 1. Hence, larger values of rv and ru provide

evidence of large variations in performance across regions and dis-

tricts. This is interpreted as being indicative of marked differences in

performance that may be amenable to health authority interventions.

Table 9.2 shows the estimates from model (9.3) for the waiting

time performance indicator, indicating the intercept and slope coeffi-

cients and their standard errors, the variances attributable to regional,

district and small-area levels and their standard errors, and the intra-

class correlation coefficients rv and ru as given by (9.4) and (9.5). As

expected, the estimates of the slope coefficient are positive and sig-

nificant at the 5% level. The intra-class correlation coefficients indi-

cate that 15% of the variation in performance is attributable to

regions and 61% to districts. Both figures are significant at the 5%
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level, but they suggest that there is considerable variation across

districts within one region, and that greater influence on waiting time

performance is therefore more likely to exist at the district level.

In considering these results, it is important to bear in mind that they

may be due to factors other than variation in health authorities’

effectiveness. Other than variations in performance, the health author-

ity effects may be picking up factors such as:

� variations in data collection methods;

� differences in funding levels;

� differences in the actions of other geographically defined agencies,

such as local government.

More generally, as deployed here, the multilevel model cannot explain

why the proportions of variation attributed to region, district and

small-area levels differs. However, further work might explore this,

for example by examining the characteristics of health authorities that

explain variations in performance.

However, notwithstanding these caveats, results such as these can

offer regulators useful information on the relative performance of orga-

nisations (and individual practitioners) operating within a hierarchy

Table 9.2. Three-level random intercept model to explain proportion

of variability in performance indicators attributable to regional and

district health authorities

Parameter Description Coefficient Standard

error

b0 Coefficient of the intercept 0.988 0.025

b1 Slope coefficient on need 0.030 0.003

s2v Variance of the region effects 0.006 0.003

s2u Variance of the district effects 0.025 0.003

s2e Variance of the small-area effects 0.010 0.000

rv Proportion of conditional variance

attributable to regional health

authorities

0.15

ru Proportion of conditional variance

attributable to district health

authorities

0.61
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when a single performance measure is under scrutiny. The methods

can contribute towards a more analytically satisfactory approach to

performance measurement than the crude use of aggregate data. These

particular results confirm that variations in measures of access (waiting

time) are to a high degree attributable to health authorities. Other

models (not reported here) suggest a much smaller influence of health

authorities on measures of population health (such as mortality rates).

Thus the multilevel methods can also help indicate the domains of

health care where there is most potential for securing improvements.

Future research might examine in more detail the appropriate organi-

sational level at which to focus performance management efforts.Most

importantly from our perspective, in some circumstances the methods

might form the basis for a more analytically satisfactory approach

to performance measurement than the use of aggregate regression

methods.

9.3 Generalised statistical modelling

This book has focused mainly on composite indicators of health care

performance. However, the dominant interest of many public service

managers is in indicators of performance in specific service areas,

rather than such aggregate measures of organisational performance.

This motivates interest in modelling individual indicators of perfor-

mance, along the lines suggested above. However, there may exist

important relationships between individual performance measures

that are lost if this is pursued solely through the piecemeal develop-

ment of univariate regression models of performance. In this section,

we show how a suite of performance indicators might be modelled

simultaneously, using the methods of seemingly unrelated regressions.

To understand the potential importance of simultaneous modelling,

we first consider a very general production process with just two

indicators of organisational performance, as illustrated in Figure 9.4.

If all organisations are operating in identical environments, and using

identical inputs, the frontier of feasible production could be illustrated

by a single curve such as FF. Then all observations will lie on or inside

this frontier. However, if – as will usually be the case – organisations

vary in environment or resources used, the frontier will shift. For

example, the frontier F2 might indicate a revised frontier for a set of

organisations operating in a more adverse environment. A reduction
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in resources might operate in the same way, implying (say) that the

feasible mix of performance achieved by an organisation at point A

might be reduced to point A2 if such a reduction were implemented.

Under this view, variations in the observed performance of two

organisations might arise from a range of sources: environmental

factors, resource levels, efficiency, substitution and data quality. We

consider these five sources in turn.

1. The organisations might be operating in different environments,

leading to variations in the feasible levels of performance. For exam-

ple, different public health organisations might be operating in very

different social and economic circumstances. Such influences on per-

formance are often the most poorly understood and poorly measured

aspect of the production process in health care. As environmental

circumstances improve, so we would expect to observe improvements

in all performance measures (albeit to varying extents). Therefore,

such variations will in general give rise to a positive correlation

between individual performance measures.

2. The organisations might be devoting different levels of resource

input to the services under scrutiny. Variations in resources act in

a similar way to variations in environmental factors in altering the

capacity of the organisation to secure good performance, but are often

Figure 9.4. The production possibility frontier with two performance

indicators.

188 Measuring Efficiency in Health Care



better understood and measured. Improvements in resources poten-

tially increase the capacity for performance in all dimensions, and so

should also give rise to a positive correlation between performance

measures.

3. The efficiency of organisations might differ. Conventional pro-

ductivity models seek to focus attention on variations in overall effi-

ciency, yet run into difficulty because it is impossible to distinguish

between organisational effects caused by unmeasured resource or

environmental variations and those caused by efficiency variations.

Again, efficiency should be positively correlated with performance in

all dimensions, thereby contributing to a positive correlation between

performance measures.

4. If organisations are fully efficient, improved performance on one

indicator can be secured only at the expense of a worse performance

on others, as the organisation moves round the efficient frontier. For

example, in Figure 9.4, an efficient organisation A can improve per-

formance on indicator 1 only by reducing attainment on indicator 2

(moving, say, to point B). In contrast with (1) to (3) above, this

substitution effect implies a negative correlation between performance

measures.

5. Imperfections in data quality are inherent to all health care. These

might affect relative measured performance in a variety of ways. For

example, if the performance measures are of the form ‘attainment per

head of population’, then an overestimate of population would ad-

versely affect performance in all domains, leading to a positive cor-

relation between performance measures. If, on the other hand, the

performance measures are expressed (say) in the form ‘attainment in

domain x per employee in domain x’, then an imprecise allocation of

employees between the different domains of performance might lead

to a negative correlation between performance measures. Data imper-

fections, therefore, could contribute either positively or negatively to

correlation measures.

There are therefore numerous reasons why performance on one

indicator might be correlated, positively or negatively, with perfor-

mance on another. Of course, if we could identify and measure the

factors listed under (1) to (5) above, we could model performance on

any one indicator with some confidence. Indeed, in many circum-

stances we have available a limited set of covariates with which we

can adjust performance measures. For example, there usually exist
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measures that can serve to adjust performance measures to account for

differences in physical or financial inputs. However, these measures

are often crude and imprecise, and – in the case of environmental

factors – highly contested. And, of course, when organisations pursue

multiple objectives, there is, by definition, no straightforward measure

of organisational efficiency.

We therefore seek to move beyond the piecemeal modelling of

individual performance indicators and explicitly model covariance

between indicators, without placing impossible demands on measure-

ment instruments or modelling methodology. The fundamental in-

sight is that in many circumstances individual regression models of

performance, or more precisely the error terms from each regression,

will be linked. For example, there might be some unobservable or

poorly measured variable that has been omitted from the regressor

set. The most obvious missing variable is, of course, inefficiency itself.

We believe that simultaneous modelling of performance measures is

potentially important because:

� it economises on the need for detailed modelling of individual

performance measures;

� it economises on the need to measure factors that affect performance

across all performance measures, such as environmental factors;

� it can reduce the very large confidence intervals observed in single

equation models and caused in part by omitted or poorly measured

explanatory variables;

� the more sensitive modelling of interactions may lead to different

inferences about the level of an organisation’s performance on

specific indicators.

In short, the deployment of a more integrated model of multiple

performance indicators can secure marked reductions in standard

errors, and accordingly more secure performance rankings, without

recourse to additional data or the highly questionable aggregation

of performance indicators implicit in traditional productivity models.

The essence of the seemingly unrelated regression (SUR) approach is

to model such covariances by incorporating a latent variable, which

can be thought of as an implicit unmeasured ‘organisational’ effect on

performance across all indicators. It can be defined as any influence on

overall organisational performance, whether or not it is within the

direct control of the organisation. Each of the five factors discussed
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above might contribute to the organisational effect, which therefore

comprises an assortment of these influences on measured performance.

If separate performance indicators are related to each other in

some way, the use of ordinary least squares (OLS) to estimate sepa-

rately each regression is inefficient because it fails to utilise the in-

formation about the correlations among the indicators. Consequently,

although ordinary least squares remains a consistent estimator, it

no longer offers the most efficient estimates of the standard errors.

To avoid this loss of information, the SUR estimator can be employed

(Zellner 1962). The SUR procedure is formally known as joint gen-

eralised least squares estimation and is a method of estimating sys-

tems of regressions in which the parameters for all equations are

determined in a single procedure (Greene 2000).

Formally, in the context of I performance indicators, the system of

equations can be written in the following form (Zellner 1962):

yik ¼ b0i þ x1ikb1i þ eik i ¼ 1; 2; . . . ; I; k ¼ 1; 2; . . . ;K (9.6)

where i now indicates each performance indicator rather than each

patient or each electoral ward. Hence yik is the performance indicator

for the ith objective for the kth organisation, b0i is a coefficient, x1ik is

a 1 � qi vector of qi regressors specific to the objective i, b1i is a qi � 1

vector of coefficients, and eik is an error with E(eik) ¼ 0. By stacking

the k organisations above each other, the SUR model for the set of I

indicators may be written as:

yi ¼ b0i þX1ib1i þ ei i ¼ 1; 2; . . . ; I (9.7)

or:

y1
y2
:::
yI

2
664

3
775 ¼

b01
b02
:::
b0I

2
664

3
775þ

X11 0 ::: 0
0 X12 ::: 0

:::
0 0 ::: X1I

2
664

3
775

b11
b12
:::
b1I

2
664

3
775þ

e1
e2
:::
eI

2
664

3
775
(9.8)

where yi, b0i and ei are k � 1 vectors, X1i is a k � qi matrix, and b1i is
a qi � 1 vector.

If the performance of an organisation k on two performance indi-

cators i and p is related by unobservable factors, then eik would be

correlated with epk for i 6¼ p. By estimating a SUR model, we allow for

such correlation. This implies that:
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Eðeikeph 0Þ ¼ sip; if k ¼ h; and 0 otherwise; (9.9)

where k and h denote two different organisations.

SUR estimation transforms the errors so that they all have the same

variance and are uncorrelated. Estimation is a multistage process in

which each equation is first estimated by OLS. The residuals from

each of these estimations are then used to evaluate the error variances

both for each equation and across equations. The errors are then

transformed so that they all have the same variance and are uncorre-

lated – in other words, the SUR estimator ‘purges’ the errors of their

cross-equation correlation. The explanatory variables are then subject

to the same transformation. The rationale for this is that, if the

unobservable factor driving the correlated errors is also correlated

with other variables in the model, then the purging transformation

should be applied to the estimated coefficient on these other variables.

Finally, OLS estimation is applied to these transformed variables.

9.3.1 Illustrative example

To illustrate the principles involved with SUR estimation, we employ

a data set for 135 acute hospitals within the NHS in England, and

attempt to model three important aspects of performance, measured

by the following indicators:

� a measure of clinical quality (the readmission rate; defined as the

proportion of people discharged from hospital who are subse-

quently readmitted as emergencies in connection with the same

episode of care);

� a measure of inpatient access to health care (the mean waiting time

in days for admission for non-emergency surgery); and

� a measure of hospital efficiency (average length of stay).

A wide range of factors might explain variation in observed achieve-

ment for indicators. These explanatory factors can be divided into five

broad groups: measures of supply volume, quality indicators, demand

shifters, case mix indicators, and other supply shifters. There are three

measures of supply volume (two for outpatients and one for inpati-

ents) and eleven quality indicators. There are five demand shifters

and three of these variables are based on measures of competing

resources (general practitioner availability, a Herfindahl index of
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hospital competition, and the local availability of private hospital

beds). There are six indicators of surgical complexity (or resource

intensity) and three further variables that affect a hospital’s supply

capability.

We first employed stepwise methods to develop OLS models of

each of the three performance indicators, as shown in equations 1, 3

and 5 of Table 9.3. How these models were developed is a matter that

deserves further discussion, but it is not strictly relevant to this ex-

position of SUR methods. Further details are given elsewhere (Martin

and Smith 2005). Ramsey’s reset test revealed no evidence of mis-

specification in any of the three OLS equations, and the variables

included are intuitively plausible. However, notwithstanding the ex-

tensive data set available for this analysis, many of the variables are

only poorly measured, and we do not have measures of some poten-

tially important influences on measured performance, such as the local

demand for emergency treatment.

Table 9.4 shows the correlation matrix for the residuals from the

three estimated OLS equations. Note that the three sets of residuals

are all positively correlated. Although a test of the independence of

the three sets of residuals cannot reject the null hypothesis of inde-

pendence, a test of the independence of the residuals from the read-

mission rate and length of stay equations alone leads to the rejection

of the null at the 5 per cent level (�2(1) ¼ 5.766, p ¼ 0.0163). This

implies that these two sets of residuals are significantly positively

correlated and that there is some unobserved factor that boosts both

the readmission rate and length of stay but which has not been

included in the model. As noted above, this effect might arise from a

mixture of influences.

We therefore re-estimated all three regressions using the SUR esti-

mator, which utilises the information present in the cross-regression

error correlations. The results from this re-estimation are presented

as equations 2, 4 and 6 in Table 9.3. Although there are changes to

most of the parameter (coefficient and standard error) estimates,

these changes are modest, in part reflecting the relatively low cor-

relations between the OLS error terms and because OLS remains a

consistent estimator. However, in another study we have found corre-

lations of the order of 0.64 between the errors of separately estimated

OLS equations of the demand for and supply of elective surgery

(Martin and Smith 2003). The SUR estimation has a correspondingly
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larger impact on parameter estimates and standard errors, leading to

important changes in policy inferences. For example, the elasticity of

demand for routine surgery with respect to waiting time changes from

�0.189 to �0.035, suggesting that the increase in demand caused by a

fall in waiting times is considerably smaller than previous studies have

claimed (Martin and Smith 2003).

SUR estimation reduces the coefficient on the need for health care

variable (a measure of social disadvantage) from 1.3496 to 1.2975

between equations 1 and 2. One plausible interpretation of this might

be that need and overall inefficiency levels are positively correlated

(hospitals serving disadvantaged areas have lower levels of efficiency).

Therefore, when the SUR estimator replaces OLS, the SUR trans-

formation purges the need variable of its correlation with ineffici-

ency and the resulting SUR coefficient reflects a pure need effect on

readmissions, rather than a combined need and inefficiency effect.

9.4 Seemingly unrelated regression (SUR) in a
multilevel context

The multilevel framework can be extended to consider multiple out-

comes simply by recognising that, for the data analysed in this chapter,

the performance indicators themselves are clustered, in this context

within small areas (Gilthorpe and Cunningham 2000; Yang et al.

2002). This is a SUR model in a multilevel context.

By considering the performance indicators as the lowest tier in the

data hierarchy, the possibility of within-small-area and within-health-

authority correlation among indicators can be assessed. Thus the

Table 9.4. Correlations of OLS residuals

Readmission rate Waiting time Length of stay

Readmission rate 1.0000

Waiting time 0.0212 1.0000

Length of stay 0.2067 0.0918 1.0000

Note:

Breusch-Pagan test of independence of residuals: �2(3) ¼ 6.964, probability ¼
0.0731.
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multivariate multilevel model (MVML model) is conceptualised as a

three-level multilevel model, in which the set of I performance indi-

cators (level 1) are clustered within J small areas (level 2), which are

themselves clustered within K health authorities (level 3). The MVML

model can be written as:

yijk ¼ b0i þ x1ijkb1i þ u0ik þ e0ijk i ¼ 1; 2; . . . ; I;

j ¼ 1; 2; . . . ; J; k ¼ 1; 2; . . . ;K
(9.10)

Thus, yijk is the ith performance indicator for the jth small area

clustered within the kth health authority. The other parameters are

analogous to their counterparts in the aggregate OLS and multilevel

(ML) models, except that we now consider an additional level i.

The error terms u0ik and e0ijk are both assumed to be normally

distributed with zero mean and constant variance (s2u;i; s
2
e;i). e0ijk re-

presents the random error for performance indicator i in the jth small

area, and we assume E(e0ijke0igh
0
) ¼ 0 for a performance indicator i,

two small areas j and g, and two health authorities k and h. u0ik
captures the health authority effect. The covariance for the ith and

pth performance indicators within a health authority k is given by:

covðu0ik ; u0pkÞ ¼ su;ip (9.11)

These estimates of covariance can be used to calculate the degree of

correlation rip between performance indicators i and p:

rip ¼
su;ipffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2u;i þ s2u;p
q (9.12)

If the correlation is positive, it implies that a health authority that

has better than average performance for indicator i also has above

average performance for indicator p. A negative correlation implies

that above average performance for the one indicator coincides with

poorer performance for the other. This correlation is interpreted as

being due to unobservable influences on performance, such as the

managerial competency of the health authority or the shared influence

of environmental conditions over and above those factors that we

have controlled for. Consistent with the ML models, we estimate the

intra-class correlation coefficient as

ICCMVML ¼ s2u0ik ðs2u0ik þ s2e0ijk Þ
�1; 0 < ICCMVML < 1 (9.13)

198 Measuring Efficiency in Health Care



If there are correlations among performance indicators, the residuals

from the ML models, u0k, and the residuals from the MVML model,

u0ik, may differ for the same performance indicator i. A likelihood ratio

test can be used to determine whether the correlations among residuals

are jointly zero or not. The ML models are the restricted models

because they impose the assumption that there are zero correlations

between the residuals. The test statistic is given as:

l ¼ 2
�
LLFMVML �

�XI

i¼1

LLF ML

��
; i ¼ 1; . . .; I (9.14)

where LLFMVML is the log-likelihood function for the multivariate

multilevel model, and LLFML is the log-likelihood function for a multi-

level model applied to a single performance indicator. Asymptotically,

l has a chi-square distribution. A significant test statistic indicates that

estimation as a MVML model is preferable to separate estimation of a

set of ML models, and implies the presence of correlation among

performance indicators. (Note that the test cannot be used to identify

the particular performance indicators among which the correlation

exists).

9.4.1 Illustrative example

We illustrate the application of SUR techniques in a multilevel frame-

work by returning to the example introduced in the first part of this

chapter. Here we analyse district performance across thirteen perfor-

mance indicators, including waiting times. These indicators are listed

in Table 9.5. The data are structured as shown in Figure 9.5, with

performance indicators clustered within small areas, which are nested

in districts. To simplify the exposition in this section, however, we

ignore the clustering of districts within regions.

The likelihood ratio test comparing the ML and MVML models

clearly rejects the null hypothesis of jointly zero correlations among

the residuals (ldf¼78 ¼ 9,495, p < 0.000). This indicates that the

MVML model improves inference by allowing explicitly for correla-

tions among the performance indicators. The correlation coefficients

for the health authority effects across the various indicators are pre-

sented in Table 9.6. Coefficients with an asterisk are significant at the

5 per cent level.
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Table 9.5. Performance indicators and socio-economic variables

Performance indicators and variable descriptions

Health outcome

SMR064 Standardised mortality ratio for ages 0–64

Ratio of observed deaths from all causes in an area to the

expected equivalent given the local age/sex profile and

national averages

SMR6574 Standardised mortality ratio for ages 65–74

Ratio of observed deaths from all causes in an area to the

expected equivalent given the local age/sex profile and

national averages

SIR074 Limiting long-standing illness for ages 0–74

Ratio of observed number of people reporting limiting

illness in an area to the expected equivalent given the

local age/sex profile and national averages

Clinical quality

EMOLD Emergency admissions of elderly people

Ratio of the rate of over-65 emergency admissions

originating from an area to the expected given the age,

sex and speciality of a patient and national averages

DEATHS Deaths following hospital surgery

Ratio of thirty-day perioperative mortality after elective

and non-elective surgery to the expected equivalent given

the age, sex and case severity of a patient

Access

WTSURG Waiting time for routine surgery

Ratio of actual waiting time in days for routine surgery to

the expected equivalent given the age, sex and speciality

of a patient and national averages

WTRADIO Waiting time for radiotherapy

Ratio of actual waiting time in days for radiotherapy to the

expected equivalent given the age, sex and speciality of a

patient and national averages

WTLONG Percentage of those on waiting list waiting for twelve

months or more

Proportion of elective surgery admissions waiting for more

than one year standardised for patient characteristics

GPACCS Accessibility to general practitioners (GPs)

Indicator of relative accessibility given the supply of GPs,

the distance to surgeries and the competition from local

populations
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Performance indicators and variable descriptions

ELECTEPS Number of elective surgery episodes

Ratio of standard surgery procedures originating from an

area to the expected equivalent given the age, sex and

speciality of a patient

Efficiency

DCRATE Day case rate

Proportion of elective episodes in routine surgery treated as

day cases standardised for patient characteristics

MATCOST Maternity costs

Ratio of speciality-specific fixed and variable costs for

episodes to the expected equivalent given national

averages

PSYCOST Psychiatry costs

Ratio of speciality-specific fixed and variable costs for

episodes to the expected equivalent given the age and sex

of a patient and national averages

Figure 9.5. Multivariate hierarchical data structure.
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We find statistically significant positive correlations among the

health outcome indicators, SMR064, SMR6574 and SIR074. These

correlations imply that in an area with above-average mortality rates

for ages 0–64, mortality rates for ages 65–74 and rates of chronic

illness are above average also. There is a statistically significant posi-

tive correlation (rip ¼ 0.41) between the two clinical quality indica-

tors, DEATHS and EMOLD, implying that areas with a higher

proportion of emergency admissions also report more deaths follow-

ing hospital surgery. There is an almost perfect correlation between

WTSURG and WTLONG (rip ¼ 0.95), suggesting that one of these

indicators is redundant.

These two measures of waiting time have a significant negative cor-

relation with the health outcome measures (from rip ¼ �0.25 to rip ¼
�0.16), which might be indicative of trade-offs between these broad

types of objectives: efforts directed at reducing waiting times may

have adverse consequences for these measures of health outcome.

There is also a negative correlation between health outcomes and the

number of elective episodes (rip ¼ �0.32), which means that, in health

authorities with higher rates of illness and mortality, more elective

procedures are undertaken. In contrast, there is a significant positive

correlation between the health measures and the indicator measuring

accessibility to GPs (rip ¼ 0.47 and rip ¼ 0.48). This suggests that in

areas with above average illness and mortality rates people experience

greater difficulties in accessing GP services.

The choice of analytical approach is likely to have an impact on the

estimates of relative performance for particular districts. The sensitiv-

ity of the relative performance of each district to these decisions can

be illustrated graphically. Figure 9.6 plots the district effect estimated

by the OLS, ML and SUR mulitivariate multilevel (MVML) models

for the waiting times performance indicator. The district effect for the

aggregate OLS model, ūk, is plotted on the diagonal from the ‘bottom

left corner’ (best performance) to the ‘top right corner’ (worst perfor-

mance) of each figure. The district effects deriving from the ML (u0k)

and MVML (u0ik) models are indicated respectively by a diamond and

triangle. The vertical lines connecting these points depict the range

in values for each individual district, with longer lines indicating

greater sensitivity in individual values to the choice of model specifi-

cation. As can be seen, there is considerable volatility across the entire

series, with the relative ranking of each district varying according
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to whether OLS, ML or MVML techniques are used to analyse

performance.

9.5 Conclusions

This chapter has argued that there exist a number of promising direc-

tions for future research into efficiency analysis that involve radical

departures from the traditional parametric and non-parametric meth-

ods described earlier in the book. We have concentrated on the statis-

tical procedures needed to develop multilevel and SUR models of

performance, emphasising that model development is not motivated

by the desire to create a single composite measure of overall organisa-

tional ‘efficiency’. We would not claim that the multilevel and SUR

methods described here are necessarily useful in all circumstances, or

that they address all of the weaknesses of traditional methods. How-

ever, they can cast new light on organisational performance, and

should certainly be considered whenever data and analytic capacity

permit.

The multilevel methods described here have been well developed

in other sectors (notably education). With rapid advances in the

availability of good-quality patient-level data, the scope for deploying

Figure 9.6. Waiting time for routine surgery – sensitivity analysis of health

authority effects.
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multilevel methods in health care has increased markedly (Rice and

Jones 1997). Hitherto, most applications have been concerned with

securing improved model parameter estimates. However, there is no

reason why the methods should not be used to make inferences about

performance at different levels in the hierarchy. We have found quite

marked changes in inference as a consequence of moving from tradi-

tional to multilevel regression methods, so we believe their use should

be considered if feasible.

The SUR approach moves beyond piecemeal modelling of measures

of performance in public service organisations. SUR methods address

two drawbacks to the conventional analytic approach. First, the tradi-

tional emphasis on developing a single index of performance requires

that objectives are weighted in some way so that they can be aggre-

gated. The relative value to be placed on the objectives of organisa-

tions working in the health sector is often a political issue requiring

explicit consideration, rather than being subsumed as part of the

technical process. By analysing objectives separately – but allowing

for the possibility that they might be correlated – SUR avoids the

necessity of weighting them.

Second, from a managerial perspective it will often be more useful

to focus on individual performance measures in order to identify

where the greatest scope for improvement lies. Yet analysis of indivi-

dual performance indicators is often hampered by poor understanding

of the exogenous factors that affect performance and poor measure-

ment of those factors. The SUR methods outlined above represent a

promising technology for reducing the importance of this problem by

exploiting information arising from a series of regression models of

organisational performance.

Wemost emphatically do not claim that multilevel or SURmethods –

either individual or in tandem – offer a complete panacea for the

problem of analysing public service performance. Rather, they offer

further promising tools for gaining insights into the determinants of

performance and identifying the level of attainment of individual orga-

nisations, to be set alongside the more conventional areas of efficiency

analysis described earlier. No analytic approach can on its own answer

the questions posed by politicians, regulators, managers, service users

and the general public. However, used carefully in conjunction, they

offer great potential for enhancing our understanding of health care

performance.
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10|Conclusions
10.1 Introduction

T
H E pursuit of increased efficiency in the health care system is a

major preoccupation of most developed countries. It is likely, if

anything, to become more urgent as the pressures of technologi-

cal innovation, an aging population and increased public expectations

combine to drive up expenditure on health care still further.Moreover, it

is clear that there is only limited scope for relying on conventional

markets to deliver many aspects of health care. Therefore, some sort of

regulatory mechanism is needed to ensure that providers are deliver-

ing health care in line with payer requirements, whether that payer is

an individual patient, an insurance fund, a local government or the

more general taxpayer. We would argue that quantitative analysis of

the sort described in this book is an essential prerequisite of any proper

regulation in the health care domain.

We have claimed that the ultimate aim of such analysis should be to

assess the cost-effectiveness of a health care organisation, measured as

the ratio of its valued outcomes to the resources it consumes. Fewwould

argue with this goal in principle. Indeed, it is quite straightforward to

estimate cost-effectiveness if certain conditions hold:

� there is consensus on the goals of the organisation;

� all outputs and inputs can be measured;

� the outputs can be readily valued and combined into a single measure

of effectiveness;

� the organisation relies only on its own inputs to secure those outputs,

and not on joint work with other organisations;

� it is straightforward to account for any environmental difficulties

the organisation experiences in securing its results.

In practice, of course, these conditions do not hold. Indeed, it is the

routine breach of these conditions that is such a striking characteristic
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of much health care, and that results in the complex regulatory

problem.

We believe that the techniques described in this book offer impor-

tant support for the regulatory function. The volume of data available

to assess health care performance has increased considerably, as health

care organisations have been obliged to submit standardised electronic

information, whether for performance monitoring or billing purposes.

In future, even more detailed, timely and accurate information is likely

to be produced, facilitated by continually improving technological

capabilities and innovations such as the electronic health record. The

traditional problem of inadequate, unreliable, delayed and inconsis-

tent data is therefore being replaced by one of data overload, and a

need to synthesise the information into meaningful regulatory mes-

sages. The methods of efficiency analysis described in this book have

great potential to satisfy this need. In particular, we feel they make two

unique and important contributions: offering information on the

weights attached to health care outputs, and assessing the causes of

unexplained variation in performance. We discuss these in turn.

10.2 Output weights

In principle, it is possible to envisage various experimental or survey

methods that could secure information on the valuations attached to

health care outputs. For example, the World Health Organization

(2000) undertook a survey of key informants to estimate the relative

valuation placed on five health system outputs. Various other techni-

ques are available to infer popular valuations (Ryan et al. 2001).

However, these methods require careful methodological development,

may require very large samples, are the subject of fierce debate, and

can reveal very large variations in individual preferences.

In contrast, the methods of efficiency analysis offer information on

weights as a natural by-product of the analytic process. In the case of

parametric analysis, the weights are the estimated coefficients on the

various outputs. They indicate the value – at the margin – of an addi-

tional unit of output. In general, the estimation procedures used imply

that the sample average valuation of the output determines the appro-

priate weight to use. This assumes that – on average – organizations

apply the socially optimal priority to each output. In a non-market

setting, this assumption is open to challenge. However, regulators will
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often feel that, in the absence of clearer guidance from policy makers, it

is a reasonably neutral assumption. We would merely note that the use

of parametric output coefficients is conservative, as it reflects current

practice, and that it may therefore not always accurately reflect current

policy priorities.

DEA adopts a completely different approach to output weights. In

its simplest form, it permits complete flexibility in the weights adopted

by each organisation, and therefore allows each organisation to be

assessed with an entirely different set of weights. It simply requires

that, given its choice of output weights, the organisation must be

assessed against all other organisations, using that same set of weights.

DEA then searches for the set of weights that cast the organisation in

the best possible light. It therefore offers conservative judgements on

its level of inefficiency, because that set of weights may not conform to

the regulator’s chosen priorities.

We have discussed the treatment of weights in more detail in

chapter 8. We conclude that there is a pressing need to ensure that –

whatever method is used – the technical analysis should be assessed in

the light of the regulator’s policy priorities. There is no single satisfac-

tory approach to the treatment of output weights. Rather, the regula-

tor needs always to consider explicitly how weights should be set, and

to ensure that technical analysis is consistent with that choice. The

methods described here can be used to inform but not determine the

choice of weights.

10.3 Partitioning unexplained variation

Once a set of output weights has been chosen, it is a straightforward

matter to construct a ratio of outputs to inputs (expressed as costs). This

simple cost-effectiveness ratio may then be used to rank organisations,

and there is no need for analytic techniques. However, a widespread

concern in health care is the extent to which such rankings ignore

external influences on performance, such as differences in patient char-

acteristics, differences in geography, differences in input prices, and other

factors outside the direct control of the organisation. A fundamental role

of efficiency analysis is to offer a range of technologies for handling this

complication.

The simplest approach to handling an environmental factor in both

parametric and non-parametric methods is to enter it as an additional
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uncontrollable input into the model specification. This effectively

‘excuses’ any unexplained variation in performance correlated with

the factor, and therefore results in increased estimates of efficiency

among those organisations suffering especially adverse circumstances

associated with the environmental factor.

Although having the merit of simplicity, such direct methods suffer

from both methodological and practical difficulties, and a variety of

multistage analytic techniques have been developed to accommodate

environmental factors. These remain the subject of academic debate,

and the analyst often has a delicate job of balancing the demands of

methodological rigour and practical usefulness. Moreover, most meth-

ods assume that the environmental variables can be measured, and

that their potential impact on performance is uncontested. In practice

this is often not the case. The analyst often has available only proxy

measures of the environment (for example, measures of population

morbidity might be approximated by measures of mortality).

Variations in measured performance can be due to many factors:

differences in the citizens being served; the external environment – for

example, geography, economic circumstances, other agencies, culture;

the quality of resources being used; different accounting treatments; data

errors; random fluctuation; different organisational priorities; and dif-

ferences in efficiency. There are often heated professional debates about

which factors are legitimate uncontrollable influences on performance

andwhich are within the control ofmanagement. Efficiency analysis can

only partially contribute to these debates. There will always be room for

argument over whether the apparent correlation between a putative

explanatory factor and inefficiency is because it genuinely indicates an

inhibition to better performance, or merely reflects a tendency of orga-

nisations with certain characteristics to performpoorly.Moreover, much

depends on the purpose of the analysis. In the short run, very littlemay be

controllable by the health care organisation, whilst in the longer term

factors such as capital stock can be reconfigured. The regulator therefore

needs to have a clear idea of the required scope of the analysis.

Stochastic frontier methods seek to address the problem of un-

controllable influences on performance by partitioning the variance

into an efficiency element and a random element. This may appear to

obviate the need to measure all potential environmental factors, as

they may be captured in the random element. However, as chapters 3,

4 and 8 discuss, this makes strong assumptions about the nature of the
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omitted environmental variables, and requires apparently arbitrary

judgements about the nature of the one-sided error term. We believe

that this is a fundamental weakness of SFA that requires further

methodological examination.

In chapter 9 we introduced an alternative approach to modelling

multiple outputs when environmental factors are unknown or unmea-

surable, using the methods of seemingly unrelated regression. As dis-

cussed, this method is experimental and also has its limitations. In

particular, it focuses on the performance of individual outputs rather

than offering a global measure of inefficiency. However, we argue that

this may in some circumstances be more useful than seeking out the

global measures that have been the traditional focus of efficiency

analysis.

10.4 Unresolved technical issues

Given twenty-five years of concerted endeavour by a large research

community, it may seem surprising to claim that there remain some

fundamental methodological challenges for the theory and practice of

efficiency analysis. Yet throughout this book we have found it neces-

sary to highlight unresolved difficulties that the analyst must address

in order to develop a satisfactory model.

In chapter 3 we suggested that the most singular difference between

efficiency analysis and conventional analytic techniques is the switch

in emphasis from the model coefficients to the unexplained residual.

To a greater or lesser extent, the residual is interpreted as an indication

of inefficiency. We do not believe that conventional model-building

methods are appropriate given this changed focus. In particular, ser-

ious consequences might arise for individual organisations and the

broader health system if inefficiency is incorrectly estimated. Costs

of incorrect inference include:

� unrealistic targets for some organisations;

� focusing on incorrect ‘beacon’ organisations;

� unwarranted complacency in some organisations;

� faulty judgements about levels of inefficiency in the entire sector.

These costs take the form of faulty regulation and are very different to

the costs of the Type I and Type II errors that are considered in conven-

tional statistical analysis. In our view, the emphasis on individual
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residuals may therefore require fundamental re-examination of the

principles of empirical model-building.

We have also referred to some other unresolved generic challenges

for efficiency analysis where we feel existing methodology is deficient.

As well as the problem of how to incorporate environmental variables

into the analysis, we have raised concerns about the treatment of

uncertainty and the development of dynamic models.

Uncertainty takes two broad forms: data uncertainty and model

uncertainty. The first arises from variability in the underlying data

and is well understood. Examining data uncertainty can be challen-

ging in the context of efficiency analysis but it is nevertheless feasible

using approaches such as Monte Carlo simulation. Model uncertainty

is much less well understood but arises from the possibility that the

underlying model may have been mis-specified. Even though it is

probably the dominant form of uncertainty in efficiency analysis, it

is unusual to see any formal treatment of model uncertainty, other

than some sort of sensitivity analysis in the form of a presentation of

results from a suite of model specifications.

Many health care settings have important dynamic characteristics

that make cross-sectional analysis inappropriate. For example, out-

comes from preventative programmes are often the results of years of

endeavour on the part of health authorities. As discussed in chapter 2,

panel data are beginning to emerge that make modelling of such pro-

cesses feasible. Chapters 4 and 6 describe in detail current approaches

to modelling such data. However, at this stage the development of truly

dynamic efficiency models is in its infancy.

In addition to these generic issues, there are some challenges that are

specific to the two broad approaches to efficiency measurement dis-

cussed in the book. Parametric methods have many strengths, most

notably the need to appeal to economic theory in making specification

decisions and exploitation of the full information set when deriving

organisational estimates of inefficiency.However, parametric techniques

require quite constraining assumptions relating to functional form,

and even modest complexity can require an unfeasibly large sample

size. Moreover, the most serious concern relating to SFA is the issue

treated at length in chapter 8: model specification in SFA is a joint

consideration relating to the choice of explanatory variables and the

choice of one-sided error structure. The one-sided error could be captur-

ing inefficiency, but it could also be capturing omitted environmental
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variables.Conversely, the one-sided error couldbe affectedby incorpora-

tion in the model of variables wrongly specified as environmental. At

present there is no way – other than an appeal to expert judgement – of

determining whether the choice of explanatory variables and error

structure is correct.

DEA gives rise to many model-building challenges for which there is

little analytic guidance. These include:

� how to choose inputs and outputs in the absence of any model

selection criteria;

� how much weight flexibility to permit;

� how to model and calculate uncertainty and to test for the robust-

ness of results;

� whether data sparsity leads to biased efficiency estimates for some

organisations;

� how to incorporate environmental factors (one-stage or multistage

methods);

� how to test for model mis-specification.

There is some literature addressing these issues, but there remains a

challenging research agenda to offer the analyst a more secure model-

building methodology. In the meantime, the user should be alert to the

arbitrary manner in which DEA models must often be developed.

10.5 For policy makers and regulators

This book has been aimedmore at technical analysts than policymakers.

However, we have highlighted some important messages for policy

makers. First, efficiency modelling methodology is highly contested

and still at a developmental stage. Efficiency results are dependent on

numerous technical judgements forwhich there is often little guidance on

best practice. Many of these judgements are properly political rather

than technical issues (such as the choice of outputs), suggesting the need

for a careful dialogue between analysts and policy makers. A central

challenge is often to secure the appropriate involvement of policymakers

in the model-building process.

From a regulatory perspective, it may often be the case that a very

much simpler methodology than SFA or DEA is appropriate, perhaps

in the form of a simple cost-effectiveness ratio. Also, there may be

circumstances when analytic methods other than SFA/DEA, such as
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those outlined in chapter 9, may be appropriate. As suggested above,

the major contributions of efficiency methods to the regulatory func-

tion are to manage large data sets, to adjust for exogenous influences

on performance and to partition the unexplained variation in perfor-

mance into inefficiency and other factors. However, their limitations

are such that they should never be the only criterion for measuring

organisational performance. Instead, they should be used in conjunc-

tion with other instruments, such as more detailed scrutiny of health

care organisations, perhaps in the form of inspection.

In deploying and interpreting efficiency models, regulators may

need to apply a range of criteria for model selection in addition to

the conventional technical criteria. These might include practicality,

parsimony, freedom from bias, plausibility, acceptability and freedom

from perverse incentives. The extensiveness of these considerations

indicates the complexity of the real-world regulatory problem when

compared with the textbook considerations discussed in this book.

In short, we believe that efficiency models can make a valuable

contribution to any health care regulatory regime. Whilst, in order

to ensure that they are used appropriately, we have dwelt on their

limitations, they nevertheless offer powerful insights into organisa-

tional performance. We have been struck by how rarely they appear to

have been used in real-world (as opposed to academic) health care

settings. Whilst they can only ever inform and never determine reg-

ulatory judgements, they must surely become part of the analytic

armoury of any competent regulator.
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Appendix

Data description

Table A.1 gives a description of the data set used in the case studies in

chapters 3 to 7 of this book. The data set includes four years of data

for the period 1994/95–1997/98 and covers acute NHS hospital trusts

in England. The variables are described in more detail below.

Table A.1. Descriptions of variables in data set

Variable Description

TOTCOST Total cost or total revenue

expenditure

INPATIENTS Total inpatient episodes weighted

by HRG case mix index

OUTPATIENTS Total first outpatient attendances

A&E Total A & E attendances

STUDENTS Student whole-time teaching

equivalents per inpatient spell

RESEARCH Percentage of total revenue spent

on research

FCE Finished consultant episode inter-

speciality transfers per spell

EP_SPELL Episodes per spell

TRANS-IN Transfers in to hospital per spell

TRANS-OUT Transfers out of hospital per spell

EMERGENCY Emergency admissions per spell

FU-OUTPTS Follow-up outpatient attendances

per inpatient spell

EMERINDX Standardised index of unexpected

emergency admissions/total

emergency admissions

P-15 Proportion of patients under 15

years of age
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TOTCOST measures total revenue expenditure and where the data

are used in a multiperiod context, the expenditure has been deflated

by the GDP deflator. Hospitals produce inpatient episodes of care

(INPATIENTS) which are weighted by a healthcare resource group

(HRG) case mix measure which groups patient activity into resource-

homogeneous categories (Benton et al. 1998). In order to estimate a

case mix index for a hospital, all episodes are allocated to a healthcare

resource group and weighted according to the expected cost of that

HRG (Street and Dawson 2002). The average cost weight for all cases

treated over a year forms the scalar case mix index for each hospital.

The national average case weight was set to equal 100, and case mix

indices above 100 thus represent hospitals that have treated a more

complex than average mix of cases. This index was then used to adjust

inpatient episodes.

Additional activities include total first outpatient attendances

(OUTPATIENTS) and A&E attendances (A&E). Teaching activity is

picked up through medical student whole-time teaching equivalents

per inpatient spell (STUDENTS). Teaching and research (RE-

SEARCH) activities constitute important secondary outputs of NHS

hospitals.

Table A.1. (continued)

Variable Description

P-60 Proportion of patients 60 years or

older

P-FEM Proportion of female patients

MFF Market forces factor – weighted

average of staff, land, buildings

and London weighting factors

HERF15 Herfindahl concentration/

competition index, 15-mile

radius

AVBEDS Average available beds

HEATBED Heated volume per bed

SITES50B Sites with more than 50 beds

ITINDX Scope/specialization index,

information theory index
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Measurement of the volume of inpatient care performed by NHS

acute hospitals has been through the finished consultant episode (FCE)

which measures the length of time a patient is under the care of a

single consultant. During a single hospital admission, however, multi-

ple FCEs might occur as a result of transfers within hospitals or

between consultants. The inpatient spell, or set of episodes constitut-

ing a single admission, thus serves as a slightly higher level of aggrega-

tion of inpatient activity. Spells requiring inter-speciality transfers are

likely to be more complex than those which can be fully treated by a

single consultant or within a single speciality. Given the adjustment

for episodes per spell (EP_SPELL), FCE captures the additional effect

of inter-speciality transfers over and above the average multiple FCE.

Large fluctuations in levels of emergency admissions imply that

more fixed capacity has to be retained for a given average level of

activity. EMERGENCY measures the proportion of spells that involve

an emergency admission. EMERINDX is a standardised index of

unexpected emergency admissions divided by total emergencies and

captures unpredictable demand patterns.

The basic unit of outpatient activity is assumed to consist of first,

rather than follow-up, outpatient attendances. Many outpatient at-

tendances occur because patients require follow-up for some time

following the first attendance. Since such follow-up attendances con-

stitute genuine additional health care output, FU-OUTPTS measures

non-primary follow-up outpatient attendances per inpatient spell.

HRGs may inadequately represent the health care requirements of

patients, so this is captured by additional variables. P-15 measures

whether hospitals expend more resources on younger patients, diag-

nosis and other factors being equal (Söderlund et al. 1995). Elderly

patients (P-60) are likely to have more complex care needs, and these

may not be captured entirely by HRGs, which have only limited age

sensitivity. P-FEM captures any gender-specific differences in health

care requirements and costs.

Market prices for inputs including land, buildings and labour differ

between hospitals because of their geographic location (MFF). Argu-

ably this represents an unavoidable environmental influence on the

ability of hospitals to deploy inputs efficiently.

Average bed numbers (AVBEDS)may be considered fixed in the short

run. While hospital managers do have some control over the size and

capacity of their institution, it is expected that there will be some
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reluctance radically to alter capacity. Decreasing hospital capacity

might be particularly difficult because of public opposition and implied

job loss.

Heated volume per bed (HEATBED) captures potential inefficien-

cies in how hospital buildings are used to create treatment capacity

(represented by beds). A large amount of heated volume per bed is

assumed to represent less efficient use of capital.

Single-speciality hospitals are likely to draw patients from further

afield, and have greater short-term variation in demand for services

because of the lack of cross-speciality compensation effects. Econo-

mies of specialisation, in contrast, might occur where relatively under-

utilised, specialised fixed resources are centralised in one institution,

rather than spread over many. This can be examined through the

inclusion of an information theory index (ITINDX) which calculates

the degree to which the proportions of different case types (HRGs) in a

hospital differ from the national average proportions of case types.

The formula used for derivation of the information theory index is

given by Farley (Farley 1989; Farley and Hogan 1990). An increased

IT index indicates a relatively more specialised hospital (i.e. one with a

narrower scope of activities). General hospitals typically have an IT

index of between 0.2 and 0.5, whereas this may increase to 2.5 in a

highly specialised, single-discipline, hospital.

Hospitals that are located on a number of sites, rather than concen-

trated in one location, are likely to suffer from duplication of some

capital and staff inputs, as well as incurring communication and man-

agement difficulties, thus increasing costs. The number of major sites

with more than fifty beds (SITES50B) was chosen to exclude sites that

were simply isolated accommodation or chronic care or outpatient

facilities.
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Üstün, T. B., Chatterji, S., Mechbal, A. Murray, C. J. L. and WHSCollabor-

ating Groups. 2003. ‘The World Health Surveys’, in Murray, C. J. L. and

Evans, D. B. (eds.), Health Systems Performance Assessment: Debates,

Methods and Empiricism. Geneva: World Health Organization.

Varian, H. R. 1978. Microeconomic Analysis. New York: W. W. Norton.

Vitaliano, D. F. 1987. ‘On the estimation of hospital cost functions’. Journal

of Health Economics 6: 305–18.

Wagstaff, A. 1989. ‘Estimating efficiency in the hospital sector: a compar-

ison of three statistical cost frontier models’. Applied Economics 21:

659–72.

Ware, J. E. and Sherbourne, C. D. 1992. ‘The MOS 36-item Short Form

Health Status Survey (SF-36)’. Medical Care 30: 473–83.

White, H. A. 1980. ‘A heteroskedasticity-consistent covariance matrix esti-

mator and a direct test for heteroskedasticity’. Econometrica 84:

817–30.

Williams, A. 2001. ‘Science or marketing at WHO? A commentary on

‘‘World Health 2000’’’. Health Economics 10: 93–100.

Williamson, O. E. 1973. ‘Markets and hierarchies: some elementary

considerations’. American Economic Association 63: 316–34.

Wong, Y. H. B. and Beasley, J. E. 1990. ‘Restricting weight flexibility in data

envelopment analysis’. Journal of the Operational Research Society 41:

829–35.

World Health Organization 2000. World Health Report 2000. Geneva:

WHO.

2001. Report of the Scientific Peer Review Group on Health Systems

Performance Assessment. Geneva: WHO.

230 References



Yang, M., Goldstein, H., Browne, W. and Woodhouse, G. 2002. ‘Multi-

variate multilevel analyses of examination results’. Journal of the Royal

Statistical Society, Series A, 165: 137–46.

Zellner, A. 1962. ‘An efficient method of estimating seemingly unrelated

regressions and tests of aggregation bias’. Journal of the American

Statistical Association 57: 500–79.

Zhao, Y., Guthridge, S., Magnus, A. and Vos, T. 2004. ‘The burden of

disease and injury in Aboriginal and non-Aboriginal populations in

the Northern Territory’. Medical Journal of Australia 180: 498–502.

Zuckerman, S., Hadley, J. and Lezzoni, L. I. 1994. ‘Measuring hospital

efficiency with frontier cost functions’. Journal of Health Economics

13: 255–80.

References 231





Author index

Aigner, D. 53
Ali, A.I. 110
Allen, R. 108, 171
Ammar, W. 1
Anand, S. 1
Anthony, P. 216
Athanassopoulos, A. 108, 171
Atkinson, T. 4, 22
Audit Commission 58

Baltagi, B.H. 82
Banker, R.D. 101, 104, 105, 114, 115,

117, 155, 156
Barth, W. 165
Battese, G.E. 71, 73, 80, 81, 84, 86, 89,

98, 101
Bauer, P.W. 165
Beasley, J.E. 108
Benton, P.L. 216
Berger, A.N. 165
Bessent, A. 110
Bessent, W. 110
Bhattacharya, A. 116
Blank, J.L.T. 116
Bond, S. 178
Breyer, F. 65
Burgess, D.F. 43, 49
Burgess, J.F. 138

Caves, D.W. 130
Charnes, A. 12, 91, 101, 104, 105,

107, 114, 115, 117, 156
Chatterji, S. 26
Chilingerian, J.A. 92
Christensen, L.R. 43, 48, 49, 130
Coase, R.H. 19
Coelli, T. 11, 57, 71, 73, 80, 81,

82, 84, 86, 89, 97, 98, 101,
103, 111, 115, 116, 117,

129, 130, 135, 137, 138,
155, 170

Cook, R.D. 41
Cook, W. 108
Cooper, W.W. 12, 91, 101, 104, 105,

107, 114, 115, 117, 170
Cornwell, C. 81
Cotter, J.J. 92
Coulter, A. 27
Cunningham, S.J. 197

Davidson, R. 44
Dawson, D. 216
Department of Health 58
Diewert, W.E. 130
Dismuke, C. 138
Doyle, J. 107, 108
Duval, R.D. 165

EuroQol Group 26
Everitt, B. 34
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