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Preface

In response to the sizeable proportion of national income devoted to
the health care sector, policy makers in most high-income countries
have become increasingly concerned with improving the efficiency of
the health care sector. Meanwhile, econometricians, statisticians and
management scientists have been developing increasingly sophisti-
cated tools that seek to measure organisational efficiency. The ques-
tion therefore arises: do these techniques offer policy makers useful
tools with which to assess and regulate health care performance?

In collaboration with colleagues at the Centre for Health Economics
and elsewhere, we have been involved in many studies seeking to
address that question, and this book summarises our experience to
date. As the reader will see, our findings are equivocal. We find much
of value in the techniques of efficiency analysis, not least their rigour
and the insights they give into complex data sets. These virtues deserve
to be acknowledged. However, we also identify some important in-
tellectual weaknesses and practical difficulties associated with imple-
menting the techniques in health care, and we view with concern the
claims made for them by some of their more ardent advocates.

This book therefore seeks to offer a balanced critique of the current
state of the art of efficiency analysis as applied to health care. The
intention is to offer analysts and policy makers a coherent view of the
strengths and limitations of the techniques, both from a technical and
a policy perspective. We assume the reader is comfortable with rudi-
mentary mathematical exposition, but otherwise assume no familiar-
ity with the analytic material. The breadth of the intended readership
has nevertheless presented us with some challenges in choosing the
level of technical detail to include in the exposition, and the chapters
emphasise the technical and policy issues to different extents.

Chapters 1 and 2 offer a general introduction to the context and
principles underlying the development of efficiency analysis, and
should be accessible to all our intended readership. The core of the
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Xiv Preface

technical exposition is contained in chapters 3 and 4 (stochastic fron-
tier analysis (SFA)) and chapters 5 and 6 (data envelopment analysis
(DEA)). They are intended to stand on their own if the reader is
interested in only one of the analytic approaches.

Chapter 7 offers a less technical comparison of the two techniques,
and chapter 8, an assessment of their major weaknesses from a policy
perspective. In the light of some of the concerns we raise, we present
some tentative proposals for complementary analytic approaches in
chapter 9. Finally, chapter 10 summarises what we feel is the current
‘state of the art’, emphasising our concern that — notwithstanding the
need for good quantitative evidence — effective regulation of health
care will always require a balanced range of analytic approaches.
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1 Efficiency in health care

1.1 Introduction

HE pursuit of efficiency has become a central objective of policy

makers within most health systems. The reasons are manifest.

In developed countries, expenditure on health care amounts to
a sizeable proportion of gross domestic product. Policy makers need to
be assured that such expenditure is in line with citizens’ preferences,
particularly when many sources of finance, such as tax revenues, are
under acute pressure. On the supply side, health technologies are chan-
ging rapidly, and the pressures to introduce new technologies are often
irresistible, even when there is uncertainty about cost-effectiveness.
On the demand side, aging populations pose challenges for the design
of health systems, and expectations are becoming ever more chal-
lenging. Finally, the revolution in information systems has made it
feasible to measure aspects of system behaviour — most notably clinical
activity — that until recently defied meaningful quantification.

The international concern was crystallised in the World Health
Report 2000 produced by the World Health Organization, which
was devoted to the determinants and measurement of health system
efficiency (World Health Organization 2000). The report stimulated
a wide-ranging international debate, and a great deal of controversy
(Williams 2001; Anand et al. 2002). However, its enduring legacy may
be that it has helped policy makers to focus on the objectives of their
health systems, on how achievement might be measured, and on
whether resources are being deployed efficiently. A subsequent inter-
national conference organised by the Organization for Economic Co-
operation and Development has confirmed the universal policy concern
with performance measurement issues in health care (Smith 2002).

The analysis and measurement of efficiency is a complex under-
taking, especially when there exist conceptual challenges, multiple
objectives and great scope for measurement error. To address this



2 Measuring Efficiency in Health Care

complexity there has developed a flourishing research discipline of
organisational efficiency analysis. Following pioneering studies by
Farrell (1957), statisticians, econometricians and management scien-
tists have developed tools to a high level of analytic sophistication
that seek to measure the productive efficiency of organisations and
systems. This book examines some of the most important techniques
currently available to measure the efficiency of systems and organ-
isations. It seeks to offer a critical assessment of the strengths and
limitations of such tools applied to health and health care.

Throughout much of the book we take the view that health care
objectives are known and agreed, and much of the discussion also
assumes that the relative value placed on each objective is known. In
practice, objectives and priorities are highly contested, and often not
stated explicitly. A central purpose of this book is to examine how
efficiency might be measured in the knowledge of objectives, but
we also discuss the implications for efficiency analysis of failing to
address priority setting explicitly.

Notwithstanding the apparent simplicity of the concept, there is a
great deal of confusion in both popular and professional discussion
about what is meant by efficiency in health care. In this opening
chapter we first discuss the reasons for wishing to measure efficiency,
and then define the concepts of organisational efficiency deployed in
this book. Subsequently, we give a short summary of experience to
date in measuring efficiency in the health sector. The chapter ends
with an outline of the remainder of the book.

1.2 The demand for efficiency analysis in health care

The international explosion of interest in measuring the inputs, activ-
ities and outcomes of health systems can be attributed to heightened
concerns with the costs of health care, increased demands for public
accountability and improved capabilities for measuring performance
(Smith 2002). Broadly speaking, the policy maker’s notion of efficiency
can be thought of as the extent to which objectives are achieved in
relation to the resources consumed. There might also be some con-
sideration of external circumstances that affect the ability of the system
to achieve its objectives. This beguilingly simple notion of efficiency is
analogous to the economist’s concept of cost-effectiveness, or the
accountant’s concept of value for money. The potential customers for
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measures of efficiency include governments, regulators, health care
purchasers, health care providers and the general public.

Governments clearly have an interest in assessing the efficiency of
their health institutions. In all developed countries, public finance of
one sort or another is the single most important source of health
system funding, so national and local governments have a natural
requirement to ensure that finance is deployed effectively. It is there-
fore not surprising to find that methodologies that offer insights
into efficiency have attracted the interest of policy makers. Moreover,
in most industrialised countries, a large element of the health care
sector is provided by non-market organisations. Given the complexity
of the functions undertaken by such institutions, and in the absence of
the usual market signals, there is a clear need for instruments that offer
insights into performance. The search for such technologies has been
intensified by the almost universal concern with escalating health
care costs and increased public pressure to ensure that expenditure
on health systems is used effectively.

Given the absence of a competitive market in health care, all health
systems require a regulator of some sort. A regulator is most obviously
required when a significant proportion of health care is provided by
the for-profit sector. However, the regulatory function might be in-
corporated implicitly into government surveillance of the health sys-
tem if public provision predominates. As well as having an obvious
role in promoting public safety, effective regulation requires the deve-
lopment of measures of comparative performance in order to set a
level playing field for providers, a task to which efficiency models are
in principle well-suited. Such interest is of course not limited to the
health sector. For example, the UK water industry regulator (OFWAT)
makes extensive use of efficiency analysis in determining its regulatory
regime for water companies (Office of Water Services 1999).

Health care purchasers have a serious information difficulty when
negotiating contracts with providers. In the absence of any meaning-
ful market, they often find it difficult to judge whether providers are
offering good value for money. Even in a competitive environment, it
may be difficult for purchasers to discriminate between competing pro-
viders. Efficiency analysis can therefore help purchasers to understand
better the performance of their local providers relative to best practice,
and introduces an element of ‘yardstick competition’ into the purchas-
ing function (Schleifer 1985). Likewise, even in non-competitive
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health care systems, providers have a natural interest in seeking out
best practice and identifying scope for improvement.

Finally, there are increasing demands for offering the general public
reliable information about the performance of its national and local
health systems, and of individual providers (Atkinson 2005). Whilst
the evidence hitherto suggests that it is difficult to stimulate public
interest in this domain — and we are not aware of any major initiatives
involving efficiency analysis — there are strong accountability argu-
ments for seeking to place high-quality information in the public
domain in order to enhance debates about value for money.

1.3 Organisational efficiency

The focus of efficiency analysis is as an organisational locus of pro-
duction, often referred to as a decision-making unit (DMU). In health
care, examples of DMUs include entire health systems, purchasing
organisations, hospitals, physician practices and individual physi-
cians. The DMUs consume various costly inputs (labour, capital etc.)
and produce valued outputs. Efficiency analysis is centrally concerned
with measuring the competence with which inputs are converted into
valued outputs. In general, it treats the organisation as a black box,
and does not seek to explain why it exhibits a particular level of
efficiency (Fried, Lovell and Schmidt 1993).

The terms ‘productivity’ and ‘efficiency’ are often used interchange-
ably, which is unfortunate since they are not precisely the same thing.
Productivity is the ratio of some (or all) valued outputs that an organ-
isation produces to some (or all) inputs used in the production process.
Thus the concept of productivity may embrace but is not confined to
the notion of efficiency that is the topic of this book.

A starting point for examining the basic notion of efficiency is
shown in Figure 1.1, which illustrates the case of just one input and
one output. The line OC indicates the simplest of all technologies: no
fixed costs and constant returns to scale. A technically efficient orga-
nisation would then produce somewhere on this line, which can be
thought of as the production possibility frontier. Any element of
inefficiency would result in an observation lying strictly below the
line OC. For an inefficient organisation located at Py, the ratio
XoPo/XoPj offers an indication of how far short of the production
frontier it is falling, and therefore a measure of its efficiency level.



Efficiency in health care 5

Output c
................................................. V
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.......................................... y
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Figure 1.1. Efficiency measurement under constant returns to scale.

Many other technologies are possible. For example, the curve OV
indicates a frontier with variable returns to scale. Up to the point P},
the ratio of output to input decreases (increasing returns to scale), but
thereafter it increases (decreasing returns to scale).

The notion of a production frontier can be extended to multiple
outputs and a single input (say, costs). Figure 1.2 illustrates the case
with two outputs. For the given technology, the isocost curve CC gives
the feasible combination of outputs that can be secured for a given
input. At a higher level of costs the isocost curve moves out to C'C'.
These curves indicate the shape of the production possibility frontiers
at given levels of input. An inefficient DMU lies inside this frontier.
We define the marginal rate of transformation to be the sacrifice of
output 2 required to produce a unit of output 1, indicated at any
particular point on CC by the slope of the curve —(P,/Py). It is usually
assumed that — as in this figure — for a given level of input this becomes
steeper as the volume of output 1 produced increases.

Likewise, in input space, we examine the case of two inputs and one
output, as in Figure 1.3. The isoquant QQ indicates the feasible mix
of inputs that can secure a given level of output, with inefficient
DMU:s lying beyond this curve.

Extending the analysis to the general case of multiple inputs and
multiple outputs, we define the overall efficiency effy of organisation
0 to be the ratio of a weighted sum of outputs to a weighted sum
of inputs. Mathematically, if organisation 0 consumes a vector of
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Output 2

c
C

Py

P C C Output1

Figure 1.2. The case of two outputs.

Input 2

Input 1

Figure 1.3. The case of two inputs.

M inputs X and produces a vector of S outputs Y, its overall
efficiency is measured by applying weight vectors U and V to yield:

S
Z Us YsO
_s=1

o= (1.1)
ZVmeO
m=1
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where:

Y, is the amount of the sth output produced by organisation 0;
U, is the weight given to the sth output;

Xm0 1s the amount of the mth input consumed by organisation 0;
V.. is the weight given to the mth input.

The weights U and V indicate the relative importance of an addi-
tional unit of output or input. On the input side, the weights V might
reflect the relative market prices of different inputs. It is often the
case — with the notable exception of capital inputs — that these can be
measured with some accuracy. Then, if the actual input costs incurred
by organisation 0 are Cy, the ratio:

Ceffg =" —— (1.2)

indicates the extent to which the organisation is purchasing its chosen
mix of inputs efficiently (that is, the extent to which it is purchasing its
chosen inputs at lowest possible prices).

However, the organisation may not be using the correct mix of
inputs. This can be illustrated using a simple two-input model. For
some known production process, the isoquant QQ in Figure 1.4 shows
the use of minimum inputs required to produce a unit of a single
output. The points P; and P, lie on the isoquant and therefore — given
the chosen mix of inputs — cannot produce more outputs.

When the unit costs of inputs are known, it is possible to examine
the input price (or allocative) efficiency of the two units. Suppose the
market prices are V§ and V5. Then the cost-minimising point on the
isoquant occurs where the slope is —V{/V} (shown by the straight
line BB). In Figure 1.4 this is the point P, which is input-price
efficient. However, the point P, is not efficient with respect to prices,
as a reduction in costs of P,Pj is possible. The price efficiency of P, is
therefore given by the ratio OP3/OP;.

Analogous arguments can be deployed to examine the allocative
efficiency of organisations in output space. Figure 1.5 illustrates the
case where a single input is used to produce two outputs. If the relative
values U; and U, of the outputs are known, and the production pos-
sibilities are given by the curve CC, then organisation P, is producing
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Input 2

(0] Input 1

Figure 1.4. Allocative efficiency with two inputs.

Output 2
C
P
P,
0] o} Output 1

Figure 1.5. Allocative efficiency with two outputs.

at its allocatively efficient point while organisation P, exhibits some
allocative inefficiency.

Although organisations may exhibit allocative inefficiency in pur-
chasing the wrong mix of inputs or producing the wrong mix of
outputs, we have so far explored only those organisations that lie on
the frontier of technical production possibilities. However, it is likely
that, particularly in a non-market environment, many organisations
are not operating on the frontier. That is, they also exhibit an element
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Q

Input 2

(0] Input 1

Figure 1.6. Technical and allocative inefficiency.

of technical inefficiency (also referred to as managerial inefficiency or
X-inefficiency).

This is illustrated in Figure 1.6 by the points P; and P4. Organisation
P3 purchases the correct mix of inputs, but lies inside the isoquant QQ.
It therefore exhibits a degree of technical inefficiency, as indicated by
the ratio OP{/OP;. Organisation P4 both purchases an incorrect mix
of inputs and lies inside the isoquant QQ. Its technical inefficiency is
indicated by the ratio OP,/OP,4. Thus its overall level of inefficiency
OP3;/OP4 can be thought of as the product of two components: tech-
nical inefficiency OP,/OP, and allocative inefficiency OP;/OP;.

We have so far assumed constant returns to scale. That is, the
production process is such that the optimal mix of inputs and outputs
is independent of the scale of operation. In practice there exist im-
portant economies and diseconomies of scale in most production
processes, so an important influence on effy (from equation 1.1) may
be the chosen scale of operation. This is illustrated in Figure 1.7 for
the case of one input and one output. The production frontier is
illustrated by the curve OV, which suggests regions of increasing and
decreasing returns to scale. The optimal scale of production is at the
point P* where the ratio of output to input is maximised. Although
lying on the frontier, the points Py and P, secure lower ratios because
they are operating below and above (respectively) the scale-efficient
point of production. They therefore exhibit levels of scale inefficiency
given by:
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Figure 1.7. Economies of scale.
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1.4 Analytic efficiency measurement techniques

The fundamental building block of the economic analysis of organisa-
tional efficiency is the cost function (or its counterpart, the production
function). For the purposes of this exposition, we focus on the cost
function. This is probably more germane to the health care setting we
seek to analyse, in which it is usual to find multiple outputs quantified
on different measurement scales. The cost function simplifies the input
side of the production process by deploying a single measure of the
inputs used, rather than a vector. It indicates the minimum cost that an
organisation can incur in seeking to produce a set of valued outputs.
Using the notation introduced above, a cost function can be written in
general terms as Cj = f(Yy). Analogously, the production function
models the maximum (single) output an organisation could secure,
given its mix of inputs.

The cost function combines all inputs into a single metric (costs),
and does not model the mix of inputs employed, or their prices. In
practice, the costs incurred by an organisation might be higher than
those implied by the cost function for three reasons. First, it may
purchase inputs at higher than market prices (cost inefficiency). Sec-
ond, given prevailing prices, it may employ an inefficient mix of inputs
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(allocative inefficiency). And third, it may not secure the maximum
output attainable given its inputs (technical inefficiency). However, if
no measures of physical inputs are available, and only aggregate
measures of costs are available, it is impossible to distinguish among
these causes of deviation from the cost function. Therefore, notwith-
standing its practical usefulness, a cost function offers little help with
detailed understanding of the input side of efficiency.

Inefficiency can be defined as the extent to which an organisation’s
costs exceed those predicted by the cost function (or the extent to
which its output falls short of that predicted by the production func-
tion). Inefficiency is inherently unobservable. This means that esti-
mates of efficiency have to be derived indirectly after taking account
of observable phenomena. This, very broadly, involves the following
process:

1. Observable phenomena, such as outputs and inputs (costs), are
measured.

2. Some form of relationship between these phenomena is specified. If
a parametric method is used and differences in cost are the focus
of the exercise, a cost function is estimated. If a non-parametric
method is used, an efficiency frontier is derived.

3. Efficient behaviour is then predicted on the basis of the definition
of technical efficiency.

4. The difference between each DMU’s observed data and the opti-
mum achievable as predicted by the cost function or frontier is then
calculated.

5. The difference (or some portion of it) is defined as inefficiency.

A number of analytic techniques have been developed to estimate
the form of cost and production frontiers and the associated ineffi-
ciency of individual organisations (Coelli, Rao and Battese 1998).
These are covered in the subsequent chapters of this book, and can
be divided into two broad categories: parametric methods, which use
econometric techniques to estimate the parameters of a specific func-
tional form of cost or production function, and non-parametric meth-
ods, which place no conditions on the functional form, and use
observed data to infer the shape of the frontier.

The pre-eminent form of parametric method now in use is stochastic
frontier analysis (SFA). This is similar to conventional regression ana-
lysis, but decomposes the unexplained error in the estimated function
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into two components: inefficiency (which, in the case of a cost func-
tion, will always be positive), and the more conventional two-sided
random error. Cost functions are used extensively in parametric ana-
lysis of efficiency because the alternative strategy — estimating models
with both multiple inputs and multiple outputs — is methodologically
challenging, and demanding in terms of data requirements. In contrast,
univariate cost functions (and production functions) can be readily
estimated using standard econometric methods, or straightforward
variants. Parametric methods are introduced in chapter 3.

Most non-parametric methods take the form of data envelop-
ment analysis (DEA) and its many variants. These were stimulated by
the pioneering work of Farrell (1957), later generalised by Charnes,
Cooper and Rhodes (1978). DEA uses linear programming methods
to infer a piecewise linear production possibility frontier, in effect
seeking out those efficient observations that dominate (or ‘envelop’)
the others. In contrast to parametric methods, DEA can handle multi-
ple inputs and outputs without difficulty. DEA is introduced in
chapter 5.

The distinctive focus of modern efficiency analysis is to seek — in
addition to estimating the frontier — to provide an estimate of how far
each observation falls short of the estimated frontier. This emphasis
on the residual for each observation marks an unusual departure from
conventional statistical and econometric analyses, which are in the
main preoccupied with estimated coefficients (that is, relationships
displayed by the population of observations as a whole) rather than
individual observations. This novel focus gives rise to important
methodological complications, to which we return in chapter 8.

1.5 Experience with efficiency analysis in health care

All of the efficiency measurement tools we use in this book reflect the
efficiency framework sketched above. The differences between the
techniques arise from various assumptions about what lies within
the control of the organisations under scrutiny, and the constraints
imposed by data availability. The central technical requirements of
efficiency analysis are that there exist an adequate number of com-
parable units of observation, and that the salient dimensions of per-
formance (inputs, outputs and environmental circumstances) are
satisfactorily measured.
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Given these requirements, health care offers, in many respects, good
opportunities for analysis. Entities such as insurers, purchasers,
hospitals, clinics, diagnostic laboratories and general practices are
present in large numbers in most health systems, and increasingly
comprehensive performance data are available. Therefore — from a
technical perspective — the feasibility of developing a wide range of
efficiency models is beyond question. Furthermore, governments, reg-
ulators, purchasers and the public are asking searching questions
about the performance of health care entities. Therefore, both the
supply of and demand for efficiency analysis is increasing. However,
compared with many other sectors of the economy, such as banks or
schools, the development of efficiency measures in health and health
care also poses enormous challenges, brought about by the complexity
of the production process, the multiplicity of outputs produced, the
strong influence of the organisational environment on performance,
and the frequent absence of relevant or reliable data.

Hollingsworth describes progress reported in the public literature
up to 2002 (Hollingsworth 2003). He examines published studies of
cost and production functions in health and health care where exam-
ination of efficiency variation is a central concern, and identifies 189
relevant studies. About 50 per cent are in the hospital sector, reflecting
its central policy importance and the ready availability of data. There
are also significant numbers of studies of physicians, pharmacies,
primary care organisations, nursing homes and purchasers. The great
majority of studies have used DEA and its variants, probably reflect-
ing its ease of use and flexibility. The use of SFA has become more
widespread recently, but it is more demanding in terms of modelling
and interpretive skills.

Early studies were content with merely estimating cost or produc-
tion functions and inferring the distribution of efficiency variations
from a cross-sectional sample. Recently, more creative uses of effi-
ciency analysis have been reported, addressing issues such as produc-
tivity changes over time, and the effect of ownership and other
institutional arrangements on efficiency.

1.6 This book

The purpose of this book is to describe economic and econometric
approaches to modelling efficiency in the health sector, and to assess
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the usefulness of analytic techniques for policy purposes. The text
draws on the authors’ experience with case studies from the UK, and
work for organisations such as the World Health Organization
and the OECD. The intention is to cover the material for an informed
but not necessarily specialist reader.

Chapter 2 covers principles of modelling, the purpose being to
provide a framework to aid understanding of the production process
employed by health care organisations. This entails consideration of
the outputs from, and inputs to, the production process. Outputs can
be defined as actions that seek to promote health system outcomes.
Traditionally health outcomes are thought of in terms of increases in
the length and quality of life. However, consideration must be given
to non-health outcomes of health systems, such as their ‘responsive-
ness’, a term that embraces concepts such as autonomy, privacy,
prompt attention, dignity and choice.

The input side is in some respects more straightforward. Although
some studies require detailed examination of physical inputs, it is
often enough to seek out costs as a proxy for inputs. Yet even here
difficulties arise. The complexity of health care often necessitates
detailed accounting rules to assign costs to particular activities or
functions. Furthermore, one of the fundamental difficulties encoun-
tered in most efficiency analyses in the health sector is the need to
adjust for uncontrollable external influences on performance. Such
‘risk adjustment’ is often essential, but methodologically extremely
challenging.

Chapter 3 comprises a detailed treatment of stochastic frontier
analysis of cross-sectional data. The chapter describes the key techni-
cal choices that have to be made when developing a stochastic frontier
model. A case study from the English hospital sector is described.
Chapter 4 describes how the stochastic frontier approach has been
extended to exploit panels of data, where each organisation is
observed more than once. Panel data give rise to exciting new possi-
bilities in the examination of efficiency, but also introduce methodo-
logical challenges. Various stochastic frontier models have been
developed for analysing panel data, and these are described and
applied to a case study.

Chapters 5 and 6 consider data envelopment analysis (DEA), which
applies non-parametric methods to efficiency analysis. Chapter 5 de-
scribes and illustrates the technique for cross-sectional data. Chapter 6
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considers DEA when panel data are available. Chapter 7 concludes the
expository material with a comparison of SFA and DEA.

Despite considerable recent advances in these analytical techni-
ques, there remain a number of unresolved methodological challenges
for efficiency analysis. These are discussed in chapter 8. Chapter 9
examines the potential for using other approaches to measuring or-
ganisational performance in a health setting, including the use of
seemingly unrelated regression to analyse multiple objectives, and
multilevel modelling techniques to exploit the hierarchical structure
of many health care data. Chapter 10 concludes with some of the key
challenges and messages for researchers, policy makers and regulators.






2 The components of an
efficiency model

2.1 Introduction

HERE are numerous conceptual and practical issues to be

clarified when seeking to undertake an empirical analysis of

efficiency in health care. In this chapter we shall set aside
philosophical issues concerning what is meant by °‘efficiency’, and
conform to the concept discussed in chapter 1. That is, an organisa-
tion’s efficiency is considered to be the ratio of the value of outputs it
produces to the value of inputs it consumes. Figure 2.1 summarises the
principles underlying this viewpoint. The organisation consumes a
series of M physical resources, referred to as inputs, and valued in
total as X by society. Some transformation process takes place, the
details of which do not immediately concern us. This leads to the
production of S outputs, which society values in aggregate as Y. Our
summary measure of ‘efficiency’ is the ratio of Y to X — what might be
more accurately referred to as cost-effectiveness.

Models of health care efficiency almost always entail considera-
tion of multiple outputs. Central to the calculation of Y is therefore
the relative weight U, attached to each output s. These weights re-
flect the relative importance attached to an additional unit of produc-
tion of each output, and allow us to calculate for organisation 0 the
valuation of outputs Y = Zssles Yo as discussed in chapter 1. In the
same way, when there are multiple inputs, the relative weight V,,
attached to input m allows us to calculate the valuation of inputs
X =3M V,X,. If we have secure information on the magnitudes
of U and V we can readily compute the efficiency as the ratio Y/X. In
particular, in competitive markets, both U and V might be readily
observed as prices. In such circumstances there may be no need to use
the analytic techniques described in this book. Instead, comparative
efficiency can be readily computed using the exogenously observed
weights. However, in the health domain it is rarely the case that such

17
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Health
care
organization

Figure 2.1. The naive model of organisational performance.

prices are observed, particularly on the output side. It is in such
circumstances that the analytic techniques can be deployed in order
to furnish evidence on the weights U and V.

Although the framework is beguilingly simple, numerous complex
issues are raised when seeking to use it to develop operational models
of organisational efficiency in health care. The complexity involved
in developing an operational framework reflects the complexity of
the production process. The production of the majority of health care
outputs rarely conforms to a production-line type technology, where a
set of clearly identifiable inputs are used to produce a standard type of
output. Rather than a production line, most health care is tailor-made
to the specific needs of the individual recipient (Harris 1977). This
means that the production process is much less clearly defined and
there is the potential for considerable heterogeneity in what outputs
are produced and how this is done. Contributions to the care process
are often made by multiple agents or organisations, a ‘package’ of care
may be delivered over multiple time periods and in different settings,
and the responsibilities for delivery may vary from place to place and
over time.

The purpose of this chapter is therefore to discuss the conceptual
and practical issues that must be resolved in seeking to develop a satis-
factory empirical model of efficiency in the health care sector. We
address these model-building principles by considering five issues:

e What is the appropriate unit of analysis?

What are the outputs of health care?

What value should be attached to these outputs?

What inputs are used in the production of these outputs and how
should these be valued?

What environmental constraints are faced?



The components of an efficiency model 19

We then discuss practical facets of undertaking efficiency analysis,
which is often constrained by the scope and nature of data availability.

2.2 Unit of analysis

It is important that the boundaries of any efficiency analysis should
be clearly defined. A fundamental question to ask is: what is the unit of
organisation in which we are interested? Any efficiency analysis should
have a clear idea of the entity it is examining, but should also recognise
that its achievements are likely to be influenced by the actions of other
organisations or by factors beyond its immediate control. This is
especially likely when multiple agencies or organisations are involved
in joint production. Three criteria should guide the choice of units.

1. The unit of analysis should capture the entire production process
of interest. This may entail defining artificial units of analysis if there
is variation among organisations in how the production process is
organised.

2. They should be ‘decision-making units’ (DMUs). In a strict sense
this requires that their function is to convert inputs into outputs, and
that the DMUs have discretion about the technological process by
which this conversion takes place. But a weaker definition of DMUs
requires only that they play an organising function, establishing the
rules and conditions to which producers have to adhere. This defini-
tion would allow government bodies to be considered as DMUs.

3. The units comprising the analytical sample should be compar-
able, particularly in the sense that they are seeking to produce the
same set of outputs.

Making these criteria operational is not always straightforward,
and the first and second, in particular, may conflict. This conflict is
most likely where the production process is characterised by varying
degrees of vertical integration. The pioneering work by Coase and
Williamson identified the desire to minimise transaction costs as a
factor in determining what range of the production process might be
under the control of a single organisation (Coase 1937; Williamson
1973). Under some circumstances, organisations might ‘vertically
integrate’ and assume control of the entire process. Under others,
organisations may prefer to ‘buy in’ inputs from organisations fur-
ther down the production process or ‘sell on’ to those further up the
chain. If, as Coase and Williamson argue, transaction costs explain
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the desirability of vertical integration, this should be recognised in
efficiency analysis.

Ensuring that the analytical DMU fully encompasses jointness in
production is particularly important in contexts where there is var-
iation in how the relative contributions to joint production are de-
fined. This variation may be a major driver of the relative efficiency
of DMUs. For example, suppose we are interested in analysing the
efficiency of care delivered to patients who suffer head injury. The
division of care between the trauma and orthopaedics (T&O) de-
partment and the intensive care unit (ITU) may differ substantially
between one place and the next, with some T&O departments hav-
ing invested more in step-down high-dependency beds in order to
relieve pressure on the ITU. If the unit of analysis is confined to
the T& O department and the contribution of the ITU is ignored,
those T& O departments that have made greater investments in high-
dependency beds will appear relatively inefficient, despite the joint
production process actually being more effective.

This raises the question of where the boundaries of the production
process should be drawn. At one extreme, the decision-making unit
could be thought of as the entire health system, defined by the World
Health Organization as ‘all the activities whose primary purpose is to
promote, restore or maintain health’ (World Health Organization
2000). This is perhaps the loosest definition of a DMU that it is
possible to adopt, but is one that was employed by the WHO in its
analysis of the relative performance of national health systems.

Yet while in principle it may often be desirable to adopt such a
‘whole-system” approach, in practice it is usually infeasible and often
unhelpful because of the difficulties of defining the system, identify-
ing its primary decision-makers and specifying its inputs. It is there-
fore usual to circumscribe the analysis to more clearly defined
organisations within the health system.

At the opposite extreme to a whole-system approach, interest may
be on the actions of individuals or groups of individuals working
together within larger organisations. For example, we might be inter-
ested in the efficiency of individual general practitioners, or of the
general practice of which they are a part, or of trauma and ortho-
paedics specialities in hospitals. For several reasons, taking the indivi-
dual or team as the unit of analysis has much to recommend it in
comparison with larger organisational aggregations:
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o their activities and outputs are likely to be of a more limited range,
so comparability among units is more easily secured;

e dedicated inputs should be identifiable more accurately;

o the likelihood of assigning personal responsibility for performance
is higher, leading to greater promise that the analysis will secure
favourable change in behaviour.

But there are drawbacks to the analysis of individuals or teams
within organisations or even of organisations in isolation from the
other organisations with which they interact. Many outputs are pro-
duced by different teams working together. For example, staff from a
variety of hospital specialities contribute to providing care to each
patient admitted to hospital. Or the functioning of mental health
hospitals might be inherently linked to the actions of local social care
agencies. In such circumstances assessing the relative contribution of
each team or organisation is not straightforward.

Again, teams within organisations usually draw on joint resources.
For instance, some staff may work in more than one team, such as
when a urologist works partly in general surgery. It may be difficult to
determine accurately what proportion of this shared input is associated
with each team.

Thus, larger aggregations of individuals or teams may be appropri-
ate for analytical purposes when outputs are the result of joint pro-
duction decisions, even if this means that the analytical DMU does not
correspond precisely to a single organisational entity.

The final crucial criterion to guide the choice of analytical unit is that
the units being compared are seeking to deliver the same set of health
care outputs. As will be seen through the course of the book, strict
comparability is difficult to achieve: almost every organisation can claim
unique features that mark it as different. Yet if all such claims were
accepted, there would be no legitimate basis for comparing organisations
atall. So evaluating the reasonableness of claims of ‘non-comparability’,
and taking them properly into account, are among the most challenging
political and technical tasks associated with efficiency measurement.

2.3 What are outputs in health care?

In competitive industries the physical output of the organisation is
usually a traded product. Of course, even in a reasonably homogeneous
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market, such products (say, a refrigerator) can vary enormously on
various dimensions of ‘quality’, such as reliability, looks and tempera-
ture range. The quality of the product is intrinsic to its social value,
but that value can be readily inferred by observing the price people
are prepared to pay. Usually, therefore, there is no need explicitly to
consider the ultimate ‘outcome’ of the product, in terms of the value
it bestows on the consumer.

In many parts of the economy, however, not only do prices not
exist, but outputs are difficult to define. In particular this is true for
many of the goods and services to which government spending is
devoted (Atkinson 2005). Defining the outputs of the health care
sector is particularly challenging. ‘Health’ is a complex concept for
which there has been no readily available valuation, and there is no
market for health in the conventional sense. In the context of effi-
ciency analysis, two fundamental issues need to be considered. How
should the outputs of the health care sector be defined? And what
value should be attached to these outputs?

Defining outputs of the health sector is problematic because health
care is rarely demanded for its own sake. Rather, demand derives from
the belief that health care will make a positive contribution to health
status. This suggests that health care outputs should properly be
defined in terms of the health outcomes produced. However, rarely
do organisations collect routine information about what health out-
comes they produce. More commonly the analyst is forced to rely on
comparing health care organisations in terms of the quantity and type
of activities they undertake. The remainder of this section considers
the issues and relative merits of using health outcomes and health
care activities as ways of measuring what health care organisations
produce.

2.3.1 Health outcomes
The output of health care can be considered in two broad categories:

e the additional health conferred on the patient; and
e broader patient satisfaction over and above that related to the

health effect.

The ‘outcomes’ of health care can then be considered to be the quality-
adjusted physical outputs.
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The case in favour of defining output in terms of health outcomes
is manifest. For most patients and carers, health gain is the central
indicator of the success of an intervention. A focus on outcomes
directs attention towards the patient (rather than the services provided
by the organisation). Moreover, some widely accepted measures of
health outcome (such as gains in quality-adjusted life years) are in-
dependent of the technologies used to deliver care, obviating the need
for detailed scrutiny of the physical actions of the organisations.

In principle the measure of health outcome should indicate the
‘value-added’ to health as a result of contact with the health system.
Such measures of added value are routinely deployed in other sectors,
such as school education. A central measure of school performance
is the contribution made to improving the educational attainment of
pupils. One measure of educational attainment is the exam grades
obtained. But exam grades are partly a function of the efforts of the
school and partly a reflection of the inherent ability of the pupil, and
there are great variations in the abilities of pupils taught by different
schools. Schools therefore cannot be compared solely on the basis of
crude exam results: a school that attracts pupils of high ability will
report better exam grades than one that caters for pupils of lesser
ability, even though both schools work equally hard and are equally
well organised. To make an appropriate comparison, the ability of
pupils must be separated from the school effect. This can be done by
measuring pupil ability at entry to each school, and then comparing
subsequent exam grades in relation to this baseline, yielding a measure
of educational ‘value-added’ (Goldstein and Spiegelhalter 1996).

While the concept of value-added is relatively straightforward in
the education sector, the construct has proved more challenging to
make operational in the health sector, because of the much greater
heterogeneity of service users and the intrinsic measurement difficul-
ties. The fundamental difficulty is that it is rarely possible to observe
a baseline, or counterfactual — the health status that would have
been secured in the absence of an intervention. Although health status
measurement is becoming increasingly routine in many health care
settings, it tends merely to involve comparisons of health states be-
fore and after the intervention. Yet the with/without and before/after
measures of the added value of treatment are unlikely to be equivalent.
Most importantly for our purposes, reliance on before/after measures
will tend to undervalue the contribution of organisations that focus
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primarily on interventions designed to slow deterioration in health
status rather than on those designed to make people better.

To see why, consider two alternative baselines against which to
compare post-intervention health status:

e The health status that the patient would have experienced had
there been no intervention. Let h? be the health status if the indi-
vidual had not been treated. Then the outcome is measured as
Ah}' =hj — /o?.

e Pre-treatment health status. Let bj,_; be the pre-treatment and b,
the post-treatment health status so that the measured outcome is

Ab; = by — hji1.

The choice of baseline will yield different estimates of the health effect
of interventions.

To illustrate this, consider two interventions, 2 and b, with the same
cost, suitable respectively for two individuals, A and B, who suffer
different conditions but who, prior to the intervention, have similarly
poor health status, bj;_1 = 0.5, where j = a,b.

For individual A, intervention a yields no change in health status
at time ¢ relative to t—1, hence Ab, = 0, as shown in Figure 2.2. For
individual B, intervention b delivers an improvement in health status
such that by, = 0.7, hence Ah’b = 0.2. On this basis an organisation
that treats proportionately more patients of type B will appear more
efficient — producing more health outcome — than one that treats
more of type A.

The true effect of the intervention is the change in health status
with and without the intervention. This is not measured by the change
in health status before and after treatment unless the individual’s
health without treatment would not have deteriorated (or improved).
Suppose that the natural, untreated, course of disease for the condi-
tions of individuals A and B differs. Untreated, the health status of
individual B would not change from one period to the next, with
hY) = 0.5 shown by the horizontal dashed line in Figure 2.3. The net
treatment effect, therefore, amounts to Ahz =0.2.

Individual A, in contrast, suffers a debilitating disease, likely to
result in a major deterioration in health status by time #, equivalent
to h% = 0.2 if untreated. The role of the intervention in this case is
not to improve health status, but to stabilise the condition. If the value
of interventions is assessed on the basis of this net treatment effect,
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intervention @ would be more highly valued with Ab, = 0.3. Accord-
ingly, organisations that treat more type A patients would appear

more efficient.

The tension between before/after and with/without measurement
is, to a great extent, unresolvable because without-treatment health
profiles are rarely observable. The only practical option, then, is to rely
on before/after measurement, but to recognise that this has the poten-
tial to introduce bias into the comparative analysis and, accordingly,
to make a cautious interpretation of the results.
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A number of well-established measurement instruments have
been developed which could be used to collect before/after measures
of treatment effects, such as the EQSD and SF36 (EuroQol Group
1990; Ware and Sherbourne 1992). Although there remain many
unresolved issues surrounding the precise specification and analysis
of such instruments, their use should be considered whenever there
are likely to be material differences in the clinical quality of different
organisations. Moreover, where organisations treat a heterogeneous
mix of patients, the use of a generic measure of health gain repre-
sents one way of adjusting for any differences in case mix between
organisations.

Quite apart from health gain, patients in developed countries are
becoming increasingly vocal in demanding that health care should
be responsive to concerns over and above the health outcomes result-
ing from treatments. This concern with the ‘patient experience’ covers
issues as diverse as promptness, autonomy, empowerment, privacy
and choice, and should also be incorporated into any efficiency ana-
lysis, particularly when there are large variations in the responsiveness
of organisations, such as in hospital waiting times in many publicly
funded health systems.

However, it is unusual for efficiency studies to incorporate such
information (Pedraja-Chaparro, Salinas-Jiménez and Smith 1999).
An important exception was the World Health Organization’s exam-
ination of the efficiency of national health systems (World Health
Organization 2000). In the World Health Report 2000, the WHO
developed the concept of the ‘responsiveness’ of the health system.
This seeks to reflect the extent to which the health system succeeds
in being user-oriented. However, although the World Health Report
2000 contained a useful discussion of the concept of responsiveness,
the WHO contribution was undermined by the weak measurement
methods used. More recent work with the World Health Survey is
seeking to address the issue of responsiveness more satisfactorily
(Ustiin et al. 2003).

Notwithstanding the complexity of the concept of responsiveness,
many survey instruments are now being deployed routinely to mea-
sure the patient experience. These are often extensive in scope, and
therefore difficult to incorporate directly into an operational effi-
ciency analysis. However, they contain a great deal of information
that could be used, providing that the mass of data contained in the



The components of an efficiency model 27

surveys can be condensed satisfactorily to a small number of summary
measures of responsiveness (Coulter and Magee 2003).

2.3.2 Health care activities

Although efficiency analysis should be based on the outcomes of care
discussed above, analysts are often constrained in practice to examin-
ing efficiency on the basis of measures of activities, for example in
the form of patients treated, operations undertaken or outpatients
seen. Such measures are manifestly inadequate, as they fail to capture
variations in the effectiveness (or quality) of the health care deliv-
ered. Yet, despite the growing move towards measuring the outcomes
of care, there is often no alternative to using such crude measures of
activity as proxies for health care outcomes. For example, some health
outcomes may take years to be realised, and it is clearly impractical
to wait for them to emerge before attempting to assess performance.
Furthermore, collection of outcome data may impose impractically
high costs on the health system. In such circumstances, it becomes
necessary to rely on measures of the activities of care as proxies for
outcome.

Measuring activities can also address a fundamental difficulty of
outcome measurement — identifying how much of the variation in
outcomes is directly attributable to the actions of the health care
organisation. For example, mortality after a surgical procedure is
likely to be influenced by numerous factors beyond the control of
health care. In some circumstances such considerations can be accom-
modated by careful use of risk adjustment methods (see section 2.6).
However, there is sometimes no analytically satisfactory way of ad-
justing for environmental influences on outcomes, in which case ana-
lysing instead the activities of care may offer a more meaningful
insight into organisational performance.

Reliance on counts of activities may be unproblematic when there
is good research evidence that the activities (such as an inpatient
procedure) lead, on average, to health improvement. Measuring such
activities will give a strong indication of expected health outcomes.
However, it is important to note that, when using such measures as
the basis for efficiency measurement, one is implicitly assuming that
there is no difference between organisations in the effectiveness with
which they implement the procedure. Where such differences are
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suspected, it becomes imperative to augment activity counts with
measures of the quality of outcome. Ideally these would indicate
health gain, but more readily measured proxies, such as mortality
rates or readmission rates, are often used instead for such purposes.

Thus, although the use of measures of activity is often the only
practical option available to the analyst, it is important to keep in
mind the limitations it imposes. In particular, one should beware of
two classes of misinterpretation that commonly result from the effi-
ciency analysis because of lost outcome information. First, all else
being equal, organisations that undertake more activities will be rated
as more efficient. But some organisations may have developed care
pathways and protocols that minimise the number of activities re-
quired to deliver care to a patient. This may eliminate unnecessary
diagnostic tests, for example, and may be an efficient way of organis-
ing care. However, an activity-based efficiency analysis will penalise
such organisations. Second, the effectiveness (or quality) of the health
care delivered is not captured by a count of activities. For instance, an
activity-based analysis will consider operating theatres that undertake
the same number of operations to be equivalent, even if patients are
more likely to suffer complications or die if treated in one theatre
rather than the other.

The efficiency literature examined in this book makes little distinc-
tion between activities, outputs and outcomes, referring loosely to all
as ‘outputs’. In the context of health care this is unfortunate, as it
suggests a lack of interest in seeking to move towards a concept of
efficiency based on outcomes. However, in the interests of conciseness,
and consistency with the literature, we shall refer throughout much
of the book to activities, outputs and outcomes as ‘outputs’.

2.4 Valuing health care outputs

Measuring the outputs produced by health care organisations would
be difficult enough if those organisations were seeking to provide a
single and relatively homogeneous product (such as a hip replacement
operation). But health care organisations are immensely complex
entities, undertaking numerous activities and therefore producing
multiple outputs. A further difficulty therefore emerges: how are we
to assess the relative value of different types of output (comparing, for
example, hip replacements with pacemaker insertions)? The use of
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generic measures of health gain is one approach to addressing this
problem, but as discussed above this is often infeasible.

What health care outputs are valued — and how much they are
valued — are in the first instance personal judgements, and there is
evidence to suggest that there is great variation among individual
citizens as to what is valued in health care. Some focus principally
on health gain, while others place great weight on aspects of respon-
siveness, such as being treated with dignity and respect, and being
able to make informed choices. For the purposes of meaningful com-
parison, in the absence of market valuations (such as prices), someone
on behalf of society has to decide what is valued. That is rarely a role
for analysts or researchers — rather, it is the legitimate role of politi-
cians. In developing an efficiency model, an important requirement is
to seek out a clear political statement on what is valued from legit-
imate stakeholders. This will usually take the form of some statement
of the objectives of the health system or its constituent organisations.
We shall discuss the issue of valuation at greater length in chapter 8.

2.5 Specifying inputs

The input side of efficiency analysis is usually considered less proble-
matic than the output side. Physical inputs can often be measured
more accurately than outputs, or can be summarised in the form of
a measure of costs. However, even the specification of inputs can
give rise to serious conceptual and practical difficulties in efficiency
analysis. This section briefly summarises some of the major issues.

A fundamental decision that must be taken is the level of disaggre-
gation of inputs to be specified. At one extreme, a single measure of
aggregate inputs (in the form of total costs) might be used. The effi-
ciency model then effectively becomes a cost function. This approach
assumes that the organisations under scrutiny are free to deploy inputs
efficiently, taking account of relative prices. Any failure to do so (price
inefficiency) will be reflected in a lower estimate of measured effi-
ciency. Use of a single measure of costs therefore takes a long-term
perspective as it assumes, for example, that organisations can freely
adopt an optimal mix of capital and labour.

It may also be important to consider a short-term perspective, in
which certain aspects of the input mix are considered beyond the
control of the organisation. In these circumstances, it becomes
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necessary to disaggregate the inputs to some extent in order to cap-
ture the different input mixes that organisations have inherited. In
particular, disaggregation of labour and capital may be required. We
consider these two classes of input in turn.

2.5.1 Labour inputs

Labour inputs can usually be measured with some degree of accuracy,
often disaggregated by skill level. An important issue is then how
much aggregation of labour inputs to use before pursuing an efficiency
analysis. Unless there is a specific interest in the deployment of differ-
ent labour types, it may be appropriate to aggregate into a single
measure of labour input, weighting the various labour inputs by their
relative wages. A central contribution of the techniques discussed in
this book is to offer evidence on efficiency when there is no direct
information on the relative value placed on inputs or outputs. Where
such evidence does exist, as for example on the market price of inputs,
there may be little merit in disaggregation unless there is a specific
interest in input allocative efficiency. Aggregation leads to a more
parsimonious model, thereby allowing the analyst to focus attention
on aspects of the production process where there is less secure
evidence on weightings.

However, there may be an interest in the relationship between
efficiency and the mix of labour inputs employed. Under such circum-
stances, a short-run model using measures of labour input disaggre-
gated by skill type may be valuable. Such modelling assumes that
organisations are constrained in their ability to alter skill mix, and
can yield useful policy recommendations about (say) substituting
one type of labour for another.

It may be that labour inputs are measured in either physical units
(hours of labour) or costs of labour. Which should be used in an
efficiency analysis depends on the context. The use of physical inputs
will fail to capture any variations in organisations’ wage rates. This
may be desirable (for example, if there are variations in pay levels
beyond the control of organisations) or undesirable (if there is be-
lieved to be input price inefficiency, in the form of different pay levels
for identical workers).

Although labour inputs can be measured readily at an organisa-
tional level, problems may arise if the purpose of the study is to
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examine the efficiency of sub-units within organisations, such as
operating theatres within hospitals. It becomes increasingly difficult
to attribute labour inputs, when the unit of observation within the
hospital becomes smaller (department, team, surgeon and patient).
Staff often work across sub-units, but information or financial sys-
tems cannot track their input across these units with any accuracy. In
particular, hospital specialists often work across specialities. For in-
stance, a general surgeon may have an interest in urology; or a plastic
surgeon may spend some time working in dermatology. Their mea-
sured contribution to each speciality then relies on arbitrary account-
ing choices that may vary considerably between units being compared.
Particular care should be exercised when developing organisational
efficiency models relying heavily for input measures on self-reported
allocations of professional time.

One final consideration on labour inputs is that organisations
may vary in the extent to which they ‘buy in’ certain services, rather
than directly employ labour. For example, some hospitals may pur-
chase cleaning services from independent contractors and have little
idea of the associated labour inputs. Cleaning services might therefore
appear as a ‘goods and services purchased’ input rather than labour
and capital inputs. If other hospitals directly employ cleaning person-
nel, it may be the case that such inputs are not being treated on a
strictly comparable basis. In such circumstances, the analyst may need
to resort to a single measure of inputs, in the form of total costs.

2.5.2 Capital inputs

Incorporating measures of capital into the efficiency analysis is more
challenging. This is partly because of the difficulty of measuring
capital stock and partly due to problems in attributing its use to any
particular period.

Measures of capital are often very rudimentary, and even mislead-
ing. For example, accounting measures of the depreciation of physical
stock usually offer little meaningful indication of capital consumed.
Indeed, in practice, analysts may have to resort to very crude mea-
sures; for example, the number of hospital beds or floorspace as
a proxy for physical capital. Furthermore, health care often invests
in important non-physical capital inputs, such as health promotion
efforts.
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Outputs Outputs Outputs
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Inputs Inputs Inputs
Yeart—-1 Year t Yeart+1

Figure 2.4. The dynamic nature of organisational performance.

In principle, an efficiency model should use the capital consumed in
the current period as an input to the production process. But capital is
by its nature deployed across time. On the one hand, contemporary
output may rely on capital investment that took place in previous
periods, while on the other, some current activities are investments
that are intended to contribute to future rather than contemporary
outputs.

The accounting difficulties capital inputs give rise to can be sum-
marised in the form of a diagram, as shown in Figure 2.4. In each
period, inputs are consumed and direct outputs emerge from the
organisation. A rudimentary efficiency analysis will examine the ratio
of outputs to inputs for only a single time period . Yet crucially the
organisation in year ¢ has enjoyed the benefits of past investments.
And it also leaves an ‘endowment’ for future periods in the form of
investments undertaken in this and preceding periods. The endow-
ment might be in the form of real capital (buildings or personnel) or
investment in health ‘capital’ through (say) preventive medicine. In
principle, the endowment may be an important aspect of both the
inputs to and outputs of the health system. In practice it can be very
difficult to measure.

A central issue in the treatment of capital is the extent to which
short-run or long-run efficiency is under scrutiny. In the short run, it
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makes sense for organisations to take advantage of whatever invest-
ment infrastructure they have available, and to optimise subject to
any constraints imposed by that infrastructure. So, for example, short-
run efficiency should be judged in the light of the capital configuration
that a hospital has available. Yet in the longer run one might expect
the hospital to reconfigure its capital resources when this can bring
about efficiency improvements.

2.5.3 Summary

As with all modelling, efficiency models should be developed accord-
ing to the intentions of the analysis. If the interest is in narrow short-
run use of existing resources, then it may be relevant to disaggregate
inputs in order to reflect the resources currently at the disposal of
management. If a longer-term, less constrained analysis is required,
then a single measure of ‘total costs’ may be a perfectly adequate
indicator of physical organisational inputs.

2.6 Environmental constraints

In many contexts, a separate class of factor affects organisational
capacity, which we classify as the ‘environmental’ determinants of
performance. These are exogenous influences on the organisation’s
production function, beyond its control, that reflect the external en-
vironment within which it must operate. In particular, many of the
outcomes secured by health care organisations are highly dependent
on the characteristics of the population group they serve. For example:

e population mortality rates are heavily dependent on the demo-
graphic structure of the population under consideration;

e surgical outcomes are often highly contingent on the severity of
disease of patients;

e hospital performance may be related to how care is organised in
the local community;

e the performance of emergency ambulance services may depend on
local geography and settlement patterns.

There is often considerable debate as to which environmental fac-

tors can be considered ‘controllable’. For example, responses to the
World Health Report 2000 argued that the HIV/AIDS epidemic was
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important in the poor measured performance of many low-income
health systems, but had not been taken into account (World Health
Organization 2001). Conversely, the World Health Organization ar-
gued that control of the epidemic had been amenable to intervention,
and so efficiency should be judged without adjustment. In the same
vein, hospital outcomes may be strongly related to infection rates,
and there may be debate on the extent to which these are within the
hospital’s control. The analyst’s choice is likely to be heavily depen-
dent on whether the purpose of the analysis is short-run and tactical,
or longer-run and strategic. In many circumstances it will be appro-
priate to undertake both short-run and long-run analysis.

The performance of many health care organisations is in part de-
pendent on inputs from outside agencies, such as social care, hous-
ing organisations or private families. In principle we should recognise
this in modelling efficiency. For example, many patient outcomes
rely on the co-ordinated contributions of a number of organisations,
in the form of integrated care. If the performance of only one of these
organisations is under scrutiny, there may be a difficulty in identifying
the element of patient outcome that is attributable specifically to its
endeavours. The danger is either (i) its contribution towards inte-
grated care is ignored in the analysis (under-attribution) or (ii) the
contribution of other external agencies towards outcome is ignored
(over-attribution). Again, whether these external efforts should be
treated as exogenous depends on the extent to which the behaviour
of external agencies is amenable to influence by the organisation
under scrutiny.

Broadly speaking, there are three ways in which environmental
factors can be taken into account in efficiency analyses:

e restrict comparison only to organisations within a similarly con-
strained environment;

e model the constraints explicitly, as being analogous to “factors’ in
the production process;

e undertake risk adjustment.

The first approach to accommodating environmental influences is
to cluster organisations into similar ‘families’, using techniques such
as cluster analysis (Everitt, Landau and Leese 2001). The intention is
then to compare only like with like. Of course, this begs the question
as to what criteria are to be used to create the families. Statistical
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examination of the link between putative exogenous influences and
performance is often ruled out because efficiency too is correlated
with performance. Unless exogenous influences are known to be
entirely independent of efficiency levels, it becomes impossible to
determine whether a correlation with performance is reflecting exo-
genous influences or efficiency variations. The analyst will therefore
often have to resort to informed judgement in choosing the basis for
creating families.

A further problem with the use of families is that it will reduce
sample size, as it rules out extrapolation of performance of one type
of organisation as a basis for comparison with another type. This
may be appropriate to ensure robust comparisons, but with para-
metric methods can seriously affect the confidence with which effi-
ciency judgements can be made, for example by leading to smaller
samples and larger standard errors. Furthermore, of course, useful
lessons that organisations might learn from being compared to a more
heterogeneous sample will be lost.

The second approach is to incorporate environmental factors di-
rectly into the production model, often treating them as an exogenous
‘input’ analogous to labour or capital. This approach effectively gen-
eralises the clustering approach by allowing extrapolation from one
class of organisation to another. For example, an environmental factor
might be included as an explanatory variable in the parametric mod-
elling approach (chapter 3) or as an input or output in the non-
parametric approach (chapter 5). Whilst leading to a more general
specification of the efficiency model than the clustering approach, the
direct incorporation of environmental factors into the efficiency mod-
el leads to new modelling challenges that are discussed in detail in
the chapters that follow.

The final method to control for variation in environmental circum-
stances is the family of techniques known as ‘risk adjustment’. These
methods adjust organisational outputs for differences in circumstances
before they are deployed in an efficiency model, and are — where
feasible — often the most sensible approach to treating environmental
factors. In particular, they permit the analyst to adjust each output for
only those factors that apply specifically to that output, rather than
to use environmental factors as a general adjustment for all outputs.

Well-understood forms of risk adjustment include the various
types of standardised mortality rates routinely deployed in studies of
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population outcomes. These adjust observed mortality rates for the
demographic structure of the population, thereby seeking to account
for the higher risk of mortality among older people. Likewise, surgical
outcomes might be adjusted for the severity of risk factors, such
as age, co-morbidities and smoking status of the patients treated.

The methods of risk adjustment are often a highly efficient means
of controlling an output measure for a multiplicity of environmental
factors. The risk-adjusted output can then be entered into the effi-
ciency model without any further need to enter environmental fac-
tors. The methods of risk adjustment have been developed to a high
level of refinement (Iezzoni 2003). However, it must be noted that
risk adjustment usually has demanding data requirements, in the
form of information on the circumstances of individual patients. And
even when adequate data do exist it is often difficult to secure scien-
tific consensus on the most appropriate way of undertaking the risk
adjustment.

Including a factor in a risk-adjusted output measure should preclude
the need to consider the factor further in any efficiency analysis. It
therefore considerably simplifies the efficiency modelling process. Yet
it is important to bear in mind that conventional risk adjustment
usually requires the assumption that the sample average outcome for
a particular population group (say, population aged 65-74, non-
smoking) is a suitable benchmark against which individual or organi-
sational performance can be measured. If for some reason certain
population groups receive systematically poor care, it may be inap-
propriate to include such groups in the risk adjustment process, par-
ticularly if the intention is to highlight such underperformance and
promote better performance among practitioners caring for such
groups.

For example, in Australia, aboriginal population groups suffer
substantially poorer life expectancy than most other ethnic groups
(Zhao et al. 2004). Therefore, if standardised mortality rates are to
be used as an indicator of public health authorities’ performance, a
critical policy decision is whether or not to include aboriginal ethnic
origin in the risk adjustment process. If it is included, the effect of
ethnicity on health authority performance will not be identified ex-
plicitly. If it is not included, health authorities with large aboriginal
populations will exhibit poor outcomes, stimulating a debate as to
whether this is beyond health authority control. The technical choice
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of risk adjustment methodology should therefore be driven by the
policy intentions underlying the analysis.

One particularly important situation arises when organisations
have been allocated funds to deliver some standard level of care, for
example using risk-adjusted capitation formulae. The purpose of such
formulae is to adjust for legitimate environmental circumstances, so
that in principle all organisations are operating on a ‘level playing-
field> (Smith 2003). In these special circumstances there may be no
need explicitly to consider any exogenous variables at all on the input
side. Efficiency analysis should focus solely on variations in organi-
sational outputs, as all inputs have been equalised. This argument,
of course, presumes that the funding formulae have been correctly
designed.

In chapter 8, we shall return to the issue of environmental con-
straints, with a discussion of the inferential implications arising from
how most SFA and DEA models deal with the issue.

2.7 Practical challenges

Notwithstanding the important model-building considerations dis-
cussed in this chapter, it is often the case that the most serious diffi-
culties for the analyst arise from the scope and nature of the available
data sources. Numerous difficulties can arise:

e In health care, there is often a serious lack of information on some
important dimensions of performance, most notably the quality of
care. This is especially problematic in efficiency analysis, when the
ambition is to present a rounded view of performance.

e Where measurement instruments are available, they may be incom-
plete or highly imperfect metrics with large random elements.

e Time series are often short, or interrupted by structural changes,
such as hospital mergers.

e As always, there may be missing data for some observations, lead-
ing to difficult technical choices as to whether to broaden the scope
of the model (and so effectively reduce sample size) or to use a more
circumscribed model with a larger sample.

e More generally, given the complexity of the production process in
much of health care, sample sizes may often be too small to draw
secure inferences on the nature of the preferred model.
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Joint outputs: Outputs External outputs:
Integrated care Year t Productivity
Research, teaching Independence
Etc. Etc.
Endowments Organlsatlon Endowments

Yeart-1 Year t Year t+ 1
Exogenous inputs: System constraints:
Other organisations Policy constraints
Population characteristics Inputs Physical constraints
Etc. Year t Etc.

Figure 2.5. The broader context of efficiency analysis.

Such difficulties will be familiar to those working in most domains
of quantitative analysis. However, they can become particularly pro-
blematic in efficiency analysis because of the great attention placed
on unexplained variations from the estimated frontier.

These issues are discussed in more detail in chapter 8. Here we
merely emphasise the potentially high sensitivity of results to model
specification and data errors. This suggests a need for great attention
to sensitivity analysis, experimentation with different model specifica-
tions, and caution about drawing definitive judgements on the effi-
ciency of individual organisations. It is important to bear in mind that
a great deal of conventional uncertainty analysis merely models un-
certainty in the data, and not the implications of wrongly specifying
the underlying model (Smith 1997). Conventional measures of uncer-
tainty may therefore seriously overestimate the degree of confidence
in efficiency scores, and should be viewed with caution.

In short, data constraints will often circumscribe the ability to
answer the questions of health care regulators in their entirety. In-
stead, the analyst must adopt pragmatic solutions to otherwise infea-
sible modelling demands. Under these circumstances, it is imperative to
state what technical assumptions have been made, and to communicate
clearly the limitations of the analysis.
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2.8 Conclusions

The beguilingly simple notion of efficiency disguises a series of thorny
conceptual and methodological problems. Setting aside the obvious
measurement difficulties, the structural problem can be illustrated as
in Figure 2.5. Naive efficiency analysis involves examining the ratio
of health system outputs to health system inputs (the shaded boxes).
Yet system inputs should also incorporate previous investments (en-
dowments) and exogenous inputs (such as other organisations and
patient characteristics). And system outputs should also include en-
dowments for the future, joint outputs and outputs not directly related
to health, such as enhanced productivity.

It will never be feasible to accommodate all the issues summarised
in Figure 2.5 into an efficiency analysis. Rather, the analyst should
be aware of which factors are likely to be material for the application
under consideration, and seek to offer guidance on the implications
of serious omissions from the efficiency model.






3 Stochastic frontier analysis of
cross-sectional data

3.1 Introduction

HIs chapter is concerned with the econometric approach to

efficiency measurement when the analyst has only a single

observation for each organisation — in other words, a cross-
sectional data set. The subsequent chapter discusses the panel data
techniques that can be used to exploit the additional information that
is available when organisations are observed at more than a single
point in time. When only cross-sectional data are available there are
two classes of econometric technique available for efficiency analysis:
corrected ordinary least squares (COLS) and stochastic frontier analy-
sis (SFA). Both follow the conventional statistical process of specifying
an econometric model of the general form:

yi=o+pxi+¢ (3.1)

where y indicates either output (Y) or cost (C); i indicates the number of
observations, i =1, ..., I; « is a constant; x is a vector of explanatory
variables; and f captures the relationship between the dependent and
explanatory variables. The residual ¢ represents the deviation between
the observed data and the relationship predicted by the explanatory
variables in the model. In most statistical or econometric models of
this form, the relationships between y and x are the primary focus.
Generally, the residual is not afforded attention in its own right, with
researchers interested only that it satisfies classical assumptions of
having zero mean and constant variance (Cook and Weisberg 1982).
In efficiency analyses, by contrast, the residual is often the only ‘para-
meter’ of interest — it is from the residual that estimates of efficiency
are derived. The difference between COLS and SFA rests upon the
interpretation accorded to the residual. In COLS, the entire residual
is interpreted as arising from inefficiency. In SFA, the residual
comprises a mixture of inefficiency and measurement error.

41
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3.2 Considerations in stochastic frontier analysis

There are a number of considerations when estimating an efficiency
model of the above form:

whether to estimate a production or a cost function;
whether to transform variables;

whether to estimate a total or an average function;
which explanatory variables to include;

how to model the residual;

how to extract the efficiency estimates.

These issues are discussed in the first half of the chapter before being
illustrated using case study material.

3.2.1 Whether to estimate a production or a cost function

The first decision facing the analyst is whether to estimate a production
or a cost function. If the purpose of the analysis is to explore differences
in output, Y, the econometric model of (3.1) takes the revised form:

Yi = O{—‘rﬁX,‘-i-Sl' (32)

In many industries, estimation of a production function poses serious
practical difficulties (Intriligator 1978). In particular, where organisa-
tions produce multiple outputs, it is a challenge to derive a composite
measure of output without loss of information. Most econometric
attempts to deal with this problem reduce to estimation of a single
output, conditioned in some way on the other outputs. This is not
particularly satisfactory because the estimates of efficiency tend to be
sensitive to which output is chosen to represent Y (Fernandez, Koop
and Steel 2000). A different approach is described by these authors in
which Bayesian methods are implemented using a Markov chain
Monte Carlo algorithm to transform multiple outputs into an equiva-
lent univariate production function (Fernandez, Koop and Steel 2000).
As will be shown in chapter 5, data envelopment analysis has a clear
advantage over econometric methods in its ability to handle multiple
outputs. In chapter 9, we describe the use of multivariate models to
analyse multiple objectives using econometric methods.

Faced with multiple outputs, most researchers find it more conve-
nient to work with a cost function because it allows a single dependent
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variable, cost (C), to be estimated. Information about different out-
puts can be included as a vector of explanatory variables Y = Y(Yy,
Y,, ..., Ys), hence:

Ci=a+ B Y+ pxi+e (3.3)

If cost-minimising behaviour can be assumed, the cost function is
usually the dual of the production function, making the two ap-
proaches equivalent. However, duality does not hold for all functional
forms, particularly if higher-order powers are included (Burgess 1975;
Christensen and Greene 1976). Moreover, cost-minimising behaviour
may be a strong assumption in some sectors of the economy, such as
the health sector (Varian 1978).

3.2.2 Whetbher to transform variables

The second question concerns the form of the functional relationship
between the dependent and explanatory variables. This functional
form can be specified in a variety of ways, some of which are considered
later. For the moment, we focus on the implications of using variables
in their natural units or of transforming them into logarithmic form.

Using variables in their natural units assumes that the explanatory
variables are related linearly to the dependent variable. Suppose that
the main determinant of total hospital cost is the scale of activity,
measured by the number of inpatients treated. The model would yield
estimates of the relationship between cost and activity suggesting that,
whatever the scale of operation, an additional patient treated would
make the same contribution to total cost. This is illustrated as line
A in Figure 3.1.

The assumption of a constant rate of change in costs as the scale
of activity changes may not hold in practice. Marginal costs will be
higher than average costs in the presence of diminishing factor pro-
ductivity or decreasing returns to scale. In such circumstances, the
overall cost impact of, for instance, treating an additional patient,
would be lower in organisations with a small level of activity than in
those treating greater numbers. One way to model this relationship is
by taking logarithms of the variables. This may produce a function
similar to curve B in Figure 3.1. The interpretation of the coefficients
under a logarithmic form also change from natural units to elasticities
or percentage changes.



44 Measuring Efficiency in Health Care

Cost

Output

Figure 3.1. Linear and logarithmic functional forms.

The Davidson—MacKinnon Pg-test can be used to test for non-linear
functional forms (Davidson and MacKinnon 1985). Obviously,
other functional forms can be specified, for instance by including
higher-order powers of explanatory variables. The appropriateness
of their inclusion can be ascertained simply by application of a t-test.

3.2.3 Whether to estimate a total or an average function

The choice between working with total or average output/cost de-
pends on the assumptions made about the relationship between the
dependent and explanatory variables. Organisations can change their
output or cost levels in two ways: by changing the scale of production,
making proportionate changes in the quantities of inputs employed; or
by altering the mix of inputs used.

The impact of altering input quantities depends on the scale proper-
ties — or degree of homogeneity — of the function. The production
function is homogeneous of degree b if

thY — f(le,sz) = be(x17x2)7 fOr all K > 0,
(3.4)
for all x

where k is any scalar and x; and x, are different inputs. A special case
is where b = 1, where the function is homogeneous of degree 1, or
linearly homogeneous. In this situation, the production function dis-
plays constant returns to scale, whereby a proportionate change in the
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use of inputs leads to a change in output by the same proportion.
For instance, for an organisation operating under constant returns to
scale, doubling the use of inputs would lead to twice as much output.
Where b > 1, the function displays increasing returns to scale and
where h < 1, it displays decreasing returns to scale. Only in the
presence of constant returns to scale will the estimation of total and
average functions yield equivalent results.

Scale properties aside, estimation of an average function may be
preferable if the data being analysed are subject to heteroscedasti-
city. Heteroscedasticity arises if the variance of the residual ¢; is not
constant. The error term ¢; is based on an underlying probability
distribution, assumed to have zero mean and constant variance. Het-
eroscedasticity may occur where, for instance, the variance of the
residuals varies systematically with one of the explanatory variables,
such as size (Pindyck and Rubinfeld 1991). Observed data for (say)
larger organisations thus lie further from the regression line than
they do for small organisations, as illustrated in Figure 3.2. One
reason why this may occur is that the contribution made by labour
to output may be a function of skill e: Y = eL. Staff are likely to have
different levels of skill, even if they are paid similarly, but this is
unlikely to be observable to the researcher. Smaller organisations will
experience less variation in e for the simple reason that they employ
fewer people, so their observed data will lie closer to the regression
line, with observations fanning out from the regression line as the size
of the workforce and, hence, output increases.

Heteroscedasticity has two implications. First, ordinary least squ-
ares (OLS) regression estimates will no longer provide minimum var-
iance (they will be inefficient) and so they will not provide ‘best’
estimates of the hypothesised relationship. Second, the estimated var-
iances of the OLS estimators will be biased, invalidating tests of
statistical significance.

If present, heteroscedasticity can be reduced by working with aver-
age rather than total functions because, by estimating the ratio of
output or cost to a deflating variable, the residual is more likely to
display homoscedasticity (Intriligator 1978). But in specifying an
average cost function a deflating variable has to be selected. One
option is to use a measure of organisational size, thereby making the
dependent variable an average cost per unit of size. Deflating by size
would be appropriate only in the presence of constant returns to scale.
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OQutput

Labour inputs

Figure 3.2. Illustration of heteroscedastic data.

Alternatively, output might be used for deflating purposes, to make
the dependent variable cost per unit of output, say. This is problematic
in the context of multiple outputs because efficiency estimates will be
sensitive to which output is chosen for deflation. The total cost func-
tion has the advantage of incorporating the various types of output as
separate explanatory variables.

It is important to test for heteroscedasticity of the total function
before proceeding with deflation — if the undeflated series was homo-
scedastic, deflation would introduce heteroscedasticity because the
error term is transformed by deflation (Kuh and Meyer 1955). More-
over, the average function may not resolve the problem of biased
estimation (Hough 1985). Indeed, a new source of bias may arise
if the variable used for deflation on the left-hand side of the equation
as the denominator (say number of cases) is multicollinear with one of
the explanatory variables on the right-hand side of the equation (Kuh
and Meyer 1955).

There are other ways to deal with heteroscedasticity other than by
estimating an average function. Logarithmic functions are likely to be



Stochastic frontier analysis of cross-sectional data 47

less susceptible to heteroscedasticity because by transforming vari-
ables into their logarithmic form their distribution is likely to appro-
ach normalisation (Maddala 1988). Another approach is to correct
for heteroscedasticity using a robust estimator (White 1980).

3.2.4 Which explanatory variables to include

Explanatory variables, x, are used to explain differences among orga-
nisations in their observed levels of output or cost. The choice about
what constitute appropriate explanatory variables depends on the
purpose or perspective of the analysis. Broadly, the literature can be
divided into two camps: technological functions derived from the
theory of the firm; and behavioural functions that can be (loosely)
categorised as stemming from theories of regulation.

If the research interest is in analysing production from the perspec-
tive of the organisations under consideration, the neo-classical theory
of the firm is an appropriate framework. This type of specification
facilitates investigation of questions such as how output might vary
following changes in the level or mix of inputs. Candidate explanatory
variables will measure the input choices made by — or endogenous to —
the organisations themselves. These variables might be supplemented
by others measuring unavoidable organisational constraints that, in
the short term at least, are exogenous to managerial control.

In contrast, many efficiency studies are conducted from the pers-
pective of a regulator. The regulator might be interested in assessing
organisational effort and efficiency, recognising that organisations
face different and, sometimes, unavoidable operational or environ-
mental constraints. The regulatory objective will be to control for
these exogenous constraints before making judgements about the level
of effort expended. Endogenous factors that influence production or
costs, such as the choice about what technical production process to
employ, would be excluded from the model on the grounds that these
are decided by the organisation. The analytical task is to construct a
behavioural function that reflects feasible production possibilities
within a constrained environment (Smith 1981).

Many studies of health care organisations adopt a neo-classical
approach (Schmidt and Lovell 1980; Vitaliano 1987; Zuckerman,
Hadley and Lezzoni 1994; Linna 1998; Folland and Hofler 2001;
Rosko 2001). Here, the production function summarises a technical
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relationship among the maximum outputs attainable for different
combinations of all possible factors of production. For example,
suppose hospital output is measured as the total number of patients
treated (Y) and that there are two factors of production, labour (L)
and capital (K). Then the production function would be written as:

Y = f(L,K) (3.5)

where f(.) describes the functional relationship between output and
different mixes of labour and capital.

One of the most widely used production functions is the Cobb-
Douglas, which takes a logarithmic form and can be written as:

Y = alP1KP: (3.6)
and estimated as:
InY; = o+ ﬁllnL,’ + ﬁzan,‘ +¢& (3.7)

where f{ and f, are parameters describing the contributions to out-
put made by labour and capital respectively. The logarithmic form
allows these parameters to be interpreted as elasticities: a 1 per cent
increase in the amount of labour employed is predicted to lead to a
percentage increase in output to the value of f;.

Another commonly estimated production function is the transcen-
dental logarithmic function — the translog (Christensen, Jorgenson and
Lau 1973). The attraction of the translog is its flexibility — it can
approximate virtually any functional form (Intriligator 1978). The
translog is estimated by including squares and cross-products of the
explanatory variables. Thus the production function of (3.5) would
be estimated as:

lnY,' = + ﬂllnL,— + ﬁzani

3.8
B INL) 42 B0k folnL K+

If the parameters f3, 4 and s are not significantly different from
zero, the function reduces to a Cobb-Douglas.

One of the drawbacks of the translog is that there are likely to be a
large number of parameters to be estimated: for every additional
variable added to the model, it is necessary to include a squared term
and cross-products with the existing variables. If 7 represents the
sum of variables, the number of parameters amounts to approximately
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n(m + 1)/2, with a consequent reduction in the degrees of freedom
available (Newhouse 1994). A compromise might be to include only
broad descriptions of the factors of production. For instance, estima-
tion may be based on total number of staff, rather than specific details
about medical or nursing staff complements, although this would
imply a loss of information relating to skill mix.

The cost function equivalent to the production function of (3.5) can
be written as:

C=f(Y,w,7) (3.9)

where w and 7 represent input prices for labour (wages) and capital
(rent) respectively. The cost function equivalent to the Cobb-Douglas
production function is:

C(Y,w,7) = o (YwhrpPr)l/Frtho) (3.10)

The elasticities 1 and B, can be estimated from a linear model of the
following form:

InY; + b Inw; + b

InC; = o+ !
e B+ B B+ B B+ B

Inz; + ¢

(3.11)

where w and r are the unit prices of each factor of production. The
translog cost function can be expressed in the following manner
(Greene 2000):

InC; = o+ olnY,; + fylnw; + p,lnr;
1 1 1
+ 2.33 (InY;)* + §ﬁ4(lnwi)2 + §ﬁ5(lnri)2 (3.12)
+ BeInYilnw; + B/ InY;lnr; + Bglnw;lnr; + ¢;

This will correspond to the translog production function (3.8) only if
factor markets are competitive and the cost function displays constant
returns to scale, with total costs increasing proportionally when all
prices increase proportionally, given the level of output (Christensen
and Greene 1976). If these conditions do not hold, estimation will be
sensitive to the choice of a translog production function or translog
cost function (Burgess 1975).

Direct estimation of the production or cost function gives rise to
two potential problems. First, L and K are unlikely to be independent
of each other, leading to problems of multicollinearity. This makes it
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difficult to disentangle the separate contributions of each explanatory
variable to the dependent variable (Maddala 1988). Second, the ex-
planatory variables may be jointly determined (i.e. endogenous), im-
plying a simultaneous (two-way) relationship between the dependent
variable and the explanatory variables (Intriligator 1978). For in-
stance, the decision to expand output may imply the greater use of
inputs (cost) and the greater use of inputs (cost) may imply output
expansion. In effect, the two sides of the equation are jointly deter-
mined. These problems are not encountered under the alternative
approach to model specification, informed by the theory of regulation,
to which we now turn.

Regulators of industries that face little competition often wish to
exert downward pressure on costs by regulating prices or setting effi-
ciency targets. The regulator may wish to examine output or costs in
order to make inferences about the level of effort applied by the
organisations being regulated. Below average costs may be observed
in organisations that expend more effort in searching for and applying
efficient modes of operation. However, observed costs may not be
related to effort alone, particularly if firms face different operating
environments or other influences on their costs that are not subject to
managerial control. To be able to draw accurate inferences about the
relationship between output or costs and effort, the regulator would
want to include variables in the parametric model that control for
these exogenous influences (Schleifer 1985). In fact, it has been argued
that if the objective of the exercise is to make inferences about relative
efficiency, a necessary condition is that all variables included as re-
gressors are exogenous to managerial influence (Giuffrida, Gravelle
and Sutton 2000). The task for the analyst, then, is to determine which
are valid exogenous variables and over what time-frame the con-
straints are binding. Obviously, such constraints will be highly con-
text-specific and, in all likelihood, an area of contention between the
regulator and the regulated organisations.

3.2.5 How to model the residual

The specifications outlined thus far describe ‘sample average’ relation-
ships between output or costs and a set of explanatory variables. The
fundamental requirement for efficiency analysis is some indication
of what constitutes ‘best practice’. Farrell argues that it is possible
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to analyse technical efficiency by examining the residuals, g;, from
regression equations (Farrell 1957). In standard econometric analy-
sis, the residual would not be accorded special attention. Rather, it
represents merely the deviation between the observed data and the
relationship predicted by the model and can be interpreted as sta-
tistical error, caused by measurement inaccuracies or unobservable
heterogeneity.

However, Farrell suggested a different interpretation: the residual
can be used to describe the extent to which an organisation operates
from best practice. The difference between observed costs (or output)
and that predicted by a correctly specified model is due to inefficient
behaviour. In the case of a cost function, an organisation with a resi-
dual of zero is interpreted as displaying average efficiency, while org-
anisations with negative (positive) residuals are deemed to be of above
(below) average efficiency. (If Y represents output, the interpretations
are reversed).

This suggests that observations can be ranked according to their
average efficiency, as in an early study of National Health Service
(NHS) hospital costs (Feldstein 1967). The observation with a residual
lying the greatest distance below the cost function is defined as being
the most efficient in the sample. Given the relationship specified by
the model, its costs are lower than that for any other observation
in the sample. In this respect, the observation represents ‘best practice’
cost-minimising behaviour. Accordingly, the observation can be
thought of as lying on the ‘frontier’ of the sample.

This implies that a cost (or production) frontier can be estimated.
For a cost function, this is done by adding min(g;) to the intercept
and subtracting it from the residuals, a procedure referred to as cor-
rected ordinary least squares (COLS). The intention is to shift an OLS
regression line that originally fell through the centre of a cloud of
observed data so that it passes through the observation displaying
minimum cost. The process is reversed for a production function.

A stylised example of this procedure is illustrated in Figure 3.3 for
a single explanatory variable regressed on costs. The upper figure
shows the fitted OLS function through the set of observations. Under
the COLS approach, in the case of a cost function, the organisation
with the lowest residual value is defined as being fully efficient — its
costs are lower than those for any other observation, holding constant
the variables in the model. This implies that the COLS efficiency
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Figure 3.3. Illustration of an OLS regression and COLS frontier.

frontier is located by shifting the OLS regression line so that it passes
through this fully efficient observation. This is illustrated in the lower
half of the figure, where observation A is efficient. For an organisation
lying above the COLS frontier, it is predicted that it would be able
to reduce costs to the level predicted by the best-practice frontier
without having to reduce output. The inefficiency of such an organisa-
tion can be measured as the vertical distance between its observed
data and the frontier below, as shown for observation B.
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The COLS approach implies that the residual is due solely to
inefficiency. A contrasting viewpoint would be that the entire residual
is due to random influences or measurement error. For instance, this
interpretation would apply when analysing firms operating in a per-
fectly competitive environment, in which they are forced to operate
at minimum cost levels.

Recognising that there are these two diametrically opposed inter-
pretations of the residual it has been suggested that it might com-
prise both these components: inefficiency and random (stochastic)
error. The econometric technique known as stochastic frontier analy-
sis (SFA) has been developed to provide separate estimates of these
two components.

The key assumption underlying SFA is that the inefficiency compo-
nent and the random component of the residual will be distributed
differently. In particular, the random component is assumed to be
distributed normally, as is consistent with the classical OLS model. If
¢; is normally distributed, all residual variance is interpreted as arising
from random noise and measurement error (Wagstaff 1989). If ¢;
is skewed, this is taken as evidence that there is inefficiency in the
sample (Schmidt and Lin 1984). Subject to ¢; being skewed, stochastic
frontier analysis decomposes the error term into two parts with zero
covariance:

& =vi+u, cov(v,u)=0 (3.13)

The dual specification is defended on the grounds that each compo-
nent represents an economically distinct disturbance (Aigner, Lovell
and Schmidt 1977). v; can be interpreted as stochastic (random) events
not under the control of the organisation, such as climatic conditions
(Aigner, Lovell and Schmidt 1977), random equipment failure (Greene
1993), errors in identifying or measuring explanatory variables
(Timmer 1971) or just pure chance.

u is a non-negative term that captures the cost of inefficiency in
production, with #; defining how far the organisation operates above
the cost frontier. Diagrammatically, this might result in a cost function
similar to that depicted in Figure 3.4. The stochastic frontier has two
notable features. First, it does not correspond to the ‘line of best fit’
through the observations that would be produced by a simple linear
regression model. Second, the frontier does not (necessarily) pass
through the observation that has lowest cost, conditional upon model
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Figure 3.4. Illustration of a stochastic frontier.

specification (observation A). This is because the frontier is estimated
after recognising that the difference between observed output and the
level of output predicted by the explanatory variables is not due solely
to inefficiency. Some of the difference may be due to measurement
error and omitted variables. In Figure 3.4, observation A lies below
the estimated frontier. The distance of this point from the stochastic
cost frontier is attributable to random error, v;. For observations lying
above the frontier, the distance comprises both measurement error
and inefficiency, as illustrated for observation B.

In estimating the stochastic frontier for cross-sectional data, it is
necessary to specify the distributional characteristics of the two com-
ponents of the residual. These distributions must be different in order
to distinguish them econometrically. In common with classical as-
sumptions it is usual to assume that v; is normally distributed with
zero mean and constant variance, hence v; ~ N(0, 67).

No economic criteria are available to guide the choice of distribu-
tion to apply to #; (Schmidt and Sickles 1984). Standard computer
software allows four options: a half-normal, truncated normal, expo-
nential and gamma (Greene 2002). The half-normal is a special case
of the truncated normal and in some data sets statistical criteria can
be used to discriminate between these two options.

The u; must be observed indirectly since direct estimates of only
¢; are available. The procedure for decomposing &; into its two
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components v; and #; relies on considering the expected value of #;
conditional upon ¢;(= v; + u;). Jondrow et al. (1982) were the first
to specify a half-normal distribution for the one-sided inefficiency
component and to derive the conditional distribution (u;|v; + ;).
Under this formulation of the half-normal distribution, the expected
mean value of inefficiency, conditional upon the composite residual, is
defined as:

a1 oA qb(s,-)v/a) 8,'/1
Eluile;] = A+ [cp(—g,x/a) . (3.14)
where ¢ = 62 + ¢2. /. = 6,/7, and captures inefficiency. Where 1 = 0,

every observation would lie on the frontier (Greene 1993). ¢(.) and
®(.) are, respectively, the probability density function and cumulative
distribution function of the standard normal distribution.

The truncated normal model is a more general form of the half-
normal, where u is distributed with a modal value of u (Stevenson
1980). The explicit form for the conditional expectation is obtained
by replacing the ¢;A/c in the half-normal model with:

LGk M

Nl 3.15
N N ) ( )
If u is not significantly different from zero, the model collapses to the
half-normal.

If an exponential distribution is imposed, with a density function of
the general form f(u;) = Oexp™, the conditional expectation is ex-

pressed as (Greene 1995):

0$l(ei — 007) /4]

E[Mi‘sl] = (gi - 965) + q)[(gi — 90_2)/0_v] (3.16)

in which 0 is the distribution parameter to be estimated.

The more general gamma distribution is formed by adding an ad-
ditional parameter P to the exponential formulation, such that
flu) = %up’lexp’e"' with #; ~ G[0, P] (Greene 1990).

These formulations produce an unbiased but inconsistent estimator
of u; because, regardless of the sample size, the variance of the esti-
mate remains non-zero (Greene 1993). The inconsistency of the estima-
tor u; is unfortunate in view of the fact that the purpose of the estimation
is to approximate inefficiency. However, no improvements on this
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Figure 3.5. Histograms showing (a) the residual from the OLS model;
(b) the inefficiency term from the half-normal model; (c) the inefficiency term
from the truncated model; (d) the inefficiency term from the exponential
model.

measure have yet been forthcoming in the literature for single-equation
cross-sectional studies.

The choice of distribution will yield different estimates of ineffi-
ciency, both in the sample as a whole and for individual organisations.
For example, the exponential distribution will impose a highly skewed
relationship, and in many data sets this will imply that most observa-
tions are clustered close to the frontier with a long tail of observations
further away.

Figure 3.5 provides a visual example of three distributions of u;,
together with the distribution from an OLS model, where v; and #; are
combined. These histograms are taken from the case study used in the
latter half of this chapter. The histograms are scaled such that esti-
mated efficiency increases along the horizontal axis. The COLS histo-
gram, in the top left-hand corner, suggests that few organisations are
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Table 3.1. Calculating individual efficiency estimates for
each organisation

Production or cost Logged dependent

function? variable? Efficiency
Production yes exp(—u;)

Cost yes exp(u;)
Production no (Bx; — u;) / (Bx;)
Cost no (Px; + u;)  (Px;)

efficient, with inefficiency distributed not quite normally among the
sample. The alternative specifications derived from the stochastic
frontier models imply that most organisations are (or are close to
being) relatively efficient as they are clustered to the right-hand side
of the distribution. The exponential distribution, in the bottom right-
hand corner, with its more pronounced negative skew, implies that
inefficiency is less widespread than is assumed under the alternative
specifications.

For most data sets, results will be more sensitive to the decision on
whether to estimate a stochastic frontier instead of a COLS frontier
and less sensitive to the choice of distribution of #; within the sto-
chastic frontier framework. Invariably COLS will yield lower levels

of average efficiency because the entire residual is attributed to
inefficiency (Schmidt 1985).

3.2.6 How to extract the efficiency estimates

The measure of efficiency for each organisation i, eff;, depends on the
type of function estimated. Details of how to calculate predictions
for each organisation are given in Table 3.1 (Coelli 19962). In the case
of a production function, eff; will lie between 0 and 1. For the cost
function, values will fall between 1 and infinity, so when reporting
results it is usual to invert the values such that 0 < - < 1. The effici-
ency estimates derived from a model with untransformed variables can
be interpreted as absolute distances from the frontier. Estimates from
a logarithmic model represent percentage distances from the frontier.
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3.3 Application to acute hospitals in England

The considerations discussed above in estimating an efficiency model
are illustrated using a data set and model specification developed
by the Department of Health in England to analyse the efficiency of
acute hospitals (Audit Commission and Department of Health 1999).
Data for 226 hospitals were compiled for the year 1995/96 from a
variety of publicly available sources (Soderlund and van der Merwe
1999). As discussed in section 2.3.2 we ideally wish to measure out-
comes of health care, but in the case of this data set we are constrained
to measuring health care activities. The variables in the data set are
described in more detail in the Appendix.

The dependent variable in the average cost function, AC, is a case
mix cost index, the ratio of actual costs to cost-weighted output. Out-
put includes inpatient admissions (adjusted for case mix differences),
outpatient visits and A&E attendances. This case mix cost index
has been regressed against a set of variables x that seek to explain
variations in index scores, using a model of the form:

ACi=oa+ fixi+& (3.17)

The results from this equation are compared to those where total
costs, C, enter as the dependent variable, with the various dimensions
of output (inpatient admissions, outpatient and A&E attendances)
included as an additional vector of explanatory variables, Y:

Ci=oa+pxi+pYi+e& (3.18)

The variables included in the vector x conform to the regulatory rather
than the neo-classical framework discussed earlier. A neo-classical
formulation would require that the cost implications of choosing a
particular production process should be captured by the model para-
meters, not by the residual. The rationale for not including capital
and labour prices as explanatory variables is that the amount and mix
of inputs is determined by hospital managers, so any sub-optimality
arising from the employment of these resources should be considered
as indicative of inefficiency. In addition, within the NHS, factor prices
w and r are set through the central bargaining processes and, in
essence, display very little variation.

The ‘behavioural’ formulation adopted by the Department of
Health stems from a desire to isolate those cost-influencing factors
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over which hospitals have no control so that their influence on costs
can be eliminated when using the information to guide regulatory
policy. Cost differences remaining over and above those ‘explained’
by the econometric model are deemed to reflect differences in organi-
sational effort and the choice of what technical production process
to employ.

The variables included in the model are listed in Table 3.2, together
with descriptive statistics, for 226 hospitals. These data exclude out-
liers, identified by applying the DFFITS procedure to the total cost
function, and setting a cut-off point of DFFITS > 3(k/i)*° where k is
the number of parameters estimated and i the number of observations
(Séderlund and van der Merwe 1999).

Table 3.3 presents the regression results for the average cost func-
tion. The COLS model implies a mean level of ‘inefficiency’ of around
70 per cent, with the least efficient hospital estimated to be operating
at 50 per cent efficiency. The majority of variables are significant
influences on cost. For example, hospitals receiving more patients
transferred from other hospitals (TRANS-IN) or treating more pa-
tients with multiple problems (EP_SPELL) tend to have higher average
costs. Hospitals treating higher proportions of female (P-FEM), old
(P-60), and young (P-15) patients are more likely to incur lower aver-
age costs, these seemingly counter-intuitive results probably arising
from an overcompensation for these characteristics in the adjustment
for case mix complexity.

The coefficient of skewness, /b1, suggests that the residuals are
significantly skewed. The COLS results are accompanied by the
stochastic cost frontier regression estimations, corresponding to the
half-normal, truncated normal and exponential error distributions.
The distribution parameters of both the half-normal and exponen-
tial models (4 and 0 respectively) are significant, suggesting that these
models are an improvement on COLS estimation. In contrast, the
truncated normal model yields a value for u that is not significantly
different from zero, making it equivalent to the half-normal model.
The coefficients and the significance of the explanatory variables
are broadly similar across all specifications. This is to be expected,
since both the OLS estimates (which provide the starting values for
the iterations) and the maximum likelihood estimates used in the
stochastic frontier (SF) regressions are consistent estimators (Greene
1993).
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Table 3.3 indicates that the mean level of efficiency is similar across
the SF error distributions, ranging from 85 to 90 per cent. This is
considerably higher than was implied by the COLS model. This is ex-
pected because the COLS residual comprises both inefficiency and
random error and, hence, yields lower estimates of efficiency (Schmidt
1985).

The correlations between the point estimates of efficiency and the
relative rank of each hospital under each specification (with the ex-
ception of the truncated normal) are provided in Table 3.4. Two points
are noteworthy. First, estimates are more sensitive to the choice be-
tween a COLS and SF specification than they are to the choice con-
cerning the distribution of inefficiency within the SF framework.
Second, differences are greatest when comparing COLS and SF results
from an exponential distribution, as would be expected given the
highly skewed distribution adopted by the latter specification.

Regression results pertaining to the total cost function are reported
in Table 3.5, which includes measures of activity as additional expla-
natory variables. Treating an additional (case mix weighted) inpatient
is estimated to increase total costs by upwards of £900, with an
additional outpatient adding around £170 to total costs. Switching
from an average to a total cost function has some influence on the
significance of some of the explanatory variables but results are fairly
stable.

The estimates of the mean level of efficiency in the sample are sim-
ilar to those arising from estimating an average cost function. How-
ever, the distribution of efficiency is now wider, with the least efficient
hospitals having lower point estimates than was apparent under the
average cost function. Correlations of the efficiency estimates and
ranks across the different specifications of the total cost function are
provided in Table 3.6 and are similar to those under the average cost
specifications.

Table 3.7 presents the correlation coefficients relating to a compar-
ison of the efficiency estimates and ranks produced by the average and
total cost functions. These coefficients, while still significant, are
substantially lower than those reported in Tables 3.4 and 3.6. This
suggests that results for these data are more sensitive to the choice
between estimating a total or an average cost function than they are to
choices about how inefficiency is distributed.
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Table 3.4. Correlations across average cost specifications

Average cost COLS Half-normal Exponential
Scores

COLS 1.000

Half-normal 0.855* 1.000

Exponential 0.679* 0.934* 1.000
Ranks

COLS 1.000

Half-normal 0.916* 1.000

Exponential 0.839* 0.973*% 1.000
Note:

* Significant at 0.01 level.

Of even greater significance is the choice of whether to work in
natural units or to use logarithmic transformations. Rather than spe-
cifying costs in original units, it is more conventional in productivity
and cost analyses to adopt a logarithmic functional form, thereby
relaxing the assumption that the rate of change in costs is constant
over the entire range to be evaluated (Breyer 1987). But by transform-
ing variables into logarithmic form, their distribution is likely to
approach normalisation and, by implication, the residual is also likely
to exhibit a less skewed distribution. Following logarithmic transfor-
mation of these data, OLS estimation yields a coefficient of skewness
suggesting that the residual is normally distributed, thereby making it
impossible to perform stochastic frontier analysis. In cases such as
this, all residual variance should be interpreted as noise (Wagstaff
1989). This result suggests that the appearance of ‘inefficiency’ in a
linear model might be banished following transformation.

3.4 Conclusions

This chapter has outlined the main issues involved in specifying an
econometric model to assess efficiency using cross-sectional data. The
analyst faces a number of decisions regarding the type of function to
be estimated, the functional form of the model, the choice of expla-
natory variables and how to model inefficiency. It may be possible to
apply statistical criteria to make some of these choices but for others
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Table 3.6. Correlations across total cost specifications

Total Cost COLS Half-normal Exponential
Scores

COLS 1.000

Half-normal 0.893* 1.000

Exponential 0.814* 0.981* 1.000
Ranks

COLS 1.000

Half-normal 0.887* 1.000

Exponential 0.832% 0.990* 1.000
Note:

* Significant at 0.01 level.

Table 3.7. Correlations across average and total cost specifications

TC COLS TC Half-normal TC Exponential

Scores
AC COLS 0.523* 0.572% 0.549*
AC Half-normal 0.647* 0.778*% 0.788*
AC Exponential 0.585* 0.743* 0.793*
Ranks
AC COLS 0.588* 0.731*% 0.711*
AC Half-normal 0.639* 0.836* 0.838*
AC Exponential 0.611* 0.839* 0.843*
Note:

* Significant at 0.01 level.

there are no overarching statistical or economic criteria on which to
base the decision. In such cases, the appropriate strategy and the
robustness of results to alternative choices may depend on the purpose
of the analysis and the nature of the data.

Some of the problems confronting the analyst might be alleviated
if more data were available, particularly if organisations were ob-
served more than once. The advantages of panel data, and the tech-
niques available to analyse these data in the context of efficiency
measurement, are the subject of the next chapter.



4 Stochastic frontier analysis of
panel data

4.1 Introduction

HE previous chapter discussed econometric approaches to ef-

ficiency analysis when only cross-sectional data are available.

Along with general issues of specifying the estimation model,
particular attention was drawn to the interpretation placed on the
residual and the assumptions required in order to extract estimates of
efficiency. Some of the strong assumptions required for efficiency ana-
lysis based on cross-sectional data may be relaxed if longitudinal data
are available, with organisations observed over several time periods.
Repeated observations of the same organisation make it possible to
control for unobservable organisation-specific attributes and, thereby,
to extract more reliable parameter estimates, both of the explanatory
variables and of the efficiency term. Specifically three shortcomings
of cross-sectional analysis can be addressed (Schmidt and Lin 1984).

First, recall from the previous chapter that, when only a single
observation is available per organisation, it is necessary, in order to par-
tition the composite error term, to specify how inefficiency is distribu-
ted among organisations. Standard software allows analysts to choose
truncated normal, half-normal, exponential and gamma distributions.
However, there is no economic basis for selecting one distribution over
another and the choice is somewhat arbitrary (Schmidt 1985). Repeated
observations of the same organisation can substitute for distributional
assumptions if the fixed-effects panel data estimator is used.

Second, under some formulations of the production model the in-
efficiency term, u;, and the explanatory variables, x;, are unlikely to be
independent. For instance, it is quite likely that if an organisation
knows its level of technical efficiency this will affect its choice of input
levels. By the same reasoning, a firm may make its input choices in order
to attain a specific level of efficiency. Again, use of the fixed-effects
estimator makes it possible to avoid the assumption of independence.

69
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Third, in cross-sections, only the entire residual, ¢, can be estimated
consistently, with the variance of the conditional distribution of #;
failing to become zero as the sample size approaches infinity. With
panel data, adding more observations from the same organisation
generates more information about each organisation so that #; can
be estimated consistently as the number of observations over time
approaches infinity. That said, in many applications organisations
are not observed frequently enough for the benefit of consistency to
be realised (Kumbhakar and Lovell 2000).

The panel data model applied to a cost function takes the following
general form:

Cir=0+ ﬁxit +uiy+ Vi, u; >0 (41)

where ¢ indexes time, and u;, captures inefficiency. Two broad ap-
proaches have emerged in order to estimate this model, distinguished
according to beliefs about whether or not efficiency varies across time
periods. Naturally, estimation is simplified if efficiency can be assumed
to be constant over time.

4.2 Time-invariant efficiency

In the presence of time-invariant efficiency, the model in (4.1) reduces
to:

Cir=0+pxi+u+v,, ;>0 (4.2)
Three main methods have been used to estimate this model:

o fixed-effects, estimated using ordinary least squares;
e random-effects, estimated using generalised least squares;
e random-effects, estimated by maximum likelihood.

The fixed-effects (FE) estimator is equivalent to adding a dummy
variable for all but one organisation, with this remaining organisa-
tion identified by the constant term. This procedure generates a set
of organisation-specific intercepts, o, = « + #; (Schmidt and Lin
1984). Analogously to the COLS approach in the cross-sectional con-
text, the estimated frontier, &, is located by assuming that the org-
anisation with the lowest intercept is fully efficient (in the case of the
cost function), such that & = min;(«;). Estimates of #; are derived
from #; = o; — min;(o;). If the model is specified in natural units,
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organisation-specific estimates of technical efficiency, eff;, are calcu-
lated as eff;; = (ﬁxit +it,-)(,f3xi,)_1. For logarithmic models the cal-
culation is eff; = exp(d;) (Battese and Coelli 1988; Coelli and
Perelman 1996).

The FE estimator is attractive because it does not require the imposi-
tion of distributional assumptions about #, nor is it necessary to assume
that inefficiency is uncorrelated with the regressors. However, the
estimator does require there to be variation within organisations
over time in respect to the factors that explain the levels of cost or
output. In other words, the value of x must vary for individual organi-
sations from one period to the next. If not, the FE estimator is suscep-
tible to two limitations, one common to all panel data applications,
the other particularly important in the stochastic frontier context.

First is the problem of attenuation bias, whereby measurement error
in the independent variables causes coefficient estimates to tend to-
wards zero. This problem is exacerbated by the FE estimator because
it eliminates a large amount of variation in the data. This can lead to
FE estimates being interpreted as having little or no effect (McKinnish
2000). Second, at the extreme, if there are organisational factors that
explain costs but which do not vary at all over time — such as the
operating environment — their influence will be captured by the orga-
nisation-specific term, o;. Thus, the FE estimator fails to distinguish
between time-invariant heterogeneity and inefficiency. This confound-
ing might be a serious shortcoming, with organisations being identi-
fied as more or less ‘efficient’ than they would be if the model was
correctly specified.

If one wishes to include time-invariant regressors this can be
achieved by using a random-effects (RE) estimator. Opting for the
RE one in preference to the FE one comes at a price: it is necessary
to impose distributional assumptions on # and to assume that there is
no correlation between the regressors and the #;’s. If one can accept
these assumptions (remembering that they were unavoidable in the
cross-sectional context) the random-effects model can be estimated by
either generalised least squares (GLS) or maximum likelihood estima-
tion (MLE). These two estimators are both more efficient than the
FE estimator, this informational advantage deriving from the dis-
tributional assumption imposed on u. Essentially, the random-effects
model assumes that organisational effects are random draws from
an underlying population. Accordingly, the RE estimator is able to
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utilise information about variation both within individual organ-
isations over time (within-variation) — as for the FE estimator — and
across different organisations in the sample (between-variation) —
unlike the FE estimator.

The choice between the GLS and maximum likelihood RE estima-
tors requires weighing further considerations, with the GLS estimator
requiring fewer distributional assumptions, but at the cost of being
less efficient than the maximum likelihood estimator.

Under GLS, the RE model to be estimated can be written as
(Kumbhakar and Lovell 2000):

Cir = [0+ E(u)] + pxic + [; — E(u;)] + vz

=o'+ fx; + 74? + Vi, u; >0 (4.3)

where E(u;) is the mean estimate of technical efficiency. The GLS
estimator requires only weak assumptions about the shape and loca-
tion of the #, namely that the #; are randomly distributed with con-
stant mean and variance (Kumbhakar and Lovell 2000). Estimation
follows a two-step procedure in which ordinary least squares (OLS)
is first applied to obtain parameter estimates, including variance com-
ponents for v;; and u,;*. The parameters are then re-estimated in a
second stage by feasible GLS, using the OLS estimates as starting
values. The #;* can then be recovered as estimates of the mean residual
over time for organisation i:

1 R
iy = TZ(C,-t — &} — fxi) (4.4)

The estimates of u; are then derived as #; = min; (&) + #;, with tech-
nical efficiency estimates obtained as previously described for the FE
estimator. These estimates are consistent as the numbers of both
organisations and time periods approach infinity.

The earliest application of stochastic frontier analysis in the panel
data context employed the RE model estimated by maximum like-
lihood (Pitt and Lee 1981). This requires stronger assumptions about
the shape of the distribution of # than are needed for GLS estimation.
Here the model takes the form (Greene 1993):

Cir=0+ ﬁxit +uit+v; (45)

with u; distributed as #; ~ N*(y,02). Choices about distributional
shape have followed those made in the cross-sectional context, with
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Pitt and Lee formulating a half-normal likelihood function (Pitt and
Lee 1981) and Battese and Coelli generalising this to a truncated
normal (Battese and Coelli 1988). Estimation requires specification
of the likelihood function and derivation of the distribution of «
conditional upon the composite error in order to obtain organisation-
specific estimates of efficiency. Maximum likelihood estimates may
be sensitive to the iterative process and updating methods and even
rescaling the dependent variable can yield different parameter and
efficiency estimates. Particular care must be taken in applying this
technique to ensure that estimates reflect convergence to the global
rather than to a local maximum.

The choice, then, among these various estimators is not straightfor-
ward and requires weighing a set of distinct advantages and disadvan-
tages associated with each estimator, as summarised in Table 4.1. In
some contexts and for some data sets it may be possible to make an
unequivocal choice. The FE estimator is to be preferred if:

1. The analyst wishes to avoid imposing an assumption about how
efficiency is distributed.

2. There is evidence of correlation between the regressors and the ;.
The Hausman test can be used to check this possibility (Hausman
1978).

3. There are no time-invariant regressors to be included in the model.

4. The purpose of the estimation process is to generate inferences
about individual organisations. In such circumstances the assump-
tion that the effects are random draws from a population may be
unwarranted (Rice and Jones 1997).

4.2.1 Empirical application

In order to illustrate some of the models introduced in this chapter we
use data for acute hospitals in England observed over four financial
years from 1994/95 to 1997/98. The variables in the data set are
described in the Appendix. As would be expected, not every model
reviewed in the chapter can be applied: some are ruled out by the
characteristics of these particular data. For simplicity the panel is
balanced, with hospitals included only if data are available for all four
years. Four years’ worth of data is available for 185 hospitals, giving
a total of 740 observations. These data are summarised in Table 4.2.
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Table 4.2. Descriptive statistics

Description Mean Std Dev.  Minimum  Maximum

Dependent variable

C (£000) 1994/95 52,047 24,969 9,294 156,999
1995/96 55,053 26,491 10,944 166,176
1996/97 57,496 27,483 10,822 175,736
1997/98 59,835 28,926 11,919 182,184

Explanatory variables

INPATIENTS 1994/95 40,064 20,074 1,647 144,616
1995/96 40,278 18,641 4,477 110,569
1996/97 40,465 19,138 4,668 104,045

1997/98 41,711 20,276 3,469 107,242
OUTPATIENTS  1994/95 45,021 23,110 0 136,569
1995/96 47,981 25,107 0 130,538
1996/97 49,538 27,168 0 149,526
1997/98 50,803 26,619 0 146,721
AKE 1994/95 48,601 27,745 0 137,865
1995/96 48,098 28,396 0 157,042
1996/97 46,941 29,876 0 160,136
1997/98 48,473 31,285 0 165,145

For illustrative purposes fairly straightforward models have been
specified, the intention being to maximise the amount of variation in
the ‘unexplained’ part of the model. There are two components to
the restrictive assumptions we have made. First, the dependent vari-
able, total cost (in £°000), is not adjusted for inflation. In health
care, a panel of only four years is likely to be too short to identify
major shifts of the production function, so in order to give the ap-
pearance of temporal change we illustrate the estimation techniques
using an undeflated cost series without including a time trend. This
matter is important only for the models that allow for time-varying
inefficiency.

Second, the model is estimated in linear form on a parsimonious
set of regressors. Total undeflated costs are regressed on a set of
variables capturing output (Ys), with S being an output category. Only
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three types of output are included: the number of case mix weighted
inpatient admissions; first outpatient attendances; and visits to Acci-
dent and Emergency (A&E). The other variables included in the cross-
sectional model in the previous chapter are omitted from most of the
examples considered in this chapter. These variables are considered
exogenous to hospital control, and their omission implies that sub-
stantial heterogeneity among hospitals is not being accounted for.
Their omission has implications for the estimation of the amount of
efficiency considered present in the sample and, indeed, whether or
not it is possible to estimate these models in the first place. We shall
return to the issue of their omission later in the chapter.

Towards the end of the chapter we address the sensitivity of results
to decisions about how the dependent variable is defined, function
form, and the inclusion of additional explanatory variables.

Descriptive data for the four variables are presented in Table 4.2,
with the mean values for each year plotted in Figure 4.1. Over the
period, total undeflated costs in the average hospital increased by
15%. Activity also increased, but less rapidly. There was a 4% in-
crease in hospital admissions and a 13% increase in outpatient atten-
dances. Despite some year-on-year variation, visits to A&E were the
same at the end as at the beginning of the period. We analyse the data
in order to consider two questions:

e Was the increase in activity sufficient to offset the increase in costs?
If not, we would expect mean efficiency to have declined over the
period.

e Are estimates of the mean level of efficiency and the variation in
efficiency among hospitals sensitive to model specification?

We start with the time-invariant FE model specified by Schmidt and
Sickles (1984). Results are shown in the middle columns of Table 4.3.
Parameter estimates suggest that, for the average hospital, an addi-
tional hospital episode increases total cost by £195, an outpatient
attendance by £134 and an A&E visit by £9. These estimates are
considerably different from the OLS estimates taken as starting values
(£919, £296 and £41 respectively for the three activity categories).
The discrepancies may suggest attenuation bias or be due to there
being very little time variation (within-variation) in these data: 95% of
the variation in the data arises from differences between hospitals
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Figure 4.1. Mean changes in costs and activity over time.

not within them over time. This lack of temporal variation reduces the
appeal of using the fixed-effects estimator.

Estimates of technical efficiency are shown at the foot of the table.
Average efficiency for the period as a whole is estimated to be 61%,
ranging from 24% to 100%. As this model is specified in natural units
it is possible to calculate technical efficiency for each year to give an
estimate of temporal change. However, temporal change is driven by
changes in the value of the regressors not u;, with technical efficiency
being calculated as eff;; = (ﬁxit + iti)([fxitfl when the model is cali-
brated in natural units. These estimates suggest that changes in activ-
ity were not sufficient to offset the cost increases, efficiency declining
from 63.6% in 1994/95 to 59.5% in 1997/98 (see Table 4.6).
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By way of comparison, we estimate the RE model of Pitt and Lee
(Pitt and Lee 1981). There is a danger with the RE model that iteration
may not be to a global maximum, and this appears to be the case here,
as evidenced by the sensitivity of results to a change in the scale of
the dependent variable. When costs are measured in a similar scale to
the regressors (i.e. they are measured in £’000), mean efficiency is
estimated to be 77.9%, with the model taking fifty-three iterations to
converge. If costs remain in their original unit (£), the model converges
after eleven iterations, with mean efficiency estimated to be 74.2%.
In fact, for these data the RE model is inappropriate, with the Haus-
man test being significantly in favour of a fixed-effects specification
(7> = 245.84, p < 0.001).

4.3 Time-varying efficiency

Perhaps the most critical drawback of the time-invariant estimators
considered in the preceding sections is the assumption that organisa-
tional efficiency is constant over time. The assumption of a constant
level of efficiency is not particularly appealing in contexts where data
are observed over long periods or when there are expected to be
external influences that affect the temporal pattern of efficiency, such
as periodic regulatory initiatives. Indeed, the purpose of the analytical
exercise often is to explore the impact of such initiatives on organisa-
tional efficiency. In such situations, allowing efficiency to vary over
time is a necessary condition of analysis.

If efficiency is believed to vary over time, for whatever reason, the
challenge is how best to model this. Two questions require consideration:

e What is the general pattern of efficiency change over time?
e Are individual organisations likely to experience different temporal
patterns of efficiency change?

The simplest approach to modelling temporal changes in efficiency
is to assume that the effect is the same for all organisations. There are
a number of ways that the model can be adapted to accommodate this
effect.

One possibility is to employ a two-way error components model, in
which inefficiency is separated into two components, one specific to
each organisation, u;, the other industry-wide but particular to each
period, y;:
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wip =i+, (4.6)

This formulation enriches the model only slightly, in that the temporal
effect is assumed identical for each organisation (Greene 1993).

A less restrictive assumption would be for the temporal pattern
of efficiency change to be the same for all organisations, but for the
magnitude to differ among organisations. This is not an unrealistic
scenario. In many contexts, the pattern of change may be common
across the industry, perhaps because of technological and knowledge
transfer among organisations. However, the pace of transfer may not
be uniform, with organisations differing in how quickly they em-
brace such advances. The specification proposed by Lee and Schmidt
captures this possibility (Lee and Schmidt 1993):

uy = y(t)u; (4.7)

This is equivalent to introducing a set of dummy variables for time
interacted with the individual efficiency component. Lee and Schmidt
outline how the model is amenable to use of the fixed-effects estimator
and that a random-effects model can be estimated using GLS. If y, =1,
Vt efficiency is constant over time. The virtue of this formulation is
that it is not necessary to impose any assumptions about how effi-
ciency changes over time. This specification is particularly appropri-
ate for short panels, but too many additional dummy variables are
introduced for the formulation to be of use in longer panels.

Kumbhakar proposed a similar formulation to that of Lee and
Schmidt, but rather than y(¢) being represented by a set of dummy
variables, a distribution was imposed on the evolution of efficiency,
this being specified as an exponential function of time, y(¢) = (1 +
exp(¢t + ¢,22)) " (Kumbhakar 1990). This ensures that 0 < y(¢) < 1
and, depending on the signs of ¢; and ¢,, allows the function
to increase or decrease in a monotonic fashion, or to be convex or
concave.

A slightly different exponential specification was proposed by
Battese and Coelli, such that y(¢) = exp(—¢(¢ — T)) (Battese and
Coelli 1992). Simplicity comes at the cost of imposing less flexibility
on the function, with interpretation of how efficiency changes over
time being restricted to decreasing at an increasing rate if ¢ > 0,
increasing at an increasing rate if ¢ < 0, and being time-invariant
if ¢ = 0. This model is estimated below.
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An alternative approach, suitable when the number of time periods
is large relative to the number of organisations, was proposed by
Cornwell, Schmidt and Sickles (1990). Under their formulation it is
necessary to specify how efficiency might be expected to evolve over
time. Cornwell ef al. propose a quadratic specification and describe a
two-stage procedure for estimation of a fixed-effects model (although
when the ratio of organisations to time periods is small it is possible
to undertake estimation in a single stage). The first stage involves
estimation of the production model, taking the form ¢;, = fx;; + ¢
The residuals, &;;, from this equation are then regressed on time under
the following formulation:

& =71 + Vit + vist? (4.8)

This model requires estimation of an additional three parameters
per organisation, which can be cumbersome with large samples. The
fitted values from the above equation are interpreted as estimates of
o;. Analogously to a cost function estimated on cross-sectional data,
in the panel data context, at time ¢, the frontier &, and firm-specific
estimate of inefficiency, 7, are calculated respectively as &; = min; ()
and #t; = a;, — min;(a;). This formulation makes it possible to test
assumptions about the nature of efficiency over time and across orga-
nisations. If, indeed, efficiency is time-invariant, this would imply that
Pt = pi3t* = 0,Vi. If changes in efficiency — or technical changes — are
common across all organisations this would imply that y;, = y,, Vi and
Vi3 =73, Vi.

4.3.1 Empirical application

Estimates from the Battese and Coelli specification (Battese and Coelli
1992) are presented in Table 4.4. Parameter estimates suggest that,
for the average hospital, an additional hospital episode increases total
cost by £822, an outpatient attendance by £293 and an A&E visit
by £88. While mean efficiency over the period as a whole is similar
to that for the Schmidt and Sickles (1984) specification where u; was
assumed time-invariant, the temporal gradient is now considerably
steeper because the values of both the regressors and u; are allowed to
vary over time. Average efficiency was estimated as being 65% in
1994/95. By 1997/98 this had fallen to 56%.
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Table 4.4. Estimates from time-varying SF models

Battese and Coelli

Total cost Coeff. s.e. t

CONSTANT —8,946,580 1,000,000 —894,653.00
INPATIENTS 822 26 31.23
OUTPATIENTS 293 19 15.67

A&E 88 12 7.57

¢ —0.123 0.012 —10.647

Log likelihood 12,735

Efficiency mean s.d. min. max.
1994/95 0.652 0.199 0.041 1.000
1995/96 0.624 0.225 0.037 1.000
1996/97 0.595 0.255 0.033 1.000
1997/98 0.565 0.288 0.029 1.000

4.4 Unobserved heterogeneity

One of the key benefits of using panel data is the ability to control for
unobserved individual heterogeneity (Baltagi 2005). Organisations
may face different external constraints that influence the costs of
production but that are not within their control and that cannot be
measured directly. Hospital location is an example. Hospitals might
have higher costs because levels of sickness are greater among their
local population or because there is poor integration of care among
primary care providers. Often data on these location effects are
poorly measured, or only weak proxies are available. Cross-sectional
or time-series analyses are unable to control adequately for such
factors and produce biased estimates (Baltagi 2005). Standard panel
data models are able to overcome this deficiency, with unobserved
organisation-specific characteristics being captured by the fixed or
random effect.

When applied to stochastic frontiers, however, panel data models
can no longer be considered ‘standard’. The specifications described in
the preceding sections of this chapter have lost this attractive feature
of panel data estimators. This is because the fixed or random effect is
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interpreted as arising solely from inefficiency. As in cross-sectional
efficiency analysis it has to be assumed that the stochastic frontier
model is specified correctly and that all relevant factors have been
observed accurately. In short, the specifications described previou-
sly in this chapter assume there to be no unobserved heterogen-
eity among organisations. If this assumption is false, the fixed or
random effect will contain a mixture of inefficiency and unobserved
heterogeneity.

Recent developments in the efficiency literature have sought to
address this shortcoming, recognising that the assumption is a strong
one. The general approach has been to specify separate expressions
to capture efficiency and unobserved heterogeneity. Greene has pio-
neered this line of work, describing both fixed- and random-effects
estimators that he describes as ‘true’ specifications of the stochastic
frontier model (Greene 2004; Greene 2005).

The ‘true’ FE model includes organisational dummies as an addi-
tional set of explanatory variables (Polachek and Yoon 1996; Greene
2004), the resulting specification being written as:

Cit = ﬁxi; +oi+u,+v,

iy ~ [N(0,62)], i ~ N(0,2) (+9)

Under the Schmidt and Sickles formulation of the FE model with time-
invariant inefficiency the fixed effects were interpreted as inefficiency
(Schmidt and Sickles 1984). In Greene’s ‘true’ FE model the fixed
effects capture unobserved heterogeneity (Greene 2004). The draw-
back of this specification is the incidental parameters problem, where-
by the number of parameters to be estimated increases with sample
size (the same problem afflicts the other specifications in which the
organisation is used to create a variable).

The ‘true’ RE model includes a random constant term, o;, which is a
time-invariant organisation-specific parameter that captures heteroge-
neity. Unlike the ‘true’ FE model it is necessary to specify the distribu-
tion of a;; which Greene considers to be i.i.d. normal (Greene 2004). It
is also necessary to assume that the organisation-specific effects are
uncorrelated with the regressors. In recognition of this limitation,
Farsi, Filippini and Kuenzle have extended Greene’s ‘true’ RE model
using Mundlak’s formulation of a ‘within’ estimator’ to control for the
possibility of correlation between o; and the x;,’s (Farsi, Filippini and
Kuenzle 2003).
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4.4.1 Empirical application

Greene provides two ‘true’ fixed-effects specifications of the stochastic
frontier in Limdep version 8.0, one of which assumes that efficiency is
time-invariant, with the second relaxing this assumption (Greene
2002). The former is specified as:

Ci=Pxis+oi+u+v;

ui ~ IN(0,62)|, vy ~N(0,02) (4.10)
The latter is a two-way error components model, specified as:
Ciz:ﬂxit+ai+ui+yt+vit (411)

u; ~ |N(O, aﬁ)|, v, ~ N(O, 012,)

Parameter and efficiency estimates for the two models are in Table
4.5. The final estimates are found after a large number of iterations,
suggesting the lack of a global maximum. The parameter estimates are
similar to those of the Battese and Coelli (1992) model.

The most striking change from previous models considered in this
chapter, as might be expected, is in the estimate of efficiency. The mean
level of efficiency was estimated to be around 60-75% in the preceding
models but, as Greene points out, these estimates contain a mixture of
inefficiency and unobserved heterogeneity. When this is taken into
account, mean efficiency over the entire period is estimated as being
92%, declining from 93.3% in 1994/95 to 89.6% in 1997/98. This
order of magnitude is similar to that reported when switching from a
COLS to the stochastic frontier approach in the cross-sectional context.
Given that the same argument applies in the panel data context, failure
to account for unobserved heterogeneity must be considered a serious
drawback.

That said, little reliance should be placed on these estimates, as both
models are highly unstable for these data, with no global maximum
being found. This is particularly a problem with the two-way error
components model. The majority of observations are estimated as
fully efficient, while a few are assessed as being located a great distance
from the frontier, as illustrated by the unfeasible negative minimum
values that have been produced, which influence the dramatic year-on-
year changes in the estimate of mean efficiency. The inability to locate
a global maximum may be due to the lack of variation in the data, itself
implying that hospitals may be operating at similar levels of efficiency.
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4.5 Summary and sensitivity analysis

For the purposes of illustration, this chapter has considered a simple
model in which costs are regressed against three measures of activity.
Two questions were posed of the data for 185 hospitals observed over
four years:

1. Was the increase in activity sufficient to offset the increase in costs?
2. Are estimates of the mean level of efficiency and the variation in
efficiency among hospitals sensitive to model specification?

Five competing models were applied to the data, three of which
assume time-invariant efficiency, these being:

e the Schmidt and Sickles FE model (S&S) (Schmidt and Sickles 1984)
e the Pitt and Lee RE model (P&L) (Pitt and Lee 1981)
e the Greene time-invariant ‘true’ FE model (True FE) (Greene 2004)

and two of which allow time-varying efficiency, these being

e the Battese and Coelli model (B&C) (Battese and Coelli 1992)
e the Greene ‘true’ two-way error components model (Two-way)
(Greene 2004)

These are not of equal suitability when applied to this data set. The
Pitt and Lee specification is ruled out by the Hausman test; the two
Greene models fail to converge to a global maximum.

The parameter and efficiency estimates from these five models are
reproduced in Table 4.6. All but the two-way error components model
suggest that efficiency declined over time. But even the mean efficiency
estimates differ considerably, implying that results are sensitive to how
efficiency is specified.

Various conditions have been imposed on the analysis so that these
data can serve their illustrative purpose. Relaxation of some of these
conditions in the ways which follow yields different conclusions:

e deflating costs;
e including additional regressors;
e estimating the model in logarithmic form.

First, the failure to deflate costs or to add a time trend gives the
impression of more temporal variation in the dependent variable
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Table 4.6. Comparison of estimates from different models

Time-invariant Time-varying
Coefficients S&S P&L True FE BeC Two-way
INPATIENTS 195 619 881 822 881
OUTPATIENTS 134 260 250 293 250
A&E 8 59 15 88 1
Mean efficiency
Year 1 63.6 93.3 65.2 76.8
Year 2 61.9 93.7 62.4 76.0
Year 3 60.5 89.7 59.5 98.9
Year 4 59.5 89.6 56.5 72.0
Overall 61.3 77.9 91.6 60.7 80.9
Comments iterations iterations iterations

>100 >100 >100

than is in fact the case. This does not affect the models that assume
time-invariant inefficiency or the estimates of relative efficiency within
a particular year. However, for the time-varying models variation in
costs over time due to inflation will be captured by the #;,. Thus the
industry-wide inefficiency will be overestimated.

Second, the chosen model is parsimonious, including only three
explanatory variables. Inclusion of additional variables, correspond-
ing to those in the specification used for the cross-sectional analysis
in the previous chapter, has a substantial effect, as shown in Table 4.7.
For the Schmidt and Sickles specification, mean efficiency increases
from around 61% to 74%. The other specifications fail to converge or
the inefficiency term is wrongly skewed.

Finally, the original model with just three explanatory variables is
estimated in logarithmic form. According to the FE model, mean
efficiency is around 79%, substantially higher than when specifying
the variables in natural units. The Greene true FE time-invariant
model converges successfully, and suggests higher levels of efficiency
than implied by the Schmidt and Sickles specification. This is to be
expected given that the Greene model includes both «; and u;. Greene’s
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Table 4.7. Sensitivity analysis of mean efficiency

Time-invariant Time-varying
Deflated
costs S&S  P&L  True FE B&C Two-way
Year 1 63.6 86.8 73.5
Year 2 61.9 86.6 73
Year 3 60.5 82.1 72.5
Year 4 59.5 76.6 72
Overall 614 746 83.0 73.1
Comments iterations iterations unable to
>100 >100 converge
Time-invariant Time-varying
Additional
regressors S&S  P&L  True FE B&C Two-way
Year 1 74.5 62.9
Year 2 73.4 60.6
Year 3 75 58.5
Year 4 74.2 56.5
Overall 743 726 59.6
Comments wrong skew  iterations wrong skew
>100
Time-invariant Time-varying
Logarithmic S&S  P&L  True FE BeC Two-way
Year 1 85 78.1
Year 2 84.8 74.1
Year 3 84.2 69.9
Year 4 84.4 64.9
Overall 79.3 53.8 846 71.8
Comments singular

covariance
matrix
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two-way error components model cannot be estimated, however,
because the covariance matrix is singular.

The Battese and Coelli model also converges when estimation is
in logarithmic form, and suggests lower levels of efficiency than the
alternative specifications, with a more steeply declining time trend.

We return to our two original questions. First, was the increase in
activity sufficient to offset the increase in costs? With the exception of
the Battese and Coelli model applied to logarithmic data, none of the
time-varying models converged for these data. This failure may be
due to there being little variation among hospitals in their levels of
efficiency over time.

The second issue was whether estimates of the mean level of effi-
ciency and the variation in efficiency among hospitals are sensitive to
model specification. Indeed they are. The Schmidt and Sickles FE
model proved the most appropriate for these data, with the models
based on maximum likelihood failing to converge in many instances.
Estimates are also sensitive to specification choices, such as the choice
of explanatory variables and functional form.

4.6 Conclusions

In this and the preceding chapter we have discussed the key technical
choices that have to be made when developing a stochastic frontier
model. For many of these choices, the appropriate decision depends
on the objective of the analysis and on the nature of the data. Some
estimation decisions can be made on statistical grounds. However, the
statistical criteria developed to evaluate econometric models are rarely
suitable for assessing the suitability of stochastic frontier models,
simply because the focus of the latter is on placing an interpretation on
the residuals. In view of this, the analyst usually has to make recourse
to sensitivity analysis of the modelling approach. If estimates — or, at
least, rankings — of individual organisations are little affected by
alternative technical choices, greater confidence can be placed in the
results. Frequently, however, results are highly sensitive to the estima-
tion decisions made, as was so for the case studies of the cross-
sectional data considered in chapter 3 and of the panel data analysed
in this chapter.
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Given the challenges associated with model construction, such as
specification of functional form and identification and extraction of
efficiency estimates, an alternative strand of efficiency analysis has
been developed which supposedly allow the ‘data to speak for them-
selves’. Data envelopment analysis requires no prior specification of
the functional form, with the efficiency frontier positioned and
shaped by the data rather than by theoretical considerations. This
non-parametric technique is the subject of the next chapter.



5 Data envelopment analysis

5.1 Introduction

ATA envelopment analysis (DEA) has become the dominant
D approach to efficiency measurement in health care and in
many other sectors of the economy (Hollingsworth 2003).
While the parametric approach is guided by economic theory, DEA is
a data-driven approach. The location (and the shape) of the efficiency
frontier is determined by the data, using the simple notion that an
organisation that employs less input than another to produce the same
amount of output can be considered more efficient. Those observations
with the highest ratios of output to input are considered efficient, and
the efficiency frontier is constructed by joining these observations up in
the input-output space. The frontier thus comprises a series of linear
segments connecting one efficient observation to another. The construc-
tion of the frontier is based on ‘best observed practice’ and is therefore
only an approximation to the true, unobserved efficiency frontier.
Inefficient organisations are ‘enveloped’ by the efficiency frontier in
DEA. The inefficiency of the organisations within the frontier bound-
ary is calculated relative to this surface (Grosskopf and Valdmanis
1987; Charnes et al. 1994; Cooper, Seiford and Tone 2000). This
chapter outlines the distinctive features of the DEA methodology, along
with key issues in specifying and judging the quality of a DEA model.

5.2 The DEA methodology

DEA literature traditionally uses the terminology of a decision-
making unit (DMU) for each of the units of analysis under scrutiny,
a term coined by Charnes, Cooper and Rhodes (1978) in their
seminal paper which introduced DEA. The DMU can reflect a whole
range of different levels in health care settings, including the entire
health care system (comparing countries) (Puig-Junoy 1998a), health
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regions or health districts (Ozcan and Cotter 1994; Gerdtham, Re-
hnberg and Tambour 1999), hospitals (Grosskopf and Valdmanis
1987), specific services or departments (Puig-Junoy 1998b; Hollings-
worth and Parkin 2001), and individual physicians (Chilingerian
1994). In this chapter, the choice of unit of analysis is taken as given,
and the methodology is described in relation to comparing a given set
of similar DMUs.

In this section, we examine within the context of DEA the various
notions of efficiency assuming a constant returns to scale production
technology. In section 5.3 we shall introduce the concept of variable
returns to scale and the notion of scale efficiency. In DEA we can
examine the efficiency of DMUs using either an input or an output
orientation. Input-oriented technical efficiency measures keep output
fixed and explore the proportional reduction in input usage which is
possible, while output-oriented technical efficiency measures keep
input constant and explore the proportional expansion in output
quantities that are possible. We now illustrate efficiency measurement
for DEA under each of these possibilities.

5.2.1 Input-oriented efficiency

Suppose a DMU uses two inputs (x; and x;) to produce a single output
(y) as depicted in Figure 5.1. In the health care setting, we could for
example depict a hospital using two inputs (doctors and nurses) to
produce a single output (patients treated). Assuming diminishing mar-
ginal factor productivity, isoquants can be constructed that are convex
to the origin. Thus, along the frontier, reduced use of one input, say x;
(doctors), necessitates an increase (or no decrease) in the use of the
other input, x, (nurses), in order to maintain the level of treatment
provided.

Assume that the curve ZZ' represents the production frontier. All
DMUs lie on the production frontier (if they are efficient) or above it
(if they are inefficient). Using the input-orientation, DMUs which lie
above the production frontier could proportionally reduce their input
usage (x; and x,) for a given output level (y). Thus hospital A could
proportionally reduce its use of doctors and nurses, given the amount of
treatment it provides, and move to a feasible and technically efficient
production point such as that adopted by hospital B.
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Figure 5.1. Technical and allocative efficiency under an input orientation.

S’ is a budget line, or isocost line, which reflects the ratio of prices
of the inputs (x; and x,), in this case the relative price of labour. The
cost-efficient point of production is B’ where the marginal rate of
substitution of x; for x, is equal to the price ratio. Hospital A’s
production is currently above the production frontier which is clearly
inefficient (more inputs are required to produce the output at A than
if it were to move to a point such as B or B’). In DEA, technical
inefficiency is usually measured using the notion of the radial measure
of inefficiency, by comparing where the hospital is located in relation
to the production function (distance BA) with where it is located in
relation to the origin (distance OA). The distance BA is the amount by
which all inputs (doctors and nurses) could be proportionally reduced
without a reduction in hospital admissions. This is expressed in per-
centage terms by the ratio BA/OA. The technical efficiency (TEp) of
hospital A is then expressed as follows:

OB
0A
which is equal to 1 — BA/OA, and where the IN subscript denotes the
input orientation. Pure technical efficiency (TE) shows the deviation
from the production frontier ZZ'. This value lies between 0 and 1 with
a value of 1 indicating full technical efficiency (if hospital A produced
at a point such as B).

TEw = (5.1)
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If the isocost can be specified — because input prices are known — it
can be used to calculate the allocative efficiency (AEN) of the hospital
operating at point A by the following ratio:

oC
AEw =2 (5.2)

where the distance CB is the reduction in production costs that would
occur if production were to take place at the allocatively (and techni-
cally) efficient point B’ instead of at the technically efficient, but
allocatively inefficient, point B. It thus represents the deviation from
the price-efficient point.

The extent to which a DMU incurs expenditure in excess of the
minimum feasible therefore comprises two components: technical
efficiency, which reflects the ability of a DMU to produce the max-
imum amount of output given a set of inputs, and allocative efficiency,
which reflects the ability of a DMU to use inputs in optimal propor-
tions given their respective prices. The product of these measures can
be combined to give a measure of total economic efficiency (EEn)
such that:

EE[N = TE[N X AE[N
_oB_oc_oc (5.3
T OA” OB 04

5.2.2 Output-oriented efficiency

An alternative exposition would be to examine efficiency measure-
ment under an output orientation. Suppose a hospital produces two
outputs (y; and y,), for example inpatient treatments and outpatient
visits, from a single input (x), hospital staff, as depicted in Figure 5.2.

In this case ZZ' represents the production possibility curve, the
upper bound of all the technically feasible production possibilities.
All hospitals lie on the production frontier (if they are efficient) or
below it (if they are inefficient). Using the output orientation, hospi-
tals which lie below the production frontier, such as hospital A, could
proportionally expand their output quantities (y; and y,) of inpatient
treatments and outpatient visits, holding their level of input use (x),
hospital staff, constant. Under the existing technology, they could do
this up to a point such as B which is located on the production
boundary.
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Figure 5.2. Technical and allocative efficiency under an output orientation.

If we had information about the relative value of the two outputs it
would be possible to construct the equivalent of an iso-revenue line,
shown here as SS’, which reflects the market value of the two outputs
(y1 and y;). The efficient point of production is B’ where ZZ' is
tangential to the iso-revenue line.

The technical efficiency (TEoyt) of hospital A is expressed as:

OA

TEOUT - ﬁ (5.4)

where the OUT subscript denotes the output orientation. The alloca-
tive efficiency (AEoyTt) of the hospital is expressed as:

OB
AEour = oC (5.5)

Total economic efficiency (EEgyr) is given by:

EEour = TEour x AEour
_o4 o8_o4 (5:6)

OB 0OC OcC
In health care, output prices are seldom available, and so most studies
restrict the analysis to the calculation of technical efficiency and not

total economic efficiency.

All these measures of efficiency (technical, allocative and economic
efficiency) are bounded by 0 and 1. Because they are measured along a
ray from the origin to the observed production point, they hold
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relative proportions of inputs (or outputs) constant. These radial
efficiency measures are units-invariant in the sense that changing the
units of measurement will not change the value of the efficiency
measure. Thus, for example, the results are invariant to whether the
input of nursing staff is measured in hours worked or months worked.

5.2.3 DEA formulation

The efficiency measures discussed above assume the production func-
tion of the fully efficient organisation is known. In practice this is
not the case and the efficient isoquant must be estimated from the data.

DEA assesses efficiency in two stages. First, a frontier is identified
based on either those organisations using the lowest input mix to pro-
duce their outputs or those achieving the highest output mix given their
inputs (i.e. the input or output orientation). Second, each organisation is
assigned an efficiency score by comparing its output/input ratio to that of
efficient organisations that form a piecewise linear ‘envelope’ of surfaces
in multidimensional space. If there are M inputs and S outputs, then the
production frontier becomes a surface in (M+S) dimensional space. The
efficiency of a DMU is the distance it lies from this surface — the max-
imum extent by which it could improve its outputs given its current level
of inputs (or reduce its inputs given its current level of outputs).

Efficiency in DEA is therefore defined as the ratio of a weighted sum
of outputs of a DMU divided by a weighted sum of its inputs, there-
fore corresponding closely to the notion of efficiency developed in
chapter 2. Technical efficiency (TE) is computed by solving for each
DMU the following mathematical programme:

S
Z Uus; X Ys0
s=1
M
Z VU X Xm0
m=1

subject to:

§ Us X Ysi
M
E m X Xmi
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where:

ys0 = quantity of output s for DMUy

u; = weight attached to output s, #;, >0, s=1,....§
ys0 = quantity of input m for DMUj

v,, = weight attached to input m,v,, >0, m=1,...,.M

This mathematical programme seeks out for DMUj the set of out-
put weights %, and input weights v,,, that maximises the efficiency of
DMU,, subject to the important constraint that — when they are
applied to all other DMUs - none can have an efficiency greater than
1. The weights can take any non-negative value, and in general a
different set of weights is computed for each DMU. Thus, the weights
u; and v,, are a central feature of DEA. They are chosen to cast the
DMU in the ‘best possible light’, in the sense that no other set of
weights will yield a higher level of efficiency.

Equation 5.7 can be rewritten more succinctly as:

max, ,(#'yo /v'xo) (5.8)
subject to:

uy /vx; <1i=1,...,1
u,v>0

where #’' and v/ are vectors of output and input weights respectively.

In order to select the optimal weights, we estimate this equation as a
linear programming problem. This entails converting equation 5.8 into
a system of linear equations, set up such that a linear objective function
can be maximised subject to a set of linear constraints. The linear
programme seeks out values for # and v that maximise the efficiency
measure of the ith DMU, subject to the constraint that all efficiency
measures are no greater than 1. But this ratio formulation has an
infinite number of solutions, because if (#*, v*) is a solution, then so
too is (o™, aw*) (Coelli, Rao and Battese 1998). We therefore impose
an additional constraint that either the numerator or the denomin-
ator of the efficiency ratio be equal to 1 (e.g. /x = 1). The problem
then becomes one of either maximising weighted output subject to
weighted input being equal to 1 or of minimising weighted input
subject to weighted output being equal to 1 (Parkin and Hollingsworth
1997). We can therefore rewrite equation 5.8 in the multiplier form
to reflect this transformation by adding a constraint as follows:
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max;, (1'yo) (5.9)
subject to:

Vx, =1
wWyi—vx; <0 i=1,..,1
w,v=>0

This maximisation problem can also be expressed as an equivalent
minimisation problem, the advantage being that it involves fewer
constraints (Coelli, Rao and Battese 1998):

ming7190 (5.10)
subject to:

—yi+Y1>0
Ox; — X1 >0
A>0

where x; and y; are column vectors of inputs and outputs for each
of the I DMUs, X and Y are input and output matrices representing
the data for all the I DMUs, 0 is a scalar and A is a # x 1 vector of
constants. The value of 6 obtained will be the efficiency score for
DMUj and satisfies 0 < 1, with a value of 1 indicating a point on
the frontier and hence a technically efficient DMU. The linear pro-
gramming problem must be solved separately for each DMU in the
sample in order to obtain a value of 6 for each DMU (Coelli, Rao and
Battese 1998). The objective of the linear programme is therefore to
seek the minimum 0 that reduces the input vector x; to Ox; while
guaranteeing at least the output level y;.

This formulation of DEA yields weights 4 that are specific to each
unit. However, under this formulation the value A; now reflects the
weight to be attached to DMU; in forming the efficient benchmark for
DMU. Effectively, the point on the frontier with which DMUj is
compared is formed by creating a composite ‘peer’ DMU comprising
a linear combination of all other DMUs, weighted in accordance with
the elements of 1. Of course, only efficient DMUs will be assigned a
non-zero weight in the peer group. Those DMUs with a non-zero
weight are referred to as the efficient peers or comparators of DMUj,.

In creating the efficient frontier, DEA vyields specific input or out-
put targets for each DMU, depending on whether the input or output
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orientation has been used. For example, under input orientation, these
indicate the specific amounts by which a particular DMU should be
able to reduce its consumption of particular inputs without reducing
output. The input-output levels (x7, y,”) on the estimated frontier are
the co-ordinates of the point used as a benchmark for evaluating
DMU ,, yielding the ‘targets’ for DMU . In principle, one could project
an inefficient DMU onto any part of the efficient frontier. In prac-
tice, the usual approach is to calculate (x/, y) by undertaking ra-
dial contraction of input levels (if the input orientation is used) or
radial expansion of output levels (if the output orientation is used)
of DMU,. This approach preserves the input-output mix of DMU;,,
which is therefore compared to a set of efficient peers that use similar
or identical input-output ratios, but at more efficient levels. Box 5.1
gives an example of how efficiency is measured as the distance of the
DMU to the piecewise linear surface, how inefficient DMUs are
compared to linear combinations of efficient benchmark DMUs, and
how targets can be set.

Box 5.1. An example of DEA

Assume there are five DMUs using one input to produce two outputs, as
shown in the table below. Note that they are operating under different
scales, so any attempt to draw the DEA isoquants can only be undertaken
after rescaling outputs to be output per unit of input (for example by
dividing each output by the level of input or as we do in this example
normalising outputs to 10 inputs).

DMU Input Output 1 Output 2
A N 2 1
B 30 6 9
C 10 3 2
D 20 2 8
E 20 6 6

We can represent this diagrammatically, as in the figure below. This
shows the outputs produced from 10 units of input for each DMU. The
efficient frontier is the piecewise series of linear segments with the
associated vertical and horizontal extensions.
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Box S5.1. (continued)

Output 2 Efficient
5 . frontier 4

Output 1

The DEA linear program is run for each DMU in turn, with inputs held
constant. It is verified that DMUs A, D and E are efficient. However, B has
an efficiency of 88.9%, indicated by the ratio OB/OB’. Its efficient
comparators are DMUs D and E, and its composite benchmark comprises
a weighted mix of 0.56 of DMU D and 0.94 of DMU E, represented by the
point B”. Similarly, the other inefficient DMU is C, the benchmark for
which comprises 1.20 of DMU A and 0.20 of DMU E. The table below
shows the outputs that the two inefficient units should be able to achieve if
they were to emulate their composite benchmark (after rescaling the
outputs back up to their original values of input).

DMU Input Output 1 Output 2
Actual B 30 6 9
Target B 30 6.75 10.13
Actual C 10 3 2
Target C 10 3.60 2.40

5.3 Considerations in data envelopment analysis
There are a number of considerations in estimating a DEA model:

whether to assume constant or variable returns to scale;
whether to assume an input or an output orientation;
whether to apply weight restrictions;

dealing with ‘slacks’;
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e model specification and judging the quality of a DEA model;
e how to adjust for environmental factors.

We consider these in turn.

5.3.1 Whether to assume constant or variable returns to scale

Thus far we have considered various measures of efficiency under
constant returns to scale (CRS), as assumed in the original DEA paper
(Charnes, Cooper and Rhodes 1978). Banker, Charnes and Cooper
(1984) extended this to accommodate a more flexible variable returns
to scale (VRS) model which may be appropriate when not all DMUs
can be considered to be operating at an optimal scale. In the health
care sector imperfect competition, constraints on finance, and regula-
tory constraints on entry, mergers and exits may often result in orga-
nisations operating at an inefficient scale. The choice of CRS or VRS is
therefore an important decision and relies on the analyst’s understand-
ing of the market constraints facing firms within a particular sector. If
the CRS technology is inappropriately applied when, say, all hospitals
are operating at a sub-optimal scale, then the estimates of technical
efficiency will be confounded by scale efficiency effects.

The CRS linear programming problem is easily extended to account
for VRS by adding to the convexity constraint in equation 5.10 (the
n x 1 vector 4 > 0) the further constraint:

1
Ji=1 (5.11)
i=1
To calculate scale inefficiency, both the CRS and VRS DEA models
are run on the same data, and any change in measured efficiency can
be attributed to the presence of scale inefficiency. This is illustrated in
the following example. Assume DMU, produces a single output (y),
for example hospital treatments, from a single input (x), hospital staff,
as depicted in Figure 5.3. This figure highlights the difference between
the two production frontiers (adapted from Coelli, Rao and Battese,
1998). The line from the origin OE depicts the CRS frontier whereas
the segmented line FGHIJ is the VRS frontier. Assuming an input
orientation, implying a reduction of input (x) in the horizontal
plane, the technical efficiency (TE;y.crs) of DMU, with respect to
the constant returns to scale technology is then expressed as:
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Figure 5.3. Constant and variable returns to scale

CB¢
TEn,crs = A (5.12)

where the IN subscript denotes the input orientation and the CRS
subscript denotes the constant returns to scale technology.

In contrast, the technical efficiency (TEn,vrs) of DMUy4 with re-
spect to the variable returns to scale technology is expressed as:

CBy
TE =— i
IN.VES =~ (5.13)
where the VRS subscript denotes the variable returns to scale
technology.

Scale efficiency is then measured as the distance between the CRS
and VRS technologies, or:

CB¢
Eny =—— .
SE v CBy (5.14)
and therefore:
TEn.crs = TE v vrs X SE (5.15)

Again, all these efficiency measures are bounded by 0 and 1.

If we imagine Figure 5.3 in multidimensional space, the VRS tech-
nology forms a convex hull of intersecting planes which envelop the
data points, such as A and D, more tightly than the CRS approach,
where the frontier would extend from the origin. Thus, by introducing
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an additional constraint, VRS produces technical efficiency scores
which are greater than or equal to those obtained using CRS (Coelli
1996b; Parkin and Hollingsworth 1997).

The convexity constraint in equation 5.11 ensures that an ineffi-
cient DMU will usually be compared only with DMUs of a roughly
similar size. Thus the projected point for DMU, on the DEA frontier
will be a convex combination of other DMUs, such as G and H. This
convexity restriction implies that the efficient frontier is formed only
by interpolation between DMUs, and precludes extrapolation of
performance at one scale to a different scale. In contrast, the CRS
case permits extrapolation, with the result that DMUs may be com-
pared with others operating at substantially different scales. Thus
under CRS the A weights may sum to a value greater than (or less
than) 1.

In order to obtain an indication of whether a DMU is operating in
the area of increasing, or the area of decreasing, returns to scale, a
non-increasing returns to scale (NIRS) constraint can be added by
altering the convexity constraint in equation 5.11 to:

I
d <t (5.16)
i=1

In Figure 5.3 the NIRS frontier runs from the origin O to H and
then follows the VRS frontier HIJ. Scale inefficiencies can then be
determined (whether increasing or decreasing returns to scale) by
comparing the DMU’s technical efficiency score under the NIRS con-
straint (equation 5.11) to their technical efficiency score under the
NIRs constraint (equation 5.16). If they are not equal, increasing
returns to scale exist; if they are equal, then decreasing returns to scale
apply (Coelli, Rao and Battese 1998). DMUs between F and H such as
DMU, have increasing returns to scale whereas DMUs between H
and ] such as DMUp, have decreasing returns to scale. A DMU at point
C is scale-efficient under both CRS and VRS. More DMUEs are there-
fore likely to be found efficient under VRS than CRS.

The choice of CRS or VRS will usually depend on the context and
purpose of the analysis, or whether short-run or long-run efficiency is
under scrutiny. For example, from a societal perspective, interest may
be in productivity regardless of the scale of operations, so CRS may
be more appropriate. From a managerial perspective, interest may be
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focused on the extent to which the scale of operations affects
productivity, so VRS may be preferred, particularly if it is believed
that DMUs are not operating at the optimal scale because of the time-
scale of operations or their location on a certain range of the produc-
tion function.

If the incorrect scale assumption is invoked in the modelling, it is
likely to have the greatest effect on efficiency estimates when sample
sizes are small, as with larger sample sizes there is a greater probability
of being able to form a comparison group with weights which con-
form to equation 5.11 and which exhibit efficiency which is close
to that of the unconstrained comparison group (Smith 1997). Thus
with smaller sample sizes, the choice of VRS or CRS becomes more
important.

A complication to the choice of CRS or VRS is that often data take
the form of ratios rather than absolute numbers as measures of inputs
and outputs in DEA. This is very common in health care. For example,
mortality rates, discharge rates, doctors per head of population, nurses
per occupied bed, proportion of expenditure on clinical supplies from
total expenditure, proportion of theatre time for hip replacement
operations from total theatre time are commonly used measures of
input or output. The essential point to note is that the use of such data
automatically implies an assumption of constant returns to scale,
because the creation of the ratio removes any information about the
size of the organisation.

Where a decision is made to use ratio data, Hollingsworth and
Smith (2003) show why it is essential to use the Banker, Charnes
and Cooper (1984) formulation of DEA, even though the ratio data
used implicitly assume constant returns to scale. The technical reason-
ing is as follows. If a ratio variable y,; for DMU; is calculated with
numerator pg; and denominator gg; (i.e. y5; = Ps;/qs;) then combining
the ratios for I DMUs should be achieved by computing the weighted
average :

I . .
yi = izt Wibi (5.17)
Zi:l wiqi

where w; are the weights on DMU; in creating the weighted average.
Thus the weights apply to both the numerator and the denominator.
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When DEA combines the ratios of I DMUs it creates the composite
ratio:

v =Sk (5.18)

For equations 5.17 and 5.18 to be equivalent, or for y* to equal y¢,
the coefficients of p,; in each of the combined ratios should be equal,
therefore:
IL:ﬁ for all ¢ (5.19)
Yiciwibs P
This amounts to the Banker, Charnes and Cooper (1984) formulation
of equation 5.11:

1

Z)V,-:L

i=1

5.3.2 Whether to assume an input or an output orientation

Under CRS, the DEA results are the same whether an input orientation
or an output orientation is specified. However, under VRS the two are
not in general equivalent. The difference is illustrated in Figure 5.4,
using one input x and one output y with an inefficient DMU operating
at point C. Under VRS the technical efficiency measure for DMU C in
the input-orientation specification depends on the horizontal distance
from the frontier, and in the output-orientation specification on the
vertical distance from the frontier.
In algebraic terms, from Figure 5.4:

A8 _nC
AC  DE
where the IN and OUT subscripts denote, respectively, the input and

output orientation under CRS.
But:

TE . crs = = TEour,crs (5.20)

AB A DC

TEn,vgs = 1c # DF = TEour,ves (5.21)

The choice of orientation does not affect which observations are
identified as fully efficient, since the models will estimate exactly the
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Figure 5.4. Input and output orientation.

same frontier (Coelli 1996b). The difference lies in the part of the
frontier to which the inefficient DMU is projected. Therefore, under
VRS, the choice of input or output orientation may be an important
consideration that will be affected by the analyst’s view on which
parameters managers are able to control. For instance, hospital speci-
alities may face a fixed quantity of inputs in any given period. Subject
to this resource constraint, managers must decide how many patients
to treat. This would imply that technical inefficiency is measured by
considering the extent to which outputs can be expanded propor-
tionately without altering the quantity of inputs. This suggests an
output-oriented measure of efficiency. On the other hand, contractual
arrangements with a hospital (say) may be specified in terms of a
target number of patients treated. The managerial problem might then
be better formulated by considering how much input quantities could
be reduced while still maintaining the output target. This would imply
an input-orientation to the problem.

5.3.3 Whether to apply weight restrictions

As discussed in Chapter 2, efficiency measurement requires the speci-
fication of a set of weights to the inputs and outputs, and in principle
we could a priori assign fixed weights to our inputs and outputs. For
example, let us assume we are evaluating the efficiency of hospitals,
producing two outputs (inpatients and outpatients), with the use of
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two inputs (doctors and nurses). Suppose we impose fixed weights to
generate efficiency ratios, such as the following:

vy (weight for doctors) : v, (weight for nurses) = 5 : 1

u; (weight for outpatients) : u#, (weight for inpatients) = 1 : 3

This fixed weights approach makes the efficiency calculations tri-
vial, and renders DEA unnecessary (Cooper, Seiford and Tone 2000).
It is, however, generally infeasible to assign fixed weights in health
care where many crucial values are unknown. Moreover, we may not
know how much of the estimated inefficiency reflects factors beyond
the hospitals’ control, an issue to which we return in sub-section 5.3.6.

In contrast to this fixed weights approach, conventional DEA al-
lows total flexibility in weights. The weights, which are specific to
each DMU, are chosen so that they place each DMU in the best
possible light. This means that the input-output ratio for each DMU
is maximised relative to that for all other DMUs. Therefore, if we were
to compare the results from our example above with fixed weights
(say the ratios of 5:1 and 1: 3 for inputs and outputs) to that of variable
weights under DEA, we would find that DEA will assign efficiency
scores greater than or equal to those using fixed weights (Cooper,
Seiford and Tone 2000).

DEA will allow a DMU on the frontier to assign very high weights
to the inputs and outputs for which the unit is particularly efficient
and very low weights to the other inputs and outputs. Indeed, one can
find in an unconstrained DEA that the highest efficiency score for a
DMU can be obtained only by assigning a zero weight to one or more
outputs on which it performs poorly. Extreme DMUs that excel at one
particular aspect of performance will be classified as efficient, irre-
spective of how they perform on other tasks they undertake (Doyle
and Green 1994). Thus if DEA is allowed complete freedom to choose
the weights for DMUs, factors of secondary importance may domi-
nate a DMU’s efficiency assessment or, alternatively, important factors
may be ignored in the analysis.

This consideration has led to various approaches to limit the flex-
ibility of the choice of weights on inputs and outputs in DEA. By
placing constraints on the weights, the region of search for those
weights is reduced and so a DMU’s efficiency cannot increase, and
may decrease, compared to the value obtained using unconstrained
DEA. Various authors have suggested ways of imposing restrictions on
the weights, including Charnes et al. (1989); Thompson et al. (1990),
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Wong and Beasley (1990), and Roll, Cook and Golany (1991). How-
ever, most of the effort has focused on the technical considerations of
weight restrictions rather than the economic theory underpinning the
rationale for such restrictions.

The degree of weight flexibility to be allowed depends on consid-
erations such as the extent to which DMUs are considered homoge-
neous. On the one hand, they may face the same input prices, produce
similar outputs and employ the same technologies (implying very
limited weight flexibility). On the other, they may enjoy the freedom
to vary local priorities, or there may be considerable uncertainty about
the appropriate weights, implying a need for greater weight flexibility.

The use of weight restrictions requires value judgements about the
relative importance of different outputs and about the relative oppor-
tunity cost of the inputs used. Thus weight restrictions can be criti-
cised on the grounds that they compromise some of the objectivity
implicit in the unrestricted DEA. However, there are many other value
judgements that go into the construction of a DEA model, including
the choice of inputs and outputs and the assumption that the implicit
weights chosen by DEA are acceptable (Allen e al. 1997; Pedraja-
Chaparro, Salinas-Jiménez and Smith 1997). We consider these issues
further in chapter 8.

A possible approach towards examining sensitivity to weight selec-
tion is the calculation of ‘cross-efficiencies’ (Doyle and Green 1994).
Once the unconstrained DEA set of weights has been chosen for a
particular DMU, that set is used to weight the inputs and outputs for
each of the other DMUs, yielding for each DMU a set of I efficiency
scores. This procedure is repeated for all DMUs, yielding a matrix of
cross-efficiencies. The usual DEA efficiency measurements for each
DMU are given along the leading diagonal of the matrix.

It is then possible to examine the range of efficiency scores secured
for each DMU, using all other DMU weights, and this offers some
indication of the robustness of the initial DEA efficiency estimate to
realistic changes in the weights, as adopted by other DMUs. However,
it should be noted that the set of weights that DEA selects to maximise
a DMUs efficiency may not be unique, and thus the evaluation of the
other DMUs may depend to some extent on which of the solutions the
linear programme generates with the chosen software (Doyle and
Green 1994).
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5.3.4 Dealing with ‘slacks’

The optimal solution linear programme (equation 5.10) can include
what are termed ‘slacks’ in either the input or output constraints. For
constraints with non-zero slacks, the performance of the peer group
suggests that the DMU under scrutiny can improve beyond the level
implied by the overall efficiency estimate 6. For such inputs (or out-
puts) the estimated frontier effectively runs parallel to the relevant
input or output axis in multidimensional space. To illustrate, sup-
pose we have two inputs (x; and x;) to produce a single output (y).
Figure 5.5 shows four DMUs, where A and B represent inefficient
production units and C and D are efficient, forming the frontier. Thus
the inefficiency of units A and B is calculated as OB’/OB and OA'/OA
respectively. However, the radial projection for A does not encounter
the frontier interpolated between C and D, so is not naturally envel-
oped because the frontier is incomplete. Whether point A’ is an effi-
cient point is questionable, because one could still reduce the amount
of input x, by the amount A’C. Any point along such artificial frontier
extensions (the broken lines in Figure 5.5) is always dominated by a
point on the edge of the frontier. For inefficient DMU ,, the difference
in input x, between these two points (A’ on the extension and C on the
frontier) is the slack associated with that input (Tofallis 2001).

We can envisage a similar situation in Figure 5.6 where we have two
outputs (y; and y,) and a single input (x). DMUs A and B represent
inefficient production units and C, D and E are efficient, forming
the frontier. Thus the inefficiency of units A and B is calculated as
OA/OA’ and OB/OB’ respectively. A'C represents the ‘output slack’
or the amount by which output y; can still be expanded.

Point A’ in both Figures 5.5 and 5.6 represents the Farrell (1957)
definition of efficiency, or the radial reduction in inputs (Figure 5.5)
or radial expansion in outputs (Figure 5.6) which is possible. A stricter
definition of efficiency is supplied by Koopmans (1951) who argues
that points such as A’ are not efficient. According to the Koopmans
definition, DMUs are technically efficient only if they operate on the
frontier (such as DMUs C and D) and all associated slacks are zero.

Failure to account for slack will result in an overestimation of
technical efficiency (using Farrell estimates) for those DMUs operating
with slack (such as DMU A). Furthermore, if the targets calculated for
inefficient DMUs (such as A) include the slack values, they may imply
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Figure 5.6. Efficiency measurement and output slacks.

a significant change in the input/output mix (moving from a point
A’ to C) which may then result in the targets not being helpful or
practicable. In assessing how to deal with slacks, some commentators
have argued that DEA should not be used for ranking DMUs or for
target-setting (Tofallis 2001).

Other authors have proposed various ways of dealing technically
with slacks (Bessent e al. 1988; Torgerson, Forsund and Kittelesen
1996; Tofallis 2001). Ali and Seiford (1993) have proposed deriving
Koopmans, technical efficiency by means of a second-stage DEA
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linear programming problem which can be run to move from a point
such as A’ (Farrell-efficient) to C (Koopmans-efficient) on the frontier.
This is done by taking the 0-value from the first-stage linear program-
ming problem and running a second-stage linear programming pro-
blem and setting the input and output slacks to zero. However, there is
a potential problem with this two-stage approach, namely that one
loses the wunits-invariant nature of the radial efficiency measures in
the second stage (thus changing the units of measurement of the inputs
or outputs will change the value of the efficiency measure). Units
invariance is one of the desirable properties of DEA.

Coelli (1998) has proposed a multistage DEA which involves the
solution of a sequence of radial linear programming problems to
identify efficient projected points which have an input/output mix as
close as possible to those inefficient points (such as A). The resultant
efficiency measures are also units-invariant.

While some authors have argued that Farrell efficiency measures
should be reported alongside non-zero input or output slacks to give
an accurate picture of efficiency, others have argued that slacks should
essentially be viewed as allocative inefficiency (Ferrier and Lovell
1990) and obtaining the Koopmans-efficient points is not important.
Coelli, Rao and Battese (1998) argue that slacks are an artefact of the
frontier construction method and conclude that an analysis of techni-
cal efficiency can reasonably use the Farrell radial efficiency scores.
The choice of dealing with slacks remains an unresolved issue.

5.3.5 Model specification and judging the quality of a
DEA model

Being a non-parametric technique, DEA has the advantage of requiring
no assumptions about the functional form of the production or cost
frontier. While this reduces the need for a theoretical exposition of model
specification, it does not avoid the problem of how to assess the quality
of a DEA model — or how well it reflects reality. There are several
considerations, each of which is discussed in detail in this sub-section:

e DEA assumes no random noise or measurement error;

e results are sensitive to small samples and outlier observations;

e the inclusion or exclusion of certain variables can bias efficiency
estimates;
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e the more variables are included the less discriminating between
DMUs the model becomes;

e caution needs to be exercised with zero input output levels;

e sensitivity analysis may help to refine model specification.

We consider these in turn.

First, DEA is deterministic, which means there is no way to take
account of statistical error, random shocks or noise. Given that the
method is based on outlier observations, measurement error is a
potentially serious source of bias. The approach presupposes that all
variables are measured accurately and that any shortfall between a
DMU’s input-output ratio and the maximum predicted by the frontier
is attributable solely to inefficiency. Measurement error can have an
impact which is dependent on whether a DMU is incorrectly assigned
as efficient or inefficient. If the ‘incorrectly measured DMU’ is incor-
rectly assigned as efficient, the efficiencies of other DMUs for which it
is an efficient peer may be underestimated. On the other hand, if the
‘incorrectly measured DMU” is incorrectly assigned as inefficient, the
DMUs which would otherwise have had the ‘incorrectly measured
DMU’ as their efficient peer, may have their efficiency ratings over-
estimated (Thanassoulis 2001).

There have been several applications of DEA using hospital data
where outputs are expressed in fairly crude terms, such as the number
of patients treated in medical or surgical specialities. Case mix within
these groupings may vary systematically across hospitals. Hospitals
with a more complex case mix will be estimated as being less efficient
than they would be if case mix were adequately accounted for. Given
that the DEA inefficiency score is likely to contain measurement error,
it may be best to consider it as an equivalent to the residual ¢; from the
COLS model, introduced in chapter 3.

Second, results are sensitive to model specification, particularly in
small samples (Smith 1997). DEA generates efficiency scores for each
individual organisation by comparing it to peers that produce a com-
parable mix of outputs. If any output is unique to an organisation, it
will have no peers with which to make a comparison, irrespective of
the fact that it may produce other outputs in common. An absence
of peers results in the automatic assignation of full efficiency to the
DMU under consideration. Consequently, caution should be exercised
in accepting that DMUs classified as fully efficient actually are so.
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By the same token, individual efficiency scores may not be robust
in the presence of outlier observations and atypical input/output
combinations.

Some criteria do exist, however, for detecting especially influential
observations in DEA. One such is the ‘super-efficiency’ measure which
indicates the extent to which an efficient DMU lies beyond the frontier
that would have been estimated in its absence (Pedraja-Chaparro,
Salinas-Jiménez and Smith 1999).

Third, it is critical to be clear about what variables should be
classified and included as inputs to, or outputs from, the production
process. There is no agreed method of determining whether or not a
variable should be included in the model. Generally, the criteria of
exclusivity and exhaustiveness should hold for the choice of inputs
and outputs in a DEA model (Thanassoulis 2001). In other words, the
inputs alone must influence the outputs (exclusivity), and only those
outputs used in the model (exhaustiveness). The inputs and outputs
need, therefore, to be chosen such that the inputs capture all the
resources and the outputs capture all the activities or outcomes
deemed relevant for the particular efficiency analysis, subject to the
rule of exclusivity and exhaustiveness. In practice this may be quite
difficult to achieve and the implications of model misspecification
may be substantial.

For example, the exclusion of an important input or output can
result in severely biased results and an underestimate of efficiency,
because it may fail to recognise input constraints faced by some DMUs
(Smith 1997). Conversely, the addition of extraneous inputs or outputs
in DEA will tend to lead to overestimates of efficiency scores,
because an unnecessary constraint has been added into the linear
programme. The bias, however, tends to be much more modest
when including an extraneous variable than omitting a relevant
variable (Smith 1997). This consideration suggests that the criterion
of seeking a parsimonious model, often adopted in econometrics, is
less relevant for DEA. It may be safer to err on the side of inclusion
of irrelevant variables, rather than exclusion of important variables.

Fourth, not only the choice of but also the number of inputs and
outputs relative to the number of DMUs will affect efficiency evalua-
tions. The more variables are included, the less discriminating the
model becomes. The larger the number of input and output variables
used in relation to the number of DMUs in the model, the more DMUs
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will be assigned as fully efficient and hence the less discriminating the
DEA model will be. Banker et al. (1989) suggest as a rule of thumb
that the number of DMUs should be at least three times the number of
factors (inputs and outputs) in any DEA application, although there is
no analytic support for this rule (Pedraja-Chaparro, Salinas-Jiménez
and Smith, 1999).

Fifth, it is of course axiomatic that inputs and outputs in DEA
should be ‘isotonic’, in the sense that increased inputs should reduce
efficiency, whereas increased outputs increase efficiency, other things
being equal. If this is not the case, the analyst must first transform the
data so that they are isotonic. For example, ‘bad’ outputs such as
mortality rates or readmission rates might be transformed either by
inversion, or by subtracting the value of the variable from a large
positive number (Scheel 2001; Lewis and Sexton 2004).

Special caution needs to be exercised when zero input or output
levels are observed for some DMUs. For instance, if hospital activity in
a sample is measured using as one of the outputs Accident and Emer-
gency (A&E) attendances, but some hospitals in the sample do not
run A&E departments, then they will artificially be deemed less effi-
cient than those DMUs which do have A&E activity. Similarly, DMUs
using zero levels of some inputs may be artificially shown as more
efficient than they really are. There is no clear protocol for dealing
with this problem. Some users add a positive constant to the zero
input/output levels to make them positive, but results are sensitive to
the choice of constant (Thanassoulis 2001). Cooper, Seiford and Tone
(2000) describe a translation-invariant DEA model for use in such
cases where adding a constant to input or output levels will not
influence efficiency results.

Finally, sensitivity analysis may help to refine the model specifica-
tion. DEA offers no diagnostic statistics with which to judge whether
a model is misspecified. Analysts should therefore test a variety of
model specifications using sensitivity analysis to ascertain the robust-
ness of results, and construct data ranges within which results remain
unchanged. Bootstrapping may be a useful way to obtain an assess-
ment of the degree of certainty that exists around efficiency estimates
(Salinas-Jiménez, Pedraja-Chaparro and Smith 2003).

No clear protocol exists for what action should be taken if results
are found to be sensitive, other than appealing to the judgement of
the analyst. Ultimately the central concern when judging the quality
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of a DEA model is that it should be formulated in light of the purpose
for which the results will be used. The higher the regulatory stakes
(in the form of the expected cost of incorrect inferences), the more
caution and circumspection should be exercised.

5.3.6 How to adjust for environmental factors

Environmental variables describe factors which could influence the
efficiency of a DMU, but are not traditional inputs to the production
process and are assumed outside the control of the manager. They may
include various characteristics of health care organisations, such as
differences in ownership, location, the health needs of their patient
populations, the local health economy and community and primary
care services, or institutional constraints such as access to capital
resources.

Inadequately accounting for the environment in which DMUs oper-
ate may lead to seriously faulty conclusions. However, there remains
an active and unresolved debate about how to incorporate such en-
vironmental variables into DEA (Fried et al. 2002). If the sample can
be divided into sub-samples on the basis of the environmental variable
(e.g. public versus private hospitals), then an approach proposed by
Charnes, Cooper and Rhodes (1981) can be used. DEA is undertaken
for each sub-sample, and all observed data points are projected onto
their respective frontiers. A single DEA is then undertaken using the
projected points to assess any difference in the mean efficiency of the
two sub-samples.

However, environmental variables are not in general categorical.
An alternative approach is therefore to include an environmental
variable (either categorical or continuous) as one of the inputs in the
production model (using the Banker, Charnes and Cooper (BCC)
formulation) (Lovell 2000). In DEA this means that DMUs will only
be compared with other DMUs operating in identical or more adverse
environments. Those operating in the most adverse environments will
automatically be deemed efficient (Banker and Morey 1986; Coelli,
Rao and Battese 1998).

A third approach involves a two-stage analysis, whereby DEA is
solved using the traditional inputs and outputs, and the efficiency
scores from the first stage are then regressed on the environmental
variables (Ferrier and Valdmanis 1996). The DEA efficiency scores are
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then used as the dependent variable in a regression analysis. A cen-
sored Tobit regression model is often considered appropriate for these
data, as they are bounded at both ends of the 0-1 distribution.

Many analyses then ‘correct’ the efficiency scores by using the
estimated regression coefficients to adjust the efficiency scores for
the environmental factors (Bhattacharyya, Lovell and Sahay 1997)
so that the efficiency scores all correspond to a common level of en-
vironment, say the sample means. This approach is, however, proble-
matic because the efficiency scores used as the dependent variable are
serially correlated, and so the classical regression assumption of vari-
ables being independent and identically distributed is violated, there-
by invalidating standard approaches to inference (Simar and Wilson
2004). It is therefore inadvisable to draw firm conclusions using
conventional statistical tests from this analysis. Rather it might be
considered exploratory, indicating which environmental variables ap-
pear to have the most influence on performance. This information
could then be used to formulate a single-stage DEA model where the
environmental variable is included in the DEA model as an input or an
output (Coelli, Rao and Battese 1998).

Further suggested developments include a three-stage approach to
account for environmental effects (Fried, Schmidt and Yaisawarng
1999; Blank and Valdmanis 2005). The two-stage approach is ex-
tended by following the second stage Tobit regression with another
DEA evaluation in which the original data are adjusted to take ac-
count of the environmental impacts. There have been a number of
baroque refinements to these approaches, for instance running a dou-
ble DEA model (Lozano-Vivas, Pastor and Pastor 2002), running a
second-stage seemingly unrelated regression model to take account of
radial slacks and not just radial efficiency measures (Fried, Lovell and
vanden Eeckaut 1993), and running a second-stage SFA model fol-
lowed by a third-stage DEA model, to additionally take account of
stochastic noise (Fried et al. 2002).

The complexity of these recommendations, and the fierce demands
they make on data, are indicative of the complexity of the environ-
mental variable problem. There is no generally accepted method for
taking into account environmental variables in DEA models or for
testing whether an environmental variable has a significant influence
on the production process and the resultant efficiency estimation. For
health care, the issue is often likely to be the single biggest source of
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technical and policy debate, and it must therefore be treated with great
caution.

5.4 Application to acute hospitals in England

5.4.1 The methods and data

The considerations discussed above in estimating a DEA model are
illustrated using a sub-set of the cross-sectional data used in chapter 3.
Data for 171 hospitals with accident and emergency (A&E) depart-
ments are analysed in this chapter. The reason for excluding those
hospitals without A&E departments is that DEA cannot easily cope
with DMUs that produce zero amounts of some types of output.

We use total cost as the input and calculate technical efficiency scores
for hospitals. A range of outputs are considered, including inpatient
episodes, outpatient visits, A&E attendances, teaching, and research.
Since no information is available on the relative importance of certain
outputs, no weight restrictions are applied in the analysis. We also used
the multistage DEA (Coelli 1998) to obtain Koopmans efficiency esti-
mates with zero slacks. We use an input orientation, thus addressing the
question: ‘By how much can expenditure be proportionally reduced
without changing the output quantities?’

We employ the Banker, Charnes and Cooper (BCC) (1984) formula-
tion of the DEA model since we have ratio data for several variables.
Non-ratio variables when included in the DEA model effectively
mean that hospitals are compared only to other hospitals with the
same value for the variable in question.

In addition, one of the variables is non-isotonic, namely transfers
out of hospital. If patients end their care in one hospital with a transfer
to another hospital it is assumed that this represents an inability on
the part of the first hospital to meet the patient’s treatment needs.
Transfers into a hospital are likely to represent complex patients
referred from less capable institutions. These variables capture an
aspect of case mix and patient severity. In order to ensure that incen-
tives remain in place for hospitals not to ‘cream-skim’ low severity
patients by transferring them to other providers, we transform trans-
fers out of hospital so that both these variables move in the same
direction. This will encourage hospitals to increase efficiency whilst
still managing more complex cases. In this example, we chose unity
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as the positive reference number from which to subtract transfers
out of hospital.

Table 5.1 shows the descriptive statistics for the variables used in
the DEA models.

5.4.2 Model specifications

Five model specifications are considered. The different specifications
serve as a sensitivity analysis, to test whether the efficiency scores and
ranks remain stable when variables are removed or added. However,
while these specifications may have some intuitive appeal, they have
been chosen purely for illustrative purposes. In practice, if we were to
use this analysis for any purpose other than to illustrate the methodol-
ogy, we would need to estimate more model specifications and exam-
ine carefully the impact of the inclusion and exclusion of additional
variables. The five specifications are shown in Table 5.2.

Model 1 simply uses the three main treatment-related activities of
hospitals, while Model 2 adds teaching and research activity. Model 3
includes the full set of outputs over which hospital managers poten-
tially have control, at least in the short run. Model 4 is virtually
identical, except that it includes the ‘market forces factor’, a variable
that captures differences in factor prices across the country. We in-
clude this model to show an example of various ways of dealing with
this environmental factor. Finally Model 5 includes all available out-
put variables and environmental adjusters, including variables that
capture the configuration of the hospital. Arguably hospitals may be
able to alter these configuration factors in the long run, but it is
unlikely that managers may have much control over hospital size
and specialisation in the short term.

5.4.3 Results

Summary results from each of the five specifications are presented in
Table 5.3. As progressively more variables are added to the model, a
number of things happen: (i) more hospitals are assigned to the fron-
tier; (ii) mean sample efficiency increases; and (iii) the variance in
efficiency scores decreases. Two facets of the analytical technique
drive these results. First, progressively more of the heterogeneity
among hospitals is incorporated into the model, leaving less to be
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Table 5.3. DEA model specifications and efficiency results

Model 1 Model 2 Model 3 Model 4 Model §

Efficient 14 27 97 100 150
>90% 26 42 121 126 163
<50% S 2 0 0 0
Mean 0.744 0.787 0.932 0.938 0.988
Std dev. 0.136 0.137 0.098 0.092 0.038
Min. 0.419 0.437 0.651 0.651 0.769
Max. 1.000 1.000 1.000 1.000 1.000

labelled as ‘inefficiency’. Second, as more variables are added, there
is an increased chance that previously ‘inefficient’ hospitals will
dominate on the added dimension and be promoted to the frontier
(Nunamaker 1985).

The results for Models 1 and 2 and for Models 3 and 4 are in close
agreement, unsurprisingly given the similarities of these two sets of
specifications. Figure 5.7 shows the distribution of efficiency scores
under each of the five specifications, with the distributions for Models
1 and 2 tracking each other closely, as do those for Models 3 and 4.
The distribution for the most comprehensive model (Model 5) is
clearly different, with most hospitals on the frontier and the remainder
not far off it. This illustrates that great care should be taken in
interpreting DEA results.

Alterations to model specification can impact not only on mean
sample estimates of efficiency but also on how DMUs compare with
one another. One way to consider this is by looking at how efficiency
scores are correlated across specifications. Table 5.4 shows the cor-
relation matrix between the efficiency scores from the five models.
The correlations between Models 1 and 2, and between 3 and 4, are
relatively high. But all correlate relatively poorly with Model §, sug-
gesting that the inclusion of the additional explanatory variables has
a profound effect on the results.

We are also, however, interested in how the change in efficiency
scores impacts on the individual rankings of hospitals. Table 5.5 shows
the correlations between the rankings of hospitals obtained from the
efficiency scores. These are generally lower than the correlations for
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Figure 5.7. Distribution of efficiency scores for five DEA models.

Table 5.4. Correlations between efficiency scores

Model 1 Model 2 Model 3 Model 4 Model 5

Model 1 1

Model 2 0.7852 1

Model 3 0.4572 0.5490 1

Model 4 0.4244 0.5260 0.9698* 1

Model 5 0.2311 0.2327 0.5180 0.5448 1
Note:

* Significant at 0.01 level.

the efficiency scores and show that individual hospitals can jump
significantly depending on the specification choice.

While there are fourteen hospitals that remain on the frontier across
all five specifications, there are also fourteen hospitals whose max-
imum change in ranking across the five specifications is more than
160 places (out of 171). In other words, for this latter group, such is
their sensitivity to the choice of specification that they shift from one
end of the ‘league table’ to the other. Table 5.6 illustrates sensitivity to
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Table 5.5. Correlations between efficiency ranks

Model 1 Model 2 Model 3 Model 4 Model 5

Model 1 1

Model 2 0.7762% 1

Model 3 0.3909 0.5350 1

Model 4 0.3735 0.5141 0.9710* 1

Model § 0.1812 0.2233 0.4879 0.5006 1
Note:

* Significant at 0.01 level.

specification for a selection of hospitals. Hospital A remains efficient
across all five specifications. In Model 2 when teaching and research
is included, both Hospitals B and C are assessed as being fully effi-
cient. Hospital D achieves relatively good rankings across all five
specifications, but when the larger number of outputs is introduced
in Model 3, it also moves onto the frontier. A similar pattern is evident
for Hospitals E and F. Hospital G, presumably, is in an area where
factor prices are high: when this is taken into account (through the
market forces factor), the hospital gets a high efficiency score. Hospi-
tal H performs relatively well on the main hospital activities, but
when the additional variables are included, while its efficiency score
improves, its ranking relative to other hospitals declines. Hospital I’s
pattern of performance is similar, but it is always relatively poorer
than H. Both hospitals, however, move to the frontier when all
the hospital adjusters are included in Model 5. Hospital J remains
inefficient across all specifications.

It is clear that the efficiency scores or ranks are not consistent across
the different specifications. It is important for the analyst to have a
clear understanding of the health care market under analysis and the
rationale for including or excluding certain variables. In order to
illustrate how these changes in efficiency scores and ranks come
about, we examine in more detail the data underlying Models 1 and
2 for the above ten hospitals, as shown in Table 5.7. Recall Model 1
includes the three treatment-related activities, whereas Model 2 also
includes teaching and research activities.

While Hospital A’s costs are higher than the sample average, its
outputs are also (apart from A&E) above average. Moreover, it clearly
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Table 5.8. Tobit model of DEA efficiency scores regressed against a
single environmental factor

Number of obs. = 171

Tobit estimates L.R. ¥*(1) = 0.24
Log likelihood = Prob. > y* = 0.6241
—44.4534 Pseudo R? = 0.0027

Model 3 efficiency scores

Coeff. Std Err. ¢ P> |t|] [95% conf. interval]
MFF 0.0009 0.0019 0.49 0.627  —0.003, 0.005
Constant 0.9438 0.1642 5.75 0.000  0.620, 1.268
Std err. 0.1901 0.0179 (Ancillary parameter)

Obs. summary: 97 right-censored observations at Model 3 >=1

outperforms most other hospitals on the outputs of teaching and
research. Hospital B performs better than Hospital C on Model 1
because its three outputs are very similar, but its costs are lower.
However, in Model 2 both Hospitals B and C move onto the frontier
because they excel at either research or both teaching and research.

We now examine the influence of the environmental factors on the
efficiency scores in DEA, by regressing the efficiency scores produced
by Model 3 against MFE the market forces factor, as shown in
Table 5.8. The variable appears to be statistically insignificant, and
some would argue for its exclusion from the DEA analysis on this
basis. But because standard errors are biased, the statistical signifi-
cance may be incorrectly estimated — the omission would be equiva-
lent to committing a Type I statistical error. Moreover, we know from
Table 5.6 that the inclusion of the market forces factor, though per-
haps not significant for the sample in general, can be highly material
for particular hospitals, such as Hospital G. This cautions against the
use of second-stage analysis to infer the importance of variables for
individual DMUs in DEA.

5.5 Conclusions

This chapter has outlined the main issues involved in specifying a DEA
model to assess efficiency using cross-sectional data. The analyst faces
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a number of decisions regarding the choice of inputs and outputs,
whether to assume constant or variable returns to scale, an input or
an output orientation, whether to apply weight restrictions, or control
for slacks, whether and how to adjust for environmental factors and
how to judge the quality of a DEA model. There are no statistical
criteria with which to discriminate in many of these choices and the
appropriate strategy may depend on the purpose of the analysis and
the nature of the data.
In summary:

e The most important role of DEA may be as a simple exploratory
analytic tool rather than as an instrument with which to extract
precise estimates of organisational efficiency.

e The principal technical virtues of DEA (compared to regression
methods) are its flexibility and its freedom from parametric assump-
tions.

e The principal drawback is that it offers little guidance on the quality
of the results it yields, so there is always room for disagreement on
the most appropriate DEA model.



6 The Malmgquist index

6.1 Introduction

HEN longitudinal data or panel data are available, the most

common approach in the data envelopment analysis litera-

ture is to apply a Malmquist index of the change in total
factor productivity (TFP). This chapter outlines the distinctive fea-
tures of the Malmquist index, along with key issues in specifying a
Malmquist DEA model. We describe some of the applications of
the Malmquist index in the health care sector, provide a graphical
illustration of the Malmquist methodology, and outline some consid-
erations when applying the Malmquist model, before turning to a case
study of acute hospitals in England.

Index numbers are used to measure the change in TFP and involve
the measurement of changes in the levels of output produced and input
used. The most popular indices are the Laspeyres, Paasche, Fisher and
Torngvist (Laspeyres 1871; Paasche 1874; Fisher 1922; Tornqvist
1936). All index numbers measure the changes in the levels of a set of
variables between a base period and the current period. The Laspeyres
index uses the base period quantities or prices as weights, whereas the
Paasche index uses the current period weights. The Fisher index is the
geometric mean of these two indices. The Tornqvist index is often
presented in a log-change form and represents the weighted average
change in the log of the price or quantity of a particular commodity. In
order to use these indices in productivity measurement, they are usually
linked together to make annual comparisons of consecutive years to
measure productivity over a given period in what is called a chain index
(Coelli, Rao and Battese 1998).

Measuring productivity change by the Laspeyres, Paasche, Fisher or
Torngvist indices requires quantity and price information as well as
assumptions about the structure of technology and the behaviour of
producers.

129



130 Measuring Efficiency in Health Care

Alternatively, change can be measured using a Malmquist produc-
tivity index (Malmquist 1953). This index was introduced into the
DEA literature by Caves, Christensen and Diewert (1982) and is based
on Malmquist’s proposal to construct quantity indices as ratios of
distance functions for use in consumption analysis. Distance functions
are representations of multi-output multi-input technologies which
require data only on input and output quantities (Fire et al. 1994).

The advantage of the Malmquist index over other TFP indices is
that the former does not require information on the prices of inputs
and outputs or technological and behavioural assumptions. This makes
the Malmquist index a particularly suitable tool for the analysis of
productivity change in the public sector, where output prices are not in
general available (Coelli, Rao and Battese 1998).

Unlike the other indices, however, the Malmquist index does require
the estimation of a representation of the production technology
(Coelli, Rao and Battese 1998; Kumbhakar and Lovell 2000). This
production technology may be a production frontier, or its dual, the
cost frontier. The choice of perspective depends on the problem to
be analysed.

A further advantage of the Malmquist approach is that, once the
production technology is estimated, one can decompose TFP change
into its component parts: efficiency change and technical change.

Malmquist indices can be calculated using either parametric meth-
ods (Nishimizu and Page 1982) or linear-programming DEA-type
methods. The methodology proposed by Fire et al. (1994) makes
operational the principles of the Malmquist index with non-parametric
methods. This method uses DEA to calculate distance functions to
produce the Malmquist TFP index and then decomposes this into
technical change and technical efficiency change components. This is
the approach described in this chapter and is the one which has been
most widely applied in the literature.

6.2 The Malmquist methodology

6.2.1 A graphbical illustration

Assume a decision-making unit (DMU) uses a single type of input (x)
to produce a single type of output (y), as depicted in Figure 6.1. In the
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Figure 6.1. Illustration of productivity change with one input and one output.

health care setting, we could for example depict Hospital A using a
single input (staff) to produce a single output (patients treated). We
measure the productivity change of Hospital A by examining its
efficiency in two time periods, # and #+1, and also the technology
shift from ¢ to t+1. This is illustrated graphically in Figure 6.1, which
seeks to explain the Malmquist indices in intuitive form. In principle,
one can calculate a Malmquist index relative to either variable returns
to scale (VRS) or constant returns to scale (CRS) technology. The VRS
technology estimated by DEA in period ¢ is represented by the frontier
Srs> while the CRS technology is indicated by the line S¢,,. Hospital
A consumes input x* and produces output y* in period t. Hospital
A moves to point (x""!, 1) in period #+1. The VRS technology in

period #+1 is estimated by Sirl while the constant returns to scale

technology is indicated by the line S7hk.

As mentioned, the Malmquist index is defined using distance func-
tions. Inefficiency is measured by the distance from the origin O, this
being the radial measure of inefficiency. For Hospital A, the distance
fp represents the technical inefficiency of the hospital relative to
the VRS technology in period ¢. Using an input orientation, this is

the amount by which input (staff) could be proportionally reduced
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without a reduction in patients treated. This is expressed in percentage
terms by the ratio rf/rp.

DEA is used to estimate an overall hospital industry frontier S
based on the data from all hospitals in the sample. Each hospital is
then compared to this frontier. However, this overall frontier also
shifts over time, on account of technological change and innovation,
to "1, The productivity change therefore measures how much closer
a hospital gets to the industry frontier (its efficiency change), as well as
how much the industry frontier shifts given each hospital’s input use
(its technical change). The Malmquist is therefore constructed by
measuring the change for Hospital A from point (x’, y) to point
(x"1, y"™1) measured with respect to the CRS and VRS technologies
using distance functions.

We can thus examine the Malmquist index, M, as comprising two
main elements, M = E x T, where E is the technical efficiency change
and T the technical change. E can be further decomposed as follows:
M = (P x S) x T, where P is the pure efficiency change, and S the scale
efficiency change.

The pure efficiency change P for Hospital A between periods ¢t and
t+1 is given by the ratio:

P = (SE/Sq) (61)

(rd ] 1p)
This simply indicates the change in the hospital’s distance from the
current technically efficient frontier (under VRS) from one period to
the next.
The change in scale efficiency S is given by calculating the efficiency
of Hospital A relative to the CRS and VRS technology in each period,
as follows:

(se/sq) /(b))
5= (e/sa) / Ci) (6.2)

The technical efficiency change term E (E = P x §) refers to efficiency
change calculated under CRS, while P is efficiency change calculated
under VRS. § captures the change in the deviation between the VRS
and CRS technologies.

The change in the scale-efficient technology indicated by the CRS
frontiers is estimated by:
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(sc/sq) ~ (ra/7p)

Note that while P was calculated relative to the VRS technology, the
frontier shift in T is measured relative to the constant returns to scale

technology.
The Malmquist index is constructed using these radial distance

functions. The Malmquist index is then given by:

_ (se/sq) [(sc/sq) | (rb/mp)
M= Gdim) Lse/sq) / (rf/rp)}

(
[N
(sc/sq) ~ (ra/rp)
or M = (P x §) x T. That is, Hospital A’s productivity change is

expressed as the product of pure efficiency change, scale efficiency
change, and the change in technology.

- % FW) } w/rp)} 63

6.2.2 The general form of the Malmquist index

The Malmquist index can be computed in either the input orientation,
as above (controlling for output use and measuring changes in input
use), or the output orientation (controlling for input use and measur-
ing changes in output levels) (Thanassoulis 2001). Following from
the previous concepts, Fire et al. (1994) define an output-oriented
Malmquist TFP change index M5!

Mtarl (XhLl, Yt+1,Xt, Yt)

B Db(Xﬂ—l7 YH—l)Dgrl(XtH7 Yt+1) 1/2 (6.5)
- D (X!, Y?) Dgl (X%, YY)

where Do represents the component output distance functions in
periods ¢ and t+1. Equation 6.5 is the geometric mean of two
Malmaquist productivity indices for periods ¢ and ¢+1. The first uses
reference technology corresponding to period ¢, whereas the second
does the same for period #+1. This approach makes it unnecessary to
adopt an arbitrary choice of one or other period as the reference base.
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The most common way of formulating the Malmquist index is:

Dt+1(Xt+1 Yt+1)

Mt+1 Xt+1 Yt+1 Xt Y! __0 ’

O ( ’ ’ ’ ) Db(Xt,Yt)

DtO(XHl,YtH) DtO(Xt,Yt) 1/2 (6.6)
Dgrl (Xt+l , Yt+1) ngl (Xt7 Yt)

orM=ExT

A value for equation 6.6 of Mg greater than 1 indicates positive TFP
growth from period # to period #+1. A value for My of less than 1
indicates TFP decline between the two periods.

E (the ratio outside the brackets) represents the change in the
output-oriented Farrell technical efficiency levels between periods #
and #+1:

Dgrl (Xt+1 Yt+1)
E= d
DL (X, YY)

(6.7)

A value of 1 for E means the hospital has the same distance from the
frontier in both periods. A value greater than 1 means the hospital has
improved its efficiency in period #+1 compared to period ¢ in that it
has moved closer to the frontier. When the value is less than 1 the
hospital has moved further away from the frontier.

T reflects the changes in productivity levels due to technical progress
for the hospital sector. It is the geometric mean of the shift in technol-
ogy between the two periods, evaluated at X**! and X":

Dt (Xt+1 YtJrl) D (Xt Yt) 1/2
— o ) o ’
Dgrl(xﬂrl7 yt+1) DtOH(Xt, Y?)

(6.8)

A value of greater than 1 for T means the industry produces more
outputs in period t+1 compared to period #, controlling for input
levels (given that the output orientation is being used). In other words,
the hospital sector has experienced productivity gains over time.
A frontier shift of less than 1 would equivalently represent productiv-
ity loss by the industry. When T = 1 the industry has made neither a
productivity gain nor a loss.

Note that these distance metrics all measure Farrell radial efficiency
and ignore any slacks. Thus any gain or loss which is not captured by
the radial efficiency measures will not be captured by the Malmquist
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index (Thanassoulis 2001). This has led to some criticisms of the
Malmquist, but to date there has been no widely accepted solution
to this problem.

Where variable returns to scale (VRS) exist, it is possible to further
decompose the change in efficiency levels into two elements: that due
to pure technical efficiency change (P), and that due to scale efficiency
change (S). This is made operational by expressing equation 6.7 as
follows:

DthlS(XtH, Yt+1)
B Dg’l(XtH, Yt+1) _ Dt[j}elg(XHl? Yt+1) Dt‘;;é(xtﬂ’ Yt+1)
Dy, (XF, YY) Dijg(X, YY) D (XYY
DY e (X, YY)

or E=P xS,
(6.9)

where the first expression reflects the change in efficiency relative to
the ‘true’ VRS frontier, and the second reflects the extent to which the
distance from the scale-efficient point on the VRS frontier (relative to
the notional CRS frontier) has changed. Again, if P is greater than 1 it
reflects efficiency gain in that the hospital is closer to the VRS frontier
in period #+1 than it was to the VRS frontier in period #; the opposite
holds true for a value of P less than 1. A value of S greater than 1
implies the hospital has become more scale-efficient between the two
periods.

In order to calculate equation 6.5, it is necessary to consider its four
constituent distance functions. As mentioned, these distance functions
which make up the Malmquist can be computed using either linear-
programming type approaches such as DEA, which is the most com-
mon approach, or frontier econometric approaches such as stochastic
frontier analysis. The latter, however, require specific assumptions
about functional form whereas DEA does not. We therefore discuss
the use of the non-parametric DEA in solving these distance functions.

The application of DEA to the Malmquist index requires the solu-
tion of four linear programming problems, corresponding to the four
required distance functions, for each of the # DMUs under investiga-
tion, and in each pair of adjacent time periods # and ¢+1 (Coelli, Rao
and Battese 1998). Thus, if we assume constant returns to scale, and
the output orientation, the function D’o(X*,Y’) for DMU, can be
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considered by solving the following problem for each DMU in the
sample:

D6 (X, YOI = maxg;¢ (6.10)
subject to

—¢yor + Y >0
x()t —Xt;b Z O
4A>0

where xo; and yo, are the vectors of inputs and outputs, respectively,
associated with DMU, and N is a flexible vector of weights to be
applied to the matrices X; and Y;. The parameter N indicates the
maximum proportion by which all outputs of DMUj can be expanded
such that (xq, yo/N) remains feasible, as indicated by the performance
of other DMUs (X,, Y,).

The three remaining linear programming problems are variations of

(6.10):
DG (Xig1, Yee1)] ' = maxyp (6.11)

subject to

—dyous+1) + Yer14A >0
Xo(t41) — Xep14 > 0
A>0

DG (Xes1, Yeer)] ' = maxy; ¢ (6.12)

subject to
—dyour1) + YA >0
xO(H—l) — Xt/l > 0
A>0

DG (X:, Yy)] ! = maxy, ¢ (6.13)

subject to

—¢yor + Ye1d > 0
X0t — Xt+1}v Z O
A>0

In problems (6.12) and (6.13), notional efficiency calculations are
made for one period, taking as a reference base the production
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frontier corresponding to the other period. In these cases, the value
of ¢ does not necessarily have to be greater than or equal to 1, as
must necessarily be the case when technical efficiency is calculated
using cross-sectional data. Thus, in equation 6.12 an observation in
period #+1 is being compared with the production frontier for the
previous period. If technical progress has taken place, this observa-
tion can be located beyond the production frontier, leading to a value
of @ less than 1.

The above equations yield estimates of distance functions under the
assumption of constant returns to scale. In order to decompose equa-
tion 6.9 into its component parts P and S, we solve two additional
linear programming problems (for each adjacent set of production
points). The variable returns to scale distance function estimates re-
quired for equation 6.9 are secured by adding to (6.10) and (6.11) the
constraint:

Z)“" =1 (6.14)

Thus we would calculate these two distance functions relative to a
VRS technology and not a CRS technology. One then uses both the
CRS and VRS estimates to calculate scale efficiency (Fire et al. 1994;
Coelli, Rao and Battese 1998).

6.3 Considerations in using the Malmquist index

One of the key considerations in applying a Malmquist index is that
longitudinal data are required for which inputs and outputs are mea-
sured consistently over time. In practice this requirement is often
difficult to achieve as health care data can easily be affected by
changes over time in technology, merger activity or changes in data
collection methods.

Another key consideration in applying a Malmquist is that scale
properties of the technology are very important. A Malmquist
index may not correctly measure TFP changes when VRS is assumed
(Grifell-Tatjé and Lovell 1995). While these authors argue for a new
TFP index which scales the Malmquist index by an additional term
which accounts for returns to scale, most authors argue that CRS
should be imposed when calculating a Malmquist TFP index (Coelli,
Rao and Battese 1998).
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Hence the DEA efficiencies in the Malmquist index are usually
computed using a constant returns to scale assumption irrespective
of the actual returns to scale characterising the production technology.
As we have seen, for DMUs not operating under CRS, we can decom-
pose their productivity change so that the impact of scale can be
estimated as in equation 6.9. Most applications take account of this
decomposition, calculating efficiencies relative to both CRS and VRS
technologies. Thus all productivity changes associated with scale are
captured in the index. If the Malmquist index is computed using a
constant returns to scale technology, the efficiency values are the same
irrespective of whether we assume an input or an output orientation
(Thanassoulis 2001). Thus input and output-oriented Malmquist in-
dices would be equivalent. This makes the decision for the analyst
somewhat more straightforward than when analysis is restricted to
cross-sectional data.

6.4 Previous literature on the Malmquist index in health care

An early application of the Malmquist index approach in the health
care sector, as applied to productivity changes in Swedish pharmacies,
was first reported by Fire et al. (1992). Since then, a modest number
of applications in the health care sector have emerged, including an
evaluation of health care reforms in Scotland (Maniadakis, Hollings-
worth and Thanassoulis 1999), studies in Finland (Linna and Hikki-
nen 1998), Sweden (Tambour 1997), and Austria (Sommersguter-
Reichmann 2000), an assessment of productivity changes in the ad-
ministration of primary health care (Giuffrida 1999), studies in Veter-
ans Administration hospitals in the United States (Burgess and
Wilson 1995), in the Spanish pharmaceutical industry (Gonzalez
and Gascon 2004) and for community care in English county councils
(Salinas-Jiménez, Pedraja-Chaparro and Smith 2003), and an
assessment of reformed payment systems for diagnostic tests in Portu-
guese hospitals (Dismuke and Sena 1999). The approach has been
applied at various levels, from the overall health care system (Fire
et al. 1997), to the hospital level (Maniadakis and Thanassoulis 2000),
to the level of hospital department (Tambour 1997). Hollingsworth
(2003) provides a review of studies applying the Malmquist index in
health care.
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6.5 Application to acute hospitals in England

6.5.1 The methods and data

The Malmquist methodology is illustrated using the same data set as
described previously for acute hospitals in England and as outlined in
the Appendix. Data for 171 hospitals with A&E departments were
analysed for the four years 1994/95-1997/98 (S6derlund and van der
Merwe 1999). As before, the primary input is total cost and we take
an input orientation.

We used the availability of data in other years to impute the missing
data for some outpatient and Accident and Emergency data, assuming
the missing values on the outputs were the same as non-missing values
in adjacent periods, if these were available. This was the case for some
thirty-five hospitals.

Since the total cost variable now covers more than one year, we need
to take account of inflation to make the comparison over time more
appropriate for equivalent input usage. We have therefore deflated
total cost by the GDP deflator with the final year set as the base year.
The rest of the variables are identical to those used in chapter 5. Table
6.1 shows the means for the variables used in the Malmquist models
over the four years.

Total costs increased over the four years, as did many of the activity
variables. The change in sample means is illustrated in Figure 6.2.

6.5.2 Model specifications

Five model specifications were employed using the above-listed vari-
ables. The different specifications serve to illustrate whether the effi-
ciency scores and ranks and total factor productivity indices remain
stable when variables are removed or added in the Malmquist models.
We use the same specifications as in chapter 5. These are outlined
again in Table 6.2.

6.5.3 Results

The mean Malmquist TFP change index across the 171 hospitals for
each model is presented in Table 6.3. Between 10 and 31 hospitals
show either positive or no change in productivity across the five
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Figure 6.2. Mean expenditure and activity, 1994/95-1997/98.

models, whereas between 140 and 161 hospitals show productivity
decline. The TFP indices lie on average between about 0.8 and 1.3,
although in all five models the majority of hospitals show TFP decline
over time.

Figure 6.3 shows a graphic illustration of the five TFP indices over
time. Models 1 and 2 yield nearly identical results, as do the TFP
indices for Models 3 and 4. In fact, these overlay each other. This is
unsurprising as only two new variables are added from Model 1 to
Model 2 and only one variable is added from Model 3 to Model 4. The
general trend for all five indices suggests a drop in productivity be-
tween 1994/95 and 1995/96 and then an increase between 1995/96
and 1996/97 with some discrepancies between the models for the
interval 1996/97 to 1997/98. The basic Models 1 and 2 suggest a
slight increase in productivity whereas the fuller Models 3, 4 and 5
suggest a decline in productivity in the latter years of the series. These
results are not surprising since Models 1 and 2 contain only three to
five variables, whereas Models 3 to 5 contain fifteen to twenty-one
variables. The model specification therefore makes a great deal of
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Table 6.2. Malmquist model specifications

143

Model

Variable names

Outputs included

1

INPATIENTS,
OUTPATIENTS, A&E

As for Model 1 plus
STUDENTS and
RESEARCH

As for Model 2 plus
TRANS-IN, TRANS-
OUT, FCE, EMERINDX,
P-15, P-60, P-FEM,
EP_SPELL, FU-OUTPTS
and EMERGENCY

As for Model 3 plus MFF

As for Model 4 plus
AVBEDS, HEATBED,
SITES50B, ITINDX, and
HERF1S5

Inpatient episodes;
outpatient attendances;
A&E attendances

Inpatient episodes;
outpatient attendances;
A&E attendances;
teaching; research

Inpatient episodes;
outpatient attendances;
A&E attendances;
teaching; research;
transfers in; transfers
out; inter-speciality
transfers; emergency
index; proportions of
young, old and female
patients; episodes,
outpatients and
emergencies per spell

Inpatient episodes;
outpatient attendances;
A&E attendances;
teaching; research;
transfers in; transfers
out; inter-speciality
transfers; emergency
index; proportions of
young, old and female
patients; episodes,
outpatients and
emergencies per spell;
market forces factor

All outputs and
environmental adjusters
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Table 6.3. Malmquist TFP results

Model 1 Model 2 Model 3 Model 4 Model 5

Mean 0.948 0.948 0.963 0.963 0.937
Std dev. 0.040 0.041 0.059 0.059 0.051
Min. 0.851 0.820 0.810 0.810 0.795
Max. 1.190 1.186 1.350 1.347 1.125
>=1 10 10 31 31 15
<1 161 161 140 140 156

difference to the TFP index and it is important for the analyst to
engage in a thorough sensitivity analysis and have a clear rationale
for the appropriate model specification.

As in chapter 5, we can assess the consistency of the five models by
looking at the correlation coefficients of the TFP scores across the five
specifications. As highlighted by Figure 6.3, the agreement is extre-
mely high between Models 1 and 2 and between Models 3 and 4
respectively. In fact, there is very little to distinguish Model 3 from
Model 4 which differs only by the MFF variable. Table 6.4 shows that
the correlation between Models 4 and 5 is also relatively high. The rest
of the correlations are very low.

We can decompose any Malmquist index into its constituent parts.
Figure 6.4 illustrates the Malmquist index for Model 2 divided into
efficiency change (relative to a CRS technology from equation 6.7),
technical change (the shift in technology from equation 6.8), scale
efficiency change (S from equation 6.9), overall TFP change (M in
equation 6.6), and pure efficiency change (relative to a VRS technol-
ogy) (P from equation 6.9). The Malmquist TFP (M) shows a decline
between the first two years, followed by a slight growth between
1995/96 and 1996/97 and again between 1996/97 and 1997/98. This
overall TFP movement seems to be driven to a large extent by a similar
pattern for technical change T (the frontier shifting). From 1995/96
onwards the results from this model suggest consistently strong tech-
nological progress in the hospital industry. More modest changes are
evident for technical efficiency change (E), pure efficiency change (P)
(both following similar paths except in the final year) and scale
efficiency change (s) which seems to show a relatively stable growth
pattern up to 1996/97 followed by a steeper fall.
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Figure 6.3. Malmquist TFP indices.

Table 6.4. Correlations between Malmquist TFP scores

Model 1 Model 2 Model 3 Model 4 Model §

Model 1 1

Model 2 0.8966* 1

Model 3 0.2920 0.4062 1

Model 4 0.2928 0.4072 1.0000* 1

Model 5 0.2675 0.3746 0.8604* 0.8610* 1
Note:

* Significant at 0.01 level.

Overall, there appears to have been substantial change among this
sample of hospitals in the form of new production technologies. Of
course, the approach assumes a contemporaneous association between
changes in technology and productivity growth which may not hold
in reality, particularly if there are lags between investment in new
technologies and realising the benefits from those investments.

Measuring scale effects accurately in the hospital sector may also be
impeded by the fact that merger activity and the reconfiguration of
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Figure 6.4. Decomposition of Malmquist index for Model 2.

hospitals can impact on the efficient scale of operation. Governments
often intervene in health care markets to try to achieve economies by
merging hospitals, and this was certainly the case in the sample of
hospitals analysed here.

Finally, the case study illustrates inconsistencies in Malmquist in-
dices across specifications. We thus examine whether hospitals change
their efficiency scores and rankings within a model specification
across time. In other words, are hospitals ranked differently in the
‘league table’ from one period to the next? Table 6.5 illustrates some
cases for a small sample of hospitals for Model 2 with respect to the
VRS technology.

Table 6.5 shows that Hospital A remains efficient over all four
years. Hospitals B and C also maintain consistently high rankings
over time. Hospitals D and E are also consistent over time, but are
both relatively less efficient. For Hospitals F to J, there appears to be
less consistency in efficiency scores and rankings over time. This may
appear somewhat surprising, since we are examining the same indivi-
dual hospital within the same model specification. For Hospital F the
highest efficiency rating is in Year 1 with ranking declining subse-
quently. For Hospital G Year 2’s rating is higher than the other three
years. For Hospitals H and I, Year 3 seems to be different, and for
Hospital J the ranking in Year 4 is higher.
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Table 6.5. Individual hospital scores and rankings for each year for
Model 2

Year 1 Year 2 Year 3 Year 4

Hospital Score Rank Score Rank Score Rank Score Rank

1.000 1 1.000 1 1.000 1 1.000 1
0.979 29 0972 32 0.937 38 0.937 35
0.991 23 0.949 38 0.959 32 0.929 38
0.626 164 0.591 169 0.598 165 0.600 161
0.513 171 0.527 171 0.466 171 0.436 171
1.000 1 0.674 162 0.597 167 0.610 159
0.869 64 1.000 1 0.753 113 0.769 83
0.883 55 0916 51 1.000 1 0.714 113
0.849 78 0.888 66 1.000 1 0.698 120
0.701 147 0.813 107 0.789 95 1.000 1

T IIomEHEgOO® >

It is clear that the efficiency scores and the relative rankings for
certain hospitals are not consistent over time. In order to examine how
these changes in efficiency scores and rankings come about, we ex-
plore in more detail the data underlying Model 2 for Hospital I (see
Table 6.6). Recall that Model 2 includes the three activities, inpatients
(INPATIENTS), outpatients (OUTPATIENTS) and A&E (AKE),
as well as teaching (STUDENTS) and research (RESEARCH). We
highlight in bold the sample means for each variable over time.

If we look at Year 3 (the year in which we have the jump in ranking
for Hospital I onto the efficiency frontier), we can see a large increase
in outpatient activity relative to the other years and the sample mean.
In Year 4, outpatient activity reverts back to previous levels. This
suggests the possibility of measurement error, to which DEA is parti-
cularly vulnerable. While it is clear that this is probably measurement
error in this example, it may be less easy to detect in other instances. It
is clear from these examples that this may not be an isolated case and a
difficult question for the analyst may be how to identify and deal with
this. One approach might be to remove obvious cases of measurement
error by replacing them with the moving average, or to assume them
constant with another year. But these ad hoc decisions need to be
traded off against the risk of spuriously replacing ‘correct’ data, and
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losing one of the main elements of DEA, which is the fact that it is
based on outlier observations. Notwithstanding these considera-
tions, this example illustrates how DEA and the Malmquist index
can be used as a data exploratory device. Apparent data anomalies
may then be used by health planners in discussions with individual
hospitals on ways to improve performance in specific areas, the
possible reasons for poor performance, and, of course, ways to
improve data collection.

6.6 Conclusions

This chapter has outlined the main features of a Malmquist model to
assess productivity change using panel data and non-parametric DEA
techniques.

There are clearly severe limitations with the illustrative example
employed in the case study. Aspects of hospital output which are
omitted in these models, such as unmeasured case mix, severity and
quality of care, could have a profound impact on the interpretation of
the results. Higher volume might be secured merely by compromising
on quality. Quality variables such as waiting times, patient satisfaction
measures, or those relating to patient outcomes such as successful
operations, morbidity and mortality rates, might be considered
important elements to include in these types of productivity analyses.

Data aside, the methodology has some unique strengths and weak-
nesses. The Malmquist index does not require price information,
making it especially suited to the health care setting where these data
are seldom available. Other advantages include the fact that no as-
sumption about functional form is required. Having said that, the
measures focus on technical efficiency and ignore the issue of alloca-
tive efficiency, which may be an important consideration in some
contexts. There have been developments towards a cost Malmquist
index when factor prices are available (Thanassoulis 2001).

The Malmquist index requires no behavioural assumptions about
cost minimisation or revenue maximisation and can be decomposed
into both technical change and technical efficiency change. The mod-
els therefore offer valuable insights into productivity change in an
industry. At a macro level, the approach is able to provide useful
insights into overall productivity trends. However, results are sensitive
to model specification, require careful interpretation and should never
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be used as the sole source of policy guidance or to pass definitive
judgement on individual organisations. The results are often unstable,
and while data deficiencies in the given data set may be partly respon-
sible, the volatility of individual DMUs over time may be exacerbated
by the boundary technique DEA which promotes the DMU to the
frontier in some years but not in others. One way to obtain an estimate
of the degree of uncertainty which exists around efficiency estimates is
to apply bootstrapping procedures or statistical methods of uncer-
tainty analysis (see sub-section 5.3.5). However, if the Malmquist
approach is viewed as an important but essentially exploratory form
of data analysis, it can have much to commend it in situations where
the alternative would be an absence of analytic insight.



7 A comparison of SFA and DEA

7.1 Introduction

HE previous four chapters have examined stochastic frontier

analysis and data envelopment analysis in detail. We have

described the methodologies and touched on the main stren-
gths and limitations of each. In this chapter we compare the two
techniques. First, we consider why they might produce different esti-
mates of organisational efficiency. We then outline the other key
dimensions on which the techniques differ. This is followed by an
empirical comparison, using some of the cross-sectional data analysed
in the previous chapters. We conclude by making recommendations as
to how best to interpret organisational efficiency estimates according
to their sensitivity to analytical approach and modelling assumptions.

7.2 Why SFA and DEA produce different efficiency estimates

Many studies find that the results of applying SFA and DEA lack
consistency, even when exactly the same variables and data are used.
There are two main reasons for discrepancies in the efficiency estimates
derived from the two broad analytical approaches:

e differences in how the techniques establish and shape the efficiency
frontier;

o differences in how the techniques determine how far individual
observations lie from the frontier.

Given that the true frontier is unobservable, the question arises as
to how best it should be approximated. Is the economic theory per-
taining to the analysis of efficiency sufficiently well-established to
outweigh the appeal of simply relying on best practice as revealed by
the data to hand?

151
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SFA appeals to economic theory when considering the shape of the
frontier and statistical criteria might be used to differentiate the ap-
propriateness of alternative functional relationships for particular
data sets. The theoretical underpinnings of SFA are derived mainly
from an extension of the theory of the firm, and the suitability of this
theory as a basis for efficiency analysis remains to be established. The
analytical models designed to analyse firm behaviour fit within the
standard economic paradigm, where interest lies in extracting sample
average parameter estimates. These might, for instance, provide in-
sight on the marginal contributions of labour and capital to output.
SFA models, in contrast, are formulated primarily to extract individual
estimates of efficiency from the ‘unexplained’ part of the model. This
means that statistical tests designed to examine standard econometric
models are incorrectly focused for determining the appropriateness
of SFA models. We shall discuss this issue in more detail in the next
chapter.

Advocates of DEA would argue that the problems of providing a
prior specification of functional form can be avoided by applying the
non-parametric technique. Here the frontier is defined solely by the
data: the outermost observations, given the scale of operation, are
defined as efficient. As such, the frontier is positioned and shaped by
the data, not by theoretical considerations. Consequently, DEA is
highly flexible, the frontier moulding itself to the data.

Thus, if the results of DEA and (say) a logarithmic stochastic
frontier correspond, it could be concluded that the frontier truly dis-
plays logarithmic properties for the data analysed. Where the results
deviate, this may be because the monotonic assumptions of the para-
metric function are too restrictive, and DEA is able to account for
segments of the frontier where a smooth relationship is not apparent
in the data. For those who approach efficiency measurement from an
empirical rather than a theoretical standpoint, the flexibility of func-
tional form offered by DEA would seem an attractive feature of the
technique. The drawback, however, is that the location of the DEA
frontier is sensitive to observations that may have unusual types, levels
or combinations of inputs and outputs. These will have a scarcity of
adjacent reference observations or ‘peers’, perhaps resulting in sec-
tions of the ‘frontier’ being unreliably estimated and inappropriately
positioned (Resti 1997).
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While DEA might be thought to win over the SFA method in terms
of the flexibility with which it determines the frontier, this benefit is
offset by how the technique interprets any distance from the frontier.
There are two key differences between DEA and SFA.

First, DEA assumes correct model specification and that all data
are observed without error. SFA allows for the possibility of model-
ling and measurement error. Consequently, if the two methods yield
an identical frontier, SFA efficiency estimates are likely to be higher
than those produced by DEA. If measurement error is thought to be
present, then SFA may be the more appropriate technique. In some
circumstances, it may be possible to sustain an argument that there
is no measurement error. Indeed, Kooreman argued, in applying DEA
to the nursing home setting, that ‘since the survey forms have been
filled out by the administrative staff of the nursing homes, who may
be assumed to be well-informed about their home, measurement
errors are likely to be small’ (Kooreman 1994). This assumption
may have less foundation in larger or more complex organisational
contexts (such as hospitals), and may be further undermined if those
responsible for data collection change their reporting behaviour in
the knowledge that the information they provide is to be used for
the purpose of efficiency assessment or reimbursement.

Second, DEA uses a selective amount of data to estimate indivi-
dual efficiency scores. DEA generates efficiency scores for each orga-
nisation by comparing it only to peers that produce a comparable
mix of outputs. This has two implications. First, if an output is
unique to an organisation, the organisation will have no peers with
which to make a comparison, irrespective of the fact that it may
produce other outputs in common. An absence of peers results in the
automatic assignation of full efficiency to the organisation under
consideration. Second, when assigning an inefficiency score to an
observation lying away from the frontier, only its peers are consid-
ered, with information pertaining to the remainder of the sample
discarded.

In contrast, SFA appeals to the full sample information when esti-
mating relative efficiency. In addition to making greater use of the
available data, this facet of the estimation procedure will make in-
dividual efficiency estimates more robust to the presence of outlier
observations and atypical input/output combinations.
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Table 7.1. Comparison of SFA and DEA

SFA DEA
Assumption about functional form Strong* None
Distinguish random error from Yes No
efficiency variation
Test for inclusion of variables Imperfectly No
Allow for exogenous factors Yes Yes
Allow for multiple outputs Not readily Yes
Provides information on ‘peer’ Not automatically Yes
organisations
Vulnerable to outliers Moderately* Yes
Problems of multicollinearity Yes* No
Problems of endogeneity Yes* Yes
Problems of heteroscedasticity Yes* No
Vulnerable to small sample size Yes Moderately
Note:
* The assumption or problem is testable.
Source:

Adapted from Giuffrida and Gravelle (2001).

7.3 Other differences between SFA and DEA

SFA and DEA differ on a range of other dimensions, which may
influence the analyst’s choice of which technique to apply. Table 7.1
compares the techniques along some of these dimensions.

While SFA requires assumptions to be made about the functional
form and the error distribution, the validity of some of these assump-
tions is testable. These tests may not always produce definitive guidance.
If it is not possible to differentiate among competing functional forms
on statistical grounds, and individual estimates are sensitive to the
functional form applied, it would be inadvisable to draw firm conclu-
sions about their relative efficiency. However, at least SFA can be subject
to a testing process to eliminate some possible formulations. In contrast,
there are no standard tests to guide model construction in the DEA
framework (Pedraja-Chaparro, Salinas-Jiménez and Smith 1999).

To some extent, standard econometric tests might be applied to
guide the decision about which explanatory variables to include in
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the SFA model. However, this is not straightforward, given that most
of these tests rely on ascertaining what effect inclusion of an addi-
tional variable has on the characteristics of the unexplained (error)
component of the model. As mentioned, in SFA, unlike standard
econometric applications, the error itself is the major focus of interest,
thus undermining the usual testing procedures. More critically, DEA
has no way of testing whether particular variables make a significant
contribution to the model and should be included or not. We shall
return to the issue of how to judge model construction in chapter 8.

One of the key strengths of DEA over SFA is that it can readily
model multiple-output production processes. SFA is ill-suited to the
consideration of multiple outputs, but two methods of handling the
problem have been developed. The first is to estimate a cost function
rather than a production function, using duality theory to argue that
the two are equivalent. However, duality holds only if cost-minimising
behaviour can be assumed, which is unlikely to be the case given that
the purpose of the exercise is to identify departures from cost mini-
misation. The second approach is to condition one of the outputs
on the others in some way (see sub-section 3.2.1 for a discussion of
this) (Coelli and Perelman 1996; Paul, Johnston and Frengley 2000).
As with DEA, this approach imposes an implicit set of weights on
the outputs. In the SFA context, the output weights correspond to
sample average values and, again, this may not be appropriate when
sub-optimal behaviour is thought prevalent.

Both methods may be susceptible to the influence of outliers and
small sample sizes. DEA is more vulnerable to outliers, because of its
inherent process of ‘placing each DMU in the best possible light’. As
such, DMUs with unusual production processes can easily be pro-
moted to the efficiency frontier. Because SFA estimates are derived
from full sample information, the technique is less prone to outlier
influence. Of course, it may be that ‘outliers’ are the very organisa-
tions that are most inefficient, so excluding them on the basis of
statistical criteria may undermine the exercise altogether.

Small sample sizes do not prevent the application of DEA, but as with
all parametric estimation processes, SFA estimates are likely to be more
imprecise the smaller the sample size (Banker, Gadh and Gorr 1993).

In the next section we turn to our own case study to explore the
consistency of efficiency estimates derived from applying SFA and
DEA to acute hospitals in England.
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7.4 Comparison of different methodologies

7.4.1 The methods and data

We illustrate the comparison between the two techniques using a
cross-sectional data set, as described in chapters 3 and 5 for 171 acute
hospitals in the English NHS in 1997/98. The summary statistics for
the data set are shown in Table 7.2. A more detailed discussion of the
data set is in the Appendix.

7.4.2 Model specifications

There are two major specification decisions that are likely to have a
bearing on the results:

1. the choice of functional form, error distribution and returns to
scale; and

2. the model specification, notably which explanatory variables are
included.

We first specify a baseline model (Model 1) in which total cost is
used as the dependent variable in SFA and as the input in DEA. This
model includes three activities of hospitals as the SFA explanatory
variables and DEA outputs, these being inpatients, outpatients and
A&E attendances.

When applying SFA, Model 1 assumes a linear functional form
and a half-normal distribution for the error term. These assump-
tions are subject to sensitivity analysis, by comparing the results with
those obtained when a log-log functional form is applied and when a
truncated normal distribution is assumed for the error distribution.

Model 1 is estimated by DEA under variable returns to scale as-
suming an input orientation. As some of the variables in the data set
are ratios, the BCC formulation is applied (Banker, Charnes and
Cooper 1984) as the baseline model. The sensitivity of these results
is examined by comparison with efficiency estimates obtained under
the assumption of constant returns to scale.

We then compare the baseline Model 1 with results obtained by
varying the number of explanatory or output variables. Two, more
comprehensive models are specified, as shown in Table 7.3. Model 2
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Table 7.3. Model specifications

Model  Variable names Outputs included

1 INPATIENTS, Inpatient episodes, outpatient
OUTPATIENTS, A&E attendances, A&E attendances

2 As for model 1 plus Inpatient episodes, outpatient
STUDENTS, RESEARCH attendances, A&E attendances,

teaching, research

3 As for model 2 plus TRANS-  All outputs and environmental

IN, TRANS-OUT, FCE, adjusters

EMERINDX, P-15, P-60,
P-FEM, EP_SPELL, FU-
OUTPTS, EMERGENCY,
MFF, AVBEDS, HEATBED,
SITESSOB, ITINDX,
HERF15

adds teaching and research activity. Model 3 includes all available
output variables and environmental adjusters.

7.4.3 Results

Sensitivity to functional form, error distribution and returns to scale
Table 7.4 gives the efficiency scores for Model 1 under the various
specification assumptions. We test the sensitivity of the efficiency
estimates to our choice of the distributional assumption of the error
term in SFA and to our choice of returns to scale in DEA.

In general the average efficiency levels for DEA are lower than for
SFA. This is to be expected, since under SFA the error term is parti-
tioned into inefficiency and error, whereas under DEA the entire
shortfall is deemed inefficiency. On the whole the efficiency scores
for the truncated and half-normal specifications under SFA are quite
similar. The log-log SFA model produces a higher estimate of average
efficiency and lower variance. This reflects the normalisation of the
error that follows logarithmic transformation. As expected the effi-
ciency scores under DEA VRS are higher than under CRS, because the
VRS more tightly envelops the data, with more DMUs being placed
on the frontier.
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Table 7.4. Model 1 efficiency scores

DEA efficiency

SFA efficiency scores scores

Truncated  Half-normal  Log-log CRS VRS
Mean 0.838 0.797 0.919 0.669 0.744
Std dev. 0.104 0.119 0.052 0.123 0.136
Min. 0.192 0.124 0.535 0.356 0.419
Max. 0.981 0.977 0.988 1.000 1.000
Efficient DMUs 4 14

Table 7.5. Correlations of SFA and DEA efficiency scores for Model 1

Truncated  Half-normal  Log-log CRS VRS
Truncated 1
Half-normal  0.9753 1
Log-log 0.8410 0.7230 1
CRS 0.6808 0.5936 0.7341 1
VRS 0.5247 0.4402 0.5668 0.7706 1

Table 7.5 shows the correlations between the various efficiency
scores for the variants of the baseline model. As might be expected
there is a reasonable amount of internal consistency within each of the
two analytical techniques. However, the estimates derived from
the two DEA models are more weakly correlated with those from
the three SFA models.

In Table 7.6 we examine the efficiency scores and ranks for a few
hospitals to illustrate what happens to them under the different spe-
cification assumptions within a particular model. Hospitals A and
B remain consistently efficient across all specifications, whilst Hospi-
tals C, D and E remain consistently inefficient across all specifications.
The estimated efficiency of Hospitals F to ] is sensitive to specification
choice. For Hospitals F and G there is consistency within the DEA
models and with the log-log model in SFA, but not with the two linear
SFA models. For Hospitals H to ] there is little agreement within DEA,
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Table 7.7. Descriptive statistics for SFA and DEA efficiency scores

SFA efficiency scores DEA efficiency scores

Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

Mean 0.797 0.847 0.882 0.744 0.787 0.988

Std dev. 0.119 0.094 0.096 0.136 0.137 0.038

Min. 0.124 0.164 0.282 0.419 0.437 0.769

Max. 0.977 0.979 0.984 1.000 1.000 1.000

Efficient 14 27 150
DMUs

most likely because scale effects have an important influence on acti-
vities for these hospitals. This suggests that organisational estimates
of efficiency can be sensitive to modelling choices other than those
concerning the selection of explanatory or output variables.

Sensitivity to model specification — the choice of explanatory variables
We now examine what happens when we make comparisons across
different model specifications by progressively expanding the set of
explanatory or output variables in the SFA and DEA models, as shown
in Table 7.7. The three SFA models apply a linear functional form and
half-normal distribution for the error; the DEA models are estimated
under variable returns to scale.

Table 7.7 provides summary statistics of the efficiency scores for
each of the three specifications estimated by the two techniques. As
would be expected, mean efficiency increases as more variables are
added. For the DEA models, this is explained mainly by more hospi-
tals being placed on the frontier — as more variables are considered,
there is a greater chance that a previously ‘inefficient’ hospital will
dominate on the added dimension and thus be considered ‘efficient’.
In the most fully specified model (Model 3), 150 hospitals are on the
frontier, leaving only 21 inefficient hospitals, compared to 157 in
Model 1.

The increase in average efficiency as the SFA models become more
fully specified comes about because progressively more of the pre-
viously ‘unexplained’ composite error is now being captured by the
addition of new explanatory variables.
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Table 7.8. Individual hospital scores and rankings under various
specifications

DEA-1 DEA-2 DEA-3
Hospital ~ Score Rank Score Rank Score Rank
A 1.000 1 1.000 1 1.000 1
B 1.000 1 1.000 1 1.000 1
C 0.621 144 0.626 154 0.847 169
D 0.620 145 1.000 1 1.000 1
E 1.000 1 1.000 1 1.000 1
F 0.662 124 1.000 1 1.000 1
G 0.904 26 1.000 1 1.000 1
H 0.583 153 1.000 1 1.000 1
I 0.729 83 0.732 104 1.000 1
J 1.000 1 1.000 1 1.000 1
SFA-1 SFA-2 SFA-3
Hospital ~ Score Rank Score Rank Score Rank
A 0.967 4 0.979 1 0.977 5
B 0.973 2 0.979 2 0.974 6
C 0.693 146 0.756 153 0.761 161
D 0.736 129 0.964 7 0.978 4
E 0.725 134 0.887 56 0.878 111
F 0.777 104 0.945 14 0.940 41
G 0.738 127 0.877 70 0.804 150
H 0.672 152 0.917 35 0.956 18
I 0.474 168 0.603 169 0.285 170
J 0.399 169 0.539 170 0.698 166

There appear to be some major anomalies for individual hospitals,
with estimated efficiency being sensitive to how the models are speci-
fied. This is highlighted in Table 7.8 which illustrates the change in
efficiency scores and rankings across the two techniques for a select
few hospitals.

Hospitals A and B, for instance, remain at the top of the ‘league
table’, irrespective of the technique applied to measure their efficiency,
while Hospital C is consistently ranked near the bottom. However, for
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a vast array of hospitals in between, scores and rankings can jump
quite dramatically. Hospital D for instance, is penalised in the most
parsimonous model (Model 1) but is ranked more highly by the other
models. This probably reflects the omission of teaching and research,
which are important outputs for this hospital. Hospital E is consis-
tently efficient under DEA, but is sensitive to the specification choices
under SFA. Similar movements in scores and ranks are notable for
several other hospitals. In particular, Hospital J is consistently effi-
cient under DEA but generally considered inefficient under SFA. This
may happen because DEA assigns high weights to output dimensions
where inefficient hospitals are doing badly, in order to maximise the
hospitals’ efficiency score and ‘put them in the best light’.

7.5 Conclusions

The case study illustrates the two important sets of choices which need
to be made in the SFA and DEA models and which may have a large
impact on the results, namely the choice of functional form, error
distribution and returns to scale, and the choice of model specification
or explanatory variables to be included. Our sensitivity analysis has
not been extensive. In practice, it would be preferable to analyse a
broader range of modelling assumptions.

But despite the partial nature of the sensitivity analysis, it has
revealed clear inconsistencies among the different specifications and
methods. Caution is therefore warranted before drawing precise in-
terpretations of hospital efficiency scores and rankings, or placing
sole reliance on a single specification. If the results had been well
correlated, it might have suggested the techniques were equivalent,
but in practice the correlations were fairly poor across the two tech-
niques. Even when correlations are high, these average relationships
may mask substantial movements for individual organisations. Given
that the purpose of the exercise is often to derive individual, rather
than merely average, effects it is unwise to rely solely on examining
correlation coefficients to assess sensitivity to modelling assumptions.

Finally, irrespective of which approach is applied, good practice
would be to use confidence intervals around the efficiency estimates
to determine the reliability of the results and to decide whether statis-
tical differences in efficiency are significant or simply due to sampling
error (Jensen 2000). This can be done using statistical techniques for
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SFA (Horrace and Schmidt 1996; Street 2003) or resampling boot-
strap methods for DEA (Mooney and Duval 1993; Lothgren 1998;
Hirschberg and Lloyd 2000; Barth and Staat 2005).

Ultimately, though, there is no consensus in the literature on the
‘best method’ for estimating the efficiency frontier. Some commenta-
tors have argued that consensus is not necessary, as long as a set of
consistency conditions is met (Bauer ef al. 1998). To the extent that
there is no a priori reason to prefer one technique over the other, it
seems prudent to analyse efficiency using a broad variety of methods
to ‘cross-check’ the results (Stone 2002). Bauer et al. (1998) argue that
the efficiency estimates should be consistent in their efficiency levels
(with comparable means, standard deviations and other distributional
properties), consistent in their rankings, consistent in their identifica-
tion of best and worst performers, and consistent over time. Rarely,
however, are these consistency conditions likely to be met, as is the
case for the data analysed in this chapter.

In view of such inconsistency, the efficiency scores derived from SFA
or DEA should not be interpreted as accurate point estimates of
efficiency, and it would be inappropriate to take action solely on the
basis of these estimates (Hadley and Zuckerman 1994; Newhouse
1994; Skinner 1994). Indeed, use of the techniques in isolation might
create a perverse incentive for organisations to act dysfunctionally to
improve their efficiency rating, such as by engaging in creative ac-
counting, political lobbying and alteration of the input/output mix
(Nunamaker 1985).

Rather, where estimates of relative efficiency are obtained, these
might be used as signals about where to direct more investigative
energy. For any given data set, comparison of the SFA and DEA
efficiency estimates will allow organisations to be sorted into three
groups. First, there will be a group where relative efficiency is sensitive
to the choice of technique. It would be inadvisable to draw firm
conclusions about their actual level of relative efficiency. Second, there
will be organisations that appear efficient whichever technique is
adopted and however the models are specified. Further analysis of
the working practices of these organisations may be informative if a
purpose or by-product of the exercise is to share best practice. How-
ever, because DEA assigns full efficiency to unusual observations (i.e.
those which do not have peers), the method may be labelling organi-
sations as efficient when it would be more appropriate to consider
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them as outliers. It may not be good practice to make policy recom-
mendations on the basis of outlier behaviour. Finally, there will be a
group of organisations that always appear inefficient, irrespective
of the measurement technique employed. These might be deserving
of greater scrutiny to ascertain the reasons why their performance
appears to fall short of that of their counterparts.

This sorting and exploratory use of the techniques is a more appro-
priate response than basing regulatory policy on the analytical find-
ings. The efficiency estimates are too sensitive to modelling choices
and too imprecise to justify taking them at face value, and it is best
not to expect the models to yield definitive statements about relative
efficiency. In the future, the techniques may evolve to such an extent
that more concrete recommendations may emanate from their appli-
cation. For this to occur, a number of fundamental issues must be
addressed. The next chapter considers four particularly challenging
areas where further research effort is required.



8 Unresolved issues and challenges
in efficiency measurement

8.1 Introduction

N this chapter we discuss four of the most important issues that
arise when seeking to use efficiency models in the health care
sector: the weights used to indicate the values of different outputs;
how the efficiency models are constructed; the treatment of environ-
mental influences on performance; and dynamic aspects of efficiency.

8.2 Output weights

There are important questions relating to the objectives encompassed
by any index of efficiency, particularly when the analysis is to be used
for regulatory purposes. Is it legitimate for the central policy maker to
attach a uniform set of objectives to all organisations? If so, is it
further legitimate to apply a uniform set of weights to these objec-
tives? If so, how should they be chosen? If not, what is the extent of
legitimate variation, and who should choose? These are fundamental
issues, the answers to which determine whether or not creating a
single measure of organisational performance is warranted. In our
view, organisations can be ranked on efficiency only if the policy
maker may legitimately (i) set objectives and (ii) attach weights to
those objectives.

When comparing organizations that are charged with meeting social
objectives, the set of output weights ought to reflect societal values.
However, it is not a simple matter to derive such weights, particularly
when organisations face multiple objectives and there is disagreement
as to organisational priorities. Ultimately the selection of objectives in
the public services is a job for the politicians charged with reconciling

An earlier version of this material appeared in Smith and Street (2005).
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conflicting claims on public resources. The main role for analysts is to
clarify the choices required of policy makers, to provide evidence on
popular preferences, and to develop measurement instruments that
most faithfully reflect the chosen objectives. Note that policy makers
are effectively attaching a zero weight to any output that is excluded
from the efficiency index.

In order to clarify the role of weights, consider Figure 8.1, the econo-
mist’s traditional production possibility frontier FF for an organisation
producing two outputs y; and y,, reflecting two societal objectives. Two
sets of preferences are illustrated by indifference curves I;11; and LI,
giving rise to different preferred points of production. The slopes of these
curves at the points of tangency with FF reflect the relative valuations of
the two objectives. In this case, Individual 1 places a higher relative
valuation on objective y; than Individual 2. In general, there will be no
agreement on what constitutes the preferred mix of outputs.

The use of the linear performance index implicit in efficiency ana-
lysis suggests that resolution of the trade-off problem should be guided
by maximising a linear function of the two outcome measures, which
are combined into a single composite indicator. The parallel lines in
Figure 8.2 indicate different values of a chosen composite indicator,
with scores increasing towards the top right-hand corner. Choice of
the point P~ on the possibility frontier would be optimal in this
example, giving a composite score indicated by the line C;C;. Given

I
Y2

O Y1

Figure 8.1. The production possibility frontier: different preferences lead to
different weights.
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the weights used in the composite indicator, choice of any other point
on the frontier would be considered inferior (allocatively inefficient).

In practice, few organisations will be precisely on the possibility
frontier. Rather, each will exhibit some level of technical inefficiency,
which leads to observed outputs lying within the area indicated by the
efficient frontier. In Figure 8.2, the point X indicates a realised level of
performance in one organisation. According to the composite indica-
tor, this secures a level of overall efficiency indicated by the line C,C,,
reflecting the fact that (i) the chosen mix of outputs diverges from the
‘optimal’ and (ii) performance lies within the frontier. The measure of
organisational efficiency can be represented by the ratio of the com-
posite scores indicated by lines C,C, and C;Cy, the extent to which
performance falls short of the maximum attainable and desired, this
being the product of technical and allocative efficiency. This argument
is readily extended to S outputs.

If we are unable to apply a uniform set of weights, there may never-
theless be circumstances in which all will agree that some organisations
perform better than others. Figure 8.3 illustrates five organisations with
identical expenditure levels and environmental circumstances. Under
most assumptions about preferences, Organisation A is unambiguously
inferior to Organisation D in the sense of being technically inefficient.
Furthermore, Organisation B is inferior to a linear combination of
organisations D and E, represented by the point B". However, the

(0] Y1

Figure 8.2. Composite scores indicated by the lines C;C; and C,C,.
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ranking of the Organisations C, D and E lying on the observed frontier
depends on the relative weights we choose to apply to outputs y; and y,.
This cannot be achieved without introducing a composite indicator
that reflects preferences for the two objectives.

In principle, the set of weights to be used in an efficiency index
could be derived from a range of sources, such as economic studies of
willingness to pay or conjoint analysis. An example (albeit the subject
of fierce criticism) was the survey undertaken by the World Health
Organization to infer the relative importance of health system outputs
(Williams 2001). However, rather than being externally agreed upon,
in most efficiency analysis studies the weights are generated as a by-
product of the statistical estimation process. Indeed, some see this as
an attractive feature of the methods (Cooper, Seiford and Tone 2000).

Within the parametric paradigm, it is not a trivial matter to take
account of multiple outputs. Approaches include the creation of a
single index of outputs, estimation of a cost function rather than a
production function, or the use of distance functions (Shephard 1970;
Coelli and Perelman 2000; Lothgren 2000). Irrespective of the ap-
proach, the estimated magnitude of the weight for each output usually
corresponds to the value implicit in the sample mean cost of producing
an additional unit of output s. Using a linear model, the weight f
attached to output s indicates the value of an additional unit of that
output, which remains constant for all levels of attainment of y,. If a

Yo

o Y1

Figure 8.3. Observed performance of five systems with identical expenditure
and environment.
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logarithmic model is used, f, indicates the percentage increase in
composite attainment implied by a one percent increase in y,. Hence
the parametric approach is conservative in the sense that it implies
that the existing expenditure choices of organisations (on average)
reflect the values placed by society on the outputs. If this is not true,
the estimated weights will not be appropriate.

As discussed in sub-section 5.3.3, in conventional DEA the weights,
U,, are allowed to vary freely, so that each organisation is evaluated in
the best possible light. Indeed one quite frequently finds in uncon-
strained DEA that the highest efficiency score for an organisation can
be secured simply by assigning a zero weight to one or more outputs
on which it performs poorly. There has therefore been some attention
to rules for restricting the flexibility of weight variations (Allen et al.
1997), but the efforts to date have been poorly informed by economic
theory, and mainly confined to technical considerations (Pedraja-
Chaparro, Salinas-Jiménez and Smith1997). The lack of a single set
of weights implies that it is never appropriate to rank DEA efficiency
scores in a conventional ‘league table’ format.

The assumptions underlying the derivation of weights in DEA and SFA
are crucial to the judgements on efficiency they offer. It is, of course,
possible that the weights emerging from statistical studies correspond to
political preferences. However, we are not aware of any studies that have
sought to verify this. At the very least, we would suggest that there is a
need for careful dialogue between policy makers and analysts to ensure
that the methods used reflect policy requirements.

8.3 Modelling the production process

Having decided upon what objectives are to be considered, and their
relative importance, the next problem concerns how to model the
process by which these may be achieved and the constraints that limit
levels of attainment. That is, in the context of Figure 8.1, how is the
production possibility frontier to be formalised? The focus of interest
differs depending on whether one adopts a research perspective or a
managerial perspective.

The research interest in productivity models is predominantly in
the structure and determinants of the production process rather
than specific efficiency estimates for individual organisations. Count-
less research questions present themselves. For example: What is the
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marginal productivity of a factor of production? How do returns to
scale vary? What influence do external environmental factors have on
efficiency? What is the aggregate level of inefficiency in the sector?
These are all important questions with potentially important policy
implications. However, they all fit into the traditional empirical re-
search model in that they seek to identify aggregate (or sample aver-
age) patterns within the data. Modelling is usually a means to the end
of securing a more satisfactory aggregate model with which to address
the research questions.

In contrast, the managerial or policy interest is in the estimate of
efficiency for individual organisations. This estimate is derived from
the residual or organisation-specific effect, and the model parameters
are no longer the main interest. This switch of attention turns the
statistical model on its head. We believe that this may require a
fundamental rethink in modelling methodology.

Traditional statistical methodology seeks to develop an empirical
model that satisfies particular acceptability criteria, such as consistency
(as the sample size increases, does the estimate of interest converge to
its ‘true’ value?); unbiasedness (is the expected error in the estimate
zero?); efficiency (is the sampling variance of the estimate as small as
possible?); robustness (is the estimate robust to potential model mis-
specification, missing information and measurement error?); and par-
simony (is the model as simple as possible?). Although analysts
frequently use heuristics (such as the 95 per cent significance criterion),
the implications of technical choices for model estimation are generally
well understood, so that an informed observer can understand the
degree of certainty with which inferences can be made.

However, there is no guarantee that a statistical model that satisfies
such traditional modelling criteria is necessarily fit for the purpose of
inferring the efficiencies of individual organisations. To take just a
simple example, there might exist a small number of ambulance
authorities that suffer a cost disadvantage in their emergency function.
In developing an empirical model, the analyst might acknowledge this
possibility and test a measure of rurality as a potential independent
variable, perhaps using a conventional rule such as the 95 per cent
significance hurdle. The rurality variable may not pass this test, and
will be excluded so as to yield a more parsimonious model that passes
misspecification tests. In conventional modelling terms, the variable is
excluded from the preferred model on the grounds that it is immaterial.
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However, it may be highly material for the small number of ambu-
lance authorities whose residuals (and therefore efficiency estimates)
are adversely affected by its exclusion. Therefore the model may be
fit for its research purpose, but not for its managerial purpose.

Conversely, one could pay no attention to the parsimony criterion
and indiscriminately include all potential explanatory variables in the
productivity model. In the extreme, this might result in modelling the
performance of all observations without error, leading to the conclu-
sion that all are equally efficient. If, in reality, there is some variation
in efficiency, the inability to detect it arises because some of the
explanatory variables are correlated with efficiency. One therefore
needs a very clear idea of the production process and the constraints
upon that process if one is to model individual efficiency satisfactorily.

As with all modelling, the ideal is that technical choices should be
informed by the costs of incorrect inference. In all likelihood, every
organisation exhibits a level of inefficiency with respect to a true
production frontier that is unobservable. The managerial concern is
in the extent to which the chosen model misrepresents this true effi-
ciency. An underestimate of individual efficiency (analogous to a Type
1 error) may result in a number of mistaken managerial actions, such
as setting financial penalties, replacement of local management,
demanding infeasible improvement targets, or closure of the opera-
tion. An overestimate of efficiency (Type II error) may result in
complacency or mistaken designation of an organisation as a beacon
of excellence. Errors of either sign can arise from model misspecifica-
tion (omitted variables, functional form) or measurement errors. In
principle, productivity modelling methodology should reflect such
considerations, rather than relying exclusively on the statistician’s
traditional rule of thumb.

An obvious response to uncertainty about how best to represent the
underlying set of production possibilities or technological constraints is
to conduct sensitivity analysis. In DEA, this may involve changes to the
scaling assumptions and bootstrapping estimates to assess statistical
significance (Simar and Wilson 2004). In SFA, statistical techniques
allow different functional forms, different distributions of inefficiency
and the calculation of confidence intervals around inefficiency estimates
(Street 2003).

Clearly such analysis is good statistical practice (Goldstein and Spie-
gelhalter 1996). However, the extent to which results are robust to these
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choices depends on the complexity of the underlying production process.
In industries with a relatively simple production technology, it can be
expected that results are not highly sensitive to defensible variations in
technical choices. For instance, estimates of the efficiency of companies
providing water and sewerage services in the UK appear robust in the
face of sensitivity analysis (Office of Water Services 1999). In contrast,
and as typified by the example in chapter 7, different models applied to
health sector organisations rarely yield definitive or consistent conclu-
sions. Quite modest changes in the choice of analytic technique and
model specification lead to major changes in inference about efficiency,
reflecting the great complexity of health care and the importance of
idiosyncratic (unexplained) influences on performance (Harris 1977).

8.4 Environmental constraints

In addition to difficulties in specifying the production process, effi-
ciency measurement of health care organisations is further complicated
by the need to take account of influences on performance that lie out-
side organisational control. Numerous classes of factors may influence
measured levels of organisational attainment. These include:

e differences in the characteristics of citizens being served;

e the external environment — for example, geography, culture and
economic conditions;

e the activities of other related agencies, both within and outside the

health sector;

the quality of resources being used, including the capital stock;

different accounting treatments;

data errors;

random (or idiosyncratic) fluctuation;

different organisational priorities;

differences in efficiency.

In the short run, many of these factors are outside the control of the
organisations under scrutiny. These are commonly labelled ‘environ-
mental’ variables. In the longer term, a broader set of factors is
potentially under the control of the organisations, but the extent and
nature of this control will vary depending on the context. So, for
example, the short-run efficiency of a hospital should be judged in
the light of the capital configuration that it has available. Yet, in the
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longer run, one might expect the hospital to reconfigure its capital
resources when this is likely to lead (say) to lower unit costs.

In whatever way the uncontrollable environment is defined, it is
usually the case that some organisations operate in more adverse
environments than others, in the sense that external circumstances
make achievement of a given level of attainment more difficult. This
means that — for a given level of expenditure — the production possi-
bility frontiers of different organisations will not be identical. The
frontiers for organisations operating in difficult environments will lie
inside those of more favourably endowed organisations, and the en-
vironmental influences on organisational outputs should therefore be
incorporated into statistical models of efficiency.

In some circumstances, as mentioned in section 2.6, it may be
possible to simplify the ‘environmental’ problem if organisations (such
as health authorities or primary care trusts) have already been com-
pensated financially for environmental circumstances through a fund-
ing formula. A funding formula seeks to enable organisations to
deliver some ‘standard’ level of service, given environmental factors.
So, if the funding formula is doing its job properly, there is no need to
incorporate such factors into the productivity model. Indeed, all that
may be needed is to examine the extent to which the standards have
been secured. In short, one may need to examine only effectiveness,
and not incorporate inputs (either resources or environment) into
the model at all. However, in practice, most funding formulae com-
pensate only imperfectly for environmental factors (Smith, Rice and
Carr-Hill 2001).

There is an active debate about how to incorporate environmental
factors into DEA (Fried et al. 2002). As discussed in sub-section 5.3.6,
one option is to include an environmental variable as one of the inputs
in the production model. In DEA, this means that organisations will
be compared only with organisations operating in identical or more
adverse environments. Those operating in the most adverse environ-
ments will automatically be deemed 100 per cent efficient. Another
possibility is to estimate the model without environmental variables,
and incorporate them only in a second-stage analysis, which seeks to
explain efficiency scores as a statistical function of environment. This
is problematic given that the dependent variable (the efficiency scores)
will comprise a set of serially correlated values (Simar and Wilson
2004). As yet there is no generally accepted methodology for how to
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account for environmental variables in DEA models or how to test
whether an environmental variable is a ‘significant’ uncontrollable
influence on production possibilities.

With respect to SFA, when undertaking analysis from a regula-
tory perspective, a necessary condition is that all variables included
as regressors are indicators of environmental factors beyond organisa-
tional control (Giuffrida, Gravelle and Sutton 2000). Again, this
contrasts with the traditional approach to statistical model-building,
where the aim is to select a set of explanatory variables that best
explain variation in the dependent variable. It is quite likely that many
potential explanatory variables are indicators of both environmental
effects (which we would wish to include in the model) and policy or
efficiency effects (which we would wish to exclude from the model).
Most statistical modelling of efficiency relies on traditional variable
selection devices to test whether an environmental variable should be
included in the model. However, statistical modelling in these circum-
stances usually requires a great deal of knowledge of the context of the
problem and an element of judgement as to which variables to include.
Formal model selection devices are of limited use, and there is unlikely
to be consensus as to the most appropriate choice of model.

The model selection problem is compounded when using SFA,
because the analyst must make a joint decision regarding the variables
to include and the model’s error structure. Recall that unexplained
variation from predicted output is decomposed into two parts: sym-
metric random error and one-sided inefficiency. Suppose, therefore,
that we wish to test an environmental variable for inclusion in a SFA
model. It will be a candidate for inclusion if it ‘explains’ a material
proportion of the overall residual and therefore exhibits what is con-
ventionally termed a statistically significant model coefficient. How-
ever, the attribution of a statistically significant effect to the additional
explanatory variable may be for one or both of the following reasons:

1. It explains some of the random error. This implies that the original
model suffered from omitted-variable or functional-form misspeci-
fication.

2. It explains some of the inefficiency error. This implies that the
variable is correlated with the original estimates of inefficiency.

Whether the new variable should be included depends on whether it is
judged to measure an unavoidable hindrance to reaching the estimated
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frontier (in which case it would be included) or some potentially
controllable characteristic of inefficient organisations (in which case
it would be omitted). There is no scientific guide to making this judge-
ment. It can be made only with reference to the context of the specific
production process under scrutiny.

8.5 Dynamic effects

One of the most problematic issues in productivity analysis is the
treatment of dynamic effects. Generally, organisations operate within
an historical context, drawing on past inheritances and making invest-
ments toward future performance. This implies that the production
process should be modelled in a dynamic fashion, in which contem-
porary performance is to some extent dependent on previous invest-
ment, and contemporary inputs are to some extent invested for future
outputs. This concept was introduced in sub-section 2.5.2.

The correct production model for examining current performance
should include among its inputs the endowment bequeathed to current
management by previous organisational efforts. This is a fiercely
complex issue, as many such organisational endowments defy satis-
factory measurement. For example, current performance of public
health efforts to improve morbidity rates among the population may
reflect previous efforts in disease prevention. In some senses these
previous efforts can be considered an uncontrollable ‘environmental’
influence on current managerial performance. Yet, in general, we have
no concrete way of quantifying this potentially important input, and
most studies ignore such factors.

Equally, some elements of current effort may be directed towards
future attainment. For example, investment in health promotion activ-
ities may not yield discernible achievements until years after the activ-
ities have been completed. Again, in principle, we should include such
endowments as an output from the current period. In practice, they are
extremely difficult to capture in efficiency assessments, especially as the
investment effort may itself contain an element of inefficiency.

The implication for efficiency analysis is that any cross-sectional
assessment of contemporary attainment should in principle accommo-
date the inherited endowment of previous actions, and the endowment
left for future management. Fire and Grosskopf (1996) develop a
dynamic programming framework that seeks to recognise inheritances
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and endowments in the context of DEA models, and demonstrate the
enormous complexity of the issues involved. In applying SFA it is
becoming feasible to model dynamic effects using panel data techni-
ques (Bond 2002). However, such modelling is likely to remain a
challenging endeavour, even given adequate data and estimation meth-
ods, and its usefulness for efficiency measurement has yet to be
assessed.

8.6 Conclusions

In this chapter we have raised four issues that require further con-
sideration before the techniques of efficiency analysis can be fit for the
purpose of regulation. Statements about relative organisational effi-
ciency cannot be made unless the organisations being compared pur-
sue a common set of prioritised objectives. The appropriateness of the
analytical model cannot be evaluated using standard testing proce-
dures, and the evaluative task is more demanding the more complex
the production process and the more heterogeneous the environmental
constraints each organisation faces. The historical context in which
organisations are located can rarely be fully appreciated by the analyst,
and this lack of knowledge places constraints on model construction
and interpretation.

The techniques of efficiency analysis described in the earlier chapters
require further development before they can adequately deal with these
issues. Moreover, alternative approaches exist that may offer greater
flexibility in model construction and novel insights into organisational
performance. We turn to these in the next chapter.



9 Some alternative approaches to
measuring performance

9.1 Introduction

N the preceding chapters we have raised a number of concerns
about the use of both parametric and non-parametric methods to
draw conclusions about the relative efficiency of health care orga-
nisations. Many of these concerns relate to the fundamental problem
of trying to derive a composite measure of organisational performance
in contexts where multiple objectives are pursued or multiple outputs
produced. Other concerns relate to the difficulty of formulating a
coherent model of the production process and of ascertaining what
constitute the environmental constraints that each organisation faces.

In this chapter we consider some alternative approaches to analysing
the performance of health care organisations that seek to address some
of these issues. We must emphasise that these approaches are experi-
mental, and address only some of the concerns raised in the preceding
chapters. However, they do illustrate that, depending on the purpose
of the analysis, the potential exists to use a wider range of analytic
tools than traditionally recommended in the efficiency literature.

The techniques discussed in this chapter address two distinct issues:
the hierarchical form into which most health systems are organised,
and the pursuit of multiple objectives when there is little consensus
as to their relative priority. To this end, in section 9.2 we describe how
multilevel modelling can be used to gain insights into the impact of
different hierarchical levels on specific aspects of performance. Section
9.3 then examines the potential for using seemingly unrelated regres-
sions to model simultaneously a set of multiple performance measures.
In section 9.4 we indicate how these techniques can be integrated into
a multivariate, multilevel model of performance.

The material in this chapter draws on three published papers: Hauck, Rice and
Smith (2003); Martin and Smith (2005); and Hauck and Street (2005).
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9.2 Multilevel modelling

All health systems are organised hierarchically. Individual physicians
operate within clinical teams, which in turn may be based in depart-
ments, within hospitals, within administrative areas. A key policy
question that therefore arises is: to what level of the hierarchy are
variations in health system objectives attributable? Traditionally,
although many commentators make the distinction between macro-,
meso- and micro-level aspects of the health system, few analytic
studies seek to model these distinct levels explicitly. Most efficiency
analysis (including the examples in the preceding chapters) is under-
taken at the meso level of hospital or administrative authority.

However, statisticians have developed multilevel (or hierarchical)
models to reflect explicitly the multilevel nature of organisational
structures. These have been deployed extensively in the education
sector (Hill and Goldstein 1998), and there have been a number of
applications in health care (Rice and Jones 1997). The question this
chapter addresses is the extent to which multilevel models could be
used to shed new light on organisational performance. The statistical
models used to address the hierarchical structure are variations on the
familiar regression-based theme. However, the error term is decom-
posed into parts attributable to each level of the hierarchy. For exam-
ple, if the dependent variable is some measure of patient outcome
arising from hospital treatment, a simple two-level model yields esti-
mates of the ‘hospital effect’ on patient outcomes (after adjusting for
any independent measures of patient need) and the residual ‘individual
effect’. The insight of this section is that the estimate of the hospital
effect might be used as the basis of an organisational performance
indicator, and that failure to exploit the multilevel nature of the data
can lead to erroneous conclusions about organisational performance.

To illustrate, consider first the application of traditional meso-level
analysis to the three hospitals shown in Figure 9.1. Suppose the
measure of outcome for each of the three hospitals comprises a sum-
mary of the outcomes experienced by all patients treated in the hospi-
tal, for example the mortality rate. A conventional regression model,
with the hospital as the unit of observation, might take the following
form:

%, = Boxo + BX, +7; ©.1)
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Figure 9.1. Performance ranking using aggregate organisational data.

Where ¥, are the average outcomes experienced by patients treated
in hospital j; fox¢ is a constant term and BX; is a vector of hospital-
level variables thought to explain patient outcomes over and above the
influence of the hospital, such as the average severity of the condition
suffered. The error term 4 is assumed to have zero mean and constant
variance, and can be interpreted as the vertical departure from the
mean regression line of the jth hospital. If this line is assumed to reflect
the expected level of hospital performance, these residuals can be used
as the basis for performance comparison (as in a corrected ordinary
least squares method (COLS)). The hospitals would therefore be
ranked C,A,B.

However, the average outcomes used in Figure 9.1 are derived from
individual patient data. The objective of multilevel methods is to ex-
ploit these individual-level data to best effect. Figure 9.2 shows, as
lower-case letters, the individual-level data on which the aggregates in
Figure 9.1 are based, indicating the hospital in which the patient was
treated. The multilevel methods identify the relationship between
input and outcome observed within hospitals (in this case constrained
to have equal slope) as indicated by the broken lines in Figure 9.2. The
hospital effect can now be interpreted as the vertical axis intercept of
each hospital slope, yielding a revised ranking of C,B,A.
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Figure 9.2. Changes in performance ranking based on hierarchical structure.

In multilevel modelling the error term is therefore decomposed into
parts attributable to each level of the hierarchy. For example, if the
dependent variable is some measure of individual patient outcome
arising from hospital treatment, a simple two-level model can be
specified as follows:

yi = Boxo + Bx;j +u; +ej (9.2)

where y;; is the outcome for patient i in hospital j, i and j indicating the
two levels. Estimation will yield:

e parameter estimates, f§p and B, for the constant and for the vector of
independent variables in the model;

e an estimate, u;, of the ‘hospital effect’ on patient outcomes; and

e the residual ‘individual effect’ e;;.

The parameter 8y can be interpreted as the level of performance in the
hospital with average values across the independent variables. The
terms #; and e;; are error components such that #; is the random error
for the jth hospital and e;; is the random error for the ith patient in the
jth hospital. These error components are assumed to have zero mean
and constant variances (g2, 62). Small estimated values of u, represent
hospitals with close-to-average performance in securing patient out-
comes, after controlling for the set of independent factors included in

the model.
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Small Small | Small
area 1 area 2 area i

Figure 9.3. Hierarchical data structure.

We illustrate this using a model of the performance of the English
health system in 1991, when health care was organised hierarchically,
as shown in Figure 9.3. At the top of the hierarchy were the regional
health authorities, which were responsible for financing and super-
vising the performance of lower-level organisations, but had little
responsibility for direct patient care. Nested within the regions were
186 district health authorities, the organisations charged with plan-
ning and delivering hospital care and public health, each of which
covered a population of about 250,000. Individual-level data were not
available. However, data were available for 4,985 small areas, with
populations of around 10,000. These were merely geographical con-
structs, defined for electoral purposes, but without any organisational
identity so far as health services were concerned. These small areas
form the lowest level in our hierarchy.

We had available data for various dimensions of health system
performance and for the socio-demographic characteristics of the po-
pulations of the small areas. For this illustration we select the perfor-
mance measure ‘waiting time for routine surgery’, measured as the
ratio of actual waiting time (in days) to that which would be expected
given the age and gender of the patient and the hospital speciality to
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Table 9.1. Socio-demographic data used in needs index

Standardised mortality ratio for ages 0-74

Standardised limiting long-standing illness ratio for ages 0-74
Proportion of pensionable age living alone

Proportion of economically active unemployed

Proportion of dependants in single-carer households

which they had been referred. This standardised waiting time is our
measure of performance, y.

Waiting times might be influenced by factors over and above the
adjustments made in the standardisation procedure. We control for
some of these by including an index, x;, of the health needs of the
population in each small area. This needs index was developed for the
geographical allocation of National Health Service (NHS) acute sector
revenues. The index comprises various socio-demographic variables
that have been shown to be associated with the utilisation of acute
health care, as summarised in Table 9.1. It was used as the principal
basis of the geographic funding formula used in the English NHS
for ten years from 1995, and was therefore generally thought to be a
good general measure of the relative health care needs of geographic
populations, given contemporary data limitations.

We model three sources of geographical variation in waiting times:
differences in population characteristics, captured by the needs index;
systematic differences in the way regions and districts formulate and
implement health care policies; and random fluctuations. We therefore
specify a three-level random intercept model as follows:

Vi = BoXo + B1X1k + Vor + Uoj + €oijp (9.3)

where y;;, represents performance indicator y in the ith small area
within the jth district within the kth region, x( is a constant and x4,
represents the needs index x in the ith small area. The parameters fiy
and B can be interpreted as the mean intercept and the mean slope
across all small areas in all districts in all regions. The terms vo, 20z
and eg;;, are error components such that v, is the random error
for the kth region, u;, is the random error for the jth district within
the kth region and ey, is the random error for the ith small area
within the jth district within the kth region. All are assumed to have
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zero mean and constant variance (62, 02, 02). We can interpret oy as

the parallel departure from the mean regression line (foxo + f1x1) of
the kth region, and ug. as the jth-district departure from the kth
region in which the jth district is nested. Small estimated values of
vor and ugj, represent regions and districts close to average perfor-
mance whilst large estimated values of vo, and ug;, represent regions
and districts that deviate markedly from average performance. Interest
lies in estimating the parameters fo, f1, 0'5, o2 and O'g.

The analysis of the residual variances provides information on the
extent of variability in performance at different hierarchical levels.
The proportion of variance attributed to districts and regions can be
interpreted as a quantitative indicator of the degree to which health
authorities may be able to influence the observed performance mea-
sure. In order to obtain a quantitative measure of the proportion
attributed to the regional level in comparison to that for the district
and small-area levels we define the intra-class correlation coefficient
for regions:

p, = aﬁ(ai + aft + 65)71 (9.4)

with 0 < p, < 1. The closer p, lies to 1 the larger the extent to which
the variance in the performance indicator (conditional on the needs
indicator) is attributable to the regional health authority level. Simi-
larly, the proportion attributed to the district level is given by:

P, = ai(ai + ai + 05)_] (9.5)

again with 0 < p, < 1. Hence, larger values of p, and p,, provide
evidence of large variations in performance across regions and dis-
tricts. This is interpreted as being indicative of marked differences in
performance that may be amenable to health authority interventions.

Table 9.2 shows the estimates from model (9.3) for the waiting
time performance indicator, indicating the intercept and slope coeffi-
cients and their standard errors, the variances attributable to regional,
district and small-area levels and their standard errors, and the intra-
class correlation coefficients p, and p,, as given by (9.4) and (9.5). As
expected, the estimates of the slope coefficient are positive and sig-
nificant at the 5% level. The intra-class correlation coefficients indi-
cate that 15% of the variation in performance is attributable to
regions and 61% to districts. Both figures are significant at the 5%
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Table 9.2. Three-level random intercept model to explain proportion
of variability in performance indicators attributable to regional and
district bealth authorities

Parameter — Description Coefficient  Standard
error

Bo Coefficient of the intercept 0.988 0.025
B Slope coefficient on need 0.030 0.003
a2 Variance of the region effects 0.006 0.003
a2 Variance of the district effects 0.025 0.003
o2 Variance of the small-area effects 0.010 0.000
0w Proportion of conditional variance 0.15

attributable to regional health

authorities
Pu Proportion of conditional variance 0.61

attributable to district health

authorities

level, but they suggest that there is considerable variation across
districts within one region, and that greater influence on waiting time
performance is therefore more likely to exist at the district level.

In considering these results, it is important to bear in mind that they
may be due to factors other than variation in health authorities’
effectiveness. Other than variations in performance, the health author-
ity effects may be picking up factors such as:

e variations in data collection methods;

e differences in funding levels;

e differences in the actions of other geographically defined agencies,
such as local government.

More generally, as deployed here, the multilevel model cannot explain
why the proportions of variation attributed to region, district and
small-area levels differs. However, further work might explore this,
for example by examining the characteristics of health authorities that
explain variations in performance.

However, notwithstanding these caveats, results such as these can
offer regulators useful information on the relative performance of orga-
nisations (and individual practitioners) operating within a hierarchy
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when a single performance measure is under scrutiny. The methods
can contribute towards a more analytically satisfactory approach to
performance measurement than the crude use of aggregate data. These
particular results confirm that variations in measures of access (waiting
time) are to a high degree attributable to health authorities. Other
models (not reported here) suggest a much smaller influence of health
authorities on measures of population health (such as mortality rates).
Thus the multilevel methods can also help indicate the domains of
health care where there is most potential for securing improvements.
Future research might examine in more detail the appropriate organi-
sational level at which to focus performance management efforts. Most
importantly from our perspective, in some circumstances the methods
might form the basis for a more analytically satisfactory approach
to performance measurement than the use of aggregate regression
methods.

9.3 Generalised statistical modelling

This book has focused mainly on composite indicators of health care
performance. However, the dominant interest of many public service
managers is in indicators of performance in specific service areas,
rather than such aggregate measures of organisational performance.
This motivates interest in modelling individual indicators of perfor-
mance, along the lines suggested above. However, there may exist
important relationships between individual performance measures
that are lost if this is pursued solely through the piecemeal develop-
ment of univariate regression models of performance. In this section,
we show how a suite of performance indicators might be modelled
simultaneously, using the methods of seemingly unrelated regressions.

To understand the potential importance of simultaneous modelling,
we first consider a very general production process with just two
indicators of organisational performance, as illustrated in Figure 9.4.
If all organisations are operating in identical environments, and using
identical inputs, the frontier of feasible production could be illustrated
by a single curve such as FE. Then all observations will lie on or inside
this frontier. However, if — as will usually be the case — organisations
vary in environment or resources used, the frontier will shift. For
example, the frontier F, might indicate a revised frontier for a set of
organisations operating in a more adverse environment. A reduction
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Indicator 2

F

Indicator 1

Figure 9.4. The production possibility frontier with two performance
indicators.

in resources might operate in the same way, implying (say) that the
feasible mix of performance achieved by an organisation at point A
might be reduced to point A, if such a reduction were implemented.

Under this view, variations in the observed performance of two
organisations might arise from a range of sources: environmental
factors, resource levels, efficiency, substitution and data quality. We
consider these five sources in turn.

1. The organisations might be operating in different environments,
leading to variations in the feasible levels of performance. For exam-
ple, different public health organisations might be operating in very
different social and economic circumstances. Such influences on per-
formance are often the most poorly understood and poorly measured
aspect of the production process in health care. As environmental
circumstances improve, so we would expect to observe improvements
in all performance measures (albeit to varying extents). Therefore,
such variations will in general give rise to a positive correlation
between individual performance measures.

2. The organisations might be devoting different levels of resource
input to the services under scrutiny. Variations in resources act in
a similar way to variations in environmental factors in altering the
capacity of the organisation to secure good performance, but are often
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better understood and measured. Improvements in resources poten-
tially increase the capacity for performance in all dimensions, and so
should also give rise to a positive correlation between performance
measures.

3. The efficiency of organisations might differ. Conventional pro-
ductivity models seek to focus attention on variations in overall effi-
ciency, yet run into difficulty because it is impossible to distinguish
between organisational effects caused by unmeasured resource or
environmental variations and those caused by efficiency variations.
Again, efficiency should be positively correlated with performance in
all dimensions, thereby contributing to a positive correlation between
performance measures.

4. If organisations are fully efficient, improved performance on one
indicator can be secured only at the expense of a worse performance
on others, as the organisation moves round the efficient frontier. For
example, in Figure 9.4, an efficient organisation A can improve per-
formance on indicator 1 only by reducing attainment on indicator 2
(moving, say, to point B). In contrast with (1) to (3) above, this
substitution effect implies a negative correlation between performance
measures.

5. Imperfections in data quality are inherent to all health care. These
might affect relative measured performance in a variety of ways. For
example, if the performance measures are of the form ‘attainment per
head of population’, then an overestimate of population would ad-
versely affect performance in all domains, leading to a positive cor-
relation between performance measures. If, on the other hand, the
performance measures are expressed (say) in the form ‘attainment in
domain x per employee in domain x°, then an imprecise allocation of
employees between the different domains of performance might lead
to a negative correlation between performance measures. Data imper-
fections, therefore, could contribute either positively or negatively to
correlation measures.

There are therefore numerous reasons why performance on one
indicator might be correlated, positively or negatively, with perfor-
mance on another. Of course, if we could identify and measure the
factors listed under (1) to (5) above, we could model performance on
any one indicator with some confidence. Indeed, in many circum-
stances we have available a limited set of covariates with which we
can adjust performance measures. For example, there usually exist
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measures that can serve to adjust performance measures to account for
differences in physical or financial inputs. However, these measures
are often crude and imprecise, and - in the case of environmental
factors — highly contested. And, of course, when organisations pursue
multiple objectives, there is, by definition, no straightforward measure
of organisational efficiency.

We therefore seek to move beyond the piecemeal modelling of
individual performance indicators and explicitly model covariance
between indicators, without placing impossible demands on measure-
ment instruments or modelling methodology. The fundamental in-
sight is that in many circumstances individual regression models of
performance, or more precisely the error terms from each regression,
will be linked. For example, there might be some unobservable or
poorly measured variable that has been omitted from the regressor
set. The most obvious missing variable is, of course, inefficiency itself.
We believe that simultaneous modelling of performance measures is
potentially important because:

e it economises on the need for detailed modelling of individual
performance measures;

e it economises on the need to measure factors that affect performance
across all performance measures, such as environmental factors;

e it can reduce the very large confidence intervals observed in single
equation models and caused in part by omitted or poorly measured
explanatory variables;

e the more sensitive modelling of interactions may lead to different
inferences about the level of an organisation’s performance on
specific indicators.

In short, the deployment of a more integrated model of multiple
performance indicators can secure marked reductions in standard
errors, and accordingly more secure performance rankings, without
recourse to additional data or the highly questionable aggregation
of performance indicators implicit in traditional productivity models.

The essence of the seemingly unrelated regression (SUR) approach is
to model such covariances by incorporating a latent variable, which
can be thought of as an implicit unmeasured ‘organisational’ effect on
performance across all indicators. It can be defined as any influence on
overall organisational performance, whether or not it is within the
direct control of the organisation. Each of the five factors discussed
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above might contribute to the organisational effect, which therefore
comprises an assortment of these influences on measured performance.

If separate performance indicators are related to each other in
some way, the use of ordinary least squares (OLS) to estimate sepa-
rately each regression is inefficient because it fails to utilise the in-
formation about the correlations among the indicators. Consequently,
although ordinary least squares remains a consistent estimator, it
no longer offers the most efficient estimates of the standard errors.
To avoid this loss of information, the SUR estimator can be employed
(Zellner 1962). The SUR procedure is formally known as joint gen-
eralised least squares estimation and is a method of estimating sys-
tems of regressions in which the parameters for all equations are
determined in a single procedure (Greene 2000).

Formally, in the context of I performance indicators, the system of
equations can be written in the following form (Zellner 1962):

yi/e:ﬁ()i+x1ikﬁli+eik i= 172a"'71; k = 1727"'7K (96)

where i now indicates each performance indicator rather than each
patient or each electoral ward. Hence y;;, is the performance indicator
for the ith objective for the kth organisation, fy; is a coefficient, x1;; is
a1 x g; vector of g; regressors specific to the objective i, f1;isa g; x 1
vector of coefficients, and e¢;;, is an error with E(e;;) = 0. By stacking
the k organisations above each other, the SUR model for the set of I
indicators may be written as:

yi:ﬁOi+X1iﬁ1i+ei i=1,2,...,1 (9.7)
or:
ba Bor X1 0 0 P11 €1
) _ BOZ + 0 X12 ... 0 312 + e
yl ./éé)z 0 0 X1 ﬁu 61
(9.8)

where y;, fo; and e; are k x 1 vectors, Xy;is a k X ¢; matrix, and fy; is
a gq; x 1 vector.

If the performance of an organisation k on two performance indi-
cators i and p is related by unobservable factors, then e;;, would be
correlated with e, for i # p. By estimating a SUR model, we allow for
such correlation. This implies that:
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E(esey') = 0;, if k=h,and 0 otherwise, (9.9)

where k and b denote two different organisations.

SUR estimation transforms the errors so that they all have the same
variance and are uncorrelated. Estimation is a multistage process in
which each equation is first estimated by OLS. The residuals from
each of these estimations are then used to evaluate the error variances
both for each equation and across equations. The errors are then
transformed so that they all have the same variance and are uncorre-
lated — in other words, the SUR estimator ‘purges’ the errors of their
cross-equation correlation. The explanatory variables are then subject
to the same transformation. The rationale for this is that, if the
unobservable factor driving the correlated errors is also correlated
with other variables in the model, then the purging transformation
should be applied to the estimated coefficient on these other variables.
Finally, OLS estimation is applied to these transformed variables.

9.3.1 Illustrative example

To illustrate the principles involved with SUR estimation, we employ
a data set for 135 acute hospitals within the NHS in England, and
attempt to model three important aspects of performance, measured
by the following indicators:

e a measure of clinical quality (the readmission rate; defined as the
proportion of people discharged from hospital who are subse-
quently readmitted as emergencies in connection with the same
episode of care);

e a measure of inpatient access to health care (the mean waiting time
in days for admission for non-emergency surgery); and

e a measure of hospital efficiency (average length of stay).

A wide range of factors might explain variation in observed achieve-
ment for indicators. These explanatory factors can be divided into five
broad groups: measures of supply volume, quality indicators, demand
shifters, case mix indicators, and other supply shifters. There are three
measures of supply volume (two for outpatients and one for inpati-
ents) and eleven quality indicators. There are five demand shifters
and three of these variables are based on measures of competing
resources (general practitioner availability, a Herfindahl index of
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hospital competition, and the local availability of private hospital
beds). There are six indicators of surgical complexity (or resource
intensity) and three further variables that affect a hospital’s supply
capability.

We first employed stepwise methods to develop OLS models of
each of the three performance indicators, as shown in equations 1, 3
and 5 of Table 9.3. How these models were developed is a matter that
deserves further discussion, but it is not strictly relevant to this ex-
position of SUR methods. Further details are given elsewhere (Martin
and Smith 2005). Ramsey’s reset test revealed no evidence of mis-
specification in any of the three OLS equations, and the variables
included are intuitively plausible. However, notwithstanding the ex-
tensive data set available for this analysis, many of the variables are
only poorly measured, and we do not have measures of some poten-
tially important influences on measured performance, such as the local
demand for emergency treatment.

Table 9.4 shows the correlation matrix for the residuals from the
three estimated OLS equations. Note that the three sets of residuals
are all positively correlated. Although a test of the independence of
the three sets of residuals cannot reject the null hypothesis of inde-
pendence, a test of the independence of the residuals from the read-
mission rate and length of stay equations alone leads to the rejection
of the null at the § per cent level (x*(1) = 5.766, p = 0.0163). This
implies that these two sets of residuals are significantly positively
correlated and that there is some unobserved factor that boosts both
the readmission rate and length of stay but which has not been
included in the model. As noted above, this effect might arise from a
mixture of influences.

We therefore re-estimated all three regressions using the SUR esti-
mator, which utilises the information present in the cross-regression
error correlations. The results from this re-estimation are presented
as equations 2, 4 and 6 in Table 9.3. Although there are changes to
most of the parameter (coefficient and standard error) estimates,
these changes are modest, in part reflecting the relatively low cor-
relations between the OLS error terms and because OLS remains a
consistent estimator. However, in another study we have found corre-
lations of the order of 0.64 between the errors of separately estimated
OLS equations of the demand for and supply of elective surgery
(Martin and Smith 2003). The SUR estimation has a correspondingly
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Table 9.4. Correlations of OLS residuals

Readmission rate Waiting time Length of stay

Readmission rate 1.0000

Waiting time 0.0212 1.0000
Length of stay 0.2067 0.0918 1.0000
Note:

Breusch-Pagan test of independence of residuals: x*(3) = 6.964, probability =
0.0731.

larger impact on parameter estimates and standard errors, leading to
important changes in policy inferences. For example, the elasticity of
demand for routine surgery with respect to waiting time changes from
—0.189 to —0.0385, suggesting that the increase in demand caused by a
fall in waiting times is considerably smaller than previous studies have
claimed (Martin and Smith 2003).

SUR estimation reduces the coefficient on the need for health care
variable (a measure of social disadvantage) from 1.3496 to 1.2975
between equations 1 and 2. One plausible interpretation of this might
be that need and overall inefficiency levels are positively correlated
(hospitals serving disadvantaged areas have lower levels of efficiency).
Therefore, when the SUR estimator replaces OLS, the SUR trans-
formation purges the need variable of its correlation with ineffici-
ency and the resulting SUR coefficient reflects a pure need effect on
readmissions, rather than a combined need and inefficiency effect.

9.4 Seemingly unrelated regression (SUR) in a
multilevel context

The multilevel framework can be extended to consider multiple out-
comes simply by recognising that, for the data analysed in this chapter,
the performance indicators themselves are clustered, in this context
within small areas (Gilthorpe and Cunningham 2000; Yang et al.
2002). This is a SUR model in a multilevel context.

By considering the performance indicators as the lowest tier in the
data hierarchy, the possibility of within-small-area and within-health-
authority correlation among indicators can be assessed. Thus the
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multivariate multilevel model (MVML model) is conceptualised as a
three-level multilevel model, in which the set of I performance indi-
cators (level 1) are clustered within ] small areas (level 2), which are
themselves clustered within K health authorities (level 3). The MVML
model can be written as:

Vie = Boi + X1eP1; + o +eoje 1=1,2,...,L;

9.10
i=1,2,....J; k=1,2,....K ©.10)

Thus, ;. is the ith performance indicator for the jth small area
clustered within the kth health authority. The other parameters are
analogous to their counterparts in the aggregate OLS and multilevel
(ML) models, except that we now consider an additional level i.

The error terms ug;, and eg;;, are both assumed to be normally
distributed with zero mean and constant variance (af“-, ogvi). eojjk Te-
presents the random error for performance indicator 7 in the jth small
area, and we assume E(eOi/keOigh/) = 0 for a performance indicator i,
two small areas j and g, and two health authorities k& and h. ug;,
captures the health authority effect. The covariance for the ith and
pth performance indicators within a health authority k is given by:

COV(MOik,Mopk) = O-u,z;p (9.11)

These estimates of covariance can be used to calculate the degree of
correlation 7;, between performance indicators i and p:

_ u,ip
\/ Gu,i + Gu,p

If the correlation is positive, it implies that a health authority that
has better than average performance for indicator i also has above
average performance for indicator p. A negative correlation implies
that above average performance for the one indicator coincides with
poorer performance for the other. This correlation is interpreted as
being due to unobservable influences on performance, such as the
managerial competency of the health authority or the shared influence
of environmental conditions over and above those factors that we
have controlled for. Consistent with the ML models, we estimate the
intra-class correlation coefficient as

— 2 (o2 2 37t
[CCMVML - O-uo,-k (O-uo,'/( + O-eozj/e) ’

0 < ICCpvr <1 (913)
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If there are correlations among performance indicators, the residuals
from the ML models, #g;, and the residuals from the MVML model,
Uik, may differ for the same performance indicator i. A likelihood ratio
test can be used to determine whether the correlations among residuals
are jointly zero or not. The ML models are the restricted models
because they impose the assumption that there are zero correlations
between the residuals. The test statistic is given as:

izZ(LLFMVML—(zI:LLFML», i=1,...,0  (9.14)
i=1

where LLFyyar is the log-likelihood function for the multivariate
multilevel model, and LLF,y; is the log-likelihood function for a multi-
level model applied to a single performance indicator. Asymptotically,
A has a chi-square distribution. A significant test statistic indicates that
estimation as a MVML model is preferable to separate estimation of a
set of ML models, and implies the presence of correlation among
performance indicators. (Note that the test cannot be used to identify
the particular performance indicators among which the correlation
exists).

9.4.1 Ilustrative example

We illustrate the application of SUR techniques in a multilevel frame-
work by returning to the example introduced in the first part of this
chapter. Here we analyse district performance across thirteen perfor-
mance indicators, including waiting times. These indicators are listed
in Table 9.5. The data are structured as shown in Figure 9.5, with
performance indicators clustered within small areas, which are nested
in districts. To simplify the exposition in this section, however, we
ignore the clustering of districts within regions.

The likelihood ratio test comparing the ML and MVML models
clearly rejects the null hypothesis of jointly zero correlations among
the residuals (Ag¢—78 = 9,495, p < 0.000). This indicates that the
MVML model improves inference by allowing explicitly for correla-
tions among the performance indicators. The correlation coefficients
for the health authority effects across the various indicators are pre-
sented in Table 9.6. Coefficients with an asterisk are significant at the
5 per cent level.
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Table 9.5. Performance indicators and socio-economic variables

Performance indicators and variable descriptions

Health outcome
SMRO064

SMR6574

SIR074

Clinical quality
EMOLD

DEATHS

Access
WTSURG

WTRADIO

WTLONG

GPACCS

Standardised mortality ratio for ages 0-64

Ratio of observed deaths from all causes in an area to the
expected equivalent given the local age/sex profile and
national averages

Standardised mortality ratio for ages 65-74

Ratio of observed deaths from all causes in an area to the
expected equivalent given the local age/sex profile and
national averages

Limiting long-standing illness for ages 0-74

Ratio of observed number of people reporting limiting
illness in an area to the expected equivalent given the
local agelsex profile and national averages

Emergency admissions of elderly people

Ratio of the rate of over-65 emergency admissions
originating from an area to the expected given the age,
sex and speciality of a patient and national averages

Deaths following hospital surgery

Ratio of thirty-day perioperative mortality after elective
and non-elective surgery to the expected equivalent given
the age, sex and case severity of a patient

Waiting time for routine surgery

Ratio of actual waiting time in days for routine surgery to
the expected equivalent given the age, sex and speciality
of a patient and national averages

Waiting time for radiotherapy

Ratio of actual waiting time in days for radiotherapy to the
expected equivalent given the age, sex and speciality of a
patient and national averages

Percentage of those on waiting list waiting for twelve
months or more

Proportion of elective surgery admissions waiting for more
than one year standardised for patient characteristics

Accessibility to general practitioners (GPs)

Indicator of relative accessibility given the supply of GPs,
the distance to surgeries and the competition from local
populations
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Performance indicators and variable descriptions

ELECTEPS Number of elective surgery episodes
Ratio of standard surgery procedures originating from an
area to the expected equivalent given the age, sex and
speciality of a patient
Efficiency
DCRATE Day case rate
Proportion of elective episodes in routine surgery treated as
day cases standardised for patient characteristics
MATCOST Maternity costs
Ratio of speciality-specific fixed and variable costs for
episodes to the expected equivalent given national
averages
PSYCOST Psychiatry costs
Ratio of speciality-specific fixed and variable costs for
episodes to the expected equivalent given the age and sex
of a patient and national averages
District 1 District2 | District k
Small Smal | Small
area 1 area 2 area j
Indicator 1 Indicator 2 Indicator i

Figure 9.5. Multivariate hierarchical data structure.
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We find statistically significant positive correlations among the
health outcome indicators, SMR064, SMR6574 and SIR074. These
correlations imply that in an area with above-average mortality rates
for ages 0-64, mortality rates for ages 65-74 and rates of chronic
illness are above average also. There is a statistically significant posi-
tive correlation (r;, = 0.41) between the two clinical quality indica-
tors, DEATHS and EMOLD, implying that areas with a higher
proportion of emergency admissions also report more deaths follow-
ing hospital surgery. There is an almost perfect correlation between
WTSURG and WTLONG (r;, = 0.95), suggesting that one of these
indicators is redundant.

These two measures of waiting time have a significant negative cor-
relation with the health outcome measures (from 7;, = —0.25 to r;, =
—0.16), which might be indicative of trade-offs between these broad
types of objectives: efforts directed at reducing waiting times may
have adverse consequences for these measures of health outcome.
There is also a negative correlation between health outcomes and the
number of elective episodes (7;, = —0.32), which means that, in health
authorities with higher rates of illness and mortality, more elective
procedures are undertaken. In contrast, there is a significant positive
correlation between the health measures and the indicator measuring
accessibility to GPs (r;, = 0.47 and r;, = 0.48). This suggests that in
areas with above average illness and mortality rates people experience
greater difficulties in accessing GP services.

The choice of analytical approach is likely to have an impact on the
estimates of relative performance for particular districts. The sensitiv-
ity of the relative performance of each district to these decisions can
be illustrated graphically. Figure 9.6 plots the district effect estimated
by the OLS, ML and SUR mulitivariate multilevel (MVML) models
for the waiting times performance indicator. The district effect for the
aggregate OLS model, #,, is plotted on the diagonal from the ‘bottom
left corner’ (best performance) to the ‘top right corner’ (worst perfor-
mance) of each figure. The district effects deriving from the ML ()
and MVML (u,,) models are indicated respectively by a diamond and
triangle. The vertical lines connecting these points depict the range
in values for each individual district, with longer lines indicating
greater sensitivity in individual values to the choice of model specifi-
cation. As can be seen, there is considerable volatility across the entire
series, with the relative ranking of each district varying according
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0.6+
0.5+

0.41
0.3

Residual value

Health authority
-Aggregate model & ML model a4 MVML model

Figure 9.6. Waiting time for routine surgery — sensitivity analysis of health
authority effects.

to whether OLS, ML or MVML techniques are used to analyse
performance.

9.5 Conclusions

This chapter has argued that there exist a number of promising direc-
tions for future research into efficiency analysis that involve radical
departures from the traditional parametric and non-parametric meth-
ods described earlier in the book. We have concentrated on the statis-
tical procedures needed to develop multilevel and SUR models of
performance, emphasising that model development is not motivated
by the desire to create a single composite measure of overall organisa-
tional ‘efficiency’. We would not claim that the multilevel and SUR
methods described here are necessarily useful in all circumstances, or
that they address all of the weaknesses of traditional methods. How-
ever, they can cast new light on organisational performance, and
should certainly be considered whenever data and analytic capacity
permit.

The multilevel methods described here have been well developed
in other sectors (notably education). With rapid advances in the
availability of good-quality patient-level data, the scope for deploying
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multilevel methods in health care has increased markedly (Rice and
Jones 1997). Hitherto, most applications have been concerned with
securing improved model parameter estimates. However, there is no
reason why the methods should not be used to make inferences about
performance at different levels in the hierarchy. We have found quite
marked changes in inference as a consequence of moving from tradi-
tional to multilevel regression methods, so we believe their use should
be considered if feasible.

The SUR approach moves beyond piecemeal modelling of measures
of performance in public service organisations. SUR methods address
two drawbacks to the conventional analytic approach. First, the tradi-
tional emphasis on developing a single index of performance requires
that objectives are weighted in some way so that they can be aggre-
gated. The relative value to be placed on the objectives of organisa-
tions working in the health sector is often a political issue requiring
explicit consideration, rather than being subsumed as part of the
technical process. By analysing objectives separately — but allowing
for the possibility that they might be correlated — SUR avoids the
necessity of weighting them.

Second, from a managerial perspective it will often be more useful
to focus on individual performance measures in order to identify
where the greatest scope for improvement lies. Yet analysis of indivi-
dual performance indicators is often hampered by poor understanding
of the exogenous factors that affect performance and poor measure-
ment of those factors. The SUR methods outlined above represent a
promising technology for reducing the importance of this problem by
exploiting information arising from a series of regression models of
organisational performance.

We most emphatically do not claim that multilevel or SUR methods —
either individual or in tandem - offer a complete panacea for the
problem of analysing public service performance. Rather, they offer
further promising tools for gaining insights into the determinants of
performance and identifying the level of attainment of individual orga-
nisations, to be set alongside the more conventional areas of efficiency
analysis described earlier. No analytic approach can on its own answer
the questions posed by politicians, regulators, managers, service users
and the general public. However, used carefully in conjunction, they
offer great potential for enhancing our understanding of health care
performance.






1 O Conclusions

10.1 Introduction

HE pursuit of increased efficiency in the health care system is a

major preoccupation of most developed countries. It is likely, if

anything, to become more urgent as the pressures of technologi-
cal innovation, an aging population and increased public expectations
combine to drive up expenditure on health care still further. Moreover, it
is clear that there is only limited scope for relying on conventional
markets to deliver many aspects of health care. Therefore, some sort of
regulatory mechanism is needed to ensure that providers are deliver-
ing health care in line with payer requirements, whether that payer is
an individual patient, an insurance fund, a local government or the
more general taxpayer. We would argue that quantitative analysis of
the sort described in this book is an essential prerequisite of any proper
regulation in the health care domain.

We have claimed that the ultimate aim of such analysis should be to
assess the cost-effectiveness of a health care organisation, measured as
the ratio of its valued outcomes to the resources it consumes. Few would
argue with this goal in principle. Indeed, it is quite straightforward to
estimate cost-effectiveness if certain conditions hold:

o there is consensus on the goals of the organisation;

e all outputs and inputs can be measured;

o the outputs can be readily valued and combined into a single measure
of effectiveness;

o the organisation relies only on its own inputs to secure those outputs,
and not on joint work with other organisations;

e it is straightforward to account for any environmental difficulties
the organisation experiences in securing its results.

In practice, of course, these conditions do not hold. Indeed, it is the
routine breach of these conditions that is such a striking characteristic
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of much health care, and that results in the complex regulatory
problem.

We believe that the techniques described in this book offer impor-
tant support for the regulatory function. The volume of data available
to assess health care performance has increased considerably, as health
care organisations have been obliged to submit standardised electronic
information, whether for performance monitoring or billing purposes.
In future, even more detailed, timely and accurate information is likely
to be produced, facilitated by continually improving technological
capabilities and innovations such as the electronic health record. The
traditional problem of inadequate, unreliable, delayed and inconsis-
tent data is therefore being replaced by one of data overload, and a
need to synthesise the information into meaningful regulatory mes-
sages. The methods of efficiency analysis described in this book have
great potential to satisfy this need. In particular, we feel they make two
unique and important contributions: offering information on the
weights attached to health care outputs, and assessing the causes of
unexplained variation in performance. We discuss these in turn.

10.2 Output weights

In principle, it is possible to envisage various experimental or survey
methods that could secure information on the valuations attached to
health care outputs. For example, the World Health Organization
(2000) undertook a survey of key informants to estimate the relative
valuation placed on five health system outputs. Various other techni-
ques are available to infer popular valuations (Ryan et al. 2001).
However, these methods require careful methodological development,
may require very large samples, are the subject of fierce debate, and
can reveal very large variations in individual preferences.

In contrast, the methods of efficiency analysis offer information on
weights as a natural by-product of the analytic process. In the case of
parametric analysis, the weights are the estimated coefficients on the
various outputs. They indicate the value — at the margin — of an addi-
tional unit of output. In general, the estimation procedures used imply
that the sample average valuation of the output determines the appro-
priate weight to use. This assumes that — on average — organizations
apply the socially optimal priority to each output. In a non-market
setting, this assumption is open to challenge. However, regulators will
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often feel that, in the absence of clearer guidance from policy makers, it
is a reasonably neutral assumption. We would merely note that the use
of parametric output coefficients is conservative, as it reflects current
practice, and that it may therefore not always accurately reflect current
policy priorities.

DEA adopts a completely different approach to output weights. In
its simplest form, it permits complete flexibility in the weights adopted
by each organisation, and therefore allows each organisation to be
assessed with an entirely different set of weights. It simply requires
that, given its choice of output weights, the organisation must be
assessed against all other organisations, using that same set of weights.
DEA then searches for the set of weights that cast the organisation in
the best possible light. It therefore offers conservative judgements on
its level of inefficiency, because that set of weights may not conform to
the regulator’s chosen priorities.

We have discussed the treatment of weights in more detail in
chapter 8. We conclude that there is a pressing need to ensure that —
whatever method is used — the technical analysis should be assessed in
the light of the regulator’s policy priorities. There is no single satisfac-
tory approach to the treatment of output weights. Rather, the regula-
tor needs always to consider explicitly how weights should be set, and
to ensure that technical analysis is consistent with that choice. The
methods described here can be used to inform but not determine the
choice of weights.

10.3 Partitioning unexplained variation

Once a set of output weights has been chosen, it is a straightforward
matter to construct a ratio of outputs to inputs (expressed as costs). This
simple cost-effectiveness ratio may then be used to rank organisations,
and there is no need for analytic techniques. However, a widespread
concern in health care is the extent to which such rankings ignore
external influences on performance, such as differences in patient char-
acteristics, differences in geography, differences in input prices, and other
factors outside the direct control of the organisation. A fundamental role
of efficiency analysis is to offer a range of technologies for handling this
complication.

The simplest approach to handling an environmental factor in both
parametric and non-parametric methods is to enter it as an additional
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uncontrollable input into the model specification. This effectively
‘excuses’ any unexplained variation in performance correlated with
the factor, and therefore results in increased estimates of efficiency
among those organisations suffering especially adverse circumstances
associated with the environmental factor.

Although having the merit of simplicity, such direct methods suffer
from both methodological and practical difficulties, and a variety of
multistage analytic techniques have been developed to accommodate
environmental factors. These remain the subject of academic debate,
and the analyst often has a delicate job of balancing the demands of
methodological rigour and practical usefulness. Moreover, most meth-
ods assume that the environmental variables can be measured, and
that their potential impact on performance is uncontested. In practice
this is often not the case. The analyst often has available only proxy
measures of the environment (for example, measures of population
morbidity might be approximated by measures of mortality).

Variations in measured performance can be due to many factors:
differences in the citizens being served; the external environment — for
example, geography, economic circumstances, other agencies, culture;
the quality of resources being used; different accounting treatments; data
errors; random fluctuation; different organisational priorities; and dif-
ferences in efficiency. There are often heated professional debates about
which factors are legitimate uncontrollable influences on performance
and which are within the control of management. Efficiency analysis can
only partially contribute to these debates. There will always be room for
argument over whether the apparent correlation between a putative
explanatory factor and inefficiency is because it genuinely indicates an
inhibition to better performance, or merely reflects a tendency of orga-
nisations with certain characteristics to perform poorly. Moreover, much
depends on the purpose of the analysis. In the short run, very little may be
controllable by the health care organisation, whilst in the longer term
factors such as capital stock can be reconfigured. The regulator therefore
needs to have a clear idea of the required scope of the analysis.

Stochastic frontier methods seek to address the problem of un-
controllable influences on performance by partitioning the variance
into an efficiency element and a random element. This may appear to
obviate the need to measure all potential environmental factors, as
they may be captured in the random element. However, as chapters 3,
4 and 8 discuss, this makes strong assumptions about the nature of the
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omitted environmental variables, and requires apparently arbitrary
judgements about the nature of the one-sided error term. We believe
that this is a fundamental weakness of SFA that requires further
methodological examination.

In chapter 9 we introduced an alternative approach to modelling
multiple outputs when environmental factors are unknown or unmea-
surable, using the methods of seemingly unrelated regression. As dis-
cussed, this method is experimental and also has its limitations. In
particular, it focuses on the performance of individual outputs rather
than offering a global measure of inefficiency. However, we argue that
this may in some circumstances be more useful than seeking out the
global measures that have been the traditional focus of efficiency
analysis.

10.4 Unresolved technical issues

Given twenty-five years of concerted endeavour by a large research
community, it may seem surprising to claim that there remain some
fundamental methodological challenges for the theory and practice of
efficiency analysis. Yet throughout this book we have found it neces-
sary to highlight unresolved difficulties that the analyst must address
in order to develop a satisfactory model.

In chapter 3 we suggested that the most singular difference between
efficiency analysis and conventional analytic techniques is the switch
in emphasis from the model coefficients to the unexplained residual.
To a greater or lesser extent, the residual is interpreted as an indication
of inefficiency. We do not believe that conventional model-building
methods are appropriate given this changed focus. In particular, ser-
ious consequences might arise for individual organisations and the
broader health system if inefficiency is incorrectly estimated. Costs
of incorrect inference include:

e unrealistic targets for some organisations;

e focusing on incorrect ‘beacon’ organisations;

e unwarranted complacency in some organisations;

e faulty judgements about levels of inefficiency in the entire sector.

These costs take the form of faulty regulation and are very different to
the costs of the Type I and Type Il errors that are considered in conven-
tional statistical analysis. In our view, the emphasis on individual
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residuals may therefore require fundamental re-examination of the
principles of empirical model-building.

We have also referred to some other unresolved generic challenges
for efficiency analysis where we feel existing methodology is deficient.
As well as the problem of how to incorporate environmental variables
into the analysis, we have raised concerns about the treatment of
uncertainty and the development of dynamic models.

Uncertainty takes two broad forms: data uncertainty and model
uncertainty. The first arises from variability in the underlying data
and is well understood. Examining data uncertainty can be challen-
ging in the context of efficiency analysis but it is nevertheless feasible
using approaches such as Monte Carlo simulation. Model uncertainty
is much less well understood but arises from the possibility that the
underlying model may have been mis-specified. Even though it is
probably the dominant form of uncertainty in efficiency analysis, it
is unusual to see any formal treatment of model uncertainty, other
than some sort of sensitivity analysis in the form of a presentation of
results from a suite of model specifications.

Many health care settings have important dynamic characteristics
that make cross-sectional analysis inappropriate. For example, out-
comes from preventative programmes are often the results of years of
endeavour on the part of health authorities. As discussed in chapter 2,
panel data are beginning to emerge that make modelling of such pro-
cesses feasible. Chapters 4 and 6 describe in detail current approaches
to modelling such data. However, at this stage the development of truly
dynamic efficiency models is in its infancy.

In addition to these generic issues, there are some challenges that are
specific to the two broad approaches to efficiency measurement dis-
cussed in the book. Parametric methods have many strengths, most
notably the need to appeal to economic theory in making specification
decisions and exploitation of the full information set when deriving
organisational estimates of inefficiency. However, parametric techniques
require quite constraining assumptions relating to functional form,
and even modest complexity can require an unfeasibly large sample
size. Moreover, the most serious concern relating to SFA is the issue
treated at length in chapter 8: model specification in SFA is a joint
consideration relating to the choice of explanatory variables and the
choice of one-sided error structure. The one-sided error could be captur-
ing inefficiency, but it could also be capturing omitted environmental
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variables. Conversely, the one-sided error could be affected by incorpora-
tion in the model of variables wrongly specified as environmental. At
present there is no way — other than an appeal to expert judgement — of
determining whether the choice of explanatory variables and error
structure is correct.

DEA gives rise to many model-building challenges for which there is
little analytic guidance. These include:

e how to choose inputs and outputs in the absence of any model
selection criteria;

e how much weight flexibility to permit;

e how to model and calculate uncertainty and to test for the robust-
ness of results;

e whether data sparsity leads to biased efficiency estimates for some
organisations;

e how to incorporate environmental factors (one-stage or multistage

methods);

how to test for model mis-specification.

There is some literature addressing these issues, but there remains a
challenging research agenda to offer the analyst a more secure model-
building methodology. In the meantime, the user should be alert to the
arbitrary manner in which DEA models must often be developed.

10.5 For policy makers and regulators

This book has been aimed more at technical analysts than policy makers.
However, we have highlighted some important messages for policy
makers. First, efficiency modelling methodology is highly contested
and still at a developmental stage. Efficiency results are dependent on
numerous technical judgements for which there is often little guidance on
best practice. Many of these judgements are properly political rather
than technical issues (such as the choice of outputs), suggesting the need
for a careful dialogue between analysts and policy makers. A central
challenge is often to secure the appropriate involvement of policy makers
in the model-building process.

From a regulatory perspective, it may often be the case that a very
much simpler methodology than SFA or DEA is appropriate, perhaps
in the form of a simple cost-effectiveness ratio. Also, there may be
circumstances when analytic methods other than SFA/DEA, such as
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those outlined in chapter 9, may be appropriate. As suggested above,
the major contributions of efficiency methods to the regulatory func-
tion are to manage large data sets, to adjust for exogenous influences
on performance and to partition the unexplained variation in perfor-
mance into inefficiency and other factors. However, their limitations
are such that they should never be the only criterion for measuring
organisational performance. Instead, they should be used in conjunc-
tion with other instruments, such as more detailed scrutiny of health
care organisations, perhaps in the form of inspection.

In deploying and interpreting efficiency models, regulators may
need to apply a range of criteria for model selection in addition to
the conventional technical criteria. These might include practicality,
parsimony, freedom from bias, plausibility, acceptability and freedom
from perverse incentives. The extensiveness of these considerations
indicates the complexity of the real-world regulatory problem when
compared with the textbook considerations discussed in this book.

In short, we believe that efficiency models can make a valuable
contribution to any health care regulatory regime. Whilst, in order
to ensure that they are used appropriately, we have dwelt on their
limitations, they nevertheless offer powerful insights into organisa-
tional performance. We have been struck by how rarely they appear to
have been used in real-world (as opposed to academic) health care
settings. Whilst they can only ever inform and never determine reg-
ulatory judgements, they must surely become part of the analytic
armoury of any competent regulator.
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Data description

Table A.1 gives a description of the data set used in the case studies in
chapters 3 to 7 of this book. The data set includes four years of data
for the period 1994/95-1997/98 and covers acute NHS hospital trusts
in England. The variables are described in more detail below.

Table A.1. Descriptions of variables in data set

Variable Description

TOTCOST Total cost or total revenue
expenditure

INPATIENTS Total inpatient episodes weighted
by HRG case mix index

OUTPATIENTS Total first outpatient attendances

A&E Total A & E attendances

STUDENTS Student whole-time teaching
equivalents per inpatient spell

RESEARCH Percentage of total revenue spent
on research

FCE Finished consultant episode inter-
speciality transfers per spell

EP_SPELL Episodes per spell

TRANS-IN Transfers in to hospital per spell

TRANS-OUT Transfers out of hospital per spell

EMERGENCY Emergency admissions per spell

FU-OUTPTS Follow-up outpatient attendances
per inpatient spell

EMERINDX Standardised index of unexpected

emergency admissions/total
emergency admissions

P-15 Proportion of patients under 15
years of age
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Table A.1. (continued)

Variable Description

P-60 Proportion of patients 60 years or
older

P-FEM Proportion of female patients

MFF Market forces factor — weighted

average of staff, land, buildings

and London weighting factors
HERF15 Herfindahl concentration/

competition index, 15-mile

radius
AVBEDS Average available beds
HEATBED Heated volume per bed
SITES50B Sites with more than 50 beds
ITINDX Scope/specialization index,

information theory index

TOTCOST measures total revenue expenditure and where the data
are used in a multiperiod context, the expenditure has been deflated
by the GDP deflator. Hospitals produce inpatient episodes of care
(INPATIENTS) which are weighted by a healthcare resource group
(HRG) case mix measure which groups patient activity into resource-
homogeneous categories (Benton et al. 1998). In order to estimate a
case mix index for a hospital, all episodes are allocated to a healthcare
resource group and weighted according to the expected cost of that
HRG (Street and Dawson 2002). The average cost weight for all cases
treated over a year forms the scalar case mix index for each hospital.
The national average case weight was set to equal 100, and case mix
indices above 100 thus represent hospitals that have treated a more
complex than average mix of cases. This index was then used to adjust
inpatient episodes.

Additional activities include total first outpatient attendances
(OUTPATIENTS) and A&E attendances (A&E). Teaching activity is
picked up through medical student whole-time teaching equivalents
per inpatient spell (STUDENTS). Teaching and research (RE-
SEARCH) activities constitute important secondary outputs of NHS
hospitals.
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Measurement of the volume of inpatient care performed by NHS
acute hospitals has been through the finished consultant episode (FCE)
which measures the length of time a patient is under the care of a
single consultant. During a single hospital admission, however, multi-
ple FCEs might occur as a result of transfers within hospitals or
between consultants. The inpatient spell, or set of episodes constitut-
ing a single admission, thus serves as a slightly higher level of aggrega-
tion of inpatient activity. Spells requiring inter-speciality transfers are
likely to be more complex than those which can be fully treated by a
single consultant or within a single speciality. Given the adjustment
for episodes per spell (EP_SPELL), FCE captures the additional effect
of inter-speciality transfers over and above the average multiple FCE.

Large fluctuations in levels of emergency admissions imply that
more fixed capacity has to be retained for a given average level of
activity. EMERGENCY measures the proportion of spells that involve
an emergency admission. EMERINDX is a standardised index of
unexpected emergency admissions divided by total emergencies and
captures unpredictable demand patterns.

The basic unit of outpatient activity is assumed to consist of first,
rather than follow-up, outpatient attendances. Many outpatient at-
tendances occur because patients require follow-up for some time
following the first attendance. Since such follow-up attendances con-
stitute genuine additional health care output, FU-OUTPTS measures
non-primary follow-up outpatient attendances per inpatient spell.

HRGs may inadequately represent the health care requirements of
patients, so this is captured by additional variables. P-15 measures
whether hospitals expend more resources on younger patients, diag-
nosis and other factors being equal (Soderlund et al. 1995). Elderly
patients (P-60) are likely to have more complex care needs, and these
may not be captured entirely by HRGs, which have only limited age
sensitivity. P-FEM captures any gender-specific differences in health
care requirements and costs.

Market prices for inputs including land, buildings and labour differ
between hospitals because of their geographic location (MFF). Argu-
ably this represents an unavoidable environmental influence on the
ability of hospitals to deploy inputs efficiently.

Average bed numbers (AVBEDS) may be considered fixed in the short
run. While hospital managers do have some control over the size and
capacity of their institution, it is expected that there will be some
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reluctance radically to alter capacity. Decreasing hospital capacity
might be particularly difficult because of public opposition and implied
job loss.

Heated volume per bed (HEATBED) captures potential inefficien-
cies in how hospital buildings are used to create treatment capacity
(represented by beds). A large amount of heated volume per bed is
assumed to represent less efficient use of capital.

Single-speciality hospitals are likely to draw patients from further
afield, and have greater short-term variation in demand for services
because of the lack of cross-speciality compensation effects. Econo-
mies of specialisation, in contrast, might occur where relatively under-
utilised, specialised fixed resources are centralised in one institution,
rather than spread over many. This can be examined through the
inclusion of an information theory index (ITINDX) which calculates
the degree to which the proportions of different case types (HRGs) in a
hospital differ from the national average proportions of case types.
The formula used for derivation of the information theory index is
given by Farley (Farley 1989; Farley and Hogan 1990). An increased
IT index indicates a relatively more specialised hospital (i.e. one with a
narrower scope of activities). General hospitals typically have an IT
index of between 0.2 and 0.5, whereas this may increase to 2.5 in a
highly specialised, single-discipline, hospital.

Hospitals that are located on a number of sites, rather than concen-
trated in one location, are likely to suffer from duplication of some
capital and staff inputs, as well as incurring communication and man-
agement difficulties, thus increasing costs. The number of major sites
with more than fifty beds (SITES50B) was chosen to exclude sites that
were simply isolated accommodation or chronic care or outpatient
facilities.
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