


Preface

Econophysics describes phenomena in the development and dynamics of
economic systems by using of a physically motivated methodology. First of all,
Mandelbrot had analyzed economic and social relations in terms of modern
statistical physics. Since then, the number of publications related to this
topic has increased irresistible greatly. To be fair to this historical evolution,
I point out, however, that physical and economic concepts had already been
connected long ago. Terms such as work, power, and efficiency factor have
similar physical and economic meanings. Many physical discoveries - for
instance in thermodynamics, optics, solid state physics, or chemical physics 
correspond to a parallel evolution in the fields of technology and economics.

The term econophysics, or social physics, also is not a ree nt idea. For ex
ample, in the small book Sozialphysik published in 1925 [2211, R. Lammel
demonstrates how social and economic problems can be understood by
applying simple physical relations. Of course, the content of early social
physics and the topics of modern econophysics are widely different.
Nevertheless, the basic idea (i.e., the description and the explanation of
economic phenomena in· terms of a physical theory) did not change over
the whole time. At this point, an important warning should be pronounced.
Econophysics is no substitute for economics. An economic theory differs
essentially from what we understand as econophysics. Of course, a short
definition of economics is not very simple, even for seasoned economists. A
possible working definition may be: Economics is the study of how people
choose to use scarce or limited productive resources to produce various
commodities and distribute them to various members of society for their
consumption. This definition suggests the large variety of disciplines
. m in I un er e gener nD onomies: JnlCTOCconomies, n Tolling,

macroeconomics, finance, environmental economics, and many other
scientific branches are usually considered a part of economics.

From this short characterization of economics, it is obvious that the
aims of economic investigations and physical research are strongly different.
Therefore, the question remains how physical knowledge may contribute to
progress in the understanding of the dynamics of economic systems. As
mentioned above, it is not the aim of econophysics to replace some or
all of the traditional and modern economic sciences by new, physically
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motivated theories and methods. The key to answering the question is given
by two essential terms: the methodology of physics and the statistical physics
of complex systems.

The successful evolution of physics during the last three centuries rests on
its methodology, which can certainly be described as being analytical. This
means that by decomposing a system into its parts, a physicist may try to
understand the properties of the whole system.

In particular, the physical experiment plays a central role during the
formation of new physical knowledge. Especially, the reproduction of the
results in the course of a well-defined experiment backs up physical theories.
A well-established theory then allows predictions about very complicated
systems that were never analyzed before by physical methods or that cannot
be investigated by physical experiments. A traditional example is astronomy.
The motion of planets may be observed with sufficiently complicated
instruments, but these observations are not reproducible experiments in a
physical sense. On the other hand, gravitational law can be checked by various
lab experiments. With knowledge of gravitation theory and starting from
well-defined initial conditions, we are able to calculate the motion of planets
over a sufficiently long period in agreement with astronomical observations.

A similar situation occurs also for complex systems. General evolution
laws, limit probability distribution functions, and universal properties may
be checked experimentally for simple systems and allow us to formulate a
general theory. If we have obtained such a suitable theory about the behavior
of several complex systems, we may use this knowledge also for the analysis
of more complicated systems.

We should be aware that the degree of complexity of the economic world is
extremely high, which means that usually it is not possible to make economic
observations under the controlled experimental conditions characteristic of
scientific laboratories. As a result of this limitation, the quantitative economic
knowledge is far from complete. However, econophysics may give a consequent
basis for the interpretation of the structure and dynamics of economic systems
or subsystems such as financial markets or national economies.

The main goal of the book is to present some of the most useful
theoretical concepts and teclmiques for understanding the physical ideas
behind the evolution and the dynamics of economic systems. But it should
be r ar that the con 8 and tools presented are al relevnnt to a
much larger class of problems in the natural sciences as well as in the social
and medical sciences. The only condition is that the underlying systems be
classified as sufficiently complex. From this point of view, the mathematical
background and the general theoretical concept used for the analysis of
economic systems may be helpful also for the description of social systems,
biological organisms, populations, communication networks, biological
evolution processes, meteorology, turbulence, granular matter, epidemics, the
geosciences, and so on.
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The central theme of the book is that of collective and cooperative
properties in the behavior of economic units, such as firms, markets, and
consumers. It is very important to understand these properties as a
consequence of the interaction of a large number of degrees of freedom.
This fact allows us to describe economic phenomena using modern physical
concepts, such as deterministic chaos, self-organization, scaling laws,
renormalization group techniques, and complexity, but also traditional ideas
of fluctuation theories, response theory, disorder, and non-reproducibility.

Obviously, an applicable description of a complex system requires the
definition of a set of relevant degrees of freedom. The price one has to pay
is that one gets practically no information about the remaining irrelevant
degrees of freedom. As a consequence, the theoretical basis used for the
analysis of economic processes can be described as a probabilistic theory.
The more or less empirical specification of the relevant and irrelevant degrees
of freedom is influenced by the scales in mind. Characteristic physical scales
are time and length scales. In economics, an additional scale, the so-called
price scale, has often been taken into account. Econophysics focuses its
attention on the description of economic problems in terms of various scales.
These scales of interest determine the choice of the relevant degrees of
freedom and the mathematical method for solving the underlying problem.

The first two chapters cover important notations of complex systems and
the statistical physics of out-of-equilibrium systems considering the dominant
scales and the relevant degrees of freedom, respectively. The mathematics is
presented in a simple and intuitive way whenever possible with respect to the
mathematical rigor.

The third chapter deals with problems related to financial markets.
Although finance and financial mathematics offer a large number of different
concepts and mathematical instruments to solve various practical problems,
the physical concept presented provides a way to derive the complicated,
partially anomalous fluctuations of stock prices and exchange rates from
general, universal laws. Additionally, this chapter extends the mathematical
and physical tools, for instance by introducing the concept of the
renormalization group approach, the generalized central limit theorem, and
the theory of large fluctuations.

The fourth chapter considers economic problems that are not directly
conn . h t ynamiCli of e. i OnOmlCli, t e Ihnito:U<>n
of thermodynamic concepts in the economy, environmental economics, and
macroeconomics are discussed in terms of deterministic chaos, stability
theory, scaling laws, field theories, and self-organized criticality.

In the subsequent chapter, several numerical methods used for the solution
of economic problems are discussed and compared with similar physical
techniques. Especially, various kinds of Monte Carlo simulations (dynamical,
reversed, and quasi-Monte Carlo) and cellular automaton theories will be
introduced.
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The last chapter gives an overview of several methods that may be
applied for the prediction of the evolution of economic phenomena and for
the estimation of general trends in the evolution of economic systems.

This book derives from a course taught several times at the university at
Ulm in the Department of Theoretical Physics starting in 2000. Essentially
aimed at students in econophysics, the course attracted students, graduate
students, and postdoctoral researchers from physics, chemistry, economics,
and financial mathematics. I am indebted to all of them for their interest
and their discussions.

The course itself contains also some lectures about the dynamics of traffic
and communication networks. These are not included in this book but instead
I refer the reader to the comprehensive specialiced literature.

I wish to thank P.Reineker, P. Steiner, S. Trimper, S. Stepanow, B. M.
Schulz, and S. Henkel for valuable discussions. Last, but not least, I wish to
express my gratitude to Springer-Verlag, in particular to Dr. H. J. Koelsch
and M. Mitchell for their excellent cooperation.

Ulm, October 2002 Michael Schulz
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1. Economy and Complex Systems

1.1 What Is a Complex System?

The aim of this book is to develop concepts and methods that allow us to
deal with economic systems from a unifying physically motivated point of
view. An economy is usually classified as a manifestation of complex social
systems. To clarify this statement, we have to discuss what we mean by
complex systems. Unfortunately, an exact definition of complex systems is
still an open problem. In a heuristic manner, we may describe them as:

Complex systems are composed of many particles, or objects, or elements
that may be of the same or different kinds. The elements may interact in a
more or less complicated fashion by more or less nonlinear couplings.

In order to give this formal definition a physical context, we should
qualitatively discuss some typical systems that may be denoted truly
complex.

The various branches of science offer us numerous examples, some of which
turn out to be rather simple, whereas others may be called truly complex.
Let us start with a simple physical example. Granular matter is composed of
many similar granules. Shape, position, and orientation of the components
determine the stability of granular systems. The complete set of the particle
coordinates and of all shape parameters defines the actual structure.

Furthermore, under the influence of external force fields, the granules
move around in quite an irregular fashion, whereby they perform numerous
more or less elastic collisions with each other.

A driven granular system is a standard example of a complex system. The
permanent change of the structure due to the influence of external fields and
the interaction between the components is a characteristic feature of complex
systems.

Another standard complex system is Earth’s climate, encompassing all
components of the atmosphere, biosphere, cryosphere, and oceans and con-
sidering the effects of extraterrestrial processes such as solar radiation and
tides.

Computers and information networks are interpreted as a new class of
complex systems. This is especially so with respect to hardware dealing
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with artificial intelligence, where knowledge and learning processing will be
replacing the standard algebra of logic.

In biology, we are again dealing with complex systems. Each higher
animal consists of various strongly interacting organs with an enormous
number of complex functions. Each organ contains many partially very strong
specialized cells that cooperate in a well-regulated fashion.

Probably the most complex organ is the human brain, composed of 1011

nerve cells. Their collective interaction allows us to recognize visual and
acoustic patterns, to speak, or to perform other mental functions. Each
living cell is composed of a complicated nucleus, ribosomes, mitochondria,
membranes, and other constituents, each of which contain many further
components. At the lowest level, we observe many simultaneously acting
biochemical processes, such as the duplication of DNA sequences or the
formation of proteins.

This hierarchy can also be continued in the opposite direction. Animals
themselves form different kinds of societies. Probably the most complex
system in our world is the global human society, especially the economy, with
its numerous participants (such as managers, employers, and consumers) its
capital goods (such as machines, factories, and research centers), its natural
resources, its traffic, and its financial systems, which provides us with another
large class of complex systems. Economic systems are embedded in the more
comprehensive human societies, with their various human activities and their
political, ideological, ethical, cultural, or communicative habits.

All of these systems are characterized by permanent structural changes on
various scales, indicating an evolution far from thermodynamic equilibrium.
The basic constituents of each complex system are its elements, which are
expected to have only a few degrees of freedom.

Starting from this microscopic level, we wish to explain the evolution of a
complex system at larger scales. Probably, we would arrive at a quite different
description of the system at the macroscopic level. Definitely, we have to deal
with two problems. First, we have to clarify the scales of interest, and then we
have to show that the more or less chaotic motion of the elements contributes
to pronounced collective phenomena at macroscopic scales.

The definition of correct microscopic scales as well as suitable macroscopic
scales may sometimes be an ambiguous problem. For instance, in ecology we
deal with a hierarchy of levels that range from the molecular level through
that of animals and humans to that of economic systems and societies.
Formally, we can start from the quantum-mechanical level or alternatively
from a microscopic, classical many-body system. But in order to describe a
complex system at this ultimately microscopic level, we need an enormous
amount of information, which nobody is able to handle.

A macroscopic description allows a strong compression of data so that
we are no longer concerned with the microscopic motion but rather with
properties at large scales. The appropriate choice of the macroscopic level
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is by no means a trivial problem. It depends strongly on the question in
mind. In order to deal with complex systems, we quite often still have to find
adequate variables or relevant quantities to describe the properties of these
systems. Each macroscopic system contains a set of usually collective
large-scale quantities that may be of interest for the underlying
problem. We will denote such degrees of freedom as relevant quantities. The
knowledge of these quantities permits the characterization of a special feature
of the complex system at the macroscopic level. For instance, investigations
of financial markets are based mainly on the analysis of temporally variable
asset prices. Thus, we may classify these prices as relevant quantities.
However, the giant system of the global economy, with its very complex
evolution, is hidden behind these price fluctuations. All of these microscopic
or macroscopic well-founded degrees of freedom form the huge set of irrelevant
observables for the relatively small group of relevant quantities.

The second problem in treating complex systems consists in
establishing relations that allow some predictions about the future
evolution of the relevant quantities. Unfortunately, the motions of the
irrelevant and relevant degrees of freedom of a complex system are normally
coupled strongly together. Therefore, an accurate prediction of future values
of the relevant degrees of freedom includes automatically the determination
of the accurate evolution of the irrelevant degrees of freedom.

This strategy is naturally a hopeless attempt, independent from the
underlying complex system. But a formal possibility to estimate an upper
boundary for the total number of degrees of freedom is nevertheless
offered. To this aim, we may isolate at a certain time the complex system,
including a sufficiently large part of its environment. The momentary state
of the isolated system is now considered as an initial condition for further
evolution. If the further development of the relevant degrees of freedom runs
as it would in the open system, the isolated system is sufficiently large
for a quantitative description of the contained complex system. From a
mathematical point of view, the evolution of the complex system is then
embedded in a well-defined initial problem.

Before we start with the mathematical treatment of complex (especially
economic) systems, let us now try to define them more rigorously. The
question of whether a system is complex or simple, depends strongly on
the level of scientific knowledge. An arbitrary system of linear coupled
oscillators is today an easily solvable problem. In the lifetime of Galileo,
without knowledge of the theory of linear differential equations, one surely
would have classified this problem as a complex system in the context of our
definition specified above.

A modern definition that is independent of the actual mathematical
level is based on the concept of algebraic complexity. To this aim, we must
introduce a universal computer that can solve any mathematically reasonable
problem after a finite time with a program of finite length.
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Without going into details, we point out that such a universal
computer can be constructed, at least in a thought experiment as was shown
by Turing. Of course, there exist different programs that solve the same
problem. As a consequence of number theory, the lengths of the programs
solving a particular problem have a lower boundary. This minimum length
may be used as a universal measure of the algebraic degree of complexity.
Unfortunately, this meaningful definition raises another problem. As can be
shown by means of a famous theorem by Gödel, the problem of finding a
minimum program cannot be solved in a general fashion. In other words, we
must estimate the complexity of a system in an intuitive way and led by the
level of scientific knowledge.

The concept of complexity is a very versatile one. In this book, we
want to show how various economic problems can be described by methods
belonging to quite different disciplines of the physics of complex systems. At
the same time, we will see that at a sufficiently abstract level there exist
profound analogies between the behavior of economic systems and other
complex systems.

1.2 Determinism Versus Chaos

We want to come now to the mathematical treatment of an arbitrary complex
system. We proceed from the global system discussed as a thought experiment
in the previous section. This system includes both the complex system and
a sufficiently large part of its environment. The exact determination of all
time-dependent relevant quantities implies the solution of the complete set
of microscopic equations of motion of the global system.

The formally complete predictability of the future evolution of the
embedded complex system is a consequence of the deterministic Newtonian
mechanics. In the sense of classical physics, determinism means that the
trajectories of all particles can be computed if their momentum and
positions are known at an initial time. The deterministic principle has been
shaken twice in modern physics.

First, quantum mechanics tells us that we are not able to make accurate
predictions of the trajectory of a particle. However, we can argue that the
deterministic character is still conserved as a property of the wave functions.
Second, the theory of deterministic chaos has shown that even in classical
mechanics predictability cannot be guaranteed without absolutely precise
knowledge of the microscopic configuration of the complete global system.

Chaos is not observed in linear systems. A mechanical system is linear if
the output from the system is proportional to the input. Mathematically,
the signature of a linearity is the superposition principle, which states
that the sum of two solutions of the mechanical equations describing the
system is again a solution. The theory of linear mechanical systems is fully
understood except for some technical problems. The breakdown of the
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linearity, and therefore the breakdown of the superposition principle, is a
necessary condition for the behavior of a nonlinear mechanical system to
appear chaotic.

However, nonlinearity alone is not sufficient for the formation of a chaotic
regime. For instance, the equation of a simple pendulum is a nonlinear one.
The solutions are elliptic functions without any kind of apparent randomness
or irregularity. Solitons are further examples of a regular collective motion in
a system with nonlinear couplings. In particular, solitons are stabilized due
to the balance of nonlinearity and various dispersion effects.

Standard problems of classical mechanics, such as falling bodies, the
pendulum, or the dynamics of planetary systems considering only a system
composed of the sun and one planet require only a few degrees of freedom.
These famous examples allowed the quantitative formulation of mechanics
by Galileo and Newton. In other words, these famous pioneers of modern
physics treated one- or, at most, two-body problems without any kind of
chaotic behavior.

The mathematical processing becomes more and more complicated, and
the solution variety increases enormously, if we increase the number of degrees
of freedom and therefore the degree of complexity. Obviously, the tendency
to be chaotic increases if the number of degrees of freedom increases.

The apparent unpredictability of a deterministic, mechanical many-body
system arises from the sensitive dependence on the initial conditions and from
the fact that the initial conditions can be measured only approximately in
practice due to the finite resolution of any measuring instrument.

In order to understand this statement, we analyze a microscopic,
mechanical system with 2N degrees of freedom. The dynamics can be
rewritten in terms of deterministic Hamilton’s equations as

dqi

∂t
=

∂H

∂pi
and

dpi

∂t
= −∂H

∂qi
, (1.1)

where the qi’s (i = 1, ..., N) are the generalized coordinates, the pi’s are the
generalized momenta conjugate to the qi, and H is the Hamiltonian of the
system. Coordinates and momenta form the set of degrees of freedom.
Formally, these microscopic degrees of freedom can be combined into a
supervector Γ = {q1, ..., qN , p1, ..., pN}. Each vector Γ describes a certain
microscopic state of the underlying system. Thus, the whole system
under consideration can be represented by a point in a 2N -dimensional space,
spanned by a reference frame of 2N axes, corresponding to the degrees of
freedom {q1, ..., pN}. This space is called the phase space. It plays a
fundamental role, being the natural framework of the dynamics of many-
body systems.

Practically all trajectories of the system through the 2N -dimensional
phase space are unstable against small perturbations. The stability of an
arbitrary trajectory to an infinitesimally small perturbation is studied by
an analysis of the so-called Lyapunov exponents. This concept is very
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Fig. 1.1. The time evolution of an infinitesimally small ball of initial radius ε1 = ε2
in a schematic phase space. The ball is deformed into an ellipsoid with increasing
time.

geometrical. Imagine an infinitesimally small ball of radius ε (0) containing
the initial position of neighboring trajectories. Under the action of the
dynamics, the center of the ball may move through the phase space, and
the ball will be distorted. Because the ball is infinitesimal, this distortion is
governed by a linearized theory. Thus, the ball remains an ellipsoid with the
2N principal axes εα (t) (Figure 1.1). Then, the Lyapunov exponents can be
defined as

λα = lim
t→∞ lim

ε(0)→0

1
t

εα (t)
ε (0)

. (1.2)

The limit ε (0) → 0 is necessary because, for finite radius ε (0), as t increases,
the ball can no longer be adequately represented by an ellipsoid, due to
the increase of nonlinear effects. On the other hand, the long time limit
t → ∞ is important for gathering enough information to represent the entire
trajectory. Obviously, the distance between infinitesimal neighboring
trajectories diverges if the real part of at least one Lyapunov exponent is
positive.

If the diameter of the initial ball has a finite value, then the initial shape is
very violently distorted (Figure 1.2). The ball transforms into an amoebalike
body that eventually grows out into extremely fine filaments that spread out
over the whole accessible phase space. Such a mixing flow is a characteristic
property of systems with a sufficiently high degree of complexity.

There remains the question of whether Lyapunov exponents with positive
real part occur in microscopic mechanical systems. We obtain as a direct
consequence of the time-reversal symmetry that, for every Lyapunov
exponent, another Lyapunov exponent exists with opposite sign. In other
words, we should expect a regular behavior only then if the real parts of all
Lyapunov exponents vanish.
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Fig. 1.2. The deformation of a finite ball of the phase space in the course of its
time evolution.

However, this situation is practically excluded for complicated many-
body systems. Computer simulations have demonstrated also that relatively
simple mechanical systems with a few degrees of freedom already show
chaotic behavior. All the more, economic systems, such as stock markets and
travel networks, or human societies, offer a pronounced chaotic behavior on
microscopic scales due to the enormous number of degrees of freedom.

1.3 The Probability Distribution

Although most many-body systems exceed the technical possibilities of the
mathematical calculus of mechanics, we are able to calculate the properties of
large systems by applying of methods belonging to statistical physics. In order
to do this, we have to ask for a general concept describing complex systems
at microscopic scales. This description should fulfill two conditions. On the
one hand, the approach should consider the apparent unpredictability of the
chaotic motion of many-body systems, and on the other hand, it should be
a starting point for establishing relations between various relevant quantities
at the macroscopic level.

As already mentioned in the previous section, a concrete prediction about
the microscopic movement of all particles is impossible if the initial condition
cannot be determined exactly. We may, however, give the probability for the
realization of a certain microscopic state either on the basis of the preparation
of the complex system or due to a suitable empirical estimation.

The intuitive notation of the probability is clear in dice games or coin
tossing. The probability is empirically defined by the relative frequency of a
given realization repeating the game an infinite number of times. Probability
reflects our partial ignorance, as in the outcome of a dice game. This frequency
concept of probability, introduced at the beginning of the last century, is not
very suitable for the characterization of complex systems such as financial
markets, traffic networks, or human societies.

In fact, we are neither able to determine frequencies by a successive
repetition in the sense of a scientific experiment nor have we enough
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information about possible outcomes. An alternative way to overcome this
dilemma is the interpretation of the probability as a degree of belief that an
event will occur. This concept was the original point of view of Bayes, and it
combines a priori judgments and scientific information in a natural way.

Bayesian statistics is very general and can be applied to any thinkable
process, independent of the feasibility of repeating the process under the
conserved conditions. This definition is particularly suitable for economic or
social systems because a repetition in the sense of a scientific experiment is
almost always impossible for such systems.

In order to formulate the probability concept more precisely, we use the
language of set theory. The elements of such a theory are denoted with respect
to the probabilistic properties as events. In particular, each microscopic state
represented by a vector Γ of the phase space is denoted as a certain event of
the underlying microscopic system.

Events form various sets, including the set of all events Ω and the set of
no events. For instance, an arbitrary region of the phase space corresponds to
such a set of events, and the whole phase space has to be interpreted as the
set Ω. All possible sets of events form a closed system under the operations
of union and intersection.

From this abstract point of view, the probability is now defined as a
measure P (A) of our degree of belief in the appearance of an arbitrary event
contained in the set A. The measure P (A) is always nonnegative, P (A) ≥ 0,
and normalized, P (Ω) = 1. Furthermore, if A and B are two nonoverlapping
sets, A ∩ B = ∅, the probability that an event is contained in A ∪ B is the
probability that the event is an element either of A or of B. This leads to the
main axiom of probability theory

P (A ∪B) = P (A) + P (B) for A ∩B = ∅. (1.3)

We generalize this relation to a countable collection of nonoverlapping sets
Ai (i = 1, 2, ...) such that Ai ∩Aj = ∅ for all i �= j and obtain

P

(⋃
i

Ai

)
=
∑

i

P (Ai). (1.4)

After this excursion into set theory, we can continue our original
problem. We consider the set of events A(Γ ) that the system is within an
infinitesimal volume element dΓ =

∏N
i=1[dqidpi] of the phase space centered

on the microscopic state Γ .
The main problem is to assign the probability measure dP (A(Γ ), t) that

at time t a microscopic state is an element of A(Γ ). This is an a priori
probability, which is simply assumed with respect to our experience. In other
words, this intuitive step reflects the degree of belief. It is convenient to write

dP = ρ(q1, ..., qs, p1, ..., ps, t)dq1...dqsdp1...dps = ρ(Γ, t)dΓ, (1.5)

where the function ρ(Γ, t) is denoted as the probability density for the
outcome of the state Γ at time t. By definition, the density is a nonnegative
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quantity. Each finite region R of the phase space is a union of infinitesimal
volume elements. Due to (1.4), the probability of finding a microscopic state
in this region at time t is

P (R, t) =
∫

R

dΓρ(Γ, t). (1.6)

If we expand the region R over the whole phase space, we receive the
normalization condition∫

ρ(Γ, t)dΓ = 1. (1.7)

This equation corresponds to P (Ω) = 1 in the language of set theory,
reflecting our knowledge that the certainty of finding the system somewhere
in the phase space is always true.

Finally, it should be remarked that the probabilistic description based on
Bayesian statistics is the only concept when we have not enough information
about a realistic system, and even if we have this information, it is still
a convenient representation for complex systems. Of course, the concrete
mathematical structure of a microscopic founded probability distribution may
be too complicated for a further treatment. But the probabilistic concept
itself permits the theoretical overcoming of the general problem that initial
conditions are measurable only with a finite accuracy.

1.4 The Liouville Equation

We want to address the task of whether we can determine the evolution
of the probability distribution for a given microscopic system. To this aim,
we assume that an initial state Γ0 was realized with a certain probability
ρ(Γ0, t0)dΓ .

In the course of the deterministic microscopic motion, the initial state is
shifted into another microscopic state along the trajectory Γ (t) = {qi(t), pi(t)}
with the boundary condition Γ (0) = Γ0. In other words, the probability
density ρ is conserved along each trajectory of the complex system. This
circumstance requires

dρ

dt
=

∂ρ

∂t
+

N∑
i=1

[
∂ρ

∂qi
q̇i +

∂ρ

∂pi
ṗi

]
= 0. (1.8)

After replacing the velocities q̇i and forces ṗi by the equations (1.1), we arrive
at

∂ρ

∂t
+ L̂ρ = 0, (1.9)

where we have introduced the Liouvillian of the system
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L̂ =
N∑

i=1

[
∂H

∂pi

∂

∂qi
− ∂H

∂qi

∂

∂pi

]
. (1.10)

The relation (1.9) is called the Liouville equation and is the most important
equation of statistical physics, just as the Schrödinger equation is the main
equation of quantum mechanics. The Liouvillian plays the same role that the
Hamiltonian plays in Newtonian mechanics. The Hamiltonian fixes the rules
of evolution of any microscopic state of the underlying system. In statistical
physics, the Liouvillian again defines the equation of motion, which is now
represented by the distribution function ρ.

For all microscopic systems, the mechanical and statistical representations
of the evolution are equivalent. The difference between the descriptions lies
in the definition of what we call the objects of evolution: points in phase
space are the objects of classical mechanics, while distribution functions are
the objects of statistical physics.

The meaning of the Liouville equation for the evolution of an economic
system and also for many other complex systems lies in the combination of
the probabilistic and deterministic features of the evolution process. Let us
believe in the sense of Bayesian statistics that an economic situation at time t0
can be described at the microscopic level by a probability distribution ρ(Γ, t0).
Then, the Liouville equation represents a deterministic map of ρ(Γ, t0) onto
the probability distribution ρ(Γ, t) at a later time t > t0. In other words, the
Liouville equation conserves our degree of belief.

1.5 Econophysics

Economics is traditionally oriented toward choice and decision problems. The
classical description of economics involves two general aspects that are of
particular interest for a physical interpretation of economic processes. First,
economics is a discipline that deals only with a certain aspect of reality,
namely the items of scarcity. In particular, it concentrates on the optimum
manner in which man employs scarce resources.

Second, economics focuses its attention on the behavior of various
human decision units, such as households, financial markets, and
governmental agencies. The outcome of an economic process was generally
considered to be a result of intrinsic or endogenous mechanisms of the
economic system itself and of various more or less external or exogenous
factors from a purely economic point of view.

However, economists are increasingly becoming aware of the fact that
economic systems are embedded in their human and natural environments
and that many apparently exogenous factors are a part of a larger complex
system of physical, biological, and social mechanisms controlling the evolution
of our planet.
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The question remains how physics can contribute to understanding
economic problems. The great success of physics rests on its methodology,
which can certainly be described as analytical. By decomposing a system
into its parts, a physicist tries to understand the properties of the whole
system. From this point of view, phenomena such as migration, commuting,
production decisions, financial transactions, traffic, and transportation can
be analyzed by applying of physical methods.

In order to deal with economic systems, we quite often still have to find the
relevant quantities to describe the essential properties of these systems. This
problem is still the task of economic investigations. The physical contribution
may consist of establishing more or less general equations that describe the
evolution of relevant quantities and the relations between these quantities on
the basis of universal laws.

A second task should be the solution of these equations by applying
modern techniques of statistical physics. This is, roughly speaking, the field
of econophysics.

Econophysics may give new impulses both to economic decision-making
and risk management and to a deeper understanding of systems with an
enormous degree of complexity. However, we warn that to understand
econophysics as an alternative way that replaces traditional and modern
economic sciences. These scientific disciplines still require a profound
economic knowledge.





2. Evolution and Probabilistic Concepts

2.1 Some Notations of Probability Theory

2.1.1 Probability Distribution of Relevant Quantities

In the microscopic probability distribution ρ (Γ, t), all degrees of freedom are
contained equally. Such a function, even if we were able to determine it, would
of course be impractical and therefore unusable for the analysis of complex
systems because of the large number of contained degrees of freedom.

In general, we are interested in the description of complex systems only on
the basis of the relatively small number of relevant degrees of freedom. Such
an approach may be denoted as a kind of reductionism. Unfortunately, we
are not able to give an unambiguous definition of what degree of freedom
is relevant for the description of a complex system and what degree of
freedom is irrelevant. As we have mentioned in the previous chapter, the
relevant quantities are introduced empirically in accordance with the
underlying problem.

To proceed, we split the complete phase space into a subspace of the
relevant degrees of freedom and the complementary subspace of the irrelevant
degrees of freedom. Then, every microscopic state Γ may be represented as
a combination of the set Y = {Y1, Y2, ...YNrel} of Nrel relevant degrees of
freedom and the set Γirr of the irrelevant degrees of freedom so that

Γ =
{
Y relevant degrees of freedom
Γirr irrelevant degrees of freedom (2.1)

The microscopic probability density may be written as ρ (Γ, t) = ρ (Y, Γirr, t).
In order to eliminate the irrelevant degrees of freedom, we integrate the
probability density over Γirr

p (Y, t) =
∫

dΓirrρ (Y, Γirr, t) . (2.2)

The remaining probability density p (Y, t) is more suitable for describing
complex systems. The elimination of all more or less microscopic, irrelevant
degrees of freedom corresponds to the transition from the microscopic level
to a macroscopic representation. By definition, the probability density p (Y, t)
is also normalized:
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dY p (Y, t) =

∫
dY dΓirrρ (Y, Γirr, t) =

∫
dΓρ (Γ, t) = 1. (2.3)

The integration over all irrelevant degrees of freedom means that we suppose
a maximal measure of ignorance of these quantities.

We may think about this description in geometrical terms. The system
of relevant degrees of freedom can be represented by a point in the
corresponding Nrel-dimensional subspace of the phase space. Obviously, an
observer records an apparently unpredictable behavior of the evolution of the
relevant quantities at the macroscopic scale if he considers only the relevant
data.

That is because of the fact that the dynamical evolution of the
relevant quantities is governed by the hidden irrelevant degrees of freedom on
microscopic scales. Thus, different microscopic trajectories in the phase space
can lead to the same macroscopic results in the subspace and, vice versa,
identical macroscopic initial configurations may develop into different
directions.

We are not able to predict the later evolution completely even if we
know the initial conditions precisely. In other words, the restriction onto the
subspace of relevant quantities leads to a permanent loss of the degree of
belief.

The average of an arbitrary function f (Γ ) is obtained by adding all values
of f (Γ ) considering the statistical weight ρ (Γ, t) dΓ . Hence

f (t) =
∫

dΓρ (Γ, t) f (Γ ) . (2.4)

The mean value may be a time-dependent quantity due to the time
dependence of the probability density. If the function f depends only on
the relevant degrees of freedom (i.e., f = f (Y )), then we get

f (t) =
∫

dΓρ (Γ, t) f (Y ) =
∫

dY p (Y, t) f (Y ) . (2.5)

In this expression, the dynamics of the irrelevant degrees of freedom are again
hidden in the distribution function p (Y, t). Obviously, the relevant probability
density satisfies all conditions necessary for a sufficient description of a
complex system on the level of the selected set of relevant degrees of freedom.

2.1.2 Measures of Central Tendency

Suppose that we consider a probability distribution function p (Y, t) with
only one relevant degree of freedom. Generally, each multivariable probability
density may be reduced to such a single variable function by integration over
all degrees of freedom except one.

Let us now answer the following question. What is the typical value of
the outcome of a given problem with a sufficiently high degree of complexity
if we know the probability distribution function p (Y, t)? Unfortunately,
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there is no unambiguous answer. The quantity used most frequently for the
characterization of the central tendency is the mean or average

y (t) =
∫

dY p (Y, t)Y. (2.6)

There are two other major measures of central tendency. The probability
P<(y, t) gives the time-dependent fraction of events with values less then y,

P<(y, t) =

y∫
−∞

dY p (Y, t) . (2.7)

The function P<(y, t) increases monotonically with y from 0 to 1. Using (2.7),
the central tendency may be characterized by the median y1/2 (t). The median
is the halfway point in a graded array of values,

P<(y1/2, t) =
1
2
. (2.8)

Finally, the most probable value ymax (t) is another quantity describing the
mean behavior. This quantity maximizes the density function

∂p (Y, t)
∂Y

∣∣∣∣
Y =ymax(t)

= 0. (2.9)

If this equation has several solutions, the most probable value ymax (t) is
the one with the largest p. Apart from unimodal symmetric probability
distribution functions, the three quantities differ. These differences are im-
portant for the interpretation of empirical averages obtained from a finite
number of observations.

For a few trials, the most probable value will be sampled first and the
average made on a few such measures will not be far from ymax (t). In
contrast, the empirical average determined from a large but finite number
of observations approaches progressively the true average y (t).

2.1.3 Measure of Fluctuations Around the Central Tendency

We consider again only one degree of freedom as a relevant quantity. When
repeating observations of this variable several times, one expects them to be
within an interval anchored at the central tendency. The width of this interval
is a measure of the deviations from the central tendency. A possible measure
of this width is the average of the absolute value of the spread defined by

Dsp(t) =

∞∫
−∞

dY
∣∣Y − y1/2 (t)

∣∣ p (Y, t) . (2.10)

The absolute value of the spread does not exist for probability distribution
functions decaying as or slower than Y −2 for large Y . Another measure is the
standard deviation σ. This quantity is the square root of the variance σ2:
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σ2 =

∞∫
−∞

dY [Y − y (t)]2 p (Y, t) . (2.11)

The standard deviation does not always exist, such as for probability densities
p (Y, t) with tails decaying as or slower than Y −3.

2.1.4 Moments and Characteristic Functions

Now, we come back to the general case of a multivariable probability
distribution function p (Y, t) with Y = {Y1, Y2, ...YNrel}. Here, Nrel is the
number of relevant degrees of freedom and therefore the dimension of the
vector Y . The moments of order n are defined by the average

m(n)
α1α2...αn

(t) =
∫

dY

[
n∏

k=1

Yαk

]
p (Y, t) . (2.12)

The first moment m
(1)
α (t) is the mean yα (t) of component α. Therefore,

the formal vector
{
m1

1(t),m
1
2(t), ...

}
defines in generalization of (2.6) the

central tendency of the underlying dynamics. The second moment m
(2)
αβ (t)

corresponds to the average

m
(2)
αβ (t) =

∫
dY p (Y, t)YαYβ . (2.13)

These quantities are also denoted as components of the correlation matrix.
For the definition (2.12) to be meaningful, the integral on the right-hand side
must be convergent. That means a necessary condition for the existence of a
moment of order n is that the probability density function decays faster than
|Y |−n−Nrel for |Y | → ∞. This is trivially obeyed for probability distribution
functions that vanish outside a finite region of the space of relevant degrees
of freedom.

Statistical problems are often discussed in terms of moments because they
avoid the difficult problem of determining the full functional behavior of the
probability density. In principle, the knowledge of all moments is in many
realistic cases equivalent to that of the probability distribution function.
However, the strict equivalence between the knowledge of the moments and
the probability density requires further constraints.

The moments are closely related to the characteristic function, which is
defined as the Fourier transform of the probability distribution

p̂ (k, t) =
∫

dY exp {ikY } p (Y, t) (2.14)

with the Nrel-dimensional vector k = {k1, k2, ..., kNrel}. From here, we obtain
the inverse relation

p (Y, t) =
1

(2π)Nrel

∫
dk exp {−ikY } p̂ (k, t) . (2.15)
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Thus, the normalization condition (2.3) is equivalent to p̂ (0, t) = 1, and the
moments of the probability density can be obtained from derivatives of the
characteristic function at k = 0:

m(n)
α1α2...αn

(t) = (−i)n
n∏

l=1

(
∂

∂kαl

)
p̂ (k, t)

∣∣∣∣∣
k=0

. (2.16)

If all moments exist, the characteristic function may also be presented as the
series expansion

p̂ (k, t) =
∞∑

n=0

∑
{α1,α2,...αn}

in

n!
m(n)

α1α2...αn
(t)

(
n∏

l=1

kαl

)
. (2.17)

The inversion formula shows that different characteristic functions arise from
different probability distribution functions (i.e., the characteristic function
p̂ (k, t) is truly characteristic). Additionally, the straightforward derivation of
the moments by (2.16) makes any determination of the characteristic function
directly relevant to measurable quantities.

2.1.5 Cumulants

Another important function is the cumulant generating function, which is
defined as the logarithm of the characteristic function

Φ (k, t) = ln p̂ (k, t) . (2.18)

This leads to the introduction of the cumulants cα1α2...αn
(t) as derivatives of

the cumulant generating function at k = 0,

c(n)
α1α2...αn

(t) = (−i)n
n∏

l=1

(
∂

∂kαl

)
Φ (k, t)

∣∣∣∣∣
k=0

. (2.19)

Each cumulant of order n is a combination of moments of order l ≤ n, as can
be seen by substitution of (2.17) and (2.18) into (2.19). We get for the first
cumulants

c(1)α = m(1)
α

c
(2)
αβ = m

(2)
αβ −m(1)

α m
(1)
β

c
(3)
αβγ = m

(3)
αβγ −m

(2)
αβm

(1)
γ −m

(2)
βγm

(1)
α −m(2)

γαm
(1)
β + 2m(1)

α m
(1)
β m(1)

γ

... (2.20)

The first-order cumulants are the averages of the single components Yα. The
second-order cumulants define the covariance matrix σ̃ with the elements

σ̃αβ = c
(2)
αβ = m

(2)
αβ −m(1)

α m
(1)
β . (2.21)

The covariance is a generalized measure of the degree to which the values
Y deviate from the central tendencies. In particular, for a single variable
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Y , the second-order cumulant is equivalent to the variance σ2. Higher-order
cumulants contain information of decreasing significance. Especially if all
higher-order cumulants vanish, we can easily deduce using (2.18) and (2.15)
that the corresponding probability density p (Y, t) is a Gaussian probability
distribution

p (Y, t) =
1√

det 2πσ̃
exp
{

−1
2

(
Y −m(1)

)
σ̃−1

(
Y −m(1)

)}
. (2.22)

Note that the theorem of Marcienkiewicz [254] shows that either all but the
first two cumulants vanish or there are an infinite number of nonvanishing
cumulants. In other words, the cumulant generating function cannot be a
polynomial of degree greater than 2.

Obviously, higher-order cumulants characterize the natural deviation from
Gaussian behavior. In the case of a single variable Y , the normalized third-
order cumulant λ3 = c(3)/σ3 is called the skewness, while λ4 = c(4)/σ4

is called excess kurtosis. The skewness is a measure of the asymmetry of
the probability distribution function. For symmetric distributions, the excess
kurtosis quantifies the first correction to the Gaussian behavior.

2.2 Generalized Rate Equations

2.2.1 The Formal Solution of the Liouville Equation

We can formally integrate the Liouville equation (1.9) to obtain the solution

ρ (Γ, t) = exp
{

−L̂t
}
ρ (Γ, 0) . (2.23)

This expression considers the microscopic equations of motion due to the
concrete structure of the Liouvillian L̂. The operator exp{−L̂t} is referred
to as the time propagator associated with the dynamical variables of the
system. For a better understanding of the meaning of the time propagator,
let us expand the exponential function in powers of t:

ρ (Γ, t) =
[
1 − L̂t+

1
2!

(
L̂t
)2

− 1
3!

(
L̂t
)3

+ ...

]
ρ (Γ, 0) . (2.24)

The right-hand side may be interpreted as a perturbative solution obtained
from a successive integration of the Liouville equation. To demonstrate this,
we write the Liouville equation as an integral equation. Then, we are able to
construct the map

ρ(n+1)(Γ, t) = ρ (Γ, 0) −
t∫

0

L̂ρ(n) (Γ, τ) dτ (2.25)

with the initial function ρ(0) (Γ, t) = ρ (Γ, 0). The series ρ(0), ρ(1), ..., ρ(n), ...
converges eventually against the solution ρ(Γ, t) of the Liouville equation. In
fact, we receive
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ρ(1) = ρ(0) − L̂ρ(0)t

ρ(2) = ρ(0) − tL̂ρ(0) +
t2

2
L̂2ρ(0)

ρ(3) = ρ(0) − tL̂ρ(0) +
t2

2
L̂2ρ(0) − t3

6
L̂3ρ(0)

... (2.26)

As expected, the solutions ρ(0), ρ(1), ρ(2), ... of the hierarchical system (2.25)
are identical with the first terms of the expansion (2.24).

Unfortunately, for complex systems, the formal solution (2.23) is in
general too complicated to be useful in practice. In order to describe the
dynamical behavior of such systems, we must look for alternative ways.

2.2.2 The Nakajima–Zwanzig Equation

Obviously, knowledge of the relevant probability density p (Y, t) is a
sufficient presupposition for the study of complex systems on the level
of the chosen relevant degrees of freedom. Our previous knowledge allows
us to derive this function from the complete microscopic probability
distribution function ρ (Γ, t). For this purpose, we would have to solve the
Liouville equation with all of the microscopic degrees of freedom at first.
Then, in the subsequent step, we would be able to remove the irrelevant
degrees of freedom from the microscopic distribution function by integration.

To avoid this unrealistic procedure, we want to answer the question of
whether one can find an equation that describes the evolution of p (Y, t) and
contains exclusively relevant degrees of freedom.

Of course, we can also remove the relevant degrees of freedom from every
given microscopic probability distribution so that we arrive at the distribution
function of the irrelevant degree of freedom

ρirr (Γirr, t) =
∫

dY ρ (Y, Γirr, t) , (2.27)

where we have to consider the normalization condition∫
dΓirrρirr (Γirr, t) = 1. (2.28)

The product of the probability distributions (2.27) at the initial time t0 and
(2.2) at the time t is again a probability density

ρ̃ (Y, Γirr, t, t0) = ρirr (Γirr, t0) p (Y, t) . (2.29)

Of course, this surrogate probability distribution is no longer identical to
the microscopic probability density ρ (Γ, t). But the average values of any
functions of relevant degrees of freedom calculated by an application of the
density ρ̃ remain unchanged in comparison with the use of ρ. Indeed, we get
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p (Y, t) =
∫

dΓirrρ (Y, Γirr, t) =
∫

dΓirrρ̃ (Y, Γirr, t, t0) . (2.30)

The generation of the surrogate probability distribution ρ̃ is usually called a
projection formalism . This procedure may be symbolically expressed by an
application of a projection operator onto the probability distribution function

ρ̃ (Y, Γirr, t, t0) = P̂ ρ (Γ, t) , (2.31)

where we have introduced the special projection operator

P̂ ... = ρirr (Γirr, t0)
∫

dΓirr .... . (2.32)

Apart from P̂ , we still need the complementary operator Q̂ = 1 − P̂ . Using
(2.32), it is simple to demonstrate that these operators have the “idempotent”
properties

P̂ 2 = P̂ , Q̂2 = Q̂, and P̂ Q̂ = Q̂P̂ = 0, (2.33)

typically for all projection operators. The first equation is a direct
consequence of (2.32), while the last two follow from

Q̂2 = 1 − 2P̂ + P̂ 2 = 1 − 2P̂ + P̂ = 1 − P̂ = Q̂ (2.34)

and

Q̂P̂ = P̂ − P̂ 2 = P̂ − P̂ = 0. (2.35)

We return now to the question of how to describe the time-dependent
evolution of the relevant probability density. To proceed, we need some
information about the initial distribution at time t0. Although we can provide
a meaningful initial distribution for simple physical systems due to the
realization of an arbitrary number of repeatable experiments, we must fall
back on more or less accurate estimations depending on the respective level of
experience if we want to describe phenomena of social or economic systems.
The distribution of the relevant degrees of freedom can be fixed relatively
simply: we assume that the values Y0 of all relevant degrees of freedom are
well-known at the initial time t0. Therefore, we can write

p (Y, t0) = p (Y, t0 | Y0, t0) = δ (Y − Y0) . (2.36)

In this context, p (Y, t | Y0, t0) means the probability density of the relevant
degrees of freedom at time t, while the initial state was Y0. In principle, the
following procedure works also for all other thinkable initial distributions. We
will see somewhat later that all of these cases can be mapped onto (2.36). On
the other hand, we have no essential information about the irrelevant degrees
of freedom.

However, we may assume that relevant and irrelevant degrees of freedom
are uncorrelated, at least for the initial state. Here the idea of Bayesian
statistics comes into its own. The statistical independence of relevant and
irrelevant degrees can be neither verified nor rejected. It is an “a priori”
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assumption reflecting the degree of our belief. Considering these assumptions,
the initial microscopic probability distribution can be written as

ρ (Γ, t0) = ρirr (Γirr, t0) δ (Y − Y0) = ρ̃ (Y, Γirr, t0, t0) (2.37)

with the property

P̂ ρ (Γ, t0) = ρ (Γ, t0) . (2.38)

Now, we apply the projection operator P̂ to the Liouville equation (1.9) and
obtain

∂P̂ρ (Γ, t)
∂t

= −P̂ L̂
(
P̂ + Q̂

)
ρ (Γ, t)

= −P̂ L̂P̂ ρ (Γ, t) − P̂ L̂Q̂ρ (Γ, t) . (2.39)

We replace ρ (Γ, t) in the second term of the right-hand side by the formal
solution (2.23) of the Liouville equation where the initial time t0 is taken into
account. Then, we arrive at

P̂ L̂Q̂ρ (Γ, t) = P̂ L̂Q̂e−L̂(t−t0)ρ (Γ, t0) . (2.40)

For the further treatment of this expression, we need the identity

e−L̂(t−t0) = e−L̂1(t−t0) −
t∫

t0

dt′e−L̂1(t−t′)L̂2e−L̂(t′−t0), (2.41)

where we have split the Liouvillian into two arbitrary parts, L̂1 and L̂2, via
L̂ = L̂1 + L̂2. This identity may be checked by the derivative with respect to
the time

− L̂e−L̂(t−t0) = −L̂1e−L̂1(t−t0) − L̂2e−L̂(t−t0)

+L̂1

t∫
t0

dt′e−L̂1(t−t′)L̂2e−L̂(t′−t0). (2.42)

Then, substituting the integral kernel using (2.41), we obtain

− L̂e−L̂∆t = −L̂1e−L̂1∆t − L̂2e−L̂∆t + L̂1

[
e−L̂1∆t − e−L̂∆t

]
= −L̂2e−L̂∆t − L̂1e−L̂∆t

= −L̂e−L̂∆t (2.43)

with ∆t = t − t0. Thus, the identity (2.41) is proven. In particular, if we
replace L̂1 by L̂Q̂ and L̂2 by L̂P̂ , we get

e−L̂(t−t0) = e−L̂Q̂(t−t0) −
t∫

t0

dt′e−L̂Q̂(t−t′)L̂P̂ e−L̂(t′−t0). (2.44)

We substitute (2.44) into (2.40) so that we obtain
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P̂ L̂Q̂ρ (Γ, t) = P̂ L̂Q̂e−L̂Q̂(t−t0)ρ (Γ, t0)

−
t∫

t0

dt′P̂ L̂Q̂e−L̂Q̂(t−t′)L̂P̂ e−L̂(t′−t0)ρ (Γ, t0) . (2.45)

The first addend on the right-hand side disappears. This property follows
from a Taylor expansion of the exponential function. The expansion is ap-
parently an infinite series, but by (2.38) we know that all coefficients must
vanish identically as a result of (2.33). To go further, we write the integral
kernel in a more symmetric form. Considering Q̂ = Q̂2, we conclude that

Q̂e−L̂Q̂τ = Q̂

[
1 − τL̂Q̂+

τ2

2
L̂Q̂L̂Q̂+ ...

]
= Q̂

[
1 − τQ̂L̂Q̂+

τ2

2
Q̂L̂Q̂2L̂Q̂+ ...

]
Q̂ = Q̂e−Q̂L̂Q̂τ Q̂. (2.46)

From (2.23), we see that

P̂ L̂Q̂ρ (Γ, t) = −
t∫

t0

dt′P̂ L̂Q̂e−Q̂L̂Q̂(t−t′)Q̂L̂P̂ ρ (Γ, t′) , (2.47)

and coming back to (2.39), we obtain

∂P̂ρ (Γ, t)
∂t

= −P̂ L̂P̂ ρ (Γ, t) +

t∫
t0

dt′P̂ L̂Q̂e−Q̂L̂Q̂(t−t′)Q̂L̂P̂ ρ (Γ, t′) . (2.48)

When this relationship is integrated over all irrelevant degrees of freedom,
we obtain a closed linear integrodifferential equation for the probability
distribution function of the relevant degrees of freedom. Considering (2.32),
we get

∂p (Y, t)
∂t

= −
∫

dΓirr

[
L̂ρirr (Γirr, t0)

]
p (Y, t)

+

t∫
t0

dt′
∫

dΓirr

×
[
L̂Q̂e−Q̂L̂Q̂(t−t′)Q̂L̂ρirr (Γirr, t0)

]
p (Y, t′) (2.49)

or, more precisely,

∂p (Y, t | Y0, t0)
∂t

= −M̂ (t0) p (Y, t | Y0, t0)

+

t∫
t0

dt′K̂ (t0, t− t′) p (Y, t′ | Y0, t0) , (2.50)
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where we have introduced the frequency operator

M̂ (t0) =
∫

dΓirr

[
L̂ρirr (Γirr, t0)

]
(2.51)

and the memory operator

K̂ (t0, t− t′) =
∫

dΓirr

[
L̂Q̂ exp

{
−Q̂L̂Q̂(t− t′)

}
Q̂L̂ρirr (Γirr, t0)

]
.(2.52)

This equation is called the Nakajima–Zwanzig equation or the generalized
rate equation. The Nakajima–Zwanzig equation is still a proper relation,
although it apparently describes only the evolution of the relevant
probability distribution function. However, the complete dynamics of the
irrelevant degrees of freedom, including their interaction with the relevant
degrees of freedom in particular, is hidden in the memory operator.

The dependency of the operators M̂ and K̂ on the initial time t0 is a
remarkable property and reflects the fact that a complex system does not
necessarily have to be in a stationary state. Therefore, completely different
developments of the probability density p(Y, t | Y0, t0) may be observed for
the same system and for the same initial conditions but for different initial
times.

The Nakajima–Zwanzig equation allows the prediction of the further
evolution of the relevant probability distribution function, presupposing
that we are able to determine the exact mathematical structure of the
frequency and memory operators. In principle, we are also able to derive more
general evolution equations than the Nakajima–Zwanzig equation (e.g., by
use of time-dependent projectors or projection operators that depend even
on the relevant probability distribution function). But then the useful con-
volution property is lost, which characterizes the memory term in (2.50).
Additionally, all evolution equations obtained by projection formalisms are
physically equivalently and mathematically accurate so that also from this
point of view none of the thinkable evolution equations possesses a possible
preference.

The main problem is, however, the determination of the operators M̂
and K̂. The complete determination of these quantities equals the solution
of the Liouville equation. Consequently, this way is unsuitable for systems
with a sufficiently high degree of complexity. But we can try to approach
these operators of the Nakajima–Zwanzig equation in a heuristic manner
using empirical experiences and mathematical considerations. Physical
intuition plays an important role at several stages of this approach.
Furthermore, especially for economic systems, we must take into account
a lot of economical, technological, and social facts.

In this way, one can combine certain model conceptions and real
observations and arrive at a comparatively reasonable approximation of the
accurate evolution equation. Here it also becomes important what projection
formalism one used. However, for the majority of economic problems, (2.50)
is quite a suitable equation that gives us the opportunity for further progress.
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2.3 Combined Probabilities

2.3.1 Conditional Probability

In the future, we will usually consider the space of the relevant degrees of
freedom. Therefore, we will abandon an extra designation of all quantities
that are related to this space. We speak now of an N -dimensional state Y
and of the corresponding state space instead of relevant degrees of freedom
and their corresponding subspace of dimension Nrel. Only if the possibility
of a mistake exists will we use the old notation.

As discussed in the previous section, p (Y, t | Y0, t0) is the probability
density that the system in the state Y0 at time t0 will be in the state Y
at time t > t0. Hence,

P (R, t | Y0, t0) =
∫

R

dY p (Y, t | Y0, t0) (2.53)

is the probability that the system occupies an arbitrary state of the region R
at time t if the system was in the state Y0 at time t0. This is a special kind
of conditional probability that is directly related to the time development of
a complex system.

More generally, the conditional probability may be defined in the language
of set theory. Here P (A | B) is the probability that an event contained in the
set A appears under the condition that we know it was also contained in the
set B.

In particular, we can interpret A as the set of all trajectories of the system
that touch the region R at time t, while B is the set of trajectories
that go at time t0 through the point Y0. In this sense, each trajectory
is an event. Both A and B are subsets of the set Ω of all trajectories.
Then, P (A | B) = P (R, t | Y0, t0) may be understood as the probability
that any trajectory of B belongs also to A. In particular, we therefore receive
the normalization condition P (Ω | B) = 1, which allows us to conclude that∫

dY p (Y, t | Y0, t0) = 1. (2.54)

Statistical independence means P (A | B) = P (A) (i.e., the knowledge that
one event occurs in B does not change the probability that it occurs in A).
If P (A | B) > P (A), we say that A and B are positively correlated, while
P (A | B) < P (A) corresponds to a negative correlation between A and B.

2.3.2 Joint Probability

Let us now consider an event that is an element of the set A as well as of the
set B. Then, the event is contained also in A∩B. The probability P (A∩B)
is called the joint probability that the event is contained in both classes.
Conditional probabilities, the joint probabilities, and the usual probabilities
or unconditional probabilities become connected very naturally as
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P (A ∩B) = P (A | B)P (B) = P (B | A)P (A). (2.55)

This representation allows a natural definition of statistically independent
events. Obviously, statistical independence requires simply P (A ∩ B) =
P (A)P (B) and therefore P (A | B) = P (A) and P (B | A) = P (B). For
example, the probability that a complex system stays in the infinitesimal
small volume dY at time t and was in the volume dY0 at the initial time
t0 is a typical problem to consider. The corresponding (infinitesimal) joint
probability may be written as dP (Y, t;Y0, t0) = p (Y, t;Y0, t0) dY dY0 with

p (Y, t;Y0, t0) = p (Y, t | Y0, t0) p (Y0, t0) . (2.56)

Suppose that we know all sets Bi that could condition the appearance of an
event in the set A. The Bi should be mutually exclusive, Bi ∩Bj = ∅ for all
i �= j, and exhaustive,

⋃
i Bi = Ω. Thus, we obtain

P (A) = P (A ∩Ω) = P

(
A ∩

⋃
i

Bi

)
= P

(⋃
i

(A ∩Bi)

)
. (2.57)

If we take into account (A ∩Bi) ∩ (A ∩Bj) = ∅, we obtain due to (1.4) and
(2.55)

P (A) =
∑

i

P (A ∩Bi) =
∑

i

P (A | Bi)P (Bi) . (2.58)

This general relation specifies immediately in the case of the probability
density to

p(Y, t) =
∫

p (Y, t | Y0, t0) p (Y0, t0) dY0. (2.59)

Because of the symmetry P (A ∩B) = P (B ∩A), we get also

p(Y0, t0) =
∫

p (Y, t | Y0, t0) p (Y0, t0) dY. (2.60)

Due to (2.54), the last equation is a simple identity. Equation (2.56) permits
in particular the extension of the initial condition (2.36) on any probability
distributions.

This constitutes a warning that it is always preferable to represent each
joint probability distribution function p (Y, t;Z, τ) in the form (2.56). If we
want to generally determine this joint probability for t > τ > t0, then we
must calculate the integral

p (Y, t;Z, τ) =
∫

dY0p (Y, t | Z, τ ;Y0, t0) p (Z, τ | Y0, t0) p (Y0, t0) (2.61)

in which the conditional probability p (Y, t | Z, τ ;Y0, t0) occurs. The reason
for the more complicated structure consists in the fact that the deterministic
character of the microscopic dynamics is possibly partially conserved on the
level of the relevant degrees of freedom. Hence, it remains a certain memory
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(Z, ),τ

(Y,t)

(Y ,t )
0 0

Fig. 2.1. Possible contributions to the joint probability density p(Y, t; Z, τ ; Y0, t0).
The integration over all positions Y0 leads to p(Y, t; Z, τ). Only the full trajectories
contribute to the conditional probability density p(Z, τ | Y0, t0) as well as to the
conditional probability density p(Y, t | Z, τ ; Y0, t0). These events form, together
with the probability density p(Y0, t0), the joint probability p(Y, t; Z, τ ; Y0, t0). The
dashed curves are also contained in p(Z, τ | Y0, t0) but not in p(Y, t; Z, τ). Roughly
speaking, they are filtered out due to conditional probability p(Y, t; | Z, τ ; Y0, t0) in
the expression p(Y, t; Z, τ ; Y0, t0) = p(Y, t; | Z, τ ; Y0, t0)p(Z, τ | Y0, t0)p(Y0, t0). On
the other hand, the product p(Y, t; | Z, τ)p(Z, τ | Y0, t0)p(Y0, t0) considers also the
dotted lines, which contribute particularly to p(Y, t | Z, τ). Thus, we have to expect
p(Y, t; | Z, τ ; Y0, t0) �= p(Y, t; | Z, τ). The equivalence between both quantities holds
only if no memory effect appears.

of the initial information, which is, for instance, expressed by the appearance
of the memory kernel K̂(t − t′) in the Nakajima–Zwanzig equation. This
effect indicates a possible feedback between the relevant degrees of freedom
via the hidden irrelevant degrees of freedom. Only if this feedback disappears
does p (Y, t | Z, τ ;Y0, t0) = p (Y, t | Z, τ) apply and the simpler relationship
p (Y, t;Z, τ) = p (Y, t | Z, τ) ρ (Z, τ) become valid for arbitrary points in time
(see Figure 2.1).

On the other hand, (2.56) is always valid. The correctness of this relation
is justified by the fact that relevant and irrelevant degrees of freedom are
assumed to be initially uncorrelated as well as by the fact that even former
information is unknown. We point out again that this assumption has to be
understood in the sense of the Bayesian definition of statistics.

2.4 Markov Approximation

We once again return to the problem of the selection of relevant degrees of
freedom. If we define the relevant degrees of the complex system in such
a way that all of these variables change relatively slowly compared with the
irrelevant degrees of freedom, then the memory kernel (2.52) of the Nakajima–
Zwanzig equation may approach

K̂ (t0, t− t′) = K̂ (t0) δ (t− t′) . (2.62)
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This representation is called the Markov approximation. The assumption
of such a separation between slow relevant timescales and fast irrelevant
timescales is at least an appropriate approximation for many complex
systems. But it should be remarked that there is really no such thing as
a system with Markov character. If we observe the system on a very fine
timescale, the immediate history will almost certainly be required to predict
the probabilistic development. In other words, there is a certain characteris-
tic time during which the previous history is important. However, systems
whose memory time is so small may be, on the timescale on which we carry
out observations, assumed to be Markov-like systems. We substitute (2.62)
in the Nakajima–Zwanzig equation (2.50) to get

∂p (Y, t | Y0, t0)
∂t

= −L̂Markovp (Y, t | Y0, t0) (2.63)

with the Markovian L̂Markov = M̂ (t0)− K̂(t0). However, we know also about
situations where a part of the irrelevant degrees of freedom is considerably
slower than the relevant degrees of freedom and only the remaining part of
the irrelevant degrees of freedom contributes to the fast dynamics. In these
cases, it seems to be more favorable to derive the evolution equation for the
probability density p (Y, t | Y0, t0) by the use of time-dependent projectors
capturing the effects of the slow irrelevant dynamics.

Such a generalization basically changes nothing in the general procedure
of the separation of the timescales except for the occurrence of an explicit
time dependence of the operator L̂Markov (t). Therefore, we can use the
Markov approximation also for these problems. However, the concept of the
separation of timescales fails or becomes uncontrolled if a suitable set of
irrelevant degrees of freedom offers characteristic timescales similar to those
of the relevant degrees of freedom. By assuming an infinitesimal time interval
dt, we obtain from (2.63)

p (Y, t+ dt | Y0, t0) =
[
1 − L̂Markov (t) dt

]
p (Y, t | Y0, t0) . (2.64)

In general, we may express the operator 1 − L̂Markov (t) dt by an integral
representation

p (Y, t+ dt | Y0, t0) =
∫

dZUMarkov (Y, t+ dt | Z, t) p (Z, t | Y0, t0) . (2.65)

We multiply (2.65) with the initial distribution function p (Y0, t0) and
integrate over all configurations Y0. Considering (2.59), we get

p (Y, t+ dt) =
∫

dZUMarkov (Y, t+ dt | Z, t) p (Z, t) . (2.66)

Thus, the integral kernel UMarkov (Y, t+ dt | Z, t) can be interpreted as the
conditional probability density p (Y, t+ dt | Z, t) for a transition from the
state Z at time t to the state Y at time t + dt. This constitutes a further
explanation. We remember that (2.61) requires the more general relation
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p (Y, t+ dt) =
∫

dY0

∫
dZp (Y, t+ dt | Z, t;Y0, t0)

×p (Z, t | Y0, t0) p (Y0, t0) . (2.67)

A simple comparison between (2.66) and (2.67) leads to the necessary
condition p (Y, t+ dt | Z, t;Y0, t0) = p (Y, t+ dt | Z, t). This is simply another
formulation of the Markov property. It is, even by itself, extremely powerful.
In particular, this property means that we can define higher conditional and
joint probabilities in terms of the simple conditional probability. To obtain a
general relation between the conditional probabilities at different times, we
shift the time t → t+ dt in (2.65) and obtain

p (Y, t+ 2dt | Y0, t0) =
∫

dZp (Y, t+ 2dt | Z, t+ dt)

×p (Z, t+ dt | Y0, t0) . (2.68)

On the other hand, the transformation dt → 2dt leads to

p (Y, t+ 2dt | Y0, t0) =
∫

dZp (Y, t+ 2dt | Z, t) p (Z, t | Y0, t0) (2.69)

so that we obtain from (2.65), (2.68), and (2.69)

p (Y, t+ 2dt | Z, t) =
∫

dXp (Y, t+ 2dt | X, t+ dt)

×p (X, t+ dt | Z, t) . (2.70)

When repeating this procedure infinitely many times, one obtains a relation
for finite time differences

p (Y, t | Z, t′′) =
∫

dXp (Y, t | X, t′) p (X, t′ | Z, t′′) , (2.71)

which is the Chapman–Kolmogorov equation. This equation is a rather
complex nonlinear functional equation relating all conditional probabilities
obtained from a given Markovian to each other.

This is a remarkable result: the conditional probability density obtained
from an arbitrary Markovian must satisfy the Chapman-Kolmogorov
equation. In addition, the Chapman–Kolmogorov equation is an important
criterion for presence of the Markov property. Whenever empirically deter-
mined conditional probabilities satisfy (2.71), we are able to introduce the
Markov property.

2.5 Generalized Fokker–Planck Equation

2.5.1 Differential Chapman–Kolmogorov Equation

The determination of the Markovian for a given process on the basis of a
microscopic theory is probably excluded. Therefore, we are always dependent
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on empirical considerations and observations. It would be reasonable to know
some rules from which the Markovian L̂Markov could be constructed.

For all evolutionary processes with Markov properties, the parameter-
free Chapman–Kolmogorov equation (2.71) is a universal relation. However,
the Chapman–Kolmogorov equation has many solutions. In particular, for
a given dimension N of the state Y , every solution of (2.63) must also be a
solution of (2.71) independent from the special mathematical structure of the
operator L̂Markov. Therefore, we could possibly use this equation to obtain
information about the general mathematical structure of L̂Markov. To do so,
we follow Gardiner [143] and define the subsequent quantities for all ε > 0:

Aα (Z, t) = lim
δt→0

1
δt

∫
|Y −Z|<ε

dY p (Y, t+ δt | Z, t)∆Yα + o(ε) (2.72)

and

Bαβ (Z, t) = lim
δt→0

1
δt

∫
|Y −Z|<ε

dY p (Y, t+ δt | Z, t)∆Yα∆Yβ + o(ε), (2.73)

where we have used the notation ∆Yα = Yα −Zα. Furthermore, we introduce

W (Y | Z; t) = lim
δt→0

1
δt
p (Y, t+ δt | Z, t) (2.74)

for |Y − Z| > ε. We will see later that these quantities were chosen in a very
natural way. They can be obtained directly from observations or defined by
suitable model assumptions.

If we are able to build the Markovian, L̂Markov by the exclusive use of
these quantities, we have arrived at our goal. Note that possible higher-order
coefficients must vanish for ε → 0. For instance, the third-order quantity
defined by

Cαβγ (Z, t) = lim
δt→0

1
δt

∫
|Y −Z|<ε

dY p (Y, t+ δt | Z, t)∆Yα∆Yβ∆Yγ (2.75)

may be approximated by |Cαβγ | 
 |Bαβ | ε = o (ε). Thus, if Bαβ exists, the
coefficient Cαβγ is of an order of magnitude o (ε) and disappears for ε → 0.
To proceed, we consider the time evolution of the average of an arbitrary
function f that is twice continuously differentiable,

∂

∂t

∫
dZf (Z) p (Z, t | Y, t′)

= lim
δt→0

1
δt

∫
dZf (Z) [p (Z, t+ δt | Y, t′) − p (Z, t | Y, t′)] dZ

= lim
δt→0

1
δt

∫∫
dZdXf (Z) p (Z, t+ δt | X, t)P (X, t | Y, t′)

− lim
δt→0

1
δt

∫∫
dZdXf (X) p (Z, t+ δt | X, t)P (X, t | Y, t′) , (2.76)
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where we have used the Chapman–Kolmogorov equation (2.71) in the first
term and the normalization condition (2.54) to produce the corresponding
terms in (2.76). Since f (Z) is twice continuously differentiable, we may write

f (Z) = f (X) +
∑
α

∂f (X)
∂Xα

[Zα −Xα]

+
1
2

∑
αβ

∂2f (X)
∂Xα∂Xβ

[Zα −Xα] [Zβ −Xβ ] +R(Z,X), (2.77)

where the reminder function R(Z,X) vanishes for |X − Z| = ε → 0 as o(ε2).
We now divide the integrals in (2.76) into two regions, |X − Z| ≤ ε and
|X − Z| > ε, and substitute (2.77) into (2.76):

∂

∂t

∫
dZf (Z) p (Z, t | Y, t′)

= lim
δt→0

1
δt

∫∫
|Z−X|<ε

dZdXp (Z, t+ δt | X, t) p (X, t | Y, t′)

×
∑

α

∂f (X)
∂Xα

[Zα −Xα] +
1
2

∑
αβ

∂2f (X)
∂Xα∂Xβ

[Zα −Xα] [Zβ −Xβ ]


+ lim

δt→0

1
δt

∫∫
|Z−X|<ε

dZdXR (Z,X) p (Z, t+ δt | X, t) p (X, t | Y, t′)

+ lim
δt→0

1
δt

∫∫
|Z−X|<ε

dZdXf (X) p (Z, t+ δt | X, t) p (X, t | Y, t′)

+ lim
δt→0

1
δt

∫∫
|Z−X|≥ε

dZdXf (Z) p (Z, t+ δt | X, t) p (X, t | Y, t′)

− lim
δt→0

1
δt

∫∫
dZdXf (X) p (Z, t+ δt | X, t) p (X, t | Y, t′) . (2.78)

Let us compute the limit ε → 0 line-by-line. The first term of this expression
can be transformed in the following way. We take the limit δt → 0 inside the
integral to obtain, with the help of (2.72) and (2.73),

(1) =
∫

dXp (X, t | Y, t′)

×
∑

α

Aα(X, t)
∂f (X)
∂Xα

+
1
2

∑
αβ

Bαβ(X, t)
∂2f (X)
∂Xα∂Xβ

 . (2.79)

The second term of (2.78) disappears for ε → 0 due toR(Z,X) ∼ o(|Z −X|2).
The third term and the fifth term can be collected in one expression. Thus,
we get



2.5 Generalized Fokker–Planck Equation 31

(3) + (5) = − lim
δt→0

1
δt

∫∫
|Y −Z|≥ε

dZdXf (X) p (Z, t+ δt | X, t)

×p (X, t | Y, t′) , (2.80)

or with the use of (2.74) and considering ε → 0,

(3) + (5) = −H
∫∫

dZdXf (X)W (Z | X; t) p (X, t | Y, t′) . (2.81)

Notice that we use the symbol H to indicate the principal value integral. We
finally get for the fourth term

(4) = H
∫∫

dXdZf (Z)W (Z | X; t) p (X, t | Y, t′) . (2.82)

We put these results together to obtain∫
dX

∂

∂t
p (X, t | Y, t′) f (X) =

∫
dXp (X, t | Y, t′)

×
∑

α

Aα(X, t)
∂f(X)
∂Xα

+
1
2

∑
αβ

Bαβ(X, t)
∂2f(X)
∂Xα∂Xβ


+ H

∫∫
dZdX [f (X) − f (Z)]W (X | Z; t) p (Z, t | Y, t′) , (2.83)

and after integrating by parts, we get

∂

∂t

∫
dXf (X) p (X, t | Y, t′) =

∫
dXf(X)

×
−

∑
α

∂

∂Xα
Aα(X, t) +

1
2

∑
αβ

∂2

∂Xα∂Xβ
Bαβ(X, t)

 p (X, t | Y, t′)

+ H
∫∫

dZdX [f (X) − f (Z)]W (X | Z; t) p (Z, t | Y, t′) . (2.84)

Finally, we consider that we have chosen the function f to be arbitrary. We
can then deduce that the conditional probability fulfills the relation

∂

∂t
p (X, t | Y, t′) = −

∑
α

∂

∂Xα
Aα(X, t)p (X, t | Y, t′)

+
1
2

∑
αβ

∂2

∂Xα∂Xβ
Bαβ(X, t)p (X, t | Y, t′) (2.85)

+ H
∫

dZ [W (X | Z; t) p (Z, t | Y, t′) −W (Z | X; t) p (X, t | Y, t′)] .

This equation is the differential form of the Chapman–Kolmogorov equation,
which is denoted in the literature as the forward differential Chapman–
Kolmogorov equation. The right-hand side of this equation defines the general
structure of the Markovian L̂Markov.
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If we want to specify the differential Chapman–Kolmogorov equation,
we must consider that by definition the components Bαβ(X, t) must form
a positive-definite matrix and that W (X | Z; t) must be a nonnegative
function. Then, it can be shown under certain conditions that a
nonnegative solution to the differential Chapman–Kolmogorov equation
exists and that this solution also satisfies the Chapman–Kolmogorov
equation. The conditions to be satisfied are the initial condition

p (X, t | Y, t) = δ(X − Y ), (2.86)

which follows directly from (2.59), and any appropriate boundary conditions.
We may also derive the backward differential Chapman–Kolmogorov

equations, which give the time evolution with respect to the initial variables
of p (X, t | Y, t′). To do this, we consider

∂

∂t′
p (X, t | Y, t′) = lim

δt→0

1
δt′

[p (X, t | Y, t′) − p (X, t | Y, t′ − δt′)]

= lim
δt→0

1
δt′

∫
dZp (Z, t′ | Y, t′ − δt′) p (X, t | Y, t′)

− lim
δt→0

1
δt′

∫
dZp (X, t | Z, t′) p (Z, t′ | Y, t′ − δt′)(2.87)

by use of the normalization condition (2.54) in the first term and the
Chapman–Kolmogorov equation (2.71) in the second term. It is easy to
show that we can carry out the infinitesimal shift p (Z, t′ | Y, t′ − δt′) →
p (Z, t′ + δt′ | Y, t′) without a noticeable change of (2.87). Hence, we get

∂

∂t′
p (X, t | Y, t′) = lim

δt→0

∫
dZ

p (Z, t′ + δt′ | Y, t′)
δt′

× [p (X, t | Y, t′) − p (X, t | Z, t′)] (2.88)

and therefore, using techniques similar to those used for the derivation of
(2.85),

∂

∂t′
p (X, t | Y, t′) = −

∑
α

Aα(Y, t′)
∂

∂Yα
p (X, t | Y, t′)

− 1
2

∑
αβ

Bαβ(Y, t′)
∂2

∂Yα∂Yβ
p (X, t | Y, t′)

+ H
∫

dZW (Z | Y ; t′) [p (X, t | Y, t′) − p (X, t | Z, t′)] . (2.89)

This equation is called the backward differential Chapman–Kolmogorov
equation. We remark that the forward and backward equations are
equivalent to each other. The main difference is which set of variables is
held fixed. For the forward equation, solutions exist for t ≥ t′ and (2.86) is
the initial condition with respect to the free variables (X, t). In the case of the
backward equation, we hold (X, t) fixed so that since the backward equation
expresses development in t′ ≤ t, (2.86) is the final condition of (2.89).
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2.5.2 Deterministic Processes

There are also in complex systems phenomena that may be described by a
completely deterministic motion. If the corresponding processes possess also
a Markov character, then they can be described by a differential Chapman–
Kolmogorov equation with Bαβ = 0 and W (Y | Z; t) = 0. It remains the
equation

∂

∂t
p (X, t | Y, t′) = −

∑
α

∂

∂Xα
Aα(X, t)p (X, t | Y, t′) . (2.90)

The solution to this equation with the initial condition (2.86) is

p (X, t | Z, t′) = δ
(
X − X̃(t)

)
. (2.91)

This means that the system moves along the trajectory X̃(t) = {x̃1(t), x̃2(t), ...}
obtained by solving the ordinary differential equations

dx̃α(t)
dt

= Aα(X̃(t), t) = Aα({x̃1(t), x̃2(t), ...} , t) (2.92)

with the initial conditions

x̃(t′) = {x̃1(t′), x̃2(t′), ...} = Y. (2.93)

The equations (2.92) are also called kinetic equations. These differential
equations, however, are generally not equations of motion in the sense of
classical mechanics. In particular, most kinetic equations are irreversible (i.e.,
they are not invariant under reversal of the time direction).

If a system is far from possible stationary states, then such equations
describe a complex system mostly sufficiently. The structure of the solution
(2.91) indicates the deterministic character of (2.90). To demonstrate the
validity of (2.91), we point out first that for t = t′ the initial conditions
(2.93) lead to P (X, t | Z, t′) = δ (X − Z). The proof for all other times is
best obtained by direct substitution. We see that

dp (X, t | Y, t′)
dt

= −
∑
α

[
∂

∂Xα
δ
(
X − X̃(t)

)] dx̃α(t)
dt

=
∑
α

∂

∂Xα

[
δ
(
X − X̃(t)

)
Aα(X̃(t), t)

]
=
∑
α

∂

∂Xα
[Aα(X, t)P (X, t | Y, t′)] (2.94)

leads to the expected identity. It should be remarked that the methods of
characteristics can be used to obtain (2.92) from (2.90) in a direct way.
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2.5.3 Fokker–Planck Equation

If we assume the quantities W (X | Z; t) to be zero, the differential Chapman–
Kolmogorov equation reduces to the generalized Fokker–Planck equation

∂

∂t
p (X, t | Y, t′) = −

∑
α

∂

∂Xα
Aα(X, t)p (X, t | Y, t′)

+
∑
αβ

1
2

∂2

∂Xα∂Xβ
Bαβ(X, t)p (X, t | Y, t′) . (2.95)

The functions Aα(X, t) are the components of the drift vector, and the
Bαβ(X, t) are known as components of the diffusion matrix. As mentioned
above, the diffusion matrix is symmetric and positive-semidefinite as a result
of the definition (2.73).

The general solution of this differential equation cannot be given explic-
itly. However, we can use certain similarities in the mathematical structure
of the Fokker–Planck equation and the Schrödinger equation of quantum
mechanics in order to transfer well-known solution methods.

But there are some important differences between both equations that
have to do with the operator structure of the right-hand side. Each Schrödinger
equation always requires a self-adjoint but not necessarily positive-definite
Hamilton operator, while the differential operator of a Fokker–Planck
equation must be positive-semidefinite but not self adjoint. In the case of
constant components Aα and Bαβ , the Fokker–Planck equation (2.95) can be
solved exactly, subject to the initial condition (2.86), and we arrive at

p (X, t | Y, t′) =
1√

det(2πB∆t)
exp

− 1
2∆t

∑
αβ

∆XαB
−1
αβ∆Xβ

 (2.96)

with ∆Xα = Xα − Yα − Aα∆t, ∆t = t − t′, and N the dimension of the
state space. This is nothing other than a multivariable Gaussian probability
distribution function. The initial condition appears for ∆t → 0, while the
Gaussian spreads over the whole space for ∆t → ∞. The center of the
Gaussian moves with the constant velocity A = {A1, A2, ...}.

2.5.4 The Master Equation

Finally, we consider the case Aα = Bαβ = 0 so that we now have

∂

∂t
p (X, t | Y, t′) = H

∫
dZW (X | Z; t) p (Z, t | Y, t′)

−H
∫

dZW (Z | X; t) p (X, t | Y, t′) . (2.97)

This is a so called master (or rate) equation. The initial condition of this
equation is again given by (2.86). In order to discuss the underlying processes
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described by master equations, we solve (2.97) approximately in first order
to a small time interval δt. The short-time solution to this equation with the
initial condition (2.86) is

p (X, t′ + δt | Y, t′) = δ(X − Y )
[
1 − H

∫
dZW (Z | Y ; t) δt

]
+W (X | Y ; t) δt. (2.98)

The first contribution corresponds to a finite probability for the system to
stay at the original position Y in the state space. This probability decreases
with increasing time. The probability that the system does not remain at Y is
given by the second term of (2.98). Hence, a characteristic path of the system
through the state space will consist of a series of discontinuous jumps whose
distribution is given by W (X | Y ; t). For this reason, processes described by
master equations are denoted as jump processes.

The master equation (2.97) may be specified for the case where the state
space consists of discrete numbers only. Then, the master equation takes the
form

∂

∂t
pnn′ (t, t′) =

∑
m

[Wnm (t) pmn′ (t, t′) −Wmn (t) pnn′ (t, t′)] (2.99)

with Wnm (t) = W (n | m; t) and pnm (t, t′) = p (n, t | m, t′). In this
representation, the concept of jump processes becomes particularly clear.
But it should be noted again that pure jump processes can occur even in a
continuous state space1.

2.6 Correlation and Stationarity

2.6.1 Stationarity

The macroscopic dynamics of a complex system are stationary in a strict
sense if all joint probabilities are invariant under a time shift ∆t:

p(X1, t1; ..., Xn, tn; ...) = p(X1, t1 +∆t; ..., Xn, tn +∆t; ...). (2.100)

From here, we conclude that p(X, t) = p(X) so that, due to (2.55), all
conditional probabilities are also invariant under a time shift.

Furthermore, the definition of stationarity implies that the operators of
the Nakajima-Zwanzig equation (2.50) no longer depend on the initial time,
M̂ (t0) = M̂ and K̂ (t0, t− t′) = K̂ (t− t′), and that the coefficients of the
differential Chapman–Kolmogorov equation (2.85) are simple functions of
1 Of course, the trajectory of a large but finite complex system has no real jumps.

The appearance of jumps is the result of the Markov approximation. If we take
into account the exact equation of motion, the jumps correspond to relatively
fast but continuous changes of the macroscopic state during a short time period.



36 2. Evolution and Probabilistic Concepts

the states (i.e., Aα(X, t) = Aα(X), Bαβ(X, t) = Bαβ(X), and W (X | Y ; t) =
W (X | Y )). Finally, stationarity means that all moments and cumulants have
constant values.

There exist several other definitions of stationary processes that are, in
fact, less restrictive. For instance, an nth order stationary process arises when
(2.100) holds only for joint probability distribution functions of less than n+1
points in time, while asymptotically stationary processes are observed only
for infinitely large shifts ∆t.

2.6.2 Correlation

The knowledge of moments and cumulants does not tell a great deal about
the dynamics of a complex system. For instance, all moments have constant
values in the special case of stationary systems. What would be of interest are
measurable quantities obtained from joint probabilities (or alternatively from
the conditional probabilities) that give simultaneously information about the
state of the system at several points in time. The simplest quantity is the
correlation function

f(t)g(t′) =
∫

dXdX ′f(X)g(X ′)p(X, t;X ′, t′) (2.101)

between two arbitrary functions, f and g, of the state of the system. A
special case is the autocorrelation function f(t)f(t′), which considers the
same quantity at different time points. Higher correlations can be constructed
in a similar way:

f1(t1)...fn(tn) =
∫ n∏

i

[
dX(i)fi

(
X(i)

)]
p(X(1), t1; ...;X(n), tn). (2.102)

A very natural class of correlation functions may be obtained by
identifying the functions fi with the components Xα of the state
vector. These correlation functions may be interpreted as generalized
moments, xα1(t1)...xαn(tn), which approach the standard definition (2.12) for
t1 = ... = tn = t. Analogously, we can design combinations of correlation
functions that may be understood as a generalization of the cumulants (2.19).
For instance, the generalized covariance functions are defined by

Cαβ(t, t′) = xα(t)xβ(t′) − xα(t) xβ(t′), (2.103)

which are useful to consider for processes with average values different from
zero. Because of (2.100), stationarity always requires that the correlation
functions be invariant under a time shift. In particular, we get for stationary
processes xα(t)xβ(t′) = xα(t− t′)xβ(0) and Cαβ(t, t′) = Cαβ(t− t′, 0), which
is simply denoted as Cαβ(t− t′).

Finally, we introduce the so-called correlation time. For the sake of
simplicity, here we concentrate on the discussion of the autocovariance
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function C(t − t′) of a stationary process in a one-dimensional state space.
The symmetry of this function requires immediately

C(t− t′) = C(t′ − t) = C(| t− t′ |). (2.104)

One possibility that provides a measure for the corresponding correlation
time τc is the integral

τc = C−1(0)

∞∫
0

C(t)dt. (2.105)

This definition is independent of the precise functional form of the
autocovariance function. The correlation time τc may have a finite, infinite,
or indeterminate value.

The last case is more or less irrelevant for the majority of complex systems.
It corresponds, for instance, to periodic autocovariance functions (e.g., C(t) ∼
cos(ωt)). A divergent timescale τc → ∞ indicates the existence of a dominant
correlation. Processes characterized by such an autocorrelation function are
said to be long-range correlated. For instance, C(t) ∼ t−a with 0 < a < 1 is
a typical autocovariance function of long-range correlated processes.

When the integral (2.105) is finite, the corresponding process shows a
short-range correlated behavior. In this case, the values of the observed
quantities are practically uncorrelated if sequentially realized measurements
are separated by a timescale sufficiently longer than τc. An important example
is the autocovariance of the Ornstein–Uhlenbeck process, C ∼ exp{−t/τc},
which is often used to model a realistic noise signal.

2.6.3 Spectra

In order to characterize a stationary process, it is very natural to calculate
the Fourier transform for the covariance functions Cαβ(t):

Sαβ(ω) =

+∞∫
−∞

dtCαβ(t) exp{iωt}. (2.106)

Due to the symmetry property Cαβ(t) = Cβα(−t), the Fourier transforms are
self-adjoint; Sαβ(ω) = S∗

βα(ω). The Sαβ(ω) are called the spectral functions
of the underlying processes. In addition to the classification of correlation
processes introduced above, the same properties might be investigated in the
frequency domain.

To this end, we consider again a stationary process in a one-dimensional
state space. We obtain from (2.106) and (2.105) the important relation
τc = S(0). Therefore, we conclude that a convergent behavior of S(ω) in
the low-frequency regions indicates a short-range correlation, while any kind
of divergence is related to long-range correlations.
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2.7 Stochastic Equations of Motion

2.7.1 The Mori–Zwanzig Equation

At the beginning of the book, we already mentioned that the microscopic
mechanical (or quantum-mechanical) equations of motion and the Liouville
equation are equivalent representations of a given system. Subsequently, we
demonstrated that the Liouville equation could be reduced to a Nakajima–
Zwanzig equation, which contains only the relevant degrees of freedom
representing a suitable description of the system on a more or less
macroscopic level. It is reasonable to ask whether one can also reduce the
complicated system of microscopic mechanical equations of motion to a
macroscopic description. To this end, we introduce a set of linearly
independent, differentiable functions Gα(t) (α = 1, ...,M) that are as-
sumed to be functions of the microscopic state Γ = {q1, ..., pN}, Gα(t) =
Gα(Γ (t)). All of these functions are denoted as relevant variables representing
macroscopically observable or measurable quantities of interest. The time
evolution of each Gα is ruled by the microscopic equations of motion

dGα

dt
=

N∑
i

[
∂Gα

∂qi
q̇i +

∂Gα

∂pi
ṗi

]
=

N∑
i

[
∂Gα

∂qi

∂H

∂pi
− ∂Gα

∂pi

∂H

∂qi

]
(2.107)

where we have used Hamilton’s equations (1.1) describing the evolution of
all 2N microscopic coordinates qi and momenta pi. From (2.107), we get

dGα

dt
= L̂Gα, (2.108)

where the Liouvillian L̂ is defined as in (1.10). Equation (2.108) is formally
integrated to yield

Gα(t) = exp{L̂(t− t0)}G0
α, (2.109)

and the G0
α = Gα(Γ0) are fixed by the microscopic initial state Γ0 = Γ (t0).

In other words, the relevant quantities Gα(t) of a given system are unique
functions of the initial state, Gα(t) = Gα(t, Γ0). To proceed, we should
eliminate all irrelevant degrees of freedom contained in the Liouvillian by
the use of an appropriate projection formalism.

A convenient starting point for this intention is the introduction of a
scalar product (A,B). As is easily verified, the scalar product properties are
satisfied by identifying, for instance, the scalar product with the average

(A,B) =
∫

dΓ0A (Γ0)B (Γ0) p (Γ0, t0) (2.110)

considering the probability distribution function at the initial time t0. This
representation has the advantage that the scalar products

(Gα (t) , Gβ (t′)) =
∫

dΓ0Gα(t, Γ0)Gβ (t′, Γ0) p (Γ0, t0) (2.111)
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are identical to the correlation functions, (Gα (t) , Gβ (t′)) = Gα(t)Gβ(t′).
In order to interpret (2.111) we must consider that each microscopic initial
state Γ0 defines a unique trajectory of the system through the phase space,
while the statistical weight of each trajectory is given by p (Γ0, t0) dΓ 0. We
remark that many other possibilities defining a suitable scalar product exist.
For the following derivation, the precise structure of the scalar product is of
secondary interest.

The central point is the introduction of an appropriate projection operator
P̂ . We use the definition

P̂ =
∑
αβ

G0
αHαβ(G0

β , ....), (2.112)

where the Hαβ are the components of the inverse of the M × M matrix
formed by the scalar products (G0

α, G
0
β). Obviously, we get P̂G0

α = G0
α and

therefore P̂ 2G0
α = G0

α. Thus, the projection operator and the corresponding
complementary operator Q̂ = 1 − P̂ fulfill the relations (2.33). Let us now
consider the formal solution (2.109) of the equation of motion and insert the
identity operator P̂ + Q̂ after the propagator exp{L̂(t− t0)}. We obtain

dGα(t)
dt

= exp{L̂(t− t0)}
(
P̂ + Q̂

)
L̂G0

α

= exp{L̂(t− t0)}P̂ L̂G0
α + exp{L̂(t− t0)}Q̂L̂G0

α. (2.113)

The first term can be written as

exp{L̂(t− t0)}P̂ L̂G0
α =

∑
βγ

ΩαγGγ(t), (2.114)

where we have introduced the M ×M frequency matrix Ωαγ ,

Ωαγ =
∑

β

Hγβ(G0
β , P̂ L̂G

0
α). (2.115)

The second term in equation (2.113) can be rearranged by using the identity

eL̂(t−t0) = eL̂1(t−t0) +

t∫
t0

dt′eL̂(t−t′)L̂2eL̂1(t′−t0) (2.116)

with L̂ = L̂1 + L̂2. This identity may be checked in a similar way as (2.41)
by a derivative with respect to the time. If we replace L̂1 by Q̂L̂ and L̂2 by
P̂ L̂, we arrive at

eL̂(t−t0)Q̂L̂G0
α = eQ̂L̂(t−t0)Q̂L̂G0

α

+

t∫
t0

dt′eL̂(t−t′)P̂ L̂eQ̂L̂(t′−t0)Q̂L̂G0
α. (2.117)
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Because of the properties (2.33), the first contribution can be transformed
into

fα(t) = eQ̂L̂(t−t0)Q̂L̂G0
α = Q̂eQ̂L̂(t−t0)Q̂L̂G0

α. (2.118)

This quantity is referred to as the fluctuating force or the residual force. By
construction, the time evolution of fα(t) from its initial value Q̂L̂G0

α is ruled
by the anomalous propagator exp{Q̂L̂(t− t0)} rather than by the usual one,
exp{L̂(t − t0)}. The presence of the complementary projection operator Q̂
has the important consequence that(

G0
β , fα(t)

)
= 0 . (2.119)

From a geometrical point of view, the fluctuating forces fα(t) are orthogonal
to all initial relevant quantities G0

β at all times. In other words, the forces
evolve in a subspace intrinsically different from the one spanned by the set
G0

β . The first term on the right-hand side of (2.117) can be transformed into
a more convenient form. We write

eL̂(t′−t0)P̂ L̂eQ̂L̂(t−t′)Q̂L̂G0
α

= eL̂(t′−t0)
∑
γβ

G0
γHγβ(G0

β , L̂Q̂eQ̂L̂(t−t′)Q̂L̂G0
α)

=
∑
βγ

Gγ(t′)Hγβ(G0
β , L̂Q̂eQ̂L̂(t−t′)Q̂L̂G0

α), (2.120)

where we have used (2.109). As a result, the equation of motion (2.113) can
be written as

dGα(t)
dt

=
∑

γ

ΩαγGγ(t) +

t∫
t0

dt′Kαγ(t− t′)Gγ(t′)

+ fα(t), (2.121)

where we have introduced the quantity

Kαγ(t− t′) =
∑

β

Hγβ(G0
β , L̂Q̂eQ̂L̂(t−t′)Q̂L̂G0

α)

=
∑

β

Hγβ(G0
β , L̂fα(t− t′)), (2.122)

which is referred to as the memory matrix. It should be pointed out that
both the frequency matrix and the memory matrix still depend on the initial
time t0. Equation (2.121) is called the generalized Langevin equation or the
Mori–Zwanzig equation. No approximation has been taken into account in the
previous derivation, so (2.121) is still equivalent to the mechanical equations
of motion (2.107).

A special situation occurs in the case of stationarity. Then, we obtain

Kαγ(t− t′) = −
∑

β

Hγβ(fβ (t′) , fα(t)), (2.123)
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where we have used the relation (G0
β , L̂fα(t− t′)) = − (fβ (t′) , fα(t)), which

can be checked straightforwardly. For the sake of simplicity, we set t0 = 0.
Then, due to the stationarity, we obtain

(fβ(t′), fα(t)) = (fβ(0), fα(t− t′)) = (Q̂L̂G0
β , fα(t− t′)). (2.124)

It is easily demonstrated that

(Q̂L̂G0
β , fα(t− t′)) = (L̂G0

β , Q̂fα(t− t′)) = (L̂Gβ(0), fα(t− t′)) (2.125)

and therefore (fβ(t′), fα(t)) = (L̂Gβ (t′) , fα(t)). Thus, we get the desired
relation

(fβ(t′), fα(t)) =
d

dt′
(Gβ (t′) , fα(t)) =

d

dt′
(Gβ (0) , fα(t− t′))

= − d

dt
(Gβ (0) , fα(t− t′)) = − d

dt
(Gβ (t′) , fα(t))

= −(Gβ (t′) , L̂fα(t)) = −(G0
β , L̂fα(t− t′)), (2.126)

where several times we have applied the stationarity condition and the formal
equation of motion (2.108), which is valid, of course, for all dynamic quantities
of the system.

From (2.121), it is straightforward to obtain the corresponding equation
for the correlation functions Gα(t)Gβ(t0). Exploiting the orthogonality of the
residual forces and the relevant quantities (2.119), we obtain

d

dt
Gα(t)Gβ(t0) =

∑
γ

ΩαγGγ(t)Gβ(t0)

+
∑

γ

t∫
t0

dt′Kαγ(t− t′)Gγ(t′)Gβ(t0). (2.127)

This equation is still linear in the correlation functions and may be solved by
standard methods. Equation (2.127) can also be derived from the Nakajima–
Zwanzig equation (2.50) in similar form.

The remaining problem is the specification of the frequency and
memory matrices. The definitions (2.115) and (2.122) are in general too
complicated to be useful in practice. In particular, if we want to describe
phenomena in financial markets or social systems with equations of type
(2.121) and (2.127), we require alternative methods in order to approximate
these quantities. Physical intuition and empirical economic, social, and
psychological knowledge play very important roles at several stages of these
approaches.

In a correct framework, the results of the formalism are particularly
rewarding because of their simple mathematical form. Of course, the results
obtained cannot be claimed to be the output of a real theory firmly rooted
in microscopic intuition and reasoning, but the general structure of (2.121)
and (2.127) is motivated by universal principles of theoretical physics.
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2.7.2 Separation of Timescales

Suppose that we have included in the set {Gα} all of the dynamical
variables with a time dependence much slower than any microscopic timescale
predictable from the Liouvillian. These relevant quantities determine
substantially the macroscopic behavior of the system. Since the projection
formalism gives no particular hint of a preference of the set of these slow
variables, we have to deal with problems that occurred also with the
introduction of the Markov approximation of the Nakajima–Zwanzig
equation. Especially, the choice of which variables are actually slow is largely
guided by the problem in mind.

After we determine the slow quantities as relevant variables, we can
assume that the projection formalism collects the fast dynamics more or
less in the residual forces due to the very complicated time dependence ruled
by the anomalous propagator exp{Q̂L̂(t − t′)}. From a macroscopic point
of view, the residual forces behave apparently as random functions. As a
consequence, all of the elements of the memory matrix (2.123) are likely to
be characterized by decay times considerably shorter than those associated
with the elements Gα(t)Gβ(t′) of the correlation matrix.

Thus, we may assume that over the characteristic timescales of
Gα(t)Gβ(t′), the decay time of the memory matrix is so short that Kαγ(t−t′)
may be approximately written as

Kαγ(t− t′) = K0
αγδ(t− t′). (2.128)

This estimation is again called the Markov approximation or the separation
of timescales. The representation (2.128) requires that the residual force
correlations be of a δ-type, fα(t)fβ(t′) ∼ δ(t− t′), and furthermore that the
condition f̄α(t) = 0 holds, which can always be satisfied after realizing the
shifts fα → fα − f̄α and the corresponding changes of Gα. As a consequence
of (2.128), the Mori–Zwanzig equations (2.121) now read

dGα(t)
dt

=
∑

γ

Ω̃αγGγ(t) + fα(t) (2.129)

with Ω̃αγ = Ωαγ + K0
αγ . It is seen that the separation of timescales yields a

complete loss of memory effects in the Mori–Zwanzig equations. The system
of ordinary linear differential equations (2.129) is a linearized version of a
set of so-called Langevin equations. In particular, the Markov approximation
reduces (2.127) to

d

dt
Gα(t)Gβ(t0) =

∑
γ

Ω̃αγGγ(t)Gβ(t0), (2.130)

representing a simple homogeneous system of linear differential equations
with constant coefficients.
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2.7.3 Wiener Process

Let us now study the properties of the trajectories of the so-called normalized
Wiener process W (t). This process satisfies a Fokker–Planck equation (2.95)
in which there is only one variable W , the drift coefficient is zero, and the
diffusion coefficient is 1:

∂

∂t
p (W, t | W ′, t′) =

1
2

∂2

∂W 2 p (W, t | W ′, t′) . (2.131)

All trajectories connecting the state W ′ at time t′ with the state W at time
t contribute to the conditional probability density p (W, t | W, t′). In order to
be able to discuss the properties of these trajectories, we have to solve (2.131)
under the initial condition p (W, t′ | W ′, t′) = δ (W −W ′). This is a standard
procedure leading to the well-known Gaussian

P (W, t | W ′, t′) =
1√

2π(t− t′)
exp
{

− (W −W ′)2

2(t− t′)

}
. (2.132)

Thus, if the process has arrived at the state W ′ at time t′, the averaged state
at time t > t′ is given by

w̄ =
∫

Wp (W, t | W ′, t′) dW = W ′, (2.133)

while the variance (2.11) becomes

σ2 =

∞∫
−∞

dW [W − w̄]2 p (W, t | W ′, t′) dW = t− t′. (2.134)

It is easy to see that, for δt = t− t′ → 0, equation (2.134) yields |W −W ′| ∼√
δt → 0 and |dW (t)/dt| ∼ |W −W ′| /δt → ∞. Therefore, each trajectory of

a Wiener process is a continuous path but not a differentiable path.
Let us now determine the autocorrelation function of the Wiener process

on the condition that the initial value of the process is W0 = W (t0). The
corresponding joint probability density is given by

p (W, t;W ′, t′|W0t0) = p (W, t | W ′, t′) p (W ′, t′ | W0, t0) (2.135)

so that

w(t)w(t′) =
∫ ∫

WW ′p (W, t | W ′, t′) p (W ′, t′ | W0, t0) dWdW ′

= min (t− t0, t
′ − t0) +W 2

0 . (2.136)

We conclude that the autocovariance function of the Wiener process is given
by C(t, t′) = min (t− t0, t

′ − t0). As a final point, we should note that
infinitesimal changes dW (t) = W (t+ dt) −W (t) satisfy

dW (t) = 0 and dW (t)2 = dt (2.137)

due to (2.133) and (2.134), while (2.136) leads to
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dW (t)dW (t′) = 0 for t �= t′. (2.138)

Higher orders vanish as dW (t)f ∼ dtf/2 = o(dt) for f > 2. The simplest
way of characterizing these results is to say that dW (t) is an infinitesimal
element of order 1/2 (i.e., dW (t) ∼ √

dt) and that in calculating
differentials, infinitesimal elements of order higher than 1 are discarded so
that dW (t)2+n ∼ dt1+n/2 → 0 for all n > 0.

From here, we obtain the important result that the stochastic fluctuation
of dW (t) causes dW (t)/dt = 0, while |dW (t)/dt| ∼ dt−1/2 diverges.

2.7.4 Stochastic Differential Equations

The linearity of the Langevin equation (2.129) is a consequence of the
projection formalism introduced in the previous sections. In many practical
cases, we have to deal with nonlinear Langevin equations. These equations
may be derived in a more or less intuitive manner, but they are only rarely
based on a real theoretical framework. However, in the case of Markov
processes, the Langevin equations can be obtained from the corresponding
Fokker–Planck equations.

To proceed, we now consider a system of stochastic differential equations
that generalizes the linear system (2.129):

Ẏα(t) = aα(Y (t)) +
R∑

k=1

bα,k(Y (t))ηk(t). (2.139)

Here, aα(Y ) and bα,k(Y ) are differentiable functions of the N -dimensional
state vector Y , while the ηk(t) (k = 1, ..., R) are linearly independent
stochastic functions.

Equations of such a type are also denoted as Langevin equations. In
principle, these equations can be derived formally from (2.129) in a heuristic
way. To do this, we take into account a set of N relevant quantities Gα.
These relevant quantities may be specified as functions of the state vector Y ,
Gα(t) = Gα(Y (t)). We substitute (2.139) into Ġα =

∑
β(∂Gα/∂Yβ)Ẏβ and

compare the result with (2.129). This allows us to identify∑
β

∂Gα

∂Yβ
aβ =

∑
β

Ω̃αβGβ and fα(t) =
∑
β,k

∂Gα

∂Yβ
bβ,kηk(t). (2.140)

The first equation defines the functions aα(Y ), while the second one requires
a further explanation. The fluctuation forces fα(t) are assumed in the con-
text of the Markov approximation to be fast-varying quantities with more or
less stochastic character, but they can be structured nevertheless from the
relatively slow relevant quantities and the fast irrelevant variables. Even the
macroscopically uncontrollable dynamics of the irrelevant degrees of freedom
are the reason for the apparently stochastic behavior of the fluctuation forces
fα(t). Therefore, the separation
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fα(t) =
R∑

k=1

B̃α,k(Y )ηk(t) (2.141)

of the fluctuation forces into bilinear combinations of independent
stochastic functions ηk(t) that are assumed to be exclusively controlled by
the dynamics of the irrelevant degrees of freedom and systematic terms
B̃α,k =

∑
β(∂Gα/∂Yβ)bβ,k controlled by the relevant quantities and the state

vector, respectively, is a natural ansatz that is not in disagreement with the
requirements of the projection formalism.

It should be noted that (2.141) is only an obvious assumption, which is
perhaps supported by empirical experience. Equation (2.141) cannot yet be
generally derived in the framework of a closed theory.

As mentioned above, the Markov approximation (2.128) requires

fα(t)fβ(t′) ∼ δ(t− t′) and f̄α(t) = 0. (2.142)

This δ-function character is transferred also to the stochastic functions ηk(t).
In general, we are able to specify the stochastic functions to

ηk(t)ηk′(t′) = δkk′δ(t− t′) and η̄k(t) = 0 (2.143)

by a suitable choice of the functions B̃α,k(Y ) in (2.141).
Let us return to the discussion of the stochastic differential equation

(2.139). Unfortunately, this equation as it stands has no meaning, and we
do not know how to deal with it. The reason is that the δ-character of the
correlation functions (2.143) causes jumps in the state vector Y (t) such that
the value of Y (t) at time t is not well-defined. Basically, the problem comes
from the fact that the stochastic functions ηk(t) change substantially during
an infinitesimally small time interval so that the equation does not specify
what value of bα,k(Y ) should be used in the product bα,k(Y (t))ηk(t).

For a better understanding of the problem, we divide the time axis into
infinitesimally small subintervals of length dt by means of partitioning points
ti with ti+1 = ti+dt and define intermediate points τi such that ti < τi < ti+1.
Then, we obtain from (2.139)

Yα(ti+1) = Yα(ti) + aα(Y (ti))dt+
∑

k

ti+1∫
ti

bα,k(Y (t′))ηk(t′)dt′ (2.144)

or, due to the mean value theorem,

Yα(ti+1) = Yα(ti) + aα(Y (ti))dt+
∑

k

bα,k(Y (τi))

ti+1∫
ti

ηk(t′)dt′. (2.145)

The main problem comes from the integral

dWk(ti) =

ti+1∫
ti

ηk(t′)dt′. (2.146)
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It is easily seen that the application of (2.143) leads to

dWk(ti)dWk′(tj) = δkk′δijdt and dWk(ti) = 0. (2.147)

This is nothing other than the mean and the correlation of infinitesimal
changes of independent Wiener processes Wk(t) (k = 1, ..., R). Now, we can
rewrite (2.145) to obtain

Yα(ti+1) = Yα(ti) + aα(Y (ti))dt+
∑

k

bα,k(Y (τi))dWk(ti). (2.148)

However, we can evaluate bα,k(Y (τi)) at an arbitrary intermediate time τi. It
is clear that the choice of this intermediate time has important consequences
for numerical simulations of stochastic processes. Two general concepts were
established.

In the Ito interpretation, the value of Y (τi) is taken before the jump. This
means explicitly

Yα(ti+1) = Yα(ti) + aα(Y (ti))dt+
∑

k

bα,k(Y (ti))dWk(ti). (2.149)

On the other hand, in the Stratonovich interpretation, we take the mean of
Y (t) before and after the jump so that Y (τi) = (Y (ti+1) + Y (ti))/2; namely

Yα(ti+1) = Yα(ti) + aα(Y (ti))dt

+
∑

k

bα,k

(
Y (ti) + Y (ti+1)

2

)
dWk(ti). (2.150)

It is known that the same stochastic process occurs for Ito stochastic
differential equations and Stratonovich stochastic differential equations if the
conditions

aStratonovich
α = aIto

α − 1
2

∑
β,k

bItoβ,k

∂bItoα,k

∂Yβ
(2.151)

and

bStratonovich
α,k = bItoα,k (2.152)

are satisfied. Finally, we remark that, independently of the interpretation of
the stochastic differential equation (2.139), the coefficients aα(Y ) and bα,k(Y )
can be extended to explicitly time-dependent functions aα(Y, t) and bα,k(Y, t).
Such an extension is motivated above all by the fact that possibly a part of
the irrelevant variables possesses relatively slow timescales on the order of
magnitude of the characteristic time of the relevant quantities.

2.7.5 Ito’s Formula and the Fokker–Planck Equation

Let us consider an arbitrary differentiable function f(Y ), where Y = Y (t) is
the solution of the Ito stochastic differential equation (2.149). For the sake
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of simplicity, we consider only one relevant degree of freedom and only one
Wiener process. Then, the Ito differential equation reads

dY = a(Y, t)dt+ b(Y, t)dW (t). (2.153)

The differential df is defined as

df = f(Y (t+ dt)) − f(Y (t)) = f(Y + dY ) − f(Y ). (2.154)

We expand (2.154) to second order in dY ,

df =
∂f(Y )
∂Y

dY +
1
2
∂2f(Y )
∂Y 2 dY 2 + o

(
dY 2) , (2.155)

and replace dY by (2.153). Considering dW ∼ dt1/2, we expand (2.155) up
to first order in dt,

df =
∂f(Y )
∂Y

[a(Y, t)dt+ b(Y, t)dW ] +
1
2
∂2f(Y )
∂Y 2 [b(Y, t)dW ]2 , (2.156)

where all other terms have been discarded since they are of higher order. This
relation is known as Ito’s formula.

Now, we perform the average with respect to all realizations of the Wiener
process W (t) and obtain

df

dt
=

∂f(Y )
∂Y

a(Y, t) +
1
2
∂2f(Y )
∂Y 2 b2(Y, t). (2.157)

For the determination of the averages, we used the Ito calculus, especially
(2.147) and the property that the value of Y (t) is taken before the jump
dW (t). The last remark means that the actual value of Y (t) and the value of
the subsequent jump dW (t) are statistically independent.

On the other hand, Y (t) has the conditional probability density
p (Y, t | Y0, t0). If the evolution starts from the initial state Y (t0) = Y0, then
the averages are given by

df

dt
=
∫

∂

∂t
p (Y, t | Y0, t0) f(Y )dY (2.158)

and

∂f(Y )
∂Y

a(Y, t) =
∫

∂f(Y )
∂Y

a(Y, t)p (Y, t | Y0, t0) dY

= −
∫

f(Y )
∂

∂Y
[a(Y, t)p (Y, t | Y0, t0)] dY (2.159)

and

∂2f(Y )
∂Y 2 b2(Y, t) =

∫
∂2f(Y )
∂Y 2 b2(Y, t)P (Y, t | Y0, t0) dY

=
∫

f(Y )
∂2

∂Y 2

[
b2(Y, t)P (Y, t | Y0, t0)

]
dY. (2.160)

Putting all of these results together and integrating by parts, we arrive at
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dY f(Y )

∂

∂t
p (Y, t | Y0, t0)

=
∫

dY f(Y )
1
2
∂2

∂Y 2

[
b2(Y, t)p (Y, t | Y0, t0)

]
−
∫

dY f(Y )
∂

∂Y
[a(Y, t)p (Y, t | Y0, t0)] . (2.161)

Now, we consider that we have chosen the function f(Y ) to be arbitrary.
Hence, we conclude that the conditional probability satisfies the equation

∂

∂t
p (x, t | y, t′) =

1
2
∂2

∂x2

[
b2(x, t)p (x, t | y, t′)]

− ∂

∂x
[a(x, t)p (x, t | y, t′)] . (2.162)

Obviously, we get a complete equivalence between the stochastic differential
equation (2.153) and the Fokker–Planck equation (2.162). This result can be
generalized for the case of a system of N stochastic differential equations
with R Wiener processes. The set of differential equations may be given by
(2.139). The corresponding Fokker–Planck equation then reads

∂

∂t
p (Y, t | Y0, t0) =

1
2

∑
α,β

∂2

∂Yα∂Yβ
[Bαβ(Y, t)p (Y, t | Y0, t0)] (2.163)

−
∑
α

∂

∂Yα
[Aα(Y, t)p (Y, t | Y0, t0)] (2.164)

with

Bαβ(Y, t) =
µ∑

k=1

bα,k(Y, t)bβ,k(Y, t) and Aα(Y, t) = aα(Y, t). (2.165)

A similar connection between the Stratonovich stochastic differential
equations and a corresponding Fokker–Planck equation can be obtained by
application of the converting rules (2.151) and (2.152). Thus, the system of
stochastic differential equations (2.139) in the Stratonovich interpretation is
related to the Fokker–Planck equation

∂

∂t
p (Y, t | Y0, t0)

=
1
2

∑
α,β,k

∂

∂Yα

[
bα,k(Y, t)

∂

∂Yβ
(bβ,k(Y, t)p (Y, t | Y0, t0))

]
−
∑
α

∂

∂Yα
[aα(Y, t)p (Y, t | Y0, t0)] . (2.166)

Finally, it should be noted that the connection between the stochastic
differential equations and Fokker–Planck equations allows us to create
representative trajectories for a given Fokker–Planck equation by numerical
simulations.



3. Financial Markets

3.1 Introduction

3.1.1 Finance and Financial Mathematics Versus Econophysics

When economists, finance mathematicians, and physicists are dealing with a
financial problem or wish to understand an economic issue related to business
investment, operations, or financing, a wide variety of ideas and techniques
are available to generate quantitative answers.

The mathematical way starts from well-defined hypotheses that consider
more or less idealized economic rules and specific initial and boundary condi-
tions. This input may be obtained from an empirical analysis of financial data
or from other quantitative economic investigations. Actually, this part is an
intermediate field between financial mathematics and financial management
because it requires economic experience to decide which data are important
in the context of the problem and what is the order of their significance. The
exact solution of a financial problem formulated hypothetically is the intrin-
sic power of financial mathematics, which developed into an extensive field
over the last four decades. Financial mathematics is, however, restricted by
the capacity of the methodology to be applied. Especially, mathematics offers
only solutions that have to be understood as recommendations supporting
decisions in a company’s investments or in financial operations or various
transactions.

Apart from providing specific numerical answers using the tools of
financial mathematics, the economic approach to financial problems depend
significantly on the points of view of the parties involved, on the relative
importance of the issue, and on the nature and reliability of the information
available. The central aim of finance is to answer concrete situations with
concrete decisions.

Therefore, finance may be interpreted as the art of asking significant
questions and giving meaningful answers to these significant questions. Such
questions include the following: Have the problem and its relative importance
in the overall business context been clearly spelled out, including the rele-
vant alternatives to be considered? Which specific factors, relationships, and
trends are likely to be helpful in analyzing the special problem? What is the
order of their importance, and in what sequence should they be addressed?
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How precise an answer is necessary in relation to the importance of the prob-
lem itself? Would additional refinement be worth the effort? How reliable are
the available data, and how is this uncertainty likely to affect the range of
results?

These questions have purely economic character. In order to be able
to give a sufficient answer, the economist employs a whole line of expe-
riences in addition to possible mathematical solutions delivered from fi-
nancial mathematics. All of this allows us to say that an economist is
mainly interested in finding a rational approach to a given financial problem.
However, both the economist and the financial mathematician will have
difficulties in combining the specific dynamics of financial data with general
properties of complex systems.

The physical way offers, however, the possibility of describing financial
phenomena in a universal theoretical framework. There is the hope that the
physical progress in investigation of complex systems with other apparent
behavior allows a deeper insight also into the dynamics of the financial
markets. Results that would be obtained only from a direct observation of
finance dynamics can possibly also be derived from discoveries in other fields
of physics.

The financial market is a complex system from a physical point of view.
In such a system, the rates of stocks and other asset prices are characterized
as relevant degrees of freedom. All other degrees of freedom are irrelevant
quantities. The intention to want to describe the evolution of the share prices
conceals itself behind this division, whereas, for instance, the mental states
of the traders are interpreted as more or less uninteresting (i.e., irrelevant)
information for financial transactions.

The total number of quantitatively available financial quantities such as
shares, trading volumes, and funds is approximately of an order of magnitude
of 108–1010. This number is extremely small compared to the size of the
irrelevant set containing the degrees of freedom with direct or indirect contact
with the underlying structures of the financial market. For instance, all atoms
that are involved in the raising of awareness of traders, politicians, employers
and employees, in the formation of the climate, and the structure and function
of production plants, traffic systems, and communication networks contribute
to the irrelevant degrees of freedom. Every individual transaction basically
leads to a small change in the market value of a stock. But a gigantic number
of processes is hidden behind every transaction that can be formally traced
back up to the microscopic level.

We have discussed in the previous chapter that the dynamics of the
irrelevant microscopic degrees of freedom may be formally eliminated by
application of a suitable projection formalism. It was demonstrated that
one obtains probabilistic equations describing such a system on the relevant
macroscopic level.
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Fig. 3.1. A schematic representation of processes contributing to the complex
structure of financial decisions.

At first, it seems reasonable to describe financial markets within the
framework of a Markov approximation. This suggestion is supported by
the fact that the characteristic timescale of financial processes is between
1 and 108 sec, while the effective timescale of the microscopic interactions
is of an order of magnitude of 10−14 sec. However, this assumption is only
a part of the truth. Although the irrelevant degrees of freedom are based
on atomic movements, these are not exclusively chaotic but show a high
collectivity and therefore a complicated hierarchy; see Figure 3.1. Especially,
only the lower levels of this hierarchy are fast compared to price fluctuations
of shares. Rather, the exchange rates affect the decisions of the traders, their
psychological state, and their pursued trading strategy. That leads to a
feedback mechanism that can modify the Markov character considerably.

3.1.2 Scales in Financial Data

In the natural sciences, especially in physics, the problem of reference units
is considered basic to all experimental and theoretical work. Efforts are
continually made to find the optimal reference units of a given problem and
to improve the accuracy of their determination. The system of the physical
units is permanently improved in order to eliminate even the smallest
deviations. Unfortunately, we observe another situation in finance. The scales
used here are often given in units that are themselves fluctuating in time.

The most important quantity is the price, which is indicated in units
of a home currency or a key currency. However, the values of the national
currencies are not constant in time. The ratios of the individual currencies
among each other as well as the prices of commodities such as gold or
diamonds show substantial fluctuations. The causes for these fluctuations
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Fig. 3.2. Annual percentage change of the gross domestic product for Germany
and several eastern European countries. From Statistisches Bundesamt Deutschland
2002

are miscellaneous and cannot usually be separated in detail. Possible causes
are, for example, fluctuations in the global currency markets, inflation, or
national and global economic growth or economic recessions. For instance,
Figure 3.2 shows the annual percentage change of the German gross domestic
product in comparison with those of some eastern European countries.
Obviously, economic growth is neither a constant nor is it a time-dependent
function that shows the same behavior for all countries.

Another problem is the choice of an appropriate timescale to use for
analyzing financial data. The physical time is well-defined, but the
traditional stock exchanges close aperiodically overnight and on weekends
[131] and more or less randomly during holidays. The difficulty consists in
the fact that we do not know how we have to handle the discontinuances and
a possible arrival of information during this time. Similar problems appear in
electronic stock markets. Although these markets are active 24 hours per day,
the social environment and several biological cycles push the market activity
to a permanent change of intensity in each financial region of the world.

Another possible timescale describing financial time series is the number
of transactions. This scale eliminates the effect of the randomly distributed
time intervals elapsing between transactions. Another source of randomness,
the volume of transactions, still remains. It should be remarked that other
definitions of timescales consider also the influence of the trading volume. For
instance, the time index of the number of effective transactions occurring in
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the market is such a measure. This timescale is not affected by the actual
trading activity but differs for different shares.

The trading time is the time that elapses during open market hours. This
timescale depends on the local stock exchange. Furthermore, price changes
and the release of relevant information during the night lead to jumps at the
opening and therefore to a possible misfit of data. However, the trading time
is the most common choice in many research studies and is also used in the
context of this chapter as an underlying timescale.

It should be remarked that financial time series are discontinuous.
However, we can formally extend this series to continuous functions. In
practice, this is performed by the application of various interpolation
techniques. Such an apparently academic continuation is a natural way in
the framework of our general approach. Obviously, behind this artificial
extension is concealed the fact that the microscopic processes contributing
to the price formation are continuous. The problem is, that we neither know
the values of the microscopic variables at a certain time nor can we calculate
the actual prices from these data. From our macroscopic point of view, new
information about the price is only obtainable after a transaction. This fine
philosophical difference is insignificant for many practical and theoretical
applications. Nevertheless, sometimes the use of the concept of continuous
series proves expedient, in particular for the investigation of relatively short
time periods.

3.1.3 Measurement of Price Fluctuations

Let us define Xα(t) as the price of a financial asset α at time t. Then, we
may ask which is the appropriate variable describing the stochastic behavior
of the price fluctuations. The simplest choice is the introduction of the price
changes

δXα(t, δt) = Xα(t+ δt) −Xα(t), (3.1)

where δt is a well-defined interval –the time horizon– of the time series. The
merit of this approach is that (3.1) is a simple linear relation. This means in
particular that the price changes are additive:

δXα(t, δt1 + δt2) = δXα(t+ δt1, δt2) + δXα(t, δt1). (3.2)

Unfortunately, the definition (3.1) is seriously affected by possible changes in
money scales due to possible fluctuations in the global currency markets or
inflation effects. Furthermore, the strength of the fluctuations δXα(t) depends
seriously on the order of magnitude of the actual price of the asset Xα(t); see
Figure 3.3. Alternatively, one can analyze deflated price changes

δX̃α(t, δt) = g(t+ δt)Xα(t+ δt) − g(t)Xα(t), (3.3)

where g(t) is a deflation factor that considers the effects of inflation and
possible fluctuations in the growth rate of the economy. The factor g(t)
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Fig. 3.3. Daily prices X(t), absolute values of the price differences | δX(t) |, and
logarithmic price changes | ξ(t) | (Deutsche Telekom, reference time period 11/00–
07/02). Intuitively, the price changes δX(t) seem to be dependent on the daily
prices X(t), while the logarithmic price changes are more or less independent from
X(t).

rescales the price fluctuations so that δX̃α(t) is given in terms of a more or
less constant money scale. However, the problem remains that δX̃α(t) scales
with Xα(t). Additionally, the deflation factor is practically unpredictable,
and there is no unique definition of g(t).

A more appropriate choice is the use of the returns

Rα(t, δt) =
δXα(t)
Xα(t)

=
Xα(t+ δt)
Xα(t)

− 1. (3.4)

The merit of this approach is that returns provide a direct percentage of gain
or loss in a given time period. The return itself is related to the net yield,
which is defined as

R�
α(t, δt) =

δXα(t) + Eα(t, δt)
Xα(t)

= Rα(t, δt) +
Eα(t, δt)
Xα(t)

, (3.5)

where Eα(t, δt) represents the profits (e.g., dividends or interest) in the time
period [t, t+ δt]. Therefore, the return is a very natural measure describing
the price fluctuations of shares. The disadvantage is that the returns are
nonlinearly coupled by means of multiplication:

Rα(t, δt1 + δt2) = [Rα(t+ δt1, δt2) + 1] [Rα(t, δt1) + 1] − 1. (3.6)
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To overcome this problem, we introduce the difference of the natural
logarithm of the price

ξα(t, δt) = lnXα(t+ δt) − lnXα(t) = ln
Xα(t+ δt)
Xα(t)

. (3.7)

These quantities are additive,

ξα(t, δt1 + δt2) = ξα(t+ δt1, δt2) + ξα(t, δt1), (3.8)

and the approach (3.7) is organized so that the correction of the scales by
deflating factors leads to an additive term

ξ̃α(t, δt) = ln
g(t+ δt)Xα(t+ δt)

g(t)Xα(t)
= ξα(t, δt) + ln

g(t+ δt)
g(t)

. (3.9)

The natural logarithmic price differences and the returns are the most
commonly studied quantities in financial time series. For high-frequency data,
δt is small and |δXα| � δXα. Thus, we get the important approximation
ξα(t, δt) ≈ Rα(t, δt).

3.2 Empirical Analysis

3.2.1 Probability Distributions

From a physical point of view, a financial market is a complex system whose
evolution is given by the A-dimensional vector X(t) = {X1(t), ..., XA(t)} of
all simultaneous observed share quotations and other asset prices.
Alternatively, one can also use the vector of the logarithmic price differences
ξ(t, δt) = {ξ1(t, δt), ..., ξA(t, δt)} in place of X(t). Both vectors are
equivalent representations of the set of relevant degrees of freedom on the
same macroscopic level of the underlying financial system. For the sake of
simplicity, we mostly use the vector ξ(t, δt), which we transform if necessary
into other representations. In the context of this book, the vector function
ξ(t, δt) is also denoted as the trajectory of the financial market in the A-
dimensional space of the asset prices.

We had already generally discussed that on the macroscopic level each
complex system can be described by a probabilistic theory. In this sense,
the probability distribution function pδt(ξ, t) is the central quantity of a
physical description of financial markets. By definition, pδt(ξ, t) is the
probability density for a change of the logarithmic prices by the value ξ
from the beginning to the end of the time interval [t, t + δt]. The explicitly
specified control parameter δt is necessary to complete the definition of the
logarithmic price differences (3.7). If we want to study the properties of the
probability distribution function, we must consider that in reality only one
trajectory ξ(t, δt) is at our disposal for a statistical analysis. Each repetition
in the sense of a statistical experiment with the same initial conditions and
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the same boundary conditions is principally excluded. The quantity pδt(ξ, t) is
therefore interpreted in the context of Bayesian statistics as the hypothetical
probability density that a change ξ could have taken place at time t
independently of the realized event. If the event is situated still in the future,
pδt(ξ, t) is the probability density with which the change ξ can be expected.

Additionally, as a generalization of pδt(ξ, t), we introduce the joint
probability density pδt(ξ(N), tN ; ξ(N−1), tN−1; ...; ξ(0), t0) withN+1 sequenced
points in time. The knowledge of this function allows formally the
determination of arbitrary correlations via (2.102). Normally, one chooses
the parametrization of the time in such a way that the sampling times are
regularly spaced, tn+1 = tn + δt. In the joint probability representation, each
vector function ξ(t, δt) between the initial time t0 and the final time tN or,
more precisely, each series {ξ(t0, δt), ..., ξ(tN , δt)} is one probabilistic event.

The reduction on lower probability distribution functions is made via
integration over all noninteresting variables. By the way, this procedure may
be interpreted as a discrete version of a so-called path integral considering
the whole set of hypothetically allowed discrete trajectories of the financial
system during the time interval [t0, tN ]. Using conditional probabilities, the
joint probability can be written as

pδt

(
ξ(N), tN ; ...; ξ(0), t0

)
= pδt

(
ξ(N), tN | ξ(N−1), tN−1; ...; ξ(0), t0

)
×pδt

(
ξ(N−1), tN−1 | ξ(N−2), tN−2; ...

)
...
×pδt

(
ξ(1), t1 | ξ(0), t0

)
pδt

(
ξ(0), t0

)
. (3.10)

The main problem is now that one must obtain all information from the only
trajectory observed in reality. To this end, we need some assumptions, which
will be discussed in the following.

3.2.2 Ergodicity in Financial Data

The first important prerequisite is the assumption of the validity of the
ergodic hypothesis. There are different formulations of this hypothesis; for
further information, see the specialized literature [16, 57, 336, 378]. Roughly
speaking, the ergodic hypothesis generally requires that a system starting
from an arbitrary initial state can always arrive at each final state after a
sufficiently long time. In other words, the total set of all possible trajectories
is topologically not separable (see Figure 3.4). Since we know from our
observations, however, only one function ξ(t, δt) for a given financial market,
the assumption of ergodicity is an a priori hypothesis. This theorem can
neither be proven nor disproven for such systems. But even if a repetition
of the development under the same macroscopic conditions were possible
and the system would arrive at areas in the state space that it would
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Fig. 3.4. Possible trajectories in an ergodic (left figure) and a nonergodic (right
figure) system of four initial and four final states. If we possess only the empirical
information about the existence of trajectories between (A, B) and (A′, B′), we
cannot decide from an empirical view whether the total system is ergodic or non-
ergodic.

never achieve during the original evolution, this new information would be
irrelevant. From this point of view, the ergodicity hypothesis is an application
of the principle of Occam’s razor [399, 400]. This idea is attributed to the 14th
century Franciscan monk William of Occam and states that entities should
not be multiplied unnecessarily. The most useful statement of this principle is
that the better theory of two competing theories that make exactly the same
predictions is the simpler one. Occam’s razor is used to cut away unprovable
concepts.

3.2.3 Stationarity of Financial Markets

As a second important prerequisite for the description of financial
markets, one assumes stationarity. We had already pointed out in the
previous chapter that stationarity means that all probability distribution
functions and all correlation functions are invariant under an arbitrary shift
in time. This condition as well as the ergodic hypothesis allows us to replace
the ensemble averages (2.5) and (2.102) by appropriate time averages. In
particular, we expect for the correlation functions of order K

K∏
k=1

ξαk
(tnk

, δt) =

〈
K∏

k=1

ξαk
(tnk

, δt)

〉
(3.11)

with the time-averaged correlation function〈
K∏

k=1

ξαk
(tnk

, δt)

〉
= lim

S→∞
1
S

S−1∑
m=0

K∏
k=1

ξαk
(tnk

−mδt, δt). (3.12)
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Fig. 3.5. Daily logarithmic price changes |ξ(t)| and corresponding moving averages
for T = 10 and T = 100 trading days. The time horizon is δt = 1 trading day
(Commerzbank AG stock, reference time period 11/00–07/02).

In practice, we will attempt to determine the time-averaged values from a
finite number of observations. To this end, we consider S equidistant records
present in the time interval [t− T, t] with T = (S − 1)δt. The heuristically
constructed averages〈

K∏
k=1

ξαk
(tnk

, δt)

〉
T

=
δt

T + δt

T/δt∑
m=0

K∏
k=1

ξαk
(tnk

−mδt, δt) (3.13)

are denoted also as moving averages. They are dependent on the time t, the
width of the time window T , and the frequency δt−1 of financial observations.
If we assume stationarity, then we expect that these time averages should
converge to constant values for a sufficiently large number of observations.
However, we must be very careful with the stationarity assumption. A typical
example is the moving mean value of logarithmic price fluctuations,

〈ξα(t, δt)〉T =
δt

T + δt

T/δt∑
m=0

ξα(t−mδt, δt). (3.14)

If we analyze this average obtained from the data of an individual share, we
find considerable fluctuations even for wide time windows and a large number
of observations (see Figure 3.5). Several trends may be hidden behind these
relatively slow fluctuations, which are basically influenced by macroeconomic
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and political phenomena rather than by the intrinsic dynamics of the financial
market.

Unfortunately, it is very difficult to extract the current trend from
the actual moving averages since the mean values represent only a time-
delayed trend because of the asymmetric location of the time arguments with
respect to the current time t. We may at least partially remove these trends
by using relative fluctuations, ξ̃α(t, δt) = ξα(t, δt) − 〈ξα(t, δt)〉T . A typical
example is the empirical second moment of the trend-corrected logarithmic
price fluctuations

σ2
α(t, T, δt) =

〈
ξ̃2
α(t, δt)

〉
T

=
〈
ξ2
α(t, δt)

〉
T

− 〈ξα(t, δt)〉2T . (3.15)

This moment is, of course, the mean square standard deviation or the variance
of the natural logarithm of the prices of the corresponding asset. The quantity
is related to the so-called volatility, which is formally defined on the basis of
the returns (3.4)

σvola
α (t, T, δt) =

√
〈R2

α(t, δt)〉T − 〈Rα(t, δt)〉2T . (3.16)

The volatility is a technical term in finance that in particular evaluates the
risk of a stock. For sufficiently small price fluctuations, both definitions (3.15)
and (3.16) are practically equivalent. The heuristic analysis of the volatility
of various asset prices shows that the thesis of stationarity is approximately
valid for long elementary times δt and large time windows T (see Figure 3.6).
Nevertheless, also in the case of an apparent stationarity must we be very
careful in generalizing such empirical observations. If we employ small time
windows but high-frequency observations, we find considerable volatility
fluctuations, which are partially affected by daily cycles. Therefore, we will
always speak of stationarity only within the framework of an ideal financial
market.

It should be noted that the computation of moving averages is
numerically executed in more extensive ways. Very popular are causal
linear convolution operations [446, 447]. Such techniques can also be applied
on irregularly spaced time series. As explained above, inhomogeneous time
series arise from tick-by-tick data, including every quote or transaction price
of the financial market. The basic idea is a very natural generalization of
(3.13). We define a suitable causal kernel ω (t) and determine the moving
averages via a discrete convolution

〈
K∏

k=1

ξαk
(t, δt)

〉
ω

=

∑
m
ω (t− tm)

K∏
k=1

ξαk
(tm, δt)∑

m
ω (t− tm)

, (3.17)

where the causality requires ω (t) = 0 for t < 0 so that no information from
the future is used. A frequently used function is the exponentially decaying
kernel ω (t) = exp {−t/T}. The repeated application of the convolution
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Fig. 3.6. Moving mean square standard deviation of the logarithmic price changes
σ2(t, T, δt) for different time windows T = 5, T = 20, and T = 100 trading days.
The time horizon is δt = 1 trading day (Deutsche Telekom stock, reference time
period 11/00–07/02).

procedure is a method to generate new operators that may be linearly
combined to make more complicated kernels. For instance, the exponential
kernel allows the construction of [446]

ωn (t) = exp
{

− t

T

} n∑
k=0

1
k!

(
t

T

)k

. (3.18)

Obviously, we find ωn (t) ≈ 1 for t � T , whereas the exponential decay
ωn (t) ∼ exp {−t/T} dominates for t � T .

3.2.4 Markov Approximation

In principle, the joint probability (3.10) contains all necessary information
for the description of a financial market on the macroscopic level using price
changes at relevant quantities. Unfortunately, this function is too complicated
for practical application.

However, if the logarithmic differences ξα of the asset prices
correspond to a sufficiently long time horizon δt, then we can assume that
the price fluctuations take place statistically independently. In other words, if
δt > δtMarkov, we may use the Markov approximation
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pδt

(
ξ(n), tn | ξ(n−1), tn−1; ...; ξ(0), t0

)
= pδt

(
ξ(n), tn

)
(3.19)

and consequently

pδt

(
ξ(N), tN ; ξ(N−1), tN−1; ...; ξ(0), t0

)
=

N∏
j=0

pδt

(
ξ(j), tj

)
. (3.20)

In the first part of this chapter, we will regard sufficiently large time
differences δt well above the Markov horizon δtMarkov. In this case, one can
describe the development of the data of a certain financial market in the
context of the theory of Markov processes.

In the opposite case (i.e., below the Markovhorizon), memory effects play
an important role that cannot be neglected. We will analyze this problem in
the last part of this chapter.

3.2.5 Taxonomy of Stocks

Correlation and Anticorrelation. In financial markets, many stocks are
traded simultaneously. A reasonable way to detect similarities in the time
evolution starts from the correlation coefficients

ϑαβ =
〈ξα(t, δt)ξβ(t, δt)〉T − 〈ξα(t, δt)〉T 〈ξβ(t, δt)〉T√〈ξ2

α(t, δt)〉T − 〈ξα(t, δt)〉2T
√

〈ξ2
β(t, δt)〉T − 〈ξβ(t, δt)〉2T

. (3.21)

These coefficients are simply the normalized components of the heuristically
determined covariance matrix. With this definition, the correlation
coefficients can assume values between −1 and +1. In the case of ϑαβ = 1, the
stocks α and β are completely correlated so that we obtain
ξα(t, δt) = Aξβ(t, δt) + B with A > 0 and arbitrary B. The opposite
situation of a complete anticorrelation occurs for ϑαβ = −1. Finally, ϑαβ = 0
indicates uncorrelated changes in the time evolution of stock prices.

We may discuss the correlation coefficients in terms of a geometric
representation. To this end, we introduce the normalized price fluctuations

ξ̂α(t, δt) =
ξα(t, δt) − 〈ξα(t, δt)〉T√
〈ξ2

α(t, δt)〉T − 〈ξα(t, δt)〉2T
(3.22)

so that the correlation coefficients can be written as second moments of these
reduced quantities

ϑαβ = 〈ξ̂α(t, δt)ξ̂β(t, δt)〉T . (3.23)

Let us now combine the S records of the normalized price fluctuations ξ̂α(t, δt)
into the S-dimensional vector −→

ξ α = S−1/2
[
ξ̂α(t0, δt), ξ̂α(t1, δt)..., ξ̂α(tS , δt)

]
with S = T/δt+1 and tn = t−nδt. Thus, the correlation coefficient is simply
the scalar product ϑαβ = −→

ξ α
−→
ξ β . The vector −→

ξ α has unit length because of
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−→
ξ

2
α = ϑαα = 1. The Euclidean distance between the vectors −→

ξ α and −→
ξ β is

obtainable from the Pythagorean relation

d2
αβ =

∥∥∥−→ξ α − −→
ξ β

∥∥∥2 = −→
ξ

2
α + −→

ξ
2
α − 2−→

ξ α
−→
ξ β (3.24)

so that

dαβ =
√

2
(
1 − −→

ξ α
−→
ξ β

)
=
√

2 (1 − ϑαβ). (3.25)

This distance is an appropriate measure to characterize the temporal
synchronization of shares (see Figure 3.7). Obviously, the distance between
completely correlated assets vanishes, while the distance gets its maximum
value dαβ = 2 for completely anticorrelated stocks. Due to the Euclidean
character, the distances between stocks are symmetric, dαβ = dβα, positive-
semidefinite, dαβ ≥ 0 with dαα = 0, and satisfy the triangular inequality,
dαβ ≤ dαγ+ dβγ . The knowledge of the distance matrix between stocks is
customarily used to decompose the set of shares into suitable subsets of closely
related stocks.

Ultrametricity. The main problem with a possible decomposition
procedure is the definition of a space in which the stocks are embedded.
Unfortunately, the dimension of the space spanned by the vectors −→

ξ β is too
large for a reasonable analysis. It is simple to check that such a space has
at least the dimension min(A − 1, S), where A is the total number of stocks
that were taken into account. One way to obtain a simple taxonomy of the
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correlations between stocks, however, is the introduction of an additional
hypothesis about the spatial topology.

Let us make the working hypothesis that a useful space for linking A
stocks is an ultrametric space. This a posteriori hypothesis is motivated by
the fact that the associated taxonomy is meaningful from an economic point
of view. A good introduction to ultrametricity for physicists is given elsewhere
[324]. Here, we just remind the reader that the usual triangular equation
dαβ ≤ dαγ+ dβγ is substitute in spaces endowed with an ultrametric distance
d̂αβ by the stronger inequality

d̂αβ ≤ max
(
d̂αγ , d̂βγ

)
. (3.26)

In an ultrametric space, all triangles have at least two equal sides that
are larger than or equal to the third side. Ultrametric spaces provide a
natural way to describe hierarchically structures of complex systems since the
concept of ultrametricity is directly connected to the concept of hierarchy.
A hierarchical tree is a very good way of representing an ultrametric set of
objects. We remark that in the solution of the mean-field spin-glass theory,
one finds an exact ultrametric structure: the equilibrium states are organized
on a hierarchical tree, and if we pick up three configurations of the system
and compute their distances, we find an ultrametric triangle [128, 129, 301].

The point is now to find a formalism in order to transform the metric
distances into ultrametric distances. Assuming that the metric distance
matrix with the components dαβ exists, several ultrametric spaces can be
obtained by performing the given partition of the set of A shares. Among all
of the possible ultrametric topologies associated with the metric distances,
the subdominant ultrametric structure convinces because of its simplicity.
In the presence of a metric space defined by the whole set of distances dαβ ,
the subdominant ultrametric topology can be obtained by determining the
minimal spanning tree.

Formally, the minimal spanning tree is a graph of A− 1 edges connecting
the A shares in such a way that the graph structure minimizes the sum over
the metric edge distances. The investigation of the subdominant ultrametric
topology allows us to determine in a unique way an indexed hierarchy of the
A stocks. The technique of constructing a minimal spanning tree of A shares,
known as Kruskal’s algorithm [298, 422], is simple and direct.

In the first step, we have to find the pair of stocks separated by the
smallest distance dαβ . This pair forms a cluster of size 2, and the ultrametric
distance is equivalent to the metric distance d̂αβ = dαβ . We then determine
the minimum of the remaining metric distances. If this distance combines
another pair, we get a further cluster of size 2. But if a connection to the
already existing cluster appears, the cluster size increases by 1. Furthermore,
we identify all ultrametric distances between the new element and the old
elements of the cluster with the smallest metric distance between the new
element and the old elements. If we continue this procedure, the size of the
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clusters increases monotonously. Finally, we find stock pairs that combine
two clusters. The ultrametric distance between all elements of the one cluster
and all elements of the other cluster is then precisely the metric distance of
the connecting pair.

After we have finished this procedure, we arrive at a complete matrix
of ultrametric distances d̂αβ . In contrast to the matrix of metric distances,
the number of different elements in the ultrametric distance matrix cannot
exceed A− 1.

The graphic representation of the minimal spanning tree can be obtained
straightforwardly. To do this, we represent each stock by a site and connect
all pairs (α, β) of sites if the condition d̂αβ = dαβ is satisfied. Figure 3.8 shows
the minimal spanning tree for the German stock index (DAX).

Another representation is the so-called indexed hierarchical tree, which
considers the subdominant ultrametric structure more explicitly. In Figure
3.9, we show this tree associated with the minimal spanning tree of the DAX.

Random Potts Models. Another possibility for the arrangement of shares
is the construction of a fixed number of groups with minimum metric
distances. To do this, we assume that the number of groups is defined by
G < A. A stock α is characterized by a group number sα ∈ [1, ..., G] that
defines the affiliation to a group. Further, let us define a functional that
exclusively considers all metric distances inside the groups,
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H =
∑
α�=β

Jαβδsα,sβ
, (3.27)

with δss′ = 1 for s = s′ and δss′ = 0 for s �= s′. The coupling parameters
Jαβ = J(dαβ) are chosen as they increase monotonously with the argument
dαβ . Supposing that the coupling parameter between the share pair (α, β) is
Jαβ , the contribution to H is equal to Jαβ if the two shares are in the same
group and equal to 0 if they are in different groups. The minimization of H
by rearranging the occupations should lead the groups to contain relatively
synchronous stocks.

A functional of type (3.27) is usually denoted as the Hamiltonian of a
Potts model [183, 314, 435] in the framework of statistical physics. Such
a model is a generalization of the well-known two-state Ising model to an
arbitrary number G of discrete states: sα = 1, ..., G instead of sα = ±1.
In the language of our problem, each Potts state corresponds to a certain
stock group. The minimization of H corresponds to the determination of
the ground states of the Hamiltonian of the Potts model. Because of the
more or less stochastic structure of the distance matrix, there are many local
minimum configurations

{
ŝ
(i)
1 , ŝ

(i)
2 , ..., ŝ

(i)
A

}
, with i = 1, 2, ..., which

complicate the determination of a ground state.
The Potts model is relatively sensitive to the choice of the function J(dαβ).

As an example, we study the coupling parameter Jαβ = d2
αβ − c, where c is

an arbitrary number. For c > 4, we obtain Jαβ < 0, and the minimum
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Fig. 3.10. Group structure of the DAX (reference time interval 12/00–12/01, daily
observations) obtained for c = 4 (antiferromagnetic regime). An equipartition of
the occupation per group is found.

configurations of (3.27) show a ferromagnetic behavior. This means that the
global minimum 1 is one in which a particular one of the G different states
sα is more probable than the others for all shares α. In other words, for
sufficiently large c, all shares are collected in one group, so that this regime
is not very important for the arrangement of stocks.
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Fig. 3.11. Group structure of the DAX (reference time interval 12/00–12/01,
daily observations) obtained for c = 2 (Potts glass regime). A large main group
dominates the group structure.

1 Note that the ferromagnetic ground state is G-fold, degenerated while the ground
state of the Potts glass and the antiferromagnetic regime are G!-fold degenerated.
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For c < 0, there occurs an antiferromagnetic behavior. Here, the global
minimum configuration is characterized by an equipartition of the G different
states. Thus, the average occupation of a group is given by A/G.

The case c ≈ 2 is related to a so-called Potts-glass. This regime offers
a very complicated configuration landscape. In particular, we expect a
very heterogeneous occupation of the groups. The stocks of a group are
mainly correlated, whereas for stocks of different groups, anticorrelation
predominates.

The analysis of the various stock markets shows that several groups are
obtainable using the antiferromagnetic (Figure 3.10) or the glassy regime
(Figure 3.11) of the Potts model and that these groups are homogeneous
with respect to their industry sector and often also with respect to their
industry subsector.

3.3 Long-Time Regime

3.3.1 The Central Limit Theorem

We want to attempt to determine the possible probability distribution
function pδt (ξ, t) of the price fluctuations more closely. Up to now, we can
only say that such a function must exist. A certain estimate of the probability
density is possible by an application of empirical methods to financial data,
but the preserved information may contain considerable errors. Therefore,
we want to choose another way. To this end, we assume that we know the
probability distribution function pδt (ξ, t) for price changes over a very short
time horizon δt. In the following context, we designate pδt (ξ, t) also as an
elementary probability distribution function. Indeed, the time horizon should
be above the Markov horizon, δt > δtMarkov. Then, the joint probability for
the time series {ξ(t1, δt), ..., ξ(tN , δt)} is given by (3.20):

pδt

(
ξ(N), tN ; ξ(N−1), tN−1; ...; ξ(1), t1

)
=

N∏
j=1

pδt

(
ξ(j), tj

)
. (3.28)

Let us now determine the function pNδt (ξ, t) for a price change ξ during the
time interval [t, t+Nδt]. Because the logarithmic price changes are additive,
we get

pNδt (ξ, t) =
∫ N∏

j=1

dξ(j)δ

ξ −
N∑

j=1

ξ(j)

 N∏
j=1

pδt

(
ξ(j), tj

)
(3.29)

with the condition t1 = t. The Markov property allows us to derive the
complete functional structure of the probability distribution function
pNδt (ξ, t) from the sole knowledge of the elementary probability densities
pδt

(
ξ(j), tj

)
. It is convenient to use the characteristic function (2.14), which
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is defined as the Fourier transform of the probability density. Hence, we
obtain

p̂Nδt (k, t) =
∫

dξ exp {ikξ} pNδt (ξ, t)

=
∫ N∏

j=1

dξ(j) exp

ik
N∑

j=1

ξ(j)


N∏

j=1

pδt

(
ξ(j), tj

)

=
N∏

j=0

p̂δt (k, tj) . (3.30)

Let us assume for the moment that the financial market is in a steady state
(i.e., the characteristic function is a time-independent quantity). Thus, (3.30)
can be written as

p̂Nδt (k) = [p̂δt (k)]N . (3.31)

What can we learn from this approach? To this end, we provide a naive
scaling procedure to (3.31). We start from the expansion of the characteristic
function in terms of cumulants. If we focus on distribution functions of single
prices, we obtain

p̂δt (k) = exp

{ ∞∑
n=1

c(n)

n!
(ik)n

}
(3.32)

and, because of (3.31),

p̂Nδt (k) = exp

{ ∞∑
n=1

Nc(n)

n!
(ik)n

}
, (3.33)

where k is now a simple scalar quantity instead of a vector of dimension A.
Obviously, when N → ∞, the quantity ξ goes to infinity with the central
tendency ξ = Nc(1) and the standard deviation σ =

(
Nc(2)

)1/2
. Since the

drift can be zero or can be put to zero by a suitable shift ξ → ξ−ξ, we conclude
that the relevant scale is that of the fluctuations, namely the variance σ. The
corresponding range of k is simply its inverse since ξ and k are conjugate
in the Fourier transform. Thus, after rescaling k → k̂N−1/2, the cumulant
expansion reads

p̂Nδt

(
k̂
)

= exp

{ ∞∑
n=1

c(n)N1−n/2

n!

(
ik̂
)n
}
. (3.34)

Apart from the first cumulant, we find that the second cumulant remains
invariant while all higher cumulants approach zero as N → ∞. Thus, only
the first and second cumulants will remain for sufficiently large N , and the
probability distribution function pNδt (ξ, t) approaches a Gaussian function.
The result of our naive argumentation is the central limit theorem. The
precise formulation of this important theorem is:
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The sum, normalized by N−1/2 of N random independent and
identically distributed states of zero mean and finite variance, is a
random variable with a probability distribution function
converging to the Gaussian distribution with the same variance. The
convergence is to be understood in the sense of a limit in probability
(i.e., the probability that the normalized sum has a value within
a given interval converges to that calculated from the Gaussian
distribution).

We will now give a more precise derivation of the central limit theorem.
Formal proofs of the theorem may be found in probability textbooks such
as Feller [101, 119, 412]. Here, we follow a more physically motivated way of
Sornette [383] using the technique of the renormalization group theory.

This powerful method [444] introduced in field theory and in critical phase
transitions, is a very general mathematical tool that allows one to decompose
the problem of finding the collective behavior of a large number of elements
on large spatial scales and for long times into a succession of simpler problems
with a decreasing number of elements whose effective properties vary with the
scale of observation. In the context of the central limit theorem for finance,
these elements refer to the elementary price changes ξ (t, δt).

The renormalization group theory works best when the problem is
dominated by one characteristic scale that diverges at the so-called
critical point. The distance to this criticality is usually determined by a
control parameter, which may be identified in our special case as N−1. Close
to the critical point, a universal behavior becomes observable that is related
to typical phenomena such as scale invariance or self-similarity. As we will see
below, the form stability of the Gaussian probability distribution function is
such a kind of self-similarity.

The renormalization consists of an iterative application of decimation
and rescaling steps. The first step is to reduce the number of elements to
transform the problem into a simpler one. We use the thesis that, under
certain conditions, the knowledge of all of the cumulants is equivalent to the
knowledge of the probability densityr, so we can write

pδt (ξ) = f
(
ξ, c(1), c(2), ..., c(m), ...

)
, (3.35)

where f is a unique function of ξ and the infinite set of all cumulants{
c(1), c(2), ...

}
. Every distribution function can be expressed by the same

function in this way, however with differences in the infinite set of parameters.
The probability distribution function pNδt (ξ) may be the convolution of

N = 2n identical distribution functions pδt (ξ). This specific choice of N is
not a restriction since we are interested in the limit of large N , and how we
reach this limit is irrelevant. We denote the result of the 2n-fold convolution
as

pNδt (ξ) = f (n)
(
ξ, c(1), c(2), ..., c(m), ...

)
. (3.36)
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Furthermore, we obtain from (3.31) the general relation

p2δt (ξ) = f
(
ξ, 2c(1), 2c(2), ..., 2c(m), ...

)
. (3.37)

With this knowledge, we are able to generate pNδt (ξ) also from p2δt (ξ) by a
2n−1-fold convolution

pNδt (ξ) = f (n−1)
(
ξ, 2c(1), 2c(2), ..., 2c(m), ...

)
. (3.38)

Here, we see the effect of the decimation. The new convolution considers only
2n−1 price changes with respect to the new time difference 2δt instead of 2n

steps and a timescale δt. The decimation itself corresponds to the pairing
due to the convolution (3.29) between two identical elementary probability
distributions

p2δt (ξ) =
∫

pδt (ξ − ξ′) pδt (ξ′) dξ′. (3.39)

The notation of the scale is inherent to the probability distribution function.
The new elementary probability distribution function p2δt (ξ) obtained from
(3.39) may display differences from the probability density from which we
started. We compensate for this by the scale factor λ−1 for ξ. This leads to
the rescaling step ξ → λ−1ξ of the renormalization group, which is necessary
to keep the reference scale.

With the rescaling of the components of the price vector ξ, the cumu-
lants are also rescaled, and each cumulant of order m has to be multiplied
by the factor λ−m. This is a direct consequence of (2.19) because it demon-
strates that the cumulants of order m have the dimension |k|−m and |ξ|m,
respectively. The conservation of the probabilities pδt (ξ) dξ = pδt (ξ′) dξ′ in-
troduces a prefactor λ−A as a consequence of the change of the A-dimensional
vector ξ → ξ′. We thus obtain from (3.38)

pNδt (ξ) = λ−Af (n−1)
(
ξ

λ
,
2c(1)

λ
,
2c(2)

λ2 , ...,
2c(m)

λm
, ...

)
. (3.40)

The successive repetition of both decimation and rescaling leads after n steps
to

pNδt (ξ) = λ−nAf (0)
(

ξ

λn
,
2nc(1)

λn
,
2nc(2)

λ2n
, ...,

2nc(m)

λmn
, ...

)
. (3.41)

As mentioned above, f (n)(ξ, ...c(m), ...) is a function that is obtainable from a
convolution of 2n identical functions f(ξ, ...c(m), ...). In this sense, we obtain
the matching condition f (0) ≡ f so that we arrive at

pNδt (ξ) = λ−nAf

(
ξ

λn
,
2nc(1)

λn
,
2nc(2)

λ2n
, ...,

2nc(m)

λmn
, ...

)
. (3.42)

Finally, we have to fix the scale λ. We see from (3.42) that the particular
choice λ = 21/m0 makes the prefactor of the m0th cumulant equal to 1,
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while all higher cumulants decrease to zero as n = log2 N → ∞. The lower
cumulants diverge with N (1−m/m0), where m < m0.

The only reasonable choice is m0 = 2 because λ =
√

2 keeps the
probability distribution function in a window with constant width. In this
case, only the first cumulant may remain divergent for N → ∞. As
mentioned above, this effect can be eliminated by a suitable shift of ξ. Thus,
we arrive at

lim
N→∞

pNδt (ξ) = N−A/2f

(
ξ√
N
, c(1)

√
N, c(2), 0, ..., 0, ...

)
. (3.43)

In particular, if we come back to the financial problem, we have thus obtained
the asymptotic result that the probability distribution of price changes over
large time intervals Nδt has only its two first cumulants nonzero. Hence,
as discussed in subsection 2.1.5, the corresponding probability density is a
Gaussian law.

If we return to the original scales, the final Gaussian probability distri-
bution function pNδt (ξ) is characterized by the mean ξ = ξ (Nδt) = Nc(1) =
Nξ (δt) and the covariance matrix σ̃ = σ̃ (Nδt) = Nc(2) = Nσ̃ (δt), where
c(1) and c(2) are the first two cumulants of the elementary probability density
pδt (ξ). Hence, we obtain

lim
N→∞

pNδt (ξ) =
1

(2π)A/2 √
det σ̃

exp
{

−1
2
(
ξ − ξ

)
σ̃−1 (ξ − ξ

)}
, (3.44)

or with the rescaled and shifted states,

lim
N→∞

pNδt (ξ) =
1

(2π)A/2 √
det c(2)

exp
{

−1
2
ξ̂
[
c(2)
]−1

ξ̂

}
. (3.45)

The quantity ξ̂ is simply the sum normalized by N−1/2 of N random
independent and identically distributed states ξ (t+ nδt, δt) − c(1) of zero
mean and finite variance,

ξ̂ =
ξ − ξ (Nδt)√

N
=

1√
N

N−1∑
j=0

(
ξ (t+ nδt, δt) − c(1)

)
. (3.46)

In other words, (3.45) is the mathematical formulation of the central limit
theorem. The Gaussian distribution function itself is a fixed point of the
convolution procedure in the space of functions in the sense that it is form-
stable under the renormalization group approach. Notice that form stability,
or alternatively self-similarity, means that the resulting Gaussian function
is identical to the initial Gaussian function after an appropriate shift and a
rescaling of the variables.

We remark that the convergence to a Gaussian behavior also holds if the
initial variables have different probability distribution functions with finite
variance of the same order of magnitude. In particular, small deviations of
financial data from the stationarity condition are not so important for the
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long-time analysis in the frame of the central limit theorem. The generalized
fixed point is now the Gaussian law (3.44) with

ξ =
N−1∑
n=0

ξ (t+ nδt, δt) and σ̃ =
N−1∑
n=0

σ̃ (t+ nδt, δt) , (3.47)

where ξ (t+ nδt, δt) and σ̃ (t+ nδt, δt) are the mean trend vector and the
covariance matrix, respectively, obtained from the time-dependent proba-
bility distribution function pδt (ξ, t+ nδt).

Finally, it should be remarked that the two conditions of the central
limit theorem may be partially relaxed. The first condition under which this
theorem holds is the Markov property. This strict condition can, however,
be weakened, and the central limit theorem still holds for weakly correlated
variables under certain conditions. The second condition, that the variance
of the variables be finite, can be somewhat relaxed to include probability
functions with algebraic tails |ξ|−3. In this case, the normalizing factor is no
longer N−1/2 but can contain logarithmic corrections.

3.3.2 Convergence Problems

As a consequence of the renormalization group analysis, the central limit
theorem is applicable in a strict sense only in the limit of infinite N . But
in practice, the Gaussian shape is a good approximation of the center of a
probability distribution function if N is sufficiently large. It is important to
realize that large deviations can occur in the tail of the probability distribu-
tion function pNδt (ξ), whose weight shrinks as N increases. The center is a
region of width at least of the order of

√
N around the average ξ (Nδt).

Let us make more precise what the center of a probability distribution
function means. For the sake of simplicity, we investigate states of only one
component (i.e., ξ is a scalar quantity). As before, ξ is the sum of N identically
distributed variables ξ(j) with mean ξ (δt) = c(1), variance σ2 (δt) = c(2), and
finite higher cumulants c(m). Thus, the central limit theorem reads

lim
N→∞

pNδt (x) =
1√
2π

exp
{

−x2

2

}
, (3.48)

where we have introduced the reduced variable

x = σ−1ξ̂ =
ξ −Nξ (δt)√

Nc(2)
. (3.49)

In order to analyze the convergence behavior for the tails [152], we start from
the probability

P
(N)
> (z) = P (N)(x > z) =

∞∫
z

pNδt (x) dx (3.50)
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and analyze the difference ∆P (N) (z) = P
(N)
> (z) − P

(∞)
> (z), where P

(∞)
> (z)

is simply the complementary error function due to (3.48). If all cumulants
are finite, one can develop a systematic expansion in powers of N−1/2 of the
difference ∆P (N) (z) [72],

∆P (N) (z) =
exp
{−z2/2

}
√

2π

∞∑
n=1

[
Q1(z)
N1/2 +

Q2(z)
N

...+
Qm(z)
Nm/2 ...

]
, (3.51)

where the Qm (z) are polynomials in z, the coefficients of which depend on
the first m + 2 normalized cumulants of the elementary probability distri-
bution function, λk = c(k)/σk. The explicit form of these polynomials can
be obtained from the textbook of Gnedenko and Kolmogorov [152]. The first
two polynomials are

Q1 (z) =
λ3

6
(
1 − z2) (3.52)

and

Q2 (z) =
λ2

3

72
z5 +

(
λ4

24
− 5λ2

3

36

)
z4 +

(
5λ2

3

24
− λ4

8

)
z3. (3.53)

If the elementary probability distribution function has Gaussian behavior, all
of its cumulants c(m) of order larger than 2 vanish identically. Therefore, all
Qm (z) are also zero, and the probability density pNδt (x) is Gaussian.

For an arbitrary asymmetric probability distribution function, the
skewness λ3 is nonvanishing in general and the leading correction is Q1 (z).
The Gaussian law is valid if the relative error

∣∣∆P (N) (z)
∣∣ /P (∞)

> (z) is small
compared to 1. Since the error increases with z, the Gaussian behavior first
becomes observable close to the central tendency. The necessity condition
|λ3| � N1/2 follows directly from

∣∣∆P (N) (z)
∣∣ /P (∞)

> (z) � 1 for z → 0.
For large z, the approximation of pNδt (x) by a Gaussian law remains

valid if the relative error remains small compared to 1. Here, we may re-
place the complementary error function P

(∞)
> (z) by its asymptotic represen-

tation exp
{−z2/2

}
/(

√
2πz). We thus obtain the inequality |zQ1(z)| � N1/2

leading to
∣∣z3λ3

∣∣� N1/2. Because of (3.49), this relation is equivalent to the
condition∣∣ξ −Nξ (δt)

∣∣� |λ3|−1/3
σN2/3. (3.54)

This means that the Gaussian law holds in a region of order of magnitude∣∣ξ −Nξ (δt)
∣∣� |λ3|−1/3

σN2/3 around the central tendency.
A symmetric probability distribution function has a vanishing skewness

so that the excess kurtosis λ4 = c(4)/σ4 provides the leading correction to
the central limit theorem. The Gaussian law is now valid if λ4 � N and∣∣ξ −Nξ (δt)

∣∣� |λ4|−1/4
σN3/4 (3.55)

(i.e., the central region in which the Gaussian law holds is now of order of
magnitude N3/4).



74 3. Financial Markets

Another class of inequalities describing the convergence behavior with
respect to the central limit theorem was found by Berry [43] and Esséen
[114]. The Berry–Esséen theorems [120] provide inequalities controlling the
absolute difference

∣∣∆P (N) (z)
∣∣. Suppose that the variance σ and the average

η =
∫ ∣∣ξ − ξ (δt)

∣∣3 pδt (ξ) dξ (3.56)

are finite quantities. Then, the first theorem reads∣∣∣∆P (N) (z)
∣∣∣ ≤ 3η

σ3
√
N
. (3.57)

The second theorem is the extension to not identically distributed variables.
In the language of finance, this case corresponds to a nonstationary market.
Here, we have to replace the constant values of σ and η by〈

σ2 (t, δt)
〉

N
=

1
N

N−1∑
n=0

σ2 (t+ nδt, δt) (3.58)

and

〈η (t, δt)〉N =
1
N

N−1∑
n=0

η (t+ nδt, δt) , (3.59)

where σ (t, δt) and η (t, δt) are obtained from the time-dependent elemen-
tary probability distribution function pδt (ξ, t). Then, the following inequality
holds:∣∣∣∆P (N) (z)

∣∣∣ ≤ 6 〈η (t, δt)〉N

〈σ2 (t, δt)〉3/2
N

√
N
. (3.60)

Notice that the Berry–Esséen theorems are less stringent than the results
obtained from the cumulant expansion (3.51). We see that the central limit
theorem gives no information about the behavior of the tails for finite N .
Only the center is well-approximated by the Gaussian law. The width of
the central region depends on the detailed properties of the elementary
probability distribution functions.

The Gaussian probability distribution function is the fixed point, or the
attractor, of a well-defined class of functions. This class is also called the basin
of attraction with respect to the corresponding functional space. When N
increases, the functions pNδt (ξ) become progressively closer to the Gaussian
attractor. As discussed above, this process is not uniform. The convergence
is faster close to the center than in the tails of the probability distribution
function.

3.3.3 Fokker–Planck Equation for Financial Processes

Let us assume that the financial market is in a stationary state and we know
the set of all prices at a given initial time t0. The probability distribution
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function pt−t0 (ξ) to observe the overall logarithmic price changes ξ at t > t0
with t− t0 � δtMarkov can be interpreted as a conditional probability

p (ξ, t | 0, t0) = pt−t0 (ξ) . (3.61)

The number of elementary price changes during the time interval ∆t = t− t0
is simply given by N = ∆t/δt. For large N and moderate price fluctuations,
the probability density pt−t0 (ξ) is well-approximated by the Gaussian shape
law (3.44)

pt−t0 (ξ) =
1

(2π∆t)A/2
√

det
[
c(2)/δt

]
× exp

{
− 1

2∆t

(
ξ − c(1)

δt
∆t

)[
c(2)

δt

]−1(
ξ − c(1)

δt
∆t

)}
(3.62)

with ∆t = t − t0. Obviously, the corresponding conditional probability
satisfies the initial condition p (ξ, t0 | 0, t0) = δ (ξ). The cumulants c(1) and
c(2) are obtainable from the elementary probability distribution function
pδt (ξ). If δt � δtMarkov the function pδt (ξ) itself can be generated from
probability distribution functions with significantly shorter time horizons by
the convolution procedure introduced above. Therefore, we conclude that
c(1) ∼ δt as well as c(2) ∼ δt. It is reasonable to introduce the trend rate
vector µ = c(1)/δt and covariance rate matrix Φ = c(2)/δt, which are mainly
independent from the timescale δt. Thus, we obtain

p (ξ, t | 0, t0) =
1

(2π∆t)A/2 √
detΦ

× exp
{

− 1
2∆t

(ξ − µ∆t)Φ−1 (ξ − µ∆t)
}
. (3.63)

This equation is equivalent to (2.96) and therefore the solution of the Fokker–
Planck equation

∂

∂t
p (ξ, t | 0, t0) =

∑
αβ

1
2

∂2

∂ξα∂ξβ
Φαβp (ξ, t | 0, t0)

−
∑
α

∂

∂ξα
µαp (ξ, t | 0, t0) (3.64)

with the initial condition p (ξ, t0 | 0, t0) = δ (ξ). In the last equation, we have
explicitly emphasized the components of the A-dimensional vectors ξ and µ
and the A×A matrix Φ.

The last step requires some remarks. As a consequence of the central
limit theorem, the Gaussian probability distribution (3.44) is an asymptoti-
cally self-similar function under the convolution procedure discussed above. In
contrast to this forward extrapolation, the construction of the Fokker–Planck
equation (3.64) includes a backward extrapolation of the self-similarity
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of the Gaussian probability distribution function onto short times. The
existence of a backward extrapolation is secured because Gaussian laws
belong to the class of infinitely divisible probability distribution functions
[120, 152]. But the backward procedure is not a unique formalism. Since the
Gaussian probability distribution function is the limit distribution obtained
from the convolution of arbitrary (usually identical) elementary probability
distribution functions with finite variance, it can also be divided into several
elementary probability densities in the course of the backward extrapolation.

Therefore, we require additionally the conservation of the self-similarity
during the backward extrapolation to short timescales. Notice that this is
only a helpful a priori model assumption, as opposed to the universal validity
of the central limit theorem at long time scales.

Therefore, we cannot expect the short-time solution of the Fokker–Planck
equation to conform with the observations in real financial markets. It is
convenient to say that the Fokker–Planck equation (3.64) describes the
dynamics of an ideal financial market. Although this equation yields
possibly wrong results for short timescales, the solution approaches reality
with increasing time difference t− t0.

The Fokker–Planck equation corresponds to a set of Ito stochastic
differential equations

dξα(t) = µαdt+
R∑

k=1

bα,kdWk(t) (3.65)

with R Wiener processes Wk(t) and the A × R matrix b. This matrix is
connected with the covariance rate via

Φαβ =
R∑

k=1

bα,kbβ,k. (3.66)

We must consider that the functions Wk(t) show the characteristic proper-
ties of a Wiener process only above the Markov horizon. Roughly speaking, we
have to replace the differential dWk(t) by the difference
δWk(t) = Wk(t + δtMarkov) − Wk (t) in order to keep the rules (2.137) of
the Ito calculus.

We stress again that both the Ito stochastic differential equation and
the corresponding Fokker–Planck equation describe an idealized substitute
process that may be interpreted as a model of the financial market. This
model approaches the real market only in a limited framework.

All R Wiener processes contributing to the stochastic differential equation
can be interpreted as results of individual human decisions, while the coupling
constants bα,k represent more or less the action of external economic factors
affecting the financial market [337]. In this theory, an economic factor is
common to the set of stocks under consideration.
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The matrix b may be calculated from the covariance rate Φ. To do this,
we take into account that Φ is a symmetric positive-definite (or positive-
semidefinite) matrix that can be written as

Φαβ =
A∑

k=1

ϕα,kλkϕβ,k, (3.67)

where ϕα,k is the αth component of the kth normalized eigenvector and λk

is the corresponding eigenvalue. If we compare (3.66) and (3.67), we get
bα,k =

√
λkϕα,k. Thus, we may identify the eigenvalues λk as possible

economic control factors, while the components of the normalized eigenvec-
tors ϕα,k define the economic weight of this factor with respect to the stock
α. In other words, the determination of possible economic control mecha-
nisms is equivalent to the determination of the eigenvalues and eigenvectors
of the matrix Φ. Obviously, the total number of economic factors is limited
by R ≤ A because the matrix Φ has A nonnegative eigenvalues λk ≥ 0. In
particular, if Φ is a positive-semidefinite matrix and the eigenvalue λ = 0 is
m-fold degenerated, we get R = A−m since the corresponding eigenvectors
do not contribute to the coupling parameters bα,k. The strength of the kth
economic factor is given by

Ξk = ‖bα,k‖2 =
∑
α

b2α,k =
∑
α

ϕ2
α,kλk = λk, (3.68)

where we have used the fact that the eigenvectors ϕk are normalized.
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Fig. 3.12. The empirical frequency distribution function f(Φαβ) of the matrix el-
ements Φαβ corresponding to the German stock index DAX (reference time interval
12/00–12/01, daily observations).
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Fig. 3.13. The rank-ordered eigenvalues of the matrix Φ corresponding to the
German stock index DAX (reference time interval 12/00–12/01, daily observations).

Within the framework of our theory, the existence of a few eigenvalues
dominating the matrix Φ (or the corresponding covariance matrix σ̃) can be
interpreted as evidence of a small number of economic factors that have an
essential effect on the stochastic dynamics of the price fluctuations ξ (t).

At first sight, the coefficients of the matrix Φ seem to be more or less
randomly distributed variables (Figure 3.12). Thus, we should be able to
use the experiences of physics and mathematics with respect to the random
matrix theory [84, 163, 269]. But the empirical analyses (Figure 3.13) detect a
prominent eigenvalue far larger than, and a small group of eigenvalues slightly
larger than, what is expected from the random matrix theory [220, 311].

This result gives reason for two comments. On the one hand, the
covariance matrix is obviously not a simple random matrix since it shows
complicated correlations between the components. Therefore, we must be
very carful when comparing the spectrum of eigenvalues of a symmetric
positive-definite random matrix with the spectrum of the covariance matrix
Φ.

On the other hand, we should extend the term “economic factors” to
“economic-psychological effects.” It is well-known and can be confirmed by
empirical observations that the daily trading of all assets or at least of
large groups of assets depends strongly on the actual mental situation of
the traders. Bad or positive news, even if it concerns only a company or a
small industrial sector, often has effects on the valuation of all other stocks or
of an essential portion of the other stocks. These psychological effects lead to
a strong common behavior that essentially influences the correlation between
the share prices. It can be expected that these effects especially contribute
mainly to the largest eigenvalues of the covariance matrix Φ.
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3.3.4 The Log-Normal Law

Another quantity frequently used in finance is the return (3.4). The re-
turns and the logarithmic price changes are connected via the relation
ξα(t, δt) = ln(Rα(t, δt) + 1). Thus, the components rα(t, δt) = Rα(t, δt) + 1
are distributed according to a log-normal probability distribution function
because the ξα(t, δt) are distributed according to a Gaussian law.

The log-normal distribution is a fixed point in the functional space, not
under addition but under multiplication, which is equivalent to the addition
of logarithms. Therefore, the log-normal law is not a true stable distribution;
it can be simply mapped onto the Gaussian probability distribution func-
tion. Substituting ξα by ln rα, the Gaussian law will be transformed into the
expression

p (r, t | 1, t0) =
1

(2π∆t)A/2 √
detΦ

∏
α
rα

× exp

−
∑
αβ

ln
( rα

eµα∆t

) [Φ−1
]
αβ

2∆t
ln
( rβ

eµβ∆t

) (3.69)

with ∆t = t − t0. Let us briefly discuss the properties of this probability
distribution function for the one-dimensional case (i.e., for A = 1). Then,
eµ∆t is the measure of central tendency corresponding to the median r1/2(t)
as defined in (2.8). Another measure of central tendency is the most probable
value rmax(t), defined in (2.9). We obtain

rmax(t) = exp {(µ− Φ)∆t} , (3.70)

while the mean is equal to

r(t) = exp {(µ+ Φ/2)∆t} , (3.71)

so that we get the relation r(t)2rmax(t) = r31/2(t). Obviously, the mean can
be much larger than rmax(t). These differences are important for the inter-
pretation of financial data on the basis of the returns. Suppose that we have
only a small number of observations. Then, the most probable value will be
sampled first, and the empirical average will not be far from rmax (t).

In contrast, the empirical average determined from a large number of
observations approaches progressively the true average r (t). However, this
value is eventually much larger than the true trend exp {µ∆t}. We remark
that the corresponding Gaussian law satisfies ξ (t) = ξ1/2 (t) = ξmax (t).

The log-normal probability distribution function can be mistaken locally
for a power law. To see this, we write

p (r, t | 1, t0) =
r1/2(t)√
2π∆tΦ

(
r

r1/2(t)

)−ς(r/r1/2(t))

(3.72)

with
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ς(x) = 1 +
lnx

2∆tΦ
. (3.73)

Since ς(r/r1/2(t)) is a slowly varying function of r, (3.72) shows that the
log-normal law distribution becomes indistinguishable from the r−1 distribu-
tion at least for fluctuations in a moderate range around the median r1/2(t)
and for sufficiently large values ∆tΦ. This is an important remark for the
analysis of empirical frequency distribution functions of the returns using
double-logarithmic plots. Especially for large ∆tΦ, the log-normal distribu-
tion mimics a power law very well over a large range.

The conditional probability distribution function of the returns (3.69) can
be rewritten as a conditional probability density of the prices

p (X, t | X0, t0) =
1

(2π∆t)A/2 √
detΦ

∏
α
Xα

× exp

−
∑
αβ

ln
(

Xα

X0,αeµα∆t

) [Φ−1
]
αβ

2∆t
ln
(

Xβ

X0,βeµβ∆t

) . (3.74)

Thus, for sufficiently long time differences ∆t = t− t0 � δtMarkov, the prices
of assets are log-normally distributed.

3.4 Standard Problems of Finance

3.4.1 The Escape Problem

It is often of interest to know how long an asset price whose dynamics are
described by a Fokker–Planck equation (3.64) remains in a certain inter-
val. In the following, we restrict ourselves to the case of one stock, A = 1.
Furthermore, we assume that at t0 = 0 the initial price X0 = X(0) has a
value between Xmin and Xmax (i.e., Xmin < X0 < Xmax). Then, the first
passage time T is the time at which the price X(t) first leaves the interval
[Xmin, Xmax]. If we are interested only in the passage of an upper or lower
boundary, we have to take into account Xmin = 0 or Xmax = ∞.

For the sake of simplicity, we translate the problem into a representation
using logarithmic price changes (see Figure 3.14). Then, we have to deal
with the boundaries ξmin and ξmax and the initial condition ξ(0) = η, which
satisfies ξmin < η < ξmax.

The first-passage-time problem implies that a certain price evolution ξ (t)
is removed from the set of events (i.e., of all allowed price trajectories under
consideration) if it reaches the upper or lower boundary. This means that the
first-passage-time problem (or the escape problem) corresponds to a Fokker–
Planck equation with absorbing conditions [143, 330]. The definition of the
first-passage time requires that the probability
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Fig. 3.14. Two price trajectories and the corresponding first-passage (escape)
times.

P (T ≥ t | η) = P≥(t, η) =
∫

dξp (ξ, t | η, 0) (3.75)

define the fraction of “nonadsorbed” trajectories. We remark that the right-
hand side is no longer the normalization condition (2.54) because there is
a permanent probability current through the upper and lower
boundaries. This current is implicitly determined [330] by the absorbing
conditions p (ξ, t | ξmin, 0) = p (ξ, t | ξmax, 0) = 0. Due to these boundary
conditions, the probability density p (ξ, t | η, 0) considers only the fraction of
price trajectories that remain in the “nonadsorbed” state during the whole
evolution time t. Obviously, the boundary conditions are equivalent to

P≥(t, ξmin) = P≥(t, ξmax) = 0. (3.76)

The initial condition p (ξ, 0 | η, 0) = δ (ξ − η) completes the escape problem.
We get the corresponding relation

P≥(0, η) = 1 for ξmin < η < ξmax. (3.77)

We are especially interested in the moments of the first-passage time because
these moments contain the same information as the corresponding probability
distribution. Since P≥(t, η) is the probability that T ≥ t, the corresponding
probability density is given by

p̂(t, η) = −dP≥(t, η)
dt

(3.78)

so that the nth moment is

Tn(η) =

∞∫
0

tnp̂(t, η)dt = −n
∞∫
0

tn−1P≥(t, η)dt. (3.79)

The solution of the first passage-time-problem can be achieved by use of
the backward Fokker–Planck equation, which may be obtained directly from
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(3.64) considering the relations between backward (2.89) and forward (2.85)
equations

∂

∂t′
p (ξ, t | η, t′) = −

[
1
2
∂2

∂η2Φ+
∂

∂η
µ

]
p (ξ, t | η, t′) . (3.80)

In order to connect (3.75) with the time development (3.80), we set t = 0
and t′ = −t and obtain

∂

∂t
p (ξ, 0 | η,−t) =

[
1
2
∂2

∂η2Φ+
∂

∂η
µ

]
p (ξ, 0 | η,−t) . (3.81)

Now, we consider that the financial market is in a steady state. Then, we get
p (ξ, t | η, 0) = p (ξ, 0 | η,−t) and therefore

∂

∂t
P≥(t, η) =

[
1
2
∂2

∂η2Φ+
∂

∂η
µ

]
P≥(t, η). (3.82)

Now, we can derive a simple ordinary differential equation for the first
moment T1(x) by using (3.79):

− 1 =
[
1
2
∂2

∂η2Φ+
∂

∂η
µ

]
T1(η). (3.83)

Similarly, we obtain equations for the higher moments (n > 1)

− nTn−1(η) =
[
1
2
∂2

∂η2Φ+
∂

∂η
µ

]
Tn(η), (3.84)

which means that all of the moments of the first passage time can be found
by a repeated integration. All of the ordinary differential equations have to
be solved under the boundary condition

Tn(ξmin) = Tn(ξmax) = 0, (3.85)

where we have considered the initial condition (3.77) and the expected
final condition P≥(∞, η) = 0. The solution of these equations is a standard
procedure [194, 330].

3.4.2 The Portfolio Problem

On the condition of stationary financial markets, we are able to give infor-
mation that guarantees an optimal investment. We assume that the relevant
timescale ∆t of the investment is far above the Markov horizon so that we
can apply the central limit theorem. Thus, we expect a Gaussian law for the
logarithmic price fluctuations ξ. In this case, all moments can be calculated
from the knowledge of the trend µ and the covariance rate Φ.

Furthermore, we assume that A different stocks are traded in the financial
market. An investor is usually not interested in the purchase of only one sort
of stock but invests in stocks of different industrial sectors. The set of all
stocks in the possession of the investor is called the portfolio. The fraction
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of shares α in the portfolio may be wα. For the sake of simplicity, we focus
here on the traditional budget condition

A∑
α=1

wα = 1. (3.86)

We have not imposed any positivity constraints of the form wα ≥ 0, so
unrestricted short sales are permitted. Now, we want to determine the mean
return of the entire portfolio. The actual return of the portfolio is the weighted
return of the single assets contained in the portfolio

R =
A∑

α=1

wαRα =
A∑

α=1

wα

(
eξα − 1

)
, (3.87)

where we have used (3.4) and (3.7). The mean return of the portfolio over a
given time interval ∆t = t− t0 is then given by

R =
A∑

α=1

wα

[∫
dξ exp {ξα} p (ξ, t | 0, t0) − 1

]
=

A∑
α=1

wαRα(∆t) (3.88)

with

Rα(∆t) = exp {µ̂α∆t} − 1 (3.89)

and µ̂α = µα + Φαα/2. The standard deviation of the portfolio,

σ2
P = (∆R)2 =

A∑
α,β

Sαβ (∆t)wαwβ , (3.90)

with

Sαβ (∆t) = exp {µ̂α∆t+ µ̂β∆t} [exp {∆tΦαβ} − 1] , (3.91)

is also called the volatility of the portfolio. The mean return is a financial
measure for the expected yield of a portfolio, while the volatility σP charac-
terizes the risk of the investor. An important task of financial mathematics is
the determination of an optimal portfolio considering certain boundary condi-
tions and other financial constraints [108, 256, 417]. We refer the reader to the
comprehensive specialized literature [123, 178, 196, 226, 229, 255, 340, 401]
for further details.

Let us explain briefly some main ideas. There are different starting points
that would lead to specific classes of solutions. A very simple goal is the
minimization of the risk in the case of a fixed return R� considering the con-
straint (3.86). This problem is called the minimum variance portfolio model.
Forming the “Lagrangian”

F =
1
2

A∑
α,β

Sαβ (∆t)wαwβ
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−λ1

[∑
α

wα − 1

]
− λ2

[
A∑

α=1

wαRα(∆t) − R�

]
(3.92)

with the Lagrange multipliers λ1 and λ2 and differentiating gives the first-
order conditions

∂F

∂wα
=

A∑
β=1

Sαβ (∆t)wβ − λ1 − λ2Rα(∆t) = 0. (3.93)

The solution set is

wα =
A∑

β=1

[
S−1 (∆t)

]
αβ

{
λ1 + λ2Rβ(∆t)

}
. (3.94)

The multipliers can be determined from the constraints. We obtain

λ1 =
c− bR�

∆
and λ2 =

aR� − b

∆
(3.95)

with ∆ = ac− b2 > 0 and

a =
A∑

α,β

[
S−1 (∆t)

]
αβ

> 0, b =
A∑

α,β

[
S−1 (∆t)

]
αβ

Rβ(∆t), (3.96)

and

c =
A∑

α,β

[
S−1 (∆t)

]
αβ

Rα(∆t)Rβ(∆t) > 0. (3.97)

Note that we have ∆ > 0 by the Cauchy–Schwarz inequality considering the
assumptions that S is nonsingular and that all assets do not have the same
mean. If all means were the same, then we have ∆ = 0, and this problem
has no solution except when Rα = R� for all shares α. If we substitute the
solution (3.94) into the portfolio volatility, we get a relation between the
minimum variance and the return R�:

σ2
P =

aR�2 − 2bR� + c

∆
. (3.98)

This is the equation of a parabola. The global minimum variance portfolio is
located by

dσ2
P

dR�
= 2

aR� − b

∆
; (3.99)

that is, the minimum variance portfolio has a mean return of b/a and from
(3.98) a volatility a−1. Substituting for R� in (3.95) gives λ1 = a−1 and
λ2 = 0, so the global minimum variance portfolio is given by

wα =

∑
β=1

[
S−1 (∆t)

]
αβ∑

α,β

[S−1 (∆t)]αβ

. (3.100)
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The personal risk behavior of investors differs considerably. Only a few
investors are careful to make their financial decisions on the basis of the mini-
mum variance model. Every investor pursues a certain aim with his financial
decisions. Experience shows that investor preferences can be represented by
a utility function V defined over the mean and the volatility of a portfolio.
From a psychological point of view, the utility function characterizes the
mental behavior of an investor. This function decreases monotonously with
increasing interest in a portfolio. A simple example is Freund’s function [127]

V = σP − γR, (3.101)

which is also known as the capital market line. The risk aversion coefficient γ
classifies the investors. The larger this parameter, the larger the risk aversion
of a given investor. The coefficient always has a positive value, and empirical
investigations [117] suggest additionally γ < 1. Freund’s function (3.101)
reflects the main properties of utility functions. The standard assumptions
are that all investors favor higher means and smaller variances, and a higher
degree of preference corresponds to a smaller value of the utility function.
This means

∂V
(
σP ,R

)
∂R < 0 and

∂V
(
σP ,R

)
∂σP

> 0. (3.102)

Each curve V = const. connecting portfolios with the same degree of prefe-
rence is called an indifference curve. In other words, no point that an investor
would favor exists along this curve.

Unfortunately, Freund’s function is a very vague approximation of the
psychological behavior of investors. In order to obtain a more appropriate
representation, we use a psychometric construction . To do this, we take into
account that a typical investor will neither exceed an upper risk nor remain
under a lower return. These are very natural constraints that can be observed
in practice. The upper risk is a native measure for the degree of preference
V , while the lower return is usually fixed by the customary level of interest
rates Rmin. Mathematically, we have to deal with σP ≤ V and R ≥ Rmin.

To derive the utility function, we analyze the indifference curves of
investors with equal degrees of preference but with different risk aver-
sions. All investors are individual elements of a hierarchically ordered social
system. In particular, each investor is anxious to conserve the distance to
other investors.

We have two fundamental measures of distance in portfolio theory, namely
the difference of the risk δσP at constant mean return and the difference of
the mean return δR at constant risk (Figure 3.15). The product δσP δR is an
obvious local measure characterizing the mental difference between investors
with respect to their financial behavior. The representation as a product and
not as a sum seems to be plausible because distances appear to be logarithmic
from a psychological point of view.
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Fig. 3.15. Hyperbolic character of psychometric indifference curves. The area of
the triangle δσP R is constant along two curves with equal asymptotics.

The psychometric construction of the utility function requires that δσP δR
be an invariant quantity along each indifference curve. The hyperbolas

(V − σP )
(R − Rmin

)
= γ (3.103)

are the only family of curves satisfying these conditions. Here, γ plays the
role of the risk aversion coefficient. The utility function now reads

V = σP +
γ(R − Rmin

) . (3.104)

The construction of an optimal portfolio using utility functions is the
standard procedure introduced above. We have to minimize V with respect
to the fractions wα considering the condition (3.86) and the relations (3.88)
and (3.90).

3.4.3 Option Pricing Theory

Options and Trading Strategies. The actual value of a portfolio is not
stable. An investor will sell or buy specific stocks in order to increase the
value of the portfolio. The sale or purchase of stocks is controlled via finan-
cial contracts. The structure of the whole financial trading system has a large
degree of complexity [58, 179, 268]. An important source of this complexity
comes from the issuing of financial contracts on the fluctuating financial se-
curities [102, 182, 276]. Examples of financial contracts are forward contracts,
futures, and options.

The simplest financial contract is a forward contract . If such a contract is
signed at time t0, one of the parties agrees to buy a given amount of an asset
at a given forward price or delivery price K at a specified future delivery date
t0 +T . The time T is called the maturity time. The other party agrees to sell
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the amount at the specified delivery price on the delivery date. The buyer of
the contract is said to have a long position or to hold the contract long. The
seller of the option contract is said to be in a short position or to have sold the
option short. The actual price X(t) of the underlying asset fluctuates, and the
price X(t0 +T ) at the delivery date usually differs from the specified forward
price K. The payoff at the short position is positive if X(t0 + T ) < K, while
the payoff at the long position is positive for X(t0+T ) > K. As a consequence
of the forward contract, a positive payoff at the long position corresponds to
a negative payoff at the short position, and vice versa.

A futures contract is a forward contract traded on an exchange of securi-
ties. Usually, the futures contracts are standardized. The two parties interact
through an exchange institution, the so-called clearing house. The clearing
house writes forward contracts with both parties and guarantees that the
contracts will be executed at the delivery date.

Options are the most frequently used forms of financial contracts [81, 180].
An option is a contract between two people that conveys the right to buy
or sell specified property at a specified price K for a designated time period
T . The price K is now called the strike price or the exercise price, while the
maturity time T is sometimes also called the expiration time or exercise time.
The party who creates and offers the contract for sale at time t0 is called the
writer or seller. The other person is called the owner or buyer.

When the contract is made, the buyer pays cash to the writer for the
right to buy or sell at a known price, which removes some risk in a future
transaction. The owner of the option contract has the right to buy or
sell the underlying asset but has no obligation to do so. The latter is the
distinguishing characteristic of an option contract as opposed to forward and
futures contracts, for which there is an obligation to execute or, using options
terminology, exercise the contract.

The stockbroker knows two forms of option contracts: calls and puts. A
call option is a contract that permits the holder to buy an asset during a
specified time interval for a designated price and requires the seller to sell.
At the time the contract is written, the parties agree to both the strike price
and the maturity time. A put option differs from a call option in that it allows
the holder to sell rather than purchase the asset.

Option contracts are also described by the type of restriction placed on
the exercise period. A European option contract can be exercised only upon
its termination at t0 + T , whereas an American option can be exercised
at any time up to and including the exercise date. The American option
contract obviously offers the holder greater flexibility, which apparently
makes its valuation more difficult. For further information, we refer the
reader to the specialized literature. Here, we will focus our discussion on the
European option.

It should be remarked that financial theorists have found that a number
of investments or financial contracts other than stock options can also be
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interpreted as options. For instance, a firm’s common stock can be considered
a call option on its productive assets, with the exercise price equal to its debt
obligations. Furthermore, a firm’s research and development expenditures can
be viewed as call options on the values of the productive ideas they create,
with the exercise price equal to the investment outlay required to put these
ideas into operation.

We now want to find the value of an option. This is important if one
wants to buy or sell options. We assume that the price of the option depends
on the current price X(t) of the underlying asset, the strike price K, and the
time difference t0 + T − t between the maturity date t0 + T and the actual
time t > t0. For our discussion, we choose t0 = 0.

First, let us discuss a call option. Immediately following the completion
of the contract at t = 0, the price of the option is the sale price at which the
buyer pays cash to the seller. The problem of the definition of a fair purchase
price is open and will be solved below. At the maturity time T , we have two
possibilities. If X(T ) > K, the contract is executed and the buyer gets assets
of the value X(T ) for a price K. Thus, the option has the value X(T ) − K.
If X(T ) < K, the contract is not executed, and the value of the option is 0.
We will express the value of the option before maturity by the price function
C (X(t), T − t,K). This function has the final condition

C(X(T ), 0,K) = max(0, X(T ) −K), (3.105)

value value

valuevalue

X(t) X(t)

X(t)X(t)

K

K K

K

(c) (d)

(b)(a)

Fig. 3.16. The value of an option as a function of the price X(t) at maturity time
for the buyer of a call option (a), the seller of a call option (b), the buyer of a put
option (c), and the seller of a put option (d). The strike price is K.
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while the initial value C(X(0), T,K) (i.e., the sale price of the option) is still
open. The difference ∆C = C(X(T ), 0,K)− C(X(0), T,K) is the payoff for a
buyer, while −∆C is the payoff for the seller. In the case of a put option, we
have the inverse situation; see Figure 3.16. Obviously, in call and put options,
there is no symmetry between the two parties of the contract.

Usually, an investor may use different trading strategies in financial
markets. A very risky strategy is the speculation. A special case of specu-
lation is a naked position; that is, the investor holds only a single call option
or a single put option. There is a huge risk for the speculator to lose his
gamble. On the other hand, there is also the possibility for a large payoff.

Another strategy is a hedged position. A hedge is any combination of the
underlying asset and call or put options. Writing both the call and the put
creates a written or short straddle. Buying both produces a long straddle.
The values of these hedges at maturity are shown in Figure 3.17.

Black and Scholes Equation. Hedging is the standard financial technique
allowing the generation of portfolios with minimum risk. In order to examine
more closely the procedure of hedging, we consider a simplified version of a
hedging strategy with a portfolio of only one type of stocks. The generaliza-
tion to a multicomponent portfolio is always possible. We suppose further

value value

valuevalue

X(t) X(t)

X(t)X(t)

K

K

K K

K K21

21

(a)

(c) (d)

(b)

Fig. 3.17. Hedges: (a) long straddle obtained by buying a call and a put, both
with strike price K; (b) bullish spread obtained by buying a call with strike price
K1 and selling a call with strike price K2 > K1; (c) short straddle by selling a call
and a put, both with strike price K; (d) bearish spread obtained by selling a call
with strike price K1 and buying a call with strike price K2 > K1.
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that the portfolio is constructed by buying n shares of price X(t) and selling
an option of the price C(X(t), T − t,K). Thus, the value of the portfolio is

P(t) = nX(t) − C(X(t), T − t,K). (3.106)

The fluctuation of the share prices leads to fluctuations of the portfolio

∆P(t) ≈ n∆X(t) −
[
∂C(X,T − t,K)

∂X

]
X=X(t)

∆X(t). (3.107)

A riskless investment requires

n =
[
∂C(X,T − t,K)

∂X

]
X=X(t)

. (3.108)

Because X (t) changes over time, the number n must also change over time in
order to maximize the effectiveness of the hedging strategy and minimize the
risk. However, it is important to realize that n is a slowly varying quantity
following the trend of the stock prices, while the fluctuations ∆X(t) are very
fast. The value of the portfolio is therefore

P(t) = X(t)
[
∂C(X,T − t,K)

∂X

]
X=X(t)

− C(X (t) , T − t,K). (3.109)

For a financial market to function well, participants must thoroughly
understand option pricing. The task is to find the rational and fair price
C(X,T − t,K).

At this point, we derive the most important result of option pricing theory:
the Black and Scholes equation [50, 265]. There exist various other approaches
using the binomial model [80] or more general concepts extending the Black
and Scholes formula [265, 267]. In principle, the basic ideas used by Black
and Scholes refer to a larger class of continuous-time self-financing strategies
[167, 267]. The Black and Scholes equation is valid under the following
conditions:

1. The market is assumed to be in a steady state at least over the time of
the option contract.

2. There are no costs associated with exercising the option (i.e., the market
is frictionless).

3. There are no riskless arbitrage opportunities (that is, there is no way to
combine option contracts and the underlying stock into a portfolio that
will produce a riskless profit).

4. The holder will exercise the option if it is profitable to do so.
5. There is no possibility of default on the contract.
6. Selling of securities is possible at any time.
7. The trading is continuous.
8. The stock pays no dividends during the option’s life.



3.4 Standard Problems of Finance 91

We start our derivation from the single-component representation of the
Ito stochastic differential equation (3.65). Using (3.7) and (3.66), we obtain
dξ = dX/X and therefore

dX = Xµdt+
√
ΦXdW, (3.110)

representing a one-dimensional geometric Brownian diffusion of the stock
price. Note that the stochastic term can be sufficiently described by a single
Wiener process W (t) because we consider only one stock. The price function
depends explicitly on the price fluctuations. We get up to the first order of
dt

dC =
∂C

∂t
dt+

∂C

∂X
dX +

1
2
∂2C

∂X2 (dX)2 + o(dt). (3.111)

Substituting (3.110) into (3.111), we obtain

dC =
[
∂C

∂t
+

∂C

∂X
Xµ

]
dt+

1
2
∂2C

∂X2ΦX
2dW 2 +

∂C

∂X

√
ΦXdW, (3.112)

where we have taken into account that dW 2 ∼ dt (see Chapter 2). The
value of the hedge portfolio is given by (3.109). From here, we get the total
differential

dP(t) = −dC +
∂C

∂X
dX. (3.113)

Using (3.110) and (3.112), we obtain

dP(t) = −
[
∂C

∂t
+

∂C

∂X
Xµ

]
dt− 1

2
∂2C

∂X2ΦX
2dW 2 − ∂C

∂X

√
ΦXdW

+
∂C

∂X

(
Xµdt+

√
ΦXdW

)
(3.114)

and therefore

dP(t) = −∂C

∂t
dt− 1

2
∂2C

∂X2ΦX
2dW 2. (3.115)

Note that all contributions proportional to dW are cancelled mutually. This
is a consequence of the riskless structure of the portfolio introduced above.
Formally, we would have been able to start without the knowledge of (3.109).
In this case, we require that the sum of the leading fluctuations (i.e., the sum
of all terms with dW ∼ √

dt) vanish in order to make the portfolio riskless.
This implies that we arrive again at (3.109).

The third key assumption in the list above concerns the absence of arbi-
trage opportunities. This means that the change in the value of the portfolio
must equal the gain obtained by investing the same amount of money in the
corresponding security providing an average return u per unit of time, namely

dP(t)
dt

= uP(t). (3.116)
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This definition of the risk-free interest rate u allows us to connect this quan-
tity with the parameters µ and Φ of the log-normal probability distribution
function (3.74) for a single asset. To do this, we must simply replace P(t)
by the mean price of the available stock X(t) ∼ r(t). Because of (3.71), we
obtain from (3.116) the relation u = µ+ Φ/2.

By equating (3.86), (3.115), and (3.116) and setting dW 2 = dt, we obtain
the famous Black and Scholes equation

∂C

∂t
+

1
2
∂2C

∂X2ΦX
2 + uX

∂C

∂X
= uC. (3.117)

It should be considered that the relation dW 2 = dt mathematically is not
very precise with respect to its representation but is correct in the sense of
the limit in the mean [143].

No assumption about the specific kind of option has been made
except that we deal with European options. The appropriate price function
C(X,T − t,K) for the type of option chosen will be obtained by selecting the
appropriate boundary conditions. For call options, we have to use the final
condition (3.105). To solve (3.117) for a call option, we make the substitution

C(X,T − t,K) = exp {u (t− T )} c (η, τ) (3.118)

with

η =
(

2u
Φ

− 1
){

ln
(
X

K

)
+
(
u− Φ

2

)
(T − t)

}
(3.119)

and

τ =
(

1 − 2u
Φ

)
(t− T ). (3.120)

These transformations can be obtained, for instance, by inspecting the
symmetry of the Black and Scholes differential equation. With this substi-
tution, the Black and Scholes equation becomes equivalent to the heat-
transfer equation of physics, which is the standard form of a parabolic
partial differential equation

∂c (η, τ)
∂τ

=
∂2c (η, τ)
∂2η2 , (3.121)

which can be solved exactly for the boundary condition (3.105). We get

C(X,T − t,K) = Xφ (η1) −K exp {u(t− T )}φ (η0) (3.122)

with

η0 =
lnX − lnK + (2u− Φ) (T − t)

2
√
Φ (T − t)

(3.123)

and

η1 =
lnX − lnK + (2u+ Φ) (T − t)

2
√
Φ (T − t)

, (3.124)
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Fig. 3.18. The price function C(X, T − t, K) (call option) for Φ = 3u and various
time differences u(T −t) = 0.03, 0.01, 0.003, and 0.001. For t → T , the price function
approaches the values C(X, T − t, K) = 0 for X < K and C(X, T − t, K) = X − K
for X > K.

where φ (x) is the cumulative density function for a Gaussian variable with
zero mean and unit standard deviation (see Figure 3.18). For a European put
option, we get a similar price function

C(X,T − t,K) = K exp {u(t− T )}φ (−η0) −Xφ (−η1) , (3.125)

which satisfies the boundary condition C(X(T ), 0,K) = max(0,K − X(T )).
Equations (3.122) and (3.125) allow the determination of the value of a
European option for all times before the maturity time in order to provide a
fair price only from the knowledge of the strike price, the actual price of the
underlying stock, and the time remaining to maturity.

Generalized Option Pricing. Option pricing models such as the Black and
Scholes model premised upon the underlying asset price following geometric
Brownian motion have been found to exhibit serious specification errors when
fitted to market data. For example, remarkable deviations have been found in
American calls and puts on S&P 500 futures traded on the Chicago Mercantile
Exchange [38, 423], in American foreign currency call options traded on the
Philadelphia Stock Exchange [61], and in European Swiss franc-denominated
call options on the dollar traded in Geneva [74]. Obviously, the Black and
Scholes equation is the frame for nice models to understand and model option
pricing in an ideal financial market.

To demonstrate more closely the differences between ideal and real
markets, let us discuss the variance obtained from a time series analysis of
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various European options and the underlying assets by inversion of the Black
and Scholes formula (3.122) or (3.125). The estimated variance rate Φimp is
called the implied volatility rate. In a Black and Scholes market, the deter-
mination of the implied volatility would give a constant value for options
with different strike prices and at different maturity times.

Furthermore, the value of the implied volatility should coincide with the
variance rate Φ obtained from the price fluctuations of the assets. In real
markets, we get, in general, Φ �= Φimp. Various empirical investigations
demonstrate that Φimp is a function of the strike price as well as the
maturity time. In particular, the implied volatility Φimp increases the more
the option price is in the money or out of the money. Note that an option
is in the money if exercising it would produce a gain. For instance, a call
contract is in the money if the stock price X is greater than the strike price.
In contrast, an option is out of the money if exercising it would produce a
loss.

Another problem concerns the apparently random character of the volati-
lity of an asset price, especially for short timescales. This time dependence
may have different causes.

On the one hand, the appropriate moving time window used for the empi-
rical estimation of the volatility may be too small in comparison with the time
difference δt between successive observations. Thus, only a few measurements
contribute to the empirically determined actual volatility. However, one can
argue that longer time intervals should provide better estimations. But the
volatility estimated by using very long time periods may be quite different
from the volatility observed in the lifetime of the option.

On the other hand, we may choose a very short time difference δt. Then,
the danger exists that we are below the Markov horizon δt < δtMarkov so
that memory and correlation effects dominate the empirically determined
volatility.

Short timescales become important for day-trading strategies. As we will
see below, particularly the acceptance of the Gaussian law for the logarithmic
price changes cannot be guaranteed for such short timescales. In fact, there is
considerable time series evidence against the hypothesis that log-differenced
asset prices are normally distributed at short timescales. Consequently, the
main assumption of a geometric Brownian motion fails for short timescales
so that the Black and Scholes equation loses its validity. In order to be able
to calculate the value of European call and put options nevertheless, we have
to generalize the definition of the price function C (X(t), T − t,K).

Financial theorists believe that the value of a European option is given
by the average expected payoff rescaled by the risk-free interest rate u of the
market. Thus, we obtain for a call option

C (X,T − t,K) = exp {−u (T − t)} (X(T ) −K)+ |X(t)=X (3.126)
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with (X −K)+ = 0 for X < K and (X −K)+ = X − K for X ≥ K. The
value of a European put option is defined by

C (X,T − t,K) = exp {−u (T − t)} (K −X(T ))+ |X(t)=X . (3.127)

In both formulas, we have used a conditioned average. This average is defined
with respect to the conditional probability density

(X(T ) −K)+ |X(t)=X=
∫

(X ′ −K)+ p (X ′, T | X, t) dX ′. (3.128)

If we apply the log-normal distribution (3.74) for a single asset in (3.128), we
obtain again the Black and Scholes solutions (3.122) and (3.125) considering
the relation u = µ + Φ/2 introduced above, which is necessary to eliminate
the trend µ

The general concept of option pricing theory defined by (3.126) and
(3.127) provides a flexible tool for the analytic or numerical determination
of the price functions when the distribution of the asset prices is known.
Especially the nonacceptance of the Gaussian law at short timescales has
spurred the development of option pricing models for alternative probabi-
lity distribution functions. Such functions may be obtainable from empirical
observations [19, 59, 105, 259] or from the assumption of other stochastic
processes considered in jump-diffusion models [266].

Other option pricing models consider stochastic interest rates [6, 265] or
stochastic volatility rates [171, 180]. Stochastic volatility option pricing mod-
els [180, 368, 430] especially permit much more general patterns of volatility
evolution.

However, almost all of these models are connected with the topics of
financial mathematics. In contrast, the aim of the econophysical approach is
the general understanding of the financial market considering universal laws
that dominate the dynamics of this complex system.

3.5 Short-Time Regime

3.5.1 High-Frequency Observations

The most common stochastic model of stock price dynamics is the
Gaussian behavior discussed above that assumes a geometric Brownian
diffusion of the asset prices and a corresponding arithmetic Brownian motion
of the logarithmic price differences. This model provides a first approximation
of the behavior observed in empirical data. However, the Gaussian probability
distribution function is a universal consequence of the central limit theorem
in the limit of long times on the condition that the financial market is in a
stationary state. Indeed, the Gaussian law can possibly deviate considerably
from the probability distribution function determined empirically for short
timescales.
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Serious systematic deviations from the Gaussian model predictions are ob-
served, which indicate that the empirically determined probability
distributions exhibit a pronounced leptokurtic behavior. A highly leptokurtic
function is characterized by a narrower and larger maximum and by fatter
tails than in the Gaussian case.

Obviously, the degree of leptokurtosis increases with decreasing time
difference δt between successive observations (Figure 3.19). We had already
mentioned in the context of the option pricing theory that a lot of models
had been developed in order to describe the short-time behavior of price fluc-
tuations in terms of alternative probability distribution functions. Financial
mathematicians would be able to develop hundreds of such models. Of course,
all of these models have better qualities for the respective problem than
the Gaussian distribution. But we should not forget that these models are
only substitute processes approaching the complex dynamics of the financial
market in an idealized sense within a more or less limited framework.

From a physical point of view, we have to search for universal princip-
les that lead to leptokurtic probability distribution functions for price fluc-
tuations. Let us determine the minimal conditions that the probability
distribution of price fluctuations must satisfy for short timescales. Empirical
studies [246, 249] suggest a pronounced form stability. We point out that it
must be a metastable state since the expected asymptotic Gaussian behavior
is not accessible otherwise.
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Fig. 3.19. The empirical distribution of logarithmic price fluctuations obtained
for BASF stock from 11/00–07/02 for different time horizons, δt = 1, 2, 5, and 10
trading days. The curves are the corresponding fits with Gaussian law.
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Additionally, we assume that the dynamics of the financial market are
dominated by the Markov property (i.e., the time differences δt are still
long compared with the Markov horizon). That may possibly be a dangerous
approximation. In particular, we will demonstrate below that considerable
memory effects can already occur on those timescales, which we take into
account in the following. In order to overcome this problem, we assume that
these effects eliminate themselves mutually over the entire observation period
so that we can work with the Markov property as a sufficient approxima-
tion. Furthermore, we may use similar arguments supporting the stationarity
hypothesis.

3.5.2 Lévy Distributions

While we were deriving the central limit theorem, we saw that the probability
density function pNδt (ξ) of the logarithmic price changes with respect to
the time interval Nδt can be expressed as a generalized convolution (3.29)
of the elementary probability distribution functions pδt (ξ). This relation is
equivalent to the algebraic equation

p̂Nδt (k) = [p̂δt (k)]N (3.129)

connecting the characteristic functions p̂Nδt (k) and p̂δt (k). We want to use
this equation in order to determine the set of form-stable probability distribu-
tion functions that may be possible candidates for the probability distribution
function of price fluctuations. A probability density pNδt(ξ) is called a form-
stable function if it can be represented by a function g that is independent
from the number N of convolutions,

pNδt(ξ)dξ = g(ξ′)dξ′, (3.130)

where the variables are connected by the linear relation ξ′ = αNξ + βN .
Because the vector ξ has the dimension A, the A × A matrix αN describes
an appropriate rotation and dilation of the coordinates, while the vector βN

corresponds to a global translation of the coordinate system. Within the
formalism of the renormalization group, a form-stable probability density
law corresponds to a fixed point of the convolution procedure. The Fourier
transform of g is given by

ĝ(k) =
∫

g(ξ′)eikξ′
dξ′ =

∫
pNδt(ξ)eik(αN ξ+βN )dξ

= eikβN p̂Nδt(αNk), (3.131)

where we have used the definition (2.14) of the characteristic function. The
form stability requires that this relation must be fulfilled for all values of N .
In particular, we obtain

p̂Nδt(k) = ĝ(α−1
N k)e−iβN α−1

N
k and p̂δt(k) = ĝ(α−1

1 k)e−iβ1α−1
1 k. (3.132)
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Without any restriction, we can choose α1 = 1 and β1 = 0. The substitution
of (3.132) into the convolution formula (3.129) now yields

ĝ(α−1
N k)e−iβN α−1

N
k = ĝN (k). (3.133)

Let us write

ĝ(k) = exp {Φ(k)} , (3.134)

where Φ(k) is the cumulant generating function. Thus, (3.133) can be written
as

Φ(α−1
N k) − iβNα

−1
N k = NΦ(k) (3.135)

and after splitting off the contributions linearly in k,

Φ(k) = iuk + ϕ (k) , (3.136)

we arrive at the two relations

βN = αNu
[
α−1

N −N
]

(3.137)

and

ϕ(α−1
N k) = Nϕ(k). (3.138)

The first equation simply gives the total shift of the center of the probability
distribution function resulting from N convolution steps. As discussed in the
context of the central limit theorem, the drift term can be put to zero by
a suitable linear change of the variables ξ. Thus, βN is no object of further
discussion. The second equation (3.138) is the true key for our analysis of
the form stability. In the following investigation, we restrict ourselves to the
one-variable case. The mathematical handling of the multidimensional case
is similar, but the large number of possible degrees of freedom complicates
the discussion.

The relation (3.138) requires that ϕ(k) is a homogeneous function,
ϕ(λk) = λγϕ(k), with the homogeneity coefficient γ. Considering that αN

must be a real quantity, we obtain aN = N−1/γ . Consequently, the function
ϕ has the general structure

ϕ (k) = c+ |k|γ + c−k |k|γ−1 (3.139)

with the three parameters c+, c−, and γ �= 1.
A special solution occurs for γ = 1 because in this case ϕ(k) merges

with the separated linear contributions. Here, we obtain the special struc-
ture ϕ (k) = c+ |k| + c−k ln |k|. The rescaling k → λk then leads to
ϕ(λk) = λϕ(k) + c−k lnλ, and the additional term c− lnλ may be absorbed
in the shift coefficient βN .

It is convenient to use the more common representation [200, 232]

ĝ(k) = Lγ
a,b (k) = exp

{
−a |k|γ

[
1 + ib tan

(πγ
2

) k

|k|
]}

(3.140)
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with γ �= 1. For γ = 1, tan (πγ/2) must be replaced by (2/π) ln |k|. A more
detailed analysis [232, 345] shows that ĝ(k) is a characteristic function of a
probability distribution function if and only if a is a positive scale factor, γ
is a positive exponent, and the asymmetry parameter satisfies |b| ≤ 1.

Apart from the drift term, (3.140) is the representation of any charac-
teristic function corresponding to a probability density that is form-invariant
under the convolution procedure. The set of these functions is known as the
class of Lévy functions. Obviously, the Gaussian law is a special subclass. The
Lévy functions are fully characterized by the expression of their characteristic
functions (3.140). Thus, the inverse Fourier transform of (3.140) should lead
to the real Lévy functions Lγ

a,b (ξ).
Unfortunately, there are no simple analytic expressions of the Lévy

functions except for a few special cases, namely the Gaussian law (γ = 2),
the Lévy–Smirnow law (γ = 1/2, b = 1)

L
1/2
a,1 (ξ) =

2a
√
π (2ξ)3/2 exp

{
−a2

2ξ

}
for ξ > 0, (3.141)

and the Cauchy law (γ = 1, b = 0)

L
1/2
a,1 (ξ) =

a

π2a2 + ξ2 , (3.142)

which is also known as Lorentzian. One of the most important properties
of the Lévy functions is their asymptotic power law behavior. A symmetric
Lévy function (b = 0) centered at zero is completely defined by the Fourier
integral

Lγ
a,0 (ξ) =

1
π

∞∫
0

exp {−a |k|γ} cos(kξ)dk. (3.143)

This integral can be written as a series expansion valid for |ξ| → ∞,

Lγ
a,0 (ξ) = − 1

π

∞∑
n=1

(−a)n

|ξ|γn+1
Γ (γn+ 1)
Γ (n+ 1)

sin
(πγn

2

)
. (3.144)

The leading term defines the asymptotic dependence

Lγ
a,0 (ξ) ∼ C

|ξ|1+γ . (3.145)

Here, C = aγΓ (γ) sin (πγ/2) /π is a positive constant called the tail, and the
exponent γ is between 0 and 2. The condition γ < 2 is necessary because a
Lévy function with γ > 2 is unstable and converges to the Gaussian law. We
will discuss this behavior below.

Lévy laws can also be asymmetric. Then, we have the asymptotic behavior
Lγ

a,0 (ξ) ∼ C+/ξ
1+γ for ξ → ∞ and Lγ

a,0 (ξ) ∼ C−/ |ξ|1+γ for ξ → −∞, and
the asymmetry is quantified by the asymmetry parameter b via
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b =
C+ − C−
C+ + C−

. (3.146)

The completely antisymmetric cases correspond to b = ±1. For b = +1 and
γ < 1, the variable ξ takes only positive values, while for b = −1 and γ < 1,
the variable ξ is defined to be negative. For 1 < γ < 2 and b = 1, the Lévy
distribution is a power law ξ−γ−1 for ξ → ∞, while the function converges
to zero for ξ → −∞ as exp

(
− |ξ|γ/(γ−1)

)
. The inverse situation occurs for

b = −1.
All Lévy functions with the same exponent γ and the same asymmetry

coefficient b are related by the scaling law

Lγ
a,b (ξ) = a−1/γLγ

1,b

(
a−1/γξ

)
. (3.147)

Therefore, we obtain

|ξ|θ =
∫

|ξ|θ Lγ
a,b (ξ) dξ = aθ/γ

∫
|ξ′|θ Lγ

1,b (ξ′) dξ′ (3.148)

if the integrals in (3.148) exist. An important property of all Lévy distri-
butions is that the variance is infinite. This behavior follows directly from
the substitution of (3.140) into (2.16). Roughly speaking, the Lévy law does
not decay sufficiently rapidly at |ξ| → ∞ for the integral (2.13) to converge.
However, the absolute value of the spread (2.10) exists and suggests a charac-
teristic scale of the fluctuations Dsp(t) ∼ a1/γ . When γ ≤ 1, even the mean
and the average of the absolute value of the spread diverge. The characteristic

scale of the fluctuations may be obtained from (3.148) via
[
|ξ|θ
]1/θ

∼ a1/γ

for a sufficiently small exponent θ. We remark that the median and the most
probable value still exist also for γ ≤ 1 .

3.5.3 Convergence to Stable Lévy Distributions

The Gaussian probability distribution function is not only a form-stable
distribution but also the fixed point of the classical central limit theorem.
In particular, it is the attractor of all of the distribution functions having
a finite variance. On the other hand, the Gaussian law is a special distri-
bution of the form-stable class of Lévy distributions. It is then natural to
ask wether all other Lévy distributions are also attractors in the functional
space of probability distribution functions with respect to the convolution
procedure.

There is a bipartite situation. Upon N convolutions, all probability distri-
bution functions pδt (ξ) with an asymptotic behavior pδt (ξ) ∼ C± |ξ|−1−γ±

and with γ± < 2 are attracted to a stable Lévy distribution. In the case of
asymptotically symmetric functions, C+ = C− = C and γ+ = γ− = γ, the
fixed point is the symmetric Lévy law with the exponent γ and the scale
parameter a ∼ NC.
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Fig. 3.20. The schematic convergence behavior of probability distribution func-
tions in the functional space. The Gaussian law separates stable and unstable Lévy
laws.

If the initial probability distribution functions have different tails,
C+ �= C− but equal exponents, pNδt (ξ) converges to the asymmetric Lévy
distribution with the exponent γ, the asymmetry parameter (3.146), and
a ∼ N(C+ + C−)/2.

If the asymptotic exponents γ± of the elementary probability density
pδt (ξ) are different but min (γ+, γ−) < 2, the convergence is to a completely
asymmetric Lévy distribution with an exponent γ = min (γ+, γ−) and b = 1
for γ− < γ+ or b = −1 for γ− > γ+.

Finally, upon a sufficiently large number of convolutions, the Gaussian
distribution also attracts all of the probability distribution functions decaying
as or faster than |ξ|−3 at large |ξ|. Therefore, Lévy laws with γ < 2 are
sometimes called true Lévy laws (see Figure 3.20).

3.5.4 Scaling Behavior

Since Lévy distributions are form-stable functions having a nonvanishing
basin of attraction in the functional space of the probability distributions,
we may use these functions for a more precise representation of the proba-
bility distribution of price fluctuations.

Unfortunately, all Lévy distributions with γ < 2 have infinite variances.
That limits their physical, but not their mathematical, meaning. Physically,
Lévy distributions are meaningless with respect to finite systems. But in
complex systems with an almost unlimited reservoir of hidden irrelevant de-
grees of freedom, such probability distribution functions are quite possible,
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at least over a wide range of stochastic variables. Well-known examples of
such wild distributions [247, 248] have been found to quantify the velocity–
length distribution of the fully developed turbulence (Kolmogorov law)
[208, 209, 210], the size–frequency distribution of earthquakes (Gutenberg–
Richter law) [385, 386], or the destructive losses due to storms [284]. Further
examples related to social and economic problems are the distribution of
wealth [437, 440], also known as Pareto law, the distribution of losses due
to business interruption resulting from accidents [438, 439] in the insurance
business, or the distribution of losses caused by floods worldwide [309], or the
famous classical St. Petersburg paradox discussed by D. Bernoulli [119, 310].

A typical numerical realization of a cumulative Lévy process
S (tn+1) = S (tn) + ξn, where ξn is a random Lévy distributed number, is
shown in Figure 3.21. Intuitively, one has the feeling that such a process is
similar to the development of a given asset or stock price. Note that the
occurrence of large fluctuations in the time evolution of the share prices
initiated the creation of several models of price dynamics (e.g., the jump-
diffusion model [266]), but, as mentioned above, such models have to be
understood as substitute processes approaching reality.

Now, we want to prove, whether the Lévy distribution is a suitable limit
probability distribution function describing the frequency of logarithmic price
changes. To do this, we use the scaling hypothesis. Let us demonstrate the
concept of scaling first using the Gaussian law.
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Fig. 3.21. A typical numerical realization of the cumulative Lévy process with
the Lévy exponent γ = 1.3.
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We assume that the elementary timescale δt of the underlying financial
process is sufficiently short compared with the time difference ∆t between
two successive observations of the logarithmic asset price. Furthermore, we
make the hypothesis that the price changes are Gaussian-distributed also at
the level of the elementary timescale. The probability distribution pNδt (ξ)
of the sum of N = ∆t/δt random variables ξ obtained from the Gaussian
distribution pδt0 (ξ) with the mean ξ (δt0) and the variance σ2 is again a
Gaussian law with mean ξ (∆t) = Nξ (δt) and variance Nσ2. Therefore, the
rescaled variable

ξ̂ =
ξ −Nξ (δt)√

N
=

ξ − ξ (∆t)√
N

(3.149)

has exactly the same probability density as the elementary variables. There-
fore, the probability density of ξ̂ is independent of N . This is the basic idea
of the scaling procedure. In the first step, we have to prepare different time
series of the same asset price but for different time differences ∆t, ∆t′, ∆t′′, ...
between successive observations. Then, all of the rescaled variables

ξ − ξ (∆t)√
∆t

,
ξ − ξ (∆t′)√

∆t′
,

ξ − ξ (∆t′′)√
∆t′′

, ... (3.150)

will exhibit the same probability distribution function and all of the data
will collapse onto the same Gaussian law; that is, the probability distribution
functions p∆t (ξ) are related to one universal master curve f(x) via

p∆t (ξ) =
1√
∆t

f

(
ξ − ξ (∆t)√

∆t

)
. (3.151)

Unfortunately, this Gaussian concept does not work very well for short time
differences ∆t because the logarithmic price differences are just not Gaussian-
distributed.

However, a similar procedure holds for Lévy distributions. For zero mean,
the probability distribution function p∆t (ξ) = Lγ

Na,b (ξ) is a result of N con-
volution steps applied on the Lévy distribution pδt (ξ) = Lγ

a,b (ξ). Considering
the scaling relation (3.147) as well as the probable translation of the center of
the probability distribution function due to a nonzero mean, the distribution
function

p∆t (ξ) =
1

∆t1/γ
f

(
ξ − ξ (∆t)
∆t1/γ

)
(3.152)

is independent of ∆t. In fact, this scaling function is valid for 1 < γ < 2. For
γ < 1, the mean is no longer defined, and we have to replace (3.152) by

p∆t (ξ) =
1

∆t1/γ
f

(
ξ

∆t1/γ

)
. (3.153)

When the probability distribution functions for different time horizons
satisfy (3.152) or (3.153), one says that the underlying process exhibits
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scaling properties. We remark that in the case of a Lévy distribution, the
shape of the master curve f(x) is controlled by the exponent γ and the
asymmetry parameter b, while the third parameter a defines the scale of the
fluctuations. A set of serious investigations of time series [250] support the
existence of such a scaling behavior over a wide range.

In order to get a first approximation of the exponent γ, we should analyze
the relative frequency of the special logarithmic price changes ξ = 0. Because
p∆t (0) = ∆t−1/γf(0) ∼ ∆t−1/γ , we expect a simple power law. The stan-
dard analysis in which the procedure is to qualify the existence of the power
law using a double-logarithmic plot allows us to extract the exponent γ. An
analysis of the short-time region ∆t ∼ 1 − 103 minutes suggests [250, 251]
that the exponent γ has the value 1.4 ± 0.1. However, this power law is not
a stable behavior. A crossover to the Gaussian law p∆t (0) ∼ ∆t−1/2 appears
for sufficiently long time differences ∆t.

An alternative way consists of a comparison of the empirically determined
return probability p∆t (0) with the Gaussian return probability

pGauss
∆t (0) ∼ 1√

2πσemp
(3.154)

calculated from the empirically determined variance of the underlying asset
price fluctuations. Note that the variance σemp is always finite because it is
obtained from a finite set of finite values ξ. The difference between the two
probabilities pGauss

∆t (0) and p∆t (0) decreases systematically for decreasing ∆t
above ∆t ≈ 102 minutes [251].

Both empirical analysis techniques suggest a characteristic crossover time
of an order of magnitude 104 minutes (20 trading days). Above this time,
we have a Gaussian behavior, while below this time an anomalous, Lévy-like
regime appears. These results confirm our assumption that the probability
distribution function of logarithmic price changes is never a true Lévy distri-
bution or, more generally, a probability density of the basin of attraction of
a Lévy law.

The empirically determined probability distribution functions p∆t (ξ) are
rather a function of the basin of attraction of the Gaussian distribution.
This conclusion corresponds to the expectation that the variance of the price
changes is a finite quantity. On the other hand, we expect from the empirical
analysis of high-frequency data that the probability distribution function of
the logarithmic price changes is very close to a Lévy law over a wide range
of ∆t.

The data necessary for the characterization of the short-time behavior
can be obtained from a relatively small time window (1 month) of high-
frequency observations. This allows the computation of the time dependence
of the Lévy exponent γ considering various subsets of the complete original
data set [252]. The relatively small fluctuations of the numerically estimated
exponents seem very likely that the Lévy exponent γ is a universal quantity
characterizing the dynamics of financial markets.



3.5 Short-Time Regime 105

ξ

|   |ξ −γ−1

e−|ξ|/ξ0

ln p(  )ξ

Fig. 3.22. The characteristic structure of the probability distribution function at
short time horizons. The center can be described by a Lévy law with the character-
istic scaling behavior. The tails show a behavior that can be fitted by an exponential
decay.

Having obtained an estimation of the exponent using the simple tech-
niques discussed above, we are able to construct the master curve for the
probability distribution function. After the rescaling p∆t (ξ) → ∆t1/γp∆t (ξ),
and ξ → (

ξ − ξ
)
/∆t, all of the empirically determined probability distribu-

tion functions with ∆t = 1 − 103 minutes collapse approximately onto one
curve [250].

We may reduce the mutual deviations of the rescaled curves by an addi-
tional adjustment of the exponent. The master curve is in almost every case
an approximately symmetric function so that we obtain b ≈ 0. We remark
that the empirically determined probability distribution functions exhibit a
slight skewness (left–right asymmetry), which is neglected in the following
discussion. However, there are two essential problems suggesting that the
scaling is only approximate. The first problem is that one can fit the
master curve to a Lévy distribution only in a limited range. In particular, we
find serious deviations for the asymptotic behavior. Whereas the tails of the
Lévy distribution decay algebraically |ξ|−1−γ , the master curve suggests an
exponential decay (see Figure 3.22). But such a function is not form-stable,
so the scaling procedure must break down, at least for long time intervals.
Furthermore, the exponential decay corresponds to a finite variance, so the
probability distribution p∆t (ξ) converges to a Gaussian law for ∆t → ∞.

The observation of this convergence in the present scaling procedure is
very hard since the Gaussian law will be attracted onto the center of the
master curve due to the use of the rescaling factor ∆t1/γ � ∆t1/2. The
observation of the Gaussian law is possible by the application of the appro-
priate scaling factor ∆t1/2.

The range of intermediate and large fluctuations for relatively short time
horizons may be fitted by the asymptotic law
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p∆t (ξ) ∼ 1
|ξ|γ+1 exp

{
−|ξ|
ξ0

}
, (3.155)

with the characteristic scale ξ0 defining the crossover between the algebraic
and the exponential decays. The range |ξ| < ξ0 can be fitted very well
by a Lévy distribution with exponent γ and asymmetry coefficient b = 0.
The Lévy-like behavior of the central region of the probability distribution
function is also the cause for the apparent robustness of the probability
against the scaling procedure. This supports our previous assumption that
the probability distribution function p∆t (ξ) of the logarithmic price changes
is closely neighbored to a stable Lévy law in the functional space, although
p∆t (ξ) is always caught in the basin of attraction of the Gaussian law.

The second problem concerns the scale a of the Lévy distribution and the
shift ξ of the center. The time evolution of these parameters obtained from
various subsets of the complete original data set [252] shows strong fluctua-
tions. These fluctuations indicate the more or less present nonstationarity of
the financial market, but they have no essential influence on the stability of
the Lévy exponent γ and the symmetry of the probability distribution.

3.5.5 Truncated Lévy Distributions

As we have seen, Lévy laws obey scaling relations but have an infinite vari-
ance. A real Lévy distribution is not observed in financial data. A stochastic
process with finite variance and characterized by scaling relations in a large
but finite region close to the center is the truncated Lévy distribution [249].
With respect to the observations in financial data, we have to ask for a
distribution that in the tails is a power law multiplied by an exponential

pδt (ξ) ∼ C±
|ξ|γ+1 exp

{
−|ξ|
ξ0

}
. (3.156)

The characteristic function of a Lévy law truncated by an exponential as in
(3.156) can be written explicitly as [211, 249]

ln p̂δt (k) = a

(
1 + k2ξ2

0
)γ/2 cos (γ arctan (kξ0)) − 1
ξγ
0 cos (πγ/2)

×
[
1 + ib tan (γ arctan (|k| ξ0)) k

|k|
]
. (3.157)

After N convolutions, we get the characteristic distribution function for a
logarithmic price change with respect to the time interval ∆t = Nδt:

ln p̂∆t (k) = −Na

(
1 + k2ξ2

0
)γ/2 cos (γ arctan (kξ0)) − 1
ξγ
0 cos (πγ/2)

×
[
1 + ib tan (γ arctan (|k| ξ0)) k

|k|
]
. (3.158)
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It can be checked that (3.157) recovers (3.140) for ξ0 → ∞. The behavior of
p∆t (ξ) can be obtained from an inverse Fourier transform (2.15). In order
to determine the characteristic scale of the probability distribution p∆t (ξ),
we have to consider the main contributions to the inverse Fourier transform.
This condition requires that the characteristic wave number kchar be of an
order of magnitude satisfying ln p̂∆t (kchar) 
 1. This relation is equivalent to

Na
[(
k2 + ξ−2

0

)γ/2 − ξ−γ
0

]

 1. (3.159)

For N � ξγ
0 , (3.159) is satisfied if k2

charξ
2
0 � 1. Thus, we obtain immediately

kchar ∼ (Na)−1/γ , and therefore the characteristic scale ξchar ∼ (Na)1/γ ,
which characterizes an ideal Lévy distribution.

When on the contrary N � ξγ
0 , the characteristic value of kchar becomes

much smaller than ξ−1
0 , and we now find the relation kchar ∼ (Na)−1/2

ξ
γ/2−1
0 .

The characteristic scale ξchar ∼ (Na)1/2
ξ
1−γ/2
0 , corresponding to what we

expect from the Gaussian behavior.
Hence, as expected, a truncated Lévy distribution is not stable. It flows

to an ideal Lévy probability distribution function for small N and then to the
Gaussian distribution for large N . The crossover from the initial Lévy-like
regime to the final Gaussian regime occurs if the characteristic scale of the
Lévy distribution reaches the truncation scale ξchar ∼ ξ0 (i.e., if Na ∼ ξγ

0 ).
This is exactly the behavior observed for the probability distribution

of price changes. Here, we have to deal with a symmetric truncated Lévy
distribution. The corresponding characteristic function is given by

p̂∆t (k) = exp

{
−Na

(
1 + k2ξ2

0
)γ/2 cos (γ arctan (kξ0)) − 1
ξγ
0 cos (πγ/2)

}
. (3.160)

In particular, the variance obtained from (2.19) is given by

σ2 =
∆taγ(1 − γ)ξ2−γ

0

δt cos(πγ/2)
, (3.161)

which is in agreement with several high-frequency observations [251] for time
differences ∆t > 10 minutes.

In summary, the truncated Lévy distribution well describes the proba-
bility distribution functions of the logarithmic price differences at different
timescales.

However, we remark again that the scale a shows partially strong fluc-
tuations over long timescales, indicating that financial markets are possibly
not in a complete steady state. Another more serious problem is that the
assumption of the empirically motivated function (3.160) is at the moment
only a model that was not derived from basic principles such as the Gaussian
law and the Lévy distributions. We will discuss this problem below.
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3.6 Large Fluctuations

3.6.1 Extreme Value Theory

The Value of Risk. For speculation strategies, it is helpful to have an
estimate of the largest expected payoff and loss during a given time interval.
This problem is equivalent to the determination of the expected largest and
smallest values of a future time series {ξ (t1) , ξ (t2) , ...ξ (tN )} of logarithmic
price fluctuations. The task is related to the extreme value theory [109, 138,
165]. This theory has many applications in the natural sciences, engineering,
and social sciences [71, 107, 139, 164, 202].

In order to simplify the analysis, we focus on one certain asset price evolu-
tion observed in a stationary financial market. Furthermore, we assume that
the time difference ∆t = tn+1 − tn between successive observations is a con-
stant value much larger than the Markov horizon. To proceed, we introduce
the values of risk ξmax and ξmin that define the cumulative probability that
a payoff ξ > ξmax or a loss ξ < ξmin is exceeded in any one time period ∆t.
Furthermore, we define the cumulative probabilities

P> (η) =

∞∫
η

dξp∆t (ξ) and P< (η) =

η∫
−∞

dξp∆t (ξ) . (3.162)

The probability that the value of risk ξmax is larger than the maximum of
the time series, ξmax > ξ

(N)
max = max (ξ (t1) , ξ (t2) , ...ξ (tN )), is given by the

integral over the joint probability (3.10),

Π< (ξmax) =

ξmax∫
−∞

dξ(1)

ξmax∫
−∞

dξ(2)

...

ξmax∫
−∞

dξ(N)p∆t

(
ξ(N), tN ; ...; ξ(1), t1

)
, (3.163)

so that the independence condition (3.20) and the assumed stationarity lead
to

Π< (ξmax) =

 ξmax∫
−∞

dξp∆t (ξ)

N

= [P< (ξmax)]
N
. (3.164)

Because P< (ξmax) + P> (ξmax) = 1, we arrive at

Π< (ξmax) = [1 − P> (ξmax)]
N
. (3.165)

The function Π< (ξmax) is the probability that all values of the time series
are less than ξmax. This probability is a measure of risk aversion. Let us
assume that we expect with a probability p� that all price fluctuations are
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below an upper limit ξmax. Then, this boundary is given by the solution of
Π< (ξmax) = p�. We find

P> (ξmax) = 1 − (p�)1/N ≈ − ln p�

N
. (3.166)

For typical applications, the probability p� is chosen to have the value e−1

so that we obtain the simple relation P> (ξmax) ≈ N−1. The probability
P> (ξmax) decreases with increasing N so that, because of (3.162), the value
of risk increases with increasing N .

Furthermore, we conclude from (3.162) that the value of ξmax is controlled
by the asymptotic behavior of the probability distribution function p∆t (ξ)
for ξ → ∞. An analogous statement follows for the lower value of risk ξmin.

For example, let us assume that the Gaussian distribution function (3.63)
holds for the logarithmic price changes. Then, we get for the vanishing trend
µ = 0 and the variance σ2 = Φ∆t

P> (ξmax) = 1 − φ

(
ξmax

σ

)
, (3.167)

where φ (x) is the cumulative standard unit normal distribution. For N → ∞,
(3.166) leads to the estimation:

ξmax ∼ σ
√

lnN. (3.168)

On the other hand, if the Lévy law holds, we have to deal with the asymptotic
behavior (3.145). This leads to another estimation

ξmax ∼
(
CN

γ

)1/γ

. (3.169)

Finally, the truncated Lévy law with the asymptotic behavior (3.156) leads
to

ξmax ∼ ξ0 ln
CN

ξγ
0 (lnCN/ξγ

0 )1+γ (3.170)

for ξmax/ξ0 � 1, while (3.169) occurs for ξmax/ξ0 � 1. These examples
demonstrate in a simple manner that the random variables described by
a probability distribution with tails decaying faster than an algebraic law
show only mild fluctuations. An exponentially large number of observations
is necessary to find a sufficiently large fluctuation.

Another situation occurs for algebraic probability distribution functions.
Here, we find wild fluctuations leading to a large value of risk in financial
data also for a relatively small set of observations. We remark that in the
case of symmetric probability distribution functions, the lower value of risk
is given by ξmin = −ξmax.

The results above imply an important remark concerning the empirical
determination of the variance of possible Lévy processes2. We must realize
2 For simplicity, we consider only symmetric Lévy distributions.
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Fig. 3.23. The empirically determined second cumulant of the logarithmic daily
share price fluctuations as a function of the number of observations N with first
observation 09/01 for Commerzbank AG stock.

that, even if the variance of a Lévy probability distribution is infinite, one can
always calculate the empirical variance from a finite set of observations. This
fact comes about because a finite set of N measurements is usually restricted
by an upper boundary ξmax and a lower boundary ξmin = −ξmax, which are
determined by the estimation (3.166). The probability of observing a value
|ξ| > ξmax in a typical series of N observations is small. Thus, the expected
finite moments are defined by the truncation

m(n) =

ξmax∫
−ξmax

ξnp∆t (ξ) dξ, (3.171)

where p∆t (ξ) may be a certain symmetric Lévy distribution. This integral
can be approximated by using the asymptotic behavior (3.145). We obtain
for γ < n the result

m(2n) ∼ ξ2n−γ
max ∼ N (2n−γ)/γ , (3.172)

while m(2n+1) = 0 due to the symmetry of the probability distribution. Thus,
the empirically determined variance typically increases with an increasing
number of observations (Figure 3.23). In contrast to this behavior, a Gaussian
law leads to

m(n) ∼ Γ

(
n+ 1

2

)
− (lnN)(n−1)/2

N
. (3.173)

This means that all empirically determined moments converge relatively fast
to a fixed value. Therefore, sometimes the processes described by the Lévy law
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or another slowly decaying probability distribution function are erroneously
denoted as nonstationary processes although the probability density is a time-
independent quantity.

The Gumbel Distribution. Now, we ask for the asymptotic behavior for
N → ∞ of the cumulative probability Π< (ξmax) defining the probability
that the maximum observation is less than ξmax. To this end, we start from
(3.165) and consider that the probability P> (ξmax) converges monotonously
to zero for ξmax → ∞. Thus, we may write

Π< (ξmax) = exp {−NP> (ξmax)} , (3.174)

where this expression becomes a better and better approximation as ξmax
increases so that P> (ξmax) becomes smaller and smaller. The probability
Π< (ξmax) is very small for large N and small values of ξmax. But for suffi-
ciently large ξmax, the probability P> (ξmax) becomes an order of magnitude
N−1 or lower and Π< (ξmax) executes a transition from 0 to 1.

Let us assume that the probability distribution function has a tail falling
faster than a power law. Then, the asymptotic behavior of P> (ξmax) may be
written as lnP> (ξmax) ∼ −cξa

max with a > 0. Now, we are able to conclude
that the transition from Π< (ξmax) ≈ 0 to Π< (ξmax) ≈ 1 occurs at

NP> (ξ�
max) ∼ 1. (3.175)

Hence, we obtain the asymptotic relation ξ�
max ∼ c−1/a (lnN)1/a. The

expansion of P> (ξmax) in powers of δξmax = ξmax − ξ�
max around ξ�

max leads
to

NP> (ξmax) ∼ exp
{

−ca (ξ�
max)

a−1
δξmax

}
× exp

{
−ca (a− 1)

2
(ξ�

max)
a−2 (δξmax)

2 + ...

}
, (3.176)

where we have taken into account (3.175). The interval δξ�
max over which

the transition from 0 to 1 occurs is such that (ξ�
max)

a−1
δξ�

max ∼ 1, leading to
δξ�

max ∼ (lnN)−1+1/a. Thus, the second-order term (and also all higher terms
of this expansion) does not contribute essentially to the change of NP> (ξmax)
during the transition. In fact, we obtain (ξ�

max)
a−2 (δξ�

max)
2 ∼ (lnN)−1 so

that all higher terms disappear for N → ∞. Finally, we collect all specific
parameters in two nonuniversal, N -dependent numbers and arrive at

Π< (ξmax) = exp
{

− exp
{

−ξmax − bN
aN

}}
. (3.177)

This expression is the so-called Gumbel distribution [165], which determines
the probability of finding the maximum value less than ξmax in a set of N
observations in the limit N → ∞. Practically, this distribution holds very
well for sufficiently large N .

The Gumbel distribution requires that the corresponding probability
distribution have a tail with an asymptotic decay faster than a power law. We



112 3. Financial Markets

remark that in the case of a probability distribution with a tail falling as a
power law ξ−1−γ for ξ → ∞, the distribution of the extreme values converges
to the Fréchet distribution

Π< (ξmax) = exp

{
−
[
max

(
0, 1 +

ξmax − bN
γaN

)]−γ
}
. (3.178)

Furthermore, any probability distribution with a finite right endpoint ξr and
a functional behavior controlled by the leading term (ξr − ξ)γ (γ > 0) close
to this right endpoint offers an extreme-value distribution converging to the
Weibull distribution

Π< (ξmax) = exp

{
−
[
max

(
0, γ +

bN − ξmax

aN

)]−γ
}
. (3.179)

The remarkable result is that the maximum of any random series of N
elements tends asymptotically for sufficiently large N to one of the three
distribution functions introduced.

Rank-Ordering Statistics. Another possibility for dealing with extreme
values is the rank-ordering technique [445]. In a certain sense, this method
is a generalization of the extreme value theory. We consider again a time
series of logarithmic price changes {ξ (t1) , ξ (t2) , ...ξ (tN )} and reorder them
by increasing values

ξ(1) ≤ ξ(2) ≤ ... ≤ ξ(n) ≤ ...ξ(N), (3.180)

where ξ(n) ∈ {ξ (t1) , ξ (t2) , ...ξ (tN )} for all n = 1, ..., N . The concept of the
rank-ordering technique may be characterized as the determination of the
nth value ξ(n) as a function of the rank n.

In order to quantify the rank-ordering problem, we start from the joint
probability (3.10) and ask for the probability distribution function πn (η) that
one variable has the value η while n− 1 variables are less than η and N − n
variables are greater than η. Obviously, we have to consider the integral

η∫
−∞

dξ(1)...

η∫
−∞

dξ(n−1)

∞∫
η

dξ(n+1)...

∞∫
η

dξ(N)p∆t

(
ξ(N), tN ; ...; ξ(1), t1

)
, (3.181)

which can also be written as η∫
−∞

dξp∆t (ξ)

n−1

p∆t (η)

 ∞∫
η

dξp∆t (ξ)

N−n

. (3.182)

Note that we have here applied the independence condition (3.20). There
exist

N !
(n− 1)!(N − n)!

(3.183)
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various combinations of allowed rearrangements of the integral (3.181) leading
to the same result (3.182). Thus, the total probability density to find at rank
n the value η is given by

πn (η) =
N !

(n− 1)!(N − n)!
[P< (η)]n−1

p∆t (η) [P> (η)]N−n
, (3.184)

where we have used the cumulative probabilities (3.162). The expression
(3.184) is valid for arbitrary probability distribution functions p∆t (ξ). We
obtain an estimate of the nth value ξ(n) of the reordered time series if we
determine the most probable value using the definition (2.9). Thus, the solu-
tion of

∂πn (η)
∂η

∣∣∣∣
η=ξ(n)

= 0 (3.185)

yields the typical value ξ(n). Let us briefly demonstrate this technique.
Differentiating (3.184) leads to

1
πn (η)

∂πn (η)
∂η

= (n− 1)
∂ lnP< (η)

∂η
+
∂ ln p∆t (η)

∂η

+(N − n)
∂ lnP> (η)

∂η
. (3.186)

This equation can be written as
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Fig. 3.24. The rank-ordered absolute values of the logarithmic daily price fluc-
tuations for various companies of the chemical industry sector (squares: BASF;
circles: Bayer, up triangles: Degussa; down triangles: Henkel; total time interval
11/00–07/02). The near equivalence of the curves suggests a widely common trad-
ing behavior with respect to this industrial sector.
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[n− 1 − (N − 1)P< (η)] = P< (η) [1 − P< (η)]
∂1/p∆t (η)

∂η
. (3.187)

In the case of an underlying Gaussian law, the absolute value of the right-
hand side is always less than 1. Therefore, we get for large values of n and
N ,

φ

(
ξ(n)

σ

)
≈ n

N
, (3.188)

where φ (x) is again the standard error function. On the other hand, a Lévy
distribution with the asymptotic behavior p∆t (ξ) ∼ C |ξ|−1−γ leads to the
relation

ξ(n) =
[
C

γ

Nγ + 1
1 + (N − n) γ

]1/γ

(3.189)

for N − n � N . This is illustrated in Figure 3.24 for the rank distribution
of price variations obtained from various assets and a fixed time difference
as well as in Figure 3.25 for the rank distribution of the logarithmic price
changes obtained from the euro/US dollar exchange rate for various time
intervals ∆t. For sufficiently long time intervals, we get a Gaussian behavior
aside some few very large fluctuations. The rank-ordered distribution for
daily price changes is an intermediate regime, which demonstrates again the
crossover from the Lévy law to the Gaussian behavior for this time horizon.
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Fig. 3.25. The rank-ordered absolute values of the logarithmic fluctuations of
the euro/US dollar exchange rate, for 11/00–07/02 for various time horizons (from
bottom to top: δt = 1, 2, 5, 10, 20, 50, 100 trading days). The curves for δt ≥ 10
can be fit very well by the inverse cumulative error function except for the region
of large fluctuations 1 − n/N < 0.01.
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3.6.2 Partition Function Formalism

In the context of the rank-order statistics, we have formally introduced
a separation of the allowed price changes in three parts. The three-piece
scale consisted of the interval [−∞, η], [η, η + dη], and [η + dη,∞]. After-
wards, we determined the probability πn (η) that the first interval contains
n−1 observations, the middle interval contains one observation, and the last
interval contains the remaining N − n observations.

Now, we investigate a generalization. We introduce M intervals [ηk−1, ηk]
with k = 1, ...,M and η0 = −∞ and ηM = ∞. Then, we are able to calculate
the probability π (N1, N2, ..., NM ) that N1 observations are located in the first
interval, N2 observations are located in the second interval, and so forth. A
procedure similar to that used in the previous section leads to the formula

π (N1, N2, ..., NM ) = N !
M∏

k=1

(Pk)Nk

Nk!
(3.190)

with

Pk =

ηk∫
ηk−1

dξp∆t (ξ) . (3.191)

For a better representation, we introduce the frequencies fk = Nk/N . Then,
the probability π (N1, N2, ..., NM ) may be written as πN (f1, f2, ..., fM ) and
we obtain instead of (3.190)

πN (f1, f2, ..., fM ) = N !
M∏

k=1

(Pk)Nfk

(Nfk)!
(3.192)

with the constraint
M∑

k=1

fk = 1. (3.193)

Considering that N is very large, the expression may be simplified. Using
Stirlings formula x! ≈ xx exp {−x}, we arrive at

πN (f1, f2, ..., fM ) ≈ exp {−NK [P, f ]} , (3.194)

where K [P, f ] is the so-called information gain, or the Kullback information
[218, 219]

K [P, f ] =
M∑

k=1

fk ln
(
fk

Pk

)
, (3.195)

which is related to Shannon’s information entropy [188, 189, 190, 371]. A
more precise calculation shows that the exponential function in (3.194) must
be multiplied with an extra factor, which leads to the correction
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1
N

lnπN (f1, f2, ..., fM ) ≈ −K [P, f ]

− 1
2N

m∑
k=1

ln fk + (1 −m)
ln 2πN

2N
+ ...

= −K [P, f ] + o
(
N−1 lnN

)
. (3.196)

Therefore, the probability distribution πN (f1, f2, ..., fM ) is completely domi-
nated by the exponential for N → ∞ so that the estimation (3.194) con-
verges to the exact result, and the probability with which any given frequency
distribution is realized is essentially determined by the Kullback information
gain. The lower this quantity, the more likely is the frequency distribution.
The information gain has the important property

K [P, f ] ≥ 0, (3.197)

where the equality sign holds if and only if fk = Pk for all k. In the ab-
sence of constraints other than the normalization condition (3.193), the most
probable frequencies are obtained from the maximum likelihood approach.
This method is equivalent to the minimization of

F =
M∑

k=1

fk ln
(
fk

Pk

)
+ λ

[
M∑

k=1

fk − 1

]
(3.198)

with respect to the frequencies fk, where λ is the Lagrange multiplier fixing
the normalization constraint. We obtain fk = Pk exp {−1 − λ} and λ = −1
due to (3.193). Hence, we recover the law of large numbers:

lim
N→∞

fk = Pk. (3.199)

The application of Lagrange multipliers is very useful in the improvement
of estimated probability distribution functions in the presence of additional
constraints. Let us assume S constraints that take the form

M∑
k=1

c
(α)
k fk = C(α) for α = 1, ..., S (3.200)

with arbitrary but fixed coefficients c(α)
k and C(α). The problem of finding the

extremum of the probability distribution πN (f1, f2, ..., fM ) under the S + 1
constraints (3.200) and (3.193) can be solved by using instead of (3.198) the
generalized Lagrangian

M∑
k=1

fk ln
(
fk

Pk

)
+ λ

[
M∑

k=1

fk − 1

]
+

S∑
α=1

λ(α)

[
M∑

k=1

c
(α)
k fk − C(α)

]
(3.201)

with S additional Lagrange multipliers λ(α). The minimization of (3.201) now
leads to M equations
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ln
(
fk

Pk

)
+ 1 + λ+

S∑
α=1

λ(α)c
(α)
k = 0 (3.202)

that can be readily solved for the most probable frequencies

f�
k = Pk exp

{
−1 − λ−

S∑
α=1

λ(α)c
(α)
k

}
. (3.203)

In order to determine the Lagrange multipliers, we must substitute (3.203)
into the constraints. In particular, the normalization condition yields

exp {1 + λ} =
M∑

k=1

Pk exp

{
−

S∑
α=1

λ(α)c
(α)
k

}
. (3.204)

It is now convenient to abbreviate the right-hand side by

Z
(
λ(1), λ(3), ...λ(S)

)
=

M∑
k=1

Pk exp

{
−

S∑
α=1

λ(α)c
(α)
k

}
, (3.205)

which we will interpret as a partition function. In fact, many relations of
classical thermodynamic equilibrium theory can be transferred onto the par-
tition function formalism. For instance, the additional constraints may be
written as

C(α) = −∂ lnZ
∂λ(α) for α = 1, ..., S (3.206)

corresponding to the thermodynamic equations of state. These nonlinear
equations allow the determination of the Lagrange multipliers by numeri-
cal methods. The second-order derivatives form a positive-definite matrix.
This follows immediately from

− ∂C(α)

∂λ(β) =
∂2 lnZ

∂λ(α)∂λ(β) =
M∑

k=1

c
(α)
k c

(β)
k fk −

M∑
k=1

c
(α)
k fk

M∑
l=1

c
(β)
l fl. (3.207)

The sum may be interpreted as an average using the statistical weights fk.
Thus, the right-hand side of (3.207) is a component of the covariance matrix
c(α)c(β) − c(α) c(β), which is always positive-definite. In this sense, each term
−∂C(α)/∂λ(β) is also a component of a positive-definite matrix . This allows
the construction of various helpful inequalities similar to the thermodynamic
inequalities. For example, the diagonal elements of a positive-definite matrix
are always positive, so ∂C(α)/∂λ(α) ≤ 0. Furthermore, (3.207) implies the
symmetry relation

∂C(α)

∂λ(β) =
∂C(β)

∂λ(α) . (3.208)

We obtain the minimum Kullback information gain considering all given con-
straints if we replace fk by (3.203):
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Fig. 3.26. Empirical frequency distribution of the logarithmic daily exchange rate
for the euro/US dollar for 11/00–07/02). The dotted curve is the corresponding
Gaussian distribution, and the straight line corresponds to the improved probabil-
ity distribution function minimizing the Kullback information gain under certain
constraints; see the text.

Kmin = K [P, f�] = − lnZ −
S∑

α=1

λ(α)
M∑

k=1

c
(α)
k f�

k . (3.209)

Let us use the concept of the partition function formalism for the computation
of an appropriate distribution function. Suppose that we have a relatively
short time series of daily price changes since the underlying asset is new to
the market. However, we can determine an empirical probability distribution
by constructing a histogram. This means that we divide the price scale in
some intervals and collect all events falling in each of these intervals. The
result is an empirical frequency distribution.

Furthermore, we can determine the first moments m(n) of this frequency
distribution. Our hypothesis may be that the distribution function is an ideal
Gaussian law with the trend µ̃ = m(1) and the variance σ2 = m(2) − µ̃2.

As an example, let us study the distribution of the logarithmic price
changes of the euro/US dollar exchange rate of 700 trading days (Figure
3.26). The whole price scale is divided into 30 equal intervals except the two
infinitely large boundary intervals, which are chosen to be empty. A simple
numerical standard fit procedure has µ̃ = 1.63 × 10−4 and σ = 7.08 × 10−3,
which allows us to calculate the ideal distribution function and afterwards
the probabilities Pk.

The Kullback information gain is now a good measure for the distance
between the observed frequency distribution fk and the hypothetical proba-
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Table 3.1. Moments and Lagrange multipliers corresponding to the probability
distribution function of the daily euro/US dollar exchange rate for 11/00–07/02.

order n 1 2 3 4

moments m(n) 1.63 × 10−4 5.03 × 10−5 1.08 × 10−7 7.92 × 10−9

Lagrange 14.74 7.66 × 102 −9.76 × 104 −1.35 × 106

multipliers λ(n)

bility distribution function given by the Pk. In our concrete case, we obtain
K [P, f ] = 0.0256.

In order to improve the hypothesis, we consider the constraints
30∑

k=1

(ξk)n
fk = m(n) for α = 1, ..., 4, (3.210)

where ξk is the center of the kth interval and the m(n) are the empirically
determined moments; see Table 3.1. The computation of the Lagrange mul-
tipliers using (3.205) and (3.206) is a numerically standard procedure.

The corresponding most likely distribution f�
k (Figure 3.27) seems to be

a better representation of the true probability distribution function than our
original hypothesis. In fact, the Kullback information gain between the new
hypothetical distribution function f�

k and the empirical distribution function
is now K [f�, f ] = 0.021. Inspecting Figure 3.27, we find that the original
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Fig. 3.27. Contributions to the Kullback information gain fk ln(fk/Pk) versus
ξk (striped bars) and fk ln(fk/f�

k ) versus ξk (empty bars). A noticeable reduction
occurs mainly at the right tail.
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hypothesis underestimates the tails, while the new hypothesis considers the
effects of large fluctuations in an appropriate manner.

The maximum likelihood method provides also a simple framework to
fit hypothetical distribution functions to empirically determined frequency
distributions considering various constraints [82, 159, 242, 278, 408]. To this
end, we have to consider a probability distribution function p∆t (ξ,Θ), which
is parametrized by a set Θ = {Θ1, ...ΘL} of L free parameters. Thus, the
probabilities Pk depend also on these parameters, Pk = Pk (Θ), and the
minimization of the Kullback information gain with respect to Θ,

∂K [P (Θ) , f ]
∂Θi

= 0 for i = 1, ..., L, (3.211)

leads to an optimum probability distribution. This method can be extended
also onto probability distributions with constraints.

3.6.3 The Cramér Theorem

The central limit theorem states that the Gaussian law is a good description
of the center of the probability distribution function p∆t (ξ) for sufficiently
long time intervals ∆t. We have demonstrated that the range of the center
increases with increasing time intervals but is always limited for finite ∆t. A
similar statement is valid for the generalized version of the central limit theo-
rem regarding the convergence behavior of Lévy laws. Fluctuations exceeding
the range of the center are denoted as large fluctuations.

Of course, large fluctuations are rare events. This can be seen intuitively
in Figure 3.25. The behavior of possible large fluctuations is affected only
partially or not at all by the predictions of the central limit theorem, so we
should ask for an alternative description. We start our investigation from the
general formula (3.29) for a single asset price and assume that the market is
in a steady state. The characteristic function can also be calculated for an
imaginary k → iz so that the Fourier transform becomes a Laplace transform

p̂δt (z) =
∫

dξpδt (ξ) exp {−zξ} (3.212)

that holds under the assumption that the probability distribution function
decays faster than an exponential for |ξ| → ∞. We obtain again an algebraic
relation for convolution of N elementary probability distribution functions
pδt (ξ):

p̂Nδt (z) = [p̂δt (z)]N . (3.213)

On the other hand, we assume that for sufficiently large N , the probability
density pNδt (ξ) may be written as

pNδt (ξ) = exp
{

−NC
(
ξ

N

)}
, (3.214)
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where C (x) is the Cramér function [133, 225]. We will check by a construction
principle whether such a function exists for the limit N → ∞. To this end,
we calculate the corresponding Laplace transform

p̂Nδt (z) = N

∫
dx exp {−N [C (x) + zx]} (3.215)

by using the method of steepest descent. This method approximates the
integral by the value of the integrand in a small neighborhood around its
maximum x̃. The value of x̃ depends not on N and is a solution of

∂

∂x
C (x) + z = 0. (3.216)

With the knowledge of x̃, we can expand the Cramér function in powers of
x around x̃,

C (x) + zx = C (x̃) + zx̃+
1
2
∂2

∂x̃2 C (x̃) [x− x̃]2 + ... . (3.217)

Note that the first-order term vanishes due to (3.216). Substituting (3.217)
into (3.215), we obtain the integral

p̂Nδt (z) = N exp {−N [C (x̃) + zx̃]}
×
∫

dy exp
{

−N
[
1
2
∂2C (x̃)
∂x̃2 y2 + ...

]}
(3.218)

with y = x − x̃. The leading term in the remaining integral is a Gaussian
law of width δy ∼ N−1/2. With respect to this width, all other contributions
of the series expansion can be neglected for N → ∞. Therefore, we focus
here on the second-order term. The corresponding Gaussian integral exists if
∂2C/∂x2 > 0. In this case, we obtain

p̂Nδt (z) ∼
√
N/ (∂2C (x̃) /∂x̃2) exp {−N [C (x̃) + zx̃]} . (3.219)

For N → ∞, the leading term of the characteristic function is given by

p̂Nδt (z) ∼ exp {−N [C (x̃) + zx̃]} . (3.220)

Combining (3.213), (3.220), and (3.216) we obtain the equations

C (x) + zx+ ln p̂δt (z) = 0 and
∂

∂x
C (x) + z = 0, (3.221)

which allow the determination of C (x). These two equations indicate that
the Cramér function is the Legendre transform of ln p̂δt (z). Hence, in order
to determine C (x) we must find the value of z that corresponds to a given x̃.
The differentiation of (3.221) with respect to x leads to

∂

∂x
C (x) + z + x

∂z

∂x
+
∂ ln p̂δt (z)

∂z

∂z

∂x
=
[
x+

∂ ln p̂δt (z)
∂z

]
∂z

∂x
= 0. (3.222)

Because ∂z/∂x = −∂2C (x) /∂x2 < 0 (see above), we find the relation
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x = −∂ ln p̂δt (z)
∂z

, (3.223)

from which we can calculate z = z(x). Having C (x), the Cramér theorem
reads

pNδt (ξ) = exp
{

−NC
(
ξ

N

)}
for N → ∞. (3.224)

This theorem describes large fluctuations outside of the central region of
p̂Nδt (ξ). The central region is defined by the central limit theorem, which
requires ξ ∼ Nα with α < 1; see (3.54) and (3.55). Thus, the central region
collapses to the origin in the Cramér theorem.

But outside of the center, we have |ξ| /N > 0. Obviously, the scaling of the
variables differs between the central limit theorem and the Cramér theorem.
While the rescaling ξ → ξ/

√
N leads to the form-stable Gaussian behavior of

pNδt (ξ) in the limit N → ∞, the rescaling ξ/N yields another kind of form
stability concerning the expression N−1 ln pNδt (ξ).

Furthermore, the properties of the initial elementary probability distribu-
tion disappear close to the center for N → ∞. Therefore, the central limit
theorem describes a universal phenomenon. The Cramér function conserves
the properties of the elementary probability distribution functions due to
(3.221) so that the large fluctuations show no universal behavior.

3.6.4 Extreme Fluctuations

Large fluctuations are a key point in the description of statistical properties of
stock prices. However, the quantitative analysis is very difficult and requires
extremely large databases [154, 155, 243]. The Cramér theorem provides a
concept for the treatment of large fluctuations as a sum of an infinite number
of successive price changes. This limit corresponds to large time intervals
∆t = Nδt, while the rescaled price fluctuations ξ/N ∼ ξ/∆t remain finite.

Another important regime that is of interest for the analysis of high-
frequency data is the extreme fluctuation regime [136]. Here, we have to deal
with finite N but ξ/N → ∞.

In order to quantify this class of fluctuations, we start again from (3.29)
and assume one asset and a stationary market. Because the regime of extreme
fluctuations is characterized by small N and therefore by short timescales,
the assumption of stationarity is justifiable. But the second necessary con-
dition, namely the independence of successive observations, requires special
attention.

We use the representation pδt (ξ) = exp {−f (ξ)} and obtain

pNδt (ξ) =
∫ N∏

j=1

dξ(j)δ

ξ −
N∑

j=1

ξ(j)

 exp

−
N∑

j=1

f
(
ξ(j)
) . (3.225)
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For simplicity, we restrict ourselves to the case of an extreme positive fluc-
tuation ξ → +∞. We now have now two possibilities. On the one hand, the
asymptotic behavior of the function f (ξ) can be concave. Then, we have
f(x) + f(y) > f(x + y) so that the dominant contributions to (3.225) are
obtained from configurations with all fluctuations very small except one
extreme fluctuation almost equal to ξ. Therefore, we get

ln pNδt (ξ) ∼ ln pδt (ξ) ∼ −f (ξ) . (3.226)

On the other hand, if the asymptotic behavior of f (ξ) is convex,
f(x) + f(y) < f(x + y), the minimum of the exponentials is given by the
symmetric configuration ξ(k) = ξ/N for all k = 1, ..., N . The convexity con-
dition requires a global minimum of the sum of all exponentials in (3.225) so
that

N∑
j=1

f
(
ξ(j)
)

≥ Nf

(
ξ

N

)
. (3.227)

We apply again the method of the steepest descent. To do this, we introduce
the deviations δξ(k) = ξ(k) − ξ/N and expand the sum in (3.227) around its
minimum,

N∑
j=1

f
(
ξ(j)
)

= Nf

(
ξ

N

)
+

1
2
f ′′
(
ξ

N

) N∑
j=1

(
δξ(j)

)2
+ o
(
|δξ|3

)
, (3.228)

where we have used the constraint δξ(1) + δξ(2) + ... + δξ(N) = 0. We sub-
stitute this expression into (3.225). Then, with the assumption of convexity,
f ′′ (ξ/N) > 0, the integral (3.225) can be estimated. We get the leading term

pNδt (ξ) ∼ exp
{

−Nf

(
ξ

N

)}
. (3.229)

This approximative result approaches the true value for ξ/N → ∞. Appa-
rently, (3.229) and (3.214) are identical expressions. But we should remem-
ber that (3.214) holds for N → ∞ but finite ξ/N , while (3.229) requires
ξ/N → ∞. However, the Cramér function C (x) becomes equal to f (x) for
x → ∞.

In summary, the knowledge of the tails of an elementary probability dis-
tribution pδt (ξ) of logarithmic price changes allows the determination of the
tails of the probability distribution function pNδt (ξ) via

pNδt (ξ) ∼
[
pδt

(
ξ

N

)]N

. (3.230)

Therefore, we are also able to determine the probability distribution of
extreme returns that are connected with the logarithmic price changes via
ξ(t) = ln(R(t) + 1) = ln r(t).
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The sum of N successive price changes ξ (t1) + ξ (t2) + ... + ξ (tN ) with
tn+1 = tn + δt is equivalent to the product r (t1) r (t2) ...r (tN ). Hence, the
probability distribution of extreme returns is given by

pNδt (r) ∼
[
pδt

(
r1/N

)]N
. (3.231)

This expression has a very natural interpretation. The tail of the probability
density pNδt (r) is controlled by the realizations where all terms in the product
are of the same order. Therefore, the probability for an extremely large return
over the time interval Nδt is just the product of theN elementary distribution
functions, with each of their arguments being equal to the common value
r1/N .

3.6.5 A Mechanism for Extreme Price Changes

As mentioned above, the observation of the very rare extreme fluctuations
requires large databases. Therefore, the time distance ∆t between successive
observations is necessarily small. Usually, the price fluctuations are analyzed
over fixed but relatively short time intervals ∆t. But also on these short
timescales, each fluctuation is made up of more elementary fluctuations.
Suppose that the elementary events of asset prices are single transactions.
This assumption is correct with respect to time series obtained on a tick-by-
tick frequency, including every quote or transaction price of the market.

A further divisibility is impossible without an essential extension of the
set of relevant degrees of freedom. We should not expect that the short time
differences between neighboring data points are still above the Markov hori-
zon. Thus, memory effects may become important. Usually, these effects
dominate the center of the probability distribution function of price changes.
In the context of extreme fluctuations, we may neglect the memory. In a
similar way, we can argue that the market is in a steady state.

Let us assume that the logarithmic price changes of single transactions are
randomly distributed with a certain probability distribution function p0 (ξ)
while the random price changes ξn = ξ(n)+ξ(2)+...+ξ(n) after n transactions
are defined by the probability distribution function pn (ξ). In particular, the
extreme fluctuations describing the tails of the probability density are given
by pn (ξ) ∼ p0 (ξ/n)n.

The tick-by-tick series are irregularly spaced because the market ticks
arrive at random times. Thus, the number of ticks per time interval is ∆t,
a random number. Since the individual transactions occur randomly, this
number is Poisson distributed,

πn =
λn

n!
e−λ, (3.232)

with λ the average number of ticks per time interval ∆t. It then follows that
the unconditional probability distribution function of extreme logarithmic
price changes per time interval ∆t is given by
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p∆t (ξ) ∼
∞∑

n=0

pn (ξn)
1
n!
λne−λ ∼

∞∑
n=0

[
λp0

(
ξ

n

)]n 1
n!
. (3.233)

We use λp0 (ξ) = exp {−f (ξ)} and the Stirling formula in order to obtain

p∆t (ξ) ∼
∞∑

n=0

exp
{

−
[
nf

(
ξ

n

)
+ n (lnn− 1)

]}

∼
∞∑

n=0

exp {−F (ξ, n)} . (3.234)

The main problem is to calculate the sum for sufficiently large ξ. To do this,
we apply again the method of steepest descent. The main contributions to
the sum in (3.234) stem from the minimum of F (ξ, n). The corresponding
value n� of n is defined by the equation

∂F

∂n

∣∣∣∣
n=n�

= f

(
ξ

n�

)
+ lnn� − ξ

n�
f ′
(
ξ

n�

)
= 0. (3.235)

The second derivative at the minimum point is given by

∂2F

∂n2

∣∣∣∣
n=n�

=
1
n�

[
1 +
(
ξ

n�

)2

f ′′
(
ξ

n�

)]
> 0 (3.236)

so that n� is a real minimum if the convexity condition is satisfied. Thus, we
obtain

p∆t (ξ) ∼ exp {−F (ξ, n�)} = exp
{
n�

[
1 − ξ

n�
f ′
(
ξ

n�

)]}
. (3.237)

The minimum value n� follows from the equation (3.235). We introduce the
variable w = ξ/n�. Thus, we get

f (w) − wf ′ (w) − lnw = − ln ξ. (3.238)

This equation allows the determination of w as a function of ξ if the function
f (w) is known. Usually, that is not the case. Therefore, we solve (3.238) in
terms of a perturbation theory. To do this, we focus on an analysis of the
fluctuations ξ around a certain value, say ξ0, by setting ln ξ = ln ξ0 + ε with
ε � ln ξ0. Then, we may solve the unperturbed equation

f (w0) − w0f
′ (w0) − lnw0 = − ln ξ0 (3.239)

from which we obtain the unperturbed minimum point n�
0 = ξ0/w0(ξ0). The

first-order correction follows by substituting w = w0 + δw into (3.238) and
expanding this equation up to first order in δw. Thus, we obtain the solution

δw =
w0ε

1 + w2
0f

′′ (w0)
. (3.240)

Furthermore, we get for F (ξ, n�) up to first order in δw ∼ ln ε = ln(ξ/ξ0)
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F (ξ, n�) = ξ

[
w0f

′ (w0) − 1
w0

+
ln(ξ/ξ0)

w0

]
, (3.241)

so

p∆t (ξ) ∼ exp
{

−ξw0f
′ (w0) − 1 + ln (ξ/ξ0)

w0

}
. (3.242)

This is a remarkable result: for sufficiently large ξ0 and therefore large w0,
the probability distribution function can mimic an exponential decay very
well over a wide region ξ− < ξ < ξ+ with |ln(ξ±/ξ0)| ∼ w0f

′ (w0). In other
words, the extreme fluctuations in the tails of the probability distribution
function of price changes may be approximately described by a leading term
p∆t (ξ) ∼ exp {−gξ}. This behavior is precisely what is expected for the
tails of a truncated probability distribution function. We remark that the
occurrence of an exponential decay is independent of the concrete structure
of the elementary probability distribution function p0 (ξ).

In order to describe the tails of the distribution function of returns, we
use the relation ln r = ξ with r = R + 1. Hence, we arrive at

p∆t (r) ∼ r−1−g−β(r) ∼ R−1−g−β(R) for r,R → ∞, (3.243)

with the constant exponent g = (w0f
′ (w0) − 1) /w0 and the slowly varying

quantity β (r) = ln (ln r/ ln r0) /w0. Obviously, the probability distribution
functions of extreme returns approach a power law over a wide region, in
agreement with various studies [154].

3.7 Memory Effects

3.7.1 Time Correlation in Financial Data

In the previous chapters, we assumed that the time difference between
successive price observations is above the Markov horizon. Then, we were
able to use the separation (3.20) representing the probability of the occur-
rence of a complete time series {ξ(t1, δt), ..., ξ(tN , δt)} as a product of single
probabilities. Let us now analyze whether such an assumption is justifiable
or whether we have to deal with the more general formulation (3.10).

To this end, we restrict ourselves to the evolution of a single stock. The
extension onto a multivariable price vector is always possible. We expect that
deviations from the Markov behavior occur at relatively short timescales.
Since the empirical detection of possible correlation effects requires a rela-
tively small time window of high-frequency data, we may assume a statio-
nary financial market during the observation. This assumption is supported
by the fact that the investigation of high-frequency data allows us to extend
the analysis of correlation effects over a large number of points in time even
if the total time interval over which the data are analyzed is not very long.
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The independence of the logarithmic price changes of stocks or other
financial assets is typically investigated by analyzing various autocorrelation
functions (2.102). A standard quantity is the autocorrelation function (2.103),
which reads for a single asset

C(t, t′; δt) = C(t− t′; δt) = ξ(t, δt)ξ(t′, δt) − ξ(t, δt) ξ(t′, δt), (3.244)

where we have used explicitly the stationarity assumption. In this expression,
the effects of a possible trend are eliminated. If we consider relatively short
timescales δt, the trend ξ(t, δt) = ξ (δt) is also of an order of magnitude δt (see
(3.63)) so that the second term in (3.244) is proportional to δt2. Therefore,
this term may be neglected in the case of high-frequency data (i.e., small δt),
and (3.244) reduces to the simpler autocorrelation function

F (t, t′; δt) = F (t− t′; δt) = ξ(t, δt)ξ(t′, δt). (3.245)

Another important remark is that the autocorrelation function depends on
two timescales, δt and t − t′. Therefore, one must be very careful in com-
paring correlation functions that are obtained from various observations and
in extracting general conclusions. Formally, we obtain from (2.102)

F (t− t′; δt) =
∫

dξdξ′pδt (ξ, t; ξ′, t′) ξξ′ (3.246)

so that a theoretical determination of the autocorrelation requires the know-
ledge of the joint probability pδt (ξ, t; ξ′, t′). This probability distribution
function is obtainable by integrating the general joint probability (3.10) over
all variables not of interest.

If the price changes at different times t and t′ are independent, the joint
probability separates pδt (ξ, t; ξ′, t′) = pδt (ξ, t) pδt (ξ′, t′) and the autocorre-
lation function is of an order of magnitude F (t − t′; δt) ∼ δt2 → 0. On the
other hand, we find that for t = t′ the autocorrelation function is equivalent
to the variance F (0; δt) = σ. Such a peak structure indicates independence
between successive observations of price changes.

Empirical investigations show that the correlation functions decay rela-
tively fast. The decay is characterized by a correlation time much shorter
than a trading day. Typically, one observes a correlation function that may
be fitted by an exponential decay [253]

F (t− t′; δt) ∼ exp
{

−|t− t′|
τchar

}
, (3.247)

where the characteristic time τchar is of an order of magnitude 100 − 102

minutes. We conclude from (3.247) that the financial data have a Markov
horizon of δtMarkov ∼ τchar.

The Fourier transform of the autocorrelation function is the spectral func-
tion (2.106). In particular, we obtain from (3.247)

S(ω) ∼ τchar

1 + ω2τ2
char

(3.248)
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with the asymptotic behavior S(ω) ∼ ω−2 for large ω. That is the typical
behavior that one observes for the price changes of stocks [251]. Various
empirical observations [253] support the ω−2 decay, which is in agreement
with the hypothesis that the stochastic dynamics of the logarithmic price
changes may be described by a Wiener process corresponding to a random
walk in the price space.

Another powerful test in detecting the presence of correlations is the in-
vestigation of the variance σ of an individual asset price as a function of the
time ∆t between successive price observations. For small time intervals ∆t,
the variance can be estimated by the second moment

σ2 (∆t) ≈ ξ(t,∆t)2 (3.249)

of the logarithmic price fluctuations. This quantity is directly connected to
the autocorrelation function. We demonstrate this connection using the di-
visibility of the logarithmic price changes,

ξ(t,∆t) =
N−1∑
n=0

ξ(t+ nδt, δt), (3.250)

with ∆t = Nδt. Thus, we obtain

σ2 (∆t) =
N−1∑

n,m=0

ξ(t+ nδt, δt)ξ(t+mδt, δt)

=
N−1∑

n,m=0

F (δt (n−m) ; δt) ≈ 2
δt2

∆t∫
0

dt

t∫
0

dt′F (t− t′; δt). (3.251)

For ∆t � δtMarkov, the main contributions of the autocorrelation function
F (t−t′; δt) to this integral come from a small stripe |t− t′| ≤ δtMarkov so that
σ2 ∼ ∆t. In fact, the empirical behavior detected in financial data is well-
described by a power law σ ∼ ∆t1/2 in the time window from approximately
100 − 102 trading minutes to 102 trading days [88, 251].

However, we observe a superdiffusive regime σ ∼ ∆tβ with β ≈ 0.8 be-
low the Markov horizon, ∆t ≤ δtMarkov. This anomalous behavior may be
explained by the fact that financial time series have a memory of only a few
minutes.

We should remember that the majority of our considerations were based
on the assumption that the financial market is in a steady state. As discussed
above, the existence of stationarity plays no essential role at very short time
intervals. A similar statement holds also for very long time intervals due to
the validity of the central limit theorem.

However, the type of stationarity that would be possible for this regime is
at best asymptotic stationarity. But because of the small number of available
data with respect to the price changes ξ(t, δt) over long time horizons δt, it
cannot be decided whether these price changes are already controlled by an
asymptotic stationary process.
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In the intermediate range between these two regimes, the assumption of
stationarity can lead to real problems. These problems become recognizable
by inspecting the empirical moving volatility σ(t, T, δt) obtained from (3.15)
or (3.16). In spite of the use of an apparently suitable moving time window
T , these quantities show considerable variations.

As discussed above, the trend ξ(t, δt), which may be estimated by the
moving mean value of logarithmic price fluctuations (3.14), is strongly
affected by underlying economic and social processes. But this quantity may
be eliminated from the dynamics of the financial market by using the reduced
fluctuations ξ̂(t, δt) = ξ(t, δt) − ξ(t, δt). This means that we can speak about
an ideal financial market in a wider sense if all moments constructed from
these quantities are time-independent.

The obvious fluctuations of the volatility lead to a further step generali-
zing the term stationary. This step consists of the introduction of additional
random processes. For instance, a typical model is given by the Ito stochastic
differential equations

dξ̂ = σdW1 and dσ = g(σ, ξ̂)dt+ h(σ, ξ̂)dW2 (3.252)

with two independent Wiener processes dW1 and dW2 and with two functions
g(σ, ξ̂) and h(σ, ξ̂) describing possible drift and diffusion effects related to the
volatility σ.

Such models are frequently used in financial mathematics [180, 241, 368].
The merit of these models is that the stationarity may be conserved in a wider
sense although the actual volatility is a fluctuating quantity. The problem is
that we have to deal with two independent degrees of freedom, ξ̂ and σ.
We point out that (3.252) describes a pure model on the basis of empirical
experience.

The stochastic behavior of the volatility and therefore the correlation
function σ (t)σ (t′) depend on the functions g(σ, ξ̂) and h(σ, ξ̂). As mentioned
in subsection 3.3.3, the Wiener processes are connected to the price fluc-
tuations by various economic factors [337], or rather economic-psychological
factors. Therefore, we may interpret (3.252) in such a manner that the pre-
sence of volatility fluctuations in real markets suggests that there might be
some other fundamental economic and financial processes in addition to those
controlling the price changes directly. In order to estimate the randomness of
these additional processes, we analyze the empirical correlation function of
the moving volatility

Cvola(t− t′;T, δt) = 〈σ (t, T, δt)σ (t, T, δt)〉
− 〈σ (t, T, δt)〉 〈σ (t, T, δt)〉 , (3.253)

where we must consider three different timescales: the time difference δt
between successive observations, the width of the time window T , and the
difference t− t′. Besides (3.253), other characteristic quantities are also used
for an estimation of the volatility fluctuations, such as the average over the
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absolute values of the price changes in an appropriate time window, and quan-
tities obtained from various kinds of maximum likelihood methods [296].

Typically, the autocorrelation function of the volatility shows a pro-
nounced power law decay [76, 237, 238, 303, 323]. For instance, the auto-
correlation function for the fluctuations of the absolute values of the S&P
500 price changes can be fitted by a power law decay |t− t′|−νwith a
characteristic exponent ν ∼ 1/3 in the time interval from approximately
100 to 102 trading days [238]. Other studies [237, 238, 252] on the spectral
function are consistent with the results obtained from the analysis of the au-
tocorrelation functions. All of these observations support the hypothesis that
the fundamental processes mentioned above that controll the volatility are
long-range-correlated.

It should be remarked that the values of the autocorrelation function of
the volatility fluctuations Cvola(t−t′;T, δt) for |t− t′| > 0 are relatively small
in comparison with the standard deviation of the volatility Cvola(0;T, δt).
This and the fact that the definition of the volatility correlation function
usually requires higher joint probability distribution functions, such as the
two-point distribution used in (3.246), indicate that the long-time correla-
tions are not necessarily in contradiction to the pairwise independence of the
logarithmic price changes discussed above. Rather, these fluctuations contain
information about the character of the stationarity of the market.

We remark that our discussion suggests that the price changes cannot be
described completely by a stationary stochastic process in a strict sense since
the volatility is a time-dependent quantity in real financial markets. Under
certain conditions, the strict steady state concept is a reasonable approxima-
tion that may be helpful for the discussion of many financial problems. But,
in general, one should expect deviations from this ideal behavior.

3.7.2 Ultrashort Timescales

Nonlinear Fokker–Planck Equation. The time evolution of an arbi-
trary asset price may be described by the use of the conditional probability
p(x, t | x0, t0) with x = lnX. As we have already discussed, a possible trend
can be neglected on sufficiently short timescales. A general description of
the probability distribution function of the asset price is formally possible in
terms of the Nakajima–Zwanzig equation (2.50). This equation reads in our
special case

∂p (x, t | x0, t0)
∂t

= −M̂p (x, t | x0, t0)

+

t∫
t0

dt′K̂ (t− t′) p (x, t′ | x0, t0) . (3.254)

This expression is an exact formulation of the time evolution of the proba-
bility p (x, t | x0, t0). The general problem is, however, that the frequency
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operator M̂ and the memory kernel K̂ are indefinable because they contain
the dynamics of all other degrees of freedom. At least, we want to attempt
to estimate these quantities using our knowledge of financial systems and the
dynamics of complex systems.

The memory term describes the feedback of the price evolution with its
own history. In order to derive a possible functional structure of the memo-
ry kernel, we formally introduce the price density g(x, t) = δ (x− lnX(t)),
where X(t) is the asset price as a function of the time t. Obviously, the
joint probability density p(x, t;x0, t0) is equivalent to the correlation func-
tion g(x, t)g(x0, t0), where the average procedure includes all allowed price
trajectories. On the other hand, the time-dependent field g(x, t) may be
interpreted as a set of relevant variables Gx(t) labeled by the logarithmic
price x. The evolution of these quantities is described by a system of Mori–
Zwanzig equations (2.121),

∂Gx(t)
∂t

=
∑
x′

Ωxx′Gx′(t) +
∑
x′

t∫
t0

Kxx′(t− t′)Gx′(t′)dt′ + fx(t), (3.255)

where we have assumed that the market is stationary. As discussed in subsec-
tion 2.7.1, these equations are also exact relations connecting the dynamics
of the relevant quantities Gx′(t) to the dynamics of all other degrees of free-
dom, which are collected in the time-dependent residual forces fx(t). The
frequency matrix Ωxx′ is given by (2.115), while the memory term is defined
as a normalized correlation matrix (2.123) of the residual forces fx(t),

Kxx′(t− t′) = −
∑
x′′

Hxx′′fx′′ (t) fx′(t′); (3.256)

see (2.123). Note that the matrix H is defined by∑
x′′

Hxx′′Gx′′(t)Gx′(t) = δxx′ . (3.257)

An important relation between the relevant variables and the residual forces
is the orthogonality relation (2.119) ,

Gx(t0)fx′(t) = 0, (3.258)

where t0 is the initial time with respect to (3.255). This property allows
the determination of the evolution equation for the correlation functions
Gx(t)Gx0(t0) from (3.255) as demonstrated in (2.127). Because

p (x, t;x0, t0) = g(x, t)g(x0, t0) = Gx(t)Gx0(t0) (3.259)

and p (x, t;x0, t0) = p (x, t | x0, t0) p (x0, t0) (see (2.56)), we reproduce the
Nakajima–Zwanzig equation introduced above:

∂p (x, t | x0, t0)
∂t

=
∑
x′

Ωxx′p (x, t | x0, t0)
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+
∑
x′

t∫
t0

Kxx′(t− t′)p (x, t | x0, t0) dt′. (3.260)

Now, we are able to estimate the memory kernel Kxx′(t− t′). Obviously, the
quantities Gx(t) form a set of orthogonal quantities due to

Gx(t)Gx′(t) = g(x, t)g(x′, t) = δ (x− lnX(t)) δ (x′ − lnX(t))
∼ δ (x− x′) ∼ δxx′ . (3.261)

Considering (3.257), we get immediately Hxx′ ∼ δxx′ . Furthermore, we sepa-
rate the residual forces into a fast part f fast

x (t) and a slow part f slow
x (t).

The fast part represents, for example, the contributions of random
buying decisions while the collective dynamics of the whole financial mar-
ket are hidden behind the slowly varying forces. For instance, the permanent
occurrence of combined buy and sell orders leads to a feedback between indi-
vidual stock prices and therefore also to a feedback of the specific asset price
X(t) with its own history.

The dynamics of both contributions to the residual forces may be
uncorrelated,

〈
f fast

x (t)f slow
x′ (t′)

〉
= 0, so that the memory term splits into

Kxx′(t − t′) = Kfast
xx′ (t − t′) + Kslow

xx′ (t − t′). The fast term can be approxi-
mated very well by a Markov ansatz Kfast

xx′ (t − t′) = Ξxx′δ (t− t′). Thus,
(3.260) may be written as

∂p (x, t | x0, t0)
∂t

=
∑
x′

[Ωxx′ +Ξxx′ ] p (x′, t | x0, t0)

+
∑
x′

t∫
t0

Kslow
xx′ (t− t′)p (x′, t′ | x0, t0) dt′. (3.262)

This equation is similar to equation (3.254) if we identify the matrix
Ωxx′+Ξxx′ with the operator −M̂ and the slow memoryKslow

xx′ with K̂ (t− t′).
Without any memory, K̂ = 0, all irrelevant degrees of freedom are apparently
external stochastic variables.

This situation is comparable with the behavior of asset prices at very long
timescales well above the Markov horizon. Thus, equation (3.262) reduces to
a simple Markov equation so that the first term of (3.262) can be interpreted
as the right-hand side of a Fokker–Planck equation (3.64); that is,

M̂ → −Φ0

2
∂2

∂x2 . (3.263)

To construct the structure of the slow-memory part, we use an idea of
Kawasaki [197] and present the slow residual forces in terms of polynomials
of the relevant variables

f slow
x (t) =

∑
x′

Axx′Gx′(t) +
∑
x′x′′

Bxx′x′′Gx′(t)Gx′′(t)
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+
∑

x′x′′x′′′
Cxx′x′′x′′′Gx′(t)Gx′′(t)Gx′′′(t) + ... . (3.264)

This general expansion can be specified under consideration of the special
structure of the relevant quantitiesGx(t). First, we notice that all summations
refer to different logarithmic prices. Otherwise, a term that contains G2

x(t)
reduces to the next lower order due to G2

x(t) = δ2 (x− lnX(t)) ∼ δ (0)Gx(t).
The initial correlation between residual forces and the relevant quantities is
given by

Gy(t0)f slow
x (t0) =

∑
x′

Axx′Gy(t0)Gx′(t0)

+
∑
x′x′′

Bxx′x′′Gy(t0)Gx′(t0)Gx′′(t0) + ... . (3.265)

All correlations higher than second order vanish because the corresponding
prices are not completely identical; for instance,

Gy(t)Gx′(t)Gx′′(t) = δ (y −X(t)) δ (x′ −X(t)) δ (x′′ −X(t))
∼ δ(x′ − y)δ (x′′ − y) = 0. (3.266)

Note that the last step follows from the condition x′ �= x′′ discussed
above. The orthogonality relation Gy(t0)fx(t) = Gy(t0)f slow

x (t) = 0 requires
Axx′ = 0 due to

0 = Gy(t0)f slow
x (t0) =

∑
x′

Axx′Gy(t0)Gx′(t0)

=
∑
x′

Axx′δ(x′ − y)Gy(t0) ∼ Axy. (3.267)

Thus, the expansion (3.264) starts with the second-order term

f slow
r (t) =

∑
r′r′′

Bxx′x′′Gx′(t)Gx′′(t)

+
∑

x′x′′x′′′
Cxx′x′′x′′′Gx′(t)Gx′′(t)Gx′′′(t) + ... . (3.268)

Now, we can insert this relation into the definition of the memory kernel. We
obtain from (3.256) because of Hxx′ ∼ δxx′

Kslow
xy (t− t′) ∼ f slow

x (t)f slow
y (t′)

=
∑

x′x′′y′y′′
Bxx′x′′Byy′y′′Gx′(t)Gx′′(t)Gy′(t′)Gy′′(t′)

+
∑

x′x′′x′′′y′y′′
Cxx′x′′x′′′Byy′y′′ ×

Gx′(t)Gx′′(t)Gx′′′(t)Gy′(t′)Gy′′(t′)
+... . (3.269)
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The correlation functions can be approximated by using the standard decoup-
ling procedure

Gx′(t)Gx′′(t)Gy′(t′)Gy′′(t′) ≈ Gx′(t)Gy′(t′) Gx′′(t)Gy′′(t′)

+Gx′(t)Gy′′(t′) Gx′′(t)Gy′(t′) . (3.270)

Formally, the correlation function Gx(t)Gx′(t′) is equivalent to the joint
probability p(x, t;x′, t′) = p(x, t | x′, t′)p(x′, t′). In a stationary market,
the unconditional probability distribution function p(x′, t′) is a slowly vary-
ing quantity3 compared with the conditional probability p(x, t | x′, t′) that
depends strongly on the logarithmic price difference ξ = x − x′. Therefore,
the probability density p(x′, t′) is assumed to be a constant that may be
incorporated into the coefficients of the expansion.

We therefore obtain a series expansion of the slow memory in terms of the
conditional probability density p(x, t | x′, t′) starting with the second order.
The absence of linear contributions is a consequence of the orthogonality
relation (3.258). We focus in the following discussion on the second-order
term of (3.269), which seems to be the leading term of a schematic expansion
of Kslow

xy (t− t′). Higher contributions can be treated in the same way. Due to
the decoupling, we get

Kslow
xy (t− t′) =

∑
x′x′′y′y′′

Bxx′x′′Byy′y′′p(x′, t | y′, t′)p(x′′, t | y′′, t′)

=
∑

x′x′′y′y′′
Bxx′x′′Byy′y′′p(x′, t | y′′, t′)p(x′′, t | y′, t′). (3.271)

This memory can be simplified further by considering some reasonable
assumptions about the structure of Bxx′x′′ . In particular, we expect (3.264) to
be dominated by coefficients Bxx′x′′ referring to infinitesimally neighboring
logarithmic prices x, x′, and x′′. If we take into account the expected symme-
try of p(x, t | x′, t′) = p(−x, t | x′, t′), we arrive at the general representation

Kslow
xx′ (t− t′) =

∞∑
n=0

γn

(
∂

∂x′

)2n

p(x, t | x′, t′)2. (3.272)

Note that because of the symmetry mentioned odd powers of ∂/∂x must
vanish identically. The strength parameters γn of the memory are determined
by the underlying hidden dynamics of the irrelevant degrees of freedom. Thus,
after some partial integrations, the evolution equation (3.262) can be written
as

∂p(x, t | x0, t0)
∂t

=
Φ0

2
∂2

∂x2∆p(x, t | x0, t0) (3.273)
3 The probability distribution p(x′, t′) follows directly from p∆t (ξ) = p∆t (x − x0),

where ∆t = t − t0 is the lifetime of the specific stock and x0 = ln X(t0) is the
corresponding logarithmic price observed at the point in time of the introduction
of the share on the market, which passed long ago.
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+
∞∑

n=0

γn

∫
dx′

t∫
t0

dt′p(x, t | x′, t′)2
(

∂

∂x′

)2n

p(x′, t′ | x0, t0). (3.274)

The normalization condition∫
dx′p(x′, t′ | x0, t0) = 1 (3.275)

requires γ0 = 0. Considering only the leading order of the series in (3.274),
we get

∂p(x, t | x0, t0)
∂t

=
Φ0

2
∂2

∂x2 p(x, t | x0, t0)

+γ1

∫
dx′

t∫
t0

dt′p(x, t | x′, t′)2
(

∂

∂x′

)2

p(x′, t′ | x0, t0). (3.276)

This nonlinear Fokker–Planck equation is the basis for the following investi-
gation [358]. Similar equations are used for the description of the dynamics
of other complex systems, such as catalytic reactions [361, 366], climate fluc-
tuations [352], or several types of diffusion controlled by feedback mechanisms
[353, 354].

We remark that (3.276) is only valid for a short time difference t − t0.
This is because we have considered only the leading terms of a schematic
expansion of the memory kernel during the derivation of (3.276). The upper
boundary of validity can be estimated to be the Markov horizon δtMarkov.

Naive Scaling Procedure. Considering a stationary market, equation
(3.276) may also be written in terms of the logarithmic price changes
ξ = x− x0 = ln(X/X0),

∂pt(ξ)
∂t

=
Φ0

2
∂2pt(ξ)
∂ξ2 + γ1

∫
dη

t∫
0

dt′pt−t′(ξ − η)2
∂2

∂η2 pt′(η), (3.277)

where we have set t0 = 0. The solution of this equation is characterized by
two regimes.

On the one hand, the memory term can be neglected at short times
t → 0, and we get a simple Gaussian law considering the initial condition
p0(ξ) = δ (ξ). On the other hand, the nonlinearity dominates (3.277) at
sufficiently long times. Therefore, we expect a crossover from the initially
Gaussian solution into another functional structure.

We remark also that the long-time regime with respect to (3.277) is
always below the Markov horizon δtMarkov. For t ∼ δtMarkov, we expect that
the memory kernel can no longer be expressed by the leading term of the
schematic expansion discussed above.

In the next paragraph, we will now derive the asymptotic solution of
(3.277) for long times (but below δtMarkov) using the technique of the
dynamic renormalization group.
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To this end, we use the following trick. We write (3.277) as an integro-
differential equation in a multidimensional space of dimension d,

∂pt(ξ)
∂t

=
Φ0

2
∂2pt(ξ)
∂ξ2 + γ1

∫
ddη

t∫
0

dt′pt−t′(ξ − η)2
∂2

∂η2 pt′(η), (3.278)

and analyze the behavior of pt(ξ) in terms of the renormalization procedure
[358, 362]. At the end of our calculations, we then carry out the limit d → 1.

Such tricks are very popular in statistical physics. The original problem is
extended onto a more general class, then it is solved, and finally the general
solution obtained is reduced to the solution of the problem. Note also that
some very exotic limits will be reasonable, such as d → 0 for the replica
method [93, 299, 300, 302] applied in the spin-glass theory or the transition
to fields with a vanishing number of components in the theory of polymers
[146, 297, 356].

Let us assume that the solution of (3.278) approaches a homogeneous
function of the type

pt(ξ) = λ−dφ
(
λ−zt, λ−1ξ

)
(3.279)

in the long-time limit. Note that this suggestion is also supported by several
numerical simulations [352, 353, 354]. The quantity λ is an arbitrary scaling
parameter, whereas z is called the dynamic exponent. We remark that this
behavior refers again to the center of the probability distribution function,
similar to what we saw during the derivation of the central limit theorem.

Substituting (3.279) into (3.278), we obtain

∂φ (τ, x)
∂τ

= λz−2Φ0

2
∂2φ (τ, x)

∂x2 + γ1λ
2z−2−d

∫
ddx′

τ∫
0

dτ ′

×φ2 (τ − τ ′, x− x′)
∂2

∂x′2φ (τ ′, x′) (3.280)

with τ = λ−zt and x = λ−1ξ. Let us analyze the change of this equation
under an increase of the scaling parameter. In the absence of the nonlinear
term (i.e., γ1 = 0), the equation is made scale-invariant upon the choice of
z = 2.

The nonlinearity added to this scale-invariant equation then has a prefac-
tor λ2−d. The difference from the original equation for λ = 1 is the coupling
parameter, which changes from γ1 to γ1λ

2−d. Thus, for d > 2, a small non-
linearity scales to zero and becomes irrelevant. In other words, the behavior
for large λ and d > 2 is well-described by the linear diffusion equation.

A nontrivial behavior occurs for d < 2. In this case, the nonlinearity
wins more and more with increasing λ and dominates (3.280). Such a simple
estimation is called a naive scaling procedure. This method allows the de-
termination of the critical dimension dc = 2, where the nonlinearity changes
from an irrelevant term to a dominant contribution.
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Furthermore, the equation (3.280) allows a first estimation of the asymp-
totic behavior at large scales. For d > dc and the choice z = 2, we arrive at
a simple diffusion equation for λ → ∞. Setting λ = t1/2, the scaling relation
(3.279) requires an asymptotic behavior of the solution

pt(ξ) = λ−dφ
(
λ−2t, λ−1ξ

)
=

1
td/2φ

(
1,

ξ

t1/2

)
=

1
td/2ψ

(
ξ

t1/2

)
. (3.281)

The functional structure of ψ still remains open in the framework of our
estimation, but it is clear that the solution pt(ξ) approaches the Gaussian law
for t → ∞. The characteristic scale of the asymptotic probability distribution
function is t1/2. Below the critical dimension, the nonlinearity dominates
(3.280), and we should now use the choice z = (2+ d)/2. Then, the left-hand
side and the memory term of (3.280) are in balance, while the diffusion term
disappears for λ → ∞. Setting λ = t2/(2+d), we expect an asymptotic solution

pt(ξ) = λ−dφ
(
λ−zt, λ−1ξ

)
=

1
t2d/(2+d)φ

(
1,

ξ

t2/(2+d)

)
=

1
t2d/(2+d)ψ

(
ξ

t2/(2+d)

)
, (3.282)

and the characteristic scale of the probability distribution function is now
t2/(2+d). Consequently, the corresponding variance is σ2 ∼ t4/(2+d), so that
in particular for d = 1, the time dependence of variance of the logarithmic
price fluctuations (3.249) is given by σ (∆t) ∼ ∆t2/3.

Finally, we still want to determine the functional structure of the pro-
bability distribution function pt(ξ) that can be expected at the end of the
ultrashort-time regime. We start from equation (3.278) and consider that
this regime is dominated by the nonlinear memory term. Therefore, we may
neglect the linear diffusion term. The Fourier transform of this equation with
respect to the price changes ξ leads to the time evolution of the characteristic
function. Considering the scaling function (3.282), we obtain

p̂t (k) =
∫

ddξeikξpt(ξ) = ψ̂
(
kt1/z

)
(3.283)

with ψ̂ (k) =
∫
ddxeikxψ (x). Hence, the evolution equation (3.278) now reads

∂ψ̂
(
kt1/z

)
∂t

∼ −k2γ1

t∫
0

dt′
ψ̂(2)

(
k(t− t′)1/z

)
(t− t′)d/z

ψ̂
(
kt′1/z

)
(3.284)

with ψ̂(2) (k) =
∫
ddxeikxψ2 (x). The transformations ψ̂

(
τ1/z

)
= ψ̃ (τ) and

ψ̂(2)
(
τ1/z

)
= ψ̃(2) (τ) with τ = kzt now lead to

∂ψ̃ (τ)
∂τ

∼ −k2+d−2zγ1

τ∫
0

dτ ′ ψ̃
(2) (τ − τ ′)

(τ − τ ′)1/z
ψ̃ (τ ′) . (3.285)
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The dependence on k disappears due to the dynamic exponent z = (2 + d)/2
estimated above. Then, the Laplace transform with respect to τ allows us to
write

ψ (q) ∼ 1
q + γ1F (q)

(3.286)

with ψ (q) =
∫
dτe−qτ ψ̃ (τ) and F (q) =

∫
dxe−qττ−1/zψ̃(2) (τ). Here, we

have considered the normalization condition of the probability distribution
function, which is equivalent to ψ̂ (0) = ψ̃ (0) = 1; see equation (3.283).
Assuming that the coupling constant γ1 is sufficiently small, (3.286) may be
approximated by ψ (q) ∼ [q + γ1F (0)]−1. Thus, the inverse Laplace transform
leads to

ψ̃ (τ) ∼ exp {−γ1F (0)τ} (3.287)

and therefore to the characteristic function

p̂t (k) = exp {−γ1F (0)kzt} (3.288)

corresponding to a symmetric Lévy distribution (3.140). Such a probability
distribution function is also observed for the logarithmic price change at and
above the Markov horizon. We conclude that the relative stability of the
Lévy distribution above δtMarkov is a consequence of the generalized central
limit theorem, whereas the generation of the Lévy law is due to the memory
effects below the Markov horizon. We identify the Lévy exponent γ with the
dynamic exponent z = 3/2 for d = 1. This naive scaling estimation is in good
agreement with the observations of financial markets, γ = 1.4±0.1 [250, 251].

Dynamic Renormalization Group. The concept of the naive scaling pro-
cedure requires the complete neglect either of the linear diffusion term or
of the nonlinearity in (3.278). Therefore, it cannot be decided within the
framework of this method whether the true solution of (3.278) converges to
a scaling function of type (3.279) and whether the interplay between linear
and nonlinear terms influences the dynamic exponent z.

To answer this question, we have to derive the asymptotic solution
of (3.278) using the dynamic renormalization group. It is reasonable to
start from the Fourier transform of (3.278) with respect to ξ. Considering
p(k, t) =

∫
pt(ξ) exp {ikξ} dξ, we obtain the formal representation

∂p(k, t)
∂t

= −Φ0k
2

2
p(k, t) − γ1k

2Σ (p, p; k, t) ∗ p(k, t), (3.289)

where the symbol ∗ defines the convolution procedure with respect to the
time; that is,

Σ (p, p; k, t) ∗ p(k, t) =

t∫
0

dt′Σ (p, p; k, t− t′) p(k, t′), (3.290)

and the memory kernel is given by
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Σ (p, p; k, t) = −γ1k
2
∫

ddk′

(2π)d
p(k − k′, t)p(k′, t). (3.291)

Formally, (3.289) can be rewritten as

p(k, t) = p0(k, t) + p0(k, t) ∗Σ (p, p; k, t) ∗ p(k, t) (3.292)

with the bare propagator p0(k, t) = exp
{−Φ0k

2t/2
}
. The repeated substi-

tution of (3.292) into itself leads to a perturbation series. The first terms of
this expansion are given by

p = p0 + p0 ∗Σ (p0, p0) ∗ p0

+2p0 ∗Σ (p0, p0 ∗Σ (p0, p0) ∗ p0) ∗ p0

+p0 ∗Σ (p0, p0) ∗ p0 ∗Σ (p0, p0) ∗ p0 + ... . (3.293)

This series may be rearranged. To do this, we take into account that the
expansion

p = p0 + p0 ∗Σ (p0, p0) ∗ p
+2p0 ∗Σ (p0, p0 ∗Σ (p0, p0) ∗ p0) ∗ p+ ... (3.294)

again produces (3.293) after repeated substitutions of (3.294) into itself.
The main difference between (3.293) and (3.294) is that all reducible terms
appearing in (3.293) are hidden in the algebraic structure of (3.294). For
instance, the last represented term of (3.293) occurs after the first substitu-
tion of (3.294) into itself.

The Laplace transform of (3.294) with respect to the time allows a further
simplification. We get

p(k, ω) =
[
ω +

1
2
Φ0k

2 −Ξ(k, ω)
]−1

(3.295)

with

Ξ (k, ω) = L [Σ (p0, p0)] + 2L [Σ (p0, p0 ∗Σ (p0, p0) ∗ p0)] + ... , (3.296)

where L indicates the Laplace transform and ω the corresponding Laplace
variable. The correction Ξ (k, ω) to the bare propagator is also denoted as self-
energy [153, 191]. Various diagrammatic representations of this perturbation
theory [7, 53, 183, 184, 228, 444] exist in quantum field theory and statistical
mechanics. We refrain from such a representation because we want to focus
only on the lowest order of the present perturbation theory.

In the context of the renormalization group approach, it is convenient
to introduce an upper limit Λ. This border restricts the k-integration to a
large but finite sphere |k| ≤ Λ. This allows us to apply the concept of the
renormalization group technique introduced above by repeated applications
of decimation steps and rescaling steps.

During the decimation step, we carry out the integration over an infinitely
thin shell [Λ′, Λ] with Λ′ = Λ − δΛ considering that Λ is a sufficiently large
scale. Furthermore, we write Φ0 = Φ′

0 + δΦ0 and γ1 = γ′
1 + δγ1. The aim is
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now to compensate the changes due to the integration over the shell [Λ′, Λ]
by the changes δΦ0 and δγ1 of the constants Φ0 and γ1. Considering (3.295),
this requires(

k2

2
− ∂Ξ ′

∂Φ′
0

)
δΦ0 =

∂Ξ ′

∂Λ′ δΛ+
∂Ξ ′

∂γ′
1
δγ1, (3.297)

where all changes are assumed to be infinitely small. First, we discuss the
meaning of the left-hand side of (3.297).

It is simple to check that Ξ ′ ∼ k2. Because of the fact that we work with a
perturbation theory with a sufficiently small coupling parameter γ1, the self-
energy Ξ ′ should be small compared with k2Φ0. Hence, the left-hand side
may be estimated as k2δΦ0/2. In order to determine the corrections δΦ0 and
δγ1 as a function of δΛ, we ask only for the leading orders in k and ω, which
completely determines the behavior of the large-scale regime at sufficiently
long times.

Furthermore, we consider only the leading order of Λ−1. The lowest-order
correction to δΦ0 arises from L [Σ (p0, p0)]. Considering the explicit functional
structure of L [Σ (p0, p0)],

L [Σ (p0, p0)] = −γ′
1k

2
∫

Λ

ddk′

(2π)d

1

ω + 1
2Φ

′
0

[
(k − k′)2 + k′2

] , (3.298)

we obtain
∂Ξ ′

∂Λ′

∣∣∣∣
1.order

=
∂L [Σ (p0, p0)]

∂Λ′ = −γ′
1k

2 SdΛ
′d−3

(2π)d
Φ′

0

(3.299)

and
∂Ξ ′

∂γ′
1

∣∣∣∣
1.order

=
∂L [Σ (p0, p0)]

∂γ′
1

=
1
γ′
1
L [Σ (p0, p0)] , (3.300)

where Sd is the surface area of a unit sphere in d dimensions. The contribu-
tions that are necessary to determine δγ1 follow from the next higher order.
If we exclude all of these terms for the moment, we receive the leading term
of the infinitesimal change of Φ0,

δΦ0 = −2γ′
1
SdΛ

′d−3

(2π)d
Φ′

0

δΛ = −2γ1
SdΛ

d−3

(2π)d
Φ0

δΛ. (3.301)

The differentiation of the second-order terms of the series expansion (3.296)
with respect to Λ yields two terms. The derivation of the outer integral gives
the next higher contribution to δΦ0 and will be neglected in the further
procedure. The inner integral produces the contribution

∂Ξ ′

∂Λ′

∣∣∣∣
2.order,inner

= −γ′
1
2SdΛ

′d−3

Φ′2
0 (2π)d

L [Σ (p0, p0)] , (3.302)

which allows the determination of the leading term of δγ1. To do this, we
insert (3.302) and (3.300) into (3.297) and obtain
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δγ1 = γ′2
1

2Sd−1Λ
′d−3

Φ′2
0 (2π)d

δΛ = γ2
1
2SdΛ

d−3

Φ2
0 (2π)d

δΛ. (3.303)

To summarize the previous calculations, we get the changes of γ1 and Φ0 as
the result of one decimation step,

γ′
1 = γ1 − δγ1 = γ1 − 2γ2

1
SdΛ

d−3

Φ2
0 (2π)d

δΛ (3.304)

and

Φ′
0 = Φ0 − δΦ0 = Φ0 + 2γ1

SdΛ
d−3

(2π)d
Φ0

δΛ. (3.305)

A more detailed analysis of the perturbation expansion [7, 444] shows that
this approximation becomes exact up to logarithmic corrections at the critical
dimension.

The second step of the renormalization procedure was the rescaling proce-
dure. As discussed in the context of the naive scaling method, an infinitesimal
change t → (1+δλ)−zt and ξ → (1+δλ)−1ξ (and consequently k → (1+δλ)k
and Λ′ → (1+δλ)Λ′) requires Φ′

0 → (1+δλ)z−2Φ′
0 and γ′

1 → (1+δλ)2z−2−dγ′
1.

In particular, the choice (1+δλ)Λ′ = Λ, that is, δλ = δΛ/Λ restores the initial
equation (3.295). Thus, the relationships

δtotalΦ0 = Φ0

[
z − 2 + 2γ1

2SdΛ
d−2

(2π)d
Φ2

0

]
δλ (3.306)

and

δtotalγ1 = γ1

[
2z − 2 − d− 2γ1

Sd−1Λ
d−2

Φ2
0 (2π)d

]
δλ (3.307)

appear after a complete cycle from decimation and rescaling. Let us now
repeat the application of decimation and rescaling steps N times. Then, we
get the total scaling factor λ = (1+δλ)N = exp(Nδλ), and we can replace the
discrete recursive relations (3.306) and (3.307) by corresponding differential
equations considering the limit N → ∞ and δλ → 0,

∂ lnΦ0

∂ lnλ
= z − 2 + γ̃1 and

∂ ln γ̃1

∂ lnλ
= 2 − d− 3γ̃1, (3.308)

with

γ̃1 = 2γ1
2SdΛ

d−2

(2π)d
Φ2

0

. (3.309)

These equations are also called as the flow equations of the renormalization
group. Finally, we want to fix the degree of freedom remaining from the
rescaling procedure. During the derivation of the central limit theorem, we
achieved this by the conservation of the second cumulant of the probability
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distribution function in the course of the renormalization procedure. In the
present case, it is reasonable to fix the value of Φ0. This requires z = 2 − γ̃1.

The second equation of (3.308) has two fixed points, γ̃
(1)
1 = 0 and

γ̃
(2)
1 = (2 − d)/3. The so-called Gaussian fixed point γ̃(1)

1 is stable above the
critical dimension dc = 2. This means that each coupling constant γ1 ∼ γ̃1
converges to zero with increasing λ. In other words, the nonlinearity becomes
irrelevant at sufficiently large scales, and the solution of (3.278) approaches
the Gaussian law. It is quite normal to say that the Gaussian fixed point
is stable with respect to the addition of a certain nonlinearity. This result
is in good agreement with the qualitative statements of the naive scaling
procedure discussed above.

Conversely, for d < 2, the strength of a weak nonlinear term grows,
indicating that another fixed point with nonzero γ1 determines the behavior
of the probability distribution function pt(ξ). At sufficiently large scales, the
coupling constant arrives at the final value γ̃(2)

1 and the dynamic exponent z
is given by

z = 2 − 2 − d

3
. (3.310)

The final value of γ̃1 is also a measure characterizing the quality of the un-
derlying perturbation theory. Remember that we have pointed out above
that the value of γ1 must be a small parameter. Even if the initial value of
γ1appearing in the original equation (3.278) is sufficiently small, the rescaled
value of γ1 increases under the renormalization procedure and arrives at the
finite value. This is the reason that the results presented above are only an
estimation for d < 2. An exception is the case d = 2. Here, the coupling
parameter always decreases: γ1 ∼ 1/ lnλ. If one considers higher orders of
the perturbation expansion (3.296), the dynamic exponent can be expressed
by a series expansion

z = 2 +
∞∑

i=1

αiε
i with ε = 2 − d (3.311)

with the numerical coefficients αi. Such a representation is called an ε-
expansion. However, it is often very difficult to determine the higher coef-
ficients of (3.311).

In order to come back to the original problem, we set d = 1. Thus, we
expect that the existing feedback effects generate a probability distribution

pδt(ξ) =
1

δt1/z
ψ

(
ξ

δt1/z

)
(3.312)

of the logarithmic price fluctuations ξ with respect to a time horizon δt. The
lowest order of an ε-expansion within the renormalization group approach
suggests z = 5/3.
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Therefore, the time dependence of the variance offers a superdiffusive
behavior given by σ ∼ δt0.6. However, the value of this exponent is approxi-
mately 20 percent less than the exponents that are obtained from high-
frequency market data.

This fact requires two comments. On the one hand, we should take into
account that the superdiffusive regime in financial data is observed at a time
interval of approximately 30 minutes. An appropriate fitting procedure using
a power law over such a relatively short time interval can usually show an
error up to 10 percent. On the other hand, the dynamic exponent z predicted
above is only an estimation corresponding to the first order of an ε-expansion.

However, it remains a fact that the nonlinear Fokker–Planck equation
(3.278) seems to be useful to describe the regime of price fluctuations below
the Markov horizon δtMarkov. Furthermore, as discussed above, the memory
effects lead to the formation of the Lévy-like probability distribution, which
becomes metastable over a long time period well above the Markov horizon
due to the generalized central limit theorem.

3.7.3 Autoregressive Processes

Processes with Volatility Fluctuations. As mentioned above, the vola-
tilities of asset price fluctuations are believed to change over time. The present
fluctuations of the volatility have led to the development of various models
considering additional stochastic processes [44, 91, 102, 180]. We have pre-
sented the relative general model (3.252), which allows various specifications.
Many different models have been proposed in the academic literature. How-
ever, all of these special models reflect mostly only a part of our empirical
experiences (i.e., these models are always very special substitute processes
that explain specific phenomena of the evolution of the financial market).

Only a few of these models have found good practical or theoretical
applications. In particular, some of the models considering a time-dependent
volatility are quoted for the explanation of the slow decay of the volatility
autocorrelation function.

We distinguish formally between two classes of models. The common
property of all models is that the fluctuations of the logarithmic price ξ̂
around its trend are expressed by the simple Ito stochastic differential equa-
tion dξ̂ = σ (t) dWξ(t), where Wξ is a Wiener process and σ (t) is the time-
dependent volatility.

Stochastic volatility models contain further Wiener processes controlling
the dynamics of the volatility. Very popular is the model of Hull and White
[180, 368, 430] with dσ = g(σ)dt + h(σ)dWσ. This theory allows the deriva-
tion of various specifications and generalizations [22, 230, 241]. Other types
of stochastic models assume correlations between the stochastic processes
[104, 186, 187, 224, 244, 283]. For example, this may be realized using the
substitutions Wξ = W1 and Wσ = W1 cos θ +W2 sin θ with the two indepen-
dent Wiener processes W1 and W2 and an arbitrary fixed angle θ.
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Conditional volatility models contain no further stochastic process. Here,
(3.252) is reduced to

dξ̂ = σdW and dσ = g(σ, ξ̂)dt. (3.313)

The current volatility is the result of an ordinary differential equation. There-
fore, the volatility is also called the conditional volatility or conditional vari-
ance because it depends on the relative fluctuations. The random character
of the volatility is a consequence of the coupling with the Ito stochastic
differential equation for ξ̂ due to the function g(σ, ξ̂).

The choice of the function g(σ, ξ̂) depends on the model and on the
empirical experience. But it should be guaranteed that σ is a positive quantity
independent from the trajectory of the price fluctuations. The formal solution
of the second equation of (3.313) is a function depending on the whole history
of ξ̂. For example, the special function g =

(
σ2

0 − σ2
)
/2τσ+ κξ̂2(t)/2σ leads

to the time-ependent variance

σ2 = σ2
0 + κ

t∫
−∞

exp
{

− t− t′

τ

}
ξ̂2(t′)dt′. (3.314)

Since the function g(σ, ξ̂) is anyhow an empirical construction, we can re-
frain from a dubious construction of this function and the solution of the
corresponding differential equation and instead immediately provide a possi-
ble structure of the solution of (3.313). A relatively general representation is
the functional series expansion

σ2(t) = β(0) +

t∫
−∞

dt′β(1)(t− t′)ξ̂2(t′)

+
1
2

t∫
−∞

dt′
t∫

−∞
dt′′β(2)(t− t′, t− t′′)ξ̂2(t′)ξ̂2(t′′) + ... . (3.315)

The appearance of the quadratic fluctuations and a suitable choice of the
response functions β(n) (n = 1, 2, ...) guarantee that the conditional vari-
ance is a positive-definite quantity. The specification of the functions β(n) is
equivalent to the construction of the function g(σ, ξ̂).

The representation (3.315) is similar to relations that are known from the
nonlinear response theory, such as the nonlinear material equations connec-
ting polarization and an electric field or magnetization and a magnetic field
in classical electrodynamics. The description of the time-dependent volatility
by a linear relation

σ2(t) = β(0) +

t∫
−∞

dt′β(t− t′)ξ̂2(t′) (3.316)
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is a probably sufficient approximation similar to the linear response theory of
materials [215, 216]. While the physical response function describes the delay
of the effect of an external field on the macroscopic state of a material, in
the present case the response function β(t− t′) generates a delayed influence
of the price fluctuations on the current volatility. But there is an essential
difference: The external fields are usually independent from the response;
however, there is a feedback in financial theory due to the first equation of
(3.313).

The discrete version of (3.316) is given by

σ2(t) = β(0) +
∞∑

n=1

βnξ̂
2(t− nδt, δt) (3.317)

with usually positive response coefficients βn and β(0). The modeling of a
time-varying volatility on the basis of (3.317), or more generally on the dis-
crete version of (3.315), has been one of the most important research topics
in various financial applications over the last twenty years.

The first development to capture such a volatility was the autoregressive
conditional heteroskedasticity (ARCH) model [110]. Many different types
of ARCH models have been proposed in the academic literature, such as
ARMA–ARCH [421], CHARMA [405], threshold ARCH [441], or double-
threshold ARCH [234].

A model with quite attractive features is the generalized ARCH (GARCH)
model [54]. This model also has various extensions or specifications, such as
IGARCH [4], AGARCH [55, 56], EGARCH [280], or the components GARCH
model [111, 112].

The ARCH Process. The original model of autoregressive conditional
heteroskedasticity [110] has the variance equation

σ2
m = β(0) +

N∑
n=1

βnξ̂
2
m−n (3.318)

with a memory of N time periods and the definitions ξ̂n = ξ̂(tn, δt),
σn = σ (tn), and tn+1 = tn + δt. Furthermore, some constraints on the
coefficients βn are necessary to ensure that the conditional variance is
always positive. Obviously, ARCH(N) is nothing but a weighted moving
average (3.17) over the squared price fluctuations. For an ARCH(N) model,
the series (3.317) is truncated after N steps.

The unfortunate acronym ARCH is nevertheless essential. Heteroske-
dasticity means changing variance, so conditional heteroskedasticity means
changing conditional variance. This model captures the conditional hete-
roskedasticity of asset price fluctuations by using a moving average of past
squared errors: if a major market movement in either direction occurred
m ≤ N time periods δt ago, the error square will be large, and assuming
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Fig. 3.28. Various realizations of ARCH(1) processes: β1 = 0 (top), β1 = 0.447
(middle), β1 = 0.488 (bottom).

its coefficient is nonzero, the effect will be to increase the actual variance.
In other words, large fluctuations tend to follow large fluctuations of either
sign. Mandelbrot [246] had first described this phenomenon, which today we
call conditional heteroskedasticity (Figure 3.28).

The unconditional variance of an ARCH process is simply the average
over the conditional variance using the probability distribution function of
the corresponding ARCH(N) model.

Because the discrete version of the price fluctuation equation of (3.313)
reads ξ̂n = σn∆Wn with ∆Wn = W (tn) − W (tn−1) and W (t) a Wiener
process, we obtain from (2.134) (∆Wn)2 = δt. The time period δt may be
absorbed in the conditional variance so that we can write (∆Wn)2 = 1. Thus,
we get ξ̂2

n = σ2
n, where we have considered the mutual independence of the

differences ∆Wn and ∆Wm for n �= m. Furthermore, the stationarity requires
σ2

n = σ2 for all n. Hence, we obtain from (3.318)

σ2 =
β(0)

1 −
N∑

n=1
βn

. (3.319)

Therefore, the coefficients βn must satisfy the constraint
N∑

n=1

βn < 1. (3.320)
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Fig. 3.29. The frequency distribution of an ARCH(1) process for β0 = 1 and
β1 = 0 (Gaussian law), 0.333, 0.408, 0.447, 0.471, 0.488 (in the direction of the
arrow).

For the sake of simplicity, we focus now on the ARCH(1) process. Here, we
have the unconditional variance σ2 = σ2

0/(1 − β1). Furthermore, we get from
(2.132) the relation (∆W )4 = 3 so that we find

σ4 =
(
β(0)
)2

+ 2β1σ2β(0) + 3β2
1σ

4. (3.321)

Then, the excess kurtosis (see Subsection 2.1.5) is

λ4 =
ξ̂4(
ξ̂2
)2 − 3 =

3σ4(
σ2
)2 − 3 =

6β2
1

1 − 3β2
1
, (3.322)

which is positive and finite for β1 < 1/
√

3. The probability distribution func-
tion of the logarithmic price changes will then be leptokurtic because the
fluctuating conditional variance allows for more outliers or unusually large
observations (Figure 3.29). In order to determine the volatility autocorrela-
tion function of the ARCH(1) process, we start from

σ2
n+m+1σ

2
n =

(
β(0) + β1ξ̂2

n+m

)
σ2

n = β(0)σ2 + β1σ2
n+mσ

2
n (3.323)

for m > 0. Considering (3.319), we arrive at

Cvola,m+1 = σ2
n+m+1σ

2
n − σ22

= β1

(
σ2

n+mσ
2
n − σ22)

= β1Cvola,m.(3.324)

This recursion law is equivalent to

Cvola(t) ∼ C0 exp {−t/τvola} (3.325)
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with τvola = −δt/ lnβ1. Thus, the autocorrelation of the ARCH(1) process
shows an exponential decay in contradiction to various observations, sug-
gesting a power law decay. This problem appears also for higher ARCH(N)
processes [54], where the autocorrelation function is a weighted sum of
various exponential decays.

The GARCH Process. In various applications using the ARCH(N) model,
a large value of N is required. This usually poses some problems in the
determination of the parameters β(0) and βn describing the evolution of a
given time series. Overcoming this problem and some other inadequacies
of the ARCH(N) model leads to the introduction of a generalized ARCH
process, the so-called GARCH(N,M) process [54]. This generalized model
adds M autoregressive terms to the moving averages of squared errors. The
variance equation takes the form

σ2
m = β(0) +

N∑
n=1

βnξ̂
2
m−n +

M∑
n=1

βnσ
2
m−n. (3.326)

From here, we obtain immediately that the unconditional variance of the
GARCH(N,M) model is given by

σ2 =
β(0)

1 −
N∑

n=1
βn −

M∑
m=1

βm

. (3.327)

Obviously, the GARCH(N,M) process is a special case of (3.317) where the
coefficients βn are obtainable from generalized geometric series. We demon-
strate this behavior for the GARCH(1, 1) process. Repeated substitution of
(3.326) into itself yields

σm = β(0) + β1ξ̂
2
m−1 + β1σ

2
m−1

=
(
1 + β1

)
β(0) + β1ξ̂

2
m−1 + β1β1ξ̂

2
m−2 + β

2
1σ

2
m−2

...

= β(0)
∞∑

n=1

β
n−1
1 + β1

∞∑
n=1

β
n−1
1 ξ̂2

m−n; (3.328)

that is, the GARCH(1, 1) process corresponds to an initial volatility
σ′2

0 = σ2
0/(1 − β1) and a response function β(t) ∼ exp {−t/τ0} with

τ0 = −δt/ lnβ1. Surprisingly, the parsimonious GARCH(1, 1) model, which
has just one squared fluctuation and one autoregressive term, is in fact suffi-
cient for most purposes since it has an infinite memory. The excess kurtosis
of GARCH(1, 1) is given by the relation

λ4 =
6β2

1

1 − 3β2
1 − 2β1β1 − β

2
1

. (3.329)
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Thus, a finite unconditional variance requires β1 + β1 < 1 while a finite
positive excess kurtosis appears for 1 > 2β2

1+
(
β1 + β1

)2
. In financial markets,

it is common to find the so-called lag coefficient β1 in excess of 0.7, but
the error coefficient β1 tends to be smaller. The value of these parameters
determines the shape of the resulting volatility time series. On the one hand,
large lag coefficients mean that shocks to the conditional variance take a long
time to die out, so volatility is persistent.

On the other hand, large error coefficients indicate that the volatility is
quick to react to market changes and volatilities tend to be more spiky.

An analogous computation as used for the derivation of (3.324) yields the
recursion law Cvola,m+1 =

(
β1 + β1

)
Cvola,m for the volatility autocorrelation

function. We obtain again an exponential decay

Cvola(t) ∼ C0 exp {−t/τvola} (3.330)

with the correlation time τvola = −δt/ ln(β1 + β1). However, an important
difference between ARCH(1) and GARCH(1, 1) is detected by comparing the
characteristic timescales for these two processes.

Let us consider only processes with finite unconditional variance and finite
excess kurtosis. The constraint of the finiteness of the kurtosis implies that the
error coefficient β1 of ARCH(1) must be lower than 1/

√
3. Hence, this process

may be characterized by a relatively short maximal correlation time in the
volatility fluctuations of τvola ∼ 2δt/ ln 3. In GARCH(1, 1), we can observe
an arbitrarily long correlation time. To see this, let us write β1 +β1 = ε with
ε = exp {−τvola/δt}.

We find that ε < 1 for all finite correlation times τvola. Hence, the
corresponding GARCH(1, 1) process has a finite unconditional volatility, and
the excess kurtosis is finite if 1 − ε2 > 2β2

1 , which is always possible with
a suitable choice of the error coefficient β1. That is why the GARCH(1, 1)
process is widely used to model financial time series.

The empirical analysis [3, 4] of various volatility time series suggests a sum
of lag and error coefficients close to 1 and relatively small error coefficients.
For instance, the empirically determined coefficients of the US dollar rate
GARCH(1, 1) volatility for sterling and the Japanese yen, obtained in the
time period 1983 to 1991 by analyzing the daily data [4], are β1 = 0.052 and
β1 = 0.931 (sterling) and β1 = 0.094 and β1 = 0.839 (yen). Thus, we obtain
a correlation time of τ sterling

vola ≈ 58 trading days and τyen
vola ≈ 15 trading days.

There also remains the problem that GARCH(1, 1) offers an exponential
decay in contradiction to the empirical evidence that the volatility autocorre-
lation functions of asset and stock prices or exchange rates are characterized
by a power law decay. It is also possible to determine the volatility auto-
correlation function of a GARCH(N,M) process. Here, we obtain [54]

Cvola,m =
max(M,N)∑

i=1

(
βi + βi

)
Cvola,m−i (3.331)
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so that the autocorrelation function can be expressed as a superposition of
exponential decays. Such a combination may mimic in an approximate way
the power law correlation of the volatility over a finite window.

The IGARCH Process. When β1 + β1 = 1, we can rewrite the variance
equation of the GARCH(1, 1) process as

σ2
m = β(0) + (1 − λ) ξ̂2

m−1 + λσ2
m−1. (3.332)

This model [4] is called the integrated GARCH process (IGARCH). Using
(3.328) with β1 = λ and βn = 1 − λ, we obtain the representation

σ2
m =

β(0)

1 − λ
+ (1 − λ)

∞∑
n=1

λn−1ξ̂2
m−n. (3.333)

Obviously, the IGARCH model with β(0) = 0 is equivalent to an infinite
exponential weighted moving average. To this end, we rewrite (3.17) as

〈
ξ̂2
m

〉
ω

=

m∑
n=−∞

ω (tm − tn) ξ̂2
n

m∑
n=−∞

ω (tm − tn)
=

∞∑
n=0

ω (tn) ξ̂2
m−n

∞∑
n=0

ω (tn)
(3.334)

and use ω (t) ∼ exp(−t/τ) with τ = δt/ lnλ in order to obtain

σ2
m =

〈
ξ̂2
m−1

〉
λ
. (3.335)

We remark that the unconditional variance is undefined in the IGARCH
model.

The AGARCH Process. As remarked in subsection 3.5.4, there is
empirical evidence for a slight skewness in the probability distribution of
the price fluctuations. The normal GARCH(1, 1) model does not always fully
account for this right–left asymmetry of empirical financial data. However,
the skewness is easily accommodated by introducing just one additional pa-
rameter η in the conditional variance equation. This leads to the asymmetric
GARCH(1, 1) model (AGARCH), which has conditional variance

σ2
m = β(0) + β1

(
ξ̂m−1 − η

)2
+ β1σ

2
m−1. (3.336)

For η > 0, negative shocks to the price fluctuations induce larger conditional
variances than positive shocks. The AGARCH model is therefore appropri-
ate when we expect more volatility following a market fall than following a
market rise. This so-called leverage effect is a common feature of a large class
of financial markets.
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The EGARCH Process. The GARCH process has several drawbacks, in-
cluding the inability to capture asymmetric volatility and to impose non-
negativity restrictions. While the skewness may be considered in the frame-
work of an AGARCH model, the need constraint is eliminated in the expo-
nential GARCH model [280]. This EGARCH model considers the conditional
variance equation in logarithmic terms

lnσ2
m = lnβ(0) +H (Zm−1) + β1 lnσ2

m−1 (3.337)

with Zm = ξ̂m/σm and the function

H(Z) =
1
2

(λ+ + λ−)Z +
1
2

(λ+ − λ−) |Z| . (3.338)

This asymmetric function has the slope λ− for Z < 0, and λ+ for Z > 0
provides the leverage effect just as in the AGARCH model.

The Components GARCH Process. A popular alternative specification
of the GARCH process is the components GARCH process [111, 112]. Using
the unconditional variance (3.327) of the GARCH(1, 1) model, the variance
equation may be written as

σ2
m = σ2(1 − β1 + β1) + β1ξ̂

2
m−1 + β1σ

2
m−1

= σ2 + β1

[
ξ̂2
m−1 − σ2

]
+ β1

[
σ2

m−1 − σ2
]
, (3.339)

where σ2 may be interpreted as a certain baseline GARCH(1, 1) model. The
estimation of σ2 over a rolling time window suggests also that this quantity
changes over time. The components model incorporates the varying volatility
into the GARCH model. To this end, we replace (3.339) by the variance
equation

σ2
m = qm + β1

[
ξ̂2
m−1 − qm−1

]
+ β1

[
σ2

m−1 − qm−1
]
, (3.340)

where the time-dependent baseline qm is obtainable by an additional equa-
tion. A widely used possibility is given by

qm = σ2 + χ
(
qm−1 − σ2

)
+ χ

(
ξ̂2
m−1 − σ2

m−1

)
. (3.341)

The equations (3.340) and (3.341) together define the components model.
For χ = χ = 0, we obtain the original GARCH model, while for χ = 1, the
baseline is just a random walk.

Convergence and Scaling. The ARCH and GARCH processes fit very well
the empirically determined probability distribution functions of logarithmic
price changes. The correspondence of the leptokurtic character is an especially
remarkable feature. However, all of these more or less mathematical models
fail to describe the behavior for different time horizons δt.
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Above, we have mentioned one critical problem: the volatility autocorrela-
tion correlation function of ARCH and GARCH models shows an exponential
decay instead of the expected power law.

Another serious problem is related to the scaling properties of the proba-
bility distribution functions obtained from real financial data [253]. We
know that, for processes with finite variance, the central limit theorem
applies. Thus, the probability distribution function of the logarithmic price
differences over a large time interval ∆t = Nδt should approach a Gaussian
law. In fact, the probability distribution function of the sum of N successive
price changes

S (t,∆t) =
N−1∑
k=0

ξ (t− kδt, δt) (3.342)

obtained from an ARCH or GARCH process implies a decrease in the excess
kurtosis with increasing N [99]. In any case, the attractor of all possible
ARCH and GARCH processes with finite variance is the Gaussian probability
distribution function.

However, the fact that these processes describe well the probability
distribution function for a given time horizon δt and that the probability
distribution function of the sum (3.342) converges to a Gaussian law does
not ensure that the same process describes well the stochastic dynamics
of a financial market for any time horizon δt. There are strong indications
obtained from numerical simulations [253] that the scaling properties of a
probability distribution function for different time horizons cannot be cap-
tured by autoregressive processes.

In summary, ARCH and GARCH processes are only of moderate interest
from a physical point of view because they fail to describe properly the time
evolution of the probability distribution function of the price changes. The
power of these models lies in their application within finance and financial
mathematics. In particular, ARCH and GARCH processes are suitable classes
of stochastic processes modeling the time evolution of the price for a given
stock or asset at a fixed time horizon δt.

3.7.4 Time-Reversible Symmetry

Suppose that we have a sufficiently large time series of an arbitrary asset
price with fixed time horizon

{ξ1, ...., ξn−1,ξn, ξn+1, ...} (3.343)

with ξn = ξ (tn, δt) and tn = tn−1 + δt. Then, it may be of interest whether
such a series shows a time-reversal symmetry in a statistical sense [312]. A
stationary Markov process is always a time-reversal; that is, the probability
for the realization of the time series (3.343) is equivalent to the probability
for the realization of the reversed series
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{...., ξn+1,ξn, ξn−1, ..., ξ1} . (3.344)

However, the existence of memory effects leads to a violation of the time-
reversal symmetry due to the causal structure of the corresponding evolution
equations. We will now answer the question of how the existence or the lack
of such a symmetry may be tested. The two-point correlation function of a
stationary process (2.104) is always an even function. If we use the relative
price changes ξ̂ = ξ − ξ, we obtain due to the stationarity

C(τ ; δt) = ξ̂(t, δt)ξ̂(t+ τ, δt) = ξ̂(t− τ, δt)ξ̂(t, δt) = C(−τ ; δt). (3.345)

This means that this function is not suitable for a test of statistical time-
reversal symmetry. This statement holds also for higher correlation functions
with regularly spaced points in time:

ξ̂(t, δt)ξ̂(t+ τ, δt)ξ̂(t+ 2τ, δt)...ξ̂(t+ nτ, δt). (3.346)

Limiting the analysis of the time series to the calculation of such intrinsically
symmetric correlation functions, this corresponds to a loss of information
since the price changes ξ(t, δt) can be symmetric or asymmetric under time
reversal. Another situation appears if the observation times are not equi-
distant. The simplest correlation function that is not necessarily an invariant
quantity under a reversion of the time is

C̃(τ ; δt) = ξ̂(t, δt)ξ̂(t+ τ, δt)ξ̂(t+ 3τ, δt). (3.347)

The stationarity now leads to

C̃(−τ ; δt) = ξ̂(t, δt)ξ̂(t+ 2τ, δt)ξ̂(t+ 3τ, δt). (3.348)

If the underlying time series is a time-reversal series in a statistical sense, we
expect C̃(τ ; δt) = C̃(−τ ; δt). Therefore, the correlation function should be a
reasonable measure for a time-reversal asymmetry of the time series

Casym(τ ; δt) = C̃(τ ; δt) − C̃(−τ ; δt)
= ξ̂(t, δt)

[
ξ̂(t+ τ, δt) − ξ̂(t+ 2τ, δt)

]
ξ̂(t+ 3τ, δt). (3.349)

The detection of serious deviations of Casym(τ ; δt) implies the existence of
some statistical asymmetry in the time series.

Another suitable measure of statistical time-reversal symmetry is the two-
point correlation function of different functions. For instance, all combina-
tions

C(n,m)
asym (τ ; δt) = ξ̂n(t, δt)ξ̂m(t+ τ, δt) − ξ̂(t, δt)mξ̂(t+ τ, δt)n (3.350)

with n �= m are possible measures for testing the time-reversal symmetry. A
few applications [14, 325] of such methods have been performed in order to
test the symmetry of financial time series and seem to indicate that statistical
time asymmetry is present. We document this behavior by an analysis of the
cubic correlation function
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Fig. 3.30. Average cubic correlation functions of the locally trend-corrected loga-
rithmic price fluctuations (circles) and the locally-trend corrected volatility (trian-
gles). Each point is the average over all empirically determined asymmetric cubic
correlation functions of all stocks of the German stock index (DAX) for 11/00–
07/02.

c(δt) =
η(t, δt)3η(t+ δt, δt) − η(t, δt)η(t+ δt, δt)3(

η(t, δt)2
)2 , (3.351)

where we choose
(i) η(t) = ξ(t, δt) (the logarithmic price fluctuation),
(ii) η = |ξ(t, δt)| (a measure of the volatility),
(iii) η(t) = [2ξ(t, δt) − ξ(t+ δt, δt) − ξ(t− δt, δt)] /3 (a measure of locally
“trend-corrected” price fluctuation), and
(iv) η(t) = [2 |ξ(t, δt)| − |ξ(t+ δt, δt)| − |ξ(t− δt, δt)|] /3 (a measure of locally
“trend-corrected” volatility).

In Figure 3.30, we compare the cubic correlation functions of (iii) and (iv)
obtained from daily series averaged over all of the stock prices contained in
the DAX.

Obviously, there is strong empirical evidence for the existence of a time-
reversal asymmetry in the volatility fluctuations, whereas the trend-corrected
fluctuations of the prices themselves are more or less symmetric in a statistical
sense. This analysis supports the assumption that daily fluctuations of price
changes of stocks or assets are approximately independent for a time horizon
δt much larger then the Markov horizon δtMarkov ∼ 101 trading minutes.

On the other hand, the absence of a time-reversal symmetry in the vola-
tility fluctuations suggests that there might be other, probably long-range-
correlated, fundamental economic and financial processes controlling the
dynamics of a financial market.
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A similar interpretation follows from an inspection of Figure 3.31, which
considers possible trends in the price fluctuations. The asymmetry is detected
for both the price fluctuations and the absolute price fluctuations. Here, the
asymmetry is observed over a timescale of some trading month. Obviously,
the fundamental economic processes behind this effect are slow and there-
fore probably offer a global character. In other words, the existence of a
pronounced time arrow in the financial data indicates that the dynamics of
financial markets are an irreversible process.
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Fig. 3.31. Average cubic correlation functions of the logarithmic price fluctuations
(circles) and the volatility (triangles). Each point is the average over all empirically
determined asymmetric cubic correlation functions of all stocks of the German stock
index (DAX) for 11/00–07/02.





4. Economic Systems

4.1 The Task of Economics

Economics helps us to understand the nature and organization of societies,
the arguments underlying many of the great public issues of the day, and
the operation and behavior of business firms and other economic decision-
making units. To perform effectively and responsibly as citizens, administra-
tors, workers, or consumers, most people need to know some economics. In
order to answer the question of whether physical methods and ideas may be
helpful to solve economic problems, we must specify the scope of economic
science.

Economics is concerned with the way in which limited resources are
allocated among alternative uses to satisfy human wants. Usually, economics
is divided into two parts: microeconomics and macroeconomics. Microeco-
nomics deals with the economic behavior of individual units such as con-
sumers, firms, and resource owners. Macroeconomics deals with the behavior
of large economic aggregates in order to describe such quantities as the gross
domestic product and the level of employment.

The basic procedure to answer economic questions quantitatively is the
formation of models. An economic model or theory is composed of a number of
more or less empirical assumptions from which conclusions and predictions
are deduced. Such theories in general strongly simplify the real situation.
Although the necessary assumptions and constraints that are made obviously
must bear some relationship to the type of situation to which the model is
applicable, it is very important to understand that economic models need not
be very exact replicas of reality.

Surprisingly, many predictions obtained from economic theories are close
to reality. Obviously, the rules controlling economic situations are relatively
robust against the individual character of the units forming the underlying
economic system. Hence, the majority of economic models offer a determi-
nistic structure. Random processes play no role or only a subordinate one
in traditional economics and also in modern economic science. That seems a
surprising result at first since the key objects of economics are the markets.
As we have seen in the previous chapter, fluctuations dominate the mar-
kets, in particular financial markets. In order to understand this apparent
contradiction, we should analyze this problem from a physical point of view.
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As we have remarked in the first chapter and the Preface to this book,
economic systems show a very high degree of complexity. However, from the
many physical degrees of freedom, only a small part are considered economi-
cally relevant quantities. All other degrees of freedom, including those forming
the individual character of economic objects and humans, may be interpreted
as irrelevant quantities contributing to apparently stochastic processes affec-
ting the economic system.

We have studied the stochastic character of the relevant variables due to
randomness caused by the irrelevant quantities in the framework of financial
markets. In fact, besides the fluctuations of an arbitrary price occurs the
central tendency of this price. This trend represents mainly the evolution of
the underlying economic system. Assuming the simple Gaussian model and a
stationary market, the price fluctuations over a certain time period ∆t grow
as ∆t1/2, while the trend leads to a change of the average price of an order
of magnitude ∆t. Hence, the asset price fluctuations lose their importance
against the trend for sufficiently long timescales.

The scale on which the trend of a price shows significant changes is the
characteristic timescale of micro- and macroeconomic processes. Usually, eco-
nomic observations are carried out for time horizons of months and years. For
example, the unemployment rates are published at least monthly and eco-
nomic data for leading companies are available every three months.

Economic quantities, such as the trend of asset prices, imply of course
a random character also at very large timescales. But these effects are
apparently not very strongly induced by hidden microscopic degrees of free-
dom and are probably a consequence of the nonlinear couplings
between the relevant economic and social degrees of freedom. In other words,
modern economists believe that deterministic economic laws determine mainly
the relations between markets, companies, transportation units, employees,
and employers. In fact, individual conditioned fluctuations are mostly
restricted on short timescales and small geographic regions and particular
lines of business. These effects compensate mutually for typical economic
scales. Economic indicators, such as unemployment or the inflation rate, show
only a slow variability, which is assumed to be the result of a deterministic
evolution on the level of the relevant economic degrees of freedom.

As discussed in Chapter 2, complex systems may show pronounced
deterministic regimes for a certain level of the relevant degrees of freedom
used. The corresponding equations of motion or, more precisely, the kinetic
equations, are of the type (2.92). Formally, these equations are the systema-
tic contributions to the Ito stochastic differential equations (2.139), providing
also a natural way for the introduction of random processes in economic pro-
blems. A central aim of economics is the adaptation of these formal equations
to reality by empirical observations and suitable assumptions.

This leads to the question of how the complicated dynamics of eco-
nomic systems may be described in an appropriate manner. The economically
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relevant variables form a very complicated system, responsive to various cli-
mate, social, or policy influences, so that we should answer the question of
why such a system usually shows a relatively stable structure and not a
completely chaotic character. Probably, just a few collective modes become
dominant and effectively serve the time evolution of the economic system.
At the same time, these global variables govern the behavior of all other
relevant variables. This synergetic principle [166] may be characteristic of
the evolution of economic markets.

To be more precise, we should start with an analysis of the structure of
an economic system. For a better understanding, we will not continuously
use the traditional economic language; instead we introduce some physically
motivated terms.

Each economic system consists of different elements. In principle, we have
to distinguish between active and passive elements. Active elements, also
denoted as individual units, such as firms or human consumers, use pas-
sive elements such as goods, money, labor, or resources and transform these
into new passive elements. Each active element has an input and an out-
put. The input of a firm encloses the currents of consumed passive elements,
such as intermediate products, labor, energy, and the proceeds for the goods
produced, while the output contains goods, wages, rents, taxes, and the cost
of resources and intermediate products (Figure 4.1). The inputs of a human
consumer are the wages, food, and other goods, while the outputs are the
costs for food and consumer articles and the hours worked (Figure 4.2). The
active elements can also have positive or negative storage functions, which
represent money or product reserves or loans for further investments.

Inputs and outputs are often discrete quantities. However, arguments
similar to those we have used in the context of financial time series allow
us to introduce continuous values for these economic quantities also. Here,
we will use the latter concept. We remark that a discussion of the pros and
cons of such a continuation is useless with respect to the large characteristic

goods

resources

capitalprofit

labor wage

firm

Fig. 4.1. Schematic representation of the input and output of a firm.
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Fig. 4.2. Schematic representation of the economic input and output of a con-
sumer.

timescales of economic observations. Suppose that the active elements are
labeled by I = 1, ..., N . Then, let us write the output rate of the Ith active
element as ω̇α,I = ∂ωα,I/∂t, where the type of the passive element is labeled
by α = 1, ...M and the input rates are given by ν̇α,I = ∂να,I/∂t. The central
idea of a microeconomic ansatz is that there exists a function

ω̇α,I = fα,I({ν̇β,I} , {gb,I}) (4.1)

connecting the output rate ω̇α,I with the inputs [349] and a set {gb,I} of
control parameters or production coefficients [69, 132]. The activity or pro-
duction function fα,I is a specific function that is mainly determined by the
structure of the firm and the technology applied. The application of pro-
duction functions relating output to its underlying factor inputs has a long
history [126, 142, 158, 199, 273, 350, 382, 406, 415, 425, 426]. The input rates
ν̇β,I determine the production scale, while the control parameters gb,I define
the actual constitution of the active element. The choice of the control or
production parameters gb,I allows firms to change their range of products by
internal rearrangements of the operational procedure. In the case of indivi-
dual humans, the control parameters determine their consumption behavior.

We remark that the gb,I may have both discrete values and continuous
values. A discrete value corresponds to the case where a firm has a limited
number of production processes. For instance, a small winery produces only
one type of wine over a certain time period, another type over the next time
period, and so on. The discrete value of the control parameter then defines the
type of wine currently produced. A refinery can change the output fraction
of gasoline, light oil, and heavy oil continuously in a certain range. Here, we
have to deal with continuous control parameters.

Economists believe in the existence of the activity functions fα,I , although
it is very hard to construct these functions from empirical observations since
each measurement means a change of the production regime. Only some
universal properties are known. For example, the activity function is a non-
negative quantity, fα,I ≥ 0. If certain inputs vanish, the function fα,I becomes
zero. Furthermore, a sufficiently large input leads to saturation effects due
to the limited production capacity. As a general problem in real economics,
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Fig. 4.3. Schematic representation of the flows of goods in a planned economy.

it remains a fact, however, that the functions fα,I are completely unknown
apart from some points.

Let us assume for the moment that we know all functions fα,I . Then, the
question remains how we can determine the control parameters gb,I optimi-
zing the economy. To do this, we have to take into account that economics
include the exchange of products. This exchange connects all active elements
of the economic system to a closed network. Modern economics know two
extreme ways of realizing such an exchange. Note that other possibilities
have also taken place over the course of history.

All active elements are connected directly in a planned economy. Thus,
the output of one active element is the input of a following active element.
Such a system has fixed flows of the passive elements (Figure 4.3), at least
during a given time period.

The necessary constraints of such a system are
N∑

I=1

(ω̇α,I − ν̇α,I) = 0; (4.2)

that is, the total output with respect to a given class of passive elements is
equivalent to the total input of the same passive element. If human wants or
the technology are changed, the parameters must be corrected by a central
planning commission. In this case, specific goals that are considered necessary
for the political stability of the respective state must be reached. Such aims
are the allocation of basic foods and special consumer goods, the completion
of armaments, the support of the state machinery, housebuilding, or new
investments. Formally, these aims can be expressed by inequalities of the
type

Zmax
α ≥

N∑
I=1

ω̇α,I ≥ Zmin
α . (4.3)
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The task of the commission is now to optimize the economy by defining
the flows of the inputs and outputs of all firms and the set of the control
parameters considering (4.1) and the restrictions (4.2) and (4.3).

Obviously, such an economic system is in a stationary state (i.e., the
flow of goods, money, resources, and labor between the active elements is
constant during the whole planning period). But even if the constraints (4.3)
are realistically formulated, which is usually not the case in state socialism,
planned economics contains considerable dangers. Every damage and every
tempest, significant price changes in global markets, or change of human
wants can lead to a considerable perturbation of the steady state during a
planning period. But the main problem is that any optimization, especially
of the whole national economy, degenerates to a rough estimation since the
activity functions fα,I are largely unknown.

The periodically realized corrections of the plan usually do not lead to
a stabilization of the economic system. Instead, indications of chaotic move-
ment may be observed. Below, we demonstrate such behavior for the case
of a monopolist, which has similar properties in principle. It should be re-
marked that such a planned economy is not only a phenomenon of the last
century. Similar control and optimization mechanisms could be observed in
the later Roman empire [274], such as the “edictum Diocletiani” in 301 A.D.,
and during the middle ages [313].

In a market economy, the active elements are connected via the markets
(Figure 4.4).

A market controls the exchange of passive elements via the competition be-
tween supply and demand. Basically, every kind of passive element can be
traded in the markets. There exist financial markets, labor markets, coffee
markets, steel markets, and so on. An important role in controlling the market
dynamics is played by the market price. This quantity is given by a so-called
price function Pα, which defines the average price of a certain amount of a
given passive element α. The price function depends mainly on demands and
supplies. The supply side is mainly determined by the actual total reserves

Market

Market

Market

Market

Market

Fig. 4.4. Schematic representation of the flow of goods in a market economy.
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Rα =

t∫
−∞

dt′
N∑

I=1

[ω̇α,I(t′) − ν̇α,I(t′)] =
N∑

I=1

(ωα,I − να,I) (4.4)

of the passive elements. The demand side can be represented by

Sα = Φα ({ga,I} , {ν̇α,I}) , (4.5)

where the demand function Φα represents the total demand for passive ele-
ments of type α. The demand function depends on the consumption rates (i.e.,
the inputs) and on the control parameters of the activity functions defining
the actual constitution and therefore the consumption behavior of the active
elements. Thus, the market price may be obtained from the general relation

pα = Pα (R,S) (4.6)

with R = {R1,R2,...} and S = {S1,S2,...}. The occurrence of all of the supplies
and demands in the price function of a certain type α of passive elements is
not unexpected.

Such a dependence considers, for example, the fact that each consumer
has the chance to buy alternative goods that fulfill his wants in the same way.
Equation (4.6) suggests that the market price is a collective property that is
determined by the individual properties of all consumers and sellers.

However, a warning should be made: the market price is not necessarily
equal to the actual trading price. The latter is a result of a contract between
the consumer and the seller. The market price is here only a guideline for
possible negotiations between both parties. Economists explain the influence
of the market price on the trading price by the application of different models,
such as the monopolist, oligopolist, and polypolist models [137, 289, 373].

Similarly as the activity functions fα,I , the price functions Pα are largely
unknown. Formally, they depend on the type of objects traded. The market
price pα is usually high for small reserves and increases with decreasing re-
serves. The importance of the market price consists in the feedback to the
active elements of the economic system. High market prices are stimulations
for a possible change of the production regime or a change of human wants.
Thus, the control parameters ga,I of the activity functions and the input
currents depend mainly on the actual market prices

ga,I = Ga,I (p) and ν̇α,I = Hα,I (p) (4.7)

with p = {p1, p2, ...}. It can be expected that, for a given set of market prices
p, the response functions Ga,I and Hα,I define such control parameters ga,I

and inputs ν̇α,I favoring a special production regime of a firm or a special
lifestyle of a human. This state may be characterized by the maximum profit
in the case of a company or by the maximum private freedom in the case
of a human. To be more specific, the maximum principle requires that the
function

F =
∑
α

pα [ω̇α,I − ν̇α,I ] =
∑
α

pα [fI,α({ν̇β,I} , {gb,I}) − ν̇α,I ] (4.8)
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be maximized for each firm. Therefore, we obtain the conditions

∂

∂ν̇γ,I

∑
α

pαfI,α({ν̇β,I} , {gb,I}) = pγ (4.9)

and
∂

∂gc,I

∑
α

pαfI,α({ν̇β,I} , {gb,I}) = 0. (4.10)

The solutions of (4.9) and (4.10) with respect to the production coefficients
ga,I and the inputs ν̇γ,I define the functions GI,a and HI,a. Hence, the
response functions are directly obtainable from the activity functions fI,α.

The central points of a market economy are the local or, in the language of
an economist, decentralized feedback mechanisms (4.7) considering a maxi-
mum approach of an active element to its internal aims and the collective
interaction of all active elements via the markets.

In contradiction to the planned economy, the market economy is in a
dynamical state. The equations of motion (4.1) and the constraints (4.4),
(4.5), (4.6) and (4.7) form a complicated nonlinear system of differential
equations. There is strong empirical evidence that the more or less open
activity, price, supply and response functions are practically very robust re-
lations so that the market economy is able to react to random disturbances
and to follow long-term social and technological changes.

We remark that a real economic system is a mixed capitalism. Although
decentralized decision-making based on the price system is used to orga-
nize production and consumption in most areas of a real economy, there are
notable exceptions. For example, in the acquisition of new weapons by the
department of defense, the market economy has not been applied. Instead,
the government exercises control over sellers through the auditing of costs
and through the intimate involvement of its agents in the managerial and
operating structure of the sellers. Furthermore, the government decides what
weapons are to be created and often decides how they are to be created and
produced.

Up to now, we have roughly discussed the general concept of economy.
In fact, the mathematical formulation of an economic system is much more
complicated than we have shown here. An essential task of economics is the
empirical estimation or theoretical determination of the open functions fI,α,
Φα, and Pα. This problem is the content of microeconomics, which describes
the individual behavior of the active elements of economic systems in a quan-
titative manner. One can find detailed lectures about suitable techniques and
possible models in several economics textbooks [214, 258, 331, 344].

The general starting point is similar to a molecular field approach used for
the description of physical many-body systems. Instead of the investigation
of the whole system, one analyzes only a particular active element in its
environment consisting of various average markets. The contribution of other
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competing elements to these markets is equivalent to the contribution of the
element considered.

The analysis of the evolution of the whole economic system is the task
of macroeconomics [18, 64, 121, 372]. The behavior of single elements here
plays only a secondary role. In principle, the concept of macroeconomics im-
plies a further reduction of the relevant degrees of freedom to a set of a few
quantities. It may be assumed that these few, probably collective quanti-
ties dominate the time evolution of the whole economic system. Typically,
macroeconomic theories show some similarities to physical field theories.

Below, we represent some ideas and concepts that illustrate the possible
contribution of modern physical concepts and findings to economic problems.

4.2 Microeconomics

4.2.1 The Polypolist and Stability Analysis

A very popular case for microeconomic investigation is a set of small firms,
each of them with only a small share of the market. Such a firm reacts rela-
tively quickly to a change in the market. Because the firm shares the market
with many other similar firms, it is called a polypolist. Such firms are typical
candidates for a self-consistent description of market dynamics.

In order to describe the behavior of such a polypolist, let us collect the
outputs of the particular firm into a vector ω = (ω1, ...ωN ). Furthermore,
we assume stable resources markets and a stable labor market so that every
possible production regime may be adjustable. That is particularly the case
if the set of small firms investigated needs only a small part of the resources
supplied.

The product currents are given by ω̇α = fα({ν̇β} , {gb}). Note that we
have neglected the index I because we are interested in the behavior of one
firm. The market price of the products follows from the current demand and
supply. The supply side corresponds to the market reserve Rα = N0ωα − να,
which considers the production of all contributing firms. The simple factor
N0 reflects the “molecular field” argument that all firms of the polypolist
model show an equal behavior. Hence, the total output of the product α is
N0ωα instead of the cumulative output ωα of one firm.

The present consumtion rate may be a constant quantity so that we can
write να ≈ N0uαt and consequently Rα = N0 (ωα − uαt). The market price
is a function of the demand side given by the set of demand parameters S
and of the supply side defined by the present reserve

pα = Pα (R,S) = Pα (ω − ut, S) (4.11)

with u = (u1, ...uN ). The market price determines the internal control pa-
rameters gb of the firm and the inputs ν̇β ; see (4.7). Thus, we obtain the
relations
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gb = Gb (p) = G̃b (ω − ut, S) (4.12)

and

ν̇β = Hβ (p) = H̃β (ω − ut, S) . (4.13)

Hence, the output is described by the evolution equation
∂ω

∂t
= f

({
G̃ (ω − ut, S)

}
,
{
H̃ (ω − ut, S)

})
= F (ω − ut, S) , (4.14)

where f , F , G̃, and H̃ are vector functions of the components fα, Fα, G̃a,
and H̃α. Introducing the new vector x = ω − ut, we get

∂x

∂t
= −u+ F (x, S) . (4.15)

Usually, this equation approaches a stationary state so that the output of the
firm is given by the solution of the steady-state equation

F (x0, S) = u. (4.16)

This equation defines the equilibrium structure of the market. The dynamic
equation (4.15) becomes important for the relaxation of the market into
its stationary state after an external perturbation or after a change of the
demand parameters S.

The treatment of such an ordinary differential equation is always possible
by standard numerical methods. We will ask whether we can derive some
general properties. Because the perturbations are typically small, the analysis
is restricted to the nearest environment of a stationary state x0. We assume
that the Taylor expansion of F (x0, S) with respect to the variable y = x−x0
exists. Then, we can write (4.15) in the form

∂y

∂t
= Ay + ψ(r) (y) . (4.17)

The rest function is given by ψ(r) (y) = F (x0 + y, S) − u − Ay, where the
matrix A has the components

Aαβ =
∂Fα (x, S)

∂xβ

∣∣∣∣
x=x0

. (4.18)

The leading term of the function ψ(r) (y) is of an order of magnitude |y|r
with r ≥ 2. Let us now introduce a transformation z = y + h(y), where h is
a vector polynomial with the leading order 2 so that h(0) = ∂h/∂y|y=0 = 0.
Thus, we obtain

∂z

∂t
=

∂z

∂y

∂y

∂t
=
(

1 +
∂h

∂y

)
∂y

∂t
=
(

1 +
∂h

∂y

)
[Ay + ψ (y)]

= Ay +
∂h

∂y
Ay + ψ (y) +

∂h

∂y
ψ (y)

= Az −
[
Ah(y) − ∂h(y)

∂y
Ay − ψ (y)

]
+
∂h

∂y
ψ (y) . (4.19)
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We determine the open function h by setting

L̂Ah = Ah− ∂h

∂y
Ay = ψ(r). (4.20)

This equation has a unique solution if the eigenvalues of the introduced
operator L̂A are nonresonant. To understand this statement, we consider that
the matrix A has the set of eigenvalues λ = {λ1, ..., λN} and the normalized
eigenvectors {e1, ..., eN}. Then, the vector y can be expressed in terms of
y = η1e1 + ...+ ηNeN . The eigenvectors of L̂A are the vector monomials

ϕm,γ = ηm1
1 ...ηmN

N eγ (4.21)

with m = {m1, ...,mN}. The quantities mα are nonnegative integers satisfy-
ing m1 + ...+mN ≥ 2. Note that L̂A acts in the space of functions that have
an asymptotic behavior h ∼ |y|r with r ≥ 2 for |y| → 0. We remark that
Aϕm,γ = λγϕm,γ and∑

α,β

∂ϕm,γ

∂ηα
Aαβηβ =

∑
β

∂ϕm,γ

∂ηβ
λβηβ = (m,λ)ϕm,γ , (4.22)

where (m,λ) is the Euclidean scalar product between the vectors m and λ.
Thus, we find

L̂Aϕm,γ = − [(m,λ) − λγ ]ϕm,γ ; (4.23)

that is the operator L̂A has the eigenvalues (m,λ) − λγ . If all eigenvalues
of L̂A have nonzero values, the equation (4.20) has a unique solution that
requires (m,λ) �= λγ . Otherwise, we have a so-called resonance λγ = (m,λ),
and L̂A is not reversible.

Suppose that no resonances exist. Then, the solution of (4.20) defines the
transformation function h(y) so that

∂z

∂t
= Az +

∂h

∂y
ψ(r) (y) . (4.24)

Comparing the order of the leading terms of h and ψ(r), we find that the
product ψ(r) (y) ∂h/∂y is at least of an order r + 1 in |y|. Considering the
transformation between z and y, we arrive at

∂z

∂t
= Az + ψ(r+1) (z) , (4.25)

where ψ(r+1) (z) is a nonlinear contribution with a leading term proportional
to |z|r+1. The repeated application of this formalism generates an increasing
order of the leading term.

In other words, the nonlinear differential equation approaches step-by-
step a linear differential equation. This is the content of the famous theorem
of Poincaré [15]. In the case of resonant eigenvalues, the Poincaré theorem
must be extended to the theorem of Poincaré and Dulaque [15]. Here, we get
instead of (4.25) the differential equation
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∂z

∂t
= Az + w(z) + ψ(r+1) (z) , (4.26)

where w(z) contains the resonant monomials. The convergence of this pro-
cedure depends on the structure of the eigenvalue spectra of the matrix A.
If the convex cover of all eigenvalues λ1, ..., λN in the complex plane does
not contain the origin, the vector λ = {λ1, ..., λN} is an element of the so-
called Poincaré region of the corresponding 2N -dimensional complex space.
Otherwise, the vector is an element of the Siegel region [374].

If λ is an element of the Poincaré region, the procedure discussed above
is convergent and the differential equation (4.17) or (4.15) can be mapped
formally onto a linear differential equation for nonresonant eigenvalues or
onto the canonical form (4.26). If λ is an element of the Siegel region, the
convergence cannot be guaranteed.

The Poincaré theorem allows a powerful analysis of the stability of
systems of differential equations that goes beyond the standard method of
linear approximation. In particular, this theorem can be a helpful tool in
classifying the microeconomic task discussed above and many other related
problems.

We have mentioned that the economic functions, such as the activity func-
tion or the response function, are largely unknown. However, some properties
are obtainable from empirical investigations. For instance, the coefficients of
the matrix (4.18) are connected with the so-called economic elasticity coeffi-
cients [39]. Therefore, it seems reasonable to extract as much information as
possible about the stability of the underlying firm’s strategy from this matrix
and a few other estimations.

In the case of a single product, the variable x is a one-dimensional quan-
tity, and only one eigenvalue, λ = A, exists. Then, the stationary production
x0 (see (4.16)), corresponds to a stable state for λ < 0 and to an unstable
state for λ > 0. Special investigations considering the leading term of the
nonlinear part of (4.17) are necessary for λ = 0.

Another situation occurs for a firm with two product types. Here, we
have two eigenvalues, λ1 and λ2. If resonances are excluded, the largest real
part of the eigenvalues determines the stability or instability of the state
closed to the reduced output x0. A resonance exists if λ1 = m1λ1 +m2λ2 or
λ2 = m1λ1 +m2λ2, where m1 and m2 are nonnegative integers. In this case,
we expect a nonlinear normal form (4.26) containing the resonant monomials.

Let us illustrate the formalism by using a very simple example. The eigen-
values λ1 = −λ2 = iΩ, obtained from the linear stability analysis, are usually
identified with a periodic motion of the frequency Ω. But this case contains
two resonances, namely λ1 = 2λ1 + λ2 and λ2 = λ1 + 2λ2. Thus, the sta-
tionarity of the evolution of the corresponding nonlinear system of differen-
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tial equations (4.17) is no longer determined by the simple linear system1

η̇1 = iΩη1 and η̇2 = −iΩη2 but by the normal system

η̇1 = iΩη1 + c1η
2
1η2 and η̇2 = −iΩη2 − c2η1η

2
2 . (4.27)

The substitutions x1 = η1 + iη2 and x2 = i (η1 − iη2) and the agreement
x2 = x2

1 + x2
2 lead to the real normal form

ẋ1 = Ωx2 +
x2

4
[x1Im c− x2Re c] (4.28)

and

ẋ2 = −Ωx1 +
x2

4
[x1Re c+ x2Im c] , (4.29)

where the real structure of the differential equations requires c1 = c and
c2 = c.

Such a structure is already expected after the first step of the Poincaré
algorithm applied onto (4.17). Only the two parameters Re c and Im c are
still open. All other nonlinear terms disappear step-by-step during the re-
peated application of the reduction formalism. However, it is not necessary
to execute these steps because the resonance terms remain unchanged after
their appearance. The stability behavior follows directly from the dynamics
of x2. We obtain from (4.29)

∂x2

∂t
=

Im c

2
x4. (4.30)

Thus, the system is stable for Im c < 0 and unstable for Im c > 0. Obviously,
we need only an estimation about the sign of the quantity Im c. This may
be obtained from several economic investigations or empirical observations
of appropriate companies. However, the determination of such quantities is a
natural task for economists.

In many cases, microeconomic problems lead to a stability analysis or
a related technique to find the steady state. Such a usually temporary sta-
tionarity is practically obtained by the firm under consideration by the use of
empirical observations of the supply and the demand and by suitable response
steps in order to stabilize production at a sufficiently high level.

Obviously, the attempts to undersell the actual market prices, social
influences due to labor disputes, and the fluctuating costs of resources gene-
rate permanent fluctuations around such a stable point. Finally, the change
of technology, long-term political decisions, or social evolution are reasons
that a microeconomic state stabilizes only for a finite time. After this time,
the economic system converges to a completely new steady state.
1 The linear system is written in the standard form considering the representation

in terms of the eigenvectors of the matrix A.
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4.2.2 The Monopolist and Chaotic Behavior

The polypolist model characterizes one possible market type. Another one is
the monopolist model. In the polypolist model, we have perfect competition
of individual small firms so that a certain steady state occurs. Each of the
small firms cannot noticeably influence the market price on its own. They
just note the current prices and demands and react accordingly with respect
to their supply. Only the supply of all of the numerous firms of the polypolist
model together becomes a force on the market strong enough to determine
the price in a balance with the demand side.

The single monopolist, on the other hand, is assumed to deliberately
choose to limit the quantity supplied so as to keep the price sufficiently high
to yield monopoly profit. Therefore, the monopolist should know the com-
plete relation between the prices and the demands in order to determine the
adequate price relative to the demand. However, it is more likely that a mo-
nopolist just knows a few points on the economic functions recently visited
in its more or less random search for maximum profit.

In the case of a monopoly model, the price function (4.6) reduces to
pα = Pα (S) since the monopolist completely controls the market reserves in
such a way that R = const. In the economics literature, our reduced price
function is also called the demand function.

Let us now analyze the case of one product and one kind of demand. Thus,
we have to deal with the scalar function p = P (S). An essential difference
between the monopolist and the polypolist models is the interpretation of
this formula. In the polypolist model, the price p is a real market price that
is controlled by the demand. In the monopolist model, the price is not a real
market price and the monopolist controls the demand via the market price.

The general form of the demand function is assumed to be downward-
sloping (i.e., the demand decreases as the price increases). In textbooks, the
demand curve is just a straight line, p = p0(1−S/S0), but this is usually too
simplistic [332].

The total revenue ζ(S) = pS defines the total market value of the products
that are necessary for the fulfillment of consumer wants. The derivation with
respect to the demand is the marginal revenue µ(S) = dζ(S)/dS = ζ ′(S).

Another important quantity characterizing the effectiveness of a firm is
given by the costs of production. The total costs of production depend also
on the demand, ϑ(S). The corresponding marginal costs are then given by
c(S) = ϑ′(S). This function typically has a minimum for a certain demand
S.

The total profit is the difference between the total revenue and the total
costs π(S) = ζ(S)−ϑ(S). The maximum profit corresponds to π′(S) = 0; that
is, it requires the balance of marginal costs and marginal revenue c(S) = µ(S).

This equation may have various solutions. In theory, the monopolist would
calculate these by solving the balance equation and then evaluating the
second-order derivatives π′′(S) to check which solutions correspond to a local
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maximum point. Finally, the monopolist would choose between these local
maxima to identify the global profit maximum.

However, in reality, the monopolist does not know more than a few points
on the demand and cost functions. Thus, it would be the task of the mono-
polist to design a search algorithm for the maximum of the unknown profit
function. Let us assume that the monopolist knows at a given time tn the
value of the present marginal revenue µn, the value of the marginal costs cn,
and the value of the demand Sn. Furthermore, it is clear that µn−cn < 0 (i.e.,
π′(Sn) < 0) indicates that a reduction of Sn leads to an approach to the next
maximum. Consequently, the monopoly changes its price policy in order to
obtain the new demand Sn+1 < Sn. On the other hand, for µn − cn > 0, the
monopolist sets a price level corresponding to the new demand Sn+1 > Sn.
The difference between Sn+1 and Sn is simply chosen to be

Sn+1 = Sn + δ (µn − cn) , (4.31)

where δ is an empirical constant [332]. If the marginal revenue and costs are
unknown, the monopolist must compare the measurable total profit π = ζ−ϑ
at the last and the next to last points in time. Then, due to π′ = µ − c, we
get instead of (4.31) the monopoly equation [319]

Sn+1 = Sn + δ
πn − πn−1

Sn − Sn−1
. (4.32)

Let us now discuss the consequences of the monopoly strategy. We assume
that the monopolist uses the algorithm (4.31). Then, the demand is given by
the recurrence equation

Sn+1 = Sn + δ [µ(Sn) − c(Sn)] . (4.33)

For the sake of simplicity, we assume further that both the marginal revenues
µ(S) and the marginal costs c(S) are truncated Taylor series up to the second
order. Thus, we can write

Sn+1 = α0 + α1Sn + α2S
2
n (4.34)

with the specific coefficients αn (n = 0, ..., 2). The transformation
Sn = r(xn − b)/α2 with r = 2b − α1, where the parameter b is a solution of
b2 + (1 − α1)b+ α0α2 = 0, leads to the representation

xn+1 = rxn (1 − xn) = φlog(xn), (4.35)

which is well-known as a logistic map. This model was introduced by Verhulst
in 1845 to simulate the growth of a population in a closed area. Another
applications related to economic problems is used to explain the growth of a
deposit under progressive rates of interest [304].

As found by several authors [79, 118, 160, 260], the iterates xn

(n = 1, 2, ...) display, as a function of the parameter r, a rather complicated
behavior that becomes chaotic at large r.
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The chaotic behavior is not tied to the special form of the logistic map
(4.35). Thus, the following results are also valid for functions of marginal
revenues µ(S) and marginal costs c(S) other than the truncated Taylor
expansions and for the second monopolist strategy (4.32); see [319]. In par-
ticular, the transition from a regular (but not necessarily simple) behavior
to the chaotic regime during the change of an appropriate control parameter
is a universal behavior for all first-order difference equations, xn+1 = f(xn),
in which the function f has only a single maximum in the properly rescaled
unit interval 0 ≤ xn ≤ 1.

It should be remarked that other difference equations with chaotic prop-
erties, including several types of second-order difference equations xn+1 =
f(xn, xn−1) such as (4.32), may belong to other universality classes. How-
ever, most of the properties that are valid for the logistic map (4.35) and
the corresponding universality class of first-order difference equations hold at
least qualitatively for other difference equations also.

Let us briefly discuss the main properties of the logistic map. The logistic
map xn → xn+1 has two fixed points, x� = 0 and x� = 1 − r−1, satisfying
x� = φlog(x�). The stability analysis considers weak perturbations of the
fixed points, xn = x� + εn. Thus, we obtain εn+1 = Λεn + o(εn), where
the so-called multiplier Λ is given by Λ = φ′

log(x
�). Obviously, for |Λ| < 1,

the fixed point is linearly stable. Conversely, if |Λ| > 1, the fixed point is
unstable. The stability of the marginal case |Λ| = 1 cannot be decided in
the framework of the linear stability analysis. For small control parameters,
r < 1, the quantity xn develops toward the stable fixed point x� = 0 because
φ′

log(0) = r < 1. For 1 < r < 3, we get the multiplier φ′
log(1 − r−1) = 2 − r so

that here the fixed point x� = 1 − r−1 becomes stable.
Both fixed points are unstable for r > 3. Now, we observe a stable

oscillation of period 2 (see Figure 4.5) with the two alternating values
x�

1 and x�
2, which together are related via the equations x�

1 = φlog(x�
2)

and x�
2 = φlog(x�

1). Of course, both values x�
1 and x�

2 are stable fixed
points of the second-iterate map φ

(2)
log(x) = φlog (φlog(x)). In fact, we ob-

tain x�
1/2 =

[
r + 1 ±√(r − 3)(r + 1)

]
/2r, and the corresponding multiplier

of the 2-cycle, Λ = 4 + 2r − r2, satisfies |Λ| < 1 for 3 < r < 1 +
√

6.
Thus, the unique asymptotic solution xn = 1 − r−1 for n → ∞ splits

into two alternating solutions, x�
1 and x�

2. At r = 3, the values of x�
1 and x�

2
coincide and equal x� = 1 − r−1 = 2/3, which shows that the 2-cycle bifur-
cates continuously from x�. This bifurcation is sometimes called a pitchfork
bifurcation.

Above r = 1 +
√

6, the 2-cycle splits into a 4-cycle. Further period
doublings to cycles of period 8, 16, ..., 2m,... occur as r increases. The values
rm, where the number of fixed points changes from 2m−1 to 2m, scale as
rm = r∞ − Cδ−m. Here, C and r∞ are specific parameters (r∞ = 3.56994...
for the logistic map), while the Feigenbaum constant δ = 4.6692... is a univer-
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sal quantity [118, 367, 391]. All of the cycles can be interpreted as attractors
of a finite set of points.

For r > r∞, the asymptotic behavior of the series x1, ..., xn, ... becomes
unpredictable. More precisely, we must say that, for many values of r > r∞,
the sequence never settles down to a fixed point or a periodic cycle. Instead,
the asymptotic behavior is aperiodic and therefore chaotic. The corresponding
attractor changes from a finite to an infinite set of points.

However, the region for r > r∞ shows a surprising mixture of periodic
p-cycles (p = 3, 5, 6, ...) and the true chaos. The periodic cycles occur in
small r-windows among other windows with chaotic behavior and also show
successive bifurcations p, 2p, ...2np,... . The corresponding r-values scale as
the above-mentioned Feigenbaum law except that the nonuniversal constants
C and r∞ are different.

Furthermore, periodic triplings 3np, quadruplings 4np, and higher bifur-
cations occur at r′

n = r′
∞ − C ′δ

−n
with different nonuniversal constants r′

∞
and C ′ and different Feigenbaum constants, which are again universal for
the type of bifurcation (e.g., δ = 55.247... for the tripling).

After this mathematical excursion, let us come back to the monopolist
problem. As demonstrated for the logistic map, a monopolist can behave in
a regular, periodic, or chaotic way (see Figure 4.5). The regular way corre-
sponds to traditional monopoly theory, which we can find in several economics
textbooks.
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Fig. 4.5. Various dynamic regimes of the discrete logistic map recursion law: perio-
dic oscillations with period length 2, r = 3.2 (top), periodic oscillations with period
length 4, r = 3.5 (top center), chaotic behavior with r = 3.7 (bottom center), and
chaotic behavior with r = 3.9 (bottom).
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But the constitution of the monopoly and its interaction with the market
also allow also marginal costs and marginal revenue functions corresponding
to the periodic or chaotic regimes. Then the monopolist searches for the
maximum profit periodically or very likely randomly.

It may be a surprise for traditional economists that the monopolist does
not know all about the market and may even behave in a way that seems un-
predictable. The price policy of phone monopolies or mail monopolies testifies
to this theoretical result, although these monopolies could always attribute
any irrational behavior to a pursuit of public benefit.

4.3 Thermodynamics and Economy

4.3.1 Thermodynamic Concepts

There is no theoretical and empirical evidence that the active elements of
an economic system develop in a completely deterministic manner. Besides
the self-organized chaotic regimes discussed above, there also exist a lot of
perturbations due to the hidden irrelevant degrees of freedom. It is practically
impossible to consider all degrees of freedom leading to an economic decision
of a particular management, even if this decision is rational from the point
of view of the economists involved.

This individual random character can be observed, for example, in the
fluctuations of the trading prices with respect to the market price. Other
sources of random processes are climate fluctuations, natural disasters,
changes of public opinion, or unexpected social conflicts. Finally, the coupling
between the active elements and the markets and several feedback effects lead
to a self-organization of chaotic motions, as shown below.

Such a randomness at the microeconomic level suggests that the whole
economic network and its dynamic evolution may be discussed in terms of
classical thermodynamics. Such ideas require some essential prerequisites.
First, the economic system must be in a stationary state. This condition can
neither be demonstrated nor rejected for an economic system because we are
not able to repeat the evolution of the same economic system under the same
boundary conditions. For example, we cannot decide whether an economic
trend is a long-range fluctuation or a deterministic effect, so we may or may
not believe whether an economic system is in a steady state.

Furthermore, classical thermodynamics requires the existence of indepen-
dent subsystems interacting with a bath and the existence of some additive
quantities. These quantities may be collected in a vector Ω = (ω1, ω2, ...). In
the framework of classical thermodynamics, the components of Ω represent
the energy, the number of particles, or the momentum. All of these macro-
scopic quantities satisfy certain conservation laws if the corresponding system
is closed.
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All other internal degrees of freedom are interpreted as microscopic
quantities without any information about their concrete configuration. The
probability that a certain system is in the macroscopic state Ω may be P (Ω).
Then, the combination of two subsystems requires Ω = Ω1 + Ω2 due to the
assumed additivity and P (Ω) = P (Ω1)P (Ω2) due to independency. These
two conditions lead to the general Boltzmann representation

P (Ω) ∼ exp {−βΩ} , (4.36)

where β is a constant vector of the same dimensionality as Ω. Indeed, the
independence of the subsystems requires that boundary effects be neglected.
Otherwise, we must write P (Ω) = P (Ω1)P (Ω2 | Ω1), and the underlying
dynamics of one subsystem are strongly affected by the dynamics of the other
one. The Boltzmann law (4.36) defines the contact between the statistical
interpretation of a physical many-body system in equilibrium and classical
thermodynamics.

In order to qualify an analogy between economic systems and physi-
cal equilibrium systems, one should be very careful. Our understanding of
complex systems of many strongly coupled degrees of freedom is far from
approaching that of systems at thermodynamic equilibrium. This holds true
also for the coupled system of relevant economic degrees of freedom as dis-
cussed above. Although the separated irrelevant degrees occur at best as
external random noise, the dynamics of the remaining economic network con-
sisting of active elements and flows of passive elements are not comparable
with the dynamics of a mechanical system.

To find a successful way of introducing general thermodynamics of eco-
nomic systems, we have to define especially economic quantities that have the
meaning of a global energy. These quantities must be functions of all micro-
economic variables, and all economic configurations with the same “energy”
should be equivalent from a macroeconomic point of view. Unfortunately, be-
sides some not very serious speculations, there is no general indication that
such quantities exist.

Even if we could find such a quantity, we would not expect the Boltzmann
statistics to hold for the whole system of the economic network. The problem
is the strong interaction of all of the active elements via the markets and the
product flows. This interaction mimics an effectively long-range coupling of
all participants in the economic system.

As a consequence, an economic system cannot be partitioned without a
sensitive change of its dynamics and organization. A more favorable situation
for the introduction of a thermodynamic concept probably existed in the
middle ages or in classical antiquity, when small economic subsystems such
as villages or towns were largely self-sufficient.

The temporary isolation of such a subsystem would only marginally
change the economic dynamics of both the subsystem and the remaining
total system. But this possible “thermodynamic” era is not comparable with
modern global economics.
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A partition of our economic system seems to be impossible without
serious changes of the dynamics of the amputated subsystem. We believe
also that the generalization of such a concept by the so-called nonexten-
sive statistics [1, 86, 402, 403, 404] does not provide a better description
of economic systems. Finally, we remark also that the introduction of ther-
modynamic concepts for comparatively simple nonequilibrium systems that
show various kinds of self-organization (sandpile models [342, 343], turbu-
lence [70], granular media [270, 348]), the introduction of temperature, and
related thermodynamic equilibrium quantities is connected with considerable
problems.

4.3.2 Consumer Behavior

The general introduction of a thermodynamic concept describing stationary
economic systems seems to be excluded by the physical arguments discussed
above. Nevertheless, we can apply thermodynamic ideas and relations to
simulate certain aspects of the dynamics of economic systems in an artificial
way. The apparently thermodynamic quantities are in reality certain control
parameters that pretend to have a thermodynamic meaning. However, these
quantities are not obtainable by a closed thermodynamic theory.

As a simple example, let us study the behavior of consumers who may
choose between two similar kinds of products. The products are identical with
respect to their quality and presentation so that both products are demanded
with the same frequency. Intuitively, it is obvious that consumer behavior is
of a collective nature.

To be more precise, we assume that each of the human consumers informs
other consumers about the merits and the problems of the product that was
purchased. An obvious relevant quantity characterizing the actual state of the
consumers is the number of individuals N1 = η favoring the product α = 1.
The number of consumers favoring the product α = 2 is simply N2 = N − η
because the total number N of consumers is a constant.

As a result of the communication, a consumer can change his or her
behavior and switch to the opposite product. The evolution of consumer
demands is a random process that may be determined by the conditional
probability p(N1, N2, t | N ′

1, N
′
2, 0), which we can write also as p (η, t | η′, 0).

The time transition rates Wηη′ are considered to represent only one-step
processes. Then, the transition rates read

Wηη′ = w+(η′)δηη′+1 + w−(η′)δηη′−1 (4.37)

so that Wηη′dt is the probability of a change η → η ± 1 during the infinitesi-
mally short time period dt. The corresponding master equation is

∂p (η, t; η0, 0)
∂t

= w−(η + 1)p (η + 1, t | η0, 0)

+w+(η − 1)p (η − 1, t | η0, 0)
− [w+(η) + w−(η)

]
p (η, t | η0, 0) . (4.38)
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The first problem that we have to solve is the determination of the open
functions w+(η) and w−(η). The rate w+(η) defines a jump η → η+1 (i.e., a
consumer changes from product 2 to product 1). The number N2 before the
jump was N − η (i.e., there were N − η possibilities for a jump). Hence, we
find that w+(η) has a combinatorial prefactor N − η.

On the other hand, the rate w−(η) describes a jump η → η − 1 so that
w−(η) has the prefactor η. In this sense, w+(η)/(N−η) and w−(η)/η may be
interpreted as the rate of change of the behavior of an individual. These rates
are enhanced by the group of humans with opposite demands and diminished
by humans of one’s own group.

Let us further assume that the willingness for a change from the con-
sumption of one product to the other product is controlled by a consumption
temperature T that facilitates the changes. A high temperature suppresses
the influence of other consumers on a possible demand change of a certain
human, while a low temperature stresses the collective behavior (i.e., a con-
sumer favors the majority).

Furthermore, we allow external influences, such as good publicity for one
of the two alternative products. Then, we may write

w+(η) = w0 (N − η) exp
{

−N − 2η
2TN

− h

T

}
(4.39)

and

w−(η) = w0η exp
{

−2η −N

2TN
+

h

T

}
, (4.40)

where h/T represents the preference of a product by external effects.
The functional structure of the transition rates may be much more com-

plicated in reality. Our simple rates are mainly influenced by classical ap-
proaches to the lattice Ising model [228], where the transition rates of a
given spin are energetically influenced by its neighborhood and possible ex-
ternal fields. In our special case, each consumer is in contact with all other
consumers. In the real world, the number of contacts is limited. But we get
the same transition rates also for this case in the framework of a mean-field
theory, which works very well for a large number of neighbor contacts [228].

Furthermore, we remark that a similar model is used to explain the change
of opinions in a human society [419, 420]. The master equation (4.38) is an
ergodic one so that the probability distribution reaches a stationary state
after a sufficiently long relaxation time. We can write the equation for the
stationary solution

pstat(η) = lim
t→∞ p (η, t; η0, 0) (4.41)

as

0 = K(η + 1) −K(η) (4.42)

with



178 4. Economic Systems

K(η) = w−(η)pstat (η) − w+(η − 1)pstat(η − 1). (4.43)

We now consider that η is a nonnegative integer. In fact, the master equation
(4.38) and the transition rates (4.39) and (4.40) are organized in such a
manner that a jump from η = 0 to η < 0 does not take place. Hence, we have
pstat(−1) = 0 and therefore K(0) = 0. We sum (4.42) and obtain

0 =
η−1∑
m=0

[K(m+ 1) −K(m)] = K(η) −K(0) = K(η). (4.44)

Using (4.43), we arrive at the recurrence equation

pstat (η) =
w+(η − 1)
w−(η)

pstat(η − 1). (4.45)

Finally, the repeated application of this relation leads to

pstat(η) =
η∏

m=1

w+(m− 1)
w−(m)

pstat(0). (4.46)

The substitution of the transition rates by the use of (4.39) and (4.40) leads
to the explicit form of the stationary probability distribution

pstat(η) =
(
N

η

)
exp
{

−η
(
N − η − 2

TN
+

2h
T

)}
pstat(0), (4.47)

where pstat(0) is obtainable from the normalization condition.
Figure 4.6 shows the probability distribution function without external

influence. As we expect from our knowledge of the Ising model, there are two
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Fig. 4.6. Distribution of consumers in the case of a supply of two indifferent
products without external influence h = 0 for different consumption temperatures.
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regimes. The high-temperature regime is characterized by frequent changes
of the individual behavior around the average η = N/2. In other words, the
groups favoring the first or the second product have nearly the same size.

If the consumption temperature is lowered, two pronounced configurations
are possible. Most consumers favor either product 1 or product 2. Between
the high and low temperature regimes, a phase transition occurs. The critical
temperature Tc = 1/2 corresponds to the first appearance of an inflection
point in the probability distribution function pstat(η). The phase transition
describes, at least in a qualitative manner, the polarization of the set of
consumers due to a collective communication.

As is known from the mean-field solution of the Ising model or the cor-
responding Ginzburg–Landau theory [223], consumer behavior becomes un-
stable close to the critical value. Not quite above the critical temperature,
we observe strong fluctuations (i.e., large groups of consumers are formed
and dissolved only slowly). Below the critical consumption temperature, one
group wins, and the difference between the average group occupation number
is given by

∣∣N2 −N1
∣∣ ∼ (T − Tc)

1/2. This is a kind of spontaneous symmetry
breaking favoring one product after a sufficiently long time.

The presence of an external factor shifts the center of the probability
distribution function (Figure 4.7). The importance of a finite value of |h| is
visible close to the critical temperature. Especially for T = Tc, we expect
a behavior

∣∣N2 −N1
∣∣ ∼ |h|1/3. In other words, a small external influence

may essentially change consumer behavior. This is also the reason why the
appearance of new products on the market is supported by special introduc-
tory offers.
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Fig. 4.7. Distribution of consumers in the case of a supply of two indifferent
products under a weak external influence h = 0.02.
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4.3.3 Thermodynamics and Environmental Economics

As discussed above, it seems not very fruitful to use thermodynamical con-
cepts for an explanation of the dynamics of the organization of economic
systems. However, the application of physical thermodynamics is always
possible in order to solve special economic problems. This is especially the
case for the so-called environmental economics. This discipline focuses on
the economics of pollution and environmental quality [369]. In a formal way,
this discipline can be described as the scientific study of economic systems in
relation to their natural, physical, or residential surroundings.

In consequence, environmental economics is frequently involved in the
unintended effects of human decisions on the environment [33, 87, 98, 106].
Obviously, environmental economics is an important link between economic
decision-making and the solution of the environmental dilemma in order to
find a continuous balance between economic development and environmental
quality.

A way to obtain insight into the relationship between economic and tech-
nological activities and ecological effects is the use of physically and techno-
logically motivated balance and transport equations [21, 89, 130, 293, 411]
and the application of thermodynamic relations. Obviously, energy and ma-
terials are absorbed, transformed, and thrown out to the next step by each
active element of the economic system apart from possible heat sinks and
unusable waste.

The characteristic feature of all of these activities is the physical
balance between inputs and outputs in the transformation processes (Figure
4.8). From an economic point of view, each transformation process leads to a
qualitative or economic difference of the material in question. On the other
hand, besides the economic and monetary differences there is a further essen-
tial physical difference: matter and energy enter the transformation process in
a state of low entropy and come out of it in a state of high entropy. This is the
second law of thermodynamics now applied to economics: the irreversibility
of real transformation processes requires the application of thermodynamic
process inequalities.
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Fig. 4.8. A simple material, entropy, and energy-balance model
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In principle, such an economic system is comparable with the set of pro-
cesses in complex chemical companies. Similar to that in process engineering,
the consideration of balance and transport equations and the application of
thermodynamic inequalities allow us to estimate the production level and the
emission of heat and pollutants into the surroundings in the framework of
environmental economics.

There is, in particular, an important hierarchy: simple machines may be
combined step-by-step in higher-production plants, companies, and aggre-
gates. Because of their extensive character, inputs, outputs, and entropy pro-
duction are additive quantities so that the thermodynamic laws and the mate-
rial
balance hold at each level of this hierarchy. This additivity allows a successful
investigation of complex economic systems on the basis of relatively simple
models. In principle, the combination of environmental economics with cli-
matology, solar science, and ecology should give serious quantitative results
about the evolution of our natural environment.

The application of classical thermodynamic relations to environmen-
tal economic problems is known as the entropy concept in the literature
[90, 149, 150, 288]. We remark again that this concept is the application of
thermodynamic relations in order to quantify the flows of products, energy,
and entropy for a given economic system on the level of process engineering.
But it is not an attempt to explain the structure and the development of
economic systems in terms of thermodynamics.

4.4 Macroeconomics

4.4.1 Models and Measurements

Macroeconomics describes the general behavior of large economic systems.
This economic discipline overlaps with the content of other terms such as
national economics or political economics. These branches of science have a
very long tradition [32, 51, 94, 172, 328, 427]. Macroeconomically relevant
quantities are often denoted as economic or socioeconomic indicators.

Macroeconomic theory knows an enormous set of various models explai-
ning the relations between these indicators, such as the relation between
inflation and the unemployment rate or between the degree of technology
and the production rate. It is not the aim of this book to discuss these
partially contradictory models represented by different economic schools and
traditions for different economic and political periods. These problems are
studied in the comprehensive literature [18, 64, 121, 315, 372, 388, 410].

Here, we will discuss some general questions related to the formation of
reasonable models. Furthermore, we will give a suggestion of how physical
concepts may contribute to the creation of macroeconomic models. In princi-
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ple, similar problems occur also in social science that are strongly connected
with macroeconomic theory.

As a minimal requirement for an appropriate model, one may consider its
consistency on logical grounds and on empirical experience. The main pro-
blem is that a model should be compatible with the conditions accompanying
the kind of measurement. This constraint is particularly important since the
attribution of numerical values to economic or social quantities is often not
an obvious task.

In order to make the situation more clear, let us analyze the following
problem. Suppose that we have a model that allows the derivation of the
quantity z from primary quantities x and y via z = f(x, y). This relation may
be the mathematical kernel of a model following from a series of economic or
social investigations.

If the model does not fix the origin and the units of x and y, we could
also use x′ = Ωx+ω and y′ = Θy+ϑ with Ω > 0 and Θ > 0 instead of x and
y. This apparently arbitrary change is no rarity in economics. Every country
uses different statistical methods to define the unemployment, inflation, and
gross national product. Other quantities, such as economic development or
the level of technology, have an even higher degree of inaccuracy.

The underlying model provides only a procedure for deriving other eco-
nomic or social quantities from the original data (x, y) and (x′, y′). In our
case, the same model yields z = f(x, y) and z′ = f(x′, y′) dependent on the
definition of the scale. The model has a general meaning if the quantities
derived are comparable independent of the scales used [212, 279]. In other
words, a function f defines an invariant relationship if the inequality z1 < z2
implies the inequality z′

1 < z′
2.

Unfortunately, such an invariance condition is generally impossible. In
order to prove this hypothesis, we consider two points, (x1, y1) and (x2, y2),
with z1 = z2. Then, the difference

F = F (x1, y1, x2, y2) = f (x1, y1) − f (x2, y2) (4.48)

vanishes. After an infinitesimal change of the scales, x′ = (1 + δΩ)x + δω
and y′ = (1 + δΘ)y + δϑ, we arrive at

F ′ =
∂f (x1, y1)

∂x1
[x1δΩ + δω] +

∂f (x1, y1)
∂y1

[y1δΘ + δϑ]

−∂f (x2, y2)
∂x2

[x2δΩ + δω] − ∂f (x2, y2)
∂y2

[y2δΘ + δϑ] . (4.49)

The function F ′ = F (x′
1, y

′
1, x

′
2, y

′
2) may now be positive, negative, or zero. If

F ′ has a positive (negative) value, we get a negative (positive) value after a
change of the sign of the infinitesimal transformation parameters δΩ → −δΩ,
δω → −δω, δΘ → −δΘ, and δϑ → −δϑ. In other words, if F ′ �= 0, the
invariance condition fails.

It remains the case that F (x′
1, y

′
1, x

′
2, y

′
2) = 0. Because the infinitesimal

transformation parameters have arbitrary values, the four equations



4.4 Macroeconomics 183

x1
∂f1

∂x1
= x2

∂f2

∂x2
,

∂f1

∂x1
=

∂f2

∂x2
, (4.50)

and

y1
∂f1

∂y1
= y2

∂f2

∂y2
,

∂f1

∂y1
=

∂f2

∂y2
(4.51)

with fk = f(xk, yk) must be fulfilled for all pairs (x1, y1) and (x2, y2) that
satisfy the equation f1 = f2.

These equations are simply fulfilled for f = const. or if f is a strictly
monotonous function of only one independent variable, such as f = f(x).
The latter case requires only the solution x1 = x2, and the equations (4.50)
are identically fulfilled, whereas (4.51) is a trivial relation.

But each function f with ∂f/∂x �= 0 and ∂f/∂y �= 0, with the exception of
some isolated points, does not represent an invariant relationship. A solution
exists only for special transformations. For example, ω = ϑ = 0 leads to
f(x, y) = x2n+1/y2m+1 with arbitrary integers m and n, while Ω = Θ = 1
requires f = exp {cx− dy} with arbitrary constants c and d.

The failure of the general invariance condition is also denoted as the
impossibility theorem. It was a central point of a long debate about several
socioeconomic relations established by Huntington [181]. These relationships,
for example the ratio

social frustration =
social mobilization

economic development
, (4.52)

were criticized by Lang [222] and Koblitz [204, 205, 206] and defended by
Simon [375, 376, 377]. The problem is that any of the terms involved in
(4.52) could be measured by numerical values, provided that the origin and
the units of the measurement are defined.

Without a definition of the scales, the algebraic ratio is completely
meaningless. There exist various interpretations of Huntington’s formulas.
For instance, we have to interpret the ratio in the sense that the deriva-
tives are positive for variables in the numerator and negative for variables in
the denominator or that the ordering structure behind this relation has an
essentially lexicographic structure [213].

The usual way to find an economic law is a combination of statistical
analysis and a model hypothesis. Although the dynamics of the economic
system described by a suitable set of relevant economic variables are mainly
determined by deterministic equations, the behavior of economic quantities
may show a random behavior; see subsection 4.2.2.

This deterministic chaos can be observed also at the macroeconomic level.
Nevertheless, characteristic correlations are detected between several eco-
nomic indicators. Suppose that the scale of the quantities under consideration
is well-defined. Then, the correlations can be expressed by quantitative rela-
tionships.
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Fig. 4.9. Okun’s law for the German national economy, data from
http://www.sachverstaendigenrat-wirtschaft.de.

The typical macroeconomic method may be explained by an analysis of
Okun’s law. The American economist Arthur Okun [290] detected this eco-
nomic principle in 1962. Okun’s law states that to avoid the waste of unem-
ployment, an economy must continually expand and that economic growth
and unemployment are related such that decreases in unemployment increase
productivity, while increasing unemployment leads to declining productivity
[295].

The widespread acceptance of Okun’s law is so pervasive that public
officials use it as a basic rule for the determination of socioeconomic poli-
cies. Figure 4.9 shows a scatterplot of the annual change in the German gross
domestic product versus the annual change in the German unemployment
rate and a linear regression verifying Okun’s law.

4.4.2 Scaling Laws and Scale Invariance

The transition from the microeconomic level to the macroeconomic level takes
place in a similar way as in classical thermodynamics, where microscopic
degrees of freedom are projected onto few macroscopic degrees of freedom.
As we have pointed out, the similarities are not too strong. However, there is
empirical evidence that at least some economic processes in large economic
systems are comparable with phenomena close to the phase transition in
physical systems. We remark especially that the occurrence of strong fluc-
tuations at the macroeconomic level is an indication of such a comparison.

Because of the enormous complexity of an economic network, it is very
complicated to analyze the complete dynamics of a large economic system,
with the exception of strongly idealized models. Nevertheless, it can be as-
sumed, but not proved directly, that the dynamics of an economic network are
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controlled by a kind of self-organized criticality [25, 26, 27] showing various
types of self-similar structures [30, 115, 247, 413].

Self-organized criticality means that the respective system drives itself to
a stable or metastable critical regime that is normally characterized by long-
range correlations and scale-free power laws. Possible self-similar properties
of large economic systems may occur due to political, geographical, or social
circumstances.

For example, the worldwide economic system decays into national eco-
nomic systems, and each of those consists of regional economic clusters. Such
structures suggest a kind of self-similarity, leading to a possible scale invari-
ance of macroeconomic properties. Roughly speaking, scale invariance means
reproducing itself on different scales of observation [100, 247]. The latter
imply spatial and temporal scales but also production scales, consumption
scales, or cost scales in the case of economic systems.

The observation of scale-invariant economic laws depends on the problem
and the available set of data. Obviously, once the quantity that we wish to
study has been clearly defined, we have to answer the question of how this
quantity changes with the scale of observation. A quantity U that depends
on the variables {x1, x2, ..., xn} is scale-invariant under a change

{x1, x2, ..., xn} →
{ x1

λα1
,
x2

λα2
, ...,

xn

λαn

}
(4.53)

with-well defined exponents αk (k = 1, ..., n) if

U (x1, x2, ..., xn) = h(λ)U
( x1

λα1
,
x2

λα2
, ...,

xn

λαn

)
. (4.54)

The choice λαg = xg with g ∈ (1, ..., n) connects λ and xg. Thus, we get

U (x1, x2, ..., xn) = Hg(xg)U

(
x1

x
α1/αg
g

, ..., 1, ...
xn

x
αn/αg
g

)
(4.55)

with Hg(xg) = h(x1/αg
g ). For the special case xk = 0 for all k �= g, the

generalized homogeneity relation (4.54) yields

U (0, ..., xg, ..., 0) = h(λ)U
(
0, ...,

xg

λαg
, ..., 0

)
. (4.56)

The solution of this equation is simply

U (0, ..., xg, ..., 0) = Cgx
βg
g , (4.57)

and we obtain h(λ) = λαgβg so that Hg(xg) = x
βg
g . These relations are the

fundamental properties that associate power laws with scale invariance, self-
similarity, and self-organized criticality.

A typical economic power law is the Cobb–Douglas production function
[78, 240, 292, 346, 347, 409]. This function has both a macroeconomic and
a microeconomic interpretation. The microeconomic Cobb–Douglas function
connects input and output rates of an active element of an economic network
by simple algebraic relations. Hence, (4.1) can be written as



186 4. Economic Systems

ω̇α,I = fα,I({ν̇β,I} , {gb,I}) = Cα,I({gb,I})
M∏

β=1

[ν̇β,I ]
cI

αβ (4.58)

with fixed individual exponents cIαβ . This power law implies the important
property

d ln ω̇α,I =
M∑

β=1

cIαβd ln ν̇β,I ; (4.59)

that is, the percentage change of a given input rate is proportional to the
percentage change of the output rate.

The macroeconomic version of a Cobb–Douglas function defines the
average technological level of an economic system. A frequently used repre-
sentation2 defines the production rate of goods [2, 140, 285, 318]

ω̇ = CKαLβMγEδ (4.60)

for every economy as a function of capital services K, labor services L,
land services M , and energy consumed E. However, there is an important
difference between the microeconomic and the macroeconomic versions of the
Cobb–Douglas law.

The latter is an observable law representing the average production and
consumption processes that take place in a large economic network. On the
other hand, the microeconomic Cobb–Douglas function is at most a nice
model that describes an idealized firm or an idealized consumer.

Another kind of scaling behavior may be observed with respect to the
Phillips curve [307]. This curve postulates an empirical relationship bet-
ween inflation and unemployment. The basic concept is that as an economy
approaches full employment there is upward pressure on wages that increases
costs and thus prices. In addition, more people working implies more demand
for goods and more upward pressure on prices.

This seems to offer policy-makers a simple choice: they have to accept
either inflation or unemployment. The Phillips curve, however, began to break
down in the late 1960s and early 1970s. Today, the curve is a complicated
trajectory with serious differences for different countries (Figure 4.10). We
may ask whether this “motion” offers universal properties that are valid for
all national economies. To this end, let us assume that the inflation rate I
depends statistically on the unemployment rate u via the conditional proba-
bility distribution function p(I | u). Furthermore, we make the hypothesis
that this probability is controlled by a scaling law that may be written as

p(I | u) = θuβg
(
θIuβ

)
(4.61)

2 There exist a lot of similar formulas in the literature that are also called Cobb–
Douglas functions. The common property is that output and input variables are
connected by a power law.
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Fig. 4.10. The Phillips curve for the US national economy and for the German
national economy.

with the universal function g, the universal exponent β, and a nonuniversal
factor θ, which compensates for possible differences in the scales of u and I.
Then, we obtain the probability

P
(
I < Cu−β

)
=

Cu−β∫
−∞

p(I | u)dI =

Cθ∫
−∞

g (z) dz = Φ (Cθ) . (4.62)

Because of the normalization, we require Φ (∞) = 1, whereas Φ (−∞) = 0.
Equation (4.62) may be written also as

P
(
θIuβ < H

)
= P<(H) = Φ (H) . (4.63)

This result and consequently the scaling hypothesis may be tested by ap-
plication of the rank-ordering statistics. As we have seen in subsection 3,
the likely value of the nth element of a set S =

{
ξ(1), ξ(2), ..., ξ(N)

}
of N

observations ordered by increasing values is given by P<

(
ξ(n)
)

= n/N ; see
equation (3.188). Hence, the likely rank of the value ξ(n) = I(n)u

β
(n) of a given

observation
(
I(n), u(n)

)
is determined by NΦ

(
θIuβ

)
. Suppose that we com-

pare different economic systems. Each of these systems –for example, the US
national economy or the German national economy– has its own series S.

If our scaling hypothesis is correct, the rank-ordered sets of all national
economies should collapse to one common curve after rescaling the values
ξ(n) of a given economic system with one (national) factor θ. In fact, using
the exponent β = 0.25 ± 0.05, a suitable collapse is observable (Figure 4.11).
The differences for the region of extreme values are probably caused by the
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Fig. 4.11. Collapse of the rank-ordered data sets obtained from the Phillips curves
of Germany (filled squares), Switzerland (open circles), US (open down triangles),
Australia (filled up triangles), and United Kingdom (open diamonds).

relatively small number of observations per series, N ≤ 50.
Obviously, the scaling law (4.61) and the validity of a universal behavior

observed for various economies suggest the existence of universal macroeco-
nomic processes behind the strange dynamics of the national Phillips curves.

4.4.3 Economic Field Theories

A natural way to handle an economic system at large scales consists in
embedding economic networks into a two-dimensional geographic space and
subsequently a continuous description. Such a procedure reduces the de-
tailed microeconomic relations to several economic and social fields satisfying
several local and global conservation laws.

Various publications [13, 40, 42, 316, 318, 320] deal with such macroeco-
nomic mean-field concepts, which may called economic field theories. Other
names, such as urban fields, continuous flow models, or spatial economy are
also popular.

Historically, the first problems of this kind were analyzed by Thünen in
1826 [397]. He found that agricultural production was distributed among a
set of concentric rings around the central town (i.e., a singular consumption
region) according to the cost of transportation. Heavy or bulky goods, such as
wood for energy production and the building trade, were produced closer to
the city, while goods more easily transportable were produced farther away.
This special theory is also known as the land use model.

Other early publications [227, 418], so-called location theories, consider
the location of production plants instead of consumers. The standard
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theory of spatial economics was developed in the early 1950s [40, 317] using
Euler–Langrange variation principles and hydrodynamic concepts. As such,
the model is extremely elegant and versatile, being able to represent all pre-
viously known continuous models as special cases. Here, we will give a simple
example [320] in order to demonstrate the basic ideas and the relation to
physical field theories.

In a two-dimensional space, the trade flow can be represented by a vector
field v(x, t) = {v1(x, t), v2(x, t)} and x = {x1, x2}. The absolute value of the
trade flow, |v(x, t)|, represents the quantity of goods traded, whereas the unit
direction field n = v/ |v| defines the local direction of the flow. Similar to how
the flow of a liquid satisfies various balance equations controlling the local
conservation of mass, momentum, or energy, the flow of traded commodities
is defined by a continuous equation

∂c(x, t)
∂t

+ div v(x, t) = q(x, t). (4.64)

The source term q(x, t) is related to the local excess supply of produc-
tion over consumption. Positive values of q(x, t) correspond to local sources
of commodities due to a production center, while negative values of q(x, t)
represent a local excess of consumers. The concentration c(x, t) defines the
local stock on hand. In general, this quantity depends on the local number
of traded goods. Hence, we expect a relation of the type

c(x, t) = c(|v(x, t)|). (4.65)

For example, a possible assumption is the power law c = c0 |v(x, t)|β with the
reserve exponent β. In particular, if we assume an economic system without
stockkeeping, we have to set c(x, t) = 0. In this particular case, we arrive at
the balance equation

div v(x, t) = q(x, t). (4.66)

This relation may also be interpreted as a condition for quasistationary
interregional trade, which has the same meaning as the quasistationary
regime in electrodynamics. Quasistationarity means that the whole system
follows a change of the boundary conditions and possible external distur-
bances without any relaxation. This is possible for slow fluctuations so that
the local stocks on hand remain approximately constant.

Fast fluctuations must be compensated by a change of the capacities of the
commodities in storage (i.e., we have to deal with the more general balance
equation (4.64)). The integral form of (4.64) leads to the global conservation
law

Q− ∂C

∂t
=
∫

G

div v(x, t) dA =
∮

∂G

v(x, t) ds (4.67)

with

Q =
∫

G

q dA and C =
∫

G

c dA. (4.68)
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Here, ds is the integral element of the boundary ∂G of the region G.
Obviously, the curve integral on the right-hand side of (4.67) is the export
from or, depending on sign, the import to the region G through the borderline
∂G. The quantity Q is the excess supply of production over consumption for
the whole region G, while C is the total reserve of the traded commodities. In
the case of a stationary state (4.66), we obtain instead of (4.67) the relation

Q =
∮

∂G

v(x, t) ds. (4.69)

In order to determine the trade flow, we need a further equation. This equa-
tion follows from the economic principle of minimum transportation costs.
We assume a transportation cost field κ(x), which is determined by the local
state of the roads and the structure of the ground. Then, the total trans-
portation costs K(t) at a given time t are given by [40, 41, 42]

K(t) =
∫

G

|v(x, t)|κ(x) dA, (4.70)

and the total costs over a given time period T are

K̃ =
∫

K(t)dt. (4.71)

We carry out the minimization procedure by application of the Euler–
Lagrange variation principle considering the constraint (4.67). Thus, we get
the economic action

S =
∫

G

LdAdt (4.72)

with

L = |v(x, t)|κ(x) + λ(x, t)
[
∂c(|v(x, t)|)

∂t
+ div v(x, t) − q(x, t)

]
, (4.73)

where λ(x, t) is a Lagrange multiplier associated with the constraint (4.67).
The variation with respect to v(x, t) yields[

κ(x) − c′(|v(x, t)|)∂λ(x, t)
∂t

]
v(x, t)
|v(x, t)| = ∇λ(x, t), (4.74)

while the variation with respect to λ(x, t) leads to (4.64). The quantity λ(x, t)
has the interpretation of the commodity price. To understand this interpre-
tation, we focus on a steady state or on a storage-free case. Then, (4.74)
becomes

κ(x)
v(x)
|v(x)| = ∇λ(x). (4.75)

Obviously, the unit flow field v(x)/ |v(x)| is parallel with the gradient field
∇λ(x) for the commodity price. Hence, commodities always flow in the direc-
tion of steepest price increase. Furthermore, the norm of the price gradient
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equals the local transportation cost rate. In other words, the commodity price
increases along the flow with accumulated transportation costs.

The equations (4.64) and (4.74) form, together with the boundary condi-
tions at the borderline of the region A, a complete field-theoretical problem.
Unfortunately, these equations are dominated by strong nonlinearities. This
problem remains also for the steady state. In fact, the decomposition of the
transport field v(x) into a vortex-free part ∇ϕ and a divergence-free part
w(x) with div w(x) = 0 transforms (4.66) into the two-dimensional Poisson
equation

∆ϕ(x) = q(x). (4.76)

The solution of this equation is possible with well-known standard methods.
The distribution of the local excess supply of production over consumption
q(x) is an external quantity characterizing the economic system.

In a certain sense, the field q(x) is comparable with the charge density
in electromagnetic theory. The second step is the determination of the scalar
price field λ(x). If we take squares of both sides of (4.75), we obtain the closed
nonlinear field equation

(∇λ)2 =
(
∂λ

∂x1

)2

+
(
∂λ

∂x2

)2

= κ2(x) (4.77)

for the commodity price field. The local transportation costs κ(x) are, similar
to the quantity q(x), an external field that may be empirically determined by
suitable observations or estimations. Finally, inserting the solution of (4.77)
into (4.75), we obtain a nonlinear algebraic equation for the field w(x) that
depends on the local structure of the fields ϕ(x) and λ(x).

The remaining problem is the adjustment of the solutions w(x) and ϕ(x)
at the boundary conditions. Unfortunately, this is a very complicated task
because the boundary conditions are usually defined for the common field
v(x) = ∇ϕ(x) + w(x). Considering the nonlinear relations between the field
components, we get a complicated functional from which we may determine
the proper field w(x) at the boundary.

The present theory allows the construction of optimal roads. Let us
assume that we know the scalar field of the transportation costs κ(x). As
discussed above, the vector field v(x) defines the direction of the local flow.
A road may be defined by the curve y(s), where s is an arbitrary curve
parameter. Then, the tangent of the curve

t (s) =
dy (s)
ds

(4.78)

always shows the direction of the local flow. This means that we have the
relation

t (s) =
v(y (s))
|v(y (s))| (4.79)

along the road. Therefore, we expect that an optimal road fulfills the equation
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κ(y (s))t (s) = κ(y (s))
v(y (s))
|v(y (s))| = ∇λ(y (s)). (4.80)

Let us try to eliminate the relatively complicated price field λ from (4.80).
To do this, we differentiate with respect to the curve parameter

d

ds

[
κ(y (s))

dy (s)
ds

]
=

d

ds
∇λ(y (s)). (4.81)

The vector components on the right-hand side can be written

d

ds

∂λ(x)
∂xα

∣∣∣∣
x=y(s)

=
2∑

β=1

∂2λ(x)
∂xα∂xβ

∣∣∣∣
x=y(s)

∂yβ(s)
∂s

=
2∑

β=1

∂2λ(x)
∂xα∂xβ

∣∣∣∣
x=y(s)

tβ(s). (4.82)

We multiply this expression with κ(y (s)) and apply (4.80) in order to obtain

κ(y (s))
d

ds

∂λ(x)
∂xα

∣∣∣∣
x=y(s)

=
2∑

β=1

∂2λ(x)
∂xα∂xβ

∣∣∣∣
x=y(s)

∂λ(x)
∂xβ

∣∣∣∣
x=y(s)

(4.83)

=
1
2

∂

∂xα

2∑
β=1

(
∂λ(x)
∂xβ

)2
∣∣∣∣∣∣
x=y(s)

(4.84)

or with (4.77)

κ(y (s))
d

ds
∇λ(y (s)) =

1
2

∇κ2(x)
∣∣
x=y(s) . (4.85)

Hence, we obtain the road equation

d

ds

[
κ(y (s))

dy (s)
ds

]
= ∇κ(y (s)). (4.86)

We remark that the last equations are close to Fermat’s law in optics. In
particular, roads are equivalent to light rays, the commodity price field cor-
responds to the eikonal function, and the transportation cost may be inter-
preted as the refraction index.

For example, if we have spatially separated types of transportation, such
as transportation over sea and over land, the trading routes are straight lines,
broken at the coastline via the well-known refraction law [294, 387]. A similar
phenomenon applies to roads through high mountain regions. For instance,
the highways from Rome to Milan pass the Appennines similar to light rays
through a glassy plate; see Figure 4.12.
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Fig. 4.12. Schematic representation of the highways from Rome to Milan.





5. Computer Simulations

5.1 Models and Simulations

Computer simulations are powerful tools supporting economic theories by
bringing precision and rigor into economic and socioeconomic theories
[97, 264, 370, 424]. By utilizing the speed and power of modern computers,
they allow us to examine the consequences of complex rules and to study the
dynamics of large systems. This makes them an important tool for dealing
with the complex structure of economic systems. From a physical point of
view, computer simulations allow the introduction of several natural scientific
concepts and methods into the theoretical framework of economics, finance,
and social science.

Of course, computer simulations can never fully describe the richness of
economic processes. In fact, each element of an economic system considered in
a certain computer simulation represents a small number of relevant degrees
of freedom. In general, these elements, especially the humans involved, are
too complex to be completely captured by a numerical procedure. However, in
spite of the differentiation between relevant and irrelevant degrees of freedom,
we may describe the behavior of the elements of an economic system by
probabilistic rules. This means that an element has different alternatives
when reacting to a change of its environment.

The observation and formulation of the rules describing social and eco-
nomic action and reaction processes is the task of social science, microeco-
nomics, and psychology. We remark that the probability of considering an
incorrect rule is much higher than in the natural sciences.

Furthermore, numerical simulations depend on the level of the relevant
quantities taken into account. A “human,” or more generally an agent,
with more than one hundred internal states is much more flexible than an
agent with only two alternative freedoms of action. The term agent is very
general: An agent may be a human but also may be a computer controlling
the overnight financial transactions of a bank, a production firm, or elements
of transportation systems and communication networks.

In physics, an enormous progress was achieved due to widespread use of
computer simulations. Especially the development of the theory of nonlinear
dynamical systems and of complex systems far from the thermodynamic equi-
librium are strongly influenced by various kinds of simulations. The nature
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of those simulations is usually very different from simulations used in engi-
neering or material science. These scientific disciplines use existing theories
in order to solve a well-defined problem quantitatively.

In physics, computer simulations are often used to test theories or to refine
analytical results. The typical physical strategy of a computer simulation is
to isolate the most important characteristics of the underlying phenomenon
and to build the simplest possible model instead of trying to model the phe-
nomenon in its natural complexity.

For example, the Ising model [228], built to explain magnetic phenomena,
considers only two orientations of local magnetic moments. In fact, this model
has very little in common with a real magnetic material. However, numerical
simulations on the basis of this model allow us to understand qualitatively
the physics of phase transitions and the intrinsic dynamics of critical phe-
nomena. But this simple model also has quantitative aspects. For instance,
computer simulations of the Ising model allow a serious estimation of the
critical exponents much better than any known analytical approach with the
exception of the well-known rigorous solutions.

As discussed in the previous chapter, there is certain evidence that the
general behavior of economic systems is determined by just a few domi-
nant collective modes. In other words, the general behavior of large economic
systems often should not depend on details involving the behavior of
individual elements.

This empirical knowledge provides the fundamental concept of numerical
simulations of economic problems. It is the general concept of creating a
numerical algorithm to build simple models that capture only the essential
properties of the interactions in the system that nevertheless allow for the
proper description of aggregate behavior.

In other words, we should try to find a numerical procedure of a minimum
length that considers the complexity of the problem just enough. We have
mentioned in Chapter 1 that a general solution of this problem is avoided
due to a theorem of Gödel. However, an intuitive approach to this minimum
algorithm is always possible. The remaining problem is how to find such an
algorithm and therefore a minimum model describing the economic problem
in mind.

One possible way is to use a reduction mechanism. In other words, we
start from a very comprehensive model and reduce the complexity step-by-
step by eliminating those variables and interactions that are proven not to
be relevant for the general behavior of the economic system. Following this
way, we probably arrive at a gradual simplification of the original model.

Occasionally, we can construct a shortcut. This inductive way starts from
the simplest possible model that would have the qualitative properties of the
phenomena in mind. The problem is that we must intuitively capture just the
main features of the underlying problem while neglecting all of the details. Of
course, Gödel’s theorem shows that there is no simple algorithm indicating
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Fig. 5.1. The relations among theory, empirical observations, and computer sim-
ulations.

how to achieve it. However, if we have found a suitable basic model, we may
refine the algorithm in order to approach reality. In physics and some other
disciplines of natural science, computer simulation occupies an intermediate
position between experiment and theory. In economics and finance, the source
of knowledge is empirical observations, while experiments in the narrower
sense are impracticable since a repetition is usually excluded. Here, computer
simulations increasingly take over the role of the experiment (Figure 5.1).

5.2 Monte Carlo Simulations

5.2.1 Monte Carlo and Random Generators

The expression “Monte Carlo simulation” is actually very general. Monte
Carlo methods [28, 60, 148, 236, 329] are stochastic techniques — meaning
they are based on the use of random numbers and probability statistics to
investigate problems. We can find Monte Carlo methods used in everything
from economics to nuclear physics to regulating the flow of traffic.

The method is named after the city in the Monaco principality because of
roulette, a simple random number generator. The name and the systematic
development of Monte Carlo methods dates from about 1944. In particular,
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the first use of Monte Carlo methods as a research tool stems from work on the
atomic bomb during World War II. This work involved a direct simulation of
statistical problems connected with the random neutron diffusion in matter.
The first Monte Carlo paper was published in 1949 [271].

Today, the Monte Carlo method is a very powerful tool with a large field of
applications for both physics and economics. Generally, to call an algorithm
Monte Carlo simulation, all we need to do is use random numbers to examine
some problem.

The use of Monte Carlo methods to solve physical problems allows us
to examine more complex systems than we otherwise could [46, 47, 48]. In
particular, solving the equations of motion for one or two degrees of freedom
is a fairly simple analytical problem. The solution of the same equations for
thousands or more degrees of freedom is, with the exception of some special
cases such as bead-spring models, an impossible task.

Of course, the way Monte Carlo techniques are applied varies widely from
field to field. Physical research uses a lot of different Monte Carlo algorithms
that can be applied on various problems such as in quantum mechanics or
quantum field theory, molecular physics, statistical physics, or in astrophysics.
The long list of literature regarding this topic grows rapidly.

Each Monte Carlo procedure requires a random generator. Unfortunately,
computer-generated random numbers are not really stochastic since com-
puter programs are deterministic algorithms. But, given an initial number,
generally called the seed, a number of mathematical operations can be per-
formed on the seed to generate apparently unrelated pseudorandom numbers.
The output of random number generators is usually tested with various sta-
tistical methods to ensure that the generated number series are really random
in relation to one another with respect to the desired accuracy. There is an
important caveat: if we use a seed more than once, we will get identical ran-
dom numbers every time. However, several commercial programs pull the
seed from somewhere within the system, so the seed is unlikely to be the
same for two different simulation runs.

A given random number algorithm generates a series of random numbers
{η1, η2, ..., ηN} with a certain probability distribution function. If we know
this distribution function prand(η), we know from the rank-ordering statistics
that the likely rank of a random number η in a series of N numbers is

n = NP<(η) =

η∫
−∞

dz prand(z). (5.1)

In other words, if the random generator creates random series that are distri-
buted with prand(η), the corresponding series {P<(η1), P< (η2) , ..., P< (ηN )}
is uniformly distributed over the interval [0, 1]. On the other hand, if a se-
ries {η1, η2, ..., ηN} is uniformly distributed, we can generate a series corres-
ponding to another distribution function p̃ via the calculation of the inverse
function (i.e.,

{
P−1

< (η1), P−1
< (η2) , ..., P−1

< (ηN )
}
.
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5.2.2 Dynamic Monte Carlo

A typical application of Monte Carlo algorithms in economics and finance
[17, 65, 77, 103, 125, 141, 185, 338, 339, 407] is the solution of stochastic
differential equations of the type (3.65) or the more complicated form (3.252).
The Monte Carlo method solves these equations by repeated simulations
of the underlying stochastic processes and a subsequent statistical analysis
of the results obtained. This allows us to avoid probably very complicated
solutions of the corresponding Fokker–Planck equations or master equations.
Of course, for simple financial or economic models, Monte Carlo is not the
better solution because it is very time-consuming in terms of computation,
and the general dependence on possible control parameters still remains open.
The general interest in a Monte Carlo simulation approach is related to sol-
ving very complex and relatively realistic models. For example, Monte Carlo
simulations are very helpful in the solution of American option problems
[12, 20, 34, 63, 156, 157, 308, 326]; see also subsection 3.4.3.

Here, we want only to represent the most important elements of a Monte
Carlo simulation without addressing the details. Special concepts and algo-
rithms may be obtained from the comprehensive literature.

The standard financial or economic problem solved by Monte Carlo
methods consists in the numerical solution of a system of stochastic diffe-
rence equations. Such equations may be derived from Ito stochastic differen-
tial equations (2.153) or, in the case of a pronounced memory effect, from
the more general Mori–Zwanzig equation (2.121) by an approximate integra-
tion over a short time interval δt. But it is also possible to obtain stochastic
difference equations from direct empirical investigations.

Suppose that we model the time evolution of a set of economic or financial
data Y = {Y1, Y2, ...YN} and have M sources Zk of randomness. Then, the
discrete time evolution of the system may be written in the form

Yα (tn+1) = Yα (tn) +Aα ({Y (tn) , Y (tn−1) , ...})

+
M∑

k=1

Bk
α ({Y (tn) , Y (tn−1) , ...})Zk(tn) (5.2)

with α = 1, ..., N and tn+1 = tn +δt, where δt is a given time horizon. We re-
mark that the random functions Zk are not necessarily Gaussian-distributed.

The numerical procedure is very simple. Starting from a given state
Y (tn) and probably certain information about the history given by
Y (tn−1), Y (tn−2), ... , we are able to calculate the subsequent state Y (tn+1)
via (5.2). The required random values of the functions Zk(tn) follow from the
use of appropriate random generators. The recursion law (5.2) yields a cer-
tain path {Y (t1) , Y (t2) , ...}. Such a path may be interpreted as one possible
event of the underlying model.

We can now create a sufficiently large set of such events by the use of
different seeds for the random generator. This allows us to calculate the em-
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pirical frequency distribution function, which converges to the true probabi-
lity distribution function for a sufficiently large number of independent runs.
Usually, one refrains from a direct calculation of the probability distribution
function but computes directly various moments and correlation functions.

Note that the transformation of Ito stochastic differential equations
(2.153) into stochastic difference equations (5.2) requires an important re-
mark. Except for simple Ito stochastic differential equations with constant
coefficients, the substitutions dY → ∆Y , dt → ∆t, and dW → ∆W = Z yield
no automatically corresponding stochastic difference equation. For example,
the simple geometric Brownian motion (3.110) for one degree of freedom may
be written as

dY = aY dt+ bY dW (t). (5.3)

We define the new variable x = lnY so that

dx =
dY

Y
− (dY )2

2Y 2 =
[
a− b2

2

]
dt+ bdW. (5.4)

This equation can now be directly integrated. Therefore, we obtain

Y (t+ δt) = Y (t) exp
{[

a− b2

2

]
δt+ b (W (t+ δt) −W (t))

}
. (5.5)

Hence, we arrive at the discrete time evolution

Y (tn+1) = Y (tn) exp
{[

a− b2

2

]
δt+ b∆W (tn)

}
, (5.6)

which is much more complicated than the original Ito stochastic differential
equation (5.3) and the corresponding “naive” stochastic difference equation

∆Y (tn) = Y (tn+1) − Y (tn) = aY (tn)δt+ bY (tn)∆W (tn) . (5.7)

Finally, we remark that the techniques used for the solution of stochastic
differential equations are comparable with physically motivated numerical
solutions of Langevin equations [355].

5.2.3 Quasi-Monte Carlo

Each Monte Carlo simulation is equivalent to a problem of integral evaluation.
That is obvious if we compute moments or correlation functions using Monte
Carlo techniques, but the solution of stochastic difference equations also can
be transformed into an integral problem in a multidimensional space.

For example, the probability distribution function for the realization of
the path {Y (t1) , Y (t2) , ..., Y (tL)} as a result of the stochastic difference
equation (5.2) can be written as the integral

P
(
Y (L), tL; ...;Y (1), t1

)
=
∫ L−1∏

n=0

M∏
k=1

[
pk

(
Z

(n)
k

)
dZ

(n)
k

]
L−1∏
n=0

N∏
α=1

δ

(
Y

(n+1)
α − Y

(n)
α −A

(n)
α −

M∑
k=1

B
k,(n)
α Z

(n)
k

)
, (5.8)
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where pk is the distribution function of the stochastic variable Z(n)
k = Zk(tn).

As mentioned above, each probability distribution function is directly con-
nected with the uniform distribution over the interval [0, 1]. Thus, each pos-
sible integral can be transformed into an integral over a unit hypercube C. In
the case of our example, we may use the rules

pk (Zk) dZk = dUk and Pk,<(Zk) = Uk (5.9)

in order to transform (5.8) into the unit representation. Formally, each inte-
gral over the unit cube can be estimated by the formula∫

dUΦ (U) ≈ 1
Q

Q∑
m=1

Φ
(
U (m)

)
, (5.10)

where the U (m) ∈ C (m = 1, ..., Q) define a representative set of more or less
homogeneously distributed points inside the hypercube. One possible way to
calculate the sum in (5.10) uses points U (m) created by a random generator.
This kind of computation of multidimensional integrals by random sampling
techniques is sometimes considered the main problem of a Monte Carlo simu-
lation. Unfortunately, this concept exhibits a slow rate of convergence for
the main problem of a Monte Carlo simulation. Usually, we find that the
difference between the integral and the sum decreases with Q−1/2.

An alternative way is the application of a quasi-Monte Carlo simulation
[35, 66, 116, 170, 192, 233, 275, 282, 380, 396]. This is the traditional Monte
Carlo simulation but using quasirandom sequences instead of pseudorandom
numbers. The quasirandom sequences, sometimes also called low-discrepancy
sequences, usually permit improvment of the performance of Monte Carlo
simulations, offering shorter computational times and higher accuracy.

We remark that the low-discrepancy sequences are deterministic series,
so the popular notation quasirandom can be misleading. The discrepancy
property is a measure of uniformity for the distribution of the points. It is
defined by

DQ = sup
R∈C

∣∣∣∣n(R)
Q

− v(R)
∣∣∣∣ , (5.11)

where R is a compact region of the unit hypercube, v(R) is the volume of
this region, and n(R) is the number of points in this region. The discrepancy
vanished for Q → ∞ in the case of a homogeneous distribution of points over
the whole hypercube.

Mainly for the multidimensional case, a low discrepancy corresponds to no
large gaps and no clustering of points in the hypercube (Figure 5.2). Similar to
a pseudorandom generator, a quasirandom generator originates from number
theory. But in contrast to the pseudorandom series, quasirandom sequences
offer a pronounced deterministic behavior. A quasirandom generator trans-
forms an arbitrary positive integer I into a quasirandom number ξI via the
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Fig. 5.2. Two-dimensional plot of pseudorandom number pairs (left) and quasir-
andom number pairs (right). The quasirandom number series are created with the
base 2 (x-axis) and with the base 3 (y-axis).

following two steps. First, the integer I will be decomposed into the integer
coefficients ak with respect to the base b

I =
∞∑

k=0

akb
k (5.12)

with 0 ≤ ak ≤ b − 1. The coefficients simply form the representation of I
within the base b. The second step is the computation of the quasirandom
number by calculation of the sum

ξI =
∞∑

k=0

akb
−k−1. (5.13)

For example, the first quasirandom numbers corresponding to the base 2 are
1/2, 1/4, 3/4, 1/8, 5/8, ..., while the sequence of base 3 starts with 1/3,
2/3, 1/9, 4/9, 7/9. The main problems [170, 282] of the quasi-Monte Carlo
techniques are: (i) this method may not be directly applicable to simulations
of single events because of the correlations between the points of a quasiran-
dom sequence, and (ii) the improved accuracy of quasi-Monte Carlo methods
is generally lost for problems of high dimension or problems in which the
integrand is not smooth.

The merit of the quasi-Monte Carlo method is the fast convergence. The
theoretical upper bound rate of convergence for the estimation (5.10) is
lnd Q/Q, where d is the number of dimensions of the integral problem [281].
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5.2.4 Reverse Monte Carlo

Suppose that we have a model controlled by a given set of parameters
G = {g1,g2, ..., gM} that produces the output data Y = {y1, y2, ..., yN}. Fur-
thermore, we have a set of empirical observations in a real economic system,
O = {o1, o2, ..., oN}, corresponding to the output data of the model.

Then, we can refine the model by changing the control parameter in such
a way that the distance between the observations and the results of the model
decreases. In other words, we modify the structure of the model in order to
bring it into correspondence with reality. This does not mean that the model
reflects reality. Only those observations that we have considered during the
tuning of the model parameters are reproduced by the model.

A numerical standard technique consists in the formation of a positive--
semidefinite functional

F (Y −O) = F(y1 − o1, y2 − o2, ...) (5.14)

with F (0) = 0 for Y = O and F > 0 otherwise. The functional F depends
on the control parameters gα via the model results Y = Y (G). Therefore, we
write also F [G] instead of (5.14). We now calculate the value of F [G0] for a
certain set G0 of control parameters. Then, we change the control parameters
by a small shift δG and compute the corresponding value F [G0 + δG] of the
functional F .

Let us now consider a monotonously decreasing function P (x) with
P (−∞) = 0 and P (∞) = 1. Then, we may determine

Pchange = P

(F [G0] − F [G0 + δG]
T

)
(5.15)

with a positive convergence parameter T ≥ 0. We interpret the value Pchange
as a transition probability. This means that we replace the set of control
parameters G0 by the new set G0 + δG with a probability Pchange.

This statistically induced replacement procedure makes the whole algo-
rithm a Monte Carlo method. The repeated application of these steps leads
to an increasing adaptation to reality. Usually, the convergence parameter
T will be reduced very slowly during the Monte Carlo procedure. Thus, we
arrive at a local or probably global minimum of the functional F [G] after a
sufficiently long computation time.

The successive reduction of T is called the simulated annealing technique
[203] and has a wide field of applications, especially in engineering.

In principle, the problem is comparable with a special class of Monte Carlo
methods in computational physics that is also denoted as reverse Monte Carlo
simulation.

In order to explain this term from a physical point of view, we have to
consider that a standard Monte Carlo procedure is the importance sampling
[46, 47, 48, 272]. Roughly speaking, in this case the parameter set G cor-
responds to the configuration C of an underlying many-body system, while
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the functional F is the Hamiltonian H (C) of the system. The convergence
parameter T may be identified with the temperature of the system. In contra-
diction to the simulated annealing method, the temperature is fixed during
the whole simulation. Then, all configurations C1, C2, ... that were occu-
pied in the course of the Monte Carlo procedure form a weighted set that
allows the determination of various thermodynamic quantities and other in-
formation about the structure of the system such as scattering curves. The
values of these quantities depend on the temperature and on the microscopic
interaction parameters.

We remark that the thermodynamic behavior appears due to the con-
straint that each statistically induced jump Cn → Cn+1 satisfy the principle
of detailed balance. This can be done by application of the Metropolis algo-
rithm [272] with P (x) = 1 for x ≥ 0 and P (x) = exp {x/T} for x < 0.

As apposed to this procedure, the reverse Monte Carlo simulation
[23, 49, 198, 262, 381, 390, 416] uses no microscopically founded Hamiltonian
but a functional F considering the experimental findings of various scattering
experiments. Then, the algorithm discussed above allows the determination
of configurations that generate the experimental results. The knowledge of
these configurations may allow the calculation of the microscopic interaction
parameters.

Hence, the standard Monte Carlo simulations in physics allow the ex-
planation of macroscopic effects on the basis of microscopic interactions for
which the reverse Monte Carlo methods give some information about the
microscopic structure on the basis of experimental measurements. But there
is an important warning: The reverse Monte Carlo simulation can lead to a
subset of configurations without a physical meaning.

In other words, not all configurations detected with a reverse Monte Carlo
simulation are consistent with physical reality. However, the more indepen-
dent experimental data are considered in the functional F , the lower is the
danger of a false statement about the intrinsic structure of the underlying
system.

5.3 Cellular Automata

Cellular automata provide a formal framework for investigating the behavior
of complex systems [271]. Cellular automata systems are dynamical systems
with discrete space and time scales. The behavior of a cellular automaton
is completely specified in terms of a local relation. Each cell of a cellular
automaton is connected with its nearest neighbors via input and output chan-
nels (Figure 5.3).

We assume that the cell α is in one of a finite number of Kα possible
states. At a discrete time tn, the cell receives information about the state of
its neighbors via the input channels and simultaneously sends the informa-
tion about its own state to its neighbors via the output channels. We remark
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that the flows of input and output are not necessarily symmetric. The new
state of each cell at time tn+1 = tn + δt is governed by a Boolean transition
function Tα of the inputs and the state of the cell in question. Generally,
we distinguish between homogeneous and inhomogeneous cellular automata.
A homogeneous automaton consists of identical cells with symmetric infor-
mation flows, while the behavior of the cells of an inhomogeneous cellular
automaton are influenced by their position in the whole network of cells.
Furthermore, the local rules controlling the behavior of a cellular automaton
may be time-dependent on the automaton.

Obviously, the main properties of a cellular automaton model, especially
the discretization of the space and the states, the parallel update at discrete
points in time, and the relatively short-range interaction with a finite number
of neighbors, suggest the application of parallel computing techniques and
therefore a very high performance.

Historically, the earliest automata were mechanical devices such as the
town hall clock of Prague or the Parisian artificial duck of Jacques de Vau-
canson dating from 1738. The first numerically working cellular automata
were originally conceived by Ulam and von Neumann in the 1940s [271].

Due to the discrete structure and the elementary rules discussed above,
cellular automaton algorithms offer a very high speed even for a high degree
of complexity. This property makes cellular automata models important for
physical and economical research.

Relatively simple interaction rules allow the description of complex phe-
nomena [135, 193, 379, 389, 431, 432, 433] such as self-organized critica-
lity [29, 291], evolution of chemically induced spiral waves [257], oscillations
and chaotic behavior of states [257, 287, 431], forrest fires [31], earthquakes
[36, 85, 384], discrete mechanics [24], statistical mechanics [414], the dy-
namics of granular matter [29, 305], soliton excitations [365], and fluid dy-
namics [73, 134]. Other applications belong to various domains in biology

cell

output

input

Fig. 5.3. Schematic representation of the input and the output channels of a cell
of a cellular automaton
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[113], including neuroscience [10, 37], and the dynamics of traffic systems
[45, 75, 83, 277].

On the other hand, cellular automata models are increasingly used in
social science [169, 286] and economics. In the latter, cellular automata are
sometimes used as simple models of multiagent systems [162, 231, 306].

The investigation of multiagent systems focuses on systems in which many
agents interact with each other. The agents are considered to be autonomous
entities, such as computers and software programs, humans, or companies. In
the language of cellular automata theory, each cell corresponds to an agent.
Their interactions can be either cooperative or selfish. That is, the agents
can share a common goal such as the member of a party or the computer of
a large computation center, or they can pursue their own interests such as
the companies in a free market economy.

The most important aspect of a cellular automaton is the transition rules
defined by the transition function Tα. The transition function defines the
state

Sα(tn+1) = Tα (Sα(tn), {Sβ (tn)} | β ∈ N (α)) (5.16)

of cell α at time tn+1 as a function of the previous state Sα(tn) and the
states of all neighboring cells β. Even though the transition functions mainly
determine the evolution, it is very hard to predict the evolution of a cellular
automaton other than by explicitly simulating it. Equation (5.16) is a deter-
ministic law. We remark that often a small change in the transition rule can
have very dramatic consequences. Some rules need no detailed information
about the individual states of the neighboring cells but only on the number
of neighbors in a certain state S,

Nα(S) =
∑

β∈N(α)

δSβ(tn),S . (5.17)

In classical cellular automata theory, a rule is called totalistic if it only de-
pends on the sum of the states of all cells in the neighborhood. It is called
outer totalistic if it also depends on the state of the cell Sα(tn) to be updated.
In a formula a totalistic rule may be described as

Sα(tn+1) = Tα (Sα(tn), {Nα(S)}) . (5.18)

Another important class of transition rules are probabilistic rules. In this
case, the transition rule is not a function that has exactly one result for
each input configuration but a rule that provides the outcomes with associ-
ated probabilities. The normalization requires that the sum of probabilities
of all outcomes must be one for each input configuration. In fact, such sys-
tems can be mapped onto a master equation and solved by several numerical
[357, 359, 360] but also analytical methods [351, 363, 364].



6. Forecasting

6.1 Regression and Autoregression

Forecasting means the ability to extrapolate the future dynamics of a given
system on the basis of its current state and its history. If we have a suitable
model, the forecast may be extended to arbitrarily long times. Typical candi-
dates for a nearly unlimited prognosis are the models of classical mechanics.
Knowledge of the initial conditions allows the determination of any further
development due to the deterministic equations of motion. Obviously, a pre-
diction becomes better if we have a higher accuracy of the initial conditions
or of the past and if we have precise equations of motion.

The situation is changed when the system is described by probability
equations such as Ito stochastic differential equations or Fokker–Planck equa-
tions. Here, the dynamics of the hidden, irrelevant degrees of freedom are col-
lected in stochastic and dissipative terms. Thus, the predictions contain an
intrinsic error that increases with increasing forecasting time . The accuracy
of a probability prediction depends on the macroscopic level and therefore
the number of relevant degrees of freedom involved. If we knew more about
the microscopic states of the system, we could predict the future development
more precisely.

Physical models with stochastic character usually have a widely accepted
and well-justified model. Thus, prediction of the future evolution consists in
the estimation of the model parameters and in the characterization of the
stochastic sources. On the other hand, we usually have insufficient models of
economic systems and processes. The most unfavorable case is a black box
situation: we have only observations about the input and the output, while
the economic process is completely unclear. Furthermore, a real economic or
financial system allows only a limited number of observations because any
repetition of the same process under the same boundary conditions and initial
conditions is impossible.

At the beginning of the last century, standard predictions were undertaken
simply by extrapolating the time series through a global fit procedure. The
principle is very simple. Suppose that we have a time series {y1, y2, ..., yN}
with the corresponding points in time {t1, t2, ..., tN}. Then, we can determine
a regression function f in such a way that the distance between the obser-
vations yn and the corresponding values f (tn) becomes sufficiently small.
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The main problem is the definition of a suitable measure for the distance.
Standard techniques such as least mean square methods minimize a certain
utility function, for example

F =
N∑

n=1

(yn − f(tn))2 , (6.1)

by varying the parameters of the function f . For instance, the well-known
linear regression requires the determination of the parameters A and B, which
define the regression function f via f (t) = A + Bt. Obviously, the choice of
the utility function is very important for the determination of the parameters
of the regression function. For example, the very simple regression function
f (t) = Bt may be estimated by

F1 =
N∑

n=1

(yn −Btn)2 and F2 =
N∑

n=1

(
yn

Btn
− 1
)2

. (6.2)

The first function stresses the absolute deviation between the observation
and the regression function, while the second expression stresses the relative
error. The first function leads to the estimation B = 〈yt〉N /

〈
t2
〉

N
, while the

second one yields B =
〈
y2t−2

〉
N
/
〈
yt−1

〉
N

, where we have used the definition

〈g〉N =
1
N

N∑
n=1

gn. (6.3)

It is very important to define both the regression function and the utility
function very well and in agreement with the underlying problem. After de-
termination of the regression parameters, the predictions are simply given
by

ŷN+k = f(tN+k). (6.4)

The beginning of modern time series prediction was in 1927, when Yule [436]
introduced the autoregressive model in order to predict the annual number
of sunspots. Such models are usually linear or polynomial and are driven by
white noise. In this context, predictions are carried out on the basis of para-
metric autoregressive (AR), moving average (MA), or autoregressive moving
average (ARMA) models [62, 239, 245].

The autoregressive process AR(p) is defined by

y(tn) = a0 +
p∑

k=1

aky(tn−k) + η(tn), (6.5)

where the ak (k = 0, ..., p) are fixed model parameters and ηn represents
the current noise. We can use an appropriate method of estimation, such
as ordinary least squares, to get suitable approximations âk of the initially
unknown parameters ak. After estimating these model parameters, we get
the fitted model
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ŷ(tn) = â0 +
p∑

k=1

âky(tn−k) . (6.6)

Clearly, different regression methods give different estimates, but they are all
estimates on the basis of the same more or less unknown but true distribution
of y(tn). In this sense, ŷ(tn) is an estimation of the true conditional mean
of y(tn), which may be generally denoted as E (y(tn) | ωn−1), where ωn−1
is the information set available at time tn−1. In the case of the autoregres-
sive process AR(p) introduced above, we have ωn−1 = {y(tn−1), ..., y(tn−p)}.
This notation makes explicit how the conditional mean and therefore the
prediction is constructed on the assumption that all data up to that point
are known deterministic variables.

A natural way to estimate the coefficients ak considers the Mori–Zwanzig
equations (2.121). As pointed out, this equation is an exact linear relation.
In a discrete version, this equation reads

yα(tn+1) = yα(tn) +
M∑

β=1

n∑
k=0

Ξαβ(tn − tk)yβ(tk) + ηα(tn+1), (6.7)

where we have considered α = 1, 2, ...M simultaneously given time se-
ries. Note that we have replaced the notations for the relevant quantities,
Gα → yα, and for the residual forces, fα → ηα, while the frequency matrix
and the memory kernel are collected in the matrix Ξαβ(tn − tk). Of course,
the residual forces, the memory, and the frequency matrix contained in the
original Mori–Zwanzig equations are implicitly dependent on the initial state
at t0. Thus, for a stationary system, the matrix Ξαβ(t) is independent of
the initial state, and the residual forces may be interpreted as a stationary
noise. In order to determine the matrix Ξαβ(t), we remember that the cor-
relation functions of the relevant quantities are exactly defined by (2.127).
This equation reads in its discrete form

yα(tn+1)yγ (t0) = yα(tn)yγ (t0) +
M∑

β=1

n∑
k=0

Ξαβ(tn − tk)yβ(tk)yγ (t0). (6.8)

Besides the error due to the discretization, (6.8) is an exact relation. In
the case of a stationary system, (6.8) holds for all initial times t0 with the
same matrix function Ξαβ(t). Thus, we can replace the correlation functions
yα(tn)yγ (t0) by the estimations

Cαγ(tn − t0) = 〈yα(tn)yγ (t0)〉 =
1
N

N−1∑
k=0

yα(tn+k)yγ(tk), (6.9)

which are obtainable from empirical observations. Thus, we arrive at the
matrix equation

Cαγ([n+ 1] δt) = Cαγ(nδt) +
M∑

β=1

n∑
k=0

Ξαβ([n− k] δt)Cβγ(kδt), (6.10)
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where we have used tn+1 = tn + δt. Equation (6.10) allows the determination
of the matrix Ξαβ(t) on the basis of the empirically estimated correlation
functions Cαγ(t). After estimating the matrix functions Ξαβ(t), we get the
prediction formula

ŷα(tn+1) = yα(tn) +
M∑

β=1

n∑
k=0

Ξαβ(tn − tk)yβ(tk). (6.11)

We remark that repeated application of such prediction formulas allows also
the forecasting of the behavior at later times, but of course there is usually
an increasing error.

The prediction formulas of moving averages and autoregressive processes
are related. A moving average is a weighted average over the finite or infinite
past. In general, a moving average can be written as

y(tn) =

N∑
k=0

aky(tn−k)

N∑
k=0

ak

, (6.12)

where the weights usually decrease with increasing k. Typical moving av-
erages are (3.14), (3.17), or with respect to the IGARCH process (3.332).
The weight functions are chosen heuristically under consideration of possible
empirical investigations. The prediction formula is simply given by

ŷ(tn+1) = y(tn). (6.13)

The main difference between autoregressive processes and moving averages
is the interpretation of the data with respect to the prediction formula. In
an autoregressive process, the input is always understood as a deterministic
series in spite of the stochastic character of the underlying model. On the
other hand, the moving average concept assumes that all observations are
realizations of a stochastic process that is a stationary process at least over
a timescale

τ ∼ δt

a0

N∑
k=0

ak. (6.14)

Autoregressive moving averages (ARMA) are combinations of moving
averages and autoregressive processes. Such processes play an important role
in the analysis of modified ARCH and GARCH processes [5].

6.2 The Bayesian Concept

6.2.1 Public Surveys and Decision-Making

Instead of a long introduction, let us illustrate the Bayesian concept by a
simple example. An economically reasonable decision may lead to serious
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consequences since each decision induces a response from consumers, com-
petitors, or the government. In particular, this may be important for the
price policy of large companies or monopolies because any increase in pro-
duct prices is an unpopular step leading to a loss of confidence. Such decisions
can be supported by a suitable public survey . The analysis of a survey can
be carried out on the basis of Bayes’ theorem. Suppose that the decisions are
controlled by a set of hypotheses Bi (i = 1, ..., N). The possible hypotheses
are mutually exclusive (i.e., in the language of set theory, we have to write
Bi ∩Bj = ∅) and exhaustive. The probability that the hypothesis Bi appears
is P (Bi). Furthermore, we consider an event A that may be conditioned by
the hypotheses. Thus, (2.53) can be written as

P (A | Bi)P (Bi) = P (Bi | A)P (A) (6.15)

for all i = 1, ..., N . Furthermore, (2.58) leads to

P (Bi | A) =
P (A | Bi)P (Bi)

N∑
i=1

P (A | Bi)P (Bi)
. (6.16)

This is the standard form of Bayes’ theorem. In the present context, we de-
note P (Bi) as the a priori probability, which is available before the event
A appears. The likelihood P (A | Bi) is the conditional probability that the
event A occurs under the hypothesis Bi. The quantity P (Bi | A) may be inter-
preted as the probability that the hypothesis Bi was true under the condition
that the event A occurs. Therefore, P (Bi | A) is also called an a posteriori
probability, which may be empirically determined after the appearance of A.

To better understand the analysis of an appropriate survey, let us discuss
a small example. In the year 2002, a common currency was introduced in
a number of European states. The costs involved with this change were in-
significant for the majority of European companies. Hence, a change in prices
for industrial goods or services was not justifiable. On the other hand, many
companies usually carry out necessary price adjustments at the end of the
year in order to balance changes in wages and the prices of resources. How
should the management decide on the amount of the adjustment?

A company Σ can generally assume that a certain number of consumers
trust in the fairness of the company’s product prices (hypothesis B+). The
rest of the consumers prefer products of other companies because they believe
that the prices of the products of the company Σ are unfair (hypothesis B−).
The corresponding frequencies can be obtained from a public survey. For
the sake of simplicity, we assume the a priori probabilities P (B+) = 0.5
and P (B−) = 0.5. Furthermore, the survey may give an estimation about
the public opinion on whether the firm applies a fair price policy in the
event that its product prices increase at the turn of the year 2001/2002.
An inquiry among students yielded a probability P (stable | B+) = 0.8 and
P (stable | B−) = 0.02 (i.e., a consumer expects with a frequency of 80% that
a fair company keeps the prices stable and is convinced with a probability
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of 98% from the fact that unfair firms increase their prices). Now, we can
estimate consumer confidence in the case of a price change. We obtain from
(6.16) the following a posteriori probabilities

P (B+ | stable) =
P (stable | B+)P (B+)

P (stable | B−)P (B−) + P (stable | B−)P (B−)
(6.17)

and

P (B− | stable) =
P (stable | B−)P (B−)

P (stable | B−)P (B−) + P (stable | B−)P (B−)
(6.18)

(i.e., we get P (B+ | stable) ≈ 0.97). In other words, if the company were to
keep prices stable, it would be expected that the consumers believe with a
probability of 97% that the company provides a fair price policy. On the other
hand, if the company increases prices, we obtain P (B+ | increase) ≈ 0.17 (i.e.,
only 17% of the consumers would believe that the company’s price policy is
fair).

This example demonstrates the general importance of the Bayesian con-
cept . Simple relations can be used fruitfully for the selection of a hypothesis
or, equivalently, for the selection of a model.

6.2.2 Bayesian Theory and Forecasting

The Bayesian theory of model or decision selection [144, 145, 442, 443] dis-
cussed above generates insights not only into the theory of decision making
but also in the theory of predictions. The Bayesian solution to the model
selection problem is well-known: It is optimal to choose the model with the
highest a posteriori probability. On the other hand, knowledge of the a poste-
riori probabilities is not only important for the selection of a model but also
gives essential information for a reasonable combination of forecast results.
The a posteriori probabilities may be associated with various forecasting
models Fi. For the sake of simplicity, we consider only two models. Then,
we have the a posteriori probabilities P (F1 | ω) that model 1 is true and
P (F2 | ω) that model 2 is true under the condition that a certain event ω
occurs. The estimation of these a posteriori probabilities is obtainable from
the scheme discussed in the previous chapter. Furthermore, we have the mean
square deviations

(y − ŷ)2
∣∣∣
F1

=
∫

dy(y − ŷ)2p (y | F1) (6.19)

and

(y − ŷ)2
∣∣∣
F2

=
∫

dy(y − ŷ)2p (y | F2) (6.20)

describing the expected square difference between an arbitrary forecast ŷ and
outcome y of the model. Because
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p (y | ω) = p (y | F1)P (F1 | ω) + p (y | F2)P (F2 | ω), (6.21)

we get the total mean square deviation

(y − ŷ)2
∣∣∣
ω

= (y − ŷ)2
∣∣∣
F1

P (F1 | ω) + (y − ŷ)2
∣∣∣
F2

P (F2 | ω) (6.22)

that is expected under the condition that the event ω appears. The prediction
ŷ was up to now a free value. We chose this value by minimizing the total
mean square deviation. We get

∂

∂ŷ
(y − ŷ)2

∣∣∣
ω

= 2
[
y|F1

− ŷ
]
P (F1 | ω) + 2

[
y|F2

− ŷ
]
P (F2 | ω)

= 0 (6.23)

and therefore the optimal prediction

ŷ = y|F1
P (F1 | ω) + y|F2

P (F2 | ω). (6.24)

This relation allows us to combine predictions of different models in order to
obtain a likely forecast. For example, the averages y|F1

and y|F2
may be the

results of two moving average procedures . At least one of these forecasting
models fails. The a posteriori probabilities P (Fi | ω) can be interpreted as the
outcome of certain tests associated with the event ω that should determine
the correct moving average model. The model selection theory requires that
we consider only the model that has the largest a posteriori probability (i.e.,
we get either ŷ = y|F1

or ŷ = y|F2
). However, the Bayesian forecast concept

also allows the consideration of unfavorable models with small but finite
weights.

6.3 Neural Networks

6.3.1 Introduction

As discussed above, time series predictions have usually been performed by
using of parametric regressive, autoregressive, moving average, or autore-
gressive moving average models. The parameters of the prediction models
are obtained from least mean square algorithms or similar procedures. A se-
rious problem is that these techniques are basically linear. On the other hand,
many time series in finance and economics are probably induced by strong
nonlinear processes due to the high degree of complexity of the underlying
system.

In particular, this nonlinearity controls the stochastic contributions, which
in a linear forecasting theory are assumed to have a Markov character. How-
ever, we know from the discussion of the memory kernel (2.122) of the Mori–
Zwanzig equation (2.121) that the characteristic timescale of the apparently
stochastic terms is of an order of magnitude of the relaxation time of the
memory. Thus, if we have empirical evidence for an autoregressive process
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with a large number p of previous observations considered, we may conclude
that in a real complex system1 the stochastic terms have also a pronounced
memory, which is not considered in the linear forecasting equations.

In this case, neural networks provide alternative nonlinear methods for
forecasting the further development of time series. Neural networks are power-
ful when applied to problems whose solutions require knowledge about a
system or a model that is difficult or impossible to specify but for which
there is a large set of past observations available [95, 147, 398]. The neural
network approach to time series prediction is parameter-free in the sense
that such methods do not need any information regarding the system that
generates the signal. In other words, the system can be interpreted as a black
box with certain inputs and outputs. The aim of a forecast using neural
networks is to determine the output with a suitable accuracy when only the
input is known. This task is carried out by a process of learning from so-
called training patterns presented to the network and changing the network
structure and weights in response to the output error.

From a general point of view, the use of neural networks may be under-
stood as a step back from rule-based models to data-driven methods [151].

6.3.2 Spin Glasses and Neural Networks

Let us discuss why neural networks are useful for the prediction of the evo-
lution of economic or financial time series. Such systems can store patterns
and can recall these items on the basis of an incomplete input. For example,
if such a network detects similarities between a current time series and an
older one related to the same economic process, it may extrapolate the pos-
sible time evolution of the current time series on the basis of the historical
experience. Usually, the similarities are not very trivially recognizable. The
weights of the stored properties used for the comparison of different patterns
depend on the architecture of the underlying network. First, we will explain
why neural networks have a so-called adaptive memory.

Neural networks have some similarities with a real nervous system con-
sisting of interacting nerve cells [195, 217]. Therefore, let us start our inves-
tigation from a biological point of view. The human nervous system is very
large. It consists of approximately 1011 highly interconnected nerve cells.
Electric signals induce transmitter substances to be released at the synap-
tic junctions where the nerves almost touch (Figure 6.3.2). The transmit-
ters generate a local flow of sodium and potassium cations that raises or
lowers the electrical potential. If the potential exceeds a certain threshold, a
soliton-like excitation propagates from the cell body down to the axon. This
then leads to the release of transmitters at the synapses to the next nerve
cell. Obviously, the nervous system may be interpreted as a large cellular
automaton of identical cells but with complicated topological connections. In
1 but not necessarily in the mathematical model.
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Fig. 6.1. Schematic representation of a nerve cell

particular, each cell has effectively just two states, an active one and a pas-
sive one. We adopt a spin analogy: the state of the cell α (α = 1, ..., N) may
be given by Sα = ±1, where +1 characterizes the active state and −1 the
passive state. The electrical potential may be a weighted sum of the activity
of the neighboring nerve cells

Vα =
∑

β

JαβSβ . (6.25)

The coupling parameters Jαβ describe the influence of cell β on cell α. We
remark that there is usually no symmetry (i.e., Jαβ �= Jβα). Of course, the
absolute value and the sign of the parameters Jαβ depend on the strength of
the biochemically synaptic junction from cell β to cell α. The transition rule
(5.16) of this cellular automaton reads

Sα(tn+1) = sgn (Vα(tn) − θα) = sgn

∑
β

JαβSβ(tn) − θα

 , (6.26)

where θα is the specific threshold of the cell [68, 235, 261]. Let us now trans-
form this deterministic cellular automaton model into a probabilistic one. To
do this, we introduce the probability that the cell α becomes active at tn+1,

p+
α (tn+1) = ψ(Vα(tn) − θα), (6.27)

where ψ is a sigmoidal function with the boundaries
ψ (−∞) = 0 and ψ (∞) = 1. Equation (6.27) implies that p−

α = 1 − p+
α .

This generalization is really observed in nervous systems. The amount of
transmitter substance released at a synapse can fluctuate so that a cell re-
mains in the passive state even though Vα(tn) exceeds the threshold θα. For
the sake of simplicity, we focus on the symmetric case Jαβ = Jβα. The special
choice

ψ (x) =
1

1 + exp {−2x/T} (6.28)
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is particularly convenient because it corresponds to an Ising model with so-
called Glauber dynamics. This means that a cell changes its state independent
of possible changes of other cells. For symmetric Jαβ , the system reaches, after
a sufficiently long relaxation time, the thermodynamic equilibrium characte-
rized by the stationary Gibb’s distribution exp {−H/T} with the Hopfield
Hamiltonian [8, 174, 175]

H = −1
2

∑
αβ

JαβSαSβ +
∑
α

θαSα (6.29)

and the temperature T . From here, we can reproduce (6.27) and (6.28) in
a very simple manner. The cell α can undergo the transitions +1 → +1,
−1 → −1, −1 → +1, and +1 → −1 with the corresponding energy differ-
ences ∆H+,+ = ∆H−,− = 0 and ∆H−,+ = −∆H+,− = 2 (Vα − θα), which
follow directly from (6.29). Thus, the Gibb’s measure requires the conditional
probabilities

pα (+ | +) =
exp(−∆H+,+/T )

exp(−∆H+,+/T ) + exp(−∆H−,+/T )
(6.30)

and

pα (+ | −) =
exp(−∆H+,−/T )

exp(−∆H+,−/T ) + exp(−∆H−,−/T )
. (6.31)

Considering the values of the energy differences, we get p+
α = pα (+ | +) =

pα (+ | −), where p+
α satisfies (6.27) and (6.28). Obviously, our special model

of a neural network is nothing other than a spin glass (i.e., an Ising model
with stochastic but symmetric interaction constants Jαβ and the set of spin
variables S = {S1,..., SN}).

Now, we come back to the question of how a neural network can store
items and how it can recall the items on the basis of an incomplete input. We
restrict ourselves to the simple spin-glass model introduced above [124, 299,
300]. A pattern may be defined by a particular configuration σ = {σ1, σ2, ...}.
Such a pattern is called a training pattern . Usually, we have to deal with
more than one training pattern σ(m) with m = 1, 2, ...,M . Let us define the
coupling constants as [8, 168, 174, 175]

Jαβ =
1
N

M∑
m=1

σ(m)
α σ

(m)
β . (6.32)

The prefactor N−1 is just a convenient choice for defining the scale of the cou-
plings. Equation (6.32) is known as the Hebb rule. In the following discussion,
we set θα = 0, although the theory can also work without this simplification.
Thus, due to (6.32), the Hamiltonian (6.29) becomes

H = −N

2

M∑
m=1

(
σ(m), S

)2
, (6.33)
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where we have introduced the scalar product

(σ, σ′) =
1
N

N∑
α=1

σασ
′
α. (6.34)

In the case of only one pattern, M = 1, the Hamiltonian can be written
as H = −N (σ(1), S

)2
/2. In other words, the configurations with the lowest

energy (H = −N/2) are given by S = σ(1) and by S = −σ(1). This means
that an initially given pattern S(0) approaches one of the two ground states
σ(1) or −σ(1) in the course of the dynamics of the neural network for suffi-
ciently low temperatures T . If we have a finite number M � N of statistically
independent training patterns, every one of them is a locally stable state. We
remark that two patterns σ(m) and σ(n) are completely independent if the
scalar product

(
σ(m), σ(n)

)
vanishes,

(
σ(m), σ(n)

)
= 0. Statistical indepen-

dence means that σ(m) and σ(n) represent two random series of values ±1.
Thus, we find the estimation

∣∣(σ(m), σ(n)
)∣∣ ∼ N−1/2. Let us set S = σ(k).

Then, we obtain from (6.33)

H = −N

2

M∑
m=1

(
σ(m), σ(k)

)2

= −N

2

1 +
∑
m�=k

(
σ(m), σ(k)

)2


≈ −N

2
+ o (M) . (6.35)

It is simple to show that the training patterns σ(m) (and the dual patterns
−σ(m)) define the ground states of the Hamiltonian. This means that the
dynamics of the neural network with a finite number of training patterns
again find the stable state that most resembles the initial state S(0). This is
the main property of an adaptive memory . Each configuration learned by
the neural network is stored in the coupling constants (6.32). A given initial
configuration S(0) of the network is now interpreted as a disturbed training
pattern. The neural network acts to correct these errors in the input just by
following its dynamics to the nearest stable state. Hence, the neural network
assigns an input pattern to the nearest training pattern.

The neural network can still recall all M patterns (and the M dual pat-
terns) as long as the temperature is sufficiently low and M/N → 0 for
N → ∞. The critical temperature is given by Tc = 1 (i.e., for T > 1,
the system reaches thermodynamic equilibrium). In other words, the neural
network behaves similar to a paramagnetic lattice gas, and the equilibrium
state favors no training patterns. On the other hand, for very low temper-
atures and a sufficiently large distance between the input pattern S(0) and
the training pattern, the dynamics of the system may lead the evolution S(t)
into spurious ghost states other than the training states. These ghost states
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are also minima of the free energy that occurs due to the complexity of the
Hamiltonian (6.33). But it turns out that these ghost states are unstable
above T0 = 0.46. Hence, by choosing the temperature slightly above T0, we
can avoid these states while still keeping the training patterns stable.

Another remarkable situation occurs for c = M/N > 0. Here, the training
states remain stable for a small enough c. But beyond a critical value c�(T ),
they suddenly lose their stability, and the neural network behaves like a real
spin-glass [9, 11]. Especially, the typical ultrametric structure of the spin
glass states occurs in this phase. At T = 0, the curve c�(T ) reaches its
maximum value of c�(0) ≈ 0.138. For completeness, we remark that above
a further curve cp(T ), the spin-glass phase melts to a paramagnetic phase.
However, both the spin-glass phase and the paramagnetic phase are useless
for an adaptive memory. Only the phase capturing the training patterns is
meaningful for the application of neural networks.

6.3.3 Topology of Neural Networks

The physical approach to neural networks discussed above is only a small con-
tribution to the mainstream of mathematical and technical efforts concerning
the development of this discipline.

Beginning in the early 1960s [334, 335, 428], the degree of scientific de-
velopment of neural networks and the number of practical applications grew
exponentially [67, 161, 174, 207, 341, 429]. In neural networks, computational
models, or nodes, are connected through weights that are adapted during use
to improve performance. The main idea is equivalent to the concept of cellu-
lar automata: High performance occurs due to interconnection of the simple
computational elements. A simple node labeled by α provides a linear com-
bination of Γ weights Jα1, Jα2,..., JαΓ and Γ input values x1, x2,..., xΓ and
passes the result through a usually nonlinear transition or activation function
ψ,

yα = ψ

 Γ∑
β=1

Jαβxβ

 . (6.36)

The function ψ is monotone and continuous, most commonly of a sigmoidal
type. In this representation, the output of the neuron is a deterministic result.
In general, the output can be formulated also on the basis of probabilistic
rules (see above).

The neural network is then an interconnected set of such nodes. But in
contradiction to most of the cellular automata models, the nodes or neurons
of a neural network have a large number of nearest neighbors so that a dense
interconnection appears. There is the theoretical experience that massively
interconnected neural networks provide a greater degree of robustness than
weakly interconnected networks. By robustness, we mean that small pertur-
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bations in parameters and in the input data will result in small deviations of
the output data from their nominal values.

Besides their node characteristics, neural networks are characterized by
their network topology . The topology can be determined by the connectivity
matrix Θ with the components Θαβ = 1 if a link from the node α to the node
β exists and Θαβ = 0 otherwise. A link from α to β means that the output
of α is the input of β.

Only such weights Jαβ can have nonzero values, which corresponds to
Θαβ = 1. In other words, we may write

Jαβ = Θαβgαβ . (6.37)

where Θαβ is fixed by the respective network architecture and remains un-
changed during the learning process, while the gαβ should capture the training
patterns.

Obviously, the connectivity matrix is not necessarily a symmetric one.
We may describe this matrix symbolically by a corresponding network graph
that consists of arrows and nodes. In particular, each arrow stands for an
existing link, and the direction of the arrow indicates the flow of information.

The Hopfield network discussed above has the ideal connectivity Θαβ = 1
for all α �= β. Thus, the topology of the Hopfield network is represented by
a graph in which each node is connected to each other node by a double
arrow (Figure 6.3.3). The dilution of such a topology by a random pruning
procedure leads to a stochastic neural network or a so-called neural cluster.
From the topological point of view, both types of neural networks distinguish
not at all or only very weakly between input neurons and output neurons.
The only exception is the case of a diluted network containing nodes with
only outgoing arrows or only incoming arrows so that these nodes can be
classified as input nodes or output nodes. Usually, these nodes are defined by
the underlying program structure but not by the topology of the network.

Fig. 6.2. The graph of a Hopfield network with six nodes.



220 6. Forecasting

hidden layers
outputinput

Fig. 6.3. Typical graph of a layer network.

Another version of neural networks shows a so-called layer structure ,
where the input nodes and output nodes can be identified on the basis of
the topological structure. Formally, these networks consist of an input layer,
several hidden layers, and an output layer (Figure 6.3).

Topologically, these neural networks contain no loops. Therefore, layer
networks are sometimes called filters or feedforward networks. The input
pattern is transformed by deterministic or, more rarely, by probabilistic rules
into several intermediate patterns at the hidden layers and the final pattern
at the output layer.

Modern layer networks imply several feedback mechanisms between sub-
sequent and previous layers. Therefore, we distinguish between two cate-
gories of neural networks: feedforward networks or filters without any loops
and recurrent networks, where loops occur because of feedback connec-
tions. In other words, subsequent layers have the possibility to send data to
previous layers that may be used for a change in the weights or the activation
functions of the previous layer in order to obtain an improved treatment of
the next input. Another frequently used version consists of multiple restarts
of the computation using the output of subsequent layers as a new input of
previous layers. Such a technique can be used to stabilize the final output.

Between the Hopfield network and the feedforward network exist a lot
of intermediate levels. The so-called Kohonen network [207] or feature map
consists of a regular d-dimensional lattice and an input layer. Each node of the
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regular lattice is bidirectionally connected with all nodes of a neighborhood
shell, and each node of the input layer is connected by directed links with
all nodes of the Kohonen layer. The important property of such a network is
that at the end of the computation steps the node with the largest output
is set to 1 while all other nodes are defined to be zero. Thus, a Kohonen
network can be used for the classification of incoming patterns.

The bidirectional associative memory [52] consists of two layers: the input
and the output layers. All components of the connectivity matrix correspon-
ding to links between both layers have the value 1, while all other coefficients
vanish. Thus, the network topology of such a network is characterized by a
symmetric matrix. Similar to the Hopfield model, the bidirectional associative
memory approaches a stationary state after a sufficiently large number of
iterative computation steps with the difference that for odd steps the data
flow from the input to the output nodes while a data backflow from the
output nodes to the input nodes occurs for even computation steps.

Other neural networks, such as the adaptive resonance network [161] or
the learning vector quantizers [321], are further realizations of combinations
of layer structures.

6.3.4 Training of Neural Networks

A neural network is characterized by its topology and its node characte-
ristics and the training patterns captured in the values of the weights Jαβ .
The remaining question is how a neural network can store the training pat-
terns. As discussed above, the problem can be solved straightforwardly for
a Hopfield network. A similar situation occurs for the bidirectional adaptive
memory. But other networks with complicated loops and asymmetric con-
nectivity matrices need a special learning procedure in order to prepare the
originally nonspecified system for the subsequent working phase. The training
requires a sufficiently strong adaptability of the network.

In general, adaptability may be interpreted as the ability to react to
changes in the environment through a learning process [322]. In our case, the
environment of a neural network is given by a real system, such as a market,
the internal dynamics of which are widely unknown. In order to use a neural
network for predictions, it is fed with the same input signal x (tn) (for in-
stance, several economic indicators or a set of the last stock prices) as the real
system at every discrete time step tn. The output of the neural system may
be y (tn), while r (tn) is the response of the unknown system. The error signal
e(tn) is formed as the difference of both output signals, e(tn) = r(tn)−y(tn),
and the parameters of the weights of the neural network are adjusted using
this error information.

The aim of a learning procedure is to update iteratively at each time step
tn the weights Jαβ(tn) of an adaptive system so that a nonnegative error
measure E is reduced at each time step tn, E (J(tn+1)) ≤ E (J(tn)). This
will generally ensure that, after the training process, the neural network has
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captured the relevant properties of the unknown system that we are trying
to model. Using ∆J(tn) = J(tn+1) − J(tn), we obtain

∆E (J(tn)) = E (J(tn+1)) − E (J(tn))

=
∑
αβ

∂E (J)
∂Jαβ

∣∣∣∣
J=J(tn)

∆Jαβ(tn) (6.38)

and therefore∑
αβ

∂E (J)
∂Jαβ

∣∣∣∣
J=J(tn)

∆Jαβ(tn) ≤ 0. (6.39)

This equation is always fulfilled for the special choice

∆Jαβ(tn) = −Λ ∂E (J)
∂Jαβ

∣∣∣∣
J=J(tn)

, (6.40)

where Λ is a small positive scalar called the learning rate or the adapta-
tion parameter [96]. A learning procedure controlled by (6.40) is also called
a gradient-descent-based learning process. We remark that gradient-based
algorithms inherently forget old data, which has particular importance for
performance of the learning procedure.

The quasi-Newton learning algorithm is based on the second-order deriva-
tive of the error function. If we expand the error function in a Taylor series,
we have

∆E (J(tn)) =
∑
αβ

∂E (J)
∂Jαβ

∣∣∣∣
J=J(tn)

∆Jαβ(tn)

+
1
2

∑
αβγδ

∂2E (J)
∂Jαβ∂Jγδ

∣∣∣∣
J=J(tn)

∆Jαβ(tn)∆Jγδ(tn). (6.41)

Using the extremum condition ∂∆E (J(tn)) /∂∆Jαβ(tn) = 0, we get the
changes

∆Jαβ(tn) = −
∑
γδ

[(
∂

∂J
◦ ∂

∂J
E (J)

)−1
]

αβγδ

∂E (J)
∂Jγδ

∣∣∣∣∣∣
J=J(tn)

. (6.42)

As a simple example, let us calculate the changes ∆Jαβ(tn) for a neural
network with only one node and an input vector of dimension Γ . Such a
simple neural network is called a perceptron. The error function may be
given by

E = e2(tn) =

r (tn) − ψ

 Γ∑
β=1

Jβ (tn)xβ (tn)

2

(6.43)

with Jβ = J1β . Therefore, we obtain
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∂E
∂Jα (tn)

= −2e(tn)ψ′

 Γ∑
β=1

Jβ (tn)xβ (tn)

xα (tn) , (6.44)

and the gradient-descent-based learning process is defined by the equation

Jα(tn+1) = Jα(tn) + 2Λψ′

 Γ∑
β=1

Jβ (tn)xβ (tn)

 e(tn)xα (tn) . (6.45)

When deriving a learning algorithm for a general neural network, the network
architecture should be taken into account. This leads, of course, to relatively
complicated nonlinear equations that must be treated during the training
procedure of a network.

In principle, the learning algorithms introduced above are special pro-
cedures referring to the class of adaptive learning. Roughly speaking, the
idea behind this concept is to forget the past when it is no longer relevant
and adapt to the changes in the environment. We remark that the term
gear-shifting is sometimes used for the gradient-descent-based learning dis-
cussed above when the learning rate is changed during training. Other pop-
ular learning algorithms are deterministic and stochastic learning methods
[203, 333, 393].

Finally, we mention another learning procedure, which is called construc-
tive learning. This modern version deals with the change of architecture or
topological interconnections in the network during training. Neural networks
for which the topology can change in the course of the learning procedure
are called ontogenic neural networks [122]. The standard procedures of con-
structive learning are network growing and network pruning. The growing
mechanism begins with a very simple network, and if the error is too big,
new subnetwork units or single network units are added to the network [173].
In contrast, network pruning starts from a large neural network, and if the
error is smaller than a lower limit, the size of the network is reduced [327, 392].

6.3.5 Neural Networks for Forecasting

After the storage of a sufficiently large number of training patterns, the neural
network can be used for the prediction of trends. As mentioned above, the
complete training patterns contain both the input and the expected output.
The treatment of both data groups may differ according to the architecture
of the network and the corresponding training method. Typically, the input is
a financial or economic time series, while the output may be the continuation
of this series or discrete information, such as to buy or sell a certain asset.
After finishing the training period, the network gets only the last input and
completes this pattern as a result of its internal dynamics. The interesting
part of the complete pattern is then the output, which can be understood as
a prediction about the future evolution.
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Fig. 6.4. The prediction of the future evolution (open cirles) in comparison with
the real data (straight line) for Deutsche Telekom stock. The time interval for the
prediction is 3 trading days. The last data are from 07/02. Source: http://www.jt-
prognosis.com

In principle, there exist a large list of technical realizations of neural
network models used for forecasting financial processes. Here, we will give a
few examples in place of this increasing set of prognosis techniques.

A modern version of neural networks consists of coupling different fore-
casting neural networks [201] with only a few output nodes each and a final
comparison of the results by a master network or another comparison proce-
dure. Such a procedure may be the computation of a simple average [201] or
another weighted average considering the effectiveness of the neural network
models by application of a Bayesian analysis. Furthermore, old training pat-
terns are continuously replaced by new data. This situation looks similar to
the application of a moving time window. Such networks may give reasonable
predictions on the basis of digital output information, such as that a stock
price will increase (decrease) during a given time period.

A combination of autoregression methods and a neural network consisting
of an input layer, a hidden Hopfield neural network and an output layer [177]
can be used for the simultaneous prediction of the future time evolution of
M = 106 stock prices up to 1 trading month (see Figures 6.4 and 6.5). The
accuracy of the predictions may be estimated by the measure

Ω =
1

NM

N∑
n=1

M∑
α=1

(Xα(tn) − Yα(tn))2

σ2
α (TP)

, (6.46)
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where Yα(tn) is the prediction of the stock price α for the time tn, while
Xα(tn) is the realization of this price after the end of the prediction time.
Furthermore, N is the current number of predictions. The variance σα is here
the mean square change of the stock price during the prediction time period
TP, namely

σ2
α (TP) =

1
N

N∑
n=1

[Xα(tn) −Xα(tn − TP)]2 . (6.47)

Obviously, if the predicted change of a stock price Yα(tn) − Xα(tn − TP) is
independent from the real change Xα(tn) − Xα(tn − TP) and both changes
have the same variance, the quantity Ω approaches the value 2 for sufficiently
large N . The simple prediction Yα(tn) = Xα(tn − TP) leads to Ω = 1 for
N → ∞. Thus, a real prognosis requires Ω < 1. The above-mentioned com-
bined technique [177] has a maximum accuracy of Ω ≈ 0.60 (TP = 5 trading
days) for the stocks of the Dow Jones and Ω ≈ 0.72 (TP = 5 trading days)
for the stocks of the German stock index DAX.
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Fig. 6.5. The prediction of the future evolution (open cirles) in comparison with
the real data (straight line) for Deutsche Bank stock. The time interval for the pre-
diction is 2 trading days and the last data are from 07/02. Source: http://www.jt-
prognosis.com

Finally, we remark that neural networks can be used also for other pre-
diction problems, such as the bankruptcy of companies and banks [394, 395],
the optimization of portfolios [434], marketing [176], the classification of con-
sumers and demands [92], or project management [263].
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294. T. F. Palander: Beiträge zur Staatstheorie (Almquist & Wiksells, Uppsala,

1935).
295. T. I. Palley: Int. Rev. Appl. Econ. 7, 144 (1963).
296. A. Pagan: J. Empirical Fin. 3, 15 (1996).



236 References

297. S. V. Panyukov, Y. Rabin: Phys. Rep. 269, 1 (1996).
298. C. H. Papadimitriou, K. Steigitz: Combinatorial Optimization (Prentice–Hall,

Englewood Cliffs, 1996).
299. G. Parisi: Phys. Rev. Lett. 43, 1754 (1979).
300. G. Parisi: J. Phys. A 13, 1101 (1980).
301. G. Parisi: J. Stat. Phys. 72, 857 (1993).
302. G. Parisi, N. Sourlas: Phys. Rev. Lett. 43, 744 (1979).
303. W. Paul, J. Baschnagel: Stochastic Processes. From Physics to Finance

(Springer, Berlin, 2000).
304. H. O. Peitgen, P. H. Richter: The Beauty of Fractals (Springer, New York,

1986).
305. G. Peng, H. J. Heermann: Phys. Rev. E 49, 1796 (1994).
306. I. Peterson: Sci. News 158 (November 11, 2000).
307. A. W. H. Phillips: Economica 25, 283 (1958).
308. J. A. Picazo: “American Option Pricing: A Classification-Monte Carlo (CMC)

Approach.” In Monte Carlo and Quasi-Monte Carlo Methods 2000, ed. by K.-
T. Fang, F. J. Hickernell, H. Niederreiter (Springer, Berlin, 2002), pp. 422–433.

309. V. F. Pisarenko, Hydrol. Proc. 12, 461 (1998).
310. P. A. Samuelson: J. Econ. Lit. 15, 24 (1977).
311. V. Plerou, P. Gopikrishnan, B. Rosenow, L. A. N. Amaral, H. E. Stanley:

Phys. Rev. Lett. 83, 1471 (1999).
312. Y. Pormeau: J. Phys. 43, 859 (1982).
313. M. Postan: The Cambridge Economic History of Europe, Vols. 1–3 (1966–

1977).
314. R. B. Potts: Proc. Cambridge Philos. Soc. 48, 106 (1952).
315. A. A. Powell, C. W. Murphy: Inside a Modern Macroeconometric Model: A

Guide to the Murphy model (Springer, Berlin, 1995).
316. T. Puu: Reg. Sci. Urban Econ. 8, 225 (1978).
317. T. Puu: The Allocation of Road Capital in Two-Dimensional Space: A Con-

tinuous Approach (North-Holland, Amsterdam, 1979).
318. T. Puu: Reg. Sci. and Urban Econ. 11, 317 (1981).
319. T. Puu: Chaos, Solitons and Fractals 5, 35 (1995).
320. T. Puu: Chaos, Solitons and Fractals 3, 99 (1993).
321. M. Pytlik: Diskriminierungsanalyse und künstliche Neuronale Netze zur Klas-

sifizierung von Jahresabschlüssen (Peter Lang GmbH, Frankfurt, 1995).
322. S. Haykin: IEEE Signal Processing Mag. 15, 66 (1999).
323. M. Raberto, E. Scalas, G. Gumberti, M. Riani: Physica A 269, 148 (1999).
324. R. Rammal, G. Toulouse, M.A. Virasoro: Rev. Mod. Phys. 58, 765 (1986).
325. J. B. Ramsey, P. Rothman: J. Money Credit Banking 28, 1 (1996).
326. S.B. Raymar, M.J. Zwecher (1997): J. Derivatives 5, 7 (1997).
327. R. Reed: IEEE Trans. Neural Networks 4, 740 (1993).
328. D. Ricardo: On the Principles of Political Economy and Taxation (Murray,

London, 1817).
329. B.D. Ripley: Stochastic Simulation (Wiley, New York, 1987).
330. H. Risken: The Fokker–Planck Equation (Springer, Berlin, 1996).
331. F. Robert: Microeconomics and Behavior (McGraw–Hill, New York, 1994).
332. J. Robinson: Economics of Imperfect Competition (Macmillian, London,

1933).
333. K. Rose: Proc. IEEE 86, 2210 (1998).
334. F. Rosenblatt: Psychol. Rev. 65, 386 (1958).
335. F. Rosenblatt: Principles of Neurodynamics (Spartan, Washington, 1962).
336. A. Rosenthal: Ann. Phys. 42, 796 (1913).
337. S. Ross: J. Econ. Theory 13, 341 (1976).



References 237

338. S.M. Ross: Simulation, Second Edition (Academic Press, New York, 1997).
339. R. Y. Rubinstein: Simulation and the Monte Carlo Method (Wiley, New York,

1981).
340. M. Rudolf: Algorithms for Portfolio Optimization and Portfolio Insurance

(Haupt, Bern, 1994).
341. D. E. Rumelhart, G. E. Hinton, R. Williams: Nature (London) 323, 533

(1986).
342. J. B. Rundle, W. Klein, S. Gross, D. L. Turcotte: Phys. Rev. Lett. 75, 1658

(1995).
343. J. B. Rundle, W. Klein, S. Gross, D. L. Turcotte: Phys. Rev. Lett. 78, 3798

(1997).
344. R. R. Russel: Microeconomics (Wiley, New York, 1979).
345. G. Samorodnitsky, M. S. Taqqu: Stable Non-Gaussian Random Processes:

Stochastic Models with Infinite Variance (Chapman and Hall, New York,
1994).

346. P. A. Samuelson: J. Pol. Econ. 87, 923 (1979).
347. B. Sandelin: Econ. and Hist. 19, 117 (1976).
348. S. B. Savage: Adv. Appl. Mech. 24, 289 (1994).
349. E. Schneider: Pricing and Equilibrium (Allen and Unwin Ltd., Crows Nest,

1962).
350. J. A. Schumpeter: History of Economic Analysis (Allen and Unwin, London,

1954).
351. B. M. Schulz, M. Schulz, S. Trimper: Phys. Rev. E 58, 3368 (1998).
352. B. M. Schulz, M. Schulz, S. Trimper: Phys. Lett. A 291, 87 (2001).
353. B. M. Schulz, S. Trimper: Phys. Lett. A 256, 266 (1999).
354. B. M. Schulz, S. Trimper, M. Schulz: Eur. Phys. J. B 15, 499 (2000).
355. B. M. Schulz, S. Trimper, M. Schulz: J. Chem. Phys. 114, 10402 (2001).
356. M. Schulz: J. Chem. Phys. 133, 10793 (2000).
357. M. Schulz, B. M. Schulz: Phys. Rev. B 58, 8178 (1998).
358. M. Schulz, B. M. Schulz, S. Trimper: Phys. Rev. E 64, 026104 (2001).
359. M. Schulz, P. Reineker: Phys. Rev. B 48, 9369 (1993).
360. M. Schulz, P. Reineker: Phys. Rev. B 52, 4131 (1995).
361. M. Schulz, P. Reineker: Chem. Phys. 284, 331 (2002)
362. M. Schulz, S. Stepanow: Phys. Rev. B 59, 13528 (1999).
363. M. Schulz, S. Trimper: Phys. Rev. B 96, 8421 (1996).
364. M. Schulz, S. Trimper: Phys. Rev. B 58, 8178 (1998).
365. M. Schulz, S. Trimper: J. Phys. A: Math. Gen. 33, 7289 (2000).
366. M. Schulz, S. Trimper: Phys. Rev. B 64, 233101 (2001).
367. H. G. Schuster: Deterministic Chaos: An Introduction, Second Edition (VCH

Verlagsgesellschaft, Weinheim, 1988).
368. L. O. Scott: J. Fin. Quant. Anal. 22, 419 (1987).
369. J. J. Seneca, H. K. Taussig: Environmental Economics (Prentice–Hall, Engle-

wood Cliffs, 1974).
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Oeuvres de Turgot, ed. by E. Daire (Guillaumin, Paris, 1844).
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