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Preface

The present volume is a collection of survey papers in the fields given in
the title. They summarize the latest developments in their respective areas.
More than half of the papers belong to search theory which lies on the
borderline of mathematics and computer science, information theory and
combinatorics, respectively. The volume is slightly related to the twin
conferences “Search And Communication Complexity” and “Information
Theory In Mathematics” held at Balatonlelle, Hungary in 2000. These
conferences led us to believe that there is a need for such a collection of
papers.

The paper written by Martin Aigner starts with the following relatively
new search problem. Given n boolean variables as input one has to find one
of them whose value is in majority. The goal is to minimize the number
of tests needed for this where one test is to compare two input variables
for equality. The paper surveys the large set of problems and results which
grew out of this one.

In the traditional search model an unknown element is sought in a finite
set, based on the information that the unknown element is or is not in
some (asked) subsets. A variant is when a 0, 1 function is given on the
underlying set, and only the values of this function at the unknown element
x is sought rather than x itself. This is called the recognition problem.
Gábor Wiener’s paper shows that the recognition problem actually includes
the problem of two-party, deterministic communication complexity. Using
this novel observation it unifies and surveys results in both theories.

The theory of search with lies, or the Ulam–Rényi game is an exciting
area with many applications. The paper of Christian Deppe gives a complete
survey on search problems obtained by allowing lies, that is, when the
answer on the question “is the unknown element x in the subset A?” can
be wrong, but the number of lies is limited.

In linear statistics the influence of certain statistical parameters (fac-
tors) and their combinations are to be determined. Traditionally it was
supposed that one knows beforehand a few important variables and we as-
sume that any combination of the remaining variables have negligible influ-
ence. A 20 year old theory does not make this assumption. Instead, the
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experiments have two simultaneous goals: 1. determine which combinations
have a non-negligible influence, and 2. find the influence of these combina-
tions. This is why this setting is a generalization of the search problems.
The paper of S. Ghosh, T. Shirakura and J. N. Srivastava gives a strong
survey of the results in this theory. Let us mention the theory was founded
by the last of these authors.

The basic problem of sorting is to find the natural order of a set of
integers by pairwise comparisons. It is easy to see that this also fits in
the search model: the underlying set is the set of all permutations, the
unknown element is the actual permutation determined by the natural order.
A relatively new development of the theory that Kolmogorov’s complexity
can be used in proving bounds in sorting problems. This new theory is
surveyed here in the paper of Paul Vitányi.

The paper of D’yachkov, Macula and Vilenkin contains some new results
in the area of non-adaptive search with more than one unknowns. However
it adds an extensive literature in the given area which helps the reader to
obtain a good view.

Flemming Topsøe surveys the situations where information theory can
be used. It has a novel attitude: the situations are treated as problems of
games. 60 references help the reader to study the details.

Dénes Petz gives a survey of the very modern area of Quantum Source
Coding.

The work written by Michael Keane is not a survey. It poses “only” an
exciting new problem that is both very natural and easy to formulate. On
the other hand the paper makes it clear that it is actually a starting point
of a class of difficult problems. The conclusion is a brief description of the
known results.

Peter Harremoës’s paper introduces new topologies on probability distri-
butions, that is, information theoretical divergencies. Since they are com-
pared with the traditional divergencies (entropies), the paper contains a
good survey of these information theoretical concepts. The importance of
the new concepts are justified by theorems, too.

The editors
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Two Colors and More

MARTIN AIGNER

Suppose we are given n balls colored with two colors. How many color-compar-
isons are needed to produce a ball of the majority color? The answer (first given
by Saks and Werman) is M(n) = n−B(n), where B(n) is the number of 1’s in the
binary representation of n. We consider in this paper several generalizations and
variants of the majority problem such as producing a k-majority ball, determining
the color status of all balls, arbitrarily many colors, the plurality problem, and
the closely related liar problem.

1. The majority problem

Suppose we are given n balls colored with two colors, and two players Paul
and Carole playing the following game. At any stage of the game Paul
chooses two balls x and y and asks whether they are of the same color,
whereupon Carole answers “yes” or “no”. The game ends when Paul either
produces a ball z of the majority color (meaning that the number of balls
colored like z exceeds the other color), or when Paul states that there is no
majority. Of course, the latter case can only occur when n is even. How
many questions L(n) does Paul have to ask in the worst case?

This problem was first solved by Saks and Werman [11] and later by
Alonso, Reingold, Schott [4] and Wiener [12] using different methods. The
answer is

(1) L(n) = n−B(n),

where B(n) is the number of 1’s in the binary representation of n. Alonso,
Reingold and Schott [4] also gave the solution for the average case.
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As a warm-up let us see how Paul finds an algorithm that uses no more
than n − B(n) questions. The data structure during the game is a list of
buckets B1, . . . , Bs and a dump D

2a1 2a2 2as. . .

B1 B2 Bs D

where the balls in each bucket are colored alike, always numbering a power
of 2. Thus, initially, there are n buckets each containing one ball with the
dump empty. For the next test Paul chooses two buckets Bi, Bj with ai = aj

and compares balls from Bi and Bj . If the answer is “yes”, he merges the
buckets into one (of new size 2ai+1), otherwise he empties both buckets into
the dump. Hence D contains at any stage an equal number of either color.

The algorithm stops when either all buckets have different sizes 2b1 >
2b2 > · · · > 2bt , or when all balls are in the dump. In the first case the size
2b1 of the largest bucket exceeds 2b2 + · · · + 2bt , and we conclude that B1

contains the majority color balls. In the other case there is no majority.
Hence with either alternative the game is finished.

It remains to compute the number L of questions. By induction it is
clear that Paul needs 2bi − 1 questions to produce a bucket of size 2bi .
Similarly, when he throws two buckets of equal size 2ci−1 into D then he
has asked 2ci − 1 questions. Hence

L ≤ (2b1 + · · ·+ 2bt − t) + (2c1 + · · ·+ 2cr − r)

where
n = 2b1 + · · ·+ 2bt + 2c1 + · · ·+ 2cr .

Since obviously t + r ≥ B(n), we obtain

L ≤ n−B(n).

It is the aim of this paper to present a survey of several natural general-
izations and variants of the majority problem, including a number of open
questions. Only a few proofs will be given in full detail, the emphasis being
on the common ideas for this appealing part of combinatorial search. For
the general background the reader may consult the books by Aigner [1] or
Du–Hwang [7].
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2. First Generalization: Determining a k-majority

We are again given n balls colored with two colors, and a threshold k > n
2 .

In the (n, k)-majority game Paul must exhibit a k-majority ball z (that
is, there are at least k balls colored like z), or declare that there is no k-
majority. Let us denote by L(n, k) the number of questions in the worst
case. Hence the original problem calls for L(n) = L(n,�n

2�+1). Note that
we always have

(2) L(n, k) ≤ n− 1,

since Paul may compare a fixed ball to all the others. Indeed, with this
procedure Paul determines the full color partition. We will return to this
aspect in the last section.

It is convenient to rephrase the game as follows (see [5, 11]). Draw an
edge between x and y when x and y are compared. Suppose at a certain
stage of the game C1, . . . , Cs are the components. Within each Ci the color
classes and hence their sizes ai and bi are known from the answers. Denote
by mi = |ai − bi| ≥ 0 the difference between the majority and minority
number. Hence the stage can be completely described by the state vector

M = (m1, . . . ,ms).

If Paul compares next a majority ball of Ci with a majority ball of Cj , then
the answer “yes” results in

M+
ij = (m1, . . . , mi + mj , . . . , ms)

and the answer “no” in

M−
ij = (m1, . . . , |mi −mj |, . . . , ms)

with mi,mj deleted in both cases.
We note four things:

a) The initial state is M0 = (1, . . . , 1) with n 1’s.

b) The number of questions asked up to M = (m1, . . . , ms) equals n− s.

c) If M = (m1, . . . , ms) is a state, then

(3)
∑

(M) :=
s∑

i=1

mi ≡ n (mod 2).
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This holds since
∑

(M0) = n and either answer mi + mj , |mi −mj |
does not change the parity of the sum.

d) Let M = (m1, . . . , ms) be a state. Since 2k − n = k − (n − k) is
the critical difference between majority and minority, we find that the
majority color in Ci must be a k-majority if mi ≥

∑
j �=i

mj +2k−n. On

the other hand, if mi <
∑
j �=i

mj+2k−n, then Paul cannot be sure about

the status of the colors in Ci. Similarly as long as m1 + · · · + ms ≥
2k− n, a k-majority is still possible, whereas m1 + · · ·+ ms < 2k− n
implies that a k-majority does not exist.

Taking the parity condition (3) into account we can therefore state for
M = (m1 ≥ · · · ≥ mt):

M is not terminal ⇐⇒ 2m1 ≤
∑

(M) + 2k − n− 2 and(3) ∑
(M) ≥ 2k − n

M is terminal ⇐⇒ 2m1 ≥
∑

(M) + 2k − n or(4) ∑
(M) ≤ 2k − n− 2.

For a state M = (m1, . . . , ms) denote by V (M) the size t of the terminal
multi-set when both players perform optimally. Since the number of ques-
tions at the end is n − V (M), Paul wants to maximize V (M) and Carole
wants to minimize it. It follows that

(5) V (M) = max
i,j

min
(
V (M+

ij ), V (M−
ij )
)
.

Given M = (m1, . . . ,ms) we say that mh : m� is an optimal choice for
Paul if

(6) V (M) = min
(
V (M+

h�), V (M−
h�)
)
≥ min

ij �=h�

(
V (M+

ij ), V (M−
ij )
)
.

Clearly, an optimal choice never involves a number mi = 0, since mi = 0
does not change the relations in (4).

Theorem 1 [2]. We have

(7) M(n, k) ≥ n− 1− p where 2p ‖
(

n− 1
k − 1

)
,

that is, 2p is the highest power of 2 dividing
(
n−1
k−1

)
.
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Proof. We proceed along the lines of the Saks–Werman argument in [11]
and explain it for completeness. Suppose we can find a function φ(M) such
that for any state M

i) φ(M) ≥ V (M), if M is terminal

ii) φ(M) ≥ min
(
φ(M+

ij ), φ(M−
ij )
)

for any i, j.

Then φ(M) ≥ V (M) for all M , and thus

(8) n− V (M) ≥ n− φ(M) for all M.

Indeed, if M is not terminal, then for an optimal choice mi : mj of M we
conclude by induction and ii)

φ(M) ≥ min
(
φ(M+

ij ), φ(M−
ij )
)
≥ min

(
V (M+

ij ), V (M−
ij )
)

= V (M).

For a state M = (m1, . . . , ms) call I ⊆ {1, . . . , s} big if
∑
i∈I

mi ≥
∑
j /∈I

mj +

2k − n, and let fM (x) =
∑

I big

xmI , mI =
∑
i∈I

mi, be the generating function

of the big sets. For an integer m denote by P (m) the largest power of 2
dividing m, that is 2P (m) ‖ m, with P (0) =∞. Now we define

φ(M) = 1 + P
(
fM (−1)

)
,

and verify i) and ii).

Suppose M = (m1 ≥ · · · ≥ mt) is terminal with m1 ≥
t∑

j=2
mj + 2k − n.

Then the big sets are precisely those sets containing 1. Hence

fM (x) = xm1(1 + xm2) . . . (1 + xmt)

fM (−1) = (−1)m1
(
1 + (−1)m2

)
. . .

(
1 + (−1)mt

)
.

Now either fM (−1) = 0 and thus φ(M) =∞ > t = V (M), or
∣∣fM (−1)

∣∣ =
2t−1, in which case we obtain φ(M) = t = V (M). When there is no k-
majority, then there are no big sets, fM (x) = 0, and therefore φ(M) =∞.

To verify condition ii), suppose M = (m1, . . . , ms) and M+ = M+
ij ,

M− = M−
ij with mi ≥ mj . An easy case analysis shows

fM (x) = fM+(x) + xmjfM−(x).
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Now, P (a + b) ≥ min
(
P (a), P (b)

)
, and we infer

φ(M) = 1 + P
(
fM (−1)

)
= 1 + P

(
fM+(−1) + (−1)mjfM−(−1)

)
≥ 1 + min (P

(
fM+(−1)

)
, P
(
fM−(−1)

)
)

= min
(
φ(M+), φ(M−)

)
.

To end the proof consider the initial state M0 = (1, . . . , 1). Clearly, the big
sets are those containing at least k indices, whence

fM0(−1) =
n∑

j=k

(
n

j

)
(−1)j = (−1)k

(
n− 1
k − 1

)
.

This yields φ(M0) = 1 + p with 2p ‖
(
n−1
k−1

)
, and thus

L(n, k) = n− V (M0) ≥ n− φ(M0) = n− 1− p.

Remark 1. It is an elementary fact of number theory that for binomial
coefficients: P

((
a
b

))
= B(b) + B(a − b) − B(a), where B(m) denotes as

before the number of 1’s in the binary representation of m. Hence

L(n, k) ≥ n− 1−B(k − 1)−B(n− k) + B(n− 1).

In the ordinary majority game we have n = 2m + 1, k = m + 1 or n = 2m,
k = m + 1. In the odd case

L(n) ≥ n− 1−B(m)−B(m) + B(2m)

= n− 1−B(2m) = n−B(n),

since B(2m) = B(m), B(2m + 1) = B(2m) + 1. In the even case we obtain
similarly

L(n) ≥ n− 1−B(m)−B(m− 1) + B(2m− 1)

= n− 1−B(m) + 1 = n−B(n),

since B(2m − 1) = B(m − 1) + 1, and the equality L(n) = n − B(n) is
established.

Remark 2. The theorem implies L(n, k) = n − 1 whenever
(
n−1
k−1

)
is odd.

For example L(2m, k) = 2m−1 for any k, since it is well-known that
(
2m−1
k−1

)
is always odd. Conversely, it can be shown that L(n, k) = n−1 implies that(
n−1
k−1

)
is odd.
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Remark 3. The bound of Theorem 1 does not always give the correct
value. The smallest example is n = 9, k = 6. Here

(
n−1
k−1

)
= 56, hence

L(9, 6) ≥ 8− 3 = 5, whereas the true value is L(9, 6) = 7.

To further study L(n, k) the following inequalities are derived in [2] using
the function V (M):

Proposition 1. We have

a) L(n, k) ≥ L(n− 1, k) (2k > n)

b) L(n, k) ≥ L(n− 1, k − 1) (2k > n + 1)

c) L(n, k) ≥ L(n− 2, k − 1) + 1 (2k > n).

A general formula for L(n, k) is not known, but we can derive a recursive
expression for L(n, k) under the plausible assumption:

(H) There is always an optimal algorithm for Paul which makes �n
2� dis-

joint comparisons first.

Theorem 2. Under assumption (H)

L(n, k) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L

(
n

2
,
k

2

)
+

n

2
n ≡ 0, k ≡ 0 (mod 2)

L

(
n− 1

2
,
k

2

)
+

n− 1
2

n ≡ 1, k ≡ 0 (mod 2)

L

(
n

2
,
k + 1

2

)
+

n

2
n ≡ 0, k ≡ 1 (mod 2)

L

(
n + 1

2
,
k + 1

2

)
+

n− 1
2

n ≡ 1, k ≡ 1 (mod 2)

with L(1, 1) = 0.

The solution of the recursion in Theorem 2 is given in the following
result.

Proposition 2. Let n = 2a1 + 2a2 + · · · + 2at , a1 < · · · < at, and k =
2b0 + 2b1 + · · · + 2bs , b0 < · · · < bs, be the binary representations of n and
k, 2k > n. Set A = {aj : aj ≥ b0}, B = {b1, . . . , bs}. Then under the
hypothesis (H) L(n, k) is given by

L(n, k) = n− r,
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where

r = [#i : ai ≤ b0] + [#j : aj > b0 such that if b0 ≤ m < aj ,

m ∈ A \B, then there exists p ∈ B \A

with m < p < aj ].

Example. Consider n = 55 = 20 +21 +22 +24 +25, k = 44 = 22 +23 +25.
Then b0 = 2, A = {2, 4, 5}, B = {3, 5}. Here r = 3 + 1 = 4 since a4 = 4
satisfies the second condition, but a5 = 5 does not. Hence L(55, 44) = 51.

Conjecture 1. Proposition 2 gives the true value of L(n, k) for all n and k.

3. Second generalization: more colors

The next generalization immediately comes to mind: Instead of two colors
we consider c colors, with 2 ≤ c ≤ n. Let us denote by Lc(n, k) the
worst-case complexity to produce a k-majority ball (or state that there
is no k-majority), when the balls are colored with up to c colors. Thus
L(n, k) = L2(n, k).

The following chain of inequalities is obvious:

(9) L2(n, k) ≤ L3(n, k) ≤ · · · ≤ Ln(n, k).

Fisher and Salzberg determined Ln(n,�n
2� + 1), that is the length of the

ordinary majority game in the presence of n colors [9]:

Ln

(
n,
⌊n

2

⌋
+ 1

)
=
⌈

3n

2

⌉
− 2.

The general result reads as follows:

Theorem 3. We have

(10) Ln(n, k) = 2n− k − 1.

Proof. We just give the upper bound using a similar idea as in [9]. Thus
we have to exhibit an algorithm that uses no more than

(11) L ≤ 2n− k − 1
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questions. For k = n this is clear from (2). For k = n+1
2 we have the

Fisher–Salzberg result. Setting d = 2k − n we may thus assume 1 < d < n.

Phase 1. Order the balls x1, x2, . . . , xn, and compare the xi’s one after
the other. We set up a dynamic list L and a reservoir R. Initially L = {x1},
R = ∅. Suppose that before the ball xj is compared, the list is L = y1y2 . . . ys

with reservoir R. Now compare xj with the last ball ys of the list. If they
have the same color, put xj into R. Otherwise, enlarge L by moving xj to
the end of L and putting a ball z of R behind xj (in case R = ∅):

L→ Lxjz, R→ R \ {z} (if R = ∅).

The following facts are immediate:

a) All balls in R have the same color which is equal to the color of the
last ball in L.

b) Neighboring balls in L have different colors.

c) At the end of phase 1 (that is, after n − 1 tests) the only possible
k-majority color is that of the last ball in L (or of R).

d) If there is a k-majority, then the (unknown) difference

(12) δ = # majority balls−# rest

must satisfy δ ≥ d.

Phase 2. Let L = . . . y3y2y1ba, |R| = r. If r ≥ n−2, then a is a majority
ball, and we are through. Hence we may assume r < n − 2. We use δ as
in (13) and denote by ρ the (dynamic) size of R. Thus at the beginning of
phase 2 we have ρ = r < n− 2. Now we compare y1 : a. If they are of the
same color, we throw y1 and y2 away. This leaves δ and ρ unchanged. In
case they have different colors, we throw y1 and a ball of R away (if R = ∅).
This gives δ → δ, and ρ→ ρ− 1 (or ρ→ ρ). Next take yj with the smallest
index and compare it to a, proceeding in the same fashion. Finally, if there
is a top element y in the list left, we compare it to a. If they have the same
color, put y into the reservoir, otherwise throw y and a ball of R away (if
R = ∅).

We make the following observations on ρ.
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e) If ever ρ ≤ d− 2, then δ ≤ ρ + 1 ≤ d− 1, and there is no k-majority.
In particular, this holds when r ≤ d− 2 at the start of phase 2.

f) Suppose then that we always have ρ ≥ d− 1. If ρ ≥ d, then the balls
in the reservoir are k-majority balls. On the other hand, if ρ = d− 1,
then there is no k-majority, since the remaining balls a, b in L have
different colors.

It remains to estimate the number of tests in phase 2. Let t be the
number of those tests with answer “no”. Set r = d− 1+ s, where s ≥ 0 and
t ≤ s, since ρ ≥ d− 1. For the total number m of tests in phase 2 we obtain
therefore

m ≤ t +
n− 2− r − t + 1

2
where −2 accounts for the balls a and b, and +1 for the possible first ball.
Hence

m ≤ n− r + t− 1
2

=
n− d− s + t

2
≤ n− d

2
= n− k,

and so
L ≤ (n− 1) + m ≤ 2n− k − 1.

Let us briefly discuss so-called competitive algorithms (see [7, Ch. 7]).
We are again given the k-majority problem, with 2 ≤ c ≤ n. Paul uses
algorithms which finish the game after at most 2n− k − 1 tests (according
to Theorem 3), but Carole is only allowed to use c colors (unknown to Paul).
Let us denote the corresponding length by Mc(n, k). Clearly,

(13) M2(n, k) ≤M3(n, k) ≤ · · · ≤Mn(n, k) = 2n− k − 1,

and

(14) Mc(n, k) ≥ Lc(n, k) for all n, k, c.

The following theorem (which is difficult) solves the competitive problem
apart from small c.

Theorem 4. We have

M5(n, k) = 2n− k − 1,

and hence

M5(n, k) = M6(n, k) = · · · = Mn(n, k) = 2n− k − 1.

In the light of Theorem 4 we make the following conjectures which would
solve the whole problem. They are probably quite difficult and will require
some new ideas.
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Conjecture 2. We have

i) L3(n, k) = 2n− k − 1

and thus

L3(n, k) = L4(n, k) = · · · = Ln(n, k) = 2n− k − 1.

ii) M2(n, k) = 2n− k − 1,

and thus

M2(n, k) = M3(n, k) = · · · = Mn(n, k) = 2n− k − 1.

4. Third generalization: the plurality problem

We are given n balls and c colors as before with the same tests. Now Paul
has to produce a ball z of plurality color (that is, the number of balls colored
like z exceeds all other colors), or state that there is no plurality. Let us
denote by Pc(n) the number of tests required.

We clearly have P2(n) = L(n) and

(15) P2(n) ≤ P3(n) ≤ · · · ≤ Pn =
(

n

2

)
.

To see the last equality in (16), just note that if Carole always answers “no”,
then Paul has to make all

(
n
2

)
comparisons.

Theorem 5. We have

P3(n) ≤
⌊

5n

3

⌋
− 2 (n ≥ 2).

Proof. This is clear for n ≤ 3, so let us assume n ≥ 4. We order the balls
x1, x2, . . . , xn and compare them one by one. The following set-up is useful.
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The figure means that there are k balls of color 1, � balls of color 2 and m
balls of color 3, whereas r balls may have color 2 or 3, but not color 1. In
other words, an edge represents different colors. For example, after the first
comparison we obtain the situation

By comparing a new ball with an appropriate color-class the following
lemma can be proved:

Lemma. Any stage can be described by

Furthermore, if a ≥ b ≥ c are the color-numbers at this stage, then Paul
has used at most 2a + b + 2c− 2 tests so far.

Let a ≥ b ≥ c be the sizes of the color-classes, and s = n− (a+ b+ c) be
the number of remaining balls. By the lemma, Paul has used so far T tests
with

T ≤ 2a + b + 2c− 2.

Paul stops, when he encounters for the first time one of the following
situations:

(I) a = b = c

(II) a = b + s

(III) a = b + s + 1.
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Suppose (I) occurs. We test the remaining balls and obtain by induction
for the number P of tests

P ≤ T +
⌊

5(n− 3a)
3

⌋
− 2 ≤ 5a− 2 +

⌊
5n

3

⌋
− 5a− 2 =

⌊
5n

3

⌋
− 4.

Suppose (II) occurs. Then any ball of the a-group is a plurality ball,
unless all remaining balls have the same color (different from a). We have

(16) a = b + s = n− a− c, hence n = 2a + c,

and thus

(17) T ≤ 2a + b + 2c− 2 = 2n− 2a− 2c + b + 2c− 2 = 2n− 2a + b− 2.

Case i) s = 0. Then there is no plurality, and

L = T ≤ 2n− a− 2 ≤ 2n− n

3
− 2 =

5n

3
− 2,

since a ≥ n
3 .

Case ii) s ≥ 1. Take one of the remaining s balls, say x, and compare
it to all the other s − 1. If there is ever an answer “no”, we are finished.
Suppose they all have the same color (after s − 1 tests). If b = c, we test
a : s. If the answer is “yes”, then a is the plurality group, if it is “no”, then
there is no plurality. Finally, if b > c, test b : s. If “yes”, then there is no
plurality, if “no”, then a is the plurality group.

Altogether we obtain for the number P of tests

P ≤ T + s ≤ 2n− 2a + b− 2 + s = 2n− a− 2.

Since n = 2a + c by (17), we have a ≥ n
3 , and hence again

P ≤ 5n

3
− 2.

The case, when (III) occurs first, is dealt with similarly.

As for lower bounds it was shown in [3] that P3(n) ≥ 3�n
2 � − 2. Both

bounds are the best so far, but it is believed that the upper bound is the
correct answer.
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Conjecture 3. We have

P3(n) =
⌊

5n

3

⌋
− 2 (n ≥ 2).

For c ≥ 4 colors it is known that Pc(n) = Θ(cn), see [3]. Furthermore,
there are some tight results for the probabilistic setting, where Paul uses
randomized strategies [8, 10].

5. The liar problem

A closely related interesting problem is the following. Suppose in a room
there are n people some of whom always tell the truth whereas others are
unreliable (they sometimes speak the truth and sometimes they lie). The
people in the room know about each other’s reliability status. Now Paul
enters the room and is required to determine the status of each person by
asking questions of the form: He asks person x whether another person y is
reliable. How many questions does he need in the worst case?

It is easy to see that, if there are at least as many liars in the room as
reliable people, then Paul stands no chance to find out. Hence we assume
that Paul knows that the number of reliable people is at least k with k > n

2 .
Let us denote the number of questions needed by Q(n, k). The original
problem (with ordinary majority k = �n

2�+ 1) was solved by Blecher [6]:

Q
(
n,
⌊n

2

⌋
+ 1

)
=
⌈

3n

2

⌉
− 2.

In the same paper Blecher also noted the following general result:

Theorem 6. We have

Q(n, k) = 2n− k − 1.

We just sketch the proof of the upper bound, the lower bound is shown
by a (quite involved) argument similar to the one used in [6]. Paul asks
x1, x2, . . . about the reliability of a fixed person z. He stops when for the
first time the number � of “no” exceeds the number �− 1 of “yes”, or when
Carole has given the answer yes for the (n− k)-th time with, say, i answers
“no”.
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In the first case, there are at least � liars among {x1, . . . , x2�−1} ∪ {z},
hence in the remaining set of n− 2� people there are at least k − � reliable
people, with 2(k − �) > n − 2�. Now Paul determines the full partition in
the remaining set, picks a reliable person w, and can now determine the
status of z and the others with at most � + 1 further questions. Hence by
induction the length L is bounded by

L ≤ (2�− 1) + Q(n− 2�, k − �) + � + 1

≤ 3� + 2n− 4�− k + �− 1 = 2n− k − 1.

The second possibility is similarly dealt with.

Finally, there is the variant where Paul needs only find one reliable
person, where he knows as before that there are at least k reliable people in
the room, k > n

2 . Let us denote by R(n, k) the length of the liar game for
this variant.

Before we present the result, we make some observations. If x is asked

about the reliability of y, then we draw an arrow x
Y→ y, x

N→ y, depending
on the outcome “yes” or “no”. We write xT resp. xL if x is reliable resp.
unreliable. Now

x
Y→ y is compatible with xT , yT ; xL, yT ; xL, yL but not

with xT , yL.

(18) Hence if x
Y→ y and yL, then xL must hold.

Similarly,

x
N→ y is compatible with xT , yL; xL, yT ; xL, yL but not

with xT , yT .

(19) Hence x
N→ y implies that at least one of x or y is a liar.

Theorem 7. We have

R(n, k) = 2(n− k)−B(n− k).

Proof. Again we restrict ourselves to the upper bound. For the lower bound
see [2]. Paul picks 2(n− k) + 1 people, and knows that the reliable people
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are in the majority. So it suffices to prove the inequality for the ordinary
majority liar game:

R

(
n,

n + 1
2

)
≤ n−B(n), n odd.

We set up a data structure similar to the coloring problem. There are
buckets B1, . . . , Bs and a dump D.

2a1 2as. . .

B1 Bs D

In every bucket Bi we have a “cube-like” structure with all answers “yes”,
and a unique sink zi.

The initial configuration consists of n buckets each containing one person
with D being empty. Note that we have used 2ai − 1 questions to produce
Bi. In the next step Paul picks two buckets Bi, Bj with 2ai = 2aj , and asks
the question zi → zj .

If the answer is “yes”, then he merges the buckets with zj as new unique
sink. On the other hand, if the answer is “no”, then by (20) one of zi or zj

must be a liar, say zi. But then all people in Bi must be liars by (19). In
this case we throw both buckets into the dump. It follows that D contains
at any stage at least as many liars as reliable people.

The algorithm stops when the sizes of the buckets are all distinct, 2b1 >
2b2 > · · · > 2bt . The other possibility that all people are in the dump
can clearly not occur. But then the unique sink z1 of bucket B1 must be
reliable, since otherwise (observing (19)) the liars would outnumber the
reliable people. Noting, as in the color game, that the number of questions
is at most n−B(n), the theorem follows.



Two Colors and More 25

6. A final generalization: determining the color classes

Let us consider a variant of the liar game which gives more information to
Paul. Suppose he knows that as before the reliable people T always tell the
truth, but that the unreliable people L always lie. Then if he asks x about
the reliability of y and receives the answer “yes”, then they are of the same
type (T or L), while the answer “no” implies they are of different type. So
in this restricted version the liar problem is just the ordinary color problem
considered so far: “yes” corresponds to “same color” and “no” to “different
color”.

Another way to view this game is to consider bipartite graphs. We are
given an (unknown) complete bipartite graph on n vertices. Whenever Paul
tests two vertices x : y, he receives the answer “yes” (same color-class =
no edge between x and y) or “no” (different color-class = there is an edge
between x and y). If Paul has no previous information, then he needs n− 1
questions, since there are 2n−1 possible bipartitions. We have already noted
this in (2). Suppose now that Paul knows beforehand that the larger color-
class has size at least k > n

2 . Let us denote by S(n, k) the length of the
game in this case. Clearly,

(20) 0 = S(n, n) ≤ S(n, n− 1) ≤ · · · ≤ S
(
n,
⌊n

2

⌋
+ 1

)
= n− 1,

where the last equality holds by the information-theoretic bound.
As an example, consider the first interesting case S(n, n− 1). We have

(21) S(n, n− 1) =
⌈

n + 1
2

⌉
(n ≥ 3).

For the upper bound, Paul makes �n+1
2 �−1 disjoint comparisons, with one

vertex left when n is odd. If there is a “no” in one of these comparisons, then
one more comparison will determine the color-classes. And if the answer is
always “yes”, then Paul needs one more comparison to determine the status
of the remaining vertex.

To see the lower bound, Carole answers “yes” to the first �− 1 compar-
isons, where n = 2� or n = 2� + 1. Hence if n is even, there are at least two
vertices whose status is undetermined, and if n is odd, there are three such
vertices. Together with the possibility that all vertices have the same color,
we find that two more tests are needed by the information-theoretic bound.
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Two other small cases are known:

S(n, n− 2) =
⌈

2n + 1
3

⌉
(n ≥ 5)

S(n, n− 3) =
⌈

7n + 2
10

⌉
(n ≥ 7),

and further
S(n, n− 4) =

3
4
n + O(1).

In general, this variant seems to amount to an intricate number-theoretic
problem. The growth of S(n, k), that is the coefficient of n, is not known
for arbitrary k.
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Coding with Feedback and Searching
with Lies∗

C. DEPPE

This paper gives a broad overview of the area of searching with errors and the
related field of error-correcting coding. In the vast literature regarding this
problem, many papers simultaneously deal with various sorts of restrictions on
the searching protocol. We partition this survey into sections, choosing the most
appropriate section for each topic.

1. Introduction

We consider the problem of transmitting messages over a noisy binary chan-
nel with noiseless feedback. This problem is closely connected to sequential
binary search with errors. In [9] and [11] we can find many search prob-
lems which are equivalent to a coding problem. In chapter 8 of [39] one can
find some results about binary search. Hill wrote a survey about searching
with lies [42] in 1995. In this survey he explained very well the results with
a fixed number of objects. In this survey we also report about the results
which were in Hill’s survey and additionally report about some new results
and new models of the last five years. See [30] for a recent survey containing
a discussion of the logical aspects of feedback search with lies. In 2002 Pelc
wrote a survey “Searching games with errors – fifty years of coping with
liars” ([68]). This survey is a non-technical survey. We will give a more
technical survey with formal definitions and also some proofs. While our
survey is partitioned into sections, choosing the most appropriate section

∗Supported in part by INTAS-00-738.
A survey of results in coding with feedback and searching with lies until 2000.
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for each topic was sometimes not an easy task. This is so because many
papers simultaneously deal with various sorts of restrictions on the search-
ing protocol. In each section we will make cross-references to the sections
in which we report about papers which also could be in this section.

Rényi [69] reported the following story about the Jew Bar Kochba in
135 CE, who defended his fortress against the Romans.

It is also said that Bar Kochba sent out a scout to the Roman
camp who was captured and tortured, having his tongue cut out.
He escaped from captivity and reported back to Bar Kochba, but
being unable to talk, he could not tell in words what he had seen.
Bar Kochba accordingly asked him questions which he could
answer by nodding or shaking his head. Thus he acquired from
his mute scout the information he needed to defend the fortress.
It occurred to me that, if the story of Bar Kochba were true,
then he would have been the forefather of information theory.

At the beginning of the 19th century the so-called Bar-Kochba game was
very popular in Budapest. In this game, one player has to find out, by asking
yes/no-questions, what the second player has in mind. In 1956 Shannon [73]
introduced the discrete memoryless channel with noiseless feedback. He
proved that the forward capacity is the same as without feedback, but the
zero-error capacity is in some cases bigger with feedback than without. In
1961 Rényi [70] introduced the Bar-Kochba game with a given percentage
of wrong answers. He described a sequential and a non-sequential version
of the game in the introduction of the paper. He solved the non-sequential
problem to find the minimal number of questions to determine the searched
number with a certain probability, if the answers are correct with a given
probability and the questions are chosen at random. He also remarked that
the problem is connected with the coding problem in information theory. In
1964 Berlekamp considered in his dissertation the following coding scheme.

SENDER CHANNEL RECEIVER� �

�
feedback

noise

��

�
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A sender wants to transmit a message x ∈ X over a noisy binary channel.
X = {1, . . . , N} denotes the set of possible messages and Y = {0, 1} the
binary coding alphabet. We have a passive feedback, that means that the
sender always knows what has been received. The codewords are elements of
Y n and a codeword is in the form of: c(x, yn−1) =

(
c1(x), . . . , cn(x, yn−1)

)
,

where ci : X × Y i−1 → Y is a function for the i-th code letter which
depends on the message we want to transmit and the (i − 1) bits which
have been received before. We suppose that the noise does not change
more than l ∈ N0 bits of a codeword. Berlekamp’s idea was to consider
each transmission as the following quiet-question-noisy-answer-game: The
sender and the receiver have a common partition strategy. After the sender
has chosen a message, the receiver chooses a subset S of the set of messages
and asks if the message was among the subset S (S ⊂ X ). The sender sends
“1” for yes and “0” for no over the noisy channel. Then the receiver chooses
a new subset where his choice depends on the answer etc. The receiver tries
to get the message with n questions and a jammer (the noise) wants to avoid
this by changing at most l answers.

Later in 1976 Ulam [78] suggested independently an interesting two-
person search game:

Someone thinks of a number between one and one million. An-
other person is allowed to ask up to twenty questions, to each
of which the first person is supposed to answer only yes or no.
Now suppose one were allowed to lie once or twice, then how
many questions would one need to get the right answer.

Obviously this binary sequential search problem with errors is equivalent
to Berlekamp’s quiet-question-noisy-answer-game and to the Bar-Kochba
game with lies. Ulam raised this problem in 1976; that was twelve years
after Berlekamp considered the block coding with feedback and fifteen years
after Rényi’s paper. At first the authors did not remember that the problem
was much earlier known and have been considered by Berlekamp and Rényi.
For this reasons it is called the Ulam–Rényi game. In 1992 Spencer [76] pre-
sented another aspect of Ulam–Rényi’s game. He considered the following
two person game. We take a board with two columns and l + 1 rows. The
rows are numbered from l to 0 and the columns by two and one. A field
with some chips on it corresponds to every row. Each round of the game
is played in three steps. At the first step Paul distributes the chips of the
field on the corresponding columns. At the second step Carole chooses one
column. All chips in this column are shifted by one row down. The chips in
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row 0 and the selected column are removed. At step three all chips of one
row are taken on its corresponding field. Then the round is finished. The
game is terminated if every chip up to one is removed. The aim of Carole is
to get the number of rounds as large as possible whereas Paul wants to get
a small number of rounds. Also this game is equivalent to the Ulam–Rényi
game. Throughout this paper we shall call Carole and Paul the two play-
ers. This idea goes back to Spencer, who also explained: Paul corresponds
to Paul Erdös, who always asked questions and Carole corresponds to an
ORACLE, whose answers need to be wisely evaluated.

2. Definitions and terminology

In each round of the game Paul gets a negative vote for a subset T ⊂ X .
If Paul gets more than l negative votes for a number, then this number
cannot be the searched one because Carole is allowed to lie at most l times.
Therefore, in each round we consider for all 0 ≤ j ≤ l the sets

Sj � {x ∈ X : Paul got (l − j) negative votes for x}.

Definition 2.1. The vector

v =
(
|Sl|, |Sl−1|, . . . , |S0|

)
= (vl, vl−1, . . . , v0)

is referred to as a state (of the game). v is called a k-state if k questions
are left.

Neither the states nor the dividing questions depend on a specific num-
ber, which is chosen by Carole. Everything depends only on the cardinality
of the sets Sj .

Definition 2.2. Let s be an arbitrary state. The question if “x ∈ S”
(S ⊂ X ) is introduced as a vector [u] = [ul, . . . , u0], where ui � |Si ∩ S|.
The state x is reduced to the states y(� YESs) and z(� NOs) by the
question [u] if there exists a v ≥ 0 such that
1. x = u + v � (ul + vl, ul−1 + vl−1, . . . , u0 + v0),
2. yi = ui + vi+1,
3. zi = vi + ui+1.
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Definition 2.3.

1. Let v be an arbitrary state and let [x] be a question. The question is
called legal if

0 ≤ xi ≤ vi, for all i = 0, . . . , l.

Definition 2.4.

1. A 0-state x is called winning if
∑l

i=0 xi ≤ 1. Otherwise, x is called
losing.

2. A k-state x is called winning if it can be reduced to two winning (k−1)-
states. Otherwise, x is called losing.

3. A winning k-state is called borderline winning if it is a losing (k − 1)-
state.

4. A k-state is called singlet if
∑k

i=0 |Si| = 1.

5. A k-state is called doublet if
∑k

i=0 |Si| = 2.

Proposition 2.1.

1. A winning n-state is also a winning k-state if k > n.

2. All borderline winning 1-states have the form (0, . . . , 0, 2).
3. Let x be a winning k-state and let y be some state such that yi ≤ xi

holds for all i ≤ l. Then y is also a winning k-state.

Definition 2.5. For a given state x, the function

Vn(x) �
l∑

i=0

xi

i∑
j=0

(
n

j

)

is called the n-th volume of x.

The n-th volume of x can be interpreted as follows. We surround all
messages in Sj (Carole can lie j times at all these numbers) by a sphere of
radius j. Berlekamp used Pascal’s Identity to show the following theorem.

Theorem 2.1 (Berlekamp’s Conservation of Volume [18]). Let x be a state
which can be reduced to the states y and z. Then

Vn(x) = Vn−1(y) + Vn−1(z).

With this theorem we get (by induction) the following bound.
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Theorem 2.2 (Berlekamp’s Volume Bound [18]). Let x be a winning n-
state. Then

Vn(x) ≤ 2n.

We denote by Ll(N) the minimal number of questions of Paul to find
the searched number by using an optimal strategy.

Corollary 2.2 (The Hamming bound). Let |X | = N and l ∈ N. Then

Ll(N) = n =⇒ N ≤ 2n∑l
j=0

(
n
j

) .
Definition 2.6. Let s be an arbitrary state. The number

ch(s) � min
{

k : Vk(s) ≤ 2k
}

is called the character of s.

Obviously the character is a lower bound for the number of questions.
We shorten the character of the starting state (N, 0, . . . , 0) with chl(N),
where l is the number of lies. In some papers the character is called the
Berlekamp number.

Definition 2.7. A state v is called nice if it is a winning k-state and
k = ch(v).

3. A Berlekamp strategy and the translation bound

The following property of the states is proved by Berlekamp and called the
Translation Bound.

Theorem 3.1 (Berlekamp [18]). Let x be a state with
∑k

i=0 xi ≥ 3 and
n ≥ 3. If x is a winning n-state, then T (x) is a winning (n− 3)-state.

From this theorem the following useful corollary follows.

Corollary 3.1.

1. Ll(N) ≤ k ⇒ Ll−1(N) ≤ k − 3.

2. Ll(N) = k ⇒ Ll+1(N) ≥ k + 3.
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We consider the following state-table, which was presented by
Berlekamp:

Table 3.1.
column 1 2 3 4 5 6 7 8 9 10 11 12 13 14

row

1 4 2 1 1 1 1 1 1 1 1 1 1 1 1
2 8 6 4 1 0 0 0 0 0 0 0 0 0 0
3 36 22 14 10 5 1 0 0 0 0 0 0 0 0
4 152 94 58 36 24 15 6 1 0 0 0 0 0 0
5 644 398 246 152 94 60 39 21 7 1 0 0 0 0
6 2728 1686 1042 644 398 246 154 99 60 28 8 1 0 0
7 11556 7142 4414 2728 1686 1042 644 400 253 159 88 36 9 1
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

Definition 3.1.

1. This table is defined recursively. Let Ai,j be the value in the i-th row
and j-th column. The first two rows are the initial rows. They are given
by:

A1,1 := 4, A1,2 := 2, A1,k := 1 ∀ k ≥ 3

A2,1 := 8, A2,2 := 6, A2,3 := 4, A2,4 := 1, A2,k := 0 ∀ k ≥ 5

The remainder of the table is derived recursively by: ∀i ≥ 3 holds:

with j ≥ 3 : Ai,j := Ai−1,j−1 + Ai−1,j−2(3.1)

with j = 2 : Ai,2 := Ai,3 + Ai−1,1(3.2)

with j = 1 : Ai,1 := Ai,2 + Ai,3(3.3)

2. Let j, m ∈ N, then we set: Am,j :=

⎛
⎜⎜⎜⎝

A1,j

A2,j
...

Am,j

⎞
⎟⎟⎟⎠.

Berlekamp’s state table has the following properties.

Theorem 3.2 (Berlekamp [18]). Let Ai,j be the value in the i-th row and
j-th column of Table 3.1.

• An Am,j-state is a winning (3m− j)-state for all 0 ≤ j ≤ 3m.

• An Am,j-state can be reduced to Am,j+1 and Am−1,j−2.

• If 0 ≤ j ≤ 3 ≤ i, then holds: Ai,j = 2(1+
√

5
2 )

3i−j−2 + 2(1−
√

5
2 )

3i−j−2
.
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4. Linear growth

Berlekamp analyzed the asymptotic relationship between the error-correct-
ing fraction f = l

n and the rate R = log |X |
n . He proved an upper asymptotic

bound. With the Translation Bound (Theorem 3.0) and the Hamming
Bound 2.2 we can prove the following theorem.

Theorem 4.1 (Berlekamp’s Tangential Bound). Let f, R be like before,
l ∈ N the maximal number of errors (lies), k > 1, N = 2k and Ll(N) = n,
then holds:

R ≤

⎧⎪⎨
⎪⎩

1− h(f) + o(1), if 0 ≤ f ≤ ft,

−R0

f0
f + R0 + o(1), if ft ≤ f ≤ 1

3 .

He showed that this bound is attainable for small rates R (0 ≤ R ≤ R0 ≈
0.7) or big error-correcting fractions f (0.2 ≈ ft ≤ f ≤ 1

3). In [72] another
way how to attain the bound for small rates is shown. Zigangirov [81]
showed in 1976 that the Berlekamp bound is also attainable for big rates
or small error-correcting fractions. He used a modified coding procedure
which was developed by Horstein [44]. Finally we get the result:

Theorem 4.2.

Let p be selected in a way that R = 1 − h(p). Then for f0 = 1
3 ,

R0 = 0.6942, Rt = 0.29650, ft = 0.19095 and lim
n→∞

l(n)
n = f ≤ 1

2 holds:

f =

⎧⎪⎨
⎪⎩

f0 −
f0

R0
R + o(1), if 0 ≤ R ≤ Rt,

p + o(1), if Rt ≤ R.

5. Fixed error

In this section we will consider the function Ll(N) if l ∈ {1, 2, 3}. Therefore
we need some definitions.

Definition 5.1. Let v be a state with ch(v) = k. Let [x] be a question,
which reduce v to the states s and t.
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1. We call [x] balanced, if ch(s) = ch(t) = k − 1.
2. We call [x] a splitting, if xi = �vi

2 � for 0 ≤ i ≤ l.

In 1987 Pelc [66] gave a general solution for the number of answers
if l = 1. He developed an optimal strategy. The best first question is
a splitting. Then he showed that there exist balancing questions for the
remaining ones and he also describes them. Thus the character of the state
after the first question gives the solution of the problem.

Theorem 5.1 (Pelc). Let s = (N, 0) and k = ch(s).
1. Let N ∈ N be even. Paul wins the game with k questions.

2. Let N ∈ N be odd.

(a)Paul wins the game with k questions, if

Vk−1

((
N + 1

2
,
N − 1

2

))
≤ 2k−1

(b)Paul wins the game with k + 1 questions, otherwise.

In 1988 Czyzowicz, Mundici and Pelc [32] showed

Theorem 5.2. Let N = 2m, m ≥ 3, s = (N, 0, 0) and k = ch(s). Then
Paul needs k questions to win the game.

In 1990 Guzicki [40] solved the problem for l = 2. He also gave an
optimal strategy, if N ≥ 90 and calculated all remaining values. The first
question in this strategy is also a splitting. The second question depends on
the value of N mod 4 and chl(N)mod 4. The other questions are balanced.
Thus the character of the state after the first two questions gives the solution
of the problem, if N ≥ 90.

Theorem 5.3 (Guzicki). Let s = (N, 0, 0, 0) and k = ch(s).
Case N < 90 :

1. Paul needs k+1 questions to win the game if N ∈M1 = {3, 4, 5, 6, 9, 10,
11, 17, 18, 29, 30, 51, 89}

2. Paul needs k questions to win the game if N /∈M1.

Case N ≥ 90 :
1. Paul needs k questions to win the game if

(a)N = 4z and N k2+5k+9
2 ≤ 2k+2.

(b)N = 4z + 1 and
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i. k = 4a and z k2+k+2
2 + (2z + a + 1)(k + 1) + n− a ≤ 2k.

ii. or k = 4a + 1 and (2z + 1)k2+3k+4
2 + 2z(k + 2) ≤ 2k+1.

iii. or k = 4a + 2 and (z + 1)k2+k+2
2 + (2z − a)(k + 1) + n + a ≤ 2k.

iv. or k = 4a+3 and z k2+k+2
2 +(2z + a+2)(k +1)+n− a− 1 ≤ 2k.

(c)N = 4z + 2

i. k = 4a and (z + 1)k2+k+2
2 + (2z + a + 2)(k + 1) + n− a ≤ 2k.

ii. or k = 4a + 1 and z k2+k+2
2 + (2z + a + 2)(k + 1) + n− a ≤ 2k.

iii. or k = 4a + 2 and z k2+k+2
2 + (2z + a + 2)(k + 1) + n− a ≤ 2k.

iv. or k = 4a + 3 and N k2+5k+9
2 ≤ 2k+2.

(d)N = 4z + 3 and

i. k = 2a and (2z + 2)k2+3k+4
2 + (2z + 1)(k + 2) ≤ 2k+1.

ii. or k = 2a + 1 and (2z + 2)k2+3k+4
2 + (2z + 1)(k + 2) ≤ 2k+1.

1. Paul needs k + 1 questions to win the game, otherwise.

In 1992 Negro and Sereno gave a solution for l = 3, if N = 2m. They
consider the set N = {0, . . . , 2m − 1} and the binary representation of the
objects. The first optimal m questions are splittings. They showed that
there exists remaining balanced questions, if m > 3.

In 1998 we gave a general solution for l = 3 [36]. Again we have the
situation that we can give a general strategy if N is big enough (≥ 266). It
turns out, that we can decide after the first three optimal questions, how
many questions are necessary for Paul to get the correct answer. After the
first three questions there exists a strategy that forms the next question
until there are 15 questions left. Unfortunately, we cannot give a similar
strategy for the last 15 questions. We use an algorithm for the last 15
questions. This algorithm was developed by Guzicki [40] to solve the Ulam–
Rényi game in the case of two lies. It is easy to prove that we can also use
this algorithm for three lies. The main theorem is as follows.

Theorem 5.4 (Deppe). Let s = (N, 0, 0, 0) and k = ch(s).
Case N < 266 :

1. Paul needs k + 2 questions to win the game if N ∈M2 = {3, 5}.
2. Paul needs k questions to win the game if N ∈ M0 = {1, 2, 14, . . . , 16,

22, . . . , 28, 35, . . . , 50, 57, . . . , 88, 95, . . . , 154, 158, . . . , 264}.
3. Paul needs k + 1 questions to win the game if N /∈M0 ∪M2.
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Case N ≥ 266 :
1. Paul needs k questions to win the game if

Vk(s) + a1(N)
(

k − 1
3

)
+ 2a2(N, t)

(
k − 2

2

)
+ 4a3(N, u)[k − 3] ≤ 2k,

where t is the state after the second question and s is the state after the
third question of the mini-strategy.

2. Paul needs k + 1 questions to win the game, otherwise.

6. Asymptotic results for fixed error

In the previous section we have seen, that for l ∈ {1, 2, 3} and N big enough
the first l questions decide whether we can solve the game with the character
of the initial state steps or we need one more question. In 1992 Spencer
proved the following

Theorem 6.1 (Spencer [76]). There exists constants c(l), q0(l) such that
for all states v with ch(v) ≥ q0(l), the following is true: If v0 > c(l), then v
is a nice state.

Using this statement Spencer proved:

Theorem 6.2 (Spencer [76]). Let s = (N, 0, . . . , 0) be the initial state,
k = ch(s) and let v be the state after the first l questions. Then there exists
a constant q(l), such that the following is true: If k > q(l), then Paul wins
the game starting from state v with ch(v) questions.

From this theorem we get the following.

Corollary 6.1.

• If N = 2k, then for all l there exists N0 : ∀N ≥ N0 : Ll(N) = chl(N).
• In general holds for all l there exists N0 : ∀N ≥ N0 : Ll(N) = chl(N)+ l.

In [35] we improve Corollary 6.1. We show the following

Theorem 6.3. For all l there exists N0 : ∀N ≥ N0 : Ll(N) ≤ chl(N) + 1.

The proof of this theorem is a generalization of the theorem which is
used for the case of three lies.
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7. Fixed number of messages

For some special numbers N0 ∈ N it is also possible to get an explicit formula
Ll(N0) = f(l) by using Berlekamp’s translation bound and his state table.
We present some examples. The sets Sj were defined as follows:

Sj �
{

x ∈ X : Paul gets (l − j) negative votes for x
}

.

Obviously, this set is also defined for negative numbers. Therefore we can
define a q-position state as follows:

Definition 7.1. Suppose that Paul has asked q questions. The vector

vq =
(
|Sl|, |Sl−1|, . . . , |S0|, . . . , |Sl−q|

)
= (vl, vl−1, . . . , v0, . . . , vl−q)

is referred to as a q-position state.

In the same way we define a q-position question.

Proposition 7.1.

1. Ll(2) = 1 + 2l for all l ≥ 0.

2. Ll(4) = 7 + 3(l − 2) for all l ≥ 2.

3. Ll(16) = 4 + 3l for all l ≥ 0.

4. In the general case: If one finds a strategy that reduces (N0, 0, . . . , 0) to
an q-position state v, which is less or equal Al,j0 taken from Berlekamp’s
state table and this strategy is optimal for some l = c0, then for all
l ≥ c0

Ll(N0) = f(l) = Lc0(N0) + 3(l − c0).

Proof. The statements can be proved by using the first column of
Berlekamp’s state Table 3.1, Corollary 3.1 and the Hamming Bound. Fur-
ther, assume that we can find a strategy (with q-position questions) which
reduces the state in the worst case to an q-position state. If this vector
is less than or equal to a column of the state table, then we can continue
with the state table strategy. If we know that this strategy is optimal, then
we can use the same strategy to solve the problem for one more lie with
three additional questions. By using Corollary 3.1, we know that this is
also optimal.
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The idea using a state table to solve the Ulam–Rényi game belongs to
Hill and Karim [43]. The authors used another state table as compared to
Table 3.1. They solved Ulam’s problem for N = 1000000 and l = 1, 2, 3 by
using this table. The table used does not harmonize with the translation
bound of Berlekamp. Later they used Table 3.1 and get together with
Berlekamp many theorems like the following.

Theorem 7.1. For each l ≥ 8 we have the identity

Ll(1000000) = 3l + 26.

Similar statements can be found in the PhD-thesis of Karim [45] and
DesJardins [37].

8. Fast algorithm

In the papers which we cited in the sections about fixed number of lies
and about fixed number of objects, you also find an algorithm for the
special cases (l = 1, 2, 3 and some values of N). In this section we want
to present some general near-optimal algorithms. In most cases one of the
ideas is to make the algorithm locally optimal. This means to reduce the
actual game state to two states with equal volume. The reason for this
idea is Berlekamp’s Volume Bound (Theorem 2.1) and the Conservation of
Volume (Theorem 2.1). An algorithm is optimal if the character of the
state is reduced by one in every step. A very simple algorithm is to use
splittings (Definition 5.1) as questions in every step. Splitting are locally
optimal, if all entries of the state are even. But we get a better algorithm
if we minimize the volume difference

∣∣Vk1(YES) − Vk1(NO)
∣∣ in every step.

Such an algorithm is considered in [54]. In [23] the authors improve the
bounds of [54] by introducing a novel Volume-minimization rule that also
incorporates Berlekamp’s Translation Bound. Another way to get a fast
algorithm is shown in [15]. The author introduces a tree structure in
such a way that the nodes contain integer-valued vectors (game-states).
The vector contained in each node is uniquely determined by a special
arithmetic operation applied to the vectors contained in its sons. More
precisely, we notice that the identity

∑e
i=0

(
n−l−i−1

i

)
2l−i =

∑l
i=0

(
n
i

)
, can

be used in the following way. We construct a regular rooted binary tree
having k∗

l−i =
(
n−l−i−1

i

)
terminal nodes at level i and associate a vector of
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length l + 1 having 1 in the i-th position and 0’s in all other positions with
each of them, where i = 0, . . . , l. If two nodes located at some level t of
the tree contain the vectors a = (al, . . . , a0) and b = (bl, . . . , b0) and these
nodes have a common parent at level t + 1 then we specify that the parent
must contain the vector c = (cl, . . . , cl) having components cl = al + bl and
cj = aj + bj − cj+1, j = 0, . . . , l + 1. It can be easily checked that if the tree
is constructed in accordance with these rules and has the distribution of
terminal nodes (kl, . . . , k0) then the root contains the vector having 1 in the
l-th position and 0’s in all other positions. Now let v be any state vector
of the Ulam–Rényi game. If we now construct a tree by the arithmetic
operation of [15] with this state contained in the root, we get a strategy
for the game starting at this vector. This strategy can be calculated very
quickly. It turns out that the strategy is optimal for the case l = 1. The
author gets also the following bound.

Theorem 8.1. The strategy uses at most chl(N) + 3l bits for N numbers.

The problem of the computational complexity of coding and decoding
algorithms in the Ulam–Rényi game is also important. Indeed the notion
of “complexity” should not only be restricted to the number of questions or
to the amount of feedback, but also should be concerned with the computa-
tional resources needed to formulate questions, and to deduce Paul’s current
state of knowledge as the result of Carole’s answers. In [58] polynomial time
complexity results are proved.

9. Comparison and interval questions

In 1997 Mundici and Trombetta ([59]) used bicomparison questions, asking
“is x in [a, b] or in [c, d]”. They get the following result.

Theorem 9.1. Let l = 2, N = 2m and m > 2. If Paul is restricted to ask
bicomparison questions. Then he needs ch

(
(N, 0, 0)

)
questions.

Aigner considered another special version of the Ulam problem [12]. In
his version Paul is only allowed to ask comparison questions in form of: “Is
the number less than or equal to i?” We denote Carole’s guess number with
x∗. Aigner analyzed the problem by refining the Berlekamp volume.
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Definition 9.1. Let x ∈ Sj ⊂ X and x be a n-state, then we call:

vn(x) �
j∑

i=0

(
n

i

)

the weight of x.

We denote by L≤
l (N) the minimal number of questions of Paul to find the

searched number with comparison questions by using an optimal strategy.

Remark 9.1. Let x be a state, then holds: Vn(x) = Vn �
∑

x∈X vn(x).

Definition 9.2. Let x be a n-state, x ∈ X and Paul’s next question will
be: “Is x∗ less than or equal a?”, then we set:

v1,a
n−1(x) = the new weight of x, if the answer is yes

v0,a
n−1(x) = the new weight of x, if the answer is no

V 1,a
n−1 �

∑
x∈X

v1,a
n−1(x)

V 0,a
n−1 �

∑
x∈X

v0,a
n−1(x)

Corollary 9.2 (conservation of volume). Let a ∈ X , then holds:

Vn = V 1,a
n−1 + V 0,a

n−1

Aigner used the same arguments as Berlekamp to achieve the volume
bound and the Hamming bound. The Hamming bound is a lower bound for
the number of questions that Paul has to ask in order to guess x∗. Aigner
achieves an upper bound by deriving a weak version of the volume bound.

Lemma 9.3.
∑p

j=1

(
j
l

)
2−j = 2− 2−p

∑l
j=0

(
p+1

j

)
∀p, l ≥ 1

With this lemma we get the following theorem.

Theorem 9.2. Let l ∈ {1, 2} be the number of lies. If Vn(x) ≤ 2n−2l+1,
then x is a winning n-state.

With this theorem we get the following result.
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Corollary 9.4. Let |X | = N , then holds:

1. For l = 1 : N ≤ 2n−1

1+n =⇒ L1(N) ≤ n

2. For l = 2 : N ≤ 2n−3

1+n+(n
2)

=⇒ L2(N) ≤ n

Spencer [75] showed the following theorem.

Theorem 9.3. ch
(
(N, 0)

)
≤ L≤

1 (N) ≤ ch
(
(N, 0)

)
+ 1

A general bound of the number of comparison questions is given in [47].
They showed the following.

Theorem 9.4. Let k be the character of the initial state and c = min{n :

2n−l ≥ N
∑l

j=0

(
n−l
j

)}. Then holds

k ≤ L≤
l (N) ≤ c

Spencer and Winkler [77] and Aslam and Dhagat [14] considered linearly
bounded comparison questions; the result can be found in section 12.

In [77] the authors also considered the case with asymmetric comparison
questions. The result can be found in the next section.

10. Asymmetric questions

In this section we will consider the half-lie variant of the Ulam–Rényi game.
That means we are asking for the minimum number of questions, if at most
l of the negative answers are lies. This model makes also sense in the coding
problem. Here we are restricted to errors if we receive a 0. This problem
is considered in [28] for the case of l = 1 and N = 2m. The authors obtain
the following results.

Definition 10.1. We denote by Hl(N) the minimal number of questions of
Paul to find the searched number by using an optimal half-lie strategy.

Theorem 10.1. Let m ∈ N, N = 2m, C = {m ∈ N : 2mch
(
(N, 0)

)
=

2ch((N,0)) − 1} and Es = {m ∈ N : ms + 1 ≤ m ≤ ms + s − 2}, where
ms = max {m : m + s + 1 ≤ 2s}.
1. ch

(
(N, 0)

)
− 2 ≤ H1(N) ≤ ch((N, 0)

)
− 1.
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2. H1(2m) = ch
(
(N, 0)

)
− 1 for all m ∈ C.

3. H1(2m) = ch
(
(N, 0)

)
− 2 for each s ∈ N and all m ∈ Es.

The case l = 2 is considered in [31]. Like in the case l = 1 the number
of needed questions is below the sphere packing bound.

Theorem 10.2. There exists M0 : ∀M ≥M0 H(M, 2) ≥ ch2(M)− 4.

Definition 10.2. ms = max{m :
(
m+s

2

)
+ m + s ≤ 2s}

ms,e is the largest integer m such that m + s questions are necessary to
find an element over a search space with 2m elements and e lies.

Theorem 10.3. For all 13 ≤ s ∈ N and m = ms,2 + 1 it holds H2(2m) ≤
ch2(2m)− 3.

The authors of [31] also give an upper bound for the general case.

Theorem 10.4. Let e ∈ N then there exists s0 : ∀s ≥ s0 He(2m) ≤
che(2m)− e, for each m satisfying ms,e + 1 ≤ m ≤ �ms+1,e+ms,e

2 �.
For the general case another result can be found in [47]. There the game

with asymmetric comparison questions is considered.

Theorem 10.5.

H≤
l (N) ≥ log N + l log log N + O(l log l).

11. Detecting errors

In this section we will consider some modified rules of the game. Paul wins
the game if he gets the unknown number or if he detects at least one lie. This
version of the game was considered in [64]. We call this game interactive
detecting game D. The author also defined a second version of the game.
In this version Paul wins the game if he get the unknown number or if he
detect at least one lie and can tell how many times Carole lied. This game
is called interactive detecting game D∗.
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Definition 11.1.

1. We define by D(N, l) the minimal length of Paul’s winning strategy in
game D with N numbers and l lies.

2. We define by D∗(N, l) the minimal length of Paul’s winning strategy in
game D∗ with N numbers and l lies.

The following results are proved in [64].

Theorem 11.1.
D(N, l) = �log N�+ l

for all l, N ∈ N.

Theorem 11.2.

1.
D∗(N, 2) = �log N�+ 3

for all N ∈ N.

2.
�log N�+ l ≤ D∗(N, l) ≤ �log N�+ 3l

12. Linearly bounded error

Spencer and Winkler considered in [77] another restriction of the game.
The same approach is done by Aslam and Dhagat in [14]. In their version
Carole is permitted only to lie up to a fixed fraction r of the number of
questions. This variant of the problem was originally considered in [63] for
the the non-adaptive and the fully adaptive version of the problem. They
considered three different models. In version A Carole has to answer in
such a way that at no step the number of lies divided by the number of
questions is greater than r. Now let q be the number of questions Paul has
asked. Then in version B Carole has to answer in such a way that at no
step the number of lies divided by the number of questions is greater than
r ∗ q. They also considered version C which is the non-adaptive version of
version B. Spencer and Winkler get the following result and call it the three
thresholds theorem.
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Theorem 12.1.

1. In version A Paul wins with O(log N) questions if r < 1
2 but Carole

wins if r ≥ 1
2 .

2. In version B Paul wins with O(log N) questions if r < 1
3 but Carole

wins if r ≥ 1
3 .

3. In version C Paul wins with O(log N) questions if r < 1
4 , Carole wins if

r > 1
4 and Paul wins with O(N) questions, if r = 1

4 .

The first item is proved independently by Aslam and Dhagat. They also
looked at the unbounded case of version A. That means Carole chooses any
positive integer. They get the following result.

Theorem 12.2. In the unbounded case of version A Paul wins with
O(log m) questions if r < 1

2 and Carole thought of the number m.

They also consider the version A with comparison questions.

Theorem 12.3. In version A with comparison questions Paul wins with
o(n) questions if r < 1

2 .

In [38] the authors also consider these models with extra restrictions in
the questions.

Definition 12.1. If Paul is allowed only to ask questions like “Is the i-th
bit in the binary representation of x equal to 1”, we say he is only allowed
to ask bit questions.

Theorem 12.4. Let Paul and Carole play version B of the game.

1. Paul has a winning strategy with n bit questions if and only if N ≤

2
⌊

n−�rn�
�rn�+1

⌋
.

2. Paul needs n = � 8 log N

(1−3r)2
� for a winning strategy with comparison ques-

tions if r < 1
3 .

Theorem 12.5. Let Paul and Carole play version C of the game.

1. Paul has a winning strategy with n bit questions if and only if N ≤

2
⌊

n
2�rn�+1

⌋
.

2. Paul has a winning strategy with n comparison questions if and only if
N ≤ n

2�rn	+1 + 1.
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13. Local restrictions

In this section, constraints on lie patterns are of local nature. We will
present the results of [34].

Definition 13.1. We call en = (e1, . . . , en) with

ej =

{
0, if Carole’s j-th answer was wrong,

1, if Carole’s j-th answer was correct,

the error pattern of the game.

One possible local restriction is “Carole cannot lie twice successively”.
This means that in the error pattern en two consecutive ones are forbidden.
We say that 11 is a forbidden lie pattern for Carole and denote it by
(1, 1) ⊂ en. The authors of [34] studied the feasibility of search with a
forbidden lie pattern. They get the following result.

Theorem 13.1. Search with the forbidden lie pattern p is feasible if and
only if p ∈

{
(0), (1), (0, 1), (1, 0)

}
.

They also showed optimal algorithms for the four cases. For (0) and (1)
it is trivial. For the forbidden lie patterns (0, 1) and (1, 0) they show a one-
to-one correspondence between this game and the Ulam–Rényi game with
one lie.

14. Unbounded search

In the case of unbounded search Carole thinks of an arbitrary integer x. Paul
tries to guess this integer by asking for arbitrary subset of N. For example
“is the number even” or “is the number ≤ t”. The number of questions
Paul needs to ask in order to get x is a function of x. The unbounded
search problem without lies and with comparison questions was introduced
by Bentley and Yao [17]. They proved the following theorem.

Theorem 14.1. If f(x) questions suffice to solve the unbounded search
problem with comparison questions, then f(x) satisfies Kraft’s inequality:∑

x≥1

2−f(x) ≤ 1.
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They proved this theorem by realizing that the sequences of answers for
each x ∈ N give a prefix code for the integers.

Definition 14.1.

1. Let f : N→ N then Kr(f) =
∑

x≥1 2−f(x).
2. Let x ∈ [0, 1] be a real number, x is recursive if there is an algorithm

that takes a rational number y as input and determines if x < y.

The following theorem of Beigel [16] show that Bentley and Yao’s bound
is essentially optimal.

Theorem 14.2. Let f be a nondecreasing recursive function such that
Kr(f) is recursive. There is an algorithm that solves the unbounded search-
ing problem by asking f(x) questions if and only if Kr(f) ≤ 1.

Definition 14.2. A question is called irredundant if it cannot be deduced
from previous answers.

Knuth [48] proved a theorem about unbounded search problem in which
Paul is restricted to irredundant questions.

Theorem 14.3. Let f be a monotone recursive function. There is an
algorithm that Paul wins the unbounded searching problem by asking f(x)
irredundant questions if and only if Kr(f) ≤ 1.

Beigel also gives some bounds for the minimal number of questions
(f(x)).

Definition 14.3.

log(i)(x) =

{
x if i = 0,

log log(i−1)(x) otherwise.

Theorem 14.4.

1. Paul can win the unbounded searching problem with comparison ques-

tions with �∑min{t : log(t)(x)≤1}
i=1 log(i)(x)�+ 2 questions.
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2. Let e be the Euler number, 0 < ε < e and

f(x) =

⌈(min{t : log(t)(x)≤1}∑
i=1

log(i)(x)

)

−
(

log log(e− ε)
)
(min{t : log(t)(x) ≤ 1})

⌉
.

Paul can win the unbounded searching problem with comparison ques-
tions with f(x) + O(1) questions.

There is also a further modification considered in [17]. They considered
parallel questions.

Definition 14.4. We say that Paul asks p-parallel, if he ask p-questions in
each round.

Beigel gives the following theorem for parallel questions.

Theorem 14.5. Let f be a nondecreasing recursive function such that∑
n≥1 (p + 1)−f(x) ≤ 1 and the value of the sum is recursive. Paul can win

the unbounded searching problem with p-parallel comparison questions with
f(x) rounds of p questions.

Spencer and Winkler [77] considered linearly bounded errors, the result
can be found in section 12.

15. Optimal strategies with minimum adaptiveness

In many practical situations the goal is to find searching strategies with
minimum adaptiveness. That means that many questions can be asked
without feedback. Unfortunately, in general totally non-adaptive strategies
are much worse (see for example [56]). The authors of the paper [25]
found strategies with minimum adaptiveness which reach the sphere-packing
bound. They consider message sets of cardinality 2m. The first result is an
existence theorem. They call a strategy optimal if the number of questions
is equal to the character of the initial state.
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Theorem 15.1.

1. For every l ∈ N there exist an m0 ∈ N such that there exists an optimal
searching strategy in which questions can be submitted to Carole in only
two rounds. In the first round we submit m questions and the remaining
are submitted in the second round.

2. If l = 3 and m ≥ 99 then there exists an optimal strategy in two rounds.

The optimal strategy for the case l = 3 is explicitly given in [25]. The
case l = 1 was settled by Pelc, who proved that adaptiveness has no role
to decrease the number of questions. The case l = 2 was analyzed in detail
in [28].

16. The continuous case

In [47] we find a generalized version of Berlekamp’s volume bound. The
authors consider a continuous search set instead of a finite one and they
give an optimal strategy which achieves the generalized Volume bound. In
this strategy they only use comparison questions.

In [20] the problem of identifying two distinguished elements (x, y) in
the search space S =

{
(x, y) : x < y, x, y ∈ [0, 1[

}
was considered. There

were presented two non-sequential optimal algorithms that reach the general
volume bound (Group Testing, Parity Testing).

We consider again a game between Paul and Carole. The difference to
the first game is that Carole thinks of a number of a measurable set(= S).
Paul regards each answer as a vote against a certain subset of words. Paul
asks n questions and Carole is allowed to lie at most l times.

Definition 16.1. If Paul has q questions left, in the situation described
above for all j ∈ {1, . . . , l} we define:

Xq
j � {x ∈ S : x is the selected number, if l − j questions were wrong}

Definition 16.2. We call the vector v =
(
µ(Xq

l ), . . . , µ(Xq
0)
)

= (vl, vl−1,
. . . , v0) a q-state (of the game), where µ is the measure of Xq

i .

Definition 16.3. We say the state x can be reduced to the states y and z,
if ∃u, v ≥ 0 :
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1. x = u + v

2. yi = ui + vi+1

3. zi = vi + ui+1

Definition 16.4.

1. We call e = (e0, . . . , en−1) with

ej =

{
0, if Carole’s j + 1-th answer was wrong

1, if Carole’s j + 1-th answer was correct

a lying pattern of the game.
2. We set

E � {e : e is a possible lying pattern of the game}

the lying pattern set.

Remark 16.1. It holds: |E| =
∑l

i=0

(
n
i

)
.

Definition 16.5. Let x be a q-state, then we call:

Wq(x) �
l∑

i=0

µ(Xq
i )

i∑
j=0

(
q

j

)

the weight of the q-state x.

Remark 16.2. Because of the definitions holds: Wn(x) = µ(S)|E|.

Lemma 16.3 (conservation of weight). Let x be a q-state which can be
reduced to the (q − 1)-states y and z, then holds:

Wq(x) = Wq−1(y) + Wq−1(z)

Lemma 16.4. Let n be the number of questions, l be the number of lies, S
be the search set and x be Carole’s secret element, then a lower bound to
the size of the set R in which Paul can confine the unknown pair (x, y) is
given by

µ(R) ≥ 2−(n+1)|E|µ(S)
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In the group testing model Carole thinks of two numbers in [0, 1[. Paul
asks questions like: “Is at least one of the numbers in R ⊂ [0, 1[?” The
search problem can be regarded as a search in the search set [0, 1[ × [0, 1[.
In this case there is no difference between (x, y) and (y, x), thus we can set
S =

{
(x, y) : x, y ∈ [0, 1[, x > y

}
. We number Paul’s questions from 0 to

n− 1.

Definition 16.6.

1. We set Aq � the subset Paul asks in his q-th question.
2. We set

Cq �
{

[0, 1[×Aq ∪Aq × [0, 1[ , if Carole answers 1 to the q-th question

Āq × Āq, if Carole answers 0 to the q-th question

Obviously (x, y) ∈ Cq, if Carole’s answer was correct.

Definition 16.7. Let E = {e1, e2, . . . , ev} be the lying pattern set, then we
define:

Cj
q �

{
Cq, if the q-th entry of ej is 0

C̄q, if the q-th entry of ej is 1

Obviously (x, y) ∈
⋂n−1

q=0 Cj
q ∩ S, if Carole chooses ej ∈ E. Therefore it

holds:

(x, y) ∈ R �
⋃

ej∈E

( n−1⋂
q=0

Cj
q ∩ S

)

Now we will show that µ(R) ≤ 2−(n+1)|E|, if we choose Aq in the following
way:

Definition 16.8. For each q = 0, . . . , n−1 we define a collection of points xq
i .

0 ≤ i ≤ 2q+1 : x0
0 = 0, x0

1 = 1− 1√
2
, x0

2 = 1

q ≥ 1 : xq
i =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

xq−1
i
2

, if i is even

xq−1
i+1
2

−
xq−1

i+1
2

− xq−1
i−1
2√

2
, if i is odd
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Remark 16.5. For all q ∈ {0, . . . , n− 1} it holds: xq
0 = 0 and xq

2q+1 = 1.
We set

Aq �
2q−1⋃
i=0

[
xq

2i, x
q
2i+1

[
∀0 ≤ q ≤ n− 1

Theorem 16.1. The preceding strategy is an optimal searching strategy
that confines the pair (x, y) in a set, whose worst-case measure is 2−(n+1)|E|.

In the parity testing model Carole thinks of two numbers (x, y) in
[0, 1[. Paul chooses subsets R ⊂ [0, 1[ and asks questions like: ’Is either
x ∈ R ⊂ [0, 1[ or y ∈ R ⊂ [0, 1[?’ Again the search problem can be stated
as a search in the search set S =

{
(x, y) : x, y ∈ [0, 1[, x > y

}
. We number

Paul’s questions from 0 to n− 1.

Definition 16.9.

1. We set Tq � the subset Paul asks for in his q-th question.
2. We set

Dq =

{
Tq × Tq ∪ T̄q × T̄q, if Carole answers 0 to the q-th question

Tq × T̄q ∪ T̄q × Tq, if Carole answers 1 to the q-th question

Obviously (x, y) ∈ Dq, if Carole’s answer was correct.

Dj
q �

{
Dq, if the q-th entry of ej is 0

D̄q, if the q-th entry of ej is 1

Obviously (x, y) ∈
⋂n−1

q=0 Dj
q ∩ S, if Carole chooses ej ∈ E. Therefore it

holds:

(x, y) ∈ R �
⋃

ej∈E

( n−1⋂
q=0

Dj
q ∩ S

)

Now we will show that µ(R) ≤ 2−(n+1)|E|, if we choose Tq as follows:

Definition 16.10. For each q = 0, . . . , n− 1 we define

Tq =
2q−1⋃
i=0

[
2i

2q+1
,
2i + 1
2q+1

[

Theorem 16.2. The preceding strategy is an optimal searching strategy
that confines the pair (x, y) in a set, whose worst-case measure is 2−(n+1)|E|.
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17. Q-ary case

In this section we consider the problem of transmitting messages over a noisy
q-ary channel with noiseless feedback. This problem is closely related to a
sequential search with errors. Instead of using a binary coding alphabet, we
introduce Y = {0, . . . , q−1} as the q-ary coding alphabet. All other variables
and functions are chosen as before. The quiet-question-noisy-answer-game
is changed in the following way. The sender and receiver have a common
q-partition strategy. They divide the set of possible messages to q pairwise
disjoint sets (M0, . . . ,Mq−1). The sender transmits the index of the set
over the noisy channel. A “Devil” wants to avoid that the receiver gets the
message by changing at most l answers. Again we consider the sets

Sj �
{

x ∈ X : Paul get (l − j) negative votes for x
}

.

Definition 17.1. The vector

v =
(
|Sl|, |Sl−1|, . . . , |S0|

)
= (vl, vl−1, . . . , v0)

is referred to as a state (of the game). v is called a k-state if k questions
are left.

Definition 17.2. Let v =
(
|Sl|, . . . , |S0|

)
be an arbitrary state and let

M0, . . . , Mq−1 be the next partition used by Paul. We set Xi
j = Si ∩Mj

and denote the question “Which subset contains the message?” by [x] =

(xi,j)i=l...0
j=0...(q−1)

=

⎡
⎢⎣

xl0 . . . xl(q−1)
...

. . .
...

x00 . . . x0(q−1)

⎤
⎥⎦, where xi,j � |Xi

j |. [x] is called a

question-matrix.

Definition 17.3. The state s can be reduced to the states a1, a2, . . . , aq if
there exists a question [x] such that a1, a2, . . . , aq are possible states after
this question.

Definition 17.4.

1. A 0-state x is called winning if
∑l

i=0 xi ≤ 1. Otherwise, it is called
losing.

2. A k-state x is called winning if it can be reduced to q winning (k − 1)-
states. Otherwise, it is called losing.
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3. A winning k-state is called borderline winning if it is a losing (k − 1)-
state.

4. A k-state is called singlet if
∑k

i=0 |Si| = 1.

5. A k-state is called small if
∑k

i=0 |Si| ≤ q.

Proposition 17.1.

1. A winning n-state is also a winning k-state if k > n.

2. All borderline winning 1-states have the form (0, . . . , 0, a), where a ≤ q.

3. Let x be a winning k-state and y be some state. If yi ≤ xi for all i ≤ l,
then it is also a winning k-state.

Definition 17.5. Let x be an arbitrary state. Then

V q
n (x) �

l∑
i=0

xi

i∑
j=0

(
n

j

)
(q − 1)j

is called the n-th volume of the state x.

Proposition 17.2. Let x be a state, which can be reduced to the states
a1, a2, . . . aq. Then

V q
n (x) =

q∑
i=1

V q
n−1(ai).

Proposition 17.3. Let x be a winning n-state. Then

V q
n (x) ≤ qn.

Let X = {1, . . . , N} be the set of messages and l be the maximal number
of lies. We denote the minimal number of questions of Paul to find the
searched number by using an optimal strategy by Lq

l (N).

Corollary 17.4 (The Hamming bound). Let |X | = N and l ∈ N. Then

Lq
l (N) = n =⇒ N ≤ qn∑l

j=0

(
n
j

)
(q − 1)j

.

Definition 17.6. Let s be an arbitrary state. Its character is defined as

ch(s) � min
{

k : V q
k (s) ≤ qk

}
.
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Lemma 17.5. Let x be a small state, but not a singleton state, m �

max {j : xj = 0} and k �
{

max {j : xj = 0 and j = m} if xm = 1,

m otherwise.

If z = k + m + 1, then x is a borderline winning z-state.

Definition 17.7. Let x =

⎛
⎜⎝

xk
...

x0

⎞
⎟⎠ be a state. Then T (x) = t =

⎛
⎜⎝

tk−1
...
t0

⎞
⎟⎠

with ti = xi+1 is called the translation of x.

Theorem 17.1. Let x be a state. If x is a winning n-state, then T (x) is a
winning (n− 2)-state.

Corollary 17.6. Let x be a winning n-state. Then Tm(x) is a winning
(n− 2m)-state.

From this Corollary follows the following bound.

Theorem 17.2. Let N = qi then Lq
l (N) ≥ max{i + 2l, ch

(
(N, 0 . . . , 0)

)}.
Aigner [12] conjectured that this bound is tight. It is shown in [29] that

this conjecture is wrong, but the bound is not so bad.

Theorem 17.3. Let N, l, q ∈ N with q ≥ 2 then holds

1. If �logq N� ≤ q − 1 then Lq
l (N) = �logq N�+ 2e.

2. If q − 1 < �logq N� ≤ min
{

q(q − 2), 2(q − 1)
}

then �logq N� + 2e ≤
Lq

l (N) ≤ �logq N�+ 2e + 1.

Aigner and Malinowski have solved independently the q-ary case if l = 1.
They have the following equivalent results:

Theorem 17.4 (Aigner [12]). Suppose that N and q are chosen as before
and h, r are chosen in such a way that N = hq − r and 0 ≤ r < q. Then

Lq
1(N) =

⎧⎪⎨
⎪⎩
�logq N�+ 2 if n ≤ qq−1,

min
{

k :
qk − r(k − 1)(q − 1)

1 + k(q − 1)
≥ N

}
otherwise.
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Theorem 17.5 (Malinowski [57]). Suppose that N and q chosen as before
and h, r are chosen in such a way that N = h(q + 1) + r and 0 ≤ r < q + 1.
Let c = min{(q + 1)i : (q + 1)i ≥ h} and r = 0. Then

Lq
1(N) = 1 +

{
ch(h, qh) if h ≥ (q + 1)q−1,

max{ch(h, qh), ch
(
c, c(h− 1)

)} otherwise.

Let c = min
{

(q + 1)i : (q + 1)i ≥ h + 1
}

and r = 0. Then

Lq
1(N) = 1 +

⎧⎪⎪⎨
⎪⎪⎩

ch(h + 1, qh + r − 1) if h ≥ (q + 1)q−1,

max{ch(h + 1, qh + r − 1), ch
(
c, c(h− 1)

)}
otherwise.

In general it is clear that the character is a lower bound for the minimal
number of questions. In [29] this lower bound is improved for the case l = 2
and N = qi and it is shown that this bound can be attained.

Theorem 17.6. Let N = qi with i, q ∈ N and not q = i = 2. Then

Lq
2(N) = min

k∈N

{
k : V q

k (qi, 0, 0) ≤ qk and V q
k−2(0, q

i, 0) ≤ qk−2
}

.

If we do not restrict N we have the following result.

Theorem 17.7. Let c = mink∈N

{
k : V q

k (qi, 0, 0) ≤ qk and V q
k−2(0, q

i, 0) ≤
qk−2

}
and �logq N� ≥ q − 1, then c ≤ Lq

2(N) ≤ c + 1.

18. The probabilistic case

Instead of giving a special number of lies one could consider the following
probabilistic problem. Carole lies with the probability p. Without feedback
this model is equivalent to the well known binary symmetric channel (BSC)
for a (X , p) channel. In this model we have a binary input alphabet X and
a binary output alphabet Y. The input symbols are complemented with
probability p. For this channel we make the following definitions:
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Definition 18.1. Let X = {0, 1} be the binary coding alphabet.
1. An (M,n, p) code for a BSC consists of the following:

(a)A message set M = {1, . . . ,M}.
(b)An encoding function cn : M→ X n.
(c)A decoding function d : X n →M.

1. The error probability of a (M, N, p) code is defined as:

λn = max
i∈M

P
(
g(Y n) = i | Xn = cn(i)

)
.

2. The rate R of an (M,n, p) code is R = log M
n .

3. A rate R is achievable if there exists a sequence of (M,n, p) codes such
that the error probability tends to 0 as n→∞.

4. The capacity C for a BSC is the supremum of all achievable rates.

For a discussion of shortcomings of this definition for general channels
see [3].

It is well known that the capacity of the BSC is 1 − h(p). The gener-
alization is the discrete memoryless channel (DMC). In this model we con-
sider arbitrary input and output alphabets and a transmission matrix with
the transmission probabilities. The known proofs of the coding theorem
for DMC use either random coding method or a maximal coding method.
Shannon proved that feedback can not increase the capacity of a DMC, but
it provides new possibilities for the construction of codes. The first attempt
was made by Horstein. In 1971 Ahlswede [1] gave a constructive proof of
the coding theorem for discrete memoryless channels with feedback. The
result can be found in section 19. In the paper [67] the author considered
the case if Carole lies with probability p independently in every step of the
game. He considered three models:

1. The continuous case: Carole thinks of a real number in the interval [0, 1].
The goal of Paul is to find an interval of length ε which contains this
number.

2. The discrete case: Original Game where Carole thinks of N numbers.
3. The discrete unbounded problem: Carole thinks of a natural number.

The author found out for which values of p the game is feasible. He got
the following result.

Theorem 18.1. Let Carole lie with probability p independently in every
step of the game, p ∈ (0, 1), ε > 0, r ≤ 1

ε and N ∈ N.
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1. Paul wins version 1 of the game if and only if p < 1
2 . And there exists

a winning strategy in O(log r) steps.

2. Paul wins version 2 of the game, if p < 1
3 . And there exists a winning

strategy in O(log N) steps.

3. Paul wins version 3 of the game, if p < 1
3 .

19. Search and information theory

In the previous sections we have seen that searching with lies is equivalent
to coding with feedback. In this section we will consider the discrete
memoryless channel (DMC), which is a generalization of the BSC. With
X and Y we denote the input and output alphabets. The channel is fully
characterized by specifying the transmission matrix w, where 1 ≥ w(y|x) ≥
0 for all x ∈ X , y ∈ Y and

∑
y∈Y w(y|x) = 1 for all x ∈ X . We assume

the independence structure P (Y n = yn|xn) =
∏

1≤t≤n w(yt|xt) for xn ∈ X n

and yn ∈ Yn. P (Y n = yn|xn) is the probability that the randomly received
sequence Y n is equal to yn if xn was transmitted. We also assume noiseless
feedback and call such a channel DMCF. In [1] one can find a constructive
proof of the coding theorem for the DMCF. The entropy H(X) = H(P ) =
−
∑

x∈X P (X = x) log P (X = x) is often interpreted as a measure of
the uncertainty about which value X assumes. Let Q = P · W denote
the distribution of the output variable Y, then the mutual information
I(P, W ) = I(X ∧ Y ) = H(X) − H(X|Y ) measures the information which
we obtain about X if Y is observed. In [1] with the help of list codes a
concrete meaning is assigned to this interpretation. An (N, l, λ, L)-list code
is a set of pairs (ui, Di) with ui ∈ X l, Di ⊂ Y l, W (Di|ui) ≥ 1 − λ for all
1 ≤ i ≤ N and

∑
1≤i≤N 1Di(y

l) ≤ L for all yl ∈ Y l.

Lemma 19.1 (Ahlswede’s list reduction lemma). There exists an (N, l,
λ, L)-list code with the following properties:

1. N ≈ exp
{

H(X)l
}

,

2. L ≈ exp
{

H(X|Y )l
}

.

The exact notions in this lemma depend on the kind of typical sequences
used for the construction of the list code. By iteratively applying this lemma
we get rates which approach the capacity C arbitrary closely. This method
of list reduction is generalized in [2] for the arbitrarily varying channel
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(AVC). Let W =
{

w(·| · |s) : s ∈ S
}

be a finite set of stochastic |X | × |Y|
matrices. For each sn ∈ Sn we define W (yn|xn|sn) =

∏
1≤t≤n w(yt|xt|st)

and the sets Wn :=
{

W (·| · |sn) : s ∈ S
}

. An AVC is then given by the

sequence (Wn)∞n=1. We denote by W the convex hull of W and by W its
row-convex hull.

Lemma 19.2 (Ahlswede’s list reduction lemma for AVC). There exists an

(N, l, λ, L)-list code for the AVC W =W with the following properties:

1. N ≈ exp
{

H(X)l
}

,

2. L ≈ exp{l max{H(
X|Y (w) : w ∈ W

)}.
Like before by iteratively applying this lemma it is shown that the

capacity has the formula CF (W) = maxP∈P(X ) minW∈W I(P, W ), if the
capacity is positive. In [2] it is shown that the coding problem for the DMC
with feedback is in the error-free case a special case of the coding problem
for the AVC with feedback. We obtain a formula, which was conjectured by
Shannon in [73].

Later in the paper [10] the capacity for the AVC W =W with feedback
is determined completely, that is without the positivity assumption. More
importantly the authors also solve the problem for generalW. The formula
distinguishes three cases and therefore the authors speak of a trichotomy.
To establish this theorem the authors use the list reduction lemma, the
balanced coloring lemma ([4]) and techniques of identification theory ([5]).

Theorem 19.1 (trichotomy theorem). Let Ŵ =
{

Ŵ : Ŵ (·|x) ∈ Ŵ(x) for

all x ∈ X and Ŵ (y|x) ∈ {0, 1} for all y ∈ Y
}

, where Ŵ(x) =
{

W (·|x, s) :
s ∈ S

}
and let CR(W) = maxP minW∈W I(P, W ) denote the random code

capacity.

CF (W) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, iff CR(W) = 0 or Yx ∩ Yx′ = ∅ ∀x, x′ ∈ X
CR(W), iff CR(W) > 0 and Yx = ∅ for some x

min
{

CR(W), CF (Ŵ)
}

,

iff CR(W) > 0 and Yx = ∅ for all x

The AVC models a robust search problem in the presence of noise. There
exist many papers about multi-way-channels with feedback, mostly with
partial results. For instance for the two-way-channel in the pioneering paper
of Shannon [74] the capacity region is still unknown.
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20. Identification and a general search model

In the first part of the paper [8] Ahlswede describes a general communication
model which includes identification as a special case. We will formulate this
model as a search model.

One can conceive of many situations in which Paul has different goals.
A nice class of such situations can, abstractly, be described by a family

Π(M) of partitions of M. Paul π ∈ Π(M) wants to know only which
member of the partition π = (A1, . . . , Ar) contains m, the true number,
which is known to Carole.

We describe now some seemingly natural families of partitions.

Model 1: ΠS = {πsh}, πsh =
{
{m} : m ∈ M

}
. This describes the

classical problem.

Model 2: ΠI = {πm : m ∈ M} with πm =
{
{m},M\{m}

}
. Paul

πm wants to know whether m occurred or not. This is the identification
problem introduced in [6].

Model 3: ΠK =
{

πS : |S| = K, S ⊂M
}

with πS = {S,M\S}. This
is an interesting generalization of the identification problem. It is called
K–identification.

Model 4: ΠR = {πr : πr =
{
{1, . . . , r}, {r + 1, . . . , M}

}
, 1 ≤ r ≤

M −1}. Here Paul πr wants to know whether the number exceeds r or not.
We speak of the ranking problem.

Model 5: ΠB = {ΠA : A ⊂M}. Here πA = {A,M\A} wants to know
the answer to the binary question “Is m in A?”.

Model 6: M = {0, 1}�, ΠC = {πt : 1 ≤ t ≤ �} with πt =
{{(x1, . . . , x�) ∈ M : xt = 1

}
,
{

(x1, . . . , x�) ∈ M : xt = 0
}}. De-

coder πt wants to know the t–th component of the vector valued message
(x1, . . . , x�).
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21. The game without feedback

If we consider the Ulam–Rényi game without feedback, all strategies are
equivalent to error correcting codes. Thus we need some definitions for
error correcting codes.

Definition 21.1.

1. We call a code a (N, l, n) code, if we can transmit N messages with a
block code of length n if at most l errors happen.

2. We denote by N(l, n) the maximal number N of messages such that a
(N, l, n) code exists.

Our first goal is to compare the number of questions of the adaptive
game and the non-adaptive game.

Definition 21.2. We denote by Gl(N) the minimal number of questions of
Paul to find the searched number by using an optimal non-adaptive strategy.

In the paper [43] the authors make such comparisons. It is clear that
Ll(N) ≤ Gl(N). Thus the Hamming Bound is also a lower bound for the
non-adaptive game. The Hamming bound is known much longer for the non-
adaptive case. In [62] it is shown that G1(220) = 25. In [79] the following is
shown.

Theorem 21.1.

1. G1(220) = 25
2. G2(220) ∈ {29, 30}
3. G3(220) ∈ {33, 34, 35}
4. G4(220) ∈ {37, 38, 39, 40}

In [13] Aigner considered the q-ary case without feedback. We will use
the notation Gq

l (N) for the minimal number of questions of Paul to find the
searched number by using an optimal non-adaptive q-ary strategy. For one
lie he gets the following result.

Theorem 21.2. Let q be a prime number then holds

1. Lq
1(N) = Gq

1(N) if n ≤ qq−1.

2. Lq
1(N) ≤ Gq

1(N) ≤ Lq
1(N) + 1 if n > qq−1.

Further results about error-correcting codes can be found in [56].
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22. Learning and searching

Mundici and Cicalese pointed out in [24] that learning and searching are
strongly connected. In the Ulam–Rényi game at every step Paul learns
something about Carole’s secret element.

Let us consider a learning model which is strongly connected to the
Ulam–Rényi game. We have a teacher and a student. There is a collection
of concepts R1, . . . , Rm and a set of words X = {1, . . . , M}. Each concept
Rj is a subset of the words. The concepts are not disjoint, but all concepts
are different sets. The teacher generates a sequence of length n of words
referring to a concept Ri. The student knows that the teacher speaks about
one of m concepts and he knows which words are used to describe concepts.
He learns the concept in the following way. In step k he reads the k-th
word of the sequence and makes a binary test to learn the concept of the
teacher. He is able to test if x ∈

⋃
i∈I Ri, where I ⊂ {1, . . . , m}. The

test may be faulty. This means that at most l tests are wrong. If we
choose X = {1, . . . , M}, Rj =

{
π(j)

}
for j = 1, . . . , M = m, where π is

a permutation of X and set for the teacher-sequence (tj)
n
j=1, tj = x ∈ Ri

for all j. Obviously this is equivalent to the Ulam–Rényi game. There
exist several variants of this model. We can restrict the tests, the teacher-
sequence may be also faulty or the tests are wrong with a given probability.

In [50] the authors consider a probabilistic variant of the learning model.
In their setting no concept is a subset of another and the tests are not
faulty. In first step the learner makes a guess of the concept of the teacher
by choosing one concept at random and checks for consistency with the
first word of the teacher-sequence. He is sticking to his choice at each step
until it is proven wrong. They consider two kinds of learning strategies: The
memoryless learner, who chooses a new concept at random from all concepts
if one test is wrong and the learner with full memory, who never chooses a
concept again, if it has been rejected before. All random choices are done
according to the uniform distribution. They get the following result.

Theorem 22.1. Let N(p) be the number of steps it takes for the student
to have probability 1− p of learning the concept. There exists constants c1,
c2, c3, c4 such that

lim
n→∞

P

(
c1 <

N(p)∣∣ log(p)
∣∣n log(n)

< c2

)
= 1
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holds for the memoryless learner and

lim
n→∞

P

(
c3 <

N(p)∣∣(1− p)2
∣∣n log(n)

< c4

)
= 1

holds for the learner with full memory.

Many models of this kind for learning can be found in [52], [51] and [49].

23. Unequal protection with feedback

In this section we will consider a modified channel model. A detailed version
of this section can be found in [7]. We consider a communication system,
with one sender (or encoder) E and two receivers (or decoders), D1 and
D2. The sender E wants to send a message i ∈ M1 to D1 and a message
j ∈M2 to D2 simultaneously and he encodes each pair (i, j) of messages into
a binary sequence of length n. This sequence is sent to the two receivers
via two independent channels. Because of the noise in the channels, the
output sequences received by the two receivers may have errors at most at
t1 = nτ1 and t2 = nτ2 bits respectively. Moreover we assume that we have
noiseless feedback. That means, the sender is allowed to choose the t-th
bit of input according to the first (t − 1) bits of both output sequences.
We call the code a binary

(
n, M1,M2, (t1, t2)

)
feedback code (or briefly

a fb-code) for broadcast channel if |Mk| = Mk k = 1, 2. A codeword
is in the form of: c(i, j) =

(
c1(i, j), . . . , cn(i, j, yn−1

1 , yn−1
2 )

)
, where ci :

M1 ×M2 × Y i−1
1 × Y i−1

2 → Y is a function for the i-th code letter which
depends on the message we want to transmit and the (i − 1) bits which
have been received by Receiver 1 and 2. We also call c a common strategy
(of the Sender and the Receivers). We will consider the special case, if
t1 = 0. To present the bound we need an isoperimetric inequality. For a
subset A ⊂ {0, 1}n, let Γt(A) =

{
xn : there exists an an ∈ A such that

dH(xn, an) ≤ t
}

for 1 ≤ t ≤ n. Then the isoperimetric problem for binary
Hamming space asks what sets achieve minA : |A|=u

∣∣Γt(A)
∣∣ for all k. This

problem was solved by Harper [41] and Katona [46]. They showed that the
initial segments of following order are always optimal for the minimization.
Let xn and yn be two binary sequences with the same Hamming weight.
Then we say that xn precedes yn in the squashed order if yi = 1 at the
largest component i where xi = yi. A binary sequence xn precedes a binary
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sequence yn in Tapper order, briefly H-order, if the Hamming weight of xn

is less than the the Hamming weight of yn or they have the same Hamming
weight and 1n − xn precedes 1n − yn in the squashed order. In the binary
Hamming space of dimension n the uth initial segment in H-order is denoted
by Sn,u. One can verify that

(23.1) Γt(Sn,u) ⊂ Γt(Sn,v)

for all n, t if u < v. We present the outer bound in terms of function G
which was introduced by Katona [46]. For given n any non-negative integer
u can be uniquely represented as

(23.2) u =
(

n

n

)
+ · · ·+

(
n

k + 1

)
+
(

αk

k

)
+ . . . +

(
αt

t

)

with n > αk > · · · > αt ≥ t ≥ 1. Then the function G is defined as

(23.3) G(n, u) =
(

n

n

)
+
(

n

n− 1

)
+ · · ·+

(
n

k

)
+
(

αk

k − 1

)
+ . . .

(
αt

t− 1

)
.

Moreover we rewrite G as G◦1 and define G◦t(n, ·) = G
(
n,G◦t−1(n, ·)

)
recursively. The Isoperimetric Theorem says that

(23.4) min
A : |A|=u

∣∣Γt(A)
∣∣ =

∣∣Γt(Sn,u)
∣∣ = G◦t(n, u).

To show (23.4) Katona proved that if 0 ≤ u1 ≤ u0 and u = u0 + u1,

(23.5) G(n, u) ≤ max
[
u0, G(n− 1, u1)

]
+ G(n− 1, u0).

To obtain the outer bound we need its generalization.

Lemma 23.1. Let u0, u1 be non-negative integers and u = u0 + u1. Then

G◦t(n, u) ≤ max
[
G◦t(n− 1, u0), G◦t−1(n− 1, u1)

]
(23.6)

+ max
[
G◦t−1(n− 1, u0), G◦t(n− 1, u1)

]
for all n and 0 ≤ t ≤ n.

Let us now turn to our problem of binary error correcting code with
feedback for broadcast channels. We shall obtain the outer bound by
counting the number of possible output sequences. Consider a family of
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encoding functions of a binary feedback code fn
m : {0, 1}n−1 −→ {0, 1}n,

m ∈M,

(23.7) fn
m(yn−1) = (f (1)

m , f (2)
m (y1), f (3)

m (y1, y2), . . . , f (n)
m (y1, y2, . . . , yn−1)).

When they are input into a channel (of one receiver) with noise of binary
additive errors and noiseless feedback, the output yn = (y1, . . . , yn) with

(23.8) y1 = f (1)
m + e1 and yt = f (t)

m (y1, y2, . . . yt−1) + et for t = 2,3, . . . , n.

is uniquely determined by the encoding function fn
m and the binary additive

noise en = (e1, e2, . . . , en) occurring in the transmission and so can be
regarded as a function Φ(fn

m, en). For a family of encoding functions {fn
m :

m ∈M}, and a set E of error patterns, we write

Φ(fM, E) =
{

yn : there exist m ∈M(23.9)

and en ∈ E such that yn = Φ(fn
m, en)

}
.

We believe that the following lemma is independently interesting in Com-
binatorics because it can be considered as an isoperimetric theorem for the
sequences generated with feedback. By choosing E = E(n, t) the set of bi-
nary sequences of length n with Hamming weight not exceeding t, as the
set of error patterns then we have

Lemma 23.2. For any family {fn
m : m ∈M} of encoding functions,

(23.10) |Φ(fn
M, E(n, t)

)| ≥ G◦t( |M|) .
With this lemma we can obtain the following theorem.

Theorem 23.1 (Hamming Bound for fb-Codes Correcting (0, t)-Error for
Broadcast Channels). If there exists an

(
n,M1,M2, (0, t)

)
binary fb-codes

for broadcast channels,

(23.11) M2 ≤
2n

G◦t(n,M1)

If we consider the case t2
n → τ if n→∞, we obtain the following.

Corollary 23.3. Let p be so chosen that R1 = h(p). Then R2 ≤ 1−h(p+τ).

It is very easy to verify that one can obtain better rates in this model
than in the model without feedback (by using timesharing).
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Nonadaptive and Trivial Two-Stage Group
Testing with Error-Correcting de-Disjunct

Inclusion Matrices

A. G. D’YACHKOV∗, A. J. MACULA† and P. A. VILENKIN∗

We discuss three types of inclusion matrices (subset, subspace and sequence).
We exhibit their disjunct properties and their applications to error-correcting
nonadaptive group testing. Under some limited conditions, these structures are
optimal for their disjunct properties.

1. Group testing

Suppose we have a finite ground set or population containing elements that
can be uniquely characterized as positive or negative. We refer to the col-
lection of positive elements, which is initially unknown, as the positive sub-
set P . In the abstract group testing problem, P be identified by performing
0, 1 tests on subsets or pools of the population. A pool is said to be positive
(1) if the test result indicates that a member of P is in that pool; the pool
is said to be negative (0) if test result indicates otherwise. A determinis-
tic pooling design algorithm is collection of pools along with a (worst case)
method that identifies the positive subset in a population.

Although research in group testing has continued since Dorfman’s 1943
paper [5], a renewed interest in the subject has occurred largely because
of the application of group testing to bioinformatics (e.g., clone library
screening [3] and ogilio array quality control [4]). See Du and Hwang’s

∗Supported in part by NSF DMS 0107179.
†Supported in part by Russian Foundation of Basic Research 98-01-00241.
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monograph, Combinatorial Group Testing and its Applications [6] and its
extensive bibliography.

In nonadaptive group testing (NGT,) one must decide exactly which
pools to test before any testing occurs. A nonadaptive group testing algo-
rithm is sometimes referred to as a one-stage algorithm. Adaptive algorithms
are multi-stage algorithms and group testing algorithms can be classified by
the degree to which they are adaptive. A two-stage algorithm is a nearly
nonadaptive algorithm, in which, an initial battery of tests is carried out (of-
ten in parallel.) Then using the information from the first stage, the second
and final battery of tests are constituted and carried out (again, in par-
allel if possible.) Because bioinformatic applications are often automated,
nonadaptive or two-stage rather than adaptive methods are generally pre-
ferred here. See [13] for other factors that favor nonadaptive over adaptive
methods.

The nonadaptive (or predetermined [2]) versions of search problems
(e.g., counterfeit coins) have been studied for decades. See [1], [2] and
[18]. And, equivalent formulations of NGT existed well before the advent
of bioinformatics. The first equivalent formulation of NGT was introduced
by Kautz and Singleton in the investigation of binary superimposed codes
(BSC) [19] and their work was advanced by D’yachkov and Rykov [8], [9],
[10]. Another equivalent formulation of NGT was studied by Erdős, Frankl
and Füredi in their investigations of cover-free families (CFF) [11], [12].
(Also see [14], [25].) The concepts NGT, BSC, and CFF are mutually
equivalent because they all have the same disjunct matrix representation.
See Chapter 7 in [6] for references and a description. In this paper, we
discuss the disjunct properties of some inclusion matrices.

2. Inclusion matrices

In this paper, all simple lower case roman variables are non-negative inte-
gers. Let [n] denote {1, 2, . . . , n}. Given set S, |S| denotes its cardinality.
We call a subset of [n] with cardinality k a k-set. Let

([n]
k

)
denote the k-sets

of [n]. When we say binary matrix, we mean a 0, 1 matrix and vice-versa.

Suppose Γ is a family of k-sets on [n] such that |K1 \ K2| ≥ r for all
K1,K2 ∈ Γ. In the other words, the incidence vectors (of length n) of the
members of Γ form a binary code with minimum Hamming distance 2r.
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Definition 1. Let 1 ≤ d ≤ k ≤ n and let Γ be a family of k-sets on [n]
with minimum Hamming distance 2r. We define the

(
n
d

)
×|Γ| binary matrix

δ(n, d, k,Γ, r) by letting its rows and columns be respectively indexed by the
members of

([n]
d

)
and Γ. For D ∈

([n]
d

)
and K ∈ Γ the matrix δ(n, d, k,Γ, r)

has a 1 in its (D, K)th entry if and only if D ⊆ K. If Γ =
([n]

k

)
, then we

simply write δ(n, d, k) instead of δ(n, d, k,Γ, 1).

The general matrices δ(n, d, k,Γ, r) were studied in [7] and [22]. Gottlieb
studied the specific matrices δ(n, d, k) in [15] from a linear algebra point of
view. (Also see [20], [27] and [28].) The constant row and column weights of
δ(n, d, k) are

(
n−d
k−d

)
and

(
k
d

)
respectively. In Figure 1, δ(4, 2, 3) is displayed.

δ(4, 2, 3)
{

1
2
3

} {
1
2
4

} {
1
3
4

} {
2
3
4

}
12 1 1 0 0
13 1 0 1 0
14 0 1 1 0
23 1 0 0 1
24 0 1 0 1
34 0 0 1 1

Figure 1

The weight of a vector is the number of its non-zero entries. For k ≤ n,
let

([n]
k

)
[q]k denote the set of all q-ary vectors of length n and weight k. Let

α ∈
([n]

d

)
[q]d and τ ∈

([n]
k

)
[q]k. Let α(i) and τ(i) denote the ith entry of

α and τ respectively. We say that α ≺ τ if, for 1 ≤ i ≤ n, α(i) = τ(i)
whenever α(i) = 0. For example, 03010 ≺ 03112 where 03010 ∈

(
[5]
2

)
[3]2

and 03112 ∈
(
[5]
4

)
[3]4.

Definition 2. Let 1 ≤ d ≤ k ≤ n and q ≥ 1. We define the
(
n
d

)
qd ×

(
n
k

)
qk

binary matrix π(q, n, d, k) by letting its rows and columns be respectively
indexed by the members of

(
[n]
s

)
[q]d and

([n]
k

)
[q]k. For α ∈

([n]
d

)
[q]d and

τ ∈
([n]

k

)
[q]k the matrix π(q, n, d, k) has a 1 in its (α, τ)th entry if and only

if α ≺ τ .

The row and column weights of π(q, n, d, k) are
(
n−d
k−d

)
qn−d and

(
k
d

)
re-

spectively. In Figure 2, π(2, 4, 2, 3) is depicted.

The matrices π(q, n, d, k) (and δ(n, d, k)) are particular instances of a
more general type of incidence matrices discussed in [23]. (The general con-
struction in [23] is too lengthy for this brief survey.) It would be interesting
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to see if some of the results below can be extended (in some way) to the
more general setting.

0 0 0 0 0 1 1 1 1 1 2 2
1 1 1 2 2 0 0 0 0 1 2 2

δ(2, 4, 2, 3) 1 1 2 1 2 1 1 2 2 0 . . . 1 2
1 2 2 2 2 1 2 1 2 1 0 0

0011 1 0 0 0 0 1 0 0 0 0 0 0
0012 0 1 0 1 0 0 1 0 0 0 . . . 0 0
0021 0 0 0 0 0 0 0 1 0 0 0 0
0022 0 0 1 0 1 0 0 0 1 0 0 0
0101 1 0 0 0 0 0 0 0 0 1 0 0
0102 0 1 1 0 0 0 0 0 0 0 . . . 0 0
0110 1 1 0 0 0 0 0 0 0 0 0 0
0120 0 0 1 0 0 0 0 0 0 0 0 0

...
...

...
...

2100 0 0 0 0 0 0 0 0 0 0 . . . 0 0
2200 0 0 0 0 0 0 0 0 0 0 1 1

Figure 2

Let q be a prime power and let Fn
q denote the n-dimensional vector space

over the finite field Fq. For 1 ≤ k ≤ n, the Gaussian coefficients
[
n
k

]
q

give

the number of k-dimensional subspaces of Fn
q . Let

[[n]
k

]
q

denote the family

of k dimensional subspaces of Fn
q . In many ways

[
n
k

]
q

generalizes
(
n
k

)
. See

[27]. It is well known that[
n

k

]
q

=
k−1∏
i=0

(qn−i − 1)(qk−i − 1)
−1

.

Definition 3. Let 1 ≤ d ≤ k ≤ n and let q be a prime power. We define the
binary matrix γ(n, d, k) by letting its the rows and columns be respectively
indexed by the members of

[[n]
d

]
q

and
[[n]

k

]
q
. For D ∈

[[n]
d

]
q

and K ∈
[[n]

k

]
q

the matrix γ(n, d, k) has a 1 in its (D, K)th entry if and only if D is a subset
(hence a subspace) of K.

The matrix γ(n, d, k) was studied in [28] from a linear algebra point of
view and in [24] from a group testing point of view. The constant row and
column weights of γ(n, d, k) are

[
n−d
k−d

]
q
and

[
k
d

]
q

respectively.
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3. de-disjunct matrices

Let M be an n × t binary matrix. Let
(
c(i)

)
be a column (vector) of M

where 1 ≤ i ≤ n and c(i) is the ith coordinate. In many cases, we just
write c in place of

(
c(i)

)
. Let T = {c1, . . . , cd} be a d-set of columns of M .

Let c0 be a column of M with c0 /∈ T . We say that (c0, T ) is a designated
(d + 1)-set. We say that a row of the matrix M separates the designated
(d + 1)-set (c0, T ) if that row has a 1 in the designated c0 column and 0s
in all the columns of S. For binary n-vectors c1, c2, we write c1 ≤ c2 if and
only if c1(i) ≤ c2(i) for all 1 ≤ i ≤ n. Let S be a subset of the columns
of M . Then ∨S denotes the (coordinate-wise) sup of the columns in S.

Definition 4. Let 1 ≤ d < t. An n×t binary matrix M is called de-disjunct
if and only if given any designated (d + 1)-set (c0, T ), there are e + 1 rows
of M that separate it.

When e = 0 our Definition 4 coincides with the definition of d-disjunct
that is found in Chapter 7 of [6]. In that case we just say d-disjunct instead
of d0-disjunct. Obviously de-disjunct implies se′-disjunct when d ≥ s and
e ≥ e′.

Suppose that in a population of size t, the positive subset P has at most
d elements. Then an n×t d-disjunct matrix M gives a deterministic pooling
design and algorithm in the following way. Let

(
c(i)

)
where 1 ≤ i ≤ n be a

column (vector) of M . Identifying the columns of M with the population,
then the rows of M give the pools in the obvious way. That is, a column(
c(i)

)
is in the pool determined by the ri (the row of M with index i)

if and only if the (column) entry c(i) = 1. The information gained by
testing these pools is organized as follows. Suppose that the positive subset
is P = {(cj(i)

)}
j∈S

. By testing each pool (row) ri, we define an output

vector
(
o(i)

)
by setting o(i) = 1 if pool ri is positive and o(i) = 0 if it is

negative. Clearly (given that the tests are error-free) for 1 ≤ i ≤ n, o(i) = 1
if and only if there is a

(
cj(i)

)
∈ P with cj(i) = 1. Thus o = ∨P . The

output vector o is used to identify P because P = {c ∈ M : c ≤ o}. This
follows because for each c0 /∈ P there is a row of M that separates the
designated set (c0, P ).

In a somewhat different way, a de-disjunct matrix can be used to identify
P even if some errors occur in the output vector. Note that in the above
error-free situation the positive subset P could have been identified by
checking all subsets S of columns of M with cardinality at most d for the only
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such S with ∨S = o. This is because a d-disjunct matrix has the property
(strictly weaker that d-disjunct) that all such ∨S are distinct. So if ∨S = o,
then it follows that S = P . Matrices with this weaker property are called
d̄-separable. See [6]. What follows below is inspired by [16] and [24].

Proposition 1. Let 1 ≤ d < t and let M be an n × t de-disjunct matrix.
Let H(x, y) be the Hamming distance between two binary vectors x and y of
length n. Let S and T be distinct subsets of columns of M with cardinality
at most d. Then:

a. [16] If S ⊂ T , then H(∨S,∨T ) ≥ e + 1.

b. If S ⊂ T and T ⊂ S, then H(∨S,∨T ) ≥ 2e + 2.

Proof. a. Since there is a column c0 ∈ T with c0 /∈ S, then the designated
set (c0, S) is separated by at least e + 1 rows of M . From this the result
follows.

b. Since there is a column c0 ∈ T with c0 /∈ S and a column c1 ∈ S with
c1 /∈ T , then the designated sets (c0, S) and (c1, T ) are each separated by
at least e + 1 rows of M . From this the result follows.

Thus depending upon the prior knowledge about the nature of the
positive subset P , it follows from Proposition 1, that de-disjunct matrices
can be use to correct a varying number of errors.

In the most general situation where the assumption is that the car-
dinality of P is at most d, then a de-disjunct can correct �e/2� errors
in the following way. Suppose that at most �e/2� errors have occurred
in the correct output o and, in place of o, ε is the observed error out-
put vector. Then H(o, ε) = H(∨P, ε) ≤ �e/2�. By checking all sub-
sets S of columns of M with cardinality at most d for the only one with
H(∨S, ε) ≤ �e/2�, then S = P . Clearly there is at least one such S
(e.g., S = P ) and if S = P , then, by Proposition 1a, we have that
H(∨S, ε)+H(ε, o) ≥ H(∨S, o) = H(∨S,∨P ) ≥ e+1. Since H(e, o) ≤ �e/2�,
it follows that H(∨S, ε) > �e/2�.

If we assume that P has cardinality exactly d, then a de-disjunct matrix
can correct e errors in a similar way. Suppose that at most e errors have
occurred in the correct output o and δ is the observed (error) output vector.
In this case, H(o, δ) = H(∨P, δ) ≤ e. By checking all subsets S of columns
of M with cardinality exactly d for the only one with H(∨S, δ) ≤ e, then
S = P . This follows from Proposition 1b because if S = P , then H(∨S, δ)+
H(δ, o) ≥ H(∨S, o) = H(∨S,∨P ) ≥ 2e + 2. Since H(δ, o) ≤ e, it follows
that H(∨S, δ) > e.
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One question is that if we take the more general assumption that the
cardinality of P is at most d, can a de-disjunct matrix correct more that
�e/2� errors? The answer to this question is “yes and no”. The answer is
“no” if a nonadaptive procedure is desired. The following counter-example
from [16] demonstrates this.

Example 1. The matrix in Figure 3a is de-disjunct with d = 2 and e = 1.
If the positive subset is the first two columns, then the correct output vector
is o1 in Figure 3b. If the positive subset is just the first column, then the
correct output vector is o2 in Figure 3b. Since both of these are Hamming
distance one away from an error output vector in δ in Figure 3c, then with
one error in the testing, it is impossible to determine a unique positive
subset. ⎛

⎜⎜⎜⎜⎜⎜⎝

1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

o1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
1
1
1
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

o2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
1
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

δ =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
1
1
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

(a) (b) (c) (d)

Figure 3

While Example 1 shows that it is hopeless to nonadaptively use a de-
disjunct matrix to correct e testing errors when it is assumed that the
cardinality of P is at most d, it also indicates that a de-disjunct matrix can
be used to correct e testing errors when it is assumed that the cardinality
of P is at most d and a trivial two-stage decoding method is used. A trivial
two-stage decoding method adds a second stage that tests each member of
a relatively small group of the population individually and each of these
individual tests are guaranteed to be error free. We describe this below.

Assume that the positive subset P has cardinality at most d. Suppose
that at most e errors have occurred in the correct output o and, in place
of o, δ is the observed error output vector. Take all subsets S of columns
of M with cardinality at most d and with H(∨S, δ) ≤ e. Let S1 and S2

be two such subsets. Then either S1 ⊂ S2 or S2 ⊂ S1. If not, then by
Proposition 1b, we have H(∨S1,∨S2) ≥ 2e + 2. Then either H(∨S1, δ) > e
or H(∨S2, δ) > e which is a contradiction. Thus set of all at most d sets
S with H(∨S, δ) ≤ e is a chain. Since H(∨P, δ) = H(o, δ) ≤ e, then P
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is a member of this chain. If one simply takes the union of all sets S of
cardinality at most d with, then this union can have cardinality at most d.
Since P is a member of this union, it can be identified by testing each
member of the union individually. The main point is that one doubles the
error-correcting capabilities by the addition of at most d confirmatory and
guaranteed tests as compared to the number of tests required by, and error
correcting capabilities of, the purely nonadaptive case.

Proposition 2. Let 1 ≤ s ≤ d ≤ k ≤ n. Let 1 ≤ q and e =
(
k−s
d−s

)
− 1.

a. [7], [21] δ(n, d, k) is se-disjunct.

b. [23] π(q, n, d, k) is se-disjunct.

Proof. We give a new proof of part a. The proof of part b is similar. First,
it follows from induction that

(1)
s∑

i=0

(−1)i

(
s

i

)(
k − i

d

)
=
(

k − s

d− s

)
.

Let S = {K0,K1, . . . , Ks} be the (set of) k-set indices of s + 1 columns of
δ(n, d, k). Suppose the column with index K0 is designated. It suffices to
show that there are at least

(
k−s
d−s

)
d-sets in K0, none of which are contained

in any Ki with 1 ≤ i ≤ s, because then we would have
(
k−s
d−s

)
rows of

δ(n, d, k) separating (K0, S). Without loss of generality, we can assume
that |K0∩Ki| = k− 1 for all 1 ≤ i ≤ s, because such a family {K1, . . . , Ks}
will cover the most possible number of d-sets of K0. However, the number
of d-sets of K0 that are not covered by some member of such a family
{K1, . . . , Ks} is given by (1) because the intersection of any i(k− 1)-sets of
[k] has cardinality k − i.

Proposition 3. For 1 ≤ d ≤ k ≤ n and 1 ≤ r < k, let Γ be a family of
k-sets in [n] with minimum Hamming distance 2r. Let

p =

⌈((
k

d

)
−
(

k − r

d

))((
k − r

d

)
−
(

k − 2r

d

))−1
⌉

and for 1 ≤ s ≤ p, let

e =
(

k

d

)
−
(

k − r

d

)
− (s− 1)

((
k − r

d

)
−
(

k − 2r

d

))
− 1.

Then for 1 ≤ s ≤ p, we have that δ(n, d, k, Γ, r) is se-disjunct.
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Proof. S = {K0,K1, . . . , Ks} be the (set of) k-set indices of s+1 columns of
δ(n, d, k,Γ, r). Suppose the column with index K0 is designated. It suffices
to show that there are at least e + 1 (as given above) d-sets in K0 none of
which are contained in any Ki with 1 ≤ i ≤ s. Without loss of generality,
we can assume that |K0∩Ki| = k−r for all 1 ≤ i ≤ s, because such a family
{K1, . . . , Ks} will cover the most possible number of d-sets of K0. K1 covers(
k−r

d

)
d-sets of K0. Let 1 ≤ i ≤ s − 1. Since |Ki+1 ∩Ki ∩K0| ≥ k − 2r,

then the number of d-sets of K0 covered by Ki+1 and not already covered
by Ki is

(
k−r

d

)
−
(
k−2r

d

)
. From this the result follows.

Proposition 3 here improves Proposition 4 in [7].

Proposition 4. Let q be a prime power. For 1 ≤ d ≤ k ≤ n, let

p =

⎡
⎢⎢⎢
([

k

d

]
q

−
[
k − 1

d

]
q

)([
k − 1

d

]
q

−
[
k − 2

d

]
q

)−1
⎤
⎥⎥⎥ .

For 1 ≤ s ≤ p, let

e =
[
k

d

]
q

−
[
k − 1

d

]
q

− (s− 1)

([
k − 1

d

]
q

−
[
k − 2

d

]
q

)
− 1.

Then 1 ≤ s ≤ p, we have that γ(n, d, k) is se-disjunct.

Proof. Let S = {K0,K1, . . . ,Ks} be the k-space indices of s+1 columns of
γ(n, d, k). Suppose the column with index K0 is designated. It suffices to
show that there are at least e + 1 (as given above) d-spaces in K0 none of
which are contained in any Ki with 1 ≤ i ≤ s. Without loss of generality,
we can assume that the dimension of Ki ∩ K0 is k − 1 for all 1 ≤ i ≤ s,
because such a family {K1, . . . , Ks} will cover the most possible number of
d-spaces of K0. K1 covers

[
k−1

d

]
q

d-spaces of K0. Let 1 ≤ i ≤ s− 1. Since
the intersection of any two (k − 1)-spaces in a k-space is a (k − 2)-space,
then number of d-spaces of K0 covered by Ki+1 and not already covered by
Ki is

[
k−1

d

]
q
−
[
k−2

d

]
q
. From this the result follows.

Proposition 4 is an improvement of a Theorem 3.4 in [24]. The following
Corollary 1 is a special case of Proposition 4.

Corollary 1. Let q be a prime power. For 1 ≤ s ≤ q, let

e = qk−1 − (s− 1)qk−2 − 1.

Then for 1 ≤ s ≤ q, we have that γ(n, 1, k) is se-disjunct.
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4. Some optimal de-disjunct matrices with constant row
weight

In applications of group testing, there are limits on the size of any given
pool. The size of pool in a deterministic NGT method is given by the row
weight of the matrix representation of the pooling design. Proposition 5 is
a reformulation of Proposition 1 in [7].

Proposition 5 [7]. Let M be an n × t de-disjunct matrix. Let r be the
maximum row weight of M . Suppose that (e + 1)r ≥ d + e + 1 and n ≥ 2.

Then n ≥ � t(d+e+1)
r �.

Proposition 6. Suppose d ≤ t− r. Let M be an n× t de-disjunct matrix
with constant row weight r. Then

n ≥
⌈
(d + 1)(e + 1)

(
t

d + 1

)(
r

(
t− r

d

))−1
⌉

.

Proof. There are (d + 1)
(

t
d+1

)
designated (d + 1)-sets of columns of M and

each needs to be separated by e + 1 rows. Since each row separates exactly
r
(
t−r
d

)
designated (d + 1)-sets the result follows.

Sometimes the bound in Proposition 6 exceeds that in Proposition 5.
If a de-disjunct matrix with constant row weight achieves either bound, we
say that it is optimal for its (maximum, constant) row weight. Part a of
Corollary 2 comes from [7].

Corollary 2. Let 1 ≤ s ≤ d < n and e =
(
k−s
d−s

)
− 1. Then

a. [7] δ(n, d, d + 1) is se-disjunct and it is optimal for its constant row
weight of n− d.

b. π(q, n, d, d + 1) is se-disjunct and it is optimal for its row constant
row weight of q(n− d)q.

Proof. Apply Proposition 2. It is straightforward to verify that the bound
in Proposition 5 is achieved.

Corollary 3. For 1 ≤ d < n and let q be a prime power. Then for 1 ≤ s ≤ q,
we have γ(n, d, d + 1) is se-disjunct with e = q − s and it is optimal for its
constant row weight of

[
n−d

1

]
q

= (qn−d − 1)(q − 1)−1.



Nonadaptive and Trivial Two-Stage Group Testing 81

Proof. Since ⌈[
d + 1

d

]
q

−
[
d

d

]
q

⌉
= q,

then apply Proposition 4. It is straightforward to verify that the bound in
Proposition 5 is achieved.

5. Remarks

Recall that de-disjunct implies se′-disjunct when d ≥ sand e ≥ e′. And
an se′-disjunct matrix could also be de-disjunct with d ≥ s and/or e ≥ e′.
We say that an se′-disjunct matrix M is fully if it is not de-disjunct when-
ever d ≥ s or e ≥ e′. Proposition 2 and Corollary 1 can not be “improved”
because those statements remain true if we substitute the phrase “fully
se-disjunct” in place of “se-disjunct”. However, Proposition 3 and Proposi-
tion 4 with d = 1 could possibly be improved in so much as it is unlikely that
they would remain true if the phrase “fully se-disjunct” was substituted for
“se-disjunct” therein.
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Model Identification Using Search Linear
Models and Search Designs

S. GHOSH, T. SHIRAKURA and J. N. SRIVASTAVA

1. Introduction

In designing an experiment, we often assume a model and then find a best
design satisfying one or more optimal properties under the assumed model.
This approach works well when we are absolutely sure about the assumed
model that it will fit the experimental data adequately. In reality, we are
rarely sure about a particular model in terms of its effectiveness in describing
the data adequately. However, we are normally sure about a set of possible
models that would describe the data adequately and one of them would
possibly describe the data better than the other models in the set. The
pioneering work of Srivastava [33] introduced the search linear model with
the purpose of searching for and identifying the correct model from a set
of possible models that includes the correct model. This paper focuses on
model identification through the use of the search linear models, particularly
in addressing the fundamental issues and important challenges in statistical
design and analysis of experiments while presenting an overview on this area
of research. Two important research areas developed over time using the
search linear models are in factorial designs and row-column designs.

In factorial experiments, we normally assume that the lower order effects
are important and the higher order effects are all negligible. For example,
in a main-effect plan, we assume that the factors do not interact, or in other
words, the interaction effects are all negligible. Such an assumption may
or may not be true in reality because of a possible presence of a few sig-
nificant non-negligible effects. The standard linear models cannot identify
these non-negligible effects using a small number of runs or treatments con-
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siderably smaller than the total number of possible runs for an experiment.
This motivates the use of search designs under the search linear model in
searching for and identifying the non-negligible effects.

In row-column designs there are two blocking factors, namely the row-
blocking factor and the column-blocking factor. Since the goal of an ex-
periment is to compare treatments and their effects, such blocking factors
are considered as nuisance factors. In the standard analysis of row-column
designs, the two nuisance factors are assumed to be additive meaning that
they do not interact and there are no interaction effects. Such nuisance fac-
tors arising in nature will not always be additive. Srivastava [34, 37, 38],
Srivastava and Beaver [40] considered such non-additive nuisance factors
leading to nested multidimensional block designs. Srivastava and Wang [46]
developed a technique for examining possible non-additive effects and iden-
tifying the non-additive cells in row-column designs using the search linear
models. Some experimental strategies were also developed to eliminate the
influence of non-additive effects on the analysis of row-column designs.

Srivastava [35] introduced the concepts sensitivity and revealing power in
experimental designs. Sensitivity as a generalization of the concept of local
control, deals with the determination of grouping units so that the effects
of known and possibly even unknown nuisance factors can be eliminated as
much as possible. Revealing power refers to the ability of the design to find
out what the true model might be in a particular experimental situation.

This paper has eight sections. Sections 1–3 are written by S. Ghosh, 4
by T. Shirakura, and 5–8 by J. N. Srivastava. In Sections 2 and 3, Ghosh
describes the search linear models, search procedure, search probabilities,
and performance evaluation of the search procedure and search designs. In
Section 4, Shirakura presents the details about search designs in factorial
experiments. In Sections 5–8, Srivastava addresses the fundamental issues
in scientific experiments on model identification, examines the information
contained in an experiment about the model, presents some combinatorial
problems, and describes the analysis under the general search linear model
using simulation distributions.
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2. Search linear model

Consider the search linear model (Srivastava [33])

(1) E(y) = A1ξ1 + A2ξ2, V (y) = σ2I,

where y(n × 1) is the vector of observations, A1(n × ν1), and A2(n × ν2)
are matrices known from the underlying design. The elements of the vector
ξ1(ν1 × 1) are unknown parameters. About the elements of ξ2(ν2 × 1),
we know that at most k elements are nonzero but we do not know which
elements are nonzero. The goal is to search for and identify the nonzero
elements of ξ2 and then estimate them along with the elements of ξ1. Such a
model is called a search linear model (SLM). When ξ2 = 0, the search linear
model becomes the ordinary linear model. For the search linear model, we
have ξ2 = 0.

Let A22 be any (n × 2k) submatrix obtained from A2. A design is a
search design (Srivastava [33]) if, for every submatrix A22,

(2) Rank [A1,A22] = ν1 + 2k.

The rank condition (2) allows us to fit and discriminate between any two
models in the class of possible models described earlier. Thus, a search
design allows us to search for and identify the nonzero elements of ξ2 and
then estimate them along with the elements of ξ1.

When Rank [A1] = ν1, the condition (2) is equivalent (Srivastava and
Ghosh [42]) to

(3) Rank
[
A′

22A22 −A′
22(A

′
1A1)

−1A22

]
= 2k.

3. Search procedure, search probabilities, and
performance evaluation

Consider a class of
(
ν2

k

)
linear models from (1) with the parameters as ξ1

and k elements of ξ2. The
(
ν2

k

)
possible sets of k elements of ξ2 give rise

to
(
ν2

k

)
such models. For any two models in this class, the elements ξ1 are

common parameters but in the two sets of k elements in ξ2 some common
parameters may or may not be present. A search procedure identifies a
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model which best fits the data generated from the search design(SD). To
identify such a model, the sum of squares of error (SSE) of each model
is used (Srivastava [33]). If SSE for the first model (M1) is smaller than
the SSE for the second model (M2), then M1 provides a better fit and is
selected over M2. For a fixed value of k, all

(
ν2

k

)
models are fitted to the

data and the search procedure selects the model with the smallest SSE as
the best model for describing the data.

Two popular criteria for model comparisons, namely the Akaike Informa-
tion Criterion (AIC) and the Bayesian Information Criterion (BIC) (Akaike
[1, 2], Sawa [21]) turn out to be exactly equivalent to the minimization of
SSE in the above search procedure.

The probability of selecting a model over another model depends on σ2.
To explain this, let M0 be the true model in the class of models described
above and M1 be a competing model where M1 = M0. In the noiseless
case, σ2 = 0, and the SSE for M0, SSE (M0), is zero, which is always
smaller than the SSE (M1). Hence, M0 will definitely be selected over M1.
Thus P

[
SSE (M0) < SSE (M1) | M0,M1, σ2 = 0

]
= 1. In reality σ2 > 0

and the SSE (M0) may not be less than SSE (M1). Therefore, M0 may
not necessarily be selected over M1. Hence, the probability of correctly
identifying the nonzero interaction is less than one, i.e., P

[
SSE (M0) <

SSE (M1) |M0,M1, σ2 > 0
]

< 1. In the case of infinite noise, M0 and M1
are indistinguishable, and so the probability of selecting M0 over M1 is 1/2,
i.e., P

[
SSE (M0) < SSE (M1) |M0, M1, σ2 =∞

]
= 1/2. For 0 < σ2 <∞,

P
[
SSE (M0) < SSE (M1) |M0,M1, σ2

]
is called the search probability for

a given M0, M1, and σ2. Note that the search probability is between 1/2
and 1.

Shirakura, Takahashi, and Srivastava [26] presented an exact expression
of the search probability under the normality assumption. This expression
is also given in the equation (6) of this paper. A criterion for comparing
SDs based on the search probabilities is also given in Shirakura, Takahashi,
and Srivastava [26].

Ghosh and Teschmacher [14] defined a search probability matrix (SPM)
whose columns represent the possible true models and rows represent the
possible competing models. The off-diagonal elements of the SPM represent
the search probabilities corresponding to all possible pairs of M0 and M1 for
a given σ2. Since the true model M0 is different from the competing model
M1, the diagonal elements of the SPM are not meaningful and therefore are
left blank. Ghosh and Teschmacher [14] used such SPMs in comparing SDs
and presented three criteria for comparing SDs. One of these three criteria
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is the criterion given in Shirakura, Takahashi, and Srivastava [26] and other
two are new. Such comparisons using the three criterion depend on an
unknown parameter ρ which is essentially a Signal-to-Noise Ratio. Ghosh
and Teschmacher [14] presented a majority rule for comparing designs using
the search probabilities for all values of ρ.

Orthogonal array designs satisfy many optimal properties under a speci-
fied factorial experiment model. Balanced arrays and orthogonal arrays are
commonly used search designs. As a consequence of comparison of SDs in
Ghosh and Teschmacher [14], it is observed that the balanced array is more
likely to identify the nonzero interaction than the orthogonal array obtained
from the Plackett-Burman design.

For comparing SDs, Srivastava [34] introduced the six criterion of min-
imizing the arithmetic means and the geometric means of determinants,
trace, and maximum characteristic roots of the information matrix of the(
ν2

k

)
possible models. Shirakura and Onishi [24] presented optimal SDs for

2m factorials using the arithmetic mean of determinants (AD-optimality)
criterion. Ghosh and Burns [11] presented four general classes of search de-
signs for 3m factorials in factor screeing setup with k = 1, 2. Two of these
four classes of SDs performed better than the others under all six criterion
mentioned above. Ghosh [10] presented a list of known SDs obtained by
various researchers.

4. Search designs

We now consider a fractional factorial design T for a 2m factorial experiment
with m factors each at two levels. The design T can be expressed as a (0, 1)
matrix of N ×m whose rows are treatments. Srivastava and Ghosh [42, 43]
obtained search designs (SDs) for k = 1 satisfying the condition (3). In
their setup ξ1 is a vector consisting of the general mean, main effects and
two-factor interactions with ν1 = 1 + m + m(m − 1)/2 parameters, and ξ2

is a vector of all the remaining three-factor and higher order interaction
effects with ν2 = 2m − ν1 parameters. Srivastava and Ghosh [42] gave SDs
(4 ≤ m ≤ 8) of N treatments satisfying (m = 4; 13 ≤ N ≤ 15), (m = 5;
18 ≤ N ≤ 31), (m = 6; 24 ≤ N ≤ 40), (m = 7; 31 ≤ N ≤ 68) and (m = 8;
39 ≤ N ≤ 59). Srivastava and Ghosh [42] presented SDs with the possible
minimal values of N for the range of the values of m considered.
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Srivastava and Gupta [45] considered the setup where ξ1 is a vector of
the general mean and main effects with ν1 = 1 + m parameters, and ξ2 is
a vector of all remaining effects of two-factor and higher order interactions
ν2 = 2m− ν1 parameters. More work in this direction for different values of
m can be found in Gupta [15] and Gupta and Carvajal [16].

Srivastava [34] and Ghosh [7] investigated the problem of finding SDs
for k = 1 when m = 2h−1 with (h ≥ 2). A special structure of the design T
is considered for such investigation. Let T1 be a (0, 1) matrix of size 2h×m
such that the first h columns have all distinct row vectors, and the remaining
columns are obtained from them by all possible Hadamard product, where
1 × 1 = 0 × 0 = 1 and 1 × 0 = 0 × 1 = 0 for the product of two elements.
Ghosh [7] characterized and constructed a plan T2 with N2 treatments so
that the design T = T1 +T2 with m+1+N2 treatments is an SD for k = 1.
By “+”, we mean that T is the (N1 + N2) ×m matrix composed of rows
of T1 and T2. For the same parameter vectors ξ1 and ξ2, Srivastava and
Gupta [45], Gupta and Carvajal [16] considered T1 = Ω(m, 1) + Ω(m,m)
and T1 = Ω(m, 0) + Ω(m, 1) + Ω(m,m) with N1 = m + 1 and N1 = m + 2
treatments, respectively, and they presented necessary conditions for plans
T2 so that the designs T = T1 +T2 are SDs for k = 1. Here, Ω(m, j) is the(
m
j

)
×m matrix whose rows have exactly j 1-elements (weight j).

For the same setting for T1 as in Ghosh [7], Shirakura [22] showed that
for m = 7 and k = 1, the minimum number of the N2 in T2 is 7. Using
properties of a BIB design for T2, Shirakura [22] furthermore constructed
an SD for m = 2h − 1 and k = 2 under the assumption for ξ2 to be only of
the two-factor interactions. Let ξ1 be a vector of the general mean and main
effects with (ν1 = 1 + m) parameters, and ξ2 be a vector of the two- and
three-factor interactions

(
ν2 = m(m−1)/2+m(m−1)(m−2)/6

)
. Suppose

T1 = Ω(m, 0)+Ω(m,m−1)+Ω(m,m) with N1 = m+2 treatments. Ghosh
[8] characterized and constructed a plan T2 with N2 treatments so that the
design T = T1 + T2 with N1 + N2 treatments is an SD for k = 1 and
3 ≤ m ≤ 8. However some results in Ghosh [8] are incorrect. Ohnishi and
Shirakura [19] corrected his results and gave SDs for which the numbers of
treatments are not greater than those in his results except for m = 4.

Let ξ1 be a vector of the general mean and main effects (ν1 = 1+m), and
ξ2 be only of the two-factor interactions

(
ν2 = m(m−1)/2

)
. Suppose T1 =

Ω(m, 0)+Ω(m, 1) with N1 = m+1 treatments, and let T2 = [t1, t2, · · · , tm],
where tj ’s are (0, 1) vectors of N2 × 1. Then, Shirakura [23] showed that
a design T = T1 + T2 with N1 + N2 treatments is an SD for k = 1 if
and only if T2 is such that ti ∗ tj (Hadamard product) are nonzero and
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distinct vectors for all 1 ≤ i < j ≤ m. Using this condition, Shirakura
[23] presented T2 with minimum values N∗

2 of N2 for 3 ≤ m ≤ 10, that is,
N∗

2 = 3, 3, 4, 5, 6, 6, 7, 7 for m = 3, · · · , 10, respectively.

As an example, for m = 8 and N∗
2 = 6, the matrix T2 is given by

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 1 1 1 0 1 0
1 0 0 1 1 1 0 1
1 1 0 0 1 1 1 0
1 0 1 0 0 1 1 1
1 1 0 1 0 0 1 1
1 1 1 0 1 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

.

As an open problem, we are interested in finding the minimum values
of N∗

2 for m ≥ 11, and in constructing T2 with the minimum treatments.

For the same parameter vectors ξ1 and ξ2 as in Ghosh [7], Srivastava
and Arora [39] showed that for m ≥ 3,

T = Ω(m, 0) + Ω(m, 1) + Ω(m, 2) + Ω(m,m),

is an SD for k = 2 with N = (m2 + m + 4)/2 treatments. In general, let
ξ1 be of up to the �-factor interactions and ξ2 be only of the (� + 1)- factor
interactions, where ν1 = 1 + m + · · · +

(
m
�

)
, ν2 =

(
m

�+1

)
and 2(� + 1) ≤ m.

Further consider a BA of strength 2(�+1), size N , m constraints and indices
µi

(
i = 0, · · · , 2(� + 1)

)
as a design T. Then Shirakura and Ohnishi [24]

presented an explicit expression for every elements of the matrix in (3) under
the assumption of rank (A1) = ν1. By these results, Shirakura and Tazawa
[28, 29] constructed directly SDs for (� = 1; k = 1, 2) and (� = 2; k = 1, 2),
respectively. That is, when � = 1, Shirakura and Tazawa [28] showed that

T = Ω(4, 0) + Ω(4, 1) + Ω(4, 3), m = 4,

T = Ω(m, 1) + Ω(m, m− 1), m ≥ 5,

are SDs for k = 1 with treatments N = 9 and 2m, respectively, and that

T = Ω(5, 0) + Ω(5, 2) + Ω(5, 5), m = 5,

T = Ω(m, 2) + Ω(m, m), m ≥ 6,
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are SDs for k = 2 with treatments N = 12 and m(m−1)/2+1, respectively.
For � = 2, Shirakura and Tazawa [29] showed that

T = Ω(6, 0) + Ω(6, 3) + Ω(6, 5) + Ω(6, 6),

T = Ω(6, 1) + Ω(6, 4) + Ω(6, 5) + Ω(6, 6),

T = Ω(6, 0) + Ω(6, 1) + Ω(6, 4) + Ω(6, 5) m = 6,

T = Ω(m, 1) + Ω(m,m− 2) + Ω(m,m− 1) m ≥ 7,

are SDs for k = 1 with treatments N = 28 and m(m + 3)/2, respectively,
and that

T = Ω(6, 1) + Ω(6, 2) + Ω(6, 4),

T = Ω(6, 0) + Ω(6, 3) + Ω(6, 4) m = 6,

T = Ω(7, 1) + Ω(7, 4) + Ω(7, 7) m = 7,

T = Ω(m, 2) + Ω(m,m− 2) + Ω(m,m) m ≥ 8,

are SDs for k = 2 with treatments N = 36, 43 and m(m − 1) + 1, respec-
tively. Furthermore, they proved that the numbers of treatments N given
in respective cases are minimum among SDs derived from BAs of strength
2(� + 1) and m constraints. For the same parameter vectors ξ1 and ξ2 as
in Ghosh [8], Shirakura and Tazawa [30] considered the situation for possi-
ble two nonzero interactions where there do not exist exactly two nonzero
three-factor interactions. Furthermore, if there exists a nonzero three-factor
interaction, then the other nonzero two-factor interactions may be of factors
included in it, i.e., two nonzero interactions θi1i2 and θj1j2j3 are such that
{i1, i2} ⊂ {j1, j2, j3}. Shirakura and Tazawa [30] showed that for m ≥ 7,

T = Ω(m, 0) + Ω(m, 2) + Ω(m,m),

is an SD for k = 2 with N = (m2 −m + 4)/2 treatments.
For the same parameters vectors ξ1 and ξ2 as in Shirakura [23], let T1 be

a plan of N1 = 2m+1 treatments as T1 = Ω(m, 0)+Ω(m, 1)+Ω(m,m−1).
By use of Hadamard matrices, Mukerjee and Chatterjee [18] characterized
a plan T2 with N2 treatments so that the design T = T1 + T2 is an SD for
k = 2 with treatments N = 2m + 1 + N2. In fact, they constructed SDs for
k = 2 with N = 3m− 1 if m = 0 (mod 4), N = 3m + 2 if m = 1 (mod 4),
N = 3m + 1 if m = 2 (mod 4), and N = 3m if m = 3 (mod 4). Shirakura,
Suetsugu and Tsuji [25] considered more flexible choice for T2 instead of
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Hadamard matrices in Mukerjee and Chatterjee [18]. For an n ×m (0,1)-
matrix D (m ≥ 4), D is said to be an ST-array with n rows and m columns
(ST-array (n,m)) if for every n×4 submatrix D0 of D, there exist two rows
in D0 such that the 2 × 4 matrix of the two rows has (1, 1)′, (1, 0)′, (0, 1)′

and (1, 1)′ as columns. For example, the following is an ST-array(6,8):

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 1 0 1 1
0 1 1 0 0 1 0 1
0 1 1 1 0 0 1 0
0 0 1 1 1 0 0 1
0 1 0 1 1 1 0 0
0 0 1 0 1 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Shirakura, Suetsugu and Tsuji [25] showed that for T1 of Mukerjee
and Chatterjee [18], T = T1 + T2 is an SD for k = 2 with treatments
N = 2m + 1 + N2 if and only if T2 is an ST-array(m,N2). Furthermore,
they presented three methods for construction of an ST-array given below.

(i). Let M′(v×b) be an incidence matrix of a balanced incomplete block
design with parameters v(≥ 4), b, r, k, and λ. If there exists at least one
row of weight 2 for every b × 4 submatrix of M(b × v), then M∗ obtained
by deleting any row from M is an ST-array(b− 1, v).

(ii). Using properties of binary linear codes, an ST-array(n,m) of type
of n = r(r + 1)/2 and m = 2r can be constructed, where r is an integer
greater than or equal to 3.

(iii). Using properties of quadratic residues over Galois field, an ST-
array(n,m) of type of n = m = 4t + 1 = q, where t is an integer greater
than or equal to 2 and q is a prime power.

In comparison between the above method (ii) and Mukerjee and Chat-
terjee’s results, when m = 8, a plan T2 is with the same value N2 = 6.
However, when m = 16, 32 and 64, plans T2 of Shirakura, et al. [25] are
with N2 = 10, 15 and 21, whereas Mukerjee and Chatterjee’s plans T2 are
with N2 = 14, 30 and 62, respectively. Also, for m = 9, a plan T2 with
N2 = 9 in the above third method is better for the number of N2. There-
fore, it is important that for a given m(≥ 4), we obtain an ST-array(n,m)
with a smaller value of n. For m = 4, 5, 6, 7 and 8, we have n∗ = 2, 4, 4, 6
and 6, the minimum values of n for ST-arrays(n,m), respectively. As an
open problem, it is interesting to note that the minimum value n∗ is given
for each m ≥ 9.
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For the noisy case σ2 > 0, Srivastava [33] also proposed four procedures
for solving the problem. One of them corresponds to the minimization of
the sum of squares to error (SSE). Shirakura, Takahashi and Srivastava [26]
studied stochastic properties of SSE for a given SD, and gave a probability
that an SD could search the nonzero effects in ξ2. Consider an SD T with
N treatments. Suppose ζ(k× 1) be a vector of nonzero effects of ξ2. Model
(1) reduces to

(4) E(y) = A1ξ1 + A21(ζ)ζ,

where A21(ζ) is the n× k submatrix A2 of corresponding to ζ of ξ2. Then
the SEE s(ζ)2 can be written as

s(ζ)2 = ‖y − ŷ‖2 = y′(I−Q(ζ)
)
y,

where ‖ · ‖ is the norm of a vector and

Q(ζ) = A(ζ)M(ζ)−1A(ζ),

where A(ζ) =
[
A1 : A21(ζ)

]
and M(ζ) = A(ζ)′A(ζ).

Srivastava’s procedure for searching nonzero effects is given below. For
a given y in (4), calculate s(ζ)2 for each of the possible choices of ζ in ξ2

(or A21(ζ) in A2). Let ζ1(k×1) denote that subvector of ξ2 for which s(ζ)2

turns out to be a minimum. Then, take ζ1 as the possibly nonzero effect set
of parameters. Of course, it is most desirable that the above ζ1 is exactly
equal to ζ0 (k× 1), the vector of true nonzero effects of ξ2. However, this is
not ensured for the noisy case σ2 > 0. So, for a vector of random variables
y, we may consider the probability

(5) P = min
ζ0∈ξ2

min
ζ∈A(ξ2;ζ0)

P
(
s(ζ0)

2 < s(ζ)2
)
,

where A(ξ2; ζ0) denotes the set of all possible ζ(= ζ0) of ξ2. This means
that the larger the value of P , the higher the confidence with which the
true vector of parameters could be searched by the procedure. For the
case of k = 1, let a(ζ) = A21(ζ), the N × 1 column of A2 for ζ of ξ2 in (4).

Furthermore, let r(ζ) = a(ζ)′(I−Q)a(ζ) and b(ζ) = (I−Q)a(ζ)/
(
r(ζ)

)1/2,
where Q = A′

1(A
′
1A1)

−1A1. Suppose the components of the error vector e
are distributed independently with a normal distribution N(0, σ2). Then,
the result below was presented in Shirakura, Takahashi and Srivastava [26].

P
(
s(ζ0)

2 < s(ζ)2
)

= 1− Φ
(
d(1− x)1/2) − Φ

(
d(1 + x)1/2)(6)

+ 2Φ
(
d(1− x)1/2)Φ(d(1 + x)1/2) ,
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where x = b(ζ)′b(ζ0), d =
(
r(ζ0)/2

)1/2
ρ and Φ(x) is the distribution

function of the standard normal distribution. Here, ρ is the actual quantity
of unknown parameter ζ0/σ. Shirakura, Takahashi and Srivastava [26]
also gave a criterion for comparing SDs for k = 1 based on the search
probabilities (5) and (6). Srivastava [34] proposed some criteria which are
independent on the quantities of ζ0 and σ2. Ghosh [9] studied equivalence
properties for the minimization of an SSE and also gave an estimator of the
number k of nonzero effects in ξ2.

In the class of designs of resolution V derived from BAs of strength 6,
Shirakura and Ohnishi [24] presented optimal SDs (6 ≤ m ≤ 8) for k = 1
with respect to AD-criterion due to Srivastava [34], with N treatments
satisfying (m = 6; 28 ≤ N ≤ 15), (m = 7; 35 ≤ N ≤ 63) and (m = 8;
44 ≤ N ≤ 74). Anderson and Thomas [3], Chatterjee [4], and Chatterjee
and Mukerjee [5, 6] treated and constructed SDs for general symmetric and
asymmetric factorials.

5. Statistical design of scientific experiments

In the previous sections, we have reviewed the salient aspects of the theory
of Search Designs (SD) and the Search Linear Model (SLM). We now discuss
the subject at more fundamental levels, and offer some insights with respect
to the information contained in an experiment. Also, we present a powerful
method of using the SLM to analyze the data from any experiment, so as
to determine the appropriate model and also a more accurate value of the
location parameters under the same, relatively free from bias.

The purpose of the subject of Statistical Design of Scientific Experi-
ments, briefly called Design of Experiments (DOE), is to collect data in
such a way as to maximize the kind of information that is of interest to us.
However, this requires that we are able to identify the model behind the
phenomenon under study, and develop a measure of the information (con-
tained in an experiment) on the parameters in the model. Hence, at the
fundamental levels, the problems faced in DOE are to identify the model as
precisely as possible, and estimate parameters under the model as precisely
as possible. Also, in doing all this, we shall have to cope with measurement
errors and errors due to random fluctuations, caused by the fact that a large
number of factors (each with a small effect on any observation), which are
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unknown and beyond our control, are also influencing the observations that
we make on the phenomenon under study.

Consider a phenomenon. Typically, one would have a set of guesses
about what would be an appropriate model to describe the phenomenon.
Here we shall restrict ourselves to situations where a linear statistical model
would be adequate. [However, non-linear models are also quite common
(particularly, in the more exact sciences like physics and chemistry), and
it would be quite worthwhile to extend the methods of this paper to the
non-linear case.] So, let us assume that we have q models to begin with.
Let y(n × 1), with elements y1, y2, . . . , yn, be a vector of some set of n
observations on the phenomenon. Let the q models respectively be

(7) E(y) = Xiβi, i = 1, 2, . . . , q;

where E denotes expected value, the Xi(n× pi) are known matrices of real
numbers, and where the ith model involves pi unknown parameters which
are the elements of the vector βi(pi × 1). The matrix Xi, often called
the design matrix, comes from the postulates that we make concerning the
structure of the phenomenon and how the observations yj (j = 1, 2, . . . , n)
fit into this structure. For simplicity of discussion, throughout this paper,
we shall assume that the n observations coming from any experiment under
consideration are all independent.

It is important to remark that, in the physical sense, the experiment (say,
Ex) has three components: (a) The selection of the n units (say, U), (b)
The action taken on each individual unit, and (c) The observation obtained
from U . A very large part of DOE deals with comparative experiments,
where we have a set of (say, v) treatments (these being, for example, v
varieties of wheat, which are being compared with respect to their yield).
Part (b) above, namely the action taken, corresponds to the application
of one of the treatments to a unit. In factorial experiments, the set of
treatments may be a set of level-combinations of a set of factors. For
example, we may have 4 factors (say, Nitrogen (F1), Phosphorus (F2),
Potassium (F3), and Manure (F4)), each at three levels 0 (None), 1 (20
pounds per acre), and 2 (40 pounds per acre). Then, we get 34 = 81
level-combinations, which may be denoted by vectors (t1, t2, t3, t4), where tj
(j = 1, 2, 3, 4) denotes the level of the jth factor, and takes the values 0, 1,
and 2. In an actual experiment with these four factors, all treatments may
not be used, and v may be a much smaller number.

The experiment Ex (on the phenomenon under consideration) does not
give the model or even the guessed set of models. Such models are only a
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kind of superimposition of our thought process on Ex. Thus, the models
under consideration above could have been partially or wholly thought of
before, during, or after the experiment. Also, the author believes that the
process of the selection of U does not come into picture, so long as it is
unrelated to the action taken on the units. Thus, suppose that P1 and P2

are two processes of selection of units, such that U could get selected from
any one of them (even though the probability that U is selected under P1

may be quite different from that under P2). Then, according to the author,
P1 and P2 etc. do not form a component of the experiment; only U (the end
result of the selection process used) does. (This point shall be elaborated
further later on.)

The main problem of interest here is how to identify the model that
seems to be the closest to the phenomenon. Notice that we use the phrase
seems to be because we can never be absolutely certain of everything con-
cerning a phenomenon. Our attempt is to find a model that describes the
phenomenon reasonably well from the practical viewpoint.

6. The information provided by an experiment

It will be interesting here to mention some conversations that the author
had (in the late 1960s) with the great mathematician Alfréd Rényi, after
whom the Mathematical Institute of the Hungarian Academy of Sciences
is now named. Rényi was also a probabilist and information theorist; his
book on Probability Theory (with a chapter at the end on Information
Theory) is a classic. He defined a measure of information, later called the
Rényi information, which is a generalization of the Shannon information
measure. Later, Srivastava [32] discovered that the Rényi information can be
amazingly used to estimate the dimensionality d2 of a (relatively large) set
of data points which are defined in d1 dimensions, but which actually lie on
a (possibly curved) manifold of a lower dimension d2. For example, we may
have d2 = 2, d1 = 6, and the data points could be vectors z with elements
z1, . . . , z6, where z1 = x1 + x2, z2 = x1

3 + x2
2, z3 = log (1 + x1

4 + x2
2),

z4 = exp (−x1− x2), z5 = tan (z1− z2), and z6 = (x1 + 3x2)/(1 + 5x1 + x2),
where x1 and x2 vary (say, over a 100 equidistant points in the interval
(0, 99). With 10,000 points so generated, the estimate of d2 should be close.
But, even a subset of say, 3,000 randomly selected points may also work.
Note that, here, the researcher has only the points z, and has no knowledge
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at all as to how many x’s are involved (if they are involved), and in what
way the involvement occurs, i.e., what functions are involved. The technique
based on the Rényi information tends to see through whatever functions may
be involved. However, as interested readers would find, more work in that
field needs to be done. The Rényi information uses additional parameters,
and J. N. Srivastava believes that these parameters themselves carry various
kinds of information. But, this needs to be explored more.

Both Rényi and Srivastava occasionally visited with R. C. Bose at the
University of North Carolina, Chapel Hill, in those years. Often, they used
to have lunch together that would continue into discussions of fundamental
questions. Once, Rényi asked Srivastava what he was currently working on.
Optimal design theory, was the reply. Rényi was not well acquainted with
DOE, so the author gave him an introduction. Srivastava explained that in
optimal design theory, we assume that the model is known, and we try to
select a set of treatments (from the total set of possible treatments) such that
we obtain the maximum amount of information on the location parameters
(which would correspond to the vectors βi in the ith model in (7)). Rényi
pointed out that if we take the normal distribution for example, the location
parameters do not enter into the expression associated with its entropy.
From that angle, all designs are equally informative. Srivastava mentioned
that in DOE, we use the Fisher Information (which would correspond to
the matrix X′

iXi in the ith model in (7)). However, still the fact remained.

Another time, Rényi explained that he was working on Search theory,
which could also be probabilistic. A very simple example of the same would
be the following problem. There are (n1 + n2 + n3) coins all of which look
alike, but which are divisible into three groups (of n1, n2, and n3 coins
respectively) with respect to weight. The weight of each coin in any group
is the same, but coins belonging to different groups have different weights.
The values of the n’s are not known. We have an accurate balance in
which we can put coins only to compare. What is the minimum number of
weighings needed to separate out the coins correctly into their groups?

Rényi’s interesting presentation of search problems led Srivastava to real-
ize that in factorial design theory as well, there are hidden search problems.
Thus, consider a 2m factorial experiment (in which there are m factors each
at 2 levels) with level combinations (t1, t2, . . . , tm) where the ti equal 0 or 1.
Let a(t1, t2, . . . , tm) denote the true yield corresponding to the treatment
(t1, t2, . . . , tm), where the true yield is what one would observe if there are
absolutely no other causes that influence the yield of a unit except the treat-
ment applied to it. Then, as explained earlier in this paper, the parameters
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of interest are also 2m in number, these being the general mean µ, the main
effects Ai, the 2-factor interactions Aij , and the higher order interactions.
It is an empirical fact that almost all the time, a lot of the higher order
effects are negligible. However, almost always, it is also a fact that at least
a few of the interactions are not known in the sense that not only we do not
know the value of these interactions, we do not even know their identity, i.e.,
we do not know which interactions are the non-negligible ones. In view of
this fact, Srivastava realized that in factorial experiments there is a hidden
search problem, namely, we have to search (i.e., identify) the non-negligible
interactions. Thus, the Theory of Search Linear Model and Search Designs
were born. The first paper (Srivastava [33]) was presented in a conference
in March 1973.

It should be emphasized that the SLM is based on the real nature of
the scientific fields. Many workers in the discipline (or, the lack thereof)
of DOE still pretend that only the main effects (and, sometimes, perhaps
a few interactions known to the experimenter) need to be estimated. The
so-called main-effect plans are still popular. Some people wrongly call them
screening designs, because they believe that by using them they can screen
out the small factors (i.e., those with small main effects), so that later they
can concentrate on the big ones. But, their screening design would work
only if it so happens that the interactions that are non-negligible are not
confounded with the main effects of the small factors. Since we do not
know which factors are small and which interactions are non-negligible, the
screening could give correct answer only as a fluke. Moreover, one would
not know if the screening gave a right or a wrong answer.

Also, the basic assumption that if a factor is small, then its interactions
will be small too is not necessarily true. In some fields, it is always false.
An example is the field of nutrition experiments, with enzymes as factors.
Since enzymes act as a catalyst alone, they have large (sometimes, quite
high-ordered) interactions, but their main-effects are small.

The assumption that interactions are negligible and a so-called main ef-
fect plan is sufficient, is also risky and misguided. This can be verified, as
Srivastava did in 1976 by looking into journals (in the field of agriculture,
and also social sciences) containing papers describing the results of full ex-
periments. Srivastava found interactions present almost always, sometimes
even involving several factors. In certain sectors of industry, full experi-
ments have not been done. Dependence on main effect plans has resulted
in a confounded situation, where one believes one has reached Quality, but
where a lot of further improvement is still possible. Society can be helped
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by the creation of consulting companies who understand the foundations of
DOE, and who can educate the users and lead them out of obsession with
elementary DOE (like the Plackett-Burman plans and rotatable designs). It
may be added that some of the tools used are simply wrong; this includes,
for example, Addelman’s (1962, 1963) so-called orthogonal main effect plans
which had been wrongly included even in some books. (See Srivastava and
Ghosh [44].)

The new companies and researchers can take up the ideas presented here
and create a revolution in DOE; this is a lucrative proposition since it shall
benefit all concerned, simply because it shall create material wealth.

Coming back to the conversation with Rényi, Srivastava feels that his
remark that each design (with the same number of observations) would
have the same amount of information, is fundamentally justified. Indeed,
Srivastava feels that such competing designs really differ only in the kinds
of information that they give. Indeed, it seems that we have

(8) I = I1 + I2 + I3 + I4,

where I denotes the total information in the observations from the experi-
ment, I1 denotes the information that the experiment provides concerning
competing models for explaining the observations, I2 denotes the informa-
tion that the experiment provides on the parameters within a model (as-
suming that the model is true), I3 provides information on the random
fluctuations or measurement errors associated with the observations on the
experimental material used, and I4 is some miscellaneous information whose
nature is yet to be understood. So, it seems that while I is the same, the
I1, . . . , I4 may vary from design to design. Srivastava believes that I could
be a simple function of n itself. Perhaps the information measure could be
standardized so that we have I = n.

Optimal design theory assumes that the model is known, and tries (in
the sense of Fisher information) to maximize the part of I2 that deals with
location parameters. Also, I3 is linked to what has been called revealing
power, which is a measure of the ability of a design to identify the correct
model out of a set of competing models. Similarly I1 is linked to what has
been called Sensitivity. If the error variance (which is a measure of random
fluctuations acting on the units, and of measurement error) is large, the
design is less sensitive, and vice versa. Finally, I4 may be linked to the
information contained in the design about the set of competing models under
consideration relative to the situation of no models (i.e., total ignorance).
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Which of these four kinds of information we need more in a given
situation? The answer to this important question depends upon what
stage we are in with respect to our enquiry concerning the phenomenon,
i.e., what kind of, and how much, information we already possess on the
phenomenon. If we believe there is too much random fluctuation and
measurement error, it may be necessary to increase n and replicate the
observations more. If we believe we know the model adequately except for
the parameters, then optimal design theory will be important. Otherwise,
if the model is not known, but we have good guesses, we need a design with
high revealing power. If even good guesses are not available, we need to try
to theoretically understand the phenomenon more before venturing out into
experimentation.

As yet, no class of information measures has been proposed which would
validate the equation (8) in a cogent manner, although this equation does
appear to hold the truth. One basic characteristic of DOE is that although
the observations usually have continuous distributions, the set of observa-
tions is (almost always) discrete. Thus, there is a combination of continuous
and discrete problems that must be coped with. However, there is a lacuna
between the information theory dealing with the continuous and the dis-
crete situations. This lacuna must be bridged. Also, we must combine the
concept of information in an observation coming from a distribution with
the concept of information on a particular set of parameters coming from
the distribution. Finally, how much information is there when there is total
ignorance of the model?

DOE is a part of the larger field of Information Sciences, which has
Information Theory as its nucleus. It holds the promise of being evergreen,
since the author believes that it probably subsumes a large chunk of Physics
as well. The problems mentioned in connection with (8) above are wide
open, challenging, and inviting.

7. Some elegant combinatorial problems arising in
search designs

In the first paper, the SLM defined in (1) was considered. For simplicity of
discussion, we assume that the elements of y are all independent with the
same variance σ2. The matrix A1 is (n × ν1) and A2 is (n × ν2); both of
these matrices are known. Also, ξ1 is a vector of ν1 parameters which are all
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unknown, and ξ2 is a vector of ν2 parameters which are all unknown except
that it is known that at most k of them are nonzero. Notice that this model
is a special case of (7), with

(9) q =
k∑

j=0

(
ν2

k − j

)
,

where the different models are obtained by merging ξ1 with the set of
parameters of ξ2 that are assumed to be possibly nonzero. The model (1)
has been discussed extensively in earlier sections of this paper, particularly
for the case when the y’s are observations on the level-combinations from
the 2m factorial experiment, and the parameters on the right side of (1) are
the various main effects, and interactions etc. in some order.

There is a further special case of the last mentioned situation where
ν1 = 0, and ν2 = 2m, in which case, for simplicity, we shall denote A2

simply by A. In that case, certain sub-problems of the general problem
lead to the following problem. Let EG(m, 2) denote the finite Euclidean
space of m dimensions based on GF (2), the finite field with two elements.
Let T be a set of points in EG(m, 2). Then, T is said to be a t-covering
of EG(m, 2) if T has a non-empty intersection with every (m − t)-flat of
EG(m, 2). Given m, we need to find t-coverings T that are minimal in size,
i.e., we need to find a T such that the number of points in T is a minimum.

The paper by Katona and Srivastava [17] presents some basic results on
the case t = 2. Suppose T has n points. Then, this paper also looks at
the problem from the reverse angle. We ask the question: Given n, what is
the largest value of m such that there exists a T with n points that is a t-
covering of EG(m, 2). Given n, bounds are presented on m, and connections
with coding theory are made.

Now, we can consider T presented as a (0, 1)-matrix of size (n×m), such
that the rows represent some level-combinations from the 2m experiment,
and the columns represent the m factors. Let T∗ be the (n × m) matrix
obtained from T by interchanging zeros and ones. Let Z be the (n × 2m)
matrix obtained from T by taking as columns all the vectors (not necessarily
distinct) generated by taking all possible linear combinations of the columns
of T∗.

Next, suppose that the elements of y correspond, in order, to the level-
combinations in the rows of T∗. Then, the matrix A, mentioned earlier
in this section, is obtainable (except possibly for the order of the columns)
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from Z by replacing everywhere 0 by 1, and 1 by (−1). Notice that while
Z is over GF (2), the matrix A is over the real field.

A matrix G (over any field F ) is said to have the property Pt with
respect to columns if and only if every set of t columns of G is linearly
independent (over F ). The SLM leads us into the situation where we are
interested in the matrix A to have the property Pt over the real field for the
smaller values of t. The case t = 4 corresponds to 2-coverings of EG(m, 2),
and has been studied in more detail. Also, there is unpublished work on
t = 6, largely by Katona.

Consider (1) again. The result in (2), discussed in detail in the other
parts was established in Srivastava [33]. A Search Design (SD) is a design
such that if the corresponding model is written in the form (1), then the A
matrices occurring there would satisfy (2). As is seen in the previous parts,
a lot of effort has been made to build SD’s, which is certainly an important
goal. However, in actual applications, it turns out that the condition (2) is
relatively too stringent if it is looked at only superficially. We elaborate this
in the next paragraph. For simplicity, we shall assume that σ2 is zero. If
this condition is not met (which would be expected in practice in statistical
situations), then our assertions will become probabilistic instead of being
deterministic.

Suppose (2) does hold. Then, it guarantees that whatever y the model
(1) may produce, it would be such that for that particular y, there will be a
unique solution to (1) with a unique set of parameters, each of which shall
have a unique value. On the other hand, if (2) does not hold, then the model
(1) may throw up a y such that there may be more than one (possibly, an
infinite number of) solutions for the set of parameters on the right side of
(1). However, it is NOT saying that if (2) does not hold, then every value of
y shall land us into a situation where more than one parameter sets shall be
found to be mixed up. Indeed, only those values of y shall be in this mess,
which are simultaneously linear combinations of two (or more) distinct sets
of columns of [A1,A2], where each set has at most k columns of A2. But,
these linear combinations will have to have a given fixed set of coefficients.
To elaborate further, suppose that we have

(10) A21θ1 = A22θ2 = z1, A21θ2 = z2, ν1 = 0,

where A21 and A22 are distinct sub-matrices of A2 with k columns each.
Then, in the noiseless case if y = z1, a unique solution to (1) will not be
there. However, if y = z2, and there is no sub-matrix of A2 other than A21
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on whose columns z2 is dependent, then there will be a unique solution to
(1) even though (2) does not hold.

The moral of the discussion in the last paragraph is that very often,
there can be a y for which (1) can have a unique solution even though (2)
does not hold. In other words, if the equation (2) holds, then a unique
solution is guaranteed for all y that we are likely to observe. But, if (2)
does not hold then, we may possibly obtain a y for which there is no unique
solution. However, it would be clear to a reader acquainted with the subject,
that in the last situation, we should usually be able to resolve the problem
by trying one, or may be a few, more treatments. This idea is what gives
rise to multistage design procedures, where we run a set of treatments first,
which is possibly followed by another set, which may further be followed by
a third set, and so on. (See Srivastava and Chu [41]).

The discussion in the last two paragraphs encourages us to consider
designs that do not satisfy (2), but which would still have a high revealing
power, particularly when we use the methods of analysis mentioned in the
next section.

As the material in the other parts of this paper shows, in the construction
of SD’s, a lot of investigations have been made for the case where there
is a relatively large amount of symmetry with respect to factors. In other
words, the balanced case has been studied quite often. However, the partially
balanced approach seems to hold much more promise. This is exemplified by
the 28 design in 24 assemblies described in Srivastava [36]. Here, the vertices
of a 3-dimensional cube are put in correspondence with the 8 factors, and
12 out of the 24 runs correspond to the edges. Three runs are chosen by
inspection, and do not conform to any kind of balance. Relatively speaking,
this design is able to identify more interactions than most others in the
literature.

8. Analysis under the general slm using simulation
distributions

Consider the general SLM (7). It should be emphasized that in all the
m models represented in (1), the set of the n experimental units and the
observations y1, . . . , yn thereon are all fixed entities. As mentioned before,
the models only represent alternate parametric structures imposed on these
entities, and such imposition can therefore be done before, during, or after
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the experiment. The problem, of course, is to determine the most suitable
model. In this section, we propose a general method for doing the same.
Special cases of this procedure, suggested earlier by the author, have been
used with impressive results.

Since the matrices Xi are known for all i, let us consider the ith model
(i = 1, . . . , q) individually. We can compute the sum of squares due to error
under the ith model; dividing this by the degrees of freedom due to error,
we obtain the mean square due to error (denoted herein by ψi

2). Without
loss of generality, we shall say that the model for i = 1 is special; how to
choose the special model will be discussed later on. Let

minψ2 = min
i=2...q

ψi
2(11)

R =
[
ψ1

2/minψ2
]
.(12)

For ease of explanation and understanding, we proceed with examples given
below.

Example 1. Consider a 4 × 4 Latin Square (LS). The observations come
from n(= 16) units. The LS corresponds to the special model, there being
1 degree of freedom (d.f.) for the general mean, 3 each for rows, columns,
and treatments, and 6 for error. Also, suppose there are t non-additive
(NA) cells, which means that these cells have their own (possibly large)
contribution to the observation made on them, which therefore does not
obey the usual linear model associated with a LS. If a cell is NA, the
observation on it is clearly useless, and may thus be ignored. For simplicity,
let us first take t = 1. Since any of the 16 cells can be NA, 16 models
arise here, each model having 15 observations leaving one of the 16 cells
aside. Then, we shall have q − 1 = 16, or q = 17. The special model would
correspond to the customary analysis of the LS design. Now, suppose an
experiment is actually done and we do have the y values. Firstly, suppose
there are no NA cells. Then, we shall expect ψi

2 to be of the same order for
each i. However, if there is a NA cell, then the model obtained by excluding
the same should be expected to give a smaller error mean square than the
model for q = 1. The reason is that the special model tries to absorb the
value of the NA cell under its system, by treating it as a random fluctuation.

Hence, if there is a single NA cell actually present, we shall expect the
value of R to be much larger than what it would be if there was no NA
cell at all. How can we determine if the observed value of R is too large?
We need to know the distribution of R under the assumption that there
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are no NA cells at all. Theoretical determination of this distribution would
at best be messy. But, in the modern computer age, we can easily obtain
it by simulation. We generate, say, 5000 samples, each sample throwing
up a value of y by choosing some value of the general mean and of the
row, column, and treatment effects, and also by putting in some value
for the random fluctuation (on each unit) by generating samples from the
assumed distribution of the y’s (apart from the location parameters). In
the experience of the author, a sample of 5000 should give quite a smooth
distribution, against which the observed value of R can be checked.

In Srivastava and Wang [46], such a procedure was applied to real data
from several books, and a very large amount of non-additivity was found
in four out of nine cases. In some cases, the value of R was so large that
it was quite outside the range observed in the simulation distribution. To
evaluate the probability of observing a value of R that large, recourse was
made to the Tchebycheff inequality.

In the above, we talked about one NA cell in a 4× 4 square. However,
in one of the four non-additive situations mentioned in the last paragraph
(from the book Bliss (1967)), we found 3 NA cells. How did we find three
NA cells? Well, we obtain R using one NA cell as described above. Then, we
considered

(
16
2

)
models in each of which, 2 cells out of the 16 were ignored.

We found an appreciably decreased value of R. We next tried
(
16
3

)
more

models in which 3 cells were ignored, and the value of R reduced further
quite a bit. But, when we tried ignoring four cells, R was about the same
as for the case of 3 cells. The probability of the observed value of R (using
3 cells) was about 0.000000373.

It should be emphasized here that it would not be wise to simply discard
the NA cells, once they are located. A wise experimenter should study as
fully as possible why that non-additivity arose, and what does it signify.
May be it is telling us some thing more important than the rest of the
experiment!

Example 2. It is clear that the above methods can be easily generalized to
various kinds of situations. Thus, for example, the row column designs (of
which the LS is a special case) have been discussed in Srivastava and Wang
[46]. An extensive study of LS showed that the probability that NA cells that
are only moderate large (i.e., those which have moderately large values of
the non-additivity parameter) can be correctly identified is disappointingly
small, whereas the occurrence of non-additivity appears to be abundant.
The moral is that it is risky to use large (say, more than 4 rows or columns)
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designs. The alternative is to use NMBDs (Nested Multidimensional Block
Designs, introduced in Srivastava and Beaver [40]) that are a generalization
of Lattice Squares.

For example, if we have 5 treatments, then instead of using a 5× 5 LS
which has 5 replications, we can use the smaller design with 4 replications
that has 5 2-dimensional blocks, each block being of size 2 × 2 in which
4 treatments are tried in a row column design. Similarly, for 9 treatments
there is the nice balanced Lattice Square design in four replications, in which
there are 4 2-dimensional blocks, each block having all the 9 treatments
arranged in a 3× 3 row-column design, the arrangements corresponding to
the planes of EG(2, 3).

It would be interesting to recall an anecdote in this connection. When
the author first met with Professor R. C. Bose (18 October 1959), Bose
urged him to try to make at least three pair-wise orthogonal 10 × 10 LSs.
However, the author rejected the idea, partly on statistical ground, because
Fisher and Yates had said that there may be non-additivity in large row
column designs, and size 10 was certainly quite large. This meant that
10 × 10 LSs were not appropriate. Bose accepted the reasoning. However,
it still remained to show that the hunch of Fisher and Yates was correct.
The author wished to investigate, particularly after the idea of SLM was
developed. However, only in 1990, he could bring full attention to the same.
The results of Srivastava and Wang support Fisher and Yates, but that non-
additivity would turn out to be the hazard that it is was not anticipated
until 1995. It is to be emphasized that we are not saying that row-column
designs be abandoned; rather they should be used in smaller sizes, as is
possible using NMBDs.

Example 3. Consider the 2m factorial experiment along with (1). In ξ1,
put all parameters that are such that there is a relatively strong possibility
that they will be non-negligible. In ξ2, put all the remaining parameters
about which we are not (relatively) certain that they are negligible. Let
the special model be the one that takes k = 0. With these specifications,
proceed as explained in the beginning of the section, taking k respectively
equal to 1, 2, 3, . . . , and so on, and observing R (for each value of k), and
stopping when the next larger value of k does not decrease R appreciably.

If we believe that the number of non-negligible elements in ξ2 is at least
k∗, and the design does not satisfy the condition (2) (with k = k∗), we should
still go ahead and use the above procedure. Because of the remarks made in
the paragraphs following (5), there is a good chance that the non-negligible
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parameters would be successfully identified, provided that under the special
model, there are a lot of degrees of freedom which are for error but not
for pure error. (Sometimes, this can be achieved by a multistage design.)
This point cannot be delineated further both because of lack of space and
because further research is probably needed on many crucial questions. But,
for prospective researchers, it is a good line to investigate, since the method
is very general and very powerful.

Example 4. We now consider another kind of example which would be
useful at the preliminary stages of arranging experimental material for
future experimentation. We discuss what is called a uniformity trial. For
simplicity, an agricultural setting will be assumed. Suppose there is a u× v
rectangle of uv plots, on which a uniformity trial is conducted. The problem
is to ascertain if row effects are present, and / or column effects are present,
and furthermore, what is the incidence of the NA cells.

For this problem, the special model does not include any parameters,
except one general mean, which is the expected value of all observations.
Other models could include one with row effects only, one with column
effects only, one with both row and column effects. Including the special
model, this totals to four models so far. From each of these four models,
we can generate uv new models by taking one cell as NA. We can generate(
uv
2

)
further models by taking 2 cells as NA, and so on.

The method of this section can then be applied, and the situation can
also be explored.

Remark 1. It should be noted that it is possible that in a given situation,
the value of R (relative to the simulation distribution) may not be found to
be too large, and yet there may some non-negligible parameters still hidden
in the system. This can happen if the system does not have degrees of
freedom to allow for a more extensive search. The unidentified non-negligible
parameters could be large, and may boost both the numerator and the
denominator of R, causing the value of R to be moderate. Further research
is needed to clarify how to proceed so that enough degrees of freedom are
available. The multistage design procedure would be quite promising in this
regard.
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Information Topologies with Applications

P. HARREMOËS∗

Topologies related to information divergence are introduced. The conditional
limit theorem is taken as motivating example, and simplified proofs of the relevant
theorems are given. Continuity properties of entropy and information divergence
are discussed.

1. Introduction and preliminaries

Relating results from probability theory and information theory is not a new
idea. Some convergence theorems in probability theory can be reformulated
as “the entropy converges to its maximum”. Markov chains were treated
by A. Rényi [26], D. G. Kendall [20] and J. Fritz [14], the Central Limit
Theorem was treated by Linnik [23] and A. Barron [2], the local central
limit theorem was treated by S. Takano [27] and Poisson’s law was treated
by P. Harremoës [16]. There has also been work strengthening weak or
strong convergence to convergence in information divergence. All the above
mentioned papers have results of this kind, but also a work by A. Barron
[3] should be mentioned. Some work has also been done where the limit of
a sequence is identified as a information projection. The most important
paper in this direction is [8], but the subject is difficult in the sense that one
has to be very careful with regularity conditions. A. Dembo and O. Zeitouni
discussed large deviations in [10], but here the technique was more convex
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analysis than information theory; this only emphasizes the close relationship
between convex analysis and information theory.

The term “convergence in information” has been used in the literature
to mean convergence to zero of information divergence. In this paper it will
be shown how to associate not one but at least two topologies capturing
the concept of converge in information. One of these was recognized by
R. Dudley but was not studied in detail [11]. The information topologies
will make it easier to formulate some theorems in a simpler way than found
in the literature. The topological problems are not equally important for
all applications, but when discussing the conditional limit theorem and the
Sanov property they are central.

The rest of this section is devoted to preliminaries on the minimum infor-
mation game and to some results in topology. In Section 2 a new topology,
the strong information topology, is defined and its basic properties are stud-
ied. The continuity of the entropy function and information divergence is
studied in Section 3. In Section 4 the weak information topology is intro-
duced and characterized. In Section 5 the information topologies are used in
stating and proving results related to conditional limit theorem and Sanov
property. The paper ends with a short discussion.

1.1. The minimum information game

For a more throughout discussion of the game theoretic approach to diver-
gence minimization one should consult the article [28] of F. Topsøe. Most
of the definitions and notation is taken from this article, but there are some
exceptions which will now be described.

Let M1
+(U) denote the set of probability measures on U equipped with

a σ-algebra, and let MQ denote the set of probability measures absolutely
continuous with respect to Q. The information divergence D from P to Q
is defined by

D(P ‖ Q) =

⎧⎪⎨
⎪⎩
∫

log
dP

dQ
dP, for P ∈MQ

∞, otherwise.

where Q, P are probability measures. The information divergence is non-
negative and lower semi continuous as function of P and Q when M1

+(U) is
equipped with the topology τ . In the literature information divergence
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is sometimes termed relative entropy and denoted H(P, Q) or S(P, Q).
This has created a lot of confusion because information divergence has the
opposite sign than entropy. Information divergence is also called Kullback–
Leibler discrimination information and denoted I(P,Q). Unfortunately this
notation is easily confused with the notation of mutual information and
therefore we will follow I. Csiszár and use the notation D(P ‖ Q).

We shall use Pinsker’s inequality

1
2
‖P −Q‖2 ≤ D(P ‖ Q),

where the total variation norm is defined by

‖P −Q‖ = sup
|f |≤1

{∫
U

f dP −
∫

U
f dQ

}
.

If C ⊆M1
+(U) and Q is a probability measure then the divergence from

C to Q is defined by

D(C ‖ Q) = inf
P∈C

D(P ‖ Q).

The following theorem is due to I. Csiszár [7] and F. Topsøe [29].

Theorem 1. Let C ⊆MQ be convex and assume that D(C ‖ Q) <∞.
Then there exists a unique distribution Q|C such that Qn → Q|C in total
variation for every sequence (Qn) ⊆ C such that D(Qn ‖ Q)→ D(C ‖ Q).
Furthermore, for every P ∈ C, we have

(1) D(P ‖ Q) ≥ D
(
P ‖ Q|C

)
+ D(C ‖ Q).

A sequence (Pn) ⊆ C is said to be asymptotic optimal if D(Pn ‖ Q)→
D(C ‖ Q). The probability distribution Q|C is called the generalized infor-
mation projection, and the theorem implies that for any asymptotic optimal
sequence (Pn) ⊆ C we have D

(
Pn ‖ Q|C

)
→ 0. By lower semi continuity of

the information divergence we have

D
(
Q|C ‖ Q

)
≤ D(C ‖ Q),

Especially we see that Q|C is absolutely continuous with respect to Q. If
Q|C ∈ C then it will be called the information projection [7]. An alternative
term is the relative centre of attraction which has been used in [29]. We
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will often use 〈f, P 〉 to denote the expectation of f with respect to P when
defined. With this notation the duality between measurable functions and
probability measures is emphasized.

Let U be a measurable space and C an arbitrary subset of M1
+(U).

Measures in C will be called consistent. Let Q be a fixed reference prob-
ability measure in M1

+(U). A code improvement is a measurable function
∆ : U → [−∞;∞] such that the following inequality is satisfied

(2)
∫

exp(∆) dQ ≤ 1.

Note that this is weaker than that in [28] where equality is required. If
U is discrete and κ(u) = − log

(
Q(u)

)
and κ̃(u) = κ(u)−∆(u) then (2) is

equivalent with Kraft’s inequality∑
u∈U

exp
(
κ̃(u)

)
≤ 1.

Therefore (2) implies that ∆(u) = κ(u)− κ̃(u) can be interpreted as how
much shorter a code word of u will be by replacing the code of length κ(u)
be a code word of length κ̃(u).

Consider the two-persons zero-sum game with objective function

〈∆, P 〉

where ∆ is a code improvement and P is a consistent measure, i.e. P ∈ C.
If ∆ is a version of log dR

dQ and D(R ‖ Q) <∞ then 〈∆, P 〉 = D(P ‖ Q � R)
as defined in [28], and

D(P ‖ Q) = sup
∆
〈∆, P 〉.

Define the compression Γ(∆) of the code improvement by

Γ(∆) = inf
P∈C
〈∆, P 〉.

Further we introduce the notation

D(C ‖ Q) = inf
P∈C

D(P ‖ Q)

Γ(C,Q) = sup
∆

Γ(∆).
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The quantity D(C ‖ Q) is the divergence of the set C and Γ(C, Q) is the
redundancy of Q. Then

Γ(C, Q) ≤ D(C ‖ Q)

and the game is in equilibrium if D(C ‖ Q) <∞ and the inequality holds
with equality. If the game is in equilibrium the set C is said to be in
equilibrium with Q. In the theory of large deviations the game theoretic
equilibrium is sometimes stated as the existence of a dominating point as
defined by P. Ney [25].

We shall need the following theorem is due to F. Topsøe [29, Theorem 9].

Theorem 2. Let Q be a probability measure and let C be a convex set
of measures such that D(P ‖ Q) <∞ for all P ∈ C. Then the game is in
equilibrium.

The Radon–Nikodym derivative dQ|C
dQ is uniquely defined only as an

element in L1(U,Q). Remark that if the underlying space is countable and
all elements in C are distributions with finite support then the condition
D(P ‖ Q) <∞ is satisfied if the support of P is a subset of the support
of Q.

Not all convex sets are in equilibrium with a given distribution Q. On
a infinite set U a nontrivial example is the set

C =
{

P ∈M1
+(U) | D(P ‖ Q) =∞

}
.

For this set D(C ‖ Q) =∞ and Γ(C,Q) = 0.
The most important example of information minimization is associated

with conditional probability to which little attention has been paid in the
literature – perhaps because it is almost trivial.

Example 3 (Conditional probability). Let Q be a distribution and let K
be a subset of U with Q(K) > 0. Define CK =

{
P | P (K) = 1

}
. First we

observe that Q(· | K) ∈ CK . If we choose dQ(·|K)
dQ = 1

Q(K) · 1K as version of
the Radon–Nikodym derivative, then〈

log
(

dQ(· | K)
dQ

)
, P

〉
= log

1
Q(K)

for every P ∈ CK . Therefore Q(· | K) is the minimum information distri-
bution in CA and

D(CK ‖ Q) = log
1

Q(K)
.
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Further log dQ(·|K)
dQ = D(CK ‖ Q) almost Q(· | K)-surely.

Note that the choice of version is important in this example if Q(K) < 1.
The principle of minimum information discrimination as formulated by

S. Kullback in [22, Chapter 5] states that when an empirical distribution P is
given then the hypothesis Q minimizing D(P ‖ Q) should be chosen. This is
a reformulation of the maximum likelihood idea known from statistics. The
principle extends to the situation when a prior distribution Q is given and
and P is unknown and some additional information is provided (the set C).
Then the principle states that one shall replace the original distribution Q by
that consistent distribution P which minimizes the information divergence
D(P ‖ Q). On a finite set with a uniform prior the extended principle
is equivalent to Jaynes’ Maximum Entropy Principle [18]. The example
demonstrated that conditional probability fits into this general principle.
The conditional limit theorem extends the example to more general sets of
consistent distributions.

1.2. Topologies on the set of probability measures

On the set of probability distributions M1
+(U) there exist several relevant

topologies. The τ -topology is a weak topology defined as the initial topology
corresponding to the maps

P �
∫

U
f dP,

where f is required to be measurable and bounded.
The strong topology is defined by the total variation norm. On a count-

able set the strong and the τ -topology coincide.
In [8] I. Csiszár introduced a topology τ0 somewhat stronger than the

τ -topology. This is defined by the basic neighborhoods

{P ∈M1
+(U) | ∣∣P (Bj)−Q(Bj)

∣∣ < ε,

P (Bj) = 0 if Q(Bj) = 0, j = 1, 2, . . . , k},
where B1, B2, . . . , Bk is a measurable partition of U . For all sequences
(Pn)n∈N

the sequence Pn converge to Q in τ0, if and only if Pn
τ→ Q and

Pλ � Q eventually, where � means absolutely continuous with respect to.
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Proposition 4. The distributions P and Q belong to the same τ0-connected
component if and only if P and Q are equivalent, that is mutual absolutely
continuous.

Proof. Assume that P and Q are not equivalent. Without loss of generality
we may assume that Q � P . Then there exists B such that Q(B) > 0 and
P (B) = 0. Let C denote the set

{
R ∈M1

+(U) | R(B) = 0
}

. Then C is
open and closed and P ∈ C and Q ∈ �C. Therefore P and Q belong to
complementary open sets and therefore to different connected components.

Assume that P and Q are equivalent. Then (1− t)P + tQ, t ∈ [0; 1] is
a continuous curve from P to Q and therefore P and Q belong to the same
connected component.

If U is finite, then the τ0-connected components are the probability dis-
tributions with given support, and on each of these connected components
τ0 and τ are equal. Other topologies stronger than τ has also been proposed
[12] for clarification of conditions for the conditional limit theorem to hold.

Since long it has been known that the divergence balls

B(Q, r) =
{

P ∈M1
+(U) | D(P ‖ Q) ≤ r

}
do not define a basis of a neighborhood filter of a topology, see [5], [6]
and [11]. However, the divergence does define several topologies relevant to
information theory. Their relation is very similar to the relation between
the strong topology and the τ -topology, but they are somewhat stronger
than these topologies.

Here we shall recall some useful facts from general topology, see [13] and
[21] for more details.

Definition 5. An L∗-space is a pair (X,L) where X is a set and L is a
function (called the limit operator) assigning to some sequences of points
of X an element of X (called the limit of the sequence) in such a way that
the following conditions are satisfied (we write Lxn instead of L

(
{xn}

)
and

say that {xn} converges to x if Lxn = x):

L1 If xn = x for n = 1, 2, . . . , then Lxn = x.
L2 If Lxn = x then Lxkn = x for every subsequence {xkn} of {xn}.
L3 If a sequence {xn} does not converge to x, then it contains a subse-

quence {xkn} such that no subsequence of {xkn} converges to x.
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The sequential closure clσ(A) of a set A ⊆ X is the set of elements x ∈ X
such that there exists a sequence {xn} in X such that Lxn = x.

Theorem 6. Let (X,L) be an L∗-space. Then there exists a topology
(called the sequential topology) on X such that A is closed in the sequential
topology if and only if A = clσ(A). A sequence {xn} converges to x in the
sequential topology if and only if Lxn = x.

2. The strong information topology

We shall start by defining the new topology on the set of probability mea-
sures. A sequence Pn of probability measures is said to converges to Q
strongly in information if D(Pn ‖ Q)→ 0. It is easy to check that the con-
ditions L1-L3 are satisfied. Therefore an L∗-space is defined and the corre-
sponding sequential topology is called the strong information topology and
is denoted I. This topology was first recognized by R. Dudley [11, Thm.
3.8], but has not been studied in any detail in the literature.

Definition 7. A subset A ⊆M1
+(U) is said to be I-closed if D(A ‖ Q) = 0

imply Q ∈ A.

A set A is open in the strong information topology if and only it satisfies
one of the following equivalent conditions:

• For any Q ∈ A there exists a r > 0 such that B(Q, r) ⊆ A.
• For any net (Pλ)λ∈Λ in M1

+(U) which satisfies D(Pλ ‖ Q)→ 0 for some
Q ∈ A, there exists a λ0 such that Pλ ∈ A for λ ≥ λ0.

• For any sequence (Pn)n∈N
in M1

+(U) which satisfies D(Pn ‖ Q)→ 0 for
some Q ∈ A, there exists a n0 such that Pn ∈ A for n ≥ n0.

Note that the strong information topology can be defined directly by
the above characterization of the I-closed/open sets.

Theorem 8. The strong information topology is stronger than the topolo-
gies defined by total variation and τ0.

Proof. We have to show that the balls
{

P ∈M1
+(U) | ‖P −Q‖ < r

}
are

open in the information topology. Assume that

P0 ∈
{

P ∈M1
+(U) | ‖P −Q‖ < r

}
,
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and that (Pn)n∈N
is a sequence such that D(Pn ‖ P0)→ 0. Then by Pinsker’s

inequality
∥∥Pn − P0

∥∥ → 0, and there exists a n0 such that
∥∥Pn − P0

∥∥ <
r −

∥∥P0 −Q
∥∥ for n ≥ n0. Therefore∥∥Pn −Q

∥∥ ≤ ∥∥Pn − P0

∥∥ +
∥∥P0 −Q

∥∥
< r

and Pn ∈
{

P ∈M1
+(U) | ‖P −Q‖ < r

}
for n ≥ n0.

In order to see the I is stronger than τ0 we just have to remark that for
any measurable set B ⊆ U the set{

P ∈M1
+(U) | P (B) = 0

}
is I-open.

In general the strong information topology coincides with neither τ0

nor the strong topology. To see this consider a countable set U with
equivalent probability measures P and Q such that D(P ‖ Q) =∞. Put
Pn = 1/n · P + (1− 1/n) ·Q. Then Pn → Q in strong topology and in τ0

but not in the strong information topology.

Lemma 9. A one parameter exponential family is continuous in the param-
eter in the strong information topology.

Proof. Let Pt be a one parameter exponential family for which P0 = P and
P1 = Q. First we remark that D(Ps ‖ Pt) can only be infinite for s = 0 and
t = 1 or s = 1 and t = 0. For t′ ∈

[
−D(P ‖ Q); D(Q ‖ P )

]
let Qt′ denote

the distribution Pt such that

t′ =
∫

log
dQ

dP
dPt.

This is a new parametrization of the family, and the change in variable
is continuous. We shall show that t � Qt is continuous when M1

+(U) is
equipped with the strong information topology. For a fixed value of t0 the
function

t � D
(
Qt ‖ Qt0

)
is convex because Qs minimizes D

(
R ‖ Qt0

)
under the constraint∫

log dQ
dP dR and D

(
Qt0 ‖ Qt0

)
= 0. Therefore t � D

(
Qt ‖ Qt0

)
is continu-

ous in t = t0 because D
(
Qt ‖ Qt0

)
<∞ for t in a neighborhood of t0.
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Theorem 10. The distributions P and Q belong to the same connected
component if and only if P and Q are equivalent.

Proof. Assume that P and Q are not absolutely continuous with respect to
each other. Then P and Q belong to different τ0-components and therefore
also to different I-components.

Assume that P and Q are equivalent. Now we shall define a continuous
path from P to Q. For t ∈ {0, 1} the integral∫ (

dQ

dP

)t

dP

equals one. The function

t �
∫ (

dQ

dP

)t

dP

is convex and therefore ∫ (
dQ

dP

)t

dP < 1

for t ∈ ]0; 1[. Using that P and Q are equivalent we see that the integral is
positive. Then a log-affine curve t � Pt is given by the equation

dPt

dP
=

(dQ
dP )

t

∫
(dQ

dP )
t
dP

.

Therefore P and Q are connected by the log-affine curve.

In the proof the one-parameter exponential family from P to Q was
used. This family is closely related to the so-called Chernoff bound known
from statistics [4, section 12.9]. It can also be considered as a geodetic curve
when the set of probability measures are equipped with a suitable geometric
structure related to information divergence [1].

Theorem 11. If U is finite then the strong information topology coincides
with the topology τ0.

Proof. On a finite set D(P ‖ Q) <∞ if and only if supp (P ) ⊆ supp (Q).
The previous theorem shows that the connected components are of the form{

P ∈M1
+(U) | supp (P ) = B

}
. Now we just have to remark that

(P, Q) � D(P ‖ Q)

is τ0-continuous on each component.
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Corollary 12. The net Pλ ∈M1
+(U) converges to Q ∈M1

+(U) in the topol-
ogy τ0 if and only if Φ(Pλ)→ Φ(Q) in the strong information topology for
all finite partitions Φ, i.e. all Φ : U → VΦ where VΦ is a finite set.

As immediate consequences of Theorem 8 one sees that the map
(P,Q) � D(P ‖ Q) is lower semi continuous when M1

+(U) is equipped with
the strong information topology. Especially the sets{

P ∈M1
+(U) | D(P ‖ Q) ≤ r

}
are closed in the strong information topology. In general the sets{

P ∈M1
+(U) | D(P ‖ Q) < r

}
are not open.

Example 13. If U is countable infinite then there exists a ball B(Q, r)
such that Q is not an I-interior point. To see this choose P,R,Q with point
probabilities proportional to 1

k2 , 1
k3 , 1

2k . Then

D(P ‖ R) <∞

D(R ‖ Q) <∞

D(P ‖ Q) =∞.

Define Pn = 1
nP + (1− 1

n)R. Then

D(Pn ‖ R) ≤ 1
n

D(P ‖ R) +
(

1− 1
n

)
D(R ‖ R)

=
1
n

D(P ‖ R)→ 0.

Therefore Pn
I→ R for n→∞ and D(Pn ‖ Q) =∞.

The above construction can be made with P replaced by Pα = αP +
(1− α)Q and R replaced by Rα = αR + (1− α)Q for α ∈ ]0; 1[. Therefore
αR + (1− α)Q is on the I-boundary. We have

D(Ra ‖ Q) = D
(
αR + (1− α)Q ‖ Q

)
≤ αD(R ‖ Q)→ 0 for α→ 0.
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This shows that there exists a net Pλ → Q such that D(Pλ ‖ Q) =∞.
Similar constructions are known from the literature, cf. [6] and [8, Example
3.2].

A set A is closed if and only if clσ(A) = A. In general it is not true
that clσ(A) is closed. Therefore we have to iterate the sequential closure
operation to obtain the closure clI(A). The construction works as follows:

Let α be an ordinal (finite or transfinite). We define clασ(A) by transfinite
recursion:

• clασ(A) = A for α = 0

• clασ(A) = clσ
( ⋃

β<α

clβσ(A)
)

for α > 0.

We see that clασ(A) is constant from a certain point. If not before then
when the cardinality of α exceeds the cardinality of U . Therefore clασ(A)
is closed. A more refined argument gives that clω1

σ (A) is closed and equals
clI(A) where ω1 denote the first non-countable ordinal number.

Let L denote the convex hull of P, Q and R. Then L = cl2σ
(

int (L)
)

where int (L) denotes the algebraic interior of L. The above construction
shows that 2 closure operations are needed in order to obtain a closed set.
This construction can be iterated in order to obtain a set for which n closure
operations are needed in order to obtain a closed set. The construction is
as follows. Let Pk be the probability measure

k⊗
Q⊗R⊗

n−k⊗
P

for k = 0, 1, . . . , n. Then

D(Pk ‖ Pk+1) = D(P ‖ R) + D(R ‖ Q)

<∞.

In general
D(Pk ‖ Pl) <∞

if and only if
l ≤ k + 1.

For probability vectors (αk) and (βk) we have

D

( n∑
k=1

αkPk

∥∥∥ n∑
k=1

βkPk

)
<∞
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if and only
min
βk>0

k ≤ min
αk>0

k + 1.

Let C be the convex hull of {Pk} and let K be the algebraic interior of C.
Then clkσ(K) = C\convl>k{Pl}. Therefore n closure operations are needed
to obtain a closed set.

Theorem 14. Let A be a convex subset of M1
+(U). Then clI(A) is a convex

set.

Proof. Let clσ(B) denote the sequential closure of B, i.e. set of distributions

Q such that there exists a sequence (Pn)n∈N
such that Pn

I→ Q and Pn ∈ B.

If B is convex then so is clσI (B). To see this assume that Pn
I→ P and

Qn
I→ Q where Pn, Qn ∈ B. Let α ∈ [0; 1]. Then

D
(
αPn + (1− α)Qn ‖ αP + (1− α)Q

)
≤ αD(Pn ‖ P ) + (1− α)D(Qn ‖ Q)→ 0.

By transfinite induction we see that also the closure is convex.

A non-trivial example of a convex set which is closed in the strong
information topology is the set of atomic probability measures. To see
that this set is closed let Pn be a sequence of atomic probability measures
which converges to Q in strong information topology. Let An denote the
set of points where Pn has positive weight. Then An is countable. Thus
all Pn are concentrated on the countable set

⋃
An, and therefore Q is also

concentrated on
⋃

An. Therefore Q is atomic.

We easily see that the strong information topology is compact if and
only if U is a singleton.

Proposition 15. For the strong information topology the following condi-
tions are equivalent.

1. U is finite.

2. M1
+(U) is σ−compact.

3. M1
+(U) is locally compact.

4. 1st countability axiom is satisfied.

5. 2nd countability axiom is satisfied.
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Proof. 1.⇒ 2. Obvious.
2.⇒ 3. Obvious.
¬1.⇒ ¬3. Assume that U is not finite, and let Q be a probability

measure with infinite but countable support. Assume that ω is a com-
pact neighborhood in strong information topology. Then ω contains a ball
B(Q, r) ⊆ ω, and the balls are closed so B(Q, r) is compact. Now there
exists a sequence Pn → Q in I such that Pn has finite support. Therefore
B(Q, r) contains a probability distribution P with finite support. The se-
quence (1− 1

n)P + 1
nQ→ P in weak topology but not in strong information

topology. Therefore the sequence (1− 1
n)P + 1

nQ has no convergent subnet,
and the contradiction is obtained.

1.⇒ 5. Obvious.
5.⇒ 4. Obvious.
¬1.⇒ ¬4.
Assume that U is not finite. Then there exists a convex set C such that

clσ
(

clσ(C)
)
= clσ(C) where the sequential closure is taken in the relevant

information topology. Therefore the strong information topology does not
satisfy 1st countability axiom.

The conditions in Proposition 15 imply paracompactness, but it is not
clear weather they are necessary conditions.

Proposition 16. The strong information topology is separable if and only
if U is countable.

Proof. If U is finite the strong information topology is obviously separable.
If U is countable then we may assume that U = N. Put An = {1,2, . . . , n}

and Cn =
{

P | supp (P ) ⊆ An

}
. Each of the sets Cn is separable, and there-

fore their union
⋃

Cn is separable. Now

D(Cn ‖ Q) = D
(
Q|Cn

‖ Q
)

= log
1

Q(An)
→ 0.

Therefore
⋃

Cn is dense in M1
+(U), and M1

+(U) is separable in the strong
information topology.

If U is not countable, then M1
+(U) is not separable in τ and therefore

not in the strong information topology.
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3. Continuity of entropy and divergence

In order to characterize the sequential discontinuity points of the entropy
and divergence functions we need the concept of hyperbolic distribution and
several ways to characterize them.

Definition 17. A distribution on R with distribution function F is said to
tail majorize a distribution with distribution G if

F (x) ≥ G(x)

eventually, i.e. there exists a x0 such that F (x) ≥ G(x) for x ≥ x0. A
distribution of a non-negative random variable with distribution function
F is power dominated if there exists α > 1 such that F is tail majorized by
the distribution with probability density proportional to x−α for x ≥ 1. A
distribution of a non-negative random variable is said to be hyperbolic if it
is not power dominated.

Proposition 18. Let X be a non-negative random variable with distribu-
tion function F . Then the following conditions are equivalent:

Lemma 19.

1. F is power dominated.

2. There exists a t > 0 such that

E(Xt) <∞.

3. The tail probabilities satisfy

lim inf
x→∞

log
(
1− F (x)

)
log 1

x

> 0.

Proof. 1.⇒ 2. Assume that F majorizes a power law G. Then∫
xt dF (x) ≤

∫
xt dG(x),

because the function x→ xt is increasing. The right hand side is finite for
t sufficiently small.
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2.⇒ 3. For all t we have

E(Xt) =
∫ ∞

0
xt dF (x)

=
∞∑
i=0

∫ i+1

i
xt dF (x)

≥
∞∑
i=0

it P (i ≤ X < i + 1).

The series
∑∞

i=0 i−s P (i ≤ X < i+1) is an ordinary Dirichlet series in s = −t
[15] which converges for t = 0. Thus the abscissa of convergence is

γ = lim sup
n→∞

log
∣∣1− F (n)

∣∣
log(n)

.

If E(Xt) <∞ then

lim sup
n→∞

log
∣∣1− F (n)

∣∣
log(n)

≤ −t < 0.

3.⇒ 1. Assume that

lim inf
x→∞

log
(
1− F (x)

)
log 1

x

> 0.

Then there exists t > 0 such that

log
(
1− F (x)

)
log 1

x

≥ t

eventually, but this is equivalent to

1− F (x) ≤ xt

eventually, and we see that F is power dominated.

Typical examples of hyperbolic distributions are distributions with den-
sities proportional to

1
x(log x)α , x ≥ 2
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for some α > 1.
For a random variable X with probability density f the Rényi entropy

of order α > 0 and α = 1 is defined by the formula

hα(P ) =
1

1− α
log

∫ (
f(x)

)α
dx

when the integral converges. For α = 1 the Rényi entropy h1(P ) is defined
to be the Shannon entropy (differential entropy). Note that h is used to
denote differential entropy and H is used to denote discrete entropy.

For continuous distributed non-negative random variables with decreas-
ing density further characterization of power dominated and hyperbolic dis-
tributions are possible.

Proposition 20. Let X be a continuous non-negative random variable with
distribution function F and density function f = F ′. Assume that f upper
bounded and decreasing. Then the following conditions are equivalent:

1. The distribution of X is power dominated.

2. There exists K > 0 and α > 1 such that f(x) ≤ K · x−α eventually.

3. There exists α > 1 such that for all L > 0 one has f(x) ≤ L · x−α even-
tually.

4. The density function satisfies

lim inf
log f(x)
log 1

x

> 1.

5. There exists α < 1 such that Hα(X) <∞.

Proof. 2.⇒ 3. Assume that K > 0 and α > 1 such that f(x) ≤ K · x−α

eventually. Choose β such that 1 < β < α. Then for any L > 0

K · x−α ≤ L · x−β.

3.⇒ 1. This follows since the constant L can be chosen such L · x−α,
x ≥ 1 is a power law.

4.⇒ 2. If

lim inf
log f(x)
log 1

x

> α > 1

then
log f(x)
log 1

x

> α
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eventually and this is equivalent to f(x) < x−α eventually.
5.⇒ 4. Assume that the Rényi entropy Hα(P ) is finite for α < 1. Then

∞∑
n=1

exp (− α
(
− log f(n)

)
) =

∞∑
n=1

(
f(n)

)α

≤
∫ ∞

0

(
f(x)

)α
dx

<∞.

Now
∑∞

n=1 exp (− α
(
− log f(n)

)
) is a Dirichlet series in −α [15] with

abscissa of convergence equal to

lim sup
n→∞

log n

− log f(n)
=

1

lim infn→∞
log f(n)

log 1
n

.

Therefore

lim inf
log f(x)
log 1

x

≥ 1
α

.

1.⇒ 5. Assume that the power law with tail probabilities 1−G(x) =
x−α, x ≥ 1 is majorized by F . The function x→ xβ, β < 1 is concave. Using
Shur convexity [24] we have

∞∑
j=0

(
F ′
(

j

n

))β

≤
∞∑

j=0

(
G′
(

j

n

))β

,

and ∫ ∞

0

(
F ′(x)

)β
dx ≤

∫ ∞

0

(
G′(x)

)β
dx

The right hand side is finite for β sufficiently close to 1.

A non-negative random variable with decreasing density f always satis-
fies

f(x) ≤ 1
x

with equality in case the distribution is uniform. Therefore

log f(x)
log 1

x

≥ 1.
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Therefore a hyperbolic distribution with decreasing density satisfies

lim inf
x→∞

log f(x)
log 1

x

= 1.

The (discrete) Rényi entropy of order α > 0 and α = 1 is defined as a
extended real number by the formula

Hα(P ) =
1

1− α
log

∑
pα

i

For α = 1 the Rényi entropy H1(P ) is defined to be the Shannon entropy.
Then Rényi entropy is decreasing in α.

Assume that the random variable X is non-negative and integer valued
and with decreasing point probabilities. Then the previous result can be
applied to the distribution with density f given by

f(x) = P
(
X = �x�

)
.

Then the discrete (Shannon or Rényi) entropy of X equals the differential
entropy of f . The distribution of X is hyperbolic if and only if

lim inf
i→∞

log P (X = i)
log 1

i

= 1.

This formula was used to characterize discrete hyperbolic distributions
in [17].

After these characterizations of the hyperbolic distributions it is possible
to study the sequential discontinuity points of entropy and divergence. Let
Q be a discrete distribution. If Q is power bounded then the entropy is finite
because the entropy of a power law is finite. The following theorem identifies
the hyperbolic distributions as the (sequential) discontinuity points of the
entropy function.

Theorem 21. If Q is power dominated, then Pn
I→ Q implies H(Pn)→

H(Q). If Q is hyperbolic and H(Q) <∞ then there exists a sequence Pn

such that Pn
I→ Q and

lim inf
n→∞

H(Pn) > H(Q).
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Proof. Assume that Q is power bounded. Then

∑
i

exp
(

t log
(

1
qi

))
qi =

∑
i

q1−t
i

<∞

for t sufficiently small. Therefore

H(Pn) =
∑

i

log
(

1
qi

)
· Pn(i)−D(Pn ‖ Q)

→
∑

i

log
(

1
qi

)
· qi − 0

= H(Q).

For the last part of the theorem, see [17].

It is obvious to ask to what extent the function P � D(P ‖ Q) is con-
tinuous in the information topologies. We define the Rényi divergence
Ds(P0 ‖ Q) = 1

1−s log
∫
(dP0

dQ )
s
dQ. We have Ds(P0 ‖ Q)→ D(P0 ‖ Q) for

s→ 1−. If D(P0 ‖ Q) <∞, then the following conditions are equivalent.

Proposition 22.

1.
∫
(dP0

dQ )
t
dP0 <∞ for some t > 0.

2.
∫
(dP0

dQ )
s
dQ <∞ for some s > 1.

3. Ds(P0 ‖ Q) <∞ for some s > 1.

4. The random variable dP0
dQ is power dominated with respect to P0.

Theorem 23. Assume that D(P0 ‖ Q) <∞. Then the following conditions
are equivalent.

1. The function P � D(P ‖ Q) is sequential continuous in P0 in the strong
information topology.

2. The random variable dP0
dQ is power dominated with respect to P0.

Proof. 2. =⇒ 1.: Assume that
∫
(dP0

dQ )
t
dP0 <∞ for a t > 0, and assume

that D(Pn ‖ P0)→ 0. We write

D(Pn ‖ Q) = D(Pn ‖ P0) +
〈

log
dP0

dQ
,Pn

〉
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We have ∫
exp

(
t · log

dP0

dQ

)
dP0 =

∫ (
dP0

dQ

)t

dP0 <∞.

Therefore 〈
log

dP0

dQ
, Pn

〉
→

〈
log

dP0

dQ
,P0

〉

= D(P0 ‖ Q) for n→∞.

¬2. =⇒ ¬1. Let b be some real number greater than D(P0 ‖ Q) and
assume

∫
(dP0

dQ )
s
dQ =∞ for all s > 1. Put

Cb =
{

P |
〈

log
dP0

dQ
,P

〉
= b

}
.

Then for P ∈ Cb

D(P ‖ Q) =
〈

log
dP0

dQ
, P

〉
+ D(P ‖ P0)

≥ b.

Put Ac = {u | b ≤ log dP0
dQ (u) ≤ c} where c is some constant such that

Q(Ac) > 0. Then D
(
Q|Ac

‖ Q
)

= − log Q(Ac) <∞. Further

b ≤
〈

log
dP0

dQ
,Q|Ac

〉
≤ c.

Therefore there exists a convex combination P ′ = γQ|Ac
+ (1− γ)P0 such

that P ′ ∈ Cb and

D(P ′ ‖ Q) ≤ γD
(
Q|Ac

‖ Q
)

+ (1− γ)D(P0 ‖ Q)

<∞.

Therefore D(Cb ‖ Q) <∞. Now the projection on Cb must lie in the expo-
nential family P s given by

dP s

dQ
=

exp (s log dP0
dQ )∫

exp (s log dP0
dQ ) dQ

=
dP0
dQ

s

∫
(dP0

dQ )
s
dQ

but this is not defined for s > 1 so the projection must be P 1 = P0.
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4. Weak information topologies

We shall define yet another topology on the set of probability measures.
The relation between this and the strong information topology resembles
the relation between the strong topology and τ0.

Definition 24. A sequence (Pn)n∈N
in M1

+(U) is said to converge to Q
weakly in information if one has

∫
f dPn →

∫
f dQ for n→∞ for any mea-

surable function f : U → [0;∞] for which exp
(
t · f(u)

)
is Q-integrable if

t > 0 is sufficiently small.

It is easy to check that the conditions L1-L3 are satisfied. Therefore
an L∗-space is defined and the corresponding topology is called the se-
quential weak information topology. This topology is denoted I∗s . It is
obviously a Hausdorff topology. Recall the definition of Γ(C, Q) given
by sup∆ infP∈C〈∆, P 〉 where the supremum is taken over all ∆ satisfying∫

exp(∆) dQ ≤ 1.

Theorem 25. Let (Pn)n∈N
be a sequence in M1

+(U) and let Q ∈M1
+(U).

The following 4 conditions are equivalent

1. For all sets C with Γ(C, Q) > 0 we have Pn /∈ C eventually.

2. For all measurable functions f for which exp
(
t · f(u)

)
is Q-integrable

for some t > 0, one has that lim supn→∞
∫

f dPn ≤
∫

f dQ.

3. Pn converges to Q in the sequential weak information topology.

4. Φ(Pn) I→ Φ(Q) for all measurable maps Φ : U → N such that Φ(Q) is
power bounded.

Proof. 1.⇒ 2.

Assume that f : U → [0;∞] is a measurable function for which exp
(
t ·

f(u)
)

is Q-integrable for t ∈ [0; ε] for some ε > 0. Put

dQt

dQ
(u) =

exp
(
t · f(u)

)∫
exp

(
t · f(u)

)
dQ(u)

.

Then
∫

f dQt is continuous, strictly increasing and finite for t ∈ [0; ε[. It is
easy to check that the set

K =
{

P ∈M1
+(U)

∣∣∣∣
∫

f dP ≥
∫

f dQt

}
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is in equilibrium with Q and that Qε/2 and log dQε/2

dQ are optimal strategies.
Thus Γ(K, Q) = D(Qt ‖ Q) > 0 for t ∈ ]0; ε[. Let (Pn)n∈N

be a sequence in
M1

+(U) such that for all sets C with Γ(C,Q) > 0 we have Pn /∈ C eventually.
Then, in particular Pn /∈ K and

∫
f dPn <

∫
f dQt eventually. This holds

for all t ∈ ]0; ε[ and therefore

lim sup
n→∞

∫
f dPn ≤ lim inf

t∈]0;ε[

∫
f dQt

=
∫

f dQ.

2.⇒ 3.

Let f be a non-negative function. Put Ui =
{

u ∈ U | i ≤ f(u) < i + 1
}

,
i = 0, 1, 2, . . . Then using Fatou’s lemma we get

lim inf
n→∞

∫
f dPn = lim inf

n→∞

∫
f dPn

= lim inf
n→∞

∞∑
i=0

∫
Ui

f dPn

≥
∞∑
i=0

∫
Ui

f dQ

=
∫

f dQ.

This holds for all sequences Pn. If for all measurable functions f for which
exp

(
t · f(u)

)
is Q-integrable for some t > 0, one has that

lim sup
n→∞

∫
f dPn ≤

∫
f dQ,

then
∫

f dPn →
∫

f dQ for n→∞.

3⇒ 4.

Assume that Φ(Q) is power bounded, and that (Pn) is a sequence of

probability measures on the measure space (Ω, A) such that Pn
I∗s→ Q. Then
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Φ(Pn)
I∗s→ Φ(Q). Let pi

n denote the point probabilities of Φ(Pn) and let qi

denote the point probabilities of Φ(Q). Then

D
(
Φ(Pn) ‖ Φ(Q)

)
=
〈

log
dΦ(Pn)
dΦ(Q)

, Φ(Pn)
〉

=
∑

log
1
qi
· pi

n −H
(
Φ(Pn)

)
.

Now Φ(Q) is power bounded so there exist t > 0 such that
∑

i exp(t · log 1
qi
) ·

qi =
∑

q1−t
i <∞. Therefore

∑
i

log
1
qi
· pi

n →
∑

i

log
1
qi
· qi

= H
(
Φ(Q)

)
<∞.

Using lower semi continuity of the entropy function we get

lim sup
n→∞

D
(
Φ(Pn) ‖ Φ(Q)

)
= lim sup

n→∞

(∑
log

1
qi
· pi

n −H
(
Φ(Pn)

))

≤ H
(
Φ(Q)

)
− lim inf

n→∞
H
(
Φ(Pn)

)
= 0.

4.⇒ 1.

Let C ⊆M1
+(U) be a set with Γ(C, Q) > 0. Then there exists a code

improvement ∆ such that Γ(∆) ≥ ε. Therefore 〈∆, P 〉 ≥ ε for P ∈ C. Let
f be the function k·∆�

k . Then f ≤ ∆

Assume that Φ(Pn) I→ Φ(Q) for all measurable maps Φ : (Ω, A)→ N
such that Φ(Q) is power bounded. Let f : A→ R+ be a measurable function
such that exp

(
t · f(u)

)
is Q-integrable for some t > 0. Let Φ denote the
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function k·f�
k . Then

∫
exp

(
t · f(u)

)
dΦQu ≥

∫
exp

(
t ·
⌊
k · f(u)

⌋
k

)
dΦ(Q)u

≥
∫ (

exp

(⌊
k · f(u)

⌋
k

))t

dΦ(Q)u

≥ k−t

∫
itΦ(Q)

(
i

k

)

Thus Φ is power bounded and〈
�k · f�

k
,Φ(Pn)

〉
→

〈
�k · f�

k
, Φ(Q)

〉

for all k. For all P the following inequality holds〈
�k · f�

k
, Φ(P )

〉
≤
∫

f dP ≤
〈
�k · f�+ 1

k
, Φ(P )

〉
=
〈
�k · f�

k
, Φ(P )

〉
+

1
k

and therefore
∫

f dPn →
∫

f dQ.

Corollary 26. Assume that Q is power dominated. Then Pn
I∗s→ Q if and

only if Pn
I→ Q.

Combining Corollary and Example 13 we see that the sequential weak
information topology satisfies neither first nor second countability axiom.

To see that the sequential weak and the strong information topology are
different we just have to remark that the I-closed set of atomic probability
measures is dense in the set of all probability distributions because a prob-
ability distribution cannot be distinguished from a atomic distribution by
any number of functions ∆i, i = 1, . . . , n. An example of a sequence con-
verging in τ0 but not in I∗s is given by the following construction. Let Q be
the probability measure on N given by the point probabilities Q(i) = 2−i.
Then

∑∞
i=1 i ·Q(i) = 2 <∞ and therefore the function f : i � log i satisfies∑

exp
(
t · f(i)

)
·Q(i) <∞ for a t > 0. Let Pn be the probability measure

given by

Pn(i) =
(

1− 1
log n

)
Q(i) +

1
log n

δi,n.
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Then Pn converges pointwize to Q and therefore also in τ0. At the same
time

∞∑
i=1

f(i) · Pn(i) =
(

1− 1
log n

) ∞∑
i=1

f(i) ·Q(i) +
1

log n

∞∑
i=1

log(i) · δi,n

=
(

1− 1
log n

) ∞∑
i=1

f(i) ·Q(i) + 1

→
∞∑
i=1

f(i) ·Q(i) + 1 for n→∞.

Let A ⊆M1
+(U) be a set of probability distributions. Assume that A

satisfy the following criterion.

Criterion 27. For all Q ∈ A there exists a finite number of sets Ci ⊆
M1

+(U) such that Γ(Ci, Q) > 0 and �A ⊆
⋃

Ci.

Then A is open in the sequential weak information topology. The set
of sets satisfying Criterion 27 is obviously a topology which we will call the
weak information topology and denote I∗.

Theorem 28. The weak information topology is stronger than the topology
τ0, but weaker than the strong information topology.

Proof. This follows since Γ(C, Q) ≤ D(C ‖ Q).

The topologies τ0 and I have the same connected components and there-
fore I∗ has the same connected components as these topologies. Similarly,
on a finite set the topologies τ0 and I coincide and therefore they coincide
with I∗ on finite sets.

As immediate consequences of Theorem 28 we get that the map (P,Q) �
D(P ‖ Q) is lower semi continuous when M1

+(U) is equipped with the weak
information topology. Especially the sets{

P ∈M1
+(U) | D(P ‖ Q) ≤ r

}
are I∗-closed.

We easily see that the weak information topology is compact if and only
if U is a singleton.
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Proposition 29. For the weak information topology the following condi-
tions are equivalent.

1. U is finite.

2. M1
+(U) is σ−compact.

3. M1
+(U) is locally compact.

Proof. 1.⇒ 2. Obvious.
2.⇒ 3. Obvious.
¬3.⇒ ¬1. Assume that U is not finite, and let Q be a probability

measure with infinite support. Assume that ω is a compact neighborhood
in weak information topology. Then ω contains a ball B(Q, r) ⊆ ω, and the
balls are closed so B(Q,r) is compact. Now there exist a sequence Pn→ Q in
I such that Pn has finite support. Therefore B(Q, r) contains a probability
distribution P with finite support. The sequence (1− 1

n)P + 1
nQ→ P in

weak topology but not in τ0 and therefore not in the weak information
topology. Therefore the sequence (1− 1

n)P + 1
nQ has no convergent subnet,

and the contradiction is obtained.

Proposition 30. The weak information topology is separable if and only if
U is countable.

Proof. If U is finite the weak information topology is obviously separable.
If U is countable then M1

+(U) is separable in the strong information
topology and therefore also in the weak information topology.

If U is not countable, then M1
+(U) is not separable in τ and therefore

not in the weak information topology.

The topology τ and the topology corresponding to total variation can
be extended to the set of bounded distribution with sign. The set of
bounded measures is a group and both τ and the topology corresponding
to total variation are translation invariant in this group. None of the
information topologies extends into translation invariant topologies on the
set of bounded signed measures. We are interested in convergence theorems
and are therefore primarily interested in the topology near a point Q ∈
M1

+(U). Instead of having a topology which is not translation invariant one
could form a translation invariant topology by taking the local structure
(neighborhoods) of I∗ near Q and translate it to get neighborhoods of other
points. Although not explicitly stated this is the technique used in [12].
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5. The conditional limit theorem

The idea to use information theoretical methods to prove a strong version of
the conditional limit theorem was given by I. Csiszár in [8]. He introduced
the topology τ0 in order to formulate the conditional limit theorem with
a stronger topology than τ . We will follow these ideas and see to what
extend the information topologies are useful in formulating a conditional
limit theorem.

Let (U, F, Q) be a probability space with an prior distribution Q.
Throughout this section we consider a fixed set C ⊆M1

+(U) of consistent
distributions. We will show that the principle of minimum information dis-
crimination can be interpreted as an extension of the concept conditional
probability. Let ω = (u1, u2, . . . , un) ∈ Un be a sample, i.e. a finite sequence
of outcomes, then the empirical distribution is Empn(ω) = 1

n

∑n
i=1 δui ,

where δui is the Dirac measure in the point ui. On a finite set the em-
pirical distribution is also called the type of the sequence [9]. We wish to
find the posterior probability distribution under the condition that the em-
pirical distribution is consistent, i.e. the empirical distribution is element
in C. Thus, the situation is that for some reason we cannot observe the em-
pirical distribution directly, but using some indirect observation we can infer
that the empirical distribution belong to the set C. An example from sta-
tistical mechanics is a temperature measurement which tells you the mean
energy of the molecules but not the energy of any individual molecule.

Define

Kn =
{

ω ∈ Ω | Empn(ω) ∈ C
}

.

If Kn is Fn-measurable and Qn(Kn) > 0, it is possible to consider the
conditional probability of Qn with respect to the set Kn in Un. Let Qn =
Qn(· | Kn)(1) denote the marginal distribution of Qn(· | Kn). An alternative
way to write Qn is

E
(

Empn(ω) | Kn

)
in the sense that

〈f, Qn〉 = E(
〈
f, Empn(ω)

〉
| Kn)
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for all measurable functions f . This follows from the calculation

E
(

Empn(ω) | Empn(ω) ∈ C
)

=
1
n
·

n∑
j=1

E
(
δuj | Empn(ω) ∈ C

)

= E
(
δu1 | Empn(ω) ∈ C

)
= Qn(· | Kn)(1).

Theorem 31. Let (U,Q) be a probability space, and let C be a set of
probability measures on U .

If Kn ∈ Fn and Qn(Kn) > 0, define Qn = Qn(· | Kn)(1). If ∆ is a mea-

surable function satisfying
∫

exp(∆) dQ ≤ 1 then

(3) 〈∆, Qn〉 ≥ Γ(∆).

For any set C ⊆M1
+(U) the following inequality holds

(4) Γ(C, Q) ≤ − 1
n

log P ∗(Kn)

where P ∗( Empn(ω) ∈ C
)

denotes the outer measure of the set{
ω ∈ Un | Empn(ω) ∈ C

}
.

If Q is in equilibrium with C the following inequality holds

D(C ‖ Q) ≤ − 1
n

log P ∗(Kn).

Proof. Assume that Kn =
{

ω ∈ Un | Empn(ω) ∈ C
}

is Fn-measurable and
that Qn(Kn) > 0.

〈∆, Qn〉 = E(
〈
∆,Empn(ω)

〉
| Kn)

≥ E
(
Γ(∆)

)
= Γ(∆).

To get (4) first assume that Kn is Fn-measurable. Then

D(Qn ‖ Q) ≥ 〈∆, Qn〉 ≥ Γ(∆).
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This implies that

P
(

Empn(ω) ∈ C
)

= Qn(Kn)

= exp (−D
(
Qn(· | Kn) ‖ Qn

)
)

≤ exp
(
− nD(Qn ‖ Q)

)
≤ exp

(
− nΓ(∆)

)
,

where the sub-additivity of the information divergence is used to ob-
tain the first inequality. This holds for all measurable functions ∆ with∫

exp(∆) dQ ≤ 1 and therefore

P
(

Empn(ω) ∈ C
)
≤ exp

(
− nΓ(C,Q)

)
.

Now assume that Kn /∈ Fn. Put

K̃n =

{
ω ∈ Un

∣∣∣∣
(

1
n

n∑
i=1

∆i

)
(u1, u2, . . . , un) ≥ Γ(C,Q)

}
.

Then K̃n is measurable because each of the functions ∆i are measurable.
Then

P ∗( Empn(ω) ∈ C
)
≤ P

(
Empn(ω) ∈ K̃n

)
≤ exp

(
− nΓ(C, Q)

)
,

which proves Inequality 4.
If Q is in equilibrium with C then

Γ(C, Q) = D(C ‖ Q),

and the last inequality holds.

The quantities in (4) are often equipped with the opposite sign turning
the inequality into an upper bound. As the inequality is stated here

− log P ∗( Empn(ω) ∈ C
)

has a natural interpretation as a mean code length. The following theorem
is a law of large numbers related to the weak information topology.
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Theorem 32. Let (U, F, Q) be a probability space, and (Ω, G, P ) is the
corresponding probability space of the sequences such that Ω = (UN, G)
the σ-algebra generated by the cylinder sets, and P a probability measure
such that P|Fn = Qn. Let A be a I∗-neighborhood of the distribution Q.
Then the empirical distribution Empn(ω) ∈ A eventually P -almost surely.
In particular the empirical distribution I∗-converges to Q in probability.

Proof. For any set C with Γ(C, Q) > 0 and in equilibrium we have

P
(

Empn(ω) ∈ C for some n ≥ N
)
≤
∑
n≥N

P (Kn)

≤
∑
n≥N

exp
(
− nΓ(C, Q)

)

≤
exp

(
−NΓ(C, Q)

)
1− exp

(
− Γ(C,Q)

) .

This shows that the probability that the empirical distribution lies in C for
some n ≥ N converges to 0 for N going to ∞.

For any topology weaker than the weak information topology and satis-
fying first countability axiom one gets almost sure convergence. To see this
let ωm be a countable basis of the neighborhoods of Q is such a topology.
Then the set Bm of sequences with Empn(ω) ∈ ωm eventually has measure 1.
Therefore also the set

⋂∞
m=1 Bm has measure 1.

Even on a finite set Theorem 32 gives a stronger law of large numbers
than the formulations normally found in textbooks. The difference is that
Theorem 32 implies that the support of the empirical distribution is a subset
of the support of Q.

The approach presented here can also be used to give an asymptotic
upper bound on − 1

n log P
(

Empn(ω) ∈ C
)
, but only in the case where C is

a “fat” set in the sense that C contains inner points. For the “thin” case
see [19] and references in there.

Lemma 33. Let (U, F, Q) be a probability space, and let C be a set of
probability measures on U . Then

(5) lim sup
n→∞

− 1
n

log P∗
(

Empn(ω) ∈ C
)
≤ D(intI∗ C ‖ Q)
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where P∗
(

Empn(ω) ∈ C
)

denotes the inner measure of the set{
ω ∈ Ω | Empn(ω) ∈ C

}
with respect to the probability measure P = Qn.

Remark 34. In this lemma C is not assumed to be convex.

Proof. Let R be an I∗-inner point in C.
First assume that Kn =

{
ω ∈ Un | Empn(ω) ∈ C

}
is Fn-measurable.

Then

− 1
n

log P (Kn) = − 1
n

log
(
Qn(Kn)

)
=

1
n

D
(
Qn(· | Kn) ‖ Qn

)
≤ 1

n
D
(
Rn(· | Kn) ‖ Qn

)
because the conditional probability measure Qn(· | Kn) minimizes the di-
vergence among measures concentrated on Kn.

We use the equality

D(Rn ‖ Qn) = Rn(Kn) ·D
(
Rn(· | Kn) ‖ Qn

)
+ Rn(�Kn) ·D

(
Rn(· | �Kn) ‖ Qn

)
−H

(
Rn(Kn), Rn(�Kn)

)
,

which leads to the inequality

D
(
Rn(· | Kn) ‖ Qn

)
≤

D(Rn ‖ Qn) + H
(
Rn(Kn), Rn(�Kn)

)
Rn(Kn)

.

Therefore

− 1
n

log P (Kn) ≤ 1
n

D
(
Rn(· | Kn) ‖ Qn

)

≤
D(Rn ‖ Qn) + H

(
Rn(Kn), Rn(�Kn)

)
n ·Rn(Kn)

=
D(R ‖ Q)
Rn(Kn)

+
H
(
Rn(Kn), Rn(�Kn)

)
n ·Rn(Kn)

→ D(R ‖ Q) for n→∞,
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because Rn(Kn)→ 1 for n→∞ by law of large numbers.
If Kn is not measurable then find a subset A of the form

A =
{

S ∈M1
+(U) | 〈∆i, S〉 ≤ ci, i = 1, . . . , k

}
where ci, i = 1, 2, . . . , k are positive constants and and ∆i functions satis-
fying

∫
exp(∆i) dQ ≤ 1. Then

{
ω ∈ Un | Empn(ω) ∈ A

}
is F-measurable

and
P∗(Kn) ≤ P

(
Empn(ω) ∈ A

)
and

lim sup
n→∞

− 1
n

log P∗(Kn) ≤ lim sup
n→∞

− 1
n

log P∗
(

Empn(ω) ∈ A
)

≤ D(R ‖ Q).

This holds for all R ∈ intI∗ C and the inequality follows.

The theorem is somewhat stronger than similar theorems in the litera-
ture as the weak information topology is stronger than the topology τ0 used
in the literature. By combining the lower and upper bounds one gets

Γ(C, Q) ≤ − 1
n

log P ∗(Kn)

≤ lim sup
n→∞

− 1
n

log P∗
(

Empn(ω) ∈ C
)

≤ D(intI∗ C ‖ Q).

Thus the lower bound refers to one side of the game and the upper bound
refers to the other side of the game. The following theorem includes the
well-known Conditional Limit Theorem.

Theorem 35. Let (U, F, Q) be a probability space, and let C be a convex
set in equilibrium with Q such that

D(C ‖ Q) = D(intI∗ C ‖ Q) <∞.

If Kn is Fn-measurable for all n then Qn(Kn) > 0, eventually. Put Qn =

Qn(· | Kn)(1). Then Qn
I→ Q|C for n→∞. If we condition on Empn(ω) ∈ C,

the Empn(ω) I∗→ Q|C in probability.
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Finally

− 1
n

log P (Kn)→ D(C ‖ Q) for n→∞

in the sense that both inner and outer Qn-measure of
{

ω ∈ Ω | Empn(ω) ∈
C
}

converges to D(C ‖ Q).

Proof. First remark that − 1
n log P

(
Empn(ω) ∈ C

)
≤ D(P ‖ Q) + ε even-

tually, which shows that P
(

Empn(ω) ∈ C
)

> 0 eventually. Using sub-
additivity of the divergence we get

D(Qn ‖ Q) ≤ 1
n

D
(
Qn(· | Kn) ‖ Qn

)

= − 1
n

log P (Kn),

Combining Theorem 31 and Lemma 33 proves that

D(Qn ‖ Q)↘ D(C ‖ Q) for n→∞.

Using the inequality in Theorem 1 we get that Qn
I→ Q|C for n→∞.

The condition that C is in equilibrium does not cover all cases where the
conditional limit theorem holds, but on a countable space one can replace
C with C0 =

{
P ∈ C | D(P ‖ Q) <∞

}
. Now C0 is in equilibrium with Q.

All empirical measures Empn(ω) ∈ C also satisfy Empn(ω) ∈ C0 because
empirical measures are atomic. Therefore D(C0 ‖ Q) = D(C ‖ Q) and the
sequence Qn is the same when C is replaced by C0.

If C is not in equilibrium then we obtain the following lower bound

D(clτ C ‖ Q) ≤ lim inf − 1
n
· log P (Kn).

The bound is obvious if C is a finite union of convex sets in equilibrium. In
the general case we use that the information balls B(Q, r) are τ -compact.
This lower bound is very weak as we know that in general Q is element in
the closure of �B(Q, r) even in the strong information topology.
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6. Discussion

In [8] I. Csiszár used a convexity condition called almost absolute convex-
ity in order to get a conditional limit theorem. Let C be a set and Q a
distribution. For a code improvement ∆ with Γ(∆) <∞ the convex set{

P ∈M1
+(U) |

∫
∆ dP ≥ Γ(∆)

}
is absolute convex. Then also the intersec-

tion of all such absolute convex sets is absolutely convex, and this intersec-
tion is in equilibrium if and only if the original set was in equilibrium. There-
fore the concept of game theoretical equilibrium can “replace” Csiszár’s con-
vexity condition. A code improvement ∆ defines a measure R with density
dR/dQ = exp(∆). For a given measure R in general there may exist several
code improvements satisfying the equation. Let ∆1 and ∆2 be two such
code improvements. In general the sets

{
P ∈M1

+(U) |
∫

∆i dP ≥ Γ(∆i)
}

,
i = 1,2 will be different. Therefore it is important to consider code improve-
ments as functions and not just to identify the code improvement with the
corresponding measure.

The sequence Qn
I∗→ Q if and only if for any given statistical test we

are eventually not able to distinguish between Q and the elements in the
sequence. Or more loosely: A sequence converges in the weak information
topology if and only if the elements are asymptotically indistinguishable.

The sequence Qn
I→ Q if and only if we are eventually not able to distinguish

between Q and the elements in the sequence uniformly on all statistical
test corresponding to a given level of the divergence. This is related to
universal testing, where one uses a test which asymptotically can distinguish
a distribution from any other distribution. Thus, a sequence converges in the
strong information topology if and only if the elements are asymptotically
universally indistinguishable.

In this paper two weak information topologies have been introduced.
In general they are different, and there exists nets convergent in the weak
information topology but not in the sequential weak information topology.
It is not clear whether there exists sequences converging in I∗ but not in I∗s .
If no such sequences exists one could simply define I∗s as the sequential
topology with the same convergent sequences as I∗.

As the minimum information game is described in this paper the gen-
eralized information projection of Q on a convex set C exists if and only if
D(C ‖ Q) <∞. In some cases an optimal code improvement may exist even
in the case where D(C ‖ Q) =∞, and it is of interest to study conditions
for an optimal code improvement to exist.
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If the set of outcomes is partitioned, then the strong information topolo-
gies can be considered on the partitions. For a set of partitions one can con-
sider the initial topology corresponding the set of partitions. This will give a
topology which is weaker than the strong topology. Topologies correspond-
ing to partitions seems to play a an important role in a deeper understanding
of the conditional limit theorem, and its relation to a “weak information pro-
jection”. A detailed treatment of these questions is postponed to a future
paper.

In [17] discontinuity of the entropy function was used to explain why
Zipf’s law is applicable in linguistics. In a continuous setting one should
expect that the result that information divergence P � D(P ‖ Q) is dis-
continuous at P0 if and only if the random variable dP0

dQ is hyperbolic, could
be used to explain the appearance of power laws and other heavy tailed
distributions in certain cases.

Finally we remark that it is possible to extend many of the definitions
and results on the information topologies to a non-commutative setting
where distributions are replaced by density operators on a Hilbert space.
In a non commutative setup the Bloch sphere will be disconnected in the
(strong) information topology, and the components will be the interior and
each of the points on the boundary.
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[20] D. G. Kendall, Information theory and the limit theorem for Markov chains and
processes with a countable infinity of states, Ann. Inst. Stat. Math., 15 (1964),
137–143.

[21] J. Kisynski, Convergence du typè l, Colloq. Math., 7 (1960), 205–211.
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Reinforced Random Walk

MICHAEL KEANE

One of the distinguishing properties of the present scientific method is repro-
ducibility. In one of its guises, probability theory is based on statistical repro-
duction, near certainty being obtained of truth of statements by averaging over
long term to remove randomness occurring in individual experiments.When one
assumes, as is often the case, that events farther and farther in the past have
less and less influence on the present, the probabilistic paradigm is currently well
understood and is successful in many scientific and technological applications.
Recently, however, we have come to realize that precisely in these applications
important stocahstic processes occur whose present outcomes are significantly
influenced by events in the remote past. This behaviour is not at all well un-
derstood and some of the simplest questions remain today irritatingly beyond
reach. A salient example occurs in the theory of random walks, where there is a
dichotomy between recurrent and transient behaviour. After explaining this clas-
sical dichotomy, we present a very simple example with infinite memory which is
neither known to be transient nor recurrent. Then, using a reinforcement mecha-
nism due to Pólya, we explain the nature of a particular infinite memory process
in terms of spontaneous emergence of opinions. Finally we would like to discuss
briefly some of our recent results towards understanding the recurrence-transience
dichotomy for reinforced random walks.

An open problem

First consider the graph whose vertices are the points of Zd and whose edges
are the subsets {z, z′} of Zd with |z−z′| = 1, |.| denoting Euclidean distance.
Here d is a fixed positive integer. Let Sn, n ≥ 0, be the position of a simple
random walker on this graph:

• S0 = 0 (the origin of Zd)
• |Sn+1 − Sn| = 1 for each n ≥ 0
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• the jumps Xn+1 = Sn+1 − Sn, n ≥ 0, are independent identically dis-
tributed random variables whose common distribution is uniform over
the 2d possible elements in Zd of length one.

In general, a discrete time and space stochastic process Sn, n ≥ 0, is
called recurrent if

P(n ≥ 1 : Sn = S0) = 1
)
,

and transient if this probability is less than one. We recall at this point a
remarkable result due to Pólya:

• If d = 1 or d = 2, simple random walk on Zd is recurrent.
• If d ≥ 3, simple random walk on Zd is transient.

As simple random walk is a Markov process, this yields a strong di-
chotomy:

• If d = 1 or d = 2, each point of Zd is visited an infinite number of times
by Sn, with probability one.

• If d ≥ 3, each point of Zd is visited at most finitely often by Sn, with
probability one; that is, limn→∞ Sn =∞ with probability one.

Our open problem consists of a seemingly slight modification of simple
random walk on Z2. We denote the modified stochastic process by S′

n, n ≥ 0.
We still require

• S0 = 0 (the origin of Zd)
• |Sn+1 − Sn| = 1 for each n ≥ 0
• the jumps Xn+1 = Sn+1 − Sn, n ≥ 0, are distributed over the four

possible elements of Z2 of length one.

However, these jumps X ′
n+1 will no longer be uniformly distributed;

their distribution will depend on the history {S′
0, . . . , S

′
n} of our process.

The idea is to make the probability of traversing an edge at time n + 1
larger than 1/4 if the edge was previously visited, and less than 1/4 if
the edge was not previously traversed. A simple mechanism for this is to
introduce a parameter θ > 1, fixed, and to require that this probability is
proportional to θ for edges previously traversed and proportional to 1 for
edges not previously traversed.

For example, if θ = 2 and if we arrive at a point z ∈ Z2 at time n, having
previously traversed two of the four edges containing z (in either direction),
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then the probability of leaving z at time n + 1 via one of these two edges is

θ

2 + 2θ
=

1
3
,

whereas the probability of leaving z via one of the two virgin edges is

1
2 + 2θ

=
1
6
;

note that θ is simply the factor by which the probability of taking an edge
is increased if it has previously been taken. Note also that if θ = 1 we have
the original simple random walk of Pólya in Z2, which is recurrent.

Open Problem. Prove that for some θ > 1, the reinforced random walk
Sn, n ≥ 0, is recurrent.

We believe strongly that this is true for any θ > 1, and in fact, it is
easy to show that it is true in d = 1 for any θ > 0. (If θ < 1 then, strictly
speaking, we should not use the word “reinforced”, but this is a minor
point.) However, the process S′

n is in no way similar to a Markov process,
having memory which does not attenuate as time progresses, and up to now
this problem remains beyond reach using currently known techniques.

Spontaneous emergence of opinions

In this section we attempt to give the reader a feeling for the naturality
of questions concerning reinforcement. We feel this to be necessary for the
following philosophical reason. The Markovian paradigm has been an ex-
tremely successful driving force for the development of probability theory
over the last century, arguably the most important for practical applications.
The main reason for this is that a large number of physical and technological
type stochastic processes do have an asymptotic “forgetfulness” property –
what happened in the past has less and less effect as time progresses, or,
what happened very far away does not significantly influence the happen-
ings here. This is a so-called locality principle which, if we exclude quantum
mechanics, seems to be a law of nature; even in quantum probability there
has been a large discussion and much disagreement concerning the possible
validity of this type of locality. (As it now seems, the question has been
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decided through Bell’s work and the Aspect experiments, but the discus-
sion still continues.) Thus it seems to be useful to point to naturally arising
processes which in no sense obey this principle. Here, I have chosen to illus-
trate the point with a story concerning spontaneous emergence of opinions;
there are a number of parallel ideas in the realm of (universal) coding the-
ory, and in this audience there are certainly people more capable than I of
illustrating this phenomenon. What follows is not new mathematics, being
based upon classical ideas again due to Pólya, developed around the 1920’s
– the important point is the interpretation in terms of reinforcement and
the non-Markovian nature, leading to surprising behavior.

Let me begin by telling the story. Some 25 years ago I moved to The
Netherlands and bought a house in Scheveningen, a bathing resort on the
cost which is part of the town of The Hague, seat of government and royal
residence. We knew at that point nothing about the surroundings. Our
house was very close to the beach and also to the center of night life, so in
the evening we had two natural alternatives for amusement:

• a visit to a nice bar B
• a stroll on the beautiful beach b

Thus we consider a graph with one vertex (our house) and two loops
B (bar) and b (beach) from the vertex to itself. Our original opinion is
denoted by a function giving weights to each of the loops – we start with
each loop having weight one.

Each evening we search for amusement – for simplicity let us assume
(but see the next section for more generality) that our search is restricted
to B and b – and we choose one of these with a probability proportional to
its current weight. Thus the first evening we visit the bar with probability
1/2 and the beach with probability 1/2. If, for example, we visit the bar
and have a drink, we enjoy it very much, and decide to increase the weight
of B by adding one to it – this would result in weight two for bar and weight
one for beach. If the beach is visited, its weight will be increased by one.

After n− 2 nights of entertainment, suppose that we have chosen k − 1
times bar and l − 1 times beach, with k, l ≥ 1 and k + l = n. Then at this
time, the bar weight is k and the beach weight is l, and the probability

αn =
k

n
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of choosing bar the next time is our alcohol preference, whereas the proba-
bility

βn = 1− αn =
l

n

is our nature preference, or probability of choosing beach the next time.
Thus our opinion at time n (after n − 2 choices) is represented by the
random pair

(αn, βn).

It is a (not so simple but) interesting result of Pólya which tells us:

Our opinion becomes more and more stable as time passes.

or, in mathematical terms,

α = lim
n→∞

αn

β = lim
n→∞

βn

exist with probability one.

Nowadays we understand the reason behind this result to be contained
in the martingale convergence theorem. That is, a simple calculation yields:

E

(
αn+1

∣∣∣αn =
k

n

)
=

k

n
· k + 1
n + 1

+
l

n
· k

n + 1
=

k(n + 1)
n(n + 1)

=
k

n
= αn

so that αn is indeed a positive martingale, and the theory says that all
positive martingales converge. (Pólya’s proof was different, and perhaps
simpler; it is not such an easy matter to prove martingale convergence
theorems.)

Next comes a minor surprise: Suppose that not only I have bought a
house in Scheveningen, but also a number of others, who search in the same
manner for entertainment. Each of these householders develops a more and
more stable opinion, but these opinions differ in the limit. For instance,
perhaps in the limit

• α(Keane) = 0.9
• α(v.d.Toorn) = 0.2
• α(Pronk) = 0.6
• α(Hermina) = 0.7
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• α(Lootsma) = 0.3
• α(Trahtenbroit) = 0.8

and so on. The second part of Pólya’s result tells us the distribution of the
limit opinion α:

The random limit α is uniformly distributed over the unit interval

Thus, although the alcohol preference of a given individual is random,
we can predict the preferences of the population as a whole using its distri-
bution, which is uniform! Some are alcoholic, some are nature lovers, and
all types of mixtures occur equally often; each person is convinced of his or
her own opinion.

This behavior is one of the salient characteristics of reinforced random
walk. It is in fact very surprising that such a calculation can be accom-
plished, and in our open problem of the first section we know of no way to
do this type of calculation. The reason that it is possible in this case is usu-
ally called (partial) exchangeability. This has been intensively studied by
Diaconis and Friedman, and later for infinite graphs on trees by Pemantle.
In our example things are very simple, which we now explain.

It is best to take a sample event. Suppose that for the first eight visits,
three were visits to the beach and five were visits to the bar, in the following
order:

B B b B b b B B

(B = bar, b = beach). Let us now calculate the probability of this event;
after a bit of thought we see that it is

1
2
· 2
3
· 1
4
· 3
5
· 2
6
· 3
7
· 4
8
· 5
9

=
3!5!
9!

(The reader should now verify this calculation step by step.
At this point, n = 10, k = 6, l = 4, and α10 = 6

10 . The important point
to notice is that if we have any other sequence of eight visits with three b’s
and five B’s, then this probability remains the same. More generally, if n,
kl, and l are given, then αn = k

n and each sequence of k − 1 B’s and l − 1
b’s has probability

(k − 1)!(l − 1)!
(n− 1)!

;

as there are
(n− 2)!

(k − 1)!(l − 1)!
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such sequences, we see that

P

(
αn =

k

n

)

is the product of these two numbers, which is simply 1
n−1 . This is valid

for each k in the range 1 ≤ k ≤ n − 1, which shows clearly that the limit
distribution is uniform.

This concludes our philosophical section.

The current state of affairs

In this section I describe informally what we have done in the past few years
concerning reinforcement. First of all, the result of Pólya for the simple case
above has been extended to random walk with reinforcement on a finite
graph with arbitrary initial weights, according to a suggestion of Diaconis
and Coppersmith. This, together with related references, can be found in
[1]. Sellke and Vervoort have studied intensively once reinforced random
walks (as in the first section) on bi–infinite strips of finite widths, which
are called ladders. The most recent results can all be found in the thesis of
Vervoort [3]. It is still unknown whether for any value of the reinforcement
parameter θ, once reinforced random walk is recurrent or not on ladders
of width larger than two. The case of width two was settled a number
of years ago by an interesting calculation due to T. Sellke (unpublished).
In [2], we treat multiple reinforcement in essentially one-dimensional cases
(tubes) when the weights are put on directed edges. Curiously enough, this
is simpler and leads to relations with random walk in random environment.
It is still unknown whether random walk with multiple reinforcement is
recurrent or transient in two or higher dimensions, or whether the behavior
depends on the amount of reinforcement. We do not discuss here the case in
which the underlying graph is a tree, for which there are many interesting
and nontrivial results.
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Quantum Source Coding and Data Compression∗

DÉNES PETZ†

This lecture is intended to be an easily accessible first introduction to quan-
tum information theory. The field is large and it is not completely covered
even by the recent monograph [15]. Therefore the simple topic of data com-
pression is selected to present some ideas of the theory. Classical information
theory is not a prerequisite, we start with the basics of Shannon theory to
give a feeling for Shannon entropy and for the informational divergence or
relative entropy. The aim is to present Schumacher’s compression theorem
and to demonstrate that the von Neumann entropy, introduced in the 1920’s
by thermodynamical considerations, is a measure of quantum information
exactly in the way as the Shannon entropy is that for classical information.
Our discussion makes clear that the compression theorem depends heavily
on the existence of the high-probability subspace.

At the end of the lecture quantum sources with memory and some related
questions are briefly discussed. This part could be skipped by new-comers
in the field.

1. Classical source coding

Let X be a random variable with a finite range X . A source code C for X
is a mapping from X to the set of finite length strings of symbols of a D-
ary alphabet which is assumed to be the set {0, 1, 2, . . . , D − 1}. Let C(x)
denote the codeword corresponding to x and let �(x) denote the length of

∗This text is a good written approximation of the first talk of a series given at the
Volterra-CIRM International School on Quantum information and quantum computing in
Trento, July, 2001.

†Partially supported by OTKA T032662 and T032374.
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C(x). If p(x) is the probability of x ∈ X , then the expected length of a
source code C is given by

L(C) :=
∑

x

p(x) �(x).

Since the transmission of lengthy codewords could be costly, the aim of
source coding is to make the expected code-length as small as possible.
It is obvious that to meet this requirement the most frequent outcome of
X must have the shortest codeword. For example in the Morse code the
letter e (which is the most frequent one both in the English and Hungarian
language) is represented by a single dot. (The Morse code uses an alphabet
of four symbols: a dot, a dash, a letter space and a word space.) The
extension of a code C from the finite length strings of X is defined by

C∗(x1x2 . . . xn) = C(x1)C(x2) . . . C(xn),

where the right hand side is the concatenation of the corresponding code-
words.

A code C is uniquely decodable if C∗(x1x2 . . . xn) = C∗(x′
1x

′
2 . . . x′

m)
implies that x1x2 . . . xn = x′

1x
′
2 . . . x′

m, that is n = m and xi = x′
i for all

1 ≤ i ≤ n. A code is called prefix code if no codeword is a prefix of any other.
In case of a prefix code the end of a codeword is immediately recognised
and hence such a code is uniquely decodable. For example, if 0, 10, 110
and 111 are the binary codewords (of a prefix code), then the binary string
1011001101110 is easily decomposed into 6 codewords: 10,110,0,110,111,0.

Theorem 1 (Kraft–MacMillan). The codeword lengths �(x) of a uniquely
decodable code over an alphabet of size D satisfy the inequality∑

x

D−�(x) ≤ 1.

Conversely, given a set of codeword lengths that satisfy this inequality, there
exists a prefix code with these codewords lengths.

The proof is available in several standard books, for example [4]. It
follows from the theorem that a uniquely decodable code could be always
replaced by a prefix code which has the same codeword lengths.

Let �t� denote the smallest integer ≥ t ∈ R. The codeword lengths
�(x) :=

⌈
− logD p(x)

⌉
satisfy the Kraft inequality∑

x

D−�(x) ≤
∑

x

p(x) = 1.
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According to the theorem there exists a prefix code with this codeword
length. (Such a code is called Shannon code.) Since − logD p(x) ≤ �(x) ≤
− logD p(x) + 1, we have

−
∑

x

p(x) logD p(x) ≤ L(C) ≤ 1−
∑

x

p(x) logD p(x).

for the expected code-length L(C). For the rest we assume that D = 2.
Then the bounds are given in terms of the Shannon entropy H

(
p(x)

)
:=

−
∑

x p(x) log p(x) as

H
(
p(x)

)
≤ L(C) ≤ H

(
p(x)

)
+ 1.

According to the next theorem the Shannon code is close to optimal.

Theorem 2. The expected code-length of any prefix code is greater than
or equal to the Shannon entropy of the source.

Proof. We want to show L−H
(
p(x)

)
≥ 0 and estimate as follows

L−H(p) =
∑

x

p(x)�(x) +
∑

x

p(x) log p(x)

= −
∑

x

p(x) log 2−�(x) +
∑

x

p(x) log p(x)

=
∑

x

p(x) log
p(x)
r(x)

− log c,

where r(x) = c−12−�(x) and c =
∑

x 2−�(x). The relative entropy of two
probability distributions is defined as

D(p‖r) :=
∑

x

p(x)
(

log p(x)− log r(x)
)

and this quantity is known to be positive and 0 if and only if p = q. In
terms of the relative entropy we have

L−H(p) = D(p‖r) + log
1
c
.

Since D(p‖r) ≥ 0 and c ≤ 1 from the Kraft–McMillan inequality, this shows
L−H(p) ≥ 0.
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The Shannon code is close to optimal only if we know correctly the
distribution of the source X. Assume that it is not the case and we associate
to x the codeword length

⌈
− log q(x)

⌉
, where q is another probability

distribution on X , possibly different from the true distribution p. One can
compute that in this case

(1) H(p) + D(p‖q) ≤ L(C) ≤ H(p) + D(p‖q) + 1.

For the use of the wrong distribution the relative entropy is the penalty in
the expected length.

The optimal coding is provided by a procedure due to Huffman. The
Huffman code is not easy to describe, therefore we show another coding due
to Fano. The Fano code is nearly optimal, it satisfies the inequality

L(C) ≤ H(p) + 2.

In the Fano coding we order the probabilities p(x) decreasingly as p1 ≥ p2 ≥
p3 ≥ . . . ≥ pm. We choose k such that

∣∣∣∣
k∑

i=1

pi −
m∑

i=k+1

pi

∣∣∣∣
is minimal. The division of the probabilities into the two classes divides the
source symbols into two classes. A sign 0 for the first bit for the lower class
and 1 for the first bit of the upper class. The two classes have nearly equal
probabilities. Then we repeat the procedure for each of the two classes to
determine the further bits of the code strings. This is Fano’s scheme.

Up to now we have dealt with uniquely decodable codes. If the transmis-
sion of lengthy codewords is expensive, we might give up the exact decod-
ability provided that the probability of mistake is small and long codewords
can be avoided. This is a different approach to coding and decoding. Assume
that the source emits the symbols X1, X2, X3, . . . , Xn (independently and
according to the same distribution p, typical for the source). We fix a coding
procedure and all the emitted symbols are coded by this procedure which
could be the Fano code, for example. Let L1, L2, . . . , Ln be the code-length
of X1, X2, . . . Xn, respectively. Both X1, X2, . . . , Xn and L1, L2, . . . , Ln are
identically distributed independent random variables, the expectation of Li

is L(C). The law of large numbers tells us that the probability of the event

(2) L1 + L2 + · · ·+ Ln ≥ L(C) + ε
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goes to 0 as n → ∞. When x1, x2, . . . , xn is a string of source symbols
such that the corresponding code string is shorter than n

(
L(C) + ε

)
, then

we code the string x1x2 . . . xn perfectly, otherwise we use always the same
code string. If the latter case happens to occur, then we cannot recover the
emitted symbol string from the code string. However, the probability of this
error is exactly the probability of the event (2) which tends to 0. What did
we win in this way? The number of source strings is |X |n and the number
of binary strings used in the coding is 2n(L(C)+ε). When L(C) < log |X |,
then

2n(L(C)+ε) ! |X |n.

Hence the cardinality of our code book is much smaller than the cardinality
of the source strings if a small probability of error is allowed. We also
say that that the data set X n is compressed to a set of binary strings of
length n

(
L(C) + ε

)
. What we have is an example of data compression.

Efficient data compression is the same as source coding by short binary
code strings. Since we need n

(
L(C) + ε

)
binary digit for a source string

of length n, L(C) + ε is called code rate. (It is the number of binary digits
needed for a single source symbol, in the average.) Using the Shannon
code, we can achieve a code rate H(p) + ε. However, if we mistake the
distribution of the source and assume q instead of p, then the rate is higher,
it is about H(p)+D(p‖q)+ ε. Hence the above method is very sensitive for
the distribution of the source. To avoid this and to achieve slightly better
code rate block coding can be used. Shortly speaking block coding means
that the source string is not coded by letter by letter but the whole string
gets a code string.

A block code (2nR, n) for a source X1, X2, . . . is given by two (sequences
of) mappings:

fn : X n → {1, 2, . . . , 2nRn}, φn : {1, 2, . . . , 2nRn} → Xn.

Here fn is the encoder, φn is the decoder and R := limRn is called the rate
of the code. The probability of error of the code is

P (n)
e := Prob

(
φn · fn(X1, . . . , Xn) = (X1, . . . Xn)

)
.

Shannon’s source coding theorem is the following.

Theorem 3. Let H be the entropy of the source and R > H. There exists

a sequence of (2nRn , n) block codes with error probability P
(n)
e such that

P
(n)
e → 0 and Rn → R.
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More precisely, this is only the positive part of Shannon’s theorem telling
that any rate ≥ H + ε is achievable under an arbitrary small bound on
the probability of error. (The negative part tells that rates < H are not
achievable under the same constraint.)

Before we enter the proof we give an outline of the method of types.
Let x ∈ X n. The type of x = (x1, x2, . . . , xn) ∈ X n is a probability mass
function on X . The mass of x ∈ X is the relative frequency of x in the
sequence (x1, x2, . . . , xn):

Px(x) :=
1
n

#{1 ≤ i ≤ n : xi = x}.

Let Pn denote the set of all types and for P ∈ Pn the type class of P is the
set of all sequences of type P :

T (P ) := {x ∈ X n : Px = P}.

Since the frequency of any x ∈ X in a sequence x = (x1, x2, . . . , xn) is at
most n, we obviously have

#(Pn) ≤ (n + 1)#(X ).

The cardinality of a type class T (P ) is a multinomial coefficient but the
following exponential bounds are useful:

1

(n + 1)#(X )
2nH(P ) ≤ #

(
T (P )

)
≤ 2nH(P ).

(A proof could be based on Stirling’s formula on factorial functions, see [4]
p. 282 for other proofs.)

Assume that a probability measure Q is given on X and let Qn be the
product measure on X n. The probability of a sequence x ∈ X n depends
only on the type Px of x. A straight calculation gives that

Qn
(
{x}

)
=
∏
x

Q(x)nPx(x) = 2−nH(Px)+nD(Px‖Q).

The probability of a type class has exponential bounds:

1

(n + 1)#(X )
2−nD(P‖Q) ≤ Qn

(
T (P )

)
≤ 2−nD(P‖Q)

for P ∈ Pn.
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Proof of Theorem 3. Let
{

Q(x) : x ∈ X
}

be the probability distribution
of the given source and assume that R > H(Q). Following the idea of Csiszár
and Körner [5], we set

Rn := R−#(X )
log(n + 1)

n

and
An :=

{
x ∈ X n : H(Px) ≤ Rn

}
.

Then

#(An) =
∑

#
(
T (P )

)
≤
∑

2nH(P ) ≤
∑

2nRn

≤ (n + 1)#(X )2nRn = 2nR,

where all summations are over the set
{

P ∈ Pn : H(P ) ≤ Rn

}
. We can

easily define an encoding and a decoding such that elements of A are encoded
correctly and the other sequences give an error. (We just use elements of A
as codewords). Then the probability of error is

P (n)
e = 1− Prob (An) =

∑
Qn

(
T (P )

)
,

where the summation is over all P ∈ Pn such that H(P ) > Rn. Estimating
the sum by the largest term we obtain

P (n)
e ≤ (n + 1)#(X )2−n min D(P‖Q),

where min is over all P ∈ Pn such that H(P ) > Rn. When n is large enough
then Rn > H(Q) and Q /∈

{
P ∈ Pn : H(P ) ≤ Rn

}
. The minimum in the

exponent is strictly positive and we can conclude that the probability of
error converges to 0 exponentially fast as n→∞.

The interesting feature of the block code constructed in the proof of
the theorem the fact that the distribution Q of the source does not appear,
only its entropy H(Q) should be known to construct the universal encoding
scheme.
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2. Quantum mechanical sources

A pure state of a quantum mechanical system is given by a unit vector of
a Hilbert space. Assume that a quantum mechanical source emits the pure
states |ϕi〉 with probability pi (1 ≤ i ≤ m). The source is specified by(
pi, |ψi〉

)m

i=1
which is called an ensemble of (pure) quantum states. Pure

states of a quantum system are infinitely many and possess a fine topological
structure. If after encoding and decoding we arrive at a state |ψ′

i〉 instead
of |ψi〉, our error could be small when the vectors |ψi〉 and |ψ′

i〉 are close
enough. Hence the problem of source coding in the quantum setting is rather
different from the theory of source coding for finite classical sources and it
is conceptually closer to the rate distortion theory initiated by Shannon as
well.

How close are two quantum states? There are many possible answers
to this question. Restricting ourselves to pure states, we have to consider
two unit vectors. |ϕ〉 and |ψ〉. Quantum mechanics has used the concept
of transition probability

∣∣〈ϕ | ϕ〉∣∣2 for a long time (see cite, for example).
This quantity is phase invariant, it lies between 0 and 1. It equals to 1 if
and only if the two states coincide that is, |ϕ〉 equals to |ψ〉 up to a phase.

We call the square root of the transition probability fidelity:

F
(
|ϕ〉, |ψ〉

)
:=

∣∣〈ϕ | ψ〉∣∣ .
Shannon used a nonnegative distortion measure, and we may regard 1 −
F
(
|ϕ〉, |ψ〉

)
as a distortion function on quantum states.

Under quantum operation a pure state could be transformed into a
mixed state, hence we need extension of the fidelity:

F
(
|ϕ〉〈ϕ|, D

)
=
√
〈ϕ | D | ϕ〉.

(Some properties of fidelity are summarised in the Appendix.)

The n-shot source is
(
pI , |ψI〉

)
on the n-fold tensor product Hn =

H⊗H⊗ · · · ⊗ H, where

pI = pi1pi2 . . . pin , |ψI〉 = |ψi1〉 ⊗ |ψi2〉 ⊗ · · · ⊗ |ψin〉

when I = (i1, i2, . . . , in) ∈ {1, 2, . . . , m}n. The product structure expresses
that the generation of the quantum state is a process without memory. The
states of different shots are statistically independent.
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Now we are ready to define what we mean by a reliable compression of a
source

(
pi, |ψi〉

)
on a Hilbert space H. The compression scheme consist of

two quantum operations Cn : B(Hn)→ B(Kn) and Dn : B(Kn)→ B(Hn).
Kn is a Hilbert space of dimension 2nRn . We assume that Kn ⊂ Hn) and
Dn(D) = D ⊕ 0. This compression scheme is reliable and has rate R when

(i) Rn → R

(ii)
∑

IpIF(|ψI〉〈ψI |,Dn · Cn
(
|ψI〉〈ψI |

)
)→ 1 as n→∞.

The first condition tells that asymptotically 2R dimension is used for the
compression of a single emission of the source on the average. (This di-
mension is equivalent to the use of R qubits) On the other hand, the second
condition tells that the emitted state and the compressed one are close in the
average, the expectation value of the fidelity is converging to 1. (Note that
this definition of the reliable compression scheme is not the most general,
since the form of Dn is rather restrictive.)

The key role of the quantum extension of Shannon’s first theorem is
played by the von Neumann entropy. If D is a density matrix, then its
eigenvalues λ1, λ2, . . . , λk are nonnegative and von Neumann set

(3) S(D) := −
∑

i

λi log λi.

Concerning the von Neumann entropy, see the Appendix.
The positive part of Schumacher’s source coding theorem is the following.

Theorem 4. Let
(
pi, |ψi〉

)
be a source of pure states on a Hilbert space H

and let S be the von Neumann entropy of the density matrix
∑

i pi |ψi〉〈ψi|.
If R > S, then there exists a reliable compression scheme of rate R.

Proof. Let ξ1, ξ2, . . . , ξk be the eigenvectors of the density matrix∑
pi |ψi〉〈ψi| and λ1, λ2, . . . , λk be the corresponding eigenvalues.

(λ1, λ2, . . . , λk) is a probability distribution on the set X := {1, 2, . . . , k}
and H(λ1, λ2, . . . , λk) = S. We shall use the universal coding method of
Csiszár and Körner (see the proof of Theorem 3).

Let
P◦

n =
{

P ∈ Pn : H(P ) ≤ Rn

}
,

where Rn = R− k

n
log(n + 1). We showed above that for

An := {I ∈ X n : PI ∈ P◦
n}
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we have

#(An) ≤ 2nR and
∑

I∈An

λI → 1 as n→∞

where λI = λi(1)λi(2) . . . λi(n) for I =
(
i(1), i(2), . . ., i(n)

)
. The Hilbert

space Kn for the compressing scheme will be a subspace of Hn,

{ξI : I ∈ An}
is a basis for Kn. We have dimKn ≤ 2nR. Next we give the quantum
operations Cn : B(Hn)→ B(Kn) and Dn : B(Kn)→ B(Hn). Set

Cn(σ) = PnσPn +
∑

I /∈An

AIσA∗
I

where Pn is the orthogonal projection Hn → Kn, AI = |ξ〉〈ξI | with a fixed
vector ξ ∈ Kn. For ρ ∈ B(Kn) Dn(ρ) acts on Kn ⊂ Hn and ρ and 0 on
Hn #Kn. Our task is to show that

Fn :=
∑

I

pIF(|ψI〉〈ϕI |, Dn · Cn
(
|ψI〉〈ψI |

)
converges to 1. We give a lower estimate simply by neglecting the second
term in the definition of Cn(σ):

Fn ≥
∑

I∈An

pI‖PnψI‖2 =
∑

I∈An

pI

∑
J∈An

|〈ψI | ξJ〉|2

=
∑

J∈An

λJ

since ∑
I

pI |〈ψI | ξJ〉|2 = 〈ξJ |D ⊗ · · · ⊗D|ξJ〉 = λJ .

Above we observed that the lower bound goes to 1, hence Fn → 1, in fact
exponentially.

Note that the pure states |ψi〉 compressed into mixed state in the scheme
we have constructed. It is also remarkable that the statistical operator∑

pi|ψi〉〈ψi| of the ensemble played a key role and not the ensemble itself.
(Many different ensembles may have the same statistical operator.) To
construct the compression we used the eigenbasis of the statistical operator
and the value of its entropy. No further data was necessary.

The negative part of Schumacher’s theorem depends on the high proba-
bility subspace theorem obtained by Hiai, Ohya and Petz ([16], [11]).
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Theorem 5. Let D be a density matrix acting on the Hilbert space H.
Then the n-fold tensor product Dn : = D ⊗D ⊗ · · · ⊗D acts on the n-fold
product space Hn : = H⊗H⊗ · · · ⊗ H. For any 1 > ε > 0 we have

lim
n→∞

1
n

inf{log TrQn : Qn is a projection on Hn, TrDnQn ≥ 1−ε} = S(D).

Roughly speaking the theorem tells that a projection Qn of large prob-
ability has the dimension exp

(
nS(D)

)
.

Proof. First we construct projections of high probability and of small
dimension. Fix δ > 0 and let P (n, δ) be the spectral projection of − 1

n log Dn

corresponding to the interval S(D)− δ, S(D) + δ. It follows that

(
S(D)− δ

)
P (n, δ) ≤

(
− 1

n
log Dn

)
P (n, δ) ≤

(
S(D) + δ

)
P (n, δ)

and hence

e−n(S(D)+δ)P(n,δ) ≤ DnP (n, δ) ≤ e−n(S(D)−δ)P(n,δ).

From this we easily conclude

1
n

log TrP (n, δ) ≤ S(D) + δ.

and lim supn→∞ ≤ S(D) follows concerning the limit in the statement.
Let now Qn be a projection on Hn such that Tr QnDn ≥ 1 − ε. This

implies
lim inf
n→∞

DnQnP (n, δ) ≥ 1− ε

since

Tr DnQnP (n, δ) = Tr DnQn − Tr DnQnP (n, δ)⊥

≥ Tr DnQn − Tr DnP (n, δ)⊥.

Next we estimate as follows:

Tr Qn ≥ Tr QnP (n, δ)

≥ Tr DnQnP (n, δ)en(S(D)−δ)

= en(S(D)−δ) · Tr DnQnP (n, δ)

and
1
n

log Tr Qn ≥ S(D)− δ +
1
n

log TrDnQnP (n, δ).

When n→∞ the last term of the right hand side converges to 0.
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Now we turn back to Schumacher’s theorem and present the negative
part.

Theorem 6. Let
(
pi, |ψi〉

)
be a source of pure states on a Hilbert space H

and let S be the von Neumann entropy of the density matrix
∑

i pi |ψi〉〈ψi|.
If R < S, then reliable compression scheme of rate R does not exists.

Proof. Assume that a reliable compression scheme of rate R < S exists.
Then

Fn : =
∑

I

pIF
(
|ψI〉〈ϕI |

)
, Dn · Cn

(
|ψI〉〈ψI |

)

=
∑

I

pI

√
〈ψI|Cn

(
|ψI〉〈ψI |

) |ψI〉

≤
√∑

I

pI〈ψI|Cn
(
|ψI〉〈ψI |

) |ψI〉

by concavity. Moreover,∑
I

pI〈ψI|Cn
(
|ψI〉〈ψI |

)|ψI〉 =
∑

I

pI Tr |ψI〉〈ψI |PnCn
(
|ψI〉〈ψI |

)

≤
∑

I

pI Tr |ψI〉〈ψI |Pn = TrDnPn

for the projection Pn of Hn onto Kn. Since the compression is of rate R we
have

lim
n

1
n

log dimPn ≤ R.

On the other hand, the high probability subspace theorem tells us that in
this case

lim sup
n

TrDnPn ≥ 1− ε

is impossible for any 0 < ε < 1. We have arrived at a contradiction with
the assumption that the average fidelity is converging to 1. In fact, we
have shown that for any compression scheme of rate R the average fidelity
converges to 0.
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3. Extension to sources with memory

Extension of Schumacher’s source coding theorem is possible in several
directions. One way would be to allow a source of mixed states. Not
much is known about this direction and we refer to [2], where this problem
is discussed. Our attention here will be focused on sources having some
memory but producing pure states. In this case the optimal compression
rate depends on the density matrix of the source only.

Let H be a finite-dimensional Hilbert space and Hn : = H⊗H⊗· · ·⊗H.
Let Xn denote the set of all messages of length n. If x ∈ Xn is a message,
then a quantum state

∣∣ψ(x)
〉

of the n-fold quantum system is corresponded
with it. If x appears with probability p(x), then

Dn :=
∑
x

p(x)
∣∣ψ(x)

〉〈
ψ(x)

∣∣
is the density matrix of the n-shot source. This general formulation allows
the case∣∣ψ(x)

〉
=
∣∣ψ(x1)

〉
⊗
∣∣ψ(x2)

〉
⊗ . . .

∣∣ψ(xn)
〉

(x = (x1, x2, . . . , xn),

but the scheme is more general. It turns out that the optimal compression
rate will depend on the density matrices Dn only, hence we do not assume
anything about the probability distributions p(x), however we make some
assumption on the sequence Dn of density matrices. We always assume that
the von Neumann entropy density

(4) h := lim
n→∞

1
n

S(Dn)

exists. This holds in many examples. For 0 < ε < 1, set

βn(ε) := inf
{

log Tr(q)
)

: q is a projection on Hn,TrDnq ≥ 1− ε}.
We shall say that the high-probability subspace theorem holds if

(HP) lim
n→∞

1
n

βn(ε) = h.

Since we want to let n → ∞, it is reasonable to view all the n-fold
systems as subsystems of an infinite one. Let an infinitely extended system
be considered over the lattice Z of integers. The observables confined to a
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lattice site k ∈ Z form the self-adjoint part of a finite-dimensional matrix
algebra Ak, that is the set of all operators acting on the finite-dimensional
space H. It is assumed that the local observables in any finite subset Λ ⊂ Z
are those of the finite quantum system

AΛ = ⊗
k∈Λ
Ak.

The quasilocal algebra A is the norm completion of the normed algebra
A∞ = ∪ΛAΛ, the union of all local algebras AΛ associated with finite
intervals Λ ⊂ Z.

A state ϕ of the infinite system is a positive normalised functional
A → C. It does not make sense to associate a statistical operator to a
state of the infinite system in general. However, ϕ restricted to a finite-
dimensional local algebra AΛ admits a density matrix DΛ. We regard the
algebra A[1,n] as the set of all operators acting on the n-fold tensor product
space H⊗n. Moreover, we assume that the density Dn from the first part
of this section is identical with D[1,n]. Under this assumptions we call the
state ϕ the state of the (infinite) channel. If ϕ happens to be a product,
then we are in the memoryless setting discussed above. Now we want to
allow memory effect and pose weaker conditions.

The right shift on the set Z induces a transformation γ on A. A state
ϕ is called stationary if ϕ ◦ γ = ϕ. The state ϕ is called ergodic if it is an
extremal point in the set of stationary states. Moreover, ϕ is completely
ergodic when it is an extreme point for every m ∈ N in the convex set of all
states ψ such that ψ ◦ γm = ψ.

A weaker form of property HP was proven in [11] for a completely
ergodic stationary state. The weak high-probability subspace theorem holds
if

(w-HP)

lim sup
n→∞

1
n

βn(ε) ≤ h and lim inf
n→∞

1
n

βn(ε) ≥ 1
1− ε

h− ε

1− ε
log d,

and the McMillan-type convergence holds if

(McM) lim
n→∞

1
n

log Dn = h · I

in a certain topology. Loosely speaking McM =⇒ HP =⇒ w-HP and all
these properties imply that the extension of Schumacher’s theorem holds
and the optimal compression rate is the von Neumann entropy density h.
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A nice class of stationary states is formed by the quantum Markov states
(finitely correlated states, algebraic states, or generalised Markov chains are
other names for the same thing, see [1, 7, 12]). For those states property
HP was also proved [12].

Let H[1,n] be the Hamiltonian of stationary interaction of finite range,
see [3], or Sect. 15 of [16] for the definitions. Assume that Dn is the density
of the local Gibbs state, that is

Dn :=
eH[1,n]

Tr eH[1,n]

and let ψ be the equilibrium state of the infinite system. The equilibrium
state of the finite system H⊗n with some specified interaction could be a
model for storing information. If the interaction is stationary and of finite
range then the asymptotically optimal compression rate is again the von
Neumann entropy density h, since the McM property holds in the GNS
space for the state ψ [10].

4. Appendix

4.1. Stochastic mappings as state transformations

Assume that H is the Hilbert space of our quantum system which initially
has a statistical operator D (acting on H). When the quantum systems
is not closed, it is coupled to another system, called environment. The
environment has a Hilbert space He and statistical operator De. Before
interaction the total system has density De ⊗ D. The dynamical change
caused by the interaction is implemented by a unitary and U(De⊗D)U∗ is
the new statistical operator and the reduced density D̃ is the new statistical
operator of the quantum system we are interested in. The affine change
D %→ D̃ is typical for quantum mechanics and called stochastic mapping.

The above defined stochastic mapping can be described in several other
forms, reference to the environment could be omitted completely. Assume
that D is an n×n matrix and De is of the form (zkzl)kl where (z1, z2, . . . , zm)
is a unit vector in the m dimensional space He. (De is pure state.) All
operators acting on He ⊗ H are written in a block matrix form, they are
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m ×m matrices with n × n matrix entries. In particular, U = (Upq)
m
p,q=1

and Upq ∈Mn. The definition of the reduced density matrix gives

D̃ =
∑
p,q,r

Upq(De ⊗D)qr(U
∗)rp =

∑
p

(∑
q

zqUpq

)
D

(∑
r

zrUpr

)∗

=
∑

p

ApDA∗
p

where the operators Ap :=
∑

q zqUpq satisfy

(5)
∑

p

ApA
∗
p = I.

Theorem 7. Any stochastical mapping D %→ D̃ can be written in the form

D̃ =
∑

p

ApDA∗
p,

where the operator coefficients satisfy (5). Conversely, all transformation
of this form are stochastic.

The first part of the theorem was obtained above. To prove the converse
part, we need to solve the equations∑

q

zqUpq = Ap (p = 1, 2, . . . , m).

Choose simply z1 = 1 and z2 = z3 = · · · = zm = 0 and the equations reduce
to Up1 = Ap. This means that the first column is given from the block
matrix U and we need to determine the other columns such a way that U
should be a unitary. Thanks to the condition (5) this is possible. Condition
(5) tells us that the first column of our block matrix determines an isometry
which extends to a unitary.

The coefficients Ap in the operator-sum representation are called the
operation elements of the stochastic map. The term quantum (state) oper-
ation is also often used instead of stochastic map.

The stochastic maps form a convex subset of the set of all positive trace
preserving linear transformations.
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4.2. Von Neumann entropy

The above formula for the von Neumann entropy is equivalently written as

S(D) = Tr η(D), where η(t) = −t log t.

Since η is a concave function on R+, the von Neumann entropy is a concave
functional on the state space. The maximum is reached at the density whose
all the eigenvalues are the same and the minimum is at pure states.

A density matrix D admits generally many convex decomposition into
pure states: D =

∑
j µj |ψj〉〈ψj |. The von Neumann entropy is the infimum

of all Shannon entropies corresponding to those decompositions

S(D) = inf
{

H(µj) : D =
∑

j

µj |ψj〉〈ψj |, µj ≥ 0,
∑

j

µj = 1
}

.

When D12 is a density matrix of a composite system H1 ⊗ H2 with
reduced density matrices D1 and D2, respectively, then the subadditivity of
the von Neumann entropy holds:

S(D12) ≤ S(D1) + S(D2)

This property is responsible for the fact that for shift invariant states of an
infinite tensor product the von Neumann entropy density (4) exists.

Several chapters of the book [16] are devoted to properties and extensions
of the von Neumann entropy. For a historical approach to the von Neumann
entropy, see [17].

4.3. Fidelity

The general formula for the fidelity of the density matrices D1 and D2 is

(6) F (D1, D2) = Tr
√

D
1/2
1 D2D

1/2
1 .

This quantity was studied by Uhlmann in a different context and he proved
that

F (D1, D2) = min{
√

Tr(D1G) Tr(D2G−1) : G is positive and invertible}
(7)
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([20] and see [8] for a rather detailed discussion). From this the symmetry
of F (D1, D2) is obvious and we can easily deduce the monotonicity of the
fidelity under stochastic state transformation:

F
(
C(D1), C(D2)

)2 ≥ Tr C(D1)G Tr C(D2)G−1 − ε

≥ TrD1C∗(G) TrD2C∗(G−1)− ε

≥ TrD1C∗(G) TrD2C∗(G)−1 − ε

≥ F (D1, D2)
2 − ε,

where C∗ is the adjoint of C with respect to the Hilbert-Schmidt inner
product, ε > 0 is arbitrary and G is chosen to be appropriate. It is well-
known that C∗ is unital and positive, hence C∗(G)−1 ≥ C∗(G−1). In this
way the monotonicity

(8) F
(
C(D1), C(D2)

)
≥ F (D1, D2)

is concluded.
From the definition (6) one observes that F (D1, D2) is concave in D2.

(Remember that
√

t is operator concave.) However, the monotonicity gives
that F (D1, D2) is jointly concave as well. Consider the stochastic mapping

C :
[
A B
C D

]
%→ A + D

Then

λF (D1, D2) + (1− λ)F (D′
1, D

′
2)

= F

([
λD1 0

0 (1− λ)D′
1

]
,

[
λD2 0

0 (1− λ)D′
2

])

≤ F
(
λD1 + (1− λ)D′

1, λD2 + (1− λ)D′
2

)
as an application of monotonicity and the concavity is obtained.

Another remarkable formula is

F (D1, D2) = max{∣∣〈ψ1|ψ2〉
∣∣ : C

(
|ψ1〉〈ψ1|

)
= D1,

C
(
|ψ2〉〈ψ2|

)
= D2 for some stochastic mapping C}

which has a certain operational meaning [6].



Quantum Source Coding and Data Compression 177

References

[1] L. Accardi and A. Frigerio, Markov cocycles, Proc. R. Ir. Acad., 83A (1983), 251–
269.

[2] H. Barnum, C. M. Caves, C. A. Fuchs, R. Jozsa and B. W. Schumacher, On
quantum coding for ensembles of mixed states, J. Phys. A, 34 (2001), 6767–6785.

[3] O. Bratteli and D. W. Robinson, Operator Algebras and Quantum Statistical Me-
chanics II, Springer-Verlag, New York–Heidelberg–Berlin (1981).

[4] T. M. Cover and J. A. Thomas, Elements of information theory, Wiley (1991).

[5] I. Csiszár and J. Körner, Information theory. Coding theorems for discrete memo-
ryless systems, Akadémiai Kiadó, Budapest (1981).
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Information Theory at the Service of Science

FLEMMING TOPSØE∗

Information theory is becoming more and more important for many fields. This
is true for engineering- and technology-based areas but also for more theoretically
oriented sciences such as probability and statistics.

Aspects of this development is first discussed at the non-technical level with
emphasis on the role of information theoretical games. The overall rationale is
explained and central types of examples presented where the game theoretical
approach is useful.

The final section contains full proofs related to a subject of central importance
for statistics, the estimation or updating by a posterior distribution which aims
at minimizing divergence measured relative to a given prior.

1. Introduction, background

Information Theory is of importance for a number of disciplines from the
very applied engineering oriented ones to more theoretical fields. One of
the strongest interfaces is to probability and statistics. One can see a line
in monographs such as Čencov [10], Kullback [43], Dembo and Zeituni [23]
and Cover and Thomas [11], and in recent and ongoing research of au-
thors including Amari [1], Johnson and Barron [5], Csiszár and Matúš [19],
Harremoës [29] and others, much of it in the publishing process. General
purpose textbooks which aim at making the new tools available are start-
ing to appear, though still not taking full advantage of recent improvements
and extensions of the techniques (cf. Jessop [38] and Applebaum [2]).

∗Research supported by INTAS, project 00-738, and by the Danish Natural Science
Research Council.
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Information theory offers technical tools and a conceptual base which
contribute to an understanding of many of the fundamental concepts and
methods of probability and statistics. This also leads to a better under-
standing of the basic notion of probability. In this connection recall what
de Finetti wrote in the foreword to his monograph [22] after a life long
study of these fields: “Probabilities do not exist!” That there is something
strange about the concept of probability is nowadays realized by all workers
in theoretical probability and statistics and the last word on the concept
of probability, on randomness, has certainly not been said. Is it something
inherent in the real world or only something going on in our head, in our
perception of the real world?

The change of paradigm which appears to be underway may be based
on classical probability theory “à la Kolmogorov”. However, more drastic
changes may be underway, either based on information theory proper or
on the neighbouring and inter-related discipline of complexity theory. In
this connection we refer to Shafer and Vovk [50] which, at a broader level, is
indicative of what may be coming. For important contributions aiming more
directly at information theory, we point to a series of papers by Rissanen
which can be traced from the survey article by Barron, Rissanen and Yu [48].

It has to be recognized that statistical thinking – also dating back to
“pre-information theory times” – contains ideas and concepts which are
in line with information theoretical thinking. Thus, it is perhaps more
appropriate to say that one can expect a much stronger cross-fertilization
between the two fields of information theory and statistics than seen before.

In order to understand what information theory has to offer which
could influence basic probabilistic and statistical thinking, we point to three
factors: The basic concepts have natural interpretations and as such are
“just the right ones” and, secondly, you can often use these concepts to
model conflict situations which are common in many areas, such as biology,
economics, physics and then also in probability and, more pronouncedly so,
statistics. As a last reason we point to the technical tools of information
theory, especially to the powerful inequalities.

As to the first feature pointed to, we owe to Shannon, cf. his pioneering
article [51] from 1948, the definition of “the right concepts” such as entropy,
conditional entropy, mutual information and so on. Especially important for
the interface to statistics is the introduction in 1951 by Kullback and Leibler
[44], of a further quantity, now mainly called (information) divergence, cf.
also Kullback [43].
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The ability of information theory to model conflict situations can be
said to go back to Shannon himself. As an early source we also mention
Kelly [41]. However, we want to emphasize the comprehensive study of the
Maximum Entropy Principle (MaxEnt) by Jaynes who from 1957 onwards
has worked to put this principle on a firm information theoretical basis
and also discussed the qualitative and philosophical aspects at great length,
cf. [35], [36], [34] and [37]. MaxEnt dictates that if P is a set consisting
of probability distributions, then the least biased one, and hence the one
best suited for predictions, is that distribution in the set – if such a unique
distribution exists – which has maximal entropy. Jaynes further stressed
the view – which is at the same time a guiding principle – that one should
not think of the set as a set of distributions, one of which is the “true”
distribution. Rather, Jaynes maintains that P models our knowledge about
the system studied.

Some years ago the author pointed out that a principle of Game Theo-
retical Equilibrium (GTE) can be taken to be basic, cf. [56] and [57]. Thus,
from GTE, you are led to MaxEnt as well as to a principle going back to
Kullback, the Minimum Discrimination Information Principle, which dic-
tates that you select that distribution in the model which has the smallest
divergence to a given or suitably chosen prior distribution. As the term
“divergence” now appears to be more common than “discrimination” (or
“information distance” or “relative entropy” which are also terms in use),
we refer to Kullback’s principle as MinDiv, the minimum divergence princi-
ple. The geometrically-flavoured structure involved in MinDiv was studied
by Čencov [9] and by Csiszár [14], who introduced the concept of I-projection
for the optimal distribution of MinDiv. Further studies of Csiszár demon-
strated the significance of information theory for statistics, cf. [15].

The success of information theory at the service of other sciences de-
pends on the ability to derive key results based on information theoretical
principles in a way which is felt natural and technically convenient within
the sciences in question. The sources mentioned contain results in this
direction for the fields of probability and statistics. Some additional refer-
ences include the difficult paper by Linnik, [45], regarding the Central Limit
Theorem, Barron’s follow-up paper, [4], and results to come by Barron and
Johnson, [5], and we may also mention Harremoës [27] and Topsøe [59]. The
paper [26] by Grünwald and Dawid is very much in line with the approach
adopted here. The reader should also watch out for forthcoming work by
Boyd and Chiang.
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2. Game Theoretical Equilibrium, the idea

In this section we shall reveal the over all idea of GTE. In principle, this
is simple: GTE dictates that you use information theoretical concepts to
view a problem as a game, typically as a two-person zero-sum game. The
search for optimal strategies, i.e. the attempt to approach equilibrium in the
game theoretical sense, will then lead to useful, even completely satisfactory
insight into the original problem. The power of GTE then depends on the
ability to make meaningful transformations of interesting problems to the
game theoretical setting. Below follow some qualitative, partly philosophical
remarks on this issue.

Information theory provides concepts and tools for expressing the role
of an “observer” or “decision maker” (the statistician, the physicist, the
investment planner or what the case may be). As a brief indication of this
aspect of information theory, we need only point to coding as a way to
represent or to describe data and, at the same time, as a means to identify
outcomes, hence to express strategies for making observations.

When we use information theory to model a part of “reality”, we should
acknowledge – in consistency with a Platonic or neo-Platonic view – that
all we can do is to model our ignorance about reality or, put positively, to
model our knowledge about reality. In our modelling we should be open to
any eventuality. Possibly motivated by the experience that “what can go
wrong does go wrong”, this points to applying a safe (cowardice!) strategy
of minimizing maximal risk, hence this leads to by now classical “mini-max
thinking” of game theory. In its simplest form, we are thus led to consider
two-person zero-sum games. This modelling is possible in many specific
situations via the identification of an objective function (a cost or a pay-
off, depending on the sign). For a discussion of concepts of game theory, in
particular the various notions of strategy, see Straffin [52].

Qualitatively, the above considerations are in consistency with basic
Bayesian thinking in statistics. And other sciences acknowledge similar
ideas. In physics we point to the Copenhagen interpretation of quantum
physics and the emphasis of Niels Bohr on the interplay, complementarity,
between the system under study and the observer looking at it through
whatever glasses are available. A system behaves not only in accordance
with what is known because of insight gained by previous observations. The
behaviour depends on all factors – including those we could have taken into
account. Regarding quantum physics it may well be that the Copenhagen
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interpretation is ripe for replacement or thorough revision, largely because
the notion of probability is not well explained and it is desirable with a
change which would involve, among other elements, Jaynes’ ideas which
combine information theory and the interpretation of probability concepts.
For the field of biology, we point to Maynard Smith’s principle of evolu-
tionary stability. For a recent application of this principle, see Broom [8].
We may also point to the social sciences, to economy, cf. von Neumann’s
pioneering work in [60], or more modern texts such as Aubin [3], and also,
we can point to recent applications to finance where Delbaen et al. [21] and
Bellini and Frittelli [6] serve as entrance points to the relevant literature
where information theoretical considerations come into play.

3. Information theoretical concepts

3.1. The general idea

In order to stress the underlying rationale, thereby pointing to the wider
applicability of basic concepts from information theory, we introduce these
concepts in a context which is quite abstract and freed from any reference
to standard information theory. However, we do use terminology borrowed
from that theory.

The nature of the context does not really concern us here. Anyhow, it
may be helpful to think of it as some well defined part of “reality” which
may have been isolated by some process of preparation. As an indication
of what we have in mind, consider the case of an ideal gas submerged in a
heat bath. Through the preparation, a “system” or “context” suitable for
study emerges.

We shall characterize any specific context by three entities. Firstly a set
P, called the knowledge base. This set reflects the available knowledge. Ele-
ments of P are referred to as consistent instances, i.e. as instances which are
consistent with the preparation of the system. In specific situations when
we know the nature of the elements of P, we may reflect that in our termi-
nology. For instance, in all of our examples, P will be a set of probability
distributions and we may then talk about consistent distributions.

Further, we assume that we have access to a set K of description strate-
gies. Various interpretations are possible. Either the strategies can be used
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for making observations from the system or for representing consistent in-
stances or, in the terminology we shall prefer below, for describing such
instances.

The third entity we have in mind is a function, the objective function,
which to κ ∈ K and P ∈ P associates a non-negative (possibly infinite)
number, denoted 〈κ, P 〉. This is the description length (with κ as description
strategy and P as the consistent instance).

In the applications we have in mind (see below) the “instances” do not
represent final results after observation but rather individual probability
distributions. Therefore, to avoid confusion, the reader should note that for
such applications, what we refer to as “description length” really represents
mean description length.

In our set-up we have focused on three elements: Our knowledge, the
available tools for description and our objective. Further elements – such
as side information, conditioning, symmetry etc. – may be brought into
the picture but the chosen framework appears to constitute an adequate
playground for basic information theoretical considerations. Instead of the
neutral reference to a context, one could refer to the triple

(
P,K, 〈·, ·〉

)
as

an information space.

Sometimes (see Section 5), it is not possible to suggest in a meaningful
way an objective function which is non-negative. Often, one can then
instead work with an objective function which can also assume negative
values. This will, typically, correspond to situations where you find it
natural to measure performance relative to some chosen reference. One
may, therefore, work with two notions, one of absolute information spaces
as considered up to now and one of relative information spaces. It is only
the former which we have in mind in this section.

Now then, let us demonstrate that the set-up as introduced allows the
introduction of key quantities for further study.

First define the entropy of a consistent instance P as the minimum
description length:

(1) H(P ) = inf
κ∈K
〈κ, P 〉.

If there exists κ ∈ K with 〈κ, P 〉 = H(P ) we say that κ is adapted to P .
Often, such strategies are uniquely determined from P .
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Then we can define redundancy D(P ‖ κ) as the unnecessary part of
the description length when using κ ∈ K as strategy instead of an optimal
strategy adapted to P ∈ P, i.e.

(2) D(P ‖ κ) = 〈κ, P 〉 −H(P ).

This quantity may also be conceived as the saving in description length
inherent in the information obtained if we are told what P is. For this
interpretation it is understood that the strategy κ is used for description
of P before we are told what P is and that we switch to a strategy best
adapted to P as soon as P is revealed to us.

Note that (2) may not be adequate as a definition in all cases. Some-
times, as in the case of information theory, it is possible to suggest a mean-
ingful definition which also covers the indeterminate case when (2) leads to
the form D(P ‖ κ) =∞−∞. Anyhow, the linking identity

(3) 〈κ, P 〉 = H(P ) + D(P ‖ κ)

always holds (as we agree that the right hand side is +∞ when H(P ) =∞).

A further quantity of interest is the description gain inherent in a change
of strategy from κ to ρ in the description of P . This quantity can even be
taken to be more fundamental than entropy as well as redundancy and it
is to be expected that it will play a significant role in future research (it
already does so but in a less dominant and more implicit way). A natural
defining relation would be

D(P ‖ κ � ρ) = 〈κ, P 〉 − 〈ρ, P 〉.

However, this is very likely to lead to the indeterminate quantity∞−∞
and it is better to exploit the linking identity (3) for 〈κ, P 〉 as well as for
〈ρ, P 〉 and use the relation

(4) D(P ‖ κ � ρ〉 = D(P ‖ κ)−D(P ‖ ρ)

as definition. Of course, this quantity may be negative or even −∞. Nor-
mally, situations with D(P ‖ κ � ρ) ≥ 0, i.e. with a genuine gain, will have
our main interest and other cases can be ignored. From (4) we obtain the
relation

(5) D(P ‖ κ) = D(P ‖ κ � ρ) + D(P ‖ ρ),
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which could be called the linking identity of the second kind (then (3) is of
the first kind). However – unlike (3) – (5) is not necessarily valid in all cases
but does hold, e.g. whenever D(P ‖ ρ) <∞.

Further concepts may be introduced but this will, typically, require extra
structure, and we shall only look into that in the context of information
theory proper.

3.2. Proper information theoretical concepts

Information theory provides the key example where the above definitions
apply and have natural interpretations as suggested by the terminology
used. Let us briefly go through this. In so doing we shall here restrict the
scope and only have the discrete case in mind. In the more technical final
section we extend the scope to encompass also the continuous case.

As starting point we shall then take a discrete set A, i.e. a finite or
countably infinite set. This is the alphabet. As P we take a set of probability
distributions on A and as K the set of codes or, more precisely, idealized code
length functions. The way we think about κ ∈ K is as an allocation of code
words to elements in A, however only paying attention to the lengths of the
code words. More precisely, κ ∈ K is a map which to each i ∈ A associates
a number κ(i) ∈ [0,∞] in such a way that Krafts equality in idealized form,
i.e.

∑
exp

(
− κ(i)

)
= 1, holds (the idealization refers to the acceptance of

arbitrary real numbers as values of κ, and to the choice of the natural base
rather than the base 2 for the exponentiation). The interpretations related
to this definition are well known, see e.g. [59].

There is an important natural 1 − 1 correspondance, written κ ↔ P ,
between codes and distributions for which P (i) = exp

(
− κ(i)

)
, κ(i) =

− log P (i) (we use “log” to denote natural logarithms).
In order for the definitions of Section 3.1 to apply we also have to specify

the objective function (κ, P ) � 〈κ, P 〉. For this we take expected code
length, i.e. we put

〈κ, P 〉 =
∑

κ(i)P (i).

The definitions of entropy, redundancy and description gain then make
good sense. As is classical, H(P ) = 〈κ, P 〉 with κ↔ P .

We use the correspondance between codes and distributions to define
divergence (from P to Q) by

(6) D(P ‖ Q) = D(P ‖ κ)
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with κ↔ Q and also to define the following quantity:

(7) D(P ‖ Q � R) = D(P ‖ κ � ρ)

with κ ↔ Q and ρ ↔ R. Note that D(P ‖ Q) = D(P ‖ Q � P ). We
can think of D(P ‖ Q � R) as reflecting an estimation- or prediction- or
updating situation with Q as prior and R as posterior distribution. We
may, therefore, call D(P ‖ Q � R) the estimation gain or the updating
gain associated with this situation.

Much clarity results by realizing that redundancy (related to description
via coding) conceptually preceedes divergence (related to distributions).

It is well known that whereas entropy can only be finite for essentially
discrete distributions, redundancy and divergence has a much wider scope of
applicability which matches the requirement in probability and statistics to
encompass basic continuous distributions. Indeed, in the case of divergence,
one is led to the well known formula

(8) D(P ‖ Q) =
∫

log
dP

dQ
dP

(when P ! Q), which may be used as a definition which then covers all
eventualities (with D(P ‖ Q) =∞ in case P ! Q). Technical details can be
found, e.g. in [58] where you will also find important extensions of concepts
introduced, especially involving conditioning and datareduction.

4. Instances of GTE

The conceptual base developed in the previous section gives rise to a number
of specific two-person zero-sum games of which we mention three. The re-
sults of the first two subsections are of particular relevance for applications
to probability and statistics. Possible applications lead to interesting char-
acterizations of key distributions, often accompanied by appropriate limit
theorems. Many such results can be conceived as instances of the GTE
principle as discussed here. Kapur [39] contains a great number of such re-
sults. We may also mention Haussler [32], Kazakos [40], Harremoës [27] and
Topsøe [59] which are based on the game theoretical approach. The first
papers using this approach are Pfaffelhuber [47] and Topsøe [56]1. For fur-

1The paper [47] was only discovered by the author shortly before submission of the
final manuscript. Apparently the research of Pfaffelhuber was carried out in 1975 whereas
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ther work in this direction see Harremoës and Topsøe [30] as well as work
by several authors, including Grünwald and Dawid [26].

4.1. The Hmax-game

The first game is the maximum entropy game, the Hmax-game, which is
related to entropy and code length in the discrete case and refers to a given
set P of distributions over the alphabet A. One may also refer to this
game as the code length game. For the Hmax-game, Player I (“the system”)
chooses a consistent distribution P ∈ P and Player II (the statistician, say)
chooses a code κ ∈ K. Description length 〈κ, P 〉 is taken as the cost, seen
from the point of view of Player II.

We define Hmax = Hmax(P), the maximum entropy value as

Hmax = sup
P∈P

H(P ).

For κ ∈ K, we define R(κ) = R(κ | P), the risk associated with κ, to be

R(κ) = sup
P∈P
〈κ, P 〉

and we put
Rmin = inf

κ∈K
R(κ).

Then Hmax ≤ Rmin. If equality holds with a finite value: Hmax = Rmin <
∞, we say that the system is in equilibrium. If P is convex and Hmax <∞,
it can be shown that the game is, indeed, in equilibrium. Therefore, under
quite general conditions, maximum entropy equals minimum risk. As the
risk was defined via description length, we may also say that maximum
entropy equals minimum description length.

A technically simple result which is very powerful for the applications
is that if there exists a Nash equilibrium code adapted to P, i.e. – copying
concepts from game theory – a code λ such that R(λ) ≤ H(Q) < ∞ with
λ ↔ Q and Q ∈ P, then λ and Q are unique optimal strategies for the
players. In particular, Q is the unique maximum entropy distribution. For
a quick introduction to these results, see Topsøe [59]. More details are in
Harremoës and Topsøe [31].

the main work of the author stems from 1976 with the first formal publication in Danish
in 1978. In any case, the author shares the introduction of the game theoretical approach
with Pfaffelhuber.
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4.2. The Dmin-game

The second game we shall study is the Dmin-game which we here describe in
rather qualitative and motivating terms and again only having the discrete
case in mind. We do, however, follow-up in Section 5 with concrete technical
details which apply to a more general situation, covering also the continuous
case.

The setting is as in Section 4.1, except that now we have also given a
reference code κ0 or, equivalently, a prior distribution P0 (κ0 ↔ P0). Again,
Player I chooses a P ∈ P and Player II chooses a code κ ∈ K or, equivalently,
a posterior distribution R (with κ↔ R). But now, description gain, D(P ‖
κ0 � κ) or, equivalently, estimation or updating gain, D(P ‖ P0 � R), is
taken as pay-off seen from the point of view of Player II. According to the
zero-sum character which we insist on, D(P ‖ κ0 � κ) is considered as a
cost to Player I.

If Player I chooses P ∈ P one readily sees from the linking identity
(5) that fixing this distribution, the largest cost which Player I risks is
D(P ‖ κ0). Therefore, an optimal strategy for Player I is a Q ∈ P for which
D(Q ‖ κ0) = Dmin with the latter quantity defined by

Dmin = inf
P∈P

D(P ‖ P0).

The game thus leads to the MinDiv-principle.
In the theoretical discussion of this game, it is advantegeous to consider

also the other side of the game. In normal practice there exists λ such that

(9) D(P ‖ κ0 � λ) ≥ Dmin

for every P ∈ P. With κ0 ↔ P0 and λ↔ Q, the inequality (9) is equivalent
to the celebrated Pythagorean inequality:

(10) D(P ‖ P0) ≥ D(P ‖ Q) + Dmin

for all P ∈ P. For precise statements and technical detail we refer to
Section 5. Here, we point out that Q need not be consistent. The inequality
was first proved for cases with P closed in total variation (hence Q must be
consistent) by Csiszár [14]. The general result was established in Topsøe,
[56]. In Csiszár’s terminology, Q is the (generalized) I-projection of P0

on P. With an interpretation as indicated above, Q is the optimal estimator
or the optimal updating strategy based on the prior P0. In the coding
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terminology, λ is the optimal adjustment of κ0. Note that if (Pn)n≥1 ⊆ P
satisfies D(Pn ‖ P0)→ Dmin, then D(Pn ‖ Q)→ 0. This is a rather strong
type of limit theorem, in particular stronger than setwise convergence of Pn

to Q.

4.3. The Imax-game

The third instance which we shall mention and where GTE applies is of main
interest for information theory and leads to the capacity–redundancy game
or, for reasons explained below, the maximum information transmission
game, the Imax-game. Again, it involves a knowledge base P of probability
distributions but now no prior code or distribution is given. If Player II
(“the receiver”) can choose a code and redundancy D(P ‖ κ) is taken as
cost, we are led to consider minimal redundancy defined as

(11) Rmin = inf
κ

sup
P∈P

D(P ‖ κ).

Clearly, if the other side of the game is taken to involve only P ∈ P as per-
missable strategies for Player I, the game will normally not be interesting as

(12) sup
P∈P

inf
κ

D(P ‖ κ) = 0.

However, if we – “à la von Neumann” – consider mixed strategies (i.e.
randomization corresponding to convex combinations

∑
ανPν of members

of P) and choose the associated average redundancy,
∑

ανD(Pν ‖ κ), as
the quantity the players should worry about (the objective function), an
interesting game is obtained. Note that we choose as objective function a
function which does not only depend on the mixed strategy but also on the
actual weights (the αν ’s above). It is the simplest to consider the case when
P consists of a finite or countably infinite set of distributions Pν (1 ≤ ν ≤ n
or 1 ≤ ν < ∞). This game may be interpreted as one involving a channel
with α = (αν) as input distribution and then the quantity replacing (12) is

(13) sup
(αν)

inf
κ

∑
ανD(Pν ‖ κ)

which is the capacity of the channel (see below). The quantity (11) is
not affected as divergence has strong convexity properties, in particular,
divergence is convex in the first argument (indeed, if the supremum in
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(11) is changed to a supremum over (αν)’s and D(P ‖ κ) is changed
to

∑
ανD(Pν ‖ κ), the same quantity is obtained). By applying the

principle of GTE one then proves an important result of information theory,
the capacity-redundancy theorem, which equates capacity with minimum
redundancy. This result is closely related to the well known Kuhn-Tucker
conditions (for the situation considered, cf. (17) and (18) below). Relevant
references include Csiszár and Körner, [17, Problem II.3.1], Davisson and
Garcia, [20] and Ryabko [49].

Let us go a little more into the details. First we point out the following
identity, the compensation identity, cf. Theorems 6.1 and 9.1 of [58]. With
notation as above, it states that

(14)
∑

ανD(Pν ‖ κ) =
∑

ανD(Pν ‖ κ0) + D(P0 ‖ κ)

where P0 =
∑

ανPν and κ0 ↔ P0. This shows that the infimum in (13) can
be identified as

(15) I(α) =
∑

ανD(Pν ‖ κ0).

This quantity is the information transmission rate associated with the input
distribution α. The maximum information transmission rate, the Imax-
value, is the capacity of the channel and this then is the quantity appearing
in (13). The intuitive content of (15) is perhaps best understood if the
code κ0 is replaced by the matching distribution P0: With probability αν

a “letter” is sent through the channel and this changes the distribution at
the output side from the á priori distribution P0 to Pν . The redundancy
removed, hence the information received by this change is D(Pν ‖ P0).
Thus, the information transmission rate is defined as average information
obtained at the output side. By (15) we may write (14) in the form

(16)
∑

ανD(Pν ‖ κ) = I(α) + D(P0 ‖ κ)

which is a linking identity, now of the third kind.2

Intuitively it is to be expected that optimal usage of the channel must be
achieved for an input distribution α for which the Kuhn–Tucker conditions

D(Pν ‖ P0) = C for all ν with αν > 0(17)

D(P ‖ P0) ≤ C for all P ∈ P(18)

2Note that in all cases, a linking identity is an identity revealing a basic structural
relation which involves an objective function for one of the games considered.
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are fulfilled with C some constant. The sufficiency of the conditions follows
from the compensation identity. As to the necessity (for P finite), see
Topsøe [55].

When (17) and (18) hold, it follows directly from the compensation
identity (14) and from the definitions involved that I(α) = Rmin = C,
hence proving the capacity-redundancy theorem.

The analysis of the Imax-game applies in many settings with D(P ‖ Q)
replaced by other measures of “divergence”. A more subtle analysis turns
out to be possible for general f−divergences, cf. Csiszár [13, Theorem 3.2].
But the simple analysis based on the compensation identity (14) is also
possible outside the framework discussed above as this identity holds in a
variety of cases. To comment on this, first note that (14) holds for squared
Euclidean distance. In that case, the problem suggested by (11) belongs to
location theory, cf. [25]. The specific problem goes back to Sylvester [53]
who wrote “It is required to find the least circle which shall contain a given
system of points in a plane” – in fact, this is the full text of [53]!

The compensation identity also holds for Bregman divergences, (regard-
ing these, see Bregman [7] and Csiszár [16]).3

As a final example of the wide applicability of the Kuhn-Tucker criterion
for variants of the Imax-game, we mention the analogue of this game in
the setting of quantum information theory with TraceP (log P − log Q) as
replacement of classical divergence (here, P and Q are density operators, cf.
Holevo [33] or Ohya and Petz [46]). In the setting of quantum information
theory, the compensation identity is often referred to as Donalds identity,
cf. Donalds [24]. In the classical case, the identity possibly first appeared
in [54].

In Table 1 we summarize the three games discussed in this section
together with an indiction of the principles this leads to when seen from
the point of view of each of the two players in the game.

GTE Player I Player II
Hmax-game Max Ent Min Length
Dmin-game Min Div Max Saving
Imax-game Max Inf Min Redundancy

Table 1. Instances of the principle of GTE

3This remark is due to Csiszár, oral communication at the conference “Information
Theory, Cryptography and Statistics”, Balatonlelle, October 2000.
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5. Technical discussion of the Dmin-game

This section is intended as a relatively simple and self-contained introduc-
tion to some basic results about information projections, a theme going back
to to Csiszár [14] and Čencov [10], and with numerous further publications
of which we here only point to Csiszár [15]. The emphasis is on the game
theoretical approach already introduced. We do not include a full discussion
of the origin of the results discussed or on their further development. The
interested reader should consult research cited above and the more recent
references pointed to in the bibliography.

Let (X,B) be an abstract Borel space, i.e. a set provided with a σ-algebra
and denote by M1

+(X,B) the set of probability distributions on (X,B). Let
P � M1

+(X,B) and P0 ∈M1
+(X,B) be given.

Consider the Dmin-game with P as the strategy set for Player I, with
P0 as prior distribution and with the set of all probability distributions
on (X,B) as the strategy set for Player II. Thus we choose to consider
estimators or posterior distributions rather than codes as the available
strategies for Player II. This will give the results a more conventional flavour
which is more likely to appeal to the reader interested mainly in applications
to statistics. And, of course, the concept of codes really only applies
meaningfully to the discrete case. Thus, focusing on distributions enables
us to present a completely general version of the Dmin-game.

As a concrete example of great interest which the reader may want to
have in mind – and which we shall return to later on – we mention the case
when P is specified by moment conditions, i.e. when

(19) P =
{

P ∈M1
+(X,B) | 〈gi, P 〉 = ci for i ∈ I

}
with (gi)i∈I a set of measurable functions and (ci)i∈I a corresponding pre-
scribed set of scalars. The index set I is, typically, assumed to be finite.

We realize that the setting fits into the framework outlined in Sec-
tion 3.1 of an information space. The knowledge base is P, the set K
of description strategies is M1

+(X,B) and the objective function is the map
(P, R) � D(P ‖ P0 � R). As this function may assume negative values, the
proper setting is that of a relative information space which we may identify
by the pair (P, P0). Distributions in P are referred to as consistent distri-
butions. A distribution Q is essentially consistent if there exists a sequence
(Pn)n≥1 of consistent distributions which converges in divergence to Q, i.e.
D(Pn ‖ Q)→ 0 as n→∞.
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The defining relations (8) (for divergence) and (7) combined with (4) (for
estimation gain) are now taken as the basic definitions. Written explicitly,
the definition we use for estimation gain is as follows:

(20) D(P ‖ Q � R) = D(P ‖ Q)−D(P ‖ R).

As there are some subtleties connected with (20) (the∞−∞ problem),
it is not entirely clear if all aspects of the Dmin-game make sense. However,
with appropriate conventions this can in fact be achieved. We simply agree
that if a suppremum is considered involving indeterminate numbers we
interpret the result in the “least favourable way” as +∞ and, likewise,
if an infimum involves an indeterminate number, we interpret the result as
giving the quantity −∞. With these conventions it is clear that each of the
players can assign a performance index to any specific strategy available to
the player. And for Player I we can easily identify the performance index.
Indeed, if Player I chooses the strategy P ∈ P, the associated performance
index is nothing but the divergence D(P ‖ P0) as

sup
R

D(P ‖ P0 � R) = D(P ‖ P0)

(here, it is understood that R ranges over all strategies available to Player
II, i.e. over all probability distributions on (X,B), and that the conventions
just introduced are in force). Player I is then led to consider the quantity

Dmin = inf
P∈P

D(P ‖ P0)

and the notion of an optimal strategy for Player I makes good sense as a
consistent distribution P with D(P ‖ P0) = Dmin. If need be we stress the
dependence on (P, P0) by using the notation

(21) Dmin = D(P ‖ P0).

A sequence (Pn)n≥1 of consistent distributions is said to be asymptotically
optimal if D(Pn ‖ P0)→ Dmin for n→∞.

As for Player II, the performance index associated with the strategy R
is given by

(22) Γ(R) = inf
P∈P

D(P ‖ P0 � R)

for which we also introduce the notation

(23) Γ(R) = D(P ‖ P0 � R)
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by analogy with the notation used in (21). This is the pay-off or, more
specifically, the estimation gain (or even the guaranteed estimation gain)
associated with the strategy. Player II is then led to consider the maximal
pay-off given by

Γmax = sup
R

Γ(R)

and the notion of an optimal strategy for Player II makes good sense as
a distribution R with Γ(R) = Γmax. Notational symmetry with (21) is
obtained by introducing the notation

(24) Γmax = Γ(P ‖ P0).

Clearly, Γmax ≤ Dmin. If equality holds with a finite common value, this
is the value of the game and the game is said to be in equilibrium.

The first result, really Theorem 8 of [56], can be formulated in a very
standard way without reference to the Dmin-game at all. For the proof we
need Pinsker’s inequality which states that

D(P ‖ Q) ≥ 1
2
V (P, Q)2

for distributions P and Q, with V denoting total variation. We also need to
know that (P, Q) � D(P ‖ Q) is jointly lower semi-continuous, even with
respect to the relatively weak topology of setwise convergence. For these
facts, see [58].

Theorem 1. Let (P, P0) be a relative information space and assume that
P is convex and that Dmin <∞. Then there exists a unique distribution Q
such that, for every P ∈ P, the Pythagorean inequality holds, i.e.

(25) D(P ‖ P0) ≥ D(P ‖ Q) + Dmin.

Proof. Let (Pn)n≥1 be asymptotically optimal. By the compensation iden-
tity, we find that for every n ≥ 1, m ≥ 1, and with Pn,m denoting the
distribution 1

2Pn + 1
2Pm,

Dmin +
1
2
D(Pn ‖ Pn,m) +

1
2
D(Pm ‖ Pn,m)

≤ D(Pn,m ‖ P0) +
1
2
D(Pn ‖ Pn,m) +

1
2
D(Pm ‖ Pn,m)

=
1
2
D(Pn ‖ P0) +

1
2
D(Pm ‖ P0).
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As this last quantity converges to Dmin, we conclude by Pinskers in-
equality – which shows that both D(Pn ‖ Pn,m) and D(Pm ‖ Pn,m) are
lower bounded by 1

8V 2(Pn, Pm) – that (Pn)n≥1 is a Cauchy-sequence w.r.t.
total variation. By completeness of total variation, there exists a probabil-
ity distribution Q such that Pn → Q in total variation, i.e. V (Pn, Q) → 0.
By a standard argument involving the mixing of two sequences, we realize
that Q is independent of the particular asymptotically optimal sequence.

Now choose a sequence (Pn)n≥1 ⊆ P which “converges fast” in the sense
that

n
(
D(Pn ‖ P0)−Dmin

)
→ 0.

We shall use this auxiliary sequence to establish (25). To do so, fix
P ∈ P and consider the distributions Qn, n ≥ 1 given by

Qn =
(

1− 1
n

)
Pn +

1
n

P.

Clearly, D(Qn ‖ P0) ≥ Dmin. Again appealing to the compensation
identity, we find that

Dmin +
1
n

D(P ‖ Qn) ≤ D(Qn ‖ P0) +
(

1− 1
n

)
D(Pn ‖ Qn) +

1
n

D(P ‖ Qn)

=
(

1− 1
n

)
D(Pn ‖ P0) +

1
n

D(P ‖ P0)

and therefore,

D(P ‖ P0) + n
(
D(Pn ‖ P0)−Dmin

)
≥ D(P ‖ Qn) + D(Pn ‖ P0).

Now then, (25) follows from the “fast convergence” of (Pn) and from the
lower semi-continuity of R � D(P ‖ R) (as Qn converges setwise, even in
total variation, to Q).

To finish the proof we note that the Pythagorean inequality uniquely
characterizes Q. Indeed, if (Pn)n≥1 is asymptotically optimal, then Pn

converges in divergence to Q. In particular, Pn converges in total variation
to Q.

Note the somewhat peculiar aspect of the above proof: The first part fol-
lows the argument in the proof of Csiszár, [14, Theorem 2.1] and establishes
as an auxiliary result a not-so-strong form for convergence of an asymptoti-
cally optimal sequence and then, this is strengthened in the last part of the
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proof to a much stronger, and information theoretically more appropriate
form of convergence. The fact that convergence in divergence (for ordinary
sequences as here considered, although not for nets) is a topological notion of
convergence follows from a well known fact of general topology (Kisynski’s
theorem, cf. [42]) but a more direct and intrinsicly information theoreti-
cal analysis of this important observation is possible as demonstrated by
Harremoës, cf. [28], [29].

Following Csiszár [15], we say that Q of Theorem 1 is the generalized I-
projection (of P0 on P). We use the notation P0(· | P) for this distribution.
The notation is justified by the fact that the concept can be viewed as a
generalization of ordinary conditioning as we shall comment on later in more
detail. If Q happens to be consistent, this is the (standard) I-projection (of
P0 on P). A distribution Q is called the relative centre of attraction (of
P w.r.t. P0) if D(Pn ‖ Q) → 0 for every asymptotically optimal sequence
(Pn)n≥1.

4

Let us collect some immediate consequences of Theorem 1. For some
of these we find it convenient to introduce the scope of a distribution.
Definition and notation is given by:

scope (Q) =
{

P | D(P ‖ Q) <∞
}

.

Corollary 1. With assumptions as in Theorem 1, Q = P0(· | P) can also
be characterized as the relative centre of attraction. Furthermore, Q is
essentially consistent and D(Q ‖ P0) ≤ Dmin, in particular, Q ∈ scope (P0).

Proof. The characterization of Q as the relative centre of attraction follows
from (25) as also noted in the final part of the proof of Theorem 1. The
remaining parts follow from lower semi-continuity of divergence and, again,
from (25).

We point out that P ∩ scope (Q) may be strictly larger than P ∩
scope (P0). This is easily seen by exploiting well known examples going
back to Csiszár [12] which show that “transitivity” may fail (i.e., we cannot
conclude P1 ∈ scope (P3) from P1 ∈ scope (P2) and P2 ∈ scope (P3)).

Simple examples show that the notion of relative centre of attraction
is more general than the notion of generalized I-projection. However, the

4The analogous “absolute” notion refers to entropy, cf. [59]. These notions were
introduced in [56] except for a weaker requirement of convergence than convergence in
divergence.
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two concepts are equivalent under very mild and natural conditions as we
have seen in Theorem 1. Therefore, one will normally only need to refer
to the well established and geometrically appealing notion of projection.
An important problem then is to determine the generalized I-projection in
specific cases of interest. As we shall see, the game theoretical approach is
helpful in this respect.

Often, we need a stronger finiteness condition than the one appearing
in Theorem 1. We say that (P, P0) is D-finite if D(P ‖ P0) <∞ for every
P ∈ P, i.e. if P ⊆ scope (P0). Associated with any model (P, P0) we may
consider the restriction to the scope of P0, i.e. the model (P0, P0) with

P0 = P ∩ scope (P0).

Clearly, this model is D-finite.

The proof of the following simple result (adapted from [15, Lemma 3.2])
is left to the reader:

Proposition 1. Let (P, P0) be given with P convex and Dmin(P ‖ P0) <∞
and denote by P0 the restriction P ∩ scope (P0).

Then P0 is convex, non-empty and Dmin(P0 ‖ P0) = Dmin(P ‖ P0).
Furthermore, (P, P0) and (P0, P0) have the same generalized I-projection.

Under the condition of D-finiteness we can strengthen the result of
Theorem 1 as follows (essential parts are from Theorem 9 of [56]):

Theorem 2. Let (P, P0) be a D-finite relative information space with
P convex. Then the Dmin-game is in equilibrium and Q, defined as the
generalized I-projection of P0 on P, can also be characterized as the unique
optimal estimator for Player II. Furthermore, for every distribution R the
inequality

(26) Γ(R) ≤ Γmax −D(Q ‖ R)

holds. Finally, if R ∈ P, then

(27) V (Q,R) ≤
√

D(R ‖ P0)− Γ(R).

Proof. We may write the Pythagorean inequality in the form D(P ‖ P0 �
Q) ≥ Dmin as P ⊆ scope (P0). Thus, by (25), Γ(Q) ≥ Dmin, and as the
reverse inequality is trivial, the game is in equilibrium and Q is an optimal
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estimator. Let (Pn)n≥1 be an asymptotically optimal sequence. Consider a
distribution R with Γ(R) > −∞ (otherwise, (26) is trivial). Then,

Γ(R) ≤ lim sup
n→∞

D(Pn ‖ P0 � R)

= lim sup
n→∞

(
D(Pn ‖ P0)−D(Pn ‖ R)

)
= Dmin − lim inf

n→∞
D(Pn ‖ R)

≤ Dmin −D(Q ‖ R)

by lower semi-continuity and (26) follows.
The uniqueness of Q viewed as an optimal estimator follows from (26).
Combining (25) and (26) and using Pinsker’s inequality, both for

D(R ‖ Q) and for D(Q ‖ R), (27) follows.

The equilibrium distribution of Theorem 2 can often be found by exploit-
ing a general equilibrium concept of game theory. Consider the D-min game
associated with (P, P0) and assume to begin with only that Dmin <∞. Fol-
lowing normal conventions of game theory – here only for two-person games
– a pair of strategies for the players is a Nash equilibrium pair if, fixing the
one strategy, the other player cannot gain anything by changing his strategy.

For our situation, the requirements on a pair (P ∗, R∗) with P ∗ ∈ P and
R∗ ∈M1

+(X,B) is that the saddle value inequalities

(28) D(P ∗ ‖ P0 � R) ≤ D(P ∗ ‖ P0 � R∗) for R ∈M1
+(X,B)

and

(29) D(P ‖ P0 � R∗) ≥ D(P ∗ ‖ P0 � R∗) for P ∈ P

hold. By (29) applied to a P ∈ P with D(P ‖ P0) < ∞ we see that
D(P ∗ ‖ P0) < ∞. Then, from (28), it follows that D(P ∗ ‖ P0 � P ∗) ≤
D(P ∗ ‖ P0 � R∗), i.e. D(P ∗ ‖ P0) ≤ D(P ∗ ‖ P0) − D(P ∗ ‖ R∗) and we
conclude that P ∗ = R∗ must hold. But then (28) is automatic (whatever
P ∗ is) and the requirement (29) becomes

(30) D(P ‖ P0 � P ∗) ≥ D(P ∗ ‖ P0) for P ∈ P.

Based on this analysis we agree to call P ∗ a Nash equilibrium distribution
(having Player I in mind) or a Nash equilibrium estimator (having Player II
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in mind) if P ∗ ∈ P, if P ⊆ scope (P0) and if (30) holds. The condition P ⊆
scope (P0) is a finiteness condition which ensures that (30) is meaningful. As
the overall assumption Dmin <∞ is in force, we realize that P ∗ ∈ scope (P0)
for a Nash equilibrium distribution.

A Nash equilibrium distribution may not exist, but we realize that if it
does, there is only one such distribution so that we may talk of the Nash
equilibrium distribution in such cases. Indeed, if P ∗ ∈ P and P ∗∗ ∈ P are
both Nash equilibrium distributions, it follows from (30) that

D(P ∗∗ ‖ P0)−D(P ∗∗ ‖ P ∗) ≥ D(P ∗ ‖ P0)

and that
D(P ∗ ‖ P0)−D(P ∗ ‖ P ∗∗) ≥ D(P ∗∗ ‖ P0)

hold. Clearly, this leads to the inequality 0 ≥ D(P ∗ ‖ P ∗∗) + D(P ∗∗ ‖ P ∗),
hence P ∗ = P ∗∗.

Let us investigate what can be said when the Nash equilibrium distri-
bution exists:

Theorem 3. Let P be any set of distributions and P0 any prior distribution
such that Dmin < ∞. Assume that the Nash equilibrium distribution, Q,
exists. Then the Dmin-game for (P, P0) is in equilibrium and Q is the
unique optimal strategy for Player I as well as the unique optimal strategy
for Player II. In other words, Q has minimum divergence to P0 among all
consistent distributions and, considered as an estimator, Q achieves the
maximal estimation gain. Furthermore, the inequalities of Theorems 1 and
2 hold.

Before the proof we point out that P is not assumed to be convex for
this result. The distribution Q in Theorem 3 is the I-projection of P0 on
P (the qualifying “generalized” is superfluous as Q in the above result is
consistent by assumption).

Proof. As Γ(Q) ≤ D(Q ‖ P0) holds generally, we conclude from the
inequality Γ(Q) ≥ D(Q ‖ P0) that Γ(Q) = D(Q ‖ P0) = Γmax = Dmin.
The inequality (25) follows as Γ(Q) ≥ Dmin.

And (26) follows as, for any estimator R with D(Q ‖ R) <∞,

Γ(R) + D(Q ‖ R) ≤ D(Q ‖ P0 � R) + D(Q ‖ R) = D(Q ‖ P0) = Dmin.

(Note that for the first equality sign we need the assumption D(Q ‖ R) <
∞).

The uniqueness assertions now follow from (25) and (26).
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One feature of this result is that there is no divergence loss. By this
we mean that D(Q ‖ P0) = Dmin must hold for the situation covered
by Theorem 3, whereas, for the situation of Theorems 1 or 2 there is a
possibility that D(Q ‖ P0) ≤ Dmin holds with strict inequality.

The inequality (30) may often be fulfilled in a trivial way. What we
have in mind is cases with a very robust estimator Q in the sense that
the estimation gain D(P ‖ P0 � Q) is independent of which distribution
is chosen by Player I. To be precise, the distribution Q is pay-off stable if
D(P ‖ P0 � Q) is well defined and finite for all P ∈ P and, furthermore,
independent of P ∈ P. So we demand that D(P ‖ P0) and D(P ‖ Q) are
finite for all P ∈ P and that, for some constant π, D(P ‖ P0 � Q) = π for
all P ∈ P. We shall also say that Q is pay-off stable at the level π.

Note that, in contrast to what was the case when we looked at the notion
of Nash equilibrium, we do not require that a pay-off stable distribution Q
is consistent. But if it is, we are in a special, desirable situation:

Theorem 4. Let P and P0 be given and assume that Q is a consistent pay-
off-stable distribution. Then Q is the Nash equilibrium estimator, hence
also the I-projection of P0 on P. Furthermore, the Pythagorean inequality
(25) holds with equality for every consistent distribution P .

We leave the simple proof to the reader.

Theorem 4 (and Proposition 1) point to a strategy which often works
in the search for the I-projection: First identify pay-off stable distributions
associated with (P, P0) (or with the corresponding restriction to scope (P0))
and then select a consistent distribution among these. If you succeed with
this, the desired I-projection has been found. The search for pay-off stable
distributions is facilitated by the lemma below which takes into account that
often care has to be taken when working with Radon–Nikodym derivatives
in order to express estimation gain in an adequate form.

Lemma 1. Let P , Q and P0 be distributions. Assume that Q ! P0

and that there exists a version φ of the Radon–Nikodym derivative dQ
dP0

such that φ > 0 a.e. [P ]. Assume further that D(P ‖ P0) < ∞. Then∫
log φdP = 〈log φ, P 〉 is a well-defined number in [−∞,∞[ and

(31) 〈log φ, P 〉 = D(P ‖ P0 � Q).

Proof. First we prove that P ! Q. To see this, assume that Q(A) = 0
for a set A ∈ B. Then

∫
A φ dP0 = 0, hence P0

(
A ∩ {φ > 0}

)
= 0 and as
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P ! P0, also P
(
A∩ {φ > 0}

)
= 0 holds. As P

(
{φ = 0}

)
= 0, we conclude

as desired that P (A) = 0.

Let f be any version of the Radon–Nikodym derivative dP
dP0

and let g be

any version of the Radon–Nikodym derivative dP
dQ . As P

(
{g = 0}

)
= 0, we

find that

D(P ‖ P0)−D(P ‖ Q) =
∫

log f dP −
∫

log g dP

=
∫
{g>0}

log f dP −
∫
{g>0}

log g dP

=
∫
{g>0}

log
f

g
dP =

∫
{g>0}

log
gφ

g
dP

=
∫
{g>0}

log φ dP =
∫

log φdP

which leads to the result.

We now aim at discussing in more detail sets of distributions specified
by moment constraints. It is well known that the classical exponential
families are of significance in this respect. Here we suggest to associate
an “exponential family” with any relative information space. This follows
a suggestion hinted at in [56]. The precise definition is as follows: The
exponential family associated with the relative information space (P, P0)
is the set of distributions Q with Q ! P0 for which there exists a finite
constant π and a version φ of the Radon–Nikodym derivative dQ

dP0
such that

〈log φ, P 〉 = π for every P ∈ P. Expressed briefly,

(32) E =
{

Q! P0

∣∣∣∃π ∈ R ∃φ =
dQ

dP0
∀P ∈ P : 〈log φ, P 〉 = π

}

Note that if Q ∈ E(P, P0) then every P ∈ P is concentrated on the set
{φ > 0}. Also note that the exponential family is non-empty as it always
contains the distribution P0.

Theorem 5. Let (P, P0) be given with P convex and Dmin < ∞. Then
the exponential family E(P, P0) contains at most one consistent distribution
and this must be the I-projection of P0 on P.
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Proof. Put P0 = P ∩ scope (P0). Assume that Q ∈ P ∩ E(P, P0) and let
π and φ be as in (32). In particular, 〈log φ, Q〉 = π, i.e. D(Q ‖ P0) = π,
hence Q ∈ scope (P0) and Q ∈ P0 follows. By Lemma 1 we realize that Q is
pay-off stable for P0. Then, as Q ∈ P0, Theorem 4 applies and we conclude
that Q = P0(· | P0). Finally, from Proposition 1, Q = P0(· | P) follows.

Consider a knowledge base P given by moment constraints (19) and let
P0 be a prior distribution. Clearly, if log dQ

dP0
is a linear combination of the

constant function 1 and the functions gi, then Q ∈ E(P, P0). Therefore, if
there exist constants βi such that the quantity Z given by

(33) Z =
∫

X
exp

(∑
i∈I

βigi

)
dP0

is finite, then Q defined by

(34) Q(A) =
1
Z

∫
A

exp
(∑

i∈I

βigi

)
dP0

is a distribution in the exponential family E(P, P0). If the constants βi can
be adapted so that the resulting distribution Q is consistent, Theorem 5
applies and we have found the I-projection P0(· | P). “Normally” – but not
always – this can be achieved. Many examples are contained in Kapur [39].
Note that the approach adopted here is direct and quite expedient – once
the appropriate theory has been developed. In contrast to several other
authors, the approach does not exploit general optimization techniques
(Lagrange multipliers etc.) but relies on intrinsic information theoretical
considerations.

A thorough recent treatment of problems related to the general case
with P specified by moment constraints is given by Csiszár and Matúš, cf.
[18] and [19]. These authors introduce an extended exponential family. This
corresponds to a consideration of the union of those families one obtains
from (32) by considering all sets P which may be obtained by varying the
set of constants (ci) defining P, cf. (19).

We end by considering the special case with

P =
{

P ∈M1
+(X,B) | P (A) = 1

}
.

for A ∈ B and P0 ∈ M1
+(X,B) with 0 < P0(A) < 1. This corresponds

to a knowledge base given by just one moment condition: P =
{

P |
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〈1A, P 〉 = 1
}

with 1A the indicator function of A. Following the approach
above we readily see that any mixture of the two conditional distributions
P0(· | A) and P0(· | Ac) belongs to the corresponding exponential family
(here Ac denotes the complement of A). Theorem 5 then tells us that
P0(· | P) = P0(· | A). Thus, in a very simple way, the concept of I-
projection may be conceived as a generalization of the classical concept of
conditioning.

The example illustrates a somewhat peculiar aspect. Put Q = P0(· | A)
and assume that there exists x0 ∈ A such that P (x0) = 0. Denote by δ0

a unit mass at x0. Then, by our conventions, Γ(Q) = −∞ as the infimum
in (22) contains the indeterminate number D(δ0 ‖ P0 � Q) = ∞ − ∞.
Thus Q is not an optimal strategy for Player II for (P, P0) whereas Q
is optimal for

(
P ∩ scope (P0), P0

)
. This somewhat undesirable situation

is connected with the choice of the defining relation (20). A more subtle
analysis will, instead, work with the quantity 〈log φ, P 〉 which also appeared
above, cf. (32). However, one then has to take the possibility of the various
versions of φ = dQ

dP0
into account. Such a more refined analysis is taken up

in Harremoës [29].
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References

[1] S. I. Amari, Information geometry on hierarchy of probability distributions, IEEE
Trans. Inform. Theory, 47 (2001), 1701–1711.

[2] D. Applebaum, Probability and Information. An integrated approach, Cambridge
Univ. Press (Cambridge, 1996).

[3] J. P. Aubin, Optima and equilibria. An introduction to nonlinear analysis, Springer
(Berlin, 1993).

[4] A. R. Barron, Entropy and the central limit theorem, Ann. Probab., 14(1) (1986),
336–342.

[5] A. R. Barron and O. Johnson, Fisher information inequalities and the central limit
theorem, submitted for publication, Probab. Theory Relat. Fields, 129 (2004), 391–
409.



Information Theory at the Service of Science 205

[6] F. Bellini and M. Frittelli, On the existence of minimax martingale measures,
Mathematical Finance, 12 (2002), 1–21.

[7] L. M. Bregman, The relaxation method of finding the common point of convex
sets and its application to the solution of problems in convex programming, USSR
Comput. Math. and Math. Phys., 7 (1967), 200–217. Translated from Russian.

[8] M. Broom, Using game theory to model the evolution of information: An illustrative
game, Entropy, 4 (2002), 35–46. Online at http://www.unibas.ch/mdpi/entropy/.
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[27] P. Harremoës, Binomial and Poisson distributions as maximum entropy distribu-
tions. IEEE Trans. Inform. Theory, 47(5) (July 2001), 2039–2041.

[28] P. Harremoës, The Information Topology, in: Proceedings IEEE International Sym-
posium on Information Theory, IEEE (2002), p. 431.
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Analysis of Sorting Algorithms by
Kolmogorov Complexity

(A Survey)

PAUL VITÁNYI∗

Recently, many results on the computational complexity of sorting algorithms
were obtained using Kolmogorov complexity (the incompressibility method). Es-
pecially, the usually hard average-case analysis is ammenable to this method.
Here we survey such results about Bubblesort, Heapsort, Shellsort, Dobosiewicz-
sort, Shakersort, and sorting with stacks and queues in sequential or parallel
mode. Especially in the case of Shellsort the uses of Kolmogorov complexity sur-
prisingly easily resolved problems that had stayed open for a long time despite
strenuous attacks.

1. Introduction

We survey recent results in the analysis of sorting algorithms using a new
technical tool: the incompressibility method based on Kolmogorov complex-
ity. Complementing approaches such as the counting method and the prob-
abilistic method, the new method is especially suited for the average-case
analysis of algorithms and machine models, whereas average-case analysis is
usually more difficult than worst-case analysis using the traditional meth-
ods. Obviously, the results described can be obtained using other proof
methods – all true provable statements must be provable from the axioms
of mathematics by the inference methods of mathematics. The question is
whether a particular proof method facilitates and guides the proving effort.
The following examples make clear that thinking in terms of coding and the

∗Supported in part via NeuroCOLT II ESPRIT Working Group.
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incompressibility method suggests simple proofs that resolve long-standing
open problems. A survey of the use of the incompressibility method in com-
binatorics, computational complexity, and the analysis of algorithms is [16]
Chapter 6, and other recent work is [2, 15].

We give some definitions to establish notation. For introduction, details,
and proofs, see [16]. We write string to mean a finite binary string. Other
finite objects can be encoded into strings in natural ways. The set of strings
is denoted by {0, 1}∗. Let x, y, z ∈ N , where N denotes the set of natural
numbers. Identify N and {0, 1}∗ according to the correspondence

(0, ε), (1, 0), (2, 1), (3, 00), (4, 01), . . . .

Here ε denotes the empty word with no letters. The length of x is the
number of bits in the binary string x and is denoted by l(x). For example,
l(010) = 3 and l(ε) = 0. The emphasis is on binary sequences only for
convenience; observations in every alphabet can be so encoded in a way
that is ‘theory neutral.’

Self-delimiting Codes: A binary string y is a proper prefix of a binary
string x if we can write x = yz for z = ε. A set {x, y, . . .} ⊆ {0, 1}∗ is prefix-
free if for every pair of distinct elements in the set neither is a proper prefix
of the other. A prefix-free set is also called a prefix code. Each binary string
x = x1x2 . . . xn has a special type of prefix code, called a self-delimiting
code,

x̄ = 1n0x1x2 . . . xn.

This code is self-delimiting because we can effectively determine where the
code word x̄ ends by reading it from left to right without backing up. Using
this code we define the standard self-delimiting code for x to be x′ = l(x)x.
It is easy to check that l(x̄) = 2n + 1 and l(x′) = n + 2 log n + 1.

Let 〈·, ·〉 be a standard one-one mapping from N ×N to N , for technical
reasons chosen such that l

(
〈x, y〉

)
= l(y) + l(x) + 2l

(
l(x)

)
+ 1, for example

〈x, y〉 = x′y = 1l(l(x))0l(x)xy.

Kolmogorov Complexity: Informally, the Kolmogorov complexity, or al-
gorithmic entropy, C(x) of a string x is the length (number of bits) of a
shortest binary program (string) to compute x on a fixed reference univer-
sal computer (such as a particular universal Turing machine). Intuitively,
C(x) represents the minimal amount of information required to generate
x by any effective process, [10]. The conditional Kolmogorov complexity
C(x | y) of x relative to y is defined similarly as the length of a shortest
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program to compute x, if y is furnished as an auxiliary input to the com-
putation. The functions C(·) and C(· | ·), though defined in terms of a
particular machine model, are machine-independent up to an additive con-
stant (depending on the particular enumeration of Turing machines and
the particular reference universal Turing machine selected). They acquire
an asymptotically universal and absolute character through Church’s the-
sis, and from the ability of universal machines to simulate one another and
execute any effective process, see for example [16]. Formally:

Definition 1. Let T0, T1, . . . be a standard enumeration of all Turing ma-
chines. Choose a universal Turing machine U that expresses its universality
in the following manner:

U(
〈
〈i, p〉, y

〉
) = Ti

(
〈p, y〉

)
for all i and 〈p, y〉, where p denotes a Turing program for Ti and y an
auxiliary input. We fix U as our reference universal computer and define
the conditional Kolmogorov complexity of x given y by

C(x | y) = min
q∈{0,1}∗

{l(q) : U
(
〈q, y〉

)
= x},

for every q (for example q = 〈i, p〉 above) and auxiliary input y. The
unconditional Kolmogorov complexity of x is defined by C(x) = C(x | ε).
For convenience we write C(x, y) for C

(
〈x, y〉

)
, and C(x | y, z) for C

(
x |

〈y, z〉
)
.

Incompressibility: First we show that the Kolmogorov complexity of
a string cannot be significantly more than its length. Since there is a
Turing machine, say Ti, that computes the identity function Ti(x) ≡ x,
and by definition of universality of U we have U

(
〈i, p〉

)
= Ti(p). Hence,

C(x) ≤ l(x) + c for fixed c ≤ 2 log i + 1 and all x. 1 2

It is easy to see that there are also strings that can be described by
programs much shorter than themselves. For instance, the function defined
by f(1) = 2 and f(i) = 2f(i−1) for i > 1 grows very fast, f(k) is a “stack”
of k twos. It is clear that for every k it is the case that f(k) has complexity
at most C(k) + O(1).

1“2 log i” and not “log i” since we need to encode i in such a way that U can determine
the end of the encoding. One way to do that is to use the code 1l(l(i))0l(i)i which has
length 2l(l(i)) + l(i) + 1 < 2 log i bits.

2In what follows, “log” denotes the binary logarithm. “�r�” is the greatest integer q
such that q ≤ r.
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What about incompressibility? For every n there are 2n binary strings
of lengths n, but only

∑n−1
i=0 2i = 2n−1 descriptions in binary string format

of lengths less than n. Therefore, there is at least one binary string x of
length n such that C(x) ≥ n. We call such strings incompressible. The
same argument holds for conditional complexity: since for every length n
there are at most 2n − 1 binary programs of lengths < n, for every binary
string y there is a binary string x of length n such that C(x | y) ≥ n.
Strings that are incompressible are patternless, since a pattern could be used
to reduce the description length. Intuitively, we think of such patternless
sequences as being random, and we use “random sequence” synonymously
with “incompressible sequence.” There is also a formal justification for
this equivalence, which does not need to concern us here. Since there are
few short programs, there can be only few objects of low complexity: the
number of strings of length n that are compressible by at most δ bits is at
least 2n − 2n−δ + 1.

Lemma 1. Let δ be a positive integer. For every fixed y, every set S of
cardinality m has at least m

(
1 − 2−δ

)
+ 1 elements x with C(x | y) ≥

�log m� − δ.

Proof. There are N =
∑n−1

i=0 2i = 2n − 1 binary strings of length less than
n. A fortiori there are at most N elements of S that can be computed by
binary programs of length less than n, given y. This implies that at least
m−N elements of S cannot be computed by binary programs of length less
than n, given y. Substituting n by �log m� − δ together with Definition 1
yields the lemma.

Lemma 2. If A is a set, then for every y every element x ∈ A has complexity
C(x | A, y) ≤ log |A|+ O(1).

Proof. A string x ∈ A can be described by first describing A in O(1) bits
and then giving the index of x in the enumeration order of A.

As an example, set S =
{

x : l(x) = n
}

. Then is |S| = 2n. Since
C(x) ≤ n + c for some fixed c and all x in S, Lemma 1 demonstrates that
this trivial estimate is quite sharp. If we are given S as an explicit table then
we can simply enumerate its elements (in, say, lexicographical order) using a
fixed program not depending on S or y. Such a fixed program can be given
in O(1) bits. Hence the complexity satisfies C(x | S, y) ≤ log |S|+ O(1).
Incompressibility Method: In a typical proof using the incompressibility
method, one first chooses an incompressible object from the class under
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discussion. The argument invariably says that if a desired property does not
hold, then in contrast with the assumption, the object can be compressed
significantly. This yields the required contradiction. Since most objects are
almost incompressible, the desired property usually also holds for almost
all objects, and hence on average. Below, we demonstrate the utility of the
incompressibility method to obtain simple and elegant proofs.

Average-case Complexity: For many algorithms, it is difficult to analyze
the average-case complexity. Generally speaking, the difficulty comes from
the fact that one has to analyze the time complexity for all inputs of a
given length and then compute the average. This is a difficult task. Using
the incompressibility method, we choose just one input – a representative
input. Via Kolmogorov complexity, we can show that the time complexity of
this input is in fact the average-case complexity of all inputs of this length.
Constructing such a “representative input” is impossible, but we know it
exists and this is sufficient.

In average-case analysis, the incompressibility method has an advantage
over a probabilistic approach. In the latter approach, one deals with ex-
pectations or variances over some ensemble of objects. Using Kolmogorov
complexity, we can reason about an incompressible individual object. Be-
cause it is incompressible it has all simple statistical properties with cer-
tainty, rather than having them hold with some (high) probability as in a
probabilistic analysis. This fact greatly simplifies the resulting analysis.

2. Bubblesort

A simple introductory example of the application of the incompressibility
method is the average-case analysis of Bubblesort. The classical approach
can be found in [11]. It is well-known that Bubblesort uses Θ(n2) compar-
isons/exchanges on the average. We present a very simple proof of this fact.
The proof is based on the following intuitive idea: There are n! different per-
mutations. Given the sorting process (the insertion paths in the right order)
one can recover the correct permutation from the sorted list. Hence one re-
quires n! pairwise different sorting processes. This gives a lower bound on
the minimum of the maximal length of a process. We formulate the proof
in the crisp format of incompressibility. In Bubblesort we make passes from
left to right over the permutation to be sorted and always move the cur-
rently largest element right by exchanges between it and the right-adjacent
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element – if that one is smaller. We make at most n− 1 passes, since after
moving all but one element in the correct place the single remaining ele-
ment must be also in its correct place (it takes two elements to be wrongly
placed). The total number of exchanges is obviously at most n2, so we only
need to consider the lower bound. Let B be a Bubblesort algorithm. For a
permutation π of the elements 1, . . . , n, we can describe the total number
of exchanges by M :=

∑n−1
i=1 mi where mi is the initial distance of element

n − i to its final position. Note that in every pass more than one element
may “bubble” right but that means simply that in the future passes of the
sorting process an equal number of exchanges will be saved for the element
to reach its final position. That is, every element executes a number of
exchanges going right that equals precisely the initial distance between its
start position to its final position. It is clear that M ≤ n2 for all permuta-
tions. Given m1, . . . , mn−1, in that order, we can reconstruct the original
permutation from the final sorted list. Since choosing a elements from a
list of b + a elements divides the remainder in a sequence of a + 1 possibly
empty sublists, there are

B(M) =
(

M + n− 2
n− 2

)

possibilities to partition M into n − 1 ordered non-negative summands.
Therefore, we can describe π by M, n, an index of log B(M) bits to describe
m1, . . . , mn−1 among all partitions of M , and an program P that recon-
structs π from these parameters and the final sorted list 1, . . . , n. Consider
permutations π satisfying C

(
π | n,B(M), P

)
≥ log n! − log n. Then by

Lemma 2 at least a (1 − 1/n)th fraction of all permutations of n elements
have that high complexity. Under this complexity condition on π, we also
have M ≥ n. (If M < n then C

(
π | n,B(M), P

)
= O(n).) Since the de-

scription of π we have constructed is effective, its length must be at least
C(π | n, B, P ). Encoding M self-delimiting, in order to be able to separate
M from B(M) in a concatenation of the binary descriptions, we therefore
find log M +2 log log M +log B(M) ≥ n log n−O(log n). Substitute a good
estimate for log B(M) (the formula used later in the Shellsort example,
Section 4) divide by n, and discard the terms that vanish with n, assum-
ing 2 < n ≤ M ≤ n2, yields log

(
1 + M/(n − 2)

)
≥ log n + O(1). By

the above, this holds for at least an (1 − 1/n)th fraction of all permuta-
tions, and hence gives us an Ω(n2) lower bound on the expected number of
comparisons/exchanges.



Analysis of Sorting Algorithms by Kolmogorov Complexity 215

3. Heapsort

Heapsort is a widely used sorting algorithm. One reason for its prominence
is that its running time is guaranteed to be of order n log n, and it does not
require extra memory space. The method was first discovered by J. W. J.
Williams, [29], and subsequently improved by R. W. Floyd [4] (see [11]).
Only recently has one succeeded in giving a precise analysis of its average-
case performance [23]. I. Munro has suggested a remarkably simple solution
using incompressibility [18] initially reported in [16].

A “heap” can be visualized as a complete directed binary tree with
possibly some rightmost nodes being removed from the deepest level. The
tree has n nodes, each of which is labeled with a different key, taken from
a linearly ordered domain. The largest key k1 is at the root (on top of the
heap), and each other node is labeled with a key that is less than the key
of its father.

Definition 2. Let keys be elements of N . An array of keys k1, . . . , kn is a
heap if they are partially ordered such that

kj/2� ≥ kj for 1 ≤ �j/2� < j ≤ n.

Thus, k1 ≥ k2, k1 ≥ k3, k2 ≥ k4, and so on. We consider “in place”
sorting of n keys in an array A[1 . . . n] without use of additional memory.
Heapsort {Initially, A[1 . . . n] contains n keys. After sorting is completed,

the keys in A will be ordered as A[1] < A[2] < · · · < A[n].}
Heapify: {Regard A as a tree: the root is in A[1]; the two sons of A[i] are

at A[2i] and A[2i+1], when 2i, 2i+1 ≤ n. We convert the tree in A to
a heap.} Repeat for i = �n/2�, �n/2�−1, . . . , 1: {the subtree rooted
at A[i] is now almost a heap except for A[i]} push the key, say k, at
A[i] down the tree (determine which of the two sons of A[i] possesses
the greatest key, say k′ in son A[2i+ j] with j equals 0 or 1); if k′ > k
then put k in A[2i+j] and repeat this process pushing k′ at A[2i+j]
down the tree until the process reaches a node that does not have a
son whose key is greater than the key now at the father node.

Sort: Repeat for i = n, n − 1, . . . , 2: {A[1 . . . i] contains the remaining
heap and A[i + 1 . . . n] contains the already sorted list ki+1, . . . , kn of
largest elements. By definition, the element on top of the heap in A[1]
must be ki.} switch the key ki in A[1] with the key k in A[i], extending
the sorted list to A[i . . . n]. Rearrange A[1 . . . i− 1] to a heap with the
largest element at A[1].
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It is well known that the Heapify step can be performed in O(n) time.
It is also known that the Sort step takes no more than O(n log n) time. We
analyze the precise average-case complexity of the Sort step. There are two
ways of rearranging the heap: Williams’s method and Floyd’s method.

Williams’s Method: {Initially, A[1] = k.}
Repeat compare the keys of k’s two direct descendants; if m is the larger

of the two then compare k and m; if k < m then switch k and m in
A[1 . . . i− 1] until k ≥ m.

Floyd’s Method: {Initially, A[1] is empty.} Set j := 1;

while A[j] is not a leaf do:
if A[2j] > A[2j + 1] then j := 2j
else j := 2j + 1;

while k > A[j] do:
{back up the tree until the correct position for k} j := �j/2�;

move keys of A[j] and each of its ancestors one node upwards;
Set A[j] := k.

The difference between the two methods is as follows. Williams’s method
goes from the root at the top down the heap. It makes two comparisons with
the son nodes and one data movement at each step until the key k reaches
its final position. Floyd’s method first goes from the root at the top down
the heap to a leaf, making only one comparison each step. Subsequently,
it goes from the bottom of the heap up the tree, making one comparison
each step, until it finds the final position for key k. Then it moves the keys,
shifting every ancestor of k one step up the tree. The final positions in
the two methods are the same; therefore both algorithms make the same
number of key movements. Note that in the last step of Floyd’s algorithm,
one needs to move the keys carefully upward the tree, avoiding swaps that
would double the number of moves.

The heap is of height log n. If Williams’s method uses 2d comparisons,
then Floyd’s method uses d + 2δ comparisons, where δ = log n − d. Intu-
itively, δ is generally very small, since most elements tend to be near the
bottom of the heap. This makes it likely that Floyd’s method performs bet-
ter than Williams’s method. We analyze whether this is the case. Assume
a uniform probability distribution over the lists of n keys, so that all input
lists are equally likely.

Average-case analysis in the traditional manner suffers from the problem
that, starting from a uniform distribution on the lists, it is difficult to



Analysis of Sorting Algorithms by Kolmogorov Complexity 217

compute the distribution on the resulting initial heaps, and increasingly
more difficult to compute the distributions on the sequence of decreasing-
size heaps after subsequent heapsort steps. The sequence of distributions
seem somehow realated, but this is hard to express and exploit in the
traditional approach. In contrast, using Kolmogorov complexity we express
this similarity without having to be precise about the distributions.

Theorem 1. On average (uniform distribution), Heapsort makes n log n +
O(n) data movements. Williams’s method makes 2n log n − O(n) compar-
isons on average. Floyd’s method makes n log n + O(n) comparisons on
average.

Proof. Given n keys, there are n! (≈ nne−n
√

2πn by Stirling’s formula)
permutations. Hence we can choose a permutation p of n keys such that

(1) C(p | n) ≥ n log n− 2n,

justified by Theorem 1, page 212. In fact, most permutations satisfy Equa-
tion 1.

Claim 1. Let h be the heap constructed by the Heapify step with input p
that satisfies Equation 1. Then

(2) C(h | n) ≥ n log n− 6n.

Proof. Assume the contrary, C(h | n) < n log n−6n. Then we show how to
describe p, using h and n, in fewer than n log n−2n bits as follows. We will
encode the Heapify process that constructs h from p. At each loop, when
we push k = A[i] down the subtree, we record the path that key k traveled:
0 indicates a left branch, 1 means a right branch, 2 means halt. In total,
this requires (n log 3)

∑
j j/2j+1 ≤ 2n log 3 bits. Given the final heap h and

the above description of updating paths, we can reverse the procedure of
Heapify and reconstruct p. Hence, C(p | n) < C(h | n)+2n log 3+O(1) <
n log n− 2n, which is a contradiction. (The term 6n above can be reduced
by a more careful encoding and calculation.)

We give a description of h using the history of the n−1 heap rearrange-
ments during the Sort step. We only need to record, for i := n − 1, . . . , 2,
at the (n − i + 1)st round of the Sort step, the final position where A[i] is
inserted into the heap. Both algorithms insert A[i] into the same slot using
the same number of data moves, but a different number of comparisons.
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We encode such a final position by describing the path from the root to
the position. A path can be represented by a sequence s of 0’s and 1’s, with
0 indicating a left branch and 1 indicating a right branch. Each path i is
encoded in self-delimiting form by giving the value δi = log n−l(si) encoded
in self-delimiting binary form, followed by the literal binary sequence si

encoding the actual path. This description requires at most

(3) l(si) + 2 log δi

bits. Concatenate the descriptions of all these paths into sequence H.

Claim 2. We can effectively reconstruct heap h from H and n.

Proof. Assume H is known and the fact that h is a heap on n different
keys. We simulate the Sort step in reverse. Initially, A[1 . . . n] contains a
sorted list with the least element in A[1].

for i := 2, . . . , n− 1 do: {now A[1 . . . i − 1] contains the partially con-
structed heap and A[i . . . n] contains the remaining sorted list with
the least element in A[i]} Put the key of A[i] into A[1], while shifting
every key on the (n− i)th path in H one position down starting from
the root at A[1]. The last key on this path has nowhere to go and is
put in the empty slot in A[i].

termination {Array A[1 . . . n] contains heap h.}

It follows from Claim 2 that C(h | n) ≤ l(H) + O(1). Therefore, by
Equation 2, we have l(H) ≥ n log n− 6n. By the description in Equation 3,
we have

n∑
i=1

(l(si) + 2 log δi) =
n∑

i=1

(
(log n)− δi + 2 log δi

)
≥ n log n− 6n.

It follows that
∑n

i=1(δi − 2 log δi) ≤ 6n. This is only possible if
∑n

i=1 δi =
O(n). Therefore, the average path length is at least log n− c, for some fixed
constant c. In each round of the Sort step the path length equals the number
of data moves. The combined total path length is at least n log n− nc.

It follows that starting with heap h, Heapsort performs at least n log n−
O(n) data moves. Trivially, the number of data moves is at most n log n.
Together this shows that Williams’s method makes 2n log n − O(n) key
comparisons, and Floyd’s method makes n log n + O(n) key comparisons.
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Since most permutations are Kolmogorov random, these bounds for one
random permutation p also hold for all permutations on average. But we
can make a stronger statement. We have taken C(p | n) at least εn below
the possible maximum, for some constant ε > 0. Hence, a fraction of at
least 1− 2−εn of all permutations on n keys will satisfy the above bounds.

4. Shellsort

The question of a nontrivial general lower bound (or upper bound) on the
average complexity of Shellsort (due to D. L. Shell [26]) has been open for
about four decades [11, 25], and only recently such a general lower bound was
obtained. The original proof using Kolmogorov complexity [12] is presented
here. Later, it turned out that the argument can be translated to a counting
argument [13]. It is instructive that thinking in terms of code length and
Kolmogorov complexity enabled advances in this problem.

Shellsort sorts a list of n elements in p passes using a sequence of
increments h1, . . . , hp. In the kth pass the main list is divided in hk separate
sublists of length �n/hk�, where the ith sublist consists of the elements
at positions j, where j mod hk = i − 1, of the main list (i = 1, . . . , hk).
Every sublist is sorted using a straightforward insertion sort. The efficiency
of the method is governed by the number of passes p and the selected
increment sequence h1, . . . , hp with hp = 1 to ensure sortedness of the
final list. The original log n-pass3 increment sequence �n/2�, �n/4�, . . . , 1
of Shell [26] uses worst case Θ(n2) time, but Papernov and Stasevitch [19]
showed that another related sequence uses O(n3/2) and Pratt [22] extended
this to a class of all nearly geometric increment sequences and proved this
bound was tight. The currently best asymptotic method was found by
Pratt [22]. It uses all log2 n increments of the form 2i3j < �n/2� to obtain
time O(n log2 n) in the worst case. Moreover, since every pass takes at
least n steps, the average complexity using Pratt’s increment sequence is
Θ(n log2 n). Incerpi and Sedgewick [5] constructed a family of increment
sequences for which Shellsort runs in O(n1+ε/

√
log n ) time using (8/ε2) log n

passes, for every ε > 0. B. Chazelle (attribution in [24]) obtained the same
result by generalizing Pratt’s method: instead of using 2 and 3 to construct

3“log” denotes the binary logarithm and “ln” denotes the natural logarithm.
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the increment sequence use a and (a+1) to obtain a worst-case running time
of n log2 n(a2/ ln2 a) which is O(n1+ε/

√
log n ) for ln2 a = O(log n). Poonen

[20], and Plaxton, Poonen and Suel [21], demonstrated an Ω(n1+ε/
√

p )
lower bound for p passes of Shellsort using any increment sequence, for
some ε > 0; taking p = Ω(log n) shows that the Incerpi–Sedgewick /
Chazelle bounds are optimal for small p and taking p slightly larger shows
a Θ

(
n log2 n/(log log n)2

)
lower bound on the worst-case complexity of

Shellsort. For the average-case running time Knuth [11] showed Θ(n5/3)
for the best choice of increments in p = 2 passes; Yao [30] analyzed the
average-case for p = 3 but did not obtain a simple analytic form; Yao’s
analysis was improved by Janson and Knuth [7] who showed O

(
n23/15

)
average-case running time for a particular choice of increments in p = 3
passes. Apart from this no nontrivial results are known for the average-
case; see [11, 24, 25]. In [12, 13] a general Ω(pn1+1/p) lower bound was
obtained on the average-case running time of p-pass Shellsort under uniform
distribution of input permutations, for every 1 ≤ p ≤ n/2.4 This is the first
advance on the problem of determining general nontrivial bounds on the
average-case running time of Shellsort [22, 11, 30, 5, 21, 24, 25].

A Shellsort computation consists of a sequence of comparison and in-
version (swapping) operations. In this analysis of the average-case lower
bound we count just the total number of data movements (here inversions)
executed. The same bound holds a fortiori for the number of comparisons.

Theorem 2. The average number of comparisons (and also inversions for
p = o(log n)) in p-pass Shellsort on lists of n keys is at least Ω

(
pn1+1/p

)
for every increment sequence. The average is taken with all lists of n items
equally likely (uniform distribution).

Proof. Let the list to be sorted consist of a permutation π of the elements
1, . . . , n. Consider a (h1, . . . , hp) Shellsort algorithm A where hk is the
increment in the kth pass and hp = 1. For every 1 ≤ i ≤ n and 1 ≤ k ≤ p,
let mi,k be the number of elements in the hk-increment sublist, containing
element i, that are to the left of i at the beginning of pass k and are larger
than i. Observe that

∑n
i=1 mi,k is the number of inversions in the initial

permutation of pass k, and that the insertion sort in pass k requires precisely

4The trivial lower bound is Ω(pn) comparisons since every element needs to be com-
pared at least once in every pass.
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∑n
i=1(mi,k + 1) comparisons. Let M denote the total number of inversions:

(4) M :=
p∑

k=1

n∑
i=1

mi,k.

Claim 3. Given all the mi,k’s in an appropriate fixed order, we can recon-
struct the original permutation π.

Proof. In general, given the mi,k’s and the final permutation of pass k, we
can reconstruct the initial permutation of pass k.

Let M as in (4) be a fixed number. There are n! permutations of n
elements. Let permutation π be an incompressible permutation having
Kolmogorov complexity

(5) C(π | n, A, P ) ≥ log n!− log n,

where P is the decoding program in the following discussion. There exist
many such permutations by lemma 1. Clearly, there is a fixed program
that on input A,P, n reconstructs π from the description of the mi,k’s as in
Claim 3. Therefore, the minimum length of the latter description, including
a fixed program in O(1) bits, must exceed the complexity of π:

(6) C(m1,1, . . . , mn,p | n,A, P ) + O(1) ≥ C(π | n,A, P ).

An M as defined by (4) such that every division of M in mi,k’s contradicts
(6) would be a lower bound on the number of inversions performed. Similar
to the reasoning Bubblesort example, Section 2, there are

(7) D(M) :=
(

M + np− 1
np− 1

)

distinct divisions of M into np ordered nonnegative integral summands
mi,k’s. Every division can be indicated by its index j in an enumeration
of these divisions. This is both obvious and an application of lemma 2.
Therefore, a description of M followed by a description of j effectively
describes the mi,k’s. Fix P as the program for the reference universal
machine that reconstructs the ordered list of mi,k’s from this description.
The binary length of this two-part description must by definition exceed the
Kolmogorov complexity of the described object.
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A minor complication is that we cannot simply concatenate two binary
description parts: the result is a binary string without delimiter to indicate
where one substring ends and the other one begins. Encoding the M part
of the description self-delimitingly we obtain:

log D(M) + log M + 2 log log M + 1 ≥ C(m1,1, . . . , mn,p | n, A, P ).

We know that M ≤ pn2 since every mi,k ≤ n. We can assume5 p < n.
Together with (5) and (6), we have

(8) log D(M) ≥ log n!− 4 log n− 2 log log n−O(1).

Estimate log D(M) by 6

log
(

M + np− 1
np− 1

)
= (np− 1) log

M + np− 1
np− 1

+ M log
M + np− 1

M

+
1
2

log
M + np− 1
(np− 1)M

+ O(1).

The second term in the right-hand side equals7

log
(

1 +
np− 1

M

)M

< log enp−1

for all positive M and np− 1 > 0. Since 0 < p < n and n ≤M ≤ pn2,

1
2(np− 1)

log
M + np− 1
(np− 1)M

→ 0

for n→∞. Therefore, log D(M) is majorized asymptotically by

(np− 1)
(

log
(

M

np− 1
+ 1

)
+ log e

)
5Otherwise we require at least n2 comparisons.
6Use the following formula ([16], p. 10),

log

(
a

b

)
= b log

a

b
+ (a − b) log

a

a − b
+

1

2
log

a

b(a − b)
+ O(1).

7Use ea >
(
1 + a

b

)b
for all a > 0 and positive integer b.
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for n → ∞. Since the righthand-side of (8) is asymptotic to n log n for
n→∞, this yields

M = Ω(pn1+1/p),

for p = o(log n). (More precisely, M = Ω(pn1+(1−ε)/p) for p ≤ (ε/ log e) log n
(0 < ε < 1), see [13].) That is, the running time of the algorithm is as
stated in the theorem for every permutation π satisfying satisfying (5). By
lemma 1 at least a (1−1/n)-fraction of all permutations π require that high
complexity. Then the following is a lower bound on the expected number
of inversions of the sorting procedure:(

1− 1
n

)
Ω
(
pn1+1/p

)
+

1
n

Ω(0) = Ω
(
pn1+1/p

)
,

for p = o(log n). For p = Ω(log n), the lower bound on the number of
comparisons is trivially pn = Ω

(
pn1+1/p

)
. This gives us the theorem.

Our lower bound on the average-case can be compared with the Plaxton–
Poonen–Suel Ω(n1+ε/

√
p ) worst case lower bound [21]. Some special cases

of the lower bound on the average-case complexity are:
1. For p = 1 our lower bound is asymptotically tight: it is the average

number of inversions for Insertion Sort.
2. For p = 2, Shellsort requires Ω(n3/2) inversions (the tight bound is

known to be Θ(n5/3) [11]);
3. For p = 3, Shellsort requires Ω(n4/3) inversions (the best known upper

bound is O(n23/15) in [7]);
4. For p = log n/ log log n, Shellsort requires Ω(n log2 n/ log log n) inver-

sions;
5. For p = log n, Shellsort requires Ω(n log n) comparisons on average.

This is of course the lower bound of average number of comparisons
for every sorting algorithm.

6. In general, for n/2 > p = p(n) > log n, Shellsort requires Ω
(
n · p(n)

)
comparisons (since every pass trivially makes n comparisons).

In [25] it is mentioned that the existence of an increment sequence
yielding an average O(n log n) Shellsort has been open for 30 years. The
above lower bound on the average shows that the number p of passes of
such an increment sequence (if it exists) is precisely p = Θ(log n); all the
other possibilities are ruled out: Is there an increment sequence for log n-
pass Shellsort so that it runs in average-case Θ(n log n)? Can we tighten
the average-case lower bound for Shellsort? The above bound is known to
be not tight for p = 2 passes.
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5. Dobosiewicz Sort and Shakersort

We look at some variants of Shellsort. Knuth [11], 1st Edition Exercise
5.2.1.40 on page 105, and Dobosiewicz [3] proposed to use only one pass
of Bubblesort on each subsequence instead of sorting the subsequences at
each stage. Incerpi and Sedgewick [6] used two passes of Bubblesort in each
stage, one going left-to-right and the other going right-to-left. This is called
Shakersort since it reminds one of shaking a cocktail. In both cases the
sequence may stay unsorted, even if the last increment is 1. A final phase,
a straight insertion sort, is required to guaranty a fully sorted list. Until
recently, these variants have not been seriously analyzed; in [3, 6, 28, 24]
mainly empirical evidence is reported, giving evidence of good running times
(comparable to Shellsort) on randomly generated input key sequences of
moderate length. The evidence also suggests that the worst-case running
time may be quadratic. Again, let n be the number of keys to be sorted
and let p be the number of passes. The Ω(n1+c/

√
p) worst-case lower bound

of Poonen [20] holds apart from Shellsort also for the variants of it. We also
have a worst-case lower bound of Ω(n2) on Dobosiewicz sort and Shaker
sort for the special case of almost geometric sequences of increments. But
recently Brejova [1] proved that Shaker sort runs in O(n3/2 log3 n) worst-case
time for a certain sequence of increments (the first non-quadratic worst-case
upper bound). Using the incompressibility method, she also proved lower
bounds on the average-case running times.

Theorem 3. There is an Ω(n2/4p) lower bound on the average-case running
time of Shaker sort, and a Ω(n2/2p) lower bound on the average-case running
time of Dobosiewicz sort. The avereges are taken with respect to the uniform
distribution.

Remark 1. These lower bounds (on the average-case) are better than the
Poonen [20] lower bounds of Ω(n1+c/

√
p ) on the worst-case.

Proof. Consider Dobosiewicz sorting algorithm A (the description of A
includes the number of passes p and the list of increments h1, . . . , hp). Every
comparison based sorting algorithm uses Ω(n log n) comparisons on average.
If p > log n − log log n then the claimed lower bound trivially holds. So
we can assume that p ≤ log n − log log n. Let π be the permutation of
{0, 1, . . . , n−1} to be sorted, and let π′ be the permutation remaining after
all p stages of the Dobsiewicz sort, but before the final insertion sort. If X
is the number of inversions in π′ then the final insertion sort takes Ω(X)
time.
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Claim 4. Let π be a permutation satisfying (5). Then X = Ω(n2/2p).

Proof. We can reconstruct π from π′ given p strings of lengths n defined
as follows: The jth bit of the ith string is “1” if xj was interchanged with
xj−hi

in the ith phase of the algorithm (hi is the ith increment), and “0”
otherwise. Given π′ and these strings in appropriate order we can simply
run the p sorting phases in reverse.

Furthermore, π′ can be reconstructed from its inversion table a0, a2, . . . ,
an−1, where ai is the number of elements in list π′ left of the ith position that
are greater than the element in the ith position. Thus,

∑
i ai = X. There are

D(X) =
(
X+n−1

n−1

)
ordered partitions of X into n non-negative summands.

Hence, π′ can be reconstructed from X and an index of log D(X) bits
identifying the partition in question. Given n, we encode X self-delimiting
to obtain a total description of log X + 2 log log X + log D(X) bits.

Therefore, with P the reconstruction program, we have shown that

C(π | n,A, P ) ≤ np + log X + 2 log log X + log D(X).

Estimating asymptotically, similar to the part following (8),

log D(X) ≤ (n− 1) log
(

X

n− 1
+ 1

)
+ O(n).

Since π satisfies (5), we have np+(n−1) log ( X
n−1+1)+O(n) ≥ n log n−Θ(n).

Hence, X ≥ n2/(2p)Θ(1) = Ω(n2/2p), where the last equality holds since
p ≤ log n− log log n and hence n2/2p ≥ n log n.

By Lemma 1 at least a (1− 1/n)-fraction of all permutations π require
that high complexity. This shows that the running time of the Dobosiewicz
sort is as stated in the theorem. The lower bound on Shaker sort has a very
similar proof, with the proviso that we require 2n bits to encode one pass of
the algorithm rather than n bits. This results in the claimed lower bound
of Ω(n2/4p) (which is nan-vacuous only for for p ≤ 1

2(log n− log log n)).
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6. Sorting with queues and stacks

Knuth [11] and Tarjan [27] have studied the problem of sorting using a
network of queues or stacks. The main variant of the problem is as follows:
Given that the stacks or queues are arranged sequentially as shown in
Figure 1, or in parallel as shown in Figure 2. Question: how many stacks or
queues are needed to sort n elements with comparisons only? We assume
that the input sequence is scanned from left to right, and the elements follow
the arrows to go to the next stack or queue or output. In [12, 14] only the
average-case analyses of the above two main variants was given, although
the technique applies more in general to arbitrary acyclic networks of stacks
and queues as studied in [27].

Fig. 1. Six stacks/queues arranged in sequential order

Fig. 2. Six stacks/queues arranged in parallel order

6.1. Sorting with sequential stacks

The sequential stack sorting problem is given in [11] exercise 5.2.4–20. We
have k stacks numbered S0, . . . , Sk−1. The input is a permutation π of the
elements 1, . . . , n. Initially we push the elements of π on S0, at most one at
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a time, in the order in which they appear in π. At every step we can pop a
stack (the popped elements will move left in Figure 1) or push an incoming
element on a stack. The question is how many stack are needed for sorting
π. It is known that k = log n stacks suffice, and 1

2 log n stacks are necessary
in the worst-case [11, 27]. Here we prove that the same lower bound also
holds on the average, using a very simple incompressibility argument.

Theorem 4. On average (uniform distribution), at least 1
2 log n stacks are

needed for sequential stack sort.

Proof. Fix a random permutation π such that

C(π | n, P ) ≥ log n!− log n = n log n−O(n),

where P is an encoding program to be specified in the following.
Assume that k stacks are sufficient to sort π. We now encode such a

sorting process. For every stack, exactly n elements pass through it. Hence
we need perform precisely n pushes and n pops on every stack. Encode a
push as 0 and a pop as 1. It is easy to prove that different permutations
must have different push/pop sequences on at least one stack. Thus with
2kn bits, we can completely specify the input permutation π. Then, as
before,

2kn ≥ log n!− log n = n log n−O(n).

Therefore, we have k ≥ 1
2 log n−O(1) for the random permutation π.

Since most (a (1−1/n)th fraction) permutations are incompressible, we
calculate the average-case lower bound as:

1
2

log n · n− 1
n

+ 1 · 1
n
≈ 1

2
log n.

6.2. Sorting with parallel stacks

Clearly, the input sequence 2, 3, 4, . . . , n, 1 requires n − 1 parallel stacks
to sort. Hence the worst-case complexity of sorting with parallel stacks, as
shown in Figure 2, is n−1. However, most sequences do not need this many
stacks to sort in a parallel arrangement. The next two theorems show that
on average, Θ

(√
n
)

stacks are both necessary and sufficient. Observe that
the result is actually implied by the connection between sorting with parallel
stacks and longest increasing subsequences in [27], and the bounds on the
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length of longest increasing subsequences of random permutations given in
[9, 17, 8]. However, the proofs in [9, 17, 8] use deep results from probability
theory (such as Kingman’s ergodic theorem) and are quite sophisticated.
Here we give simple proofs using incompressibility arguments.

Theorem 5. On average (uniform distribution), the number of parallel
stacks needed to sort n elements is O

(√
n
)
.

Proof. Consider an incompressible permutation π satisfying

(9) C(π | n) ≥ log n!− log n.

We use the following trivial algorithm (described in [27]), to sort π with
stacks in the parallel arrangement shown in Figure 2. Assume that the
stacks are S0, S1, . . ., and the input sequence is denoted as x1, . . . , xn.

Algorithm Parallel-Stack-Sort

1. For i = 1 to n do

Scan the stacks from left to right, and push xi on the the first stack
Sj whose top element is larger than xi. If such a stack doesn’t
exist, put xi on the first empty stack.

2. Pop the stacks in the ascending order of their top elements.

We claim that algorithm Parallel-Stack-Sort uses O
(√

n
)

stacks on the
permutation π. First, we observe that if the algorithm uses m stacks on π
then we can identify an increasing subsequence of π of length m as in [27].
This can be done by a trivial backtracking starting from the top element of
the last stack. Then we argue that π cannot have an increasing subsequence
of length longer than e

√
n, where e is the natural constant, since it is

compressible by at most log n bits.

Suppose that σ is a longest increasing subsequence of π and m = |σ| is
the length of σ. Then we can encode π by specifying:

1. a description of this encoding scheme in O(1) bits;

2. the number m in log m bits;

3. the combination σ in log
(

n
m

)
bits;

4. the locations of the elements of σ in π in at most log
(

n
m

)
bits; and

5. the remaining π with the elements of σ deleted in log(n−m)! bits.
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This takes a total of

log(n−m)! + 2 log
n!

m!(n−m)!
+ log m + O(1) + 2 log log m

bits, where the last log log m term serves to self-delimitingly encode m.
Using Stirling’s approximation, and the fact that

√
n ≤ m = o(n), the

above expression is upper bounded by:

log n! + log
(n/e)n

(m/e)2m((n−m)/e
)n−m + O(log n)

≈ log n! + m log
n

m2
+ (n−m) log

n

n−m
+ m log e + O(log n)

≈ log n! + m log
n

m2
+ 2m log e + O(log n)

This description length must exceed the complexity of the permutation
which is lower-bounded in (9). Therefore, approximately m ≤ e

√
n, and

hence m = O
(√

n
)
. Hence, the average complexity of Parallel-Stack-Sort

is
O
(√

n
)
· n− 1

n
+ n · 1

n
= O

(√
n
)
.

Theorem 6. On average (uniform distribution), the number of parallel
stacks required to sort a permutation is Ω

(√
n
)
.

Proof. Let A be a sorting algorithm using parallel stacks. Fix a random
permutation π with C(π | n, P ) ≥ log n!− log n, where P is the program to
do the encoding discussed in the following. Suppose that A uses T parallel
stacks to sort π. This sorting process involves a sequence of moves, and
we can encode this sequence of moves by a sequence of instructions of the
types:

• push to stack i,

• pop stack j,

where the element to be pushed is the next unprocessed element from the
input sequence, and the popped element is written as the next output
element. Each of these term requires log T bits. In total, we use precisely
2n terms since every element has to be pushed once and has to be popped
once. Such a sequence is unique for every permutation.
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Thus we have a description of an input sequence in 2n log T bits, which
must exceed C(π | n, P ) ≥ n log n − O(log n). It follows that T ≥

√
n =

Ω
(√

n
)
.

This yields the average-case complexity of A:

Ω
(√

n
)
· n− 1

n
+ 1 · 1

n
= Ω

(√
n
)
.

6.3. Sorting with parallel queues

It is easy to see that sorting cannot be done with a sequence of queues. So
we consider the complexity of sorting with parallel queues. It turns out that
all the result in the previous subsection also hold for queues.

As noticed in [27], the worst-case complexity of sorting with parallel
queues is n, since the input sequence n, n − 1, . . . , 1 requires n queues to
sort. We show in the next two theorems that on average, Θ

(√
n
)

queues are
both necessary and sufficient. Again, the result is implied by the connection
between sorting with parallel queues and longest decreasing subsequences
given in [27] and the bounds in [9, 17, 8] (with sophisticated proofs). Our
proofs are trivial given the proofs in the previous subsection.

Theorem 7. On average (uniform distribution), the number of parallel
queues needed to sort n elements is upper bounded by O

(√
n
)
.

Proof. The proof is very similar to the proof of Theorem 5. We use a
slightly modified greedy algorithm as described in [27]:

Algorithm Parallel-Queue-Sort

1. For i = 1 to n do
Scan the queues from left to right, and append xi on the the first

queue whose rear element is smaller than xi. If such a queue
doesn’t exist, put xi on the first empty queue.

2. Delete the front elements of the queues in the ascending order.

Again, we claim that algorithm Parallel-Queue-Sort uses O
(√

n
)

queues
on every permutation π, that cannot be compressed by more than log n bits.
We first observe that if the algorithm uses m queues on π then a decreasing
subsequence of π of length m can be identified, and we then argue that π
cannot have a decreasing subsequence of length longer than e

√
n, in a way

analogous to the argument in the proof of Theorem 5.



Analysis of Sorting Algorithms by Kolmogorov Complexity 231

Theorem 8. On average (uniform distribution), the number of parallel
queues required to sort a permutation is Ω

(√
n
)
.

Proof. The proof is the same as the one for Theorem 6 except that we
should replace “push” with “enqueue” and “pop” with “dequeue”.
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Recognition Problems in Combinatorial Search

GÁBOR WIENER∗

We survey some recent results concerning recognition problems. Recognition
problems are special combinatorial search problems, where we need not find the
hidden element x itself, just compute the value f(x) for a given function f . We
mainly use the approaches of classical search theory and two-party deterministic
communication complexity.

1. Introduction

The classical problem of search theory is to find a hidden element x ∈ H
by asking as few questions of type “is x ∈ A?” as possible, where S is a
finite underlying set and R is an arbitrary set system on S. The recognition
problem is somewhat similar: now a function f : H → {0, 1} is also given
and we need not find x itself, just have to compute the value f(x).

Though this model of search arises quite naturally, it is rarely treated
in full generality. However, some special cases are examined thoroughly.
The most studied special case is the recognition of graph properties. This
case is not examined here, the interested reader is referred to the books by
Bollobás [2], Yap [15], or Aigner [1]. Another special case (as we will see)
is (two-party, deterministic) communication complexity. The relationship
between communication and recognition complexity is treated in [13].

We use the approaches and methods of both “classical” search theory
and communication complexity to solve recognition problems, so it is worth
reviewing the most basic notions and theorems of these topics in a nutshell.
This is the subject of the next section.

∗Research supported in part by OTKA Grants T029255 and T034702.
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The third section contains the basic notions, definitions, and some gen-
eral theorems, while the fourth one analyzes the connection between commu-
nication and recognition complexity by reviewing the so-called generalized
communication model. Further analysis of the communication model can
be found in [13]. In the fifth section some interesting special cases concern-
ing partially ordered sets are treated. Up to this point we are dealing with
adaptive problems, i.e. problems, where the next question may depend on
the answers to the previous ones. In the sixth section the predetermined
recognition problem is studied, where the questions are all fixed beforehand.
The last section is dedicated to the open problems.

2. Preliminaries

2.1. Combinatorial search

For a detailed survey of combinatorial search see the books by Aigner [1]
and Du and Hwang [3] and the papers of Katona [5], [6] and Rényi [12].

Search problems. Let S be a finite, non-empty set, called the search
domain, x ∈ S, and let F be a family of functions on S, called the test
family. We choose a function f1 ∈ F and receive as answer the value f1(x).
With this information we choose again a function f2 ∈ F and get back the
value f2(x), and so on. A successful search algorithmA consists in the choice
of functions f1, f2, f3, . . . ∈ F such that the values f1(x), f2(x), f3(x), . . .
determine x uniquely. We tacitly assume that at least one such sequence
always exists. The pair (S,F) is called a search problem.

Since S is finite, f(S) ⊆ {0, 1, . . . , q − 1}, for every function f ∈ F , for
some q ≥ 2. Now (S,F) is called an (n, q)-problem, where n = |S|. If q = 2,
then we speak of a binary search problem. We focus our attention to binary
problems.

A search algorithm is called adaptive or sequential (or sometimes dy-
namic) if the choice of a function may depend on the values obtained until
then. If all functions are fixed beforehand, then the algorithm is called
non-adaptive or predetermined (or sometimes static). Since predetermined
algorithms are special cases of sequential ones, they take no shorter than
the best sequential one.
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Our aim is to minimize the length of successful algorithms in some sense.
If we simply consider all possibilities for x, then we speak of a worst-case
problem. We may be interested in minimizing the average length given a
certain distribution, this is called an average-case problem. The tests may
have different costs and we may look for algorithms of minimal cost or a
combination of time and cost (so-called trade-off problems). In this paper
we always consider worst-case problems.

Let (S,F) be a search problem and let A = (f1, f2, . . . , fl(x)) be a
successful algorithm. Suppose that

{y | y ∈ S, f1(y) = f1(x), f2(y) = f2(x), . . . , fl(x)−1(y) = fl(x)−1(x)} � {x}.

Then
• the number l(x) is called the (search) length for x in A,
• L(A) = max

x∈S
l(x) is called the length of algorithm A,

• the number min
A

L(A) is called the (worst-case) (adaptive) cost or (worst-

case) complexity of the adaptive search problem (S,F) and is denoted
by L(S,F),

• the number min
A non-ad.

L(A) is called the (worst-case) non-adaptive com-

plexity of the non-adaptive search problem (S,F) and is denoted by
Lpre(S,F).

An adaptive algorithm A is said to be optimal if L(A) = L(S,F).
A non-adaptive algorithm A is said to be optimal if L(A) = Lpre(S,F).

Our knowledge after tests f1, f2, . . . , fk and answers e1, e2, . . . , ek, re-
spectively is that the hidden element x belongs to the set{

y | y ∈ S, f1(y) = e1, f2(y) = e2, . . . , fk(y) = ek

}
.

This set is denoted by S(e1, e2, . . . , ek). Let furthermore

Si(x) = S
(
f1(x), f2(x), . . . , fr(x)

)
.

Now it is clear that

S = S0(x) ⊇ S1(x) ⊇ S2(x) ⊇ S2(x) ⊇ . . . ⊇ Sl(x)(x) = {x}.

Search trees. The most useful ways to represent search algorithms are
search trees (also called decision trees).



236 G. Wiener

An (n, q)-tree is a rooted tree with n leaves, where every inner node has
at most q sons. The length of a leaf l is the length of the unique path from
the root to l. The depth of a rooted tree T is denoted by L(T ).

If q = 2, then we speak of a binary tree.
Let A = (f1, f2, . . .) be an algorithm for the (n, q)-problem (S,F). By

associating the root of a rooted tree to S and nodes of the rooted tree to all
non-empty sets S(e1, e2, . . . , ek), we obtain an (n, q)-tree T , whose leaves x′

correspond bijectively to the elements x ∈ S and the length of the leaf x′ in
the tree is the same as the length of the element x in A, thus L(A) = L(T ).
The rooted tree T is called the decision tree corresponding to A. It is clear
that the set S(e1, e2, . . . , ek) associated to an inner node v is the set of
the elements x associated to the leaves x′ that can be reached from node
v. The number of leaves in a decision tree corresponding to any algorithm
A of an (n, q)-problem is n, thus the depth of the tree is at least logq n.
Since L(T ) = L(A), we have the following inequality, which is called the
information theoretic lower bound:

Proposition 2.1. If (S,F) is an (n, q)-problem, then

L(S,F) ≥ �logq n�.

Binary search. The binary case is the most important and most frequently
studied special case of search problems. The corresponding decision trees
are binary trees. For an (n, 2)-problem the question “what is f(x)?” is
equivalent to the question “does x belong to R =

{
y | f(y) = 1

}
?”. If

we receive yes, as an answer, then f(x) = 1, otherwise f(x) = 0. Further
on, for binary problems an algorithm will be a sequence of sets, and binary
problems will be denoted by (S,R). The set system R is called the test
family, and the elements of R are called question sets.

A successful algorithm A = (R1, R2, . . . , Rk) together with the sequence
of answers (yes or no) determines the unknown element x. That is,

∀y ∈ S ∃i ≤ k : x ∈ Ri, y /∈ Ri or x /∈ Ri, y ∈ Ri.

If this condition holds, we say that x is separated from the other elements
of S. In the predetermined case clearly every element must be separated
from the others.
H ⊆ 2S is called a separating set system on S if for any x, y ∈ S, x = y

∃R ∈ H : x ∈ R, y /∈ R or x /∈ R, y ∈ R.
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Hence binary predetermined algorithms and separating set systems are
the same. Separating systems are also important in adaptive problems: if
(S,R) is a binary adaptive problem, then R must be a separating system
on S.

2.2. Communication complexity

For a detailed treatment the reader is referred to the book by Nisan and
Kushilevitz [7] and the surveys of Lovász [9] and Lengauer [8].

Yao’s two-party model. Let X,Y, Z be arbitrary finite sets and let
f : X × Y → Z be an arbitrary function. There are two players, Alice
and Bob, who wish to compute the value f(x, y), for some inputs x ∈ X,
y ∈ Y . The difficulty is that Alice only knows x and Bob only knows y,
thus they need to communicate with each other. The communication will be
carried out according to a so-called protocol (something like an algorithm),
which depends only on f . This protocol consists of the players sending bits
to each other until f(x, y) is determined.

At each stage, the protocol P must determine whether the run termi-
nates; if the run has terminated, the protocol must determine f(x, y), and
if the run has not terminated P must specify which player sends the next
bit. These informations may depend only on P and the bits communicated
so far, since this is the only common knowledge of Alice and Bob. The pro-
tocol also determines what the player in turn should send; this depends on
not only the bits exchanged so far but also on his/her input x or y. The cost
of a protocol P is the maximal number of bits communicated on the possi-
ble inputs (x, y) ∈ X × Y . The complexity of a function f is the minimum
cost of a protocol that computes f (i.e. for every (x, y) ∈ X × Y computes
f(x, y)). We denote the (deterministic) communication complexity of f by
D(f).

Matrices and rectangles. With every function f : X × Y → Z we may
associate a matrix Mf of dimensions |X| × |Y |. This matrix not only helps
us to understand the nature of protocols better but plays a most important
role in some bounds.

Let f : X × Y → Z be a function. Let the rows and the columns of
the matrix Mf of dimensions |X| × |Y | be indexed with the elements of X
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and Y , respectively and let the (x, y) entry of Mf be f(x, y). This matrix
is called the communication matrix of f .

Let M be the communication matrix of the function f : X×Y → Z. Let
us see what happens in the matrix during the run of a protocol. Assume,
without loss of generality that the first bit is sent by Alice. This bit is
determined by only the protocol and her input (some row index i), thus the
set of rows of M can be divided into two parts: a part that contains rows for
which 0 is sent and a part that contains the other rows, for which 1 is sent.
In this way M is divided into two submatrices M0 and M1. Notice that the
matrices M0 and M1 are determined by the protocol and the bit Alice sends
determines only in which part her row lies. The next bit divides submatrix
M0 or M1 into two submatrices, and so on. Since the players’ common
knowledge after some bits sent is that (x, y) lies in the current submatrix,
the protocol terminates if and only if the elements of this current submatrix
are all the same. Such a matrix is called monochromatic.

A combinatorial rectangle (in short, a rectangle) in X × Y is a subset
R ⊆ X × Y such that R = A×B for some A ⊆ X and B ⊆ Y . Rectangles
can also be considered as submatrices of the communication matrix.

The following theorem gives a strategy for proving lower bounds on the
communication complexity of a function.

Theorem 2.2. If every partition of X×Y into f -monochromatic rectangles
contains at least t rectangles, then D(f) ≥ �log t�.

Computing the size of the least partition of X × Y into monochromatic
rectangles is often complicated. The notion of fooling sets serves to handle
this problem.

Let f : X × Y → {0, 1}. A set S ⊆ X × Y is called a fooling set for f ,
if for every two distinct pairs (x1, y1) ∈ S and (x2, y2) ∈ S either

• f(x2, y2) = f(x1, y1) or
• f(x1, y2) = f(x1, y1) or
• f(x2, y1) = f(x1, y1).

Theorem 2.3 (Fooling set method). If a fooling set S of size t exists for
function f , then D(f) ≥ �log t�.

Algebraic bounds. We have only seen combinatorial type bounds up to
this point. Now we mention some algebraic techniques, based on the rank
of the communication matrix.
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Theorem 2.4 (Mehlhorn and Schmidt [11]). For any function f : X×Y →
{0, 1},

D(f) ≥ log rk(Mf ) + 1.

The next bound is quite obvious and not too strong, nevertheless it is
the best one amongst the rank type upper bounds.

Proposition 2.5. D(f) ≤ rk(Mf ) + 1.

Simultaneous protocols. In the definition of communication complexity
Alice and Bob alternate sending messages to each other. We may ask how
the complexity changes if the interaction between the players (that is, the
number of alternations) is limited.

A k-round protocol is a protocol, where on every input there are at most
k alternations between bits sent by Alice and bits sent by Bob. For example,
a one-round protocol is a protocol, where Alice sends a message (containing
an arbitrary number of bits) to Bob, and Bob sends back the answer. The
k-round communication complexity of a function f , denoted by DA

k (f), is
the cost of the best k-round protocol that computes f , where Alice sends
the first message. We use DB

k (f) to denote the cost of the best k-round
protocol where Bob sends the first message.

The one-round complexities are easy to compute:

Proposition 2.6. Let f : X×Y → {0, 1} be an arbitrary Boolean function.
Let furthermore a and b be the number of distinct rows and columns in
the communication matrix Mf , respectively. Then DA

1 (f) = �log a� + 1,
DB

1 (f) = �log b�+ 1.

Finally, we define an even more restricted type of protocols.
A protocol, where the players send messages not to each other, but to

an independent referee, and this referee computes the result, is called a
simultaneous protocol. The simultaneous communication complexity of a
function f , denoted by D1(f), is the cost of the best simultaneous protocol
that computes f .

This model eliminates interaction completely. The simultaneous com-
plexity of a function can be easily determined:

Proposition 2.7. D1(f) = DA
1 (f) + DB

1 (f).
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3. Recognition problems

Now we are ready to start studying recognition problems. First we introduce
some useful notions, then we give the basic definitions used in recognition
complexity.

3.1. Notions and definitions

Let S be a finite underlying set and H ⊆ 2S be an arbitrary set system. A
set H ∈ H is called a minimal set of H if there is no non-empty set G ∈ H
such that G � H. H is maximal if there is no set G ∈ H, such that H � G.
The set system of minimal and maximal sets of H is denoted by minH and
maxH, respectively.

Let H be a set system on the underlying set S. We define set systems

Hk∩ =
{
∩Hi | Hi ∈ A ⊆ H, |A| = k

}
, for k ∈ N,

H∩ =
⋃
i∈N

Hi∩,

Hk∪ =
{
∪Hi | Hi ∈ A ⊆ H, |A| = k

}
, for k ∈ N,

H∪ =
⋃
i∈N

Hi∪,

H− = {H | H ∈ H},

and

H|A = {H ∩A | H ∈ H}, for A ⊆ S.

Let f : A → B be a function. The set
{

f(s) | s ∈ S ⊆ A
}

is denoted
by f(S) and the set

{
a | f(a) = b

}
is denoted by f−1(b).

We have seen in the Introduction informally what a recognition problem
is. Now we give the precise definition.

Definition 3.1. The triple (S,R, f) is called a recognition problem, if S is
a finite set, R is a set system on S, and f is a function from S to {0, 1}.
The elements of R are called question sets.
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The definition of recognition algorithms is similar to the definition of
binary search algorithms, the only difference being that we do not have
to determine the hidden element itself, just have to recognize whether the
value f(x) is 0 or 1.

Definition 3.2. Let (S,R, f) be a recognition problem, x ∈ S is a hidden
element. We choose a set R1 ∈ R and receive as answer

∣∣R1 ∩ {x}
∣∣ , that

is, 1, if x ∈ R1 and 0, if x /∈ R1. With this information we choose again a
set R2 ∈ R and get back the number

∣∣R2 ∩ {x}
∣∣ , and so on. A successful

recognition algorithm A consists in the choice of sets R1, R2, R3, . . . ∈ R
such that the answers determine f(x) uniquely. We tacitly assume that at
least one such sequence always exists.

Just like for search algorithms, a recognition algorithm is called adaptive
or sequential if the choice of a set may depend on the answers obtained
until then (as in the previous definition). If all sets are fixed beforehand,
then the recognition algorithm is called non-adaptive or predetermined.
Predetermined recognition algorithms are special cases of sequential ones,
so they take no shorter than the best sequential one, just as for search
algorithms. We are dealing with adaptive algorithms, unless the opposite is
declared.

Definition 3.3. Let (S,R, f) be a recognition problem and letA = (R1, R2,

. . . , Rr(x)) be a successful recognition algorithm. Suppose that the answers
to the first r(x)− 1 questions sets do not determine f(x) uniquely. Then

• the number r(x) is called the recognition length for x in A,
• R(A) = max

x∈S
r(x) is called the recognition length of the algorithm A,

• the number min
A

R(A) is called the (adaptive) recognition complexity of

the adaptive recognition problem (S,R, f) and is denoted by g(S,R, f),
• the number min

A non-ad.
R(A) is called the non-adaptive recognition com-

plexity of the non-adaptive recognition problem (S,R, f) and is denoted
by gpre(S,R, f).

An adaptive recognition algorithm A is said to be optimal if R(A) =
g(S,R, f).
A non-adaptive algorithm A is said to be optimal if R(A) = gpre(S,R, f).

If S and R are fixed, then g(S,R, f) is simply denoted by g(f).
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Since the question “is x ∈ A?” is equivalent to the question “is x ∈ A?”,
for convenience’s sake it is assumed, that the following condition holds:

(C) R is complementation-closed.

Now let us see what do we know after the question sets B1, B2, . . . , Bk

were asked. Every answer is of the form x ∈ B′
i for i = 1, 2, . . . , k, where

B′
i is either Bi or Bi, therefore by condition (C), B′

i ∈ R. Thus our
knowledge is that the unknown element x belongs to the set T = ∩k

i=1B
′
i,

and clearly T ∈ Rk∩. Therefore the sequence (B1, B2, . . . , Bk) is a succesful
recognition algorithm if and only if the function f is constant on the set T
(otherwise we could not decide whether f(x) is 0 or 1). Such a set is called f -
monochromatic or simply monochromatic. That is, a set is monochromatic
if and only if it is a subset of either f−1(0) or f−1(1). Since T ∈ Rk∩ for
some k, T must be a member of R∩.

The assumption that at least one succesful recognition algorithm exists
means that the elements of minR∩ must be monochromatic. In fact, we
cannot distinguish between two elements of such a minimal set, so it is worth
assuming that

(M) H ∈ minR∩ ⇒ |H| = 1.

Conditions (C) and (M) imply that R is a separating system (in fact, R
is a completely separating system then, i.e. ∀x, y ∈ S : ∃R ∈ R : x ∈ R,
y /∈ R).

The search tree (or decision tree) corresponding to a recognition algo-
rithm is defined similarly as for classic search algorithms (see Search trees,
page 235). The only difference is that the leaves here are associated to
monochromatic sets of elements.

Definition 3.4. Let B be an arbitrary set system on S and H ⊆ S be an
arbitrary set. Let furthermore BH be the set system of those elements of
B that contain set H. The span of H in B, denoted by spB(H) is the set
system minBH .

Definition 3.5. The coordinate set of an element x in set system R is
spR

(
{x}

)
. It is denoted by CR(x) or simply by C(x). The elements of the

coordinate set are called coordinates.

Remark. By this definition, coordinates are subsets of S and the coordinate
set is a set system on S. Note that a coordinate set is never empty (unless
R itself is empty), by condition (C).
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Now we show that an element is determined by its coordinates, i.e. the
name “coordinate” is legitimate.

Proposition 3.6. ⋂
C∈C(x)

C = {x}.

Proof. Consider the intersection of those sets of R that contain x. This
intersection T is an element of minR∩, otherwise there would exist a non-
empty set U ∈ R∩, such that U � T . Let U = R1 ∩ R2 ∩ . . . ∩ Rj , where
Ri ∈ R. If x ∈ U , then x ∈ Ri, for i = 1, 2, . . . , j, thus T ⊆ Ri, for
i = 1, 2, . . . , j by the definition of T . This implies T ⊆ U , a contradiction.
On the other hand, if x /∈ U , then there exists an index a such that x /∈ Ra.
Thus x ∈ Ra, and Ra ∈ R, by condition (C). Therefore T ⊆ Ra, i.e. the
sets T and Ra are disjoint. Since U is a subset of Ra, the sets T and U are
also disjoint, from which U = ∅ follows, again a contradiction.

Now, since T belongs to minR∩, it contains only x itself, by condition
(M). The intersection of the coordinates of x contains x, and is obviously a
subset of T , which proves the assertion.

Remark. In fact the name “coordinate” would be even better justified if
the intersection of less than

∣∣C(x)
∣∣ question sets could not be equal to {x}.

However, this is not true in general, but the generalized communication
model (see Section 4.2) shall satisfy this property.

3.2. General bounds

In this section we prove some general lower bounds on recognition complex-
ity. A part of these bounds is obtained by generalizing certain communi-
cation complexity theorems. The reason why communication complexity
methods can be used here is that communication complexity problems are
special recognition problems, as we shall see it in Section 4.1. The methods
of search theory are also used.

First we formulate the information theoretic lower bound for recognition
problems.

Theorem 3.7. Let (S,R, f) be a recognition problem. If the underlying set
S cannot be partitioned into less then k f -monochromatic sets belonging to
R∩, then

g(S,R, f) ≥ �log k�.
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Proof. The leaves of the search tree are f -monochromatic sets that belong
to R∩ and furthermore they partition S, thus their number cannot be less
than k. Therefore the depth of the search tree is at least �log k�.

Corollary 3.8. Let µ be an arbitrary probability distribution on the un-
derlying set S. If for every f -monochromatic set R ∈ R∩ we have µ(R) ≤ δ,
then

g(S,R, f) ≥
⌈
log

1
δ

⌉
.

Proof. Now the underlying set clearly cannot be partitioned into less then
1/δ f -monochromatic sets of R∩, thus the assertion follows from Theorem
3.7.

A special case of this proposition is the following

Corollary 3.9 (Fooling set method). Let H ⊆ S be a set with the property
that for every two elements x, y ∈ H, there is no monochromatic set in R∩

that contains both of them. (Such a set H is called a fooling set for f on R.)
Now

g(S,R, f) ≥ log |H|.

Proof. Let

µ(x) =

{
1/|H|, if x ∈ H,

0, if x /∈ H.

The µ-measure of any monochromatic set in R∩ is at most 1/|H|, by the
condition on H. Now the assertion follows from Corollary 3.8.

Theorem 3.7. and Corollary 3.9. are generalizations of Theorem 2.2.
and Theorem 2.3., respectively. This shall be proved in Section 4.1., where
we show that deterministic two-party communication is a special case of
recognition problems. The question arises naturally, whether there are other
communication complexity theorems that can be generalized. In order to
answer this question, we should analyze what is behind these bounds. Do
they require some special feature that only communication problems possess
or not? If yes, how special? The answers for all these questions will be given
in Section 4. For the moment, we mention that most of the communication
complexity bounds will not be true in the general setting of recognition
problems, nevertheless we shall see models where a great number of them
will be possible to generalize.



Recognition Problems in Combinatorial Search 245

Now we examine another quite natural question: which functions and
set systems produce extremal values of complexity. For a given non-constant
function f it is easy to choose a set system R, over which the complexity
of the function is small: if R contains f−1(0), then g(S,R, f) = 1. Thus
over the set system 2S , every function has complexity 1 (except constant
functions that have complexity 0 over any set system). To find a set system,
over which the complexity of a given non-constant function f is large is not
difficult, either. Let y ∈ S be an element of the smaller (not greater) of the
sets f−1(0) and f−1(1), and let the set system

Fy =
{
{x} | x ∈ S, x = y

}
,

and let furthermore
F ′

y = Fy ∪ F−
y .

It is easy to see that (S,F ′
y, f) is a recognition problem and

g(S,F ′
y, f) = max (

∣∣f−1(0)
∣∣ , ∣∣f−1(1)

∣∣) ≥ |S|2 .

It is also easy to choose a non-constant function f , whose complexity is
small over a given set system R: set f−1(0) to be an arbitrary element of
R, then g(S,R, f) = 1. However, when we are trying to find a function,
whose complexity is large over a given set system R, some difficulties arise.
Not only the creation of such a function is difficult, but also to determine its
complexity. Although Theorem 3.7. and Corollaries 3.8. and 3.9. give lower
bounds on the complexity of an arbitrary function, so the maximum of these
lower bounds considering all possible functions is obviously a lower bound
on max

f
g(S,R, f), these are not at all easy to compute in general, since the

structure of R∩ can be quite complicated. The following theorem gives a
different approach instead. First the density of a set system is defined.

Definition 3.10. The density of a set system R on the underlying set S is
defined to be log |R|

|S| , and is denoted by �R.

Remark. At first glance it would be more logical to define density as |R|
2|S| ,

but from a search theoretical point of view, a set system of (say) 2|S|−3

elements is rated to be fairly large, thus it would be unwise to define its
density to be 1

8 ; the number |S|−3
|S| is much more informative.
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Theorem 3.11.

max
f

g(S,R, f) > log
1

�R

Proof. We show that there exists a function f , for which log 1/�R questions
are not enough. To every (successful) adaptive algorithm of k steps a search
tree of depth k can be associated in the following way. The inner nodes are
labelled with the questions and the leaves are labelled with the outcomes:
0 or 1. The number of distinct adaptive algorithms of k steps is therefore
at most the number of such labelled trees, which is(

|R|
2

)2k−1

· 22k
,

since the number of inner nodes and leaves are 2k − 1 and 2k, respectively,
and the number of possible questions is |R|/2 for every inner node (note
that R is closed under complementation and a set and its complement gives
the same question). Thus if the number of different functions 2|S| is greater

than ( |R|
2 )

2k−1 · 22k
, then there exists two distinct functions, for which all

the questions and outcomes are exactly the same, that is impossible. This
shows that if (

|R|
2

)2k−1

· 22k
< 2|S|,

then k questions are not enough. Since this inequality holds for k =
log 1/�R, the theorem is proved.

4. The generalized communication model

In the previous section we have seen several bounds that are concerning all
test families satisfying conditions (C) and (M).

If the underlying set S is the set of the positions of a given matrix M
and the set system R of the question sets is the set of all subsets of S
consisting of either some rows or some columns of M , then we obtain a
model which is equivalent to two-party deterministic communication com-
plexity [13]. This model can be generalized such that some communication
complexity theorems remain valid [13]. In this section we summarize some
theorems concerning the connection between recognition and communica-
tion complexity. For details see [13].
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4.1. The communication model

First we prove that two-party deterministic communication complexity is
indeed a special case of recognition complexity.

Consider a given communication complexity problem with input sets A
and B for Alice and Bob, respectively, and a function f : A×B −→ {0, 1}.

The communication problem can be reformulated as a recognition prob-
lem in the following way: let the underlying set be S = A× B and the set
system of the question sets be

R = {U ×A | U ⊆ B} ∪ {T ×B | T ⊆ A}.

Since conditions (C) and (M) hold, (S,R, f) is indeed a recognition problem.
The sequence of bits communicated between Alice and Bob is the same

as we get from the answers of the recognition problem supposing that we
choose the question set T ×B when Alice gives a bit information about set
T ⊆ A, and the question set U ×A when Bob gives a bit information about
U ⊆ B. Furthermore, the communication and the recognition problems
terminate at the same time: when the set of the still possible elements
becomes monochromatic. Now it is easy to see that

g(S,R, f) = D(f).

Remark. Various models of more than two party communication can also
be treated as recognition problems and also can be generalized in this way.

Considering this relationship between recognition and communication
problems, the idea of applying communication complexity methods to recog-
nition problems arises quite naturally. We have seen some applications of
this type, like Theorem 3.7. or Corollary 3.9. In order to be able to ap-
ply more methods of communication complexity, we have to give some re-
strictions on the set system of the question sets, since this system is quite
special in the communication model. How should such a restriction look
like? Some of the methods of communication complexity is based on the
fact that R∩ = R2∩ (since both set systems are the set of rectangles) in the
communication model. Assuming that this equality holds for a recognition
problem (S,R, f), some communication type bounds can be proved, indeed.
Let us demonstrate this.

First we define partition and cover numbers. These numbers are gener-
alizations of the partition and cover numbers of communication complexity
(see [7]).
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Definition 4.1. Let (S,R, f) be a recognition problem.

1. The cover number of f , denoted by C(f) is the minimal number of f -
monochromatic sets belonging to R∩ that cover the underlying set S.

2. The partition number of f , denoted by P (f) is the minimal number
of f -monochromatic sets belonging to R∩ that partition the underlying
set S.

3. The algorithmic partition number of f , denoted by A(f) is the minimal
number of leaves of the decision trees corresponding to a successful
recognition algorithm for the function f .

4. The minimal number of f -monochromatic sets of R∩ that cover all
elements x, for which f(x) = z is denoted by Cz(f)

(
z ∈ {0, 1}

)
.

The following proposition summarizes the obvious properties of these
numbers.

Proposition 4.2.

C0(f) + C1(f) = C(f) ≤ P (f) ≤ A(f) ≤ 2g(f).

Proof. The equality and the first two inequalities are straightforward. Con-
sider an algorithm of length g(f) for the function f . The corresponding
decision tree has at most 2g(f) leaves, which implies the third inequality.

Remark. Theorem 3.7. stated P (f) ≤ 2g(f).

Now we give a generalization of a well-known bound of communication
complexity.

Proposition 4.3. Let (S,R, f) be a recognition problem, for which R∩ =
R2∩. Then

log A(f) ≤ g(f) ≤ 3 log A(f).

Proof. The first inequality follows from Proposition 4.2. In order to prove
the second one, consider a node N of the search tree for which the number
D(N) of leaves that are descendants of N is at least half of the number A(f)
of all leaves, and is minimal amongst the nodes satisfying this property. Such
a node always exists. Denote the sons of N by K and M, the appropriate
sets (containing all elements of S that still can be equal to the hidden x
at the current node) by N , K, and M , respectively. The numbers D(K)
and D(M) are smaller than D(N), thus D(K) ≤ A(f)

2 and D(M) ≤ A(f)
2 .

Furthermore, the number of leaves that are not descendants of N is also at
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most A(f)
2 . The set N at node N is of course a member of R∩ so, since

R∩ = R2∩, there exist sets X,Y ∈ R : N = X ∩ Y . Now we change the
search tree in the following way. Let the next two questions be “is x ∈ X?”
and “is x ∈ Y ?”. If at least one of the sets X and Y does not contain x,
then we delete that part of the tree which contains descendants of N, whilst
if both X and Y contain x, then we ask one more question: the same as
we would ask at node N in the recognition problem corresponding to the
original search tree. Depending on the answer, we consider either the K- or
the M-rooted subtree and delete everything else. In this way, using at most
three questions, we obtain a tree, which has at most half as many leaves as
the original one. Iterating the process we obtain an algorithm of at most
3 log A(f) steps.

The following proposition is also a generalization of a communication
complexity upper bound.

Proposition 4.4. Let (S,R, f) be a recognition problem, for which R∩ =
R2∩. Then

g(f) ≤ Cz(f) + 2, for z ∈ {0, 1}.

Proof. We give a nearly static algorithm of length Cz(f) + 2. Let

{R1, R2, . . . , RCz(f)} ⊆ R∩

be a z-monochromatic cover of the elements of f−1(z). Since R∩ = R2∩,
Ri = Ai ∩Bi, where Ai, Bi ∈ R. The first Cz(f) questions of the algorithm
are “x ∈ Ai?” for i = 1, 2, . . . , Cz(f). Now let I be the set of those indices
i, for which x ∈ Ai, and let

C =
⋃
i∈I

Bi.

C ∈ R2∪ = R∪ (this follows from R∩ = R2∩ and condition (C)), thus
C = C1 ∪ C2, for some C1, C2 ∈ R. We know the index set I, thus we can
determine C, and then C1 and C2. Let the last two questions be “x ∈ C1?”
and “x ∈ C2?”. If the hidden element x belongs to at least one of C1 and
C2, then f(x) = z, otherwise f(x) = z. To prove this, consider C = C1∪C2.
If x ∈ C, then there exists an index i such that both Ai and Bi contain x,
thus f(x) must be z, because Ai∩Bi is monochromatic. On the other hand,
if x /∈ C, then none of the sets Ri contain x, thus f(x) cannot be z, since
R1, R2, . . . , RCz(f) is a cover of all elements on which f gives the value z.
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Finally we mention a (not too strong) property of coordinates if the
condition R∩ = R2∩ holds.

Proposition 4.5. If an element x has at least two coordinates in a set
system, for which R∩ = R2∩, then it has two coordinates whose intersection
is {x}.

Proof. Obvious, by Proposition 3.6.

We have demonstrated that the condition R∩ = R2∩ can be used
to generalize certain communication complexity bounds. However, this
condition is not strong enough. For example, concerning Proposition 4.5.,
an upper bound on the number of the coordinates of an element would be
better. Another problem is that this condition is not “algorithmic” in the
sense that though there exist two sets, whose intersection is a given set
A = A1 ∩A2 ∩A3 ∩ . . . ∈ R∩, these sets have nothing in common with the
sets A1, A2, A3, . . . .

Remark. Assuming R∩ = Rk∩ for some k ≥ 3 instead of R∩ = R2∩, we
obtain similar (of course somewhat weaker) results.

4.2. Quadrangular set systems

Now we give a condition that is stronger than the condition we have seen
in the previous section.

Definition 4.6. Set systems A satisfying the following condition (F) are
called quadrangular set systems.

(F) A,B, C ∈ A ⇒ (A ∩B ∈ A) ∨ (A ∩ C ∈ A) ∨ (B ∩ C ∈ A).

It can be readily seen that if condition (C) holds, then (F ) is equivalent
to the condition

(F′) A,B, C ∈ A ⇒ (A ∪B ∈ A) ∨ (A ∪ C ∈ A) ∨ (B ∪ C ∈ A).

Definition 4.7. If (S,A, f) is a recognition problem, where set the system
A is quadrangular, then (S,A, f) itself is called quadrangular.
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It is easy to see that the communication model is quadrangular, since
among any three question sets there are at least two of the same type (either
row or column sets), whose intersection and union are also row or column
sets. The name “quadrangular” comes from this fact, since the intersection
of row and column sets are called rectangles. We could also name these
systems about their correspondence to alignments (set systems that are
closed under intersection); they are “almost” alignments. Now we prove
that condition (F) is stronger than the condition A∩ = A2∩ indeed.

Proposition 4.8. Condition (F) implies A∩ = A2∩.

Proof. A2∩ ⊆ A∩ is trivial. Let C = A1 ∩ A2 ∩ . . . ∩ Ar ∈ A∩. For r ≤ 2,
C ∈ A2∩. For r ≥ 3, at least one of the sets A1 ∩A2, A1 ∩A3, and A2 ∩A3

belongs to A, by condition (F), thus A∩ ⊆ A2∩ follows by induction.

Besides the communication model, examples of quadrangular set systems
can be found in [13]. Some of these examples will be examined in details in
the next section.

Further on we assume that the set system A satisfies conditions (C),
(M), and (F).

Once we know that the hidden element x lies in a set X ⊆ S, we can
try to simplify the search problem by taking X as an underlying set instead
of S. It is possible if and only if the set system

A|X = {A ∩X | A ∈ A}

satisfies conditions (C) and (F) (condition (M) is trivially satisfied). Fortu-
nately it is always true:

Lemma 4.9. Let X ⊆ S be an arbitrary set. Then the set system A|X
satisfies conditions (C) and (F).

Proof. Let C ∩X, D ∩X ∈ A|X . Then

X \ (C ∩X) = C ∩X ∈ A|X ⇒ (C),

(C ∩X) ∩ (D ∩X) = (C ∩D) ∩X ∈ A|X ⇒ (F ).

Now we prove a property that is “natural” in two-party communication
complexity.

Lemma 4.10. Every element x ∈ S has at most two coordinates.
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Proof. Assume to the contrary that there exists an element x with three
distinct coordinates A,B, and C. Then by condition (F), (at least) one of
the sets A ∩ B, A ∩ C, and B ∩ C, each containing x, belongs to A, which
contradicts the minimality of A, B, and C.

Definition 4.11. The number of distinct coordinates in A is denoted by
C(A).

The following theorem shows that the communication model is extremal
amongst quadrangular problems in a certain sense, namely the number of
distinct coordinates is minimum for the communication model, especially
when the communication matrix is squared: C(A) = 2

√
|S| then.

Theorem 4.12. Let A ⊆ 2S be a quadrangular system. Then

C(A) ≥ 2
√
|S|.

The proof of this theorem can be found in [13], just like the proof of the
following lower bound, which can be obtained from a completely different
approach.

Proposition 4.13. C(A) ≥ log |A|.

5. Recognition problems in partially ordered sets

In this section we analyze some special quadrangular problems concerning
partially ordered sets.

Let S be an arbitrary finite underlying set. Let the set system T ⊆ 2S

be closed under union and intersection. Now let the set system A consist of
sets of T and their complements:

A = T ∪ T −.

Condition (C) is obviously satisfied, and the same holds for condition (F):
among any three sets at least two belong to either T or T −. Since not only
T , but also T − is closed under union and intersection, by the DeMorgan’s
laws, the intersection of these two sets also belongs to A. Condition (M) is
not necessarily satisfied, but if we contract the minimal elements of A∩ to
one element we obtain a set system satisfying all three conditions.
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An example for a set system of this type is easy to give: let P = (S,�)
be an arbitrary poset and let T be the set system of all downsets in the
partial order �. (A set T ⊆ S is a downset (upset), if x ∈ T implies y ∈ T
for every y � x (x � y).) It can be readily seen that T is closed under
union and intersection indeed. In fact, every set system of this type can be
obtained in this way:

Proposition 5.1. Let T ⊆ 2S be a set system which covers S and is closed
under union and intersection and suppose furthermore that condition (M)
holds for T . Then there exists a partial order � on S, such that the set
system containing all downsets in (S,�) is T .

Proof. First we give a relation � on S×S, then we show that � is a partial
order, and finally prove that the system of all downsets in (S,�) is precisely
the set system T . Let

x � y if x ∈
⋂
y∈Y
Y ∈T

Y.

It is obvious that � is reflexive. Transitivity is also easy to see: if a � b � c,
then a is contained in every set of T that contains b, and b is contained in
every set of T that contains c, thus a is contained in every set of T that
contains c, so a � c. Antisymmetry follows from condition (M): if a � b
and b � a, then a and b belong to the same sets of T , thus a = b, by (M).
Thus we have shown that � is a partial order.

Now let T ∈ T . We show that T is a downset, i.e. if t ∈ T and s � t,
then s ∈ T . The relation s � t implies that every set of T containing t also
contains s. Thus T must contain s. On the other hand, we have to see that
if a set T ∈ 2S is a downset, then T ∈ T . To see this, let T ′ be the set of
the maximal elements of T in the partial order �. Since T is a downset,

T = {x | ∃y ∈ T ′ : x � y} =
⋃

y∈T ′
{x | x � y}.

Since T is closed under union, it is enough to show that the sets {x | x � y}
belong to T . By the definition of the partial order �,

{x | x � y} =
⋂
y∈Y
Y ∈T

Y.

Since T covers S, this intersection is not empty, and since T is closed under
intersection, {x | x � y} belongs to T for every y, which completes the
proof of the proposition.
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Now we examine recognition problems using question sets of this type.
Similar studies can be found in [13], however, the results presented here are
slightly stronger.

Let (S,�) be an arbitrary partially ordered set and f : S → {0, 1} be
an arbitrary Boolean function. Denote the system of all up- and downsets
in (S,�) by S�. Then we would like to determine g(S,S�, f). The question
“does x belong to A ∈ S�?” is clearly equivalent to the question “what is
a(x)?”, where function a : S → {0, 1} is given by

a(y) =

{
1, if y ∈ A

0, if y /∈ A.

Observe that the Boolean function a is monotonically decreasing (i.e. x � y
implies a(y) ≤ a(x)) if and only if the set A is a downset and monotonically
increasing (i.e. x � y implies a(x) ≤ a(y)) if and only if A is an upset.
Thus the information we obtain from a question is precisely the value of
an arbitrary monotone function on the hidden element x. From now on we
shall also use monotone Boolean functions as questions.

As a warm up, consider the set of 0–1 vectors of length n and their
standard partial order (x � y if for every index i and for the coordinates
xi of x and yi of y we have xi ≤ yi). The number of 1 coordinates of a
vector x will be called the length of x. It is easy to see that

⌈
log(n+1)

⌉
+1

questions are always enough1. First we find out the number of ones in the
hidden vector with binary search. The set of vectors having length at most
t is a downset for every t, so let the first question set be {x | x has length
at most �n−1

2 �}. Obtaining the answer we ask either the set {x | x has
length at most �n−1

4 �} (if the first answer was “yes”) or the set {x | x has
length at most �3n−1

4 �} (if the first answer was “no”), and so on. In this
way using

⌈
log(n + 1)

⌉
questions (the length may be any integer between

0 and n) we learn the length of the hidden vector x.
After the length of x proved to be some number k, we only have to ask

one further question: function a : S → {0, 1}, defined in the following way:

a(y) =

⎧⎪⎪⎨
⎪⎪⎩

1, if y contains more than k ones

f(y), if y contains exactly k ones

0, if y contains less than k ones.

1Later on we shall see an algorithm that uses at most � log(n + 1)� questions.
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It is obvious that a is monotone and since we know that vector x contains
exactly k ones, f(x) = a(x).

Of course it is possible that we do not need so many questions. For
example, if f itself is monotone, we may simply ask f(x). Now we show that
there exists a function f , for which the above algorithm is nearly optimal.
Observe that the elements of S∩� are precisely the convex sets of the poset
(S,�), i.e. sets C with the following property:

(w, y ∈ C, w � y, w � z � y)⇒ z ∈ C.

We define the function f on the vector x to be the parity of the length
of x. Now we apply Theorem 3.7. The set of vectors clearly cannot
be partitioned into less than (n + 1) f -monochromatic convex sets, hence
g(f) ≥

⌈
log(n + 1)

⌉
.

Now we turn our attention to the general case: what is the exact number
of monotone functions we have to ask for a given function f? In order
to answer this, we shall generalize the above ideas. First we define the
alternation number of a chain and a function.

Definition 5.2. Let (S,�) be an arbitrary poset, f : S → {0, 1} be an
arbitrary Boolean function.

A chain D is said to be f-alternating, if x, y ∈ D, x � y, �z ∈ D :
x � z � y implies f(x) = f(y).

The alternation number of an arbitrary chain C in (S,�) is the size of
the (inclusionwise) maximal f -alternating subchain of C. The alternation
number of C is denoted by AltP (C) for a given P = (S,�) and f .

The alternation number of a function f is

AltP (f) = max
C⊆S
chain

AltP (C).

The following theorem essentially determines the complexity of the
recognition problem (S,S�, f).

Theorem 5.3.

⌈
log AltP (f)

⌉
≤ g(f) ≤

⌈
log AltP (f)

⌉
+ 1.
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Proof. After a question is answered (say a(x) = 1) we can work with the
poset (S ∩ a−1(1),�), instead of the poset (S,�), by Lemma 4.9. and the
observation preceding it.

First we prove g(f) ≥
⌈
log AltP (f)

⌉
. Let C be a chain with the

property AltP (C) = AltP (f). The elements of the (inclusionwise) maximal
f -alternating subchains form a fooling set of cardinality AltP (f), thus by
Corollary 3.9. g(f) ≥

⌈
log AltP (f)

⌉
.

Now we prove the second part of the inequality: g(f) ≤
⌈
log AltP (f)

⌉
+ 1.

If AltP (f) = 1, then one question is enough, because f must be mono-
tone on the set of the elements that are still candidates (it is not sure however
that f is constant, because the poset need not to be connected). Thus it
is enough to prove that it is possible to decrease the value

⌈
log Alt(f)

⌉
by

one with one question: from this the inequality follows by induction.
Let us denote the set {y ∈ S | y � z} by Sz, and the poset (Sz,�) by

Pz. Now let

A =
{

z | AltPz(f) ≤ AltP (f)
2

}
.

A is a downset, otherwise we could choose z � v, so that

z /∈ A, v ∈ A,

thus

AltPz(f) >
AltP (f)

2
, AltPv(f) ≤ AltP (f)

2
,

from which
AltPz(f) > AltPv(f),

a contradiction, since clearly Sz ⊆ Sv, thus AltPz(f) ≤ AltPv(f).
We have seen that the set A is a downset, therefore if

(1) Alt(A,�)(f) ≤
⌈

AltP (f)
2

⌉
and Alt(S\A,�)(f) ≤

⌈
AltP (f)

2

⌉
,

then it is possible to decrease the value
⌈
log Alt(f)

⌉
by one with one

question, namely by asking the set A.
Now we show that (1) holds. Let us assume to the contrary that there

exists a chain C, such that

(2) C ⊆ A and Alt(A,�)(C) >

⌈
AltP (f)

2

⌉
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or

(3) C ⊆ S \A and Alt(S\A,�)(C) >

⌈
AltP (f)

2

⌉
.

Let furthermore C be maximal amongst those chains that satisfy (2) or (3).
(2) clearly contradicts the definition of A, while if (3) holds, then we show
that the minimal element m of the chain C cannot be contained in S \ A,
again a contradiction. Namely, if m were an element of S \A, then

AltPm(f) >
AltP (f)

2
⇒ ∃ chain C ′ ⊆ Sm : AltPm(C ′) >

AltP (f)
2

.

Consider now the chain C ′′ = C ′ \ {m}. C ′′ ⊆ A, since m is the minimal
element of the maximal chain C and clearly

(4) Alt(A,�)(C
′′) >

AltP (f)
2

− 1.

Now by (3)

AltP (C ∪C ′′) ≥ Alt(S\A,�)(C)+Alt(A,�)(C
′′) >

⌈
AltP (f)

2

⌉
+Alt(A,�)(C

′′),

thus by (4)

AltP (C ∪ C ′′) ≥
⌈

AltP (f)
2

⌉
+ 1 + Alt(A,�)(C

′′)

>

⌈
AltP (f)

2

⌉
+ 1 +

AltP (f)
2

− 1 =
⌈

AltP (f)
2

⌉
+

AltP (f)
2

≥ AltP (f),

a contradiction, since C ∪ C ′′ is a chain in P . This completes the proof of
the second inequality and thus the whole theorem.

The number AltPz(f) may be called the level of z (for function f).
Observe that if either Alt(A∩Sz ,�)(f) = Alt(A∩Sy ,�)(f) or Alt(A∩Sz ,�)(f) =
Alt(A∩Sy,�)(f), then Alt(Sz ,�)(f) = Alt(Sy,�)(f), that is, y and z are in
the same level. Therefore, by induction we obtain that the elements of
the final poset Z (for which we have AltZ(f) = 1) are in the same level.
This may be useful, because if the set of the minimal elements of P =
(S,�) is monochromatic, then the sets of elements of the same level are
also monochromatic, thus the final poset is monochromatic, too. This
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means that the last question is unnecessary, and therefore in these cases the
recognition complexity is precisely

⌈
log AltP (f)

⌉
. This holds automatically

when a unique minimal element exists (for example, in the case of 0–1
sequences, proving that the complexity is

⌈
log(n + 1)

⌉
in the warm up

problem). Obviously, if a unique maximal element exists, it is also enough,
by considering the dual of the poset. Naturally arises the idea that if there
is no unique minimal (nor unique maximal) element exists, then we may
create one. Let P = (S,�) be an arbitrary poset. Consider now poset
P 0 =

(
S ∪ {0},�0

)
, where 0 /∈ S and �0=� ∪

⋃
s∈S(0, s). We have seen

that
g(S ∪ 0, P 0, f) =

⌈
log AltP 0(f)

⌉
.

If we can determine f(x) for the new poset, then we can determine it to
the original one obviously. AltP 0(f) ≤ AltP (f) + 1, so we have proved a
stronger version of Theorem 5.3.:

Theorem 5.4.

⌈
log AltP (f)

⌉
≤ g(f) ≤ �log

(
AltP (f) + 1

)�.
Finally in this section, we are dealing with a special poset P : graphs

with their standard partial order (G1 � G2 if the two graphs have the
same vertex-set and every edge of G1 is an edge of G2, that is, if G1 is a
spanning subgraph of G2). A graph property T is given on graphs having
n vertices (i.e. T : Gn → {0, 1} is a function with the additional condition
that T (G1) = T (G2), if graphs G1 and G2 are isomorphic, where Gn is the
set of all graphs having n vertices); our aim is to determine T (G) for an
unknown graph G. If we are allowed to ask any monotone functions, then
we can simply apply the theorem we have just proved. However, it seems
to be more logical if we are allowed to ask monotone graph properties only.
The lower bound obviously remains true, the question is what happens to
the upper bound.

Let Fn be the set of all monotone graph-properties on Gn.

Remark. The name “monotone graph property” usually refers to monoton-
ically increasing graph-properties, and monotonically decreasing properties
are called “co-monotone properties”. For the sake of consistency, we use
the same names as for functions, since properties are functions by our def-
inition. Thus monotone means monotonically increasing or monotonically
decreasing.
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Let furthermore

Rn =
{

T−1(0) | T ∈ Fn

}
∪
{

T−1(1) | T ∈ Fn

}
.

Theorem 5.5.
g(Gn,Rn, T ) = � log Alt(Gn,�)(T )�.

Proof. Consider the poset P ∗ = (G∗n,�∗) of isomorphism classes of graphs
on n vertices, where G∗

1 �∗ G∗
2 holds if there exist graphs G1 ∈ G∗

1 and
G2 ∈ G∗

2, such that G1 is a subgraph of G2. It is obvious that this relation
is a partial order indeed and that

g(Gn,Rn, T ) = g(G∗n,G∗n�∗ , T ∗),

where T ∗ is a Boolean function on the isomorphism classes of graphs on n
vertices given by T ∗(G∗) = T (G) for any G ∈ G∗.

Since the poset P ∗ has a unique minimal element,

g(G∗n,G∗n�∗ , T ∗) =
⌈
log AltP ∗(T ∗)

⌉
.

Now it only remains to show that

⌈
log AltP ∗(T ∗)

⌉
= � log Alt(Gn,�)(T )�,

which is straightforward.

6. Predetermined complexity

Sometimes we would like to determine the value f(x) for the hidden element
x such that all questions are asked beforehand. In this case we speak about
the predetermined recognition complexity of the function f . A special case
we have seen is determining the simultaneous communication complexity of
a function (see Section 2.2).

First we give the precise definition, then examine the problem for arbi-
trary set systems of question sets, and finally, as an application, compute
the predetermined complexity of an arbitrary function for a set system we
are quite familiar with: the up- and downsets of an arbitrary poset.
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Definition 6.1. The non-adaptive or predetermined recognition complexity
of a function f over the set system R on S is the smallest number of
questions of type “is x ∈ A?” (A ∈ R) needed to compute f(x) in the worst
case, where all questions are fixed beforehand. This number is denoted by
gpre(S,R, f), or simply by gpre(f), when S and R are fixed.

If the answers to the questions “is x ∈ Ai?” for i = 1, 2, . . . , r determine
f(x), then the system {A1, A2, . . . , Ar} is called a separating system with
respect to f . So the predetermined complexity of f is the size of the smallest
separating system with respect to f .

Proving that computing the simultaneous communication complexity
of a function is a special case is similar to the proof of the fact that
two-party deterministic communication complexity is indeed a special case
of recognition complexity (see Section 4.1) and is omitted here. Though
determining the simultaneous communication complexity is quite easy, the
same is not true for the predetermined recognition complexity in general.

First we give an upper bound that is the generalization of an obvious
upper bound for exact problems. However, we have to be careful with the
proof, which is not so easy as it seems to be at the first sight.

Proposition 6.2.
gpre(f) < A(f) ≤ 2g(f).

Proof. The second inequality is a part of Proposition 4.2. To prove the first
one, consider a decision tree D for function f having A(f) leaves. To every
inner node of the decision tree corresponds a question set. The system of
all these question sets A form a separating system with respect to f , that
is, the elements of

min (A ∪A−)∩

are monochromatic, otherwise there would exist a leaf v and a, b ∈ S, such
that f(a) = 1, f(b) = 0, and both a and b reaches v, which is impossible.
To see that such a leaf would exist indeed, let T ∈ min (A ∪A−)∩ be a non-
monochromatic set. Since T is minimal in (A ∪A−)∩, for any set A ∈ A
either T ⊆ A or T ⊆ A.

Examine now the question set A1 ∈ A corresponding to the root of the
decision tree. We choose that son of the root that contains T . Since the sons
of the root are A1 and A1, and either T ⊆ A1 or T ⊆ A1, we can do this.
Now we choose the question set corresponding to the current node to be
A2, and choose that son of this node that contains T , and so on. Finally we
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obtain the leaf reached by all elements of T . Since T is not monochromatic,
we have found a proper leaf.

Thus A is a separating system with respect to f indeed. Since |A| is
at most the number of inner nodes of D, which is always smaller than the
number of leaves of D, the proof is finished.

Next a lower bound using predetermined complexity of exact problems
is given.

Proposition 6.3. Let F be an arbitrary fooling set for function f : S →
{0, 1} on set system R ⊆ 2S . Then

gpre(S,R, f) ≥ Lpre

(
F,R|F

)
.

Proof. Let A ⊆ R be a minimal separating system with respect to f . Then
the elements of min (A ∪A−)∩ are monochromatic (otherwise there would
exist two elements a and b, such that f(a) = 1, f(b) = 0 and they belong
to exactly the same sets of A, clearly a contradiction).

We show that A|F is a separating system on F , that is, if a = b are
arbitrary elements of F , then there exists a set D ∈ A|F that separates them.
Assume to the contrary that every set of A|F contains either both of them or
none of them. Then the same is true for every set of A, of course, thus a and
b belong to the same set of set system min (A ∪A−)∩. But this is impossible,
since every set of min (A ∪A−)∩ is monochromatic and the elements a and
b cannot belong to the same monochromatic set of R∩, because they are
(distinct) elements of fooling set F . (Obviously min (A ∪A−)∩ ⊆ R∩, since
A ⊆ R and R is closed under complementation.)

Thus

gpre(S,R, f) = |A| ≥
∣∣A|F ∣∣ ≥ Lpre

(
F,R|F

)
.

The above upper and lower bounds are generally not too close to each
other. However, sometimes they are, and in these cases they serve very well
to compute the predetermined complexity.

Proposition 6.4. Let � be a partial order on the underlying set S, and
let S� be the set system consisting of the up- and downsets of the partially
ordered set P = (S,�). Let furthermore f : S → {0, 1} be an arbitrary
function. Then

AltP (f)− 1 ≤ gpre(S,S�, f) ≤ AltP (f).



262 G. Wiener

Proof. To obtain the lower bound we use Proposition 6.3. Let C be a
chain in P , having alternation number AltP (f). Now let C ′ be a maximal
f -alternating subchain of C. It is obvious that C ′ is a fooling set for f , thus

gpre(S,S�, f) ≥ Lpre

(
C ′,S�|C′

)
,

by Proposition 6.3.

Since C ′ is a chain,

S�|C′ =
⋃

c∈C′

(
{f ∈ F | f � c} ∪ {f ∈ F | c � f}

)
,

from which
Lpre

(
C ′,S�|C′

)
= |C ′| − 1 = AltP (f)− 1

follows readily, and the lower bound is proved.

To obtain the upper bound, Proposition 6.2 is used. Consider an op-
timal adaptive algorithm for function f . The corresponding decision tree
has at most AltP (f) + 1 leaves, by the proof of Theorem 5.4. (from the
proposition itself it only follows that the number of the leaves is at most
2� log (AltP (f)+1)�). Since

gpre(S,S�, f) < A(f) ≤ AltP (f) + 1,

by Proposition 6.2., the upper bound is also proved.

7. Open problems

About the structure of quadrangular systems not much is known. However,
we know a lot about alignments. Alignments are set systems closed under
intersection, i.e. a set system H ⊆ 2S is an alignment if H = H∩ (it is also
required that ∅, S ∈ H).

Quadrangular systems are “almost” alignments; can similar theorems
be proved for them?

We may also be interested in further examples for quadrangular sys-
tems. Examples are not too difficult to give, but sequences of quadrangular
systems different from the examples in [13] are not known.
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The question whether there is a correspondence between C(R) and
g(H,R, f) is also open.

We have seen that for the poset problems, where C(R) is the maximum
possible, the recognition complexity is almost the same as the lower bound
of Theorem 3.7., while for the communication model, where C(R) is the
minimum possible (Theorem 4.12.), this bound is not at all tight (see [7]).

Can we give better bounds if the alignment R∩ is a special one, say a
convex geometry? (An alignment C is said to be a convex geometry or an
anti-matroid if it satisfies the so-called anti-exchange axiom: if Y ∈M and
x, y ∈ Y , then

y ∈ Y ∨ x ⇒ x /∈ Y ∨ y,

where A∨ b denotes the minimal set of C containing all elements of A∪{b}
(this set exists uniquely, because C is an alignment). For details about
alignments and convex geometries see for example [4] and [10].)

For example the set system S∩� is a convex geometry and the bounds
given for S∩� are almost tight.
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