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Preface

Objects have the capacity to distinguish themselves from other objects
and from themselves at different times. The interaction of objects, to-
gether with the process of making distinctions, results in the transfer
of a quantity that we call information. Some objects are capable of dis-
tinguishing themselves in more ways than others. These objects have a
greater information capacity. The quantification of how objects distin-
guish themselves and the relationship of this process to information is
the subject of this book.

As individual needs have arisen in the fields of physics, electrical
engineering and computational science, diverse theories of information
have been developed to serve as conceptual instruments to advance
each field. Based on the foundational Statistical Mechanical physics of
Maxwell and Boltzmann, an entropic theory of information was devel-
oped by Brillouin, Szilard and Schrödinger. In the field of Communica-
tions Engineering, Shannon formulated a theory of information using an
entropy analogue. In computer science a “shortest descriptor” theory of
information was developed independently by Kolmogorov, Solomonoff
and Chaitin.

The considerations presented in this book are an attempt to illumi-
nate the common and essential principles of these approaches and to
propose a unifying, non-semantic theory of information by demonstrat-
ing that the three current major theories listed above can be unified
under the concept of asymmetry, by deriving a general equation of in-
formation through the use of the algebra of symmetry, namely Group
Theory and by making a strong case for the thesis that information is
grounded in asymmetry.

The book draws on examples from a number of fields including
chemistry, physics, engineering and computer science to develop the
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notions of information and entropy and to illustrate their interrela-
tion. The work is intended for readers with a some background in
science or mathematics, but it is hoped the overarching concepts are
general enough and their presentation sufficiently clear to permit the
non-technical reader to follow the discussion.

Chapter 1 provides an introduction to the topic, defines the scope
of the project and outlines the way forward. The technical concepts
of entropy and probability are developed in Chapter 2 by surveying
current theories of information. Distinguishability and its relationship
to information is presented in Chapter 3 along with numerous illus-
trative examples. Chapter 4 introduces symmetry and Group Theory.
This chapter demonstrates the connections between information, en-
tropy and symmetry and shows how these can unify current informa-
tion theories. Finally Chapter 5 summarises the project and identifies
some open questions.

This book represents a first step in developing a theory that may
serve as a general tool for a number of disciplines. I hope that it will
be of some use to researchers in fields that require the development of
informatic metrics or are concerned with the dynamics of information
generation or destruction. Extending this, I would like to see the group-
theoretic account of information develop into an algebra of causation
by the quantification of transferred information.

A large portion of this research was conducted as part of my PhD
dissertation at the University of Newcastle, Australia. I would like to
express my deep gratitude to Cliff Hooker and John Collier for in-
valuable advice and guidance and to George Willis for assistance with
Group Theory, in particular Topological Groups. Early discussions with
Jim Crutchfield at the Santa Fe Institute were useful in clarifying some
initial ideas. I would also like to thank Chris Boucher, Ellen Watson,
Jamie Pullen, Lesley Roberts and Melinda Stokes for much support
and inspiration. Finally, I would also like to thank my parents, Jon
and Lyal.

Sydney, April 2007 Scott Muller



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 Scope of Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 A Survey of Information Theories . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Thermodynamic Information Theory . . . . . . . . . . . . 7
2.2.2 Information (Communication) Theory . . . . . . . . . . . 32
2.2.3 Algorithmic Information Theory . . . . . . . . . . . . . . . . 34
2.2.4 Signpost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.3 Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.3.1 Subjective Probability . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.3.2 Frequency Probability . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.3.3 Dispositional Probability . . . . . . . . . . . . . . . . . . . . . . 63

2.4 Signpost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3 Information and Distinguishability . . . . . . . . . . . . . . . . . . . 67
3.1 Distinguishability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.2 Information: A Foundational Approach . . . . . . . . . . . . . . . 76

4 Information and Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.1 Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.2 Symmetry and Group Theory . . . . . . . . . . . . . . . . . . . . . . . . 81

4.2.1 Subgroups and Special Groups . . . . . . . . . . . . . . . . . 87
4.2.2 Group Theory and Information . . . . . . . . . . . . . . . . . 89

4.3 Symmetry and Information . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.3.1 Information Generation . . . . . . . . . . . . . . . . . . . . . . . 97
4.3.2 Extrinsic and Intrinsic Information . . . . . . . . . . . . . 99

4.4 Information and Probability . . . . . . . . . . . . . . . . . . . . . . . . . 100



VIII Contents

4.4.1 Maximum Entropy Principle . . . . . . . . . . . . . . . . . . . 100
4.5 Information and Statistical Mechanics . . . . . . . . . . . . . . . . 112

4.5.1 Distinguishability and Entropy . . . . . . . . . . . . . . . . . 112
4.5.2 Demonic Information . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.6 Information and Physical Thermodynamics . . . . . . . . . . . . 118
4.6.1 Symmetry and Physical Entropy . . . . . . . . . . . . . . . . 118
4.6.2 Symmetry and the Third Law . . . . . . . . . . . . . . . . . . 120
4.6.3 Information and The Gibbs Paradox . . . . . . . . . . . . 122

4.7 Quantum Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
4.7.1 Quantum Information and Distinguishability . . . . . 125

4.8 Symmetries and Algorithmic Information Theory . . . . . . . 132
4.8.1 Symmetry and Kolmogorov Complexity . . . . . . . . . 132
4.8.2 Memory and Measurement . . . . . . . . . . . . . . . . . . . . . 132
4.8.3 Groups and Algorithmic Information Theory . . . . . 133
4.8.4 Symmetry and Randomness . . . . . . . . . . . . . . . . . . . . 137
4.8.5 A Final Signpost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

A Burnside’s Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

B Worked Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
B.1 Clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

B.1.1 Case 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
B.1.2 Case 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
B.1.3 Case 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

B.2 Binary String . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161



1

Introduction

Information is a primal concept about which we have deep intuitions.
It forms part of our interface to the world. Thus is seems somewhat
odd that it is only in the last one hundred years or so that attempts
have been made to create mathematically rigorous definitions for in-
formation. Perhaps this is due to a tendency to cast information in an
epistemological or semantic light, thus rendering the problem difficult
to describe using formal analysis. Yet physical objects1 are endowed
with independent, self-descriptive capacity. They have innate discern-
able differences that may be employed to differentiate them from oth-
ers or to differentiate one state of an object from another state. These
objects vary in complexity, in the number of ways that they can dis-
tinguish themselves.

Recent attempts to quantify information have come at the problem
with the perspective and toolkits of several specific research areas. As
individual needs have arisen in such fields as physics, electrical engi-
neering and computational science, theories of information have been
developed to serve as conceptual instruments to advance that field.
These theories were not developed totally in isolation. For example,
Shannon [72] in communications engineering was aware of the work
done by Boltzmann, and Chaitin [21], in computational science, was
aware of Shannon’s work. Certain concepts, such as the use of the
frequency concept of probability, are shared by different information
theories, and some terminology, such as ‘entropy’, is used in common,
though often with divergent meanings. However for the most part these
theories of information, while ostensibly describing the same thing, were
developed for specific local needs and only partially overlap in scope.

1 This can also include representations of abstract objects such as numbers and
laws.
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The resulting situation is a little like the old joke about the blind
men who were asked to describe an elephant: each felt a different part
of it and each came up with a different account. It is not that their
individual descriptions were incorrect; it is just that they failed to es-
tablish the full picture. I believe that, in the same way, the current
theories of information do not directly address the underlying essence
of information. It is my intention here to start describing the whole
elephant; to begin to give a comprehensive definition of information
that reconciles and hopefully extends the theories developed to date.

In the context of this discussion, I take information to be an objec-
tive property of an object that exists independently of an observer, a
non-conservative quantity that can be created or destroyed and that is
capable of physical work. I assume these things at the outset and will
also provide demonstrations to support them through the course of my
argument.

As my starting point, I take my lead from two theses. The first,
promoted by Collier [24] and others, states that information originates
in the breaking of symmetries. The other is E.T. Jaynes’ Principle of
Maximum Entropy [40]. The symmetry breaking notion leads me to
postulate that information is a way of abstractly representing asymme-
tries. The Maximum Entropy Principle requires that all the information
in a system be accounted for by the removal of non-uniform (read asym-
metric) distributions of microstates until an equiprobable description is
attained for the system. These two approaches, both heavily grounded
in asymmetry, lead me to believe that if one is to quantify information,
one must quantify asymmetries.

In this book I have three primarily goals. The first is to demonstrate
that the three current major theories – the Thermodynamic/Statistical
Mechanics Account, Communication Theory and Algorithmic Informa-
tion Theory – can be unified under the concept of asymmetry. The
second is to derive a general equation of information through the use
of the algebra of symmetry, namely Group Theory. And finally I hope
to make a strong case for the thesis that information is grounded in
asymmetry.

Once developed, this approach might then be used by the three fields
mentioned above to extend research into information itself. Moreover,
because it provides an algebra of information, it can be a valuable tool
for the analysis of physical systems in disparate scientific fields.
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1.1 Structure

Following this introduction, Chapter 2 is a review of the aforemen-
tioned current theories of information. The first port of call (Section
2.2.1) is the Thermodynamic Theory of Information. Since the rela-
tionship between entropy and information has been well established,
the section examines in some detail the history of entropic theory, the
Second Law of Thermodynamics and the combinometric nature of en-
tropy under the paradigm of Statistical Mechanics. This leads to a
detailed examination of Maxwell’s Demon: a thought experiment that
ostensibly violates the Second Law and demonstrates the relationship
between thermodynamic or physical entropy and information. This re-
view of the Thermodynamic/Statistical Mechanics Theory of Informa-
tion draws out four key concepts: the combinometric nature of entropy,
the role of measurement in information systems, the role of memory
in information systems and the capacity of informatic systems to do
work. These are all examined in detail later in the work.

Section 2.2.2 looks briefly at Claude Shannon’s contribution to the
study of information, his development of a Boltzmann-like entropy the-
orem to quantify information capacity.

Section 2.2.3 examines the last of the three major information theo-
ries, Algorithm Information Theory. This section considers the work of
Kolmogorov, Solomonoff and Chaitin, all of whom contributed to the
‘shortest descriptor of a string’ approach to information. Crucial to the
development of their work are the notions of randomness and Turing
machines. These are also studied in this section.

The general concept and specific nature of probability play an im-
portant role in all theories of information. Maxwell, Boltzmann and
Shannon employ probabilistic accounts of system states. Kolmogorov
stresses the importance of the frequency concept of probability. In order
to develop a view of probability to use a symmetry-theory of informa-
tion, Section 2.3 considers the nature of probability.

The construction of a foundational theory of information is started
in Chapter 3. Commencing with a Leibnizian definition of distinguisha-
bility, the relationship between information and distinguishability is es-
tablished. Based on this relationship, an objective, relational model is
defined which couples an informatic object with an information gath-
ering system. This model will serve as the infrastructure for the math-
ematical description of information developed in Chapter 4.

As a precursor to the development of the formal definition of in-
formation, Chapter 4 begins by examining symmetry through a brief
introduction to the algebra of symmetry, Group Theory. Based on the
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previously constructed model of distinguishability, a formal account
of information in terms of Group Theory is developed using Burnside’s
Lemma in Section 4.2.2. This relationship between symmetry and infor-
mation is discussed at some length in Section 4.3 looking in particular
at the generation of information and different types of information.

Section 4.4 considers the association of information with probability,
with special interest paid to Bayes’ theorem and Jaynes’ Maximum
Entropy Principle. Bertrand’s Paradox is investigated as an example of
information generated from asymmetries. The Statistical Mechanical
Theory of Information is cast in the light of my analysis of information
as asymmetry in Section 4.5, with attention given to the Maxwell’s
Demon paradox. In Section 4.6 We examine the relationship between
symmetry and physical entropy and the status of the Third Law of
Thermodynamics, when formulated in terms of the symmetry theory.
This section also further develops the principle that information can
facilitate physical work by considering Gibbs’ Paradox.

The primary issues linking Algorithmic Information Theory and the
asymmetry account of information centre on the notions of randomness,
redundancy and compressibility. Thus these are considered in Section
4.8 by way of an example using the transcendental numbers.

Chapter 5 concludes the books and examines the need and oppor-
tunities for further work. Proof of Burnside’s Lemma and worked ex-
amples used in the body of the text are provided in the Appendices.

I intend throughout this book to draw on examples and techniques
from a variety of scientific fields. To avoid confusion and the possibility
of losing sight of our ultimate goal, I will occasionally include signposts
to summarise where we are and to indicate the direction in which we
are heading.
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Information

2.1 Scope of Information

It is prudent to initially establish the scope of what we mean by ‘infor-
mation’. Many contemporary philosophical theories of information are
subjective in nature. Daniel Dennett , for example, maintains that in-
formation depends on the epistemic state of the receiver and as such is
not independently quantifiable [29]. My understanding of information,
however, is otherwise. I take information to be objective and physical,
to exist independent of the observer and to be capable of producing
work. Although the transfer of information from an informatic object
to an external observer is bounded by the capabilities of the observer
(that is, the subset of information perceived is closed by the observer),
nonetheless the informational attributes of an informatic object exist
independently of the existence of any observer.

What sort of information are we talking about? Information con-
sists of any attributes that can determine, even partially, the state
of an object. This may be genetic information, linguistic information,
electromagnetic radiation, crystal structures, clock faces, symbolic data
strings: practically anything. When I refer to ‘information’ in a quanti-
tative sense, I will use the term synonymously with ‘informatic capac-
ity ’. I will labour this point somewhat. I take my definition of ‘infor-
mation’ to be strictly non-epistemic. Though I will talk of one object
O1 “having informatic capacity with respect to” another object, O2,
the information exists independently of human apprehension. The O2

may well be an inanimate crystal. The information is objective in the
sense that it is a property of the object O1, filtered by O2. Information
is the facility of an object to distinguish itself.
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In this manner, my use of the term ‘information’ is strictly non-
semantic. It is independent of context and content. It would, for exam-
ple, treat any two 6 character strings composed of any of the 26 English
letters, with no other constraints imposed, are informatically equiva-
lent. ‘f l o w e r ’ is informatically equivalent to ‘z y x w v u’. However,
the theory, once developed, will be capable of taking into account such
semantic constraints to show how the two strings above informatically
different in the context of a meta-system.

2.2 A Survey of Information Theories

Work on theories of physical information has, over the past century,
arisen from three distinct, though interconnected fields: Thermody-
namics and Statistical Mechanics, Communication Theory and, more
recently, Algorithmic Information Theory. In each of these fields an at-
tempt has been made to try to quantify the amount of information that
is contained in a physical entity or system. Thermodynamic/Statistical
Mechanics (TDSM) approaches have tried to relate a system’s thermo-
dynamic macroproperty, entropy, to the system’s information content
by equating information with the opposite sign of entropy: negentropy.
Entropy, by means of Statistical Mechanics, was shown to represent
a lack of information concerning the microstates of a system subject
to macroconstraints. Post-war research into the burgeoning field of
telecommunications during the late 1940’s led to the creation of Com-
munications Theory (also ambitiously termed “Information Theory”),
in which transfer of information via channels was quantified in terms of
a probability distribution of message components. A quantity that rep-
resented the reduction in uncertainty that a receiver gained on receipt
of the message was found to possess a functional form similar to the
entropy of Statistical Mechanics, and so was equivocally also termed
entropy.

The third approach attacked the problem from a different angle. In
Algorithmic Information Theory, the information content of a string
representation of a system or entity is defined as the number of bits
of the smallest program it takes to generate that string.1 It has been
shown that this quantification is also related to both the Statistical
Mechanics and Communication Theory entropies. This section exam-
ines these three approaches and the relationship to each other in some
detail.

1 A string is taken to mean a sequence of symbols, usually alphanumeric characters.
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2.2.1 Thermodynamic Information Theory

All modern physical theories of information make reference to a quan-
tity known as entropy. The term was originally applied by the German
physicist Rudolf Clausius in the middle nineteenth century to distin-
guish between heat source qualities in work cycles. Later work by Boltz-
mann provided a formal relationship between Clausius’ macrolevel en-
tropy and the microdynamics of the molecular level; this was the origin
of Statistical Mechanics.

In this section we examine thermodynamic entropy, Statistical Me-
chanical entropy and the Second Law of Thermodynamics and their
relationship with information.

Thermodynamic Entropy and the Second Law

The origin of the concept of entropy lies in the 1800s during which
time rapid industrial expansion was being powered by increasingly more
complex steam engines. Such engines were specific instances of a more
general class of engines known as heat engines. A heat engine is de-
fined as any device that takes heat as an energy source and produces
mechanical work. The notion of entropy itself was born out of early
considerations of the efficiency of heat engines.

The conversion of work to heat is a relatively simple affair. The
process of friction, for example, can be analysed by considering the
amount of work (W ) applied and the quantity of heat generated (Q).
The first law of thermodynamics tells us that the quantity of heat
generated is equal to the amount of work applied: Q = W . That is
to say that the efficiency of energy conversion is 100%. Furthermore
this conversion can be carried out indefinitely. This is the First Law of
Thermodynamics.

The conversion of heat to work, however, is less straightforward.
The isothermal expansion of a hot gas against a piston will produce
mechanical work, but eventually the pressure relative to the external
pressure will drop to a point where no more work can be done. Without
some sort of cyclic process whereby the system is periodically returned
to its initial state after producing work, the process will not continue
indefinitely.

If a cyclic process is employed, each one of the cycles consists of
a number of steps in which the system interacts with the surround-
ing environment. The cycle of a heat engine will consist of a series of
exchanges between itself and the environment where it:
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• takes heat (QH)from a reservoir at high temperature;
• delivers heat (QL) to a reservoir at low temperature;
• delivers work (W) to the environment.

A schematic of the process is shown below in Fig. 2.1.

Fig. 2.1. Heat Engine Schematic

The efficiency η of such an engine is defined as work obtained per
unit heat in:

η =
W

QH

The first law of thermodynamics again tells us that, given no internal
accumulation of energy, the work produced is equal to the difference
between heat in and heat out:

W = QH − QL. Thus the efficiency equation becomes:

η =
QH − QL

QH
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or:
η = 1 − QL

QH

From this expression we can see that the efficiency of a heat engine will
only be unity (i.e. 100%) if QL is 0, that is that there be no flow from
the engine.

In 1824 a French engineer, Sadi Carnot, published “Réflexions sur
la puissance du feu, et sur les machines propre à développer cette puis-
sance” (Reflections on the Motive Power of Fire and on Machines Fitted
to Develop that Power). Carnot showed that the most efficient engine
(subsequently termed a Carnot Engine) is one in which all operations in
the cycle are reversible. That is to say: No engine operating between two
heat reservoirs can be more efficient than a Carnot Engine operating
between the same two reservoirs. This is known as Carnot’s Theorem.
It should be noted that since every operation in the Carnot Engine is
reversible, the whole engine could be run in reverse to create a Carnot
Refrigerator. In this mode the same work W is performed on the engine
and heat QLis absorbed from the low temperature reservoir. Heat QH is
rejected to the high temperature reservoir, thus pumping heat from a
low temperature to a higher temperature.

In thermodynamics, reversibility has a very specific meaning. A pro-
cess is reversible just in case that: 1) heat flows are infinitely rapid so
that the system is always in quasi-equilibrium with the environment
and 2) there are no dissipative effects so the system is, in a sense, ther-
mally frictionless. In the reversible Carnot Engine there are no friction
losses or waste heat. It can be run backwards with the same absolute
values of W , QL and QH to act as a heat pump. One cycle of the Carnot
Engine running in normal mode followed by one cycle running in re-
verse (refrigerator) mode would leave the engine system (as shown in
Fig. 2.2) and the surrounding universe completely unchanged. Carnot’s
Theorem states that no engine is more efficient than a Carnot engine.
We can see why as follows. Imagine a candidate engine X operating
between the same reservoirs shown in Fig. 2.2, taking the same heat
QH in and depositing QL out and assume that the work produced is
W ′. Now assume that W ′ > W . If this were the case, we should be
able to set aside W Joules of work from engine X to run a Carnot
refrigerator between the two reservoirs and produce W ′ − W Joules of
extra work with no other effect. This is clearly impossible. At the very
most W ′ = W . Here we note that W represents a cap on the amount
of work that may be obtained from this heat source system. This value
is independent of the design of engines. It is, as Feynman puts it, “a
property of the world, not a property of a particular engine” [33].
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Fig. 2.2. : Carnot Refrigerator

In the real world there exists no process that operates without loss.
There is no such thing as a frictionless piston. So a Carnot Engine can-
not actually exist and it is this discrepancy between real world engines
and Carnot’s Engine that was the motivation for thought about the
Second Law of Thermodynamics. It is our experience that no engine –
natural or constructed – has been found to convert heat to mechanical
work and deliver no waste heat. This is the basis of the Second Law
of Thermodynamics and, based on empirical evidence, we assume it to
be axiomatic in nature. Planck considers this and offers the following
definition:

“Since the second fundamental principle of thermodynamic
is, like the first, an empirical law, we can speak of its proof only
in so far as its total purport may be deduced from a single simple
law of experience about which there is no doubt. We, therefore,
put forward the following proposition as being given by direct
experience: It is impossible to construct an engine which will



2.2 A Survey of Information Theories 11

work in a complete cycle, and produce no effect except the raising
of a weight and the cooling of a heat reservoir” [63].

The term entropy was introduced into the physics lexicon by Rudolf
Clausius in 1865 [22]. Clausius advanced the field of thermodynamics
by formalising the Second Law of Thermodynamics using methodology
developed by Carnot. Clausius showed that a continuous reversible heat
engine cycle could be modelled as many reversible steps which may be
considered as steps in consecutive Carnot cycles. For the entire cycle
consisting of j Carnot cycles, the following relationship holds true:∑

j

Qj

Tj
= 0

where Qj is the heat transferred in Carnot cycle j at temperature Tj.
By taking the limit as each step size goes to 0 and j goes to infinity,
an equation may be developed for a continuous reversible cycle:

R

∫
dQ

T
= 0

the R indicates that expression is true only for reversible cycles.
It follows from the preceding, that any reversible cycle may be di-

vided in two parts: an outgoing path P1 (from point a to point b on
the cycle) and a returning path P2 (from point b to point a), with the
result that

RP1

∫ b

a

dQ

T
=

RP2
−

∫ a

b

dQ

T

and,

RP1

∫ b

a

dQ

T
=RP2

∫ b

a

dQ

T

This indicates that the quantity
R

∫ b
a

dQ
T is independent of the actual

reversible path from a to b. Thus there exists a thermodynamic prop-
erty2, the difference of which between a final state and an initial state
is equal to the quantity

R

∫ b
a

dQ
T . Clausius named this property entropy

and, assigning it the symbol S, defined it as follows:

R

∫ b

a

dQ

T
= Sb − Sa

Clausius explained the nomenclature thus:
2 This is Feynman’s “property of the real world” alluded to earlier.
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“If we wish to designate S by a proper name we can say
of it that it is the transformation content of the body, in the
same way that we say of the quantity U that it is the heat and
work content of the body. However, since I think it is better to
take the names of such quantities as these, which are impor-
tant for science, from the ancient languages, so that they can
be introduced without change into all the modern languages,
I proposed to name the magnitude S the entropy of the body,
from the Greek word ητρoπη a transformation. I have intention-
ally formed the word entropy so as to be as similar as possible
to the word energy, since both these quantities, which are to
be known by these names, are so nearly related to each other
in their physical significance that a certain similarity in their
names seemed to me advantageous” [22].

It is critical to realise that nothing at all is said about the absolute
value of entropy; only the difference in entropy is defined. To under-
stand the nature and full significance of entropy, it is necessary to
consider, not just entropy changes in a particular system under exami-
nation, but all entropic changes in the universe due to thermodynamic
action by the system. Any reversible process in a system in contact with
a reservoir will cause an internal change in entropy of say dS system = +
dQR/T where dQR heat is absorbed at temperature T. Since the same
amount of heat is transferred from the reservoir the change in entropy of
the reservoir is dS reservoir = - dQR/T . Thus the nett change in entropy
caused by the process for the whole universe is dS system + dS reservoir

= 0. The change in entropy of the universe for a reversible process
is zero. However, reversible processes are merely idealisations. All real
processes are irreversible and the nett universal entropy change for ir-
reversible processes is not zero. Clausius showed that for irreversible
cycles the integral of the ratio of heat absorbed by the system to the
temperature at which the heat is received is always less than zero:

I

∫
dQ

T
< 0

From this result it can be shown that for irreversible processes,
dSsystem + dSreservoir > 0. Combining this with the above statement
for reversible systems, we arrive a statement of what is known as the
entropy principle and applies to all systems:

ΔSuniverse ≥ 0
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The upshot of this is that any process will at best cause no increase in
the entropy of the universe, but all real processes will contribute to the
increase of the entropy of the universe. This was realised by Clausius
who presented his version of the first and Second Laws:

“1. The energy of the universe is constant
2. The entropy of the universe tends toward a maximum”

[22]).

Planck defined the entropy principle as:

“Every physical or chemical process in nature takes place in
such a way as to increase the sum of the entropies of all bodies
taking part in the process. In the limit, i.e. for all reversible
processes, the sum of all entropies remains unchanged” [63].

As an historical aside it is perhaps interesting to reflect on whether
Carnot held some conception of what we now know as entropy. Carnot’s
theory of heat was primitive by modern standards. He considered that
work done by a heat engine was generated by the movement of calorique
from a hot body to a cooler body and was conserved in the transition.
Clausius and William Thomson (Lord Kelvin) showed that the ‘heat’

in fact was not conserved in these processes. However, as Zemansky
and Dittman observe:

“Carnot used chaleur when referring to heat in general, but
when referring to the motive power of fire that is brought about
when heat enters an engine at high temperature and leaves at
a low temperature, he used the expression chute de calorique,
never chute de chaleur. It is of the opinion of some scientists
that Carnot had at the back of his mind the concept of entropy,
for which he had reserved the term calorique. This seems incred-
ible, and yet is a remarkable circumstance that if the expression
chute de calorique is translated as “fall of entropy,” many of
the objections to Carnot’s work raised by Kelvin, Clapeyron,
Clausius, and others are no longer valid” [88].

This is sustained when one considers that in Carnot’s time the
caloric theory of heat as a fluid dominated and much of Carnot’s heat
cycle theories were generated as analogies to water-wheel engines. What
Carnot was trying to capture was a measure of heat quality that cor-
responded to the potential energy of water: the higher a stream feed
enters above the base pool, the more work it can do per mass unit.
This certainly corresponds to Lord Kelvin’s “grade” of energy – that
energy at a higher temperature, in some sense, has a higher quality.
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In returning to the main discussion, we observe that we have ar-
rived at the point where we can say that entropy is a thermodynamic
property, with the particular characteristics described by the entropy
principle. It is defined only by its changing. It is related to heat flows
in a system and, like work and temperature, it is a purely macroscopic
property governed by system state coordinates. But what are the mi-
crophysical actions that give rise to such macrocharacteristics? How
are we to understand the underlying principles of entropy?

By stepping away from heat engines for a moment and examining
what occurs at the microscopic level in examples of entropy increase in
natural systems, correlations between entropy and order relationships
are revealed. Consider the isothermal sublimation of dry ice to gaseous
CO2 at atmospheric pressure at 194.8K (−78.4◦C). Heat is taken from
the environment at this temperature increasing the internal energy of
the solid to the point where molecules escape to become free gas. The
enthalpy of sublimation3 is 26.1 kJ/mol [77] which means the entropy
increase associated with the sublimation of one gram of CO2 can be
calculated to be 3.04 J/K.

When forming a microphysical conception of entropy in such transi-
tions, there is a tendency to associate increasing entropy with increas-
ing disorder. Melting and sublimation are often used as illustrations
(see [88]). However this approach can be somewhat misleading. Cer-
tainly phase transitions in melting a regular crystal to random liquid
are associated with entropy increase, as is the transition of a material
from a ferromagnetic to a paramagnetic state. These are examples of
changes in microstructure from regularity to irregularity. But it is not
the erosion of patterned regularity that directly accounts for entropy
increase in these examples. Rather they are specific cases of a more
general principle: that of increasing degrees of freedom.

In the sublimation example, the solid carbon dioxide leading up
to and at the point of sublimation is a molecular solid. While form-
ing regular structures at these lower temperatures the molecules are
held together by very weak intermolecular forces (not by ionic or co-
valent bounds like metals or ice) and their dipole moments are zero.
The molecules are held together in a solid state by induced dipole
– induced dipole interaction4 where instantaneous fluctuations in the
electron density distribution in the non-polar compound produces a
constantly changing bonding microstate. The induced dipole – induced
dipole interaction is a very weak bond (0.4–4kJ/mol compared with

3 The heat required for sublimation to occur.
4 Also called London forces.
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100–1000 kJ/mol for ionic or covalent bonds) that reduces the freedom
of movement of the molecules. With strong bonds the freedom of move-
ment is reduced by a greater degree. It is important to recognize that
bonding does not primarily create regularities; it reduces the degrees
of freedom. The order that emerges is wholly due to a restriction of
kinetic phase space.

The tendency to equate order with regularity should be resisted.
It is certainly the case that a highly regular system will possess fewer
degrees of freedom than an irregular one. But regularity is not the only
form of order. To further illustrate the contrasting notions of regularity
and freedom let us return to the realm of heat engines and consider the
very rapid, quasi-isothermal expansion of an ideal gas against a vacuum.
In this case the result is similar to a slow isothermal expansion with the
state variable entropy increasing as the volume in which the molecules
are free to move increases. Here ΔS = ΔQ/T . It seems counterintuitive
to say that there is more disorder in the final state than in the initial
compressed state. There is the same number of molecules, with the same
total kinetic energy moving in a random manner in both the initial and
final states. There has been no change of structural regularity; only
the volume has increased to provide greater freedom of movement to
the molecules. When physical constraints are released, greater freedom
is given to the microdynamics. This may also, in some systems, be
reflected in an increase in disorder but it is the increased freedom that
appears to be strongly correlated with an increase in the macroproperty
entropy rather than some quantity order.5

We have reached the end of our introduction to entropy and the
Second Law of Thermodynamics and we pause the list the important
concepts to take from this section regarding entropy as a thermody-
namic, macroscopic phenomenon. They are threefold. The first is that
entropy and work are related concepts. Entropy limits the amount of
work one may obtain from a physical system. The second is that for all
real systems, the sum of the entropies of all bodies taking part in the
system increases over time. This is the ‘entropy principle’. Finally there
exists a relationship between the macroscopic property of entropy and
the degrees of freedom possessed by constituent microstates. We will
look at this relationship between entropy and microstates in the next
section; however before doing so, it is necessary, for completeness, to
look at the Third Law of Thermodynamics.

5 This is to say that greater concentration is not more orderly in any intuitive sense.
(Consider millions grains of salt contained in a salt shaker and the same grains
scattered on the table when the container is magically removed.)
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Like the first two laws of thermodynamics, the third is a postu-
late and it relates to the absolute value of entropy. As noted above
thermodynamic entropy only has physical significance when differences
are considered. This is due to the integration operator6; the nature of
absolute entropy is not defined. In 1906 Walther Nernst proposed a
theorem to address the problem of determining an absolute value of
entropy. “The gist of the theorem is contained in the statement that,
as the temperature diminishes indefinitely the entropy of a chemically
homogenous body of finite density approaches indefinitely near to a
definite value, which is independent of the pressure, the state of ag-
gregation and of the special chemical modification” [63]. The ‘definite
value’ that entropy approaches is shown to be zero at absolute zero (0
K). Thus for homogenous solids and liquids (e.g. crystals) the theorem
may be restated as: Entropy approaches zero as temperature approaches
absolute zero. This is the third law of thermodynamics. We will examine
the third law in more detail in Section 4.6.2.

Statistical Mechanics

The discussion at the end of the previous section concerning degrees of
freedom and microphysical aspects of entropy was informal and quali-
tative in nature. In this section these considerations are extended and
developed in a historical review of the formal relationship between en-
tropy and system microstates. This review will prove valuable later
when we consider the combinometric relationship between entropy and
information.

The First Formulation

The first formulation of the relationship between thermodynamics of
a system and its underlying molecular states was proposed by James
Clerk Maxwell and Ludwig Boltzmann, though research into the un-
derlying atomic kinetics of gases had commenced even earlier than
Carnot’s initial work on the laws of thermodynamics. In 1738 Daniel
Bernoulli developed a particulate model of a gas which, assuming uni-
form particle velocity, predicted the inverse pressure – volume rela-
tionship at constant temperature and described the relationship of the
square of (uniform) particle velocity to temperature. And, although
similar work was carried out by W. Herepath (who, importantly, iden-
tified heat with internal motion) and J. Waterston (calculated specific
6 On integration without limits the equation will produce an arbitrary additive

constant.
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heat relationships based on kinetics) during the first half of the nine-
teenth century, it wasn’t until August Karl Krönig published a paper
in 1856 detailing results akin to those of his kinetic-theory predecessors
that an interest in microstate theories was kindled generally. The most
likely reason for the less-than-receptive attitude towards a particulate
theory of gases before Krönig is the sway that the caloric theory of heat
held on the scientific community during the early 1800s.

Clausius continued the work on kinetic theory in the late 1850s, by
taking into account the effect of molecular collision and by expanding
internal energy calculations to include rotational and vibrational com-
ponents, though, as with Bernoulli, the assumption of uniform molecu-
lar velocities (the gleichberechtigt assumption) remained. Clausius’ con-
sideration of the effect of molecular collision proved a vital point for
it enabled future researchers, in particular Maxwell, to conclude that
the uniform velocity assumption was unsustainable. If all molecules ini-
tially possessed identical velocities, they would not continue so because
interactions between them would distribute the energy over a range of
different velocities.

Maxwell was instrumental in developing a clear concept of the dy-
namic patterns that groups of molecules form in monatomic gases. He
realised that while velocities of individual molecules were continually
changing due to collisions, the velocity profile of the population at
equilibrium was static and could be described. By considering subpop-
ulations in velocity ranges, Maxwell developed what would lead to the
first probabilistic account of molecular kinetics. The result of these con-
siderations yielded the number of monatomic molecules in a discrete
velocity range v to v + Δv can stated as follows:

Δn = Ae−B(ẋ2+ẏ2+ż2)ΔẋΔẏΔż

Where: ẋ, ẏ, ż are the velocity components in Cartesian space and A
and B are two constants determined by total number molecules, to-
tal mass and the total kinetic energy. The relationship is known as
Maxwell’s Law.7,8 The next major step toward a microdynamic ac-
count of thermodynamics occurred in 1868 with Boltzmann developing
the kinetic theory of gases by constructing a significant generalisation
of Maxwell’s distribution law. Boltzmann’s theory, like Maxwell’s, al-
lowed for non-uniform molecular velocities but also extended the notion
to allow molecular non-uniformities of other types, specifically those
7 Or, more completely, Maxwell’s Distribution Law for Velocities.
8 Given the form of the equation, it appears that Maxwell may well have been

influenced by Gauss’s then recent work on error distribution.
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that were spatially dependent (eg. field effects). Rather than consider-
ing subpopulations in discrete velocity ranges, Boltzmann considered
discrete ranges of state that extended the model to include energies
beyond just kinetic energy. Later commentators, the Ehrenfests, have
described the model thus:

“If Δτ denotes a very small range of variation in the state of
a molecule – so characterized that the coordinates and velocities
of all atoms are enclosed by suitable limits, . . . then for the case
of thermal equilibrium

f · Δτ = αe−βε · Δτ

gives the number of those molecules whose states lie in the range
of variation Δτ . Here ε denotes the total energy the molecule
has in this state (kinetic energy + external potential energy +
internal potential energy) and α and β are two constants which
are to be determined just as in the case of Maxwell’s law”[32].

In the appropriate limit, Boltzmann’s distribution reduces to Maxell’s
distribution, hence the equation is known as the Maxwell-Boltzmann
distribution law. This equation gives the energy distribution of the
molecular system and has equilibrium as a stationary solution.

In 1872, Boltzmann undertook the development of a theorem to
show that only equilibrium is a stationary solution, that all distribu-
tions will approach the Maxwell-Boltzmann distribution. As noted pre-
viously, in all real, irreversible processes entropy increases. Boltzmann
defined a function, H, which could be applied to any distribution.

“Consider a distribution, which may be arbitrarily different
from a Maxwell-Boltzmann distribution, and let us denote by
f ·Δτ the number of those molecules whose state lies in the small
range Δτ of the state variables. Then we define the H-function
as

H =
∑

f log f · Δτ

Where the sum is to be taken over all the possible domains of
Δτ” [32].

Boltzmann demonstrated that the H-function decreases monotonically
with time so that for a time series t1, t2, t3 . . . tn,the corresponding sys-
tem H values are H1 ≥ H2 ≥ H3 . . . ≥ Hn. On quick inspection we see
that this behaves just as the negative value of thermodynamic entropy
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would and thus consider H to be an analogue of thermodynamic negen-
tropy.9 This gives us our first expression of entropy in microdynamic
terms.

As a corollary to the theorem, Boltzmann showed that all non-
Maxwell-Boltzmann distributions will, given time, approach a Maxwell-
Boltzmann distribution. Further, Boltzmann showed that this is unique:
all non-Maxwell-Boltzmann distributions will approach only a Maxwell-
Boltzmann distribution. When the Maxwell-Boltzmann distribution is
attained the equalities in the above H progression hold.

Since the work of Clausius, there has been embedded in the kinetic
theory a postulate which eventually became the focus of criticism of the
theory. The Stosszahlansatz 10 is an important assumption concerning
the intermolecular collisions in a gas. In essence the assumption as-
signs equal probability to collisions. The number of collisions between
two groups of molecules (e.g. those of two different velocities) is as-
sumed to be independent of all factors except the relative densities of
the two groups, total number of molecules and the proportional area
swept out11 by one of the groups of molecules. The inclusion of the
Stosszahlansatz in Maxwell and Boltzmann’s work led to a distribu-
tion that is stationary.12 Questions soon arose regarding the capacity
of a theory based on reversible kinetics to explain irreversible ther-
modynamic processes. How could a theory of stationary distributions
deal with non-stationary processes, that is, processes with temporal
direction?

However the H-theorem does not answer these questions founded
in irreversibility arguments and two new objections demand consid-
eration. The first was proposed by Josef Loschmidt in 1876. Termed
Umkehreinwand13, the objection was based on the reversible kinetics
of the microstates. Consider the microstates of a gas that has reached
equilibrium, that is at time n after the H-progression H1 ≥ H2 ≥ H3

. . . ≥ Hn−1= Hn. Now consider an identical copy of this equilibrium
gas but with all velocity vectors reversed. All molecules have the same
speed as the original but the opposite direction. Because the H-theorem
deals solely with scalar quantities, the H-function of the copy, H′

i, has
the same value as the original Hi and since the mechanics of the system
dictate energy conservation, the copy will therefore progress through
9 Negentropy, the negative value of entropy, will be discussed in Section 2.2.1.

10 Literally: Collision Number Assumption.
11 The volume “swept out” by a molecule can be considered to be all those points

which lie in a path that is a collision-course for that molecule.
12 A stationary distribution is one that does not statistically change over time.
13 Reversibility Objection
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the following phases: H′
n= H′

n−1 . . . ≤H′
3 ≤H′

2 ≤ H′
1. So here we have an

apparent instance of a gas at equilibrium spontaneously moving mono-
tonically away from equilibrium; moving from a Maxwell-Boltzmann
distribution to a non-Maxwell-Boltzmann distribution.

The second objection, the Wiederkehreinwand14 , proposed by Ernst
Zermelo in 1896, attacks the problem from a different angle. Henri
Poincaré showed in 1889 that for energetically conservative systems
bound in a finite space, the trajectory in phase space of a system start-
ing from a specified initial state will, except for a ‘vanishingly small’
number of initial states, eventually return arbitrarily close to the initial
state. This is known as Poincaré’s Recurrence theorem. Zermelo’s argu-
ment employed Poincaré’s Recurrence theorem to point out that if we
take a gas system that is not at equilibrium, a non-Maxwell-Boltzmann
distribution, then at some state in its future the state of the system will
be arbitrarily close to its initial state. This is at odds with Boltzmann’s
claim that all non-Maxwell-Boltzmann distributions move monotoni-
cally to a Maxwell-Boltzmann distribution and stay there because they
are at equilibrium.

These objections led Boltzmann to a revised, probabilistic formula-
tion of kinetic theory.

The New Formulation

In 1877 Boltzmann issued a reply to Loschmidt’s Umkehreinwand.
Boltzmann argued that, while it is true that the evolution of a sys-
tem from a specific initial microstate does depend on exactly those
initial conditions, it is possible to provide a general account of all gases
by adopting a statistical approach. Every individual microstate has the
same probability of occurrence, but the microstates that correspond to
the macroequilibrium conditions are more numerous than those that
correspond to non-equilibrium macrostates at any given time instance.
That is, for a number of arbitrarily chosen initial microstates, many
more initial microstates corresponding to non-equilibrium macrostates
will tend to microstates corresponding to equilibrium macrostates than
vice versa.

Boltzmann formulated a model based on dividing microstate space
into small, discrete ranges: spatial momentum ranges. The project then
became to work out, given macro constraints (total energy, total num-
ber of molecules), how many ways can the molecules be distributed
across these ranges? A distribution is the number of particles in each

14 Recurrence Objection
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range. A number of distinct system states can have the same distri-
bution, simply by swapping distinct particles between particle states.
Boltzmann demonstrated that, if the probability of a distribution is
defined by the number of ways a distribution can be constructed by
assigning molecules to ranges then there exists a most probable distri-
bution and that in the limit of the number of ranges going to infinity
and range size going to zero this distribution uniquely corresponds to
the Maxwell-Boltzmann distribution.

Boltzmann defined W , the probability that a system is in a particu-
lar microstate using the distribution definition.15 Combining this with
the H-theorem and the notion of thermodynamic entropy, he arrived
at the following kinetic description of thermodynamic entropy:

S = −K log W

The term W can be calculated as follows:

W =
N !∏

i
Ni!

where N is the total number of systems and Ni is the number of systems
in a particular microstate i. This new formulation did not, however,
stop criticism based on Umkehreinwand-like reversibility arguments.
As Sklar observes,

“Boltzmann’s new statistical interpretation of the H-theorem
seems to tell us that we ought to consider transitions from mi-
crostates corresponding to a non-equilibrium macrocondition to
microstates corresponding to a condition closer to equilibrium
as more ‘probable’ than transitions of the reverse kind. But if,
as Boltzmann would have us believe, all microstates have equal
probability, this seems impossible. For given any pair of mi-
crostates, S1, S2 such that S1 evolves to S2 after a certain time
interval, there will be a pair S1’, S2’ – the states obtained by
reversing the directions of motion in the respective original mi-
crostates while keeping speeds and positions constant – such
that S2’ is closer to equilibrium than S1’ and yet S2’ evolves to
S1’ over the same time interval. So these ‘anti-kinetic’ transi-
tions should be as probable as ‘kinetic’ transitions” [73].

15 The number of ways a system can be in a particular state divided by the total
system permutations.
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Eventually Boltzmann gave up notions of monotonic evolution of
non-equilibrium systems toward a Maxwell-Boltzmann distribution. In-
stead he considered that over large amounts of time, systems would
remain close to equilibrium for most of the time, occasionally drifting
away from equilibrium distribution an arbitrary distance and return-
ing at a frequency that is inversely proportional to the distance away
from equilibrium. This, Boltzmann argued is consistent with Poincaré’s
Recurrence theorem.

With respect to our analysis of information theory, the crucial out-
come of Maxwell and Boltzmann’s work as described in this section is
the construction of a formal quantifier of the number of unique dis-
tributions that distinct system states may have. The development of a
notion of Boltzmann’s thermodynamic probability, W , provides us with
a means of counting distinct macrostates and, as we shall see later, it is
a system’s capacity to exist in uniquely identifiable states that governs
the quality of information it is capable of possessing.

We also see that the notion of distinguishability is crucial. Indeed
it will form a fundamental part of my account of information (see Sec-
tion 3.1). For the ability to distinguish between particles in different
energy ranges potentially allows one to extract work by applying this
information to a sorting process. However this threatens to violate the
Second Law. This ‘paradox’ is known as Maxwell’s Demon, but we will
see that, instead of being a paradox, it is instead a demonstration that
information can do physical work in a system.

Maxwell’s Demon

At the conceptual centre of thermodynamic considerations of informa-
tion is the relationship between entropy and information. Historical
consideration of the nexus arose as the result of a thought experiment
proposed by Maxwell in 1871 in his Theory of Heat. Maxwell consid-
ered a gaseous system contained at equilibrium in an insulated vessel
consisting of two chambers, A and B, separated by a trap door. Sta-
tioned at the trap door was a Demon: a being “whose faculties are so
sharpened that he can follow every molecule in its course” (Maxwell
quoted in [51]). Such a Demon would operate the trap door (without
friction or inertia) permitting only faster molecules to travel from A
to B and slower molecules to travel from B to A.16 In Fig. 2.3. below,
a schematic representation of the system is shown with the varying
molecular velocities represented by varying arrow sizes.
16 “Fast” and “Slow” could be designated as being greater-than and less-than the

system average molecular velocity respectively.
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A B

Demon

Fig. 2.3. Maxwell’s Demon

The conceptual paradox rests in the fact that as time progresses,
increasingly more fast molecules will occupy chamber B and the slower
molecules will occupy chamber A. If the total population is sufficiently
large and the initial velocity distribution was symmetric, approximately
equal numbers of molecules will eventually occupy both chambers but
the molecules in chamber B will have a greater total kinetic energy
than those in chamber A resulting in increased temperature. This is
in conflict with Clausius’ form of the Second Law of Thermodynamics
in that it is equivalent to heat flow from a low temperature to a high
temperature with no other effect.

The partitioning of energy by the Demon could also manifest as
an increase in pressure that could be used to do work – pushing a
piston for example. Thus this formulation is in direct contradiction to
Planck’s interpretation of the Second Law, for if we reset the piston,
allow the molecules to remix and start all over again, we would have
a perpetual motion machine of the second kind.17 If this process is
performed isothermally at temperature T (that is in contact with an
infinite reservoir at temperature T) and produces work W with no
waste heat, then the heat transferred from the reservoir to the gas is
Q=W which satisfies the first law. However, the change in entropy is

17 A distinction between types of perpetual motion machine was introduced by W.
Ostwald late in the 19th century. A perpetuum mobile of the first kind is one that
violates the first law of thermodynamics. A perpetuum mobile of the second kind
violates the Second Law.
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ΔS = −Q/T.

It is clear that the actions of the Demon constitute a sorting process;
faster molecules are separated from slower ones and vice versa, so that
after some time they are divided into two groups. To maintain the
integrity of the Second Law, entropy must somewhere be produced in
a quantity at least as great as that reduced by the sorting. The most
obvious place to look for this increase in entropy is in the Demon itself.
Leff and Rex consider the following isothermal ‘pressure-Demon’ cycle
consisting of the following three steps:

“(a) The Demon reduces the gas entropy at fixed temper-
ature and energy by letting molecules through the partition in
one direction only. This sorting process generates pressure and
density differences across the partition.

(b) The gas returns to its initial state by doing isothermal
work on an external load. Specifically; the partition becomes a
frictionless piston coupled to a load, moving slowly to a posi-
tion of mechanical equilibrium (away from the container’s cen-
tre) with zero pressure and density gradients across the piston.
The piston is then withdrawn and reinserted at the container’s
centre.

(c) The Demon is returned to its initial state” [51].

Thermodynamic analysis of the cycle reveals that, if we are to preserve
the integrity of the Second Law, the entropy of the Demon must in-
crease in order to ‘pay’ for the entropy reduction of the gas in step (a).
The work done in (b) is compensated for by heat transfer Q = W from
the reservoir. There is no change in the load’s entropy. If the Demon is
to continue its sorting function through repeated iterations of the cycle,
the entropy that it accrues in step (a) must be reduced by a resetting
process otherwise the accumulation of entropy would eventually render
it inoperable. Hence the resetting of the Demon in step (c), which must
also be a thermodynamic process. So we can assume that the Demon
returned “to its initial state by energy exchanges with the reservoir and
a reversible work source, with work E being done on the Demon. The
Demon’s entropy decrease here must be compensated for by an entropy
increase in the reservoir. We conclude that resetting the Demon results
in heat transfer to the reservoir”(ibid). Leff and Rex continue,

“Overall, in (a)–(c) the entropy change of the universe equals
that of the reservoir. The Second Law guarantees this is non-
negative; i.e., the reservoir cannot lose energy. The cyclic process



2.2 A Survey of Information Theories 25

results in an increased load energy and a reservoir internal en-
ergy that is no lower than its initial value. The first law implies
that the work source loses sufficient internal energy to generate
the above gains; in particular, the source does positive work in
(c). The relevant energy transfers during the cycle are: Work
W > 0 by gas on load, work E > 0 by work source on Demon,
and energy E − W ≥ 0 added to the reservoir. The entropy
change of the universe is (E − W )/T ≥ 0, where T is the reser-
voir temperature”(ibid).

We see that in Leff and Rex’s cycle, if the Second Law is preserved,
the resetting of the Demon is of fundamental importance. Such consid-
erations of the importance of resetting or erasure also figure centrally
in work by recent researchers constructing computational Demon mod-
els. Landauer introduced the concept of “logical irreversibility”: the
transformation of any computational memory state to an erased one is
a many-to-one mapping which has no unique inverse. Similarly, Ben-
nett showed that, in its simplest form, the Demon’s memory may be
considered to be a two-state system: ‘did nothing’/ ‘let through’. Prior
to making a measurement the Demon is constrained to be in just one
state: the reference or ‘did nothing’ state. On measuring a molecule, the
Demon has the dimensionality of its state space doubled so that it may
now be in either one or the other state. Thus Bennett takes erasure to
be the recompression of state space to the reference state, regardless of
the prior measurement states. This compression is logically irreversible
and generates an entropy increase in the reservoir.

Some researchers18 questioned the possibility of a Demon operating
as required by the thought experiment since, located inside the gas, it
must be continually bombarded by gas molecules and absorbing energy.
This bombardment would interfere with the Demon making accurate
measurements. Others pointed out the need for a means of measuring
molecular velocities and the need for some kind of memory faculty. In
particular, Leo Szilard demonstrated, using a simplified one molecule
model, that the process of measuring the position and velocity of the
molecule generated at least as much entropy as was reduced in the gas.
Szilard’s model [79] provides a tractable simplification of Maxwell’s
Demon embedded in a work cycle that enables us to see the relation-
ship between information, measurement and the thermodynamics of
the Demon.

Imagine a vertical cylinder that can be horizontally divided into
two, not necessarily equal, sections with volumes V1 and V2 by the
18 Smoluchowski and Feynman



26 2 Information

insertion of partition. The cylinder, which is in contact with an infinite
reservoir at temperature T , contains a single molecule which is free to
move about the cylinder under thermal motion. On the insertion of
the partition, an observer notes whether the molecule is caught in the
upper or lower sections of the cylinder. This step is measurement and
important to Szilard’s preservation of the Second Law. The partition
is now free to move the level of the cylinder, acting as a piston, as the
molecule-gas undergoes isothermal expansion. If the molecule is caught
in the upper section, the piston will move slowly downward changing
the volume from V1 to V1 + V2.19 A weight could be attached to the
piston to produce work. On completion of the expansion the partition
is removed and the process is repeated ad infinitum with the weight
being attached in a manner that will ensure that it is always displaced
upwards. This attachment will require a binary switch that will be set
by the observer depending on the direction of motion of the piston (i.e.
whether the molecule is in the upper or lower part of the cylinder).

Without more explanation than “reasonable assumption”, Szilard
compensates the decrease in system entropy with the entropy increase
generated by the measurement process, saying,

“One may reasonably assume that a measurement procedure
is fundamentally associated with a certain definite average en-
tropy production, and that this restores concordance with the
Second Law. The amount of entropy generated by the measure-
ment may, of course, always be greater than this fundamental
amount, but not smaller” [79].

In the binary-state monomolecular system, Szilard calculated this en-
tropy generated by measurement to be at least equal to k log 2 (where
k is a constant). Memory was also an important component of Szilard’s
model. If we denote the physical position of the molecule by indepen-
dent variable x and a dependent measuring variable by y, then when x
and y are coupled (measurement), x sets the value of y. The variables
are then uncoupled and x can vary while y keeps the value it had at
coupling. This is a form of memory and it is crucial for the cycle if
it is to produce work. So although Szilard does not explicitly connect
information with entropy, his analysis of measurement, utilisation of
measurement and memory certainly implies the existence of a role that
most would intuitively think of information as filling.

Twenty-one years later, Leon Brillouin directly examined the rela-
tionship between information and entropy. Brillouin expanded Szilard’s
19 It should be noted here that Szilard ignores the effects of gravity.
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work on the entropy of measurement by considering the information
gain associated with measurement. Following Shannon (see Section
2.2.2), Brillouin, from the outset, derives a definition of information
based on statistical considerations:

“Let us consider a situation in which P0 different possible
things might happen, but with the condition that these P0 pos-
sible outcomes are equally probable a priori. This is the initial
situation, when we have no special information about the sys-
tem under consideration. If we obtain more information about
the problem, we may be able to specify that only one out of the
P0 outcomes be actually realized. The greater the uncertainty in
the initial problem is, the greater P0 will be, and the larger will
be the amount of information required to make the selection.
Summarizing, we have:

Initial situation: I0 = 0 with P0 equally probable outcomes;
Final situation: I1 �= 0 with P1 = 1, i.e. one single outcome

selected.
The symbol I denotes information, and the definition of in-

formation is
I1 = K ln P0

Where K is a constant and ‘ln’ means the natural logarithm to
the base e” [11].

The relationship that information has with entropy, according to
Brillouin, is that of a reversal of sign.20 He attributes Szilard with
showing that Maxwell’s Demon “actually transforms ‘information’ into
‘negative entropy”’ [10]. By constructing a model in which the Demon
has a single photon source (a high filament temperature electric torch)
to identify molecules, Brillouin shows that the torch generates negative
entropy in the system. The Demon obtains “informations” concerning
the incoming molecules from this negative entropy and acts on these
by operating the trap door. The sorting rebuilds the negative entropy,
thus forming a cycle:

negentropy → information → negentropy

The notion of negentropy “corresponds to ‘grade’ of energy in
Kelvin’s discussion of the ‘degradation of energy”’(ibid).

Brillouin undertakes an entropy balance on the Demon system to
quantify the negentropy transformations. The torch is a radiation

20 Positive or negative.
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source not at equilibrium and so “pours negative entropy into the
system”. If the filament is at a temperature T1 and radiates energy
E, then the radiation emission is accompanied by an entropy increase
Sf = E/T1. As just noted, since T1 � T0 (the system temperature) the
filament is a source of relatively high negative entropy radiation. If the
Demon does not act, the energy E is dissipated with a global entropy
increase of S = E/T0 > Sf > 0. However, if the Demon is to act, the
minimum requirement for the Demon to determine the state of an ap-
proaching molecule it that at least one quantum of energy be scattered
by the molecule and be absorbed by the Demon’s eye. For the light to
be distinguishable from the background black body radiation, the en-
ergy of the photon, hv1, must be much greater than background, kT0,
where h and k are Planck’s and Boltzmann’s constants respectively.
Thus the entropy increase of the Demon will be ΔSd = hv1/T0 = kb
where b is the ratio of photon energy to background radiation energy
(hv1/kT0 � 1).

Once the Demon has information concerning the molecule, it can
be used to reduce system entropy: information is converted to negen-
tropy. On receipt of the information, the state of the system is more
completely specified, hence the number of possible molecule arrange-
ments, “complexions”, has been reduced. Let P0 represent the initial
total number of microstate configurations (equivalent to Boltzmann’s
thermodynamic probability W ) and P1 be the number of microstate
configurations after the receipt of information. Thus we can define p
to be the reduction on the number of complexions: P0 − P1. By Boltz-
mann’s formula, S0 = k ln P0 and S1 = k ln P1. Thus the change in
entropy on sorting becomes:

ΔSi = S1 − S0 = k ln(P1/P0) ≈ −k(p/P0) < 0,

(since for most cases p << P0). Calculating the total entropy balance
we have:

ΔSd + ΔSi = k(b − p/P0) > 0,

since b � 1 and p/P0 � 1. Brillouin says,

“The final result is still an increase of entropy of the isolated
system, as required by the second principle. All the Demon can
do is recuperate a small part of the entropy and use the infor-
mation to decrease the degradation of energy.

In the first part of the process . . . , we have an increase of
entropy ΔSd, hence, a change ΔNd in the negentropy:

ΔNd = −kb < 0, a decrease.
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From this lost negentropy, a certain amount is changed into in-
formation, and in the last step of the process . . . this information
is turned into negentropy again:

ΔNi = k(p/P0) > 0, an increase” [10].

This is the justification for the negentropy/information cycle stated
earlier.

Cursory study of Brillouin’s model reveals a conspicuous detail. Bril-
louin talks of the “information turned into negentropy”, “negentropy
changed into information” and the “transformation of information into
negentropy”. Nowhere does Brillouin equate information and negen-
tropy as Schrödinger does (see next section). In the measurement step
of Brillouin’s model, only “a certain amount” of the “lost negentropy”
is changed into information. Perhaps Brillouin intends that the remain-
der accounts for the information in the Demon, assuming it is physical.
However, if this is the case, he does not state this explicitly.

As noted previously, Brillouin defines information in a Shannon-like
manner as the logarithm of the number of equal a priori possibilities.
Further, he distinguishes between two classes of information:

“1. Free information If , which occurs when the possible cases
are regarded as abstract and have no physical significance.

2. Bound information Ib, which occurs when the possible
cases can be interpreted as complexions of a physical system.
Bound information is thus a special case of free information”
[11].

He makes this distinction in order to draw a connection between
thermodynamic entropy and information. This is an attempt to avoid
thorny epistemological issues concerning information, such as the in-
tractability of the determining the information gain when a person
hears some news or the information loss when someone forgets. Only
bound information is associated with entropy changes of a system. Con-
sider a system in which the “complexions” (P0 and P1) of two tempo-
ral states of the system (corresponding to times t0 and t1) are equally
probable cases. Then if P1 < P0 the physical entropy of the system
will decrease and “the entropy decrease when information is obtained,
reducing the number of complexions, and this information must be
furnished by some external agent whose entropy will increase. The re-
lation between the decrease in entropy of our system and the required
information is obvious, for

Ib1 = k(ln P0 − ln P1) = S0 − S1,
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or
S1 = S0 − Ib1.

the bound information appears as a negative term in the total entropy
of the physical system, and we conclude:

Bound information = decrease in entropy S = increase in negentropy
N,

where we define negentropy to be the negative of entropy” (ibid).
Thus, on this account not all information is negentropy, only bound

information. Brillouin calls the relationship between bound information
and entropy the “negentropy principle of information”. However has we
have seen above in the conversion cycle in Maxwell’s Demon,

negentropy → information → negentropy,

the relationship is not truly one of identity; it is not even conserva-
tive. This leads me to judge that Brillouin negative entropy principle
does not provide a truly foundational account of the nature of infor-
mation.

Brillouin’s version of the principle the negentropy principle of in-
formation is akin to some later work of Erwin Schrödinger’s in which
Schrödinger examines the somewhat stronger relationship between or-
der and negative entropy. This work is examined in the following sec-
tion.

Schrödinger

Additional thoughts on the physical nature negentropy come from Er-
win Schrödinger. In his 1944 book What is Life? Schrödinger considered
the relationship between entropy and order. In trying to work towards
an answer to the question posed in the title of his book, Schrödinger
observed that living matter was ordered in a way that evaded the ‘de-
cay to equilibrium’. He says, “Life seems to be orderly and lawful be-
haviour of matter, not based exclusively on its tendency to go over
from order to disorder, but based partly on existing order that is kept
up” [70]. Schrödinger notes that the systems that tend towards equi-
librium, move towards a state of maximum entropy, which, he notes,
is a state of death. Living systems maintain ordered integrity not just
by energetic intake, but by drawing from the environment negative en-
tropy, thus staving off the tendency to maximum entropy. Schrödinger
equates negentropy with order by considering Boltzmann’s equation to
be broadly interpretable as entropy = k log(D), where D represents
disorder. He then notes the following:
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“If D is a measure of disorder, its reciprocal, 1/D, can be
regarded as a direct measure of order. Since the logarithm of
1/D is just minus the logarithm of D, we can write Boltzmann’s
equation thus:

−entropy = k log(1/D).

Hence the awkward expression ‘negative entropy’ can be re-
placed by a better one: entropy, taken with the negative sign, is
itself a measure of order”( ibid, p.73).

What Schrödinger adds to the thermodynamic/Statistical Mechanics
approach to information theory is a direct identification of the nega-
tive sign of entropy with order. The extension of this relationship to
information relies on the nature of the correlation of information and
order. I do not equate the two (and nor, I feel, does Schrödinger). But
I do believe that they are related via the notion of degrees of freedom
as outlined previously. This will be discussed further in Section 4.6.

Signpost

In this book I am attempting to construct a theory of the physical foun-
dations of information. This section has been an historical examination
of the study of the relationship between thermodynamic entropy and
information. Early in the section we looked at the development of ther-
modynamics with a special interest in the Second Law and established
the relationship between entropy and work and between entropy and or-
der, or more accurately, between entropy and degrees of freedom. Then
we reviewed the discovery of the relationship between the macroprop-
erty entropy and a microsystem’s states noting the important role that
combinometrics plays relating entropy to the microdynamics of a sys-
tem. Discussion of the role of measurement in simple Maxwell’s Demon
systems led us to consider the application of information regarding the
microstate of a system to extract work in an apparent violation of the
Second Law and, finally, to the relationship between negative entropy
and information.

Four fundamental concepts should be taken from this section for use
in the development of my theory. The first is the relationship between
entropy and the number of identical states in a system as defined in
Boltzmann’s theorem. We will see in Section 4.5 that entropy is pri-
marily about counting distinguishable possible states and that, due to
the intimate relationship between entropy and information as noted
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by Brillouin and Schrödinger, information is also combinometrically
grounded.

The second important concept introduced in this section is ‘mea-
surement’. Szilard, in considering Maxwell’s Demon, noted that the
measurement process is essential for the preservation of the Second
Law in a Demon cycle. Measurement (and its limitations) is a signifi-
cant element in the development of my account of information, though
in somewhat different ways. The place of measurement plays a funda-
mental role in Szilard’s formulation in that measurement generates at
least as much entropy as was reduced in the gas thus preserving the Sec-
ond Law. Under my interpretation, measurement bounds the amount
of information that may be apprehended from an object. In Section
3.2 I will discuss the apprehension of information from an informatic
object and in Section 4.5.2 I will further discuss measurement, Demons
and information.

The third concept introduced in this section is ‘memory’. Memory
is closely tied to measurement for if one is to say that the value of
a fluctuating parameter of a system, y, is different from or the same
as an earlier measurement of the parameter, x, then some storage fac-
ulty is required. The concept of distinguishability of temporal states
of a system is developed in Section 3.1, and the relationship between
information and memory is discussed in Section 4.2.2

The final concept introduced here is the relationship between work
and information. In Section 4.6 we will examine the effect increasing in-
formation on work capacity by looking at Gibbs’ Paradox and through
further consideration of Maxwell’s Demon.

Boltzmann’s H-theorem proved to be an inspiration to others who
were thinking about information outside the field of thermodynam-
ics with the concept of thermodynamic probability transplanted into
realms where occurrence probabilities apply, for example, in the trans-
mission of electrical communication signals. This field is widely referred
to as “Information Theory” and is reviewed in the next section.

2.2.2 Information (Communication) Theory

Although much development of theories of information was undertaken
by Leo Szilard and other writers21 in the first half of the 20th Century,
paternity of modern information theory is generally assigned to Claude
Shannon. In his 1948 article “A Mathematical Theory of Communica-
tion”, Shannon addresses the problem of communication: the exact or

21 N. Weiner, H. Nyquist, R.V.L Hartley, J. von Neumann, etc.
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approximate transmission and reception of a message from a generat-
ing source. It is from this perspective that he develops his theory of
information.

Shannon’s concerns are purely with engineering. Semantic aspects
of information, e.g. the content of the message and its meaning to the
recipient, are irrelevant to the problem; the theoretic description which
he seeks must function not just for an actual, individual message but for
each possible message that may be sent. The approach is fundamentally
probabilistic. To develop his theory, Shannon examines the output of
a discrete information source that generates a message as a Markov
Process.22 Each possible message that can be generated has associated
with it a probability pi of its occurrence and there are n such messages.

Shannon attempts to define a quality which will measure the amount
of information generated by the process. He searches for a function
H(p1, p2, . . . pn) that will quantify our reduction in uncertainty on
receiving the message subject to the following desiderata:

1. H should be continuous in pi.
2. If all the pi are equal, the H should be a monotonic increasing

function of n.23

3. Each event (symbol generation) should be capable of being linearly
decomposed into two or more constituent events with their own
proportional probabilities. [72].

Shannon concludes that the only function that satisfied the criteria
was of the form:

H = −K

n∑
i=1

pi log pi

where K is a constant according to units chosen (i.e. the base of log-
arithm used). In what is more than a nod to Boltzmann, Shannon
assigns H to be the entropy of the set of probabilities (p1, p2, . . . pn).
This function has several properties which Shannon believes further
substantiates its use as a measure of information:

1. H = 0 iff all the pi but one are zero, this one having
value 1. That is, information is zero if the outcome is already
certain.

22 A Markov process is a random process whose future probabilities are determined
by its most recent values.

23 This means that as the number of equiprobable symbols increases, there is more
uncertainty.
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2. For a given n, H is maximum and equal to log n when all
the pi are equal, that is, 1

n . This is the case of maximal
uncertainty.

3. The uncertainty24 of a joint event is less than or equal to
the sum of the individual uncertainties, having equality only
when the two events are independent.

4. Almost as a corollary to point 2, any change towards the
equalization of the probabilities p1, p2, . . . pn increases H.

5. The uncertainty of a joint event x, y is the uncertainty of x
plus the uncertainty of y when x is known. Thus the uncer-
tainty of y is never increased by knowledge of x [72].

Like Szilard and Brillouin, Shannon uses a Boltzmann-like entropy
theorem to quantify information capacity. In Shannon’s account in-
formation is evaluated by summing uniquely identifiable distributions.
He also opens up the possibility of evaluating the mutual or condi-
tional information in multiple messages by calculating joint entropies
or chaining their entropies and Shannon’s approach has proved to be
valuable in practical applications in the fields of communications and
electrical engineering.25

Shortly after Claude Shannon proposed his account of information
researchers in mathematics and the nascent field of computer science
began thinking about information in a manner totally different from the
Boltzmann-based approaches of Szilard, Brillouin and Shannon. This
third and markedly novel approach to the quantification of information
emerged from the mid 1950’s and on from the work of Kolmogorov,
Solomonoff and Chaitin. Though still having its conceptual origins in
probability theory, Algorithmic Information Theory provides, through
applied computability theory, a method of measuring the intrinsic in-
formation in an object’s description. The following section reviews this
approach to providing an account of information.

2.2.3 Algorithmic Information Theory

Algorithmic Information Theory was born out of inconsistencies that
arise between intuitive notions concerning regularity and answers pro-
vided by standard probability theory. In order to illustrate the nature
of these dissatisfactions, consider a binary experiment (coin-toss) con-

24 Shannon uses uncertainty and entropy interchangeably.
25 Constraints on the maximum possible rate of transmission of information via a

standard modem are determined by Shannon’s theorem.
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ducted 23 times. Now imagine we obtained the following results from
three trials:

Trial 1: 1 0 1 1 0 0 0 1 1 1 1 0 0 1 1 0 0 0 1 1 0 1 0

Trial 2: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Trial 3: 0 0 1 1 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 1 0 0 0

Probability theory tells us the probability of obtaining the sequence
shown in trial 1 is 2−23 (about 0.00000011920). This value is also true
for trials 2 and 3. However, there is something intuitively unsettling
about accepting that the first and second results are equally probable.
The first result “looks” more random; it appears more consistent with
the process that is supposed to have generated the string. If presented
with the second sequence as a result of a coin-toss, an observer may be
entitled to doubt the fairness of the coin. The third trial may at first
glance appear random, but there is also regularity in this sequence.
The first trial was generated by tossing a 20-cent coin. The second
is obviously just a series of 23 ones. Listing the integers 0 to 8 in
binary format created the third series.26 The issue here is that neither
of the probability values of trial 1 nor of trial 2 tells us anything about
the inherent order that is present in each sequence, independently of
how they were generated. The use of a probability method assuming
equiprobable occurrences will not truly account for the information
embedded in the order in the sequences. Something more is required,
something that takes into account the generation process. Algorithm
Information Theory represents an attempt to meet that need.

The theory was proposed separately by R. Solomonoff of the Zator
Company in 1960, A.N Kolmogorov in 1965 and by G. Chaitin also in
1966 and thus is justifiably called by some the Solomonoff-Kolmogorov-
Chaitin theory of information. However it is more common to refer to
the entire field of Algorithmic Information Theory and descriptor com-
plexity as “Kolmogorov Complexity”. Once developed, I will show how
the asymmetry, foundational account of information is also compatible
with Algorithmic Information Theory.

Before examining Algorithmic Information Theory in detail it is
necessary to first look at two underlying notions: Turing Machines and
randomness.

26 This is the beginning of Champernowne’s Number in binary format. Champer-
nowne’s number base 10 is 0.123456789101112131415161718192021.
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Turing Machines

The notion of a universal computing machine arose initially out of early
work by Alan Turing in the consideration of Computable Numbers [81].
The model of a ‘Turing Machine’ is important to Algorithmic Informa-
tion Theory because it provides a rigorous definition of computability
by developing a mathematically well-defined means of generating de-
scriptive integer sequences, or “strings”. Turing’s original conceptual
engine consisted of an automated machine (a-machine) that mimicked
human pen and paper implementation of an algorithm. It consisted of
simple acts of iterated reading or writing of a symbol and the trans-
ference of ‘focus’ from one place on the paper to a different place on
the paper, usually thought of as a continuous tape. The action of the
machine depends solely on the current state of the a-machine and the
symbol at the momentary focal location. Turing writes,

“We may compare a man in the process of computing a
real number to a machine which is only capable of a finite
number of conditions q1, q2, . . . , qR which will be called “m-
configurations”. The machine is supplied with a “tape” (the
analogue of paper) running through it, and divided into sections
(called “squares”) each capable of bearing a “symbol”. At any
moment there is just one square, say the r-th, bearing the sym-
bol (r) which is “in the machine”. We may call this square the
“scanned square”. The symbol on the scanned square may be
called the “scanned symbol”. The “scanned symbol” is the only
one of which the machine is, so to speak, “directly aware”. How-
ever, by altering its m-configuration the machine can effectively
remember some of the symbols which it has “seen” (scanned)
previously. The possible behaviour of the machine at any mo-
ment is determined by the m-configuration qn and the scanned
symbol (r). This pair qn, (r) will be called the “configuration”:
thus the configuration determines the possible behaviour of the
machine. In some of the configurations in which the scanned
square is blank (i.e. bears no symbol) the machine writes down
a new symbol on the scanned square: in other configurations
it erases the scanned symbol. The machine may also change
the square which is being scanned, but only by shifting it one
place to right or left. In addition to any of these operations the
m-configuration may be changed. Some of the symbols written
down will form the sequence of figures which is the decimal of
the real number which is being computed. The others are just
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rough notes to “assist the memory”. It will only be these rough
notes which will be liable to erasure” [81].

Many variants of Turing Machines have since been proposed, prin-
cipally involving differing numbers of tapes and state representations.
These variations do not affect the underlying principle of computation;
their chief advantage lies with explanatory powers. Working memory,
the “rough notes” that Turing refers to, is often included on a separate
tape and the written output is presented separately. These features are
included in a variant proposed by Chaitin,

“Each Turing machine has three tapes: a program tape, a
work tape, and an output tape. There is a scanning head on
each of the three tapes. The program tape is read-only and each
of its squares contains a 0 or a 1. It may be shifted in only one
direction. The work tape may be shifted in either direction and
may be read and erased, and each of its squares contains a blank,
a 0, or a 1. The work tape is initially blank. The output tape
may be shifted in only one direction. Its squares are initially
blank, and may have a 0, a 1, or a comma written on them, and
cannot be rewritten. Each Turing machine of this type has a
finite number n of states, and is defined by an nx3 table, which
gives the action to be performed and the next state as a function
of the current state and the contents of the square of the work
tape that is currently being scanned. The first state in this table
is by convention the initial state. There are eleven possible ac-
tions: halt, shift work tape left/right, write blank/0/1 on work
tape, read square of program tape currently being scanned and
copy onto square of work tape currently being scanned and then
shift program tape, write 0/1/comma on output tape and then
shift output tape, and consult oracle. The oracle is included for
the purpose of defining relative concepts. It enables the Tur-
ing machine to choose between two possible state transitions,
depending on whether or not the binary string currently being
scanned on the work tape is in a certain set, which for now we
shall take to be the null set” [21].

The capacity for a Turing machine to algorithmically generate an
output string in a rigorously defined manner makes it invaluable for de-
velopments in Algorithmic Information Theory. We will use the Chaitin
defined machine in future references to Turing machines.

Distinguishing between a string that has been generated algorith-
mically by a Turing machine and one that is in some sense random is
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significant in Algorithmic Information Theory. This relies on the abil-
ity to measure, or at least detect, randomness. We examine this in the
next section.

Randomness

Randomness lies at the heart of considerations of Algorithmic Infor-
mation Theory; indeed, it is in the defining of ”randomness” that the
theory’s core is founded. We commence by considering the occurrence of
numerals and groups of numerals in sequences. We call these sequences
strings. Smaller contained sections of these sequences are termed sub-
sequences or substrings.

One simple test of randomness in a string expressing a number is
to show that, at least statistically, it is a Normal Number.27. It is
insufficient to simply require that all possible states in a sequence be
equiprobable. Examples abound which pass this test and yet are clearly
non-random; Champernowne’s number is one example.

As we shall see later, an appreciation of the difference between a
state-generated sequence and a string (or number) formed by a concate-
nation of symbols representing those states is crucial to understanding
information as it is used in Algorithmic Information Theory.

Richard von Mises’ interpretation of randomness was an important
starting point for the development of Algorithmic information The-
ory. Von Mises was a mathematician who specialised for the most part
in hydrodynamical and aerodynamical studies but is possibly best re-
membered for his continuing work on the frequency interpretation of
probability commenced by Venn. Kolmogorov has the following to say
regarding von Mises,

“ . . . the basis for the applicability of the results of the math-
ematical theory of probability to real ’random phenomena’ must
depend on some form of the frequency concept of probability,
the unavoidable nature of which has been established by von
Mises in a spirited manner” [47].

We will note in Section 2.3.2 that von Mises’ definition of random-
ness requires that, for any attribute under consideration in a string,

27 A Normal Number is an irrational number for which any finite pattern of numbers
occurs with the expected limiting frequency in the expansion in a given base. For
example, for a normal decimal number, each digit 0–9 would be expected to occur
1/10 of the time, each pair of digits 00–99 would be expected to occur 1/100 of
the time, etc [86]
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the limiting relative frequency of any subsequence be the same as the
limiting relative frequency for the whole sequence. In terms of binary
strings we could consider an infinite series of ones and zeros:

“We say that it [the series] possesses the property of ran-
domness if the relative frequency of the 1’s (and therefore the
0’s) tends to a certain limiting value which remains unchanged
by the omission of a certain number of the elements and the
construction of a new sequence from those which are left. The
selection must be a so-called place selection, i.e., it must be
made by means of a formula which states which elements in
the original sequence are to be selected and retained and which
discarded” [58].

A principle requirement is that the choice of the selection formula be
made independently of the result of the corresponding observation, be-
fore anything is known about the result. For example, consider a binary
string formed by a Bernoulli (binary) experiment (e.g. coin tossing):

10100101110011011010001011110001011010011011001101

The frequency of 1’s in the string is 27/50 = 0.54. By increasing
the number sampled (conducting more trials) we may note that the
relative frequency tends to 0.5. By using a formula that samples every
odd element from the 50 samples above, we find the frequency of 1’s
is 14/25 = 0.56. If, on the other hand we chose to sample elements at
only prime number positions (2 3 5 7 11 13 17 19 23 29 31 37 41 43
47) the frequency of 1’s is 9/15 = 0.60. With strings larger than the 50
elements shown above, measured from the same experimental system,
the limiting frequency of the ‘odd’ sampling method and the ‘prime’
sampling method would both tend to 0.5. Note that both the ‘odd’
and ‘prime’ methods can be chosen before knowing the exact result of
conducting the measurement fifty times and obtaining the above string.

It is possible to choose a sampling method that would give a rad-
ically different relative frequency. Consider the case where we sample
15 elements from the above binary string at position numbers:

1,3,6,8,9,10,13,14,16,17,19,23,25,26,27.

In this case the relative frequency of 1’s is 15/15 = 1.00. It is also possi-
ble that selections be made to give any desired relative frequency. This
is not a problem for von Mises’ principle of randomness which only
requires that the relative frequencies of selected subsequences converge
on the whole sequence’s limiting frequency as the subsequence lengths
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become at least denumerably infinite under the selection formula. How-
ever, the formulation of the selection criteria as described above would
be ruled invalid, for von Mises maintains, under his definition of place
selection, that the formula used for the selection of subsequences from
infinite sequences “must leave an infinite number of retained elements
and must not use the attributes of the selected elements, i.e., the fate
of an element must not be affected by the value of its attribute.” (op.
cit. p.88) Assuming that the 50-element string above is just the first
50 elements of an infinite sequence, the selection of the 15 elements
(1,3,6,8,9,10,13,14,16,17,19,23,25,26,27) to obtain a relative frequency
of 1.0 violates both von Mises’ conditions.

The existence of a limit to which relative frequencies converge is a
big assumption, and though it appears to be borne out by vast quanti-
ties of empirical evidence from gaming and other sources, its existence
is not guaranteed. Von Mises commissions the concept of a collective,
a set of elements that gives rise to a ‘mass phenomenon’. A collective
is “a sequence of uniform events or processes which differ by certain
observable attributes, say colours, numbers, or anything else” [58].

In early work von Mises acknowledges that, under his concept of
randomness, proof of existence of a collective, in the analytic sense, is
impossible.

“A collective is completely determined by the distribution,
i.e. by the (limits of the) relative frequencies for each attribute;
it is however impossible to specify which elements have which
attributes. . . [T]he existence of a collective cannot be proved by
means of the actual analytical construction of a collective in a
way similar, for example, to the proof of existence of continuous
but nowhere differentiable functions, a proof which consists in
actually writing down such a function” [59].

A collective that is truly random cannot be described by a formula
or procedure. Von Mises clearly states this in the context of binary
strings: “A sequence of zeros and ones which satisfies the principle of
randomness cannot be described by a formula or by a rule such as:
‘Each element whose place number is divisible by 3 has the attribute
1; all others the attribute 0’; or ‘All elements with place numbers to
squares of prime numbers plus 2 have the attribute 1, all others the
attribute 0’; and so on” (ibid). Note here that the constraint of the
impossibility of defining a function to represent a collective is directly
related to the previous requirement of all infinite subsequences having
the same limiting frequency as the entire sequence. If a function were
available to describe the collective, then one could modify it to con-
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struct a subsequence that was comprised solely of 1’s, or indeed any
limiting relative frequency one desired.

An historical problem here arises for von Mises. At the time of his
writing the influence of Logical Positivism was still being felt. Russell’s
theory of the predominance of description for existence and work by
the British ‘analysts’ placed pressure on von Mises to justify existential
status for an entity incapable of representation by explicit description
or formula. Harold Jeffreys makes this criticism of von Mises definition
of the collective:

“The proof even of existence [of the collective] is impossi-
ble. On the limit definition, without some rule restricting the
possible orders of occurrence, there might be no limit at all”
[44].

In response to the analysts’ criticism, von Mises’ considers the possi-
bility of restricting the definition of random sequences to a constructible
subclass. Bernoulli sequences28 have been shown [26] to be able to
be constructed, hence, according to Jeffreys, existent. However this
new definition of random sequences would prove too restrictive. Sub-
sequence selection methods such as prime number selection would be
precluded. In fact, limiting subsequence selection methods to any rule-
based process would exclude some potentially legitimate subsequence
due to the infinite number of selection methods. Instead, von Mises
abandons attempts to placate critics by proving a collective’s existence
via formal description, and assumes an axiomatic approach, declar-
ing that if we assume the aforementioned probability criteria hold for
collectives, it can be shown29 that selection of subsequences does not
give rise to contradictions. He says, “Given a sequence of attributes,
the assumption that the limits of the relative frequencies of the var-
ious attributes are insensitive to any finite or enumerably infinite set
of place selections cannot lead to a contradiction in a theory based on
this assumption” [58].

Further problems exist, however, for von Mises’ definition of ran-
domness. Alonzo Church maintains that it is too simplistic to be a rig-

28 A Bernoulli sequence is one that is infinitely decomposable in a linear manner
(i.e., pick every nth element of the original sequence to form a sub-sequence, then
offset by one and select new subsequence and repeat n−1 times) into sets of
sub-sequences such that set of n sub-sequences has the following properties:

Each of the sub-sequences has the same limiting frequency as the original;
The sub-sequences are mutually independent,
This is true for all n.

29 This has been done by A.H. Copeland, A. Wald and W. Feller.
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orous definition. Moreover it is possible to create a selection criterion
that allows subsequences that violate the equality of relative frequency
stipulations. Consider the following selection strategy φ proposed by Li
and Vitányi, which generates subsequences from a collective:

“Let a = a1a2 . . . be any collective [of binary units]. De-
fine φx as φx(a1. . . ai−1 = 1 if ai = 1 and undefined otherwise.
But then [limiting relative frequency] p = 1. Defining φw by
φw(a1. . . ai−1) = bi, with bi the complement of ai, for all i, we
obtain . . . p = 0. Consequently if we allow functions like φx and
φw as strategy, then von Mises definition cannot be satisfied at
all” [55].

Von Mises, in later work, was aware of this shortcoming through
criticisms by Abraham Wald and others and accepted restriction of the
class of permissible place selection strategies:

“Given a sequence of attributes, the assumption that the lim-
its of relative frequencies of the various attributes are insensitive
to any finite or enumerably infinite set of place selections cannot
lead to a contradiction in a theory based on this assumption. It
is not necessary to specify the type or properties of the place
selection under consideration. It can be shown that, whatever
enumerably infinite set of place selections is used, there exists
sequences of attributes which satisfy the postulate of insensitiv-
ity” [58].

It was Wald [83] who originally proposed a solution to the problem
of place selection by restricting the set of a priori admissible strategies
to a fixed countable set of functions. But which set? Church suggests
that the set should be precisely those strategies that are computable
in accordance with his thesis.30 This means that the set of φ is the
set of recursive functions.31 This approach has the additional advan-
tage of the rigorous definition associated with recursive functions. This
amended version of von Mises’ definition of randomness is call Mises-
Wald-Church randomness and can be summarized as follows. A binary
string is Mises-Wald-Church random if and only if:

30 Church’s Thesis states that a function is computable if it is computable by a
Turing machine, or more precisely: The intuitively and formally defined class of
effectively computable partial functions coincide exactly with the class of func-
tions that are computable by an unlimited register machine (URM).

31 It is provable that a function is recursive if a Turing Machine running that func-
tion eventually halts for all inputs for that function.
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1. The relative frequency of all attributes of a collective approaches a
definite value between 0 and 1 in the limit as the collection length
approaches infinity;

2. Every subsequence chosen according to some admissible place selec-
tion function has the same limiting relative frequency as the entire
collection;

3. A place selection function is admissible if and only if it is a member
of the set of recursive functions.

However, Mises-Wald-Church randomness still fails to fully capture
the concept of randomness as examples of sequences were found that
were intuitively non-random but met the Mises-Wald-Church criteria.
In particular, it was shown by Ville [82], that there exist binary se-
quences which satisfy the Mises-Wald-Church definition, have a limit-
ing relative frequency of the occurrence of ones equal to 0.5 and have
the property

fn

n ≥ 1
2 for all n.

As Li and Vitányi note,

“The probability of such a sequence of outcomes in ran-
dom flips of a fair coin is zero. Intuition: if you bet ‘1’ all
the time against such a sequence of outcomes, then your ac-
cumulated gain is always positive. Similarly, other properties
of randomness in probability theory such as the Law of the It-
erated Logarithm32 do not follow from the Mises-Wald-Church
definition”[55].

One method of avoiding the inclusion of these problematic strings is
to maintain that all random strings not only pass one test of random-
ness, such as normality, but all possible tests. This method, based on
constructive measure theory and proposed by P. Martin-Löf [57], is for-
mulated as follows. We define a string to be ‘random’ if it is ‘typical’.
A string is typical just in case it is not ‘special’, that is, it does not pos-
sess any particular distinguishing property such as, for example, being
an infinite binary string with a finite number of ones. Typical infinite
strings have the converse property: they will have an infinite number
of ones. In fact we require that typical strings will have all converse

32 The Central Limit Theorem provides a converging estimator for an attribute of a
collective as n proceeds to infinity, but it says nothing about the fluctuations of the
estimator around its true value. The Law of the Iterated Logarithm complements
the Central Limit Theorem by describing extreme bounds for these fluctuations
and shows that they are of the same order of magnitude as 2loglog(n)1/2.
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properties. Thus a typical string will belong to every reasonable sta-
tistical majority. So now we can say that an element (string) x will be
“random” just in case x lies in the intersection of all such majorities.
Li and Vitányi note,

“Suppose that a single particular property, such as contain-
ing infinitely many occurrences of ones (or zeros), the Law of
Large Numbers, or the Law of the Iterated Logarithm, has been
shown to have probability one, then one calls this a Law of
Randomness. Each sequence satisfying this property belongs to
a large majority, namely the set of all sequences satisfying the
property which has measure one by our assumption.

“Now we call an infinite sequence ‘typical’ or ‘random’ if
it belongs to all majorities of measure one, that is, it satisfies
all Laws of Randomness. In other words, each single individual
‘random’ infinite sequence possesses all properties which hold
with probability one for the ensemble of all infinite sequences”
(ibid).

However, at this point a difficulty arises. All complements of sin-
gleton sets have probability one, thus the intersection of all sets of
probability one is empty. This implies there are no random strings.
Martin-Löf overcame this problem by employing Turing’s premise that
every effective33 mathematical method can be carried out by the uni-
versal Turing machine. Martin-Löf argued that a law of probability be
a partial recursive function.34 By doing this he could define the set of
random infinite sequences, not as the intersection of all sets of measure
one, but rather as the intersection of all sets of measure one with a
recursively enumerable complement.35 This intersection is itself a set
of measure one with a recursively enumerable complement. The result
of this is that we have one single effective law of randomness: random
strings satisfy all effective laws of randomness.

33 ‘Effective’ here is used in technical sense as proposed by Church. A method is
‘effective’ if it can be realised by a human clerk with paper and a pencil in
arbitrary but finite time.

34 A partial recursive function is a function computed by a Turing machine that
need not halt for all inputs. (A partial function is a function which is not defined
for some of its domain).

35 A set of integers is said to be recursively enumerable if it constitutes the range of
a general recursive function. A general recursive function is a function that when
computed is defined for all arguments. That is, when it is computed on a Turing
machine, the machine will halt for all inputs.
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In terms of my development of a unifying theory of information, an
important aspect in Martin-Löf’s formulation is the notion of ‘typical-
ity’. He requires that random strings not possess any property capable
of distinguishing them from other strings. I will develop a model of
distinguishability in section 3.1, based on Leibniz’s theory of indis-
cernibles, and show how it forms the conceptual foundation of infor-
mation.

The development of Martin-Löf’s definition of randomness was
strongly influenced by Andrei Kolmogorov. Martin-Löf met Kolmogorov
on visit to Moscow during 1964–1965 while studying the complexity
oscillations of infinite sequences. Kolmogorov had, in 1933, published
“Foundations of Probability” and at the time of Martin-Löf’s visit,
had moved to working on an Algorithmic Information Theory designed
to overcome problems with probabilistic accounts of information. The
next section details Kolmogorov’s algorithmic theory of information.

Kolmogorov

Kolmogorov directly considered the issue of the quantification of in-
formation. In his original paper [48], Kolmogorov examined the two
existing approaches to the quantification of information: the combi-
natorial approach (Brillouin, Szilard) and the probabilistic approach
(Shannon), then proposed a third approach – the algorithmic approach
– to overcome perceived short comings in the previous two.

Kolmogorov states: “Actually it is most fruitful to discuss the quan-
tity of information ‘conveyed by an object’ (x) “about an object” (y)”
(Kolmogorov 1965, p.4). Probabilistic information theory for continu-
ous distributions presents the generalized form:

I(x, y) =
∫∫

Pxy(dxdy) log2(
Pxy(dxdy)

Px(dx)Py(dy)
)

The form of this equation reflects the Shannon type of information

H =
∫ ∞

−∞
p(x) log p(x)dx,

augmented to the case of conditional mutual information using a chain
rule. In practice, we are interested in relatively simple x, y relationships.
That is, the informationally relevant mappings between x and y are a
small subset of the entire set of attributes of the objects. For example,
Kolmogorov says: “While a map yields a considerable amount of infor-
mation about a region of the earth’s surface, the microstructure of the
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paper and the ink on the paper have no relation to the microstructure
of the area shown on the map” (ibid).

It is meaningless, Kolmogorov tells us, to ask what information the
string ‘0 1 1 0’ could convey about the sequence ‘1 1 0 0’. However, if we
take a random number (from a specified statistical table) and for each
of its digits calculate a sequence of single digit integers by taking the
last digit (in the units place) of the square of the random number, the
sequence will contain approximately (log2 10−0.8)n bits of information
about the original sequence (n = the number of digits in the original
sequence). That is, each of the digits in the top row of the following
table generates a new sequence using the corresponding digit in the
bottom row.

0 1 2 3 4 5 6 7 8 9

0 1 4 9 6 5 6 9 4 1

Thus, 7 8 4 7 5 0 1 generates 9 4 6 9 5 0 1. The reason that the
generated sequence holds (log2 10 − 0.8)n bits of information about
the original string is because any patterns or regularities in the original
string will be at least partially preserved in the mapping process due to
the mapping regularities. That is, 1 in the generated string will always
map back to 1 or 9, 9 to a 3 or 7.36

Generalizing this, Kolmogorov attempts to define,

IA(x : y),

that is the information that x tells us about y. Kolmogorov considers
a set X of enumerable objects x. Let n(x) be a sequence of natural
numbers represented by ones and zeros that acts as an index for X.
We denote the length of the sequence n(x) by l(x). Now we make the
following assumptions37:

1. D is the set of all n(x) and the correspondence of X to D is one to
one

2. D ⊂ X, the function n(x) on D is generally recursive, and for x ∈
D,

l(n(x)) ≤ (x) + C,

where Cis a constant.

36 It is interesting to note the reflective symmetry in the bottom row!
37 Kolmogorov notes that not all these assumptions are essential but they simplify

the discussion.
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3. x ∈ X and y ∈ X. X also contains the ordered pair (x, y) whose
index is a generally recursive function of the indices of x and y and
that,

l(x, y) ≤ (y) + Cx,

where Cx is dependent solely on x.
Now it is possible that n(y) may not be the most efficient way of

specifying y given x so we consider the generation of string y from x
by means of a program p which can be defined by the function:

ϕ(p, x) = y

that associates object x and program p with object y. We assume ϕ
is partially recursive. Now we can take as the “relative complexity” of
object y given x, Kϕ(y|x), the minimal length l(p), achieved when p is
of minimal length.

Kϕ(y|x) =
{

minϕ(p.x)=y l(p)
∞, If there is no p such that ϕ(p.x) = y

A function v = ϕ(u) of u ∈ X with range v ∈ X is said to be
partially recursive if it generates a partially recursive function of the
index transformation n(v) = ψ[n(u))]. Kolmogorov says,

“In order to understand the definition, it is important to
note that, in general, partially recursive functions are not de-
fined everywhere, and there is no fixed method for determining
whether application of the program p to an object k will lead
to a result or not. As a result, the function cannot be effectively
calculated (generally recursive) even if it is known to be finite
for all x and y” [48].

Kolmogorov proves what he calls the “Fundamental Theorem”
which states that there exists a partially recursive function A(p, x)
such that for any other partially recursive function ϕ(p, x):

KA(y|x) ≤ gKϕ(y|x) + Cϕ

where Cϕ is independent of x and y. Functions that satisfy the Fun-
damental Theorem are called “asymptotically optimal” and their cor-
responding complexity KA(y|x) is finite. In the final step to defining
IA(x:y) Kolmogorov notes that

KA(y) = KA(y|1),
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and that we can define the quantity of information conveyed by x about
y as

IA(x : y) = KA(y) − KA(y|x).

Kolmogorov originally (as presented here) was concerned with the mu-
tual information in two objects. However the model he developed is
commonly used to specify the intrinsic information of an individual
object. This is notionally equivalent to a program p generating a string
y without separate input. Here we have:

Kϕ(y) =
{

minϕ(p)=y l(p)
∞, If there is no p such that ϕ(p) = y

Kolmogorov notes that his method has one important disadvantage:
there is no provision made for determining the shortest possible p.
Kolmogorov states that the approach he developed does not,

“allow for the ‘difficulty’ of preparing a program p for pass-
ing from an object x to an object y. By introducing appropriate
definitions, it is possible to prove rigorously formulated mathe-
matical propositions that can be legitimately interpreted as an
indication of the existence of cases in which an object permit-
ting a very simple program, i.e., with a very small complexity
K(x), can be restored by short programs only as the result of
computations of a thoroughly unreal duration” [48].

Since Kolmogorov’s reasoning is somewhat abstract and primarily fo-
cuses on the conditional case of information, it is worthwhile to sum-
marise his analysis and look at the absolute case. The easiest way of
thinking about Kolmogorov information is to imagine giving instruc-
tions to another person to generate a specific string. If you can do
this unambiguously so that the other person generates precisely the
required string in finite time then the number of bits in that instruc-
tion represents an upper limit on the information content of the string.
The string will contain at most that much Kolmogorov information.
For example, if the instruction is “Print the first 1,000,000,000 bits of
π.” then, assuming 8 bits per symbol (ASCII), an upper limit of the
information of that string is 8x40= 320 bits. There may exist shorter
instructions, but any longer instructions will contain superfluity.

This means the information content of a string, y, is the minimum
length of an instruction or program, p, to be executed by a universal
computer, ϕ (in the above example, a person) if there exists a program
that generates that string, and infinite otherwise.
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In turns out, as an extension of Martin-Löf’s work, that most
1,000,000,000 bit sequences have a Kolmogorov Information value of
about 1,000,000,000 bits. This is because they are random and the
shortest instruction to generate the string is to print the string itself.
This is of the form “Print 01010111010100101001. . . ” which is approx-
imately a billion bits long. The conditional mutual information form,
that was developed in Kolmogorov’s paper, may be thought of as the
unambiguous specification of the generation of a sequence given another
sequence as input.

A few years before Kolmogorov published his paper on the quanti-
tative definition of information, R.J. Solomonoff was working towards a
similar outcome starting from a different point. Solomonoff contributed
to the core foundations for Algorithmic Information Theory in 1960 in
his paper A Preliminary Report on a General Theory of Inductive In-
ference in which tried to overcome problems associated with Carnap’s
theory of inductive reasoning [16]. The next section examines his con-
tribution.

Solomonoff

Solomonoff examines the problem of inductive inference given initial
information by considering the problem of predicting future occurrences
of string elements given an initial sequence of a substring. That is,
given a long series of symbols represented by T , what is the probability
that it will be followed by a subsequence represented by an element a?
What is p(a| T )? Carnap’s approach was to predict the outcome using
priors38 generated by taking a weighted sum of all explanations in a
given description language. Solomonoff developed a similar approach,
but whereas Carnap’s method was appropriate for only the simplest
finite languages, Solomonoff’s theory was more generalized, applying to
a universal description language for Turing machines. At the end of the
development of this method, Solomonoff arrived at a final equation (his
Equation (5)) that returns a combinatorial probability of a sequence
occurring based on the number of ways that it could have been formed.
Solomonoff states,

“Consider all possible sequences of symbols that could be
descriptions of all the things a person might observe in his life.
These sequences correspond to the sequences being encoded in
Equation (5) . . .

38 That is, prior judgments about parameters and about the chances of particular
outcomes.
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A complete model that ‘explains’ all regularities observed in
these sequences is that they were produced by some arbitrary
universal machine with a random binary sequence as its input.
Equation (5) then enables us to use this model to obtain prior
probabilities to be used in computation of posterior probabilities
using Bayes’ Theorem. Equation (5) finds the probability of a
particular sequence by summing the probabilities of all possible
ways in which that sequence might have been created” [76].

Importantly for Algorithmic Information Theory, Solomonoff intro-
duces the concept of a binary description:

“Suppose that we have a general purpose digital computer
M1 with a very large memory. . . . Any finite string of 0’s and
1’s is an acceptable input to M1. The output of M1 (when it
has an output) will be a (usually different) string of symbols,
usually in an alphabet other than the binary. If the input string
S to machine M1 gives output string T, we shall write

M1(S) = T

Under these conditions, we will say that ‘S is a description
of T with respect to machine M1.’ If S is the shortest such
description of T , and S contains N digits, then we will assign
to the string, T , the a priori probability 2−N” (ibid).

Solomonoff’s intention was to create a formalised theory of scientific
inductive reasoning. Under Solomonoff’s model, observations could be
represented as binary strings. Scientific theories intended to explain
the observations can be described as algorithms which produce those
strings. These theories will be of varying complexity and hence their
corresponding algorithms will vary in size. The scientist would apply
Occam’s Razor to select between the completing theories and choose
that theory whose algorithm has the shortest length. If the observations
made were of a random event (or if there were a great degree of inherent
randomness in the observation process) no theory would be effective in
describing the observation.

The similarity to Kolmogorov’s work is evident. Solomonoff’s con-
tribution to the field led eventually the development of feasible infer-
ence methodologies such as the Minimum Description Length39 (MDL)
principle in statistical modelling.
39 MDL Principle states that any regularity in a given set of data can be used to

compress the data, i.e. to describe it using fewer symbols than needed to describe
the data literally.
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About the same time as Kolmogorov and Solomonoff were develop-
ing their accounts of algorithmic information, Gregory Chaitin inde-
pendently developed the notion of Kolmogorov information measure in
the mid-nineteen-sixties. As Chaitin states, “This definition was inde-
pendently proposed about 1965 by A. N. Kolmogorov of the Academy
of Science of the U.S.S.R. and by me, when I was an undergraduate at
the City College of the City University of New York. Both Kolmogorov
and I were then unaware of related proposals made in 1960 by Ray
J. Solomonoff of the Zator Company in an endeavor to measure the
simplicity of scientific theories” [19].

We will look at Chaitin’s work in the next section.

Chaitin

The most important of Chaitin’s early contributions to the formulation
of algorithm complexity theory emerged from his study of randomness.
Capturing the same essence as Solomonoff and Kolmogorov and fur-
thering the work of Martin-Löf, Chaitin determined that a “random”
string is one that cannot be algorithmically compressed .

In Chaitin’s earliest work he considers, in a manner very similar to
Solomonoff’s analysis of inductive inference, the search for regularity
in scientific data:

“Consider a scientist who has been observing a closed system
that once every second either emits a ray of light or does not.
He summarizes his observations in a sequence of 0’s and 1’s in
which a zero represents ‘ray not emitted’ and a one represents
“ray emitted.” The sequence may start

0110101110 . . .

and continue for a few thousand more bits. The scientist
then examines the sequence in the hope of observing some kind
of pattern or law. What does he mean by this? It seems plausible
that a sequence of 0’s and 1’s is patternless if there is no better
way to calculate it than just by writing it all out at once from
a table giving the whole sequence:

My Scientific Theory: 0
1
1
0
1
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0
1
1
1
0

This would not be considered acceptable. On the other hand,
if the scientist should hit upon a method by which the whole
sequence could be calculated by a computer whose program is
short compared with the sequence, he would certainly not con-
sider the sequence to be entirely patternless or random. And the
shorter the program, the greater the pattern he might ascribe
to the sequence” [18].

To develop a formal description of this concept, Chaitin considers a
Turing Machine that produces a binary string output (Chaitin, 1969).
Let S be the set of all binary strings. Define L as follows: An N -state,
3-tape-symbol Turing machine40 can be programmed to produce S iff
N ≥ L(S). Chaitin notes the use of the letter “L” is suggested by
the phrase “the Length of program necessary for computing S”. This
definition captures the fact that the length of a program run on this
machine to output Sis less than or equal to the total number of distinct
states of the machine. Given L, Chaitin defines a subset of S, Cn, as
follows:

L(Cn) = max
S of length n

L(S)

The maximum here is taken of all binary strings S of length n.
The symbol Cn then conceptually denotes the most complex binary
sequences of a length n. Based on his philosophical considerations noted
above (that a random string is one that cannot be represented by a
program shorter than the string itself), Chaitin argues that for random
S of length n:

L(S) ≈ L(Cn)

Chaitin does not provide a rigorous deductive proof of this, however
he offers formal inductive credence by “proving various results con-
cerning what may be termed statistical properties of such finite binary
sequences” [20]. These properties include familiar tests for randomness
such as Simple Normality and Von Mises Place Selection. For each of
these tests he shows the above relationship holds.

40 That is, a Turing machine that uses tape that has 3 symbols: 0, 1, <space>.
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In the case of infinite sequences, Chaitin defines the set of infinite
random binary sequences, Cn, as a subset of the set of all infinite bi-
nary sequences, S, that satisfy for all sufficiently large values of n the
following:

L(n) > L(Cn) − f(n)

where f(n) = 3log2n (for a 3-tape-symbol Turing machine) and Sn

= the first n bits of S (Chaitin, 1966). Chaitin admits the definition
is somewhat arbitrary, “The failure to state the exact cut-off point
at which L(S) becomes too small for S to be considered random or
patternless gives us the first definition of its informal character. But
in the case of finite binary sequences, no gain in clarity is achieved
by arbitrarily settling on a cut-off point, while the opposite is true for
infinite sequences” [20].

Chaitin’s work on random strings is essentially complementary to
the work done by Kolmogorov and Solomonoff. To contrast Chaitin’s
approach with Kolmogorov’s Kϕ theorem we turn to Chaitin’s gen-
eral formulation with respect to binary computing machines. Chaitin
proposes the following model,

“Formally, a binary computing machine is a partial recursive func-
tion M of the finite binary sequences which is finite binary sequence
valued. The argument of M is the program [P ], and the partial recursive
function gives the output (if any) resulting from that program. LM (S)
and LM(Cn) (if the computing machine is understood, the subscript
[M ] will be omitted) are defined as follows:

Lm(S) =
{

minM(P )=S(Length of P)
∞, If there is no such P

Lm(Cn) = max
S of length n

Lm(S)

In this general setting the program for the definition of the random
or patternless binary sequence assumes the following form: The pattern-
less or random finite binary sequences of length n are those sequences
S for which L(S) is approximately equal to L(Cn). The patternless or
random infinite binary sequences S are those whose truncations Sn are
all patternless or random finite sequences. That is, it is neccesary that
for large values of n, L(S) > L(Cn) − f(n) where f approches infinity
slowly” [20]. We see here that L(S) is in essense Kolmogorov’s Kϕ(y)

In summary, Chaitin’s basic premise is that random sequences do
not have regularities; they are, as he frequently tells us, “patternless”.
This means there are no redundancies in the sequence that may be
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exploited in the generation of the string, thus the length of a pro-
gram which generates a finite random string must be approximately
the length of the string itself. A string is random just in case it cannot
be algorithmically compressed. In informatic terms, this means the to-
tal information in the string is the string itself. In this way in the set
of sequences of length n, the set of random sequences Cn will be those
strings which possess the most information for strings of that length.
This is an important realisation because it appears somewhat counter-
intuitive that random entities are informatically maximal. We will be
examining this significant relationship in detail in section 4.7.

2.2.4 Signpost

We have reached the end of our survey of the three main approaches to a
formalisation of information: the three entrances, starting from different
points, into the mine of information. The survey has been technical and
at times abstract. So it is worthwhile at this stage to summarise the
approaches and highlight the essential issues, and since the three have
some aspects in common, it is also worth examining the relationship
between them as well as their relationship with information.

The Thermodynamic/Statistical Mechanical approach to informa-
tion essentially establishes the relationship between entropy and infor-
mation. That relationship, Brillouin and Schrödinger tell us, is that of
reversed sign: information is negative entropy. Thus in our search for a
foundational account of information, the question becomes: what is the
nature of entropy? Boltzmann-Maxwell Statistical Mechanics informs
us that entropy is a combinatorial property determined by the num-
ber of possible distinct macrostates which a system may exhibit. We
assume that all of these states are equally likely to manifest so that
the probability of any particular one appearing is the inverse of the
total number of states. Taking the logarithm of this probability (and
multiplying by an appropriate constant) returns a quantity of the same
absolute value as the system entropy but of opposite sign. What does
this mean? Entropy represents the capacity of a system to manifest a
certain number of distinct states. The more physical states the system
can manifest, the greater the entropy. Information is the distinguish-
ing of one of those particular states.41 It is the selection of one unique
member from the total set. In essence, entropy is the count of unre-
solved physical possibilities of a particular system, while information
41 We could distinguish ‘one or more’ states. In that case we would be calculating

the information of that particular sub-set. For simplicity’s sake we will distinguish
just one.
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is the resolution of this system to a particular state; it is the collapse
of potentiality to actual selection. I have previously noted that ‘dis-
tinguishability’ is crucial to defining information and we will see later
that Boltzmann’s account of entropy requires a bit more work to be
compatible with entropy observations specifically due to problems of
distinguishability.

Other important issues concerning information have arisen from
our considerations of the Thermodynamic/Statistical Mechanical ap-
proach. We have seen that information is a very real quantity with the
ability to produce real work. The sorting process can be used to gener-
ate thermodynamic work. We will examine this notion in more detail in
Section 4.6.3 when we examine Gibbs’ Paradox and its relationship to
information. I wish to emphasise the capacity of informatic processes
(such as sorting) to produce work in order to dispel any notion that
information is anything other than a real, objective quantity.

We have also seen that the related concepts of measurement and
memory are important in resolving the Maxwell’s Demon paradox
which relates entropy and information. Szilard’s analysis of Maxwell’s
Demon notes the importance of the role of measurement. The capacity
to measure the properties of a particle and distinguish it from particles
with other property values prevents the Demon violating the Second
Law. Szilard notes that the “measurement procedure is fundamentally
associated with a certain definite average entropy production, and that
this restores concordance with the Second Law” [79]. In Section 3.2, the
apprehension of information from an informatic object is detailed and
Section 4.5.2 further discusses measurement, Demons and information.

Memory is significant by virtue of its role in resetting the system so
that a work cycle could operate. Memory is also central to the concept
of distinguishability of consecutive temporal states of a system, which
we will develop in Section 3.1. The relationship between information
and memory is discussed in Section 4.2.2.

Shannon’s theory of information is closely related to Boltzmann-
Maxwell entropy, though the two accounts differ in one significant way.
Shannon is not directly concerned with the nature of the ensemble of
possible messages that can manifest because he makes no assumptions
about equiprobability of messages. What he develops is a more general
case where he considers the individual probability for each possible
message that may be sent. The probability distribution need not be
uniform. The case where all messages are equally likely is just a special
case.
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The algorithmic approach to information is considerably different
from the other two approaches. Here there is no ensemble of unre-
solved possibilities, so there cannot rightly be said to exist entropy.
The algorithmic technique is generative in nature and calculates the
minimum amount of code required to create a specific string (or ‘mes-
sage’ in Shannon’s parlance). This minimum code quantifies the infor-
mation associated with that string. How then, if at all, is this related
to Boltzmann-Maxwell and Shannon types of information? If all three
theories refer to the same thing when they talk about information, what
is the primal quantity that, when viewed from different conceptual an-
gles, can be described by these different accounts? The unification of
these theories of information is a key goal of this book and an attempt
at this goal is developed in sections 3 and 4. It will suffice at this point
to say that they are all subsumed by the concept of symmetry.

Before proceeding to develop a unifying account of information we
should tie up a conceptual loose end. All three theories of information
that we have examined so far have made reference to a quantity called
‘probability’. It is important to further investigate this quantity in order
to correctly determine its place in a unified theory of information.

2.3 Probability

We have seen in the previous sections that Statistical Mechanics and
all other accounts of information rely on probabilistic accounts of sys-
tem state. Maxwell and Boltzmann constructed momentum probabil-
ity distributions to give a microscopic underpinning to the macroscopic
quantity entropy. Brillouin talks of probabilities of possible outcomes
changing when information is received. Shannon considers information
being generated by a Markov Process creating a sequence of symbols
governed by a set of probabilities. Von Mises judges probability to be
a primary physical property of a set, “a physical constant belonging
to the experiment as a whole and comparable with all its other physi-
cal properties” [58]. Solomonoff speaks of finding “the probability of a
particular sequence by summing the probabilities of all possible ways
in which that sequence might have been created” (Solomonoff, 1960,
p.11). We have already noted, Kolmogorov states “the applicability of
the results of the mathematical theory of probability to real ’random
phenomena’ must depend on some form of the frequency concept of
probability” (Kolmogorov, 1963, p.387). Chaitin speaks of “the prob-
ability that [a Turing machine] M eventually halts with the string s
written on its output tape”[21]. But, what is probability? Is Shannon’s
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notion of probability the same as Boltzmann’s, or Chaitin’s? If not, how
can we compare them? In this section I will examine several possible
meanings of the term probability in the context of information theory
and offer a working definition that can be used to understand all three
approaches studied thus far.

2.3.1 Subjective Probability

The subjectivist account of probability maintains that probability is
solely a knowledge phenomenon, that it is an epistemological rather
than an ontological issue. On this account randomness is not objective
and measurable but represents our lack of knowledge. If we were per-
fectly informed of every single parameter concerning a coin toss, we
would be able to nominate with absolute certainty the outcome of the
event.

The notion that probability is semantically grounded in beliefs is
an old one. Laplace maintains that probability is a measure in part
of our ignorance concerning an event and in part of our knowledge of
that event [50]. Bayes also held this doxastic interpretation and exam-
ined the relationship between probabilities and personal hypotheses.
The probability P (H|E) of a hypothesis given evidence E is the de-
gree of belief in the veracity of H corroborated by E. Bayes’ Theorem
states that given a priori probability of H, P (H), and the conditional
probability of E given H, the probability of H given E is by:

P (H|E) ∝ (H)P (E|H).

It is clear that the subjective account of probability is primarily con-
cerned with changing probability assignments on presentation of new
evidence.

2.3.2 Frequency Probability

The frequentist interpretation of the notion of probability is essentially
that probability only has meaning as a result determined by experimen-
tal outcomes. ‘Classical’ frequentist definitions of probability, such as
J. Neyman maintain that probability is defined as follows: If there are
n possible alternatives of which there are m where proposition p is true
then the probability of p is m/n [62]. Most influential of these was von
Mises. Von Mises’ goal was, like Kant’s, to synthetically, rather than
analytically, define the word probability. This was to be done in an en-
vironment where many definitions, ‘intuitive’ and technical, currently
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exist. To invoke an analogy, von Mises quotes Werner Sombart’s book
Practical Socialism in which Sombart tries to define socialism amidst
a number of existing interpretations. Sombart concludes,

“The only remaining possibility is to consider socialism as
an idea and to form a reasonable concept of it, i.e. to delimit
a subject matter which possesses a number of characteristics
considered to be particularly important to it and which form a
meaningful unity; the ‘correctness’ of this concept can only be
judged from its fruitfulness, both as a creative idea in life and as
a useful instrument for advancing scientific investigation.” [58].

Von Mises’ desired definition of probability must firstly be independent
of popular current usage and secondly be a concept that is not gauged
by its “correspondence with some usual group of notions, but only by
its usefulness for further scientific development, and so, indirectly for
everyday affairs”[58]. Von Mises leaves open the possibility of finding
an analytic definition of probability.

To illustrate how a definition of probability may become sidetracked,
von Mises considers other scientific notions, such as work, which have
everyday currency. Scientifically, work is the scalar product of the vec-
tors of force and displacement. In popular idiom, it is common to re-
fer to work done in book-writing, practicing a musical instrument or
performing surgery. While referencing exertion, the meaning of these
phrases is far from the scientific definition above. Although popular
usage of the term work may not pose difficulties for the scientific defi-
nition, the problem is potentially more serious when considering prob-
ability.

It is common to talk of the probability of rain this evening or the
probability of an outbreak of war between two countries. This, von
Mises argues, is meaningless with respect to his theory of probability.
Employments such as these must be eliminated from the scope of the
definition. Probability, he maintains, is a mass property: it does not
apply to individual events. To develop this case, von Mises offers three
examples,

1. What is the probability that a double 6 will appear x times if two
dice are thrown y times?

2. What is the probability that x men out of a population y will die
aged z years?

3. What is the probability that the mean molecular velocity will be
greater than x in a specified closed system?
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Central to von Mises’ theory of probability is the concept of the
collective. In the three examples above, each has mass character, ap-
plying either to a large population or an unlimited repetition, which
distinguishes it from the single-event colloquial use of probability noted
earlier. The term ‘the collective’, states von Mises, denotes,

“a sequence of uniform events or processes which differ by
certain observable attributes, say colours, numbers, or anything
else. . . All the throws of the dice made in the course of a game
form a collective wherein the attribute of the single event is the
number of points thrown. Again, all the molecules in a given vol-
ume of gas may be considered as a collective, and the attribute
of a single molecule might be its velocity. A further example of
a collective is the whole class of men and women whose ages at
death have been registered by an insurance office”[58].

Given these definitions of the collective and of attributes, von Mises’
definition of probability then is concerned solely with ‘the probability
of encountering a certain attribute in a given collective’ (ibid.). The
quantification of this probability remains to be defined. Von Mises ex-
amines the results of measuring attributes in repeated experiments on
a collective. For example, if two dice are rolled 200 times we may find
that double 6 occurs 5 times. The relative frequency of this occurrence
is 5/200 = 1/40. If the collective had a size of 1800, that is if the dice
experiment were performed 1800 times, then we might find that the rel-
ative frequency is 48/1800 = 1/37.5, or perhaps 60/1800 = 1/30. If we
continue to increase the number of experiments we would notice that,
if we were to plot the relative frequency against the number of experi-
ments, after some large initial oscillations the relative frequency would
tend toward a specific value as the collective size increases. Eventually
we would reach a collective size above which the oscillations around
that specific value are indistinguishable.42 This value is known as the
limiting value of the oscillations. In the dice example above, the limiting
value is 1/36.

With the addition of limiting frequency value, von Mises hones his
definition of the collective:

“We will say that a collective is a mass phenomenon or a
repeated event, or, simply, a long sequence of observations for
which there are sufficient reasons to believe that the relative

42 This is Poisson’s familiar Law of Large Numbers, though von Mises is initially
reluctant to call it such due to ambiguity in Poisson’s use of the law of this name.
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frequency of the observed attribute would tend to a fixed limit
if the observations were indefinitely continued”[58].

The next step is to equate the probability of an attribute with the
limit that its relative frequency of occurrence approaches. “This limit
will be called the probability of the attribute considered within the given
collective” (ibid.).

It is crucial to understand that the limiting frequency is a physical
property of the system and not just an experimental artefact:

“Here we have the ‘primary phenomenon’ (Urphänomen) of
the theory of probability in its simplest form. The probability of
a 6 is a physical property of a given die and is a property analo-
gous to its mass, specific heat, or electrical resistance. Similarly,
for a given pair of dice (including of course the total set-up)
the probability of a ‘double 6’ is a characteristic property, a
physical constant belonging to the experiment as a whole and
comparable with all its other physical properties. The theory
of probability is only concerned with relations existing between
physical quantities of this kind”[58].

Here von Mises rejects any subjective interpretation of probability.
Probability is an objective, physical property of a dynamic mass sys-
tem, the value of which is to be obtained by experimental determination
of limiting frequency through measurement of relative frequencies.

Von Mises maintains that the only legitimate scientific use of prob-
ability is with reference to a collective. As mentioned above, isolated
events have no probabilistic significance. By way of illustration, con-
sider death rates as used by the insurance industry. The collective may
be defined as all men insured before their fortieth birthday with the
attribute dying in their forty-first year. Say, now, that the limiting fre-
quency for this collective is p. It is meaningless to say that the probabil-
ity of a particular male in his forty-first year, Mr. X, has the probability
p of dying because p only has semantic significance for the defined col-
lective. Mr. X is a member of a great number of collectives (e.g. people
who work in profession A, people who live in city Q) each with its own
limiting frequency for the attribute of death in the forty-first year. No
one of these is the probability of Mr. X dying. For instance, Mr. X is a
member of the total population. Since the age-death rate for women is
lower than that for men, the limiting frequency of the attribute ‘death
in the forty-first year’ for the collective formed by the entire population
will typically be q < p. What then is the probability of Mr. X dying in
his forty-first year: q or p? One may argue that the rational approach
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would be to take the most restrictive collective possible (beings who
are human, male, work in profession A, live in city Q, etc.) and use that
frequency to define the attribute probability. However, that approach
fails because the most restrictive collective possible will be a singleton
with Mr. X as its only member, which is no collective at all.

Laplace considers the notion of extraordinary outcomes, results that
seem so unlikely that some inquiry into the causal process might be
justified. These results may occur in the drawing of letters in a scrabble
game or numbers in a lottery.

“On a table we see letters arranged in this order C o n s t
a n t i n o p l e, and we judge that this arrangement is not the
result of chance, not because it is less possible than the others,
for if this word were not employed in any language we should
not suspect it came from any particular cause, but this word
being in use among us, it is incomparably more probable that
some person has arranged the afore said letters than that this
arrangement is due to chance” [50].

We know that, in a million-number lottery, drawing the number 400,000
is just as likely as, say, 475,813. Yet intuitively it seems utterly improb-
able that C o n s t a n t i n o p l e would appear from a random draw or
that ticket 400,000 would win the lottery. Von Mises’ resolution to this
‘paradox’ rests in the use of collectives. In Laplace’s example, the event
that the sequence C o n s t a n t i n o p l e would be picked has, in
itself, no ‘probability’ at all as it is an isolated event. One can compose
a collective of the 2614 possible permutations of fourteen-character-long
strings of letters in the English language and assign attributes ‘mean-
ingless’ and ‘coherent’ to the members of the collective. The number
of ‘meaningless’ strings greatly outnumber the ‘coherent’ ones which is
why C o n s t a n t i n o p l e seems unlikely. The string m o s t i m
p r o b a b l e is equally likely and equally extraordinary. The same
principle applies to the lottery numbers. We would find the numbers
200,000 or 300,000 just as unlikely as 400,000. A collective could be
formed of repeated lottery draws and the attributes chosen as numbers
that are round hundreds of thousands and those that are not. The lim-
iting frequency for those numbers that end in five zeros will be almost
100,000 times smaller than for those that do not.

These considerations of extraordinary outcomes indirectly lead to
notions of pattern and regularity. One of the reasons that we instinc-
tively believe that ticket 475,813 is a more believable lottery winner
than ticket 400,000 is that the number 400,000 is so ‘regular’; it does
not appear random. As we have seen, von Mises considered the notion of
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randomness, and his work was seminal in creating what would eventu-
ally become Algorithmic Information Theory. For von Mises, random-
ness, when applied to his collective model of probability, was strongly
based on the idea of place selection and the possibility of selecting el-
ements from the collective in such a manner as to change the limiting
frequency. If it is possible, according to von Mises, to select by means
of some rule, a finite or an at least denumerably infinite subsequence
from the total collective and an attribute’s limiting frequency in the
subsequence is different to that of the collective, then the collective
cannot be said to be random. The motivation is that the probability of
the attribute is a physical property of the collective and should always
remain invariant under data partitioning. This concept of randomness
is important for the definition of a collective. Von Mises says:

“A collective appropriate for the application of the theory of
probability must fulfil two conditions. First the relative frequen-
cies of the attributes must possess limiting values. Second, these
limiting value must remain the same in all partial sequences
which may be selected from the original one in an arbitrary
way. Of course, only such partial sequences can be taken into
consideration as can be extended indefinitely, in the same way
as the original sequence itself”[58].

In this quote we see an early incarnation of E.T. Jaynes’ Maximum
Entropy Principle which we will visit later (Section 4.4.1).

Thus we arrive at a summary of von Mises’ definition of probability:

“1. It is possible to speak about probabilities only in refer-
ence to a properly defined collective.

2. A collective is a mass phenomenon or an unlimited se-
quence of observations fulfilling the following two conditions: (i)
the relative frequencies of particular attributes with the collec-
tive tend to fixed limits; (ii) these fixed limits are not affected
by any place selection. That is to say, if we calculate the rel-
ative frequency of some attribute not in the original sequence,
but in a partial set, selected according to some fixed rule, then
we require that the relative frequency so calculated should tend
to the same limit as it does in the original set.

3. The fulfilment of the condition (ii) will be described as the
Principle of Randomness or the Principle of the Impossibility of
a Gambling System. 4. The limiting value of the relative fre-
quency of a given attribute, assumed to be independent of any
place selection, will be called ‘the probability of that attribute
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within the given collective’. Whenever this qualification of the
word ‘probability’ is omitted, this omission should be consid-
ered as an abbreviation and the necessity for reference to some
collective must be strictly kept in mind.

5. If a sequence of observations fulfils only the first condition
(existence of limits of the relative frequencies), but not the sec-
ond one, then such a limiting value will be called the ‘chance’ of
the occurrence of the particular attribute rather than its ‘prob-
ability”’ (ibid., pp. 29–29).

“Von Mises’ limiting frequency definition of probability has
attracted some criticism. Jeffreys argues that to precisely de-
termine the limit of the relative frequency of an attribute, one
must perform an infinite number of experiments. This, in prac-
tice, is not possible. “No probability has ever been assessed in
practice, or ever will be, by counting an infinite number of trials
or finding the limit of a ratio in an infinite series. . . A definite
value is got on them only by making a hypothesis about what
the result would be” [44].

This objection may have substance if von Mises’ probability were taken
as an abstract, mathematical notion. However, von Mises makes it clear
that probability is a real, physical property analogous to mass, specific
heat, or electrical resistance. It is also not possible, due to errors of
measurement, to exactly determine what the true value of the mass,
specific heat, or electrical resistance of a physical object may be. These
also may only be truly determined in the limit, measured with infinite
experiments. Yet science seems to progress and make good use of values
based on these physical measurements and “a hypothesis about what
the result would be”. Von Mises would maintain his probability is cut
from the same cloth.

2.3.3 Dispositional Probability

As we have seen, the Frequentist approach maintains that probability
is an objective, physical property that inheres in a group or collective of
events or observations. It is a simple emergent property that can only
be rationally spoken about at the ontologically higher, aggregate level.
Under the frequentist interpretation it makes no sense to talk about the
probability of an individual event except as a subset that is subsumed
into a larger class By contrast, the Dispositional account of probability,
while also maintaining the ontological existence of probability as an ‘in-
the-world’ property, holds that probability attaches to individual events
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rather than to collectives. The nature of probability in this case is that
of a ‘dispositional’ property, like being soluble or fragile.

The distinction is made here between categorical and dispositional
properties. The former indicates properties that currently occur in the
object. The latter refers to properties that are conditional on counter-
factual restrictions. Carnap’s example of solubility serves us here (Car-
nap 1936). The property of “being soluble in water” cannot mean that
an object dissolves when placed in water because this is logically true
of any object, however insoluble, if it is never placed in water. What we
mean by a water-soluble object is that it would dissolve if the object
were placed in water, which is not true of metal, wood and other insol-
uble objects even if they are never placed in water. Thus the property
of solubility is dependent on a set of conditions that are not necessarily
realized.

In a similar way, according to the dispositional account, probability
is the strength of propensity of an event (an assessment of an object’s
attribute) to produce a particular outcome. This means that the event
has a disposition to behave in a certain manner were certain test con-
ditions met. What then, under this account, does it mean to say that
on a roll of a die the probability of obtaining a six is 1/6? The dispo-
sitional account asserts that each roll has a disposition to reveal a six
and that the strength of this disposition is 1/6 of the strength of the
disposition to reveal some number between 1 and 6 inclusive.

Karl Popper was major proponent of probabilities being of a disposi-
tional nature.43 Supporting Peircean “tychism”44, Popper’s conjecture
that probabilities are dispositional grew out of considerations of prob-
lems arising due to the apparent indeterministic nature of quantum
mechanics.

“If we are committed, or at least prepared, to conjecture the
reality of forces, and of fields of forces, then there is no reason
why we should not conjecture that a die has a definite propen-
sity (or disposition) to fall on one or other of its sides; that this
propensity can be changed by loading it; that propensities of this
kind may change continuously; and that we may operate with
fields of propensities, or of entities which determine propensi-
ties. An interpretation of probability on these lines might allow
us to give a new physical interpretation to quantum theory – one
which differs from the purely statistical interpretation, due to

43 This is hardly surprising since Popper holds all universals to be dispositional.
44 Tyche for Aristotle was that which happens unexpectedly, yet still has purpose.

Here it is used interchangeably with indeterminism.
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Born, while agreeing with him that probability statements can
be tested only statistically. And this interpretation may, per-
haps, be of some little help in our efforts to resolve those grave
and challenging difficulties in quantum theory which today seem
to imperil the Galilean tradition” [67].

However, Popper’s account appears incompatible with a deterministic
view of physical events and we are left to ask some important questions.
Are dispositionalists then constrained to apply probability solely to
tychistic cases? If an event is fully determined, then are the only values
that a probability measure can yield zero and one? Any other values are
surely an illusion generated by experimental method. Fully determined
events might possibly be assigned non-extreme probability values if
probabilities are defined, as Sklar states, by the “relative frequency
of the outcome that would result from repeated trials of the kind of
experiment in question. But what would this frequency be? It would
be, given the determinism, fixed by the actual distribution over the
initial conditions that would have held” [73].

In this section we have performed a review of theories of probability
that, while not by extensive, does examine important aspects of prob-
ability in relation to information. In particular the work of von Mises,
Bayes and Jeffreys which we will employ in consideration of the rela-
tionship between information and probability in Section 4.4. None of
the theories reviewed are without their problems. However von Mises’
frequentist description appears to be the least problematic and most
disposed to practical application, so is this account of probability that
I will employ in the development of a unified theory of information.

2.4 Signpost

This concludes this chapter’s somewhat cursory review of theories of
information and probability over the past hundred years or so. It is
valuable here to signpost the relationship of this chapter to the rest
of the thesis. It is my intention in this book to show how my account
of information – a foundational, group theoretic approach – captures
the essence of what we mean by physical information but also how it
underlies the existing theories of information that we have reviewed in
this chapter and in a sense provides a unification. While the combinato-
rial/probabilistic approaches of Brillouin and Shannon are close enough
to be reconciled, the generative approach of Kolmogorov, Solomonoff
and Chaitin is so different from the Brillouin-Shannon approaches as to
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appear as an isolated field. Indeed people often speak of ‘Kolmogorov
Information’ as if it were a separate class of information. It is my inten-
tion to show how these different approaches can be unified by examining
what underlies them.

In the next chapter I will turn to the development of the descrip-
tion of the role of asymmetry in information starting with the crucial
concept of distinguishability. Then, Chapter 4, I will use the notion of
distinguishability to develop my account of the Asymmetry Principle
of Information and show how it relates to each of the topics we have
discussed in this current chapter.



3

Information and Distinguishability

3.1 Distinguishability

Distinguishability – the extrinsic quality of an object which permits one
to say that it is one specific entity and not another or that the object
is in one particular state and not another – lies at the heart of a foun-
dational account of information. For if we cannot differentiate between
two or more entities or states it is inconceivable that the object can
produce any reduction of indeterminacy. More directly, if one cannot,
in principle identify properties which determine an object’s state then
the object is incapable of carrying information.

Much work on distinguishability arose as a result of studies in iden-
tity theory, particularly those undertaken by Leibniz. Directed by a
monadological account of metaphysics, Leibniz maintained that no two
distinct entities in the universe were indiscernible.1

“There is no such thing as two individuals indiscernible from
each other” [53]. Also “It is necessary, indeed, that each monad
be different from every other. For there are never in nature two
beings which are exactly alike and in which it is not possible
to find an internal difference, or one founded upon an intrinsic
quality (dénomination)”[52]

Leibniz here intends that each two entities will always differ in some
properties, even if those properties rest at such a level of subtlety that
1 I will use, as Leibniz did, distinguishability and discernability synomously. Argu-

ment might conceivably be made for a case wherein discerning is a mind-mediated
activity while distinguishing has no such restriction requiring only a differential
sensing capacity. This would serve no useful purpose here as discerning entails
at least distinguishing and, as shall be seen shortly, we are interested in a most
general, objective theory of information.
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it eludes all natural observers. Two entities, drops of milk say, may
appear to be identical when observed with the naked eye, however
“viewed with a microscope, [the drops] will appear distinguishable from
each other” (Alexander, loc. cit.). This is Leibniz’s Principle of Indis-
cernibles. There will always exist, at some level, qualities of an entity
which differentiate it from every other entity in the universe. While I do
not intend to pursue the veracity of this principle2, I do wish to utilise
Leibniz’s notion that entities have properties existent on manifold lev-
els, all with varying degrees of accessibility relative to an observer which
allow them to be distinguished from other entities.

It is at this point I wish to differentiate two levels of discernability:
discernability in principle and discernability in practice. Leibniz was
primarily concerned with discernability in principle – at some level,
physical differences exist between all entities such that no two are
identical. Such properties are those which could be apprehended by
a trans-natural being with arbitrarily acute perception. Such a being
could apprehend all properties of an entity (even if they were uncount-
able in number). The capacity to distinguish those properties which can
be perceived by a particular real natural system3 with finite and specific
powers of apprehension I term discernability in practice. Discernabil-
ity in practice is always “with respect to” a perceiving (or discerning)
system and its limits of perception. Leibniz I will move early here to
quash any tendency to suggest subjectivism. The property differences
that facilitate distinguishability are physical and objective. They exist
independently of the perceiving system. Just as independently as those
additional properties that the system may not perceive. The system
defines the closure of the set of properties that can be perceived in
practice with respect to that system, but not the elements themselves.

In order to illustrate the idea of levels of distinction, consider the
following scenario. Imagine that, on June 20, 1908, two years after
Nernst proposed his theorem, in the safe of gem trader M. Stéphane
Rolland’s office on Avenue de l’Opéra in Paris, there are two labelled
black velvet bags each containing a single cut diamond. They belong
individually to M. Gustav Hofmann and M. Charles Bloit and have
been given into M. Rolland’s care awaiting the arrival of the diamond
assessor M. Van Der Hooft who visits on the 25th of each month from
2 I shall also leave aside more modern considerations of the semantics of identity

(Frege et. al) because I wish to deal at this point solely with an objective entity
and leave aside epistemological and semantic considerations.

3 Here I use the term ‘system’ as a finite dynamic interacting entity. It is intended to
be the natural perceiver corresponding to the ‘trans-natural being’ of the previous
sentence.
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Amsterdam for appraisals. M. Van Der Hooft is renown throughout
Europe as the most experienced diamond assessor in the business. On
the 25thM. Van Der Hooft examines the two diamonds and is astounded
to find how remarkably similar they are. They have obviously been
cut by the same person in the exactly same manner but more than
that, they are of identical size and weight and both are flawless, even
under ten-times magnification. After hours of exhaustive examination
with his best instruments which stretches his expertise, he remarkably
pronounces them both to be ‘identical’: weight of 2.31 carats each and
to be worth 9460 Fr each.

As it turns out, by the most improbable coincidence, the structure
of the two diamonds was identical. Diamonds are typically octahedral
carbon crystals with covalent bonds.4 In the case of the Hofmann/Bloit
diamonds, the number of atoms was the same in each diamond. For each
carbon atom in one diamond, there was another in a corresponding
position in the other diamond. Being perfect, both diamonds had no
dislocations. In short there was no technique available to M. Van Der
Hooft which would permit him to distinguish between the diamonds.

However, during the course of the rigorous examination, the prove-
nance of each diamond is confused: M. Rolland and M. Van Der Hooft
are unsure which diamond came from which bag. After some discus-
sion they reason that since the diamonds are identical, it doesn’t matter
to which bag the diamonds are returned. It is at this point that the
mistake is made and the diamonds are returned to the wrong bags.
Although no difference between the diamonds could be distinguished
by M. Van Der Hooft, there in fact exists a dissimilarity which may
possibly make one of the diamonds more valuable than the other.

Carbon naturally occurs on Earth primarily as either of the two
stable isotopes Carbon 12 (C12) or Carbon 13 (C13)5 with a C12: C13

ratio of about 98.9 : 1.1. Natural diamonds usually occur with this ratio
and this was the ratio for M. Hofmans’s diamond. M. Bloit’s diamond,
on the other hand, was pure C12 with no C13 isotope present at all.
Thus the C12: C13 ratio was 100.0 : 0.0.

Isotopes are chemically indistinguishable from each other, detectable
only by such methods as NMR spectroscopy and X-ray photoelectron
spectroscopy. M. Van Der Hooft had no capacity of discovering this

4 A crystal is an regularly repeating three dimensional structure held together by
chemical bonds (either ionic or covalent).

5 C13 is a carbon isotope with one more neutron than C12..
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isotopic difference.6 Indeed, he almost certainly couldn’t know that
such a difference was possible as it wasn’t until 1910 that the existence
of isotopes was determined by Fredrick Soddy.7 The presence of the
extra neutrons in the C13 nuclei means that these atoms are capable of
creating bonds with other atoms that are stronger than those of C12.8

This implies that M. Hofmann’s diamond would have been slightly
harder than that of M. Bloit and thus potentially more valuable. (This
fact might have been determined by M. Van Der Hooft by means of
destructive testing, however, such tests are precluded by his role as an
assessor.)

We can see that while the two diamonds were distinguishable in
principle, they were not distinguishable in practice with respect to M.
Van Der Hooft. Of course it is possible that a different perceiving sys-
tem could distinguish between C12 and C13 – a researcher with a mag-
netic resonance device, for example. But we do not require anything
as sophisticated as modern researchers to distinguish between isotopes.
Plants have recently been shown to have the ability to discriminate the
two stable Carbon isotopes in their photosynthesis process [12]. A dis-
tinguishing system doesn’t even need to be an animate system. At the
molecular level, chemical processes distinguish reactants on the basis
of differences in molecular properties. A particularly insightful exam-
ple is that of stereo-selectivity in enzyme mediated reactions. Enzymes
are large organic molecules, usually proteins9, which catalyse certain
reactions between two or more substrates. This is achieved by binding
to the reacting substrates, orienting them in a manner conducive to
the reaction. Different groups of enzymes vary in the degree of speci-
ficity with which they catalyse reactions. A great many enzymes are
highly specific; particularly the dehydrogenases, the kinases and the
synthetases [30]. Mostly these enzymes are highly specific for both re-
actants for bimolecular reactions or all three reactants in the case of
trimolecular reactions. A few enzymes are specific for one reactant and
not another such as alcohol dehydrogenase which is specific for NAD
but the other reactant may be any alcohol [30].

6 Though, perhaps it is possible that if Van Der Hooft had a sufficiently accurate
balance, the mass difference of the additional neutrons may have been detected.

7 The existence of isotopes was recognized by independent work of Soddy, T. W.
Richards and J. J. Thomson from 1907 to 1913 though Soddy is generally credited
with the discovery (See Aston, 1942).

8 It is interesting to note that General Electric, the creators of the first artificial
diamond in 1955, made a pure C13 diamond 1991 which has been found to be
substantially harder than C12 diamonds.

9 Though messenger RNA is also known to possess catalytic ability.
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Fig. 3.1. Enzyme surface with three-point attachment

Beyond being chemically specific for reactants, enzymes are also
sterically specific, meaning that they will discriminate between isomeric
reactants with asymmetric centres.

Fig. 3.2. Tetrahedral Substrate

Most substrates will form at least three bonds to attach to an en-
zyme (three-point attachment) [60], thus if a substrate has a tetrahedral
structure, such as a carbon atom as a chiral centre, an enzyme will typ-
ically bind with one optical isomer and not the other. Fig. 3.1 shows
a stylised depiction of three-point attachment sites on the surface of a
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large enzyme, while Fig. 3.2 shows a schematic of a reactant which has
the ability to orient and attach to the enzyme. In the example, sites
have affinity for groups with the same letter.

By contrast, Fig. 3.3 shows an optical isomer of the substrate in
Fig. 3.2 which cannot bind with the enzyme surface as there is no
rotation or translation that the molecule can undergo which will permit
it to attach to the binding sites of the enzyme short of breaking covalent
bonds.

Fig. 3.3. Optical Isomer

This enzymatic distinguishing is crucial for biological processes,
since all amino acids have a carbon chiral centre (known as the α-
carbon) and thus all have optical isomers (denoted L-α and D-α).
Yet with some rare exceptions10, enzymes act almost exclusively on L-
isomers of amino acids. Indeed, only L-α-amino acids form proteins.11

Returning to the discourse on distinguishability in practice, what
is important to note in this example is that, while the groups on the
10 Kidney D-amino acid oxidase for example.
11 Why this is the case is open to speculation. D-α amino acids do occur in nature,

but perhaps some primordial, minor perturbation caused the L form to dominate
and, combined with feedback via enzymatic stereo-selectivity, evolutionary ‘lock-
in’ occurred.
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substrate may be chemically identical, they may become distinct with
respect to the enzyme. For example, if in Fig. 3.2 site A represented a
site with affinity for the carboxylic acid group (–COOH) and, in Fig. 3.2
both groups A and D were carboxylic acid, the enzyme would be able
to distinguish between the two groups because of their positions rela-
tive to the other two groups and the chiral centre: there is no rotation
which would permit group D to bind to site A and groups B and C to
bind to sites B and C respectively. It is at a systemic level that distinc-
tion between components may be made. Other chemical reactions may
allow optical isomers to react at equal rates; however, these isomers are
distinguishable in practice with respect to certain enzymes.

We may at this point formally state the notion of distinguishability
in practice:

Definition 1. Let ΘP denote the set of all properties of an entity P and
ΦP |X ⊆ ΘP denote the set of those properties of P that can be discerned
by a system X. Similarly, let ΘQ denote the set of all properties of an
entity Q and ΦQ|X ⊆ ΘQ denote the set of those properties of entity Q
that can be discerned by X. Then X can distinguish between entities
P and Q iff ΦP |X �= ΦQ|X.

Note that if it were the case that ΘP ≡ ΘQ, then P and Q are indistin-
guishable in principle, a possibility that Leibniz would reject. However,
I concern myself here only with distinguishability in practice, that is
with reference to a distinguishing system, in this case X.

Thus far in this section, I have considered examples of distinguish-
ing between entities: discerning that they are indeed different. What is
often of interest is distinguishing between different states of the same
entity: discerning change in an entity. By state I mean a set of values
of properties whether those values are capable of being different or not.
The state space is the set of all possible states. If the state space is
well defined for a particular entity then we can treat distinguishability
in practice of multiple states of an entity in a manner similar to dis-
tinguishability in practice of entities, that is, by establishing whether
a perceiving system is capable differentiating two or more states. Con-
sider the following example. Gretel bought an expensive stylised wall
clock from an on-line Austrian Bauhaus design studio. When it arrived,
some time later, she removed it from the box and packaging and noticed
the following features:

• The clock was perfectly circular
• There were no markings at all on the face
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• The hour and the minute hands were of equal length and width and
of identical material and colour

• It made absolutely no noise,

everything one would expect from an Austrian Bauhaus wall clock.

Fig. 3.4. Clock at time t0

She placed the clock on the kitchen table and left the room. When
she returned some time later, she found her flat mate Hansel holding
the clock, rotating it this way and that, trying to determine which
way up it should be mounted on the wall. “I can’t work it out.” said
Hansel to Gretel as he replaced the clock on the table and left the
room. (Fig. 3.4) Gretel went to the table and looked at the clock. The
thought then struck her that, since the clock made no sound, it might
not be working. She remembered the position of the hands when she
had first laid the clock on the table at time t0 and was now (time t1)
looking an apparently different configuration (Fig. 3.5).

Fig. 3.5. Clock at time t1
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Gretel estimated that the angle between the hands at both times
was the same at about 90◦ and estimated that the time that had passed
between t0 and t1 was around 30 minutes. After a moments reflection
she correctly concluded that, given such information, it was not possible
to assert whether the clock was working or not.

What Gretel had determined was that given her capacity to appre-
hend the properties of the clock and given the rotational symmetry of
the clock, it was not possible to distinguish between the two states of
the clock. The states of the clock here are the positions of the hands
relative to each other and the clock face. The clock hands may have
remained motionless and the whole clock rotated 180◦ the clock hands
may have moved as designed over almost 33 minutes and the whole
clock rotated some 73.5◦. All that may be concluded for certain is that
the whole clock has been rotated by some amount.12 Thus the states
of the clock at t0 and t1 are indistinguishable in practice relative to
Gretel.

With these considerations as a starting point we can define distin-
guishable states in a manner similar to distinguishing entities,:

Definition 2. Let ΘP denote the set of all states of an entity P (the
state space of P) and ΦPt0 |X ⊆ ΘP denote the set of those states of P
that can be discerned by a system X at time t0. Let ΦPt1 |X ⊆ ΘP denote
the set of those states of P that can be discerned by X at time t1. Then
X can distinguish between states at t0and t1iff ΦPt0 |X �= ΦPt1 |X .

As a final example of distinguishability, and to lead us into considera-
tions of information, imagine the transmission of a ten binary digit sig-
nal which serves as an error state indicator on a deep-space probe. The
signal is transmitted to earth receiving stations at a certain frequency
in the event of equipment failure on board the probe. The ten-bit sig-
nal is capable of identifying 1064 different, pre-determined equipment
states. Long before launch, the design decision was made that the signal
should be continuously repeated to allow for the possibility of some sig-
nal loss, interference or earth reception problems (eg, no-one listening
at a particular moment). This, however, had some unfortunate conse-
quences. Consider the signal that was received by a deep space tracking
station:

12 This is assuming that Gretel is looking at the clock from the same place, thus
imposing an arbitrary external reference point. It might also be possible that
Gretel may have been grossly mistaken regarding the time between t0 and t1, in
which she cannot say anything, even about the clock being rotated.
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. . . 11000101011100010101110001010111000101011100. . .

Interpretation of the signal is difficult, since the encoded number is
not uniquely distinguishable. The number could be 1100010101, deci-
mal 789, which indicates a low-power state of a backup battery or it
could be 1000101011, decimal 555, a receiving antenna failure. Or it
could be 87 or 174 or 348, or five other numbers. There are ten possible
numbers, only one of which corresponds to an actual equipment fail-
ure on the probe. Because of the repetition, these ten numbers are in
distinguishable from each other. The problem might have been solved
if some sort of end-of-string indicator had been used.

3.2 Information: A Foundational Approach

What are the fundamental requirements for an entity to carry infor-
mation? As noted in the previous section, for any system to reduce
indeterminacy concerning an entity or other system, it must in prac-
tice be able to distinguish properties of that entity or other system.
Specifically, it must firstly be able to distinguish between the object
and the environment and it must secondly be able to distinguish which
of the possible states the object is in. A system that is capable of mak-
ing such distinctions I will call an Information Gathering and Using
System (IGUS) after Zurek [89].

For an object to carry information beyond its existential bit13 that
can be detected by an IGUS, it must have more than one possible state
that can be distinguished in practice with respect to the IGUS. If we
consider Gretel’s Austrian Bauhaus wall clock as an object and Gretel
as an IGUS, for the clock to carry information perceivable by Gretel
(that is, for it to be an information object with respect to Gretel) then
it must be capable of being in multiple states and Gretel must be able
to distinguish between these states in practice. For Gretel to actually
tell the time from the clock, she must be able to identify unique hand
arrangements relative to the clock face.

An information object may carry many more distinguishing features
than can be apprehended by a particular IGUS. Gretel’s clock, for
example, may have had hands which differed in colour wavelength by
a few Angstroms, an amount imperceptible by Gretel but that would
have enabled her to identify more states had she been able to observe
it. This is again the ‘in principle’/ ‘in practice’ distinction.

13 That is, that binary distinction that it is something rather than nothing.
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It would be nice to evaluate the maximal information of an en-
tity, that is, the information that is based on all the distinguishable-in-
principle properties. This would give us an absolute limit to the amount
of information that the object is capable of carrying. However, there is
a difficulty associated with this. It is the problem of identifying these
properties, for if we are to identify them, they must be physically ob-
servable and hence distinguishable in practice. We know that not all
properties are observable in arbitrarily small detail.

This forces us to consider an alternative to the maximal information
approach: an evaluation of information content with respect to a par-
ticular IGUS. The set of states that can be distinguished in practice is,
in a conceptual sense, generated by passive filtering due to the IGUS’s
inherent inability to apprehend the complementary set of states. The
information that the object can carry in this ‘co-system’ is dependent
on the IGUS.14 I again stress that this is not a subjective definition. The
object’s distinguishing properties exist independently of the IGUS. The
information here exists as a relational ontology. It can be represented
by the schematic model shown below in Fig. 3.6.

Information Apprehended
Maximal InformationInformation

Object

Information Gathering
and Using System

Filters

Fig. 3.6. Information Model

The information question then becomes: Given a specified set of
filters of a particular IGUS, what is the informatic capacity of an ob-
ject? To answer this we must look at the number of ways the object
can be distinguished with respect to the IGUS. The more states an
object can possibly be in, the more information it can carry. But it
is not sufficient to combinatorially count off the number of possible
states in which an object may exist with respect to a certain property
defined state space. We have already seen that, although an object may

14 It should be noted here that the transmission of information is assumed to be
conducted perfectly with no “line losses”. In real systems this is not the case. Loss
of information in the channel between the object and the IGUS can occur due
a number of factors including external interference, noise and the nature of the
channel itself (e.g., a person who can see colours cannot see them in the dark).
The model could be modified to incorporate these losses by including external
filters between the object and the IGUS.
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be physically capable of being in two physically different states, these
may be indistinguishable to a certain IGUS. Gretel was incapable of
distinguishing between the clock at t0 and t1, thus the observations of
the clock cannot be held to have reduced indeterminacy. What needs
to be accounted for is the possibility of states which appear to be
identical due to the relationship of the object and the IGUS.15’

16 The
physics of the information object and the set of filters pose constraints
on which certain transformations are possible. These transformations
are the transitions which govern the movement of the object between
states which can be observed by the IGUS.

15 This is the generalization of the degeneracy principle in statistical mechanics.
This will be developed later.

16 It is somewhat similar to Rosen’s Equivalence Principle [68] though Rosen’s prin-
ciple was nomic in nature.
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Information and Symmetry

4.1 Symmetry

The concept of symmetry is an ancient one and has made a great con-
tribution to the formation of our intuitions. This is rightly so, given its
relationship with information, which will become evident in the course
of this chapter. Etymologically, symmetry originates from the Greek
σνμμετρoν (sym metron – “alike measure”) and in its most general
form, symmetry denotes a balance of form; a distribution of parts in
like-relations to form an integrated whole. The physical world abounds
with symmetry. D’arcy Wentworth Thompson’s classic On Growth and
Form contains a great many examples of natural symmetries, from cell
structures to radiolarians to animal horns, “symmetry is highly char-
acteristic of organic forms and is rarely absent in living things”[80].

Symmetry can take many forms. The most accessible are the three
dimensional geometric symmetries: reflection, rotation and translation.
These are found in abundance in the physical world. Bilateral sym-
metry, the symmetry of left and right, obvious in the human form,
is an instance of reflection. The repeating octagonal structure in M.
Bloit’s diamond is an example of finite translational symmetry. And a
falling milk drop, spherical to minimise surface energy, is rotationally
symmetrical around any axis.

However, symmetry is not confined to the purely natural world.
Symmetry finds residence in art, architecture and design. We find it
appealing. Why? Is this because of its presence in biology as Thompson
has noted? Hermann Weyl considers this question:

“One may ask whether the aesthetic value of symmetry de-
pends on its vital value: Did the artist discover the symmetry
with which nature according to some inherent law has endowed
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its creatures, and then copied and perfected what nature pre-
sented but in imperfect realizations; or has the aesthetic value
of symmetry an independent source? I am inclined to think with
Plato that the mathematical idea is the common origin of both:
the mathematical laws governing nature are the origin of sym-
metry, in the intuitive realization of the idea in the creative
artist’s mind its origin in art; although I am ready to admit that
in the arts the fact of bilateral symmetry of the human body
in its outward appearance has acted as an additional stimulus”
[87].

Symmetry exists beyond just the three spatial symmetries noted above.
Reversible processes such as the frictionless dynamics of spheres with
elastic collisions are temporally symmetric. Mathematical abstractions
such as periodic (e.g. trigonometric) functions are symmetric. So Weyl’s
suggestion that mathematical laws are the origin of symmetry has a
great deal of appeal. If symmetry is generated by natural mathematical
laws, then it would be possible to construct a formalization of symme-
try, a calculus of form. However, before proceeding with an examina-
tion of how such a formalization of symmetry would be performed, it
is perhaps appropriate here to take pause and consider the following
questions: If symmetry is governed by mathematical laws, why should it
occur where it does in such abundance and be ‘highly characteristic’?;
and “How are these laws given physical realizations?” The answer to
these questions is complex and involves the consideration of equilibria.

Consider M. Bloit’s pure C12 diamond. The reason that the oc-
tagonal structure was adopted and held by the carbon atoms is that,
given the environmental constraints (temperature, pressure etc) and
the attracting and repelling atomic forces, the octagonal structure was
the optimal structure for minimising the energy equation of the car-
bon atoms. Subject to different conditions, the carbon atoms would
adopt a different structure. Under difference physical condition carbon
takes another crystalline form, graphite, which has a hexagonal crystal
structure as a minimising solution to the energy equation.1

But, one could point out, this is another symmetric structure. Why
can’t an amorphous structure be a minimal solution? Having atoms sep-
arated at equal, regular distances averages out the internal stresses, so
each of the C–C bonds shares the workload. If the structure was amor-
phous, then there would be certain areas in which atoms were packed
very close together, forming pockets of intense stress. The compressed
1 Elements that take manifest in different physical structures are known as al-

lotropes. Other Carbon Allotropes include Fullerene C60 and C70.
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atoms would have to move and push other adjacent atoms in order to
reduce inter-atomic repulsive forces. The displaced atoms would them-
selves have to move to relieve the increased stress. This would continue
en masse until the sparse regions and compact regions have been aver-
aged out and, in a Pareto-like manner, no net gain would be attained
by any more movement, so the energy equation is at a minimum. This
is an example of the principle of least action of work. The process in
this argument is generalised in the following quote by Ernst Mach:

“In every symmetrical system every deformation that tends
to destroy the symmetry is complemented by an equal and op-
posite deformation that tend to restore it. In each deformation,
positive and negative work is done. One condition, therefore,
though not an absolutely sufficient one, that a maximum or
minimum work corresponds to the form of equilibrium, is thus
supplied by symmetry; there is no reason, therefore, to be aston-
ished that the forms of equilibrium are often symmetrical and
regular” [56].

Mach’s observation here is significant in that it proposes a relationship
between symmetry and work. Later we will examine the capacity of
information to generate work. This is directly related to the symmetry-
work relationship noted by Mach. For now we will note that a formal
account of symmetry must account for the invariance under change that
gives symmetrical objects their special qualities. This is the starting
point for the next section.

4.2 Symmetry and Group Theory

In order to develop a formal definition of symmetry, we will first estab-
lish some supporting definitions. A one-to-one mapping M associates
every point in space p with another point p′. In the trivial case that
M maps p on to itself (that is p = p′), then M is called an identity
mapping . The mapping of p′ back on to p is called an inverse mapping.
A transformation, then, is the pair of one-to-one mappings M and its
inverse. Any transformation that preserves the structure of space2 is
said to be an automorphism. Consider two mappings, M, which maps
p to p′, and N, which maps p′ to p′′ and their respective inverses M−1

and N−1. Denote MN as the consecutive application of mappings M
then N . Now it should be obvious that MN maps p to p′′ and that if

2 That is, relationships of congruency are maintained.
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the transformation M is an automorphism and the transformation N
is an automorphism then MN is also automorphism.3 The inverse of
MN is (MN) −1 = N−1M−1. The consecutive application of the trans-
formation is sometimes called ‘multiplication’ and is not necessarily
commutative.4

Definition 3. Define G to be the set of all automorphisms. G is said
to be a group if the following conditions are satisfied:

1. Multiplication is associative, that is (MN)P = M(NP )
2. G contains the identity mapping transformation (designated e)
3. Each automorphism M has an inverse M−1 which is also a member

of G

It should also be noted that the multiple of any elements of G is
also a member if G.

Just as numbers measure size, groups measure symmetry. General
Group Theory grew out of early work on specific permutation groups
by LaGrange, Ruffini, Cauchy and Galois in the late 18th and early
19th century. Felix Klein applied Group Theory to geometry in the
second half of the 18th century. To see how groups apply to symmetry,
consider an automorphism M which maps points p to p′. Now consider
a spatial figure in that space prior to application of the transformation.
A spatial figure may be thought of as a set of points, S, with a defined
relationship to one another. If after the application of M , the figure is
indistinguishable from its pre-transformation state, M is said to be a
symmetry of S. A group G consisting of all automorphisms M which
leave S invariant exactly describes the entire symmetry of S. The order
of the group denotes the number of symmetries.

In physical systems, ‘possible transformations’ can be used to form
a group to determine the symmetry of an object. A possible transfor-
mation means that it is physically possible to perform the change to the
system, though it doesn’t actually have to be performed. If a transfor-
mation is possible and its application would result in an arrangement
that is indistinguishable from the original, the transformation is known
as a symmetry. If a transformation is possible and its application would
result in an arrangement that is distinguishable from the original, the
transformation is known as an asymmetry.5 As we have noted in the

3 Strictly the transformation formed by M and M−1.
4 That is, MN is not necessarily equal to NM.
5 Symmetry theorists also talk of a case of dissymmetry in which the transformation

type may yield either distinguishable or indistinguishable instances.
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previous section, distinguishability is the foundation of informatic ca-
pacity, thus we can conclude that it is the set of asymmetries which
generate the informatic capacity.

To clarify the use of Group Theory to describe physical symmetries,
let us consider the geometry of a tetrahedral carbon compound such as
that presented in our considerations of optical isomers. For this exercise,
assume the chemical groups A,B,C and D that were shown in Fig. 3.2
to be the same chemical group (e.g. hydrogen, thus forming methane)
and to occupy the apexes of a stylised figure (see Fig. 4.1). Thus we can
represent the molecule as a simple tetrahedron. By inspection, we can
determine the transformations that can be applied to the tetrahedron.

Rotational Symmetry
Type I

Rotational Symmetry
Type II

Fig. 4.1. Tetrahedral Transformations

Since reflective transformations would involve bond breaking, these
are excluded as they are physically impossible. That leaves us with
rotations. There are two kinds of rotational symmetries. The first is a
rotation about an axis which runs through an apex and the centroid
of the opposite face. Rotation by either a third or two-thirds of a turn
will leave the tetrahedron in a similar position. This kind of rotation
I shall call type I. The second kind, type II, is rotation about an axis
which runs from the middle of one edge, through the tetrahedron’s
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centroid, to the middle of another edge. Half a turn will result in a
similar configuration.

Each of these rotations generates a transformation: the rotation and
its inverse.6 To construct the transformation group it is necessary to
count the total number of transformations. Designate type I rotational
transformations as r1 and type II as r2. There are 4 faces, so there
are 2 × 4 r1 transforms which we will label r1

1,r
1
2,r

1
3 ,r

1
4,r

1
5,r

1
6,r

1
7,r

1
8 . Fur-

ther there are 6 edges, hence 3 r2 transformations: r2
1,r

2
2,r

2
3. The final

transformation to be included is the identity transformation, e, which
entails no action or application of a rotation around any axis through
2π. So the set of rotational transformations is:

{e, r1
1,r

1
2,r

1
3,r

1
4,r

1
5,r

1
6 ,r

1
7,r

1
8,r

2
1,r

2
2,r

2
3}.

But this is not sufficient to define the group. The set of rotations has an
internal structure in that they have algebraic features when combined.
For example, r1

1 r1
1r

1
1 = e and r2

1r
1
1 �= r1

1r
2
1. The combination or ‘multi-

plication’ method must be specified to define the group. Designate this
as m. Hence the group is specified as:

G = {e, r1
1,r

1
2 ,r

1
3,r

1
4,r

1
5,r

1
6 ,r

1
7,r

1
8,r

2
1,r

2
2,r

2
3},m.

Every multiplication of the elements of G results in a transformation
which is also a member of G. Note that in this example we have set
chemicals A, B, C, D to be identical. It is this that makes the sym-
metries under rotational transforms. If, for example, we nominated
A, B, and C to be hydrogen and set D to be chlorine, thus forming
chloromethane, then the number of symmetries would be reduced, since
some, but not all, rotations would produce results distinguishable (by
the relevant IGUS – here the enzyme) from the original configurations.
Changing another hydrogen to chlorine to form dichloromethane pro-
duces new symmetries. In doing this, the group G remains unchanged,
of course, since it is just description of the spatial geometric algebra –
of what rotations are possible. It provides no guarantee of symmetry.
What we require is a method of measuring only those transformations
that produce results which are indistinguishable from the initial states.
To do this, let us further develop the notion of the application of a
transformation to a set.

Let G be a group and S a set and define an action of G on S to be a
homomorphism, which for each element g of G gives us an arrangement
of the points in S. The transformations in G act on the points in set

6 The inverse is just rotation of the same magnitude in the opposite direction. Note
that the type II symmetries are their own inverses.
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1r

Fig. 4.2. Single Rotation

X and permute them in a manner that is consistent with the algebraic
structure of G. For a given action of G on S and a point s ∈ S, an orbit
is defined as the set of images of g(s) as g varies through G. By way of
illustration, consider the tetrahedron example. Let S be composed of
the edges of the tetrahedron = {CD,BD,CB,AC,AB,AD}. To simplify
matters, consider only one r1 rotation around a single axis (see Fig. 4.2).
Thus G = {e, r12π/3, r14π/3},m. The action of G on each of the elements
of S produces two sets of images, illustrated in Fig. 4.3 by solid and
dotted lines.

These two distinct orbits partition the set S in such a way that for
two sides to be genuinely different they cannot both lie in the same
orbit. Under the action of the group generated solely by rotation about
a single axis as shown above, CD, AD, DB are indistinguishable from
one another but are distinct from sides CA, AB, CB. Moreover we can
say that the number of distinguishably different permutations is given
by the number of orbits. Group theory provides us with a theorem for
determining the number of distinct orbits. The Burnside Lemma (proof
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Fig. 4.3. Tetrahedral Orbits

provided in Appendix A) states that the number of orbits, O, is given
by the average number of elements in set S which are ‘fixed’ – that is
left unchanged – by a transformation g in G.Thus:

O =
1
|G|

∑
g∈G

|Sg|

where |G| is the order of the group G and |Sg| is the order of the
subset of points in S fixed by g. As an illustration of determining the
number of distinguishable permutations of an object by count orbits,
consider the problem of painting each of the faces of a cube with one
of three colours; red, white and blue as presented in Neumann et al
[61]. Given the rotational transformations that could be applied to the
cube, how many distinguishably different ways are there of painting
the cube? There are 3 types of rotational symmetry associated with
a cube: Type I, rotation about an axis which runs through the centre
of a pair of opposite faces; Type II, rotation about an axis which runs
through diagonally opposite corners; and Type III, rotation about an
axis which runs through the midpoints of a pair of diagonally opposite
edges (see Fig. 4.4).

There are six Type III axes each capable of a rotation transformation
of π. Rotation of π about one of these Type III axes interchanges the
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Rotation Type III
Rotation Type II

Rotation Type I

Fig. 4.4. Axes of Symmetry for a Cube

following faces: top with north, bottom with south and east with west.
Thus if the top face and the north face have the same colour (red, white
or blue), the bottom face and the south face have the same colour, and
the east and west faces have the same colour, then the rotated cube will
be indistinguishable from the original cube. Thus there are 33 members
of S which are fixed by this transformation. The total number of s which
are fixed by Type III rotations then is 6 × 33 = 162. This calculation is
repeated for all transformations yielding a total number of s fixed to be
1368. There are a total of 24 transformations in this group, hence the
number of orbits is 1368/24 = 57. That is number of distinguishable
cubes, or to put it another way, there are 57 complexions of the cube.

4.2.1 Subgroups and Special Groups

We have seen that groups are composed of symmetries and that some
of the symmetries are related to each other by virtue of them being the
same “type”. In Fig. 4.1 we noted that there were two types of rota-
tional symmetry: type I rotational transformations which we labelled
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as r1 and type II which we labelled as r2. The full group of rotational
transformation is defined as:

G = {e, r1
1,r

1
2 ,r

1
3,r

1
4,r

1
5,r

1
6 ,r

1
7,r

1
8,r

2
1,r

2
2,r

2
3},m.

We can take a subset of G as follows: H ={e, r2
1 ,r

2
2,r

2
3} with the same

multiplier m as G and see that we have another group. The inverses are
present: (r2

x)−1 = r2
x, the identity element is present and the product

of any two symmetries is a member of the set. Here we say that H is a
subgroup of G under the following definition of subgroup:

Definition 4. A subgroup of a group G is a subset of G which itself
forms a group under the multiplication of G.

In our introduction to Group Theory we have concentrated on
groups based on geometric shapes. Group certainly aren’t limited to
applications involving physical geometry but geometric groups form an
import subclass. For example, the symmetry group describing a per-
fect sphere, accounting for rotation through all angles about any axis
through its centre and reflection in planes along these axes, is termed
the orthogonal group and is represented by O(3). The group con-
sisting of just the rotations is called the special orthogonal group,
SO(3). Similar symmetry groups describing a circle in two dimension
are denoted by O(2) and SO(2). Note that O(2) is a subgroup of O(3)
and SO(2) is a subgroup of SO(3).

Groups which describe symmetries of n-agonal plates (that is a thin-
plate three dimensional plate with n equal length sides) constitute a
family of symmetry groups known as dihedral groups and are denoted
by Dn. If we have a triangular plate (n = 3), we denote:

D3 = {e, r, rr, s, rs, rrs }
where r = rotation 2π/3 around the axis that runs orthogonal to

the plate’s face through the centroid and s = rotation of π around one
of the three axes that run through the plate, parallel to the face at
a depth of half of the plate’s thickness emerging from the plate at an
apex and at the midpoint of the opposite side.

The bulk of our discussion will not be concerned with the applica-
tion of subgroups. However, as we will see in the Chapter 5 subgroups
are crucially important tools in the analysis of symmetry breaking pro-
cesses and thus, information generation.
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4.2.2 Group Theory and Information

The ‘Burnside’ methodology described in Section 4.2 eliminates du-
plication produced by symmetries, in effect determining the asymme-
tries of the object. In determining the transformation group G for an
IGUS/object system, it is important to include all those possible trans-
formations that the IGUS is capable of detecting (i.e. all those distin-
guishable in practice. If redundancy exists, that is, if there are symme-
tries, the orbit counting will factor them out, leaving us with only the
number of distinguishable states. If all possible (in practice) transfor-
mations are included in the group, then all information that the object
is capable of transferring to the IGUS will be accounted for. If any other
states of the object exist due to differences in principle, then they can
carry no information for the IGUS. In terms of Shannon-type informa-
tion theory, all the distinguishable states are equally likely, for if they
weren’t we would have an unaccounted for asymmetry; there would an
in-practice distinction that could be made which was not included in
the transformation group. We will elaborate on this shortly, but first
consider how this methodology applies to our examples. First we con-
sider Gretel’s Bauhaus clock. In order to make the calculations simpler,
we will impose some assumptions. First assume that the mechanism is
such that the minute hand is always pointing at a minute divisor and
moves between the divisors infinitely quickly; that is to say, the minute
hand can be in one of 60 possible states. Second, assume that the hour
hand is always pointing at an hour divisor and moves between the di-
visors infinitely quickly on the change of the hour; the hour hand can
be in one of 12 possible states. In total there are 720 formal states.

Now given the symmetries of this unique clock, it can be shown that
by counting the orbits of the group acting on the clock, the total num-
ber of distinguishable states is 102 (see Appendix B). Hence, the total
information capacity of such a clock is log2102 = 6.672 bits. Imagine
now that we made the clock somewhat more practical by making the
hour and minute hands have different lengths (see Fig. 4.5).

We can demonstrate that this increase in asymmetry increases the
clock’s ability to convey information. With differing lengths of hands
the number of orbits increases to 192, an information capacity of 7.585
bits. To increase the information capacity even further, more asymme-
try needs to be introduced. This could be accomplished by marking the
clock face with a reference mark, relative to which hand positions can
be established (see Fig. 4.6 ). This ensures that every member of the
set being acted upon by the rotation group is in a unique orbit. All
720 formal states can now be distinguished giving 9.49 bits of infor-
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Fig. 4.5. Extra Asymmetry

mation capacity. Rotating the clock will not generate ambiguous time
indications. I call this situation, where the number of orbits equals the
number of formal states, Case Maximum Asymmetry.

12

Fig. 4.6. Case Maximum Asymmetry

A similar analysis can be performed on the error message from
the deep space probe. A continuously repeating ten-bit string can be
treated as a string under abstract rotation, going through the ten bits:

We have already seen that ambiguous messages can be sent; strings
that are indistinguishable from others due to the rotation group act-
ing on the set of bits. An analysis of the orbits of the group of all ten
rotations acting on the set of all binary string reveals a total of 108
distinguishable states (see Appendix B). This means that if a contin-
uously repeating 10 bit signal were to be used to indicate on-board
error states, only 108 such states could be reported on, meaning that
we have information capacity of only 6.75 bits. To have available all
1024 states as was intended, asymmetry needs to be introduced. The
rotational symmetry can be broken by introducing a blank spacer bit
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at the end of each transmission of the 10-bit string. This would result
in a large increase in information capacity.

Fig. 4.7. Bit rotation

Finally, we return to the tetrahedral carbon compound to consider
a slightly more complicated example. In section 3.1, we noted how
enzymes use stereo-specificity to distinguish between substrate isomers.
An α-carbon with any combination of 4 radicals (e.g.H–, OH–, etc.) can
form a tetrahedral molecule with 28 distinguishable states (orbits). If
we force each of the radicals on the molecule to be different, that is just
one of each type, then there are just two orbits. These correspond to
the L and D isomers of the molecule. However, most enzymes operate
in a binary fashion: either a substrate is in a particular configuration or
it is not. If the substrate is not optically aligned, then catalysis cannot
take place. Any extra information is wasted on the enzyme.

Consider, for example, the phosphorylation of glycerol with glycerol
kinase and ATP. The chemical groups attached to the α-carbon are: hy-
drogen, hydroxyl and two hydroxymethyl radicals and the enzyme uses
a three-point binding. Despite having two apparently indistinguishable
hydroxymethyl radicals, there is just one orbit: the tetrahedral molec-
ular arrangement can only be in one state. This permits binding and
the asymmetric phosphorylation of just one particular hydroxymethyl
radical as follows:

HO C H

C∗H2OH

CH2OH

+ ATP � HO C H

C∗H2OH

CH2·O·H2PO2

+ ADP

This has been confirmed using carbon isotopes (indicated above
using asterisks) as markers [30].
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Now, at last, we are ready to finalise the formula that quantifies
information transfer. The formula uses the model established in Section
3.2. In the manner of both Boltzmann and Shannon we will require
that information be additive and so take the logarithm of the number
of fixed orbits. Thus we have:

I = log(O),

hence,

I = log(
1
|G|

∑
g∈G

|Sg|),

or,
I = log(

∑
g∈G

|Sg|) − log(|G|),

where the base of the logarithm returns the unit of information. Choose
base 2 for bits or base e for nats. This equation is the keystone rela-
tionship in my account of information. It evaluates information content
of a system in terms of its asymmetries.

At this point we should summarise what has been achieved. We have
seen the construction of a foundational theory of information commenc-
ing with a Leibnizian definition of distinguishability, and the relation-
ship between information and distinguishability established. Based on
this relationship, an objective, relational model has been defined which
couples an informatic object with an information gathering system. The
correlation between distinguishability and mathematical symmetries
was established, and it has been demonstrated that information can be
expressed in terms of actions of a group of symmetries, G, on a set, S.
Information is quantified by the equation I = log(

∑
g∈G

|Sg|)− log(|G|).
This equation could prove to be a powerful tool with potential for ap-
plication in a vast number of fields, including biochemistry and studies
of causation. But for now we will focus on its role in unifying existing
theories of information.

We have seen that a group theoretic approach permits us to quantify
information capacity in the examples I presented earlier, but how does
this stand in relation to the other quantifying theories of information?
Both Shannon and Brillouin accounts of information are fundamentally
probabilistic. They are effective in describing total information capac-
ities in physical distributions. Is a group theoretic account compatible
with these types of systems?

What we have developed thus far is compatible with the combina-
torial account of information: the information contained in a system
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is related by the frequency of microstates occurring in that system.
Physically, this manifests as Boltzmann and Brillouin’s complexions.
We can extend this to support probabilistic accounts by taking rela-
tive frequency limits of properties of collectives. That is, following von
Mises’ frequentist account of probability, I hold that information7 ob-
tained by repeated observation of attributes of an object is an objective
property of the collective of observations, or as I shall show, a property
of the object extended in time, with respect to the IGUS. To develop
a conceptual basis on which to build the relationship between infor-
mation Group Theory and probability distributions, I will consider a
specific instance from which generalities may be drawn.

Imagine a device that consists of an opaque black box with a dis-
play on the top that is capable of showing 4 binary digits. The dis-
play is capable of being in 16 states. The actual value of the display
changes at regular intervals and an observer (IGUS) makes note of
these. After a large number of observations have been recorded, the
records are examined. To compare the accumulated observations the
IGUS requires memory , in this example, the recorded observations. A
progressive count must be made of all the occurrences of each value
until such a point that a comparison of each value may be made and
the relative differences or similarities noted. In order to distinguish be-
tween the different probabilities of each value of the attributes – that
is, to distinguish between the limiting relative frequencies of each of the
16 states – a store of observations must be made. In this analysis, pro-
vided that the memory is without fault, the group of values stored in
memory and the observed sequence become effectively identical much
in the manner of the collective of von Mises.

The necessity for a memory mechanism in the IGUS is critical in the
evaluation of information that is extended in time (temporal informa-
tion). This has been identified earlier in the consideration of Maxwell’s
Demon and in the work of Szilard. It is essential for the synchronous
comparison of observed dynamic states. Moreover, the memory must
be reliable; that is to say, it must be an accurate, permanent mapping
of the accumulated observations, since it is by means of a memory im-
age of temporal information that the IGUS has access to the observed
object. Deficiencies in memory act in a manner similar to filters on the
IGUS (see Fig. 3.6), restricting its capacity to apprehend in-practice
distinctions in temporal maximal information from the observations.

7 This information is formed by the probability distribution – the limit of relative
frequencies of the observations.
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Returning to the black box example, imagine two cases. In the first
instance each of the 16 values appear with equal frequency. That is to
say that the distribution of the 16 numbers is flat (see Fig. 4.8).

1 111098765432 1615141312

Fig. 4.8. Uniform Distribution

This indicates a highly symmetric system: no value is distinguishable
from any other based on observed frequency. Inclusion of an observa-
tion symmetry transform, which we will later define, to the group acting
on the system, will not increase the number of distinguishable states.
No extra information has been gained. Now consider a second possi-
bility. The observations, when charted, form a non-uniform frequency
distribution as shown in Fig. 4.9.

1 111098765432 1615141312

Fig. 4.9. Non-Uniform Distribution
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While noticeably possessing some symmetry, it is clear that the
distribution is more asymmetric than the uniform one in the previous
instance.8 Repeated observation by the IGUS of the device in this case
has determined greater information capacity than the previous case.
How, then, is this to be included in the group theoretic model?

Intuitively, we would like to say that the second situation is in some
sense more complex; that it contains more information. If this is the
case, then the increased information is embedded in dynamics since it
is only through repeated observation that the asymmetry is revealed.9

Where does the asymmetry, hence information, reside? It resides in
the super-system of the box-IGUS system extended over time. Tempo-
ral asymmetry is by no means extraordinary. It is common. We find
dynamic asymmetries everywhere: in the waveform of heartbeats, in
transmission signals, in most dynamic processes. To see how this tem-
poral information, based on relative frequencies, can be included in the
group theoretic account of information that we have developed, let us
start by determining the set of entities upon which the members of the
group can act.

Let A be a set of discrete values of an attribute that can be dis-
tinguished by an IGUS. Let each a ∈ A have associated with it a
normalised value p which is the limiting relative frequency over N ob-
servations of a as N → ∞ Let P be the ordered set of p indexed on a.
Let G be the group of transforms which can possibly act on P. In previ-
ous discussion of members of a transformation group acting on material
systems, the members were limited to ‘physically possible transforma-
tions’ that were defined as those transformations that are physically
possible and able to perform a change to the system even if, in actual-
ity, they are not implemented. The same restriction applies here with
the transforms now being ‘functionally’ rather than physically possible.
By functionally possible I mean that the transform must be capable,
within the laws of mathematics, of being applied to the members of
the set of P . If we limit ourselves to the scenario present in Fig. 4.9 we
have A equal to the values 1 to 16. Then we can observe that since we
have normalised p, all transformations of scale will be symmetries as
will the application of some permutation of re-indexing P . For exam-
ple, a reindexing transformation which swapped 1 and 16, 2 and 15, 3

8 The distribution cannot, for example, remain invariant under translation.
9 We cannot at this point say much concerning the dynamics apart from the fact

that some dynamical process is at work. More rigorous observation may reveal
increased dimensionality (complex recurring orbits) or stochasticity (statistically
uncorrelated values).
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and 14 etc, (a reflection about a=8.5) will also be a symmetry for all
p. Other transformations will fix only some p. By analysing all possible
transformations and applying the methodology developed earlier, the
total distribution information relative to an IGUS can be determined.

4.3 Symmetry and Information

The relationship between Symmetry, Entropy and Information will be
developed and discussed in this and following chapters. By way of pre-
empting this process, I will summarise, in advance, my thesis regard-
ing the relationship between these three properties. The correlation
between Symmetry and Entropy is direct but inverse. The higher the
number of symmetries a system is perceived as having by an IGUS,
the fewer perceptible individual states the system can be in, and en-
tropy is all about counting possible states.10 The relationship between
Information and Symmetry is also an inverse one. In the standard in-
formation theory formulation, this arises as a result of the fact that
less information is required to fully describe the symmetric system. Be-
cause of their fundamental reliance on distinguishability, Information
and Entropy are opposite sides of the same coin. These relationships
are summarised below in Table 4.1.

Symmetry Entropy Information
High Low Low
Low High High

Table 4.1. Asymmetry Relationships

Note should be made here of some potentially confusing uses of the
term Entropy. In information theory, the term entropy, H, is applied
to denote the amount of self-information of a random variable or the
measure of uncertainty of a random variable. As we have seen in Section
2.2.2, the entropy of a random variable X is given by

H(X) = −
∑
x∈Λ

p(x) log p(x),

where Λ is the alphabet of values x could have. The entropy of X can
also be expressed as the expected value of log 1

p(X)where X is subject
to the probability distribution p(X). Thus
10 see section 4.5.1 for elaboration.
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H(X) = EP log
1

p(X)

This definition is conceptually closer to Boltzmann’s definition of en-
tropy, S = −K log W , where W is the thermodynamic probability. The
thermodynamic probability is the number of different ways in which a
thermodynamic state can be realised. Thus in an equiprobable distri-
bution of x(that is all microstates equally likely), we have p(X) = 1

W .
The inverse probability relation in the second expression is manifested
as the minus sign in the first. My conceptual approach to entropy will
be more closely aligned with the thermodynamic second interpretation
than the former (see section 4.5). For example, it has been observed that
at its origin the universe was maximally symmetrical (absolutely ho-
mogenous) and of very low entropy. During the course of the evolution
of this self-gravitating system, entropy increases caused the breaking
of symmetries leading to greater heterogeneity and becoming more in-
formed. It is in this sense that symmetry and entropy have an inverse
relationship.

4.3.1 Information Generation

The relationship between symmetry and information is not new. Col-
lier makes us aware of the issues at hand by considering the “paradox”
associated with symmetries being both surprising and a source of re-
dundancy:

“On the one hand, many symmetries that we find in the
world are surprising, and surprise indicates informativeness. On
the other hand, the surprise value of information arises because
it presents us with the unexpected or improbable, but symme-
tries, far from creating the unexpected, ensure that the known
can be extended through invariant transformations.” [24].

Though framed in terms of belief content, Collier’s observations regard-
ing the relationship between information and symmetry are nonetheless
accurate. He says,

“The information content of a belief that there is symmetry
in some structure or configuration is a function of the reduc-
tion in the number of possible configurations resulting from the
elimination of all the ones that are not symmetrical. The more
the supposed symmetries reduce the number of possibilities, the
greater the information content of the belief in the symmetries”
[24].
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Here we have a specific case of the general distinguishability-in-practice.
Beliefs are, we suppose, based on observations of system X. If obser-
vations external to the observer-X super-system are employed in con-
structing beliefs about X’s symmetries, then those symmetries act, in
fact, on a system greater than just X. For example, beliefs may be held
concerning symmetrical properties of a die where observation has been
limited to just 3 sides of the object. Now, previous observations of other
dice have noted rotational symmetries, so as an instance of this class,
belief confers the same symmetries to the current die. However, the
symmetries actually belong to the idealized class object along with the
additional symmetry that is the invariance transform between each of
the members of the class.11

Collier maintains that the relaxing or breaking of symmetries gener-
ates information in a dynamic system. In biology, biological information
is produced by such symmetry breaking processes as sympatric specia-
tion that leads to differentiation. This process is at the mercy of chance
fluctuations. He also refers to proposed neurological theories of percep-
tion that speculate that the dynamics of the sense transducer and neu-
rons are driven into a particular harmonic orbit by a sensory stimulus.
If this is the case for all perception, then “perception is a form of sym-
metry breaking that produces perceptual information” (ibid, p.254).
We have seen this (and quantified it) with the informational increase
on the breaking of symmetries in our Bauhaus clock example.

Collier has illustrated instances of information in the physical world
generated by symmetry breaking but he paints a much broader pic-
ture: “The original condition of the universe is statistically uniform,
and hence entirely symmetrical. This statistical uniformity implies an
equilibrium state (at least locally), which further implies that the early
universe did not contain any information. Information, therefore, must
have arisen through contingencies. The only process we know of that
can produce new information from contingencies is symmetry breaking
through phase separation in a system that is out of equilibrium, thereby
forming branch systems. Similar branching is repeated at smaller scales
as the universe differentiates and forms new branch systems” [24].12

11 The invariance transform is that symmetry that makes all the dice members of
the class Dice.

12 One may perhaps expect that the initial “perfect symmetry” at the origin of the
universe be somewhat less than perfect and some minimal asymmetry existed
since the occurrence of a phase separation is itself a break in temporal symmetry.
If this were not the case, we run the risk of violating the axiomatic ex nihilo nihil
fit.
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4.3.2 Extrinsic and Intrinsic Information

Symmetry breaking makes changes to the elements g of a group G
which homomorphically act on a set S such that each g of G gives
us an arrangement of the points S. There is an additional, simple,
though non-trivial, source of information increase available. We could
change S. Consider the example of the repeating 10-bit space probe
message. As it was transmitted the message was capable of sending
only 6.75 bits of information. Imagine now if, without breaking the
rotational symmetry, we introduced an additional bit to the message
string. The message now consists of a repeating 11-bit string. A quick
calculation of orbits13 determines that the probe is now capable of
sending 7.55 bits of information. Here we have increased information
without breaking symmetry, but instead have simply added more crude
volume. In this instance we have changed the set upon which the group
transformations act rather than the group itself. With more members in
the set, the number of orbits that are fixed by the action of the group
increases to 188. If we can increase information in a system without
breaking symmetries, what is the nature of information with regards
to symmetries?

The above example may be considered to be a bit unfair. The sys-
tem under consideration was physically altered, somewhat changing
the rules of the game. But it does raise an important point to be con-
sidered: Information exists wholly in the physical manifestation and
in the relationships of IGUS-object system. Information in the IGUS-
object system illustrated in Fig. 3.6 can be thought of as existing in
two modes. The intrinsic mode is primitively reliant on the physical
structure of the object. It is reliant on the number of bit places, the
divisions on the clock, or the atoms in the molecule. In our set theoretic
representation of this system, it is reliant on the order of set S. The
other mode, the extrinsic mode, is concerned with the possible config-
urational relations of the members of S that can be distinguished by
the IGUS. This component is extrinsic in the same way that thermo-
dynamic entropy is extrinsic. It represents the symmetry relationships
of the system which are formally correspondent with the group G.

This information can be generated both intrinsically and extrin-
sically. Information is increased intrinsically by physically expanding
the system, by directly increasing the bearing capacity. Extrinsic in-
formation is increased by symmetry breaking, as we have seen in our
examples.

13 As shown in Appendix B.
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4.4 Information and Probability

Information capacity is chiefly a combinatorial problem, a counting
problem in which one must determine how many states can be uniquely
distinguished in an object by an IGUS. This is clear in statistical ther-
modynamics. The relationship between distinguishability and statis-
tical thermodynamics is paramount. In fact, there is, as Schrödinger
noted, “essentially only one problem in Statistical Thermodynamics:
the distribution of a given amount of energy E over N identical sys-
tems. Or perhaps better: to determine the distribution of an assembly
of N identical systems over the possible states in which this assembly
can find itself, given that the energy of the assembly is a constant E”
[71].

4.4.1 Maximum Entropy Principle

This approach is a corollary to the Maximum Entropy Principle(MEP)
expounded by E.T. Jaynes. MEP is a formalised extension of Bernoulli’s
Principle of Insufficient Reason that essentially asserts:

“(1) We recognize that a probability assignment is a means
of describing a certain state of knowledge. (2) If the available
evidence gives us no reason to consider proposition A1 either
more or less likely, then the only honest way we can describe
that state of knowledge is to assign them equal probabilities: p1

= p2. Any other procedure would be inconsistent in the sense
that, by a mere interchange of the labels (1,2) we could then
generate a new problem in which our state of knowledge is the
same but in which we are assigning different probabilities.(3)
Extending this reasoning, one arrives at the rule:

p(A) = M
N = (Number of cases favourable to A)

(Total number of equally possible cases)”

[41].

Jaynes’ formulation of MEP is the determination of the probability dis-
tribution in such a manner as not to make any unwarranted assump-
tions, leaving the maximum possible freedom, maximum uncertainty,
while being subject to constraints reflecting what is known about the
system.

For a discrete, single variable system x with prior information I, the
mathematical problem of the MEP is to identify the p(x|I) which will
maximize the variable’s entropy, H, defined by:
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H = −
∑

p(x|I) log p(x|I)

subject to the following constraints:

1. p(x|I) ≥ 0
2. Σp(x|I ) = 1
3. f(p(x|I)) generated by I.

The problem is generally solved by the application of Lagrange mul-
tipliers.

Jaynes’ approach is strongly epistemologically biased. The assigna-
tion of prior probabilities is subject to constraints of knowledge con-
cerning the system at hand. This does not immediately transform to
informatic constraint [39].

Given the epistemic nature of his approach, Jaynes’ program of the
Maximum Entropy Principle may be stated as follows:

1. How can we incorporate knowledge of factors which will affect a
probability distribution?;

2. What form should we assume a distribution takes, if we are com-
pletely ignorant of influencing factors? How do we assign p(x|I)?

Once we find the prior representing complete ignorance the MEP
“will lead to a definite, parameter independent method of setting up
prior distributions based on testable information” [39].

Aside: As previously stated I differ from Jaynes in that I do not
see entropy and information as fundamentally semantic or epistemic.
However, there are sufficient useful concepts and methodology in his
approach to justify its inclusion in my account.

Bayes and Jeffreys consider aspects of the second part of this prob-
lem, that of assigning p(x|I). Bayes, in his revolutionary paper, An
Essay towards solving a Problem in the Doctrine of Chances, consid-
ered the effect of knowledge concerning an event on the assignation of
expected probabilities. Bayes showed that given two events, A and B,
the probability that A happened given B is given by the formula:

P (A|B) =
P (A) · P (B|A)

P (B)
.

Applying this theorem to the determination of Pm, Bayes described a
thought experiment in which a ball is thrown randomly onto a uni-
formly flat and level plane, ABCD, to decide the value of Pm. He pos-
tulated, in the manner of Bernoulli’s Principle of Insufficient Reason,
that, when we have no prior information about Pm, we should likewise
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assume a uniform prior probability: equal values of dPm. This allows us
to compute the probability of the hypothesis that Pm lies between val-
ues x1and x2, given all the explicit and implicit assumptions. Laplace
was influenced by Bayes and formulated the uniform distribution of
priors as the Principle of Insufficient Reason. Indeed, Laplace held the
principle to be the core of probability theory, saying,

“The theory of chance consists in reducing all the events of
the same kind to a certain number of cases equally possible,
that is to say, to such as we may be equally undecided about
in regard to their existence, and in determining the number of
cases favourable to the event whose probability is sought” [50].

Bayes’ assumption was contested by a number of people, including Jef-
freys who pointed out that Bayes’ uniform distribution was not invari-
ant under a change of parameters (e.g. inversion), a crucial problem,
especially if one is dealing with distributions of physical dimensional
parameters. Jeffreys proposed that, for a parameter σ, a prior of dσ/σ
be assigned with the justification that the distribution will remain con-
stant whether we use σ a parameter or some power function, σm.

“For instance, in the law connecting the mass and volume
of a substance it seems equally legitimate to express it in terms
of density or the specific volume, which are reciprocals, and if
the uniform rule was adopted for one it would be wrong for the
other. Some methods of measuring the charge on an electron give
e, others e2; de and de2 are not proportional. . . . But while many
people had noticed this difficulty about the uniform assessment,
they all appear to have thought that it was an essential part of
the foundations laid by Laplace that should be adopted in all
cases whatever, regardless of the nature of the problem” [44].

It is not the intention here to delve too deeply into the intricacies of
assignation of prior probabilities, rather to point out past attempts
at incorporating notional information in probability distributions and,
more importantly, to highlight similarities between the Symmetry-
Group Theoretic approach presented here and the Maximum Entropy
Principle of Jaynes.

Jaynes noted that the application of transformation groups could
assist in the determination of priors. If a population has an original
distribution of beliefs f(θ) concerning a parameter θ which is trans-
formed to a new distribution g(θ) on presentation of some information
I, then we can say that the population has learnt nothing; I was not
informationally relevant to θ if f(θ) = g(θ). We have already seen in
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Section 4.1 that a transformation which leaves a parameter invariant
is a symmetry and therefore contributes no additional information.

Suppose, after Jaynes, that one person, X, held that θ is the prob-
ability of a successful outcome, S, in a Bernoulli event [39]. On the
presentation of additional information, I, we apply Bayes’ law to de-
termine the new expected probability θ’:

θ′ = p(S|IX) =
p(S|X) · p(I|SX)

(p(I|SX) · p(S|X) + p(I|FX) · p(F |X))

where p(F |X) = 1 − p(S|X) is the prior belief in the probability of
failure.

This new information has generated a continuous mapping of the
parameter space 0 ≤ θ ≤ 1 onto itself by

θ′ =
aθ

(1 − θ + aθ)
(4.1)

where
a =

p(I|SX)
p(I|FX)

If we apply this transformation to the distribution of beliefs in the
aforementioned population and we invoke the “ignorance” condition
f(θ) = g(θ), it can be shown (ibid. p.239) that the prior distribution is
given by:

f(θ) =
const

θ(1 − θ)
(4.2)

that satisfies Jeffreys’ criterion.
Now consider conducting n runs of this Bernoulli experiment with

the result of r successes. The probability that we shall observe such
results is given by

p(r|nθ) =
(

n
r

)
θr(1 − θ)n−r (4.3)

given (4.1) and (4.2). The posterior distribution of θ is given by

p(dθ|rn) =
(n − 1)!

(r − 1)!(n − r − 1)!
θr−1(1 − θ)n−r−1dθ (4.4)

In the case where r = (n-r) = 1, that is where one success and failure
have been observed, equation 4 reduces to p(dθ|r,n) = dθ, the distri-
bution Bayes took as his prior. Jaynes notes:
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“Therefore we can now interpret the Bayes-Laplace prior
as describing not a state of complete ignorance, but the state
of knowledge in which we have observed one success and one
failure. It thus appears that the Bayes-Laplace choice will be
the appropriate prior if the prior information assures us that it
is physically possible for the experiment to yield either a success
and failure, the distribution 2 describes a ‘pre-prior’ state of
knowledge in which we are not even sure of that” [39].

That is to say that in the case of the Bernoulli experiment, the in-
formation concerning the nature of the experiment is built into the
selection of the prior. By selecting the uniform probability p = dθ as
the appropriate prior we have tacitly included information regarding
the physical system: that the only possible results are success or fail-
ure. The remaining possible future states of the system, the n trials,
are symmetrical in the sense that there is no additional information we
can use to distinguish one of these possible states from another.

I take pause at this point to note that up to this section, the con-
cept of information has been employed objectively without reference to
beliefs or epistemic considerations. The relationship between physical
information and belief structures is a complicated one that is beyond
the scope of this work. It is sufficient to say that the mapping of phys-
ical information structures and their groups into knowledge structures
could, I believe, be achieved by means of the distinguishability process
identified in Section 3.1.

What Jaynes has shown is that by the incorporation of transfor-
mations that account for asymmetries, one can arrive a prior that is
truly assumption-free. MEP then becomes the construction of a prob-
lem by incorporating all known asymmetries so that what is left is
informationally minimal. By removing all transformations that result
in distinguishable variance we are left with a conditionally uniform
distribution of states, a set of states that is symmetric.

Jaynes’ use of transformation groups and the MEP should be inter-
preted as a corollary to the asymmetry model presented here. Whereas
I am proposing a thesis that “Symmetry denotes no information”,
Jaynes, from his epistemic vantage, puts forward a claim that “No
information denotes symmetry”. To see this more clearly, consider his
treatment of Bertrand’s Paradox. Proposed by Joseph Bertrand [8], the
paradox illustrates the potential inconsistencies associated with failure
to take into account all symmetries relevant to a particular problem and
is directly related to the previously discussed Bauhaus clock ambigui-
ties. The paradox is posed as follows: What is the probability that the
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length of a “randomly selected” chord to a given circle is longer than
the length of a side of an equilateral triangle inscribed in the circle?

Depending on one’s interpretation of “randomly selected”, the an-
swer varies. More explicitly, the choice of which parameter is to be
uniformly distributed greatly affects the determined probability. If we
maintain that a chord on a circle is fully described by its midpoint and
that all those chords with lengths greater than a side of the triangle
will have their midpoints in a circular area of radius one half the origi-
nal circle, then the ratio of uniformly distributed points in the smaller
circle to the total gives a probability of 1/4 (see Fig. 4.10).

A C

B

Fig. 4.10. Bertrands Paradox – Solution A

Alternatively, we could still hold that a chord on a circle is fully
determined by its midpoint, but note that chords longer than the side
of the triangle have their midpoints closer to the centre than half the
radius. If the linear distance between the chord and the circle (along the
radius) is assigned uniform distribution then the probability becomes
1/2 (see Fig. 4.11).

Finally we can consider a chord to be determined by two points on
the circle’s circumference. The position of one of the points is arbitrary
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}

}}
/1 2

/1 4

/1 4
Fig. 4.11. Bertrands Paradox – Solution B

since it is only the relationship (angle and distance) between the two
points that is of importance. If we fix one of the points and examine
random chords emanating from that point we quickly see that 1/3 of
all chords will be longer than a side of the triangle. In this case it is
the angles of intersection of the chords on the circle’s circumference to
which uniform distribution is assigned (see Fig. 4.12).

All three solutions seem meritorious, but which is correct? Jaynes
[40] reviews 10 authors (Bertrand, Borel, Poincaré, Uspensky, Nortup,
Gnedenko, Kendell and Moran, von Mises and Mosteller) examining
the paradox. Of these, only Borel indicates a preference (that the ma-
jority of natural processes point to solution B, though he provides no
proof). Von Mises declares that the problem does not belong in prob-
ability theory. The remainder, noting that the allocation of uniform
distribution is at the heart of the problem, maintains that there is no
definite solution because the problem is ill posed. The tendency, then,
would be to nominate that the only reasonable method for the assigna-
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A C

B

X

Y

Fig. 4.12. Bertrands Paradox – Solution C

tion of probabilities is to adopt the frequentist approach and conduct
random experiments.

Jaynes, however, maintains that often it is possible to allocate a
priori probabilities given informationally restrictive problems “allowing
many different solutions with nothing to choose among them” [40], just
as it has been done in physics.

“For example, given the average particle density and total
energy of a gas, predict its viscosity. The answer evidently de-
pends on the exact spatial and velocity distributions of the
molecules (in fact, it depends critically on position-velocity
correlations), and nothing in the given data seems to tell us
which distributions to assume. Yet physicists have made defi-
nite choices, guided by the principle of indifference, and they
have led us to correct and non-trivial predictions of viscosity
and many other physical phenomena” [40].

The procedure for doing this is to identify the probability function
or functions that are invariant under possible transformations relevant
to the designated problem. The candidate function or functions are
constrained by the information associated with the problem. So, with
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his characteristic epistemic tilt, Jaynes’ restatement of the problem
becomes: “Which probability distribution describes our state of knowl-
edge (his italics) when the only information available is that given in
the above statement of the problem?”(ibid).

From the specification of Bertrand’s Paradox, Jaynes identifies three
possible transformations concerning which no information is given.
These are: rotational (no angular position is specified14), scale (no circle
size specified) and translation (no location specified). If “the problem
is to have any definite solution, it must be indifferent to these circum-
stances” [40].

Jaynes examines these transformations individually and determines
the constraints that they impose on candidate solutions. Rotational
symmetry is irrelevant to the distribution of chords, as an observer’s
vantage makes no difference to the distribution. All three candidate
solutions described above are invariant under rotation.

Scale invariance poses a tighter constraint on the problem. Specify-
ing that the probability density remain the same for circles of different
sizes means that if the angles of intersection were distributed uniformly
on one circle, they would not be uniformly distributed for a smaller,
concentric circle. Thus candidate solution C is eliminated. The other
two proposed distributions satisfy the scale constraint.

The requirement of translational invariance further limits the range
of possible solutions. As the uniform distribution of chord midpoints
over the interior of the circle is not invariant under translation, solu-
tion A is eliminated. By considering the invariance constraints, Jaynes
analytically determines the probability distribution that should be:

f(r, θ) =
1

2πRr
0 ≤ r ≤ R, 0 ≤ θ ≤ 2π

where r, θ are the polar coordinates of the chord and R is the radius of
the circle.

Solution B remains the only solution that satisfies this function.15

At the heart of the issue is the relationship between information pre-
sented (or not presented) and symmetries. If in the original problem
no information was presented concerning a particular possible transfor-
mation, then we must assume that this transformation is symmetric.
The failure here to fully specify the problem allows ambiguities and
so invariance must be assumed. In this manner it is possible to find

14 As in the Bauhaus clock example.
15 Jaynes claims to have experimentally verified this result using broom straws and

a 5-inch circle with 128 trials (ibid.).
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a unique, definite solution. Other problems, however, may be more
ambiguous and underdetermined making it impossible to decide on a
parameter to assign a uniform distribution. If the problem were fully
defined, all relevant information specified, then we would have a system
with Case Maximum Asymmetry as specified in Section 4.2.2

A problem may appear to arise at this point. If we assume that
there is information that has not been provided, that is there are prop-
erties which are distinguishable in principle but not in practice (within
the terms of this experiment), then this potential information will not
manifest but rather will be hidden as symmetries. So when constructing
the probability function exactly which of all the possible transforma-
tions should be taken into consideration? There are presumably infinite
possible transformations unspecified. In this example Jaynes considers
three kernels (rotation, scale and translation) in his transformation
group. Not specified are such possible transformations as time of day,
colour of circle, etc. By inspection we realise that the final probability
distribution will remain invariant under transformations such as these.
How are we to deal with subtle but germane transformations? Jaynes’
acknowledges this is an issue but is unclear on an answer. He appeals
to rationality when specifying problems: “In the first place, we rec-
ognize that every circumstance which our common sense tells us may
exert some influence on the result of an experiment ought to be given
explicitly in the statement of a problem” [40].

If we undertake a calculation to determine a probability function
as described above, we are not entitled, we are told, to assert that the
distribution will be observed in practice. If an experiment is performed
with the intention to verify the prediction and the expected distribu-
tion is not forthcoming, then we can conclude that at least one of our
invariance assumptions is wrong, that an additional asymmetry exists,
which represents, on my account, additional physical information not
included in the problem description. On initial inspection this may ap-
pear to be challenge to Jaynes’ tendency to Idealism, however Jaynes
may reply that this result just represents our imperfect knowledge re-
garding the state of things. However, my approach is unaffected by this,
since, at the very least, the discerning of objective relationships pre-
cedes the construction and manipulation of knowledge structures and
it is at this lower level where information exists.

The selection of which symmetries to include is a pragmatic consid-
eration. The inclusion of all possible transformations consistent with
the specified scenario will include those germane transformations that
will affect the possible distribution set and those irrelevant transfor-
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mations that will be symmetries and leave the distribution solution
unchanged; however this may well prove unfeasible from a practical
standpoint.

The discussion of Jaynes’ Maximum Entropy Principle over the past
few pages has focussed on its application to epistemic problems, well-
posed or otherwise, rather than directly at physical information-bearing
system. However, the analysis of Jaynes has been useful and relevant
as a corollary to the information-as-asymmetry model I am proposing
here in that it brings into relief the absence of information that sym-
metries entail. It is perhaps also useful to examine a physical system
correspondent with the problem set forth in Bertrand’s Paradox and
examine the physical information in accordance with the schema we
have developed thus far.

Consider, as Jaynes proposes, a rain of thin straws over an arbitrar-
ily large area A. Within this area A there is a circle of radius R such
that πR2 � A. And consider a length

√
3R (this is the length that a

side of an inscribed equilateral triangle would be, were it drawn).
In representing the specified problem and the information provided

(or not provided), we can consider an IGUS apprehending information
from the straws/circle system. The IGUS has “filters” on the maximal
information from the straws/circle system such that the IGUS cannot
distinguish in practice the orientation of the circle, the size of the circle
and the position of the circle.

Firstly, we note that there is nothing to distinguish the rotation of
the circle, since, as with the Bauhaus clock the angular position of the
IGUS relative to the circle is immaterial: the distribution must be the
same regardless of the coordinates of the IGUS.

If we assume the rain of straws to be random in such a manner
that the angle of incidence of the straws on the circle was uniformly
distributed, then small changes in R (around the same centre) would
be distinguishable by the IGUS since the proportion of straw section
greater than

√
3R would vary. Here, depending on how we construct

this example, two outcomes are possible. If we maintain that, by defi-
nition, the IGUS cannot in practice distinguish scale information, then
our assumption must be wrong. If, however, we stand firm on our def-
inition of randomness (perhaps due to the manner in which the rain
was generated), then we must allow the ability to distinguish variation
in scale of the circle.

Wherein lies the information? Here, the information arises from the
asymmetric relationship between the straws and the varying circle sizes.
If the angles are distributed uniformly, the “random” rain of straws em-
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bodies information about the circle’s size in so far that the arrangement
of straws is associated with one specific circle size. If the intersections
of chords on the circumference of a particular circle, C1, were arranged
in such a manner as to generate a uniform distribution of angles, the
chords would not be distributed in angular uniformity with respect to a
concentric smaller circle, C2, drawn inside C1. It is perhaps of interest
to note, however, that the correct combination of both a scale trans-
formation and a translation will produce the same distribution for two
different circles. Consider Fig. 4.13 below. Increasing a circle’s radius
and translating it in such a manner that the circles touch at point A
will ensure that the uniform distribution of straws based on angle of
incidence will be the same for both circles.

A C

B

X

Y

C’

Y’

X’

B’

Fig. 4.13. Bertrand’s Paradox with Scale and Translation Transformations

This case of embedded information also applies for transformations
of coordinates, or translations. The distribution of angles of incidence
of chords on the circle circumference is strongly linked to the position
of the circle. Further, the uniform distribution of the chord midpoint
over the centre of the circle, is also linked to the circle position, so that
a change in location will, ceteris paribus, be associated with a single
distribution of the chord midpoint over the centre of the circle.
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The notion that MEP can be used as an approach to define infor-
mation has been put forward by several writers [45]. However, these
definitions of information are typically subjectivist and epistemic in
nature with an emphasis on informatic meaning and semantics. This is
to be expected given Jaynes’ standpoint. There is much that is prob-
lematic in Jaynes’ account of Statistical Mechanics. Jaynes maintains
that Statistical Mechanics be based on a probability that is subjective.
That is, a description “of a certain state of knowledge” [41], and on
a calculus of inductive reasoning as described in his unpublished book
Probability Theory: The Logic of Science [43]. However, it is not my
task here to develop a thorough critique of Jaynes’ work nor is it to
tease out the numerous conceptual and technical problems with Jaynes’
account of Statistical Mechanics. I attempt rather to find that which
can be re-purposed for an objective account of information and entropy
and Jaynes’ MEP approach does capture the asymmetry ‘essence’ of
information.

Consideration of Bertrand’s Paradox as an IGUS-object system has
shown that physical systems can be analysed by the application of
transforms and the resultant asymmetries describe the embedded in-
formation. Jaynes’ Principle of Maximum Entropy, though from an
epistemic view point, still holds in an objectivist realm and the isola-
tion of all asymmetries guarantees the remaining symmetries have no
informatic content.

4.5 Information and Statistical Mechanics

4.5.1 Distinguishability and Entropy

Distinguishability lies at the heart of statistical-mechanical theories
concerning entropy. The determination of the number of states a sys-
tem may possibly manifest subject to the physical constraint and the
combinometric evaluation of these states to quantify entropy is the
essence of statistical entropy theory; it is all about complexions. By
way of illustrating this concept consider the determination of the en-
tropy of an ideal gas with N atoms.16 We have seen already (Section
2.2.1) that in his response to Loschmidt’s Umkehreinwand, Boltzmann
proposed the following definition of entropy:

S = −K log W

16 Ideal gases are ones that follow Boyle’s Law (PV=nRT) exactly.
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where K is a constant and W (the thermodynamic probability) is cal-
culated as follows:

W =
N !∏

i
Ni!

By considering the translational properties of the gas atoms under a
Boltzmann-Maxwell distribution and the effects of quantised transla-
tional levels (that is, quantum degeneracy), it is possible calculate an
equation of state for the gas and then determine the theoretic entropy.17

This entropy for an ideal gas is calculated to be:

S = K log N ! + NK log
(2πm)

3
2 (kT )

5
2

ph2
+

5
2
NK

where: K is Boltzmann’s constant;
N is the number atoms in the system;
m is the atomic mass;
T is the temperature;
p is the pressure;
and h is Planck’s constant.
Having determined this entropy we are now at liberty to test the

theory against a real monatomic gas, such as neon. We can experi-
mentally infer the absolute entropy of a gas by taking S = 0 at T
= 0 Kelvin (The Third Law of Thermodynamics. See section 4.6.2),
measuring physical properties required by the following expansion of
Clausius’ original formulation:

S =
∫ Tfus

0

CS

T
dT +

ΔHfus

Tfus
+

∫ Tvap

Tfus

CL

T
dT +

ΔHvap

Tvap
+

∫ T

Tvap

CG

T
dT

where: CS is the solid phase heat capacity;
CL is the liquid phase heat capacity;
CG is the gas phase heat capacity;
ΔHfus is the heat of fusion at temperature Tfus;
ΔHvap is the heat of vaporization at temperature Tvap. Using this

method of verification, we find that a discrepancy exists between the
predicted and measured entropies with the former being much larger
than the latter. The theoretic value is, in fact, too great by the
amount K log N !. There appears to be a serious problem with using
the Boltzmann-Maxwell distribution, as it appears not to provide an
accurate entropic account, even for monatomic, idealized gases. What
is missing?
17 see, for example, [84].
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The problem lies in the implicit assumption that all particles are
permanently distinguishable from each other. This is not the case. No
account of atomic degeneracy18 is taken in this approach as considera-
tion is given only to the translational degeneracy (momentum distribu-
tions). The number of different ways that we can take N distinguishable
particles is N !. If each atom were completely distinguishable from all
others, then by Boltzmann’s H-theorem, this would account for the ad-
ditional K log N ! term. Apart from disagreement with empirical results,
the Boltzmann-Maxwell approach has some unpleasant conceptual im-
plications. If all atoms were distinguishable, the addition of 1 mole of
atoms of a gas A at temperature T and pressure P to another mole of
A at the same temperature and pressure would require an increase in
entropy upon mixing. This would mean that entropy is not an extensive
property that is determined solely by the state of the system.19

The removal of the K log N ! term rectifies the situation and expres-
sion for the entropy of an ideal gas becomes:

S = NK log
(2πm)

3
2 (kT )

5
2

ph2
+

5
2
NK

This equation is known as the Sackur-Tetrode equation after Otto
Sackur and Hans Tetrode who contributed to the formulation in 1912
and demonstrated the need for quantisation in classical gas laws.

Application of the Boltzmann-Maxwell distribution is generally in-
appropriate in systems where degeneracy is present. Attempts to apply
the distribution to quantum mechanical particle systems where spin is
important have failed. In boson systems20 we use an ensemble where
the only possible states are those invariant under permutation of the
identity of the particles. This is called the Bose-Einstein distribution
and results in a reduced number of permutations with respect to the
Boltzmann-Maxwell distribution. Similarly, in the case of systems of
particles with antisymmetric eigensolutions (fermions) that are not per-
manently distinguished from each other the Fermi-Dirac distribution is
employed. The distribution is as the Bose-Einstein distribution but a
sign change is employed for odd permutations.

At this point we can now allude back to Jaynes’ maximum en-
tropy approach discussed in Section 4.4.1. With the application of the

18 Degeneracy refers to the number of distinct probability distributions for a system
which all have the same energy level.

19 This is reviewed in detail in our consideration of Gibbs’ Paradox (Section 4.6.3).
20 Systems composed of entities with whole number spin and with eigensolutions

symmetric in character.



4.5 Information and Statistical Mechanics 115

Boltzmann-Maxwell distribution to the calculation of the entropy of an
ideal gas, we made no assumptions concerning symmetries present in
the system about which we had no knowledge.

I have previously noted that high entropy denotes high information.
It is important to be very precise about what is meant by this as it may
seem somewhat paradoxical to insist that the more random a system
is, the more information it can contain. Throughout this work I have
been focussing on information capacity, the amount of information that
can be distinguished in practice by an IGUS. In the consideration of
symmetry and information capacity of physical systems we must be
very specific about that of which we speak.

Consider the following process of the phase transitions under heat-
ing of a solid crystal of material X to liquid then gaseous states observed
by an IGUS Y. The process goes from a low entropic state to a high
entropic state. The information that may be passed from the X to Y ac-
cording to the schema described in Fig. 3.6 depends fundamentally on
the ability of Y to distinguish in practice different states of the system
composed of X. That is, the greater the ability of Y to distinguish differ-
ent states of X, the larger the subset of the total states distinguishable
in principle and hence the more information imparted. Now, consider
that Y, much in the manner of an unaided human, was unable to dis-
tinguish microstates (that is at the atomic level) of X. The observable
properties of the crystalline X would appear uniformly distributed at
the macrolevel. After melting to a liquid, there may still appear to be
little to distinguish the still apparently uniform property distribution,
though the actual melting phase-transition point will provide an asym-
metry. On subsequent heating, macrodistinguishable features such as
Bernard cells appear representing an increase in asymmetries. When
X has become a gas, the macrodistributions are again predominantly
uniform.

Now consider the case where Y is capable of perceiving properties at
the atomic energy level. In this case when X is in its crystalline form, Y
will not be able to distinguish one atom from the others because of their
being bound in a regular repeating structure. Barring major lattice
flaws, translational symmetry is high. In the liquid form, the crystalline
symmetry is broken and there are many sets of translational energy
states that Y can distinguish from each other. In the gaseous state
the energy sets are more numerous so the number of ways the system
of X atoms can be in the states is greater. Therefore the information
capacity is greater. If Y is capable of distinguishing microproperties,
the information that the system of X can convey is proportional to the
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number of microstates. So is entropy contingent on the facility of an
IGUS to distinguish states?

The entropy to which we refer in Statistical Mechanics is Case Max-
imum Asymmetry. That is, it is the number of states that can be dis-
tinguished in principle or, at least the number of the states that the
microentities themselves can distinguish.21 In this sense, it is entropy
with respect to the object itself. If we assign proportionality to the rela-
tionship between information and entropy, then we will need to specify
the conditions under which the entropy is defined. Entropy then would
become entropy-with-respect-to something. This, however, seems un-
satisfactory. Although entropy is an extrinsic property, we should still
consider it to be a property of the system independent of the nature
of an IGUS. We can get this quality if we assign general entropy to
be, as stated above for Statistical Mechanical entropy, case maximal
asymmetry where the total number of complexions is that which can
be distinguished by the components themselves.

This will be discussed in Section 4.6.1 where we will see that en-
tropies depend largely on the context in which they are to be used.

4.5.2 Demonic Information

It is clear in the previous example that the Y that could distinguish
microstates was akin to a Maxwellian Demon. We are currently in a po-
sition to re-visit the Brillouin-Szilard interpretation of the relationship
between information and entropy. In the construction of the Demon
thought experiment, the Demon is an IGUS which is capable of distin-
guishing velocities of molecules, or, more precisely, capable of making
a binary distinction of whether a particular molecule is greater or less
than a particular velocity, say V . We have already seen in Section 4.2.2
that a memory mechanism internal to the IGUS is crucial to store the
distinctions. Here the Demon needs at least a binary-state memory to
register a single molecule’s velocity (greater or less than V ). On allow-
ing or denying the passage of the molecule the Demon expends kT ln 2
of energy.22 Before the next molecule can be assessed for sorting, the
internal binary memory of the Demon must be reset. According to Lan-
dauer [49] and later Bennett [5], the transformation of any logical com-
putational memory state to an erased one is a many-to-one mapping
which has no unique inverse; it is logically irreversibility. In symmetry
21 One might argue that there may be other features that are distinguishable such

as quantum differences. If this is case then the problem domain has not been
correctly posed.

22 About 3x10−21 Joules.
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terms the internal state of the Demon prior to measurement, that of
ignorance, is a highly symmetric one. Depending on how one represents
this internal state, this symmetry may manifest as uniform probability
distribution across a number of possible states, or as a binary string of a
number of zeros. In the measurement of a molecule in this binary state
system, the number of internal states of the Demon doubles from the
symmetric 1 to the less symmetric 2. Symmetry breaking has occurred
and information has been gathered.

But what of degrees of perceptiveness? In our model of the De-
mon/IGUS we have allowed (see Fig. 2.3) for the possibility of vari-
ous degrees of passive filtering, filtering which governed the degree to
which the IGUS was capable of distinguishing in practice the totality
of what was distinguishable in principle according to the physics of
the situation. What would be the effect of a Demon that was capable
of distinguishing molecular energies at a granularity finer than that of
just greater than V or less than V ? Surely the information transferred
from the gas system to the Demon would be greater than that with a
Demon with the mere ability of distinguishing binary states.

Consider the binary state Demon. The total entropy increase for the
Demon on sorting N molecules would be N.k. ln 2. If the Demon were
capable of distinguishing M different states of the energy of a molecule
then the total entropy would be N.k. ln M . If the Demon were capable
of distinguishing every molecular complexion , then the total entropy
would be N.k. ln Ω where Ω is the total number of distinguishable
states. As the degree of perception becomes more acute and the number
of distinguishable states increases, it is clear that the entropy increase
of the Demon also grows directly due to measurement. This is due to
the amount of internal asymmetry required to store the state of the
examined molecule.

But do we get any extra work for this extra entropy? As will we
see from considerations of Gibbs Paradox in Section 4.6.3, increased
acuity does yield increased work. But for now I wish to note that if a
Demon were capable of distinguishing case maximal asymmetry, that
is of distinguishing Ω states (taking in to account the symmetry of
individual molecules as noted above) then the entropy of resetting the
memory of the Demon, that of collapsing internal asymmetries to just
one, would equal the total entropy of the gas relative to the absolute
zero as defined by the Sackur-Tetrode equation.
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4.6 Information and Physical Thermodynamics

4.6.1 Symmetry and Physical Entropy

Thermodynamic entropy is a slippery concept, one whose meaning de-
pends very much on what you are talking about. In the field of chem-
istry, there exist many forms of entropy: entropy of mixing, entropy of
reaction, entropy of melting and so forth. Here we will examine some
examples of these entropies and consider the role symmetry plays in
their nature.

While atoms have one internal degree of freedom – electronic –
molecules have many degrees of freedom – electronic, rotational and
vibrational – which each contribute to total energy, entropy and to
other macroscopic thermodynamic properties. If a physical system has
a high information carrying capacity, that is the system has such a
symmetry structure as to have many internal states capable of be-
ing distinguished, then we would expect physical entropies higher than
energetically comparable systems with more symmetry. Organic chem-
istry affords many examples of just such physical systems in the form
of isomers.

Fig. 4.14. N-Pentane

Physical properties of chemicals are obviously determined in part
by the geometry of their constituent molecules. The cohesive strength
of molecules comes from van der Waals forces. This internal strength
governs such properties as density, boiling and melting points etc. Long
chain molecules pack together more solidly than their branched or ball-
like isomers. This leads to chain-like molecules such as n-pentane hav-
ing higher bulk densities (0.6262 g/ml) than a branched isomer like
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isopentane (2-methylbutane) (0.6201 g/ml), which in turn is denser
than the tetrahedral neopentane (2-2-dimethylpropane) (0.6135 g/ml)
which packs loosely due to the interstices.

Fig. 4.15. Isopentane

These isomers also have boiling points which decrease in value: n-
pentane 309.22 K, isopentane 301.00 K and neopentane 282.65 K. The
melting points, however, behave in a different manner. The melting
point of n-pentane is 143.43K, and isopentane melts at 113.25K however
neopentane breaks the trend and melts at relatively warm 256.6K, 114
degrees warmer than its linear isomer. What can explain this anomaly?

The answer is symmetry. As energy is put into a solid-state system
approaching its melting point, the molecules manifest increased kinetic
energy. We must consider what sorts of motion the molecules are capa-
ble of as the packed solid state undergoes melting. The various freedoms
of kinetic energy that are possibly adopted are translational motion, ro-
tational motion and conformational motion.23 On melting, neopentane
molecules gain only one additional degree of freedom of motion, that
of translation. This is because tetrahedral/spherical molecules such as
neopentane are capable of rotational motion even in the solid state
and are highly rigid so that they are incapable of much conformational
motion regardless of the state. The different symmetries are distinguish-
able by the molecules themselves, manifesting as differences in possible
kinetic phase spaces.

23 That is, internal motion of the atoms in the molecule.
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Fig. 4.16. Neopentane

Chemists and Physicists classify molecules according to their sym-
metry and assign them a symmetry number, σ. A molecule with high
symmetry number such as methane or benzene (σ12) has a reduced en-
tropy associated with melting. This decrease is of the order of Rln(σ)
relative to the asymmetrical analogue molecule. Since the enthalpy of
melting is related to the entropy of melting and the temperature of
melting by the equation Tmelt = ΔHmelt/ΔSmelt, a change in symme-
try that reduces ΔSmelt without affecting ΔHmelt will cause Tmelt to
increase. That is to say that a symmetric molecule will have a higher
melting point than an asymmetric isomer, because it has a lower en-
tropy in the melt. Examining the ΔSmelt values for the pentane iso-
mers, we see this is borne out. N-pentane has an entropy change of
58.6 joule/K on melting, 45.2 joule/K for isopentane and 12.6 joule/K
for neopentane. Here we see physical manifestation of the inverse rela-
tionship between symmetry and entropy.

4.6.2 Symmetry and the Third Law

We have seen that entropy is a relative concept with changes in en-
tropy being of primary interest. In Section 2.2.1 we briefly mentioned
Nernst’s theorem or the third law of thermodynamics, which sets the
absolute value of entropy. The theorem states that as the temperature
diminishes indefinitely, the entropy of a chemically homogenous body of
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finite density approaches indefinitely near to the value zero. That is, as
temperature approaches absolute zero for a chemical homogenous body,
entropy approaches zero. For our analysis of symmetry, information and
physical entropy, the important term here is “chemically homogenous
body”. Planck’s formulation of the third law states, the entropy of a
perfect crystal at absolute zero is equal to zero. To see why this is im-
portant let us turn back the problem of M. Van Der Hooft’s diamonds.
Let us assume that the two diamonds are structurally perfect and ask
the following question: If we took both the Hofmann and the Bloit dia-
monds and were somehow able to cool them to absolute zero would we
be able to say that Bloit’s pure C12 diamond would have the same zero
entropy as Hofmann’s mixed isotope diamond? The answer depends
on whether the asymmetry induced by isotopic distinguishability is at
issue for the system itself. Fredrick Wall notes,

“A solid solution that is nearly perfect but still has a pos-
itive entropy, even at absolute zero, is a crystalline mixture of
isotopes. Under most circumstances, the chemical reactivities of
isotopes can be regarded as equivalent, and hence two or more
isotopes, in either elemental or compound form, will tend to
be randomly distributed among the sites available. Taking cog-
nizance of the existence of the isotopes will then require one
to assign a positive entropy to the system. Practically speak-
ing, however, one can disregard the entropy of mixing of the
isotopes provided the entropies so calculated are used only in
connection with the reactions in which no separation of iso-
topes occurs. Since separation of isotopes is difficult to attain,
especially through chemical reactions, one can in practice forget
about the existence of isotopes without introducing appreciable
error in thermodynamic calculations. For processes that do give
rise to separations, however, full cognizance must be taken of
the entropy changes attending to isotopic mixing”[84].

Structural asymmetry similarly can induce non-zero entropies at abso-
lute zero. As Wall notes, “In super-cooled liquids or glasses at absolute
zero one can expect entropies greater than zero. Since a liquid does
not possess the order that is characteristic of a crystal, it will have a
positive entropy, which can be regarded as ‘frozen-in’ when the liquid
is subjected to super-cooling”[84].



122 4 Information and Symmetry

4.6.3 Information and The Gibbs Paradox

The model that we have developed in this thesis with regards to dis-
tinguishability and information can aid us in understanding a clas-
sic ‘paradox’ in thermodynamics, namely the Gibbs’ Paradox (after J
Willard Gibbs). As a corollary to Maxwell’s Demon, the experiment in-
volves the measuring the entropy produced on the mixing of two gases.
Consider a gas with particles labelled A and B that is divided into
equal volumes V and molecular numbers N separated by a partition.
The partition is removed and the molecules are allowed to mix. If we
calculate the change in entropy for the A particles we find:

ΔSA = kN ln(2V ) − kN ln(V ) = kN ln 2

A similar calculation for the B particles determines ΔSB = kN ln 2
also. The total ΔS = 2kN ln 2. However, if we consider entropy to
be an extensive variable we note the entropy of 2N molecules in 2V
volume is twice that of N molecules in V volume. So the net entropy
changeΔS = 0. Given our considerations of symmetry and distinguisha-
bility we can readily say that this apparent ‘paradox’ is due to the mu-
tual distinguishability or otherwise of the molecules. If the molecules
can be distinguished then the first ΔS value holds. If all the molecules
are indistinguishable then there is no change in entropy. To clarify this,
imagine what is required to reverse the mixing process. If the molecules
are identical then no energy is required the return the system to the
initial state; the partition simply needs to be reinserted. If, on the
other hand, the molecules were distinguishable, then a Maxwellian-like
Demon would be required to separate (or sort) the molecules.

Jaynes considered the following thought experiment based on Gibbs
Paradox to illustrate the fact that more information and high degrees of
discrimination can generate more thermodynamic work. Jaynes imag-
ines two types of Argon gas A1 and A2. With our present capacities
we are not able to distinguish between A1 and A2 in practice. Experi-
ments where we mix equal molar quantities of A1 and A224 lead us to
the conclusion that there is no change in entropy on mixing.

But A1 and A2 are distinguishable in principle, and we can imagine
that in the not too distant future we arrive at a technological point
where we are able to detect a difference between the two types of Argon,
namely that A2 is soluble in Whifnium (a rare superkalic element we

24 Note that given we can’t distinguish between A1 and A2 it is only by the greatest
of improbabilities that we would have in our possession pure quantities of A1 and
A2.
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are told) whereas A1 is not. The A1-A2 mixing experiment is repeated
with n1 = fn moles of A1 in the volume V1 and n2 = (1− f)n moles of
A2 in the volume V2. On mixing the entropy increase ΔS is given by:

ΔS = −nR(1 − f) log(1 − f)

Jaynes notes:

“But if this increase is more than just a figment of our imag-
inations, it ought to have observable consequences, such as a
change in the useful work that we can extract from the pro-
cess . . . The amount of useful work that we can extract from
any system depends – obviously and necessarily – on how much
‘subjective’ information we have about its microstate, because
that tells us which interactions will extract energy and which
will not; this is not a paradox, but a platitude” [42].

Jaynes proceeds to describe an experiment to realise this work. Starting
with the original construct of Gibbs Paradox, let gas particles on one
side of the partition be A1 and the other be A2. When the partition is
removed, the molecules of A2 will diffuse through the piston until the
partial pressure of A2 is the same on both sides. The piston is allowed
to move under isothermal expansion in the direction of increasing V1.
The work done by the expansion of A1 is

W1 =

V∫
V1

P1dV = n1RT log(
V

V1
)

or
W1 = TΔS1.

Imagine now that the corresponding superkalic element Whafnium is
discovered which is permeable to A1 and not A2. We can repeat the
above experiment with a Whafnium piston and extract W2 = TΔS2.
Combining these two processes into a dual-piston apparatus we can
extract a total W = TΔS which corresponds to the same drop in free
energy that is predicted by thermodynamics. It is clear that the capac-
ity to distinguish between microstates, to have a new degree of freedom,
has enabled us to extract work based on changes in entropy. Were it
to be the case that there exists, at a finer level, another in principle
distinction, an additional degree of freedom, and if this become a dis-
tinction in practice, we could expect that even further work could be
extracted. Imagine, for example, there are two types are Argon A2,
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say A2a and A2b which are distinguished by A2b being soluble in yet
another superkalic element, Whoofnium. A similar apparatus might be
constructed and further work extracted. And so on ad infinitum. Here
we can close our discussions of the previous section on Maxwellian
Demons and note that we have proof that increased acuity does have
rewards.

The increasing degrees of freedom that accompany distinguishability
in practice advancing closer to distinguishability in principle does not of
course affect the veracity of the laws of thermodynamics. The inclusion
or otherwise of groups of symmetries in a thermodynamic construct
merely serves to define the scope of the problem. Jaynes notes:

“[E]ven after the discovery of the superkalic elements, we still
have the option not to use them and stick with the old macrovari-
ables {X1 . . . Xn} of the 20th Century. Then we may still ascribe
zero entropy of mixing to the interdiffusion of A1 and A2, and
we shall predict correctly, just as it was done in the 20th Cen-
tury, all the thermodynamic measurements that we can make on
Argon without using the new technology. Both before and after
discovery of the superkalic elements, the rules of thermodynam-
ics are valid and correctly describe the measurements that it is
possible to make by manipulating the macrovariables within the
set that we have chosen to use”[42].

That is to repeat that thermodynamic entropy is a slippery concept;
one of those whose meaning depends very much on what you are talking
about.

Through the consideration of The Gibbs Paradox we have noted
the objective relationship between information and work. The greater
the ability to distinguish between states, that is the more information
an IGUS has, the greater the work that can be extracted. In the next
section we consider the relationship between Algorithmic Information
Theory and symmetry.

4.7 Quantum Information

With almost a century of study into quantum physics and with the
recent advancements in the field of quantum computation, it would be
remiss not to examine, if only briefly, the nature of quantum infor-
mation and how it sits with a group theoretic account of information.
This is even more true given the special characteristics of quantum
phenomena.
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4.7.1 Quantum Information and Distinguishability

The ability to distinguish systems which differ in quantum mechani-
cal properties represents a capacity that is entropically significant. We
noted in Section 4.5.1 that the application of the Boltzmann-Maxwell
distribution is generally inappropriate in systems where degeneracy is
present and that attempts to apply the distribution to quantum me-
chanical particle systems where spin is important have failed. Distin-
guishabililty, we have seen, is inextricably tied to measurement . How-
ever, it is at the very heart of quantum systems that the accuracy of
direct measurement of atomic and sub-atomic phenomena is bound by
Heisenberg’s uncertainty principle which states that if you determine
the momentum of a particle with an uncertain of Δp you cannot de-
termine the position with accuracy greater than Δx = h/Δp. What
we can measure though is frequency distributions from experiments on
quantum systems and determine probabilities from them.

S H M

P

x

Fig. 4.17. One Hole Experiment

To illustrate the special considerations when examining information
in quantum systems we will look at some examples. To establish ter-
minology and introduce some basic quantum mechanical concepts, we
will first consider a simple one hole experiment where a particle is fired
through a hole to a detector screen. The particle, say an electron, is
fired from a source S through a hole H in a tungsten screen an observed
to strike somewhere on a measurement screen M . Repeated measure-
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ments eventually build up a frequency distribution P with respect to
the position x that the electron hits the screen.

In quantum mechanics the probability that a particle will leave a
source S and strike the screen at some point x is given by the absolute
square of a complex number called the probability amplitude. Here it is
the amplitude that the electron leaving S will strike at x. Using Dirac
notation will denote this probability amplitude as:

〈Electron strikes at x|Electron leaves S〉
or more simply:

〈x|S〉
For particles traveling on segmented routes the probability amplitude
of the whole route is given by the product of the amplitudes of each
segment. So we have:

〈x|S〉 = 〈x|H〉〈H|S〉

S H1
M

P1

x

H2

x

P12
P2

Fig. 4.18. Two Hole Experiment

Now consider a similar experiment using two holes H1 and H2 as
shown in Fig. 4.18. Here we have two possible paths that could be used
to hit the screen at x, through H1 or H2. The probability amplitudes
of the two routes is given by:

〈x|H1〉〈H1|S〉
and,

〈x|H2〉〈H2|S〉.
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Note that with two holes the measured frequency is not simply the
sum of the two individual distributions P1 and P2. It is in fact a more
complicated distribution due interference caused by the wave aspect of
electron: peaks superposed with peaks reinforce, peaks superposed with
troughs cancel. This is roughly shown as P12 in Fig. 4.18 and is, as we
have just previously defined, |〈x|S〉|2 In determining this probability
distribution we must take into account the possibility that the electron
may have travelled through either of the two holes. In quantum me-
chanics, when there is more than one way of an event occurring, then
the overall probablity amplitude of the event is the sum of the individ-
ual amplitudes of each of the possible ways that the event may have
occured. Thus in the two hole experiment the probability amplitude is
given by:

〈x|S〉 = 〈x|H1〉〈H1|S〉 + 〈x|H2〉〈H2|S〉
and thus

P12 = |〈x|H1〉〈H1|S〉 + 〈x|H2〉〈H2|S〉|2
As each probability amplitude is a complex number, distribution we

see in P12 is generated.

Detector 1

Detector 2
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D1

D2

X

Fig. 4.19. Carbon-Alpha Particle Scattering – θ
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Now let us consider a more complicated example. Imagine an exper-
iment in which there is a low-energy collision between alpha particles
and carbon atoms causing each to deflect. This scattering experiment
is illustrated in Fig. 4.19

α particles are released from a source Sα and carbon atoms are
released from source SC . The α particles and carbon interact at X
and scattering occurs in various directions. A detector D1 is placed to
register particles that have been scattered at an angle of θ. Another
detector, D2, is placed directly opposite to D1 at angle of (π−θ) to the
α particle beam. The detectors are capable of detecting both carbon
and α particles. Finally, the collisions are assumed to be of low enough
energy as to prevent the exchange of nucleons.

The amplitude of a detection of an α particle at D1 is given by:

〈D1|X〉a〈x|Sα〉
where a is the scattering amplitude. There is another possibility of
registering a detection at D1. If the carbon atom is deflected (π − θ)
from its course to hit D1. This possibility is shown in Fig. 4.20

Detector 1

Detector 2
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D2

X

Fig. 4.20. Carbon-Alpha Particle Scattering – π − θ

The amplitude of a detection of an α particle at D1 is given by:

〈D1|X〉b〈x|SC 〉
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where b is the scattering amplitude.
Now if we conduct the experiment such that a detection event in D1

is defined as receiving either an α particle or a carbon atom without
checking which, then we can calculate the probability of detecting some
particle in D1 as:

|〈D1|X〉a〈x|Sα〉|2 + |〈D1|X〉b〈x|SC 〉|2

Detector 1

Detector 2

D1

D2

X

Fig. 4.21. α Particle-αParticle Scattering – θ

This is true whether we check if the α particle or the carbon atom
caused the event. This distribution is supported by experimental re-
sults. Now, if we conduct the experiment using 2 α particles instead of
a carbon atom and an alpha particle, then the result we obtain from
experimental analysis is quite different. For a θ of 90 degrees, for exam-
ple, the probability we obtain experimentally is twice that predicted by
the above equation. The reason for this is distinguishability. We can-
not tell if the α particle we receive at D1 came from the left source or
the right source. There are two possible ways in which the α particle
arrived at D1 scattering θ (Fig. 4.21) or scattering π − θ (Fig. 4.22)

Because the two particles are identical, they are indistinguishable in
principle – which was not true of the α particle – carbon atom system.
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To calculate the probability of the observation of an α particle at D1

we must square the sum of the individual possible amplitudes.
Thus the probability of detecting an α particle at D1 is:

|〈D1|X〉a〈x|Sα1〉 + 〈D1|X〉a〈x|Sα2〉|2

It is an important consequence of quantum mechanics that when an
event can happen in two indistinguishable ways that there is always an
interference of probability amplitudes. To further illustrate this notion
of quantum distinguishability consider the same experiment using elec-
trons rather than alpha particles. Electrons have spin 1/2 thus they can
be in one of two states: spin up or spin down. When two electrons of
opposite spin interact there exists the possibility of them both reversing
their spins.25

Detector 1

Detector 2

D1

D2

X

Fig. 4.22. αParticle-αParticle Scattering – π − θ

As spin offers a possibility for distinguishing between electrons, the
total probablity equation has two components: the indistinguishable
amplitudes (where the spins are the same at the sources and also at the
detectors), and the distinguishable case where the spins differ. There is
a difference however when calculating amplitudes of the indistinguish-

25 Both must flip spins to conserve angular momentum.
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able cases. When protons or electrons interfere the new amplitude inter-
feres with the old with opposite phase, so that the net indistinguishable
amplitude is given by

|〈D1|X〉a〈X|Se1〉 − 〈D1|X〉a〈X|Se2〉|2
where we designate the two sources to be Se1 and Se2. This is true for
the scattering of all fermi particles.

For the complete system of all probabilities for our electron scat-
tering experiment, we can generate Table 4.2.26 The final line in the
table gives the total probability of the scattering experiment taking
into account interference caused by indistinguishability. As previously

Table 4.2. Probabilities for electron-electron scattering

Fraction
of Cases

Spin
at Se1

Spin
at Se2

Spin
at D1

Spin
at D2

Probability

1/4 up up up up |〈D1|X〉a〈X |Se1〉−
〈D1|X〉a〈X |Se2〉|2

1/4 down down down down |〈D1|X〉a〈X |Se1〉−
〈D1|X〉a〈X |Se2〉|2

1/8 up down up down |〈D1|X〉a〈X |Se1〉|2
1/8 up down down up |〈D1|X〉a〈X |Se2〉|2
1/8 down up up down |〈D1|X〉a〈X |Se2〉|2
1/8 down up down up |〈D1|X〉a〈X |Se1〉|2
Probability = 1

2
|〈D1|X〉a〈X|Se1〉| − |〈D1|X〉a〈X|Se2〉|2+

1
2
|〈D1|X〉a〈X|Se1〉|2 + 1

2
|〈D1|X〉a〈X|Se2〉|2

mentioned, the uncertainty principle places a limit on what we can
measure in a quantum system and thus what sort of information can
be transferred. If, for instance, a photon is prepared in one of two de-
fined nonorthogonal polarized states s1 or s2 and then passed through
a beam splitter 27 with orientation θ, the probability that a photon in
state s1 will pass through the splitter is |s1 ·θ|2 and the probability that
a photon in state s2 will pass through the splitter is |s2 · θ|2. However
since s1 and s2 are nonorthogonal there is no orientation of the crys-
tal which will permit the passage of just one and not the other. The

26 This is based on [34] which offers a more thorough treatment of the matter in
this section.

27 A beam splitter is a crystal with polarized orientation which will allow the passage
of a photon or deflect the photon at an angle dependent on the polarization of
the photon relative to the orientation of the crystal.



132 4 Information and Symmetry

most we could do to extract information regarding the two states is to
perform repeated experiments and build up probability distributions.
It is these distributions that would have to be used by any IGUS in
apprehending information concerning the photon states.

4.8 Symmetries and Algorithmic Information Theory

4.8.1 Symmetry and Kolmogorov Complexity

In its simplest form, the Kolmogorov-Solomonoff-Chaitin theory of in-
formation states that the information contained in a numeric string is
the length in bits of the smallest program that can be run on a Tur-
ing machine to generate that string. Strings, under my group theoretic
model, may be shown to contain symmetries. That is, they may contain
relationships between their substrings which might be encapsulated in
formulae. For example, a string with a repeating substring, such as
12345123451234512345. . . , contains a translation symmetry that may
be exploited in a program used to generate the full string. The use of al-
gorithms that are descriptively shorter than their output is an example
of the embodiment of symmetries that act on a string.

4.8.2 Memory and Measurement

Brillouin [10] and Szilard [79] demonstrated the importance of measure-
ment and memory in information systems. Measurement is the ability
to apprehend distinguishable states of an entity. The interpretation of
distinguishability with regards to numeric strings is perhaps not imme-
diately obvious. We have noted that distinguishability is the extrinsic
quality of an object which permits one to say that it is one specific en-
tity and not another or that the object is in one particular state and not
another. In Definition 1 we saw that an IGUS can distinguish between
entities P and Q just in case P and Q do not possess all properties in
common. Distinguishing between two finite strings is a straightforward
matter: we simply compare the digits in each corresponding place in
the strings to see if they match. It is assumed that this is an error-free
process. But how do we compare infinite strings? We can do this com-
putationally by comparing the strings to a finite number of significant
figures. Modern computation uses a finite number, 1, 2, 4, 8, 16 . . . , of
bytes to store numbers of increasing size or accuracy. This represents
string distinguishability in practice. All properties of the string are not
available to the IGUS. In theoretical work we can compare two infinite
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strings and determine that they are not the same. This corresponds to
being distinguishable in principle. Here the two strings possess prop-
erties that differ in some respect.

Memory in an IGUS is a capacity necessary for storing state in-
formation about an informatic object. Landauer [49] and Bennett [5]
have shown that memory (specifically the erasure thereof) has thermo-
dynamic consequences in computational systems. To understand the
role memory plays in Algorithmic Information Theory we return to
Turing machines. Both Turing and Chaitin considered the use of a
scratch-tape. Turing acknowledges the need for “rough notes to ‘assist
the memory’. It will only be these rough notes which will be liable
to erasure” [81]. While Chaitin [21], in defining his Turing machine,
proposes the inclusion of a work tape to store intermediate results.
Data on Chaitin’s work tape can be read, written and erased. Turing
and Chaitin both pass over the inclusion of the work tapes as a mat-
ter of practical implementation, of no real theoretical import. However
we have already seen that the role that memory plays is crucial. In a
system where a Turing machine is generating a string, the work tape
contains state representations of the asymmetries associated with that
string. This will be demonstrated in the next section.

4.8.3 Groups and Algorithmic Information Theory

Kolmogorov’s definition of the absolute amount of information in a
sequence is the length of the shortest instruction, of all the possible
instructions that generates that sequence. The complexity K (informa-
tion) of a sequence y generated by a program p is given by:

Kϕ(y) =
{

minϕ(p)=y l(p)
∞, If there is no p such that ϕ(p) = y

l is a length operator.
Chaitin offers an almost identical definition, where a Turing machine

M running a program P generating an output string S

Lm(S) =
{

minM(P )=S(Length of P)
∞, If there is no such P

Both accounts maintain that the information contained in a string
is the shortest partially recursive function capable of generating that
string or the string itself. If the asymmetry account of information is
correct we should be able to show how symmetries are exploited in
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some partially recursive function to compress information in certain
sequences.

In order to see how Group Theory and symmetries fit in this
paradigm we shall use a Turing machine M , not to generate a string
but to examine actions of functions on a preexisting string. Consider a
four tape Turing machine consisting of:

• An input tape, I.
• A program tape, P .
• A work tape, W .
• An output tape, O.

The input tape is read-only and contains a representation of the
string under examination. Reading this tape constitutes the measure-
ment step previously mentioned. The nth position of the input tape is
designated In. The program tape is also read-only and contains the al-
gorithm to be tested. The work tape can be read, written to and erased.
It is the memory storage for the system. The nth position of the input
tape is designated Wn. The output tape is write-only and contains the
results of the algorithm acting on the input string. The nth position of
the input tape is designated On.

Consider a program tape that contains an appropriate representa-
tion 28 of the following set of instructions:

Step 1 Read I1

Step 2 Write this value to W1

Step 3 Read I4

Step 4 Write this value to W2

Step 5 Read W1

Step 6 Write this value 3 consecutive times on O starting
at the first blank On.

Step 7 Read W2

Step 8 Write this value 3 consecutive times on O starting
at the first blank On.

Step 9 If halting condition29 is met, halt.
Step 10 Goto step 5.

28 By appropriate I mean an encoding of the execution process capable of being
executed as discussed in Section 2.2.2.

29 The halting condition is some predefine criterion for exiting the algorithm. If we
are generating a finite length sequence, the condition may be a count of write
squares on the input tape. The definition of this step will control whether the
machine is a partial recursive function or not. If the criterion is defined in such
a way that the machine does not halt for all inputs then it is a partial recursive
function.
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Lets examine how this system works on an obviously non-random
string encoded on the input tape. Lets use the following sequence:

777000777000777000 . . .

On completion of execution we find that comparing the input and
output tape shows that they are indistinguishable. The operation of
M is a automorphism acting on an ordered set (a sequence of decimal
digits) which left the set invariant. Thus it is a symmetry. The algorithm
is obviously contrived to be a symmetry for the above input string, but
it also is a symmetry when acting on any of the other 99 possible
decimal sequences of the form xxxyyyxxxyyyxxxyyy . . . If M were
to act on sequences of any other form, the input and output tapes
would be distinguishable and hence the action would be an asymmetry.
Correspondingly if the program, in steps 6 and 8, wrote the digit out
4 times, the action would not be a symmetry for our input string but
would be for inputs of the form xxxxyyyyxxxxyyyyxxxxyyyy . . .

We note that in steps 2 and 4, the storing of the unique digits onto
the working tape. This is an example of storing asymmetry state details
in memory. For another example of a symmetry Turing transformation
acting on non-random sequences consider Champernowne’s constant
in base 10 without the decimal place. The Turing program would look
like:

Step 1 Read I1

Step 2 Write this value to W1

Step 3 Read W1

Step 4 Add 1 to value read in step 3 write to next blank
On

Step 5 Write also to W1

Step 6 If not halt, goto step 3

Now we consider random strings. If had input tape encoded a purely
random sequence and we could not find an algorithm to generate that
sequence, then the only Turing machine symmetry that we could gen-
erate would be a program as follows:

Step 1 Read I1

Step 2 Write this value to O1

Step 3 Read next In

Step 4 Write this value to On

Step 5 If not the end of input, goto step 3
Step 6 Halt
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Here there is no use of memory as no real work is being done. True,
the input sequence is indistinguishable from the output sequence but
it is just trivial copying. This corresponds to an identity mapping au-
tomorphism.

For generating sequences using Turing machines in the Kolmogorov-
Chaitin sense one dispenses with the input tape and “hardcodes” the
selection procedures into the program.

We are now in a position to demonstrate that the four-tape Turing
machines described above can constitute a group under Group Theory.

Lemma 1. Let G be a set of automorphisms and if each gi ∈ G is
generated by a Turing machine Mi, consisting of an input tape I, an
output tape O, a working tape W and a program tape P , then the set
G together with a sequential application multiplier forms a group.

Proof. G will be shown to be a group if:

1. The multiplication of elements gi ∈ G is associative.
2. There exists an identity element, e.
3. Each element in G has an inverse.

The multiplication operator is sequential application of the automor-
phisms and hence g1(g2g3) = (g1g2)g3.

There exists an identity element e, namely the program above that
directly copies the input tape to the output tape, such that ge = g = eg

It has been shown by Bennett[5] that any Turing machine can be log-
ically reversible provide it records all intermediate steps on the working
tape. Thus:

∀g ∈ G ∃g−1 : gg−1 = e.

Thus the set G constitutes a group. ��
We see that the automorphisms are associative since, as with the

application of geometric transforms such as rotations, the multiplica-
tion operator is serial application. The group, in most cases, will not be
abelian as the order of application will be crucial and thus AB �= BA.
The identity transform e is the simple transcription of the input tape
to the output tape and in the case of truely random input sequences,
G should be a singleton set with e as its only member.

Bennett [5] notes that with the non-erasure of the working tape a
Turing machine is logically reversible, but he has shown that by ap-
plying 3 stage process, where each stage is reversible, one can generate
the output tape, erase the working tape and have a reconstructed copy
of the input tape. Kolmogorov himself acknowledges that the theory
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provides no indication of how one is to find the symmetries to arrive
at the shortest program. (Just as Jaynes provides guidance other than
using “common-sense” on the selection of germane transformations.)
It, like the quest for regularities in science as a whole, is a process
of inspection, experimentation and discovery. In this manner the Kol-
mogorov account of information is, in a non-proscriptive way, another
manifestation of the action of group transforms on sets to find sym-
metries (or asymmetries). Here they are represented in an algorithmic
fashion. Many trivial functions may be constructed to be symmetries
or asymmetries for a given sequence, however functions should only be
considered for inclusion if they are relevent to the problem at hand.

4.8.4 Symmetry and Randomness

Algorithmic Information Theory and a group theoretic account of in-
formation are linked by notions of redundancy and compression. As
Chaitin noted (see Section 2.2.3), random strings are “patternless”.
There are no redundancies in the sequence that may be exploited in
the generation of the string and so the length of a program whichgen-
erates a finite random string must be approximately the length of the
string itself. A string is random just in case it cannot be algorithmically
compressed. In informatic terms, this means the total information in
the string is the string itself. There are no symmetries that may be
exploited to arrive at a reduced information account. A random string
is one that is maximally asymmetric. It is another example of Case
Maximum Asymmetry as specified in Section 4.2.2.

However there exist strings which appears random yet can be gener-
ated from relatively simple algorithms. Consider for example the num-
ber π. If it is to be generated by a simple algorithm and thus be highly
symmetrical, how is it that the infinite sequence of digits that consti-
tutes the transcendental ‘appears’ random and has not yet been proved
to fail any current tests of randomness? To consider this under our cur-
rent schema, we must ask where does the symmetry lie? The number
π is defined as the ratio of a circle’s circumference to its diameter. Let
us define C as the set of all circles and � the set of real numbers. For
any circle c ∈ C nominate Sc ∈ � to be the circumference of c and
rc ∈ � to be the radius of c. We define a function f(x, y) = (x, 2πx).
By inspection we can see that ∀c ∈ C, f(rc, Sc) = (rc, Sc). That is, the
transform f we have defined is a symmetry for all (rc, Sc).30 The func-
tion f is a non-trivial function since the substitution of any other real
30 We could create an infinite number of such symmetries by including trivial func-

tions. However, these should not be included in the information calculation as,
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number for π in fwould not produce a symmetry. So the symmetric
‘work’ is being done by the number π; it is in fact a symmetry in this
system.

We can manipulate f to return to the original definition of π so
that for any Sc and rc we can determine the numeric representation
of π. The notions of circumference and radius are geometric ones so
to determine π algebraically, special formulæ are employed. These are
iterative methods that converge to π after many iterations, some con-
verging more rapidly than others. These include a special case of the
Wallis formula

π = 2
∞∏

n=1

[
(2n)2

(2n − 1)(2n + 1)

]
= 2

2 × 2
1 × 3

4 × 4
3 × 5

6 × 6
5 × 7

· · ·

and Euler’s convergence improvement transformation:

π = 2
∞∑

n=0

n!
(2n + 1)!!

= 2
(

1 +
1
3

+
1 · 2
3 · 5 +

1 · 2 · 3
3 · 5 · 7 + · · ·

)
.

Until recently, the most popular algorithms used to generate π have
been variations of Machin’s 1709 formula:

π

4
= 4 tan−1

(
1
5

)
− tan−1

(
1

239

)

However these are slow to converge. For example, Euler’s equation only
converges at one bit per term. More recent innovations, such the Brent-
Salamin Algorithm [69], provide methods to produce π that converge
quadratically or faster.

The infinite digital sequence that these algorithms produce has, in
decimal notation, the following first 600 digits:

from Burnside’s Lemma, they are non-germane transformations (like time of day
or colour of the circle in Jaynes’ straw and circle example in Section 4.4.1).
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3.

141592653589793238462643383279502884197169399375105820974944

592307816406286208998628034825342117067982148086513282306647

093844609550582231725359408128481117450284102701938521105559

644622948954930381964428810975665933446128475648233786783165

271201909145648566923460348610454326648213393607260249141273

724587006606315588174881520920962829254091715364367892590360

011330530548820466521384146951941511609433057270365759591953

092186117381932611793105118548074462379962749567351885752724

891227938183011949129833673362440656643086021394946395224737

190702179860943702770539217176293176752384674818467669405132

It is widely held that the number π not only has the property of
decimal normality, but is absolutely normal, that is, normal in all base
systems. However, normality for π has never been proven in any base
system. Normality, we recall (Section 2.2.3), is a necessary (but not
sufficient) test for randomness. Under Löf-Martin’s definition of ran-
domness, a string must pass all tests of randomness. Proving the π is
normal would be an important step down the path of proving the string
is indeed random.

In 1996 a radically different approach for generating π was developed
by Bailey, Borwein and Plouffe [2]. The elegant equation is a digit-
extraction algorithm31 which is used to generate identities for numbers
such as π, π2, loge(2). A special variant of the algorithm offers π critical
identity in the hexadecimal system as follows:

π =
∞∑
i=0

1
16i

(
4

8i + 1
− 2

8i + 4
− 1

8i + 5
− 1

8i + 6

)

This type of formula can also be used to generate π in base 2 but not in
decimal.32 The importance of this approach lies in the fact the one can

31 A digit-extraction algorithm is one which computes specific digits of a given
number without requiring the calculation of previous digits.

32 Borwein, Borwein & Galway have shown that π has no Machin-type BBP arct-
angent formula when the base ? 2 and they conjecture that “to the best of our
knowledge, when there is no Machin-type BBP formula for a constant then no
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compute the d-th digit on the binary π string without calculating any
other digits. This strongly implies that the digits of π are independent
and this could provide the starting point for proving, first, that π is
normal and, second, that it is random. One approach toward achieving
these proofs has been to translate the problem of the normality of π
into a problem of chaotic dynamics (Bailey and Crandell, 2001). This
approach examines sequences generated by the BBP formula against
the conjecture that they are uniformly distributed between 0 and 1. If
the conjecture is proven, π can be shown to be normal.

The algorithms presented in this section for the generation of the
sequence of digits of π characterize different ways of representing the
symmetry embodied in π, that is the relationship between the diameter
and the circumference of a circle. This symmetry is only relevant to the
sets of S and r as previous defined. As previously noted, any real value
other than π active in π’s stead in the transform f when f acts on (Sc,
rc) does not produce a symmetry. Recalling our discussion of groups in
Section 4.2, this is analogous to a Type I rotation33 of 120 degrees of
a tetrahedron producing a symmetry, whereas Type I rotation of 180
degrees of a tetrahedron fails to produce a symmetry. As a corollary,
the symmetry is only defined as a symmetry with respect to the set
on which it acts. A Type I rotation of 120 degrees of a tetrahedron
producing a symmetry, whereas Type I rotation of 120 degrees acting
on a cube (see Fig. 4.4) fails to produce a symmetry. To restate: a
symmetry is only defined with respect to a system. If π is employed in
a function acting on two sets of real numbers other than S and r, there
is no guarantee that a symmetry would result.

Thus it is important to realise that one shouldn’t confound a sym-
metry and the set on which it acts. The number π is a symmetry and
the set on which it acts is the combined pair of Sc and rc. As symmetry,
π can be represented as an infinite string or it can be represented in a
variety of symbolically more compressed ways which describe the rela-
tionship between any Sc and rc (where c ∈ C). If we wish to consider
the action π as a symmetry in terms of compression, we must look at
the reduction in number of possible translations from the r ⇒ S map-
ping to the specific rc ⇒ Sc mapping. That is which real numbers in S

BBP formula of any form is known for that constant” [9]. You cannot convert a
specified binary integer in the binary π string to decimal without knowing all the
preceding bits. This rules the method invalid as a digit-extraction algorithm. It
doesn’t mean, however, that other, non-BBP, digit-extraction algorithms aren’t
possible in base-10.

33 A Type I rotation is a rotation around an axis passing through the centroid and
a vertex. See Fig. 4.1.
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correspond to those in r when S is to be the circumference of the circle
whose radius is r.

However it is π represented as a string with automorphisms act-
ing on it that is most intriguing. If the sequence passes all tests of
randomness and yet is capable of being generated by relatively simple
algorithms then what are we to say about about its informatic content?
Is it random or not? Work is still being conducted on the sequence and
others like e and perhaps a rethink of the notions of compressibility
and randomness will be warranted if these sequences are found to be
random. However it is still clear that in terms of the transfer of infor-
mation these sequences are capable of being substantially compressed
implying a great deal of redundancy.

In this section we have seen that where strings are compressible,
where there are redundancies in strings, symmetries exist that may be
exploited by algorithms to produce more condensed informatic descrip-
tors. Conversely we have seen that a string is random just in case it can-
not be algorithmically compressed; there are no symmetries that may
be used to arrived at a reduced information account. A random string
is one that is maximally asymmetric. It is the concepts of compress-
ibility, randomness and symmetry that wed the Asymmetry Principle
of Information to Algorithmic Information Theory.

4.8.5 A Final Signpost

In this chapter we have examined the relationship between symmetry
and information and determined it to be such that asymmetry under-
lies the concept of information. That is, information is a way of ab-
stractly expressing asymmetries. We have seen that information can be
quantified using the algebra of symmetry – Group Theory – and that
this quantitative method has direct application to real-world problems.
Jaynes’ Principle of Maximum Entropy has been demonstrated to be a
technique of incorporating transformations that account for asymme-
tries in a model or theory to arrive at a truly assumption-free prior and,
though grounded in a subjectivist tradition, still has great relevance as
a corollary to the Asymmetry Principle of Information.

The concept of distinguishability, and by extension, asymmetry, has
been shown to lie at the core of theories of entropy. By taking symme-
tries into account in the examination of monatomic, idealized gases, for
example, observed entropies can be reconciled with Boltzmann-Maxwell
theoretic entropies, leading to the Sackur-Tetrode equation. The rela-
tionship between entropy and information, as documented in Section
2.2.1, completes the triangle. Analysis of Maxwellian Demons and of
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the Gibbs’ Paradox has revealed the mechanisms by which informatic
processes such as sorting have the capacity to perform thermodynamic
work. We have also seen that by considering physical entropy exam-
ples we find material manifestation of the inverse relationship between
symmetry and entropy.

Finally, we have just seen in Algorithmic Information Theory the
notions of incompressibility, redundancy and randomness tie asymme-
try to algorithmic information.



5

Conclusion

The three-word postulate of this book is: “Information is Asymme-
try”. It is under this banner that I have attempted to unify the three
approaches: the Thermodynamic/Statistical Mechanics Account, Com-
munication Theory and Algorithmic Information Theory. This assertion
is, of course, an over-simplification and there are, as always, caveats. I
do not maintain that ‘asymmetry’ and ‘information’ have an identity
relationship. The relationship that they do have needs to be framed in
the context of the IGUS-Information Object Schema and must be fil-
tered by the concept of indistinguishability. Nonetheless it is the broad
concepts of symmetry and asymmetry that underlie the current theories
of information.

There are several aspects of my method that are original and oth-
ers that extend previous work. The development of distinguishability
leading to my production of the IGUS/Information Object model il-
lustration is novel. The formulation of information in terms of group
orbits using Burnside’s Lemma:

I = log(
∑
g∈G

|Sg|) − log(|G|)

is, to the best of my knowledge, a new account. I believe it to be a
powerful tool with potential for application in a vast number of fields.

Some of the work presented here is an extension of E.T. Jaynes’
work on prior probabilities [38], [39]) and his Maximum Entropy Prin-
ciple [40],[37]). I have avoided the epistemological position that Jaynes
took as I believe that information is an objective quantity capable of
relational representation unde the IGUS-object formulation. As an ob-
jective quantity, Information is capable of producing work as shown by
our consideration of Maxwell’s Demon and Gibbs’ paradox. Distinction
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can be made (as in sorting) to create differentials that may be used to
generate work. Measurement and memory (at least one binary register)
are necessary to produce work and that in systems that are employed
cyclically, the memory must be reset after each cycle. It is the resetting
of the memory that prevents the violation of the Second Law.

The Information/Asymmetry principle, when applied to the field of
Algorithmic Information Theory, has been shown to account for the
notions of compressibility, randomness and complexity with respect
to algorithms and strings. This is fundamentally due to symmetries
creating redundancies in these objects.

The potential for symmetry considerations in Information Theory
is vast and this work has only just scratched the surface. The need
for further work is great and opportunities plentiful. The approach
adopted here is an instance of Representation Theory: a study of the
ways that a given group may act on vector spaces. Group Theory and
Representation Theory are rich and powerful branches of mathematics.
Algebraic structures abound and many problems related to information
theory may be posed: Are all group representations of informatic ob-
jects necessarily topological groups? What special role do Lie algebras
play with relation to informatic objects? Is there a special application
for fields? We have concentrated predominately on finite groups be-
cause of tractability and Burnside’s lemma is applicable only to finite
groups. Can we handle infinite groups under the current formulation,
and if so how?

Beyond mathematics there are applications in metaphysics, particu-
larly causation. It has been proposed that a causal process involves the
transfer of a non-zero value conserved quantity [31] and that a token of
a particular quantity of information fills this role [25]. I will not debate
the hypothesis that “causation is the transfer of information” here but
will briefly examine, without bringing in too much additional research
at this late juncture, what a group-theoretic approach to information
could bring to the table if the hypothesis is assumed to be true.

Stewart and Golubitsky [78] consider causal processes in which sym-
metry is broken. For example, consider a perfectly spherical droplet of
milk falling into a still bowl of the same liquid. Initially the droplet
has an O(3) symmetry group. On impact, three dimensional symmetry
is lost and a thin-walled ring rises. At this point we have a subgroup,
O(2). of symmetries. As the ring of milk rises it curves outward until
the continuous circle is broken and regular spikes are thrown up giving
the appearance of a crown. The O(2) symmetry is broken in that ro-
tational symmetry of all angles are no longer possible, just a subset of
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those defined by the angular distance between the spikes in the crown.
The group has gone from O(2) to a dihedral subgroup D24. Steward and
Golubitsky maintain that the physical outcome of the causal process
is just one of many symmetrically related possible outcomes. The milk
crown may not have appeared at exactly the same rotation as it did. If
the experiment were repeated we would get a D24 crown but it might
be rotated somewhat. All the possible manifestations of the D24 crown
are related to each other in a way defined by the O(2) group. In this
way symmetry breaking in the causal process is a form of resolution of
the possible into the actual.

Another example is the deformation of a perfect sphere under an
axial load (think of a ping-pong ball buckling under uniform radial
force). A circular dent develops around the force axis breaking the
O(3) symmetry but retaining the circular O(2) symmetry.

To capture this, Stewart and Golubitsky extend Pierre Curie’s Sym-
metry Principle1 to give the following definition:

“Extended Curie Principle: physically realizable states of a
symmetric system come in bunches, related to each other by
symmetry. To put it another way, a symmetric cause produces
one from a symmetrically related set of effects. The Extended
Curie Principle isn’t quite as simple or elegant as the original
version, but it has the advantage of being correct” [78].

Joe Rosen offers an ostensibly diametrically opposed position. In the
formulation of his Symmetry Principle he states, “The symmetry group
of the cause is a subgroup of the symmetry group of the effect. Or less
precisely: The effect is at least as symmetric as the cause” [68].

The justification for this is that there are many states that could
effectively constitute a cause in terms of a law-like account of a causal
system. These are known as equivalent causes. Similarly there are many
states that constitute an effect: equivalent effects. The causation state-
ment is then ‘Equivalent causes lead to equivalent effects’.

“Since cause-equivalence implies effect-equivalence, it follows
that every element in the symmetry group of cause must nec-
essarily also be an element of the symmetry group of the ef-
fect. There might, of course, be symmetry transformations of
the effect that are not also symmetry transformations of the
cause”[68].

1 Curie’s principle states that if certain causes produce certain effects, then the
symmetries of the causes reappear in the effects produced [28].
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I will not examine the veracity of Rosen’s claim but more work needs to
be done to see a) if these views need to be reconciled, and if so, b) how
they can be reconciled. A causal process which is symmetry breaking is
one that creates more distinguishing attributes, one that becomes more
complex, one that is more informed. A process that creates symmetry in
the world – and these exist, at least locally, for someone is making ping-
pong balls – reduces the information carrying capacity of the physical
set on which it operates.

My feeling is that there are both types of local causal process: infor-
mation generating and information destroying. But, in accordance with
the decree of the Second Law of Thermodynamics, the universe on the
whole is becoming more informed. From the initial “perfect symmetry”
at the origin of the universe to the formation of matter to complex bi-
ological structures, symmetry breaking has proceeded. Potentiality is
resolved into actuality and with Group Theory we have a means to
account for it. If causation is the transfer of information or, more accu-
rately, the transfer, augmentation and attenuation of symmetry groups,
then the benefits could be great indeed; for what we stand to gain is
an algebra of causation.



A

Burnside’s Lemma

Burnside’s Lemma (also known as the Cauchy-Frobenius Lemma1)
states:

Lemma 2. Whenever G is a finite group acting on a finite set S, the
number of orbits, i.e. distinct configurations of S relative to G, is

O =
1
|G|

∑
g∈G

|Sg|

where |G| is the order of the group G and |Sg| is the order of the subset
of points s ∈ g fixed by g, that is g(s) = s.

Proof. The elements of S are partitioned into their orbits under G. We
desire the total number of orbits. If a finite set S is partitioned into
orbits, then

1 The Lemma was indeed first stated, in an initial form, by Cauchy [17] and later
by Frobenius [35]. It was rediscovered by Burnside in 1900 [13]. It was eventually
extended by Pólya [64] for application in combinatorial counting problems.
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Number of Orbits =
∑
s∈S

1
(Orbit size of s)∑

g∈G

|Sg| =
∑
s∈S

(Number of g which fix s)

=
∑
s∈S

|G|
(Orbit size of s)

= |G|
∑
s∈S

1
(Orbit size of s)

1
|G|

∑
g∈G

|Sg| =
∑
s∈S

1
(Orbit size of s)

= Number of Orbits = O ��



B

Worked Examples

B.1 Clocks

B.1.1 Case 1

Fig. B.1. High Symmetry Clock

Assumptions:

1. The clock has only one face (that is it is not reversible);
a) The minute hand is always pointing at a minute divisor (angular

separation of 6 degrees);
b) The minute hand moves between the minute divisors infinitely

quickly. Thus the minute hand can be in one of 60 possible
states;

c) The hour hand is always pointing at an hour divisor (angular
separation of 30 degrees);

d) The hour hand moves between the divisors infinitely quickly on
the change of the hour. The hour hand can be in one of 12
possible states.
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e) Both hands are identical

In total there are 720 formal states, s ∈ S. We will use the following
notation hh:mm (e.g. 5:14) in the following notes to refer to the position
of the hour hand (hh) and the minute hand(mm).

Apart from the identity transform there are two classes of symmetry:
reflection (due to the hands being identical) and rotation (due to lack
of reference on the face). Let ϕx denote reflection about an axis rotated
x degrees around the centre. Let ry denote rotation of y degrees around
centre.

We have then, ∑
g∈G

|Sg| = 2448

Using Burnside’s lemma, the number of orbits is:

1
|G|

∑
g∈G

|Sg| =
2448
24

= 102

B.1.2 Case 2

Fig. B.2. Medium Symmetry Clock

Assumptions:

1. The clock has only one face (that is it is not reversible);
2. The minute hand is always pointing at a minute divisor (angular

separation of 6 degrees);
3. The minute hand moves between the minute divisors infinitely

quickly. Thus the minute hand can be in one of 60 possible states;
4. The hour hand is always pointing at an hour divisor (angular sep-

aration of 30 degrees);
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Possible
transforms

g ∈ G

Number of
elements of
s ∈ S fixed

by g

Notes

e 720 All possible s are fixed by the identity transform
ϕ0 12 Such as 0:0, 1:55, 2:50, 3:45, 4:40, 5:35, 6:30, 7:25,

8:20, 9:15, 10:10, 11:05
ϕ15 12 Such as 0:05, 11:10, 10: 15, 9:20, 8:25, 7:30, 6:35,

5:40, 4:45, 3:50, 2:55, 1:00
ϕ30 12 Similar to ϕ0

ϕ45 12 Similar to ϕ15

ϕ60 12 Similar to ϕ0

ϕ75 12 Similar to ϕ15

ϕ90 12 Similar to ϕ0

ϕ105 12 Similar to ϕ15

ϕ120 12 Similar to ϕ0

ϕ135 12 Similar to ϕ15

ϕ150 12 Similar to ϕ0

ϕ165 12 Similar to ϕ15

r30 144 Can’t distinguish between 1:10 and 2:15 for ex-
ample or 4:50 and 5:55

r60 144 Similar to r30

r90 144 Similar to r30

r120 144 Similar to r30

r150 144 Similar to r30

r180 144 Similar to r30

r210 144 Similar to r30

r240 144 Similar to r30

r270 144 Similar to r30

r300 144 Similar to r30

r330 144 Similar to r30

Total 2448

5. The hour hand moves between the divisors infinitely quickly on the
change of the hour. The hour hand can be in one of 12 possible
states.

6. The hour hand is shorter than the minute hand.

In total there are 720 formal states, s ∈ S. Again we will use hh:mm
notation.

With the removal of the identical hands constraint, the reflective
symmetry has been broken. Thus beyond the identity transform there
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is just the rotational symmetry. Let ry denote rotation of y degrees
around the centre.

Possible
transforms

g ∈ G

Number of
elements of
s ∈ S fixed

by g

Notes

e 720 All possible s are fixed by the identity transform
r30 144 Can’t distinguish between 1:10 and 2:15 for ex-

ample or 4:50 and 5:55
r60 144 Similar to r30

r90 144 Similar to r30

r120 144 Similar to r30

r150 144 Similar to r30

r180 144 Similar to r30

r210 144 Similar to r30

r240 144 Similar to r30

r270 144 Similar to r30

r300 144 Similar to r30

r330 144 Similar to r30

Total 2304

We have then, ∑
g∈G

|Sg| = 2304

Using Burnside’s lemma, the number of orbits is:

1
|G|

∑
g∈G

|Sg| =
2304
12

= 192

B.1.3 Case 3

Assumptions:

1. The clock has only one face (that is it is not reversible);
2. The minute hand is always pointing at a minute divisor (angular

separation of 6 degrees);
3. The minute hand moves between the minute divisors infinitely

quickly. Thus the minute hand can be in one of 60 possible states;
4. The hour hand is always pointing at an hour divisor (angular sep-

aration of 30 degrees);
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12

Fig. B.3. Low Symmetry Clock

5. The hour hand moves between the divisors infinitely quickly on the
change of the hour. The hour hand can be in one of 12 possible
states.

6. The hour hand is shorter than the minute hand.
7. The clock is marked with a symbol (e.g. with a ‘12’ in the above

illustration) which must always be at the top.

In total there are 720 formal states. Again we will use hh:mm nota-
tion.

The inclusion of the ‘12’ prevents the clock being rotated so now 1:10
and 2:15, for example, can be distinguished. Thus the only remaining
transform is the identity transform that fixes all 720 states. So trivially,∑

g∈G

|Sg| = 720,

and, the number of orbits is:

1
|G|

∑
g∈G

|Sg| =
720
1

= 720.

B.2 Binary String

Consider a 10 place binary string, eg: 0110100111. A ten-place string
can be used to represent integers 0 to 1023. Now consider positional
translation transforms modulo 10. It may useful to think of as rotational
cycling through the 10 bits or as an infinite repetition of the string, for
example:

01001110110100111011010011101101001110110100111011010011101....
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Let G = {e, r1, r2, r3, r4, r5, r6, r7, r8, r9} where e is the identity
transform, rx is translation x places modulo 10. Let the group have
a sequential “multiplier”, M , and let S be the set of all possible 10 bit
binary strings.

Transform
g ∈ G

Number of
elements of
s ∈ S fixed

by g

Notes

e 1024 All possible s are fixed by the identity transform
r1 2 Just 0000000000 and 1111111111 fixed
r2 4 Just 0000000000, 1111111111, 0101010101 and

1010101010 are fixed
r3 2 As with r1

r4 4 As with r2

r5 32 25 strings are fixed
r6 4 As with r2

r7 2 As with r1

r8 4 As with r2

r9 2 As with r1

Total 1080

We have then, ∑
g∈G

|Sg| = 1080

Using Burnside’s lemma, the number of orbits is:

1
|G|

∑
g∈G

|Sg| =
1080
10

= 108
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