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IAFI= IF[ty(X)+V(X)] -F[C(x)] I <e
whenever 1 is of class C('), or continuous and of class C( except pos-
sibly at a finite number of x-values, and

1*(x) I < a, I(x) I < , ......,Ij")() I<6 (a xSb). (10)
Further F has a derivative at any value x = t which is approached with
order 2n; that is, if ^ does not change sign and vanishes except on an
interval of length less than h including x = }, and if furthermore

I A(x) I < a, I~' ( I < a, ......, I<' (x) I <( , (11)
then the limit

F' [(P (), = lim
0=o

exists. Further the absolute value of the quotient AF/8h will be bounded
for all choices of a > 0, h > 0, ' (x) satisfying the relations (11) and
such that the values (x, y, y',..., y)) on the arc y = -p+ G,a_ x 6 b,
are all in the neighborhood R.

1 Volterra, Lemons sur les equations intEgraes, ch. 1, art. 5: or his Leoons sur es fonc-
tions des lignes, ch. 1, art. 2.

Volterra, arts. VII and 2, 3, respectively, of the chapters referred to above.
' See Jordan, Cows d'Analyse, vol. 1, p. 247.
4 See Fischer, A generalization of Volterra's derivative of a function of a curve, Amer.

J. Mat., 35, 385 (1913).
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There is probably no chapter of mathematics more worthy of
attention, or more neglected at present, than the theory of vector
functions. In the case of the linear vector function, it is true, a good
deal has been found out in one way or another, and this by some of
the very greatest of mathematicians. First investigated in detail by
Hamilton' and again appearing as Cayley's matrix of the third order,'
the linear vector function is essentially the same as the Grassmann open
product' and the Gibbs dyadic.' In Germany the nonion or three-
square matrix bears the name Tensor,5 a word used by others in a differ-
ent sense. On the other hand, we may make a dean sweep of all these

177



MATHEMATICS: F. L. HITCHCOCK

operational concepts and, if it pleases us, define a vector function as a
set of three algebraic forms X,Y,Z, homogeneous polynomials in three
variables x,y,z, with nothing left of the original idea of a vector as a di-
rected quantity except a definite order in writing the three forms
X,Y,Z. The occurrence of the same mathematical entity under such a
variety of names and algorisms is perhaps the natural consequence of
its fundamental character.
From whatever point of view we prefer to start, it is well known

in the linear case that a convenient classification of types may be
made with reference to the axes of the function; an axis of a linear vec-
tor function t of a vector p being a direction of p such that qp and p
are parallel, or bp = gp, where g is a mere number. In the language
of algebraic forms this is the same as saying that an axis is a point, in
homogeneous coordinates, satisfying the equations

yZ -zY = O, zX- xZ = O, xY -yX = 0. (1)
In the longer work of which the present paper is an outline, a similar

basis is taken for a classification of types of quadratic vector functions
Fp of the vector p. Related mathematical problems which, by reason
of their close kinship, suggest the study of vectors of higher degree
are numerous. For example, if x,y,z, and X,Y,Z, denote points re-

spectively in a first plane and in a transformed plane, the vector Fp
obviously enough defines a geometric point-transformation. The
worker who limits himself, however, to such an interpretation in homo-
geneous co6rdinates will lose sight of the conveniences of vector addi-
tion. We may with equal ease let Fp define a transformation in space
of three dimensions with the origin invariant.
As another application, the properties of Fp, by reason of their

invariant character with reference to change of coordinate axes, are

intimately connected with the whole theory of a set of three algebraic
forms. That the study of the linear vector function led to the dis-
covery of various invariants belonging to one function or to a system of
several such functions, is well known.6

Again, the student of certain types of differential equation will find
that the notion of a vector function comes readily into his work. The
very appearance of equations like

dx =dy dz 2- - , (2)X Y Z
where X, Y, and Z are algebraic forms as already explained; or like

(yZ - zY)dx + (zX - xZ)dy + (xY - yX)dz = 0; (3)
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suggests translation into some sort of vectorial language. With special
reference to the quadratic case, there exist several long and interesting,
although not very recent, French monographs, notably one by Dar-
boux,7 in which he takes advantage of the close relation of equations
(2) and (3) with each other and with the equations, in non-homo-
geneous forms,

dyYdy Y, z= 1 Z = O. (4)
dx X

It follows that a vector function offers a ready tool for inquiring into
the nature of the functions defined by any equation of the type
dy/dx = R, where R is a rational function of x and y. Darboux does
not get much beyond an examination of a great variety of cases where
(3) possesses one or more algebraic integrals, or else can be brought
to depend on a Riccati equation. He does show very clearly the
wide range of even this problem, indicating the very general character
of the function which would satisfy (4) when X and Y are quadratics
set down at random. For instance, the most general hypergeometric
function satisfies a second order equation which is a resolvent for a
very special case of (4) in the Riccati form. Darboux uses no vector
algebra as such, but he brings out and uses a fact which, translated
into vector language, is as follows: The addition to a vector Fp of another
vector of the form pt, where t is a scalar variable, does not alter the
axes of Fp. This is geometrically evident. Analytically expressed it
means that if X,Y,Z, satisfy (1) when a certain set of values of x,y,z
is given the equations will still be satisfied by

X + tx, Y + ty, Z + tz,
written instead of X,Y,Z. This can be verified directly. In fact the
variable t disappears automatically from (3). Roughly speaking, the
connection of ideas consists in this, that if (3) has been completely
solved (which requires a certain number of particular solutions), then
both (2) and (4) can be solved by quadratures. In the quadratic case,
the scalar t takes the form Sap, that is, it depends upon a single con-
stant vector 5. Now if, for a value of 5, we can find a solution of (4),
or (what is much the same here), of the partial differential equation

x bu+ yOU+ z O0, (5)ax by bz
this solution will be a particular solution of (3). Stated another way,
all the different functions defined by (5) when all possible values are
given to the vector 5 can be found by quadratures when (3) has been
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solved completely; these functions constitute a family or set possessing
some group properties,-just how far they form a group has not been in-
vestigated, so far as I am aware.
The axes of the vector function correspond to the singular points

of (3), if we interpret in homogeneous coordinates. It is well known
that these are n2 + n + 1 in number,8 when n is the degree of the
forms X,Y,Z. If n = 2 we thus have seven axes, in general.
The necessity for careful examination and classification of types of

quadratic vector functions appears from the fact that many differ-
ential equations like (4) do not yield vectors of the most general kind,
having all seven axes distinct, but possess multiple or coincident axes of
all orders up to seven. To take a simple example, if X = xy, Y = yz
and Z = zx, the vectors i, j, and k are all double axes, and i+++ a

single axis, that is, in homogeneous coordinates, the points (1,0,0,),
(0,1,0,), and (0,0,1), are higher singularities of (3), and (1,1,1,) is an
ordinary singularity. By a proper choice of t, that is of 5, we can add
a term pSsp which shall make Z = 0, and have the equation (4) as

dy _ y (1 - x)
dx x (y - x)'

the value of t being - x, and that of a being i. The variables x,y,z them-
selves correspond to particular solutions of (3). Four particular solu-
tions are needed, however, to complete the solution by qpadratures;
hence the rest of the functions of the family cannot be found by mere
quadratures.

Again, a quadratic vector may have more than seven axes, but if
so it has an infinite number, and equation (3) may be divided through
by a scalar variable. Take for example one of the simplest types
furnished by the technique of vector algebra, viz., VpVap, or in Gibbs'
notation p X (a X p). This vector may be expanded as

pSap - ap2,
which differs from the vector a(x2 + y2 + Z2) only by the term in p,
having no effect on the axes. Hence any element of the minimal cone
p2 = 0 is an axis, and a is the only other axis.
The most general quadratic vector function may be very elegantly

defined by a sum of triads, that is, a triadic. A single triad afry mul-
tiplied (dot product) by and into p is the same as the Hamiltonian
vector #ISapSyp. Evidently f is an axis. Also, any vector at right
angles either to a or to y is an axis. As a less special example, the
vector Vqpspt, where q,s,t are constant quaternions, has important
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geometrical applications; Hamilton showed that its properties include
those of the most general cubic cone.9 This vector cannot be so simply
expressed in any other algorism. It has, in general, all its axes
distinct; two of them are on the minimal cone p2 = 0, and are easily
found. The others are determined by an equation of the fifth degree.

In developing a classification of various types, I have made com-
paratively slight use of the technical processes of vector algebra, and
have based my subclasses on configurations of the axes rather than
on the possibility of simple algebraic expression. It appears that,
in the most general type, a normal form of vector is easily obtained in terms
of the axes themselves. If there are double axes, but no higher axis,
there is still no particular difficulty, although the normal forms are less
simple. It is shown that there is only one kind of triple axis; obviously,
a quadratic vector can have at most two of these. A normal form of
vector with two triple axes is developed, and has a number of prop-
erties in the way of symmetry. An axis of the fourth order, on the
other hand, may be of two kinds. Quadratic vectors with an axis of
higher order than the third fall naturally into two families, accord-
ing as the axis is of the first, or of the second kind. An axis of the
first kind is shown to correspond to a double point common to all three
of the cubic curves defined by equations (1), if we interpret in homo-
geneous coordinates. The second kind is shown to depend on a par-
tial differential equation satisfied by the vector Fp. This differential
condition depends in part on the results of my former papers, where
the properties of a differential vector have been developed.10

Tests for the existence of axes of any order up to, and including
the fourth have been given for vectors of any degree whatever. In
the quadratic case, normal forms are given including all possible types.
The existence of over one hundred special types makes it very de-

sirable to have, on the formal side, the means ofcovering in one compar-
atively simple algebraic expression as many of these types as possible,-
and in such a way that their properties are easily correlated. The
largest number of advantages for this purpose appears to be possessed
by the form Vp9Op, where 4 and 0 denote linear vector functions. In
Gibbs' notation, this is the same as determining our vector function
by the cross product of two dyadics. Besides compactness of expres-
sion, this vector product offers the following advantages:

1. It is easily interpreted as the most general birational quadratic
point transformation in a plane.

2. It differs from a quadratic vector of the most general type only by
a term in p, which, as already shown, does not alter the axes.
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3. The properties of a quadratic vector are made to depend on those
of linear vectors.

4. For the study of differential equations it is especially suited since
it is a vector product. Equation (3) takes the factored form
SpOpVpdp = 0, or in Gibbs' notation (Op X Op). (p X dp) = 0.

5. Three of its axes are zeros, that is, for three values of p the vector
vanishes in all its components.

It appears, therefore, as a problem of importance to determine how
far the various possible configurations of axes, in special types of quad-
ratic vectors, are included among possible configurations of the axes of
VipOp. This is the same as the problem of determining with what
exceptions a quadratic vector of whatever type or sub-type can be
written in the form

VkpOp + pS5p.
At this point of the investigation a certain difficulty presented itself.
It is easy so to chose 5 that the resulting quadratic vector shall have
three zeros, distinct or multiple; if, then, the vector does not fall into a
uniplanar, i.e., a binomial form, it is possible to factor vectorially into
VopOp. But a binomial quadratic vector cannot be so factored, hence
the necessity of examining a very large number of choices of a to find
those which do not yield a binomial. For most types where such a vec-
tor 5 can be found, I have contented myself with giving the value of the
resulting 5, since its accuracy, when found, is easy to verify. In the
cases where no value of 5 can be found, I have, of course, demonstrated
the impossibility.
The final result is, on the whole, highly satisfactory. It appears

that the form V4pOp + pS6p includes al types of quadratic vectors except
two simple sub-types both belonging to the family hazing a higher axis of
the second kind. Normal forms for these two very exceptional types
have been given.
The existence of these exceptions is due to the fact that, as the form

of the vector grows more and more restricted, the possible choices of 5,
which avoid the binomial, decrease in number. Thus in general there
are thirty-five possible values of 5; but if the determinant of the com-
ponents of a set of three axes vanishes, the number falls to thirty-one;
and the occurrence of multiple axes also reduces the number. The
wonder appears to be, not that there are exceptions, but that there are
so few, and these so simple.

Various properties of quadratic vector functions appear by virtue of
the normal forms which characterize their types. Some of these bring
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out properties of the differential equations (3) and (4). For example,
it is very easy to determine, when the type of the vector is known,
whether these equations can be solved by quadratures. Again, it ap-
pears that the most general equation (4) never corresponds to the
vector function of the most general type, but to a slightly restricted type.
A consideration of the details of these normal forms would carry the
discussion beyond the limits of the present paper.
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ON THE RADIAL VELOCITIES OF FIVE NEBULAE IN THE
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In the course of observations on the velocities of approach and re-
cession (radial velocities) of southern nebulae whose spectra contain
bright lines, made with spectrographs attached to the 37-inch reflecting
telescope of the D. O. Mills Expedition from the Lick Observatory,
at Cerro San Cristobal, Santiago, Chile, we have found that the follow-
ing five nebulae have high radial velocities. The results depend upon
the observed positions of the Ho hydrogen line and the nebulium lines
at 5007A and 4959A, in each case. The velocities are not corrected for
the solar motion.

Radial velodcy
Nebula Right ascesion Dedinaion km/sec. Numbvr of ltas

N. G. C. 1644 lh 6.2m -73° 44' +158 3
N. G. C. 1714 4 52.0 -67 06 +301 2
N. G. C. 2111 5 52.6 -69 33 +268 2
N. G. C. 1743 4 54.6 -69 21 +254 1
N. G. C. 2070 5 39.4 -69 09 +276 1
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