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Preface

Piezoelectric or, more generally, electroelastic materials, exhibit electrome-
chanical coupling. They experience mechanical deformations when placed in
an electric field and become electrically polarized under mechanical loads.
These materials have been used to make various electromechanical devices.
Examples include transducers for converting electric energy to mechanical
energy or vice versa, resonators and filters for telecommunication and time-
keeping, and sensors for information collection.

Piezoelectricity has been a steadily growing field for more than a century,
progressed mainly by researchers from applied physics, acoustics, materi-
als science and engineering, and electrical engineering. After World War II,
piezoelectricity research has gradually concentrated in the IEEE Society of
Ultrasonics, Ferroelectrics, and Frequency Control. The two major research
focuses have always been the development of new piezoelectric materials and
devices. All piezoelectric devices for applications in the electronics industry
require two phases of design. One aspect is the device operation principle
and optimal operation which can usually be established from linear analy-
ses; the other is the device operation stability against environmental effects
such as a temperature change or stress, which is usually involved with non-
linearity. Both facets of design usually present complicated electromechanical
problems.

Due to the application of piezoelectric sensors and actuators in civil,
mechanical, and aerospace engineering structures for control purposes, piezo-
electricity has also become a topic for mechanics researchers. Mechanics can
provide effective tools for piezoelectric device and material modeling. For
example, the finite element and boundary element methods for numerical
analysis and the one- and two-dimensional theories of piezoelectric beams,
plates, and shells are effective tools for the design and optimization of piezo-
electric devices. Mechanics theories of composites are useful for predicting
material behaviors.

In spite of the wide and growing applications of piezoelectric devices, books
published on the topic of piezoelectricity are relatively few. Following the
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editor’s previous book, An Introduction to the Theory of Piezoelectricity,
Springer c©2005, this book addresses more advanced topics that require a
collective effort. Each self-contained chapter has been written by a group of
international experts and includes quite a few advanced topics in the theory
of piezoelectricity. Each chapter attempts to present a basic picture of the
subject area addressed.

Piezoelectricity is a broad field and, practically speaking, this volume
can only cover a fraction of the many relatively advanced topics. Following
a brief summary of the three-dimensional theory of linear piezoelectricity,
Chapters 2 through 5 discuss selected topics within the linear theory. The
linear theory of piezoelectricity assumes a reference state free of deformations
and fields. When initial deformations and/or fields are present, the theory for
small incremental fields superimposed on a bias is needed, which is the subject
of Chapter 6. The theory for incremental fields needs to be obtained from the
fully nonlinear theory by linearization about an initial state, and, therefore,
is a subject that is inherently nonlinear. Chapter 7 covers the fully dynamic
effects due to electromagnetic coupling. Chapter 8 addresses nonlocal and
gradient effects of electric field variables.

I would like to take this opportunity to thank all chapter contributors.
My thanks also go to Patricia A. Worster and Ziguang Chen of the College of
Engineering at the University of Nebraska-Lincoln for their editing assistance
on Chapters 1, 7, and 8.

Jiashi Yang
January 2009
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Chapter 1

Basic Equations

Jiashi Yang

1.1 Introduction

This chapter presents a brief summary of the basic theory of linear piezo-
electricity based mainly on the IEEE Standard on Piezoelectricity [1] and the
classical book on piezoelectricity [2] by H. F. Tiersten who also wrote the
theoretical part of [1]. The organization of this chapter is essentially a short-
ened version of Chapter 2 of An Introduction to the Theory of Piezoelectricity
[3]. This chapter uses Cartesian tensor notation, the summation convention
for repeated tensor indices, and the convention that a comma followed by an
index denotes partial differentiation with respect to the coordinate associated
with the index. A superimposed dot represents a time derivative.

1.2 Basic Equations

The equations of linear piezoelectricity can be obtained by linearizing the
nonlinear electroelastic equations [4, 5] under the assumption of infinitesimal
deformation and fields. The equations of motion and the charge equation are

Tji,j + ρ0fi = ρ0üi, Di,i = q, (1.1)

where T is the stress tensor, ρ0 is the reference mass density, f is the body
force per unit mass, u is the displacement vector, D is the electric displace-
ment vector, and q is the body free charge density which is usually zero.
Within the linear theory, the conservation of mass that determines the present

Jiashi Yang
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USA, e-mail: Jyang1@unl.edu

J. Yang (ed.),
© Springer Science + Business Media, LLC 2009

 Special Topics in the Theory of Piezo ectricity, DOI: 10.1007/978-0-387-89498-0_1, el 1



2 Jiashi Yang

mass density ρ takes the following form,

ρ0
∼= ρ(1 + uk,k), (1.2)

which can be treated separately once the displacement has been obtained.
Constitutive relations are given by an electric enthalpy function H,

H(Skl, Ek) =
1
2
cEijklSijSkl − eijkEiSjk − 1

2
εS

ijEiEj (1.3)

through

Tij =
∂H

∂Sij
= cEijklSkl − ekijEk,

Di = − ∂H

∂Ei
= eiklSkl + εS

ikEk, (1.4)

where the strain tensor S and the electric field vector E are related to the
displacement u and the electric potential, φ, by

Sij = (ui,j + uj,i)/2, Ei = −φ,i. (1.5)

cEijkl, eijk, and εS
ij are the elastic, piezoelectric, and dielectric constants.

The superscript E in cEijkl indicates that the independent electric constitu-
tive variable is the electric field E. The superscript S in εS

ij indicates that the
mechanical constitutive variable is the strain tensor S. The material constants
have the following symmetries.

cEijkl = cEjikl = cEklij , ekij = ekji, εS
ij = εS

ji. (1.6)

We also assume that the elastic and dielectric tensors are positive definite
in the following sense.

cEijklSijSkl ≥ 0 for any Sij = Sji, and cEijklSijSkl = 0 ⇒ Sij = 0,

εS
ijEiEj ≥ 0 for any Ei, and εS

ijEiEj = 0 ⇒ Ei = 0. (1.7)

The internal energy density per unit volume can be obtained from H
through a Legendre transform by

U(S,D) = H(S,E(S,D)) + E(S,D) ·D. (1.8)

Constitutive relations in the following form then follow.

T =
∂U

∂S
, E =

∂U

∂D
, (1.9)
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or

Tij = cDijklSkl − hkijDk, Ei = −hiklSkl + βS
ikDk. (1.10)

It can be shown that U is positive definite:

U = H + EiDi

=
1
2
cEijklSijSkl − eijkEiSjk − 1

2
εS
ijEiEj + Ei(eiklSkl + εS

ikEk)

=
1
2
cEijklSijSkl +

1
2
εS

ijEiEj

≥ 0. (1.11)

Similar to Equations (1.4) and (1.10), linear constitutive relations can also
be written as

Sij = sE
ijklTkl + dkijEk, Di = diklTkl + εT

ikEk, (1.12)

and

Sij = sD
ijklTkl + gkijDk, Ei = −giklTkl + βT

ikDk. (1.13)

With successive substitutions from Equations (1.4) and (1.5),
Equation (1.1) can be written as four equations for u and φ

cijkluk,lj + ekijφ,kj + ρfi = ρüi,

eikluk,li − εijφ,ij = q, (1.14)

where we have neglected the superscripts of the material constants and the
subscript of the reference mass density.

Let the region occupied by a piezoelectric body be V and its boundary
surface be S, as shown in Figure 1.1. Let the unit outward normal of S be n.

x2 SD

ST

Su
n

i2

i3

i1

x3

x1

Sφ

Fig. 1.1 A piezoelectric body and partitions of its boundary surface.
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For boundary conditions, we consider the following partitions of S,

Su ∪ ST = Sφ ∪ SD = S, Su ∩ ST = Sφ ∩ SD = 0, (1.15)

where Su is the part of S on which the mechanical displacement is prescribed,
and ST is the part of S where the traction vector is prescribed. Sφ represents
the part of S which is electroded where the electric potential is no more than
a function of time, and SD is the unelectroded part. For mechanical boundary
conditions, we have prescribed displacement ūi

ui = ūi on Su, (1.16)

and prescribed traction t̄j

Tijni = t̄j on ST . (1.17)

Electrically, on the electroded portion of S,

φ = φ̄ on Sφ, (1.18)

where φ̄ does not vary spatially. On the unelectroded part of S, the charge
condition can be written as

Djnj = −σ̄ on SD, (1.19)

where σ̄ is the free charge density per unit surface area. In the above formu-
lation, we assume very thin electrodes, and the mechanical effects, such as
inertia and stiffness, of the electrodes are neglected. On an electrode Sφ, the
total free electric charge Q can be represented by

Q =
∫

Sφ

−niDidS. (1.20)

The electric current flowing out of the electrode is given by

i = −Q̇. (1.21)

Sometimes there are two (or more) electrodes on a body, and the electrodes
are connected to an electric circuit. In this case, circuit equation(s) need to
be considered.

1.3 Principle of Superposition

The linearity of Equation (1.14) allows the superposition of solutions. Sup-
pose the solutions under two different sets of loads {f (1), q(1)} and {f (2), q(2)}
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are {u(1), φ(1)} and {u(2), φ(2)}, respectively. Then, under the combined load
of {f (1)+f (2), q(1)+q(2)}, the solution to Equation (1.14) is {u(1)+u(2), φ(1)+
φ(2)}. This is called the principle of superposition and can be shown as

cijkl(u
(1)
k + u

(2)
k ),lj + ekij(φ(1) + φ(2)),kj + ρ(f (1)

i + f
(2)
i ) − ρ

∂2

∂t2
(u(1)

i + u
(2)
i )

= cijklu
(1)
k,lj + cijklu

(2)
k,lj + ekijφ

(1)
,kj + ekijφ

(2)
,kj + ρf

(1)
i + ρf

(2)
i − ρü

(1)
i − ρü

(2)
i

= (cijklu
(1)
k,lj + ekijφ

(1)
,kj + ρf

(1)
i − ρü

(1)
i ) + (cijklu

(2)
k,lj + ekijφ

(2)
,kj + ρf

(2)
i − ρü

(2)
i )

= 0 + 0
= 0, (1.22)

and

eikl(u
(1)
k + u

(2)
k ),li − εij(φ(1) + φ(2)),ij − (q(1) + q(2))

= eiklu
(1)
k,li + eiklu

(2)
k,li − εijφ

(1)
,ij − εijφ

(2)
,ij − q(1) − q(2)

= (eiklu
(1)
k,li − εijφ

(1)
,ij − q(1)) + (eiklu

(2)
k,li − εijφ

(2)
,ij − q(2))

= 0 + 0
= 0. (1.23)

The principle of superposition can be generalized to include boundary loads.

1.4 Hamilton’s Principle

The equations and boundary conditions of linear piezoelectricity can be der-
ived from a variational principle [2]. Consider

Π(u, φ) =
∫ t1

t0

dt

∫
V

[
1
2
ρu̇iu̇i −H(S,E) + ρfiui − qφ

]
dV

+
∫ t1

t0

dt

∫
ST

t̄iuidS −
∫ t1

t0

dt

∫
SD

σ̄φ dS, (1.24)

where S and E are considered as functions of the displacement and potential
through

Sij =
(ui,j + uj,i)

2
, Ei = −φ,i. (1.25)

u and φ are variationally admissible if they are smooth enough and satisfy

δui|t0 = δui|t1 = 0 in V,

ui = ūi on Su, t0 < t < t1,

φ = φ̄ on Sφ, t0 < t < t1. (1.26)
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The first variation of Π is

δΠ =
∫ t1

t0

dt

∫
V

[
(Tji,j + ρfi − ρüi)δui + (Di,i − q)δφ

]
dV

−
∫ t1

t0

dt

∫
ST

(Tjinj − t̄i)δuidS −
∫ t1

t0

dt

∫
SD

(Dini + σ̄)δφ dS,

(1.27)

where we have denoted

T =
∂H

∂S
, D = −∂H

∂E
. (1.28)

Therefore, the stationary condition of Π is

Tji,j + ρfi = ρüi in V, t0 < t < t1, Di,i = q in V, t0 < t < t1,

Tjinj = t̄i on ST , t0 < t < t1, Dini = −σ̄ on SD, t0 < t < t1.
(1.29)

Hamilton’s principle can be stated as: among all the admissible {u, φ}, the
one that also satisfies Equation (1.29) makes Π stationary.

1.5 Poynting’s Theorem and Energy Integral

We begin with the rate of change of the total internal energy density, given as

U̇ =
∂U

∂Sij
Ṡij +

∂U

∂Di
Ḋi

= TijṠij + EiḊi = Tij u̇i,j − φ,iḊi

= (Tij u̇i),j − Tij,j u̇i − (φḊi),i + φḊi,i

= (Tij u̇i),j − (ρüi − ρfi)u̇i − (φḊi),i + φq̇

= (Tjiu̇j),i − ∂

∂t

(1
2
ρu̇iu̇i

)
+ ρfiu̇i − (φḊi),i + φq̇. (1.30)

Therefore,

∂

∂t
(T + U) = ρfiu̇i + φq̇ − (φḊi − Tjiu̇j),i, (1.31)

where
T =

1
2
ρu̇iu̇i (1.32)

is the kinetic energy density, and φḊi is the quasi-static Poynting vector.
Equation (1.31) is the Poynting theorem of piezoelectricity.
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Integration of Equation (1.31) over V gives

∂

∂t

∫
V

(T + U)dV =
∫

V

ρ(fiu̇i + φq̇)dV +
∫

Su

Tjinj ˙̄uidS

+
∫

ST

t̄iu̇idS −
∫

Sφ

Ḋiniφ̄dS +
∫

SD

˙̄σφdS. (1.33)

Integrating Equation (1.33) from t0 to t, we obtain∫
V

(T + U)|tdV =
∫

V

(T + U)|t0dV +
∫ t

t0

dt

∫
V

ρ(fiu̇i + φq̇)dV

+
∫ t

t0

dt

∫
Su

Tjinj ˙̄uidS +
∫ t

t0

dt

∫
ST

t̄iu̇idS

−
∫ t

t0

dt

∫
Sφ

Ḋiniφ̄dS +
∫ t

t0

dt

∫
SD

˙̄σφdS. (1.34)

Equation (1.34) is called the energy integral which states that the energy
at time t is the energy at time t0 plus the work done to the body from t0 to t.

1.6 Uniqueness

Consider two solutions to the following initial boundary value problem:

Tji,j + ρfi = ρüi in V, t > t0,

Di,i = q in V, t > t0,

Tij = cijklSkl − ekijEk in V, t > t0,

Di = eijkSjk + εijEj in V, t > t0,

Sij = (ui,j + uj,i)/2 in V, t > t0, (1.35)

and

ui = ūi on Su, t > t0, Tjinj = t̄i on ST , t > t0,

φ = φ̄ on Sφ, t > t0, Dini = −σ̄ on SD, t > t0,

ui = u0
i in V, t = t0, u̇i = v0

i in V, t = t0,

φ = φ0 in V, t = t0. (1.36)

From the principle of superposition, the difference of the two solutions
satisfies the homogeneous version of Equations (1.35) and (1.36). Let u∗, φ∗,
S∗,T∗, E∗, and D∗ denote the differences of the corresponding fields and
apply Equation (1.34) to them. The initial energy and the external work for
the difference fields are zero. Then the energy integral implies that, for the
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difference fields, at any t > t0,∫
V

(T ∗ + U∗)
∣∣
t
dV = 0, t > t0. (1.37)

Because both T and U are nonnegative,

U∗ = 0, T ∗ = 0 in V, t > t0. (1.38)

From the positive definiteness of T and U ,

S∗ = 0, E∗ = 0, u̇∗ = 0 in V, t > t0. (1.39)

Hence the two solutions are identical for S,E,T,D, and the velocity fields
but may differ by a static rigid body displacement and a constant poten-
tial [2].

1.7 Four-Vector Formulation

Let us define the four-space coordinate system [6]

xp = {xi, t}, (1.40)

and the four-vector
Up = {ui, φ}, (1.41)

where subscripts p, q, r, and s are assumed to run from 1 to 4. Also, define
the second-rank four-tensor

ρpq =

{
ρδpq, p, q = 1, 2, 3,
0, p, q = 4,

=

⎡⎢⎢⎣
ρ 0 0 0
0 ρ 0 0
0 0 ρ 0
0 0 0 0

⎤⎥⎥⎦ , (1.42)

and the fourth-rank four-tensor Mpqrs, where

Mijkl = cijkl, M4jkl = ejkl, Mijk4 = ekij ,

M4jk4 = −εjk, Mp44s = −ρps, (1.43)

and all other components of Mpqrs = 0. Then

(Up,qMpqrl),r

= (Ui,jMijrl + U4,jM4jrl + Ui,4Mi4rl + U4,4M44rl),r

= (Ui,jMijkl + U4,jM4jkl + Ui,4Mi4kl + U4,4M44kl),k

+ (Ui,jMij4l + U4,jM4j4l + Ui,4Mi44l + U4,4M444l),4
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= (ui,jcijkl + φ,jejkl),k + (−u̇iρil),4

= cijklui,jk + ejklφ,jk − ρül, (1.44)

and

(Up,qMpqr4),r

= (Ui,jMijr4 + U4,jM4jr4 + Ui,4Mi4r4 + U4,4M44r4),r

= (Ui,jMijk4 + U4,jM4jk4 + Ui,4Mi4k4 + U4,4M44k4),k

+ (Ui,jMij44 + U4,jM4j44 + Ui,4Mi444 + U4,4M4444),4

= (ui,jekij − φ,jεjk),k

= ui,jkekij − φ,jkεjk. (1.45)

Therefore,
(Up,qMpqrs),r = 0 (1.46)

yields the homogeneous equation of motion and the charge equation.

1.8 Cylindrical Coordinates

The cylindrical coordinates (r, θ, z) are defined by

x1 = r cos θ, x2 = r sin θ, x3 = z. (1.47)

In cylindrical coordinates, we have the strain-displacement relation

Srr = ur,r, Sθθ =
1
r
uθ,θ +

ur

r
, Szz = uz,z,

2Srθ = uθ,r +
1
r
ur,θ − uθ

r
, 2Sθz =

1
r
uz,θ + uθ,z,

2Szr = ur,z + uz,r. (1.48)

The electric field-potential relation is given by

Er = −φ,r, Eθ = −1
r
φ,θ, Ez = −φ,z. (1.49)

The equations of motion are

∂Trr

∂r
+

1
r

∂Tθr

∂θ
+
∂Tzr

∂z
+
Trr − Tθθ

r
+ ρfr = ρür,

∂Trθ

∂r
+

1
r

∂Tθθ

∂θ
+
∂Tzθ

∂z
+

2
r
Trθ + ρfθ = ρüθ,

∂Trz

∂r
+

1
r

∂Tθz

∂θ
+
∂Tzz

∂z
+

1
r
Trz + ρfz = ρüz. (1.50)
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The electrostatic charge equation is

1
r
(rDr),r +

1
r
Dθ,θ +Dz,z = q. (1.51)

1.9 Spherical Coordinates

The spherical coordinates (r, θ, ϕ) are defined by

x1 = r sin θ cosφ, x2 = r sin θ sinϕ, x3 = r cos θ. (1.52)

In spherical coordinates we have the strain-displacement relation

Srr =
∂ur

∂r
, Sθθ =

1
r

∂uθ

∂θ
+
ur

r
, Sϕϕ =

1
r sin θ

∂uϕ

∂ϕ
+
ur

r
+
uθ

r
cot θ,

(1.53)

2Srθ =
∂uθ

∂r
+

1
r

∂ur

∂θ
− uθ

r
, 2Sθϕ =

1
r

∂uϕ

∂θ
+

1
r sin θ

∂uθ

∂ϕ
− uϕ

r
cot θ,

2Sϕr =
1

r sin θ
∂ur

∂ϕ
+
∂uϕ

∂r
− uϕ

r
. (1.54)

The electric field-potential relation is

Er = −∂φ
∂r
, Eθ = −1

r

∂φ

∂θ
, Eϕ = − 1

r sin θ
∂φ

∂ϕ
. (1.55)

The equations of motion are

∂Trr

∂r
+

1
r

∂Tθr

∂θ
+

1
r sin θ

∂Tϕr

∂ϕ
+

1
r
(2Trr − Tθθ − Tϕϕ + Tθrcot θ) + ρfr

= ρür, (1.56)
∂Trθ

∂r
+

1
r

∂Tθθ

∂θ
+

1
r sin θ

∂Tϕθ

∂ϕ
+

1
r
[3Trθ + (Tθθ − Tϕϕ)cot θ] + ρfθ

= ρüθ, (1.57)
∂Trϕ

∂r
+

1
r

∂Tθϕ

∂θ
+

1
r sin θ

∂Tϕϕ

∂ϕ
+

1
r
(3Trϕ + 2Tθϕcot θ) + ρfz

= ρüϕ. (1.58)

The electrostatic charge equation is

r2
∂

∂r
(r2Dr) +

1
r sin θ

∂

∂θ
(Dθsinϕ) +

1
r sin θ

∂

∂ϕ
Dϕ = q. (1.59)
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1.10 Compact Matrix Notation

We now introduce a compact matrix notation [1, 2]. This notation consists
of replacing pairs of indices, ij or kl, by single indices, p or q, where i, j, k,
and l take the values of 1, 2, and 3; and p and q take the values of 1, 2, 3, 4,
5, and 6 according to

ij or kl: 11 22 33 23 or 32 31 or 13 12 or 21
p or q: 1 2 3 4 5 6 (1.60)

Thus
cijkl → cpq , eikl → eip, Tij → Tp. (1.61)

For the strain tensor, we introduce Sp such that

S1 = S11, S2 = S22, S3 = S33,

S4 = 2S23, S5 = 2S31, S6 = 2S12. (1.62)

The constitutive relations can then be written as

Tp = cEpqSq − ekpEk, Di = eiqSq + εS
ikEk . (1.63)

In matrix form, Equation (1.63) becomes

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

T1

T2

T3

T4

T5

T6

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

cE11 c
E
12 c

E
13 c

E
14 c

E
15 c

E
16

cE21 c
E
22 c

E
23 c

E
24 c

E
25 c

E
26

cE31 c
E
32 c

E
33 c

E
34 c

E
35 c

E
36

cE41 c
E
42 c

E
43 c

E
44 c

E
45 c

E
46

cE51 c
E
52 c

E
53 c

E
54 c

E
55 c

E
56

cE61 c
E
62 c

E
63 c

E
64 c

E
65 c

E
66

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

S1

S2

S3

S4

S5

S6

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
−

⎛⎜⎜⎜⎜⎜⎜⎝
e11 e21 e31
e12 e22 e32
e13 e23 e33
e14 e24 e34
e15 e25 e35
e16 e26 e36

⎞⎟⎟⎟⎟⎟⎟⎠
⎧⎨⎩
E1

E2

E3

⎫⎬⎭ , (1.64)

⎧⎨⎩
D1

D2

D3

⎫⎬⎭ =

⎡⎢⎣e11 e12 e13 e14 e15 e16e21 e22 e23 e24 e25 e26

e31 e32 e33 e34 e35 e36

⎤⎥⎦
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

S1

S2

S3

S4

S5

S6

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
+

⎛⎜⎝ε
S
11 ε

S
12 ε

S
13

εS
21 ε

S
22 ε

S
23

εS
31 ε

S
32 ε

S
33

⎞⎟⎠
⎧⎨⎩
E1

E2

E3

⎫⎬⎭ . (1.65)

Similarly, Equations (1.10), (1.12), and (1.13) can also be written in
matrix form. The matrices of the material constants in various expressions
are related by

cEprs
E
qr = δpq, cDprs

D
qr = δpq,

βS
ikε

S
jk = δij , βT

ikε
T
jk = δij , (1.66)
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cDpq = cEpq + ekphkq, sD
pq = sE

pq − dkpgkq,

εT
ij = εS

ij + diqejq, βT
ij = βS

ij − giqhjq , (1.67)

eip = diqc
E
pq, dip = εT

ikgkp,

gip = βT
ikdkp, hip = gigc

D
qp. (1.68)
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Chapter 2

Green’s Functions

Ernian Pan

2.1 Introduction

Coupling between mechanical and electric fields has stimulated interesting
research related to the microelectromechanical system [1, 2]. The major
applications are in sensor and actuator devices by which an electric volt-
age can induce an elastic deformation and vice versa. Because many novel
materials, such as the nitride group semiconductors, are piezoelectric, study
on quantum nanostructures is currently a cutting-edge topic with the strain
energy band engineering in the center [3, 4]. Novel laminated composites (with
adaptive and smart components) are continuously attracting great attention
from mechanical, aerospace, and civil engineering branches [5]. In materials
property study, the Eshelby-based micromechanics theory has been very pop-
ular [6]. In most of these exciting research topics, the fundamental solution of
a given system under a unit concentrated force/charge or simply the Green’s
function solution is required. This motivates the writing of this chapter. In
this chapter, however, only the static case with general anisotropic piezo-
electricity is considered, even though a couple of closely related references
on vibration and/or dynamics (time-harmonic) wave propagation are briefly
reviewed. Furthermore, although emphasis is given to the generalized point
and line forces, the Green’s functions to the corresponding point and line dis-
locations, as well as point and line eigenstrain are also discussed or presented
based on Betti’s reciprocal theorem.

Ernian Pan
Department of Civil Engineering, Dept. of Applied Mathematics, The University of Akron,
Akron, OH 44325-3905, USA, e-mail: pan2@uakron.edu

J. Yang (ed.),
© Springer Science + Business Media, LLC 2009
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2.2 Governing Equations

Consider a linear, anisotropic piezoelectric and heterogeneous solid occupying
the domain V bounded by the boundary S. In discussing the Green’s func-
tions, the problem domain and the corresponding boundary conditions are
clearly described later. We also assume that the deformation is static, and
thus the field equations for such a solid consist of [7]:
(a) Equilibrium equations (including Gauss equation):

σji,j + fi = 0 Di,i − q = 0, (2.1)

where σij and Di are the stress and electric displacement, respectively; fi and
q are the body force and electric charge, respectively. In this and the following
sections, summation from 1 to 3 (1 to 4) over repeated lowercase (uppercase)
subscripts is implied. A subscript comma denotes the partial differentiation.

In the Cartesian coordinate system, the equilibrium equations are

∂σxx

∂x
+
∂σxy

∂y
+
∂σxz

∂z
+ fx = 0

∂σyx

∂x
+
∂σyy

∂y
+
∂σyz

∂z
+ fy = 0

∂σzx

∂x
+
∂σzy

∂y
+
∂σzz

∂z
+ fz = 0 (2.2a)

∂Dx

∂x
+
∂Dy

∂y
+
∂Dz

∂z
− q = 0 . (2.2b)

In the cylindrical coordinate system, the equilibrium equations are

∂σrr

∂r
+
∂σrθ

r∂θ
+
∂σrz

∂z
+
σrr − σθθ

r
+ fr = 0

∂σrθ

∂r
+
∂σθθ

r∂θ
+
∂σθz

∂z
+

2σrθ

r
+ fθ = 0 (2.3a)

∂σrz

∂r
+
∂σθz

r∂θ
+
∂σzz

∂z
+
σrz

r
+ fz = 0

∂Dr

∂r
+
∂Dθ

r∂θ
+
∂Dz

∂z
− q = 0 . (2.3b)

(b) Constitutive relations:

σij = Cijlmγlm − ekjiEk Di = eijkγjk + εijEj , (2.4)

where γ ij is the strain and Ei the electric field; Cijlm, eijk, and ε ij are the
elastic moduli, piezoelectric coefficients, and dielectric constants, respectively.
The uncoupled state (purely elastic and purely electric deformation) can be
obtained by simply setting eijk = 0. For transversely isotropic piezoelectric
materials with the z-axis being the material symmetric (or the poling) axis,
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the constitutive relation in the Cartesian coordinate system is (using the
reduced indices for Cijkl and eijk, with the following correspondence between
the one and two indices: 1 = 11, 2 = 22, 3 = 33, 4 = 23, 5 = 13, 6 = 12)

σxx = C11γxx + C12γyy + C13γzz − e31Ez

σyy = C12γxx + C11γyy + C13γzz − e31Ez

σzz = C13γxx + C13γyy + C33γzz − e33Ez

σyz = 2C44γyz − e15Ey

σxz = 2C44γxz − e15Ex

σxy = 2C66γxy (2.5a)
Dx = 2e15γxz + ε11Ex

Dy = 2e15γyz + ε11Ey

Dz = e31(γxx + γyy) + e33γzz + ε33Ez , (2.5b)

where C66 = (C11 − C12)/2.
Similarly, in the cylindrical coordinate system, the constitutive relation is

σrr = C11γrr + C12γθθ + C13γzz − e31Ez

σθθ = C12γrr + C11γθθ + C13γzz − e31Ez

σzz = C13γrr + C13γθθ + C33γzz − e33Ez

σθz = 2C44γθz − e15Eθ

σrz = 2C44γrz − e15Er

σrθ = 2C66γrθ (2.6a)
Dr = 2e15γrz + ε11Er

Dθ = 2e15γθz + ε11Eθ

Dz = e31(γrr + γθθ) + e33γzz + ε33Ez . (2.6b)

(c) Elastic strain-displacement and electric field-potential relations:

γij =
1
2
(ui,j + uj,i) Ei = −φ,i , (2.7)

whereuiandφare the elastic displacement and electric potential, respectively.
In the Cartesian coordinate system, we have

γxx =
∂ux

∂x
, γyy =

∂uy

∂y
, γzz =

∂uz

∂z
γyz = 0.5

(
∂uy

∂z
+
∂uz

∂y

)
γxz = 0.5

(
∂ux

∂z
+
∂uz

∂x

)
γxy = 0.5

(
∂ux

∂y
+
∂uy

∂x

)
(2.8a)

Ex = − ∂φ

∂x
, Ey = −∂φ

∂y
, Ez = −∂φ

∂z
, (2.8b)
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and in cylindrical coordinate system, we obtain

γrr =
∂ur

∂r
, γθθ =

∂uθ

r∂θ
+
ur

r
, γzz =

∂uz

∂z

γθz = 0.5
(
∂uθ

∂z
+
∂uz

r∂θ

)
γrz = 0.5

(
∂uz

∂r
+
∂ur

∂z

)
γrθ

= 0.5
(
∂ur

r∂θ
+
∂uθ

∂r
− uθ

r

)
(2.9a)

Er = − ∂φ

∂r
, Eθ = − ∂φ

r∂θ
, Ez = −∂φ

∂z
. (2.9b)

The notation introduced by Barnett and Lothe [8] has been shown to be
very convenient for the analysis of piezoelectric problems. With this notation,
the elastic displacement and electric potential, the elastic strain and electric
field, the stress and electric displacement, and the elastic and electric moduli
(or coefficients) can be grouped together as [9]

uI =

{
ui I = i = 1, 2, 3
φ I = 4

(2.10)

γIj =

{
γij I = i = 1, 2, 3
−Ej I = 4

(2.11)

σiJ =

{
σij J = j = 1, 2, 3
Di J = 4

(2.12a)

TJ = σiJni =

{
σijni J = j = 1, 2, 3
Dini J = 4

(2.12b)

CiJKl =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Cijkl J,K = j, k = 1, 2, 3
elij J = j = 1, 2, 3;K = 4
eikl J = 4;K = k = 1, 2, 3
−εil J,K = 4

. (2.13)

It is noted that we have kept the original symbols instead of introducing
new ones because they can be easily distinguished by the range of their
subscript. In terms of this shorthand notation, the constitutive relations can
be unified into a single equation as

σiJ = CiJKlγKl, (2.14)

where the material property coefficients CiJKl can be location-dependent in
the region.
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Similarly, the equilibrium equations in terms of the extended stresses can
be recast into

σiJ,i + fJ = 0 (2.15)

with the extended force fJ being defined as

fJ =

{
fj J = j = 1, 2, 3
−q J = 4

. (2.16)

For the Green’s function solutions, the body force and electric charge den-
sity are replaced by the following concentrated unit sources (k = 1, 2, 3),

fI =

{
δikδ(x− xx− xx− x0), I = i = 1, 2, 3
δ(x − xx − xx− x0), I = 4.

. (2.17)

It is observed that Equations (2.14) and (2.15) are exactly the same as
their purely elastic counterparts. The only difference is the dimension of the
index of the involved quantities. Therefore, the solution method developed
for anisotropic elasticity can be directly applied to the piezoelectric case. For
ease of reference, in this chapter, we still use displacement to stand for the
elastic displacement and electric potential as defined in Equation (2.10), use
stress for the stress and electric displacement as defined in Equation (2.12a),
and use traction for the elastic traction and normal electric displacement as
defined in Equation (2.12b).

2.3 Relations Among Different Sources and
Their Responses

Relations among different concentrated sources and their responses can be
studied via Betti’s reciprocal theorem, which states that for two systems (1)
and (2) belonging to the same material space, the following relation holds
(i.e., [9])

σ
(1)
iJ u

(2)
J,i = σ

(2)
iJ u

(1)
J,i . (2.18)

From (2.18), one can easily derive the following integral equation for these
two systems∫

S

σ
(1)
iJ u

(2)
J nidS −

∫
V

σ
(1)
iJ,iu

(2)
J dV =

∫
S

σ
(2)
iJ u

(1)
J nidS −

∫
V

σ
(2)
iJ,iu

(1)
J dV.

(2.19)

We let system (1) be the real boundary value problem and (2) be the
corresponding “point-force” Green’s function problem; that is,

σiJ,i = −δJKδ(xf
p − xs

p), (2.20)
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where the field point is at xf
p and the extended point force is applied at xs

p

in the K-direction (with K = 4 corresponding to a negative electric charge).
Then (2.19) can be reduced to a well-known integral representation of the
displacement field:

uK(xs
p) =

∫
S

[σiJ (xf
p )ufK

J (xs
p;x

f
p) = σfK

iJ (xs
p;xf

p)uJ(xf
p )]ni(xf

p)dS(xf
p)

+
∫

V

ufK
J (xs

p;x
f
p )fJ(xf

p )dV (xf
p ), (2.21)

where in the Green’s function expressions, the first superscript f denotes that
the Green’s function corresponds to an extended point force, and the second
superscript K is the direction of the point force.

Now, we wish to find the displacement response due to a prescribed dis-
location (displacement discontinuity) across a surface Σ embedded in V
(or the dislocation Green’s function). Let ni(= n−

i = −n+
i ) be the unit normal

to Σ, bI = u+
I − u−I being the (extended) dislocation. This dislocation along

Σ may have any form provided that the following (extended) traction conti-
nuity condition holds.

σ+
iJn

+
i + σ−iJn

−
i = 0. (2.22)

This type of displacement discontinuity is also called a Somigliana disloca-
tion with the Volterra dislocation (or the dislocation of Volterra–Weingarten)
being its special case [10]. In the latter case,

�uI ≡ u+
I − u−I =

{
Ui + Ωijx

s
j ; I ≤ 3,

U4; I = 4
(2.23)

where UI and Ωij are constants. If, furthermore, Ωij = 0, the dislocation then
reduces to the (extended) Burger’s vector. Assume that the displacement and
stress fields satisfy the same homogeneous boundary condition on the outer
boundary S, and apply Equation (2.21) to the region bounded internally by
Σ and externally by S; we then come to (also omit the volumetric integral
term associated with the body force)

uK(xs
p) =

∫
Σ

σfK
iJ (xs

p;x
f
p )bJ (xf

p )ni(xf
p)dΣ(xf

p ). (2.24)

This is the integral expression of the displacement due to a dislocation
along Σ with its density tensor being defined as

D(i, J) ≡ ni(xf
p)bJ(xf

p )dΣ(xf
p). (2.25)

In (elastic) seismology, they are defined as fault elements dΣ with an
outward normal ni (defined with respect to the positive side of the fault)
having a displacement discontinuity �i = bi. It is noted that the kernel
function in Equation (2.24) is the Green’s stress with component (iJ) at the
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field point xf
p due to a point force at xs

p in the Kth direction. Alternatively,
the displacement response due to the dislocation density tensor can also be
expressed by the kernel displacement function due to a point dislocation,
namely,

uK(xf
p ) =

∫
Σ

udiJ
K (xs

p;x
f
p)bJ (xs

p)ni(xs
p)dΣ(xs

p), (2.26)

where the superscript d denotes dislocation and (i, J) is the normal direction
of the dislocation plane (i) and the Burger’s vector direction (J). Comparing
Equation (2.26) to (2.24), we immediately obtain the following important
equivalence between the stress due to a point force and the displacement due
to a point dislocation

udiJ
K (xs

p;x
f
p) = σfK

iJ (xf
p ;xs

p). (2.27)

That is, the position of the source and field points in the point-force
Green’s stresses need to be exchanged in order to obtain the point-dislocation
Green’s displacements. This is a most simple and yet very important rela-
tion. Similar results for poroelastic media were derived by Pan [11]. Several
important observations of (2.27) are listed below:

(a) In general, once the point-force Green’s functions are solved, the
corresponding point-dislocation Green’s functions can be obtained through
the relation (2.27). In deriving relation (2.27), we have assumed that the
system is linear piezoelectric, but can be of general anisotropy and hetero-
geneity. In particular, this relation can be used to derive the point-dislocation
Green’s functions in horizontally layered systems, including half-space and bi-
material domains as special cases. For example, the point-dislocation Green’s
functions in horizontally layered media can be derived in both the Fourier
transform or the physical domains using Equation (2.27) and the point force
solutions [12–14].

(b) Direct solution of the point-dislocation Green’s functions is also
possible but the procedure may be very complicated. The way to achieve this
is to derive the equivalent body force of the point dislocation, find the related
discontinuity of the physical quantities, and solve for the unknowns, using the
method as previously employed by Pan [12] for the transversely isotropic and
layered half-space.

(c) For the elastic isotropic or transversely isotropic bimaterial, half-
space, or full-space, each term on the right-hand side of Equation (2.27)
is proportional to various eigenstrains, such as the misfit lattice strain, the
nucleus of strain (or a nucleus of strain multiplied by the elastic constants),
and so on. With Equation (2.27), however, it is unnecessary to add all the
related nuclei of strain together and enforce the boundary or interface
condition to solve the coefficients involved.

(d) In using Equation (2.27), one must be very careful that on the left-
hand side, xs

p and xf
p are the source and field points, respectively; and on

the right-hand side, xf
p and xs

p are the field and source points, respectively.
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Therefore, the Green’s displacements due to a point dislocation can be ob-
tained from the Green’s stresses due to a point force by exchanging the po-
sition of the field and source points and by assigning the suitable meanings
to the associated indexes.

(e) For a homogeneous and infinite domain, expressing the point-
force Green’s stresses by the strain and substituting the result back to
Equation (2.26), we then have the Volterra relation. It is noted that for
this specific case, the point-force Green’s stresses are functions of the relative
vector from the source to field points

(
i.e., xf

p − xs
p

)
, and they satisfy the

following relation,

σfK
iJ (xf

P ;xs
p) = σfK

iJ (xs
p − xf

p) = −σfK
iJ (xf

p − xs
p) = −σfK

iJ (xs
p;x

f
p ). (2.28)

We therefore have

udiJ
K (xs

p;x
f
p) = −σfK

iJ (xs
p;x

f
p). (2.29)

It should be emphasized that only for the homogeneous infinite domain,
can the Green’s displacements due to a point dislocation be obtained directly
from the Green’s stresses due to a point force, without exchanging the field
and source positions! For all other situations, the dislocation-induced Green
displacements should be obtained strictly using Equation (2.27).

For a homogeneous and infinite solid of purely elastic isotropy, (2.29) is
reduced to

udij
k (xs

p;x
f
p) = −σfk

ij (xs
p;x

f
p ) = −λuk

l,lδij − µ(uk
i,j + uk

j,i), (2.30)

where λ and µ are the two Lame’s elastic constants. The derivatives of the
Green’s elastic displacements due to a point force at xs

p in the k-direction are
taken with respect to the field point xf

p .
On the other hand, if we take the derivatives of the point-force Green

displacements with respect to the source point xs
p, we then have

ε ij(xs
p;x

f
p) = λuk

l,lδij + µ(uk
i,j + uk

j,i), (2.31)

which has an opposite sign to that given by (2.30).
The components in (2.31) are called nuclei of strain by Mindlin [15]. The

first term corresponds to the center of compression or dilatation and the
other terms are double forces. Therefore, from the physical point of view,
the point-dislocation Green’s functions can be constructed through super
position of various nuclei of strain (or the derivatives of the point-force
Green’s displacements), with their coefficients being solely related to the
elastic constants. This is a physical explanation for the mathematical and ar-
bitrary equivalent relation (2.29). It is obvious that if the point-force Green’s
functions can be derived in an exact closed-form (or explicit form), the
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corresponding point dislocation solutions will also have the same features
because they are obtained by the superposition of various nuclei of strain.
Detailed analyses can be found in [10, 16, 17] for the isotropic elastic case
and in [18] for the transversely isotropic elastic case. For materials of either
isotropy or transverse isotropy, these exact closed-form nuclei of strain can
also be employed to derive the point-force Green’s functions in a half-space
or a bimaterial space, and to derive the solutions corresponding to various
inclusions.

It is noted that the Green’s function relations between those due to a
point dislocation and those due to a point force are applicable to 3D only.
For the 2D case, the Green’s functions due to the line force and those due to
the line dislocations (open all the way to the half-infinite line) have the same
singularity order. These are clearly observed in the following section on 2D
Green’s functions, and one should pay particular attention to this difference.

2.4 Green’s Functions in Anisotropic Two-Dimensional
Infinite, Half, and Bimaterial Planes

Our two-dimensional (2D) problem is in the x–z plane, and it is under the
assumption that all the field and source quantities are independent of the
y-variable (i.e., ∂()/∂y = 0). Therefore, the Green’s functions presented are
rigorously for the generalized 2D plane strain case. Furthermore, presented
below are only the displacements and tractions (on the z = constant plane)
based on the Stroh formalism in terms of the complex variables. Summation
of the repeated subscript R from 1 to 4 is implied.

2.4.1 Green’s Functions in Anisotropic 2D Infinite
Planes Due to a Line Force and Line Dislocation

The Green’s functions for the displacements and tractions at field point
xxx(x, z) due to a line force at XXX(X,Z) can be expressed as

UKJ(x,Xx,Xx,X) =
1
π

Im{AJR ln(zR − sR)AKR} (2.32a)

TKJ(x,Xx,Xx,X) = − 1
π

Im{BJR
pRn1 − n3

zR − sR
AKR}. (2.32b)

The first subscript K is the component of the line force of unit value
fff = (f1, f2, f3, −Q) and the second subscript J is the component of the
displacement (2.32a) and the traction (2.32b). Also in these equations, “Im”
stands for the imaginary part of the complex value; AIJ and BIJ are two
constant matrices related to the piezoelectric material property; n1 and n3

(functions of xxx) are the unit outward normal components along the x- and
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z-directions; pR (R = 1, 2, 3, 4) are the Stroh eigenvalues; and zR = x + pRz
and sR = X+pRZ are related to the field x(x, z) and sourceXXX(X,Z) points,
respectively. These displacement and traction Green’s functions are required
in the conventional boundary integral equation formulation to solve the gen-
eral boundary value problems in piezoelectric solids. In order to find the
Green’s strain and electric fields, one only needs to take the derivation of the
Green’s displacement (2.32a) with respect to the field point xxx (refer to (2.7)).
The corresponding stress and electric displacements can be obtained thorough
the piezoelectric constitutive relations (2.14).

The Stroh eigenvalues and eigenmatrices involved in (2.32) are obtained
by solving the following eigensystem of equations [19]. First, the eigenvalue
p and the corresponding eigenvector a are solved from the eigenrelation:

[QQQ+ p(RRR+RRRT ) + p2TTT ]aaa = 0, (2.33)

where the superscript T denotes matrix transpose, and

QIK = C1IK1, RIK = C1IK3, TIK = C3IK3, (2.34)

where CiJKl are the elastic and electric moduli (or coefficients) defined
in (2.13).

Then, the eigenvector b is obtained from

bbb = (RRRT + pTTT )aaa = −1
p
(QQQ+ pRRR)aaa. (2.35)

Denoting by pm, aaam, and bbbm (m = 1, 2, . . . , 8) the eigenvalues and the
associated eigenvectors, we then order them in such a way so that

Im pJ > 0, pJ+4 = pJ , aaaJ+4 = aaaJ , bbbJ+4 = bbbJ (J = 1, 2, 3, 4)
AAA = [aaa1,aaa2,aaa3,aaa4], BBB = [bbb1, bbb2, bbb3, bbb4], (2.36)

where an overbar denotes the complex conjugate. We have also assumed
that pJ are distinct and the eigenvectors aaaJ and bbbJ satisfy the normalization
relation [8, 19]

bbbTI aaaJ + aaaT
I bbbJ = δIJ (2.37)

with δIJ being the 4× 4 Kronecker delta (i.e., the 4× 4 identity matrix). We
also remark that repeated eigenvalues pJ can be avoided by using slightly per-
turbed material coefficients with negligible errors [20]. In so doing, the simple
structure of the Green’s function solutions (2.32) can always be employed.

Similarly, the Green’s functions at xxx due to the generalized line disloca-
tions (Burger’s vector and electric potential discontinuity) bbb = (�u1,�u2,
�u3,�φ) of unit value at XXX can be found as

UKJ(x,Xx,Xx,X) =
1
π

Im {AJR ln(zR − sR)BKR} (2.38a)
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TKJ(x,Xx,Xx,X) = − 1
π

Im
{
BJR

pRn1 − n3

zR − sR
BKR

}
. (2.38b)

Comparing (2.32) and (2.38), we notice that the line force and line dislo-
cation Green’s functions are very similar to each other and they both have
the same order of singularity.

2.4.2 Green’s Functions in Anisotropic 2D Half-Planes
Due to a Line Force and Line Dislocation

The half-plane Green’s functions for the displacements and tractions (the
Jth component) with outward normal n1 and n3 (at xxx) due to a line force at
XXX with component K can be expressed as

UKJ(x,Xx,Xx,X) =
1
π

Im

{
AJR ln(zR − sR)AKR +

4∑
v=1

[
AJR ln(zR − sv)Qv

RK

]}
(2.39a)

TKJ(x,Xx,Xx,X) = − 1
π

Im

{
BJR

pRn1 − n3

zR − sR
AKR +

4∑
v=1

[
BJR

pRn1 − n3

zR − sv
Qv

RK

]}
,

(2.39b)

where

Qv
RN = B−1

RSBSP (Iv)PANP (2.40)

with

III1 = diag[1, 0, 0, 0]; III2 = diag[0, 1, 0, 0]
III3 = diag[0, 0, 1, 0]; III4 = diag[0, 0, 0, 1]. (2.41)

Similarly, the half-plane Green’s functions for the displacements and trac-
tions (the Jth component) with outward normal n1 and n3 (at xxx) due to the
line dislocations at XXX with component K can be expressed as

UKJ(x,Xx,Xx,X) =
1
π

Im

{
AJR ln(zR − sR)BKR +

4∑
v=1

[
AJR ln(zR − sv)Qv

RK

]}
(2.42a)

TKJ(x,Xx,Xx,X) = − 1
π

Im

{
BJR

pRn1 − n3

zR − sR
BKR +

4∑
v=1

[
BJR

pRn1 − n3

zR − sv
Qv

RK

]}
,

(2.42b)
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where
Qv

RN = B−1
RSBSP (Iv)PBNP . (2.43)

Similar Green’s function expressions can be obtained for the general
boundary conditions on the surface of the anisotropic elastic and anisotropic
piezoelectric half-plane. The detailed discussions can be found in [21, 22].

2.4.3 Green’s Functions in 2D Anisotropic Bimaterial
Plane Due to a Line Force and Line Dislocation

Depending upon the relative locations of the source and field points, there
are four sets of Green’s functions for the bimaterial case. We assume that
materials 1 and 2 occupy the half-planes z > 0 and z < 0, respectively.
Let us again assume that a line force fff = (f1, f2, f3,−Q) or line dislocation
bbb = (�u1,�u2,�u3,�φ) is applied at the source point (X,Z) in one of
the half-planes. To derive the Green’s functions, it is sufficient to find the
displacement vector uuu and traction vector ttt due to the line force or dislocation
[19], which are presented below for different combinations of the source and
field points.

Assume that the source point (X,Z) is in the half-plane of material
λ(λ = 1 or 2). Then if the field point xxx = (x, z) is in the source plane
(i.e., the half-plane of material λ), the displacement and traction vectors can
be expressed as [23]

uuu(λ) =
1
π

Im
{
AAA(λ)〈ln(z(λ)

∗ −s(λ)
∗ )〉qqq∞,λ

}
+

1
π

Im
4∑

J=1

{
AAA(λ)〈ln(z(λ)

∗ − s
(λ)
J )〉qqq(λ)

J

}
ttt(λ) = − 1

π
Im
{
BBB(λ)

〈
p
(λ)
∗ n1−n3

z
(λ)
∗ −s(λ)∗

〉
qqq∞,λ

}
− 1
π

Im
4∑

J=1

{
BBB(λ)

〈
p
(λ)
∗ n1−n3

z
(λ)
∗ − s

(λ)
∗

〉
qqq
(λ)
J

}
.

(2.44)

If the field point (x, z) is in the other half-plane of material µ(µ = λ)
(λ, µ = 1 or 2), then the displacement and traction vectors can be expressed as

uuu(µ) =
1
π

Im
4∑

J=1

{
AAA(µ)〈ln(z(µ)

∗ − s
(λ)
J )〉qqq(µ)

J

}
ttt(µ) = − 1

π
Im

4∑
J=1

{
BBB(µ)

〈
p
(µ)
∗ n1 − n3

z
(µ)
∗ − s

(λ)
J

〉
qqq
(µ)
J

}
. (2.45)

In (2.44) and (2.45), the superscripts (λ) and (µ) denote the quantities
associated with the material domains 1 and 2; p(λ)

J ,AAAλ, andBBB(λ) (λ = 1 and 2
for the two half-planes) are the Stroh eigenvalues and the corresponding
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eigenmatrices as given before. Also in (2.44) and (2.45), we defined:

〈ln(z(λ)
∗ − s

(λ)
∗ )〉 = diag[ln(z(λ)

1 − s
(λ)
1 ), ln(z(λ)

2 − s
(λ)
2 ),

ln(z(λ)
3 − s

(λ)
3 ), ln(z(λ)

4 − s
(λ)
4 )]

〈ln(z(λ)
∗ − s

(λ)
∗ )〉 = diag[ln(z(λ)

1 − s
(λ)
J ), ln(z(λ)

2 − s
(λ)
J ),

ln(z(λ)
3 − s

(λ)
J ), ln(z(λ)

4 − λs
(λ)
J )], (2.46)

where zα
J and s

(α)
J (α = 1, 2) are complex variables associated with the field

and source points, respectively. They are defined as

z
(α)
J = x+ p

(α)
J z,

s
(α)
J = X + p

(α)
J Z. (2.47)

We further observe that the first term in (2.44) corresponds to the full-
plane Green’s functions in material λ with:

qqq∞,λ = (AAA(λ))Tfff (2.48)

for the line force, and
qqq∞, λ = (BBB(λ))Tbbb (2.49)

for the line dislocation.
The second term in (2.44) and the term in (2.45) are the complemen-

tary parts of the Green’s function solutions. The complex vectors qqq
(λ)
J

(λ = 1, 2; J = 1, 2, 3, 4) in (2.44) and q
(µ)
J (µ = 1, 2; J = 1, 2, 3, 4) in (2.45)

are determined using the continuity conditions along the interface of the two
half-planes. Assume that the interface is perfect and after certain algebraic
calculations, these vectors can be obtained as (λ, µ = 1 or 2, but µ = λ):

qqq
(λ)
J = (AAA(λ))−1(MMM (λ) +MMM

(µ)
)−1(MMM

(µ) −MMM
(λ)

)AAA
(λ)
IIIJqqq

∞,λ (2.50)

for (2.44), and

qqq
(µ)
J = (AAA(µ))−1(MMM

(λ)
+MMM (µ))−1(MMM (λ) +MMM

(λ)
)AAA(λ)IIIJqqq

∞,λ (2.51)

for (2.45).
In (2.50) and (2.51), matrix MMM (α) is the impedance tensor defined as

MMM (α) = −iBBB(α)(AAA(α))−1 (α = 1, 2) (2.52)

and the diagonal matrix IIIJ is the same as that defined by (2.41).
We point out that similar Green’s function expressions can be derived

for the bimaterial with general (or imperfect) interface conditions. Detailed
discussion can be found in [24, 25].
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2.5 Green’s Functions in Three-Dimensional Infinite,
Half, and Bimaterial Spaces: Transverse Isotropy

Green’s functions in 3D transversely isotropic piezoelectric infinite, half,
and bimaterial spaces were derived by Ding’s group at Zhejiang University
[26–34] and Dunn’s group at the University of Colorado at Boulder [35–37].
However, results presented below are based on the works by the Zhejiang
University group using the combined potential function and trial-and-error
method (i.e., [32]). To facilitate the discussion, we first present the basic
equations with special parameters associated with transversely isotropic
materials only.

For the transversely isotropic piezoelectric material with its poling direc-
tion along the z-axis, the corresponding constitutive relation is the one given
by (2.5) or (2.6). For this material, the characteristic equation is separated
into two: one corresponds to the antiplane deformation and another to the
in-plane deformation. For the antiplane case, the characteristic root is given by

s0 =
√
c66/c44. (2.53)

For the in-plane case, its three characteristic roots, si(i = 1, 2, 3), are the
solutions of the following characteristic equation

as6 − bs4 + cs2 − d = 0, (2.54)

where

a = c44(e233 + c33ε33)

b = c33[c44ε11 + (e15 + e31)2] + ε33[c11c33 + (c244 − (c13 + c44)2)]
+ e33[2c44e15 + c11e33 − 2(c13 + c44)(e15 + e31)]

c = c44[c11ε33 + (e15 + e31)2] + ε11[c11c33 + (c244 − (c13 + c44)2)]
+ e15[2c11e33 + c44e15 − 2(c13 + c44)(e15 + e31)]

d = c11(e215 + c44ε11). (2.55)

Other parameters used in this section are:

m1 = ε11(c13 + c44) + e15(e15 + e31) m2 = ε33(c13 + c44) + e33(e15 + e31)

m3 = c11ε33 + c44ε11 + (e15 + e31)2 m4 = c11e33 + c44e15 − (c13 + c44)
× (e15 + e31) (2.56)

αi1 =
c11ε11 −m3s

2
i + c44ε33s

4
i

(m1 −m2s2i )si
(for i = 1, 2, 3)

αi2 =
c11e15 −m4s

2
i + c44e33s

4
i

(m1 −m2s2i )si
(2.57)
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ω01 = c44s0; ω02 = e15s0 ωi1 = c44(si + αi1) + e15αi2

ωi2 = e15(si + αi1) − ε11αi2 θi1 = (c33αi1 + e33αi2)si − c13

θi2 = (e33αi1 + ε33αi2)si − e13. (2.58)

We also define the following position-related parameters (for i, j = 0, 1, 2, 3),

zi = siz; hi = sih; z′i = s′iz; zij = zi + hj ;

Rij =
√
x2 + y2 + z2

ij ; zij = zi − hj ; Rij =
√
x2 + y2 + z2

ij ;

z′ij = z′i − hj ; R′
ij =

√
x2 + y2 + (z′ij)2. (2.59)

The prime “ ′” here and afterwards denotes parameters or quantities in
the lower half-space z < 0.

2.5.1 Green’s Functions for Infinite Space

For a point charge Q and a point force P in the z-direction, applied at the
source point (0, 0, h), the elastic displacements and electric potential at the
field point (x, y, z) are

u = sign(z − h)
3∑

i=1

Aix

Rii(Rii + si|z − h|)

v = sign(z − h)
3∑

i=1

Aiy

Rii(Rii + si|z − h|)

w =
3∑

i=1

αi1Ai

Rii

;

φ =
3∑

i=1

αi2Ai

Rii

. (2.60)

For a point force T in the x-direction, applied at the source point
(0, 0, h), the elastic displacements and electric potential at the field point
(x, y, z) are

u = −D0

[
1

R00 + s0|z − h| −
y2

R00(R00 + s0|z − h|)2
]

+
3∑

i=1

Di

[
1

Rii + si|z − h| −
x2

Rii(Rii + si|z − h|)2
]
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v = − D0xy

R00(R00) + s0|z − h|)2 − xy
3∑

i=1

Di

Rii(Rii + si|z − h|)2

w = − sign(z − h)x
3∑

i=1

αi1Di

Rii(Rii + si|z − h|)

φ = − sign(z − h)x
3∑

i=1

αi2Di

Rii(Rii + si|z − h|) . (2.61)

In (2.60) and (2.61),

A1 =
[P (θ22 − θ32) +Q(θ21 − θ31)]

b1

A2 =
[P (θ32 − θ12) +Q(θ31 − θ11)]

b1

b1 = 4π[(θ11 − θ31)(θ22 − θ32) − (θ21 − θ31)(θ12 − θ32)]

A3 = −A1 −A2 =
[P (θ12 − θ22) +Q(θ11 − θ21)]

b1
(2.62)

D0 =
−T

(4πc44s0)
D1 =

(α21α32 − α31α22)T
b2

D2 =
(α31α12 − α11α32)T

b2
D3 =

(α11α22 − α21α12)T
b2

b2 = 4πc44[s1(α21α32 − α31α22) + s2(α31α12 − α11α32)
+ s3(α11α22 − α21α12)]. (2.63)

2.5.2 Green’s Functions for Half and
Bimaterial Spaces

We first present the bimaterial space Green’s functions. The Green’s
functions in the corresponding half-space can be reduced from the former
ones. We assume that along the interface z = 0 of the two half-places, the
elastic traction and the z-component of the electric displacement are con-
tinuous across the interface (i.e., perfect interface condition). For a point
charge Q and a point force P in the z-direction, applied at the source
point (0, 0, h > 0), the elastic displacements and electric potential at the
field point (x, y, z > 0) of the upper half-space are

u =
3∑

i=1

⎡⎣sign(z − h)
Aix

Rii(Rii + si|z − h|) +
3∑

j=1

Aijx

Rij(Rij + zij)

⎤⎦
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v =
3∑

i=1

⎡⎣sign(z − h)
Aiy

Rii(Rii + si|z − h|) +
3∑

j=1

Aijy

Rij(Rij + zij)

⎤⎦
w =

3∑
i=1

αi1

⎡⎣ Ai

Rii

+
3∑

j=1

Aij

Rij

⎤⎦ φ =
3∑

i=1

αi2

⎡⎣ Ai

Rii

+
3∑

j=1

Aij

Rij

⎤⎦ . (2.64)

At the field point (x, y, z < 0) of the lower half-space, the elastic displace-
ments and electric potential are (the prime “′”is added to quantities in the
lower half-space)

u
′
=

3∑
i=1

3∑
j=1

A
′
ijx

R
′
ij(R

′
ij − z

′
ij)

; v
′
=

3∑
i=1

3∑
j=1

A
′
ijy

R
′
ij(R

′
ij − z

′
ij)

w
′
= −

3∑
i=1

α
′
i1

3∑
j=1

A
′
ij

R
′
ij

; φ
′
= −

3∑
i=1

α
′
i2

3∑
j=1

A
′
ij

R
′
ij

. (2.65)

The coefficients Aij and A′
ij in (2.64) and (2.65) are solved from the

following equations (for i = 1, 2, 3;m = 1, 2).

−Ai +
3∑

j=1

Aji =
3∑

j=1

A
′
ji αimAi +

3∑
j=1

αjmAji = −
3∑

j=1

α
′
jmA

′
ji

− ωi1Ai−
3∑

j=1

ωj1Aji =−
3∑

j=1

ω
′
j1A

′
ji θimAi −

3∑
j=1

θjmAji =−
3∑

j=1

θ
′
jmA

′
jm.

(2.66)

For a point force T in the x-direction, applied at the source point
(0, 0, h > 0), the elastic displacements and electric potential at the field point
(x, y, z > 0) of the upper half-space are

u = −D0

[
1

R00 + so|z − h| −
y2

R00(R00 + s0|z − h|)2
]
−D00

[
1

R00 + z0

− y2

R00(R00 + z00)2

]
+

3∑
i=1

⎧⎪⎨⎪⎩
Di

[
1

Rii+si|z−h| − x2

Rii(Rii+si|z−h|)2
]

+
3∑

j=1
Dij

[
1

Rij+zij
− x2

Rij(Rij+zij)2

]
⎫⎪⎬⎪⎭

v = − D0xy

R00(R00 + s0|z − h|)2 − D00xy

R00(R00 + z00)2

− xy

3∑
i=1

⎡⎣ Di

Rii(Rii + si|z − h|)2 +
3∑

j=1

Dij

Rij(Rij + zij)2

⎤⎦
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w = − x
3∑

i=1

αi1

⎡⎣sign(z − h)
Di

Rii(Rii + sii|z − h|) +
3∑

j=1

Dij

Rij(Rij + zij)

⎤⎦
φ = − x

3∑
i=1

αi2

⎡⎣sign(z − h)
Di

Rii(Rii + sii|z − h|) +
3∑

j=1

Dij

Rij(Rij + zij)

⎤⎦ .
(2.67)

The elastic displacements and electric potential at the field point
(x, y, z < 0) of the lower half-space are

u
′
= − L

′
00

[
1

R
′
00 − z

′
00

− y2

R
′
00(R

′
00 − z

′
00)2

]
+

3∑
i=1

3∑
j=1

L
′
ij

[
1

R
′
ij − z

′
ij

− x2

R
′
ij(R

′
ij − z

′
ij)2

]

v
′
= − L

′
00xy

R
′
00(R

′
00 − z

′
00)2

− xy

3∑
i=1

3∑
j=1

L
′
ij

R
′
ij(R

′
ij − z

′
ij)2

w
′
= x

3∑
i=1

α
′
i1

3∑
j=1

L
′
ij

R
′
ij(R

′
ij − z

′
ij)

φ
′
= x

3∑
i=1

α
′
i2

3∑
j=1

L
′
ij

R
′
ij(R

′
ij − z

′
ij)
.

(2.68)

The involved coefficients in (2.67) and (2.68), Dij and L
′
ij , are solved from

the following equations (for i = 1, 2, 3;m = 1, 2).

D0 +D00 = L
′
00 ω01(D00 −D0) = −ω′

01L
′
00

Di +
3∑

j=1

Dji =
3∑

j=1

L
′
ji αimDi −

3∑
j=1

αjmDji =
∑

α
′
jmL

′
ji

−ωi1Di +
3∑

j=1

ωj1Dji = −
3∑

j=1

ω
′
j1L

′
ij θimDi +

3∑
j=1

θjmDji =
3∑

j=1

θ
′
jmL

′
ji.

(2.69)

The half-space Green’s functions with traction-free (i.e., the elastic trac-
tion and the z-component of the electric displacement are zero) on the surface
z = 0 can be directly reduced from the bimaterial space Green’s functions
presented in this section. Actually, assuming that the half-space is in the z > 0
domain and the source is also at z = h(> 0), then the half-space Green’s func-
tions will be exactly the same as the bimaterial case in the source half-space,
except that the involved coefficients are simply given as
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A11 = A1(θ21θ32ω11 − θ22θ31ω11 − θ12θ31ω21

+ θ11θ32ω21 + θ12θ21ω31 − θ11θ22ω31)/da

A21 =
2A1(θ12θ31 − θ11θ32)ω11

da

A31 =
2A1(θ11θ22 − θ12θ21)ω11

da

A12 =
2A2(θ21θ32 − θ22θ31)ω21

da

A22 = A2(θ22θ31ω11 − θ21θ32ω11 + θ12θ31ω21

− θ11θ32ω21 + θ12θ21ω31 − θ11θ22ω31)/da

A32 =
2A2(θ11θ22 − θ12θ21)ω21

da

A13 =
2A3(θ21θ32 − θ22θ21)ω31

da

A23 =
2A3(θ12θ31 − θ11θ32)ω31

da

A33 = A3(θ22θ31ω11 − θ21θ32ω11 − θ12θ31ω21

+ θ11θ32ω21 − θ12θ21ω31 − θ11θ22ω31)/da

da = θ22θ31ω11 − θ21θ32ω11 − θ12θ32ω21

+ θ11θ32ω21 + θ12θ21ω31 − θ11θ22ω31

D00 = D0; Dji =
DiAij

Ai(i, j = 1, 2, 3)
. (2.70)

2.6 Green’s Functions in Three-Dimensional Infinite,
Half, and Bimaterial Spaces: General Anisotropy

When the piezoelectric material is of general anisotropy, the Green’s function
solution becomes complicated even for the infinite space case. Therefore, vari-
ous precise and computationally efficient algorithms have been developed for
the evaluation of the infinite space piezoelectric Green’s functions [38–40].
A more efficient way to evaluate the piezoelectric Green’s function is by
calculating the corresponding eigenvalues and eigenvectors [41, 42], as, for
example, in [43]. In this section, however, the solutions developed by the
author and coworkers are presented. The Green’s functions in the infinite
space were derived by employing the Radon transform [44] and those in
the half and bimaterial spaces were obtained by separating the solution
into two parts: the infinite-space Green’s function and the complementary
part. While the infinite-space Green’s function is in an exact closed-form, the
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complementary part is expressed by a finite-line integral after utilizing the
double Fourier transform [i.e., 46].

2.6.1 Infinite Space

Following Pan and Tonon [44], the Green’s displacement in the Jth direction
at xxx due to a point force in the Kth direction at the origin can be found as

UJK(x) = − Im
2πr

4∑
m=1

AJK (p + ζmq)

a9(ζm − ζm)
4∏

k=1
k �=m

(ζm − ζk)(ζm − ζk)
(2.71)

D(p + ζq) =
8∑

k=0

ak+1ζ
k = a9

4∏
m=1

(ζ − ζm)(ζ − ζm), (2.72)

where AJK (m) is the adjoint matrix of ΓJK(m), and D(m) is the determi-
nant of ΓJK(m), defined as

ΓJK(m) = CiJKqmimq. (2.73)

The vector m is given by

mmm = p + ζq, (2.74)

where

p =
e× v
|e× v| ; q = e× p; e =

x
|x| , (2.75)

with v being an arbitrary unit vector different from e(v = e).
There are a couple of features associated with this Green’s function

expression (2.71). First of all, (2.71) is an explicit expression. It is therefore
very accurate and efficient [45]. For a given pair of field and source points,
we need only to solve the eighth-order polynomial equation (2.72) numeri-
cally once to obtain all the components of the Green’s displacement. Secondly,
in obtaining (2.71), we have assumed that all the poles are simple. Should
the poles be multiple, a slight change in the material constants will result in
single poles, with negligible errors in the computed Green’s tensor, as for the
purely elastic case [20]. Thirdly, because ΓJK is symmetric, so is its adjoint
AJK . Therefore, the Green’s displacement GJK is symmetric [39] and one
needs to calculate only 10 out of its 16 elements. The symmetric property
of the extended Green’s tensor can also be considered as a consequence of
the Betti-type reciprocity as presented in Section 3 of this chapter. Finally,
although one can choose the vector v(= e) arbitrarily, it should be one of
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the base vectors in the space-fixed Cartesian coordinates, that is, (1, 0, 0) or
(0, 1, 0) or (0, 0, 1). The analytical expression for the Green’s displacement
is much simpler using such a vector v than using any other vectors.

2.6.2 Half-Space

For the half-space case (z > 0) with traction-free boundary condition at
z = 0 (i.e., the elastic traction and z-component of the electric displacement
are zero), the Green’s function solutions at the field point xxx (x1, x2, z > 0)
due to a point force at ddd (d1, d2, d > 0) can be obtained first in the Fourier
transformed domain, and then invert back to the physical domain. By so
doing, the final half-space Green’s function in the physical domain, or the
generalized Mindlin solution, can be expressed as a sum of an explicit Kelvin-
type solution and a complementary part in terms of a line integral over [0, 2π].
Furthermore, the latter can be reduced to an integral over [0, π]. For the
half-space displacement tensor (4×4), with its row and column indices being
the components of the field quantity and the direction of the point source,
respectively, it can be expressed as [21]

UUU(x; d)(x; d)(x; d) = UUU∞(x; d)(x; d)(x; d) +
1

2π2

∫ π

0

AAAGGG1AAA
Tdθ, (2.76)

where

(GGG1)IJ =
(BBB

−1
BBB)IJ

−pIz + pJd− [(x1 − d1)cos θ + (x2 − d2)sin θ]
. (2.77)

The first term in (2.76) corresponds to the Green’s displacement tensor in
an anisotropic and piezoelectric full space, which is given by (2.71) [43, 44].
Consequently, the half-space displacement tensor can be expressed as a sum
of an explicit Kelvin tensor and a complementary part in terms of a line
integral over [0, π]. It is emphasized that in (2.76) and (2.77), the eigenvalues
pJ and the eigenmatrices AAA and BBB are functions of θ, with pJ (J = 1, 2, 3, 4)
and AAA = [aaa1,aaa2,aaa3,aaa4] being the eigensolutions of (2.33) for a given θ. In
other words, p and aaa satisfy the same eigenequation (2.33) but with

QIK = CjIKsnjns, RIK = CjIKsnjms,

TIK = CjIKsmjms (2.78)

nnn =

⎡⎣n1

n2

0

⎤⎦ =

⎡⎣cos θ
sin θ

0

⎤⎦ , mmm =

⎡⎣0
0
1

⎤⎦ . (2.79)

Matrix BBB is defined by (2.36), with its vector bbbi related to aaai via (2.35).
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Equation (2.76) is the generalized Mindlin solution, or the Green’s
displacement under the traction-free boundary conditions in an anisotropic
and piezoelectric half-space. It is remarked that similar Mindlin solutions
can be presented for many other homogeneous boundary conditions on the
surface z = 0 [21]. We also point out that if the source and field points are
not simultaneously on the surface, then the line integral in (2.76) can be car-
ried out by employing regular numerical quadrature. If, however, z = d = 0,
then the half-space Green’s function is reduced to the special surface Green’s
function, where the involved singular integration needs special numerical
treatment.

2.6.3 Bimaterial Space

The procedure for solving the bimaterial Green’s functions is as follows.
First, we apply the double Fourier transform to the two horizontal vari-
ables (x, y); second, we solve the Green’s function problem in the transformed
domain; third, we apply the inverse Fourier transform to obtain the
physical domain Green’s function. To handle the double infinite integrals
in the inverse space, the polar coordinate transform is applied so that the
infinite integral with respect to the radial variable can be carried out exactly.
Thus, the final bimaterial Green’s functions in the physical domain can be
expressed in terms of a regular line integral over [0, 2π], which can be further
reduced to [0, π] using certain properties of the Stroh eigenvalues and Stroh
matrices.

We assume that the upper half-space (z > 0) is occupied by material 1
and the lower half (z < 0) by material 2. The interface at z = 0 between the
two half-spaces is further assumed to be perfect. In other words, the elastic
traction and the z-component of the electric displacement are continuous
across the interface. We further assume that the point force is in material 1
at ddd (d1, d2, d > 0); then the 4×4 Green’s function tensor at xxx (x1, x2, z > 0)
in material 1, with its first index for the displacement component and the
second for the extended point force direction, is found to be [46]

UUU (1)(x; dx; dx; d) = UUU∞(x;d) +
1

2π2

[∫ π

0

AAA
(1)
GGG(1)

u (AAA(1))Tdθ

]
(2.80)

(GGG(1)
u )IJ =

(GGG1)IJ

−p(1)
I z + p

(1)
J d− [(x1 − d1)cos θ + (x2 − d2)sin θ]

. (2.81)

In (2.80), UUU∞(((x;d) denotes the Green’s function tensor for the
displacements in the full space with the material 1 property (i.e., (2.71)).
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In material 2, the Green’s tensor at xxx (x1, x2, z < 0) is

UUU (2)(xxx;ddd) = − 1
2π2

[∫ π

0

AAA(2)GGG(2)
u (AAA(1))T dθ

]
(2.82)

(GGG(2)
u )IJ =

(GGG2)IJ

−p(2)
I z + p

(1)
J d− [(x1 − d1)cos θ + (x2 − d2)sin θ)]

. (2.83)

In (2.80) to (2.83), the superscripts “(1)” and “(2)” denote quantities in
materials 1 and 2, respectively, and the matrices GGG1 and GGG2 are given by

GGG1 = −(AAA
(1)

)−1(MMM
(1)

+MMM (2))−1(MMM (1) −MMM (2))AAA(1)

GGG2 = (AAA(2))−1(MMM
(1)

+MMM (2))−1(MMM (1) −MMM
(1)

)AAA(1), (2.84)

where MMM (α) is the modified impedance tensor defined as

MMMMMMMMM (α) = −iBBB(α)(AAA(α))−1 (α = 1, 2). (2.85)

In summary, in material 1, the bimaterial Green’s function is expressed as
a sum of the explicit full-space Green’s function and a complementary part
in terms of a line integral over [0, π]; In material 2, the bimaterial Green’s
function is expressed in terms of a line integral over [0, π]. With regard
to these physical domain bimaterial Green’s functions ((2.80) and (2.82)),
the following important observations can be made.

(a) For the complementary part of the solution in material 1 and the
solution in material 2, the dependence of the solutions on the field point xxx
and source point ddd appears only through matrices GGG(1)

u and GGG(2)
u defined in

(2.81) and (2.83).
(b) The integrals in (2.80) and (2.82) are regular if z = 0 or d = 0, and

thus can be easily carried out by a standard numerical integral method such
as Gaussian quadrature.

(c) If z = 0 and d = 0, the bimaterial Green’s function is still
mathematically regular although some of its components may not have a
direct and apparent physical meaning (see Pan, [25], for the purely elastic
counterpart).

(d) When the field and source points are both on the interface (i.e., z =
d = 0), the bimaterial Green’s function is then reduced to the interfacial
Green’s function. For this special case, the line integral involved in the Green’s
function expression becomes singular and the resulting finite part integral
needs to be handled with special care [47].

(e) Bimaterial Green’s functions can be solved similarly for other
(imperfect) interface models. To do so, one need only find the modified Stroh
matricesAAA(α) andBBB(α) for the given interface models. For detailed discussion,
one should refer to [25].
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2.7 Green’s Functions in Layered Half-Space

We solve the Green’s functions in layered half-space in terms of two
systems of vector functions combined with the propagator matrix method.
The vector function method is essentially equivalent to the double Fourier
transform or Hankel transform in the horizontal layer plane, but possesses
certain advantages over the latter ones (i.e., [48]). The propagator matrix
method is utilized to propagate the field quantities from one layer to the
other.

We first introduce the two systems of vector functions. The Cartesian
coordinate system of vector functions is defined as [12, 48, 49]

LLL(x, y;α, β) = eeezS(x, y;α, β)
MMM(x, y;α, β) = (eeex∂x + eeey∂y)S(x, y;α, β)
NNN(x, y;α, β) = (eeex∂y − eeey∂x)S(x, y;α, β) (2.86)

with

S(x, y;α, β) =
e−i(ax+βy)

(2π)
, (2.87)

where eeex, eeey, and eeez are the unit vectors along the x-, y-, and z-axes, re-
spectively; x and y are horizontal axes, while z-axis points to the problem
domain; α and β are the transformation variables corresponding to the two
horizontal physical variables x and y.

The corresponding cylindrical system of vector functions is defined as
[12, 48, 49]

LLL(r, θ;λ,m) = ezS(r, θ;λ,m)

MMM(r, θ;λ,m) = (er
∂

∂r
+ eθ

∂

r∂θ
)S(r, θ;λ,m)

NNN(r, θ;λ,m) = (er
∂

r∂θ
− eθ

∂

∂r
)S(r, θ;λ,m) (2.88)

with eeer, eeeθ, and eeez as the unit vectors along the r-, θ-, and z-axes,
respectively, and

S(t, θ;λ,m) =
1√
2π
Jm(λr)eimθ , (2.89)

where Jm(λr) is the Bessel function of order m with m = 0 corresponding to
the axial symmetric deformation.

There are several important features associated with the two systems of
vector functions.

(a) For plane strain deformation in the (x, z)-plane, one needs only to
replace 2π by

√
2π and β by 0, respectively.

(b) While the solution in terms of the LLL &&& MMM vectors is contributed to
the dilatational deformation, that of the NNN vector to the rotational part.
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Corresponding to the dynamic counterparts, the LLL &&& MMM part is related to
the Rayleigh wave and the NNN part to the Love wave. Here, we name the
solution associated with the LLL &&& MMM vectors the LM-type solution and that
associated with the NNN vector the N-type solution.

(c) We remark that the general solution and propagator matrix in the
cylindrical system of vector functions are exactly the same as those in the
Cartesian system. This feature gives certain numerical advantages when
programming these formulations in the two systems of vector functions.

(d) Another advantage is that both 2D and 3D Green’s functions can
be studied uniformly under these systems [12, 48, 49] because the general
solutions in terms of the two systems are the same for both 2D and 3D
deformation.

For the Green’s function problem, we first express the elastic displace-
ment, electric potential, traction, electric displacements, body force, and
negative electric charge density in terms of the cylindrical system of vector
functions,

uuu(r, θ, z) =
∑
m

∫ +∞

0

[UL(z)LLL(r, θ) + UM (z)MMM(r, θ) + UN (z)NNN(r, θ)]λdλ

(2.90)

φ(r, θ, z) =
∑
m

∫ +∞

0

Φ(z)S(r, θ)λdλ (2.91)

ttt(r, θ, z) ≡ σrzeeer + σθzeeeθ + σzzeeez

=
∑
m

∫ +∞

0

[TL(z)LLL(r, θ) + TM(z)MMM(r, θ) + TN (z)NNN(r, θ)]λdλ

(2.92)

DDD(r, θ, z) =
∑
m

∫ +∞

0

[DL(z)LLL(r, θ) +DM(z)MMM(r, θ) +DN (z)NNN(r, θ)]λdλ

(2.93)

fff(r, θ, z) =
∑
m

∫ +∞

0

[FL(z)LLL(r, θ) + FM (z)MMM(r, θ) + FN (z)NNN(r, θ)]λdλ

(2.94)

−q(r, θ, z) =
∑
m

∫ +∞

0

Q(z)S(r, θ)λdλ. (2.95)

In (2.90)–(2.95), the left-hand side variables in lowercase are the unknown
field quantities in the physical domain, and the right-hand side variables
in capitals, such as U , Φ, T, . . . , are the unknown expansion coefficients
in the transformed domain. Making use of corresponding governing equa-
tions presented in Section 2, the layered Green’s function problems can be
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converted into an ordinary differential system of equations for each layer in
the transformed domain so that the unknowns in the transformed domain can
be obtained. Because the Cartesian and cylindrical systems of vector func-
tions are employed, the problem in the transformed domain can be further
separated into two independent problems, which are discussed below.

2.7.1 General N- and LM-Type Solutions
in the Transformed Domain

(a) N-type solution

Based on either the Cartesian or cylindrical system of vector functions, one
can show easily that the N-type solution is independent of the rest, and
furthermore, it is independent of the electric quantities. In other words, it is
purely elastic and its general solution in each layer can be expressed as

[EEEN ] = [ZZZN (z)][KKKN ], (2.96)

where [KKKN ] is a column coefficient matrix of 2 × 1 with its elements to be
determined by the continuity and/or boundary conditions. Also in (2.96),

[EEEN (z)] =
[
UN (z),

TN (z)
λ

]T

, (2.97)

and [ZZZN (z)] is the solution matrix, the same as that for the purely elastic
case [12, 48, 49].

(b) LM-type solution

For this type of deformation, the elastic and piezoelectric fields are coupled
together. The ordinary differential equations in each layer for this type can
be derived as

[EEE]z = λ[WWW ][EEE]. (2.98)

It is remarked that the diagonal elements of [WWW ] are zero and independent
of λ. Also in (2.98),

[EEE] =
[
UL, λUM ,

TL

λ
, TM ,Φ,

DL

λ

]T

. (2.99)

To find the homogeneous solution of (2.98), we assume that

[EEE(z)] = [bbb]eληz. (2.100)
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Substituting (2.100) into (2.98) and noticing that all the diagonal elements
of [WWW ] are zero, we obtain the following six-dimensional eigenequations
for (2.98)

{[WWW ] − η[III]}[bbb] = 0, (2.101)

where [III] is the 6 × 6 identity matrix.
It is observed from (2.101) that the eigenvalues and their correspond-

ing eigenvectors are independent of the integral variable λ! Therefore, these
eigenequations need to be solved only once for each layer for the given mate-
rial properties. Let us, therefore, assume that the six eigenvalues are distinct,
and the general solution to (2.98) is then obtained as

[EEE(z)] = [ZZZ(z)][KKK], (2.102)

where [KKK] is a 6× 1 coefficient matrix with its elements to be determined by
the interface and/or boundary conditions, and

[ZZZ(z)] = [BBB]
〈
eλη∗z

〉
(2.103)

with〈
eλη∗z

〉
= diag[eλη1z, eλη2z , eλη3z , e−λη1z, e−λη2z, e−λη3z]

(2.104)

being associated with the six eigenvalues, and

[BBB] = [bbb1, bbb2, bbb3, bbb4, bbb5, bbb6] (2.105)

associated with the corresponding eigenvectors.

2.7.2 Propagator Matrix Method for Multilayered
Structures

The propagator matrix method is most suitable to layered structures.
Application of this method can help avoid the complicated calculation of
a large matrix and also save significant computation resource. At the core of
this method is the propagator matrix, which relates the N and LM expansion
coefficients [EEEN ] and [EEE] at the top interface to the bottom interface of layer j.
In other words, for layer j, we have[

EEEN (zj−1)
]

= [aaaN ][EEEN (zj)] (2.106)

and
[EEE(zj−1)] = [aaa][EEE(zj)] (2.107)
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where zj−1 and zj (>zj−1) are the depths of the top and bottom interfaces
of layer j, [aaaN ] and [aaa] are the so-called propagator matrix (or layer matrix,
or transfer matrix). Propagating the solution from the surface z = 0 to half-
space bottom z = H , we obtained,

[EEEN (0)] = [aaaN
1 ][aaaN

2 ] −−− [aaaN
p−1][ZZZ

N
p (h)][KKKp]

[EEE(0)] = [aaa1][aaa2] −−− [aaap−1][ZZZp(h)][KKKp] (2.108a,b)

with the undetermined coefficients having the structure as

[KKKN
p ] = [0, ∗]t [KKKp] = [0, 0, 0, ∗, ∗, ∗]t (2.109a,b)

to satisfy the requirement that the solution vanishes when z approaches +∞.
The symbol “*” denotes an unknown coefficient. These coefficients can be
solved using the traction-free boundary condition on the surface and the
discontinuity condition at the source level due to the point force. After the
unknown coefficients in [KKKN

p ] and [KKKp] are determined through the propaga-
tor matrix method, the expansion coefficients at any depth (e.g., for z ≥ h
in layer j, i.e., zj−1 ≤ z ≤ zj) can be derived exactly as

[EEEN (z)] = [aaaN
j (z − zj−1)][aaaN

j+1] −−− [aaaN
p−1][ZZZ

N
p (H)][KKKN

p ]

[EEE(z)] = [aaaj(z − zj−1)][aaaj+1] −−− [aaap−1][ZZZp(H)][KKKp]. (2.110a,b)

2.7.3 Physical Domain Solutions

From (2.90)–(2.95), in order to get the field quantities in the physical domain,
numerical integration must be carried out. It is noted that the integrands in
the infinite integrals for the Green’s functions involve Bessel functions that
are oscillatory and go to zero slowly when their variable approaches infinity.
Thus, the common numerical integral methods, such as the trapezoidal rule
or Simpson’s rule, are not suitable for such integrations. On the other hand,
numerical integration of this type of function via adaptive Gauss quadrature
has been found to be very accurate and efficient. In this adaptive quadrature,
we express the infinite integral for each Green’s function as a summation of
partial integration terms:∫ +∞

0

f(λ, z)Jm(λr)dλ =
N∑

n=1

∫ λn+1

λn

f(λ, z)Jm(λr)dλ. (2.111)

In each subinterval, a starting three-point Gauss rule is applied to approx-
imate the integral. A combined relative–absolute error criterion is used to
check the results. If the error criterion is not satisfied, new Gauss points are
added optimally so that only the new integrand values need to be calculated.
This procedure continues until the selected error criterion is satisfied.
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The methodology presented in this section can also be applied to find
the Green’s function solutions in many different layered material structures.
These include transversely isotropic layered thermoelastic half-space [13],
layered poroelastic half-space [14], transversely isotropic layered piezoelec-
tric half-space [50] and transversely isotropic functionally graded and layered
piezoelectric half-space [51, 52]. Similar approaches have been also developed
to derive the Green’s functions in general anisotropic and layered elastic
spaces [53, 54].

2.8 Conclusions

This chapter presents a review of the Green’s function solutions in piezo-
electric anisotropic solids. It is limited to the static case and with infinite or
semi-infinite domains. Even in this limited case, the author may have missed
some of the references by other experts. For example, one interesting area
that the author intentionally omitted is the circular loading on the surface
of the layered piezoelectric half-space as this can be obtained from the
corresponding point-source Green’s functions by integration over the loading
domain [52]. The Green’s functions in the functionally graded piezoelectric
space are not covered (i.e., [51]). There are also Green’s functions associated
with the finite domain, for example, on the Green’s function-related issues
in layered piezoelectric spheres (i.e., [55–57]), and in layered piezoelectric
cylinders(i.e., [58, 59]). The dynamic and transient Green’s functions are not
reviewed. These include dynamic and transient problems in layered cylinders
[58, 60–62], in layered spheres [63], and in horizontally layered plates
(i.e., [64]). Dynamic Green’s functions in anisotropic infinite space are not
covered either, and contributions to this difficult area can be found, for exam-
ple, in [65, 66]. A recent special issue of Engineering Analysis and Boundary
Elements edited by the author also includes many interesting Green’s func-
tion solutions [67]. Another interesting area that the author hasn’t reviewed
but is extremely attractive is related to the multiferroic materials/structures.
The coupling between the electric and magnetic fields via the induced strain
inside the system has potential applications to many semiconductor devices
using electric and magnetic fields. Various Green’s functions have already
been developed and interested readers should refer to [68–76] for details.
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Chapter 3

Two-Dimensional Static Problems:
Stroh Formalism

Hui Fan

3.1 Introduction and General Equations

The two-dimensional configuration has had its unique position in boundary
value problems since people developed various analytical concepts and pro-
cedures from it. The focus of the present chapter is to introduce the Stroh
formalism in the two-dimensional piezoelectric boundary value problem.
Historically, the scheme was originally proposed by Eshelby et al. [1] for
linear elasticity in anisotropic solids. The formulation has been considered
to be elegant and neat for studies of dislocation [2], wave propagation [3],
and interfacial cracks [4]. Then, the scheme was extended to the piezoelectric
solids which are intrinsically anisotropic. Barnett and Lothe [5] extended this
formalism to the piezoelectricity when a dislocation in an infinite piezoelec-
tric medium was studied. Most important configurations of boundary value
problems in piezoelectricity via Stroh formalism were studied in the 1990s
after their corresponding problems in anisotropic elasticity had been worked
out in the 1980s and early 1990s. In this chapter, we present a few funda-
mental boundary value problems in piezoelectricity as follows.

1. Elliptical inclusion in piezoelectric medium [6]: This problem is a funda-
mental configuration in the composite mechanics, known as the Eshelby
[7] inclusion problem in the two-dimensional case.

2. Fracture: A widely cited research paper by Suo et al. [8] for an interfacial
crack in a piezoelectric composite is followed.

3. Contact in two-dimensional piezoelectric half-space [9].
4. Saint-Venant end effect in a piezoelectric strip [10].

In a piezoelectric boundary value problem, we have field variables σij , Sij ,
Di, and Ek. In words, they are stress, strain, electric displacement (or electric
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induction), and electric field, respectively. It is realized that S and D
together define the physical distortion of the material. They are assumed
to be reversible, so that an energy function, Φ(S,D), exists; that is,

dΦ = σijdSij + EidDi. (3.1)

Because it is more convenient to formulate the problem in terms of u and
ϕ (displacement and electric potential), we adopt another energy function

w = Φ − EiDi. (3.2)

A Legendre transformation shows that

dw = σijdSij −DidEi. (3.3)

The stress and electric induction are therefore defined by

σij =
∂w

∂Sij
, Di = − ∂w

∂Ei
. (3.4)

The linear piezoelectric materials are described by

w =
1
2
CijklSijSkl − 1

2
εijEiEj − eiklEiSkl. (3.5)

Function w is particularly meaningful for the fracture mechanics in the
piezoelectric solid. The energy release rate or J-integral is defined by Suo
et al. [8]

G = J =
∫

(wn1 − niσipup,1 − niDiϕ,1)ds

which is discussed in Section 3.3.
In the following sections, we focus on a linear piezoelectric material. In

a rectangular coordinate system, the boundary value problem for a linear
piezoelectric solid is described by
Constitutive laws:

σij = CijklSkl − ekijEk, (3.6a)
Di = eiklSkl + εikEk, (3.6b)

Deformation relations:

Skl =
1
2
(uk,l + ul,k), (3.7a)

Ek = −ϕ,k, (3.7b)

where uk and ϕ are mechanical displacement and electric potential,
respectively.
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Equilibrium equations:

σij,i = 0, (3.8a)
Di,i = 0. (3.8b)

In the above equations, C is the elasticity tensor of rank four, ε is the
permittivity tensor of rank two, and e is the piezoelectricity tensor of rank
three. When the piezoelectricity vanishes, the problem is decoupled into the
anisotropic elastic and the dielectric problems.

Besides the governing equations, the boundary and continuity conditions,
on the other hand, are the important issues in the boundary value problems.
They vary from one problem to another. We cite them accordingly in the
following sections for various boundary value problems.

3.1.1 Two-Dimensional Piezoelectric Boundary Value
Problems via Stroh Formalism

Starting with the governing equations of the linear piezoelectric solid, we
substitute Equations (3.6) and (3.7) into (3.8):

(Cijkluk + eljiϕ),li = 0 (3.9a)
(eikluk − εilϕ),li = 0. (3.9b)

If all the fields are independent of the third coordinate, say x3, the special
solutions can be sought in the form of

U = {uk, ϕ}T = f(ς1x1 + ς2x2)a, (3.10)

where, without losing generality,

ς1 = 1, ς2 = p, (3.11)

and a = (a1, a2, a3, a4)T is independent of the spatial coordinates.
A direct substitution of Equation (3.10) into (3.9) gives

(Cαikβak + eαiβa4)ςαςβ = 0, (3.12a)
(eαkβak − εαβa4)ςαςβ = 0. (3.12b)

For nonzero solution for a′s, we must have

det
[
Cαjkβ ςαςβ eαjβςαςβ
eαkβςαςβ −εαβςαςβ

]
= 0. (3.13)
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As in the anisotropic elasticity formulation, it can be proved that the
eigenvalue p cannot be purely real due to the positive definiteness of the
tensors Cijkl and εij . Four pairs of p can be arranged as

pI+4 = pI , (I = 1, 2, 3, and 4)
pI = αI + iβI , βI > 0. (3.14)

Corresponding to the eigenvalues pI = αI +iβI , there are four independent
eigenvectors, which form a 4 × 4 matrix, namely,

A = {a1, a2, a3, a4}. (3.15)

The complex conjugates,

A = {a1,a2,a3,a4}, (3.16)

are the eigenvectors corresponding to pI+4 = pI .
Using the eigenvalues and corresponding eigenvectors, the general solution

can be written as a linear combination of the eight eigenvectors:

U = 2Re

⎛⎜⎜⎝(a1, a2, a3, a4)

⎛⎜⎜⎝
f1(z1)
f2(z2)
f3(z3)
f4(z4)

⎞⎟⎟⎠
⎞⎟⎟⎠ , (3.17)

where

zI = x1 + pIx2, (I = 1, 2, 3, 4).

For the sake of convenience, we write it in a compact form,

UUU = 2Re[Af(z)]. (3.18)

Furthermore, from the constitutive equations, we have

t = {σ2i, D2} = 2Re[Bf
′
(z)] (3.19)

sss = {σ1i,D1} = −2Re[BPfBPfBPf
′
(z )], (3.20)

where

BBB = {b1,b2,b3,b4}, PPP = diag{p1, p2, p3, p4} (3.21)
bbbj = (C2jkβak + eβj2a4)ςβ , bbb4 = (−ε1βa4 + e2kβak)ςβ . (3.22)

It is noticed that the matrices A and B are nonsingular when the eigenval-
ues are distinct. However, they may be singular in some special cases in which
eigenvalues coincide. Ting [11] has undertaken extensive studies on these
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degenerate cases which are not discussed in detail here. In the following sec-
tions, we take A and B as nonsingular matrices.

3.1.2 Eight-Dimensional Representation of
Piezoelectricity

An alternative formulation via an eight-dimensional scheme was introduced
by Barnett and Lothe [5], which is briefly described in the present section. In
the following formulation, lowercase subscripts take on the range 1, 2, and 3,
and the uppercase subscripts take on the range 1, 2, 3, and 4. The eight-
dimensional formulation starts with introducing some auxiliary symbols in
order to do matrix formulations.

ZMn =

{
Smn M = 1, 2, 3
−En M = 4

(3.23)

ΣMn =

{
σmn M = 1, 2, 3
Dn M = 4

(3.24)

UM =

{
um M = 1, 2, 3
φ M = 4

(3.25)

EiJMn =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Cijmn J, M = 1, 2, 3
enij J = 1, 2, 3; M = 4
eimn J = 4; M = 1, 2, 3
−εin J, M = 4.

(3.26)

It should be pointed out that they are not tensors. One has to be careful
when changing coordinate systems.

The constitutive equation (Equation (3.6)) is then written as

ΣiJ = EiJMnZMn = EiJMnUM,n. (3.27)

The equilibrium equation (Equation (3.8)) is written as

ΣiJ,i = 0. (3.28)

To satisfy Equation (3.28), a stress function Φ = {Φ1,Φ2,Φ3,Φ4}T is
introduced:

Σ1J = ΦJ,2 Σ2J = ΦJ,1 (3.29)
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Substituting Equation (3.29) into (3.27), one obtains:

QU,1 + RU,2 = −Φ,2 RTU,1 + TU,2 = Φ,1, (3.30)

where

QJM = E1JM1, RJM = E1JM2, TJM = E2JM2. (3.31)

It is noted that matrices Q and T are symmetric. Then, Equation (3.30)
can be written in an eight-dimensional form as

∂w
∂y

= N
∂w
∂x

, (3.32)

where

w =
(

U
Φ

)
, N =

(
N1 N2

N3 NT
1

)
(3.33)

N1 = −T−1RT , N2 = T−1 = NT
2 N3 = RT−1RT − Q = NT

3 .
(3.34)

The inverse of matrix T is obtained based on the following argument. From
Equations (3.26) and (3.31), it follows

T =
(
Te e
eT −εεε22

)
, (3.35)

where the upper-left corner of the matrix Te is made by part of the elastic
tensor which is 3 by 3 positive definite [4]; the lower-right corner is con-
tributed from the dielectric tensor, a negative scalar; and e is formed by
proper components of the piezoelectric tensor. It is found that

T−1 =
(
T−1

e (I + qeeT T−1
e ) −qT−1

e e
−qeTT−1

e q

)
, (3.36)

where, by using the fact that Te is positive definite [11],

q =
1

−ε22 − eT T−1
e e

< 0. (3.37)

In order to diagonalize Equation (3.32), the following eigenvalue problem
is considered,

Nξ = pξ, (3.38)

where

ξ =
(

a
b

)
. (3.39)
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Four-dimensional a and b are defined in Equations (3.15) and (3.22). The
eigenvalues are obtained by solving

det(N− pI) = 0. (3.40)

The explicit form of Equation (3.40) is exactly the same as (3.13) which is
in a four-dimensional format. In comparison with Equations (3.12) and (3.13),
Equation (3.40) represents a standard eigenvalue problem for a nonsymmetric
matrix N.

3.1.3 Historical Remarks on Stroh Formalism

Formulation of the two-dimensional piezoelectric boundary value problems is
a natural extension of solutions for the anisotropic elasticity in terms of math-
ematical approaches. Therefore, development of Stroh formalism in piezo-
electricity has been following the steps of research progress in anisotropic
elasticity. Historically, the so-called Stroh formalism was originally proposed
by Eshelby et al. [1], and used by Stroh [2] in dealing with dislocations
in the anisotropic elastic solids. Of course, the approach was not called
“Stroh formalism” then. The key feature of this formalism is the presen-
tation of gathering the elastic constants into a couple of matrices, A and
B. A number of mathematicians have been carrying out the further develop-
ment of the matrix formalism. Chadwick, Barnett, and Lothe, among others,
have made great contributions to the matrix formalism of anisotropic elas-
ticity. In the 1980s, anisotropic composite research created a new wave of
interest in anisotropic elasticity. A persistent and hard-working researcher,
T. C. T. Ting, who also has a strong mathematical background, has devoted
25 years to anisotropic elasticity since the beginning of the 1980s. His book
[11] summarized almost all the important contributions in Stroh formalism
until the early 1990s. The “Stroh formalism” became an “official” name
for the matrix formalism after the 1980s by the strong recommendation
of researchers with mathematical backgrounds. At the same time, they
labeled research work not following matrix formalism as the “Lekhnitskii
approach” [12].

Actually, the mathematical background researchers always claimed their
result as Stroh formalism because it is elegant and compact, whereas the
engineering background researchers directly solved the problem without
using matrix notations. Most of the time, engineers simplified their problems
from the very beginning of their solution with consideration of the symmetry
of the material and structural directions. For example, Yang [13], Pak [14],
and Sosa and Castro [15] did not mention that they belong to the non-Stroh
camp. Although these research results are not considered as “elegant and
neat,” they are of great engineering interest and are called up for verifica-
tion as the special cases for the solutions derived via Stroh formalism. It is
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interesting to notice that some of the researchers, for example, Suo et al. [8],
prefer somewhere in between the aforementioned two camps. They use part
of the matrix formalism for the sake of elegance in presenting the general
theory. When the materials have certain symmetric features, they prefer the
Lekhnitskii format.

3.2 Piezoelectric Solid with an Elliptic Inclusion

3.2.1 Importance of the Inclusion Problem

A three-dimensional ellipsoidal inclusion embedded in an infinitely extended
matrix is a fundamental configuration for composite mechanics. The three-
dimensional isotropic elastic solution was obtained by Eshelby [7] which has
been considered as a cornerstone of composite mechanics [16]. The most
important and useful result obtained by Eshelby is that under uniform
far-field loading, the strain inside the inclusion is uniform. It has been noticed
that all the boundary value problems described by an even order of partial
differential equations (sets) of elliptical type have a similar feature. For exam-
ple, the dielectric problem is described by an elliptical-type partial differential
equation (Laplace equation) on the order of two; the linear elastic problem is
described by a set of partial equations (Navier equation) on the order of six.
Extension of the Eshelby solution to the piezoelectric boundary value problem
(a set of partial differential equations on the order of eight) was attempted
by Wang [17]. However, due to the anisotropy of the material, the Green’s
function cannot be integrated into a closed form. Therefore, the so-called
Eshelby tensor can only be obtained via some numerical procedure. In turn,
it is difficult further to employ inclusion solutions for the anisotropic elasticity
and piezoelectricity for micromechanics schemes, such as the self-consistent
scheme [18], for composite mechanics applications.

Hereby, in this section, we present a solution for an elliptical inclusion
embedded in an infinitely extended space as a two-dimensional boundary
value problem. By employing the Stroh formalism, we follow the major steps
of the derivation contributed by Chung and Ting [6].

3.2.2 Elliptic Inclusion Embedded in an Infinitely
Extended Solid

The ellipse is mathematically described by

Γ : x1 = a cosψ, x2 = b sinψ. (3.41)
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The material inside the ellipse is called inclusion, and the material outside
the ellipse is called the matrix. Of composite mechanical interest, we only
consider the case of uniform far-field loading. The far-field variables are given
as follows.

U∞ = x1ε
∞
1 and Φ∞ = x1s∞ − x2t∞, (3.42)

where

ε∞1 = U∞
,1 =

⎡⎢⎢⎣
ε∞11
0

2ε∞13
−E∞

1

⎤⎥⎥⎦ and ε∞2 = U∞
2 =

⎡⎢⎢⎣
2ε∞21
ε∞22
2ε∞23
−E∞

2

⎤⎥⎥⎦ . (3.43)

s∞ and t∞ are defined according to Equations (3.20) and (3.19). There is a
connection between them,

N
[
ε∞1
t∞

]
=
[
ε∞2
−s∞

]
, (3.44)

where the N matrix is given by Equation (3.34). The far-field information is
considered to be completely known.

For this boundary value problem, the complex function given in
Equation (3.18) takes the form of

fα(z∗) = qαf(z∗), (3.45)

which leads Equation (3.18) to

U = 2Re[A < f(z∗) > q]. (3.46)

Equation (3.19), with the definition of (3.29), becomes

Φ = 2Re[B < f(z∗) > q]. (3.47)

In Equations (3.46) and (3.47),

< f(z∗) > = diag < f(z1), f(z2), f(z3), f(z4) > . (3.48)

A mapping function is needed as follows.

zα = cαξα + dαξ
−1
α (α = 1, 2, 3, 4), (3.49)

where cα and dα are the complex constants and zα = x1 + pαx2. cα and dα

are chosen such that when (x1, x2) ⊂ Γ, ξα(α = 1, 2, 3, 4) is on a unit circle.
That is,

ξ
α
∣∣Γ = cosψ + i sinψ (α = 1, 2, 3, 4) (3.50)

and
zα = a cosψ + pαb sinψ. (3.51)
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Substituting (3.47) and (3.48) into (3.46), we have

cα =
a− ipαb

2
and dα =

a+ ipαb

2
. (3.52)

By means of superposition, the field solution in the matrix is given by
Chung and Ting [6],

U = U∞ + 2Re[A < ξ−1
∗ ] > AT ]g1 + 2Re[A < ξ−1

∗ ] > BT ]h1 (3.53a)

Φ = Φ∞ + 2Re[B < ξ−1
∗ ] > AT ]g1 + 2Re[B < ξ−1

∗ ] > BT ]h1. (3.53b)

In Equations (3.53a) and (3.53b), the first terms are the uniform solution
given by (3.42), and the second terms are due to the presence of the inclusion.
Comparing Equations (3.53a) and (3.53b) with Equations (3.46) and (3.47),
we have introduced

q = ATg1 + BTh1, (3.54)

where ggg and hhh are real constants, whereas qqq is a complex constant. On the
other hand, the field solution inside the inclusion is given by a uniform field
inspired by the Eshelby [7] solution.

U0 = x1ε
0
1 + x2ε

0
2, Φ0 = x1s0 − x2t0, (3.55)

where

ε01 = U0
,1 =

⎡⎢⎢⎣
ε011
Ω

2ε013
−E0

1

⎤⎥⎥⎦ , ε02 = U0
,2 =

⎡⎢⎢⎣
2ε021 − Ω
ε022
2ε023
−E0

2

⎤⎥⎥⎦ . (3.56)

s0 and t0 are defined according to Equations (3.20) and (3.19).
Summarizing the solutions in the matrix (Equations (3.53a) and (3.53b))

and the inclusion (Equation (3.55)), we have six constants (four-dimensional
columns) to be determined, namely, g, h, εεε01, εεε02, s0, and t0. By reinforcing
the continuity condition along the interface Γ, that is,

U
∣∣
Γ

= U0
∣∣
Γ

(3.57)

and
Φ
∣∣
Γ

= Φ0
∣∣
Γ
, (3.58)

we have four sets of equations as the result of collecting terms associated
with cosψ and sinψ, respectively. Another two sets of equations come from
the constitutive relation between strains and stresses,

N0

[
εεε01
t0
2

]
=
[
εεε02
−t0

1

]
. (3.59)
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Therefore, Equations (3.57) through (3.59) provide the answer for g, h,
εεε0
1, εεε

0
2, s0, and t0.

3.2.3 Remarks

It is seen that the solution to a piezoelectric solid for a specific configu-
ration (e.g., the elliptic inclusion embedded in the infinite plane) can be
obtained by modifying the corresponding anisotropic elastic solution. The
two-dimensional inclusion problem in the anisotropic elasticity was solved
by Hwu and Ting [19]. Then, extension of the solution to the piezoelec-
tric solid was carried out by Chung and Ting [6]. Chung and Ting [20] also
presented a solution for the “piezoelectric–piezomagnetic–magnetoelectric”
solid, which was described by 10 by 10 N matrices. This natural exten-
sion from anisotropic elasticity of six-dimensional formalism to the eight-
dimensional or even ten-dimensional formalism is considered as one of the
advantages of Stroh formalism. We also encounter this type of extension of
the anisotropic elasticity solution for other configurations in the following
sections, for example, the crack problem and the contact problem.

The Stroh formalism does not, in general, give a closed-form analytical
result. Numerical procedure may be needed at the stage of finding eigenvalues
from Equation (3.13) or (3.40). Only for some special materials, as shown in
the later sections, we are able to have the eigenvalues obtained analytically.
Therefore, Stroh formalism provides us an analytical procedure, rather than
an analytical closed-form solution.

When the materials possess certain symmetry, the eigenvalues of
Equation (3.13) or (3.40) are not distinct; the matrices A and B may
be singular. Therefore, the eigenexpansion of Equations (3.18) and (3.19)
are not valid. The advocators of Stroh formalism have been working on
these singular cases with some special consideration (e.g., Ting [11] and
Suo et al. [8]). Stroh formalism treats the isotropic and highly symmetric
materials as the degenerate cases, whereas researchers from the non-Stroh
camp prefer material symmetry because they start with isotropic elastic and
dielectric solids towards the anisotropic solids.

3.3 Cracks in Piezoelectric Solids

Piezoelectric ceramics are brittle in nature. High mechanical and
electrical loadings may result in microcracks. The study of cracks in the
piezoelectric solid became a very active research topic after Suo et al. [8].
Because there is an independent chapter in this book devoted to the fracture
mechanics of piezoelectric solids, we only touch on the aspects involved with
Stroh formalism in the present section.
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3.3.1 Crack-Tip Solution

Let us consider the crack-tip field, which is also called the asymptotic solution
of the crack-tip. A semi-infinite crack, denoted by L, lies on y = 0 between
two half-spaces (i.e., y > 0) and y < 0). The crack-tip coincides with origin
x = 0; x > 0 is bounded. The boundary and continuity conditions along
x = 0 are stated as follows.

t1(x) = t2(x) = 0, ∀x ∈ L (3.60)
t1(x) = t2(x), ∀x ∈ L (3.61)

U1(x) = U2(x), ∀x ∈ L, (3.62)

where subscript “1” stands for the upper half-space (y > 0); subscript “2”
stands for the lower half-space (y < 0).

Following the notation of Equation (3.19), we have the above conditions
(3.60) and (3.61) rewritten as

B1f
′
1(x1) + B1f

′
1(x1) = B2f

′
2(x1) + B2f

′
2(x1), ∀x1 ∈ (−∞,∞) (3.63)

or

B1f
′
1(x1) −B2f

′
2(x1) = B2f

′
2(x1) − B1f

′
1(x1), ∀x1 ∈ (−∞,∞). (3.64)

The left-hand side of Equation (3.64) is the boundary value of a function
analytic in the upper half-plane, and the right-hand side is the boundary
value of another function analytic in the lower half-plane. Therefore, both
functions can be analytically continued into the entire plane. Because both
functions vanish at any infinity to conform to a zero field, they must vanish
at z = x+ py (Im p > 0). Thus,

B1f
′
1(z) = B2f

′
2(z), y > 0. (3.65)

Define the displacement jump across the interface y = 0,

d(x) = U1(x) − U2(x). (3.66)

By using the definition of Equation (3.18) , with help of (3.65), we have

id′(x) = HB1f
′
1(x) −HB2f

′
2(x), (3.67)

where
H = Y1 + Y2 (3.68)

with
Y = iAB−1. (3.69)
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It is clear that HHH is a real matrix for our case where upper and lower
materials are the same. The present derivation with different subscripts can
be easily extended to the crack along a bimaterial interface.

We define a new analytic function

h(z) = B1f
′
1(z) ∀x2 > 0 h(z) = B2f

′
2(z) ∀x2 < 0 (3.70)

which is analytic throughout the whole plane except on the crack. The
traction-free condition, Equation (3.60), leads to a Hilbert problem

h+(x1) + h−(x1) = 0 ∀x1 ∈ L. (3.71)

The superscript “+” stands for the value from the upper plane, and
“−” stands for the value from the lower plane. The singular solution to
Equation (3.12) that keeps the displacement finite is

h(z) = (8πz)−1/2k, (3.72)

where the branch cut is along the crack line (x < 0 ). Some important results
used in the following sections are presented here. The traction ahead of the
crack-tip is given by

t(r) = (2πr)−1/2k, (3.73)

where k = (KII ,KI ,KIII ,KIV )T is the so-called stress intensity factor. The
square-root singularity is inherited. The crack opening displacement behind
the crack-tip is given by

d(r) =
(

2r
π

)1/2

Hk. (3.74)

Equations (3.73) and (3.74) are needed for calculation of the energy release
rate; that is,

J = G =
1

2Λ

∫ Λ

0

tT (Λ − r) d(r)dr. (3.75)

Equation (3.75) has a very clear physical meaning, that is, the energy
change with the crack advanced amount of Λ. By substituting Equations
(3.73) and (3.74) into (3.75), we obtain

J = G =
1
4
kTHk. (3.76)

In order to visualize the derivation in this section, we consider a simplified
case which was studied by Pak [14] via a non-Stroh formalism approach.
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3.3.2 Crack Front Coincides with Poling Direction
(x3 -Axis)

Let us consider the materials, such as PZT-5H, poled in the z-direction. The
x–y plane is the isotropic plane. The material constants are given by⎡⎢⎢⎢⎢⎢⎢⎣
σ11

σ22

σ33

σ23

σ13

σ12

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
c11 c12 c13 0 0 0
c12 c11 c13 0 0 0
c13 c13 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 (c11 − c12)/2

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
S11

S22

S33

2S32

2S13

2S12

⎤⎥⎥⎥⎥⎥⎥⎦−

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 e31
0 0 e31
0 0 e33
0 e15 0
e15 0 0
0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎣E1

E2

E3

⎤⎦
(3.77)

and

⎡⎣D1

D2

D3

⎤⎦ =

⎡⎣ 0 0 0 0 e15 0
0 0 0 e15 0 0
e31 e31 e33 0 0 0

⎤⎦
⎡⎢⎢⎢⎢⎢⎢⎣
S11

S22

S33

2S32

2S13

2S12

⎤⎥⎥⎥⎥⎥⎥⎦+

⎡⎣ε11 0 0
0 ε11 0
0 0 ε33

⎤⎦⎡⎣E1

E2

E3

⎤⎦ . (3.78)

This two-dimensional crack problem in the (x, y)-plane is decomposed into
an in-plane deformation (ux, uy) and an antiplane field (uz, ϕ). The former is
identical to an isotropic elastic problem. We focus on the latter which shows
the mechanical–electrical coupling effect.

The eigenvalues corresponding to this antiplane problem are obtained from
Equation (3.13) as

p3 = p4 = i,

p7 = p8 = −i (3.79)

and the related matrices are

A =
[
A2e 0
0 Ap

]
, B =

[
B2e 0
0 Bp

]
(3.80)

Y =
[
Y2e 0
0 Yp

]
, (3.81)

where the right upper 2 by 2 matrices correspond to in-plane deformation,
and the left lower corner matrices correspond to the coupled antiplane defor-
mation and electric field. It is straightforward to derive:

Ap =
[
1 0
0 1

]
and Bp = i

[
c44 e15
e15 −ε11

]
(3.82)
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and

Yp =
1

1 + k

[
c−1
44 ke−1

15

ke−1
15 −ε−1

11

]
, (3.83)

where

k = e215/(c44ε11). (3.84)

The energy release rate or J-integral is calculated by substituting
Equation (3.83) into (3.76), with the help of Equation (3.68),

J =
1 − ν

2µ
(K2

I +K2
II) +

1
2(1 + k)

[
K2

III

c44
− K2

IV

ε11
+ 2k

KIIIKIV

e15

]
. (3.85)

3.3.3 Full Field Solutions

(a) Griffith crack. Let us consider a center crack, L : (−a, a), along the
x-axis. The only load acting on the configuration is the traction-charge T(x)
prescribed on the upper and lower crack surfaces

t1(x) = t2(x) = −T(x), ∀x ∈ L. (3.86)

The Hilbert problem of Equation (3.71) becomes nonhomogeneous,

h+(x1) + h−(x1) = −T(x), ∀x1 ∈ L. (3.87)

This equation has many solutions [21]. The solution for the center Griffith
crack satisfies that

h(z) = o(z) as z → ∞, (3.88)

and h(z) is square root singular at the crack-tips. Also, the Burger’s vector
for the crack vanishes, from Equation (3.67); that is,∫ a

−a

[h+(x) − h−(x)]dx = 0. (3.89)

If T(x) is uniform along the crack faces, the solution can be reached in
analytical closed-form; that is,∫

h(z)dz =
1
2
T[(z2 − a2)1/2 − z], (3.90)

where the branch cut for the square root coincides with the crack. The field
variables are obtained with the help of Equations (3.70),(3.18), and (3.19).
Of great interest for determination of the stress intensity factor k,
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we obtained

t(x) = [x(x2 − a2)−1/2 − 1]T, ∀∣∣x∣∣ > a, (3.91)

d(x) = (x2 − a2)−1/2HT, ∀∣∣x∣∣ < a. (3.92)

Suppose that the traction charge is caused by the remote field {σ∞
2i , D

∞
2 }T ;

the intensity factor column is given by

KII =
√
πaσ∞

21 , KI =
√
πaσ∞

22 ,

KIII =
√
πaσ∞

23 , KIV =
√
πaD∞

2 (3.93a)

or

k =
√
πat∞. (3.93b)

(b) Zener–Stroh Crack. The mechanism of this type of crack was originally
proposed by Zener in 1947 ([22]), and mathematically analyzed by Stroh
[23, 24]. That is why it has been named after Zener and Stroh. The Zener–
Stroh crack is loaded by the net Burger’s vector entering the crack, rather
than by the traction acting on the crack faces (shown in Figure (3.1). The
following derivation is an extension of [25] for the anisotropic elasticity.

The Hilbert problem becomes (implying the traction continuation along
the y = 0 interface)

h+(x1) + h−(x1) = 0, ∀x1 ∈ L. (3.94)

The solution for a Zener–Stroh crack satisfies that

h(z) = O(z−1) as z → ∞, (3.95)

bT

t∞

(a) Griffith crack (b) Zener -- Stroh crack

Fig. 3.1 Loading mechanisms of Griffith and Zener-Stroh cracks.
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and h(z) is square root singular at the crack-tips. Also, the Burger’s vector
for the crack does not vanish, from Equation (3.67); that is,∫ a

−a

d
′
(x)dx =

∫ a

−a

−iH[h+(x) − h−(x)] dx = bT , (3.96)

where bT is the total Burger’s vector entering the crack (for the first three
components). The fourth component needs some physical description but is
beyond the scope of the present section. The solution to the Hilbert problem
described above is given by [25]

h(z) = Q(z2 − a2)−1/2. (3.97)

QQQ can be determined by considering that the crack is equivalent to a super
dislocation with Burger’s vector of bT to the far field; that is,

h(z) =
Q
z
, for z → ∞. (3.98)

Comparing Equation (3.98) with the dislocation solution ([25] and [26]),
we have

Q =
H−1b∗

T

2π
, (3.99)

where b∗
T = (bT , 0).

Of our particular interest, we consider the asymptotic behavior of
Equation (3.97) by letting z → a+ r. The traction ahead of the crack-tip is
given by Equation (3.73) in which the stress intensity factor column is given
by, with the help of (3.99),

k =
H−1b∗

T√
πa

. (3.100)

It is noticed that the traction at the crack-tip at z = −a is compression
so that there is no crack propagation from this crack-tip.

Comparing Equation (3.100) for the Zener–Stroh crack with (3.93) for the
Griffith crack, we reach the conclusion that Zener–Stroh is a stable crack
because its stress intensity factor decreases as the crack propagates. On the
other hand, the Griffith crack is an unstable crack because its stress intensity
factor increases as the crack propagates.

Under a combined loading, the traction, and the net Burger’s vector, the
crack is called Griffith–Zener–Stroh type. The stress intensity factor column
for a center crack embedded in an infinite solid is written as

k =
√
πat∞ +

H−1bT√
πa

. (3.101)
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Based on the observation of Equation (3.101), in general, we conclude that
the Zener–Stroh mechanism is dominant in shorter cracks, and the Griffith
mechanism is dominant in longer cracks.

3.4 Contact Problems

Let us consider the configuration that the piezoelectric material occupies
the region of x2 > 0 , whose boundary, the x1-axis, is divided into two parts,
namely the contact region (∀x1 ∈ (−a, a)) and its complement. In the contact
region, the traction, electric potential, and induction can be written as

σ2j = σ0
2j ϕ = ϕ0 D2 = D0

2. (3.102)

The right-hand side terms in the above equation are the values in the
indentor, which may or may not be known before we solve the problem. The
boundary condition on the no-contact part is assumed to be

σ2i(x1, 0) = 0 D2(x1, 0) = 0 x1 ∈ (−a, a). (3.103)

Boundary conditions other than Equation (3.103), for instance, a
prescribed ϕ, can also be considered by a formulation provided by Suo [27].
In the present section, we focus on (3.103) to demonstrate the approach.

With Equations (3.102), (3.103) and notation (3.19), we may write

Bf
′
(x1) + Bf ′(x1) = t(x1) ∀x1 ∈ (−∞,∞). (3.104)

For later convenience, we introduce a function

h(z) = Bf
′
(z) ∀x2 > 0 (3.105a)

h(z) = −Bf ′(z) ∀x2 < 0 (3.105b)

which is analytic throughout the whole plane except on the contact
segment. Using limits of the function h(z) on x2 = 0 (Muskhelishvili [28]),
Equation (3.104) leads to a Hilbert problem

h+(x1) − h−(x1) = t(x1), ∀x1 ∈ (−a, a), (3.106a)

h+(x1) − h−(x1) = 0, ∀x1 ∈ (−a, a). (3.106b)

The solution of Equation (3.106) can be obtained as

h(z) =
1

2πi

∫ a

−a

t(x)
x− z

dx (3.107)

if the distributions of the traction and electric induction are known over the
region ∀x1 ∈ (−a, a). As an example, let us take the traction and electric
induction to be uniform over this region.
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Then

h(z) =
t

2πi
ln
(
z − a

z + a

)
. (3.108)

If we take:
lim
a→0

2at = T (3.109)

we have the two-dimensional Green’s function for the piezoelectric half-space
as

h(z) = − T
2πiz

. (3.110)

The one-complex-variable solution Equation (3.110) can be converted to
a four-complex-variable format explicitly as follows.

Without losing generality, let us consider a vertical concentrated force
acting on the free surface. The column T in Equation (3.110) is written
explicitly as

T = (0, P, 0, 0)T .

Noting (3.105a), we have

f
′
(z) = B−1

⎛⎜⎜⎝
0

−P/2πiz
0
0

⎞⎟⎟⎠ ,

where

B−1 =

⎡⎢⎢⎣
b
′
11 b

′
12 b

′
13 b

′
14

b
′
21 b

′
22 b

′
23 b

′
24

b
′
31 b

′
32 b

′
33 b

′
34

b
′
41 b

′
42 b

′
43 b

′
44

⎤⎥⎥⎦
is the inverse matrix of B. In terms of the four complex variables, we have

f
′
(z1, z2, z3, z4) = − p

2πi

⎛⎜⎜⎝
b
′
12/z1
b
′
22/z2
b
′
32/z3
b
′
42/z4

⎞⎟⎟⎠ .

Furthermore, the stress induction is calculated from

Bf
′
(z1, z2, z3, z4) = − p

2πi

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4∑
k=1

b1kb
′
k2/zk

4∑
k=1

b2kb
′
k2/zk

4∑
k=1

b3kb
′
k2/zk

4∑
k=1

b4kb
′
k2/zk

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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A similar problem has been considered by Sosa and Castro [15] for a
simplified constitutive equation.

3.4.1 Nonslip Contact

When the traction induction is unknown in the contact region and all the
displacement components and electric potential are prescribed in the contact
region, the solution is obtained by considering a Hilbert problem. Using the
notation of Equation (3.18), the displacement potential continuity across the
interface reads as

Af
′
(x1) + Af ′(x1) = d

′
(x1) ∀x1 ∈ (−a, a), (3.111)

and the traction induction free condition outside the contact zone leads to

Bf
′
(x1) + Bf ′(x1) = 0 ∀x1 ∈ (−a, a), (3.112)

where
d = {u1, u2, u3, ϕ}T (3.113)

is assumed to be known inside the contact region. By using the function
defined in Equations (3.105) and (3.111) is rewritten as

h+(x1) + Y−1Yh−(x1) = iY−1d
′
(x1), ∀x1 ∈ (−a, a), (3.114)

where
Y = iAB−1. (3.115)

The matrix Y has been discussed by Suo et al. [8]. The properties of this
matrix are mentioned when it is used later on. If the matrix is real, the
solution of (3.114) is given by England [21]

h(z) =
χ(z)
2π

∫ a

−a

Y−1d
′
(x)

χ+(x)(x − z)
dx+ χ(z)Q(z), (3.116)

where
χ(z) = ((z − a)(z + a))−1/2, (3.117)

and Q is a polynomial to be determined by considering the resultant force
acting on the contact zone (Fan and Keer [29]).

In general Y is a complex matrix. The Hilbert problem Equation (3.114)
is solved only if we can transform the matrix Y−1Y in (3.114) into a diag-
onal form. Following this approach was proposed by Ting [4] for anisotropic
elasticity, and Suo et al. [8] modified the transformation procedure for piezo-
electricity. By considering an eigenvalue problem as

Yw = e2πλYw, (3.118)
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we have four eigenpairs (eigenvalue, eigenvector) as

(ε,w), (−ε,w), (−ik,w3), (ik,w4). (3.119)

Any field can be decomposed via this eigensystem; say,

h = h1w + h2w + h3w3 + h4w4

d = d1w + d2w + d3w3 + d4w4. (3.120)

With the eigenexpansion equation (4.19), we can decouple (4.13) as

h+
1 + e−2πεh−1 = id̂′1 h+

2 + e−2πεh−2 = id̂′2

h+
3 + e2πikh−3 = id̂′3 h+

4 + e−2πikh−4 = id̂′4, (3.121)

where
d̂ = Y−1d.

The solutions are obtained in a form such as Equation (3.116).
It is noticed that there are two kinds of indentor, namely, a sharp-edged

and a round-edged indentor. For the sharp-edged one, the contact zone is
known. At the two corners, the stress is singular similar to the isotropic
elastic contact (e.g., Johnson [30]). However, the singularities for this piezo-
electric contact problem are much more complicated than those in the linear
elasticity. Fortunately, the detailed structure of the singularities has been dis-
cussed by Suo et al. [8] when they studied the interfacial crack in piezoelectric
bimaterials. In the case of a round-edged indentor, there is no singularity in
the solution. The contact zone size is determined by considering the resultant
force acting on the half-plane.

3.4.2 Slip Contact

If the interfacial static friction of the contact is not high enough to prevent the
slip between the two bodies, some displacement components in the x-direction
may be discontinuous. Thus the boundary condition, Equation (3.111), must
be replaced by, for instance,

u2 = u2 and σ12 = µσ22 (3.122)

together with proper electrical conditions. In Equation (3.122), µ is the sliding
friction coefficient.

Let us summarize the displacement potential and traction induction con-
ditions inside the contact region:

Yh+(x1) + Yh−(x1) = id
′
(x1), ∀x1 ∈ (−a, a) (3.123)
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h+(x1) − h−(x1) = t(x1), ∀x1 ∈ (−a, a). (3.124)

Eliminating h−(x) from Equation (3.123), we have

(Y + Y)h+(x1) − Yt(x1) = id
′
(x1). (3.125)

On the other hand, the Plemelj formula gives:

h+(x1) =
1
2
t(x1) +

1
2πi

∫ a

−a

t(ξ)
ξ − x1

dξ. (3.126)

Substituting Equation (3.126) into (3.125), one has

Y − Y
2

t(x1) +
Y + Y

2πi

∫ a

−a

t(ξ)
ξ − x1

dξ = id
′
(x1). (3.127)

There are four equations for four unknowns in Equation (3.127). Thus,
Equation (3.127) provides the distribution of traction inside the contact
region, which in turn allows us to have the whole field solution via Equa-
tion (3.107).

3.4.3 Decoupled Elastic and Dielectric Contact

When the piezoelectric tensor vanishes, the problem is decoupled into
anisotropic elastic and dielectric ones. The former, the anisotropic elastic
contact problem, has been considered by Fan and Keer [29] via Stroh formal-
ism. The latter, a mixed boundary value problem for a general anisotropic
dielectric half-space, is presented here. In the case eee = 0, the eigenvalue prob-
lem Equation (3.12) is simplified as

Cαikβςαςβak = 0, (3.128a)

and

εαβςαςβa4 = 0. (3.128b)

The corresponding eigenvectors are in the form of

A =
(
Ae 0
0 1

)
,

B =
(
Be 0
0 b4

)
, (3.129)

where Ae and Be are 3 by 3 matrices corresponding to anisotropic
elasticity. The dielectric problem and scalars are formed by Equation (3.129).
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The eigenvalues for the anisotropic dielectric materials are also obtained
from (3.129):

ε11 + 2ε12p+ ε22p
2 = 0. (3.130)

They are

p4 = −ε12
ε12

+ i

√
ε11
ε22

−
(
ε12
ε22

)2

, p8 = p4. (3.131)

The last equation in (3.111), corresponding to dielectricity, is decoupled
from the first three equations which are associated with anisotropic elasticity.
Thus,

f
′
4(x) + f

′

4(x) = ϕ
′
0(x). (3.132)

The solution of Equation (3.132) is easily obtained by applying (3.117).
It is noticed that the degree of electromechanical coupling in a piezoelectric

material can be described by a nondimensional parameter formed by the three
types of moduli, which is in the range of

e√
εC

= 0.1 ∼ 1. (3.133)

A weakly coupled material, such as quartz which is widely used in fre-
quency filters and resonators, has moduli on the order of (Salt [31]):

C ∼ 1011N/m2, ε ∼ 10−11F/m2, e ∼ 10−1C/m2. (3.134)

It is seen that
e√
εC

∼ 0.1. (3.135)

The mechanical and electric fields for this weakly coupled piezoelectric
material can be approximated by the decoupled elastic and dielectric solu-
tions. On the other hand, a strongly electromechanical coupled material, such
as lead–zirconate–titanate (say PZT-5H), has moduli on the order of

C ∼ 1011N/m2, ε ∼ 10−8F/m2, e ∼ 10 C/m2. (3.136)

The dimensionless coupling parameter is on the order of

e√
εC

∼ 0.3. (3.137)

For this kind of material, the mechanical and electric fields have to be
calculated based upon the fully coupled formulation.
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3.4.4 Piezoelectric Half-Space with Poling Direction
Along the x3-Axis

The piezoelectric ceramic PZT-5H belongs to this material category.
Assuming the x1−x2 plane is the isotropic plane, the material constants of
this material are given in Section 3.3.2.

Let us consider a rigid punch pressed into the piezoelectric half-space.
Assuming no slip at the interface, the contact problem is decoupled into
elastic in-plane contact and antiplane charge ones, due to the constitutive
Equations (3.77) and (3.78). By noting Equation (3.117), the solution of the
latter is then given by

hp(z) = χ(z)Qp. (3.138)

The stress and induction show a square root singularity at z = ±a . The
constant column Qp can be determined by setting∣∣z∣∣� a

so that
hp(z) =

Qp

z
. (3.139)

Comparing Equations (3.139) and (3.110), the Green’s function, we have

Qp =
iTp

2π
. (3.140)

If the normal component of flux vanishes everywhere on x2 = 0,

Tp = (T3, 0)T ,

it is easy to obtain that

σ32 = −
(

1 +
1
k

)
e15E2 σ31 = −

(
1 +

1
k

)
e15E1, (3.141)

where k = e215/(c44ε11).

3.5 Decay Analysis for a Piezoelectric Strip

3.5.1 Saint-Venant Principle and Decay Analysis

The Saint-Venant end effect is characterized mathematically by so-called
decay analysis. With this decay analysis, the Saint-Venant principle can
be extended to modern materials and structures beyond the traditional
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homogeneous and isotropic solids. In the present section, the decay rate in a
piezoelectric strip is considered. Although plate–and beam-shaped
piezoelectric devices have been used in communication and sensor indus-
tries for many years, the Saint-Venant principle has not been introduced
into the piezoelectric material. The difficulties raised by general anisotropy
in the piezoelectricity further delayed the decay analysis consideration for
the piezoelectric plates and bars. Recent development of anisotropic elastic-
ity via Stroh formalism makes the present two-dimensional decay analysis for
piezoelectricity possible.

Decay analysis is a mathematical foundation for the well-known
Saint-Venant principle which is considered as one of the basic blocks in linear
elasticity. Applicability of beam, plate, and shell theories highly depends
on the principle. Since the Saint-Venant principle was proposed over a
century ago, his statement was apparently too ambiguous for modern
structure and material applications. Understanding the principle from math-
ematical fundamentals started in the 1960s. Since then establishment of
the Saint-Venant principle based upon rigorous mathematical formulation
has been an active research topic. With the mathematical form of the
Saint-Venant principle, there are no conceptual and descriptive difficulties
to define the end effects in modern materials, such as highly anisotropic
composites. Thorough reviews about research progress on the Saint-Venant
principle were given by Horgan and Knowles [32] and a follow-up paper by
Horgan [33]. More recent efforts of extending the concept to piezoelectric
materials can be traced in [10], [34] and [35].

The decay rate study makes the qualitative Saint-Venant statement into
a quantitative description via the so-called eigenexpansion. Without losing
generality, let us consider a nondimensionalized strip bounded in x1 ∈ [0,∞)
and x2 ∈ [−1, 1] as shown in Figure 3.2. For this configuration, a generic field
solution can be expanded as

F (x1, x2) = F0(x1, x2) +
∞∑

k=1

Cke
−λkx1Fk(x2), (3.142)

x2

1

0

−1

x1

Fig. 3.2 A semi-infinite long strip loaded at the x = 0 end.
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where F0(x1, x2) is the so-called Saint-Venant solution which is a nondecay
term with respect to the coordinate x1, and all the terms in the summation
are exponential decay. In other words, all the Re(λ) < 0 are dropped for a
finite solution. In all these decay terms, the first term with the smallest value
of Re(λ) is the slowest decay term. People refer to this λ as the decay rate
(Horgan [33]) which will decide the decay distance of the end effects. Hereby,
we introduce the Saint-Venant principle to the piezoelectric material by find-
ing the decay rate in a piezoelectric strip. Because plate-shaped piezoelec-
tric devices have been widely used in resonators, sensors, and actuators, the
analysis on a strip configuration is of great theoretical as well as practical
importance.

3.5.2 Eigenexpansion for the Piezoelectric Strip

With the concept in Equation (3.142), the decay terms in the displacement
and electric potential vector can be expended as

U =
∞∑

k=1

C(k)e−λkχU(k)(y). (3.143)

This is called the eigenexpansion for the decay analysis in which λk and
U(k) are eigenvalues and eigenfunctions. From the previous sections, we know
that the solution can be written in terms of complex variables x + pIy
and their complex conjugates. It is straightforward to assume that a general
solution is the superposition of the eight independent solutions corresponding
to these eight eigenvalues, pI and pI ; that is,

U(k)(y) =
(
A
〈
e−λkpIy

〉
qk + A

〈
e−λkp̄Iy

〉
hk

)
, (3.144)

where

〈
e−λpIy

〉
= diag{e−λp1y, e−λp2y, e−λp3y, e−λp4y}. (3.145)

The eigenvalues λ, qk, and hk are determined from the homogeneous
boundary conditions along the upper and lower surfaces (y = ±1) of the
strip.

From the eigenexpansion (Equation (3.142)) point of view, the eigenvalue
λ with the smallest real part is of interest for the Saint-Venant principle. We
focus on this term and drop the subscript of the eigenvalue and eigenfunction
if there is no confusion.

Upon the substituting the displacement vector back into the constitutive
equations, the stress and induction components can be expressed as
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t(k)(y) = {σ2i, D2}T = λk

(
B
〈
e−λkpIy

〉
qk + B

〈
e−λkpIy

〉
hk

)
(3.146)

s(k)(y) = {σ1i, D1}T = λk

(
BP

〈
e−λkpIy

〉
qk + BP

〈
e−λkpIy

〉
hk

)
, (3.147)

where

B = {b1,b2,b3,b4},
P = diag{p1, p2, p3, p4}. (3.148)

With the equations in Section 3.3.1, one has

bj = (C2jkβak + eβj2a4)ςβ ,
b4 = (−ε1βa4 + e2kβak)ςβ . (3.149)

It is worthwhile to clarify a point that there are two eigenvalue problems in
the present derivation. The first one is raised by the anisotropic piezoelectric
material. The eigenvalues are determined solely by material constants, and
the eigenspace is spanned by the eight eigenvectors. On the other hand, the
second eigenvalue problem is introduced by decay analysis (Equation (3.142).
There are an infinite number of eigenvalues and eigenfunctions for this
eigenvalue problem. Determination of the eigenvalues and eigenfunctions for
the second problem depends on the boundary conditions at y = ±1.

3.5.3 Boundary Conditions and Determination of
Eigenvalues λk

(a) Boundary conditions along the upper and lower surfaces of the strip. For a
traditional Saint-Venant principle, the boundary conditions along the upper
and lower surfaces of the strip are traction-free. However, there are other
alternatives to pose the homogeneous boundary conditions along the surfaces.
Wang et al. [34] posed total eight possible boundary conditions with mixed
displacement and traction components. Their treatment is extended to the
piezoelectric strip in the present section.

The boundary conditions along the upper and lower surfaces can be one of
the following 16 combinations. The boundary condition is formed by selecting
only one variable from each of the following groups.

(σ21, u1), (σ22, u2), (σ23, u3), (D2, φ). (3.150)

For instance, one of the choices is

σ21 = 0, σ22 = 0, σ23 = 0, ϕ = 0, at y = 1 and y = −1.
(3.151)
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A generalized matrix representation of the homogeneous boundary
condition is

IuU
′
x + Itt = 0, (3.152)

where Iu and It are the 4 by 4 diagonal matrices whose diagonal elements
are either one or zero. For example, the matrices for Equation (3.151) are

Iu = diag{0, 0, 0, 1},
It = diag{1, 1, 1, 0}. (3.153)

b) Determination of eigenvalues. Substituting Equations (3.144) and (3.146)
into (3.152) for a given boundary condition, one obtains:

K+ < e−λp > q + K+ < e−λp > h = 0 y = 1, (3.154)

K− < eλp > q + K− < eλp > h = 0 y = −1, (3.155)

where
K = IuA + ItB. (3.156)

It is noted that the lower and upper surfaces may post different boundary
conditions. Thus, K+ and K− may not be the same.

It can be proved that matrix K is nonsingular. The proof is similar to
Wang et al. [34] for anisotropic elasticity. Bearing this in mind, we can have
the equation of the eigenvalue λ for nonzero q and h,

det(K+ < e−2λp > K−1
− − K+ < e−2λp > K

−1

− ) = 0. (3.157)

In general, the solution of Equation (3.157) involves a numerical proce-
dure. Some simplified examples are discussed in the next section.

(c) Boundary conditions at the end. (x = 0). The end conditions are needed
to determine the participant factors in eigenexpansion Equation (3.144)
with the help of orthogonality among the eigenfunctions. The end condition
in a traditional Saint-Venant consideration has to be “self-balanced.” For
instance, ∫ +1

−1

σ1i(0, x2)dx2 = 0 (3.158)

is the self-balanced end loading in the elasticity. As discussed in [35], this
condition does not necessarily hold for the cases in which the boundary
conditions along the upper and lower surface are the displacement version.
Because our primary interest in this chapter is to find the decay factor, this
boundary condition is not involved in our formulation. For the sake of com-
pleteness, the orthogonality of the eigenfunctions is discussed briefly at the
end of this section via the eight-dimensional matrix scheme.
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3.5.4 Examples of Decay Factor in the Piezoelectric
Strip

(a)Decay rate when the piezoelectric tensor vanishes. When the piezoelec-
tric tensor vanishes, the problem is decoupled into anisotropic and dielec-
tric ones. The former, the anisotropic elastic strip, has been considered by
Wang et al. [34] for a general anisotropic two-dimensional elastic strip via
the Stroh formulation. The latter problem, the dielectric strip which has not
been reported in the literature, is presented here.

In order to make the reading fluent, let us repeat a few lines of equations
presented in Section 3.4.3. For e = 0, the eigenvalue problem Equation (3.12)
is simplified as

Cαikβςαςβak = 0, (3.159a)

and

εαβςαςβa4 = 0. (3.159b)

The corresponding eigenvectors are in the form of

A =
(
Ae 0
0 a4

)
, B =

(
Be 0
0 b4

)
, (3.160)

where Ae and Be are 3 by 3 matrices for anisotropic elasticity. The
dielectricity problem is governed by Equation (3.159b) and scalars in (3.160).
The eigenvalue corresponding to the anisotropic dielectricity is obtained from
Equation (3.159b)

ε11 + 2ε12p+ ε22p
2 = 0. (3.161)

They are

p4 =
ε12
ε22

+ i

√
ε11
ε22

−
(
ε12
ε22

)2

, p8 = p4. (3.162)

For the electric potential version decay analysis, the boundary conditions
along the upper and lower surfaces of the strip are read as

ϕ = 0 at y = ±1. (3.163)

After some straightforward calculations, the equation for the eigenvalue
Equation (3.157) corresponding to the dielectricity part is obtained as

e2λp4 − e−2λp4 = 0. (3.164)

Then the solution is
2λIm(p4) = nπ. (3.165)
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The smallest root, normally called the decay factor, is

λ =
π

2Im(p4)
. (3.166)

(b) Decay rate in a piezoelectric material with transverse symmetry. The
materials constants are given in Section 3.3.2. The in-plane deformation
(ux, uy) is decoupled from the antiplane field (uz, ϕ). The former is identical
to an elastic problem. We focus on the latter. It is obtained that

p3 = p4 = i, p7 = p8 = −i (3.167)

and

A =
[
A2e 0
0 Ap

]
,

B =
[
B2e 0
0 Bp

]
, (3.168)

where the right upper 2 by 2 matrices correspond to in-plane deformation, and
the left lower corner matrix corresponds to a coupled antiplane deformation
and electric field. Let us concentrate on the latter one. One has:

Ap =
[
1 0
0 1

]
, Bp = i

[
c44 e15
0 −ε11

]
. (3.169)

Let us consider that the boundary conditions along the upper and lower
surfaces are

ϕ = 0 and σ23 = 0. (3.170)

Thus,

Kp = IuAp+ItBp =
[
0 0
0 1

] [
1 0
0 1

]
+i
[
1 0
0 0

] [
c44 e15
0 −ε11

]
=
[
ic44 ie15
0 1

]
. (3.171)

After a lengthy calculation, we obtain the equation for the eigenvalues as

e2λi − e−2λi = 0. (3.172)

The solution can be obtained as

2λ = nπ. (3.173)

The decay factor is

λsmallest =
π

2
. (3.174)
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3.5.5 Remarks

If we use the eight-dimensional notation introduced in Section 3.1.2, the decay
field is expanded as

w(x1, x2) =
∞∑

k=1

Ckw(k)(x2)e−λkx1 , (3.175)

where the eight-dimensional column www is defined in Equation (3.33). Substi-
tuting Equation (3.175) into (3.32), we have:

dw(k)

dx2
= −λkNw(k). (3.176)

Solution of Equation (3.176) comes out as

w(k)(x2) = e−λkpx2ξ, (3.177)

where ξ is the eigenvector in Equation (3.38). It is noted that the solution,
equation (3.177), has been taken intuitively in Equation (3.144).

The orthogonality of the eigenfunctions in Equation (3.175) is sought out
by considering:

d

dx2
((w(−m))T Jw(k)) = (λm − λk)(w(−m))T JNw(k), (3.178)

where

J =
(
0 I
I 0

)
, NTJ = JN (3.179)

have been used. By integrating both sides of Equation (3.178) with respect
to x2 from (−1, 1), it is obtained that

{U(−m)T

Φ(k) + Φ(−m)T

U(k)}1
−1 = (λm − λk)

∫ 1

−1

(w(−m))T JNw(k)dx2.

(3.180)
The left-hand side vanishes because of the side boundary conditions,

Equation (3.152). Thus the orthogonality of the eigenfunctions is proved. The
detailed derivation is similar to Wang et al. [34] for the anisotropic elastic-
ity problem. With this orthogonality condition, one can have participation
factors Ck in Equation (3.175) determined. In the present analysis, when we
are just concerned with the decay rate in the strip, only the first eigenvalue
is needed. Therefore, the participation factor is not needed for the decay
analysis.
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Chapter 4

Fracture and Crack Mechanics

Yasuhide Shindo

4.1 Introduction

In the development of smart material systems and structures, piezoelectric
ceramics are extensively used in sensors and actuators. The main weakness
of piezoelectric ceramics is their brittleness. Stress and electric field concen-
trations near the tips of defects or electrodes can also induce crack initiation
and propagation, which will lead to the failure of these piezoelectric ceramics.
Therefore, the piezoelectric fracture and crack problems have received
considerable attention due to practical importance.

In the theoretical studies of the piezoelectric fracture and crack problems,
there are two commonly used electrical boundary conditions across the crack
face, the permeable crack model [1,2], and the impermeable crack model
[3–5]. Recently, the open piezoelectric crack model [6] was used in [7–9],
and the effect of electric fields on the fracture mechanics parameters such as
energy release rate was discussed. Also an extensive body of theoretical and
experimental data on fracture behavior for a wide variety of piezoelectric
ceramics over the last two decades was summarized in books and review pap-
ers [10–12]. Although the impermeable and open crack models may provide
the mathematical solutions of the piezoelectric cracks, it is still questionable
to search for fracture design parameters characterizing the electric failure.
It has also been found that the permeable crack model can be appropriate
for the piezoelectric cracks.

Some experimental results show that the fracture loads are increased
or decreased, depending on the mechanical loading conditions (applied load
or applied displacement) and direction of electric fields [13,14]. The nonlinear
effect caused by the polarization switching may also affect the piezoelectric

Yasuhide Shindo
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fracture behavior [15, 16]. Hence, it is important for reliability and durability
to investigate the effects of applied electromechanical loading and polariza-
tion switching on the fracture behavior of piezoelectric ceramics.

In this chapter, a theoretical fracture mechanics for piezoelectric ceramics
is first developed, based on the permeable, impermeable, and open crack mod-
els. Both analytical and simulation methods are formulated to determine the
effects of electric field and polarization switching on the fracture mechanics
parameters (e.g., energy release rate). Secondly, the results on the electrical
loading dependence of fracture of piezoelectric ceramics are reported. The
indentation fracture (IF), bending fracture, and some precracked specimen
tests are performed. Finite element analyses are then employed to study
the crack behavior in piezoelectric ceramics. Finally, the results on fatigue
behavior in piezoelectric specimens under electromechanical loading are
presented.

4.2 Piezoelectric Crack Mechanics

The electrical boundary conditions along the crack face remain an issue of
debate when studying piezoelectric crack problems. Here, the effect of crack
face boundary conditions on the piezoelectric fracture mechanics parame-
ters is discussed. Attention is focused on the electric field dependence of the
energy release rate. Nonlinear behavior of the piezoelectric fracture mechanics
parameters due to localized polarization switching is also examined.

4.2.1 Fundamental Equations

(a) Linear behavior

Consider the rectangular Cartesian coordinate system O-x, y, z. Poling
direction is the z-axis. For piezoelectric ceramics that exhibit symmetry of a
hexagonal crystal of class 6 mm with respect to principal x, y, and z axes,
the constitutive relations can be written in the following form [17, 18],⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Txx

Tyy

Tzz

Tyz

Tzx

Txy

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
=

⎡⎢⎢⎢⎢⎢⎢⎣
cE11 c

E
12 c

E
13 0 0 0

cE12 c
E
11 c

E
13 0 0 0

cE13 c
E
13 c

E
33 0 0 0

0 0 0 cE44 0 0
0 0 0 0 cE44 0
0 0 0 0 0 cE66

⎤⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Sxx − Sr
xx

Syy − Sr
yy

Szz − Sr
zz

2(Syz − Sr
yz)

2(Szx − Sr
zx)

2(Sxy − Sr
xy)

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
−

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 e31
0 0 e31
0 0 e33
0 e15 0
e15 0 0
0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦
⎧⎨⎩
Ex

Ey

Ez

⎫⎬⎭
(4.1)
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⎧⎨⎩
Dx

Dy

Dz

⎫⎬⎭ =

⎡⎣ 0 0 0 0 e15 0
0 0 0 e15 0 0
e31 e31 e33 0 0 0

⎤⎦
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Sxx − Sr
xx

Syy − Sr
yy

Szz − Sr
zz

2(Syz − Sr
yz)

2(Szx − Sr
zx)

2(Sxy − Sr
xy)

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
+

⎡⎣εS
11 0 0
0 εS

11 0
0 0 εS

33

⎤⎦⎧⎨⎩
Ex

Ey

Ez

⎫⎬⎭+

⎧⎨⎩
P r

x

P r
y

P r
z

⎫⎬⎭ , (4.2)

where (Txx, Tyy, Tzz, Tyz, Tzx, Txy) and (Sxx, Syy, Szz, Syz, Szx, Sxy) are the
components of stress and strain tensors, (Ex, Ey, Ez) and (Dx, Dy, Dz) are
the components of electric field intensity and electric displacement vectors,
(Sr

xx, S
r
yy, S

r
zz, S

r
yz, S

r
zx, S

r
xy) and (P r

x , P
r
y , P

r
z ) are the components of rema-

nent strains and polarizations, and (cE11, c
E
12, c

E
13, c

E
33, c

E
44, c

E
66), (e31, e33, e15),

and (εS
11, ε

S
33) are the elastic stiffness constants measured in a constant elec-

tric field, piezoelectric constants, and dielectric permittivities measured at
constant strain, respectively. The strain components are

Sxx = ux,x, Syy = uy,y,

Szz = uz,z, Syz = Szy =
1
2
(uy,z + uz,y),

Szx = Sxz =
1
2
(uz,x + ux,z), Sxy = Syx =

1
2
(ux,y + uy,x), (4.3)

where (ux, uy, uz) are the components of the displacement vector. The electric
field components are related to the electric potential φ by

Ex = −φ,x, Ey = −φ,y, Ez = −φ,z. (4.4)

Using the displacements and electric potential, the governing equations
can be written as

cE11ux,xx + cE66ux,yy + cE44ux,zz + (cE12 + cE66)uy,xy

+ (cE13 + cE44)uz,xz + (e31 + e15)φ,xz = 0

(cE12 + cE66)ux,xy + cE66uy,xx + cE11uy,yy + cE44uy,zz

+ (cE13 + cE44)uz,yz + (e31 + e15)φ,yz = 0

(cE13 + cE44)(ux,xz + uy,yz) + cE44(uz,xx + uz,yy) + cE33uz,zz

+ e15(φ,xx + φ,yy) + e33φ,zz = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(4.5)

(e31 + e15)(ux,xz + uy,yz) + e15(uz,xx + uz,yy) + e33uz,zz

− εS
11(φ,xx + φ,yy) − εS

33φ,zz = 0. (4.6)
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In a vacuum, the constitutive equations (4.2) and the governing equation
(4.6) become

Dx = ε0Ex, Dy = ε0Ey, Dz = ε0Ez (4.7)
φ,xx + φ,yy + φ,zz = 0, (4.8)

where ε0 = 8.85 × 10−12 C/Vm is the electric permittivity of the vacuum.

(b) Polarization switching behavior

The most important class of ferroelectric materials is the perovskite
oxides ABO3 (e.g., PbTiO3), as shown in Figure 4.1. A central Ti4+ ion
displaces off-center with respect to surrounding O2− ions, so that the unit cell

PsPs

TZZ

TZZ

Ez

Ex

z

xO

O

O

Ti

Ti

Pb

Pb

Fig. 4.1 180◦ or 90◦ polarization switching for perovskite-type crystal structure of lead
titanate.
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possesses a spontaneous polarization P s and a spontaneous strain γs aligned
with the dipole moment of the charge distribution. Piezoelectric behavior is
induced by the poling process, that is, by applying a high voltage to the
material. The electric field aligns dipoles along the field lines. This align-
ment results in the remanent polarization (P r

x , P
r
y , P

r
z ), and the remanently

polarized state has a remanent strain (Sr
xx, S

r
yy, S

r
zz, S

r
yz, S

r
zx, S

r
xy). Polar-

ization switching occurs when an applied electric field exceeds the coercive
electric field Ec, and leads to changes in the remanent strain and remanent
polarization.

Lead oxide-based ferroelectrics, especially Pb(Zr,Ti)O3 (PZT), exhibit
high piezoelectric properties. Due to lead toxicity, however, the introduction
of legislation in Europe to limit the usage of lead in automotive and electronic
products has led to a worldwide search for lead-free compounds [19, 20].

Some nonlinear constitutive models have been developed for ferroelectric
materials. A dynamic macroscopic phenomenological theory for the existence
of butterfly and hysteresis loops in ferroelectricity was presented in [21].
The model reproduced the consequences of polarization switching on the
mechanical and dielectric responses of the piezoelectric ceramics subjected to
a slowly varying cyclic electric field. This is, perhaps, the first quantitative
indication of this phenomenon. In [22], a work energy criterion was used to
determine the critical loading level at which polarization switching occurs. By
using a number of nonlinear functions to represent behavior during switching,
a simple smooth switching model (complete phenomenological constitutive
model) was developed in [23]. Later, three models were discussed in [24]:
(i) a self-consistent polycrystal model; (ii) a crystal plasticity model; and
(iii) a rate-independent phenomenological model, and the predictions of
each model for the material response in multiaxial electrical loading were
compared with the measured responses. In recent years, several existing
polarization switching criteria were reviewed, and a new criterion in terms
of internal energy density was proposed for combined electromechanical
loading [25].

An electric field may rotate the poling direction by either 180◦ or 90◦,
but a stress may only rotate it by 90◦ [26]. Figure 4.1 illustrates several
possibilities. The criterion in [22] requires that a polarization switches when
the combined electrical and mechanical work exceeds a critical value; that is,

Txx∆Sxx + Tyy∆Syy + Tzz∆Szz + 2(Tyz∆Syz + Tzx∆Szx + Txy∆Sxy)
+ Ex∆Px + Ey∆Py + Ez∆Pz ≥ 2P sEc, (4.9)

where ∆ means the changes in the spontaneous strain and polarization.
It is assumed that elastic and dielectric constants of the piezoelectric
materials remain unchanged after 180◦ or 90◦ polarization switching occurs
and only piezoelectric constants vary with switching. It is also assumed, for
example, in the zx plane, that for 90◦ switching there are two allowable
directions of the poling in the coordinate system: in the positive and
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negative x-direction (see Figure 4.1). The changes in spontaneous strains
and polarizations for 180◦ switching can be expressed as

∆Sxx = 0, ∆Syy = 0, ∆Szz = 0,
∆Syz = 0, ∆Szx = 0, ∆Sxy = 0 (4.10)
∆Px = 0, ∆Py = 0, ∆Pz = −2P s. (4.11)

For 90◦ switching in the zx plane, the changes are

Sxx = γs, ∆Syy = 0, ∆Szz = −γs,

∆Syz = 0, ∆Szx = 0, ∆Sxy = 0 (4.12)
∆Px = ±P s, ∆Py = 0, ∆Pz = −P s. (4.13)

For 90◦ switching in the yz plane, we have

∆Sxx = 0, ∆Syy = γs, ∆Szz = −γs,

∆Syz = 0, ∆Szx = 0, ∆Sxy = 0 (4.14)
∆Px = 0, ∆Py = ±P s, ∆Pz = −P s. (4.15)

The constitutive equations (4.1) and (4.2) after polarization switching are⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Txx
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(4.16)

⎧⎨⎩
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Ex

Ey
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⎫⎬⎭+

⎧⎨⎩
P r

x

P r
y

P r
z

⎫⎬⎭ . (4.17)

The new piezoelectric constants are related to the elastic and direct piezo-
electric constants by

e′11 = d′111c11 + d′122c12 + d′133c13 e′12 = d′111c12 + d′122c11 + d′133c13
e′13 = d′111c13 + d′122c13 + d′133c33 e′14 = 2d′123c44,
e′15 = 2d′131c44, e′16 = 2d′112c66
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e′21 = d′211c11 + d′222c12 + d′233c13 e′22 = d′211c12 + d′222c11 + d′233c13
e′23 = d′211c13 + d′222c13 + d′233c33 e′24 = 2d′223c44,
e′25 = 2d′231c44, e′26 = 2d′212c66
e′31 = d′311c11 + d′322c12 + d′333c13 e′32 = d′311c12 + d′322c11 + d′333c13
e′33 = d′311c13 + d′322c13 + d′333c33 e′34 = 2d′323c44,
e′35 = 2d′331c44, e′36 = 2d′312c66. (4.18)

The components of the direct piezoelectric tensor d′ikl are

d
′
ikl =

{
d33ninknl + d31(niδkl − ninknl) +

1
2
d15(δiknl − 2ninknl + δilnk)

}
,

(4.19)

where ni is the unit vector in the poling direction, δij is the Kroneker delta,
and d33, d31, d15 are the direct piezoelectric constants.

4.2.2 Crack Face Boundary Conditions

With reference to the theoretical studies of the piezoelectric fracture and
crack problems, the investigators differ in opinions on the electrical
boundary conditions at the crack faces. As the dielectric constant of the
air or the medium between the crack faces is very small compared to that
of the piezoelectric material, most of the reported works have assumed the
permittivity in the medium interior to the crack to be zero (the so-called
condition of impermeability or impermeable condition); that is,

D+
n = D−

n = 0, (4.20)

where Dn is the normal component of the electric displacement at the
crack faces, and superscripts + and − denote upper and lower crack faces,
respectively. Across the crack faces, having no charge density, we need to
satisfy the relevant boundary conditions [2], which are the continuity of the
tangential component of the electric field at the crack faces Et,

E+
t = E−

t (4.21)

and the continuity of the normal component of the electric displacement,

D+
n = D−

n . (4.22)

Here, the effects of the electrical surface conditions on the electroelastic
fields are discussed. The geometry of the problem under consideration is
shown in Figure 4.2. Two semi-infinite piezoelectric materials are placed
a distance 2d apart and occupy the region (−∞ < x < ∞, |z| ≥ d).
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Fig. 4.2 Two semi-infinite piezoelectric materials.

The piezoelectric material is under a state of plane strain in the y-direction.
To simulate a crack, the distance d is taken to be very small. This is equivalent
to setting d→ 0.

The constitutive equations can be written as

Txx = cE11Sxx + cE13Szz − e31Ez

Tzx = 2cE44Szx − e15Ex

Tzz = cE13Sxx + cE33Szz − e33Ez

⎫⎪⎪⎬⎪⎪⎭ (4.23)

Dx = 2e15Szx + εS
11Ex

Dz = e31Sxx + e33Szz + εS
33Ez

}
. (4.24)

The remanent terms are not included in the constitutive equations.
The governing equations become

cE11ux,xx + cE44ux,zz + (cE13 + cE44)uz,xz + (e31 + e15)φ,xz = 0

cE44uz,xx + cE33uz,zz + (cE13 + cE44)ux,xz + e15φ,xx + e33φ,zz = 0

⎫⎬⎭ (4.25)

(e31 + e15)ux,xz + e15uz,xx + e33uz,zz − εS
11φ,xx − εS

33φ,zz = 0. (4.26)

The piezoelectric half-planes are subjected to a constant normal stress Td

at z = ±d,−l ≤ x ≤ l. Hence the boundary conditions are given by
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Tzx(x,±d) = 0 (4.27)

Tzz(x,±d) =
{−Td(0 ≤ |x| ≤ l)

0 (l < |x| <∞) . (4.28)

We consider next two possible cases of electrical boundary conditions on
z = ±d.

Impermeability:

Dz(x,±d) = 0 (0 ≤ |x| <∞) (4.29)

Electrical continuity:

Ex(x,±d) = Ee
x(x,±d) (0 ≤ |x| <∞) (4.30)

Dz(x,±d) = De
z(x,±d) (0 ≤ |x| <∞), (4.31)

where superscript e stands for the component of the electric field quantity
outside the solid.

Solutions for the electroelastic fields are obtained using Fourier transform
[27]. In the limit ε0 → 0, the solutions for the electrical continuity become
those for the impermeability. In electrostatics, at a surface separating two
dielectric materials with no free charge, the normal component of the electric
displacement and the tangential component of the electric field are continu-
ous. When one of the materials is air, these two conditions can be approx-
imated simply by one, namely that the normal component of the electric
displacement vanishes at the interface. So the conditions (4.21) and (4.22)
are approximated by the single equation (4.20). This assumption is based
on the fact that there is a very large difference between the dielectric con-
stants of the material and the air. However, the solutions for the imper-
meability do not tend to those for the electrical continuity as d → 0. This
trend may be more clearly observed in Figure 4.3 [14]. The normalized stress
Tzz(l, d)/Td, strain cE33Szz(l, d)/Td, electric displacement cE33Dz(l, d)/e33Td,
and electric field e33Ez(l, d)/Td are plotted as a function of the normal-
ized distance d/l. Thus the result illustrates how rapidly the applicability
of the impermeable assumption deteriorates. Therefore, the electric bound-
ary condition given by Equation (4.29) is not appropriate for a slit crack in
piezoelectric materials.

Similarly, the problem of an elliptic hole embedded in a piezoelectric
material was addressed in [28]. An infinite piezoelectric material contain-
ing an elliptic hole with major and minor axes 2a and 2b was considered,
and the cavity was assumed to be filled with a homogeneous gas of ε0.
The major axis was normal to the poling direction. Expressions for the elas-
tic and electric variables inside and outside the cavity were derived in closed
form, and the following were found. (1) If b/a >> 10−4, the models for the
impermeability and electrical continuity provide virtually the same results;
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Fig. 4.3 The stress, strain, electric field, and electric displacement versus normalized
distance: (a) Tzz/Td and cE

33Szz/Td; (b) cE
33Dz/e33Td and e33Ez/Td.

(2) if ε0 is retained, in the limit of b/a→ 0, we find the dramatic differences
for the fields provided by both models. It was concluded that the condition of
electric impermeability at the boundary of the cavity may result in erroneous
conclusions; it is particularly relevant for the case of very slender ellipses
or sharp cracks. When an internal elliptic cavity problem in piezoelectric
materials is analyzed, the impermeable condition is a good approximation.
The fracture mechanics parameters for the above two models are presented
in the next section.
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The electric permeability of the air in a crack gap was considered in [6].
The conditions are

D+
n = D−

n (4.32)

D+
n (u+

n − u−n ) = −ε0(φ+ − φ−), (4.33)

where un is the displacement component normal to the crack face. This open
crack model is also discussed in the next section.

4.2.3 Fracture Mechanics Parameters

(a) Plane strain crack in infinite material

Consider an infinite piezoelectric material containing a central crack of
length 2a. The crack is assumed with faces normal (Case 1) or parallel
(Case 2) to the polarization axis, as shown in Figure 4.4. A set of Cartesian
coordinates (x, y, z) is attached to the center of the crack. The piezoelectric
material is under a state of plane strain in the y-direction. The material is
loaded by mechanical loading and electric field. Only the first quadrant with
appropriate boundary conditions needs to be analyzed owing to symmetry.

We first consider the case 1 (see Figure 4.4(a)). The boundary conditions
at z = 0 can be expressed in the form

Tzx(x, 0) = 0 (0 ≤ x <∞) (4.34)
Tzz(x, 0) = 0 (0 ≤ x < a) uz(x, 0) = 0 (a ≤ x <∞) (4.35)
Ex(x, 0) = Ec

x(x, 0) (0 ≤ x < a) φ(x, 0) = 0 (a ≤ x <∞) (4.36)
Dz(x, 0) = Dc

z(x, 0) (0 ≤ x < a), (4.37)

Poling

O

z

x

2a

Poling

O

x

z

2a

(a) (b)

Fig. 4.4 An infinite piezoelectric material with a central crack: (a) Case 1; (b) Case 2.
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where superscript c stands for the electric field quantity in the void inside
the crack.

The mechanical and electrical loading conditions at infinity are

Szz(x, z) = S0, Ez(x, z) = E0 (0 ≤ x <∞, z → ∞), (4.38)

where S0 and E0 are the far-field normal strain and electric field. The electric
potential is all zero on the symmetry planes inside the crack and ahead of the
crack, so the boundary conditions of Equations (4.36) reduce to φ(x, 0) = 0
(0 ≤ x < ∞). Equations (4.36) and (4.37) are the permeable boundary
conditions.

By applying the loading conditions (4.38), the far-field normal stress TE0

is expressed as

TE0 = T0 − e1E0, (4.39)

where

T0 =
{
cE33 −

(cE13)
2

cE11

}
S0 (4.40)

and

e1 = e33 −
(
cE13
cE11

)
e31. (4.41)

Note that T0 is the stress for a closed-circuit condition with the potential
forced to remain zero (grounded), and depends only on the strain at infinity.
When a uniform strain S0 is applied and fixed at infinity, the stress T0 is
uniform. On the other hand, when the stress TE0 is applied and fixed at
infinity, TE0 is left unchanged and the strain S0 depends on E0.

Fourier transform [27] is applied to Equations (4.25) and (4.26) and the
results satisfying the loading conditions of Equation (4.38) are

ux(x, z) = 2
π

3∑
j=1

∫∞
0 ajAj(α)exp(−γjαz)sin(αx)dα

+
{

cE
13

(cE
13)2−cE

33cE
11

(TE0 + e1E0) + e31
cE
11
E0

}
x

uz(x, z) = 2
π

3∑
j=1

∫∞
0

1
γj
Aj(α)exp(−γjαz)cos(αx)dα

+ cE
11

cE
33cE

11−(cE
13)2

(TE0 + e1E0)z

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(4.42)

φ(x, z) = − 2
π

3∑
j=1

∫ ∞

0

bj
γj
Aj(α)exp(−γjαz)cos(αx)dα − E0z, (4.43)
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where Aj(α) (j = 1, 2, 3) are the unknowns to be solved, and aj and bj
(j = 1, 2, 3) are

aj =
(e31 + e15)(cE33γ2

j − cE44) − (cE13 + cE44)(e33γ2
j − e15)

(cE44γ2
j − cE11)(e33γ2

j − e15) + (cE13 + cE44)(e31 + e15)γ2
j

(4.44)

bj =
(cE44γ

2
j − cE11)aj + (cE13 + cE44)

e31 + e15
. (4.45)

γ2
j (j = 1, 2, 3) are the roots of the following characteristic equations,

a0γ
6 + b0γ

4 + c0γ
2 + d0 = 0, (4.46)

where

a0 = cE44(c
E
33ε

S
33 + e233)

b0 = −2cE44e15e33 − cE11e
2
33 − cE33(c

E
44ε

S
11 + cE11ε

S
33) + εS

33(c
E
13 + cE44)

2

+ 2e33(cE13 + cE44)(e31 + e15) − (cE44)
2εS

33 − cE33(e31 + e15)2

c0 = 2cE11e15e33 + cE44e
2
15 + cE11(c

E
33ε

S
11 + cE44ε

S
33) − εS

11(c
E
13 + cE44)

2

− 2e15(cE13 + cE44)(e31 + e15) + (cE44)
2εS

11 + cE44(e31 + e15)2

d0 = − cE11(c
E
44ε

S
11 + e215). (4.47)

Application of the Fourier transform to Equation (4.8) yields

φc =
2
π

∫ ∞

0

C(α)sinh(αz)cos(αx)dα (0 ≤ x < a), (4.48)

where C(α) is also unknown.
Application of the crack face boundary conditions in Equations (4.34)–

(4.36) gives rise to a pair of dual integral equations. The closed-form solutions
of these dual integral equations are then obtained. The unknowns Aj(α)(j =
1, 2, 3) are related to the stress TE0 by the following equation,

Aj(α) = −π
2
dj

F

aJ1(aα)
α

TE0, (4.49)

where J1( ) is the first-order Bessel function of the first kind, and

F =
3∑

j=1

gjdj (4.50)

d1 = γ1(b2f3 − b3f2), d2 = γ2(b3f1 − b1f3), d3 = γ3(b1f2 − b2f1)
(4.51)
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fj = cE44(ajγ
2
j + 1) − e15bj (j = 1, 2, 3) (4.52)

gj = cE13aj − cE33 + e33bj (j = 1, 2, 3). (4.53)

The displacement uz and electric potential φ on the crack face are given by

uz(x, 0) = − b

F
TE0(a2 − x2)1/2 φ(x, 0) = 0 (4.54)

in which

b = b1(f2 − f3) + b2(f3 − f1) + b3(f1 − f2). (4.55)

The tangential component of electric field Ex and the normal component of
electric displacement Dz on the crack face are

Ex(x, 0) = 0 Dz(x, 0) = DT0 − 1
F

⎛⎝ 3∑
j=1

hjdj

⎞⎠TE0, (4.56)

where the far-field electric displacement DT0 is given by

DT0 =
e31c

E
13 − e33c

E
11

(cE13)2 − cE33c
E
11

T0 +
(
e231
cE11

+ εS33

)
E0 (4.57)

and

hj = e31aj − e33 − εS33bj (i = 1, 2, 3). (4.58)

The stress intensity factor KI is obtained as

KI = lim
x→a+

{2π(x− a)}1/2Tzz(x, 0) = TE0(πa)1/2. (4.59)

The electric displacement intensity factor KD is also given by

KD = lim
x→a+

{2π(x− a)}1/2Dz(x, 0) =
1
F

⎛⎝ 3∑
j=1

hjdj

⎞⎠KI . (4.60)

The displacement component uz and electric potential φ near the crack-tip
can be written as

ux = KI
F

(
r
π

)1/2 3∑
j=1

ajdj{(cos2 θ + γ2
j sin2 θ)1/2 + cos θ}1/2

uz = −KI
F

(
r
π

)1/2 3∑
j=1

dj

γj
{(cos2 θ + γ2

j sin2 θ)1/2 − cos θ}1/2

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (4.61)
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φ =
KI

F

( r
π

)1/2 3∑
j=1

bjdj

γj
{(cos2 θ + γ2

j sin2 θ)1/2 − cos θ}1/2, (4.62)

where the polar coordinates r and θ are defined by r = {(x − a)2 + z2}1/2,
θ = tan−1(z/(x−a)). The singular parts of the strains, stresses, electric field
intensities, and electric displacements in the neighborhood of the crack-tip are
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2F (πr)1/2
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ajdjR
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Sxz = Szx = − KI
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(4.63)
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Dx = − KI
2F (πr)1/2
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njdj

γj
Rs
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Dz = KI
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hjdjR
c
j(θ)

⎫⎪⎪⎬⎪⎪⎭ , (4.66)

where

Rc
j(θ) =

{
(cos2 θ + γ2

j sin2 θ)1/2 + cos θ

cos2 θ + γ2
j sin2 θ

}1/2

Rs
j(θ) = −

{
(cos2 θ + γ2

j sin2 θ)1/2 − cos θ

cos2 θ + γ2
j sin2 θ

}1/2

(4.67)
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and

mj = cE11aj − cE13 + e31bj (i = 1, 2, 3) (4.68)

nj = e15(ajγ
2
j + 1) + εS11bj (i = 1, 2, 3). (4.69)

By using the concept of crack closure energy, the energy release rate G [4]
can be obtained as

G = lim
∆a→0

1
∆a

∫ ∆a

0

{Tzz(x)uz(∆a− x) + Tzx(x)ux(∆a− x)

+Dz(x)φ(∆a − x)}dx, (4.70)

where ∆a is the assumed crack extension. The energy release rate G is also
obtained from the following path-independent integral J [4]:

J =
∫

Γ0

{Hnx − (Txxux,x + Tzxuz,x)nx − (Tzxux,x + Tzzuz,x)nz

+DxExnx +DzExnz}dΓ, (4.71)

where Γ0 is a small contour closing a crack-tip (see Figure 4.5) and nx, nz

are the components of the outer unit normal vector. The electrical enthalpy
density H is [17]

H(Sxx, Szz, Szx, Ex, Ez) =
1
2
(cE11S

2
xx + cE33S

2
zz + 2cE13SxxSzz

+ 4cE44S
2
zx) − 1

2
(εS11E

2
x + εS33E

2
z ) − {2e15SzxEx + (e31Sxx + e33Szz)Ez}.

(4.72)

Writing the energy release rate expression for the permeable crack model
in terms of the stress intensity factor [29], it results in

Γ0

dΓ

z

x
O

Fig. 4.5 Contour for evaluation of path-independent integral.
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G = J =
1

2F 2

⎛⎝−F
3∑

j=1

dj

γj
+

3∑
k=1

hkdk

3∑
j=1

bjdj

γj

⎞⎠K2
I . (4.73)

The energy density fracture criterion can be developed by referring to the
amount of energy stored in a volume element ahead of the crack [30]. For the
piezoelectric material, the energy stored in the volume element dV [31] is

dW =
{

1
2
(TxxSxx + TxzSxz + TzxSzx + TzzSzz)

+
1
2
(DxEx +DzEz)

}
dV. (4.74)

The energy density S is expressible in the form

S = r
dW

dV
. (4.75)

The energy density criterion can be used to predict the path of mixed mode
crack initiation and propagation. The energy density for the permeable crack
model [32] is given as

S = (aM + aE)K2
I (4.76)

in which the coefficients aM and aE depend on the angle θ and they are

aM =
1

8πF 2

⎧⎨⎩
3∑

j=1

mjdjR
c
j(θ)

3∑
j=1

ajdjR
c
j(θ)

+
3∑

j=1

fjdj

γj
Rs

j(θ)
3∑

j=1

dj(ajγ
2
j + 1)
γj

Rs
j(θ) −

3∑
j=1

gjdjR
c
j(θ)

3∑
j=1

djR
c
j(θ)

⎫⎬⎭
(4.77)

aE =
1

8πF 2

⎧⎨⎩
3∑

j=1

nj

γj
djR

s
j(θ)

3∑
j=1

bjdj

γj
Rs

j(θ) −
3∑

j=1

hjdjR
c
j(θ)

3∑
j=1

bjdjR
c
j(θ)

⎫⎬⎭ .

(4.78)

The stress and electric displacement intensity factors, energy release
rate, and energy density for the permeable crack model depend only on
the stress TE0, and the electric loading dependence on these parameters
is different for the two mechanical loading conditions (applied strain and
applied stress). For many practical applications it seems that the piezoelectric
devices are operated with the strain fixed at some values. For a general remote
boundary condition prescribed by fixed strain, the stress TE0 is determined
by Equation (4.39) with T0 and E0. The stress and electric displacement
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intensity factors, energy release rate, and energy density for the permeable
crack model depend on the electric field E0, because the stress TE0 increases
or decreases depending on the magnitude and direction of the electric field
E0. However, if the stress is applied and fixed, the value of the stress TE0 is
left unchanged. Consequently, the stress and electric displacement intensity
factors, energy release rate, and energy density for the permeable crack model
are independent of the electric field E0.

The above phenomena are not observed in the impermeable and open
cracks of piezoelectric materials. A solution procedure for the impermeable
and open crack models in the infinite piezoelectric materials is outlined in
the next two paragraphs.

The crack face electric boundary condition for the impermeable crack
model is

Dz(x, 0) = 0 (0 ≤ x < a)
φ(x, 0) = 0 (a ≤ x <∞). (4.79)

The unknowns Aj(α) (j = 1, 2, 3) in Equations (4.42) and (4.43) can be found
by the same method of approach as in the permeable case. By applying the
crack face boundary conditions of Equations (4.34), (4.35), and (4.79), the
unknowns Aj(α)(j = 1, 2, 3) are related to TE0 and DT0 as follows,

f1
γ1
A1(α) +

f2
γ2
A2(α) +

f3
γ3
A3(α) = 0

1
γ1
A1(α) +

1
γ2
A2(α) +

1
γ3
A3(α) = − π

2F ′
a

α
J1(aα)(F22TE0 − F12DT0)

b1
γ1
A1(α) +

b2
γ2
A2(α) +

b3
γ3
A3(α) =

π

2F ′
a

α
J1(aα)(F21TE0 − F11DT0), (4.80)

where

F11 =
1
b

3∑
j=1

gjdj , F12 =
1
b

3∑
j=1

gj lj,

F21 =
1
b

3∑
j=1

hjdj , F22 =
1
b

3∑
j=1

hj lj (4.81)

F
′
= F11F22 − F12F21 (4.82)

l1 = γ1(f2 − f3), l2 = γ2(f3 − f1), l3 = γ3(f1 − f2). (4.83)

The displacement uz, electric potential φ, tangential component of electric
field Ex, and normal component of electric displacement Dz on the crack face
are given by

uz(x, 0) = −F22TE0 − F12DT0

F ′ (a2 − x2)1/2
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φ(x, 0) = −F21TE0 − F11DT0

F ′ (a2 − x2)1/2

Ex(x, 0) = −F21TE0 − F11DT0

F ′
x

(a2 − x2)1/2
Dz(x, 0) = 0. (4.84)

The energy release rateGI [33] and energy density SI [31] for the impermeable
crack model are

GI = − 1
2F ′2

⎧⎨⎩
⎛⎝F ′

3∑
j=1

sj

γj
−

3∑
k=1

hksk

3∑
j=1

bjsj

γj

⎞⎠K2
I

+

⎛⎝ 3∑
k=1

hktk

3∑
j=1

bjsj

γj
+

3∑
k=1

hksk

3∑
j=1

bjtj
γj

− F ′
3∑

j=1

tj
γj

⎞⎠KIKD

−
⎛⎝ 3∑

k=1

hktk

3∑
j=1

bjtj
γj

⎞⎠K2
D

⎫⎬⎭ (4.85)

SI =
1

8π(F11F22 − F12F21)2
{(β1K

2
I + β2KIKD + β3K

2
D)

+ (β4K
2
I + β5KIKD + β6K

2
D)}, (4.86)

where

sj = djF22 − ljF21 (j = 1, 2, 3) tj = djF12 − ljF11 (j = 1, 2, 3)
(4.87)

and

β1 =
3∑

k=1

mkskR
c
k(θ)

3∑
j=1

ajsjR
c
j(θ) + 2

3∑
k=1

fksk

γk
Rs

k(θ)
3∑

j=1

sj(ajγ
2
j + 1)
γj

Rs
j(θ)

−
3∑

k=1

gkskR
c
k(θ)

3∑
j=1

sjR
c
j(θ) (4.88)

β2 = −
3∑

k=1

mktkR
c
k(θ)

3∑
j=1

ajsjR
c
j(θ)−2

3∑
k=1

fktk
γk

Rs
k(θ)

3∑
j=1

sj(ajγ
2
j +1)

γj
Rs

j(θ)

+
3∑

k=1

gktkR
c
k(θ)

3∑
j=1

sjR
c
j(θ) −

3∑
k=1

mkskR
c
k(θ)

3∑
j=1

ajtjR
c
j(θ)

− 2
3∑

k=1

fksk

γk
Rs

k(θ)
3∑

j=1

tj(ajγ
2
j + 1)
γj

Rs
j(θ) +

3∑
k=1

gkskR
c
k(θ)

3∑
j=1

tjR
c
j(θ)

(4.89)



100 Yasuhide Shindo

β3 =
3∑

k=1

mktkR
c
k(θ)

3∑
j=1

ajtjR
c
j(θ) + 2

3∑
k=1

fktk
γk

Rs
k(θ)
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j=1

tj(ajγ
2
j + 1)
γj

Rs
j(θ)

−
3∑

k=1

gktkR
c
k(θ)
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j=1

tjR
c
j(θ) (4.90)

β4 =
3∑

k=1

nksk

γk
Rs

k(θ)
3∑

j=1

bjsj

γj
Rs

j(θ) −
3∑

k=1

hkskR
c
k(θ)

3∑
j=1

bjsjR
c
j(θ) (4.91)

β5 = −
3∑

k=1

nktk
γk

Rs
k(θ)

3∑
j=1

bjsj

γj
Rs

j(θ) +
3∑

k=1

hktkR
c
k(θ)

3∑
j=1

bjsjR
c
j(θ)

−
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k=1

nksk

γk
Rs

k(θ)
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bjtj
γj

Rs
j(θ) +

3∑
k=1

hkskR
c
k(θ)

3∑
j=1

bjtjR
c
j(θ) (4.92)

β6 =
3∑

k=1

nktk
γk

Rs
k(θ)

3∑
j=1

bjtj
γj

Rs
j(θ) −

3∑
k=1

hktkR
c
k(θ)

3∑
j=1

bjtjR
c
j(θ). (4.93)

In Equations (4.85) and (4.86), KI is given by Equation (4.59) and KD is

KD = DT0(πa)
1
2 . (4.94)

The crack face electric boundary condition for the open crack model
becomes

D+
z = D−

z (0 ≤ x < a)

D+
z (u+

z − u−z ) = ε0(φ− − φ+) (0 ≤ x < a)
φ(x, 0) = 0 (a ≤ x <∞). (4.95)

By applying the crack face boundary conditions of Equations (4.34), (4.35),
and (4.95), the unknowns Aj(α)(j = 1, 2, 3) in Equations (4.42) and (4.43)
are related to TE0 and DT0 as follows.

f1
γ1
A1(α) +

f2
γ2
A2(α) +

f3
γ3
A3(α) = 0

1
γ1
A1(α) +

1
γ2
A2(α) +

1
γ3
A3(α)

= − π

2F ′
a

α
J1(aα){F22TE0 + F12(D0 −DT0)}

b1
γ1
A1(α) +

b2
γ2
A2(α) +

b3
γ3
A3(α)

=
π

2F ′
a

α
J1(aα){F21TE0 + F11(D0 −DT0)}, (4.96)
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where

D0 = −ε0F21TE0 + F11(D0 −DT0)
F22TE0 + F12(D0 −DT0)

. (4.97)

If ε0 = 0, D0 is equal to zero. When ε0 becomes very large, the expression for
D0 above shows that D0 → DT0 − (F21/F11)TE0. The displacement, electric
potential, tangential component of electric field, and normal component of
electric displacement on the crack face are

uz(x, 0) = −F22TE0 + F12(D0 −DT0)
F ′ (a2 − x2)1/2

φ(x, 0) = −F21TE0 + F11(D0 −DT0)
F ′ (a2 − x2)1/2

Ex(x, 0) = −F21TE0 + F11(D0 −DT0)
F ′

x

(a2 − x2)1/2

Dz(x, 0) = D0. (4.98)

The energy release rate G◦ [34] and energy density S◦ for the open crack
model are given by Equations (4.85) and (4.86), respectively, with

KD = (DT0 −D0)(πa)1/2. (4.99)

To examine the electroelastic fields and fracture mechanics parameters of
piezoelectric materials, numerical calculations have been carried out for com-
mercially available soft piezoelectric ceramics C-91 (Fuji Ceramics, Japan)
[35]. The material properties of C-91 are listed in Table 4.1.

Figure 4.6 shows the crack opening displacement uz(x, 0+) for an infinite
C-91 with a crack under uniform strain S0 = 5 × 10−5 and electric field
E0 = 0 V/m. The results for the permeable, open, and impermeable
crack models are shown for comparison purposes. Little difference among
three piezoelectric crack models is observed. Similar results are shown in
Figures 4.7, through 4.9 for the electric potential φ(x, 0+), normal compo-
nent of electric displacement Dz(x, 0+), and tangential component of electric
field Ex(x, 0+) along the upper crack face, respectively. There are differences
among the crack models. It is noted that the open and impermeable crack
models reduce the continuity of the tangential components of the electric field
across the crack face.

Table 4.1 Material properties of C-91

Elastic Stiffnesses Piezoelectric Coefficients Dielectric Constants
(×1010N/m2) (C/m2) (×10−10C/Vm)

cE
11 cE

12 cE
13 cE

33 cE
44 e31 e33 e15 εS

11 εS
33

C-91 12.0 7.7 7.7 11.4 2.4 −17.3 21.2 20.2 226 235
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S0 = 5×10-5

E0 = 0 V/m
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Fig. 4.6 Displacement along the upper crack face for infinite piezoelectric material under
uniform strain.

Figure 4.10 shows the dependence of the energy release rate G for the
permeable, open, and impermeable crack models under S0 = 10−4 on E0

in an infinite C-91. The energy release rates are lower for positive electric
fields and higher for negative electric fields under applied strain. The energy
release rate criteria for the open and impermeable crack models led to

S0 = 5×10-5

E0 = 0 V/m

Permeable

0
C-91

−1

−2

−3

−1 −0.5 0

x/a

0.5 1
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Impermeableφ 
(x

, 0
+
) 

 (
V

)

Fig. 4.7 Electric potential along the upper crack face for infinite piezoelectric material
under uniform strain.
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Fig. 4.8 Normal component of electric displacement along the upper crack face for infinite
piezoelectric material under uniform strain.

negative values which are unphysical. Note that the energy release rate for
the open crack model neglects the energy entering the crack gap. The energy
release rate computed near the crack-tip is not equivalent to the energy
release rate, including the energy entering the crack gap. If breakdown field

1
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−1 −0.5 0 0.5 1
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  (
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Fig. 4.9 Tangential component of electric field along the upper crack face for infinite
piezoelectric material under uniform strain.
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Fig. 4.10 Energy release rate versus electric field for infinite piezoelectric material under
uniform strain.

Ed in the crack gap is assumed to be finite (the so-called nonlinear electrically
discharging crack model) [8], the energy release rate for the discharging crack
model tends to that for the permeable crack model. These are discussed later
in detail (see Sections (4.2.3b) and (4.3.3a)). The effect of electric field on
the stress intensity factor and energy density for the permeable and imper-
meable crack models under applied strain was also discussed in [32]. For the
permeable crack model, no difference is found in the effect of electric field on
the piezoelectric crack behavior for the criteria (the stress intensity factor,
energy release rate, and energy density). However, if the open and imper-
meable crack models are used, different criteria give different results for the
piezoelectric crack behavior.

The stress intensity factor, energy release rate, and energy density for
the permeable crack model under applied stress are independent of the elec-
tric field [32]. It was shown in [33] that positive and negative electric fields
decrease the energy release rate for the impermeable crack model under
applied stress. Similar phenomena were observed for the open crack model
[34]. However, preliminary experimental investigation did not confirm this
crack-arresting behavior [36]. Moreover, no consensus is reached on the frac-
ture criteria for the impermeable and open crack models under applied
stress.

Next, we consider the case 2 (see Figure 4.4b). The crack face boundary
and loading conditions can be written as

Txz(0, z) = 0 (0 ≤ z <∞) (4.100)
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Txx(0, z) = 0 (0 ≤ z < a)
ux(0, z) = 0 (a ≤ z <∞) (4.101)

Ez(0, z) = Ec
z(0, z) (0 ≤ z < a)

φ(0, z) = 0 (a ≤ z <∞) (4.102)

Dx(0, z) = Dc
x(0, z) (0 ≤ z < a) (4.103)

Sxx(x, z) = S0, Ex(x, z) = E0 (0 ≤ z <∞, x→ ∞). (4.104)

The stress intensity factor KI is given by

KI = lim
z→a+

{2π(z − a)}1/2Txx(0, z). (4.105)

Also, the energy release rate and energy density can easily be obtained.
A comparison of the stress intensity factor was made in [2] between case1

and case 2. Because the values of the stress intensity factor for case 1 were
always larger than those for case 2, the crack propagated easily perpendicular
to the poling direction. When the piezoelectric materials were poled prior
to indentation, increased crack growth normal to the poling direction was
observed [37]. The theoretical results are in agreement with the experimental
results.

This section has been focused on the static fracture problems. There are,
however, some publications concerning dynamic behavior of permeable cracks
in piezoelectric ceramics. For case 1, the scattering of normally incident plane
harmonic waves by a crack in piezoelectric ceramics was investigated in [38],
and the dynamic stress and electric field intensity factors were discussed.
In [39], the transient dynamic fracture mechanics parameters were deter-
mined for cracked piezoelectric ceramics under normal impact. Although a
number of papers on the dynamic behavior of impermeable cracks have also
appeared, questions remain regarding the crack face boundary and loading
conditions.

(b) Plane strain crack in rectangular material

Consider a rectangular piezoelectric material of width 2h and length 2l
containing a central crack of length 2a, as shown in Figure 4.11a. A set
of Cartesian coordinates (x, y, z) is attached to the center of the crack
normal to the z-axis. We assume plane strain perpendicular to the y-axis.
The material is loaded by mechanical displacement u0 with the electric field
in the z-direction. Because of the assumed symmetry in geometry and loading,
it is sufficient to consider the problem for 0 ≤ x ≤ h, 0 ≤ z ≤ l only.

We consider the permeable, impermeable, and open crack models, with
stress-free crack faces. Mechanical boundary conditions at z = 0 are given
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Fig. 4.11 A rectangular piezoelectric material with a central crack: (a) geometry;
(b) finite element mesh and paths of J-integral.

by Equations (4.34) and (4.35), where the regions (0 ≤ x < ∞) and
(a ≤ x < ∞) are replaced by (0 ≤ x ≤ h) and (a ≤ x ≤ h), respectively.
Also, the boundary conditions for the permeable, impermeable, and open
crack models are Equations (4.36), (4.37), (4.79), and (4.95), respectively,
where (a ≤ x < ∞) is replaced by (a ≤ x ≤ h). The loading conditions may
be stated as follows.

uz(x, l) = u0, φ(x, l) = φ0 (0 ≤ x ≤ h) (4.106)
Txx(h, z) = 0, Txz(h, z) = 0 Dx(h, z) = 0, (4.107)

where φ0 is an applied electric potential. The third of Equations (4.107) is
valid (see Figure 4.3b). The strain and electric field are

S0 =
u0

l
, E0 = −φ0

l
. (4.108)

By applying the loading conditions (4.106) and (4.107), the normal stress
T0 at z = l for the uncracked material is given by Equation (4.39).

The stress intensity factor KI is defined by the second side of
Equation (4.59). The energy release rate G and energy density S for the
permeable crack model are given by Equations (4.73) and (4.76), respec-
tively. These parameters GI, SI, GO, SO for the impermeable and open crack
models are also expressed as Equations (4.85) and (4.86).

For rectangular materials, the finite element method is effective for
fracture mechanics parameter calculations. The method can include nonlinear
effects such as polarization switching. Due to polarization switching, piezo-
electric materials are often nonhomogeneous. The piezoelectric properties
vary from one location to the other, and the variations are either continuous
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or discontinuous. An extension of the J-integral to multiphase materials
was proposed in [40]. The energy release rate G can be obtained from the
following J-integral [41],

G = J =
∫

Γ0

{Hnx − (Txxux,x + Tzxuz,x)nx − (Tzxux,x + Tzzuz,x)nz

+DxExnx +DzExnz}dΓ −
∫

Γp

{Hnx − (Txxux,x + Tzxuz,x)nx

− (Tzxux,x + Tzzuz,x)nz +DxExnx +DzExnz}dΓ, (4.109)

where Γp is a path embracing that part of the phase boundary enclosed by Γ0.
Finite element analysis was performed in [35] for the permeable, open,

and impermeable crack models, and the effects of electric field and polariza-
tion switching on the fracture mechanics parameters were discussed in detail
for the rectangular piezoelectric material. Each element consists of many
grains, and each grain is modeled as a uniformly polarized cell that contains
a single domain. The model neglects the domain wall effects and interaction
among different domains. In reality, these effects matter, but the assumption
does not affect the general conclusions drawn. The polarization of each grain
initially aligns as closely as possible to the z-direction. Polarization switching
is defined for each element in the material. The displacement u0 and electric
potential φ0 are applied at the edge 0 ≤ x ≤ h, z = l, and the electrome-
chanical fields of each element are computed from the finite element analysis.
The switching criterion of Equation (4.9) is checked for every element to see
if switching will occur. After all possible polarization switches have occurred,
the piezoelectric tensor of each element is rotated to the new polarization
direction. The electromechanical fields are recalculated, and the process is
repeated until the solution converges. The macroscopic response of the mat-
erial is determined by the finite element model, which is an aggregate of
elements. The spontaneous polarization P s and strain γs are assigned repre-
sentative values of 0.3 C/m2 and 0.004, respectively. Previous experiments
in [42–44] verified the accuracy of the above scheme, and showed that the
results obtained are of general applicability. After polarization switching is
predicted, J-integral paths are selected, which do not pass exactly through
the singular point.

The calculations of the fracture mechanics parameters for the open crack
model are more complicated than for the permeable and impermeable
crack models. The open crack model calculations start with φ = 0 on the
crack face [45]. The crack opening displacement and electric displacement
on the crack face are estimated, and the resulting potential difference is
applied to the crack face. The fields are again solved, leading to new crack
opening displacement and electric displacement on the crack face. If this is
accomplished, then the potential difference is applied once more to the crack
face. Such a procedure is repeated until the evolution of the objective solu-
tions shows no improvements. If the crack gap can store energy [46], nonzero
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contributions to G arise from the contour segments along the crack face.
The values of G for the open crack model can be obtained by computing con-
tour integrations and then subtracting the electrical enthalpy density of the
crack gap Hc = −ε0{(Ec

x)2 +(Ec
z)

2}/2 times the crack opening displacement
2u+

z evaluated at the intersection xΓ of the contour with the crack faces [8].
So, for example, Equation (4.109) becomes

G =
∫

Γ0

{Hnx − (Txxux,x + Tzxuz,x)nx − (Tzxux,x + Tzzuz,x)nz

+DxExnx +DzExnz}dΓ −
∫

Γp

{Hnx − (Txxux,x + Tzxuz,x)nx

− (Tzxux,x + Tzzuz,x)nz +DxExnx +DzExnz}dΓ
− 2Hc(xΓ )u+

z (xΓ ). (4.110)

It is required that the contour Γ0 intersects the upper and lower crack faces at
the same position xΓ . There exists a discrepancy between the energy release
rate G in Equation (4.110) and G◦ in Equation (4.85) with Equation (4.99)
for the open crack model.

We now show numerical examples using the piezoelectric ceramics,
C-91. The coercive electric field Ec is approximately 0.35 MV/m. Figure 4.12
presents the crack opening displacement uz(0, 0+) at the center of the crack
versus electric field E0 from the finite element analysis without polariza-
tion switching effect. The results for the permeable, open, and impermeable
crack models are shown. The rectangular piezoelectric material with a crack
of length 2a = 2 mm has a length 2l = 20 mm and width 2h = 20 mm,
and is under applied displacement u0 = 0.5 µm corresponding to the uni-

Permeable

0.2

C-91

u0 = 0.5 µm 

l = h = 10 mm

a = 1 mm

0.1

-0.2 -0.1

E0 (MV/m)

l, h ∞

0 0.1

0

u z (
0,

 0
+
) 

 (
µm

)

Open

Impermeable

Fig. 4.12 Crack center displacement versus electric field for rectangular piezoelectric
material under applied displacement.



4 Fracture and Crack Mechanics 109

Table 4.2 Energy release rate for rectangular piezoelectric material under u0 = 0.5 µm
and E0 = −0.1 MV/ma

G (N/m2)

Permeable Impermeable Open Discharging

Contour 1 1.67 0.95 1.47 (−3.3 × 10−2) 1.67 (−4.4 × 10−6)
Contour 2 1.63 0.97 1.46 (−4.3 × 10−2) 1.63 (−5.7 × 10−6)
Contour 3 1.58 1.06 1.40 (−7.1 × 10−2) 1.58 (−9.4 × 10−6)
Contour 4 1.53 1.22 1.38 (−9.9 × 10−2) 1.53 (−1.3 × 10−5)

Avg. 1.60 1.05 1.43 (−6.2 × 10−2) 1.60 (−8.1 × 10−6)
l, h → ∞ 1.69 1.07 1.59 −

aValues in parentheses are the results of −2Hc(xΓ )u+
z (xΓ ) in Equation (4.110).

form strain 5 × 10−5 for the uncracked material. For comparison, the results
for the infinite piezoelectric material (l, h → ∞, S0 = 5 × 10−5) obtained
from the theoretical analysis are included. The results for the finite element
analysis agree with the theoretical analysis data. Figure 4.13 shows the similar
results for the normal component of electric displacement Dz(0, 0+).
Table 4.2 lists the energy release rates for the permeable, impermeable, and
open crack models under u0 = 0.5 µm and E0 = −0.1 MV/m for the
rectangular piezoelectric material (2l = 20 mm, 2h = 20 mm, 2a =
2 mm). The J-integrals for the permeable and impermeable crack models are
path-independent, and for the calculation of G, four contours are defined
in the finite element mesh (see Figure 11b). The average values (Avg.)
are also shown, and the values in parentheses are the contribution from
the crack interior (see Equation (4.110)). Furthermore, the results for the
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Fig. 4.13 Normal component of electric displacement at the center of the crack versus
electric field for rectangular piezoelectric material under applied displacement.
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infinite piezoelectric material (l, h → ∞, S0 = 5 × 10−5) are listed.
It is noted that for the open crack model, little difference between the
energy release rates, including and not including the energy entering the
crack gap, is observed. Under practical loading conditions, the contribution
−2Hc(xΓ )u+

z (xΓ ) from the crack interior is negligibly small. We wish to add
that the effect of electrical discharge within the crack is not accounted for
in calculations of the energy release rate for the open crack model. In recent
years, a nonlinear electrically discharging crack model was proposed in [8].
It was assumed that the crack gap behaves in a linear dielectric manner
when the electric field within the crack gap is below a critical discharge
level Ed. The solution for the discharging crack (standard air breakdown
field Ed = 3 MV/m) is also listed in this table. It is found that the
energy release rates predicted by the permeable and discharging crack
models are not significantly different. Figure 4.14 shows the dependence of the
energy release rate G for the permeable, open, and impermeable crack models
under u0 = 0.5 µm on E0 in the same material (2l = 20 mm, 2h = 20 mm,
2a = 2 mm). Average values of four contours are presented, and the perme-
able and discharging (not shown) crack models give almost the same results.
The results for the infinite piezoelectric material (l, h → ∞, S0 = 5 × 10−5)
obtained from the theoretical analysis are also shown.

Figure 4.15 displays the variation of G for the permeable crack model with
electric field E0 from the finite element analysis with and without the polar-
ization switching effect. The rectangular piezoelectric material (2l = 5 mm,
2h = 5 mm) with a crack (2a = 2 mm) is under applied displacement
u0 = 0.125 µm corresponding to the uniform strain 5×10−5 for the uncracked
material. Positive electric fields decrease the values of G, whereas negative

2

l = h = 10 mm

a = 1 mm

1

-0.1

E0 (MV/m)

0 0.1
0

G
  (

N
/m

)

Permeable (G)

l, h ∞

Open (GO)

Impermeable (GI)

C-91

u0 = 0.5 µm 

Fig. 4.14 Energy release rate versus electric field for rectangular piezoelectric material
under applied displacement without polarization switching effect.
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Fig. 4.15 Energy release rate versus electric field for rectangular piezoelectric material
under applied displacement with polarization switching effect.

electric fields have an opposite effect. A monotonically increasing negative
E0 causes polarization switching. The value of the electric field associated
with the switching is about −0.25 MV/m. When the negative E0 increases
further, G with the polarization switching effect becomes larger than that
without the switching effect. After E0 reaches about −0.32 MV/m, polariza-
tion switching in a local region leads to an unexpected decrease in G. The
nonlinear effect caused by polarization switching may affect the piezoelectric
crack behavior.

Figure 4.16 shows the 180◦ and 90◦ switching zones near the permeable
crack-tip in the rectangular piezoelectric material (2l = 5 mm, 2h = 5 mm,
2a = 2 mm) under u0 = 0.125 µm and various values of E0. The size of the
180◦ (90◦) switching zone behind (ahead of) the crack-tip increases at first
when the negative E0 is increased, and the difference between energy release
rate results with and without switching effect becomes larger at a higher
negative E0. As the negative E0 continues to be increased, the area of the
180◦ switching zone grows ahead of the crack-tip. Unexpected decrease in G
is attributed to 180◦ switching ahead of the crack-tip. In the impermeable
case, the region ahead of the crack-tip is found to undergo 180◦ switching
due to the large negative electric field, and the region behind the crack-tip
has 90◦ switching because of the large intensified electric field Ex [47].

Figure 4.17 shows the energy release rate G versus E0 under applied stress.
The rectangular piezoelectric material (2l = 5 mm, 2h = 5 mm) with a
permeable crack (2a = 2 mm) is subjected to the stress TE0 = 5.70 MPa,
corresponding to the uniform strain 5 × 10−5 for the uncracked material
without the electric field. Also shown are data for TE0 = 22.8 MPa, corre-
sponding to the uniform strain 2×10−4. The results for the positive E0 under
applied stress are different from those under applied displacement, and the
energy release rate for the permeable crack is independent of the positive E0.
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E0 = −0.25 MV/m

u0 = 0.125 μm
−0.30 MV/m
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m
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Fig. 4.16 Polarization switching zone induced by displacement u0 = 0.125 µm and electric
field E0.

The behavior of the energy release rate in the negative E0 is complicated
because of the polarization switching phenomena. The critical value of the
electric field associated with the polarization switching decreases (being com-
pared to TE0 = 5.70 MPa) when TE0 = 22.8 MPa is applied. After E0

reaches about −0.21 MV/m, the G with the switching effect deviates from the
curve without the switching effect. This is due to the 180◦ switching behind
the crack-tip. As the E0 reaches about −0.32 MV/m, the G falls. In the
experimental data [48], crack length deviated from the linear function of the
electric field for the case of larger load, especially for negative electric fields.
By including the polarization switching effect of the energy release rate, the
observed nonlinear dependence of piezoelectric crack behavior on the electric
field is explained.

(c) Penny-shaped crack in infinite material

Consider a penny-shaped crack of radius a embedded in an infinite piezoelec-
tric material. The formulation of this class of boundary value problem can be
expressed most conveniently in terms of the cylindrical coordinates (r, θ, z).
Referring to Figure 4.18, the crack will be located in the plane z = 0 of a
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Fig. 4.17 Energy release rate versus electric field for rectangular piezoelectric material
under applied stress with polarization switching effect.

piezoelectric material which is centered at the origin (0, 0, 0). The material
is transversely isotropic with hexagonal symmetry; it is subjected to far-field
normal strain Szz = S0 and electric field Ez = E0.

The equations of force and charge equilibriums without body force and
internal charge are

Trr,r + Tzr,z + Trr−Tθθ

r
= 0

Tzr,r + Tzz,z + Tzr

r = 0

⎫⎬⎭ (4.111)

Dr,r +
Dr

r
+Dz,z = 0. (4.112)

The constitutive equations can be written as

Trr = cE11ur,r + cE12
ur

r
+ cE13uz,z − e31Ez

Tθθ = cE12ur,r + cE11
ur

r
+ cE13uz,z − e31Ez

Tzz = cE13ur,r + cE13
ur

r + cE33uz,z − e33Ez

Tzr = cE44(ur,z + uz,r) − e15Er

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(4.113)
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Fig. 4.18 An infinite piezoelectric material with a penny-shaped crack.

Dr = e15(ur,z + uz,r) + εS
11Er

Dz = e31
(
ur,r + ur

r

)
+ e33uz,z + εS

33Ez

⎫⎬⎭ . (4.114)

The electric field components are related to φ(r, z) by

Er = −φ,r, Ez = −φ,z. (4.115)

By substituting from Equations (4.113) and (4.114) into Equations (4.111)
and (4.112) together with (4.115), the governing equations are
obtained as

cE11
(
ur,rr + ur,r

r
− ur

r2

)
+ cE44ur,zz + (cE13 + cE44)uz,rz

+ (e31 + e15)φ,rz = 0

(cE13 + cE44)
(
ur,rz + ur,z

r

)
+ cE33uz,zz + cE44

(
uz,rr + uz,r

r

)
+ e15

(
φ,rr + φ,r

r

)
+ e33φ,zz = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(4.116)

(e31+e15)
(
ur,rz +

ur,z

r

)
+ e15

(
uz,rr +

uz,r

r

)
+ e33uz,zz

− εS
11

(
φ,rr +

φ,r

r

)
− εS

33φ,zz = 0. (4.117)
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In a vacuum, the constitutive equations (4.114) and the governing
equation (4.117) become

Dr = ε0Er, Dz = ε0Ez (4.118)

φ,rr +
φ,r

r
+ φ,zz = 0. (4.119)

Referring to the semi-infinite region z ≥ 0, 0 ≤ r < ∞, 0 ≤ θ ≤ 2π, the
boundary conditions can be expressed in the form

Tzr(r, 0) = 0 (0 ≤ r <∞) (4.120)

Tzz(r, 0) = 0 (0 ≤ r < a)
uz(r, 0) = 0 (a ≤ r <∞) (4.121)

Er(r, 0) = Ec
r(r, 0) (0 ≤ r < a)

φ(r, 0) = 0 (a ≤ r <∞) (4.122)

Dz(r, 0) = Dc
z(r, 0) (0 ≤ r < a) (4.123)

Szz(r, z) = S0, Ez(r, z) = E0 (0 ≤ r <∞, z → ∞). (4.124)

The far-field normal stress TE0 is expressed as

TE0 = T0 − e2E0, (4.125)

where T0 is given by Equation (4.40), and

e2 =
(cE11 + cE12)e33 − 2cE13e31

cE11 + cE12
. (4.126)

The problem is formulated by means of the Hankel transform and the
solution is solved exactly [49]. The stress intensity factor k1 is obtained as

k1 = lim
r→a+

{2(r − a)}1/2Tzz(r, 0) =
2
π
TE0

√
a. (4.127)

The energy release rate and energy density for the permeable crack
model are

G =
π

2F 2

⎛⎝−F
3∑

j=1

dj

γj
+

3∑
j=1

hjdj

3∑
j=1

bjdj

γj

⎞⎠ k2
1 (4.128)

S = π(aM + aE)k2
1. (4.129)
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The stress intensity factor, energy release rate, and energy density for
the penny-shaped piezoelectric crack depend on the electric field E0, similar
to the plane strain piezoelectric crack. The energy release rate and energy
density for the impermeable crack model can also be found in [49].

4.3 Fracture Test and Analysis

In this section, we report the results on the electric field dependence of frac-
ture behavior of piezoelectric ceramics. Some fracture tests are performed,
and finite element analyses are then employed to discuss the piezoelectric
fracture behavior.

4.3.1 Indentation Fracture

Here, we describe IF test and analysis made on piezoelectric ceramics under
combined mechanical and electrical loads; see [37]. Commercially available
soft piezoelectric ceramic P-7 (Murata Manufacturing, Japan) samples 5 ×
5 × 15 mm are cut and Vickers indentations are made with P = 9.8 N load
for 15 s under electric fields E0 parallel to the poling direction. Table 4.3
lists the material properties. Figure 4.19a depicts the specimen and setup for
the experiment, and an and ap are the characteristic lengths of indentation
cracks normal and parallel to the poling direction, respectively. To generate
electric fields, a power supplier (up to 1.25 kV/dc) is used.

Analysis is carried out using the 3-D finite element analysis program, with
the two half-penny-shaped cracks model as shown in Figure 4.19b. A rectan-
gular Cartesian coordinate system (x, y, z) is used with the z-axis coinciding
with the poling direction. Two point forces PEn, PEp are applied on the
center of the cracks of radius a = an = ap in a large piezoelectric
material (A/a = 5.0), and electric potentials φ0 and −φ0 are also added on
the edges z = A and z = −A, respectively. Because of the double symmetry
of the body and loading only one quarter of the body is modeled.

The IF test results show that average values of seven indentation crack
lengths normal and parallel to the poling for open (closed) circuit condition

Table 4.3 Material properties of P-7

Elastic Stiffnesses Piezoelectric Coefficients Dielectric Constants
(×1010 N/m2) (C/m2) (×10−10 C/Vm)

cE
11 cE

12 cE
13 cE

33 cE
44 e31 e33 e15 εS

11 εS
33

P-7 13.0 8.3 8.3 11.9 2.5 −10.3 14.7 13.5 171 186
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Fig. 4.19 Schematic representation of the IF tests: (a) testing setup; (b) finite element
model.

are an = 119.3(106.0) and ap = 71.3(64.4) µm, respectively. The indentation
cracks are shorter parallel to the poling direction and longer normal to the
poling direction, and longer for the open circuit condition. Figure 4.20 shows
the length of indentation crack an under various electric fields E0 = −φ0/A
divided by an average length an0 with E0 = 0 V/m. The error bars indicate
maximum and minimum crack lengths at each electric field, and open cir-
cles are average values of seven data. The positive electric field assists crack
growth. Results have also been computed giving the values of the energy
release rate G at maximum depth point of the crack normal to the poling
direction for the residual force PE = PEn = PEp = 0.1P = 0.98 N derived
from the indentation plastic zone. The ratio G/G0 for the permeable crack
model and the corresponding ratio for the impermeable crack model are plot-
ted versus E0 in Figure 4.21, where G0 is the energy release rate under no
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−0.2 −0.1 0
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Fig. 4.20 Crack length versus electric field for IF specimen.
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Fig. 4.21 Energy release rate versus electric field for IF specimen.

electric field. The trend for the permeable crack model is consistent with the
experimental results.

4.3.2 Bending Fracture

(a) Modified small punch test

One recent experimental and analytical effort in bending fracture of
piezoelectric ceramics is described in [16] and [50], using the modified small
punch (MSP) test technique. The piezoelectric ceramic P-7 is selected for the
experiment. The coercive electric field Ec is 0.8 MV/m. Small thin piezoce-
ramic plate specimens of 10 by 10 by 0.5 mm used for MSP tests are sliced.
Poling is done along the axis of the 0.5 mm dimension. Using a 10 kN screw-
driven test machine, all MSP tests are conducted. To generate electric fields
E0, a power supply for voltages up to 1.25 kV/dc is used to apply positive
and negative electric fields of 0.2, 0.4, 0.8, and 1.0 MV/m. The punch and
the specimen holder, designed for MSP tests, are shown in Figure 4.22a.
The MSP specimen holder consists of an upper and a lower die. The punch
deformation is performed perpendicularly to the plate. Machine crosshead
speed is 0.2 mm/min. Load P is recorded as a function of machine crosshead
displacement δ, and fracture loads are measured for each set of specimens
for various electric fields. For E0 = 0,±0.4,±0.8, and ±1.0 MV/m, four or
five tests are performed. After testing, the microstructures of the fracture
surfaces are examined using a confocal scanning laser microscope (CSLM).
Electrodes are removed from the fractured specimens, and the surfaces of the
piezoceramic plates are also observed by optical microscope.
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Fig. 4.22 Schematic representation of the MSP tests: (a) testing setup; (b) finite element
model.

The three-dimensional model of the MSP specimen with load and
boundary conditions is shown in Figure 4.22b. A rectangular Cartesian coor-
dinate system (x, y, z) is used with the z-axis coinciding with the poling
direction. The specimen is modeled with ANSYS solid eight-node hexahedral
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elements. The contact between the specimen and the lower die is modeled
using contact elements. A mechanical load is produced by the application
of either a prescribed force P0 or a prescribed displacement δ0 along the
z-direction. For electrical loads, a positive or negative electric potential φ0

is added on the surface, z = h = 0.5 mm; h is the specimen thickness. The
surface z = 0 is grounded. Because of the double symmetry of the body and
loading only one quarter of the body is modeled. The switching criterion of
Equation (4.9) is checked for every element and for every possible polariza-
tion direction to see if switching will occur. The spontaneous polarization
P s and strain γs are assigned representative values of 0.3 C/m2 and 0.004,
respectively.

Figure 4.23 shows the fracture initiation loads Pc under different electric
fields E0 = −φ0/h obtained from the experiment. Negative electric fields
reduce the fracture initiation load, whereas positive electric fields increase
it. When the electric field level in the negative direction reaches the coer-
cive field E0 = −0.8 MV/m, the direction of polarization of the stress-free
sample switches. At E0 = −1.0 MV/m, the polarization has reversed and
is now aligned with the negative electric field. Also, the effective coercive
field under applied stress changes as a function of mechanical load. The
behavior of the fracture initiation load in the range E0 = −0.4 MV/m to
E0 = −1.0 MV/m is very complicated because of all these switching phenom-
ena. Decrease in the fracture initiation load at E0 = 1.0 MV/m is attributed
to dielectric breakdown and irreversible damage of the piezoelectric ceramics.

0

30

P-7

20

10

0
−1

E0 (MV/m)

Pc
 (

N
)

1

Fig. 4.23 Fracture initiation load versus electric field for MSP specimen.
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(a) (b) (c)

Fig. 4.24 Fracture features of MSP specimens at (a) E0 = +1.0 MV/m, (b) 0.0 V/m,
and (c) −1.0 MV/m.

CSLM micrographs of fracture surfaces are shown in Figure 4.24 for the MSP
specimens tested at (a) E0 = +1.0 MV/m, (b) E0 = 0.0 MV/m, and (c)
E0 = −1.0 MV/m. The MSP specimen at E0 = −1.0 MV/m had a rel-
atively flat fracture surface. Under E0 = +1.0 MV/m, the fracture surface
appeared rougher with more intergranular fracture. It has been reported that
the intergranular fracture is produced by purely electrical loading [51, 52]
or dielectric breakdown [53]. The samples that experience breakdown are
found to possess conduction channels terminated with craters at both sides
of the specimen surfaces. The microstructure of the fractured specimen for
E0 = +1.0 MV/m, observed at the rim of the crater, is shown in Figure 4.25.

Figure 4.26 presents the critical MSP energy Ec
MSP including 180◦ and

90◦ switching effects (open triangle) for various electric fields E0. The load
displacement curves were drawn up to the average fracture initiation load
Pc using the finite element method, and the Ec

MSP was calculated from the
area under the curve (energy to failure). It is interesting to note that the
MSP energies for E0 = +0.8 MV/m and E0 = −0.8 MV/m have very nearly
the same values. A similar phenomenon is observed for Ec

MSP without the
90o switching effect (solid circle), and the 90◦ switching has no effect on the
critical MSP energy. Figure 4.27 shows the maximum strain energy density
Wm

MSP versus E0. The Wm
MSP as a function of applied load is computed using

the average fracture initiation load Pc via finite element analysis without
the 90◦ switching effect. The Wm

MSP occurs at the observed crack initiation
location.

10 µm

Fig. 4.25 Optical micrograph of the surface of MSP specimen tested at E0 = +1.0 MV/m.
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Fig. 4.26 Critical MSP energy versus electric field for MSP specimen.

(b) Other related tests

The three-point bending tests were conducted on the piezoelectric ceramics,
where the poling is the width direction, under electric field, for example [54].

The specimen and jigs were immersed in a silicone oil bath, and electric
fields were applied parallel and antiparallel to the poling. The three-point
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Fig. 4.27 Maximum strain energy density versus electric field for MSP specimen.
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Fig. 4.28 Schematic representation of the three-point bending tests.

bending tests were also carried out in [55] using the piezoelectric samples
poled in the length direction. The three-point bending specimen is depicted
in Figure 4.28. The specimen of width 3.2 mm, thickness 4 mm, and length
10 mm is commercially supplied PZT-841 (American Piezo Ceramics), and
has a span of 6 mm. The samples were placed in a silicone oil, and the load P
was applied until specimen failure. The bending strength was then obtained
from beam theory. Using the same specimens, the three-point bending tests
were further performed in an air environment [56]. The bending strength was
evaluated based on finite element analysis.

4.3.3 Fracture of Cracked Specimens

(a) Single-edge precracked-beam test

There has been significant effort aimed at the understanding of piezoelectric
fracture in cracked specimens. Here, we consider single-edge precracked-
beam (SEPB) methods, for example. The testing setup is illustrated in
Figure 4.29a. The size of the specimens used in [57] is 5 mm thick, 5 mm
wide, and 15 mm long. Poling is done along the axis of the 15mm dimen-
sion. Vickers indents are introduced using a commercial microhardness testing
machine. At least 11 indents are placed at the midspan on the polished sur-
face of the specimen along a line, with indent diagonals normal to the edges of
the specimen bar. Indented specimens are carefully aligned and centered on a
steel bridge-anvil. The specimens are compressed until a precrack is formed,
and unloaded immediately after “pop-in” to avoid additional slow crack
extension. The crack thus produced has initial length of a. The precracked
specimens are loaded (load P ) to failure in a three-point flexure apparatus
with a support span of 13 mm, and the fracture loads Pc are measured for
each set of specimens for various electric fields E0. To generate electric fields,
a power supply for voltages up to 125 kV/dc is used.

Plane strain finite element calculations are made to determine the energy
release rate for the cracked piezoelectric specimens [57, 58]. The specimen
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Fig. 4.29 Schematic representation of the SEPB tests: (a) testing set-up; (b) finite element
model; (c) detail of crack-tip mesh.

and loading geometries are shown in Figure 4.29b. Let the coordinate axes x
and z be chosen such that the y-axis coincides with the thickness direction.
The z-axis is oriented parallel to the poling direction. The three-point flexure
specimen with a span S is a beam of width W and length L containing a crack
of length a. A mechanical load is produced by the application of a prescribed
force P at x = 0, z = 0 along the x-direction. For electrical loads, an electric
potential φ0/2 is applied at the edge 0 ≤ x ≤ W, z = L/2. The electric
potential at the edge 0 ≤ x ≤ W, z = −L/2 is −φ0/2. Because of symmetry,
only the right half of the model is used in the finite element analysis. In the
analysis, the energy release rate is computed using the J-integral approach.
For the calculation of G, four contours are defined in the finite element mesh
(see Figure 4.29c).

Table 4.4 shows the fracture loads Pc for hard piezoelectric ceramics
PCM-80 (Panasonic Electronic Devices, Japan) with a precrack of length

Table 4.4 SEPB test results

E0 (MV/m) −0.2 −0.1 0 +0.1 +0.2

PCM-80 Pc (N) 150 150 150 146 147
Gc (J/m2) 7.67 7.67 7.67 7.26 7.36
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Table 4.5 Material properties of PCM-80

Elastic Stiffnesses Piezoelectric Coefficients Dielectric Constants
(×1010 N/m2) (C/m2) (×10−10 C/Vm)

cE
11 cE

12 cE
13 cE

33 cE
44 e31 e33 e15 εS

11 εS
33

PCM-80 17.0 10.6 11.5 16.5 3.05 −5.99 15.6 13.7 95.2 68.4

a = 0.5 mm under E0 = −φ0/L = 0, ±0.1, ±0.2 MV/m obtained
from the experiment; material properties are listed in Table 4.5.
Averaged values of three or four data are presented. Also listed are the cor-
responding critical energy release rates Gc. The critical energy release rate is
calculated from the finite element analysis using the permeable crack model
(a = 0.5 mm). Average values of four contours are listed. The fracture load
and critical energy release rate for the hard piezoelectric ceramics are little
dependent on E0.

Table 4.6 lists the energy release rates for the permeable, impermeable,
open, and nonlinear electrically discharging cracks of length a = 0.5 mm
under P = 100 N and E0 = 0.5 MV/m. The results obtained by the four
contours and the average values (Avg.) are listed, and the values in paren-
theses are the contribution from the crack interior. The values ofG for each of
these contours are practically identical. Also, the contribution to G from the
open and discharging crack interior, −2Hc(xΓ )u+

z (xΓ ) in Equation (4.110),
is very small. In the energy release rates for the piezoelectric specimens, neg-
ligible differences are noted between the permeable and discharging crack
models [59]. Figure 4.30 shows the dependence of the energy release rate
G for the permeable, open, impermeable, and discharging crack models on
E0 under P = 100 N for a = 0.5 mm. Average values of four contours are
presented. The energy release rates for the permeable and discharging crack
models are independent of E0. In the impermeable and open crack models,
applying the electric field in either direction decreases the energy release rate.
A negative energy release rate is also produced under large electric fields.

Table 4.6 Energy release rate for SEPB specimen under P = 100 N and E0 = 0.5 MV/ma

G (N/m2)

Permeable Impermeable Open Discharging

Contour 1 3.28 1.58 2.84 (−1.12 ×10−2) 3.28 (−8.49 ×10−6)
Contour 2 3.27 1.64 2.96 (−1.29 ×10−2) 3.27 (−9.81 ×10−6)
Contour 3 3.26 1.70 3.07 (−1.49 ×10−2) 3.26 (−1.01 ×10−5)
Contour 4 3.26 1.70 3.09 (−1.96 ×10−2) 3.26 (−1.59 ×10−5)

Avg. 3.27 1.66 2.99 (−1.47 ×10−2) 3.27 (−1.11 ×10−5)

aValues in parentheses are the results of −2Hc(xΓ )u+
z (xΓ ) in Equation (4.110).
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Fig. 4.30 Energy release rate versus electric field for SEPB specimen.

According to the fracture mechanics interpretation, a negative energy
release rate would correspond to a crack that could absorb energy due to
crack extension. Because this would exclude the fracture in piezoelectric
ceramics under electric fields, in contradiction with the experimental
observations, the parameters for the impermeable and open crack models have
questionable physical significance. Therefore, the electrical boundary condi-
tions (4.79) and (4.95) are not appropriate for a slit crack in piezoelectric
ceramics.

(b) DT (double torsion) test

Let us now consider a composite piezoelectric double torsion (DT)
specimen described by the Cartesian coordinate system (x, y, z), as shown in
Figure 4.31 [60]. The piezoelectric samples of width Wp = 5 mm, thick-
ness 5 mm, and length 30 mm are cut. The specimen is produced by first
poling a 5 mm wide piezoelectric beam and then bonding it between two wider
brass beams of width 7.5 mm, thickness 5 mm, and length 30 mm with high-
strength epoxy. The Young’s modulus and Poisson’s ratio of brass are 100.6
GPa and 0.35, respectively. A side groove of depth 2.5 mm and width 1 mm
is machined in the piezoelectric ceramics. Before testing, a thin notch is cut
in the end of the piezoelectric ceramics to a depth of 2.5 mm, and a length of
a = 5 mm. The specimens are loaded by concentrated loads P/2 at x = 0 mm,
y = 2.5 mm, and z = ± 2 mm. The moment arm and distance for the loading
machine are fixed at 5.5 mm and 2 mm, respectively. To generate electric
fields E0, a power supplier that can produce up to 1.25 kV in dc is used.
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Loads that caused fracture are measured for each set of specimens for various
electric fields.

Three-dimensional finite element calculations are made to determine the
fracture mechanics parameters for the composite DT specimens. A mechani-
cal load is produced by the application of prescribed forces P/2 at x = 0 mm,
y = 2.5 mm, and z = ± 2 mm. For electrical loads, an electric potential φ0/2
is applied at the interface z = Wp/2. The electric potential at the interface
z = −Wp/2 is −φ0/2. Because of symmetry, only the right half of the model
was used in the finite element analysis.

Figure 4.32 shows the measured fracture loads Pc of P-7 and C-91
under various values of electric field E0 = −φ0/Wp. A positive electric field
increases the fracture load, and a negative one decreases it. Hence, the crack
opens less under a positive electric field than under a negative electric field.
These experimentally observed phenomena contradict the results of three-
point bending and IF tests. It is suggested that the negative electric field
puts the DT specimen under tension (near the crack-tip) and the positive
electric field exerts a compressive stress (near the crack-tip). The growth
mechanism for a crack in the DT specimen is quite different from that in the
conventional fracture tests with SEPB and Vickers’ indentation specimens.
The fracture loads depend on the material properties.

Figure 4.33 shows the dependence of G for the permeable crack model
without and with switching effect under P = 205 N on E0 for brass/soft
P-7/brass (a = 5 mm) at y = 0 mm, normalized by values for E0 = 0 V/m.
Also shown is the result for the impermeable crack model without switch-
ing effect. For a given load, positive E0 decreases the energy release rate
for the permeable crack model, and negative E0 has an opposite effect.
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The increase in Pc with increasing positive E0 is attributed to the decrease
of G with increasing positive E0 under a constant load. A monotonically in-
creasing negative E0 causes polarization switching. After E0 reaches about
−0.4 MV/m, polarization switching in a local region leads to an unexpected
decrease in G for the permeable crack model.
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Fig. 4.33 Energy release rate versus electric field for DT specimen.
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(c) Other related tests

Compact tension (CT) tests were conducted in [15] to study the effect of
electric field on the fracture toughness of piezoelectric ceramics PZT-841. A
notch was created normal to the poling and electric field directions.

4.4 Fatigue Test and Analysis

In this section, we review the results on the fatigue behavior of piezoelectric
ceramics. Electric-field-induced fatigue crack growth in piezoelectric ceram-
ics due to indentation was investigated in [51]. For piezoelectric ceramics
(PZT-5) with a short notch, cyclic electric-field-induced fatigue cracking was
studied in [61]. A notch was created normal to the poling and electric field
directions. The results showed that under low electric fields, the emergence
and growth of microcracks is the major fatigue mechanism that impedes
the growth of the main crack, whereas the main crack is the only mode of
fatigue cracking under high electric fields. The fatigue crack growth data
were also presented in [62] for ferroelectric materials (PZT-5H and PLZT
8/65/35) with a V-shaped notch subjected to purely cyclic electrical loading.
A V-shaped notch was normal to the poling and electric field directions. It
was found that the rate of advance of cracks decreases with increasing cycle
number, finally resulting in arrest. On the other hand, the crack growth under
cyclic mechanical load in piezoelectric ceramics (Soft PZT151; PI Ceramics,
Germany) was investigated in [63]. A V-shaped notch was oriented parallel
to the poling direction, and the specimens were loaded in four-point bending
without an electric field.

For the piezoelectric ceramics under both mechanical and electrical loads,
static fatigue tests were carried out in [64] using the SEPB specimens
(see Figure 4.29a). The material used was hard PCM-80, and the crack was
created perpendicular to the poling direction. Time-to-failure under different
mechanical loads and electric fields (parallel to the poling) were obtained
from the experiment. A finite element analysis was also made, and the
applied energy release rate for the permeable crack model was calculated.
The effect of electric fields on the applied energy release rate versus lifetime
curve was then examined.

The experimental data for the average time-to-failure tf of two to four
measurements in PZT ceramics under static mechanical load P and applied
electric field E0 = +0.1, 0 and −0.1 MV/m are listed in Table 4.7. The
most important conclusion is that the lifetimes for the piezoelectric specimens
under positive electric field are much shorter than the failure times of speci-
mens under negative electric field for the same mechanical load level.

Cyclic crack growth tests were conducted in [58] on the piezoelectric cer-
amics under constant electric fields using the SEPB method. Piezoelectric
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Table 4.7 Static fatigue test results

E0 (MV/m) −0.1 0 +0.1

PCM-80 tf (sec) P = 140 (N) 203 108 43
135 1573 776 361

samples PCM-80 were tested, subject to constant amplitude sinusoidal loads
at a frequency of 1 or 10 Hz, using three-point bending apparatus (see
Figure 4.29a). The load ratio R, defined as the ratio of minimum load Pmin

to maximum load Pmax of the fatigue cycle N , was 0.2 or 0.5. The maximum
load Pmax was 140 N in all of the experiments. To determine crack growth
rate da/dN , fatigue crack length a was monitored during the test using the
digital microscope video camera. A finite element analysis was also used to
calculate the maximum energy release rate Gmax.

Cyclic fatigue crack propagation (da/dN) data under E0 = +0.1, 0, and
−0.1 MV/m are plotted in Figure 4.34 as a function of the maximum energy
release rate Gmax, at 1 Hz with R = 0.5. Also shown are the results at
1 Hz with R = 0.2 for E0 = +0.1 and 0 MV/m. At R = 0.5, crack growth
rates exhibited a local minimum resulting in V-shaped growth rate behavior.
Fatigue crack propagation results after the minimum da/dN show that a
positive (negative) electric field increases (decreases) the crack growth rate.
At R = 0.2, the crack growth rate decreased strongly with increasing Gmax.
The cracks were retarded during cyclic loading at R = 0.2 in the piezoelectric
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Fig. 4.34 Crack growth rate versus maximum energy release rate for SEPB specimen.



4 Fracture and Crack Mechanics 131

ceramics under E0 = +0.1 and 0 MV/m, and no additional crack propagation
was detected. The piezoelectric fatigue cracks exhibit features such as wedging
[51], grain bridging [65], strain hysteresis [66], and microcrack nucleation [61],
followed by crack arrest.

Dynamic fatigue or slow crack growth in piezoelectric ceramics was studied
under electromechanical loading by a combined numerical-experimental
approach [67]. Constant load-rate testing was conducted in three-point flex-
ure using the PCM-80 SEPB specimens (see Figure 4.29a) under zero and
positive electric fields, and the effects of electric field and loading rate (from
0.05 to 1 Ns−1) on the fracture load and crack propagation were examined.
A finite element analysis was also employed to calculate the energy release
rate. Crack propagation velocity versus energy release rate curves at various
loading rates were then estimated based on the finite element analysis using
measured data. It was found that the piezoelectric ceramics under positive
electric field have low dynamic fatigue or slow crack growth resistance, com-
pared to those under no electric field. Also, the crack propagation velocity
increased at first with increasing the energy release rate, reaching a peak, and
then tended to decrease at a higher energy release rate before final failure.

4.5 Summary and Future Research Directions

Fracture and localized polarization switching are among the properties that
limit the use of piezoelectric materials as sensors and actuators in smart
material systems and structures technology. This chapter shows that elec-
tric field and mechanical loading influence the crack behavior in piezoelectric
materials. We also show that, in modeling cracks in piezoelectric materials,
the impermeable and open crack face assumptions can lead to significant
errors and the permeable crack face is a better assumption. Piezoelectric
materials could have a massive impact on various industries by reducing
maintenance requirements, and increasing safety and product lifetime. At
present, there remains a need for efficient numerical methods and models for
predicting basic macroscopic material response while simultaneously
accounting for microscale phenomena, such as domain switching [22, 35] and
domain wall motion [68, 69]. Also, one needs a good understanding of nonlin-
ear piezoelectric fracture behavior due to the microscale nature of the mate-
rial. In addition, functional grading of materials could effectively reduce the
magnitude of internal electromechanical fields or obtain an optimal pattern
of fields in devices for a given design application [70–72]. Therefore, research
on crack mechanics of functional graded piezoelectric materials is required.
Although some works focus on functional graded piezoelectric materials with
cracks, very little work is available for practical use.

The combined influence of electromechanical loading requires more
research to provide deeper understanding of piezoelectric fracture for future



132 Yasuhide Shindo

demanding micro/nano device applications. There is a great interest in
accurate multiscale computational methods and piezoelectric material
models for linking atomistic, domain, and macroscale behavior. We believe
that future research will concentrate on this area.
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Chapter 5

Boundary Element Method

Qing-Hua Qin

5.1 Introduction

In Chapter 2 Green’s functions in piezoelectric materials were described.
Applications of these Green’s functions to the boundary element method
(BEM) are discussed in this chapter. In contrast to the finite element method
(FEM), BEM involves only discretization of the boundary of the structure
due to the governing differential equation being satisfied exactly inside the
domain leading to a relatively smaller system size with sufficient accuracy.
This is an important advantage over domain-type solutions such as FEM or
the finite difference method. During the past two decades several BEM tech-
niques have been successfully developed for analyzing structure performance
with piezoelectric materials [1–4]. Lee and Jiang [1] derived the boundary
integral equation of piezoelectric media by the method of weighted resid-
uals for plane piezoelectricity. Lu and Mahrenholtz [5] presented a varia-
tional boundary integral equation for the same problem. Ding, Wang, and
Chen [6] developed a boundary integral formulation that is efficient for
analyzing crack problems in piezoelectric material. Rajapakse [7] discussed
three boundary element methods (direct boundary method, indirect bound-
ary element method, and fictitious stress-electric charge method) in coupled
electroelastic problems. Xu and Rajapakse [8] and Rajapakse and Xu [9]
extended the formulations in [7, 8] to the case of piezoelectric solids with
various defects (cavities, inclusions, cracks, etc.). Liu and Fan [10] established
a boundary integral equation in a rigorous way and addressed the question
of degeneration for problems of cracks and thin shelllike structures. Pan [11]
derived a single-domain BE formulation for 2D static crack problems. Denda
and Lua [12] developed a BEM formulation using Stroh’s formalism to derive
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the fundamental solution but did not show any numerical results. Davi and
Milazzo [13] used the known subdomain method to formulate a multidomain
BEM, well suited for crack problems, by modeling crack faces as boundaries
of the different subdomains. Groh and Kuna [14] developed a direct colloca-
tion boundary element code with a subdomain technique for analyzing crack
problems and calculating stress intensity factors. Khutoryaansky, Sosa, and
Zu [15] introduced a BE formulation for time-dependent problems of linear
piezoelectricity. A brief review of this field can be found in [4].

5.2 Boundary Integral Formulations

5.2.1 Governing Equations

In this section, the theory of piezoelectricity presented in Chapter 1 is briefly
summarized for deriving the corresponding boundary integral equation.
Under the condition of a static deformation, the governing equations for a
linear and generally anisotropic piezoelectric solid consist of

(i) Equilibrium equations

Tij,j + f̃i = 0, Di,i = ρe , (5.1)

where f̃i = ρ0fi;
(ii) Constitutive relations

Tij = cijklSkl − emijEm, Dk = ekijSij + εmkEm; (5.2)

(iii) Elastic strain-displacement and electric field-potential relations

Sij =
(ui,j + uj,i)

2
, Ei = −φ,i ; (5.3)

(iv) Boundary conditions

ui = ūi on Su

ti = Tijnj = t̄i on ST

}
,

φ = φ̄ on Sφ

Dn = Dini = −σ̄ on SD

}
. (5.4)

5.2.2 Boundary Integral Equation

Several approaches have been used in the literature to establish boundary
integral equations of piezoelectric materials, such as the weighted resid-
ual approach [1], the variational approach [5], and Betti’s reciprocity
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theorem [11, 12]. A brief discussion of Betti’s reciprocity theorem which is
used in later sections of this chapter is given here.

With the reciprocity theorem, we consider two electroelastic states,
namely [12, 15]

State 1: {U (1)
I }T = {u(1)

1 , u
(1)
2 , u

(1)
3 ,φ(1)}T ;

{f̃ (1)
I }T = {f̃ (1)

1 , f̃
(1)
2 , f̃

(1)
3 , ρ(1)

e }T ;

{t(1)I }T = {t(1)1 , t
(1)
2 , t

(1)
3 , D(1)

n }T (5.5)

State 2: {U (2)
I }T = {u(2)

1 , u
(2)
2 , u

(2)
3 ,φ(2)}T ;

{f̃ (2)
I }T = {f̃ (2)

1 , f̃
(2)
2 , f̃

(2)
3 ,−ρ(2)

e }T ;

{t(2)I }T = {t(2)1 , t
(2)
2 , t

(2)
3 , D(2)

n }T . (5.6)

The first state represents the solution to piezoelectric problems with finite
domains and general loading conditions; the second state is of an artificial
nature and represents the fundamental solution to the case of a fictitious
infinite body subjected to a point force or a point charge. Furthermore, we
introduce the compatible field {Ŝij , ûi, Êi, φ̂} that satisfies Equation (5.3).
The principle of virtual work is given by∫

V

f̃
(1)
I ÛIdV +

∫
S

t
(1)
I ÛIdS =

∫
V

(T (1)
ij Ŝij −D

(1)
i Êi)dV . (5.7)

On the other hand, for a linear piezoelectric solid, we can show that the
following reciprocal property of Betti type holds:

T
(1)
ij S

(2)
ij −D

(1)
i E

(2)
i = T

(2)
ij S

(1)
ij −D

(2)
i E

(1)
i . (5.8)

By substituting Equation (5.8) into (5.7), the following reciprocal relation
can be obtained,

∫
V

f̃
(1)
I U

(2)
I dV +

∫
S

t
(1)
I U

(2)
I dS =

∫
V

f̃
(2)
I U

(1)
I dV +

∫
S

t
(2)
I U

(1)
I dS . (5.9)

To convert Equation (5.9) into a boundary integral equation, assume that
State 1 is the actual solution for a body V with the boundary S and State 2
is the solution for a fictitious infinite body subjected to a point force at X̂ in
the xm direction with no bulk charge distribution (i.e., ρ(2)

e = 0), namely

f̃
(2)
i (x) = δ(x − x̂)δim, (m = 1, 2, 3) . (5.10)

The displacement, electric potential, stress, and electric displacement
induced by the above-mentioned point force were discussed in Chapter 2.
Using the solution given in Chapter 2, the variables u(2),φ(2), T

(2)
ij , and D(2)

i
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can be written in the form

u
(2)
i = u∗ij(x, x̂)ej , φ(2) = φ∗

j (x, x̂)ej = u∗4j(x, x̂)ej ,

T
(2)
ij = Σ∗

ijm(x, x̂)em = [cijklu
∗
km,l(x, x̂) − eliju

∗
4m,l(x, x̂)]em,

D
(2)
i = D∗

im(x, x̂)em = [eiklu
∗
km,l(x, x̂) + κilu

∗
4m,l(x, x̂)]em , (5.11)

where u∗ij represents the displacement in the jth direction at field point x
due to a point force in the ith direction applied at the source point x̂ interior
to S, and u∗4i denotes the ith displacement at x due to a point electric charge
at x̂. Making use of Equation (5.4), the traction and surface charge can be
obtained as

t
(2)
i = t∗im(x, x̂)em = Σ∗

ijm(x, x̂)njem,

D(2)
n = t∗4m(x, x̂)em = D∗

im(x, x̂)niem . (5.12)

Substituting all the above quantities associated with State 2 into
Equation (5.9) yields

ui(x̂) =
∫

V

u∗Ji(x, x̂)f̃J(x)dV (x) −
∫

S

t∗Ji(x, x̂)uJ (x)dS(x)

+
∫

S

u∗Ji(x, x̂)tJ(x)dS(x) , (5.13)

where i = 1, 2, 3, J = 1 − 4, u4 = −φ, f̃4 = ρe, and t4 = Dn.
Next, assume that State 2 of the fictitious infinite body is subjected to a

point charge at x̂ with no body force distribution; that is,

−ρ(2)
e (x) = δ(x − x̂), f̃

(2)
i (x) = 0 (i = 1, 2, 3) (5.14)

The resulting displacement and electric potential induced by this point
charge are given by

u
(2)
i = u∗i4(x, x̂),

φ(2) = φ∗
4(x, x̂) = u∗44(x, x̂) , (5.15)

where u∗i4 and u∗44 denote, respectively, the ith displacement and electric
potential at x due to a point electric charge at x̂.

Substituting the solution in Equation (5.15) into (5.2) and (5.4), we have

T
(2)
ij = Σ∗

ij4(x, x̂) = cijklu
∗
k4,l(x, x̂) − eliju

∗
44,l(x, x̂),

D
(2)
i = D∗

i4(x, x̂) = eiklu
∗
k4,l(x, x̂) + κilu

∗
44,l(x, x̂),

t
(2)
i = t∗i4(x, x̂) = Σ∗

ij4(x, x̂)nj , D(2)
n = t∗44(x, x̂) = D∗

i4(x, x̂)ni , (5.16)

where t∗ij are related to u∗ij by Equations (5.2) and (5.4).
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Substituting Equations (5.14)−(5.16) into (5.9), we obtain

φ(x̂) =
∫

V

u∗J4(x, x̂)f̃J(x)dV (x) −
∫

S

t∗J4(x, x̂)uJ(x)dS(x)

+
∫

S

u∗J4(x, x̂)tJ (x)dS(x) . (5.17)

Combining Equation (5.13) with (5.17), we have

uI(x̂) =
∫

V

u∗JI(x, x̂)f̃J (x)dV (x) −
∫

S

t∗JI(x, x̂)uJ (x)dS(x)

+
∫

S

u∗JI(x, x̂)tJ(x)dS(x) , (5.18)

where I, J = 1– 4.
Making use of Equations (5.2) and (5.18), the corresponding stresses and

electric displacements are expressed as

ΠiJ (x̂) =
∫

V

D∗
KiJ (x, x̂)f̃K(x)dV (x) −

∫
S

S∗
KiJ(x, x̂)uK(x)dS(x)

+
∫

S

D∗
KiJ (x, x̂)tK(x)dS(x) , (5.19)

where

ΠiJ =

{
σij , J ≤ 3,
Di J = 4

(5.20)

S∗
KiJ (x, x̂) = EiJMn

∂t∗MK(x, x̂)
∂xn

(5.21)

D∗
KiJ (x, x̂) = EiJMn

∂u∗MK(x, x̂)
∂xn

(5.22)

with

EiJMn =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
cijmn, J, M ≤ 3,
enij , J ≤ 3, M = 4,
eimn, J = 4, M ≤ 3,
−εin, J = 4, M = 4.

(5.23)

The integral representation formula for the generalized traction compo-
nents can be obtained from Equations (5.4) and (5.19) as

tJ(x̂) =
∫

V

V ∗
IJ (x, x̂)f̃I(x)dV (x) −

∫
S

W ∗
IJ(x, x̂)uI(x)dS(x)

+
∫

S

V ∗
IJ (x, x̂)tI(x)dS(x) , (5.24)
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where

V ∗
IJ(x, x̂) = D∗

IkJ (x, x̂)nk(x̂), W ∗
IJ (x, x̂) = S∗

IkJ (x, x̂)nk(x̂) . (5.25)

It can be seen from Equations (5.13), (5.17), and (5.24) that to obtain
the fields at internal points, the boundary data of traction, displacement,
electric potential, and the normal component of electric displacement need
to be known throughout the boundary S. For this purpose, we can examine
the limiting forms of Equations (5.13), (5.17), and (5.24) as x̂ approaches the
boundary. To properly circumvent the singular behavior when x approaches
x̂, Chen and Lin [16] assumed a singular point x̂ on the boundary surrounded
by a small hemispherical surface of radius ε, say Sε, centered at the point x̂
with ε→ 0. Because the asymptotic behavior of Green’s function in piezoelec-
tric solids at r = |x− x̂| → 0 is mathematically similar to that of uncoupled
elasticity, Equations (5.13), (5.17), and (5.24) can be rewritten as [16]

ckiuk(x̂) =
∫

V

u∗Ji(x, x̂)f̃J(x)dV (x) −
∫

S

t∗Ji(x, x̂)uJ(x)dS(x)

+
∫

S

u∗Ji(x, x̂)tJ (x)dS(x) (5.26)

bφ(x̂) =
∫

V

u∗J4(x, x̂)f̃J(x)dV (x) −
∫

S

t∗J4(x, x̂)uJ (x)dS(x)

+
∫

S

u∗J4(x, x̂)tJ (x)dS(x) (5.27)

ckitk(x̂) =
∫

V

V ∗
Ji(x, x̂)f̃J (x)dV (x) −

∫
S

W ∗
Ji(x, x̂)uJ(x)dS(x)

+
∫

S

V ∗
Ji(x, x̂)tJ (x)dS(x) (5.28)

bDn(x̂) =
∫

V

V ∗
J4(x, x̂)f̃J(x)dV (x) −

∫
S

W ∗
J4(x, x̂)uJ(x)dS(x)

+
∫

S

V ∗
J4(x, x̂)tJ(x)dS(x) , (5.29)

where x̂ ∈ S, and the coefficient cki and b are defined as

cki(x̂) = δki + lim
ε→0

∫
Sε

t∗ki(x, x̂)dS(x) (5.30)

b(x̂) = 1 + lim
ε→0

∫
Sε

t∗44(x, x̂)dS(x) . (5.31)

In the field of BEM, the coefficients cki and b are usually known as bound-
ary shape coefficients: cii(x̂) = b(x̂) = 1 if x̂ ∈ Ω, cii(x̂) = b(x̂) = 1/2
if x̂ is on the smooth boundary [17]. Using the concept of boundary shape
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coefficients, Equation (5.18) can be rewritten as

cKIuK(x̂) =
∫

V

u∗JI(x, x̂)f̃J(x)dV (x) −
∫

S

t∗JI(x, x̂)uJ (x)dS(x)

+
∫

S

u∗JI(x, x̂)tJ(x)dS(x) , (5.32)

where x̂ ∈ Γ, and cK4 = c4K = bδK4.
It is more convenient to work with matrices rather than continue with

indicial notation. To this effect the generalized displacement U, traction T,
body force b, and boundary shape coefficients C are defined as [6]

U =

⎧⎪⎪⎨⎪⎪⎩
u1

u2

u3

u4

⎫⎪⎪⎬⎪⎪⎭ , T =

⎧⎪⎪⎨⎪⎪⎩
t1
t2
t3
t4

⎫⎪⎪⎬⎪⎪⎭ , f̃ =

⎧⎪⎪⎨⎪⎪⎩
f̃1
f̃2
f̃3
f̃4

⎫⎪⎪⎬⎪⎪⎭ , C =

⎡⎢⎢⎣
c11 c12 c13 0
c21 c22 c23 0
c31 c32 c33 0
0 0 0 c44

⎤⎥⎥⎦
T

,

(5.33)

where c44 = b.
Similarly, the fundamental solution coefficients can be defined in matrix

form as

U∗ =

⎡⎢⎢⎢⎣
u∗11 u

∗
12 u

∗
13 u

∗
14

u∗21 u∗22 u∗23 u∗24
u∗31 u

∗
32 u

∗
33 u

∗
34

u∗41 u
∗
42 u

∗
43 u

∗
44

⎤⎥⎥⎥⎦
T

, T∗ =

⎡⎢⎢⎢⎣
t∗11 t

∗
12 t

∗
13 t

∗
14

t∗21 t∗22 t∗23 t∗24
t∗31 t

∗
32 t

∗
33 t

∗
34

t∗41 t
∗
42 t

∗
43 t

∗
44

⎤⎥⎥⎥⎦
T

, (5.34)

where t∗ij(i = 1, 2, 3) represents the traction in the jth direction at a field
point x due to a unit point load acting at the source point x̂, and t∗4j denotes
the jth traction at x due to a unit electric charge at x̂. Using the matrix
notation defined in Equations (5.33) and (5.34), the integral equation (5.32)
can be written in matrix form as

CU =
∫

V

U∗f̃dV −
∫

S

T∗UdS +
∫

S

U∗TdS . (5.35)

Using Equation (5.35), the generalized displacement at a point, say
point x̂i, can be obtained by enforcing a point load at the same point. In
this case Equation (5.35) becomes

C(x̂i)U(x̂i) =
∫

V

U∗(x̂i,x)̃f (x)dV (x) −
∫

S

T∗(x̂i,x)U(x)dS(x)

+
∫

S

U∗(x̂i,x)T(x)dS(x) . (5.36)
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5.2.3 Boundary Element Equation

To obtain a weak solution of Equation (5.36), as in the usual BEM, the
boundary S and the domain V in Equation (5.36) are divided into K bound-
ary elements and M internal cells, respectively. Boundary displacements,
tractions, electric potential, and electric displacement are written in terms
of their values at a series of nodal points. After discretization is performed
by use of various kinds of BE (e.g., constant elements, linear elements, or
higher-order elements), the boundary integral equation (5.36) becomes a set
of linear algebraic equations including boundary variables U and T. Once the
boundary conditions are applied the linear algebraic equations can be solved
to obtain all the unknown values. For a particular boundary element e, the
variables U and T can be approximated in terms of the shape function N in
the form [17]

U =
Q∑

i=1

NiUei = NUe, T =
Q∑

i=1

NiTei = NTe, (5.37)

where Ni is the shape function associated with node i and is discussed in
the next two sections, Uei and Tei are, respectively, the values of U and T
at node i of the element, and Q is the number of nodes of the element. The
interpolation function N is a 4 ×Q array of shape functions; that is,

N =

⎡⎢⎢⎣
N1 0 0 0 N2 · · · NQ 0 0 0
0 N1 0 0 0 · · · 0 NQ 0 0
0 0 N1 0 0 · · · 0 0 NQ 0
0 0 0 N1 0 · · · 0 0 0 NQ

⎤⎥⎥⎦ (5.38)

for a three-dimensional electroelastic problem. Substituting Equation (5.37)
into (5.36) yields

CiUi +
K∑

j=1

{∫
Sj

T∗(i)NdS

}
Uj =

K∑
j=1

{∫
Sj

U∗(i)NdS

}
Tj

+
M∑

s=1

{∫
Vs

U∗(i) f̃dV
}
, (5.39)

where K is the number of boundary elements, Ci = C(x̂i),Ui = U(x̂i),
U∗(i) = U∗(x̂i,x), T∗(i) = T∗(x̂i,x), and Sj is the surface of a “j ” element.

Once the integrals in Equation (5.39) have been carried out, they can be
further written as

CiUi +
K∑

j=1

HijUj =
K∑

j=1

GijTj +
M∑

s=1

Bis , (5.40)
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where the inference matrices Hij and Gij are evaluated by

Hij =
∑

t

∫
St

T∗(x̂i,x)Nq(x)dS(x),

Gij =
∑

t

∫
St

U∗(x̂i,x)Nq(x)dS(x) , (5.41)

where the summation extends to all the elements to which node j belongs and
q is the number of the order of node j within element t. The pseudo-loading
component Bis is defined as

Bis =
∫

Vs

U∗(x̂i,x)f̃ (x)dV (x) . (5.42)

If we define Hij = Hij + δijC(x̂i) and apply Equation (5.40) to the
K nodes “j” the following system of equations is obtained,

HU = GT + B . (5.43)

The vectors U and T represent all the values of generalized displacements
and tractions before applying boundary conditions. These boundary condi-
tions can be introduced by collecting the unknown terms to the left-hand side
and the known terms to the right-hand side of Equation (5.43). This gives
the final system of equations; that is,

EX = R . (5.44)

By solving the above system the vector X of boundary variables is fully
determined.

5.3 One-Dimensional Elements

5.3.1 Shape Functions

One-dimensional elements are used to model the boundary of the plane
domain of a problem. Within a particular element e (see Figure 5.1), field
variables can be interpolated using constant, linear, and higher-order poly-
nomials. In this section, however, we focus on BEM formulations with linear
elements.

Consider a linear element as shown in Figure 5.2, in which ξ is a
dimensionless coordinate whose value equals zero at the center and ±1 at
the ends.
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Fig. 5.1 One-dimensional element.

It is easy to verify that the Cartesian coordinates of a point on the
element shown in Figure 5.2 are related to the dimensional coordinate ξ
by the relation

x(ξ) =
1 − ξ

2
xi +

1 + ξ

2
xj = N1(ξ)xi +N2(ξ)xj

y(ξ) =
1 − ξ

2
yi +

1 + ξ

2
yj = N1(ξ)yi +N2(ξ)yj , (5.45)

where N1 and N2 are the two shape functions of the element. Similarly, the
field variables U and T of this element can be approximated in terms of the
same shape functions as

U(ξ) =
1 − ξ

2
Ui +

1 + ξ

2
Uj = N1(ξ)Ui +N2(ξ)Uj

T(ξ) =
1 − ξ

2
Ti +

1 + ξ

2
Tj = N1(ξ)Ti +N2(ξ)Tj . (5.46)

J (xj,yj)
ξ

ξ = 0

I(xi,yi)

ξ = −1 ξ = 1

Fig. 5.2 Linear element with Cartesian and dimensional coordinates.
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Substituting Equation (5.46) into (5.41) and noting the node i shown in
Figure 5.1, we have

Hki =
∫

Se−1

T∗(x̂k ,x)N2(x)dS(x) +
∫

Se

T∗(x̂k,x)N1(x)dS(x)

Gki =
∫

Se−1

U∗(x̂k,x)N2(x)dS(x) +
∫

Se

U∗(x̂k,x)N1(x)dS(x) . (5.47)

5.3.2 Differential Geometry

In evaluating Equation (5.47), the information on the unit vector normal to a
line element is required. The best way to determine the unit vector is by using
vector algebra. To this end, consider a one-dimensional element as shown in
Figure 5.3 [18]. The tangential vector in the direction of ξ can be obtained
by the differentiation of Equation (5.45) as

vξ = νxi + νyj =
d

dξ
x(ξ)i +

d

dξ
y(ξ)j , (5.48)

where i and j are, respectively, the unit vectors in the x- and y-directions.
A vector normal to the line element e in Figure 5.3, vn, may then be

obtained by taking the cross-product of vξ with a unit vector in the z-direction
(vξ = {0, 0, 1}T ):

vn = vξ × vz =

⎧⎨⎩
dx
dξ
dy
dξ

0

⎫⎬⎭×
⎧⎨⎩

0
0
1

⎫⎬⎭ =

⎧⎪⎪⎨⎪⎪⎩
dy
dξ

− dx
dξ

0

⎫⎪⎪⎬⎪⎪⎭ . (5.49)

 i

 k ξ

 j 

e vn

vξ

Fig. 5.3 Normal and tangential vectors for one-dimensional element [18].
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The length of the vector vn is equal to

vn = |vn| =

√(
dy

dξ

)2

+
(
−dx
dξ

)2

(5.50)

which is also the length of dξ and hence the Jacobian of the coordinate trans-
formation from the Cartesian coordinate system to the intrinsic coordinate ξ.
Therefore the unit vector normal to the line element is given by

n =
vn

|vn| =
1√(

dy
dξ

)2

+
(
−dx

dξ

)2

⎧⎪⎪⎨⎪⎪⎩
dy
dξ

− dx
dξ

0

⎫⎪⎪⎬⎪⎪⎭ . (5.51)

5.4 Two-Dimensional Elements

5.4.1 Shape Functions

For modeling the boundary of three-dimensional problems, two-dimensional
elements are used. For illustration we take an 8-node isoparametric element
shown in Figure 5.4 as an example. The shape functions Ni(i =1–8) for the
8-node isoparametric element take the form [18]

N1 =
1
4
(1 − ξ)(1 − η)(−ξ − η − 1),

N2 =
1
4
(1 + ξ)(1 − η)(ξ − η − 1), (5.52)

N3 =
1
4
(1 + ξ)(1 + η)(ξ + η − 1),

N4 =
1
4
(1 − ξ)(1 + η)(−ξ + η − 1), (5.53)

N5 =
1
2
(1 − ξ2)(1 − η), N6 =

1
2
(1 + ξ)(1 − η2), (5.54)

N7 =
1
2
(1 − ξ2)(1 + η), N8 =

1
2
(1 − ξ)(1 − η2). (5.55)

These shape functions have the property that Ni is equal to unity at
node i and zero at all other nodes. In the isoparametric formulation, both
the geometry and the variable fields are approximated with the same shape
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Fig. 5.4 Eight-node isoparametric element.

functions as

x(ξ, η) =
8∑

i=1

Ni(ξ, η)xi (5.56)

U(ξ, η) =
8∑

i=1

Ni(ξ, η)Ui (5.57)

T(ξ, η) =
8∑

i=1

Ni(ξ, η)Ti . (5.58)

To illustrate how to evaluate Equation (5.41) using Equations (5.57)
and (5.58), consider node 11 in Figure 5.5. Substituting Equations (5.57)
and (5.58) into (5.41), we obtain

Hki =
∫

Se1

T∗(x̂k,x)N3(x)dS(x) +
∫

Se2

T∗(x̂k ,x)N4(x)dS(x)

+
∫

Se3

T∗(x̂k,x)N1(x)dS(x) +
∫

Se4

T∗(x̂k,x)N2(x)dS(x)

(5.59)

Gki =
∫

Se1

U∗(x̂k,x)N3(x)dS(x) +
∫

Se2

U∗(x̂k,x)N4(x)dS(x)

+
∫

Se3

U∗(x̂k ,x)N1(x)dS(x) +
∫

Se4

U∗(x̂k,x)N2(x)dS(x).

(5.60)
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Fig. 5.5 Node 11 belongs to four elements.

5.4.2 Differential Geometry

The unit vector n normal to a surface can be obtained in a way similar to
that in the one-dimensional element. Consider a two-dimensional element as
shown in Figure 5.6. The tangential vectors vξ in the ξ-direction and vη in
the η-direction are obtained by differentiating Equation (5.56) [18]:

vξ =
∂x
∂ξ

=
8∑

i=1

∂Ni

∂ξ
xi,

vη =
∂x
∂η

=
8∑

i=1

∂Ni

∂η
xi . (5.61)

The vector normal to the surface in Figure 5.6, vn can then be determined
by taking the cross-product of vξ and vη :

vn = vξ × vη =

⎧⎨⎩
vnx

vmy

vnz

⎫⎬⎭ =

⎧⎪⎪⎨⎪⎪⎩
dx
dξ

dy
dξ

dz
dξ

⎫⎪⎪⎬⎪⎪⎭×

⎧⎪⎪⎨⎪⎪⎩
dx
dη

dy
dη

dz
dη

⎫⎪⎪⎬⎪⎪⎭
⎧⎪⎪⎨⎪⎪⎩

dy
dξ

dz
dη

− dy
dη

dz
dξ

dz
dξ

dx
dη − dz

dη
dx
dξ

dx
dξ

dy
dη

− dx
dη

dy
dξ

⎫⎪⎪⎬⎪⎪⎭ . (5.62)

The unit normal vector n is then given by

n =
vn

|vn| , (5.63)

where
vn = |vn| =

√
v2

nx + v2
ny + v2

nz (5.64)

is the Jacobian of the transformation from the Cartesian coordinate system
to the intrinsic coordinate system (ξ, η).
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Fig. 5.6 Vectors vn, vξ, and vη in two-dimensional elements [18].

5.5 Numerical Integration over Elements

Generally, the analytical solution to the integrals in Equation (5.41) is very
difficult, and numerical integration over the element is thus required. Because
Gaussian integration formulae are popular, simple, and very accurate for a
given number of points, they are adopted in this chapter.

5.5.1 One-Dimensional Elements

In the numerical treatment of one-dimensional elements the integral to be
evaluated is written as

I1 =
∫ 1

−1

f(ξ)dξ ≈
n∑

i=1

f(ξi)wi , (5.65)

where ξi is the coordinate of the ith integration point, wi is the asso-
ciated weighting factor, and n is the total number of integration points,
which can be found from the BEM textbooks [19]. Notice that ξi values are
symmetric with respect to ξ = 0, wi being the same for the two symmetric
values.

When we apply the Gaussian integration formulae (5.65) to the
expression (5.41), the limitations of the integrals need to be converted from
St to [–1,1] and the relationship between dS and the increment of intrinsic
coordinate dξ. Noting Equation (5.50), this relationship is given by

dS = vndξ = Jdξ =

√(
dx

dξ

)2

+
(
dy

dξ

)2

dξ, (5.66)
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where J is the Jacobian of the intrinsic transformation. Substituting
Equations (5.65) and (5.66) into (5.41) and using the relation (5.45) yields

Hij =
∑

t

[∫ +1

−1

T∗(x̂i,x (ξ))Nq(x (ξ))Jt (ξ) dξ
]

≈
∑

t

[
n∑

k=1

wkT∗(x̂i,x (ξk))Nq(x (ξk))Jt (ξk)

]
(5.67)

Gij =
∑

t

[∫ +1

−1

U∗(x̂i,x (ξ))Nq(x (ξ))Jt (ξ) dξ
]

≈
∑

t

[
n∑

k=1

wkU∗(x̂i,x (ξk))Nq(x (ξk))Jt (ξk)

]
, (5.68)

where n is the number of Gaussian sampling points employed in the Gaussian
numerical integration, and U∗(x̂i,x (ξ)) and T∗(x̂i,x (ξ)) are the fundamen-
tal solutions at x(ξ) for a source at point x̂i.

5.5.2 Two-Dimensional Elements

Two-dimensional integration formulation is obtained by combining expression
(5.65) in the form

I2 =
∫ 1

−1

∫ 1

−1

f(ξ, η)dξdη ∼=
n∑

j=1

n∑
i=1

f(ξi, ηi)wiwj . (5.69)

The relationship between dS and the increment of intrinsic coordinates
dξdη is given by

dS = vndξdη = J(ξ, η)dξdη =
√
ν2

nx + ν2
ny + ν2

nzdξdη . (5.70)

Substituting Equations (5.69) and (5.70) into (5.41) and using the relation
(5.56), we have

Hij =
∑

t

[∫ +1

−1

T∗(x̂i,x (ξ, η))Nq(x (ξ, η))Jt (ξ, η) dξdη
]

≈
∑

t

[
n∑

l=1

n∑
k=1

wkwlT∗(x̂i,x (ξk, ηl))Nq(x (ξk, ηl))Jt (ξk, ηl)

]
(5.71)
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Gij =
∑

t

[∫ +1

−1

U∗(x̂i,x (ξ, η))Nq(x (ξ, η))Jt (ξ, η) dξdη
]

≈
∑

t

[
n∑

l=1

n∑
k=1

wkwlU∗(x̂i,x (ξk, ηl))Nq(x (ξk, ηl))Jt (ξk, ηl)

]
(5.72)

5.6 Treatment of Singular Integrals

The accuracy of BEM for piezoelectric problems is critically dependent upon
proper evaluation of the boundary integrals. The integrals (5.41) and (5.42)
present a singular behavior of the order O(1/r) and O(1/r2) for the general-
ized displacement and traction fundamental solutions, where r is the distance
from a source point to the element under evaluation. The discussion which
follows illustrates the basic procedure in treating singular integrals, taken
from the results in [20, 21].

5.6.1 Nearly Singular Integrals [20]

Nearly singular integrals are evaluated using the standard Gauss quadrature
formulae (5.69) in a special element subdivision scheme [22]. In this scheme,
the element is subdivided into M and N subelements in the directions ξ and
η, respectively. The Gauss quadrature formulae are applied in each element,
obtaining the value of the integral as the sum of all individual contributions
from the subdivisions. The criteria for choosing the number of subdivisions
M and N are based on the size of the element of integration and its relative
distance to the collocation point. These criteria are formulated in such a way
that, for a given element, the closer the source point is to the element, the
greater is the number of subdivisions.

5.6.2 Weakly Singular Integrals

Integrals of the kernels U∗ in Equation (5.41) show a weak singularity of the
type O[ln(zK − zK0)] when the source point and the field point are either
coincident or a short distance apart in comparison with the size of the
element, which can be dealt with by a method of transformation in which
the Jacobian of the transformation cancels out the singularity or weakens
its effect, allowing a regular quadrature formula to give accurate results.
For example, Rizzo and Shippy [23] used a Cartesian to polar transforma-
tion to integrate weak singular kernels. A polar coordinate system (r, θ) is
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introduced, originating at the singular node, such that the element of area
dξdη in the Cartesian system (ξ, η) becomes rdrdθ in the polar coordinate
system. The additional r in the integrand cancels the O(1/r) singularity.

5.6.3 Nonhypersingular Integrals [21]

The kernels T∗ appearing in Equation (5.41) show a strong singularity of
O[1/(zK−ẑK)] as x̂ → x, where (zK−ẑK) is defined in Equation (5.75) below.
Integration of such kernels over the element Sj that contains the source point
x̂ can be achieved as follows.

It is obvious that integrals of the type∫
Sj

T∗(x̂j ,x)Nq(x)dS(x) (5.73)

contain the basic integral as

IK =
∫

Γj

[pKn1(x) − n2(x)]
1

zK − ẑK
Nq(x)dS(x) (K = 1−4) (5.74)

where n1, n2 are the components of the external unit normal to the
boundary at the observation point x (see Figure 5.7) and pK is the material’s
eigenvalues [2]. Define

rK = zK − ẑK = (x1 − x̂1) + pK(x2 − x̂2) . (5.75)

It follows that
drK
dS

=
drK
dx1

dx1

dS
+
drK
dx2

dx2

dS
= −n2 + pKn1 . (5.76)

ξ ξ

dS

S

x

dx1

dx2

x2

x1

(n1, n2) = (dx1/dS, − dx2 / dS)

Fig. 5.7 Outward unit normal at boundary point x.
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Equation (5.76) is the key for all the transformations proposed below, and
this illustrates that the Jacobian drK/dS of the coordinate transformation
that maps the geometry of the boundary element Sj onto the complex plane
rK is included in the fundamental solution itself for the piezoelectric case.

Making use of Equations (5.76) and (5.74) can be rewritten as

IK =
∫

Sj

1
rK

Nq(x)drK (5.77)

which can be decomposed into the sum of a regular integral plus a singular
integral with a known analytical solution

IK =
∫

Γj

1
rK

(Nq(x) − 1)drK +
∫

Γj

1
rK

drK . (5.78)

Integration of the kernels D∗
KiJ and V ∗

IJ in Equations (5.19) and (5.24)
can be achieved in a similar way as for T∗ kernels because they contain
singularities of the same type when x̂ → x. From Equation (5.22), we have
the singular integral of the type [21]

I ′K =
∫

Γj

[pKn1(x̂) − n2(x̂)]
1
rK

Nq(x)dΓ(x) (K = 1−4) (5.79)

which can be regularized as follows,

I ′K =
∫

Γj

[pKn1(x̂) − n2(x̂) − drK
dΓ

]
1
rK

Nq(x)dΓ(x)

+
∫

Γj

1
rK

Nq(x)drK (5.80)

The first integral in Equation (5.80) is regular and the second integral can
be easily evaluated.

5.6.4 Hypersingular Integrals [21]

Note that the integration of W ∗
IJ in Equation (5.24) has a hypersingularity

of the order O(1/r2) as x → x̂. From Equation (5.21) it follows that the
hypersingular integral in Equation (5.24) is of the form

I ′′K =
∫

Γj

[pKn1(x)−n2(x)]
1
r2K

Nq(x)dΓ(x) =
∫

Γj

1
r2K

Nq(x)drK (K = 1−4) .

(5.81)
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As indicated in [21], the integral (5.81) can be again decomposed into the
sum of a regular integral plus singular integrals with known analytical solu-
tions by using Equation (5.76) and the first two terms of the series expansion
of the shape function Nq at x̂, considered as a function of the complex space
variable rK

Nq(rK) = Nq|rK=0
+
dNq

drK

∣∣∣∣
rK=0

rK + 0(r2K) ≈ Nq0 +N ′
q0rK . (5.82)

Thus, I ′′K can be written as

I ′′K =
∫

Γj

1
r2K

Nq(x)drK =
∫

Γj

1
r2K

[Nq(x) −Nq0 −N ′
q0rK)drK

+Nq0

∫
Γj

1
r2K

Nq(x)drK +N ′
q0

∫
Γj

1
rK

Nq(x)drK . (5.83)

The first integral in (5.83) is regular and the other two can be easily
evaluated analytically.

5.7 Evaluation of Domain Integrals

It is noted that the boundary integral equation (5.36) contains a domain
integral due to the existence of body forces and body charges. The simplest
way of computing the domain integral in Equation (5.36) is by subdividing
the region into a series of internal cells, on each of which a numerical inte-
gration scheme such as Gauss quadrature can be applied. The use of cells to
evaluate domain integrals implies an internal discretization, which consider-
ably increases the amount of data needed to run the corresponding program.
Hence the method is an obvious disadvantage and diminishes the elegance
and computational efficiency of BEM which relies on the transformation of
domain integrals into boundary ones. This can be overcome using the dual
reciprocity method [24, 25]. The method may, theoretically, be used with any
type of fundamental solution and does not need internal cells. The discussion
in this section follows the developments in [17, 26].

5.7.1 Dual Reciprocity Formulation

The dual reciprocity formulation is derived by weighting the inhomogeneous
differential equation [26],

ΞJKÛ
l
KN + blJN = 0 , (5.84)
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with the fundamental solution u∗MJ leading to

∫
V

u∗MJ b
l
JNdV = CMJ Û

l
JN +

∫
S

(t∗MJ Û
l
JN − u∗MJ T̂

l
JN )dS , (5.85)

where ΞJK = EiJKm∂i∂m is the elliptic operator of piezoelectricity, CMJ is
defined in Equation (5.33), u∗MJ and t∗MJ are given in Equation (5.34), and
T̂ l

JN = EiJKqÛ
l
KNni is the corresponding traction field. Consequently, the

dual reciprocity method requires the use of a series of particular
solutions Û l

KM , where the number of Û l
KM is equal to the total number of

nodes in the problem with collocation points. If there are W boundary nodes
and L internal nodes, there will be W + L values of Û l

KM . Now the source
term f̃J is approximated by a series of tensor functions blJN and unknown
coefficients αl

N ,

f̃J ≈
W+L∑
l=1

blJNα
l
N , (5.86)

where the approximation functions blJN are linked to the particular Û l
KN

through the relationship (5.84). Substituting the approximation (5.86) into
Equation (5.36) and making use of Equation (5.85), the following equation
is obtained

C(x̂i)U(x̂i) =
∫

S

U∗(x̂i,x)T(x)dS(x) −
∫

S

T∗(x̂i,x)U(x)dS(x)

+
W+L∑
j=1

(
C(x̂i)Ûj −

∫
S

U∗(x̂i,x)T̂jdS(x)

+
∫

S

T∗(x̂i,x)ÛjdS(x)
)
αj . (5.87)

After discretization and integrating over each element using interpolation
equation (5.37), Equation (5.87) becomes

CiUi+
K∑

j=1

HijUj =
K∑

j=1

GijTj+
W+L∑
k=1

(
CiÛik+

K∑
j=1

HijÛjk−
K∑

j=1

GijT̂jk

)
αk,

(5.88)

where Hij are Gij defined in Equation (5.41), i is a source node, j a boundary
element, and k the collocation points of the dual reciprocity scheme.

The contribution for all “i” nodes can be written together in matrix form as

HU = GT + (HÛ − GT̂)α . (5.89)
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5.7.2 Coefficients α

The coefficients α can be calculated by point allocation, that is, by forcing
approximation (5.86) to be exact at W + L collocation points. This leads to
the following system equations:⎡⎢⎢⎢⎣

b1(x1) b2(x1) · · · bP (x1)
b1(x2) b2(x2) · · · bP (x2)

...
...

. . .
...

b1(xP ) b2(xP ) · · · bP (xP )

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
α1

α2

...
αP

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
f̃1
f̃2
...
f̃P

⎤⎥⎥⎥⎦ , (5.90)

where P = W + L,bi(xj) = bj(xi) = b(
∣∣xi − xj

∣∣). Then, the coefficient
vector α can be expressed in terms of nodal values of the generalized body
force vector f̃ as⎡⎢⎢⎢⎣

α1

α2

...
αP

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
b1(x1) b2(x1) · · · bP (x1)
b1(x2) b2(x2) · · · bP (x2)

...
...

. . .
...

b1(xP ) b2(xP ) · · · bP (xP )

⎤⎥⎥⎥⎦
−1 ⎡⎢⎢⎢⎣

f̃1
f̃2
...
f̃P

⎤⎥⎥⎥⎦ . (5.91)

5.7.3 Particular Solutions Û and Approximation
Functions b

Due to the complexity of the governing differential equation it is very difficult
to derive particular solutions in closed form. Several methods for approxi-
mate calculation of particular solutions have been presented in the literature
[27–29]. Using a simple approach as presented in [17], instead of choosing
radial basis functions for the approximation functions b and solving the
differential equation (5.84) to obtain the particular solutions, we can
simply choose Û l

KN = Û l
KN (rl) and calculate the corresponding body force

term blJN using Equation (5.84). Using this approach, Kogl and Gaul [26]
selected the following particular solution,

Û l
KN = δKN(r2 + r3) , (5.92)

which yields the derivatives

Û l
KN,q = δKN (2r + 3r2)r,q (5.93)

Û l
KN,qi = δKN [(2 + 3r)δqi + 3rr,qr,i] . (5.94)

Then blJN can be obtained through use of Equations (5.84) and (5.94).
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5.8 Multidomain Problems

The discussion in the previous sections of this chapter is suitable for
problems with a single solution domain only, as the fundamental solution
used assumes that material properties do not change inside the domain being
analyzed. If the solution domain is made up piecewise of different mate-
rials the problem can be solved by multidomain BEM [13, 18]. The basic
idea is to consider a number of regions that are connected to each other,
much like pieces of a puzzle. Each region is treated in the same way as
discussed previously, but can now be assigned different material properties.
Because at the interfaces between the regions both U and T are not known,
the number of unknowns is increased and additional equations are required
to solve the problem. These equations can be obtained from the conditions
of equilibrium and compatibility at the region interfaces. The multidomain
approach presented in [13] can be adopted in implementation of the method.
It is based on the division of the origin domain into homogeneous subregions
(see Figure 5.8) so that Equation (5.43) still holds for each single subdomain,
and we can write

H(i)U(i) − G(i)T(i) = B(i), (i = 1, 2, . . . , J) , (5.95)

where J is the number of subregions and the superscript (i) indicates
quantities associated with the ith subregion. To obtain the solution it
is necessary to restore domain unity by enforcing generalized displacement
and traction continuity conditions along the interfaces between contiguous
subdomains. We now introduce a partition of the linear algebraic system

Vi Vj

Vk

•

SijSii Sjj

Skk

Sik

Sjk

Fig. 5.8 Multidomain configuration.
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given by Equation (5.95) in such a way that the generic vector can be
written as [13]

y(i) =
{
y
(i)
Sil

· · · y(i)
SiJ

}T

, (5.96)

where the vector y(i)
SiJ

collects the components of y(i) associated with the
nodes belonging to the interface Sij between the ith and jth subdomain, with
the convention that Sii stands for the external boundary of the ith subdomain
(see Figure 5.8). Based on this arrangement, the interface compatibility and
equilibrium conditions are given by [13]

U(i)
Sij

= U(j)
Sij
, T(i)

Sij
= −T(j)

Sij
, (i = 1, . . . , J − 1; j = i+ 1, . . . , J) .

(5.97)
It should be noted that if the ith and jth subdomain have no common

boundary, y(i)
Sij

is a zero-order vector, and Equation (5.97) is no longer valid.
The system of Equation(5.95) and the interface continuity conditions (5.97)
provide a set of relationships that, together with the external boundary con-
ditions, allows derivation of the electroelastic solution in terms of generalized
displacement and traction on the boundary of each subdomain. It should
be mentioned that the multidomain approach described here is suitable for
modeling general fracture problems in piezoelectric media [13].

5.9 Numerical Examples

To illustrate the application of the element model described above, three
examples are presented. The first example deals with a piezoelectric column
subjected to tension at its two ends; the second treats an infinite piezoelectric
solid with a horizontal finite crack; and the third illustrates the behavior of
crack-tip fields in a skew-cracked rectangular panel.

5.9.1 A Piezoelectric Column Under Uniaxial
Tension [6]

In this example, a piezoelectric prism under simple extension is considered
(see Figure 5.9). The size of the prism is 2a × 2a × 2b. The corresponding
boundary conditions are given by

Tzz = p, Txz = Tyz = Dz = 0, for z = ±b,
φ = 0, for z = 0

Txx = Txz = Dx = 0, for x = ±a
Tyy = Tyz = Dy = 0, for y = ±a.
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A
O

B

C

D

x

y

2b

2a

Fig. 5.9 Geometry of the piezoelectric prism.

In the calculation, 2a = 3 m, 2b = 10 m, and p = 100 Nm2 are assumed and
32 elements are used [6]. The material considered is PZT−4 whose material
parameters are

c11 = 13.9 × 1010 NM−2,

c12 = 7.78 × 1010 NM−2,

c13 = 7.43 × 1010 NM−2

c33 = 11.5 × 1010 NM−2,

c44 = 2.56 × 1010 NM−2,

e15 = 12.7 Cm−2 e31 = −5.2 Cm−2,

e33 = 15.1 Cm−2, ε11 = 730ε0, ε33 = 635ε0 ,

where ε0 = 8.854 × 10−12 C2/Nm2. Table 5.1 lists the displacements and
electric potential at points A(2, 0), B(3, 0), C(0, 5), and D(0, 10) using
BEM, and comparison is made with analytical results. It is evident that the
BEM results are in good agreement with the analytical results even when
only six boundary elements are used in the calculation [6].

Table 5.1 u1, u2, and φ of BEM results and comparison with exact solution [6]

Point A(2, 0) B(3, 0) C(0, 5) D(0, 10)
BEM u1 × 1010(m) −0.9665 −1.4502 0 0

u2 × 109(m) 0 0 0.4997 1.0004
φ(V) 0 0 0.6879 1.3762

Exact [6] u1 × 1010(m) −0.9672 −1.4508 0 0
u2 × 109(m) 0 0 0.5006 1.0011

φ(V) 0 0 0.6888 1.3775
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5.9.2 A Horizontal Finite Crack in an Infinite
Piezoelectric Medium

The second example is a finite horizontal crack along the x-direction in
an infinite PZT−4 medium under a uniform far-field stress or electric dis-
placement. To effectively evaluate crack-tip fields, Pan [11] constructed the
following crack-tip element with its tip at ζ = −1, where ζ is the intrinsic
coordinate in a quarter-point element defined in Figure 5.10,

�U =
3∑

k=1

Φk�Uk , (5.98)

where the superscript k(k = 1, 2, 3) denotes the the generalized relative crack
displacement (GRCD) at nodes ζ = −2/3, 0, 2/3, respectively. ζ is the bound-
ary natural coordinate in a quarter-point element defined in Figure 5.10. The
quarter-point quadratic crack-tip element is obtained by setting [21]

ζ = 2
√
r

L
− 1 , (5.99)

where r is the distance from a field point to the crack-tip, and L the element
length (see Figure 5.10). In the element, the collocation points NC1, NC2,
and NC3 for the quarter-point element are located at ζ1 = −3/4, ζ2 = 0, and
ζ3 = 3/4, respectively (see Figure 5.10). In such a case, the distance r from
the collocation nodes of the quarter-point element to the crack-tip follows
from Equation (5.99)

r1 =
L

64
at NC1,

r2 =
L

4
at NC2,

r3 =
49L
64

at NC3 . (5.100)

ζ=−1

•••
ζ=−3/4 ζ=0 ζ=3/4 ζ=1

Crack-tip
NC3NC1 NC2

L/64

L/4

49L/64

L

Fig. 5.10 Configuration of a quarter-point element.
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Making use of the boundary natural coordinate ζ, the shape functions Φk

in Equation (5.98) can be defined by [11]

Φ1 =
3
√

3
8

√
ζ + 1[−5 + 18(ζ + 1) − 9(ζ + 1)2],

Φ2 =
1
4

√
ζ + 1[5 − 8(ζ + 1) + 3(ζ + 1)2],

Φ3 =
3
√

3
8
√

5

√
ζ + 1[1 − 4(ζ + 1) + 3(ζ + 1)2] . (5.101)

For calculation of the generalized stress intensity factors (GSIF), Pan [11]
employed the extrapolation method of the GRCD, which requires an analyti-
cal relation between the generalized displacement and the GSIF. This relation
can be expressed as

�U(r) = 2

√
2r
π

(iAB−1)K , (5.102)

where the matrices A and B are matrices associated with material proper
ties [2], and K is defined by [21],

K =

⎧⎨⎩
KII

KI

KIV

⎫⎬⎭ = 2

√
2π
L

(Re[B])−1

⎧⎪⎨⎪⎩
�uNC1

1

�uNC1
2

�φNC1

⎫⎪⎬⎪⎭ . (5.103)

In this example, Pan [11] used 20 discontinuous quadratic elements desc-
ribed above to discretize the crack surface which has a length of 2a (=1m).
Tables 5.2 and 5.3 list the GRCD caused by a far-field stress Tyy(=1 N/m2)
and a far-field electric displacement Dy(=1 C/m2), and comparison is made
with analytical results. It is obvious that a far-field stress induces a nonzero

Table 5.2 GRCD caused by a far-field Tyy(= 1 N/m2)[11]

�uy(10−12 m) �φ(10−1 V)

x(m) BEM Analytical BEM Analytical

0.492 0.032 0.032 0.040 0.040
0.425 0.094 0.093 0.116 0.116
0.358 0.124 0.124 0.154 0.154
0.292 0.144 0.144 0.179 0.179
0.225 0.158 0.158 0.197 0.197
0.158 0.168 0.168 0.210 0.210
0.092 0.174 0.174 0.217 0.217

0.025 0.177 0.177 0.221 0.221
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Table 5.3 GRCD caused by a far-field Dy(= 1 C/m2)[11]

�φ(108 V) �uy(10−1 m)

x(m) BEM Analytical BEM Analytical

0.492 0.161 0.160 0.040 0.040
0.425 0.466 0.465 0.116 0.116
0.358 0.616 0.616 0.154 0.154
0.292 0.717 0.717 0.179 0.179
0.225 0.789 0.789 0.197 0.197
0.158 0.838 0.838 0.210 0.210
0.092 0.868 0.868 0.217 0.217
0.025 0.882 0.882 0.221 0.221

�φ even though the corresponding KIV is zero. Similarly, a far-field electric
displacement can induce a nonzero �uy.

5.9.3 A Rectangular Piezoelectric Solid with a Central
Inclined Crack [13]

The third example is a rectangular piezoelectric solid with a central crack
(a = 0.1 m) inclined θ = 45◦ with respect to the positive x-direction. The
ratios of crack length to width and of height to width are a/w = 0.2 and
h/w = 2, respectively (see Figure 5.11). The analysis is carried out for the

θ2a

2w

2h x

y

Tyy or Dy

Fig. 5.11 Finite rectangular solid with an inclined crack under uniform tension or electric
displacement in the y-direction.
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Table 5.4 GSIF for cracked rectangle loaded by σy or Dy

Ref KI/Tyy
√

πa KII/Tyy
√

πa KIV /D∗√πa

Loaded by σy [11] 0.5303 0.5151 −2.97 × 10−12

[11] 0.5292 0.5163 −2.79 × 10−12

Ref KI/T ∗√πa KII/T ∗√πa KIV /Dy
√

πa

Loaded by Dy [11] −1.42 × 106 1.69 × 105 −0.7278
[13] −1.44 × 106 1.64 × 105 −0.7283

rectangle loaded by a uniform tension and electric displacement applied in
the y-direction. Table 5.4 lists the normalized GSIF for the two loading con-
ditions considered and the results obtained are compared with those given
by Pan [11], who used 10 discontinuous quadratic elements on the crack sur-
faces and 32 quadratic elements on the outside boundaries in his analysis.
Tables 5.5 and 5.6 give the corresponding GRCD. In Table 5.4, D∗ is a nomi-
nal electric displacement expressed in C/m2 with its amplitude equal to that
of Tyy expressed in N/m2, and T ∗ is a nominal stress expressed in N/m2 with
its amplitude equal to that of Dy expressed in C/m2.

It can be seen from Table 5.4 that an electric load of Dy(= 1 C/m2) can
produce very large mechanical stress intensity factors. Conversely, the electric
displacement intensity factor due to mechanical loads is usually negligible.
This phenomenon indicates clearly that crack initiation criteria based on a
single stress intensity factor (SIF) cannot be simply extended to the piezo-
electric case. It is also found from Tables 5.5 and 5.6 that a mechanical load
can induce relative crack electric potential and, conversely, an electric load
can give rise to relative crack displacement.

Table 5.5 GRCD for cracked rectangle caused by a far-field Tyy(=1 N/m2) [13]

x = y (10−1 m) �ux(10−13 m) �uy(10−11 m) �φ(10−2 V)

0.477 0.256 −0.190 0.232
0.424 0.279 −0.206 0.252
0.371 0.299 −0.219 0.268
0.318 0.315 −0.230 0.281
0.265 0.328 −0.239 0.292
0.212 0.339 −0.246 0.300
0.159 0.347 −0.251 0.307
0.106 0.352 −0.255 0.312
0.053 0.356 −0.257 0.314
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Table 5.6 GRCD for cracked rectangle caused by a far-field Dy(= 1 C/m2) [13]

x = y (10−1 m) �ux(10−5 m) �uy(10−2 m) �φ(108 V)

0.477 0.353 0.232 0.093
0.424 0.371 0.252 0.100
0.371 0.385 0.268 0.107
0.318 0.391 0.281 0.112
0.265 0.406 0.292 0.116
0.212 0.410 0.300 0.120
0.159 0.416 0.307 0.123
0.106 0.420 0.312 0.125
0.053 0.431 0.314 0.126
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Chapter 6

Waves in Strained/Polarized Media

Olivian Simionescu-Panait

Dedicated to the memory of my Professor Eugen Soós

6.1 Introduction

The problems related to electroelastic materials subject to incremental
fields superposed on initial mechanical and electric fields have attracted
considerable attention recently, due their complexity and to multiple appli-
cations (see [3, 5, 10, 31–33]). The basic equations of the theory of piezo-
electric bodies subject to infinitesimal deformations and fields superposed
on large initial mechanical and electric fields were described by Eringen and
Maugin in their well-known monograph [6]. An useful development of the
equations of electromagnetism in material continua may be found in [30].
As regards the description of mechanics of a continuum medium we refer to
the classical textbook of Malvern [12].

The chapter is divided into four parts. The first one presents the
fundamental equations of incremental fields superposed on large static
deformation and electric fields. Following the paper [2], we derive the balance
equations, constitutive equations, and boundary conditions for this problem,
using the updated Lagrangean description. We analyse the important special
case of homogeneous initial state and nonpolarisable environment. In this
framework we obtain the dynamic and static energy balance, we present the
static and dynamic local stability criteria, we derive the conditions of plane
harmonic wave propagation, and we define the characteristic surfaces.

In the second part we analyse the propagation conditions of plane
harmonic waves in various types of crystals subject to initial electrome-
chanical fields. Following the papers [15–18, 27] we derive the propagation
conditions for isotropic solids, cubic crystals, and 6 mm-type crystals, we show
the electrostrictive effect, we define and analyse the generalised anisotropy

Olivian Simionescu-Panait
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factor and the coupling coefficients, and we demonstrate the influence of
initial fields on the shape of slowness surfaces. From a mathematical point
of view, the problem reduces to the spectral properties of the acoustic tensor,
supposed symmetric and positive definite.

The third part presents the problem of attenuated wave propagation in
isotropic solids and in cubic crystals subject to initial electromechanical initial
fields (see papers [19–24]). Here the acoustic tensor is no longer symmetric
and positive definite in the general case, but we find particular forms of the
initial electric field in order to solve the spectral problem.

Finally, following the papers [25, 26], we study the coupling conditions
for propagation of planar guided waves in a piezoelectric semi-infinite plane
subject to initial fields and we obtain the decomposition of the corresponding
mechanical and electrical boundary conditions. The mathematical problem
is linked to the spectral properties of the acoustic tensor, having differential
operators of second-order with complex coefficients, as components.

6.2 Basic Equations

In this section we present the fundamental equations describing the behaviour
of a nonmagnetisable elastic dielectric material, which conducts neither heat
nor electricity. Thus, we assume the quasi-electrostatic approximation of
field equations and of boundary conditions, as described in monograph [6].
We follow here the paper [2], with some variations. A detailed analysis of the
problem may be found there.

6.2.1 The Quasi-Electrostatic Approximation of
Balance Equations

We assume the material to be an hyperelastic dielectric, which is
nonmagnetisable and conducts neither heat nor electricity. We use the quasi-
electrostatic approximation of the equations of balance. Let BR be the
reference configuration, in which at time t = 0 the body is undeformed
and free of all fields and Bt the present (current) configuration. Let VR

and Vt be the geometric domains associated with BR and Bt. The material
position (reported to BR) and the spatial position (reported to Bt) of an
arbitrary particle X of the body are denoted by X (resp. x). The first case
is known as Lagrangean description, and the second as Eulerian description
of the deformation.

Let ρR and ρ be the mass densities of the body, referred to the configu-
rations BR and Bt. If J is the determinant of the deformation gradient F
from BR to Bt, then we obtain the mass conservation law (in Lagrangean
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description) in the form:

ρJ = ρR. (6.1)

Similarly, let qR and q be the volumetric electric charge densities,
reported to BR and Bt. Then, we determine the charge conservation law
(in Lagrangean description) as

qJ = qR. (6.2)

Let T be the electromechanical stress tensor of Cauchy type and S its
symmetric part. We suppose that the latter tensor is derived from Helmholtz
free energy as in nonlinear elasticity, but now depending on electromechanical
variables, as follows. Let E, P, and D be the electric field, the electric polar-
ization and the electric displacement vectors, respectively. Then, we suppose
the following relations (see [6]),

T = S− P ⊗ E, D = E + P. (6.3)

The balance equations in the quasi-electrostatic approximation have the
form (see [6]):

ρv̇ = divxT + ρf + qE + (P · ∇x)E,
divxD = q, rotxE = 0. (6.4)

Here v is the velocity field vector, f represents the mechanical body force, and
q is the volumetric charge density. A superposed dot is used to
denote the material time derivative. In Equations (6.4) we used the
Eulerian description, the fields involved depending on spatial coordinate x
and on time t. Here one finds the electrostatic form of Coulomb and Faraday
laws. The first differential relation is derived from the momentum balance.

Furthermore, the jump conditions and the electromechanical surface stress
vector tn, defined on the boundary ∂Vt, are given by:

n · [D] = w, n× [E] = 0,

tn = Tn = (S − P ⊗ E)n on ∂Vt. (6.5)

Here w represents the surface charge density, n the exterior normal unit
vector to the boundary, and [φ] = φ+ − φ− is the jump of the field φ across
the boundary. From now on, we denote simply by φ the inside limit value φ−.

The previous field equations and boundary conditions may be expressed in
Lagrangean description using electromechanical stress tensors of
Piola–Kirchhoff type. They are related to the reference configuration BR

and are defined by the relations:

Θ = JF−1S, Π = JF−1SF−T , Θ = ΠFT . (6.6)
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Here Θ and Π are the nominal electromechanical stress tensors of
Piola–Kirchhoff type related to the symmetric part S of the electromechanical
stress tensor T of Cauchy type. It is obvious that Π is a symmetric tensor.

Similarly, we introduce the Lagrangean version of vectors P, E, and D, as
follows:

P = JF−1P, E = FT E,

D = JF−1D = JF−1E + P . (6.7)

Finally, using the first relation (6.3) we obtain the associated material
version of tensor T:

T = JF−1T = Θ− P ⊗ E. (6.8)

Consequently, we derive from the momentum balance the Lagrangean form
of the balance equations:

ρRü = divXT + ρRf + qRE + (P · ∇X)E, divXD = qR, rotXE = 0.
(6.9)

Here u is the displacement vector from BR to Bt. The differential
operators are associated with the reference configuration, and the various
fields involved depend on the material coordinate X and on time t.

Furthermore, the jump conditions and the electromechanical surface stress
vector tN, reported to the material configuration, are given by

N · [D] = wR, N× [E ] = 0, tN = T N = (Θ − P ⊗ E)N on∂VR.
(6.10)

Here N is the exterior normal unit vector to the boundary ∂VR and wR is
surface charge density per material surface area.

The previous balance equations are supplemented by the constitutive
equations (see [6]):

Π =
∂H
∂G

, P = −∂H
∂EEE , (6.11)

where

ρRψ = H(G,E) (6.12)

is the electromechanical Helmholtz free energy, and

G =
1
2
(C − 1) =

1
2
(FT F− 1) (6.13)

is the Green strain tensor.
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6.2.2 Small Deformation and Electric Fields
Superposed on Large Static Deformation
and Electric Fields

In this part we describe the behaviour of incremental electromechanical fields
superposed on large initial electromechanical fields. In [6] one obtains these
equations using the field equations corresponding to the spatial (Eulerian)
description of the deformation. The perturbed electromechanical surface
forces, as well as the surface and volumetric charges, are taken in the
perturbed current configuration. In [2], these quantities are referred to the
initially deformed static configuration, which is supposed as being known
(i.e., the updated Lagrangean description of the deformation). We follow the
second approach.

To describe this situation we use three different configurations:
the reference configuration BR in which at time t = 0 the body is unde-
formed and free of all fields; and the initial configuration

◦
B in which the

body is deformed statically and carries the initial fields; and the present
(current) configuration Bt obtained from

◦
B by applying time-dependent

incremental deformations and fields. Let VR,
◦
V , and Vt be the geometric

domains associated with BR,
◦
B, and Bt.

In what follows, all the fields related to the initial configuration
◦
B are

denoted by a superposed “◦”. The static deformation from BR to
◦
B is

described by the relation x = χ(X); the associated deformation gradient

is
◦
F=

◦
F (X) and

◦
J = det

◦
F (X). Thus, we obtain the mass conservation law,

(resp., the charge conservation law) in the form:

◦
ρ
◦
J= ρR,

◦
q
◦
J= qR. (6.14)

Furthermore, due to the relations (6.3) we derive that

◦
T =

◦
S − ◦

P ⊗ ◦
E,

◦
D =

◦
E +

◦
P . (6.15)

According to (6.4), the field equations for these static fields are:

divx

◦
T +

◦
ρ
◦
f +

◦
q
◦
E +(

◦
P ·∇x)

◦
E = 0,

divx

◦
D =

◦
q, rotx

◦
E = 0. (6.16)

Here all the electromechanical fields depend on the variable x and on
time t.



174 Olivian Simionescu-Panait

Consequently, the jump conditions and the electromechanical surface stress
vector

◦
tn at the boundary ∂

◦
V are:

◦
n ·[ ◦D] =

◦
w,

◦
n × [

◦
E] = 0,

◦
tn =

◦
T

◦
n = (

◦
S − ◦

P ⊗ ◦
E)

◦
n on ∂

◦
V . (6.17)

Here
◦
n is the exterior normal unit vector to the boundary ∂

◦
V .

The constitutive equations (6.11), giving the electromechanical stress

tensor and the electric polarization in the statical configuration
◦
B, become:

◦
Π =

∂H
∂G

(
◦
G,

◦
E),

◦
P = −∂H

∂E (
◦
G,

◦
E), (6.18)

where

◦
Π =

◦
J

◦
F

−1 ◦
S

◦
F

−T

,
◦
P =

◦
J

◦
F

−1 ◦
P (6.19)

and

◦
G=

1
2
(
◦
F

T ◦
F −1),

◦
E =

◦
F

T ◦
E . (6.20)

Now, we assume that time-dependent incremental deformations and fields
are applied to the body in the initial configuration

◦
B, determining their

description in the current configuration Bt. Here, all the fields referring to
◦
B

as the reference configuration, are denoted by a subscript “o”. Let u(x, t) be

the small displacement from
◦
B to Bt and let Fo = Fo(x, t) be the gradient of

deformation from
◦
B to Bt,

◦
B being taken as the reference configuration. We

define the gradient of the displacement u(x, t) by Ho(x, t), and Jo(x, t) as
the determinant of Fo(x, t). All the fields involved are regarded as functions

of x and t, when reported to
◦
B. For simplicity, we suppress the argument

x in the following notations. Thus, we obtain:

Fo(t) = 1 + Ho(t), F(t) = Fo(t)
◦
F, J(t) = Jo(t)

◦
J . (6.21)

Here F(t) is the deformation gradient from BR to Bt and J(t) is its
determinant.

Consequently, to obtain the field equations referred to the configuration
◦
B,

we introduce the following Piola–Kirchhoff-type fields.

Θo(t) = JoF−1
o (t)S(t) =

◦
J
−1 ◦

F Π(t)
◦
F

T

FT
o (t),

Πo(t) = JoF−1
o SF−T

o , Θo = ΠoFT
o , (6.22)
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PPPo(t) = Jo(t)F−1
o (t)P(t) =

◦
J
−1 ◦

F P(t),

Eo(t) = FT
o (t)E(t), (6.23)

Do(t) = Jo(t)F−1
o (t)D(t) = Jo(t)F−1

o (t)E(t) + Po(t), (6.24)

T o(t) = Jo(t)F−1
o (t)T(t) = Θo(t) − Po(t) ⊗ E(t). (6.25)

Furthermore,

Ho(0) = 0, Fo(0) = 1, Jo(0) = 1. (6.26)

Therefore,

Θo(0) =
◦
S, Po(0) =

◦
P, Eo(0) =

◦
E, Do(0) =

◦
D, T o(0) =

◦
T .

(6.27)

In conclusion, we obtain the balance equations in updated Lagrangean
description:

ρ(t)Jo(t) =
◦
ρ, q(t)Jo(t) = qo, (6.28)

◦
ρ ü(t) = divxT o(t)+

◦
ρ f(t) + qo(t)E(t) + (Po(t) · ∇x)E(t),

divxDo(t) = qo(t), rotxEo(t) = 0. (6.29)

Here qo(t) is the current volumetric electric charge density per unit

material volume in the configuration
◦
B.

We find that the jump conditions and the electromechanical surface stress
vector of Piola–Kirchhoff-type are given by

◦
n ·[Do(t)] = wo(t),

◦
n ×[Eo(t)] = 0,

ton(t) = T o(t)
◦
n = (Θo(t) − Po(t) ⊗ E(t))

◦
n on ∂

◦
V , (6.30)

where wo(t) is the current surface charge density per unit material surface

area in the configuration
◦
B.

Finally, we give the constitutive relations in the form:

Πo(t) =
∂H
∂G

(Go(t),Eo(t)), Po(t) = −∂H
∂E

(Go(t),Eo(t)), (6.31)

where

Go(t) =
1
2
(Fo(t)T Fo(t) − 1). (6.32)
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Now, we define by e(t) = e(x, t) the infinitesimal perturbation of the initial

applied electric field
◦
E:

E(t) =
◦
E + e(t), (6.33)

and using (6.21) we derive the useful relation

F(t) =
◦
F + Ho(t)

◦
F . (6.34)

In what follows, we suppose that the perturbations Ho(t) and e(t) are
small, such that the products of all terms containing Ho(t) and e(t) may be
neglected. In particular, we obtain

Jo(t) = 1 + trHo(t), F−1
o (t) = 1 − Ho(t). (6.35)

Henceforward, we denote by a superposed bar the small perturbation of
an arbitrary field. So, we have for Green tensor

G(t) =
◦
G + Ḡ(t), where Ḡ(t) =

◦
F

T

g(t)
◦
F. (6.36)

Here

g(t) =
1
2
(Ho(t) + HT

o (t)) (6.37)

is the associated infinitesimal strain tensor.
Similarly, we define the perturbation of the electric field Ē(t) by

E(t) =
◦
E + Ē(t), where Ē(t) =

◦
F

T

(e(t) + HT
o (t)

◦
E). (6.38)

We also obtain that

Θo(t) =
◦
S + Θ̄o(t), Π(t) =

◦
Π + Π̄(t),

Θ̄o(t) =
◦
J
−1 ◦

F Π̄(t)
◦
F

T

+
◦
S HT

o (t). (6.39)

The previous relation shows that the stress perturbation Θ̄o(t) is known
if the stress perturbation Π̄(t) is known, and vice versa.

Next, we define

Po(t) =
◦
P + P̄o(t), P(t) =

◦
P + P̄(t), with P̄o(t) =

◦
J
−1 ◦

F P̄(t).
(6.40)

Thus, the perturbation P̄o(t) is known if the perturbation P̄(t) is known,
and vice versa.
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Similarly, if we take

Do(t) =
◦
D + D̄o(t), (6.41)

we obtain that

D̄o(t) = e(t) + P̄o(t) +
◦
E trHo(t) − Ho(t)

◦
E; (6.42)

that is, to know the perturbation D̄o(t) we must know the perturbation
P̄o(t).

We also derive that

Eo(t) =
◦
E + Ēo(t), with Ēo(t) = e(t) + HT

o (t)
◦
E . (6.43)

Finally, we find that

T o(t) =
◦
T +T̄ o(t), where T̄ o(t) = Θ̄o(t) − P̄o(t) ⊗

◦
E − ◦

P ⊗ e(t).
(6.44)

At this stage it is evident that all perturbations are known if the pertur-
bations Π̄(t) and P̄(t) are known. To obtain these perturbations we use the
following constitutive equations.

Π̄(t) =
∂2

◦
H

∂G∂G
[
◦
F

T

g(t)
◦
F] +

∂2
◦
H

∂E∂G [
◦
F

T

(e(t) + HT
o (t)

◦
E)], (6.45)

P̄(t) = − ∂2
◦
H

∂G∂E [
◦
F

T

g(t)
◦
F] − ∂2

◦
H

∂E∂E [
◦
F

T

(e(t) + HT
o (t)

◦
E)]. (6.46)

Here the symbol “◦” superposed on H indicates that the corresponding
second-order derivatives of the generalized Helmholtz free energy are taken

at
◦
G and

◦
E.

The perturbations of the force (resp., of charge densities) are defined by

f(t) =
◦
f + f̄(t), qo(t) =

◦
q + q̄(t),

wo(t) =
◦
w + w̄(t). (6.47)

Concluding from the relations obtained in the last section, we derive that
the incremental fields satisfy the following balance equations.

◦
ρ ü(t) = divx(Θ̄o(t) − P̄o(t)⊗

◦
E − ◦

P ⊗ e(t))+
◦
ρ f̄(t) + q̄(t)

◦
E

+
◦
q e(t) + (P̄o(t) · ∇x)

◦
E +(

◦
P ·∇x)e(t), (6.48)
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divx(e(t) + P̄o(t)+
◦
E trHo(t) − Ho(t)

◦
E) = q̄(t),

rotx(e(t) + HT
o (t)

◦
E) = 0. (6.49)

Note that without further assumptions the differential balance equations
satisfied by the incremental fields cannot be simplified.

The jump conditions for the involved incremental fields are:

◦
n · [e(t) + P̄o(t) +

◦
E trHo(t) − Ho(t)

◦
E] = w̄(t),

◦
n ×[e(t) + HT

o (t)
◦
E] = 0. (6.50)

Finally, we obtain that the incremental electromechanical surface stress
vector of Piola–Kirchhoff-type t̄on(t) reduces to

t̄on(t) = (Θ̄o(t) − P̄o(t)⊗
◦
E − ◦

P ⊗e(t))
◦
n on ∂

◦
V . (6.51)

6.2.3 Special Cases: Homogeneous Initial State and
Nonpolarisable Environment

In this part we introduce two simplifying hypotheses, essential for subsequent
developments.

H1: The body is homogeneous, the initial deformation gradient
◦
F is constant

in the domain VR, and the initial applied electric field
◦
E is constant in

all of space.
H2: The environment (i.e., the vacuum) of the body is not polarisable.

The second assumption is justified because the dielectric constants of elec-
troelastic materials are significantly larger than the dielectric constant of
the vacuum. Then, we have that

◦
P = 0 and e(t) = 0 in the exterior

of the body
◦
V . Thus, the associated limit values on ∂

◦
V satisfy the rela-

tions
◦

P+ = 0 and e+(t) = 0. It is evident that the second assumption
leads to an important simplification of the problem, because, by neglect-
ing the surroundings of the body, our problem is transformed into one of a
hyperelastic dielectric.

Now, if we consider the first assumption, we observe that
◦
S,

◦
P,

◦
E,

◦
T,

and
◦
D are constant fields in the domain

◦
V . Consequently, the balance

equations (6.16) take place in the assumed homogeneous state, only if

◦
f = 0,

◦
q = 0 in

◦
V . (6.52)
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Because the initial applied electric field is constant in the entire space,
and taking into account the previous remarks, we find that the second jump
condition (6.17) is satisfied if

◦
P and

◦
w are related by

◦
P · ◦

n = − ◦
w, on ∂

◦
V . (6.53)

Furthermore, the electromechanical stress vector
◦
tn is given by the third

relation (6.17).
An important consequence of assumption H1, together with relations

(6.52) and Equations (6.48) and (6.49), is that the differential balance
equations take the form:

◦
ρ ü(t) = divx(Θ̄o(t) − P̄o(t) ⊗ ◦

E) +
◦
ρ f̄(t) + q̄(t)

◦
E, (6.54)

divx(e(t) + P̄o(t)) = q̄(t), rotxe(t) = 0. (6.55)

Moreover, the second assumption H2 implies that the boundary conditions
(6.50) and (6.51) reduce to:

◦
n · (e(t) + P̄o(t)) = −w̄(t),

◦
n ×e(t) = 0,

t̄on(t) = (Θ̄o(t) − P̄o(t) ⊗ ◦
E)

◦
n on ∂

◦
V . (6.56)

The system (6.54)–(6.56) takes place whenever the initial state of the body
is homogeneous and the environment of the body is not polarisable.

To complete the description of the incremental behaviour of the body, we
analyse the constitutive equations (6.45) and (6.46), which give the perturba-
tions Π̄(t) and P̄(t), under the present assumptions. Moreover, if we use the
relations (6.39) and (6.40), we obtain the perturbations Θ̄o(t) and P̄o(t) in
the form:

Θ̄okl = (
◦
cklmn +

◦
Skn δlm − ◦

enkl

◦
Em)um,n− ◦

emkl em (6.57)

P̄ok = (
◦
ekmn +

◦
ηkm

◦
En)un,m +

◦
ηkl el. (6.58)

Here
◦
cklmn =

◦
J
−1 ◦
F kp

◦
F lq

◦
Fmr

◦
Fns

∂2
◦
H

∂Grs∂Gpq
,

◦
emkl = − ◦

J
−1 ◦
Fmp

◦
F kq

◦
F lr

∂2
◦
H

∂Ep∂Gqr
,

◦
ηkl = − ◦

J
−1 ◦
F km

◦
F ln

∂2
◦
H

∂Em∂En
(6.59)

are the instantaneous material moduli (elastic, piezoelectric, and dielectric
moduli). The constitutive relations (6.59) are valid even if the simplifying
assumptions H1 and H2 are not satisfied.
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The instantaneous material moduli possess the following symmetry
properties,

◦
cklmn =

◦
clkmn =

◦
cklnm =

◦
cmnkl,

◦
emkl =

◦
emlk,

◦
ηkl =

◦
ηlk. (6.60)

It follows that, for general anisotropy, there exist 21 independent instan-
taneous moduli

◦
cklmn, 18 independent instantaneous moduli

◦
emkl, and 6

independent instantaneous moduli
◦
ηkl.

At this point, we introduce the incremental electromechanical stress
tensor Σ, and the incremental electric displacement vector ∆ by the
relations:

Σ(t) = Θ̄o(t) − P̄o(t)⊗
◦
E, ∆(t) = e(t) + P̄o(t). (6.61)

It follows that, according to relations (6.57) and (6.58), the constitutive
relations describing the behaviour of the incremental fields, under the
previous hypotheses, are:

Σkl =
◦
Ωklmn um,n − ◦

Λmkl em, ∆k =
◦
Λkmn un,m+

◦
εkl el, (6.62)

where
◦
Ωklmn =

◦
cklmn +

◦
Skn δlm− ◦

ekmn

◦
El − ◦

enkl

◦
Em − ◦

ηkn

◦
El

◦
Em,

◦
Λmkl =

◦
emkl +

◦
ηmk

◦
El,

◦
εkl = δkl+

◦
ηkl (6.63)

are the components of the instantaneous elasticity tensor
◦
Ω, and the

instantaneous coupling tensor
◦
Λ, respectively, of the instantaneous dielec-

tric tensor
◦
εεε.

From relations (6.60) we find the symmetry relations

◦
Ωklmn =

◦
Ωnmlk,

◦
εkl =

◦
εlk. (6.64)

Moreover, we see that
◦
Ωklmn is not symmetric according to indices (k, l)

and (m, n) and
◦
Λmkl is not symmetric relative to indices (k, l). It follows

that, generally, there are 45 independent instantaneous elastic moduli
◦
Ωklmn,

27 independent instantaneous coupling moduli
◦
Λmkl, and 6 independent

instantaneous dielectric moduli
◦
εkl. These moduli are constant parameters

depending on the considered hyperelastic material, and on the initial electric
and mechanical applied fields. We note at this stage that, even if this problem
is linearized, the solution depends nonlinearly on the initial applied electric
field.
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In this framework, using the incremental electromechanical stress tensor
Σ and the incremental electric displacement vector ∆, we derive from (6.54)
and (6.55) the differential balance equations in the form:

◦
ρ ü(t) = divxΣ +

◦
ρ f̄(t) + q̄(t)

◦
E,

divx∆ = q̄(t),
rotxe(t) = 0. (6.65)

The associated boundary conditions are:

◦
n · ∆ = −w̄(t),

◦
n × e(t) = 0,

t̄on(t) = Σ
◦
n on ∂

◦
V . (6.66)

6.2.4 Dynamic and Static Energy Balance.
Incremental Initial and Boundary Value
Problems

In next three sections we briefly describe the properties of the model derived
previously.

First of all, we formulate dynamic and static energy balance laws as a
consequence of incremental field equations derived in the preceding section.
Here the differential operators are shown to be self-adjoint. This important
property results from the form of constitutive equations (6.62) and from the
symmetry properties (6.64).

To obtain the dynamic incremental energy balance law we multiply the
equation (6.65)1 with the velocity u̇. Integrating the resulting expression

over
◦
V and using the flux-divergence theorem, we derive:

d
dt

∫
◦
V

1
2

◦
ρ u̇ · u̇dv =

∫
∂

◦
V

u̇ · (Σ ◦
n)ds+

∫
◦
V

(
◦
ρ f̄ · u̇ + q̄

◦
E ·u̇)dv

−
∫

◦
V

(∇u̇ : Σ)dv. (6.67)

Here “:” is the symbol for the inner product between second-order tensors.
Furthermore, from the balance equation (6.65)3 it yields that the incremen-

tal electric field e(t) has a scalar electric potential φ(x, t); that is, e(t) = −∇φ.

Multiplying the time derivative of Equation (6.65)2 by φ, integrating over
◦
V ,

and using the flux-divergence theorem, we obtain:

0 = −
∫

∂
◦
V

∆̇ · (φ ◦
n)ds+

∫
◦
V

˙̄qφdv −
∫

◦
V

(∆̇ · e)dv. (6.68)
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Addition of the two preceding equations leads to

d
dt

∫
◦
V

1
2

◦
ρ u̇ · u̇dv =

∫
∂

◦
V

◦
n · (Σu̇ − φ∆̇)ds+

∫
◦
V

(
◦
ρ f̄ · u̇ + q̄

◦
E · u̇ + φ ˙̄q)dv

−
∫

◦
V

(∇u̇ : Σ + ∆̇ · e)dv. (6.69)

Using the constitutive laws (6.62) and the symmetry of tensors
◦
Ω and

◦
ε

we see that the last term from (6.69) reduces to

−
∫

◦
V

d
dt

(
1
2
∇u · ◦

Ω ∇u +
1
2
e· ◦εεε e

)
dv.

Thus, we obtain the dynamic energy balance law in the form:

1
2

d
dt

∫
◦
V

(
◦
ρ u̇ · u̇ + ∇u · ◦

Ω ∇u + e · ◦εεε e)dv

=
∫

∂
◦
V

◦
n · (Σu̇− φ∆̇)ds+

∫
◦
V

(
◦
ρ f̄ · u̇ + q̄

◦
E · u̇ + φ ˙̄q)dv. (6.70)

Analyzing the first integral, we remark that the first term represents the
incremental kinetic energy of the body, the second term defines the incremen-
tal strain energy of the dielectric (including the effect of initial fields via the

tensor
◦
Ω), and the last one is related to the energy of the incremental electric

field. The surface integral appearing in Equation (6.70) introduces an impor-
tant vector of electromechanics, that is, the incremental electromechanical
energy-flux vector φ = −Σu̇+φ∆̇. It generalizes the Poynting vector from the
classical case, plays an important role in the reflection/refraction problems
of the electromechanical waves, and characterizes the amount of electrome-
chanical energy gained, or lost, by the boundary.

Let W be the sum of the incremental strain energy density and the energy
density of the incremental electric field W = ∇u · ◦

Ω ∇u+e · ◦εεε e. In this way,
the dynamic energy balance law (6.70) could be rewritten in the following
final form.

1
2

d
dt

∫
◦
V

(
◦
ρ u̇ · u̇ +W )dv =

∫
∂

◦
V

◦
n ·Σu̇ds−

∫
∂

◦
V

φ
◦
n · ∆̇ds

+
∫

◦
V

(
◦
ρ f̄ · u̇ + q̄

◦
E · u̇ + φ ˙̄q)dv. (6.71)

If the energy density W is a positive definite quadratic form, we find
that the initial and boundary incremental value problems, for this model,
have unique solutions. This important property of W takes place if the

tensors
◦
Ω and

◦
ε are positive definite. Note that, as in the classical lin-

ear theory of piezoelectric materials, without initial fields, the foregoing
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uniqueness condition does not impose any restriction on the instantaneous

coupling tensor
◦
Λ.

Using the same procedure for static problems, the static incremental
energy balance law may be obtained in the form

1
2

∫
◦
V

Wdv =
∫

∂
◦
V

◦
n ·Σuds−

∫
∂

◦
V

φ
◦
n ·∆ds+

∫
◦
V

(
◦
ρ f̄ · u + q̄

◦
E ·u + φq̄)dv.

(6.72)

As in the dynamic case, the uniqueness of the solutions for initial and
boundary incremental value problems is assured, up to a rigid-body motion, if

W is positive definite, that is, if the tensors
◦
Ω and

◦
ε are positive definite.

In conclusion, the loss of uniqueness and the instability of solutions may

occur if at least one of the tensors
◦
Ω and

◦
ε ceases to be positive definite. In

this particular case, direct methods are used to obtain the solutions, as we
show in Section 6.3 of this chapter.

6.2.5 Static and Dynamic Local Stability. Propagation
of Plane Harmonic Waves

In this section we present the local stability criteria for dynamic (resp., static)
problems concerning elastic dielectrics subject to initial electromechanical
fields. In the final part we derive the conditions for propagation of plane
harmonic waves in this electromechanical framework.

Under the previous conditions, we consider the following homogeneous
static boundary value problem:

divΣ = 0, div∆ = 0, e = −∇φ in
◦
V ,

Σ
◦
n = 0 on ∂

◦
V 1, u = 0 on ∂

◦
V 2,

∆· ◦
n = 0 on ∂

◦
V 3, φ = 0 on ∂

◦
V 4 . (6.73)

Here ∂
◦
V 1 and ∂

◦
V 2 (resp., ∂

◦
V 3 and ∂

◦
V 4) represent partitions of the

boundary ∂
◦
V .

Adapting here the concepts of stability from the linear stability theory
of hyperelastic solids, developed in [13] and [8], we define the static stability
criterion, as follows.

• The initially deformed and polarised equilibrium state
◦
B is locally stable if

and only if the homogeneous incremental boundary value problem (6.73)

has only the null solution. If this condition is not fulfilled, we say that
◦
B

is locally unstable.
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It is obvious that the static local stability criterion is linked to the unique-
ness of the solution; that is, if, for a given configuration

◦
B, the uniqueness

of solution stands, then
◦
B is locally stable, and vice versa. In particular, we

may infer that if the material tensors
◦
Ω and

◦
ε are positive definite, then the

initially deformed and polarised equilibrium state
◦
B is locally stable.

As regards the dynamic stability criterion, we say that the equilibrium
configuration

◦
B is locally stable if initial small time-dependent perturbations

of
◦
B remain small in time. In our special case, we assume the ordinary space–

time decomposition for the incremental displacement u and the incremental
electric potential φ

u(x, t) = eiωtũ(x),

φ(x, t) = eiωtφ̃(x), (6.74)

where ω is a complex number.
The homogeneous dynamic incremental boundary value problem to be

considered is:

◦
ρ ü(t) = divΣ, div∆ = 0, e = −∇φ in

◦
V ,

Σ
◦
n = 0 on ∂

◦
V 1, u = 0 on ∂

◦
V 2, ∆· ◦

n= 0 on ∂
◦
V 3,

φ = 0 on ∂
◦
V 4 . (6.75)

Here ∂
◦
V 1 and ∂

◦
V 2 (resp., ∂

◦
V 3 and ∂

◦
V 4) represent partitions of the

boundary ∂
◦
V .

From the incremental constitutive equations we obtain that Σ, ∆, and e
may be written in the form

Σ(x, t) = eiωtΣ̃(x), ∆(x, t) = eiωt∆̃(x), e(x, t) = eiωtẽ(x). (6.76)

Consequently, from relations (6.74)–(6.76) we derive the following eigen-
value problem for the parameter ω:

divΣ̃ =
◦
ρ ω2ũ, div∆̃ = 0, ẽ = −∇φ̃ in

◦
V , Σ̃

◦
n = 0 on ∂

◦
V 1,

ũ = 0 on ∂
◦
V 2, ∆̃· ◦

n = 0 on ∂
◦
V 3, φ̃ = 0 on ∂

◦
V 4 . (6.77)

Now, we can define the dynamic stability criterion as follows.

• The initially deformed and polarised equilibrium state
◦
B is locally stable

if and only if the eigenvalues ω of the problem (6.77) have nonnegative
imaginary part; that is, Imω ≥ 0.
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It is evident that the eigenvalues ω depend on the initially applied deforma-
tion and electric fields. Hence, assuming that

◦
B is a locally stable reference

configuration, the critical loads producing dynamic instability correspond to
those values for which the condition Imω = 0 is fulfilled.

To express the relation between the critical electromechanical loads lead-
ing to instability, a standard calculation shows that all the eigenvalues ω2

are real numbers; that is, Imω2 = 0 (see [2] for details). As we have seen,
the dynamic stability criterion indicates the loss of stability at those criti-
cal values of the loading parameters for which Imω passes from positive to
negative values. Consequently, because ω = 0 is a real number, assuming a
continuous dependency of ω on the loading parameters, we conclude that at
the moment of the loss of stability ω must vanish; that is, ω = 0.

Hence, according to the assumed dynamic stability criterion, the boundary
of the stability domain is determined for those critical values of the loading
parameters for which the equality ω = 0 is satisfied for the first time on a
given loading path. In other words, the equilibrium configuration

◦
B becomes

locally unstable when the eigenvalue problem (6.77) has a nonzero solution
corresponding to a zero eigenvalue.

In this case we obtain an important conclusion.

• The problems (6.73) and (6.77) give the same critical value of the loading
parameters, for a given loading path.

This result extends to hyperelastic dielectrics subject to electromechanical
initial fields similar conclusions obtained in [8] for prestressed hyperelastic
solids. It is interesting to note that this equivalence is a direct consequence
of the self-adjointness of the differential operator describing the incremental
behaviour of the body.

It is known that an important time-dependent perturbation used for
dynamic stability analysis is the plane harmonic (progressive) wave. For our
electromechanical problem this type of wave is defined by:

u(x, t) = aei(p·x−ωt),

φ(x, t) = aei(p·x−ωt), (6.78)

where a and a are constant quantities characterizing the amplitude of the
wave, p = pn is a constant vector, p represents the wave number, and
n is the direction of propagation. Here ω is the frequency of the wave.
We suppose that this kind of wave propagates in an unbounded domain.

It is easy to show that the fields (6.78) satisfy the homogeneous balance
equations (6.65) only if a, ω, and p satisfy the following condition of propa-
gation for harmonic waves:

◦
Q (p) a =

◦
ρ ω2a (6.79)
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with
◦
Qlm (p) =

◦
Alm (p) +

◦
Γ l (p)

◦
Γm (p)

◦
Γ (p)

,

◦
Alm (p) =

◦
Ωklmn pkpn = p2

◦
Ωklmn nknn,

◦
Γ l (p) =

◦
Λmkl pmpk = p2

◦
Λmkl nmnk,

◦
Γ (p) =

◦
εkl pkpl = p2 ◦

εkl nknl. (6.80)

The fundamental propagation condition (6.79) is an eigenvector problem
for the amplitude a, linked in a natural way to the eigenvalue problem
(dispersion equation):

det (
◦
Q (p)− ◦

ρ ω2(p)1) = 0, (6.81)

which is satisfied by the frequency ω, by any given p. The velocity of propa-
gation (phase velocity) of the harmonic wave is defined by v = ω(p)/p.

Relations (6.80) imply that
◦
Q (p) =

◦
Q

T

(p), for any p. It follows that the

dispersion equation (6.81) has real eigenvalues
◦
ρ ω2(p).

Moreover, because we assumed the positive definiteness of the instanta-
neous material tensors

◦
Ω and

◦
ε, we obtain from (6.80) that the instantaneous

acoustic tensor
◦
QQQ (p) is positive definite for any p. Consequently, the eigen-

values
◦
ρ ω2(p) are positive quantities. Therefore, we infer that there are three

mutually orthogonal eigenvectors a1, a2, and a3, provided that the initial
configuration is locally stable. Then, plane harmonic waves may propagate
in any direction in a prestressed and prepolarised hyperelastic material.

In conclusion, we obtained that the incremental behaviour of the body
in its initially deformed and polarised configuration

◦
B is similar to classical

linear piezoelectric theory (see [14, 28]).

6.2.6 Characteristic Surfaces

In the last part of this section we define and analyze the characteristic surfaces
related to the problem of infinitesimal plane harmonic wave propagation in
prestressed and prepolarised piezoelectric crystals (see [14] and [1]).

We recall here the main result of the previous part.

• If the instantaneous acoustic tensor
◦
Q (p) is positive definite, for any p,

then the eigenvalues
◦
ρ ω2(p) are positive quantities. Therefore, there are

three mutually orthogonal eigenvectors a1, a2, and a3, provided that the
initial configuration is locally stable.
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In physical terms this means that three harmonic plane waves may prop-
agate with real positive frequencies, given by the dispersion equation (6.81).
The amplitudes of the corresponding waves are the eigenvectors of the
instantaneous acoustic tensor. Moreover, if the three frequencies are distinct,
the corresponding amplitudes are orthogonal, and the waves are linearly
polarised. In general, these waves are not pure (i.e., longitudinal, nor trans-
verse). As in the classical case, we speak of incremental quasi-longitudinal
and quasi-transverse waves. Finally, we define the group velocity vector by
vg(p) = ∂ω(p)/∂p.

If we study the properties of the wave vector p = pn, we may define
the wave surface as the locus of the tip of the vector p, when the dispersion
equation (6.81) is satisfied for a fixed, real, and positive frequency ω. Because
ω is constant on the wave vector surface, the group velocity vg(p) is aligned
with the normal to this surface, the direction being that along which ω inc-
reases. This surface possesses three branches, corresponding to the distinct
roots of the dispersion equation. It is an equi-phase surface, because all their
points vibrate at the same time.

On the other hand, we define the slowness surface as the locus of the tip of
the vector m = n/v, where v = ω/p is the phase velocity. The slowness surface
is analogous to the index surface from optics, and plays an important role in
reflection/refraction problems. As before, there are three such surfaces. The
wave surface and the slowness surface are interconnected by the relationship
m = p/ω. Later in the chapter we analyse the properties of the slowness
surfaces for various crystal classes.

Finally, we define the velocity surface as the locus of the tip of the vector
v = vn. Generally, there are three such surfaces, one for quasi-longitudinal
waves and two corresponding to the quasi-transverse waves. Because v and
m are collinear and |v||m| = 1, the velocity and slowness surfaces are related
by inversion through the origin.

6.3 Plane Harmonic Wave Propagation in Crystals
Subject to Initial Electromechanical Fields

In this section we describe the propagation conditions of plane harmonic
waves in various type of crystals subject to initial electromechanical fields.

6.3.1 Isotropic Solids. The Electrostrictive Effect

Following the paper [17], we study here the electrostrictive effect on plane
harmonic wave propagation in an isotropic solid subject to initial mechani-
cal and electric fields. In this case, even the piezoelectric effect is, obviously,
absent, we find that the initial fields significantly influence the velocities of
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propagation and the polarisation of the waves, via the electrostrictive effect
due to the initial electric field components. Considering the particular cases of
longitudinal, transverse, and oblique initial electric fields, we find the veloci-
ties of propagation as closed form solutions, and we analyze the polarisation
of the corresponding waves, showing the essential role of the initial electric
field. Finally, we compute the velocities of propagation, for a longitudinal
initial electric field, in quartz glass (amorphous SiO2), applying initial strain
fields of order 1%, respectively, 2%.

We have the homogenous field equations (6.65) (i.e., f̄ = 0 and q̄ = 0) and
the constitutive equations (6.62), with

◦
Ωklmn =

◦
Ωnmlk = cklmn +

◦
Skn δlm − ηkn

◦
El

◦
Em,

◦
Λmkl = ηmk

◦
El,

◦
εkl =

◦
εlk = εkl = δkl + ηkl, (6.82)

where cklmn are the components of the constant elasticity tensor, εkl are the
components of the constant dielectric tensor,

◦
Ei are the components of the

initial applied electric field, and
◦
Skn are the components of the initial applied

symmetric (Cauchy) stress tensor. From now on, we drop the superposed “◦”
for the components of constant material tensors.

We study the propagation of incremental progressive plane waves in an
unbounded three-dimensional material described by the previous constitutive
equations. Therefore, the displacement vector and the electric potential have
the form (6.78). So, we obtain the condition of propagation (6.79) and (6.80)

of plane harmonic waves. Because the acoustic tensor
◦
Q is symmetric, the

eigenvalues
◦
ρ ω2 are real. Moreover, if we assume the positive definiteness

of the instantaneous moduli tensor
◦
Ω and ε (i.e., if the initial configura-

tion
◦
B is locally stable), it follows from the definition of the acoustic tensor

that it is positive definite. Consequently, the eigenvalues
◦
ρ ω2 are positive

quantities for any p. Thus, if
◦
Ω and ε satisfy the given conditions, in a

prestressed and prepolarised electroelastic material, then incremental pro-
gressive waves can propagate in any direction, the direction of propagation
n, the wave number p, and the frequency ω being connected by the dispersion
equation (6.81).

In the particular case of an isotropic material, the elasticity tensor contains
two independent constants (see [14]). Using Voigt’s convention we have:

c =

⎛⎜⎜⎜⎜⎜⎜⎝
c11 c12 c12 0 0 0
c12 c11 c12 0 0 0
c12 c12 c11 0 0 0
0 0 0 c66 0 0
0 0 0 0 c66 0
0 0 0 0 0 c66

⎞⎟⎟⎟⎟⎟⎟⎠ , (6.83)
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with c11 = λ + 2µ, c12 = λ, and c66 = (c11 − c12)/2 = µ. Here λ and µ are
Lamé’s constants.

The dielectric tensor has only one constant:

ηηη =

⎛⎝η 0 0
0 η 0
0 0 η

⎞⎠ , (6.84)

and ε = 1 + η.
Assuming that the direction of propagation coincides with the x1-axis

(i.e., n1 = 1, n2 = n3 = 0), it yields that the tensor
◦
A has the following

components (which must be multiplied by p2).

◦
A11 = c11+

◦
S11 −η

◦
E2

1 ,
◦
A12 =

◦
A21 = − η

◦
E1

◦
E2,

◦
A13 =

◦
A31 = −η ◦

E1

◦
E3,

◦
A22 = c66 +

◦
S11 − η

◦
E2

2 ,

◦
A23 =

◦
A32 = −η ◦

E2

◦
E3,

◦
A33 = c66 +

◦
S11 − η

◦
E2

3 . (6.85)

The components of
◦
Γ and

◦
Γ become (the expressions must be multiplied

by p2):
◦
Γ1 = η

◦
E1,

◦
Γ2 = η

◦
E2,

◦
Γ3 = η

◦
E3,

◦
Γ = ε = 1 + η. (6.86)

Consequently, the dispersion equation (6.81) has in this case the following
form.

F (V ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

◦
A11 +

◦
Γ 2

1
◦
Γ

− V
◦
A12 +

◦
Γ1

◦
Γ2
◦
Γ

◦
A13 +

◦
Γ1

◦
Γ3
◦
Γ

◦
A12 +

◦
Γ1

◦
Γ2
◦
Γ

◦
A22 +

◦
Γ 2

2
◦
Γ

− V
◦
A23 +

◦
Γ2

◦
Γ3
◦
Γ

◦
A13 +

◦
Γ1

◦
Γ3
◦
Γ

◦
A23 +

◦
Γ2

◦
Γ3
◦
Γ

◦
A33 +

◦
Γ 2

3
◦
Γ

− V

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0, (6.87)

where V =
◦
ρ v2. In this way, we obtain the dispersion equation having the

form:

F (V ) =

∣∣∣∣∣∣
a− V b c
b d− V e
c e f − V

∣∣∣∣∣∣ = 0, (6.88)
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where

a = c11 +
◦
S11 − η

1 + η

◦
E2

1 , b = − η

1 + η

◦
E1

◦
E2,

c = − η

1 + η

◦
E1

◦
E3, d = c66 +

◦
S11 − η

1 + η

◦
E2

2 ,

e = − η

1 + η

◦
E2

◦
E3, f = c66 +

◦
S11 − η

1 + η

◦
E2

3 . (6.89)

The condition of propagation of progressive waves (6.79) reduces here to
the following eigenvector problem.⎧⎪⎨⎪⎩

a a1 + b a2 + c a3 = V a1

b a1 + d a2 + e a3 = V a2

c a1 + e a2 + f a3 = V a3

(6.90)

with a, b, c, d, e, f given by (6.89) and ai, i = 1, 2, 3, being the components
of the unknown amplitude vector a.

In what follows, we present three important particular cases and a numer-
ical example.

(a) Longitudinal initial electric field (
◦
E1 = 0,

◦
E2 =

◦
E3 = 0)

In this case, the expressions b, c, e being zero, the dispersion equation
(6.88) has the roots:

V1 = c11 +
◦
S11 − η

1 + η

◦
E2

1 ,

V2 = V3 = c66 +
◦
S11, (6.91)

corresponding to the following wave velocities,

v1 =

√√√√√
(
λ+ 2µ+

◦
S11 − η

1 + η

◦
E2

1

)
◦
ρ

,

v2 = v3 =

√√√√(
µ+

◦
S11

)
◦
ρ

. (6.92)

As regards the polarisation of the obtained waves, using the condition of
propagation (6.90) in this particular case, we can easily see that v1 corre-
sponds to a longitudinal wave, and v2 = v3 is the velocity of a transverse
wave, arbitrarily polarised. On the other hand, we remark that both initial
fields influence the wave velocities.
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(b) Transverse initial electric field (
◦
E1 = 0,

◦
E2 = 0,

◦
E3 = 0)

In this case, the coefficients b and c being zero, the dispersion equation
(6.88) has the following three roots.

V1 = c11 +
◦
S11, V2 = c66 +

◦
S11, V3 = c66 +

◦
S11 − η

1 + η
(

◦
E2

2 +
◦
E2

3).

(6.93)

These roots correspond to wave velocities:

v1 =

√√√√(
λ+ 2µ+

◦
S11

)
◦
ρ

, v2 =

√√√√(
µ+

◦
S11

)
◦
ρ

,

v3 =

√√√√√
(
µ+

◦
S11 − η

1 + η
(

◦
E2

2 +
◦
E2

3)
)

◦
ρ

. (6.94)

If we analyze the polarisation of the waves having the previous velocities,
we obtain from the propagation condition (6.90) that:

1. If V = V1 = λ+ 2µ+
◦
S11, it yields a2 = a3 = 0. Consequently, this wave

is longitudinal.

2. If V = V2 = µ+
◦
S11, it results in a1 = 0 and

◦
E2 a2 +

◦
E3 a3 = 0. This

wave is transverse, with a fixed polarisation direction, given by the initial
electric field components.

3. If V = V3 = µ+
◦
S11 − (η/(1 + η))(

◦
E2

2 +
◦
E2

3), we obtain a1 = 0 and
◦
E3 a2 −

◦
E2 a3 = 0. In this case the wave is transverse, too. It has a

fixed polarisation direction, given by the initial electric field components,
normal to the preceding one.

(c) Oblique initial electric field (
◦
E1 = 0,

◦
E2 = 0,

◦
E3 = 0)

In this case, the coefficients c and e being zero, the dispersion
equation (6.88) has the following roots.

V1,2 =

(
λ+ 3µ+ 2

◦
S11 − η

1+η (
◦
E2

1 +
◦
E2

2) ±√
∆

)
2

, V3 = µ+
◦
S11,

(6.95)

where

∆ =
[
λ+ µ− η

1 + η
(

◦
E2

1 +
◦
E2

2)
]2

+
4η2

(1 + η)2
◦
E2

1

◦
E2

2 > 0. (6.96)
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One obtains the wave velocities in the form:

v1,2 =

√
V1,2
◦
ρ
, v3 =

√
V3
◦
ρ
. (6.97)

As regards the propagation condition (6.90), in this particular case we
observe that:

1. If

V = V1 =

(
λ + 3µ + 2

◦
S11 − η

1 + η
(

◦
E2

1 +
◦
E2

2) +
√
∆

)
2

,

we obtain a3 = 0 and (a − V1)a1 + ba2 = 0. This means that this is
a quasi-longitudinal wave, having the polarisation direction restricted by
the initial electric field components, only.

2. If

V = V2 =

(
λ+ 3µ+ 2

◦
S11 − η

1 + η
(

◦
E2

1 +
◦
E2

2) −
√

∆
)

2
,

we obtain the polarisation direction given by a3 = 0 and (a − V2)a1 +
ba2 = 0. This wave is quasi-longitudinal, its polarisation direction is
restricted only by the initial electric field components, and is mutually
perpendicular to the previous polarisation direction.

3. If V = V3 = µ +
◦
S11 we easily find that a1 = a2 = 0. Consequently, it is

a transverse wave, arbitrarily polarised.

(d) A numerical example

We analyze the influence of the initial mechanical and electric fields on
wave velocities, corresponding to a longitudinal initial electric field, in the
case of amorphous quartz SiO2, that is, quartz glass. It has the following
material constants (see [9, 14]): c11 = 7.85·1010 N/m2, c12 = 1.61·1010 N/m2,
◦
ρ= 2203 kg/m3, and ε = 3.8. Here the dielectric constant is reported to the
vacuum dielectric constant.

In Table 6.1 we compute the wave velocities in the case without
initial fields, and with initial strain fields of order 1%, respectively, 2%. The
influence of the initial electric field on wave velocities is very weak, even if

its intensity is important:
◦
E1 = 103

√
Pa = 108 V/m. The superior value

corresponds to a traction stress
◦
S11, and the inferior value is related to a

compression stress
◦
S11, that both generate the initial strain fields. One can

observe quite important differences between these values, due to the initial
strain fields.
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6.3.2 Cubic Crystals. Generalised Anisotropy Factor,
Slowness Surfaces

In this part we investigate, following the paper [18], the conditions of plane
wave propagation in cubic crystals subject to initial deformations and electric
fields. The analysis is extended to all symmetry classes belonging to the cubic
system, exhibiting, or not, the piezoelectric effect. We show the influence
of the electrostrictive and piezoelectric effects on wave propagation in such
media. We derive the velocities of propagation as closed-form solutions, and
we analyse the influence of the initial fields on the wave polarisation in two
main cases: (i) propagation along a cube edge; and (ii) propagation along a
cube face. In the second case we define a generalised anisotropy factor and
we show the influence of the initial fields on it and on the shape of slowness
surfaces.

In this problem we aim to satisfy the homogeneous field equations (6.65)
and the constitutive equations (6.62) and (6.63). In order to study the condi-
tions of propagation for incremental harmonic plane waves in an unbounded
three-dimensional material described by the previous constitutive equations,
we assume that the displacement vector and the electric potential have
the form (6.78). So, we obtain the condition of propagation (6.79) with
the dispersion equation (6.81). Because the acoustic tensor is symmet-
ric, and supposed positive definite, then incremental progressive waves can
propagate in any direction, with a velocity of propagation of the wave
defined by v = ω/p.

It is known that, in the particular case of a cubic crystal, the elasticity
tensor contains three independent constants (see [14] or [28]). Using Voigt’s
convention we have:

c =

⎛⎜⎜⎜⎜⎜⎜⎝
c11 c12 c12 0 0 0
c12 c11 c12 0 0 0
c12 c12 c11 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 c44

⎞⎟⎟⎟⎟⎟⎟⎠ . (6.98)

Among the five symmetry classes belonging to the cubic system, only
43m and 23 classes exhibit the piezoelectric effect, for the others (i.e.,
m3m, 432,m3) the piezoelectric effect being absent. In the first case, the

Table 6.1 The influence of initial strain fields on wave velocities, for longitudinal initial
electric field

Wave Velocities 0% Initial Strain m/s 1% Initial Strain m/s 2% Initial Strain m/s

v1 5969 5999/5939 6028/5909

v2 = v3 3763 3782/3744 3800/3725
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piezoelectric tensor contains only one constant:

e =

⎛⎝0 0 0 e14 0 0
0 0 0 0 e14 0
0 0 0 0 0 e14

⎞⎠ , (6.99)

and the dielectric tensor has one constant, for all five symmetry classes:

ηηη =

⎛⎝η 0 0
0 η 0
0 0 η

⎞⎠ . (6.100)

In this case, to obtain the acoustic tensor
◦
Q, we calculate the components

of the tensor
◦
A, the vector

◦
Γ , and the coefficient

◦
Γ in the following forms

(which must be multiplied by p2):

◦
A11 = (c11+

◦
S11)n2

1 + (c44 +
◦
S22)n2

2 + (c44 +
◦
S33)n2

3 − η
◦
E2

1

+ 2
◦
S12 n1n2 + 2

◦
S13 n1n3 + 2(

◦
S23 − 2e14

◦
E1)n2n3

◦
A12 =

◦
A21= −η ◦

E1

◦
E2 + (c12 + c44)n1n2 − 2e14

◦
E1 n1n3 − 2e14

◦
E2 n2n3

◦
A13 =

◦
A31= −η ◦

E1

◦
E3 + (c12 + c44)n1n3 − 2e14

◦
E1 n1n2 − 2e14

◦
E3 n2n3

◦
A22 = (c44 +

◦
S11)n2

1 + (c11 +
◦
S22)n2

2 + (c44 +
◦
S33)n2

3 − η
◦
E2

2

+ 2
◦
S12 n1n2 + 2

◦
S23 n2n3 + 2(

◦
S13 − 2e14

◦
E2)n1n3

◦
A23 =

◦
A32 = −η ◦

E2

◦
E3 +(c12 + c44)n2n3 − 2e14

◦
E2 n1n2 − 2e14

◦
E3 n1n3

◦
A33 = (c44 +

◦
S11)n2

1 + (c44 +
◦
S22)n2

2 + (c11+
◦
S33)n2

3 − η
◦
E2

3

+ 2
◦
S13 n1n3 + 2

◦
S23 n2n3 + 2(

◦
S12 − 2e14

◦
E3)n1n2, (6.101)

respectively:
◦
Γ1 = η

◦
E1 + 2e14n2n3,

◦
Γ2 = η

◦
E2 + 2e14n1n3,

◦
Γ3 = η

◦
E3 + 2e14n1n2,

◦
Γ = 1 + η. (6.102)

Here ni, i = 1, 2, 3, are the components of the direction of propaga-
tion vector n in an orthonormal basis oriented after the cube’s edges. These
coefficients generalise obviously, in the case of initial electromechanical fields,
those presented in [14].
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6.3.2.1 Propagation Along a Cube Edge

If we consider the problem of progressive wave propagation along the [001]
edge of a cubic crystal, we take n1 = n2 = 0 and n3 = 1. In this case the
dispersion equation (6.81) has the form:

f(V ) =

∣∣∣∣∣∣
ac − V bc cc
bc dc − V ec

cc ec fc − V

∣∣∣∣∣∣ = 0, (6.103)

where V =
◦
ρ v2. From (6.101) we obtain the coefficients having the following

form.

ac = c44 +
◦
S33 − η

1 + η

◦
E2

1 , bc = − η

1 + η

◦
E1

◦
E2,

cc = − η

1 + η

◦
E1

◦
E3, dc = c44 +

◦
S33 − η

1 + η

◦
E2

2 ,

ec = − η

1 + η

◦
E2

◦
E3, fc = c11 +

◦
S33 − η

1 + η

◦
E2

3 . (6.104)

Even if the crystals possess piezoelectric behaviour, in this case the wave
propagation is piezoelectrically inactive, depending on the electrostrictive
effect, only.

The condition of propagation of progressive waves (6.79) reduces to the
following eigenvector problem:⎧⎪⎨⎪⎩

ac a1 + bc a2 + cc a3 = V a1

bc a1 + dc a2 + ec a3 = V a2

cc a1 + ec a2 + fc a3 = V a3

(6.105)

with ac, bc, cc, dc, ec, fc given by (6.104) and ai, i = 1, 2, 3, being the
components of the unknown amplitude vector a.

(a) Longitudinal initial electric field (
◦
E1 =

◦
E2 = 0,

◦
E3 = 0)

In this particular case the previous dispersion equation (6.103) has three
roots, corresponding to the following wave velocities,

v1 = v2 =

√√√√(
c44 +

◦
S33

)
◦
ρ

, v3 =

√√√√√
(
c11 +

◦
S33 − η

1 + η

◦
E2

3

)
◦
ρ

. (6.106)

We can easily see from the condition of propagation (6.105) that the veloc-
ities v1 = v2 correspond to transverse waves, arbitrarly polarised. Moreover,
v3 is the velocity of a longitudinal wave.
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(b) Transverse initial electric field (
◦
E1 = 0,

◦
E2 = 0,

◦
E3 = 0)

In this case the dispersion equation (6.103) has three distinct roots, cor-
responding to the following wave velocities,

v1 =

√√√√(
c11 +

◦
S33

)
◦
ρ

, v2 =

√√√√(
c44 +

◦
S33

)
◦
ρ

,

v3 =

√√√√√
(
c44 +

◦
S33 − η

1 + η
(

◦
E2

1 +
◦
E2

2 )
)

◦
ρ

. (6.107)

As we analyse the polarisation of these waves, from Equations (6.105) we
find that v2 is the velocity of a transverse wave with linear polarisation, fixed
by the initial electric field. Its amplitude components satisfy the relation
◦
E1 a1 +

◦
E2 a2 = 0. v3 corresponds to a transverse wave with linear polari-

sation, fixed by the initial electric field, normal to the previous polarisation
direction. The amplitude components satisfy the relation

◦
E2 a1 −

◦
E1 a2 = 0.

Finally, we can easily see that v1 is the velocity of a longitudinal wave.

6.3.2.2 Propagation Along a Cube Face

For the problem of plane wave propagation along the (001) plane of a cubic
crystal, we choose n1 = cos ϕ, n2 = sin ϕ, and n3 = 0, where ϕ is the angle
between the propagation direction n and the [100] axis of the crystal.

Consequently, the dispersion equation (6.81) has, in this case, the form:

g(V ) =

∣∣∣∣∣∣
ac

′ − V bc
′ cc

′

bc
′ dc

′ − V ec
′

cc
′ ec

′ fc
′ − V

∣∣∣∣∣∣ = 0, (6.108)

where V =
◦
ρ v2, and the coefficients have the following form,

ac
′ = c11cos2ϕ+ c44sin2ϕ+A(ϕ) − η

1 + η

◦
E2

1 ,

bc
′ =

c12 + c44
2

sin 2ϕ− η

1 + η

◦
E1

◦
E2,

cc
′ = −e14

◦
E1

1 + η
sin 2ϕ− η

1 + η

◦
E1

◦
E3,

dc
′ = c44cos2ϕ+ c11sin2ϕ+A(ϕ) − η

1 + η

◦
E2

2 ,
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ec
′ = −e14

◦
E2

1 + η
sin 2ϕ− η

1 + η

◦
E2

◦
E3,

fc
′ = c44 +A(ϕ)−

◦
E2

3 +
(e14sin2ϕ−

◦
E3)2

1 + η
, (6.109)

with
A(ϕ) =

◦
S11cos2ϕ+

◦
S22 sin2ϕ+

◦
S12sin2ϕ. (6.110)

The condition of propagation of progressive waves (6.79) reduces in this
case to the following eigenvector problem.⎧⎪⎨⎪⎩

ac
′ a1 + bc

′ a2 + cc
′ a3 = V a1

bc
′ a1 + dc

′ a2 + ec
′ a3 = V a2

cc
′ a1 + ec

′ a2 + fc
′ a3 = V a3

(6.111)

with ac
′, bc ′, cc ′, dc

′, ec
′, fc

′ given by (6.109) and ai, i = 1, 2, 3, being
the components of the unknown amplitude vector a.

(a) Transverse initial electric field (
◦
E1 = 0,

◦
E2 = 0,

◦
E3 = 0)

In this particular case the dispersion equation (6.108) has three distinct
roots, corresponding to the following wave velocities.

v1 =

√√√√√
(
c11 + c44 + 2A(ϕ) +

√
(c11 − c44)2cos22ϕ+ (c12 + c44)2sin22ϕ

)
2

◦
ρ

,

(6.112)

v2 =

√√√√√
(
c11 + c44 + 2A(ϕ) −

√
(c11 − c44)2cos22ϕ+ (c12 + c44)2sin22ϕ

)
2

◦
ρ

,

(6.113)

respectively:

v3 =

√√√√√√√
⎛⎝c44 +A(ϕ)−

◦
E2

3 +
(e14sin 2ϕ−

◦
E3)2

1 + η

⎞⎠
◦
ρ

. (6.114)

As regards the polarisation of these waves, we can see from the
condition of propagation (6.111), that the velocity v3, which is piezoelectri-
cally and electrostrictively coupled, corresponds to a pure transverse wave.
The remaining two waves are polarised in the plane (001) on mutually
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perpendicular directions, one being quasi-transverse, and the other quasi-
longitudinal. It is interesting to note that the directions of polarisation of the
last two waves are not influenced by the initial fields.

6.3.2.3 Anisotropy Factor. Slowness Surfaces

In the problem of plane wave propagation in the plane (001) of a cubic crystal,
subject to initial transverse electric field and to an initial mechanical stress
field, we consider three particular cases.

• For ϕ = 0 (i.e., [100] axis), relations (6.112) and (6.113) yield the wave
velocities:

vL
1 =

√√√√(
c11 +

◦
S11

)
◦
ρ

, vT
2 =

√√√√(
c44 +

◦
S11

)
◦
ρ

. (6.115)

The first one corresponds to a pure longitudinal wave, whereas the second
refers to a pure transverse one.

• For ϕ = π/2 (i.e., [010] axis), from relations (6.112) and (6.113) we obtain
the following wave velocities:

vL
1 =

√√√√(
c11 +

◦
S22

)
◦
ρ

, vT
2 =

√√√√(
c44 +

◦
S22

)
◦
ρ

, (6.116)

the first one corresponding to a pure longitudinal wave, and the second to
a pure transverse wave.

• For ϕ = π/4 (i.e., [110] axis) we easily obtain that:

vL
1 =

√√√√(
c11 + c12 + 2c44 +

◦
S11 +

◦
S22 + 2

◦
S12

)
2

◦
ρ

,

vT
2 =

√√√√(
c11 − c12+

◦
S11 +

◦
S22 + 2

◦
S12

)
2

◦
ρ

. (6.117)

These waves polarise longitudinal, respectively, transverse.

The ratio of the transverse wave velocities in the directions [100] and [110]

defines the generalised anisotropy factor
◦
A, in the following manner:

◦
A=

(
vT
2 [100]
vT
2 [110]

)2

=
2(c44 +

◦
S11)

c11 − c12 +
◦
S11 +

◦
S22 + 2

◦
S12

. (6.118)
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It generalises the classical anisotropy factor A, as defined in [14]:

A =
2c44

c11 − c12
. (6.119)

From relations (6.118) and (6.119) it is obvious that only the initial stress
components influence the generalised anisotropy factor, and not the initial
electric field. Most common, the anisotropy factors are greater than unity,
but there are few crystals for which this factor is less than unity (e.g.,
Bi12GeO20 crystal from 23 symmetry class). It is evident that the anisotropy
factor is unity for isotropic materials. This is not the case for the generalised
anisotropy factor, which may be different from unity, even if the material
is isotropic, due to the induced anisotropy generated by the initial stress
components

◦
S11,

◦
S22, and

◦
S12.

To study the influence of the initial fields on the generalised anisotropy
factor

◦
A, we consider two crystals: GaAs, from the symmetry class 43 m, and

Bi12GeO20, from the symmetry class 23. In Table 6.2 we show the variation
of the generalised anisotropy factor

◦
A with the initial mechanical field, for

1% initial hydrostatic deformations, respectively, 2% initial hydrostatic
deformations. We remark that increasing the initial deformations leads

◦
A

to approach unity.
As regards the angles β1 and β2 between the quasi-longitudinal and quasi-

transverse amplitude vectors, related to velocities (6.112) and (6.113), and
the Ox1 axis (i.e., the angles between the direction of polarisation for QL
and QT waves and the [100] axis of the crystal), they are the solutions of the
following equation,

tan 2β = − 2bc ′

dc
′ − ac

′ =
c12 + c44
c11 − c44

tan 2ϕ, (6.120)

where the relations (6.109) are used for
◦
E1 = 0,

◦
E2 = 0,

◦
E3 = 0. This equa-

tion, which is piezoelectrically inactive, has the same form as in the case
without initial fields, expressing the fact that the initial fields do not modify
the polarisation directions in the (001) plane.

Finally, we present the influence of initial fields on the shape of slow-
ness surfaces. These surfaces are defined to be the locus of the end of the

Table 6.2 The dependency of the anisotropy factors on the initial deformations field

Anisotropy Factor Initial Deformations Field (%) GaAs Bi12GeO20

A – 1.828 0.559
◦
A 1 1.798 0.570

2 1.771 0.581



200 Olivian Simionescu-Panait

vector n/v, where n is the direction of propagation and v is the velocity of
propagation of the plane wave. The properties of these surfaces are derived
in monographs [7, 14]. The slowness surfaces are analogous to index sur-
faces from optics, refraction surfaces from reflection/refraction problems. For
a long time, it was believed that these surfaces were convex (see, e.g., [7]).
Actually, one can find several crystals having concave parts on their slowness
surfaces. This fact is linked to the anisotropy factor, which can be less than
unity in particular directions of propagation.

In Figure 6.1 we represent sections of the slowness surfaces with the plane
(001) for a Bi12GeO20 crystal subject to a 1% (resp., 2%) initial hydrostatic
deformation field, and in Figure 6.2 are shown the sections of the slowness
surfaces for the 1% (resp., 2%) initial shear deformation field. We remark
that, even if the initial deformations are small, their influence on the shape
of slowness surfaces is important. Here the continuous lines represent the
slowness curves in the case without initial fields, and the broken lines show
the corresponding curves in the case with initial fields.

6.3.3 6 mm-Type Crystals. Generalised
Electromechanical Coupling Coefficient,
Slowness Surfaces

In this section we study the conditions of propagation for plane harmonic
waves in crystals from an hexagonal system, of 6 mm type, subject to initial
electromechanical fields. Following the papers [27, 16, 15] we show that plane
progressive waves propagate along the symmetry axis, in the plane normal
to the symmetry axis (resp., in the meridian plane of the crystal). For the
last two cases we study the influence of initial fields on slowness surfaces; we
define and analyse the generalised electromechanical coupling coefficient.

In this problem we aim to satisfy the homogeneous field equations (6.65)
and the constitutive equations (6.62) and (6.63). In order to study the
conditions of propagation for incremental harmonic plane waves in an
unbounded three-dimensional material described by the previous constitutive
equations, we assume that the displacement vector and the electric potential
have the form (6.78). Thus we obtain the condition of propagation (6.79)
with the dispersion equation (6.81). Because the acoustic tensor is symmet-
ric, and supposed positive definite, then incremental progressive waves can
propagate in any direction, with a velocity of propagation of the wave defined
by v = ω/p.

It is known that, in the particular case of an hexagonal crystal, the
elasticity tensor contains five independent constants (see [14] or [28]).
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Fig. 6.1 Section of slowness surfaces with (001) plane for a Bi12GeO20 crystal: (a) 1%
initial hydrostatic deformations; (b) 2% initial hydrostatic deformations.

Using Voigt’s convention we have:

c =

⎛⎜⎜⎜⎜⎜⎜⎝
c11 c12 c13 0 0 0
c12 c11 c13 0 0 0
c13 c13 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 c66

⎞⎟⎟⎟⎟⎟⎟⎠ , (6.121)
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Fig. 6.2 Section of slowness surfaces with (001) plane for a Bi12GeO20 crystal: (a) 1%
initial shear deformations; (b) 2% initial shear deformations.

with c66 = (c11 − c12)/2. The piezoelectric tensor contains three independent
constants:

e =

⎛⎝ 0 0 0 0 e15 0
0 0 0 e15 0 0
e31 e31 e33 0 0 0

⎞⎠ , (6.122)
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and the dielectric tensor has two independent constants:

ηηη =

⎛⎝η11 0 0
0 η11 0
0 0 η33

⎞⎠ . (6.123)

6.3.3.1 Propagation Along the Symmetry Axis

Assuming that the symmetry axis of the crystal coincides with the x3-axis,
we study the propagation of progressive waves along this axis (i.e., n1 =

n2 = 0 and n3 = 1). Therefore, the tensor
◦
A has the following components

(which must be multiplied by p2),

◦
A11 = c44 +

◦
S33 − η33

◦
E2

1 ,
◦
A12 = −η33

◦
E1

◦
E2,

◦
A13 = −e33

◦
E1 − η33

◦
E1

◦
E3,

◦
A21 =

◦
A12,

◦
A22 = c44 +

◦
S33 − η33

◦
E2

2 ,

◦
A23 = −e33

◦
E2 − η33

◦
E2

◦
E3,

◦
A31 =

◦
A13,

◦
A32 =

◦
A23,

◦
A33 = c33 +

◦
S33 − 2e33

◦
E3 − η33

◦
E2

3 (6.124)

and the components of
◦
Γ and

◦
Γ have the form (the components must be

multiplied by p2):
◦
Γ1= η33

◦
E1,

◦
Γ2= η33

◦
E2,

◦
Γ3= η33

◦
E3 + e33,

◦
Γ= ε33. (6.125)

Consequently, the dispersion equation (6.81) has in this case the following
form,

f(V ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

◦
A11 +

◦
Γ 2

1
◦
Γ

− V
◦
A12 +

◦
Γ1

◦
Γ2
◦
Γ

◦
A13 +

◦
Γ1

◦
Γ3
◦
Γ

◦
A12 +

◦
Γ1

◦
Γ2
◦
Γ

◦
A22 +

◦
Γ 2

2
◦
Γ

− V
◦
A23 +

◦
Γ2

◦
Γ3
◦
Γ

◦
A13 +

◦
Γ1

◦
Γ3
◦
Γ

◦
A23 +

◦
Γ2

◦
Γ3
◦
Γ

◦
A33 +

◦
Γ 2

3
◦
Γ

− V

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0, (6.126)

where V =
◦
ρ v2.
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To obtain closed-form solutions of this equation, we suppose that the initial
electric field has small intensity. Consequently, we neglect all the products of
the initial electric field components. Thus, we derive:

f(V ) =

∣∣∣∣∣∣
ah − V 0 −bh

0 ah − V −ch
−bh −ch dh − V

∣∣∣∣∣∣ = 0 (6.127)

with
ah = c44 +

◦
S33, bh =

e33
ε33

◦
E1,

ch =
e33
ε33

◦
E2, dh = c33 +

◦
S33 +

e233 − 2e33
◦
E3

ε33
. (6.128)

It is easy to see that this equation reduces to:

f(V ) = (ah − V )[V 2 − (ah + dh)V + ahdh − b2h − c2h] = 0. (6.129)

Using realistic values of the initially applied fields and of the material
constants (see [14]) we can assume that b2h and c2h may be neglected, compared
to the product ahdh, in Equation(6.129). Indeed, for piezoelectric coefficients
on the order of 10 C/m2 = 106 Pa1/2, for dielectric coefficients on the order
of 10−8 F/m = 102 and for elastic constants of order 1011 Pa we obtain, for
an initial electric field of order 106 V/m = 10 Pa1/2, that b2h and c2h are of
order 1010 Pa2, and ahdh is of order 1014 Pa2. Moreover, even if the initial
electric field is of order 102 Pa1/2, b2h and c2h are of order 1012 Pa2, and ahdh

is of order 1015 Pa2.
Consequently, in the case of wave propagation along the x3-axis, the

dispersion relation (6.129) has three real roots V1 = V2 = c44 +
◦
S33 and

V3 = c33 +
◦
S33 + ((e233 − 2e33

◦
E3)/ε33). Thus, using the previous assump-

tions, we obtain the velocities of propagation as closed-form solutions:

vQL =

√√√√√√√
⎛⎝c33 +

◦
S33 +

e233 − 2e33
◦
E3

ε33

⎞⎠
◦
ρ

, vT =

√√√√ (c44 +
◦
S33)

◦
ρ

. (6.130)

Regarding the condition of propagation of progressive waves (6.79), it
reduces in our case to the following eigenvector problem,⎧⎪⎪⎨⎪⎪⎩

ah a1 − bh a3 =
◦
ρ v2 a1

ah a2 − ch a3 =
◦
ρ v2 a2

−bh a1 − ch a2 + dh a3 =
◦
ρ v2 a3,

(6.131)
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with ah, bh, ch, dh given by (6.128) and ai, i = 1, 2, 3 are the components
of the unknown amplitude vector.

• If we put into the last system v = vT , it reduces to a3 = 0 and bh a1 +
ch a2 = 0. It follows that vT is the velocity of propagation of a transverse
wave T , the amplitude vector having an arbitrary module a and a fixed

direction in the x1x2 plane, determined by equation
◦
E1 x1+

◦
E2 x2 = 0.

• If we consider in (6.131) that v = vQL, we obtain the amplitude vector:

a =
(

bh
ah − dh

i1 +
ch

ah − dh
i2 + i3

)
a3 (6.132)

with a3 an arbitrary real constant and ij , j = 1, 2, 3, the unitary vectors of
the xj-axes. The last of equations (6.131) is satisfied, because we neglected
b2h and c2h. Consequently, from the form (6.132) of the amplitude vector
we conclude that vQL is the velocity of propagation of a quasi-longitudinal
wave QL with an arbitrary module.

We define the generalized coupling coefficient
◦
K, concerning the QL wave

propagation along the x3-axis in the case of presence of initial fields, by the
formula:

◦
K=

|e33|√
ε33(c33 +

◦
S33) + e233 − 2e33

◦
E3

, (6.133)

which generalises the coupling coefficient K, for the L wave, from the case
without initial fields, as defined in [14]:

K =
|e33|√

ε33c33 + e233
. (6.134)

Analysing the influence of the initial fields on the coupling coefficient
◦
K,

for three crystals of 6 mm-type (PZT-4, ZnO, and CdS) and for the proposed
restrictions on the initial electric field (10 Pa1/2, or 102 Pa1/2), we find that
the initial electric field has small influence on the coupling coefficient. On the
other hand, an important influence is due to the initial deformation field, via
the

◦
S33 stress component. In what follows, all the numerical calculations are

made using the material constants given in [14].
In Table 6.3 we show the dependency of the generalised coupling coefficient

for an estimated initial deformation of order 1%, (resp., 2%). The T wave,
with the velocity of propagation vT , is not piezoelectrically coupled, which is
also the case without initial fields.
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Table 6.3 The dependency of the coupling coefficient on the initial strain field. Propagation
along x3-axis

Coupling Coefficient Initial Strain Field (%) PZT-4 ZnO CdS

K – 0.511 0.270 0.154
◦
K 1 0.5094 0.2688 0.1539

2 0.5076 0.2676 0.1531

6.3.3.2 Propagation in the x1x2 Plane

We consider now the problem of progressive wave propagation in the x1x2

plane. In this case, we must take n1 = cos θ, n2 = sin θ, and n3 = 0, where

θ is the polar angle in this plane. Therefore, the tensor
◦
A has the following

components (which must be multiplied by p2):

◦
A11 = c11cos2θ + c66sin2θ +A(θ) − η11

◦
E2

1 ,

◦
A12 =

◦
A21 = (c66 + c12)

sin 2θ
2

− η11
◦
E1

◦
E2,

◦
A13 =

◦
A31 = −e15

◦
E1 − η11

◦
E1

◦
E3,

◦
A22 = c66cos2θ + c11sin2θ +A(θ) − η11

◦
E2

2 ,
◦
A23 =

◦
A32 = −e15

◦
E2 − η11

◦
E2

◦
E3,

◦
A33 = c44 +A(θ) − 2e15

◦
E3 − η11

◦
E

2

3, (6.135)

where

A(θ) =
◦
S11cos2θ +

◦
S22sin2θ +

◦
S12sin2θ. (6.136)

The components of
◦
Γ and

◦
Γ become (the components must be multiplied

by p2):

◦
Γ1 = η11

◦
E1,

◦
Γ2 = η11

◦
E2,

◦
Γ3 = η11

◦
E3 + e15,

◦
Γ = ε11. (6.137)

In this case the dispersion equation has the form (6.126), with the new
coefficients obtained previously. Using the approximations discussed in the
last paragraph we obtain:

g(V ) =

∣∣∣∣∣∣
a′h +A(θ) − V b′h c′h

b′h d′h +A(θ) − V e′h
c′h e′h f ′

h +A(θ) − V

∣∣∣∣∣∣ = 0, (6.138)
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where

a′h = c11cos2θ + c66sin2θ, b′h = (c66 + c12)
sin2θ

2
, c′h = −e15

◦
E1

ε11
,

d′h = c66cos2θ + c11sin2θ, e′h = −e15
◦
E2

ε11
, f ′

h = c44 +
e215 − 2e15

◦
E3

ε11
.

(6.139)

We can easily see (neglecting c′h
2
, e′h

2, and c′he
′
h) that (6.138) possesses

three distinct roots, corresponding to the wave velocities:

v1 =

√√√√√√√
⎛⎝c44 +

e215 − 2e15
◦
E3

ε11
+

◦
S11 cos2θ +

◦
S22 sin2θ +

◦
S12sin2θ

⎞⎠
◦
ρ

,

(6.140)

v2 =

√√√√(
c11 +

◦
S11cos2θ +

◦
S22sin2θ +

◦
S12sin2θ

)
◦
ρ

, (6.141)

respectively:

v3 =

√√√√√
(
c66 +

◦
S11cos2θ +

◦
S22 sin2θ +

◦
S12 sin2θ

)
◦
ρ

. (6.142)

The condition of propagation of progressive waves in the x1x2 plane
reduces to the following eigenvector problem,⎧⎪⎪⎨⎪⎪⎩

[a′h +A(θ)] a1 + b′h a2 + c′h a3 =
◦
ρ v2 a1

b′h a1 + [d′h +A(θ)] a2 + e′h a3 =
◦
ρ v2 a2

c′h a1 + e′h a2 + [f ′h +A(θ)] a3 =
◦
ρ v2 a3,

. (6.143)

with a′h, b
′
h, c

′
h, d

′
h, e

′
h, f

′
h given by (6.139) and ai, i = 1, 2, 3, the compo-

nents of the unknown amplitude vector.

• If v = v1, the previous propagation condition has the solution:

a1 =
e′h(a′h − f ′

h) − b′hc
′
h

b′h2 − (a′h − f ′
h)(d′h − f ′h)

a3, a2 =
c′h(d′h − f ′h) − b′he

′
h

b′h2 − (a′h − f ′
h)(d′h − f ′

h)
a3,

(6.144)
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with a3 arbitrary, because the determinant of the corresponding system
vanishes considering the approximations made. This is a quasi-transverse
wave (QT1 wave).

• If v = v2 the system (6.143) has the following solution,

a1 =
f ′h − c11

c′h(d′h − c11) − b′he
′
h

a3, a2 =
b′h(f ′h − c11)

c′h(d′h − c11) − b′he
′
h

a3, (6.145)

with a3 arbitrary, characterizing a quasi-longitudinal wave (QL wave).
• Finally, if v = v3, we obtain the solution:

a1 =
f ′h − c66

c′h(d′h − c66) − b′he
′
h

a3, a2 =
b′h(f ′h − c66)

c′h(d′h − c66) − b′he
′
h

a3, (6.146)

with a3 arbitrary, which is a quasi-transverse wave (QT2 wave).

We remark that in all these cases the polarisation of the waves is restricted
only by the initial electric field components, and not by the components of
the initial stress field. If there is not an initial applied electric field, the
polarisation of the waves is arbitrary.

In this case, we define the generalised coupling coefficient by the following
formula:

◦
K∗ (θ) =

|e15|√
ε11c44 + e215 − 2e15

◦
E3 +A(θ)

. (6.147)

It generalises the coupling coefficient from the case without initial fields
(see [14]):

K∗(θ) =
|e15|√

ε11c44 + e215
. (6.148)

The previous coupling coefficient
◦
K∗ is linked to the QT1 wave, which has

the velocity v1, whereas the other two waves, QL and QT2, propagating with
velocities v2 (resp., v3) are not piezoelectrically active, similar to the case
without initial fields. The influence of the initial electric field on the coupling

coefficient
◦
K∗ is weak, which is not the case of initial deformation field, as we

can see in Table 6.4. There we compute the values of
◦
K∗ for three 6 mm-type

Table 6.4 The dependency of the coupling coefficient on the initial strain field. Propagation
in x1x2-plane

Coupling Coefficient Initial Strain Field (%) PZT-4 ZnO CdS

K∗ – 0.7015 0.3160 0.1890
◦

K∗ 1 0.7014 0.3069 0.1827
2 0.7012 0.2986 0.1770
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crystals and for two initial strain fields of order 1% (resp., 2%) generated by

the initial hydrostatic stress fields
◦
S11 =

◦
S22. Even if for the PZT-4 crystal

this influence remains small, for ZnO and CdS crystals it is important.
In Figure 6.3 we plot the sections of the slowness surfaces with the x1x2

plane, for a PZT-4 crystal and for previously described initial hydrostatic
strain fields. We remark that for an initial deformation field of order 2% the
differences between slowness curves without initial fields (continuous lines)
and those with initial fields (broken lines) are important.

Finally, in Figure 6.4 we show the sections of the slowness surfaces with the
x1x2 plane, for a PZT-4 crystal and for initial shear strain fields of order 1%
(resp., 2%). We remark that for an initial deformation field of order 2% the
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Fig. 6.3 Section of slowness surfaces with x1x2 plane for PZT-4 crystal: (a) 1% initial
hydrostatic deformations; (b) 2% initial hydrostatic deformations.
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differences between slowness curves without initial fields (continuous lines)
and those with initial fields (broken lines) become important, changing the
shape of the curves and attaining the maximum value at θ = 45◦, 135◦, 225◦,
and 315◦. This may have great importance if we study the reflection–
refraction problem for this new situation.

6.3.3.3 Propagation in the Meridian Plane

If we take into account the problem of progressive wave propagation in the
meridian plane of a 6 mm-type crystal, we choose n1 = 0, n2 = sin ϕ, and
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PZT4; 1% initial shear deformation
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PZT4; 2% initial shear deformation

Fig. 6.4 Section of slowness surfaces with x1x2 plane for PZT-4 crystal: (a) 1% initial
shear deformations; (b) 2% initial shear deformations.
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n3 = cos ϕ, where ϕ is the angle between the propagation direction and the

A6 symmetry axis of the crystal. Therefore, the symmetric tensor
◦
A has the

following components (which must be multiplied by p2).

◦
A11 = (c66 − η11

◦
E2

1)sin2ϕ+ (c44 − η33
◦
E2

1)cos2ϕ+B(ϕ),
◦
A12 = − η11

◦
E1

◦
E2 sin2ϕ− η33

◦
E1

◦
E2 cos2ϕ− (e15 + e31)

◦
E1

sin2ϕ
2

,

◦
A13 = (−e15

◦
E1 − η11

◦
E1

◦
E3)sin2ϕ+ (−e33

◦
E1 −η33

◦
E1

◦
E3)cos2ϕ,

◦
A22 = (c11 − η11

◦
E2

2)sin2ϕ+ (c44 − η33
◦
E2

2)cos2ϕ

− (e15 + e31)
◦
E2 sin2ϕ+B(ϕ),

◦
A23 = (−e15

◦
E2 − η11

◦
E2

◦
E3)sin2ϕ+ (−e33

◦
E2 − η33

◦
E2

◦
E3)cos2ϕ

+ [c13 + c44 − (e15 + e31)
◦
E3]

sin2ϕ
2

,

◦
A33 = (c44 − 2e15

◦
E3 − η11

◦
E2

3)sin2ϕ+ (c33 − 2e33
◦
E3

− η33
◦
E2

3 )cos2ϕ+B(ϕ), (6.149)

where

B(ϕ) =
◦
S33cos2ϕ+

◦
S22sin2ϕ+

◦
S23sin2ϕ. (6.150)

The components of
◦
Γ and

◦
Γ become (the expressions must be multiplied

by p2):

◦
Γ1 = η11

◦
E1 sin2ϕ+ η33

◦
E1 cos2ϕ,

◦
Γ2 = η11

◦
E2 sin2ϕ+ η33

◦
E2 cos2ϕ+ (e15 + e31)

sin2ϕ
2

,

◦
Γ3 = (e15 + η11

◦
E3)sin2ϕ+ (e33 + η33

◦
E3)cos2ϕ,

◦
Γ = 1 + η11sin2ϕ+ η33cos2ϕ. (6.151)

Consequently, the dispersion equation has in this case the form (6.126),
with the previous coefficients. Neglecting all the products of the initial electric
field components, we obtain:

h(V ) =

∣∣∣∣∣∣
ah

′′ +B(ϕ) − V bh
′′ ch

′′

bh
′′ dh

′′ +B(ϕ) − V eh
′′

ch
′′ eh

′′ fh
′′ +B(ϕ) − V

∣∣∣∣∣∣ = 0, (6.152)
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where V =
◦
ρ v2 and

ah
′′ = c66sin2ϕ+ c44cos2ϕ,

bh
′′ = − (e15 + e31)sin2ϕ

◦
E1

2(1 + η11sin2ϕ+ η33cos2ϕ)
,

ch
′′ = − (e15sin2ϕ+ e33cos2ϕ)

◦
E1

1 + η11sin2ϕ+ η33cos2ϕ
,

dh
′′ = c11sin2ϕ+ c44cos2ϕ

+
(e15 + e31)sin2ϕ[(e15 + e31)sin2ϕ/4− ◦

E2]
1 + η11sin2ϕ+ η33cos2ϕ

,

eh
′′ = (c13 + c44)

sin2ϕ
2

− (e15sin2ϕ+ e33cos2ϕ)
◦
E2

1 + η11sin2ϕ+ η33cos2ϕ

+
(e15 + e31)sin2ϕ(e15sin2ϕ+ e33cos2ϕ− ◦

E3)
2(1 + η11sin2ϕ+ η33cos2ϕ)

,

fh
′′ = c44sin2ϕ+ c33cos2ϕ− 2(e15sin2ϕ+ e33cos2ϕ)

◦
E3

1 + η11sin2ϕ+ η33cos2ϕ

+
(e15sin2ϕ+ e33cos2ϕ)2

1 + η11sin2ϕ+ η33cos2ϕ
. (6.153)

As we can see from these relations, the coefficients involved in the disper-
sion equation (6.152) have more complicated forms than those from the
cases analysed previously (i.e., for wave propagation along the symmetry
axis and in the plane normal to this axis). In the absence of the initial
fields one obtains the same coefficients as in [14]. Even so, the dispersion
equation (6.152) has three distinct real roots, corresponding to three wave
velocities:

v1 =

√
(ah

′′ +B(ϕ))
◦
ρ

, (6.154)

v2 =

√√√√√
(
dh

′′ + fh
′′ + 2B(ϕ) +

√
(dh

′′ − fh
′′)2 + 4eh

′′2
)

2
◦
ρ

, (6.155)

respectively,

v3 =

√√√√√
(
dh

′′ + fh
′′ + 2B(ϕ) −

√
(dh

′′ − fh
′′)2 + 4eh

′′2
)

2
◦
ρ

. (6.156)
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The condition of propagation of progressive waves (6.79) reduces, in this
particular case, to the following eigenvector problem.⎧⎪⎪⎨⎪⎪⎩

[ah
′′ +B(ϕ)] a1 + bh

′′ a2 + ch
′′ a3 =

◦
ρ v2 a1

bh
′′ a1 + [dh

′′ +B(ϕ)] a2 + eh
′′ a3 =

◦
ρ v2 a2

ch
′′ a1 + eh

′′ a2 + [fh
′′ +B(ϕ)] a3 =

◦
ρ v2 a3

(6.157)

with ah
′′, bh ′′, ch ′′, dh

′′, eh
′′, fh

′′ given by (6.153) and ai, i = 1, 2, 3,
being the components of the unknown amplitude vector a.

• If v = v1 the previous propagation condition has the solution:

a1 =
eh

′′2 + ah
′′fh

′′ − ah
′′2 − dh

′′fh
′′ + ah

′′dh
′′

ch ′′dh
′′ − bh ′′eh

′′ − ah
′′ch ′′ a3,

a2 =
bh

′′fh
′′ − ah

′′bh ′′ − ch
′′eh

′′

ch ′′dh
′′ − bh ′′eh

′′ − ah
′′ch ′′ a3 (6.158)

with a3 arbitrary, because the determinant of the corresponding system
(6.157) vanishes considering the approximations made (i.e., b ′′2 = c ′′2 =
b ′′c ′′ = 0, neglecting all the products of the initial electric field components).

If we analyse this solution, we can see that it corresponds to the transverse
wave from the case of absence of initial fields. In our case, this wave is a
quasi-transverse one, its polarisation being affected by the initial electric
field only. Moreover, it preserves a velocity piezoelectrically inactive, without
influence of the initial electric field, but determined by the initial stress field.

• If v = v2,3 the system (6.157) has the following form.⎧⎪⎪⎪⎨⎪⎪⎪⎩
[2 a′′h − dh

′′ − fh
′′ ±

√
(dh

′′ − fh
′′)2 + 4eh

′′2] a1 + 2bh ′′ a2 + 2ch ′′ a3 = 0

2bh ′′ a1 + [dh
′′ − fh

′′ ±
√

(dh
′′ − fh

′′)2 + 4eh
′′2] a2 + 2eh

′′ a3 = 0

2ch ′′ a1 + 2eh
′′ a2 + [−dh

′′ + fh
′′ ±

√
(dh

′′ − fh
′′)2 + 4eh

′′2] a3 = 0.
(6.159)

One obtains easily that its determinant is zero, neglecting the products of
the initial electric field components. Consequently, we can express a1, a2 as
functions of a3. On the other hand, as the coefficients of the system (6.159)
depend on the initial electric field components only, we can conclude that
the waves with velocities (6.155) and (6.156) are quasi-longitudinal, (resp.,
quasi-transverse), their polarisation depending only on the initial electric
field.

In Figures 6.5 and 6.6 we plot the sections of slowness surfaces with the
meridian plane x2x3, in the case of initial stress fields that generate initial
strain fields of order 1% (resp., 2%), and for initial electric field components
◦
E1 =

◦
E2 =

◦
E3 = 102 Pa, concerning PZT-4 and ZnO crystals. In our numer-

ical computations all the material constants are taken from the book [14].
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Fig. 6.5 Section of slowness surfaces with the meridian plane for PZT-4 crystal: (a) 1%
initial deformation; (b) 2% initial deformation.

We note the differences between slowness curves ignoring initial fields
(continuous lines) and those including the previous initial fields’ influence
(broken lines), which grow with the initial deformation field magnitude, and
the fact that the initial fields may change the convexity of these curves, which
could be important in reflection–refraction problems. It is interesting to note
the asymmetry of the gap between the continuous and the broken lines, for
angles ϕ and ϕ+ 90◦, due to the shear term from the initial stress field.
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Fig. 6.6 Section of slowness surfaces with the meridian plane for ZnO crystal: (a) 1%
initial deformation; (b) 2% initial deformation.

6.4 Propagation of Attenuated Waves in Crystals
Subject to Initial Electromechanical Fields

In this part, we deal with the study of the conditions of propagation of
attenuated waves in isotropic solids and in cubic crystals, subject to initial
deformation and electric fields (see papers [19–24]). We show the influence of
the electrostrictive and piezoelectric effects on attenuated wave propagation
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in such media. We derive the velocities of propagation and the attenuation
coefficients in closed-form, and we analyse the influence of the initial fields on
the wave polarisation. For a particular choice of the initial electric field, we
obtain and analyse the generalised anisotropy factor. We derive approximate
expressions of the obtained solutions in order to compare them with the
classical solutions.

6.4.1 Fundamental Equations. Acoustic Tensor

We assume that we are in the framework described in Section 6.2.3. In this
case, we recall the form of the homogeneous field equations:

◦
ρ ü = div Σ, div∆ = 0, rot e = 0 ⇔ e = −grad φ. (6.160)

Furthermore, we generalise the incremental constitutive equations (6.62),
in the form:

Σkl =
◦
Ωklmnum,n +

◦
Λmklφ, m + dklmnu̇m,n

∆k =
◦
Λkmnun,m +

◦
εklel =

◦
Λkmn un,m− ◦

εkl φ, l. (6.161)

In these equations
◦
Ωklmn are the components of the instantaneous elastic-

ity tensor, dklmn are the components of attenuation (damping) tensor,
◦
Λkmn

are the components of the instantaneous coupling tensor, and
◦
εkl are the

components of the instantaneous dielectric tensor.
The instantaneous coefficients can be expressed in terms of the classical

moduli of the material and on the initial applied fields as follows.

◦
Ωklmn =

◦
Ωnmlk = cklmn +

◦
Sknδlm − ekmn

◦
El − enkl

◦
Em − ηkn

◦
El

◦
Em,

◦
Λmkl = emkl + ηmk

◦
El,

◦
εkl =

◦
εlk = εkl = δkl + ηkl, (6.162)

where cklmn are the components of the constant elasticity tensor, ekmn are
the components of the constant piezoelectric tensor, εkl are the components

of the constant dielectric tensor,
◦
Ei are the components of the initial applied

electric field, and
◦
Skn are the components of the initial applied symmetric

(Cauchy) stress tensor.
We remark that the attenuation tensor d has the same symmetry prop-

erties as the elasticity tensor c. Hence, in general there are 21 independent
elastic coefficients cklmn, as well as 21 independent attenuation components
dklmn, 18 independent piezoelectric coefficients eklm, and 6 independent
dielectric coefficients εkl.
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We study here the propagation of incremental mechanical attenuated plane
waves in an unbounded three-dimensional material described by the previous
constitutive equations. Therefore, the displacement vector and the electric
potential have the following form.

u(x, t) = a exp(−α · x)exp[i(ωt− p · x)],
φ(x, t) = a exp[i(ωt− p · x)]. (6.163)

Here a and a are constants, characterizing the amplitude of the wave,
p = p n (with n2 = 1) is a constant vector, p representing the wave number
and n denoting the direction of propagation of the wave, and α = α n (with
α defining the attenuation coefficient). Here ω is the frequency of the wave.
The velocity of propagation of the wave is defined by v = ω/p. The validity
of the hypothesis saying that the direction of propagation coincides with the
direction of attenuation was analysed in monograph [11].

Introducing these forms of u and φ into the field equations and taking into
account the constitutive equations, we obtain the condition of propagation
of attenuated waves:

◦
Q a =

◦
ρ ω2a, (6.164)

where the components of the instantaneous acoustic tensor
◦
Q have the

following form.

◦
Qlm =

◦
Ωklmn (pn − iαn)(pk − iαk) +

(
◦
Λuvl pupv)[

◦
Λrsm (pr − iαr)(ps − iαs)]

◦
εij pipj

+ iωdklmn(pk − iαk)(pn − iαn). (6.165)

It is evident, in this case, that these components are complex numbers

and that the tensor
◦
Q is not symmetric. Consequently, the arguments used

in Section 6.2.5 to derive the condition of propagation, supposing the sym-
metry and the positive definiteness of the acoustic tensor, are no longer valid
here, for the general formulation. However, for isotropic solids and for cubic
crystals, assuming a particular form of the initial electric fields, we obtain
the solutions of attenuated waves propagation problem.

6.4.2 Isotropic Solids. Approximate Solutions

In the particular case of an isotropic material, the elasticity tensor contains
two independent components, namely c11 = λ+ 2µ and c12 = λ, with c66 =
(c11−c12)/2 = µ (see (6.83)). Here λ and µ are Lamé’s coefficients. Similarly,
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the attenuation tensor has only two independent components, namely
d11 and d12. The component d66 = (d11 − d12)/2. The dielectric tensor has
only one component η, with ε = 1 + η (see (6.84)).

When we assume that the direction of propagation coincides with the

x1-axis (i.e., n1 = 1, n2 = n3 = 0), it yields that the acoustic tensor
◦
Q has

the following components,

◦
Qlm=

[
◦
Ω1lm1 +

◦
Λ11l

◦
Λ11m

◦
ε11

+ iωd1lm1

]
(p− iα)2 =

◦
Q′

lm (p− iα)2. (6.166)

If we denote by V ′ =
◦
ρ ω2/(p− iα)2, the condition of propagation (6.164)

will take the form of the following eigenvector problem,

◦
Q′ a = V ′a, or (

◦
Q′

lm − V ′δlm)am = 0, l = 1, 3. (6.167)

This problem is usually associated with the following eigenvalue problem
(the characteristic or dispersion equation),

det(
◦
Q′

lm − V ′δlm) = 0. (6.168)

In our case, the components of the tensor
◦

Q′ are:

◦
Q′

11 = a′ = c11 + iωd11 +
◦
S11 − η

1 + η

◦
E2

1 ,
◦
Q′

12 = b′ = − η

1 + η

◦
E1

◦
E2,

◦
Q′

13 = c′ = − η

1 + η

◦
E1

◦
E3,

◦
Q′

22 = d′ = c66 + iωd66 +
◦
S11 − η

1 + η

◦
E2

2 ,

◦
Q′

23 = e′ = − η

1 + η

◦
E2

◦
E3,

◦
Q′

33 = f ′ = c66 + iωd66 +
◦
S11 − η

1 + η

◦
E2

3 .

(6.169)

With these notations, the condition of propagation (6.167) becomes⎧⎪⎨⎪⎩
a′ a1 + b′ a2 + c′ a3 = V ′ a1

b′ a1 + d′ a2 + e′ a3 = V ′ a2

c′ a1 + e′ a2 + f ′ a3 = V ′ a3

(6.170)

whereas, the characteristic equation (6.168) has the form

F (V ′) =

∣∣∣∣∣∣
a′ − V ′ b′ c′

b′ d′ − V ′ e′

c′ e′ f ′ − V ′

∣∣∣∣∣∣ = 0. (6.171)
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6.4.2.1 Analysis of Particular Cases

In order to obtain the phase velocities and the attenuation coefficients as
closed-form solutions, in what follows we present two important particular
cases.

(a) Longitudinal initial electric field (
◦
E1 = 0,

◦
E2 =

◦
E3 = 0)

In this case, the expressions b′, c′, e′ being zero, the characteristic equation
(6.171) has the roots:

V ′
1 = c11 + iωd11+

◦
S11 − η

1 + η

◦
E2

1 , V ′
2 = V ′

3 = c66 + iωd66 +
◦
S11.

(6.172)

As regards the polarisation of the obtained waves, using the condition
of propagation (6.170) in this particular case, we can easily see that V ′

1

corresponds to a longitudinal wave, whereas V ′
2 = V ′

3 are linked to a trans-
verse wave, arbitrarily polarised.

To find the phase velocities and the attenuation coefficients related to the
previous roots, we denote by:

V ′
1 = AL + iBL =

◦
ρ ω2

(pL − iαL)2
,

AL = c11 +
◦
S11 − η

1 + η

◦
E2

1 , BL = ωd11. (6.173)

It yields a phase velocity vL, in the form:

v2
L =

ω2

p2
L

=
2(A2

L +B2
L)

◦
ρ
(√

A2
L +B2

L +AL

) , (6.174)

and an attenuation coefficient αL, done by the relation:

α2
L =

◦
ρ ω2

2
·
√
A2

L +B2
L −AL

A2
L +B2

L

. (6.175)

We can conclude that the displacement vector, in this particular case, has
the form uL = (uL

1 , 0, 0), with:

uL
1 (x1, t) = a1exp(−αLx1)exp

[
iω
(
t− x1

vL

)]
. (6.176)

We easily observe that the attenuation affects the phase velocity vL (by ω),
and the amplitude of the longitudinal wave (by αL). Moreover, the

electrostrictive effect is generated by the term −η/(1 + η)
◦
E2

1 .
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To obtain an approximate solution of this problem, we denote by
ε = ωd11/c11 a nondimensional parameter. Supposing that ε � 1, which
is the case for silica SiO2, where ε = 2.3 · 10−3, we develop the expression
(6.174) and (6.175) of phase velocity, respectively, of attenuation coefficient
after ε. Neglecting the terms containing powers of order greater than, or equal
to 1 of ε, we derive the approximate form of the phase velocity:

vL � v∗L
√

1 + ψ, v∗L =

√
c11
◦
ρ
,

ψ =

◦
S11 − η

1+η

◦
E2

1

c11
. (6.177)

Here v∗L is the longitudinal velocity in the classical case, without initial
fields, and ψ is a nondimensional parameter describing the influence of the
initial fields.

In a similar way, we can derive an approximate form of the attenuation
coefficient:

αL � α∗
L · 1

(1 + ψ)3/2
, α∗

L =
τω2

2v∗L
, τ =

d11

c11
. (6.178)

Here α∗
L is the attenuation coefficient in the case without initial fields,

defined in [14].
A numerical application for silica (amorphous quartz SiO2) shows the

report of these formulae with previous results. In Table 6.5 we compute
the ratios between longitudinal wave velocities in the case without initial
fields, and with initial strain fields of order 1%, 2%, and 5%, respectively,
of attenuation coefficients (see formulae (6.177) and (6.178)). The influence
of the initial electric field on wave velocities and attenuation coefficients is
very weak, even if its intensity is important:

◦
E1 = 103

√
Pa = 108 V/m. The

superior value corresponds to a traction stress
◦
S11, and the inferior value

is related to a compression stress
◦
S11, that both generate the initial strain

fields. One can observe important differences between these values, due to
the initial strain fields.

Applying the same procedure as in the case of longitudinal waves, we
find the phase velocity and attenuation coefficient for the transverse waves.

Table 6.5 The influence of initial strain fields on wave velocities and attenuation
coefficients for longitudinal initial electric field

Without Initial Strain 1% 2% 5%

vL/v∗L 1 1.005/0.995 1.010/0.990 1.025/0.975

αL/α∗
L 1 0.985/1.015 0.971/1.031 0.929/1.080
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So, denoting by

V ′
2 = V ′

3 = AT + iBT =
◦
ρ ω2

(pT − iαT )2
,

AT = c66 +
◦
S11, BT = ωd66, (6.179)

we obtain the phase velocity vT , in the form

v2
T =

ω2

p2
T

=
2(A2

T + B2
T )

◦
ρ
(√

A2
T +B2

T +AT

) , (6.180)

and an attenuation coefficient αT , done by the relation

α2
T =

◦
ρ ω2

2
·
√
A2

T +B2
T −AT

A2
T +B2

T

. (6.181)

We can conclude that the displacement vector, in this case, has the form
uT = (0, uT

2 , u
T
3 ), with:

uT
k (x1, t) = akexp(−αTx1)exp

[
iω
(
t− x1

vT

)]
, k = 2; 3. (6.182)

We observe that the phase velocity vT depends on ω and the amplitude is
affected by αT . Similar approximate forms for the phase velocity and atten-
uation coefficient can be obtained in this case.

(b) Transverse initial electric field (
◦
E1= 0,

◦
E2 = 0,

◦
E3 = 0)

In this case, the coefficients b′ and c′ being zero, the characteristic
equation (6.171) has the following three roots,

V ′
1 = c11 +

◦
S11 + iωd11, V ′

2 = c66 +
◦
S11 + iωd66,

V ′
3 = c66 +

◦
S11 + iωd66 − η

1 + η
(

◦
E2

2 +
◦
E2

3). (6.183)

As regards the polarisation of the obtained waves, using the condition of
propagation (6.170) in this particular case, we can easily see that V ′

1 corre-
sponds to a longitudinal wave.
V ′

2 is linked to a transverse wave, whose polarisation direction is fixed by
the initial electric field. Indeed, in this case, the system (6.170) reduces to

the equation
◦
E2 a2 +

◦
E3 a3 = 0.

V ′
3 corresponds to a transverse wave, with a direction of polarisation fixed

by the initial electric field, done by the equation
◦
E3 a2 −

◦
E2 a3 = 0, normal

to the preceding direction.
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To find the phase velocities and attenuation coefficients related to the
previous roots, we proceed as in the case with longitudinal initial electric
field. So, we denote by:

V ′
1 = A′

L + iB′
L =

◦
ρ ω2

(pL − iαL)2
, A′

L = c11 +
◦
S11, B′

L = ωd11.

(6.184)

It yields a phase velocity vL, in the form:

v2
L =

ω2

p2
L

=
2(A′

L
2 +B′

L
2)

◦
ρ

(√
A′

L
2 +B′

L
2 +A′

L

) (6.185)

and an attenuation coefficient αL, done by the relation:

α2
L =

◦
ρ ω2

2
·
√
A′

L
2 +B′

L
2 −A′

L

A′
L

2 +B′
L

2 . (6.186)

We can conclude that the displacement vector, in this case, has the form
uL = (uL

1 , 0, 0), with:

uL
1 (x1, t) = a1exp(−αLx1)exp

[
iω
(
t− x1

vL

)]
. (6.187)

We can observe that the attenuation affects the phase velocity vL (by ω),
and the amplitude of the longitudinal wave (by αL). In this case, the
electrostrictive effect is absent.

Applying the same procedure, we find the phase velocity and attenuation
coefficient for the transverse waves. So, denoting by

V ′
2 = AT1 + iBT1 =

◦
ρ ω2

(pT1 − iαT1)2
,

AT1 = c66 +
◦
S11, BT1 = ωd66, (6.188)

we obtain the phase velocity vT1 , in the form:

v2
T1

=
ω2

p2
T1

=
2(A2

T1
+B2

T1
)

◦
ρ
(√

A2
T1

+B2
T1

+AT1

) , (6.189)

and an attenuation coefficient αT1 , done by the relation:

α2
T1

=
◦
ρ ω2

2
·
√
A2

T1
+B2

T1
−AT1

A2
T1

+B2
T1

. (6.190)
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We can see that the displacement vector in this case has the form
uT1 = (0, uT1

2 , uT1
3 ), with:

uT1
k (x1, t) = akexp(−αT1x1)exp

[
iω
(
t− x1

vT1

)]
, k = 2; 3. (6.191)

Similar approximate forms for the phase velocity and attenuation
coefficient can be obtained in this case. In conclusion, this transverse wave is
attenuated, has the polarisation fixed by the initial electric field, and is not
affected by the electrostrictive effect.

Finally, denoting by

V ′
3 = AT2 + iBT2 =

◦
ρ ω2

(pT2 − iαT2)2
,

AT2 = c66 +
◦
S11 − η

1 + η
(

◦
E2

2 +
◦
E2

3), BT2 = ωd66, (6.192)

we obtain the phase velocity vT2 , in the form:

v2
T2

=
ω2

p2
T2

=
2(A2

T2
+B2

T2
)

◦
ρ
(√

A2
T2

+B2
T2

+AT2

) (6.193)

and an attenuation coefficient αT2 , done by the relation:

α2
T2

=
◦
ρ ω2

2
·
√
A2

T2
+B2

T2
−AT2

A2
T2

+B2
T2

. (6.194)

We derive that the displacement vector in this case has the form
uT2 = (0, uT2

2 , uT2
3 ), with

uT2
k (x1, t) = akexp(−αT2x1)exp

[
iω
(
t− x1

vT2

)]
, k = 2; 3. (6.195)

Similar approximate forms for the phase velocity and attenuation co-
efficient can be obtained in this case. In conclusion, this transverse wave
is attenuated, has the polarisation fixed by the initial electric field, and is
affected by the electrostrictive effect.

6.4.3 Cubic Crystals. Approximate Solutions.
Generalised Anisotropy Factor

In this part we analyse the problem of attenuated wave propagation in a
cubic crystal subject to initial electromechanical fields. For particular
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directions of propagation and attenuation we derive the phase velocities,
the attenuation coefficients, and we study the corresponding polarisation.
For a particular choice of the initial electric field, we obtain and analyse the
generalised anisotropy factor.

To study the conditions for propagation of incremental mechanical
attenuated waves in an unbounded three-dimensional material, we suppose
the homogeneous field equations (6.160) and the incremental constitutive
equations (6.161) and (6.162). Supposing that the displacement vector and
the electric potential have the form (6.163), we obtain the condition of
propagation (6.164).

It is known that, in the case of a cubic crystal, the elasticity tensor contains
three independent constants c11, c12, and c44 (see (6.98)). Similarly, the
attenuation tensor possesses three independent coefficients d11, d12, and d44.
Among the five symmetry classes belonging to the cubic system, only 43m and
23 classes exhibit the piezoelectric effect, for the others (i.e., m3m, 432,m3)
the piezoelectric effect is absent. In case of symmetry classes 43m and 23, the
piezoelectric tensor contains one constant e14, whereas the dielectric tensor
has one constant η, for all five symmetry classes (see (6.99)and (6.100)).

6.4.3.1 Attenuated Wave Propagation Along an Edge of a Cubic
Crystal Subject to Initial Fields

To study the attenuated wave propagation along the [001] axis, we
assume that the direction of propagation coincides with the x3-axis (i.e.,

n3 = 1, n1 = n2 = 0). It follows that the acoustic tensor
◦
Q has the following

components.

◦
Qlm=

[
◦
Ω3lm3 +

◦
Λ33l

◦
Λ33m

◦
ε33

+ iωd3lm3

]
(p− iα)2 =

◦
Q′

lm (p− iα)2. (6.196)

If we denote by V =
◦
ρ ω2/(p− iα)2, the condition of propagation (6.164)

will take the form of an eigenvector problem:

◦
Q′ a = V a, or (

◦
Q′

lm − V δlm)am = 0, l = 1, 3. (6.197)

This problem is usually associated with the following eigenvalue problem
(characteristic equation),

det(
◦
Q′

lm −V δlm) = 0. (6.198)

Note that, for this particular direction of propagation the acoustic tensor

becomes symmetric
◦
Q′

lm=
◦
Q′

ml.
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Thus, we obtain the components of the tensor
◦

Q′ in the form:

◦
Q′

11 = ac = c44 + iωd44 +
◦
S33 − η

1 + η

◦
E2

1 ,

◦
Q′

12 =
◦
Q′

21 = bc = − η

1 + η

◦
E1

◦
E2,

◦
Q′

13 =
◦
Q′

31 = cc = − η

1 + η

◦
E1

◦
E3,

◦
Q′

22 = dc = c44 + iωd44+
◦
S33 − η

1 + η

◦
E2

2 ,

◦
Q′

23 =
◦
Q′

32 = ec = − η

1 + η

◦
E2

◦
E3,

◦
Q′

33 = fc = c11 + iωd11+
◦
S33 − η

1 + η

◦
E2

3 . (6.199)

From the analysis of the form of the previous coefficients, we can easily
observe that the piezoelectric effect is absent for this direction of propagation,
even if the crystal is piezoelectric active.

With this notation, the condition of propagation (6.197) becomes⎧⎪⎨⎪⎩
ac a1 + bc a2 + cc a3 = V a1

bc a1 + dc a2 + ec a3 = V a2,

cc a1 + ec a2 + fc a3 = V a3

(6.200)

and the characteristic equation (6.198) has the form

G(V ) =

∣∣∣∣∣∣
ac − V bc cc
bc dc − V ec

cc ec fc − V

∣∣∣∣∣∣ = 0. (6.201)

In order to obtain the phase velocities and the attenuation coefficients in
closed-form, in what follows we present two important particular cases.

(a) Longitudinal initial electric field (
◦
E1 =

◦
E2 = 0,

◦
E3 = 0)

This case can be defined as an electroacoustic Pockels effect (see [6] for the
analogous electro-optical effect). Here, the expressions bc, cc, ec being zero,
the characteristic equation (6.201) has the following roots,

V1 = V2 = c44 + iωd44 +
◦
S33,

V3 = c11 + iωd11 +
◦
S33 − η

1 + η

◦
E2

3 . (6.202)
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As regards the polarisation of the obtained waves, using the condition of
propagation (6.200) in this particular case, we can easily see that V3 corre-
sponds to a longitudinal wave with electrostrictive effect, and V1 = V2 are
linked to transverse waves, arbitrarily polarised.

To find the phase velocities and attenuation coefficients related to the
previous roots, we denote by

V3 = AL + iBL =
◦
ρ ω2

(pL − iαL)2
,

AL = c11 +
◦
S33 − η

1 + η

◦
E2

3 , BL = ωd11. (6.203)

It yields a phase velocity vL, in the form:

v2
L =

ω2

p2
L

=
2(A2

L +B2
L)

◦
ρ
(√

A2
L +B2

L +AL

) , (6.204)

and an attenuation coefficient αL, given by the relation:

α2
L =

◦
ρ ω2

2
·
√
A2

L +B2
L −AL

A2
L +B2

L

. (6.205)

We can conclude that the displacement vector in this particular case has
the form uL = (0, 0, uL

3 ), with:

uL
3 (x3, t) = a3exp(−αLx3)exp

[
iω
(
t− x3

vL

)]
. (6.206)

We easily observe that the attenuation affects the phase velocity vL (by ω),
and the amplitude of the longitudinal wave (by αL). Moreover, the elec-

trostrictive effect is represented by the term −η/(1 + η)
◦
E2

3 .
To obtain an approximate solution of this problem, we denote by

ε = ωd11/c11 a nondimensional parameter. Supposing that ε� 1, we approx-
imate the expression (6.204) and (6.205) for phase velocity and attenuation
coefficient, to first order in ε.

Neglecting the terms containing powers of order greater than ε, we derive
the approximate form of the phase velocity:

vL � v∗L
√

1 + ψ, v∗L =

√
c11
◦
ρ
,

ψ =

◦
S33 − η

1+η

◦
E2

3

c11
. (6.207)
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Here v∗L is the longitudinal velocity in the classical case, without initial
fields, and ψ is a nondimensional parameter describing the influence of the
initial fields.

In a similar way, we can derive an approximate form of the attenuation
coefficient:

αL � α∗
L · 1

(1 + ψ)3/2
, α∗

L =
τω2

2v∗L
, τ =

d11

c11
. (6.208)

Here α∗
L is the attenuation coefficient in the case without initial fields, as

defined in [14].
Applying the same procedure as in the case of the longitudinal wave, we

find the phase velocity and attenuation coefficients for the transverse waves.
So, using the notation:

V1 = V2 = AT + iBT =
◦
ρ ω2

(pT − iαT )2
,

AT = c44 +
◦
S33, BT = ωd44, (6.209)

we obtain the phase velocity vT in the form:

v2
T =

ω2

p2
T

=
2(A2

T + B2
T )

◦
ρ
(√

A2
T +B2

T +AT

) , (6.210)

and the attenuation coefficient αT , as

α2
T =

◦
ρ ω2

2
·
√
A2

T +B2
T −AT

A2
T +B2

T

. (6.211)

We can conclude that the displacement vector in this case has the form
uT = (uT

1 , u
T
2 , 0), with

uT
k (x3, t) = akexp(−αTx3)exp

[
iω
(
t− x3

vT

)]
, k = 1; 2. (6.212)

We observe that the phase velocity vT depends on ω and the amplitude is
affected by αT . Similar approximate forms for the phase velocity and atten-
uation coefficient can be obtained in this case, too.

(b) Transverse initial electric field (
◦
E1 = 0,

◦
E2 = 0,

◦
E3 = 0)

This case can be defined as an electroacoustic Kerr effect (see [6] for the
analogous electrooptical effect). Here the coefficients cc and ec being zero,
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the characteristic equation (6.201) has the following three roots,

V ′
1 = c44 +

◦
S33 + iωd44, V ′

2 = c44 +
◦
S33 + iωd44 − η

1 + η
(

◦
E2

1 +
◦
E2

2 ),

V ′
3 = c11 +

◦
S33 + iωd11. (6.213)

As regards the polarisation of the obtained waves, using the condition
of propagation (6.200) in this particular case, we can easily see that V ′

3

corresponds to a longitudinal wave, and V ′
1 is linked to a transverse wave,

whose polarisation direction is fixed by the initial electric field.
Indeed, in this case, the system (6.200) reduces to the equation

◦
E1 a1 +

◦
E2 a2 = 0.
V ′

2 corresponds to a transverse wave, with a direction of polarisation fixed

by the initial electric field, given by the equation
◦
E2 a1 −

◦
E1 a2 = 0, normal

to the preceding direction.
To find the phase velocities and attenuation coefficients related to the

previous roots, we proceed as in the case with a longitudinal initial electric
field. So, using the notation:

V ′
3 = A′

L + iB′
L =

◦
ρ ω2

(pL − iαL)2
,

A′
L = c11 +

◦
S33, B′

L = ωd11, (6.214)

we obtain a phase velocity vL in the form,

v2
L =

ω2

p2
L

=
2(A′

L
2 +B′

L
2)

◦
ρ (
√
A′

L
2 +B′

L
2 +A′

L)
, (6.215)

and an attenuation coefficient αL,

α2
L =

◦
ρ ω2

2
·
√
A′

L
2 +B′

L
2 −A′

L

A′
L

2 +B′
L

2 . (6.216)

We conclude that the displacement vector in this case has the form
uL = (0, 0, uL

3 ), with

uL
3 (x3, t) = a3exp(−αLx3)exp

[
iω
(
t− x3

vL

)]
. (6.217)

We observe that the attenuation affects the phase velocity vL (by ω), and
the amplitude of the longitudinal wave (by αL). In this case, the electrostric-
tive effect is absent.
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Applying the same procedure, we find the phase velocity and attenuation
coefficient for the transverse waves. So, letting

V ′
1 = AT1 + iBT1 =

◦
ρ ω2

(pT1 − iαT1)2
, AT1 = c44 +

◦
S33, BT1 = ωd44,

(6.218)

we obtain the phase velocity vT1 in the form

v2
T1

=
ω2

p2
T1

=
2(A2

T1
+B2

T1
)

◦
ρ (
√
A2

T1
+B2

T1
+AT1)

, (6.219)

and attenuation coefficient αT1 ,

α2
T1

=
◦
ρ ω2

2
·
√
A2

T1
+B2

T1
−AT1

A2
T1

+B2
T1

. (6.220)

We can see that the displacement vector in this case has the form
uT1 = (uT1

1 , uT1
2 , 0), where

uT1
k (x3, t) = akexp(−αT1x3)exp

[
iω
(
t− x3

vT1

)]
, k = 1; 2. (6.221)

Similar approximate forms for the phase velocity and attenuation coeffi-
cient can be obtained in this case. This transverse wave is attenuated, has
the polarisation fixed by the initial electric field, and is not affected by the
electrostrictive effect.

Finally, on letting:

V ′
2 = AT2 + iBT2 =

◦
ρ ω2

(pT2 − iαT2)2
,

AT2 = c44 +
◦
S33 − η

1 + η
(

◦
E2

1 +
◦
E2

2), BT2 = ωd44, (6.222)

we obtain the phase velocity vT2 , in the form

v2
T2

=
ω2

p2
T2

=
2(A2

T2
+B2

T2
)

◦
ρ
(√

A2
T2

+B2
T2

+AT2

) , (6.223)

and an attenuation coefficient αT2 ,

α2
T2

=
◦
ρ ω2

2
·
√
A2

T2
+B2

T2
−AT2

A2
T2

+B2
T2

. (6.224)
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We conclude that the displacement vector in this case has the form
uT2 = (uT2

1 , uT2
2 , 0), with:

uT2
k (x3, t) = akexp(−αT2x3)exp

[
iω
(
t− x3

vT2

)]
, k = 1; 2. (6.225)

Similar approximate forms for the phase velocity and attenuation coeffi-
cient can be obtained in this case. This transverse wave is attenuated, has
the polarisation fixed by the initial electric field, and is affected by the elec-
trostrictive effect.

6.4.3.2 Attenuated Wave Propagation on a Face of a Cubic
Crystal Subject to Initial Fields

In the problem of attenuated wave propagation along the (001) plane of a
cubic crystal, we choose n1 = cos ϕ, n2 = sin ϕ, and n3 = 0, where ϕ is
the angle between the propagation direction n and the [100] axis of the cubic
crystal.

It follows in this case that the acoustic tensor
◦
Q has the components,

◦
Qlm =

◦
Q′

lm(p− iα)2, l,m = 1, 3. (6.226)

If we denote by V =
◦
ρ ω2/(p− iα)2, the condition of propagation (6.164)

takes the form of an eigenvector problem,

◦
Q′ a = V a, or (

◦
Q′

lm −V δlm)am = 0, l,m = 1, 3. (6.227)

This problem is usually associated with the following eigenvalue problem
(characteristic equation),

det(
◦
Q′

lm −V δlm) = 0. (6.228)

Note that, for the problem of attenuated wave propagation along the face

(001) of a cubic crystal, the acoustic tensor becomes symmetric
◦
Q′

lm =
◦
Q′

ml.

Indeed, we obtain the components of the tensor
◦

Q′ in the following form.

◦
Q′

11 = a′c = (c11 + iωd11)cos2ϕ+ (c44 + iωd44)sin2ϕ+A(ϕ) − η

1 + η

◦
E2

1 ,

◦
Q′

12 =
◦
Q′

21 = b′c =
c12 + c44 + iω(d12 + d44)

2
sin2ϕ− η

1 + η

◦
E1

◦
E2,

◦
Q′

13 =
◦
Q′

31 = c′c = −e14
◦
E1

1 + η
sin2ϕ− η

1 + η

◦
E1

◦
E3,
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◦
Q′

22 = d′c = (c44 + iωd44)cos2ϕ+ (c11 + iωd11)sin2ϕ+A(ϕ) − η

1 + η

◦
E2

2 ,

◦
Q′

23 =
◦
Q′

32 = e′c = −e14
◦
E2

1 + η
sin2ϕ− η

1 + η

◦
E2

◦
E3,

◦
Q′

33 = f ′c = c44 + iωd44 +A(ϕ) −
◦
E2

3 +
(e14sin2ϕ −

◦
E3)2

1 + η
, (6.229)

with

A(ϕ) =
◦
S11cos2ϕ+

◦
S22sin2ϕ+

◦
S12 sin2ϕ. (6.230)

After a short inspection of the form of the previous components, we can
observe that they generalise the components of the acoustic tensor, obtained
in the problem of plane harmonic wave propagation along a face of a cubic
crystal (see (6.109)). The present form exhibits the attenuation effect, the
piezoelectric effect, and the electrostrictive effect.

With this notation, the condition of propagation (6.227) becomes⎧⎪⎨⎪⎩
a′c a1 + b′c a2 + c′c a3 = V a1

b′c a1 + d′c a2 + e′c a3 = V a2

c′c a1 + e′c a2 + f ′
c a3 = V a3

(6.231)

and the characteristic equation (6.228) has the form

H(V ) =

∣∣∣∣∣∣
a′c − V b′c c′c
b′c d′c − V e′c
c′c e′c f ′

c − V

∣∣∣∣∣∣ = 0. (6.232)

In order to derive the phase velocities and attenuation coefficients in
closed-form, in what follows we analyse an important particular case: the
transverse initial electric field. Studying the wave propagation for
special directions of propagation in the plane (001) we obtain the generalised
anisotropy factor.

(a) Transverse initial electric field (
◦
E1 = 0,

◦
E2 = 0,

◦
E3 = 0)

In this particular case the components c′c, e
′
c vanish. The other components

of the tensor
◦

Q′ become

a′c = (c11 + iωd11)cos2ϕ+ (c44 + iωd44)sin2ϕ+A(ϕ),

b′c =
c12 + c44 + iω(d12 + d44)

2
sin2ϕ,

d′c = (c44 + iωd44)cos2ϕ+ (c11 + iωd11)sin2ϕ+A(ϕ),
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f ′
c = c44 + iωd44 +A(ϕ)−

◦
E2

3 +
(e14sin2ϕ −

◦
E3)2

1 + η
, (6.233)

with A(ϕ) done by (6.230).
Consequently, the characteristic equation (6.232) has the following three

roots,

V1,2 =
a′c + d′c ±

√
(a′c − d′c)2 + 4b′c

2

2
, V3 = f ′c. (6.234)

As regards the polarisation of the corresponding waves, we can see from
the condition of propagation (6.231), that the wave related to the root V3 is
an attenuated transverse wave, arbitrarily polarised, which is piezoelectrically
and electrostrictively coupled. The remaining two waves are polarised in the
plane (001) in mutually perpendicular directions, one being quasi-transverse,
and the other quasi-longitudinal. It is interesting to note that the directions of
polarisation of the last two waves are not influenced by the initial electric field.

To find the phase velocities and the attenuation coefficients related to the
previous roots, we denote by

V3 = AT + iBT =
◦
ρ ω2

(pT − iαT )2
,

AT = c44 +A(ϕ) −
◦
E2

3 +
(e14sin2ϕ−

◦
E3)2

1 + η
, BT = ωd44. (6.235)

It yields a phase velocity vT , in the form,

v2
T =

ω2

p2
T

=
2(A2

T + B2
T )

◦
ρ
(√

A2
T +B2

T +AT

) , (6.236)

and an attenuation coefficient αT , given by the relation,

α2
T =

◦
ρ ω2

2
·
√
A2

T +B2
T −AT

A2
T +B2

T

. (6.237)

We can conclude that the displacement vector, in this case, has the form
uT = (0, 0, uT

3 ), with

uT
3 (x1, x2, t) = a3exp[−αT (x1cosϕ+x2sinϕ)]exp

[
iω
(
t− x1cosϕ+ x2sinϕ

vT

)]
.

(6.238)

We easily observe that the attenuation affects the phase velocity vT

(by ω), and the amplitude of the longitudinal wave (by αT ). Moreover, the
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piezoelectric and electrostrictive effects are represented by the term

−
◦
E2

3 +
(e14sin 2ϕ−

◦
E3)2

1 + η
.

Applying the same procedure as in the case of the transverse wave, we can
find the phase velocity and attenuation coefficients for the quasi-longitudinal,
respectively, quasi-transverse waves. A detailed analysis is made for three
particular directions of propagation in the plane (001).

(b) Special directions of propagation. Generalized anisotropy factor

In the problem of attenuated wave propagation in the plane (001) of a cubic
crystal, subject to initial transverse electric field and to an initial mechanical
stress field, we consider the following particular directions of propagation:

• For ϕ = 0 (i.e., [100] axis), the roots V1,2, done by (6.234), have the
following form.

V1 = c11 + iωd11 +
◦
S11,

V2 = c44 + iωd44 +
◦
S11. (6.239)

The first root refers to a pure longitudinal wave, and the second to a pure
transverse one. The corresponding phase velocities and attenuation coeffi-
cients have the form.

v2
L =

2(A2
L +B2

L)
◦
ρ
(√

A2
L +B2

L +AL

) , α2
L =

◦
ρ ω2

2
·
√
A2

L +B2
L −AL

A2
L +B2

L

, (6.240)

where AL = c11+
◦
S11 and BL = ωd11, respectively:

v2
T1

=
2(A2

T1
+B2

T1
)

◦
ρ
(√

A2
T1

+B2
T1

+AT1

) , α2
T1

=
◦
ρ ω2

2
·
√
A2

T1
+B2

T1
−AT1

A2
T1

+B2
T1

,

(6.241)

with AT1 = c44 +
◦
S11 and BT1 = ωd44.

• For ϕ = π/2 (i.e., [010] axis) the roots V1,2 are done by the expressions:

V1 = c11 + iωd11 +
◦
S22, V2 = c44 + iωd44 +

◦
S22 . (6.242)

The first root corresponds to a pure longitudinal wave, and the second one
to a pure transverse wave. The phase velocities and attenuation coefficients
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will have, in this case, the form

v2
L =

2(A2
L +B2

L)
◦
ρ
(√

A2
L +B2

L +AL

) , α2
L =

◦
ρ ω2

2
·
√
A2

L +B2
L −AL

A2
L +B2

L

, (6.243)

where AL = c11 +
◦
S22 and BL = ωd11, respectively:

v2
T1

=
2(A2

T1
+B2

T1
)

◦
ρ
(√

A2
T1

+B2
T1

+AT1

) , α2
T1

=
◦
ρ ω2

2
·
√
A2

T1
+B2

T1
−AT1

A2
T1

+B2
T1

,

(6.244)

with AT1 = c44 +
◦
S22 and BT1 = ωd44.

• For ϕ = π/4 (i.e., [110] axis) the roots V1,2 have the form

V1 =
c11 + c12 + 2c44 + iω(d11 + d12 + d44) +

◦
S11 +

◦
S22 + 2

◦
S12

2
,

V2 =
c11 − c12 + iω(d11 − d12) +

◦
S11 +

◦
S22 + 2

◦
S12

2
. (6.245)

The first root is related to a pure longitudinal wave, and the second
corresponds to a pure transverse wave. The phase velocities and attenuation
coefficients have, in this case, the following expressions

v2
L =

2(A2
L +B2

L)
◦
ρ
(√

A2
L +B2

L +AL

) , α2
L =

◦
ρ ω2

2
·
√
A2

L +B2
L −AL

A2
L +B2

L

, (6.246)

where AL = (c11 + c12 + 2c44+
◦
S11 +

◦
S22 +2

◦
S12)/2 and BL = ω(d11 +

d12 + d44)/2, respectively:

v2
T1

=
2(A2

T1
+B2

T1
)

◦
ρ
(√

A2
T1

+B2
T1

+AT1

) , α2
T1

=
◦
ρ ω2

2
·
√
A2

T1
+B2

T1
−AT1

A2
T1

+B2
T1

(6.247)

with AT1 = (c11 − c12 +
◦
S11 +

◦
S22 + 2

◦
S12)/2 and BT1 = ω(d11 − d12)/2.

The ratio of the transverse wave velocities in the directions [100] and [110]
defines the generalised anisotropy factor A∗ for the problem of attenuated
wave propagation in cubic crystals subject to initial fields, in the following
manner,

A∗ =
(
vT1 [100]
vT1 [110]

)2

, (6.248)
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where the velocities are done by (6.241)1 and (6.247)1. It generalises the clas-
sical anisotropy factor A, as defined in [14] in the case without initial fields,

respectively, the anisotropy factor
◦
A, defined and analysed in Section 6.3.2.3

for the problem of plane harmonic wave propagation in cubic crystals subject
to initial fields. It is obvious that only the initial stress components influence
the generalised anisotropy factor, and not the initial electric field.

It is easy to see that the generalised anisotropy factor A∗ can be expressed,
via the classical anisotropy factor A, as follows.

A∗ = A · α
2 + ψ2

β2 + χ2
·
√
β2 + χ2 + β√
α2 + ψ2 + α

. (6.249)

Here A = 2c44/(c11− c12) is the classical anisotropy factor, without initial
fields. The nondimensional parameters ψ = ωd44/c44 and χ = ω(d11 − d12)/
(c11 − c12) express the influence of attenuation, and the nondimensional

parameters α = 1 +
◦
S11/c44 and β = 1 + (

◦
S11 +

◦
S22 +2

◦
S12)/(c11 − c12)

describe the influence of the initial deformation field.
It is obvious that if the initial fields are absent and the wave is unattenu-

ated, we have A∗ = A (in this particular case α = β = 1; resp., ψ = χ = 0).
Moreover, if we develop the expression of A∗ after small parameters ψ and
χ, and we retain only the linear terms, we obtain that

A∗ � ◦
A =

2(c44 +
◦
S11)

c11 − c12 +
◦
S11 +

◦
S22 + 2

◦
S12

. (6.250)

Thus, in this particular case, the generalised anisotropy factor reduces to
the anisotropy factor from the problem of plane harmonic wave propagation
on a face of a cubic crystal.

6.5 The Coupling of Guided Plane Waves in
Piezoelectric Crystals Subject to Initial
Electromechanical Fields

In this part we study the coupling conditions for propagation of planar guided
waves in a piezoelectric semi-infinite plane subject to initial electromechan-
ical fields (see papers [25, 26]). If the sagittal plane is normal to a direct
(resp., inverse) dyad axis, we show that the fundamental system of equations
decomposes for particular choices of the initial electric field. Moreover, we
obtain a similar decomposition of mechanical and electrical boundary condi-
tions, which enables us to characterize the obtained guided waves.
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6.5.1 Coupling Conditions for Waveguide Propagation

In this part, we assume the hypotheses described in Section 6.2.3. In this case,
we have the homogeneous field equations (6.65), the associated boundary con-
ditions (6.66), and the incremental constitutive equations (6.62) and (6.63).

From the previous field and constitutive equations we obtain the following
fundamental system of equations,

◦
ρ ül =

◦
Ωklmn um,nk +

◦
Λmkl φ,mk,

◦
Λkmn un,mk − ◦

εkn φ,nk = 0, l = 1, 3. (6.251)

In what follows we describe the geometric hypotheses for our problem. The
crystal is assumed to be semi-infinite, occupying the region x2 > 0, and the
waves are supposed to propagate along the x1-axis. The plane x1x2 containing
the surface normal and the propagation direction is called the sagittal plane.
Furthermore, we suppose that the waveguide has the properties invariant
with time t and with x1 variable. In these conditions, if the material behaves
linearly and without attenuation, the normal modes have the form

uj(x, t) = u0
j (x2, x3)exp[i(ωt− px1)], j = 1, 4. (6.252)

Here u1, u2, u3 are the mechanical displacements, and u4 stands for the
electric potential φ. In the previous relations p represents the wave number,
ω defines the frequency of the wave, and i2 = −1. Using these hypotheses,
the equations (6.251) become:

◦
Ωklmn um,nk +

◦
Λmkl φ,mk = − ◦

ρ ω2ul,
◦
Λkmn un,mk =

◦
εkn φ,nk, l = 1, 3. (6.253)

We define the nondimensional variableX2 = px2 and we neglect the effects
of diffraction in the x3-direction, so that ∂/∂x3 = 0. The other hypotheses
yield the derivation rules ∂/∂x1 = −ip and ∂/∂x2 = p∂/∂X2. Finally, we
introduce the phase velocity of the guided wave as V = ω/p.

To analyse the coupling conditions of the plane waveguide, under the
previous hypotheses, we introduce the differential operators with complex
coefficients, as follows.

◦
Γ il =

◦
Ω1il1 − ◦

Ω2il2
∂2

∂X2
2

+ i(
◦
Ω1il2 +

◦
Ω1li2)

∂

∂X2
,

◦
γl =

◦
Λ11l −

◦
Λ22l

∂2

∂X2
2

+ i(
◦
Λ12l +

◦
Λ21l)

∂

∂X2
,

◦
ε =

◦
ε11 − ◦

ε22
∂2

∂X2
2

+ 2i
◦
ε12

∂

∂X2
. (6.254)
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In these conditions, after a lengthy but elementary calculus we obtain the
differential system (6.253) in the form⎛⎜⎜⎜⎜⎝

◦
Γ 11 − ◦

ρ V 2
◦
Γ 12

◦
Γ 13

◦
γ1

◦
Γ 12

◦
Γ 22 − ◦

ρ V 2
◦
Γ 23

◦
γ2

◦
Γ 13

◦
Γ 23

◦
Γ 33 − ◦

ρ V 2
◦
γ3

◦
γ1

◦
γ2

◦
γ3 − ◦

ε

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎝
u1

u2

u3

u4

⎞⎟⎟⎠ = 0. (6.255)

Here the coefficients are defined by relations (6.254). The system (6.255)
is a homogeneous differential system of four equations with four unknowns,
that is, the components of the mechanical displacement and the electric
potential, having as coefficients complex differential operators in nondimen-
sional variable X2. It generalises the similar system from the case without
initial fields, derived in [14].

In what follows we analyse the coupling conditions of the guided plane
wave propagation in two particular cases.

6.5.1.1 Sagittal Plane Normal to a Direct Axis of Order Two

In this case, we suppose that the sagittal plane x1x2 is normal to a dyad axis
(x3 in our case). Then, the elastic constants with one index equal to 3 are
zero. After a short inspection of the coefficients of the system (6.255), using
the Voigt convention, we find:

◦
Γ 13 = −

[
e15 + i(e14 + e25)

∂

∂X2
− e24

∂2

∂X2
2

]
◦
E1

−
[
η11 + 2iη12

∂

∂X2
− η22

∂2

∂X2
2

]
◦
E1

◦
E3,

◦
Γ 23 = −

[
e15 + i(e14 + e25)

∂

∂X2
− e24

∂2

∂X2
2

]
◦
E2

−
[
η11 + 2iη12

∂

∂X2
− η22

∂2

∂X2
2

]
◦
E2

◦
E3 . (6.256)

We can easily observe that
◦
Γ 13 and

◦
Γ 23 do not depend on the initial

stress field components, but on the initial electric field components, only.
Thus,

◦
Γ 13 =

◦
Γ 23 = 0 if

◦
E1 =

◦
E2 = 0.

Moreover, if we suppose that the dyad axis is direct (this means that the
sagittal plane is normal to a direct axis of order two), it follows that the
crystal belongs to the class 2 of the monoclinic system (A2 || x3). In this
particular case the piezoelectric constants with no index equal to 3 are zero.
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Therefore, we obtain:

◦
γ1 =

(
η11 + 2iη12

∂

∂X2
− η22

∂2

∂X2
2

)
◦
E1,

◦
γ2 =

(
η11 + 2iη12

∂

∂X2
− η22

∂2

∂X2
2

)
◦
E2 . (6.257)

So, we obtain that
◦
γ1 =

◦
γ2 = 0 if

◦
E1 =

◦
E2 = 0.

In conclusion, we derive the following result concerning the decomposition
of the fundamental system (6.255).

If the axis x3 is a direct dyad axis and if
◦
E1 =

◦
E2 = 0, the system (6.255)

reduces to two independent subsystems, as follows.
• The first subsystem( ◦

Γ 11 − ◦
ρ V 2

◦
Γ 12

◦
Γ 12

◦
Γ 22 − ◦

ρ V 2

)(
u1

u2

)
= 0 (6.258)

defines a nonpiezoelectric guided wave, polarised in the sagittal plane x1x2,
which depends on the initial stress field, only. We denote it by

◦
P 2. These

characteristics are due to the form of the involved coefficients:

◦
Γ 11 = c11 +

◦
S11 + 2i(c16 +

◦
S12)

∂

∂X2
− (c66 +

◦
S22)

∂2

∂X2
2

,

◦
Γ 12 = c16 + i(c12 + c66)

∂

∂X2
− c26

∂2

∂X2
2

,

◦
Γ 22 = c66 +

◦
S11 + 2i(c26 +

◦
S12)

∂

∂X2
− (c22 +

◦
S22)

∂2

∂X2
2

. (6.259)

• The second subsystem:( ◦
Γ 33 − ◦

ρ V 2
◦
γ3

◦
γ3 −◦

ε

)(
u3

u4

)
= 0 (6.260)

has as solution a transverse-horizontal wave, with polarisation after the
axis x3, which is piezoelectric and electrostrictive active, and depends on

the initial mechanical and electrical fields. It is denoted by
◦
TH and generalises

the famous Bleustein–Gulyaev wave (see [14], to compare). The components
involved in this equation have the form:

◦
Γ33 = c55 +

◦
S11 + 2i(c45 +

◦
S12)

∂

∂X2
− (c44 +

◦
S22)

∂2

∂X2
2
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− 2
[
e15 + i(e14 + e25)

∂

∂X2
− e24

∂2

∂X2
2

]
◦
E3

−
[
η11 + 2iη12

∂

∂X2
− η22

∂2

∂X2
2

]
◦
E

2

3,

◦
γ3 = e15 + i(e14 + e25)

∂

∂X2
− e24

∂2

∂X2
2

+
[
η11 + 2iη12

∂

∂X2
− η22

∂2

∂X2
2

]
◦
E3,

◦
ε=

◦
ε11 + 2i

◦
ε12

∂

∂X2
− ◦
ε22

∂2

∂X2
2

= 1 + η11 + 2iη12
∂

∂X2

− (1 + η22)
∂2

∂X2
2

. (6.261)

6.5.1.2 Sagittal Plane Parallel to a Mirror Plane

We suppose now that the sagittal plane x1x2 is normal to an inverse dyad axis
(x3 in our case) or, equivalently, if the sagittal plane is parallel to a mirror
plane M . It follows that the crystal belongs to the class m of the monoclinic
system (M ⊥ x3). In this particular case the elastic constants with one index
equal to 3 are zero, as well as the piezoelectric constants with one index equal
to 3, which vanish.

Analysing the coefficients of the system (6.255) in this case, we find:

◦
Γ 13 = −

[
e11 + i(e21 + e16)

∂

∂X2
− e26

∂2

∂X2
2

]
◦
E3

−
[
η11 + 2iη12

∂

∂X2
− η22

∂2

∂X2
2

]
◦
E1

◦
E3,

◦
Γ 23 = −

[
e16 + i(e26 + e12)

∂

∂X2
− e22

∂2

∂X2
2

]
◦
E3

−
[
η11 + 2iη12

∂

∂X2
− η22

∂2

∂X2
2

]
◦
E2

◦
E3,

◦
γ3 =

(
η11 + 2iη12

∂

∂X2
− η22

∂2

∂X2
2

)
◦
E3 . (6.262)

It yields that
◦
Γ 13 =

◦
Γ 23 = 0 and

◦
γ3 = 0 if

◦
E3 = 0.

Thus, if the axis x3 is an inverse dyad axis and if
◦
E3 = 0, the fundamental

system (6.255) splits into two parts, as follows.
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• The first subsystem has the form:⎛⎜⎜⎝
◦
Γ 11 − ◦

ρ V 2
◦
Γ 12

◦
γ1

◦
Γ 12

◦
Γ 22 − ◦

ρ V 2
◦
γ2

◦
γ1

◦
γ2 −◦

ε

⎞⎟⎟⎠
⎛⎝u1

u2

u4

⎞⎠ = 0. (6.263)

It has as solution a guided wave with sagittal plane polarisation, asso-
ciated with the electric field (via the electric potential u4 = φ), providing
piezoelectric and electrostrictive effects, and depending on the initial stress

and electric fields. It is denoted by
◦
P 2. The electric field associated with this

wave is contained in the sagittal plane because E3 = −∂φ/∂x3 = 0. This fact

is consistent with the hypothesis
◦
E3 = 0. These features of the

◦
P 2 wave are

obtained from the analysis of the corresponding coefficients:

◦
Γ 11 = c11+

◦
S11 − 2e11

◦
E1 − η11

◦
E

2

1 + 2i[c16 +
◦
S12 −(e16 + e21)

◦
E1

− η12
◦
E

2

1]
∂

∂X2
− (c66 +

◦
S22 − 2e26

◦
E1 − η22

◦
E

2

1)
∂2

∂X2
2

,

◦
Γ 12 = c16 − e16

◦
E1 − e11

◦
E2 −η11

◦
E1

◦
E2 + i[c12 + c66 − (e12 + e26)

◦
E1

− (e21 + e16)
◦
E2 − 2η12

◦
E1

◦
E2]

∂

∂X2

− (c26 − e22
◦
E1 − e26

◦
E2 − η22

◦
E1

◦
E2)

∂2

∂X2
2

,

◦
Γ 22 = c66 +

◦
S11 − 2e16

◦
E2 − η11

◦
E

2

2 + 2i[c26+
◦
S12 −(e26 + e12)

◦
E2

− η12
◦
E

2

2]
∂

∂X2
− (c22 +

◦
S22 − 2e22

◦
E2 − η22

◦
E

2

2)
∂2

∂X2
2

, (6.264)

respectively:

◦
γ1 = e11 + η11

◦
E1 + i(e16 + e21 + 2η12

◦
E1)

∂

∂X2
− (e26 + η22

◦
E1)

∂2

∂X2
2

,

◦
γ2 = e16 + η11

◦
E2 + i(e12 + e26 + 2η12

◦
E2)

∂

∂X2
− (e22 + η22

◦
E2)

∂2

∂X2
2

,

◦
ε=

◦
ε11 + 2i

◦
ε12

∂

∂X2
− ◦
ε22

∂2

∂X2
2

= 1 + η11 + 2iη12
∂

∂X2
− (1 + η22)

∂2

∂X2
2

.

(6.265)

• The second subsystem reduces to a single equation, as follows,

(
◦
Γ 33 − ◦

ρ V 2)u3 = 0. (6.266)
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Its root corresponds to a transverse-horizontal wave, nonpiezoelectric, and

influenced by the initial stress field only. It is called the
◦
TH wave. In this

equation:

◦
Γ 33 = c55 +

◦
S11 + 2i(c45 +

◦
S12)

∂

∂X2
− (c44 +

◦
S22)

∂2

∂X2
2

. (6.267)

6.5.2 The Decoupling of Mechanical and Electrical
Boundary Conditions

In this section we analyse the decomposition of the mechanical (resp.,
electrical) boundary conditions on the surface x2 = 0.

6.5.2.1 Mechanical Boundary Conditions

On the boundary surface x2 = 0 the mechanical conditions are assumed
to concern the surface stresses Σ2i with i = 1, 3. Following the incremental
constitutive equations (6.62), we find in this case that:

Σ21 =
◦
Ω2111u1,1 +

◦
Ω2121u2,1 +

◦
Ω2131u3,1 +

◦
Ω2112u1,2 +

◦
Ω2122u2,2

+
◦
Ω2132u3,2 +

◦
Λ121u4,1 +

◦
Λ221u4,2,

Σ22 =
◦
Ω2211u1,1 +

◦
Ω2221u2,1 +

◦
Ω2231u3,1 +

◦
Ω2212u1,2 +

◦
Ω2222u2,2

+
◦
Ω2232 u3,2 +

◦
Λ122u4,1 +

◦
Λ222u4,2,

Σ23 =
◦
Ω2311u1,1 +

◦
Ω2321u2,1 +

◦
Ω2331u3,1 +

◦
Ω2312u1,2 +

◦
Ω2322u2,2

+
◦
Ω2332u3,2 +

◦
Λ123u4,1 +

◦
Λ223u4,2.

(6.268)

(a) For a sagittal plane normal to a direct axis of order two and if
◦
E1 =

◦
E2 = 0 we obtain:

Σ21 = −ki[(c16 +
◦
S12)u1 + c66u2] + k

∂

∂X2
[(c66 +

◦
S22)u1 + c26u2],

Σ22 = −ki[c12u1 + (c26 +
◦
S12)u2] + k

∂

∂X2
[c26u1 + (c22 +

◦
S22)u2],

Σ23 = −ki[( ◦
S12 + c45 − e25

◦
E3 − e14

◦
E3 − η12

◦
E

2

3)u3 + (e14 + η12
◦
E3)u4]

+ k
∂

∂X2
[(c44 +

◦
S22 − 2e24

◦
E3 − η22

◦
E

2

3)u3 + (e24 + η22
◦
E3)u4].

(6.269)
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Consequently, the mechanical boundary conditions on the plane x2 = 0,
under the previous conditions, reduce to the equalities (6.269), for given
stresses Σ2i with i = 1, 3.

As regards the boundary conditions associated with the waves previously
derived, for the

◦
P 2 wave we have relations (6.269) with u3 = u4 = 0 (it yields

that Σ23 = 0 for this wave), whereas for
◦
TH we have the same relations with

u1 = u2 = 0 (it results that Σ12 = Σ22 = 0 in this case).

(b) For a sagittal plane parallel to a mirror plane and if
◦
E3 = 0 we derive:

Σ21 = k

[
(−i)(c16 +

◦
S12 − e16

◦
E1 − e21

◦
E1 − η12

◦
E

2

1)

+ (c66 +
◦
S22 − 2e26

◦
E1 − η22

◦
E

2

1)
∂

∂X2

]
u1

+ k

[
(−i)(c66 − e26

◦
E1 − e16

◦
E2 − η12

◦
E1

◦
E2)

+ (c26 − e22
◦
E1 − e26

◦
E2 − η22

◦
E1

◦
E2)

∂

∂X2

]
u2

+ k

[
(−i)(e16 + η12

◦
E1) + (e26 + η22

◦
E1)

∂

∂X2

]
u4, (6.270)

Σ22 = k

[
(−i)(c12 − e12

◦
E1 − e21

◦
E2 − η12

◦
E1

◦
E2)

+ (c26 − e22
◦
E1 −e26

◦
E2 − η22

◦
E1

◦
E2)

∂

∂X2

]
u1

+ k

[
(−i)(c26+

◦
S12 −e12

◦
E2 − e26

◦
E2 −η12

◦
E

2

2)

+ (c22+
◦
S22 −2e22

◦
E2 − η22

◦
E

2

2)
∂

∂X2

]
u2

+ k

[
(−i)(e12 + η12

◦
E2) + (e22 + η22

◦
E2)

∂

∂X2

]
u4,

Σ23 = k

[
(−i)(c45 +

◦
S12) + (c44 +

◦
S22)

∂

∂X2

]
u3.

Consequently, the mechanical boundary conditions on the plane x2 = 0,
under the previous conditions, reduce the equalities (6.270), for given stresses

Σ2i with i = 1, 3. For the
◦
P 2 wave we have relations (6.270) with u3 = 0

(it yields Σ23 = 0 for this wave), whereas for the
◦
TH wave we obtain the

boundary conditions from (6.270) with u1 = u2 = u4 = 0 (it results in
Σ12 = Σ22 = 0 in this case).
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We conclude that the stresses on the horizontal surface x2 = 0, associated

with the guided waves polarised in the sagittal plane (i.e.,
◦
P 2 and

◦
P 2), become

decoupled from those associated with transverse horizontal waves (i.e.,
◦
TH

and
◦
TH), when x3 is a dyad axis normal to the sagittal plane x1x2. Our

results generalise the classical boundary conditions for piezoelectric guided
waves without initial fields, as described in [14].

6.5.2.2 Electrical Boundary Conditions

On the boundary surface of the domain we suppose the electrical boundary
condition of the type:

∆n = ∆knk = −w, with k = 1, 3, (6.271)

where the normal component of the electrical displacement ∆n is related to
the surface density of electric charge w.

In our case, as the boundary of the domain x2 > 0 is the plane x2 = 0,
the previous boundary condition becomes:

∆2 = w on x2 = 0. (6.272)

Using the constitutive equation (6.62) and the derivation rules, we find
that

∆2 =
◦
Λ2nm um,n − ◦

ε2l φ,l = k

(
−i

◦
Λ211 +

◦
Λ221

∂

∂X2

)
u1

+ k

(
−i

◦
Λ212 +

◦
Λ222

∂

∂X2

)
u2 + k

(
−i

◦
Λ213 +

◦
Λ223

∂

∂X2

)
u3

+ k

(
i
◦
ε12 − ◦

ε22
∂

∂X2

)
u4. (6.273)

For a sagittal plane normal to a direct axis of order two and if
◦
E1 =

◦
E2 = 0

we obtain the following electrical boundary condition

k

[
(−i e25 + e24)+

◦
E3 (−i η12 + η22)

∂

∂X2

]
u3 + k

(
i
◦
ε12 − ◦

ε22
∂

∂X2

)
u4 = w,

(6.274)

on x2 = 0. It is obvious that this type of boundary condition suits the
◦
TH

wave only.
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For a sagittal plane parallel to a mirror plane and if
◦
E3 = 0 we derive the

following electrical boundary condition.

k

[
( −i e21 + e26)+

◦
E1

(
−i η12 + η22

∂
∂X2

)]
u1 + k

[
(−i e26 + e22)

+
◦
E2

(
−i η12 + η22

∂

∂X2

)]
u2 + k

(
i
◦
ε12 − ◦

ε22
∂

∂X2

)
u4 = w,

(6.275)

on x2 = 0. It is evident that this kind of boundary condition is specific to

the wave
◦
P 2 only.

6.6 Conclusions

The present chapter analyses the basic elements concerning the problem of
wave propagation in prestrained and prepolarised solid media. In the first
part we derive the field and constitutive equations, as well as the boundary
conditions, related to the behaviour of incremental fields superposed on large
static deformation and electric fields. We obtain the dynamic and static
energy balance equations and we present the static and dynamic local
stability criteria.

In the second part of the work we find the conditions of propagation for
plane harmonic waves in various types of crystals subject to initial electrome-
chanical fields. In this framework we show the electrostrictive effect, we define
and analyse generalised anisotropy factors and coupling coefficients, and we
demonstrate the influence of initial fields on the shape of slowness surfaces.
We also present the problem of attenuated wave propagation in isotropic
solids and in cubic crystals subject to initial electromechanical fields. Finally,
we study the coupling conditions of waveguide propagation in monoclinic
piezoelectric crystals subject to initial fields.

The wide range of crystal classes analysed here demonstrates the unity of
the mathematical method used (i.e., spectral properties of acoustic tensor),
and the variety of the physical significance (resp., of practical applications)
of the solutions found. We expect to obtain results for the problem of guided
wave (of Rayleigh and Love type) propagation in special classes of crystals,
subject to initial fields.
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Chapter 7

Fully Dynamic Theory

Jiashi Yang

7.1 Introduction

The theory of piezoelectricity is based on a quasistatic approximation [1].
As a result, in this theory, although the mechanical equations are dynamic,
the electromagnetic equations are static, and the electric field and the
magnetic field are not dynamically coupled. Therefore, the theory of piezo-
electricity does not describe the wave behavior of electromagnetic fields.
For many applications in piezoelectric acoustic wave devices, the quasistatic
theory is sufficient; but there are situations in which full electromagnetic
coupling needs to be considered. When electromagnetic waves are involved,
the complete set of Maxwell equations needs to be used, coupled to the
mechanical equations of motion. Such a fully dynamic theory has been called
piezoelectromagnetism by some researchers.

Solutions for the propagation of plane waves in an unbounded piezoelec-
tromagnetic medium were obtained in [2]. In addition to waves that are
essentially acoustic, there are also waves that are essentially electromagnetic.
These two groups of modes interact through piezoelectric coupling. Effects
of viscosity and conductivity on plane waves were analyzed in [3]. Results on
plane waves can also be found in [4–6]. Surface waves were studied in [7, 8]
for hexagonal crystals and in [9] for lithium niobate. Wave scattering around
a circular cylinder was treated in [10]. Transient antiplane or shear-horizontal
(SH) surface waves in a ceramic half-space under surface load were analyzed
in [11, 12]. More references on early contributions to variational formulations
of the theory of piezoelectromagnetism and electromagnetic radiation from a
vibrating piezoelectric body are given in relevant sections later.

Jiashi Yang
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7.2 Governing Equations

The three-dimensional equations of linear piezoelectromagnetism consist of
the equations of motion and Maxwell equations

Tji,j = ρüi,

εijkEk,j = −Ḃi,

εijkHk,j = Ḋi + Ji,

Bi,i = 0, Di,i = q, (7.1)

as well as the following constitutive relations,

Tij = cijklSkl − ekijEk,

Di = eijkSjk + εijEj ,

Bi = µijHj , (7.2)

where Bi is the magnetic induction, Hi is the magnetic field, Ji is the electric
current, and µij is the magnetic permeability. When the material is nonmag-
netizable, we have µij = µ0δij , where µ0 is the magnetic permeability of free
space. With Equation (7.2), for a nonmagnetizable body in a source-free
region, Equation (7.1) can be written as the following two equations for
u and E,

cijkluk,li = ρüj + ekijEk,i,

Ei,kk − Ek,ki = µ0εikËk + µ0eiklük,l, (7.3)

which shows the piezoelectric coupling between acoustic and electromagnetic
waves. With the introduction of the usual vector potential A, and scalar
potential φ for electromagnetic fields by

Ek = −φ,k − Ȧk, Bk = εkijAj,i, (7.4)

Equations (7.1)2,4 are identically satisfied. Equations (7.1)3,5 can be written
as equations in terms of the potentials.

On the boundary surface of a finite body, the mechanical displacement or
traction can be prescribed as boundary conditions. The boundary conditions
for the electromagnetic fields are usually in terms of tangential E, H and
normal B, D. Consider a finite dielectric body occupying a region V (see
Figure 7.1). The boundary surface of V is denoted by S, with a unit exterior
normal n. For electromagnetic boundary conditions, we consider the following
partitions of S (see Figure 7.1),

Sφ ∪ SD = SA ∪ SH = S,

Sφ ∩ SD = SA ∩ SH = 0. (7.5)
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x3

V

SD

SA

SH
n

x1

x2

Sφ

Fig. 7.1 A piezoelectric body and partitions of its boundary.

On S, we may prescribe

φ = φ on Sφ, Dini + d = 0 on SD,

εijknjAk = ai on SA, εijknjHk = hi on SH , (7.6)

where φ, d, ai, and h are known boundary data.

7.3 Variational Formulation

Variational formulations for coupled electromagnetic and acoustic waves were
studied in [1, 13]. A variational principle for piezoelectromagnetism in a
compound continuum representing a diatomic material was given in [14].
Piezoelectromagnetic fields inside and outside a finite body with continuity
conditions at the interface between the body and free space can be found
in [15]. A so-called generalized variational principle with all mechanical and
electromagnetic fields as independent variables was given in [16]. Variational
principles and generalized variational principles for the eigenvalue problem of
free vibrations of a piezoelectromagnetic body were also obtained [13, 17, 18].
Discontinuous fields were considered variationally in [19]. Variational for-
mulations were also used in the derivation of piezoelectromagnetic plate
equations [20, 21].

Consider the following variational functional [1, 15],

Π(A, φ) =
∫ t1

t0

dt

∫
V

[
1
2
(εijEiEj − µ−1

ij BiBj) + JiAi − qφ

]
dV

−
∫ t1

t0

dt

∫
SD

dφdS −
∫ t1

t0

dt

∫
SH

hiAidS, (7.7)
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with the admissible functions satisfying

φ = φ on Sφ

εijknjAk = a on SA,

Ai(x, t0) = A0
i ,

Ai(x, t1) = A1
i in V, (7.8)

where A0
i and A1

i are prescribed data at t0 and t1. Then,

δΠ =
∫ t1

t0

dt

∫
V

[
(Di,i − q)δφ−

(
εijkHk,j − Ḋi − Ji

)
δAi

]
dV

−
∫ t1

t0

dt

∫
SD

(Dini + d)δφdS +
∫ t1

t0

dt

∫
SH

(εijknjHk − hi)δAidS.

(7.9)

Therefore the stationary condition of Equation (7.7) yields Equations (7.1)3,5

and (7.6)2,4.

7.4 Quasistatic Approximation

The quasistatic approximation in the theory of piezoelectricity can be
considered as the lowest-order approximation of a perturbation procedure
based on the fact that the acoustic wave speed is much smaller than the speed
of light [1]. To see this, we consider a nonmagnetizable body in a source-free
region. First, we write Equations (7.1) and (7.2) into the following three
equations for u, E, and B:

cijkluk,li − ekijEk,i = ρüj,

εijkEk,j = −Ḃi,

1
µ0
εijkBk,j = eiklu̇k,l + εikĖk. (7.10)

Consider an acoustic wave with frequency ω in a piezoelectric crystal of
size L. We scale the various independent and dependent variables with respect
to characteristic quantities

ξi =
xi

L
, τ = ωt, Ui =

ui

L
, bi = c0Bi, (7.11)

where
c0 =

1√
ε0µ0

(7.12)
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is the speed of light in free space, and the scaling yields a b in the same units
as E. Then Equation (7.10) takes the following form

1
L
cijkl

∂2Uk

∂ξl∂ξi
− 1
L
ekij

∂Ek

∂ξi
= ρω2L

∂2Uj

∂τ2
,

1
L
εijk

∂Ek

∂ξj
= − ω

c0

∂bi
∂τ

,

1
c0Lµ0

εijk
∂bk
∂ξj

= ωε0
eikl

ε0

∂2Uk

∂ξl∂τ
+ ωε0

εik

ε0

∂Ek

∂τ
, (7.13)

or

cijkl
∂2Uk

∂ξl∂ξi
− ekij

∂Ek

∂ξi
= ρω2L2 ∂

2Uj

∂τ2
, εijk

∂Ek

∂ξj
= −η∂bi

∂τ
,

εijk =
∂bk
∂ξj

= η

(
eikl

ε0

∂2Uk

∂ξl∂τ
+
εik

ε0

∂Ek

∂τ

)
, (7.14)

where
η =

ωL

c0
� 1. (7.15)

To the lowest order

cijkl
∂2Uk

∂ξl∂ξi
− ekij

∂Ek

∂ξi
= ρω2L2 ∂

2Uj

∂τ2
,

εijk
∂Ek

∂ξj
= 0, εijk

∂bk
∂ξj

= 0, (7.16)

or

cijkluk,li − ekijEk,i = ρüj , εijkEk,j = 0, εijkHk,j = 0, (7.17)

which are the equations for linear piezoelectricity.

7.5 Antiplane Problems of Polarized Ceramics

The equations of piezoelectromagnetism are rather complicated. In the rest
of this chapter we study antiplane problems or SH waves in polarized
ceramics that are mathematically relatively simple and yet can show the basic
physics of piezoelectromagnetism well. For antiplane problems in polarized
ceramics, the electromagnetic fields are the so-called transverse magnetic
(TM) fields in electromagnetism and can be described by one magnetic field
component. Therefore, one displacement component and one magnetic field
component are sufficient to describe the antiplane mechanical and electro-
magnetic fields in polarized ceramics. This is simpler than using the usual
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scalar and vector potentials for electromagnetic fields. For antiplane problems
in polarized ceramics [11, 12],

u1 = u2 = 0, u3 = u3(x1, x2, t), E1 = E1(x1, x2, t),
E2 = E2(x1, x2, t), E3 = 0, H1 = H2 = 0, H3 = H3(x1, x2, t).

(7.18)

The nonvanishing components of Sij , Tij , Di, and Bi are

S4 = u3,2, S5 = u3,1,

T4 = c44u3,2 − e15E2, T5 = c44u3,1 − e15E1,

D1 = e15u3,1 + ε11E1, D2 = e15u3,2 + ε11E2,

B3 = µ0H3. (7.19)

The nontrivial ones of the equations of motion and Maxwell equations take
the following form

c44(u3,11 + u3,22) − e15(E1,1 + E2,2) = ρü3,

e15(u3,11 + u3,22) + ε11(E1,1 + E2,2) = 0,

E2,1 − E1,2 = −µ0Ḣ3,

H3,2 = e15u̇3,1 + ε11Ė1,

−H3,1 = e15u̇3,2 + ε11Ė2. (7.20)

In Equations (7.19) and (7.20), body source and magnetization are not con-
sidered. Eliminating the electric field components from Equations (7.20)1,2,

c44(u3,11 + u3,22) = ρü3, (7.21)

where

c44 = c44 +
e215
ε11

= c44(1 + k2
15),

k2
15 =

e215
ε11c55

. (7.22)

Differentiating Equation (7.20)3 with respect to time once and substituting
from Equations (7.20)4,5, we have

H3,11 +H3,22 = ε11µ0Ḧ3. (7.23)

The above equations can be written in coordinate independent forms as

ν2
T∇2u3 = ü3, c2∇2H3 = Ḧ3, Ḋ = −i3 ×∇H3, (7.24)

where
ν2

T =
c44
ρ
, c2 =

1
ε11µ0

. (7.25)
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νT and c are the speed of plane shear waves and the speed of light propagating
in the x1 direction. ∇ and ∇2 are the two-dimensional gradient operator
and Laplacian, respectively. D is the electric displacement in the (x1, x2)
plane. i3 is the unit vector in the x3 direction. Equations (7.24)1,2 govern
the displacement and magnetic fields and are uncoupled. However, coupling
between u3 and H3 exists in Equation (7.24)3. In this formulation, u3 and
H3 are the primary unknowns. Once u3 and H3 are determined, D1 and D2

can be obtained from Equation (7.24)3. Then the electric field and the stress
components can be obtained from constitutive relations.

7.6 A Moving Dislocation

Consider a screw dislocation moving at a constant speed V along the x1-axis
[22]. At t = 0, the dislocation occupies the negative x1-axis (see Figure 7.2).
Choose a moving coordinate system (x, y) as follows,

x = x1 − V t,

y = x2. (7.26)

In the moving frame (x, y), Equations (7.24)1,2 become

β2 ∂
2u3

∂x2
+
∂2u3

∂y2
= 0,

γ2 ∂
2H3

∂x2
+
∂2H3

∂y2
= 0, (7.27)

where

β2 = 1 − V 2

ν2
T

,

γ2 = 1 − V 2

c2
. (7.28)

x1

x2

Fig. 7.2 A moving screw dislocation.
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Consider Equation (7.27)1 first. Introduce a new coordinate system
(ξ, η) by

ξ = x, η = βy. (7.29)

Then Equation (7.27)1 can be written as

∂2u3

∂ξ2
+
∂2u3

∂η2
= 0. (7.30)

In a polar coordinate system (r, θ) defined by

ξ = r cos θ,
η = r sin θ, −π ≤ θ ≤ π, (7.31)

Equation(7.30) takes the following form,

∂2u3

∂r2
+

1
r

∂u3

∂r
+

1
r2
∂2u3

∂θ2
= 0. (7.32)

Similarly, in another polar coordinate system (ρ, σ) defined by

x1 − V t = ρ cosσ,
γx2 = ρ sinσ, −π ≤ σ ≤ π, (7.33)

Equation (7.27)2 becomes

∂2H3

∂ρ2
+

1
ρ

∂H3

∂ρ
+

1
ρ2

∂2H3

∂σ
= 0. (7.34)

For a screw dislocation, we are interested in solutions to Equation (7.32)
that are r-independent. Denoting the displacement discontinuity of the dis-
location at θ = π by b, a constant, we have the displacement field of the
dislocation as

u3 =
b

2π
θ =

b

2π
tan−1 η

ξ
=

b

2π
tan−1 βy

x
=

b

2π
tan−1 βx2

x1 − V t
. (7.35)

If we understand a dislocation as a pure mechanical concept as described
by Equation (7.35), the electromagnetic fields associated with the dislo-
cation are not unique, depending on how we prescribe electromagnetic
boundary/continuity conditions at the dislocation. One natural consideration
is that we also allow a discontinuity of H3 at the dislocation. Then, similar
to Equation (7.35), we have the following solution to (7.34),

H3 =
h

2π
tan−1 γx2

x1 − V t
, (7.36)
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where h is a constant. The strain components determined by Equation (7.35)
are

S4 = u3,2 =
b

2π
=

β(x1 − V t)
(x1 − V t)2 + (βx2)2

,

S5 = u3,1 = − b

2π
=

βx2

(x1 − V t)2 + (βx2)2
. (7.37)

From Equations (7.24)3 and (7.36) we have

Ḋ1 = H3,2 =
h

2π
γ(x1 − V t)

(x1 − V t)2 + (γx2)2
,

Ḋ2 = −H3,1 =
h

2π
γx2

(x1 − V t)2 + (γx2)2
, (7.38)

which can be integrated with respect to time to yield

D1 = − hγ

4πV
ln[(x1 − V t)2 + (γx2)2],

D2 =
hγ

2πV

(
tan−1 γx2

x1 − V t
− tan−1 γx2

x1

)
, (7.39)

where the integration constants have been dropped. Then from the constitu-
tive relations in Equation (7.19), we obtain

E1 = − hγ

4πε11V
ln[(x1 − V t)2 + (γx2)2] +

e15b

2πε11
βx2

(x1 − V t)2 + (βx2)2
,

E2 =
hγ

2πε11V
tan−1 γx2

x1 − V t
− e15b

2πε11
β(x1 − V t)

(x1 − V t)2 + (βx2)2
, (7.40)

and

T23 = c44
b

2π
β(x1 − V t)

(x1 − V t)2 + (βx2)2
− e15h

2πε11V
tan−1 γx2

x1 − V t
,

T13 = −c44 b

2π
βx2

(x1 − V t)2 + (βx2)2
+

e15hγ

4πε11V
ln[(x1 − V t)2 + (γx2)2].

(7.41)

For the same mechanical discontinuity at a dislocation, we may prescribe
different boundary or continuity conditions for the electromagnetic fields at
the dislocation, resulting in different electromagnetic fields. Consider the
possibility of the following fields,

u3 =
b

2π
tan−1 βx2

x1 − V t
,

H3 =
h

2π
x1 − V t

(x1 − V t)2 + (γx2)2
, (7.42)
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where h is a constant. Equation (7.42)1 is the same as (7.35). It can be verified
by direct differentiation that the H3 in Equation (7.42)2 satisfies (7.24)2.
The strain field is still given by Equation (7.37). From Equation (7.24)3, we
obtain

D1 = − h

2πV
γ2x2

(x1 − V t)2 + (γx2)2
, D2 =

h

2πV
x1 − V t

(x1 − V t)2 + (γx2)2
.

(7.43)

Then from the constitutive relations the stress and electric fields can be
obtained. For comparison, the solution from the quasi-static theory of piezo-
electricity [23] is summarized below. The displacement and strain fields are
the same as Equations (7.35) and (7.37). The electric displacement field is
given by

D1 = ε11
a

2π
x2

(x1 − V t)2 + (x2)2
, D2 = −ε11 a2π

x1 − V t

(x1 − V t)2 + (x2)2
,

(7.44)

where a is a constant. From the dynamic solution in Equations (7.35), (7.37),
and (7.43) and the quasi-static solution in Equations (7.35), (7.37), and
(7.44), we see that the displacement and strain fields of the dynamic and
quasi-static solutions are the same. The other fields are different. In the limit
of c→ ∞, we have γ → 1. If we identify the following from Equations (7.43)
and (7.44),

h

V
= −ε11a, (7.45)

then the two equations become the same. Therefore, the quasi-static solu-
tion is an approximation of the dynamic solution when the speed of light
approaches infinity. Piezoelectromagnetic fields associated with moving or
stationary cracks were studied in [24, 25].

7.7 Surface Waves

Piezoelectromagnetic surface waves were studied in [26] using the scalar and
vector potentials of electromagnetic fields and in [27] using the fields directly.
The following is based on [27]. Consider a ceramic half-space poled in the
x3-direction (see Figure 7.3).

For surface waves propagating in the x1–direction, we have

u3 = U exp(−ξ2x2)cos(ξ1x1 − ωt), H3 = H exp(−η2x2)cos(ξ1x1 − ωt),
(7.46)

where U,H, ξ1, ξ2, η2, and ω are undetermined constants. Substitution of
Equation (7.46) into (7.24)1,2 results in
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x1

Free space 

Ceramic 

Propagation 
direction 

x2

Fig. 7.3 A ceramic half-space.

ξ22 = ξ21 − ρω2

c44
= ξ21

(
1 − v2

v2
T

)
> 0,

η2
2 = ξ21 − ε11µ0ω

2 = ξ21

(
1 − v2

c2

)
> 0, (7.47)

where

v2 =
ω2

ξ21
, v2

T =
c44
ρ
, c2 =

1
ε11µ0

. (7.48)

v is the surface wave speed. The inequalities are for decaying behavior
from the surface. The stress and electric field components produced by
Equation (7.46) relevant to boundary conditions are

T4 = − 1
ε11ω

(ε11c44ξ2Ue−ξ2x2 + e15ξ1He
−η2x2)cos(ξ1x1 − ωt),

E1 =
1

ε11ω
(e15ωξ1Ue−ξ2x2 + η2He

−η2x2)sin(ξ1x1 − ωt). (7.49)

7.7.1 An Electroded Half-Space

First consider the case when the surface at x2 = 0 is electroded with a perfect
conductor for which we have E1 = 0. The electrode is assumed to be very
thin, with negligible mass. Hence, we have the traction-free condition T4 = 0
on the surface. Then from Equation (7.49) we can write

e15ωξ1U + η2H = 0,
ε11c44ωξ2U + e15ξ1H = 0. (7.50)

For nontrivial solutions of U and/or H , the determinant of the coefficient
matrix has to vanish, which leads to√

1 − v2

v2
T

√
1 − αn2

v2

v2
T

= k
2

15, (7.51)



258 Jiashi Yang

where

α =
v2

T

c20
, c20 =

1
ε0µ0

, n2 =
ε11
ε0
, k

2

15 =
e215
ε11c44

=
k2
15

1 + k2
15

. (7.52)

In Equation (7.52), α is the square of the ratio between the acoustic and
light wave speeds which is normally a very small number. n is the refractive
index in the x1 direction. Equation (7.51) is an equation for the surface wave
speed v. Waves with their speed determined by (7.51) are clearly nondisper-
sive. Because it is very small, it is simpler and more revealing to examine
the following perturbation solution of Equation (7.51) for small α:

v2 ∼= v2
T (1 − k

4

15)(1 − αn2k
4

15). (7.53)

Equation (7.53) shows that the effect of electromagnetic coupling on the
acoustic wave speed is of the order of αn2k

4

15 . As a numerical example, we
consider polarized ceramic PZT-7A. Calculation shows that

k15 = 0.671, n2 = 460, α = 6.85×10−9, αn2k
4

15 = 6.38×10−7.
(7.54)

Hence, the modification of the acoustic wave speed due to electromagnetic
effects is very small and is negligible in most applications. When α is set to
zero, or when the speed of light approaches infinity, Equation (7.53) reduces
to the speed of the well-known Bleustein–Gulyaev waves [28, 29] in quasi-
static piezoelectricity.

7.7.2 An Unelectroded Half-Space

When the traction-free surface of the half-space at x2 = 0 is unelectroded,
electromagnetic waves also exist in the free space of x2 < 0. The solution for
the free space x2 < 0 can be written as

H3 = H exp(η2x2) cos(ξ1x1 − ωt), (7.55)

where H and η2 are undetermined constants. Substitution of Equation (7.55)
into (7.24)2, with ε11 replaced by ε0 for free space, we obtain

η2
2 = ξ21 − ε0µ0ω

2 > 0. (7.56)

The electric field generated by H3 is given by

E1 = − 1
ε0ω

η2H exp(η2x2)sin(ξ1x1 − ωt),

E2 =
1
ε0ω

ξ1H exp(η2x2)cos(ξ1x1 − ωt). (7.57)
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We require the continuity of E1 and H3 at x2 = 0 as well as the vanishing
of the shear stress T4. This implies that

1
ε11ω

(e15ωξ1U + η2H) +
1
ε0ω

η2H = 0,

H −H = 0, ε11c44ωξ2U + e15ξ1H = 0. (7.58)

For nontrivial solutions the determinant of the coefficient matrix of
Equation (7.58) has to vanish, which results in√

1 − v2

v2
T

(√
1 − αn2

v2

v2
T

+ n2

√
1 − α

v2

v2
T

)
= k

2

15. (7.59)

Equation (7.59) is an equation for v. Again, the waves are nondisper-
sive. When α is set to zero, the corresponding result of [28, 29] is recovered.
A perturbation solution of Equation (7.59) to the first order of α is

v2 ∼= v2
T

[
1 − k

4

15

(1 + n2)2

][
1 − α2n2 k

4

15

(1 + n2)3

]
, (7.60)

and calculation shows that, for PZT-7A,

α2n2 k4
15

(1 + n2)3
= 1.30 × 10−16. (7.61)

7.8 Waves in a Plate Between Two Half-Spaces

A piezoelectric interface wave solution between two ceramic halfspaces was
given in [30]. Waves in plates were studied in [31] and [32] using potential and
field formulations, respectively. Love waves in a plate over a half-space were
obtained in [33]. Because electromagnetic fields can exist in free space, air
gaps are often present in piezoelectric devices. Gap waves in two half-spaces
at a finite distance apart were analyzed in [34]. Waves guided by the surface of
a circular ceramic cylinder were obtained in [35]. Waves in polarized ceramics
were treated in a general manner in [36]. Some of these results are special
cases of waves propagating in a plate between two half-spaces. Therefore, in
this section we examine waves in the structure shown in Figure 7.4 [37].

7.8.1 Dispersion Relations

Waves propagating in the x1-direction in the structure shown can be classified
as guided or radiating modes depending on their behavior in the x2-direction.
Guided modes have exponentially decaying behavior when |x2| is large.
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h

Fig. 7.4 A ceramic plate between two ceramic half-spaces.

7.8.1.1 Fields in the Upper Half-Space

Consider the following waves propagating in the x1 direction with

u3 = UAexp[−ηA(x2 − h)]cos(ξx1 − ωt),
H3 = HAexp[−ςA(x2 − h)]cos(ξx1 − ωt), (7.62)

where UA, HA, ξ, ηA, ζA, and ω are undetermined constants. The subscript
in these constants indicates that they are for ceramic A. Substitution of
Equation (7.62) into (7.24)1,2 results in

η2
A = ξ2 − ρAω

2

cA
= ξ2

(
1 − v2

v2
A

)
> 0,

ς2A = ξ2 − εAµ0ω
2 = ξ2

(
1 − v2

c2A

)
> 0, (7.63)

where
v2 =

ω2

ξ2
, v2

A =
cA
ρA
, c2A =

1
εAµ0

. (7.64)

In Equation (7.64), v is the wave speed that is to be determined, vA is
the speed of plane shear waves in the x1-direction, and cA is the speed of
light in the x1-direction. The inequalities in Equation (7.63) are for guided
waves with decaying behavior from x2 = h. If one or both of the inequal-
ities is violated, the modes become radiating. From Equation (7.24)3 and
piezoelectromagnetic constitutive relations, we obtain

T4 = − 1
εAω

{εAcAωηAUAexp[−ηA(x2 − h)]

+ eAξHAexp[−ςA(x2 − h)]}cos(ξx1 − ωt),

E1 =
1
εAω

eAωξUAexp[−ηA(x2 − h)]

+ ςAHAexp[−ςA(x2 − h)]}sin(ξx1 − ωt), (7.65)

which will be needed for interface continuity conditions.
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7.8.1.2 Fields in the Lower Half-Space

Similarly, for the lower half-space (C) occupying x2 < −h, we have

u3 = UCexp[ηC(x2 + h)]cos(ξx1 − ωt),
H3 = HCexp[ςC(x2 + h)]cos(ξx1 − ωt), (7.66)

where

η2
C = ξ2 − ρCω

2

cC
= ξ2

(
1 − v2

v2
C

)
> 0,

ς2C = ξ2 − εCµ0ω
2 = ξ2

(
1 − v2

c2C

)
> 0, (7.67)

v2
C =

cC
ρC

, c2C =
1

εCµ0
. (7.68)

We also obtain

T4 = − 1
εCω

{−εCcCωηCUC exp[ηC(x2 + h)]

+ eCξHC exp[ςC(x2 + h)]}cos(ξx1 − ωt),

E1 =
1

εCω
{eCωξUC exp[ηC(x2 + h)]

− ςCHC exp[ςC(x2 + h)]}sin(ξx1 − ωt). (7.69)

7.8.1.3 Fields in the Plate

For the ceramic plate (B), the fields can be represented by

u3 = (UBcos ηBx2 + VBsin ηBx2)cos(ξx1 − ωt),
H3 = (GBcosh ςBx2 +HBsinh ςBx2)cos(ξx1 − ωt), (7.70)

where

η2
B =

ρBω
2

cB
− ξ2 = ξ2

(
v2

v2
B

− 1
)
,

ς2B = ξ2 − εBµ0ω
2 = ξ2

(
1 − v2

c2B

)
, (7.71)

v2
B =

cB
ρB

, c2B =
1

εBµ0
. (7.72)

If the η2
B and/or ς2B in Equation (7.71) become negative, the fields in the

plate change from sinusoidal to exponential in the x2-direction or vice versa.
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The field components relevant to boundary conditions are

T4 = (−cBηBUBsin ηBx2 + cBηBVBcos ηBx2

− eB

εBω
GBξ cosh ςBx2 − eB

εBω
HBξ sinh ςBx2)cos(ξx1 − ωt),

E1 =
1
εBω

(eBωξUBcos ηBx2 + eBωξVBsin ηBx2

−GBςBsinh ςBx2 −HBςBcosh ςBx2)sin(ξx1 − ωt). (7.73)

7.8.1.4 Continuity Conditions and Dispersion Relation

At the interfaces x2 = ±h, the continuity of u3, T4, H3, and E1 need to be
imposed:

u3(h+) = u3(h−), u3(−h−) = u3(−h+),

H3(h+) = H3(h−), H3(−h−) = H3(−h+),

T4(h+) = T4(h−), T4(−h−) = T4(−h+),

E1(h+) = E1(h−), E1(−h−) = E1(−h+), (7.74)

which represent eight linear, homogeneous equations for UA, UB, UC , HA, HB ,
HC , VB , and GB . For nontrivial solutions of these constants to exist, the
determinant of the coefficient matrix has to vanish. This yields the fre-
quency equation. The expansion of the determinant of the coefficient matrix
yields a rather long expression and, therefore, is not presented here. When
viewed as an equation for ω, a root of the frequency equation determines a
relation between ω and ξ (the dispersion relation). The presence of trigono-
metric functions suggests that the dispersion relations determined may be
multivalued. The existence of roots can be seen in various special cases and
the numerical solutions discussed below.

7.8.2 Special Cases

In this section, we examine a few special cases of the dispersion relations of
antiplane waves in the structure shown in Figure 7.4.

7.8.2.1 Symmetric Waves

When the two half-spaces are of the same material, that is,

ρA = ρC , cA = cC , eA = eC , εA = εC , (7.75)
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the waves can be separated into symmetric and antisymmetric ones. For
symmetric waves, consider

UA = UC , HA = −HC ,

VB = 0, GB = 0. (7.76)

In this case, Equations (7.74)2,4,6,8 become the same as (7.74)1,3,5,7.
The dispersion relations assume the following simple form,(

ςA
εA

tanh ςBh+
ςB
εB

)
(cAηA − cBηBtan ηBh) =

(
eA

εA
− eB

εB

)2

ξ2tanh ςBh.

(7.77)

From Equation (7.77), we can see that the waves are dispersive in general.
The right-hand side of (7.77), which is responsible for the coupling between
acoustic and electromagnetic waves, depends on the difference of the ratio of
the piezoelectric and dielectric constants. If the plate and the half-spaces are
ceramics poled in the same direction, the coupling is not as strong as when
they are poled in opposite directions when their piezoelectric constants have
opposite signs.

When the two half-spaces are free space, that is, cA = 0, eA = 0, and
εA = ε0, Equation (7.77) becomes(

εB

ε0
ςAtanh ςBh+ ςB

)
ηBtan ηBh = − e2B

εBcB
ξ2tanh ςBh, (7.78)

which is the same as the result in [32] for piezoelectromagnetic waves in an
unelectroded ceramic plate.

When the materials are nonpiezoelectric, that is, eA = eB = 0,
Equation (7.77) factors into

tan ςBh = −εAςB
εBςA

and tan ηBh =
cAηA

cBηB
(7.79)

We recognize Equation (7.79)1 as the frequency equation that determines
the dispersion relations for guided electromagnetic waves in an unelectroded
dielectric plate. In terms of the wave speed v, Equation (7.79)1 can be
written as

tanh ξh

√
1 − v2

c2B
= −εA

εB

√
1 − v2

c2
B√

1 − v2

c2
A

, (7.80)

which shows the dependence of the wave speed v on the wave number ξ
(dispersion). The dispersion relations determined by Equation (7.80) are
with an infinite number of branches. It can be expected that the behavior of
(7.77) will be more complicated. In terms of the velocity, v, (7.79)2 can be
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written as

tan ξh

√
v2

v2
B

− 1 =
cA
cB

√
v2

v2
A
− 1√

v2

v2
B
− 1

, (7.81)

which is the frequency equation that determines the dispersion relations for
SH waves in an elastic plate between two elastic half-spaces.

For the special case of an elastic plate alone without the half-spaces
(cA = 0), Equation (7.81) further reduces to

tan ξh

√
v2

v2
B

− 1 = 0, (7.82)

which determines the velocities of elastic waves in a plate.
When the speed of light goes to infinity (i.e., cA → ∞ and cB → ∞),

from Equations (7.63) and (7.71), we have ςA → ξ and ςB → ξ. Then
Equation (7.77) reduces to(

1
εA

tanh ξh+
1
εB

)(
cA
ηA

ξ
− cB

ηB

ξ
tan ηBh

)
=
(
eA

εA
− eB

εB

)2

tanh ξh,

(7.83)

which determines the dispersion relations for symmetric, guided quasi-static
piezoelectric waves in a ceramic plate between two half-spaces.

7.8.2.2 Antisymmetric Waves

For antisymmetric waves, consider

UA = −UC , HA = HC , UB = 0, HB = 0. (7.84)

In this case the dispersion relation is determined by(
ςA
εA

coth ςBh+
ςB
εB

)
(cAηA + cBηBcot ηBh) =

(
eA

εA
− eB

εB

)2

ξ2coth ςBh.

(7.85)

Observations similar to Equations (7.78)–(7.83) can also be made.

7.8.2.3 Love Waves

When the upper half-space is a vacuum, Equation (7.74)1 should be dropped
and (7.74)5 should be replaced by 0 = T4(h−) . We also have

cA = 0, eA = 0, εA = ε0. (7.86)
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The dispersion relation has the following form

ςBcosh 2ςBh
εB

{
− cBηB cos 2ηBh

[
cCηC

(
ςA
ε0

+
ςC
εC

)
− ξ2

(
2e2B
ε2B

− 2eBeC

εBεC
+
e2C
ε2C

)]
+ sin 2ηBh

[
c2Bη

2
B

(
ςA
ε0

+
ςC
εC

)
+
cCηCe

2
Bξ

2

ε2B

]}

+ sinh 2ςBh

〈
− cBηB cos 2ηBh

{
cCηC

(
ς2B
ε2B

+
ςAςC
ε0εC

)

− ξ2
[
−2eBeCςA
ε0εBεC

+
e2CςA
ε0ε2C

+
e2B
ε2B

(
ςA
ε0

+
ςC
εC

)]}

+ sin 2ηBh

{
c2Bη

2
B

(
ς2B
ε2B

+
ςAςC
ε0εC

)

+
e2Bξ

2

ε2B

[
cCηC ςC
εC

− ξ2
(
eB

εB
− eC

εC

)2
]}〉

=
2cBeBςBηBξ

2

ε2B

(
eB

εB
− eC

εC

)
. (7.87)

Equation (7.87) is not comparable, but is an addition to the results for
the Love waves analyzed in [33] where the plate is either a perfect conductor
itself or it carries a perfect conductor electrode at x2 = h.

In the special case when all materials are nonpiezoelectric, Equation (7.87)
can be factored into[
ςB
εB

(
ςA
ε0

+
ςC
εC

)
+
(
ς2B
ε2B

+
ςAςC
ε0εC

)
tanh 2ςBh

]
× (cBηBtan 2ηBh− cCηC) = 0.

(7.88)

The two factors are for uncoupled electromagnetic and elastic waves,
respectively. The second factor is the well-known frequency equation that
determines the speed of elastic Love waves in a layer over a half-space.

7.8.2.4 Surface Waves

When the upper ceramic half-space (A) and the layer (B) do not exist, we
have surface waves. Setting the relevant material constants of A and B to
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zero and letting h = 0 in Equation (7.87), we obtain

ηC

ξ

(
ςC
ξ

+
εC

ε0

ςA
ξ

)
=

e2C
εCcC

, (7.89)

which can be shown to be the same as Equation (7.59).

7.8.3 Numerical Results for Acoustic Modes

For some numerical examples, we examine the dispersion relations of the
symmetric waves determined by Equation (7.77). The material constants used
in the calculations are given in Table 7.1.

A few branches of the dispersion relation are plotted in Figure 7.5
when all ceramics are poled in the same direction. The waves are clearly
dispersive. From a plate point of view, the lowest branch of the dispersion
relation of symmetric waves is called a face-shear wave with a finite phase
speed when ξh = 0. Other higher branches are all called thickness-twist
waves with unbounded phase speed when ξh = 0. If the poling direction of
the plate is reversed, the dispersion curves are given in Figure 7.6. Compared
to the curves in Figure 7.5, the curves in Figure 7.6 are more separated. The
relevant material constants of PZT-4 and PZT-7A are not very different.
The reversal of the poling direction in the plate changes the signs of the
piezoelectric constants of the plate. This in some sense makes the material of
the plate more different from that of the half-spaces, which has some effect
on the dispersion curves.

Dispersion relations of the first symmetric mode (face-shear) for differ-
ent combinations of plate and half-space ceramics are shown in Figure 7.7.
The figure shows that the wave speeds at zero wave number (the intercepts
with the vertical axis in the figure) depend strongly on the material.

Next, we examine Equation (7.78) for waves in plates. For device
applications, long waves (wavelength � plate thickness) are usually used.

Table 7.1 Material constants of polarized ceramics

ρ(kg/m3) c44(1010 N/m3) e15(C/m2) ε11(10−8 C/Vm)

PZT − 4 7500 2.56 12.7 0.646

PZT − 5H 7500 2.30 17.0 1.506

PZT − 6B 7550 3.55 4.6 0.360

PZT − 7A 7600 2.53 9.2 0.407

BaTiO3 5700 4.39 11.4 0.982

PZT − 5 7750 2.11 12.3 0.811

PZT − 7 7800 2.50 13.5 1.71
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Fig. 7.5 Dispersion curves for symmetric waves (all ceramics poled in the same direction).

Therefore, we examine long waves with ξh � 1. We focus on the lowest
acoustic branch (the face-shear wave). In this case, in terms of the wave
speed v, Equation (7.78) assumes the following form,

(1 + n2ξh)
(
v2

v2
B

− 1
)

= −k2, (7.90)

where

n2 =
εB

ε0
, k2 =

e2B
εBcB

. (7.91)

Equation (7.90) shows that the originally nondispersive long face-shear
wave becomes dispersive due to electromagnetic coupling. We plot
Equation (7.90) for a few ceramics in Figure 7.8. The figure shows that the
dispersion is noticeable only for long waves with ξh < 0.1. This translates

ceramic A : PZT−4 
ceramic B : PZT−7A
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Fig. 7.6 Dispersion curves for symmetric waves (plate poling reversed).
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ceramic B : PZT−6B
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Fig. 7.7 Dispersion curves for face-shear waves (all ceramics poled in the same direction).

into 2πh/λ < 0.1, or λ/2h > 10π; that is, the wavelength is about 30 times
the plate thickness.

7.8.4 Electromagnetic Modes and Acoustic Leaking

Design of electromagnetic (EM) wave guides and resonators has been
routinely performed using Maxwell equations. In fact, some of the materials
used for dielectric devices have piezoelectric coupling. These devices are
often mounted on substrates of other materials with acoustic interaction.
If the device material has piezoelectric coupling, the EM waves in the device
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Fig. 7.8 Dispersion of long face-shear waves in a plate in free space.
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are accompanied by acoustic waves interacting with the substrate. Therefore,
there is a possibility of acoustic leakage or radiation of energy in an EM wave
device. In this section, we examine this phenomenon [38]. Consider a plate
of polarized ceramics between two half-spaces of another polarized ceramic
(see Figure 7.4). For symmetric waves propagating in the x1 direction with a
factor of cos(ξx1−ωt), the corresponding dispersion relations are determined
by Equation (7.77):(
βA

εA
tanhβBh+

βB

εB

)
(cAαA − cBαBtanαBh) =

(
eA

εA
− eB

εB

)2

ξ2tanhβBh,

(7.92)

where

α2
A = ξ2− ρAω

2

cA
= ξ2

(
1− v2

v2
A

)
, β2

A = ξ2−εAµ0ω
2 = ξ2

(
1 − v2

c2A

)
> 0,

(7.93)

α2
B =

ρBω
2

cB
− ξ2 = ξ2

(
v2

v2
B

− 1
)
, β2

B = ξ2 − εBµ0ω
2 = ξ2

(
1 − v2

c2B

)
.

(7.94)

In Equations (7.92) through (7.94), we have changed the η and ς in (7.77)
into α and β. The inequality in (7.93)2 is for the real value of βA (only
the positive root is taken) so that the waves are electromagnetically guided.
Whether the waves are acoustically guided depends on the sign of α2

A.
Because the speed of light is much higher than the acoustic wave speed,

it can be seen from Equation (7.93) that, in the range of vA < v < cA, α
2
A

becomes negative or αA becomes pure imaginary and βA is still real and
positive. In this case, the EM fields of the coupled waves are still guided;
but the acoustic fields are not. Consider the case when vA < v < cA. To
be specific, we also limit ourselves to the case when v > cB . Together with
vA < v < cA, we are considering v in the range of

vA < cB < v < cA. (7.95)

For convenience we denote

α2
A = ξ2

(
1 − v2

v2
A

)
= −α̂2

A, αA = iα̂A,

β2
B = ξ2

(
1 − v2

c2B

)
= −β̂2

B, βB = iβ̂B. (7.96)

With Equation (7.96), we can write (7.92) as

βA

εA
tan β̂Bh+

β̂B

εB
=
(
eA

εA
− eB

εB

)2
ξ2tan β̂Bh

cAiα̂A − cBαBtanαBh
, (7.97)
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where we have also used tanh iZ = i tanZ for a complex variable Z. The
right-hand side of Equation (7.97) is due to piezoelectric coupling which may
be a small effect. We use an iteration procedure to solve Equation (7.97).
As the lowest order of approximation, we neglect the right-hand side of (7.97)
and denote the EM frequencies of the left-hand side of (7.97) by ω0:

βA0

εA
tan β̂B0h+

β̂B0

εB

∼= 0, (7.98)

where

βA0 =

√
ξ2 − ω2

0

c2A
,

β̂B0 =

√
ω2

0

c2B
− ξ2. (7.99)

Given a wave number ξ, Equation (7.98) determines a series of frequencies
ω0(ξ) for guided EM waves in the structure. When piezoelectric coupling
is considered, these EM frequencies are perturbed and are determined by
Equation (7.97). Let the corresponding frequencies from Equation (7.97) be
denoted by

ω = ω0 + ∆ω. (7.100)

Substituting Equation (7.100) into (7.97), we obtain the following first-
order modification of the EM frequencies due to piezoelectric coupling.

∆ω
ω0

∼= 1
ω2

0

(
eA

εA
− eB

εB

)2

× ξ2tan(β̂B0h)[−cBαB0tan(αB0h) − cAiα̂A0]
(cAα̂A0)2 + [cBαB0tan(αB0h)]2

×
(

βA0h

εAβ̂B0c2Bcos2(β̂B0h)
− tan(β̂B0h)

εAβA0c2A
+

1

εBβ̂B0c2B

)−1

, (7.101)

where

α̂A0 =

√
ω2

0

v2
A

− ξ2,

αB0 =

√
ω2

0

v2
B

− ξ2. (7.102)

Equation (7.101) gives the frequency perturbation of EM waves due to
piezoelectric coupling. It is a complex number. In addition to its real part
representing a frequency shift or additional dispersion, its imaginary part
describes damped waves due to acoustic radiation. As a numerical
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Fig. 7.9 Dispersion relations of guided EM waves from Equation (7.98).

example, consider PZT-4 and PZT-5H for materials A and B that satisfy
Equation (7.95).

The first few branches of the dispersion relation for guided EM waves,
that is, the solution to Equation (7.98), are shown in Figure 7.9. These waves
are clearly dispersive. For short waves with a large wave number, the disper-
sion is small, and the wave speed of various branches seems to approach the
same constant. The range of the wave speed is bounded by Equation (7.95)
from below and above.

When the waves represented by the dispersion relations in Figure 7.9
are substituted into the right-hand side of Equation (7.101), the imagi-
nary part of the left-hand side of (7.101), which represents dissipation, is
shown in Figure 7.10. The most basic point to note is that the curves in
Figure 7.10 are always positive, indicating damped waves rather than grow-
ing waves. The decay is of the order of 10−5. The way we order the modes is
such that higher-order modes have higher frequencies.

Figure 7.10 is for a very small range of wave speed and the curves
already have quite a few oscillations. Curves corresponding to higher-order
modes with higher frequencies have more oscillations. We are interested in the
behavior of these curves over the entire range as bounded by Equation (7.95).
In Figure 7.11 we only plot the peak values of the curves in Figure 7.10 versus
wave speed over the entire range, otherwise the figure would be too crowded.
The figure shows that the dissipation is sensitive to the wave speed. For
the modes considered, there exists a maximum dissipation at a particular
wave speed. At the lower bound of the wave speed, all waves approach the
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Fig. 7.10 Dissipation of guided EM waves due to acoustic leakage.

same speed, as shown in Figure 7.9, and the corresponding dissipation also
approaches a common value which is zero.

Figure 7.12 shows the real part of the left-hand side of Equation (7.101)
which represents additional dispersion induced by coupling to acoustic waves.
As in Figure 7.11, only the maximum (and minimum) values of sinusoidal
curves are shown in Figure 7.12. The most basic qualitative difference
between Figures 7.11 and 7.12 is that the maximum and minimum values
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Fig. 7.11 Dissipation of guided EM waves due to acoustic leakage (peak values).
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Fig. 7.12 Frequency shift (additional dispersion) of guided EM waves due to acoustic
leakage (peak values).

of the additional dispersion in Figure 7.12 are with alternating signs. The
additional dispersion also has a maximum which seems to be at the same
location as the maximum dissipation.

7.9 Electromagnetic Radiation from a Vibrating
Cylinder

A vibrating piezoelectric body radiates electromagnetic power. This
phenomenon is out of the classical theory of quasi-static piezoelectricity and
can only be described using the theory of piezoelectromagnetism. Radiated
electromagnetic power from an AT-cut quartz plate mechanically forced into
thickness-shear vibrations was calculated in [39]. Power radiation was also
analyzed in [40] for an AT-cut quartz plate in thickness-shear vibration
under lateral excitation and in [41], in general, for a piezoelectric plate
of an arbitrary crystal in mechanically forced thickness vibrations. Next,
we consider electromagnetic radiation from a vibrating circular cylinder of
ceramics poled in the x3-direction, as shown in Figure 7.13. The cylinder is
mechanically driven at r = b by a time-harmonic shear stress τ . The surface
at r = b is unelectroded. Electromagnetic waves propagate away from the
cylinder (radiation).

For the special case of a solid cylinder (a = 0), the governing equations
and boundary conditions are:

v2
T∇2u3 = ü3, c2∇2H3 = Ḧ3, r < a, c20∇2H3 = Ḧ3, r > a,

(7.103)
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Fig. 7.13 A ceramic circular cylinder with axial poling.

and
u3, H3 are finite, r = 0,
H3 is outgoing, r → ∞,

Tr3 = τ sin vθ exp(−iωt), r = b,

H3, Eθ are continuous, r = b. (7.104)

For the fields inside the cylinder, in polar coordinates, we have

v2
T

(
∂2u3

∂r2
+

1
r

∂u3

∂r
+

1
r2
∂2u3

∂θ2

)
= ü3,

c2
(
∂2H3

∂r2
+

1
r

∂H3

∂r
+

1
r2
∂2H3

∂θ2

)
= Ḧ3, (7.105)

and

ε11Ėr =
1
r
H3,θ − e15u̇3,r, ε11Ėθ = −H3,r − e15

1
r
u̇3,θ. (7.106)

Consider

u3(r, θ, t) = u(r)sin vθ exp(−iωt), H3(r, θ, t) = H(r)cos vθ exp(−iωt),
(7.107)

where v is a real number (for solutions periodic in θ, v must be an even
integer). Substitution of Equation (7.107) into (7.105) results in

∂2u

∂r2
+

1
r

∂u

∂r
+
(
α2 − v2

r2

)
u = 0,

∂2H

∂r2
+

1
r

∂H

∂r
+
(
β2 − v2

r2

)
H = 0,

(7.108)
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where we have denoted

α =
ω

vT
, β =

ω

c
. (7.109)

Equation (7.108) can be written as Bessel’s equations of order v. Then
general solutions for u3 and H3 can be written as

u3 = [C1Jv(αr) + C2Yv(αr)]sin vθ exp(−iωt),
H3 = [C3Jv(βr) + C4Yv(βr)]cos vθ exp(−iωt), (7.110)

where Jv and Yv are the vth order Bessel functions of the first and second
kind. C1 through C4 are undetermined constants. From Equation (7.108),
we obtain the following expressions that are useful for boundary and/or
continuity conditions.

Dr =
v

iωr
[C3Jv(βr) + C4Yv(βr)]sin vθ exp(−iωt),

Dθ =
β

iω
[C3J

′
v(βr) + C4Y

′
v(βr)]cos vθ exp(−iωt), (7.111)

Er =

{
v

ε11ωr
[C3Jv(βr) + C4Yv(βr)]

− e15α

ε11
[C1J

′
v(αr) + C2Y

′
v(αr)]

}
sin vθ exp(−iωt), (7.112)

Eθ =

{
β

ε11iω
[C3J

′
v(βr) + C4Y

′
v(βr)]

− e15v

ε11r
[C1Jv(αr) + C2Yv(αr)]

}
cos vθ exp(−iωt),

Trz =

{
c44α[C1J

′
v(αr) + C2Y

′
v(αr)]

− e15v

ε11iωr
[C3Jv(βr) + C4Yv(βr)]

}
sin vθ exp(−iωt),

Tθz =

{
c44v

r
[C1Jv(αr) + C2Yv(αr)]

− e15
iωε11

[C3J
′
v(βr) + C4Y

′
v(βr)]

}
cos vθ exp(−iωt), (7.113)

where a superimposed prime indicates differentiation with respect to the
whole argument of a function.
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In the free space of r > b, the electromagnetic fields are given by

H3 = [C5H
(1)
v (γr) + C6H

(2)
v (γr)]cos vθ exp(−iωt),

Dr =
v

iωr
[C5H

(1)
v (γr) + C6H

(2)
v (γr)] sin vθ exp(−iωt),

Dθ =
γ

iω
[C5H

(1)′
v (γr) + C6H

(2)′
v (γr)]cos vθ exp(−iωt),

Er =
v

iωrε0
[C5H

(1)
v (γr) + C6H

(2)
v (γr)]sin vθ exp(−iωt),

Eθ =
γ

iωε0
[C5H

(1)′
v (γr) + C6H

(2)′
v (γr)]cos vθ exp(−iωt), (7.114)

where H(1)
v and H

(2)
v are the vth order Hankel’s functions of the first and

second kind, and

γ =
ω

c0
. (7.115)

Because Yv is singular at the origin, terms associated with C2 and C4 have
to be dropped. To satisfy the radiation condition at r → ∞, we must have
C6 = 0. What need to be satisfied at r = b are that

Trz(b) = c44αC1J
′
v(αb) − e15v

ε11iωb
C3Jv(βb) = τ,

H3(b−) = C3Jv(βb) = C5H
(1)
v (γb) = H3(b+),

Eθ(b−) =
β

ε11iω
C3J

′
v(βb) − e15v

ε11b
C1Jv(αb)

=
γ

iωε0
C5H

(1)′
v (γb) = Eθ(b+). (7.116)

Note that when v = 0 (axisymmetric), Equation (7.116)1 becomes
uncoupled from (7.116)2,3. In this case, H3 cannot be excited by τ . Hence,
there is no radiation. In the following, we consider the case of v = 0. From
Equation (7.116), we obtain

C1 = b
βbJ ′

v(βb)H
(1)
v (γb) − ε11

ε0
γbJv(βb)H

(1)′
v (γb)

∆
τ

c44
,

C3 = iωe15b
vJv(αb)H

(1)
v (γb)

∆
τ

c44
, C5 = iωe15b

vJv(αb)Jv(βb)
∆

τ

c44
, (7.117)

where

∆ =αbβbJ ′
v(αb)J ′

v(βb)H(1)
v (γb) − k

2

15v
2Jv(αb)Jv(βb)H(1)

v (γb)

− ε11
ε0
αbγbJ ′

v(αb)Jv(βb)H(1)′
v (γb). (7.118)

∆ = 0 yields the frequency equation that determines resonances.
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We calculate the radiation at far fields with large r using the following
asymptotic expressions of Bessel functions with large arguments,

H(1)
v (x) ∼=

√
2
πx

exp i
(
x− vπ

2
− π

4

)
,

H(1)′
v (x) ∼= i

√
2
πx

exp i
(
x− vπ

2
− π

4

)
. (7.119)

Then

H3
∼=
√

2
πγr

exp i
(
γr − vπ

2
− π

4

)
cos vθ exp(−iωt),

Eθ
∼= γ

ωε0
C5

√
2
πγr

exp i
(
γr − vπ

2
− π

4

)
cos vθ exp(−iωt), (7.120)

which are clearly outgoing. To calculate the radiated power, we need the
radial component of the Poynting vector which, when averaged over a period
of time, with the complex notation, is given by

Sr =
1
2
(E∗ × H)r =

1
2
Re{E∗

θH3} =
C5C

∗
5

πωε0r
cos2 vθ, (7.121)

where an asterisk represents the complex conjugate. Equation (7.121) shows
that the energy flux is inversely proportional to r. It also shows the angular
distribution of the power radiation. The radiated power per unit length of
the cylinder is

S =
∫ 2π

0

Srrdθ =
C5C

∗
5

2πωε0
(2π +

1
2v

sin 4vπ). (7.122)

We are interested in the frequency range of acoustic waves. Therefore, αb
is finite, βb� 1, and γb� 1. For small arguments, we have

Jv(x) ∼= xv

2vΓ(1 + v)
, H(1)

v (x) ∼= −i2
vΓ(v)
πxv

,

xJ ′
v(x)

Jv(x)
∼= v,

xH
(1)′
v (x)

H
(1)
v (x)

∼= −v. (7.123)

Then, approximately,

C5 =
iωe15bJv(αb)

(1 + ε11
ε0

)αbJ ′
v(αb) − k

2

15vJv(αb)

τ

c44

1

H
(1)
v (γb)

. (7.124)

In this approximate form, the denominator of the first factor of
Equation (7.124) represents the frequency equation for quasi-static elec-
tromechanical resonances in piezoelectricity. With Equation (7.124), the
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radiated power can be written as

S =
ωe215b

2

2πε0

∣∣∣∣∣∣ Jv(αb)

(1 + ε11
ε0

)αbJ ′
v(αb) − k

2

15vJv(αb)

τ

c44

∣∣∣∣∣∣
2

× 2π + sin 4vπ
2v

H
(1)
v (γb)[H(1)

v (γb)]∗
.

(7.125)

Equation (7.125) shows that S is large near resonant frequencies. S is
singular at these frequencies unless some damping is present. In the limit of
ω → 0, we have α, β, and γ all → 0. In this case S → 0 as expected. S is
proportional to the square of the piezoelectric constant. For materials with
strong piezoelectric coupling, the radiated power is stronger.
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[19] Altay GA, Dökmeci MC (2004) Fundamental equations of certain electromagnetic-
acoustic discontinuous fields in variational form. Continuum Mech Thermodyn
16: 53–71
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Chapter 8

Nonlocal and Gradient Effects

Jiashi Yang

8.1 Introduction

Classical continuum theories such as elasticity, electrostatics, and piezoelec-
tricity are the long-wave and low-frequency limits of the equations of lattice
dynamics. The partial differential equations of these continuum theories can
be obtained from the finite difference equations of lattice dynamics by Taylor
expansions and truncations. The equations of classical continuum theories
are accurate for phenomena with a characteristic length much larger than
microscopic characteristic lengths, for example, the distance between neigh-
boring atoms in a lattice. When the characteristic length of a problem is not
much larger than the microscopic characteristic length, classical continuum
theories do not predict results consistent with lattice dynamics, and hence
are no longer valid. For example, lattice waves are dispersive but the theory
of elasticity only predicts nondispersive plane waves which are the long wave
limit of lattice waves.

There are different ways to modify the classical continuum theories so
that their range of applicability can be extended to problems with smaller
characteristic lengths, with results closer to lattice dynamics in a wider range
of wave lengths.

One is to generalize the constitutive relations in classical continuum
theories from local to nonlocal [1–5]. In classical continuum theories, the
constitutive relations are for stress and strain (or electric field and pol-
arization) at the same material point, with a zero interaction distance
(local theories). These constitutive relations neglect the microstructure of real
materials and lead to macroscopic theories for large characteristic lengths.
In nonlocal constitutive relations, a finite microscopic interaction distance is
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introduced which can represent, for example, the distance between
neighboring atoms in a lattice.

Another approach is to keep higher-order terms in the Taylor expansions of
the finite difference equations of lattice dynamics when deriving continuum
equations. This results in the so-called gradient theories of various orders
[1, 6], with the classical continuum theories as the lowest-order gradient the-
ory. The higher-order gradients can be from mechanical or electrical origins,
resulting in strain gradient or polarization gradient theories. Gradient con-
tinuum theories lead to higher-order differential equations and require more
boundary conditions than classical continuum theories. This chapter only
considers gradient effects of electric variables.

Nonlocal and gradient theories can describe size effects that are important
in small-scale problems. They also have important consequences in problems
with singularities such as concentrated sources and defects, and can describe
surface and boundary layer phenomena. Nonlocal and gradient theories are
closer to microscopic theories such as lattice dynamics than classical con-
tinuum theories. They are still applicable when the characteristic length of
a problem is so small that classical continuum theories begin to fail. The
development of new technologies results in very thin electromechanical films
or wires and very small electronic devices. The study of these small devices
presents new problems that classical theories may not be able to describe.
Theories with nonlocal or gradient effects may allow us to go a little further
in these problems than classical theories.

8.2 Nonlocal Theory

A theory for nonlocal piezoelectricity was given in [7]. Consider a piezoelectric
body V . The nonlocal constitutive relations are:

Tij(x) =
∫

V

[cijkl(x, x′)Skl(x′) − ekij(x, x′)Ek(x′)]dV (x′),

Di(x) =
∫

V

[eikl(x, x′)Skl(x′) + εik(x, x′)Ek(x, x′)]dV (x′). (8.1)

As a special case, when the nonlocal material moduli are Dirac delta
functions, Equation (8.1) reduces to the classical constitutive relations in
linear piezoelectricity. Substitution of Equation (8.1) into the equation of mo-
tion and the charge equation of electrostatics results in integral-differential
equations that are usually mathematically challenging. The potential field
due to a point charge was obtained in [7], which differs from the classical
Coulomb field. It was also shown in [7] that, different from the classical the-
ory of piezoelectricity, short plane waves are dispersive.
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8.3 Thin-Film Capacitance by Nonlocal Theory

In this section we give an example of a simple nonlocal problem [8]. Consider
an unbounded dielectric plate as shown in Figure 8.1. The plate is electroded
and a voltage is applied. We want to obtain its capacitance from the nonlocal
theory of electrostatics.

The problem is one-dimensional. The boundary value problem consists of
the following equations:

dD

dx
= 0, 0 < x < h, D = ε0E + P, 0 < x < h,

P = ε0χ

∫ h

0

K(x′, x)E(x′)dx′, 0 < x < h,

E = −dφ
dx
, 0 < x < h, (8.2)

and boundary conditions

φ(0) = 0 φ(h) = V. (8.3)

When the kernel function has the following special form,

K(x′, x) = δ(x′ − x), (8.4)

Equation (8.2) reduces to the classical form. χ is the dimensionless relative
electric susceptibility. The dielectric material of the capacitor is assumed
to be homogeneous and isotropic. Hence K(x′, x) must be invariant under
translation and inversion. We have

K(x′, x) = K(x′ − x) = K(x− x′). (8.5)

K(x′, x) should have a localized behavior, large near x′ = x and decaying
away from there. We chose the following kernel function,

K(x′ − x) =
1
2α
e−(|x′−x|/α), α > 0, (8.6)

0

h

 φ = 0

 φ = V
Electrode 

Electrode

Dielectric 

x

Fig. 8.1 A thin dielectric plate.
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where α is a material parameter with the dimension of length. It is a
characteristic length of microscopic interactions. It is easy to verify that
K(x′, x) has the following properties,

lim
α→0+

x �=x′

K = 0,
∫ +∞

−∞
Kdx = 1. (8.7)

Hence
lim

α→0+
K = δ(x′ − x), (8.8)

which shows that K(x′, x) does include the local form as a limit case.
The above K(x′, x) is the fundamental solution of the following differential
operator,

−α2 ∂
2K

∂x2
+K = δ(x′ − x). (8.9)

Integrating Equation (8.2)1 once, with Equations (8.2)2,3, we obtain

D = ε0E(x) + ε0χ

∫ h

0

K(x′, x)E(x′)dx′ = −σe, (8.10)

where σe is an integration constant that physically represents the surface free
charge density on the electrode at x = h. Equation (8.10) can be written as

E(x) = −χ
∫ h

0

K(x′, x)E(x′)dx′ − σ

ε0
, (8.11)

which is a Fredholm integral equation of the second kind for the electric field
E. Instead of solving Equation (8.11) directly, we proceed as follows. With
Equation (8.9), we differentiate (8.11) with respect to x twice and obtain

d2E(x)
dx2

= −χ
∫ h

0

∂2K(x′, x)
∂x2

E(x′)dx′

= −χ
∫ h

0

1
α2

[K(x′, x) − δ(x′ − x)] E(x′)dx′

=
1
α2

[
−χ

∫ h

0

K(x′, x)E(x′)dx′ − σe

ε0

]

+
1
α2
χ

∫ h

0

δ(x′ − x)E(x′)dx′ +
1
α2

σe

ε0

=
1
α2

[
E(x) + χE(x) +

σe

ε0

]
. (8.12)

Hence a solution E of the integral Equation (8.11) also satisfies the
following differential equation,
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α2 d
2E

dx2
− (1 + χ)E =

σe

ε0
. (8.13)

The general solution to Equation (8.13) can be obtained easily. It has
two exponential terms from the corresponding homogeneous equation, and
a constant term which is the particular solution. The general solution con-
tains two new integration constants. These two constants result from the
differentiation in obtaining Equation (8.13) from (8.11). Hence the solu-
tion to Equation (8.13) may not satisfy (8.11). Therefore we substitute
the general solution to Equation (8.13) back into (8.11), which determines
the two new integration constants. Then, with the boundary conditions in
Equation (8.3), we can determine σe and another integration constant result-
ing from integrating E for φ, and thus obtain the nonlocal electric potential
distribution φ as

φ =

[
x

h
+

χ

kh

sinh k(x− h
2
) + sinh kh

2

cosh kh
2 + kα sinh kh

2

](
1 +

2χ
kh

tanh kh
2

1 + kα tanh kh
2

)−1

V,

φ0 =
x

h
V, (8.14)

where φ0 is the classical local solution, and

k =

√
1 + χ

α
. (8.15)

The nonlocal electric field distribution E and the local solution E0 are:

E =

[
1 + χ

cosh k(x− h
2 )

cosh kh
2 + kα sinh kh

2

](
1 +

2χ
kh

tanh kh
2

1 + kα tanh kh
2

)−1

E0,

E0 = −V
h
. (8.16)

Denoting the capacitance per unit electrode area from the local theory by
C0 and the one from the nonlocal theory by C, we have

C =

(
1 +

2χ
kh

tanh kh
2

1 + kα tanh kh
2

)−1

C0, C0 =
ε0(1 + χ)

h
. (8.17)

With the expression of k in Equation (8.15), we write Equation (8.17)1 in
the following form,

C

C0
=

(
1 +

χ√
1 + χ h

2α

tanh(
√

1 + χ h
2α )

1 +
√

1 + χ tanh(
√

1 + χ h
2α

)

)−1

. (8.18)

The thin-film capacitance from the nonlocal theory differs from the result
of the local theory. The nonlocal solution depends on the ratio h/2α of the
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film thickness to the microscopic characteristic length. From Equation (8.18)
we immediately have (when χ > 0):

C/C0 < 1, (8.19)

which shows that the nonlocal result is smaller than the local result. From
(8.18) we also have the following limit behavior,

lim
h
α→∞

C

C0
= 1, (8.20)

which shows that when the film thickness is large compared to the microscopic
characteristic length, the nonlocal solution approaches the local solution. We
also have the limit

lim
h
α→0

C

C0
=

1
1 + χ

< 1, (8.21)

which shows that the nonlocal and local solutions differ more for materials
with a larger χ. We plot C/C0 from Equation (8.18) as a function of h/2α
for values of χ = 1, 10, and 100 in Figure 8.2. The figure shows that for a
film with a moderate value of χ = 100, when the thickness h/2α ≈ 10, there
is a deviation of about 10% from the local theory which has a fixed value of
1. The figure also shows that C/C0 < 1 and the deviation from 1 becomes
larger as h becomes smaller.

The spatial distribution of the electric field for χ = 10 and for two values
of h/2α = 1 and 5, respectively, is shown in Figure 8.3. It is interesting to
see that the field is large near the electrodes compared to the local solution
with the fixed value of 1. The curve with h/2α = 5 has a larger electric field
near the electrodes than the curve with h/2α = 1. This is a boundary effect
exhibited by the nonlocal theory. Even for a thick capacitor, Equation (8.16)
still yields

0

0.2

0.4

0.6

0.8

1

0 5 10

h/2α

C/C0

χ = 1

χ = 10

χ = 100

Fig. 8.2 Capacitance for χ = 1, 10, and 100.
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χ = 10, h = 10α 

χ = 10, h = 2α 

E/E0

0

0.5

1

1.5

2

2.5

3

3.5

0 0.5 1

x/h

Fig. 8.3 Electric field distribution for χ = 10, h/2α = 1, and 5.

lim
h
α→∞

E(h)
E0

= 1 +
χ

1 +
√

1 + χ
> 1. (8.22)

When χ = 10, Equation (8.22) yields a limit value of 3.32. For materials
with a large χ the value of Equation (8.22) can be large. Because E is larger
near the electrodes andD is a constant, P must be smaller near the electrodes
than near the center of the plate.

The spatial distribution of the normalized deviation of the electric
potential from the local solution for χ = 10 and for two values of h/2α = 1
and 5, respectively, are shown in Figure 8.4. The curve with h/2α = 5 shows
a smaller deviation.

Finally, we note that in Equation (8.13) the small parameter α ap-
pears as the coefficient of the term with the highest derivative. Hence,
when α tends to zero, we have a singular perturbation problem of bound-
ary layer type for a differential equation. For this type of problem, when

χ = 10, h = 2α 

χ = 10, h = 10α 

-0.08

-0.04

0

0.04

0.08

0 0.2 0.4 0.6 0.8 1

x/h

(φ−φ0)/V

Fig. 8.4 Electric potential deviation for χ = 10; h/2α = 1, and 5.
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the small parameter is set to zero, certain boundary conditions have to
be dropped because the order of the differential equation is lowered.
Equation (8.13) is a consequence of an integral-differential equation of φ
defined by Equation (8.2) which only needs two boundary conditions. In the
solution procedure, two of the integration constants in the general solution to
Equation (8.13) were determined by the integral equation in (8.11). However,
if we take Equation (8.13) as our starting point, we need two more boundary
conditions. This is because (8.13) is a fourth-order differential equation for φ
(considering it has already been integrated once with an integration constant
σe). Then when α is set to zero, two boundary conditions have to be dropped.

8.4 Electromechanical Coupling by Nonlocal Theory

Electromechanical coupling factors of piezoelectric materials or devices
depend on materials, structural shapes, and deformation modes. In this
section we examine the effect of nonlocality on electromechanical coupling
factors of thin films (see Figure 8.5) [9]. The surfaces of the film are elec-
troded. The electrodes can be shorted or open.

We consider a one-dimensional piezoelectric model [9]:

dT

dx
= 0,

dD

dx
= 0, T = cS − eE, D = ε0E + P,

S =
du

dx
, E = −dφ

dx
, P = ε0χ

∫
K(x, x′)E(x′)dx′, (8.23)

where T is the relevant stress component, D is the electric displacement,
S is the strain, E is the electric field, and P is the polarization. c, e, and
ε0(1+χ) = ε are the usual elastic, piezoelectric, and dielectric constants. We
consider the case when electrical nonlocal effects are present but mechanically
the material is still local. We still use the following kernel function from
Equation (8.6),

2h

Electrode 

Electrode 

Piezoelectric 

x

Fig. 8.5 A thin piezoelectric film and coordinate system.
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K(x′ − x) =
1
2α
e−(|x′−x|)/α, α > 0,

P = ε0χ

h∫
−h

K(x, x′)E(x′)dx′. (8.24)

Our one-dimensional model above can be used to model thickness-stretch
or thickness-shear deformations of a film, which are common operating modes
for devices.

To calculate electromechanical coupling factors we slowly apply a pair of
equal and opposite tractions T at x = ±h, and calculate the work done by
these tractions in two separate processes with shorted electrodes or open
electrodes.

8.4.1 Shorted Electrodes

The boundary conditions are

T (±h) = T , φ(±h) = 0. (8.25)

The solution to Equations (8.23) and (8.25) is simply

φ = 0 u =
T

c
x, (8.26)

which is in fact the classical piezoelectric solution. The work done by the
surface tractions per unit area in this process is

W1 = 2
[
1
2
Tu(h)

]
= 2

(
1
2
T
T

c
h

)
=
T

2

c
h. (8.27)

In this case, because there is no electric field, the related piezoelectric
stiffening effect does not exist.

8.4.2 Open Electrodes

For open electrodes, the boundary conditions are:

T (±h) = T , D(±h) = 0. (8.28)

From Equations (8.23) and (8.28),

T = cS − eE = T , D = eS + ε0E + P = −σe = 0, (8.29)
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where σe is an integration constant that physically represents the surface free
charge density of the electrode at x = h. In the case we are considering in
fact σe = 0. Eliminating S from the two equations in (8.29), we obtain

(
ε0 +

e2

c

)
E(x) + ε0χ

h∫
−h

K(x, x′)E(x′)dx′ = −
(
σe + e

T

c

)
, (8.30)

which is a Fredholm integral equation of the second kind for the electric field
E. With Equation (8.9), we differentiate (8.30) with respect to x twice and
obtain

α2 d
2E

dx2
− β2E = γ, (8.31)

where we have denoted

β2 =
ε̄

ε̄0
, ε = ε+

e2

c
= ε(1 + k2), k2 =

e2

εc
.

ε̄0 = ε0 +
e2

c
, γ =

σe + eT/c

ε0 + e2/c
=

e

ε̄0

T

c
. (8.32)

The general solution to Equation (8.31) can be obtained in a straight-
forward manner. It has two integration constants. We substitute the general
solution to Equation (8.31) back into the integral equation in Equation (8.30)
and the two integration constants can be determined. E must be an even
function of x, thus one of the integration constants is zero. We have

E = −
(

1 +A cosh
β

α
x

)
e

ε

T

c̄
= E0 + ∆E, (8.33)

where

A =
1

cosh βh
α + β sinh βh

α

ε0χ

ε̄0
, c̄ = c(1 + k2),

E0 = −e
ε

T

c̄
, ∆E = −A cosh

(
β

α
x

)
e

ε

T

c̄
. (8.34)

c̄ is a piezoelectrically stiffened elastic constant. E0 is the classical solution.
When α → 0, Equation (8.34) implies that A → 0 and Equation (8.33)
reduces to the classical solution. Integrating (8.33), we obtain the electric
potential as

φ =
(
x+A

α

β
sinh

β

α
x

)
e

ε

T

c̄
= φ0 + ∆φ,

φ0 = x
e

ε

T

c̄
, ∆φ = A

α

β
sinh

(
β

α
x

)
e

ε

T

c̄
. (8.35)
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φ is an odd function of x. From Equation (8.29)1 we can find the
displacement field as

u =
T

c̄

(
x− k2α

β
A sinh

β

α
x

)
= u0 + ∆u,

u0 =
T

c̄
x,

∆u = −T
c̄
k2α

β
A sinh

β

α
x. (8.36)

The work done by the surface traction per unit area is

W2 =
T

2

c̄
(h− k2α

β
A sinh

β

α
h). (8.37)

When the electrodes are open, there exists an electric field which causes
the well-known piezoelectric stiffening effect. This is exhibited by the presence
of c̄ in Equation (8.36) as compared to c in Equation (8.26), and that c̄ > c.
In addition to piezoelectric stiffening, the nonlocal term in (8.36) also makes
the displacement field smaller than the classical solution. Therefore we expect
W2 < W1.

8.4.3 Electromechanical Coupling Factor

We define the electromechanical coupling factor as

k2
Nonlocal =

W1 −W2

W1
. (8.38)

Substituting from Equations (8.27) and (8.37), we find

k2
Nonlocal = k2

Local

(
1 +

α

βh
A sinh

β

α
h

)
, (8.39)

where

k2
Local =

k2

1 + k2
(8.40)

is the coupling factor predicted by the classical theory of piezoelectricity.
Compared to Equation (8.40), the nonlocal solution in Equation (8.39) has
a dependence on h (size effect) among other parameters. Equation (8.39)
also shows that the nonlocal coupling factor is larger than the classical local
coupling factor.
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8.4.4 Numerical Results

For numerical results we consider polarized ceramics PZT-5H. For thickness-
stretch we identify:

c = c33, e = e33, ε = ε33. (8.41)

For thickness-shear:

c = c44, e = e15, ε = ε11. (8.42)

In Figures 8.6 through 8.8 we plot the normalized field differences ∆φ/φ0,
∆E/E0, and ∆u/u0. Clearly, nonlocal polarization creates a boundary layer
of electromechanical fields. In the central region of the plate the fields are
essentially classical. When the film is thinner, the boundary layer has a more
important role when calculating the electromechanical coupling factor which
is a global quantity. For very thin plates (h/α ∼= 2) the boundary layers
occupy the entire plate thickness.

The electromechanical coupling factor is shown in Figure 8.9. The factor
appears larger for thin films as predicted by the nonlocal polarization law.
It is in fact as expected because a nonlocal polarization law causes an eff-
ective drop of the dielectric constant as shown in the analysis of thin-film
capacitance in Section 8.3 of this chapter, and the dielectric constant is in
the denominator of the coupling factor. The nonlocal solution is supposed
to be useful when h/α is not very large and the classical solutions begin to
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Fig. 8.6 Normalized electric potential difference along film thickness.
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Fig. 8.7 Normalized electric field difference along film thickness.

become invalid, for example, when h/α is close to 5 or a little smaller in
Figure 8.9. If h/α becomes still smaller, even the nonlocal solutions may
become invalid as indicated by that for one of the curves in Figure 8.9 the
nonlocal solution predicts a coupling factor greater than 1.
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Fig. 8.8 Normalized displacement difference along film thickness.
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8.4.5 Comparison with Experiment

There are no experimental data available for direct comparison on electrome-
chanical coupling factors of very thin films. Because what we are study-
ing is in fact the effects of nonlocal electrical behavior on electromechanical
coupling factors, we compare the dielectric constant for which there are exp-
erimental data. Experiments show that the dielectric constant of a very thin
film appears to be thickness-dependent and is smaller than that of the bulk
material. From the results of Section 8.3 we can obtain an effective or appar-
ent dielectric constant of the thin film as

εeff

ε0
=

(
1 +

χ√
1 + χ h

2α

tanh(
√

1 + χ h
2α

)
1 +

√
1 + χ tanh(

√
1 + χ h

2α
)

)−1
ε

ε0
, (8.43)

which is thickness-dependent. Consider a thin film of zinc sulfide (ZnS). The
bulk dielectric constant is ε/ε0 = 8.5. Equation (8.43) is plotted in Figure 8.10
versus experimental data [10]. A good agreement results when the parameter
α in the nonlocal theory which represents a microscopic characteristic length
is chosen to be 5 Å.

8.5 Gradient Effects as Weak Nonlocal Effects

Gradient effects in constitutive relations are related to weak nonlocal effects.
For example, consider a one-dimensional nonlocal constitutive relation
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between Y and X in a homogeneous unbounded medium. We have

Y (x) =
∫ +∞

−∞
K(x′ − x)X(x′)dx′

=
∫ +∞

−∞
K(x′ − x)X [x+ (x′ − x)]dx′

=
∫ +∞

−∞
K(x′ − x)[X(x) +X ′(x)(x′ − x) + · · · ]dx′

∼=
∫ +∞

−∞
K(x′ − x)[X(x) +X ′(x)(x′ − x)]d(x′ − x)

=
∫ +∞

−∞
K(x′ − x)X(x)d(x′ − x)

+
∫ +∞

−∞
K(x′ − x)X ′(x)(x′ − x)d(x′ − x)

= X(x)
∫ +∞

−∞
K(x′ − x)d(x′ − x)

+X ′(x)
∫ +∞

−∞
K(x′ − x)(x′ − x)d(x′ − x)

= aX(x) + bX ′(x), (8.44)

where

a =
∫ +∞

−∞
K(x′ − x) d(x′ − x), b =

∫ +∞

−∞
K(x′ − x)(x′ − x) d(x′ − x).

(8.45)
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Therefore, to the lowest order of approximation, the nonlocal relation
reduces to a local one, and to the next order a gradient term appears.

8.6 Gradient Effects and Lattice Dynamics

Gradient terms can also be introduced in the following procedure.
Consider the extensional motion of a one-dimensional spring-mass system
(see Figure 8.11).

The motion of the ith particle is governed by the finite difference equation

mü(i) = k[u(i+ 1) − u(i)] − k[u(i) − u(i− 1)], (8.46)

or, with the introduction of x,

mü(x) = k[u(x+ a) + u(x− a) − 2u(x)]

= k

[
u(x) + u′(x)a+

1
2
u′′(x)a2 +

1
6
u′′′(x)a3 +

1
24
u′′′′(x)a4 + · · ·

+ u(x) − u′(x)a +
1
2
u′′(x)a2 − 1

6
u′′′(x)a3

+
1
24
u′′′′(x)a4 + · · · − 2u(x)

]
∼= k

[
u′′(x)a2 +

1
12
u′′′′(x)a4

]
,

(8.47)

which is a fourth-order equation and can be viewed as the result of a gradient
theory. It should be noted that, according to [11], an elasticity theory with
the first strain gradient in the constitutive relation is fundamentally flawed
in that it is qualitatively inconsistent with lattice dynamics and the second
strain gradient needs to be included to correct the inconsistency.

8.7 Polarization Gradient Theory

Mindlin [12] generalized the theory of piezoelectricity by allowing the
energy density to depend on the polarization gradient Pj, i in addition to

m m mk k kk

i i + 1i − 1

x + axx − a 

Fig. 8.11 A spring-mass system.
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the polarization itself and strain:

Π(ui, Pi, φ) =
∫

V

[
W (Sij , Pi, Pj,i) − 1

2
ε0φ,iφ,i + φ,iPi

]
dV, (8.48)

where boundary terms are dropped for simplicity. The stationary conditions
of the above functional for independent variations of ui, φ and Pi are(

∂W

∂Sij

)
,i

= 0, −ε0φ,ii + Pi,i = 0, −∂W
∂Pi

+

(
∂W

∂Pj, i

)
,j

− φ,i = 0. (8.49)

Equation (8.49) represents seven equations for ui, Pi and φ . If the depen-
dence of W on the polarization gradient is dropped, Equation (8.49) reduces
to the theory of linear piezoelectricity. The polarization gradient theory rep-
resents the long-wave, low-frequency limit of the finite difference equations for
a lattice of shell-model atoms [11–14]. What motivated Mindlin to study the
effects of the polarization gradient was the capacitance of a very thin dielectric
film. Experiments show that the capacitance of a very thin film is system-
atically smaller than the classical prediction. Using his polarization gradient
theory, Mindlin [12] showed that when the film thickness becomes compara-
ble to a material parameter in the polarization gradient theory, the gradient
solution can capture the trend of the deviation from the classical predic-
tion. He also showed that the polarization gradient solution of thin-film
capacitance agrees with the prediction from lattice dynamics. Mindlin [15]
also studied the electric potential of a point charge. The classical solution
diverges at the point charge. In fact, at a point very close to the charge, the
charge can no longer be considered as a point charge and its distribution has
to be taken into consideration. The gradient theory yields a solution that
differs from the classical solution only at the close range of the source point,
and is valid at a closer distance to the source point than the classical solu-
tion. Mindlin [16] showed that in a material with centrosymmetry without
piezoelectric coupling, linear electromechanical coupling can still exist due
to the polarization gradient. He also studied the polarization gradient effect
and electromagnetic fields in diatomic dielectrics [17], and electromagnetic
radiation from a vibrating sphere [18].

The polarization gradient theory has also been used to study surface
effects and crack problems [19], stress functions and fields due to a concen-
trated force [20], a point charge in a half-space [21] and a concentrated force
on a half-space (the Boussinesq problem) [22], and acceleration waves [23, 24].
Shock waves were investigated in [25]. Conservation laws for the polariza-
tion gradient theory were derived [26] from the invariance of the variational
integral.

Mindlin’s polarization gradient theory was extended in several different
directions. The nonlinear version of the theory was first given in [27]. Thermal
coupling was included in the theories in [28]–[30]. Fully electromagnetic



298 Jiashi Yang

coupling with complete Maxwell equations was considered in [31] which
is a very general theory also including magnetization. In studying certain
phenomena in ferroelectric crystals, polarization inertia [32, 33] needs to be
considered. A theory including both the polarization gradient and inertia was
given in [34] which has support from lattice dynamics [35]–[37], and has been
used to study various modes and waves in ferroelectrics [38]–[41]. A general
theory including the polarization gradient and inertia as well as the strain
gradient was given in [42]. A theory the including polarization gradient and
inertia effects in diatomic elastic dielectrics was derived in [43]. A lattice
dynamics approach of diatomic dielectrics can be found in [44]. A systematic
presentation of the polarization gradient theory was given in [45]. The polar-
ization gradient has also been included in the Landau–Ginsburg functional
for studying phase transition [46] and composites [47].

8.8 Electric Field Gradient Theory

For dielectrics, instead of the polarization gradient, the electric field gradient
can also be used as constitutive variables [1]. The resulting theory is called
dielectrics with spatial dispersion and can be used to describe optical activity
in dielectrics. A more physical view of such a theory is the electric quadrupole,
because the electric field gradient is the thermodynamic conjugate of the elec-
tric quadrupole. The electric quadruple is an old subject in electrodynamics of
rigid dielectrics [48]. Theories for elastic dielectrics with electric quadrupoles
were developed in [49]–[52]. There are also various extensions to include
thermal effects [53], polarization gradient [54], and strain gradient [55].
The relation between the theory of electric field gradient (or quadrupole)
and the theory of polarization gradient is discussed in [56].

Consider the following variational functional with electric field
gradient [57],

Π(ui, φ) =
∫

V

[
W (Sij , Ei, Ei,j) − 1

2
ε0EiEi − fiui + qφ

]
dV

−
∫

S

[
t̄iui + d̄φ+ π̄

∂φ

∂n

]
dS, (8.50)

where d̄ is related to the surface free charge. The presence of the π̄ term is
variationally consistent. We choose

W (Sij , Ei, Ei,j) − 1
2
ε0EiEi = H(Sij , Ei) − 1

2
ε0αijklEi,jEk,l, (8.51)

where H is the usual electric enthalpy function of piezoelectric materials:

H(Sij , Ei) =
1
2
cijklSijSkl − eiklEiSkl − 1

2
εijEiEj . (8.52)
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γijk and αijkl are new material constants due to the introduction of the
electric field gradient into the energy density function. γijk has the dimension
of length. αijkl has the dimension of (length)2. Physically they may be re-
lated to characteristic lengths of microstructural interactions of the material.
Because Ei,j = Ej,i, αijkl has the same structure as cijkl as required by crys-
tal symmetry, and γijk has the same structure as eijk. For W to be negative
definite in the case of pure electric phenomena without mechanical fields, we
require αijkl to be positive definite.

With the following variational constraints:

Sij =
(ui,j + uj,i)

2
, Ei = −φ,i, (8.53)

from the variational functional in Equation (8.50), for independent variations
of ui and φ in V , we have

Tji,j + fi = 0, Di,i = q, (8.54)

where we have denoted

Tij =
∂W

∂Sij
= cijklSkl − ekijEk,

Di = ε0Ei + Pi = εijEj + eiklSkl − ε0αijklEk,lj ,

Pi = Πi − Πij,j = ε0χijEj + eiklSkl − ε0αijklEk,lj ,

Πi = −∂W
∂Ei

= eiklSkl + ε0χijEj , Πij = − ∂W

∂Ei,j
= ε0αijklEk,l, (8.55)

and εij = ε0(δij + χij). χij is the relative electric susceptibility. When the
energy density does not depend on the electric field gradient, the equations
reduce to the theory of piezoelectricity. The first variation of the functional
in Equation (8.50) also implies the following as possible forms of boundary
conditions on S.

Tjinj = t̄i or δui = 0,
∫

S

[
(Dini − d̄)δφ+ Πijnj(∇sδφ)i

]
dS = 0,

Πijnjni = π̄ or δ

(
∂φ

∂n

)
= 0, (8.56)

where ∇s is the surface gradient operator. One obvious possibility of
Equation (8.56)2 is δφ = 0 on S. With substitutions from Equations (8.53)
and (8.55), Equation (8.54) can be written as four equations for ui and φ:

cijkluk,lj + ekijφ,kj + fi = ρüi, eikluk,li − εijφ,ij + ε0αijklφ,ijkl = q,
(8.57)

where we have added the acceleration term.
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8.9 Antiplane Problems of Polarized Ceramics

Antiplane problems of polarized ceramics are relatively simple mathemat-
ically and can still show the basic physical picture [57]. For antiplane
motions of polarized ceramics, Equation (8.57) reduces to a much simpler
form. Consider

u1 = u2 = 0, u3 = u3(x1, x2, t), φ = φ(x1, x2, t). (8.58)

The nonzero strain and electric field components are{
S5

S4

}
= ∇u,

{
E1

E2

}
= −∇φ. (8.59)

For ceramics poled in the x3-direction, the nontrivial components of Tij

and Di are{
T5

T4

}
= c∇u+ e∇φ,

{
D1

D2

}
= e∇u− ε∇φ+ ε0α∇(∇2φ), (8.60)

where ∇2 is the two-dimensional Laplacian, c = c44, e = e15, ε = ε11, and
α = α11. The nontrivial ones of Equation (8.57) take the form

c∇2u+ e∇2φ+ f = ρü, e∇2u− ε∇2φ+ ε0α∇2∇2φ = q, (8.61)

where f = f3. For static problems, Equation (8.61) can be decoupled into

c̄∇2u+ f +
ε0
ε
α∇2(−c∇2u− f) =

e

ε
q, ∇2φ =

1
e
(−c∇2u− f), (8.62)

or

−ε̄∇2φ+ ε0α∇2∇2φ = q +
e

c
f, ∇2u = −1

c
(e∇2φ+ f), (8.63)

where

c̄ = c(1 + k2), ε̄ = ε(1 + k2), k2 =
e2

(εc)
. (8.64)

Equation (8.63) was used to study thin-film capacitance in [58]. Results
similar to those from the nonlocal theory or the polarization gradient theory
were obtained.

8.10 A General Solution in Polar Coordinates

We consider static problems with q = 0 and f = 0. Let

F = ∇2φ, β2 =
ε̄

ε0α
. (8.65)
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Equation (8.63)1 becomes

∇2F − β2F = 0. (8.66)

In a polar coordinate system defined by x1 = r cos θ and x2 = r sin θ, by sep-
aration of variables, the general solution for F periodic in θ can be found as

F =
∞∑

n=0

(an cosnθ + bn sinnθ)[cnIn(βr) + dnKn(βr)], (8.67)

where an, bn, cn, and dn are undetermined constants. In and Kn are mod-
ified Bessel functions of order n of the first and second kind. Then from
Equation (8.65)1 the general solution for φ is

φ = a0[g0 + h0ln r +
c0
β2
I0(βr) +

d0

β2
K0(βr)] +

∞∑
n=1

(ancosnθ + bnsinnθ)

× [gnr
n + hnr

−n +
cn
β2
In(βr) +

dn

β2
Kn(βr)], (8.68)

where gn and hn are undetermined constants. Once φ is known, from
Equation (8.63)2, u is given by

u = a0[l0 + p0ln r − e

c

c0
β2
I0(βr) − e

c

d0

β2
K0(βr)]

+
∞∑

n=1

(ancosnθ + bnsinnθ)

× [lnrn + pnr
−n − e

c

cn
β2
In(βr) − e

c

dn

β2
Kn(βr)], (8.69)

where ln and pn are undetermined constants. The above general solution
was used to study the concentration of electromechanical fields near a small
hole [59].

8.11 A Line Source

Consider the potential field of a line charge with a density Qe per unit length
along the x3-axis [57]. We need to solve Equation (8.63) with a concentrated
electric source:

−ε̄∇2φ+ ε0α∇2∇2φ = Qeδ(x1, x2). (8.70)

Equation (8.70) can be rewritten as

(−ε̄+ ε0α∇2)∇2φ = Qeδ(x1, x2). (8.71)
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Therefore ∇2φ is the fundamental solution of the differential operator in
(8.71), which is known. Hence

∇2φ =
1
r

d

dr

(
r
dφ

dr

)
= − Qe

2πε0α
K0(βr), (8.72)

where K0 is the zero-order modified Bessel function of the second kind.
Because

xK0(x) = − d

dx
[xK1(x)], K1(x) = − d

dx
[K0(x)], (8.73)

integrating Equation (8.72) twice we obtain

φ = − Qe

2πε̄
[ln r +K0(βr)], β2 = ε̄/(ε0α), (8.74)

where the ln r term is the classical solution. Because

K0(x) → − lnx, x→ 0, K0(x) →
( π

2x

)1/2

e−x, x→ ∞, (8.75)

we have

φ→ Qe

2πε̄
lnβ =

Qe

4πε̄
ln

ε̄

ε0α
, r → 0, φ→ − Qe

2πε̄
ln r, r → ∞. (8.76)

When α approaches zero, Equation (8.74) reduces to the classical result.
The potential field is plotted in Figure 8.12.

The figure shows that in the far field φ approaches the classical solution.
At the source point φ is not singular. This is fundamentally different from
the classical solution. The curve with the larger value of β is closer to the
classical solution. These qualitative behaviors are as expected.

8.12 Dispersion of Short Plane Waves

In the source-free case, from Equation (8.62) we obtain

c̄∇2u+
ε0
ε
α∇2(ρü− c∇2u) = ρü. (8.77)

Consider the propagation of the following plane wave [57],

u = exp[i(ξx1 − ωt)]. (8.78)

Substitution of Equation (8.78) into (8.77) yields the following dispersion
relation,

ω2 =
c

ρ
ξ2

1 + k2 + ε0
ε
αξ2

1 + ε0
ε αξ

2
. (8.79)
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Fig. 8.12 Normalized potential field (−2πε̄φ/Qe) of a line source.

Different from the plane waves in linear piezoelectricity, Equation (8.79)
shows that the waves are dispersive, and the dispersion is caused by the elec-
tric field gradient through electromechanical coupling. The dispersion disap-
pears when k = 0, or when there is no electromechanical coupling. We note
that the dispersion is more pronounced when ξ

√
α is not small, or when the

wavelength 2π/ξ is not large when compared to the microscopic characteris-
tic length

√
α. When ξ

√
α just begins to show its effect, Equation (8.79) can

be approximated by

ω2 ∼= c̄

ρ
ξ2
[
1 − k2

1 + k2

ε0
ε
αξ2

]
. (8.80)

As a numerical example we consider polarized ceramics PZT-7A. We plot
Equation (8.80) in Figure 8.13 for different values of

√
α. The figure shows

that larger values of
√
α yield more dispersion, as expected. What matters is

the relative magnitude of ξ with respect to
√
α.

8.13 Dispersion of Short Surface Waves

Consider a ceramic half-space as shown in Figure 8.14. Its surface carries an
electrode of a perfect conductor. The electrode is thin and its mechanical
effects can be neglected.

We are interested in antiplane surface waves propagating in the positive
x1-direction [60]. In the case of classical linear piezoelectricity these waves
are called Bleustein–Gulyaev waves [61, 62]. They are nondispersive waves
whose existence relies on piezoelectric coupling and do not have an elastic
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Fig. 8.13 Dispersion curves of plane waves.

counterpart. We begin with the source-free form of Equation (8.61). We write
(8.61)2 as

∇2(eu− εφ+ ε0α∇2φ) = 0. (8.81)

Similar to [61], we introduce

ψ = φ− e

ε
u− ε0α

ε
∇2φ. (8.82)

Then Equation (8.61) is equivalent to the following system of second-order
equations,

c∇2u+ e∇2φ = ρü,

ε0α∇2φ− εφ+ eu+ εψ = 0,

∇2ψ = 0. (8.83)

x2

x1

Free space 

Propagation 
direction 

Ceramic  

Electrode 

Poling 

Fig. 8.14 An electroded half-space of ceramics poled in the x3-direction.
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We look for surface wave solutions in the following form,⎧⎨⎩
u
φ
ψ

⎫⎬⎭ =

⎧⎨⎩
A
B
C

⎫⎬⎭exp(−ηx2)cos(ξx1 − ωt), (8.84)

where A,B,C, η, ξ, and ω are undetermined constants. Substitution of
Equation (8.84) into (8.83) yields the following homogeneous, linear equa-
tions for A,B, and C,⎡⎣c(η2 − ξ2) + ρω2 e(η2 − ξ2) 0

e ε0α(η2 − ξ2) − ε ε
0 0 η2 − ξ2

⎤⎦⎧⎨⎩
A
B
C

⎫⎬⎭ = 0. (8.85)

For nontrivial solutions the determinant of the coefficient matrix has to
vanish, which yields a cubic equation for η2. The three relevant roots of the
cubic equation are denoted by

η(1) = ξ(1 + f(1))1/2,

η(2) = ξ(1 + f(2))1/2,

η(3) = ξ, (8.86)

where

f(1) =
1

2ξ2α

{
n2(1+k2)−ξ2αV

2

V 2
0

+

√
[n2(1 + k2)−ξ2αV

2

V 2
0

]2+4ξ2αn2
V 2

V 2
0

}
,

f(2) =
1

2ξ2α

{
n2(1+k2)−ξ2αV

2

V 2
0

−
√

[n2(1+k2)−ξ2αV
2

V 2
0

]2+4ξ2αn2
V 2

V 2
0

}
,

(8.87)

and

V =
ω

ξ
, V 2

0 =
c

ρ
, n2 =

ε

ε0
. (8.88)

Then the general surface wave solution can be constructed as

u =
ε0
e

[(n2 − ξ2αf(1))C1exp(−η(1)x2)

+ (n2 − ξ2αf(2))C2exp(−η(2)x2)] cos(ξx1 − ωt),

φ =
[
C1 exp(−η(1)x2) + C2exp(−η(2)x2)

+ C3 exp(−ξx2)
]
cos(ξx1 − ωt),

ψ = C3exp(−ξx2)cos(ξx1 − ωt), (8.89)
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where C1, C2, and C3 are undetermined constants. The classical piezoelec-
tric boundary conditions for an electroded surface are T4 = 0 and φ = 0.
For the electric field gradient theory, an additional boundary condition is
needed. Guided by the variational result in Equation (8.56)3, we apply a
simple boundary condition of ∂φ/∂x2 = 0. This additional boundary condi-
tion imposes a further restriction on the electric field that already satisfies
the classical boundary conditions of piezoelectricity. ∂φ/∂x2 = 0 implies,
through the constitutive relation for T4, that ∂u/∂x2 = 0 at x2 = 0. Hence,

∂u

∂x2
=
ε0
e

[(n2 − ξ2αf(1))C1(−η(1))

+ (n2 − ξ2αf(2))C2(−η(2))]cos(ξx1 − ωt) = 0,
φ = (C1 + C2 + C3)cos(ξx1 − ωt) = 0,

∂φ

∂x2
= [C1(−η(1)) + C2(−η(2)) + C3(−ξ)]cos(ξx1 − ωt) = 0, (8.90)

which are three homogeneous equations for C1, C2, and C3. For nontrivial
solutions the determinant of the coefficient matrix has to vanish, which gives√

1 + f(1)(
√

1 + f(2) − 1)√
1 + f(2)(

√
1 + f(1) − 1)

=
n2 − ξ2αf(2)
n2 − ξ2αf(1)

. (8.91)

Equation (8.91) is an equation for the surface wave speed V . It shows
that V depends on the wave number ξ. Hence the wave is dispersive. This is
fundamentally different from the corresponding Bleustein–Gulyaev waves in
linear piezoelectricity.

The dispersion depends on the combination of ξ2α. It can be verified that
when ξ2α = 0, Equation (8.91) gives the speed of Bleustein–Gulyaev waves as
expected:

V 2 = V 2
B−G = V 2

T (1 − k
4
), (8.92)

where

V 2
T =

c̄

ρ
=
c

ρ
(1 + k2), k

2
=
e2

εc̄
=

k2

1 + k2
. (8.93)

When ξ2α � 1, we have long waves whose wave length λ = 2π/ξ is large
compared to the microscopic characteristic length

√
α:

ξ2α� 1 ⇔ (2π)2α � λ2. (8.94)

In this case the dispersion is small. For shorter waves, that is, λ is not
much larger than α, the dispersion is stronger.

For some quantitative results we solve Equation (8.91) numerically and
plot the dispersion curves for different ceramics in Figure 8.15. The curves
show clearly that short waves are dispersive but long waves are less so.
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Fig. 8.15 Dispersion curves of antiplane surface waves.

More precisely, when ξ
√
α ∼= 10 or λ

√
α ∼= 2π/10, that is, the wavelength

λ is of the same order of the microscopic characteristic length
√
α , the wave

speed is reduced by 7–8% due to dispersion.

8.14 A Circular Inclusion

We now consider a circular inclusion under an electric field E0 and a shear
strain S0 at infinity (see Figure 8.16, where α = ∞ except in a numerical
example later) [63].

8.14.1 Exterior Fields

Far away from the inclusion we have

φ = −E0x1 = −E0r cos θ, u = S0x1 = S0r cos θ. (8.95)

We take the following terms from the general solution in Equations (8.68)
and (8.69),

φ =
[
− E0r +

h1

r
+
d1

β2
K1(βr)

]
cos θ, u =

[
S0r +

p1

r
− e

c

d1

β2
K1(βr)

]
cos θ,

(8.96)
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Fig. 8.16 A circular inclusion in an unbounded matrix.

which agrees with Equation (8.95) at infinity. Corresponding to
Equation (8.96), we have

Srz =
{
S0 − p1

r2
+
ed1

cβ

[
K0(βr) +

K1(βr)
βr

]}
cos θ,

Sθz = −
[
S0 +

p1

r2
− ed1

cβ

K1(βr)
βr

]
sin θ, (8.97)

Trz =
[
(cS0 − eE0) − (cp1 + eh1)

1
r2

]
cos θ,

Tθz = −
[
(cS0 − eE0) + (cp1 + eh1)

1
r2

]
sin θ, (8.98)

Er =
{
E0 +

h1

r2
+
d1

β

[
K0(βr) +

K1(βr)
βr

]}
cos θ,

Eθ = −
[
E0 − h1

r2
− d1

β

K1(βr)
βr

]
sin θ, (8.99)

Dr =
[
(eS0 + εE0) − (ep1 − εh1)

1
r2

]
cos θ,

Dθ = −
[
(eS0 + εE0) + (ep1 − εh1)

1
r2

]
sin θ, (8.100)

Πrr = −ε0
{
α11

[
2h1

r3
+
d1

βr
K0(βr) +

2d1

(βr)2
K1(βr) + d1K1(βr)

]
−α12

[
2h1

r3
+
d1

βr
K0(βr) +

2d1

(βr)2
K1(βr)

]}
cos θ, (8.101)
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Πθθ = −ε0
{
α12

[
2h1

r3
+
d1

βr
K0(βr) +

2d1

(βr)2
K1(βr) + d1K1(βr)

]
−α11

[
2h1

r3
+
d1

βr
K0(βr) +

2d1

(βr)2
K1(βr)

]}
cos θ, (8.102)

Πrθ = −2ε0α66

[
2h1

r3
+
d1

βr
K0(βr) +

2d1

(βr)2
K1(βr)

]
sin θ. (8.103)

8.14.2 Interior Fields

We take the following terms from the general solution in Equations (8.68)
and (8.69),

φ =
[
g1r +

c1

β̂2
I1(β̂r)

]
cos θ,

u =
[
l1r − ê

ĉ

c1

β̂2
I1(β̂r)

]
cos θ, (8.104)

which are finite at the origin. Corresponding to Equation (8.104), we have

Srz =

{
l1 +

êc1

ĉβ̂

[
I0(β̂r) +

I1(β̂r)

β̂r

]}
cos θ,

Sθz = −
[
l1 − êc1

ĉβ̂

I1(β̂r)

β̂r

]
sin θ, (8.105)

Trz = (ĉl1 + êg1)cos θ,
Tθz = −(ĉl1 + êg1)sin θ, (8.106)

Er =

{
−g1 +

c1

β̂

[
I0(β̂r) +

I1(β̂r)
β̂r

]}
cos θ,

Eθ =

[
g1 +

c1

β̂

I1(β̂r)

β̂r

]
sin θ, (8.107)

Dr = (êl1 − ε̂g1)cos θ,
Dθ = −(êl1 − ε̂g1)sin θ, (8.108)
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Πrr = − ε0c1

{
α̂11

[
I1(β̂r) − 1

β̂r
I0(β̂r) +

2

(β̂r)2
I1(β̂r)

]

+ α̂12

[
1
β̂r
I0(β̂r) − 2

(β̂r)2
I1(β̂r)

]}
cos θ, (8.109)

Πθθ = − ε0c1

{
α̂12

[
I1(β̂r) − 1

β̂r
I0(β̂r) +

2
(β̂r)2

I1(β̂r)

]

+ α̂11

[
1

β̂r
I0(β̂r) − 2

(β̂r)2
I1(β̂r)

]}
cos θ, (8.110)

Πrθ = − 2ε0α̂66c1

[
1

β̂r
I0(β̂r) − 2

(β̂r)2
I1(β̂r)

]
sin θ. (8.111)

8.14.3 Continuity Conditions

From Equation (8.56), we require the following continuity conditions at the
interface r = R, which are variationally consistent.

u(R−) = u(R+), Trz(R−) = Trz(R+), φ(R−) = φ(R+),

[Dr − ∂Πrθ

r∂θ
]

∣∣∣∣∣
R−

= [Dr − ∂Πrθ

r∂θ
]

∣∣∣∣∣
R+

,

∂φ

∂r

∣∣∣∣∣
R−

=
∂φ

∂r

∣∣∣∣∣
R+

, Πrr(R−) = Πrr(R+). (8.112)

Substitution of Equations (8.96) through (8.111) into Equation (8.112)
gives six equations for h1, d1, p1, g1, c1, and l1, which are solved numerically.

8.14.4 Numerical Results

For numerical results, PZT-5A and BaTiO3 are used for the matrix and the
inclusion, respectively. What matters is the relative magnitude of αjikl with
respect to R. We are interested in some qualitative results only and artificially
choose:

α11 = 1.2 × 10−6, α̂11 = 1.4 × 10−6,

α12 = 0.4 × 10−6, α̂12 = 0.5 × 10−6 m2. (8.113)
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A few different values of R are used, ranging from 2
√
α to 10

√
α, where α

stands for α̂11. Only E0 is applied. S0 = 0.
Equations (8.112) are solved on a computer. Electric field distribution is

shown in Figure 8.17. A fundamental difference from the classical inclusion
solution is that the electric field in the inclusion is no longer uniform. Near
the interface the electric field is larger than the nearly uniform electric field in
the central region of the inclusion. Therefore some field concentration exists
near the interface, which is as expected because gradient theories are usually
associated with boundary layer effects. Field concentration is important to
strength and failure considerations.

To see the effect of
√
α/R on the field distribution, we plot the interior

fields for two different values of
√
α/R in Figures 8.18 and 8.19. When

√
α/R

is relatively small, the interior field is more uniform. In Figures 8.18 and 8.19,
the electric field in the almost uniform central regions are in fact about the
same.

If the piezoelectric constants are set to zero, we have a pure electric
inclusion problem of dielectrics. We calculated the ratio of D1 and E1

averaged over the square region in Figure 8.16, which represents the effective
dielectric constant. The result is shown in Figure 8.20. The figure shows that
when R/

√
α is large the effective dielectric constant is not sensitive to R/

√
α.

In this case the effective dielectric constant is basically the one predicted by
the classical inclusion theory. When R/

√
α is not large, the effective dielectric

constant is smaller (size effect) as expected because the electric field is larger
near the interface due to the gradient effects.
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Fig. 8.17 Electric field distribution (
√

α = R/5).
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Fig. 8.18 Interior electric field (
√

α = R/5).

In a polar coordinate system, consider a semi-infinite crack at θ = π in an
unbounded and source-free (q = 0 and f = 0) region (see Figure 8.21) [64].
The crack faces are traction-free.
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Fig. 8.19 Interior electric field (
√

α = R/3).



8 Nonlocal and Gradient Effects 313
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Fig. 8.20 Effective dielectric constant (ε = ε11).

8.15 A Semi-Infinite Crack

The displacement and electric potential are governed by Equation (8.62). Let

F = ∇2u, β2 =
c̄ε

cε0α
, (8.114)

then Equation (8.62)1 becomes

∇2F − β2F = 0. (8.115)

In polar coordinates, Equation (8.115) takes the following form,(
∂2

∂r2
+

∂

r∂r
+

1
r2

∂2

∂θ2

)
F − β2F = 0. (8.116)

x1

x2

Fig. 8.21 A semi-infinite crack.
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Motivated by the classical solution, we look for

F (r, θ) = F (r) sin
θ

2
. (8.117)

Substituting Equation (8.117) into (8.116), we obtain

d2F

d(βr)2
+

1
βr

dF

d(βr)
−
[
1 +

(1/2)2

(βr)2

]
F = 0, (8.118)

which is the modified Bessel equation of order 1/2. Its general solution is

F (r) = C1I1/2(βr) + C2K1/2(βr), (8.119)

where I1/2 and K1/2 are the first and second kind modified Bessel functions
of order 1/2:

I1/2(x) =

√
2
πx

sinhx,

K1/2(x) =

√
2
πx
e−x. (8.120)

C1 and C2 are undetermined constants. Because I1/2 is divergent for large
arguments, we choose C1 = 0. To find u we now need to solve(

∂2

∂r2
+

∂

r∂r
+

1
r2

∂2

∂θ2

)
u = C2K1/2(βr) sin

θ

2
. (8.121)

Let
u(r, θ) = u(r)sin

θ

2
. (8.122)

Substitution of Equation (8.122) into (8.121) yields(
∂2

∂r2
+

∂

r∂r
− 1

4r2

)
u = C2K1/2(βr). (8.123)

For Equation (8.123) the homogeneous solution can be obtained easily. It
can be verified that the particular solution is proportional to K1/2. Therefore
the relevant solution is

u(r, θ) =
[
C3

√
r + C4

1√
r

+
C2

β2
K1/2(βr)

]
sin

θ

2

=
[
C3

√
r + C4

1√
r

+
C2

β2

√
2
πβr

e−βr

]
sin

θ

2
, (8.124)
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where C3 and C4 are undetermined constants. If we choose C4 = 0 as in the
classical solution, then u has a 1/

√
r singularity at the crack-tip. If we want

u to be bounded at the crack-tip, we must have

C4 +
C2

β2

√
2
πβ

= 0. (8.125)

Then

u(r, θ) =
[
C3

√
r + C4

1√
r
(1 − e−βr)

]
sin

θ

2
. (8.126)

With Equation (8.126), from (8.62)2 we find

φ =
[
C5

√
r − c

e
C4

1√
r
(1 − e−βr)

]
sin

θ

2
, (8.127)

where C5 is an undetermined constant. The strain, electric field, stress, and
electric displacement components are:

2Srz =
1

2
√
r

[
C3 − C4

1
r
(1 − e−βr) + 2C4βe

−βr

]
sin

θ

2
,

2Sθz =
1

2
√
r

[
C3 + C4

1
r
(1 − e−βr)

]
cos

θ

2
, (8.128)

Er = − 1
2
√
r

[
C5 +

c

e
C4

1
r
(1 − e−βr) − 2

c

e
C4βe

−βr

]
sin

θ

2
,

Eθ = − 1
2
√
r

[
C5 − c

e
C4

1
r
(1 − e−βr)

]
cos

θ

2
, (8.129)

Trz =
cC3 + eC5

2
√
r

sin
θ

2
, Tθz =

cC3 + eC5

2
√
r

cos
θ

2
, (8.130)

Dr =
[
eC3 − εC5

2
√
r

−
(
e+

εc

e

) C4

2r
√
r

]
sin

θ

2
,

Dθ =
[
eC3 − εC5

2
√
r

+
(
e+

εc

e

) C4

2r
√
r

]
cos

θ

2
. (8.131)

Some observations can be made from Equations (8.126) through (8.131).
When C4 is equal to zero, the above solution reduces to the classical piezo-
electric solution. This happens when α→ 0, hence β → ∞, and C4 → 0. The
singularity of Dr and Dθ is of the order of 1/

√
r3 . This is quite different

from the classical theory. Electric field gradients effects in finite cracks were
studied in [65, 66].
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Appendix
Electroelastic Material Constants

Material constants for a few common piezoelectrics are summarized below.

Permittivity of free space ε0 = 8.854 × 10−12 F/m.

Polarized ceramicss

The material matrices for PZT-5H are [1]

ρ = 7500 kg/m3,

[cpq] =

⎛⎜⎜⎜⎜⎜⎜⎝
12.6 7.95 8.41 0 0 0
7.95 12.6 8.41 0 0 0
8.41 8.41 11.7 0 0 0
0 0 0 2.3 0 0
0 0 0 0 2.3 0
0 0 0 0 0 2.325

⎞⎟⎟⎟⎟⎟⎟⎠× 1010 N/m2,

[eip] =

⎛⎝ 0 0 0 0 17 0
0 0 0 17 0 0

−6.5 −6.5 23.3 0 0 0

⎞⎠C/m2
,

[εij ] =

⎛⎝1700ε0 0 0
0 1700ε0 0
0 0 1700ε0

⎞⎠

=

⎛⎝1.505 0 0
0 1.505 0
0 0 1.302

⎞⎠× 10−8 C/(V − m).
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For PZT-5H, an equivalent set of material constants are [1]

s11 = 16.5, s33 = 20.7, s44 = 43.5,

s12 = −4.78, s13 = −8.45 × 10−12 m2/N,

d31 = −274, d15 = 741, d33 = 593 × 10−12 C/N,
ε11 = 3130ε0, ε33 = 3400ε0.

When poling is along other directions, the material matrices can be
obtained by tensor transformations. For PZT-5H, when poling is along the
x1-axis, we have

[cpq] =

⎛⎜⎜⎜⎜⎜⎜⎝
11.7 8.41 8.41 0 0 0
8.41 12.6 7.95 0 0 0
8.41 7.95 12.6 0 0 0
0 0 0 2.325 0 0
0 0 0 0 2.3 0
0 0 0 0 0 2.3

⎞⎟⎟⎟⎟⎟⎟⎠× 1010 N/m2
,

[eip] =

⎛⎝23.3 −6.5 −6.5 0 0 0
0 0 0 0 0 17
0 0 0 0 17 0

⎞⎠C/m2,

[εij ] =

⎛⎝1.302 0 0
0 1.505 0
0 0 1.505

⎞⎠× 10−8 C/Vm.

When poling is along the x2-axis,

[cpq] =

⎛⎜⎜⎜⎜⎜⎜⎝
12.6 8.41 7.95 0 0 0
8.41 11.7 8.41 0 0 0
7.95 8.41 12.6 0 0 0
0 0 0 2.3 0 0
0 0 0 0 2.325 0
0 0 0 0 0 2.3

⎞⎟⎟⎟⎟⎟⎟⎠× 1010 N/m2
,

[eip] =

⎛⎝ 0 0 0 0 0 17
−6.5 23.3 −6.5 0 0 0

0 0 0 17 0 0

⎞⎠C/m2,

[εij ] =

⎛⎝1.505 0 0
0 1.302 0
0 0 1.505

⎞⎠× 10−8 C/Vm.
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For PZT-G1195

ρ = 7500 kg/m3, cE11 = cE22 = 148, cE33 = 131, cE12 = 76.2,

cE13 = cE23 = 74.2, cE44 = cE55 = 25.4, cE66 = 35.9 GPa,

e15 = 9.2, e31 = −2.1, e33 = 9.5 C/m2.

Material constants of a few other polarized ceramics are given in the
following tables [2].

Material c11 c12 c13 c33 c44 c66

PZT-4 13.9 7.78 7.40 11.5 2.56 3.06

PZT-5A 12.1 7.59 7.54 11.1 2.11 2.26

PZT-6B 16.8 8.47 8.42 16.3 3.55 4.17

PZT-5H 12.6 7.91 8.39 11.7 2.30 2.35

PZT-7A 14.8 7.61 8.13 13.1 2.53 3.60

PZT-8 13.7 6.99 7.11 12.3 3.13 3.36

BaTiO3 15.0 6.53 6.62 14.6 4.39 4.24

×1010 N/m2

Material e31 e33 e15 ε11 ε33

PZT-4 –5.2 15.1 12.7 0.646 0.562

PZT-5A –5.4 15.8 12.3 0.811 0.735

PZT-6B –0.9 7.1 4.6 0.360 0.342

PZT-5H –6.5 23.3 17.0 1.505 1.302

PZT-7A –2.1 9.5 9.2 0.407 0.208

PZT-8 –4.0 13.2 10.4 0.797 0.514

BaTiO3 –4.3 17.5 11.4 0.987 1.116

C/m2 ×10−8 C/Vm

Density PZT-5H PZT-5A PZT-6B PZT-4

kg/m3 7500 7750 7550 7500

Dinsity PZT-7A PZT-8 BaTiO3

kg/m3 7600 7600 5700
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Quartz

When referred to the crystal axes, the second-order material constants for
left-hand quartz have the following values [3].

ρ = 2649 kg/m3,

[cpq] =

⎛⎜⎜⎜⎜⎜⎜⎝
86.74 6.99 11.91 −17.91 0 0
6.99 86.74 11.91 17.91 0 0
11.91 11.91 107.2 0 0 0
−17.91 17.91 0 57.94 0 0

0 0 0 0 57.94 −17.91
0 0 0 0 −17.91 39.88

⎞⎟⎟⎟⎟⎟⎟⎠× 109 N/m2
,

[eip] =

⎛⎝0.171 −0.171 0 −0.0406 0 0
0 0 0 0 0.0406 −0.171
0 0 0 0 0 0

⎞⎠C/m2
,

[εij ] =

⎛⎝39.21 0 0
0 39.21 0
0 0 41.03

⎞⎠× 10−12 C/Vm.

Temperature derivatives of the elastic constants of quartz at 25◦C are [4]

pq 11 33 12 13

(1/cpq(dcpq/dT )(10−6/◦C) 18.16 –66.60 –1222 –178.6

pq 44 66 14

(1/cpq(dcpq/dT )(10−6/◦C) –89.72 126.7 –49.21

For quartz there are 31 nonzero third-order elastic constants. Fourteen are
given in the following table. These values, at 25◦C, and based on a least
squares fit, are all in 1011 N/m2 [5].
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Constant Value Standard Error

c111 –2.10 0.07

c112 –3.45 0.06

c113 +0.12 0.06

c114 –1.63 0.05

c123 –2.94 0.05

c124 –0.15 0.04

c133 –3.12 0.07

c134 +0.02 0.04

c144 –1.34 0.07

c155 –2.00 0.08

c222 –3.32 0.08

c333 –8.15 0.18

c344 –1.10 0.07

c444 –2.76 0.17

In addition, there are 17 relations among the third-order elastic constants of
quartz [6].

c122 = c111 + c112 − c222, c156 =
1
2
(c114 + 3c124),

c166 =
1
4
(−2c111 − c112 + 3c222),

c224 = −c114 − 2c124, c256 =
1
2
(c114 − c124),

c266 =
1
4
(2c111 − c112 − c222),

c366 =
1
2
(c113 − c123), c456 =

1
2
(−c144 + c155),

c223 = c113, c233 = c133, c234 = −c134,
c244 = c155, c225 = c144,

c355 = c344, c356 = c134, c455 = −c444, c466 = c124.

For the fourth-order elastic constants, there are 69 nonzero ones of which
23 are independent [7].

c1111, c3333, c4444, c6666, c1112, c1113, c1123, c2214, c3331,

c4456, c5524, c4443, c1133, c3344, c1456, c1155, c1134, c2356,

c4423, c4413, c3314, c6614, c6624.
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There are 46 relations [7]

c2222 = c1111, c2266 =
1
6
(c1111 − c1112), c2223 = c1113,

c2221 = c1112, c6612 =
1
6
(c1111 − 4c6666 − c1112), c2213 = c1123,

c1166 = c2266, c1122 =
1
3
(−c1111 + 4c1112 + 8c6666),

c6613 =
1
4
(c1113 − c1123),

c5555 = c4444, c4455 =
1
3
c4444, c6623 = c6613,

c1124 = −c2214 + c6614 + c6624,

c3312 = −c1133, c1114 = 3(−c2214 + 2c6614 − 2c6624), c2233 = c1133,

c2256 =
1
2
(−2c2214 + 3c6614 − 5c6624), c6633 = c1133,

c2224 = 3(c2214 − 3c6614 + c6624),

c3355 = c3344, c1156 =
1
2
(−2c2214 + 7c6614 − c6624), c3332 = c3331,

c1256 =
1
2
(−2c2214 + 3c6614 − c6624), c5534 = −c4443,

c6665 =
3
2
(c6614 − c6624),

c4442 = −4c4456 − c5524, c1234 = c1134 − 2c2356, c2255 = c4412,

c5514 = 2c4456 + c5524, c1356 = 2c1134 − 3c2356, c5566 = c1456,

c5556 = 3c4456, c2234 = 4c2356 − 3c1134, c3324 = −c3314,
c4441 = 2c4456 − c5524, c6634 = c1234, c3356 = c3314,

c5512 = c4412 c1144 = c4412, c5523 = c4413, c2456 = c1456,

c2244 = c1155, c5513 = c4423,

c4466 = c1456, c4412 = c1155 − 4c1456, c3456 =
1
2
(c4423 − c4413).

The fourth-order elastic constants are usually unknown. Some scattered
results are [7]

c1111 = 1.59 × 1013 N/m2 ± 20%,

c3333 = 1.84 × 1013 N/m2 ± 20%,

and [8]

cE6666 = 77 × 1011 N/m2.
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AT-cut quartz is a special case of rotated Y-cut quartz (θ = 35.25◦) whose
material constants are [9]

[cpq ] =

⎛⎜⎜⎜⎜⎜⎜⎝
86.74 −8.25 27.15 −3.66 0 0
−8.25 129.77 −7.42 5.7 0 0
27.15 −7.42 102.83 9.92 0 0
−3.66 5.7 9.92 38.61 0 0

0 0 0 0 68.81 2.53
0 0 0 0 2.53 29.01

⎞⎟⎟⎟⎟⎟⎟⎠× 109 N/m2,

[eip] =

⎛⎝0.171 −0.152 −0.0187 0.067 0 0
0 0 0 0 0.108 −0.095
0 0 0 0 −0.0761 0.067

⎞⎠C/m2,

[εij ] =

⎛⎝39.21 0 0
0 39.82 0.86
0 0.86 40.42

⎞⎠×10−12 C/Vm.

Langasite

The second-order material constants of La3Ga5SiO14 are [10]

ρ = 5743 kg/m3,

[cpq ] =

⎛⎜⎜⎜⎜⎜⎜⎝
18.875 10.475 9.589 −1.412 0 0
10.475 18.875 9.589 1.412 0 0
9.586 9.586 26.14 0 0 0
−1.412 1.412 0 5.35 0 0

0 0 0 0 5.35 −1.412
0 0 0 0 −1.412 4.2

⎞⎟⎟⎟⎟⎟⎟⎠× 1010 N/m2,

[eip] =

⎛⎝−0.44 0.44 0 −0.08 0 0
0 0 0 0 0.08 0.44
0 0 0 0 0 0

⎞⎠C/m2,

[εij ] =

⎛⎝18.92ε0 0 0
0 18.92ε0 0
0 0 50.7ε0

⎞⎠

=

⎛⎝167.5 0 0
0 167.5 0
0 0 448.9

⎞⎠× 10−12 C/Vm.
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The third-order material constants of La3Ga5SiO14 at 20◦C are also given
in [10]. The third-order elastic constants cpqr(in1010 N/m2) are

c111 –97.2 c134 –4.1

c112 0.7 c144 –4.0

c113 –11.6 c155 –19.8

c114 –2.2 c222 –96.5

c123 0.9 c333 –183.4

c124 –2.8 c344 –38.9

c133 –72.1 c444 20.2

The third-order piezoelectric constants eipq (in C/m2) are

e111 9.3 e124 –4.8

e113 –3.5 e134 6.9

e124 1.0 e144 –1.7

e122 0.7 e315 –4

The third-order electrostriction constants Hpq (in 10−9 N/V2) are

H11 –26 H31 –24

H12 65 H33 –40

H13 20 H41 –170

H14 –43 H44 –44

The third-order dielectric permeability ε111 (in 10−20 F/V) are

ε111 –0.5

Lithium Niobate

The second-order material constants for lithium niobate are [11]

ρ = 4700 kg/m3,
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[cpq] =

⎛⎜⎜⎜⎜⎜⎜⎝
2.03 0.53 0.75 0.09 0 0
0.53 2.03 0.75 −0.09 0 0
0.75 0.75 2.45 0 0 0
0.09 −0.09 0 0.60 0 0
0 0 0 0 0.60 0.09
0 0 0 0 0.09 0.75

⎞⎟⎟⎟⎟⎟⎟⎠× 1011 N/m2,

[eip] =

⎛⎝ 0 0 0 0 3.70 −2.50
−2.50 2.50 0 3.70 0 0
0.20 0.20 1.30 0 0 0

⎞⎠C/m2,

[εij ] =

⎛⎝38.9 0 0
0 38.9 0
0 0 25.7

⎞⎠× 10−11 C/Vm.

The third-order material constants of lithium niobate are given in [12].
The third-order elastic constants cpqr (in 1011 N/m2) are

Constant Value Standard Error

c111 –21.2 4.0

c112 –5.3 1.2

c113 –5.7 1.5

c114 2.0 0.8

c123 –2.5 1.0

c124 0.4 0.3

c133 –7.8 1.9

c134 1.5 0.3

c144 –3.0 0.2

c155 –6.7 0.3

c222 –23.3 3.4

c333 –29.6 7.2

c344 –6.8 0.7

c444 –0.3 0.4
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The third-order piezoelectric constants eipq(= −k1ipq) are

Constant Value Standard Error

e115 17.1 6.6

e116 –4.7 6.4

e125 19.9 2.1

e126 –15.9 5.3

e135 19.6 2.7

e136 –0.9 2.7

e145 20.3 5.7

e311 14.7 6.0

e312 13.0 11.4

e313 –10.0 8.7

e314 11.0 4.6

e333 –17.3 5.9

e344 –10.2 5.6

C/m2

The third-order electrostrictive constants lpq (compressed from bijkl +
ε0δijδkl − ε0δikδjl − ε0δilδkj) (in 10−9 F/m2) are

Constant Value Standard Error

l11 1.11 0.39

l12 2.19 0.56

l13 2.32 0.67

l31 0.19 0.61

l33 –2.76 0.41

l14 1.51 0.17

l41 1.85 0.17

l44 –1.83 0.11

The third-order dielectric constants εip(in 10−19 F/V) are

Constant Value Standard Error

ε31 –2.81 0.06

ε22 –2.40 0.09

ε33 –2.91 0.06
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Lithium Tantalate

The second-order material constants for lithium tantalate are [11]

ρ = 7450 kg/m3,

[cpq ] =

⎛⎜⎜⎜⎜⎜⎜⎝
2.33 0.47 0.80 −0.11 0 0
0.47 2.33 0.80 0.11 0 0
0.80 0.80 2.45 0 0 0
−0.11 −0.11 0 0.94 0 0

0 0 0 0 0.94 −0.11
0 0 0 0 −0.11 0.93

⎞⎟⎟⎟⎟⎟⎟⎠× 1011 N/m2
,

[eip] =

⎛⎝ 0 0 0 0 2.6 −1.6
−1.6 1.6 0 2.6 0 0

0 0 1.9 0 0 0

⎞⎠C/m2
,

[εij ] =

⎛⎝36.3 0 0
0 36.3 0
0 0 38.2

⎞⎠× 10−11 C/Vm.
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