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Preface

The purpose of the book is the study of non-perturbative effects in gauge theories
constituting the Standard Model (SM). Nowadays we have excellent basis for under-
standing elementary particles physics. Two main constituents of the SM - the quan-
tum chromodynamics (QCD) and the electro-weak theory (EWT) are renormalizable
theories with firmly established rules of the perturbation theory calculations. The ex-
cellent agreement of these calculations in the regions of their applicability with the
totality of the experimental data remains no place for any doubt in adequacy of the
QCD and the EWT as genuine theories. However in both theories there are aspects,
which can not be achieved by the perturbation theory calculations. In QCD it is a de-
scription of low momenta hadron physics. In EWT the problem of the initial symmetry
breaking also causes troubles, even in case of final confirmation of the status of the
recently discovered state with mass = 125.7 GeV as a genuine Higgs scalar particle.
In any case, the ability of consistent dealing with the non-perturbative effects in both
theories is extremely desirable. There are also widely discussed problems of hierarchy
and of naturalness, which demand to be born in mind.

As for non-perturbative effects, there are the widely known and elaborated lat-
tice calculations with supercomputers, which are successfully applied to QCD and to
some aspects of the EWT. While paying tribute to achievements of this powerful tool,
we would state, that analytic methods, proposed and elaborated in the book allow to
move up further and obtain possible values of the main physical parameters, which
define the corresponding theories.

As for general problems, for example, that of hierarchy and of naturalness, they
are attentively considered in a number of directions of theoretical studies. First of all,
there is a conception, that all the problems will be solved in the framework of the so
called New Physics. The quest for the New Physics means looking for possibilities to
extend the SM by adding new interactions and new particles. The option includes nu-
merous possibilities: the supersymmetry, the superstrings, the extra dimensions of the
space-time and many others. While these directions of studies deserve overall atten-
tion, it is not less necessary to long for a solution of the main contemporary problems
of the particles physics in the framework of the SM by taking into account the non-
perturbative effects. As a matter of fact these effects can by no means be neglected
atall.

There are persuasive grounds of unavoidable necessity of introduction of the so
called effective interactions in theories of the SM for phenomenological description
of the non-perturbative effects. The first, while the most instructive, example of such
interaction is provided by the famous Nambu-Jona-Lasinio model. The model was
elaborated in the time of very active development of results having been obtained in
the course of solving the problem of superconductivity in works by Bardeen, Cooper,
Schriffer and by Bogoliubov, who have used his compensation approach in micro-
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scopic theory of the superconductivity. That was also the time of the beginning of
my scientific activity. After participation in a work on the spontaneous generation
of a mass in a chiral invariant model, which was done under the guidance of Niko-
lai Nikolaevich Bogoliubov, I had undertook attempts to apply the same method to
the problem of spontaneous generation of Nambu-like interactions. I have discussed
these attempts with N.N. Bogoliubov, but his reaction was at the first sight discour-
aging. He said: “The compensation equation in your case is a functional one, and to
understand, if there is a non-trivial solution is a hopeless problem.” But after few mo-
ments he added: “A dog knows, though, what if something will turn out?” In any case,
in connection with results, which constitute the basis of the book, which follows this
Preface, I would express sincere gratitude to the outstanding scientist Nikolai Niko-
laevich Bogoliubov.

I am also to recall with gratitude other outstanding physicist, which influenced
a lot on the essence of the approach considered in the book, Lev Davidovich Landau.
L. D. Landau has taught me all the course of theoretical physics at the Moscow Univer-
sity, starting of the classical electrodynamics up to the quantum field theory. The later
course was delivered by prof. Landau the only one time, just for our year of the study
(1959-1960). In addition to a knowledge of the theory, I have got from L. D. Landau
his scientific philosophy. He was a staunch supporter of the Ockham’s razor princi-
ple. That is he was very cautious in admitting new subjects and notions. Of course, it
was not pleasant to hear from him in the lecture roughly negative reference to Dirac
monopole. Such new proposals he prefer to call “pathology”. In any case it was his
conviction.

With establishing of the Standard Model as the genuine theory of elementary par-
ticles, I came to appreciate the Landau position with more vigor. The influence of his
conviction push me to formate my attitude to the problem of the so called effects be-
yond the Standard Model. There are evidently such effects. However, the Ockham prin-
ciple tells us: first try to find an explanation in the framework of the existing Standard
Model and only in case of a total defeat start to invent new notions and principles.
In doing this attempt it is necessary to apply new methods and approaches. One of
these approaches is proposed and developed in the book. This approach is based on
the N.N. Bogoliubov compensation method.

In a sense, the proposal advocated in the book is based on the conviction, that be-
fore introduction of a completely new notion, one have to examine all the possibilities
of explanation of the totality of facts in the framework of firmly established notions. In
our case this means to look for achievements in the framework of the Standard Model.
The application of the method is inevitably connected with an approximate scheme.
The specific approximation will be formulated in the proper place. We shall mostly
ground our conclusions on the qualitative and sometimes even in quantitative agree-
ment of results with the real physics. In this connection I recollect again an episode
from my early years in the scientific activity. Then I had the favorable opportunity of
having contacts with the prominent physicist I. Ya. Pomeranchuk. Once I had given a
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talk at his seminar, which was related to a discussion of the so called bootstrap method
(then having been just new). One of participants of the seminar had remarked: “But
this is a model!” Pomeranchuk replied in an instructive tone: “A model, which ex-
plains the totality of data is just the theory.” Following this wisdom I would consider
the comparison of results of the approach, proposed and developed in the book, with
the real physics as a possible check of an applicability of the approach. I do invite a
reader to follow the logics and the results of the compensation approach in applica-
tion to effective interactions of the Standard Model and to acquire the own opinion on
its validity.

I would express the deep gratitude to my colleagues, coauthors of works, which
contribute to the substance of the book, R. N. Faustov, A. T. Filippov, A. N. Tavkhelidze,
M. K. Volkov, . V. Zaitsev. The collaboration with the colleagues and the experience,
acquired from numerous discussions with them, assists greatly in creation of the book.

I would also recall with the sincere gratitude prominent physicist Abraham Pais,
who had strongly supported my studies on a self damping in non-renormalizable
equations, which in the present book supply the main technical tool for an investiga-
tion of the phenomenon of a spontaneous generation of effective interactions.

The intercourse with my colleagues E. E. Boos, O. A. Khrustalev, V. A. Matveev,
V. A. Rubakov, V.1. Savrin, B. V. Struminsky has influenced a lot on my vision of phys-
ical problems and so also promotes the work on the book.

I do express the most deep gratitude to my wife Larisa Lomonosova for encourag-
ing assistance in all my undertakings, especially in respect to this book.

Boris A. Arbuzov
M. V. Lomonosov Moscow State University
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1 Elementary particles and fields

1.1 Conventions and notations

The main source of our knowledge on elementary particles is provided by experiments
at high energies, which are performed at accelerators and colliders. Energy in particle
physics is measured in eV (electron-volt) and in its multiples. The commonly used
nowadays are the following units

MeV = 10%eV, GeV =10’eV, TeV = 10*?eV. 1)

We shall use these units throughout the book. In calculations and estimates we shall
use natural system of units, in which two the most important constants, the Planck
constant i and the velocity of the light ¢ both are unity

h=1, c=1. 1.2)

Then mass M, momentum p, temperature T are measured also in eV. Both time ¢ and
distance x are measured in inverse eV. There are the following coefficients of transition
from eV to the usual units

1 14 1 25
— = 1.973269602(77) - 10 , —— =6.58211889(26) - 10 . 1.3
GeV @7 cm GeV (26) ° (.3)

Effective cross-sections are measured in barns (b = 1072* cm?) and in its parts:
millibarn, microbarn, nanobarn, picobarn, femtobarn

mb = 107 cm?, pb = 107 cm?, nb =10 cm?,

pb =10 cm? fb=10"cm’ (1.4)

Throughout the book we use kinematics of the four-dimensional Minkovsky
space, that means metric tensor g;; being diagonal and

8w=1 811=8»=83=-1 (1.5

A scalar product of two vectors is defined by the following notation

(P q) = pi4;8;5 = Podo — PS> (1.6)

where by bold letters we designate spatial parts of four-vectors. We always shall mean
summation on recurring indices. Bearing in mind a simplification of the notations we
shall not explicitly write contravariant indices. For example, we shall write the product
of two tensors of the second rank in the following form

F-F=F,F,, 1.7)
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that, as a matter of fact, means

F-F=F,F,g"g". 1.8)

In all cases, when it does not cause misunderstanding we shall use notations like (1.7).
The exception will be necessarily made in Chapter 8, where some aspects of the grav-
itational interaction will be discussed.

When considering experimental data we shall use well-known parameter s for an
invariant energy squared

s=(p, +p2)2’ (1.9)
where p; and p, are initial four-momenta of colliding particles. Other kinematic vari-
able will be explicated in appropriate places below.

The physics of elementary particles is described in the framework of the quantum
field theory. The presentation in the book supposes sufficient knowledge of this theory.
We shall refer mostly to books [1] and [2], in which a reader will find necessary details
of problems being considered below.

In the course of evaluations we shall encounter loop integrals. As a rule we shall
evaluate these integrals using the well-known Wick rotation, which will be explicitly
explained in the proper place. This procedure of transition to the four-dimensional
Euclid space may be used in some cases by default.

1.2 Particles and interactions

In the Nature there exist numerous particles and different interactions act between
them. Physicists usually distinguish interactions to be strong, electromagnetic, weak
and gravitational. According to involvement of particles in these interactions and also
to their peculiar properties particles divide into hadrons, leptons and gauge bosons.
A special role plays the Higgs boson.

The gravitational interaction is the most universal. All the particles are involved
in the gravitation.

By definition leptons are particles with half-integer spins, which additionally par-
ticipate only in weak and electromagnetic interactions. The most familiar representa-
tive of the class is the electron.

Gauge bosons are presented by the photon, the graviton, the electroweak bosons
W, Z and the mediators of the strong interaction — the gluons.

The most numerous class of particles are hadrons, which participate strong inter-
action as well as weak and electromagnetic ones. The most familiar representatives
are proton and neutron, which constitute atomic nuclei. However these hadrons are
not elementary to the same level as, for example, the electron. It became clear, that
hadrons are composite particles, constituting of elementary quarks.

There are six quarks and six leptons to describe the totality of our knowledge on
variety of particles. They are presented in Table 1.1, where Q is an electric charge of a
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Table 1.1. Fundamental quarks and leptons

Q 2 1 1 2

e 3 "3 3 -3 0 -1 1 0
gl u d d a v, e & 7%
g2 ¢ s § ? v, B B v,
g3 t b b t v, T T v,

particle and e = (1.60217649 +0.00000004)10™'° C is the elementary electric charge
(the electron charge magnitude). Here elementary objects with fractional charges are
the well-known quarks and antiquarks while the right-hand part of the Table presents
leptons and antileptons. We see from Table 1.1, that quarks and leptons are gathering
into three quite similar rows, which usually are called generations. We number gener-
ations in the first column. So, e.g. u- and d-quarks and the electron represent the first
generation, whereas the t-quark and the r-lepton correspond to the third one.

The mediator fields will be introduced in the proper places below.

Now the main difference between quarks and leptons consists in their relation to
the strong interaction. Namely quarks participate in strong interaction while leptons
do not. The both take part in electromagnetic interaction, which we consider in the
next section.

Quarks and leptons in Table 1.1 have all spin 1/2. Quarks form bound states, which
are the observable strongly interacting particles, usually being called hadrons. The
variety of hadrons is divided in two large classes: baryons and mesons. Baryons have
half-integer spin, thus they consist of odd number of quarks, first of all of three quarks.
Mesons always have integer spin, so they consist of even number of quarks, first of all
of quark and antiquark. Thus baryons and antibaryons look like

By — dodpde B —3°3"3". (110)
In the same way mesons are represented in the following form
M, - q,q". (1.11)

After introduction of conception of quarks [3] there was magnificent success in un-
derstanding of systematics of hadrons. For example the proton and the neutron are
represented in terms of quarks of Table 1 as follows

P - uud, N — udd. (1.12)
The most light hadrons — 7-mesons:

n —ud, n —-du, n —» ———. (1.13)

In (1.12, 1.13) we see correspondence with electric charges in Table 1.1. We need
also prescribe quarks some other quantum numbers. We know that baryons including
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the proton and the neutron possess conserving baryon quantum number B. Defining
B(P) = 1 for the proton, we have B(P) = -1 and thus according to (1.10) for each quark
B(q) = % and for each antiquark B(g) = - %

Quarks have also individual quantum numbers, which are conserved in the strong
interaction For quarks of the second and of the third generations there are special
designations:

¢ — Charm(Ch), s — Strangeness(S),

t — Topness(Tp), b — Beauty(Be), (1.14)
Ch(c)=1, Ch(c)=-1, S(s)=-1, SB) =1,

Tp(t) =1, Tp(®)=-1, Bt(b)=-1, Bt() =1.

What concerns the first pair of quarks u, d it comes out that they are quite close in
mass so the are considered as a doublet of isotopic spin 1.

Let us present quantum numbers of quarks in Table 1.2 and those of leptons in
Table 1.3.

Here we use unit GeV for a mass of a quark. In view of convenience we use system
of units with speed of light ¢ = 1 and Planck constant 4 = 1. This system is widely
used in application of quantum field theory to the physics of elementary particles.

Let us draw attention to closeness of masses of the u and d quarks. So we have two
states, which differ only by their electric charges. Thus in respect to strong interaction
we may consider this two quarks as components of a doublet corresponding to isotopic
symmetry. Thus this pair has isotopic spin I = % and proton p corresponds to the third

Table 1.2. Quantum numbers of quarks

quark B Il S Ch Bt Tp JP Mass GeV
u 3 33 0 0 0 0 1 0.0025 + 0.0007
d 11,1 0 0 o o 1" 0005+0.001
s : 0,0 -1 0 0 0 1" 0.101%99%
c ! 0,0 0 1 0 0 17 127009
t 3 0,0 0 0 1 0 I 173181094
b L 0,0 0 0 0o A 1 420100
a -1 3 -3 0 0 0 0 3 0.0025 + 0.0007
d -1 33 0 0 0 0 3 0.005 + 0.001
5 -1 0,0 1 0 0 0 3 0.1017392°
¢ -1 0,0 0 -1 0 0 3 1.277397
t -3 0,0 0 0o -1 0 3 173.18:0.94
b -1 0,0 0 0 0 1 i 4.2070%7
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Table 1.3. Quantum numbers of leptons

lepton B g J Mass MeV

Ve 0 0 3 <2-107°

1

v, 0 0 3 <0.19

Ve 0 0 3 <182

e 0 -1 3 0.510998928(11)

u 0o -1 3 105.6583715(35)

0o -1 3 1776.82£0.16

projection]; = % and neutron n corresponds tol; = — % Hadrons which are consisting

of quarks according to (1.10), (1.11) also has isotopic spins.
In view of illustration for isotopic spin we present in Table 1.4 the most important
examples of hadrons [4] with their quantum numbers

Table 1.4. Light hadrons

Hadr. % L1 Mass GeV Mean life s IPC Composit.
Width MeV

p 1 1,1 0938272 o0 1 uud

n 0 1-1 0939565 885.7(8) 1 udd

At 2 233 12319 6.04(3)1072* 3" uuu

At 1 31 12316 5.92(8)10724 3 uud

A o 3.1 1233 5.60(6)1072* 3 udd

AT 33 1232 5.72(6)107% 3 ddd

n 1 11 0.139570 2.6033(5) 1078 0" ud

n° 0 1,0  0.134976 8.4(5)107% o DUJgd

nt 4 1,1 0.139570 2.6033(5) 1078 0" du

o 0 0,0 0.40-0.55 (4-7)10724 o+ ”“Jg"
400-700

n 0 0,0 0547853 0.507(0.027)10° % 07"  cosf, % +sinf, %

Pt 1 1,1 0.775103) 4.38(3)1072% 1” ad
147.8(9)

P° 0 1,0 0.7753(3) 4.37(3)107% 1 DUJgd
149.1(8)

w 0 0,0 0.7827(1) 7.75(7)10°3 1~ %
8.49(8)

¢ 0 0,0 1.0195Q) 1.545(3)10722 17— 5s
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The first six rows represent baryons and the rest represent mesons. There are evi-
dent isotopic multiplets with approximately equal masses. Inside the multiplets elec-
tric charges of particles depend on the third component I; of an isotopic spin. This
dependence is the following

—=—=+1, 1.15
e 2+ (1.15)

where B is baryon number, which is 1 for baryons and 0 for mesons in Table 1.4. On
the other hand we may obtain electric charge of a state with the aid of Table 1.1. For
example, we have

uuu — Q=2e, uus —-Q-=e,
ucs - Q=e, uds - Q=0, (1.16)
us - Q=e ds - Q=0,
su — Q=-e sd - Q=0.

Here the last two rows represent K-mesons and anti-K-mesons.

We would draw attention to the mean life column. Here there is only one stable
particle p, while all other ones decay. States with very short decay time (A, p,...) are
usually called resonances and instead of mean life width T of a resonance is presented.
The connection of these values is very simple

0.65822 x 107%*

T(GeV) = 1(s). (1.17)

Table 1.4 also illustrates the very important quality of quarks — the existence of a
new quantum number, which acquires the name “color”. We see here states A*™* (uu u)
and A™ (d d d) which consist of identical quarks in symmetric spin state which corre-
sponds to total spin 3/2. However, the well-known Pauli principle prescribes states
consisting of identical fermions to be antisymmetric. This contradiction at the time of
formulation of the quark theory causes a lot of discussions. As a result of these discus-
sions the conception of the new quantum number was formulated [5-9], which equips
each quark of the three in these states with distinct quantum number, which differs it
from the two other ones. Thus we have three states of each quark and anti-quark:

ps ('JI,;, o, f=(1,2,3), (1.18)

where a and b denote different sorts of quarks (see Table 1.2). Then a baryon is now
composed of quarks with different colors, that is,

1 5
By = 31 €apsd g qf q.- (1.19)

Introduction of color became inevitable, when after formulation of the constituent
quark model of hadrons the necessity of a study of symmetry problems of hadron
states was appreciated. In the course of the study of the problem the particular prob-
lem of magnetic moments of nucleons p, n have proved to be extremely important. At
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that time it was not at all understood, why magnetic moments of the proton and of the

neutron do not obey the Dirac result for a spin % particle
[
= 1.20
e om (1-20)
where e is the electric charge of the particle and M is its mass and the direction of the
magnetic moment coincides with that of the spin. There are quite another values for

nucleons [4]

= 1.21
Up M, (1.21)

= - 1.2
Un M, (1.22)

According to (1.20) one would expect inside the brackets of the formula = 1 for (1.21)
and = O for (1.22). This consideration, for example, allows to L. D. Landau to assert,
that nucleons are not Dirac particles.

However, after introduction of the quark conception, law (1.20) has to be applied
not to nucleons, but to their constituents, namely to quarks. Then one has to show,
how this law really works. So let us follow the reasoning here arising.

According to Table 1.4 let us write the quark composition of the proton with spin
direction up in the following form

Py = %(“le - dyu))uy. (1.23)
The composition (1.23) guarantees spin % of the system and isotopic spin also % How-
ever term (1.23) is not all the story, because one may commute quark constituents.
There are six independent commutations, which result in the following representa-
tions in case of symmetric and antisymmetric combination for the complete wave func-
tion of the proton ¥p,

1
PsTy’” = \/T_S(Z(uTqul +upduy +d uguy) (1.24)
—uyuydy —ujupd;, - wpdyuy - dyuguy — uydyug - dyuguy).
1
asym __
b, \/g(ulquT upu dy + updyuy — dyuguy — updiug +duguyg).
Then we apply Dirac relation (1.20) to quark states in relation (1.24), that is
e 2 e 2 e 1 e 1
uT—)_— ul—)—_—, T—)—_—, l—)——, (125)
2m3 2m3 2m3 2m3

where m is average mass of u and d quarks and a triple combination in (1.24) means
sum of corresponding terms in (1.25). According to these rules we obtain for the mag-

o

L") = 5

s|“’ 5|“’

O™ = 5
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For the neutron we have with change u < d
WWEQ%@MﬂM+%w%+W%%) (1.28)

\Pasym = i(dldTuT - deluT + dTqul - qule - dlquT + quldT)

N, N
Again using rules (1.25) we obtain
" Sym>_ii(1z(—3—3>+6(3>>=—i3, (1.29)
2m 18 3 3 3 2m3
1 2 e 2
w1 (6(2))= £ 2
( ¥y ") = Sme 6 > 3 (1.30)

Thus we obtain following results for magnetic moments in the symmetric case

oS o e (2) .
‘uP zm’ AuN 2m\3 . (- )

For the antisymmetric case there are quite different results

asym:_i (1) asym:i(%> 1.32
Hp 2m \3) W T \3) (32

For ratios of the nucleon magnetic moments we have

(fe) -3, (%) -1 039
UN 7/ sym 2 UN 7 asym 2

Only the first option is close to the real ratio, following from experimental values (1.21,
1.22)

<EB> - _1.46. (1.34)
Un exp

However in the initial formulation of the quark constituent model it was necessary
to choose antisymmetric combination due to the Pauli principle. The only way to rec-
oncile quark model with results (1.21, 1.22) was just to introduce the new quantum
number color and to construct baryons according to rule (1.19). Now the fulfillment
of the Pauli principle is guaranteed by antisymmetric factor e*?". This conclusion was
first made in work [5].

Relations (1.21, 1.22, 1.32) make it possible to estimate parameter m. We have from
values for the proton and the neutron respectively

m=336MeV, m=327MeV,
that leads to the following average value

m = 331.5 MeV. (1.35)
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This value is quite different from that presented in Table 1.2. We return to this prob-
lem below and here only would mention, that the mass, which enters into expres-
sions (1.32) is usually called “the constituent quark mass” and that in Table 1.2is called
“the current quark mass”.

The physics of elementary particles is described in terms of quantum field the-
ory (QFT). In the present book we suppose, that a reader is acquainted with the main
points of QFT, e. g, with courses [1, 2]. The current situation in this science is described
by the so-called Standard Model, consisting of Quantum Chromodynamics (QCD) and
the Electro-Weak Theory (EWT). We would briefly describe these parts. The first theory,
which was elaborated was the Quantum Electrodynamics (QED). It describes interac-
tion of spinor charged particles bearing the electric charge e with photons.

1.3 Quantum electrodynamics

The interaction of charged spinor fields, e. g., those presented in Table 1.1 with photons
is described by the following Lagrangian

N
1 _ _ _ _
L= Z (5 (V’kYpapV/k = 0, ViYuVi ) —My Yy te Qk‘l’kYMAMV/k>
k=1

1
o F.Fu., Fu= aﬂAﬁ - avAZ, (1.36)
where Q, = -1 for leptons e, y, 7, Q; = % for up quarks u, ¢, t and Q; = —% for down
quarks d, s, b. The lagrangian is invariant in respect to gauge transformations

voUy, voyU,
Ay~ UA U 4 ZUQU™ = A+ 2 9,9(x). (137)
U=exp(te¢p(x)), U =exp(-1edp(x)).

The quantity
2
o=—
4
is usually called the Sommerfeld fine structure constant. At low energies value of « is

defined by the electron charge and is equal to

(1.38)

a =0.007297352533 £ 0.000000000027 = ; (1.39)
137.036

The charged fermion (electron) propagator with momentum p

1(p+m)

Qn)*(p?2 - m? +1¢€)’

(1.40)
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The photon propagator with p and y, v being respectively its momentum and initial

and final indices
-1 gyv

Qr)4(p? +1€)’
The charged fermion—photon vertex (index u), Q being its charge in units e, we have
already mentioned, that for the electron Q = - 1

(1.41)

1 (271)4 Qe Ve 1.42)

For the structure of the theory the momentum dependence of the effective charge (1.38)
«(g?) is very important. In QED this dependence was obtained in the early years of
development of the quantum field theory by L. D. Landau and his collaborators [10, 11]

3maly)
() = s
) 37— Noal(y) ln(_’diz)

(1.43)

where N is the number of elementary unit charge fermions. As a matter of fact we
now know also fractionally charged fermions — six color quarks, so that N = 3 + 3 x
3((2/3)? + (1/3)% = 8. One also has to take into account elementary charged W*-
bosons, which gives for g*> > M ﬁ, negative contribution to this number Nz : Nz =
8 - 11/2 = 5/2. In any case we have expression (1.43) with N = Nz . For space-like
q*> — — oo we encounter the pole in expression (1.43). This pole is usually referred to
as Landau pole. For y = M, a(My) = 5.

The existence of the pole makes a theory internally contradictory. As for QED,
L.D. Landau himself in the issue dedicated to Niels Bohr [11] had first stated, that for
a realistic number of the charged elementary fields N < 20 the pole was situated far
beyond the Planck mass

1
Mp = \/—2 = (1.220892 + 0.000061)10" GeV, (1.44)
K

where x? is the gravitational constant. So the pole presumably could be removed by
quantum gravitation effects. As we have just remarked, nowadays N,z = 5/2 and thus
this argument is valid. However we shall see, that for QCD the solution of the problem
needs application of special efforts.

Quantum electrodynamics proves to be very precise theory. Results of calculations
in QED agrees experimental results up to high orders of the perturbation theory. For
example, the experimental value for anomalous magnetic moment of the electron

a, =0.001159652187 + 0.000000000004, (1.45)
with total magnetic moment
e
2m,’

te = (1 +a,)

e

The results agrees QED calculations within error bars.
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Let us remind, that just calculation of a, by J. Schwinger [13] was very important
argument on behalf of quantum electrodynamics having been genuine theory of the
electromagnetic interaction. In view of the forthcoming calculation in the book of the
similar quantity for the muon with account of nonperturbative contributions we would
present briefly the procedure of this calculation.

The Lorentz structure of the magnetic moment term is the following

_ _ YuVv = Vwhu
V/O-;WV/F;W’ Ouy = T; (1.46)
that means additional term in the electron-photon vertex
ea,
Yo T1 om Op) ky. (1.47)

e

Let us perform the calculation. The first approximation to the additional term to
the well-known Dirac magnetic moment (1.20) corresponds to the triangle diagram
presented in Figure 1.1 Now Figure 1.1 defines the following contribution to the vertex
(in the Feynman gauge)

3 q+p, +m)y,(q+p, +my,d
e J)}M(q D1 )Y,(q + D> )Yu dq (1.48)

2m* ) q*((q+p1)? —m?)((q +p,)* —m?)
& J ~2(q + P,)y,(q + Py) + 4m(2q, + py, + p,,) - 2my, P
q*(q*> + 2qp,)(q* + 2qp,)

:pgzmz’ yp1=ym p,y=my, p,-p;=k

It is easy to see, that the last term in the nominator contributes only charge struc-
ture y,, the last but one term does not contain gamma matrices at all, so only the first

pl q p2

Fig. 1.1. Diagram corresponding to calculation of the anomalous magnetic moment of the electron.
Dotted lines correspond to photons.
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term may contribute additional structure (1.47). We perform calculations using the «-
representation [1].
Namely, we represent denominators in (1.48) in the following form

l — 1 J'eux(qzﬂe) da’ 1 — 1 jezﬁ(q2+2qp1+ze) dﬁ,
g 1 q>+2qp, 1
1 1 2
- = | 7@ +2ap210) g, 14
9’ +2qp, lje 4 149
Let us perform the following substitution of variables
B=A y=Ay, a=A1-&-n). (1.50)
Then the term under study takes the form
) 3 ® 1 1-¢
1€ ~ ~ ~ ~ e 1€
T j 22dx j dE j dn j dq(@ + Do)y, (@ + e 2P (g
0 0o 0

Now we use standard integrals [1]

2
jdqel(“’f”b’” L

1a?
1b 2 b2
waq’+2bg) _ @ T U
jdq q,e =7z e «, (1.52)
_ 2
daa g e@r2ve _ 8w = 21byby 7* _a
qu qv - 2612 az 4

to obtain for expression (1.51) terms giving contribution to the magnetic moment struc-
ture in expression (1.47)
3 2D1y,D1 + P1YpP2 + P2YeP1 + 2D,Y,D
_e_ 1Yp 1 IYp 2 ZYp 1 ZYp 2 n O(kz) (153)
8m? 12 m?

Note, that the remaining terms in the nominator of the last expression in (1.48) give
contribution only to Lorentz structure y, and thus have to be included in renormaliza-
tion of the vertex. They contain both ultraviolet and infrared divergences. Now, using
relations presented in the last line of (1.48), we obtain from (1.53) the following expres-
sion

3
3272 m
that with account of relations (1.46, 1.47) leads to the final result

(yp k—k yp) (1.54)

a, = zi =0.0011641..., (1.55)
T

where we have used value (1.39). Comparing the result with the experimental num-
ber (1.45) we see agreement up to terms of order of magnitude («/)*. The correspond-
ing calculation of these terms and also of higher terms gives the final excellent agree-
ment.
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Result (1.55) in line with the Lamb shift calculations [14], as we have already men-
tioned, have proved QED to be the correct theory. Thus QED became the first and the
most elaborated renormalizable quantum field theory. The subsequent development
of the elementary particles physics leads to formulation of the theory of the strong in-
teraction and the theory of the electro-weak interaction. Both was constructed in close
analogy to QED. In the next sections we briefly describe these theories.

1.4 Quantum chromodynamics

The quantum chromodynamics (QCD) exploits color symmetry group SU(3), for for-
mulation of strong interaction of quarks. The corresponding Yang—Mills fields [15, 16]
are named gluons. The main properties of the theory were first disclosed in [17-20].
QCD describes fundamental interaction of quarks and gluons. There are six sorts
of quarks each bearing color
u Gt (1.56)

with electric charge Q = %, where e is the elementary electric charge

d, s, b, (1.57)

with electric charge Q = - %

We start with QCD Lagrangian with N; quarks with number of colors N = 3
_ _ _ 1
L= Z [ (I,Iky‘u Wk — MV’kYM‘l/k) - My vy +g‘l’kY,4taAZ1//k] " (F,WF,W)
;w = a,uAv A + gfabc (1.58)

where we use the standard QCD notations including F,’jv for a Yang—Mills field [15].
Here f,, . are structure constants of the SU(3) group and t,,, (a = 1,..., 8) are the well-
known SU(3) matrices 3 x 3 of the infinitesimal transformations with the following
properties

tity-tyt,=1fpet., Trace(t,) =0

1
talp + bty = ]T[ Sab + dabc te>

1s N? -1
Trace(t,t)) = =0y, tit, = N I,
fbcmftmm +facmfnbm + abmfcnm =0, (1.59)
N
flamfmbnfncl == 5fabc’ famnfbmn = Nsab’

N2 -4
flam dmbn dncl = Wfabc’ famnfbmn = Nsab’
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where I is the unit matrix 3 x 3 and as usually we sum up on recurring indices. We also
introduce number N, which marks dimension of a SU(N) group in view of using the
formulas both for SU(2) and SU(3). In QCD we have N = 3.

In what follows we in some cases shall consider m, to be small enough and set
them to zero.

Lagrangian (1.58) is invariant in respect to gauge transformations, which are de-
scribed also by (1.37), where we have

U =exp(1gt,0°()), Ut= exp(-18t,0°(%), e—g, (1.60)

where 0%(x) are eight parameters of the SU(3) transformation, which depend on the
point of the space.
It is also useful to rewrite expression (1.58) in terms of matrix quantities:

A, =Alt, F,=F t. (1.61)

With this notations we have instead of (1.58)

L=

M=

[ _ _ _ 1
£ [E (ka‘lda‘lJWk - a‘MkaMWk) - My + ngYMAMV’k - E Trace(Fyv Fyv)’

1
F,=0A,-0A,-1g[A, Al (1.62)

Let us present Feynman rules for QCD:
(1) The quark propagator is just usual fermion one (1.40)

(2) The gluon propagator differs from the photon one only by color Kronecker symbol
1 g " 8(1 b
A 163
2m)*(p? +1€)

(3) Quark-gluon vertex, u and a being respectively Lorentz and color indices of the
gluon (see also (1.42)
1 (27t)4 8V te. (1.64)

(4) The three-gluon vertex with Lorentz indices, color indices and momenta of gluons
being respectively (u, a, k), (v, b, p), (p, ¢, q)
(27‘[)4 gfabc (g‘uv(k - p)p + gvp(p - q)‘u + gp‘u(q - k)v) (165)

The rule of construction of the vertex is evident: the metrical tensor indices corre-
sponds to momenta in brackets, which have the remaining Lorentz index.
(5) The four-gluon vertex with color and Lorentz indices (a, y), (b, v), (c, p), (d, 0)

—1 (277:)4 gZUabffcdf(gMp 8ve — g‘ug gvp) +facffbdf(g‘uv gpg - g‘ug gvp)
+ adffbcf(g‘uvgpg - g‘up gvg))‘ (166)
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There are also auxiliary color fields (ghosts), which are scalars, but give extra minus
sign for closed loop as well as fermion fields. The propagator

l(sab

Qn)*(p? +1¢€)’ (67

and the ghost-gluon vertex with y, b being the gluon Lorentz and color indices respec-
tively and p, a being the momentum of the outgoing ghost, having color index a

- (277:)4 gfabcp,r (1.68)

Running coupling in the three-loop approximation is the following

2 2
o) = [1 _ 2p In(In(u"/A%))

Bo In(u?/A?) B3 In(u?/A?)

4—13% 202y, 1Y ﬁzﬁo_i)
+53 22/ ((ln(ln(u /A7) 2) + s )| (1.69)

where A is the famous QCD scale parameter and

2N; 19N;

Po=11-—= pr1=51-——, (1.70)
5033N; 325N}

B, =2857 - 7

N; is quark flavors number, which are involved for 4 range in the problem under con-
sideration. For example, we may take value of «, at point 4 = M, of the Z-boson mass.
Here we have to take Ne=5 (all quarks but the t-quark) and use experimental value [4]

as(Mz) =0.1191 + 0.0028. (1.71)
Using expressions (1.69, 1.70) we obtain for A in the region of five flavors
Ag =221"35 MeV. (1.72)

Coupling (1.69) decreases with u*> — co that gives the well-known property of the
asymptotic freedom. The extensive studies of QCD effects in the region of the asymp-
totic freedom, that is for high energies, show excellent agreement of perturbative cal-
culations with experimental data. Thus perturbative QCD, as well as QED, proves to be
an adequate theory in the region of its applicability. However, running coupling (1.69)
evidently has a singularity at ”z = A?, which is quite analogous to the Landau pole
in QED. A hope is usually expressed, that in the region of strong interaction there are
some nonperturbative contributions, which somehow eliminate this singularity. But
there was no explicit mechanism being formulated for such phenomenon. We shall
return to this important problem below in the proper place.
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In any case nonperturbative contributions in QCD are very important for low-
momenta phenomena. In low-momenta region coupling (1.69) becomes large and
thus perturbation theory calculations fails. What can we do with this problem? For
momenta below some scale A, one can try to to write down a simplified effective
Lagrangian, where contribution of heavier states are eliminated (one often says “in-
tegrated out”). The typical example of an effective interaction is provided by the
Nambu-Jona-Lasinio model, which we shall intensively exploit below.

Nowadays the simulations of the theory on the lattice is considered as the most
promising tool for nonperturbative problems in QCD. The technique was started by K.
Wilson [21] and it shows increasing progress during the last decades. In this technique
QCD is reformulated on a discrete space-time, an cubic lattice of sites with spacing a
and 4-volume L*. Gluon and quark fields are specified on the lattice sites and the path
integral is computed numerically as a sum over field configurations. We are interested
in limit a — 0, so it is desirable to work with as small spacing a as possible. Such
calculations become increasingly predictive. For example, they allow to construct be-
havior of running coupling «,(Q) in low momenta region. In this direction there are
several results, which sometimes do not agree one with each other. In any case, it is
advisable to consider also other methods to consider nonperturbative effects.

The lattice method is also considered as a possible tool to ground the phenomenon
of color confinement. Confinement is the basic property of the strong interaction and
it consists in the assertion that only colorless states can be observable. No free quarks,
no free gluons, no other color states. For example, consideration of effective potential
between a quark and an antiquark with lattice techniques gives [22]

V*’:a“—s(r)+0'r

qq 3r 1.73)

The term in effective potential (1.73), increasing at infinity, illustrates phenomenon of
confinement. Indeed, a colored particle can not overcome the infinite barrier of po-
tential (1.73). There is also temperature dependence of slope o, such that after critical
value T, it becomes zero and the deconfinement phenomenon is expected. The esti-
mation of value T, gives T, =~ 175 MeV.

1.5 Bethe-Salpeter equation

Throughout the book we shall use mostly two types of equations. The first one will
be a compensation equation, which provides essence of the method. This equation
will be introduced and elaborated below. We also will often use Bethe—Salpeter equa-
tions for bound states in quantum field theory [23]. In view of absence of a description
of the Bethe-Salpeter equation in the most popular standard courses on the quan-
tum field theory we present here short explication of the necessary knowledge on this
equation.
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+K/2 +K/2
P P q+K/2

-q+K/2

-p+K/2 -p+K/2

Fig. 1.2. Diagram representation of a Bethe—Salpeter equation a bound state. Momenta are written
down by corresponding lines. Double line — the bound state X. Thick line corresponds to kernel
K(p, g, K).

The Bethe—Salpeter equation for two-particle bound state, which in diagram firm
is shown in Figure 1.2, is an integral equation

(.10 = [ dgK(p.q.00a (q+ §) (g, K) A (—q . 15() 17

where for any momentum ¢, A(t) is a propagator of the corresponding particle, for
example (1.40), and kernel K(p, g, K) is to be constructed according to the following
rules:

(1) The kernel is a sum of four-leg diagrams with the designated in Figure 1.2 distri-
bution of momenta.

(2) All these diagrams are connected and two-particle irreducible, that is, they can
not be reduced to unconnected diagram by cutting of two horizontal lines in the
diagram. For example, among diagrams presented in Figure 1.4 there are three
irreducible diagrams and two reducible ones.

Momentum K belongs to the bound state X and thus

K* = Mj. (1.75)
) @ )]

) ®)

Fig. 1.3. Diagrams (1), (3), (4) are two-particle irreducible, but diagrams (2) and (5) are two-particle
reducible.
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q+K/2

-q+K/2

Fig. 1.4. Normalization condition for the Bethe—Salpeter wave function in diagram form. Triple ver-
tices in the diagram correspond to wave function ®(q, K).

In most case we shall make calculation after the Wick rotation in the momentum space
q —dqg
Q=14 ¢ — -4 (176)

Then in the Euclid space we have instead of (1.75)
K* = -M;. (1.77)

The normalization condition for Bethe—Salpeter wave function ®(p, K) defines
coupling constant in the effective triple vertex. For all cases to be considered below
this condition reduces to calculation of simple loop diagram presented in Figure 1.4

The diagram in Figure 1.4 is to be calculated according to Feynman rules with
®(g, K) in vertices and the result is to be developed in series by K2. The coefficient at
K? is to be equal to unity. Thus the condition have to be of the form

%
(2m)#

j ©2(q, K)N(g, K) dq, 178)

where N(q, K) is a function, which form depends on a problem under a study. In ex-
pression (1.78) wave function is normalized on the mass shell

®(q,K) =1, q2 =-m?, K’= —Mf(,

that allows to consider gy in expression (1.78) as an effective coupling constant.

1.6 Effective interactions
1.6.1 Preliminaries

We have briefly described in the previous sections gauge renormalizable theories,
which comprise the contemporary theory of the main interactions of elementary par-
ticles. In the framework of the perturbation theory these theories have proved their
efficiencies for description of phenomena in regions of their applicability. However
these regions do not include all the variety of physical systems and conditions. For
example, the behavior of running coupling (1.69) has a pole in the region of momenta
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around few hundreds of MeV. Just this region corresponds to formation of numerous
particles and resonances consisting of quarks and gluons. Thus we encounter prob-
lem of the perturbation theory failing in this low-momenta region. Thus bearing in
mind extensive evidence of the validity of QCD for large momenta region we are to ad-
mit, that in low-momenta region nonperturbative effects are inevitable. The existence
of nonperturbative effects were the main and principal assumption of the method
of sum rules in QCD [24], in which nonperturbative quantities e.g. vacuum averages
of elementary fields were introduced. The gluon condensate, that is the following
vacuum average of the normal product of gluon fields

2
v, = <: % FoFC, > (1.79)
It was shown (see [24] and numerous subsequent works) that this quantity decisively
improves agreement of QCD sum rules with real physics provided this quantityis V, =
(0.012 + 0.002) GeV*, whereas the perturbative value for this quantity is zero. The
quark condensate

@q) = : yy:) =—(0.23)° GeV? (1.80)

was also shown to be present necessarily for adequate description of low-momenta
region. These and similar quantities were used in the QCD sum rules method [24].
The purpose of the method is to find out how the high-momenta perturbative quan-
tities and the low-momenta nonperturbative quantities could be considered simulta-
neously. In this method one consider a correlation quantity (correlator) comprising
two or more of gauge invariant currents with quantum numbers of those states, which
properties are under study:

() = j dx ™ (0| T](x),J(0)[0). (1.81)

For Q* = —¢ this quantity is described in two-fold way. On the one hand one uses
Wilson operator decomposition[21], which application gives factorization of large and
small virtual momenta. Contributions of large momenta are the subject for perturba-
tive calculations, which in this region works quite efficiently due to the asymptotic
freedom. Thus the coefficient functions are defined. On the other hand, contributions
of the low-momenta region, which are nonperturbative are described by the so called
condensates, which are represented as vacuum averages of local operators.

Thus such decomposition leads to the following representation of quantity (1.81)

I(g%) = C; + Y. C,(q*){0[0,|0). (1.82)

Here coefficients C; are to be calculated in the framework of the perturbation the-
ory (see [24-27]). Vacuum averages (0]|0,|0) are purely nonperturbative. In the
approach [24] they are extracted from sum rules and thus are defined from a phe-
nomenology. For example phenomenological considerations lead to the following
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estimates of vacuum averages
[%4 4
v, = <;s F,Fl,) = 0.012GeV", (1.83)
b
Vs =&’ fape Fy Fop Fey) = (0.5 £ 0.5) GeV°,
(Gq) =—(0.23 GeV)>.

In the perturbation theory all these parameters are zero. The possible connection of
these nonperturbative parameters with the instanton [28] contribution was consid-
ered [24, 29, 30].

In what follows the method of calculation of these quantities in the framework of
the compensation approach will be described in details.

On the other hand it becomes clear that there is another quite effective method,
which serves for account of nonperturbative effects at low momenta. The most well-
known and significant example of such method give the famous Nambu-Jona-Lasinio
model [31, 32]. This model was the first example of a theory, which further acquires
notation “an effective theory”. This notation means that this theory somehow appears
in the framework of the fundamental theory (QCD, EW, etc.) and it acts in the restricted
region of the momentum space. The simplest possibility to describe this property is to
introduce an auxiliary cut-off, that exactly was done in the initial works [31, 32]. Let us
briefly present highlights of the model, which acquires real popularity. In more details
of the NJL model the reader can see, e. g., in works [33-38]. For a recent review see [39].

1.6.2 The model NJL

For the formulation of the model we may start from the initial QCD Lagrangian (1.58).
We know, that the first two masses of u and d quarks are small. What occurs if they
are just zero? Then Lagrangian (1.58) is invariant under the so called chiral transfor-

mations
1y 7,07

g— e’ g g ger ¥, (1.84)
where 6° are parameters of a SU(2) isotopic transformation and
0= ("), a0 - @w.aw) (189
q - d(X) > q - > > o

are fields of u and d quarks.

This property is realized in the Nambu-Jona-Lasinio model [31, 32]. For descrip-
tion of the main properties of the NJL model we start from its simplest version. The
initial four-quark SU(2) x SU(2)-symmetric Lagrangian has the following form:

L = g(x) 13,y — Mo)g(x)
N §(<q<x> 9(0)(@0 400) - (300 7 a0)(@N) T 59(0)), (180
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where m,, is a small initial current mass of light quarks and G is the four-fermion cou-
pling constant, 7% — the Pauli matrices. Color is summed up in each product §0;q with
different inside operators O;.

Let us find out if Lagrangian (1.86) is invariant in respect to the chiral transforma-
tions.

Let us illustrate this property by writing the first term of expansion of transforma-
tion of four-fermion terms in equation (1.86)

3949 — q(1 + 21ys7°0")q q(1 + 21ys1°6%)q = Gq 4q + %1qys7°0“qqq,

g7’ ysq — G(1 + 1570 s (1 + 1957°0%)q
= f_]Tb)’sq + lf_](TaTb + TbTa)ea q = (_]TbySq + 21q qu, (1.87)

" ysqdt"ysq — (@ ys9) + 4idyst0°q aq.
Let us remind, that in our definition y52 = 1. Due to (1.87) terms proportional to 6 can-
cel in the four-fermion part of Lagrangian(1.86). The kinetic term in (1.86) g9, y, g is
also invariant due to anti commutativity of y, and y;. However the mass term —m,q g
evidently is not invariant under transformations (1.84). In view of this we for the be-
ginning consider the case of chiral invariance, that means

mgy = 0. (1.88)

Then, following [31, 32], let us introduce evident Feynman rules and define ultra-
violet cut-off A, which defines the region of applicability of the effective interac-
tion (1.86,1.88).

First of all we consider the problem of a possibility of a spontaneous generation of
quark mass. We start with Lagrangian (1.86) with m, — 0. At this point we for the first
time use the procedure, following from N. N. Bogoliubov compensation approach [40—
42]. With small but nonzero m, we expect some value for mass m arising as a result
of interaction in (1.86). So let us add to and subtract from expression (1.86) mass term
m g q and rewrite (1.86) in the following form:

L=Ly+Ly
Lo =q(10,y, —m)g, (1.89)
Ly = 5((q 9)@q) - (a7 ysa)(@t" y54)) + (m - mo) aq. (1.90)

Now in the interaction Lagrangian (1.90) there is quite improper mass term. Thus we
have to guarantee real absence of this term due to a compensation condition to fulfill.
This means the condition for all possible contributions of interaction (1.90) to the mass
term giving zero as a result. For the first approximation, corresponding to diagrams of
Figure 1.5 we have the following compensation equation:

A

8NCmGJd"q6(A2—q2) 3mGJ ydy

=—-(m-my) + —
2m)* q* + m? ( o) 2 2 0y+m2

—(m-mg) + =0. (@191



22 — 1 Elementary particles and fields

Fig. 1.5. Diagrams corresponding to compensation equation for spontaneous generation of mass in
NJL model.

Here we have used Wick rotation in a transition to the four-dimensional Euclid mo-
mentum space. Let us remind, that this procedure means, that after all algebraic cal-
culations in the usual Minkovsky space we perform in an integral under a considera-
tion the following substitution: (pq) — - (pq) and dqg — 1dq. In such simple variant
all quantities are expressed in terms of two main integrals

A
N, ydy N, s o AP+m?
I = —< j - (A -mm 2T,
Y162 ) y+rm? 167r2< "o
0
N, [ yd 4
I, = c J yay 1-— m 1.92
2 167t20(y+m2)2 (y + m2)2 (1.92)

N, | A +m? AX(A? +2mP)
1672 m?2 2(A2 + m2)?

Now we take limit m, — 0. Thus we have from (1.91,1.92)

-m(1-8GI,) =0, —m[ —23—7:;(%_111“%)] -0,

w=Gm’, A=GA>. (193)
Equation (1.93) evidently has the trivial solution
m=0. (1.94)

However, there is also a nontrivial solution, which occurs when the expression in the
square brackets is zero. One readily gets convinced, that a nontrivial solution does
exist for A > 6.58. For example, with A = 8.87 behavior of this expression is presented
in Figure 1.6 and the solutionis 4 = 1.

Let us consider the Bethe—Salpeter equation for isotopic vector pseudoscalar state
with momentum Q = 0, presented in Figure 1.7. It reads

(1.95)

G8N, ( (¢ +m*)d'q
Y5 Ta8nqq = V5 Ta - J

2n)" (@2 + m2)Z °me
Here coefficient 8N. is due to traces in isospin, color and spinor indices. We immedi-
ately get convinced, that this equation is equivalent to equation (1.93) for m # 0. This
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0.1f

1.5 2.0

Fig. 1.6. Behavior of expression in square brackets of (1.93) for A = 8.87 in dependence on y.

Fig. 1.7. Bethe—Salpeter equation for pseudoscalar state.

means, that for the nontrivial solution of (1.93) there exists a massless pseudoscalar
state with unit isotopic spin. This is an inevitable consequence of the symmetry
breaking according to Bogoliubov-Goldstone theorem [40, 43, 44]. Such state has
semblance of pion, but the pion mass is not zero, although it is small in comparison
to other hadron masses. Thus we have to use Lagrangian (1.86) with small, but not
zero value for m,,. This means that we have not exact chiral invariance (1.84), but only
initially approximated invariance. Then instead of (1.93) we have

—m+(1—811)=—m + [1—3—%<&—ln“—”)] =0,
m m 2n° \up U

pw=Gm’, A=GA> (196)

Qualitatively main features of a nontrivial solution are the same as for m; = 0. For

example, for

my, 1

m 60
a nontrivial solution exists provided A > 6.47 and u = 1 for A = 8.747. The Bethe-
Salpeter equation for a small nonzero pion mass is now the following

8GN, d*q , o, m m*
$ra0 = Gy J (¢? + m?)? (q e\ @y ) ) Sree 0D

From (1.97,1.95,1.96) we have

my
4ml,”

Gm’ =, = (198)
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Now vertices for the pion-quark-antiquark interaction and the o g g interaction are
correspondingly the following

Sngq AVs T2 A", 8rgqd 0. (199)

This coupling is defined by the normalization condition for Bethe—Salpeter wave func-
tion. We have for pion normalization correspondingly the following

4gh, b =1. (1.100)

Let us in the same approximation calculate the ni-decay constant f,,. The experimental
value for this constant is the following [4]

f, =92.42 +0.33 MeV, (1.101)

According to the evident one-loop diagram we have

m
fa=08nggml, = , (1.102)
nqq
where we have used normalization condition (3.28). Thus the well-known Goldberger—
Treiman relation [45] naturally arises in NJL model. Now let us formulate the set of
equations

m
I = 12 , 1-8I1=—2,
4g71‘qq m
e = BrggMom (M — 4mp)* T (1.103)
T w o 487 M2 e :

M? + 6 m?
2 5 P
8= \/ggmiq’ 8naq = \] w2 S
p

We also have evident relation for masses of 7- and o mesons, which one obtain from
difference of one-loop contributions to corresponding meson mass square

m, = \m2 + 4m2. (1.104)

Let us fix the well-known values of f, and m, (average of charged ones and the neutral
one) and the p-meson parameters

f,=92.4MeV, m,_ =138MeV,
Mp =775.4MeV, I, = 149.2 MeV. (1.105)

and solve set of equations (1.103), that gives

u=0.5723, A =8.0754, (1.106)
m=320.08 MeV, m, = 2.838 MeV.
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We use also the definition of the quark condensate in our notations (1.92,1.93)

3
I
(4q) = lim(q(e) 4(0)) = - lim Trace G(e) = - ",

where G(x) is the quark propagator.
Taking into account expressions (1.103,1.104,1.106,1.107) we come to the following
set of parameters

1

~ (425.1MeV)?’
m=320MeV, (Gq) = —(305.1MeV)?, m, = 654.9MeV,

8nqq = 2.44, 8rqq = 346, =5.97. (1.107)

m, = 2.84MeV, G A =1202.3MeV,

quq

Results (1.106, 1.107) demonstrate satisfactory agreement with data. Value of the
quark condensate is rather higher than its conventional value. But nevertheless value
in (1.107) is within 20% accuracy off standard value —(250MeV)3. Note, that re-
sult (1.107) with high accuracy agrees the well-known Gell-Mann-Oaks—Renner rela-
tion [46]

m’f? = -2 my (qq). (1.108)

Mass of the o-meson rather exceeds its experimental value 400 MeV < m, < 550 MeV
[4]. However there are arguments for real mass of the lightest scalar o to have larger
mass in interval 700-900 MeV [47], but due to effect of four-quark configurations
in the scalar state its mass is shifted below. We shall return to this problem in what
follows.

To conclude with NJL results we would state, that such a simple assumption gives
quite adequate description of low mass hadron physics, which could not be achieved
in the framework of a perturbation theory. The NJL theory is just very instructive ex-
ample of effective nonperturbative theory. There are few significant features of an ef-
fective theory, which manifest themselves in NJL theory. The principal ones are the
following:

(1) Ifone consider an effective theory being local it necessarily is nonrenormalizable.
(2) Thus the theory may make sense only in presence of a form-factor F (qiz) being
somehow defined. In the considered case there is simple cut-off, that means

F(q%) = (A - ¢%). Due to this an effective interaction acts in a restricted region

of the momentum space.

Now we are sure that the genuine theory of strong interaction is QCD. But NJL from the
first sight has nothing to do with this gauge theory. The natural question arises why the
NJL approach can explain low mass hadron physics with such excellent precision? The
only possible answer to this question is that NJL interaction appears in the framework
of QCD due to a mechanism of spontaneous generation.
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We are aware of a phenomenon of spontaneous breaking of an invariance. For
example, this phenomenon leads to the important physical effects: superconductiv-
ity, superfluidity, ferromagnetism. In the framework of quantum statistical theory
these effects were explained decades ago. One of the most powerful methods, which
were applied for the explanations, was the compensation approach by N.N. Bogo-
liubov [40-42]. At the same time there were applications to QFT problems, one of
the most important was just the Y. Nambu works, which was strongly influenced by
works [40-42]. The essence of the physical effect is a spontaneous generation of a
quark mass due to a nontrivial solution of equations (1.91, 1.88). As a result we obtain
spontaneous violation of the chiral symmetry (1.84). We shall use the compensation
approach also for more complicated problems, namely for studies of possibilities of
spontaneous generation of effective interaction, similar to the NJL effective interac-
tion, considered above.

The main principles of the approach will be presented in the third chapter.



2 The standard model

2.1 The electro-weak theory

Let us remind, that before the formulation of the EWT we had the QED, various mod-

els for strong interaction and the weak interaction with the following interaction La-

grangian

Gr

vz

Jo =1 = y5)yave + @1 = Y5)avy + T(L = y5)%avs
+d' (1= ps)yu +5"(1 = ps)y,c+b' (1 = p5)y,ts

Line = —=J, J5 1)

where
Gp=1.16639(1)- 107> GeV 2, 2.2)

is the Fermi constant. We denote since now the spinor field of a particle by its symbol,
e.g., u = y, denotes the spinor field of the muon. Here all the lepton and quarks are
present, one have to bear in mind, that for quarks also summing over color indices
is understood, so, in simple words, there are three terms for each quark pair. The
prime up the down quarks means linear combinations according to the well-known
Cabibbo-Kobayashi-Maskawa matrix [48, 49]: D' = U D, that is

!
d c -5,C; —5,5; d
s' | = s, €605 —5,55€°  ciC,85 + 5,55e° s . (2.3)
b’ $1S; €15,C3 + C,55€° ;8,55 — c,c5€” b

Heres; = sin6;, ¢; = cos0;, 0; are three mixing angles and § is a phase, which corre-
sponds to a CP violation.

The result of fit of totality of experimental data for absolute values of matrix ele-
ments of matrix (2.3) is the following [4]

0.97427 +0.00015 0.22534+0.00065  0.00352*3:90012
0.22520+ 0.00065 0.97344+0.00016  0.0412;9001 . 4)
0.00029 0.0011 0.000021
0.008671399033 0.0404700008  0.99914670 00007

Matrix element V,, of matrix V (2.4) is with high precision the well-known parameter
sin ¢, that is the sine of the Cabibbo angle

sin ¢, = 0.225, @5)
where Cabibbo angle describes mixing of d and s quarks

d =dcos¢, +s sing,, s =-dsing,+5 cos¢,. (2.6)
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In dealing with four-fermion interactions similar to (2.1) the Fiertz transformation
is very useful. In what follows it will be repeatedly applied. The transformation relates
to change of order of spinor operators in four-fermions terms such as the following

1 Oy, W3 Oy = . Dy ¥ Oy W3 Oy, 27)

where O, ..., OI', are some matrices, e.g. the Dirac ones. In obtaining corresponding
relations we proceed as follows. Let us take an example

ViVmV2 V3VmWas = Qs V1Y, V3 ¥y + Ay Uy Vs W5 W3 Vs¥o + AV YiVa W3 Ym Vo
+ A Y1 Y Vs VW3 VmVs V2 + QW10 VW30, Y2, (2.8)
Let us write relation (2.9) using explicit indices
o4 A o A o4 A o4 A
(Ym)/} (Ym)g =4 Ia Iﬁ + ap (YS)U (YS)/} +a, (Yn)g (Yn)/} 9

+ APV )s (P¥5)s + e (0,0) (0,,)5.

Now we multiply (2.9) by 8] Sf and obtain due to Trace of Dirac matrices but the unit
one [ being zero
16 a, = Trace(y,, y) = 16, ag, = 1. (2.10)

The next time we multiply (2.9) by ()2 () and in the same way we obtain
16 a, = Trace(ys Y ys V) =16, a,=-1. (2.11)

We proceed in the same way for combinations and obtain results being presented
in Table 2.1, where we use the following notations

SS = yyyy, PP — yysyyysy,  SP — Yy yysy,

PS = gysy gy, VW —=yyviny AL = 9905990, Y,

VA = 9y v y,ysy, AV — 9y, vy 9y, (212)
_ Ny Wl

IT - V_/O'va V_Jo'va’ va 2

We also have to take into account, that in the procedure of the Fiertz transformation
there is an odd number of commutations of spinor operators. Because of these oper-
ators obey anticommutative relations, each such commutation leads to a change of
sign. Thus we have additional minus sign in all the elements of Table 2.1.

It is also useful to have the analogous transformation with isotopic matrices, the
coefficients of the transformation are presented in Table 2.2. We have also to take into
account colors of quarks. Indeed in Lagrangian (2.1) in each quark term there is sum-
mation by colors which corresponds to colorless current J.

-

VoY, (213)
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Table 2.1. Coefficients of the Fiertz transformation

§S PP SP PS VV AA VA AV TT
O 0 0o -3 : 0 0 3
PP -2 -1 0 0 i i 0 0 3
sp 0 o - -3 0 0o -z : 0
PS 0 o - -3 0 0 i i 0
VA2 1 0 0 3 3 0 0 0
AA 1 -1 0 0 3 3 0 0 0
VA 0 0o -1 1 0 0 3 3 0
AV 0 0 1 -1 0 0 3 3 0
TT 3 3 0 0 0 0 0 0 3

Table 2.2. Coefficients of the isotopic Fiertz-like transformation

11 TT
1 1
3 1
T 2 2

In what follows sometimes it will be necessary to take into account color indices in
terms of (2.1) type. While performing the Fiertz transformation, color indices also
change places. So we have relations

I I'=ayIj Ig + ap, (t5 Y,

(5 (5 = ap I Iy + ag; (95 (¢} (2.14)

Coefficients aj; are calculated in the same way as in case of the usual Fiertz transfor-
mation. The result of the operation is described in Table 2.3

The very important element enters Lagrangian (2.1), namely, combination (1 —ys).
It deserve more detailed attention. Note that we define here y; = — 17,917,735, S0 that
y52 = 1. Let us construct two matrices

1 1-
pL:&’ pR:_y5'

> (2.15)

Table 2.3. Coefficients of the color Fiertz-like transformation (for colored quarks).

1 ¢

-~

N

—~
S
—~
S
Ol W=
W[
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One easily sees, that these matrices possess all the properties, necessary for the com-
plete set of projection operators, namely

P2 -p,

1 154

P,+Py=1, P, #Pp=Pz+P, =0. 216)

Therefore these operators split the space of spinors into two subspaces

1+
\PL:PL\P: 2)/5

1_
¥, W= PyW = 2"5

Y. (217)
Thus operators P;, Py project the initial spinor on its left and right components. By
Dirac conjugation equation (2.17) becomes

- - 1- - -1

o=y g oY (2.18)

2 2

where we take into account that y; anticommutes with y, being present in the con-
jugated spinor. In other words, left particle corresponds to right antiparticle Let us
consider free Lagrangian of the spinor field

1 ( oy oy _
<aX‘u y‘u W W y‘u aX‘u > -m W 1//’ (2‘19)

Using equations (2.17, 2.18) we rewrite it in terms of left and right components

< oy VJL YR

0 _ _
PR 7% Mewn ot T o Y VR T VR Vi al)l:,d > -m (Yryp + VL yR), (220

We see here that the first term divides in two independent parts, connected with left
and right spinors respectively, but the mass term mixes these components. If an in-
teraction is described in terms only of, say, left components and a mass is zero, right
components are thoroughly decoupled and do not appear, if they are not present ini-
tially.

Now let us return to the would-be interaction (2.1). Such four-fermion interaction
is nonrenormalizable. In particular it leads to cross-sections, which linearly rise with
energy increasing. The situation may be improved if one introduces in addition to
the photon three massive intermediate bosons: W*, W™, Z. Then instead of interac-
tion (2.1) we have

Ly = - 8wl W, + JIW)), @.21)

and interaction of boson Z with a neutral current. We have the following relation
Sw _ Gr
> = .
My, 2
For the theory being renormalizable we have to introduce a gauge symmetry. It comes
out that this goal is achieved provided the symmetry of the gauge theory of the electro-

weak interactionis SU(2)xU(1) [50, 51]. SU(2) groupis completely the same (in mathe-
matical aspects) as the symmetry group, describing usual spin and isotopic spin. This

(2.22)
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is why, the symmetry can be named a weak isospin and its representations are labeled
by values of this isospin I, which as usually , are either integer or half-integer. U(1)
group corresponds to some symmetry, conserving a charge, similar to electric charge
or hypercharge. The corresponding quantum number is named weak hypercharge Y.
A representation of the electro-weak symmetry group is hence characterized by two
numbers: (I, Y).

Now we have three Yang-Mills fields WZ, corresponding to SU(2) subgroup and
one photon-like field B, connected with U(1). All four of them are massless. The the-
ory of interaction of such a vector field set with a conserved spinor current is renor-
malizable. But such theory has nothing to do with real physics. As we see from a brief
review of W interactions W* W™~ and Z as well have to be sufficiently massive and only
the photon is to be massless. So we have a good theory, which is not physical because
it is too good, too symmetric. A breaking of the symmetry is necessary and here lies
the central point of the theory. Let us demonstrate how the famous Higgs mechanism
works, which gives this symmetry breaking.

So we proceed to the Higgs phenomenon [52-54]. Let us consider the following
lagrangian, describing interaction of a massless vector field A, and a complex scalar
field ¢

09" o

ox# ox#

¢ _o¢'

ox#  ox*

(/) ¢ - A((p (p) 7 F,, W+ze< U (p)A +e AA ¢T¢’ (2.23)

Here F,, = 9,A, - 0,4, is an electromagnetic field. The lagrangian is invariant under
the following transformations

¢ e ¢ e g A, A+ —%. (2.24)

If one introduce instead of fields ¢, ¢>T two real fields &, j=1,2

¢1 +1¢, ¢ — 19

V2 V2
then transformations (2.24) for scalar fields take the form of a two-dimensional rota-
tion

¢="—=2 ¢="=2

(2.25)

gb; = cos 0¢, —sin 0¢,, gb; = sin0¢,; + cos 0¢,. (2.26)

Thus, the symmetry upon transformations U(1) (2.24) means un fact invariance in re-
spect to rotations of a plane. Transformations in the form (2.26) demonstrate indepen-
dence of the theory on the direction in the plane with axes 1, 2. Let us ask the question,
if a spontaneous breaking of the invariance could occur? For answering the question
one has to add to Lagrangian (2.23) a small term, which breaks the invariance

0L=¢e¢. (2.27)

Now we lose equivalence of two axes, so the initial invariance is valid no longer. In
particular if one considers vacuum expectation value of field ¢,, it is not zero, due
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to (2.27), whereas (¢,) = 0. So we have

(1) =1, {¢,) =0. (2.28)

In a usual theory for application of the perturbation theory being possible, such vac-
uum averages should be zero. So we redefine fields in the following way

o=n+& ¢ =v. (2.29)

Now vacuum averages of both fields £ and v are zero and Lagrangian (2.23) takes the
following form

1 1 m’ m’
SV + 50808 - = P + &) - miEn- o’

1
~ % F,F,, +e(yd,-80,y)A, —end,yA, +en+ek (2.30)

A
(v 20 2+ 4 4+ 68+ 4B 1)
2
+ S AAW 8 284 ).

We have now to demand vacuum average of redefined field & to be zero. But we know,
that in case thereis a term proportional to a field itself in a Lagrangian the correspond-
ing average is not zero. So we look for the linear terms in £ in (2.30) and obtain the
following condition

e-m* - Ay’ = 0. @.31)

At this point we switch off the initial breaking term, that is we put e — 0 and obtain the
following relation There are two solutions of this equation. The first one is the trivial
one 7 = 0. The other one,

N =- 2.32)

just breaks the initial invariance. If both nominator and denominator are positive, the
solution does not exist. Condition A > 0 is inevitable, because if it is not so, a theory
becomes unstable. So we have to assume, that m?> = —mé is negative, that is not so
sweet, because means, that initial scalar particles are tachyons. However we shall see,
that this is not leading to observable effects. Thus, let us consider symmetry breaking
solution (2.32).

Let us look now at Lagrangian (2.30) and mark terms quadratic in scalar fields
S v 1 1 m2 A2 3 A2
S+ 30805+ L (v +8) - Shyt - Sh
Using equation (2.32) we get convinced, that field v has now zero mass and field &
acquires normal real mass

£, 2.33)

m, =0, mg= \/Emo. (2.34)
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The fact, that field y is massless occurs by no means by chance. It is consequence of
the general theorem, which was proven by N. N. Bogoliubov in statistical physics [40]
and was applied to particle physics by Goldstone [43, 44]. Bogoliubov—Goldstone the-
orem states, that in case of spontaneous symmetry breaking there is always a zero
excitation. For QFT this means inevitable existence of zero-mass field, in our case y.
The corresponding particles are usually called Goldstone particles.

Thus we have now vector field A, which initially is massless, massless scalar field
y and massive scalar field &. The appearance of the massless scalar field makes the
model unrealistic, because this means an existence of a new Coulomb force, which
is severely restricted by observations. However, as it is shown in works [52-54], there
occurs a phenomenon, which leads to acquiring of a mass by the vector field and at
the same time to a disappearance of the massless scalar from the physical spectrum.
Indeed, let us consider terms in equation (2.30), which are quadratic in the vector field

and in field y
1 1 e’ 112
“a F,WF,W + 5 aﬂx// aﬂy/ - enaﬂy/A,4 + >

One easily sees, that the last three terms are united into combination

AA,. (2.35)
e’ 112 1 1
> (A,4 - J o, 1//) (A,4 - J o, 1//) . (2.36)

The expression in brackets is just a gauge transformation (2.24), so we can introduce
new vector-potential

1
By =Au= V- 237)
Of course, the electromagnetic field can be as well expressed in terms of B,: F,,
d, B, - 9,B,. As aresult of this substitution field y disappears completely from equa-
tion (2.35), which is now expressed exclusively in terms of B
1 e? n

=7 FwFi + =5 BBy 238)

that is, it corresponds to a vector field with the mass
Mg =en. (2.39)

It comes out, that at the beginning we have four field degrees of freedom: two degrees
of the massless vector field, that corresponds to two possible states of its polarization,
and two degrees of freedom — one per each scalar. As a result of the symmetry breaking
we have massive vector field with three degrees of freedom, because a massive vector
particle has three polarization states, and one massive scalar particle, which corre-
sponds to the scalar field, which acquires nonzero vacuum average, i. e., former ¢, . It
occurs so, that the degree of freedom of the massless scalar field is used for a creation
of the additional (the third) degree of freedom of the vector field, so that it describes
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now massive spin-one particle. The physical sense of the Higgs effect is connected just
with this fact.

The problem, what solution of the two ones is preferable and has to be realized is
of the utmost importance. Here we can rely on a consideration of a classical interaction
energy. Indeed, the fact, that vacuum average (2.28) is not zero, corresponds to an
existence of classical constant field ¢, = #. Then in the expression for the energy all
derivatives vanish and it now looks like

m? A
Vigy) = > ¢ + Z¢j‘. (2.40)

Here we take into account, that L = T — V, where kinetic energy T is just connected
with terms with derivatives. The dependence of potential energy (2.40) on ¢, drasti-
cally differs for two cases: m> > 0 and m? < 0. As we see from 6.5, a minimum of the
potential energy for m*> > 0 is evidently situated at ¢, = 0, whereas for m?* > 0 it is sit-
uated at some finite point (/ﬁ = —m?* /) and is negative. This means that for the second
case there are two equilibrium points, but the trivial point ¢; = 0 is unstable. On the
contrary, the nontrivial one corresponds to stable state.

V(gy) 4f

1 1 n n n n 1 n n n n 1 n 1 1 n 1
0.5 1.0 1.5 2.0
1
Fig. 2.1. Dependence of the effective potential energy on ¢,. The upper line corresponds to m? >0,
the lower one corresponds to m? < 0.

The stable state with minimal energy just corresponds to a nonzero vacuum average,
that is it leads to the symmetry breaking with the properties being described. The posi-
tion of the minimum of course exactly coincides with solution (2.32). Let us note also,
that Figure 2.1 illustrates the statement, which was made above, concerning an insta-
bility of a theory with A < 0. Indeed, in this case for ¢ — co a potential energy tends
to the negative infinity, that evidently leads to instability.

It is important to note, that for the nontrivial solution the initial gauge invari-
ance (2.24) is broken, because now we have the massive vector field BM. The Higgs
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phenomenon occurs also in nonabelian Yang—Mills theories [15]. The application to
this problem is demonstrated in works [55, 56]. Let us proceed to the real situation in
the EWT. As we have noted, for a description of the electro-weak interactions we have
to use four gauge fields, corresponding to symmetry group SU(2) x U(1). So we have
three WZ, a =1,2,3 and one B,, in other notations
w!—aw? W+ aw?

W) = % w, = % W) =W, 2.41)
It is necessary to remind, that as a result of a breaking of the gauge invariance of the
theory we have to obtain three massive vector fields: W;, W;, Z u and a massless pho-
ton A,. Now W° and B have the same quantum numbers, being as well the same as
physical states Z and A are to have. So the last two can be expressed as linear combi-
nations of the initial ones

WP = cos Ow Z, + sin Oy A

p B, =~ sin Oy Z, +cos Oy A, (242)

w
where 0}, is usually called Weinberg mixing angle. To create three masses we need at
least three Goldstone bosons. We need also at least one scalar field which acquires
nonzero vacuum average and finally becomes an observable spin-zero particle. So
there is minimal number four for initial scalar fields. Thus we consider the standard
set of scalar fields, which correspond to spinor representations of the group SU(2),
that is ¢ is a complex doublet

¢ = (j) o' = (4] ¢)) 2.43)
2

Then the Lagrangian describing the intermediate bosons and scalars (2.43) in the
electro-weak theory is the following

1 1 2 2
L=-— 7 Wy, Wy, - n B,.B,, + (D)D) - m*¢'¢ - M¢')°,
B, =9,B,-0,B,
W, =9, Wy -0, Wi +ge™™ W, Wy, (244)

Charges of ¢ in respect to SU(2) : gand U(1) : g’ correspond to the following long
(covariant) derivative of ¢

T, 1
D,$p=0,¢ + ng,f?“qn Eg'BMgb,
4 1
(D, P =0,6" — 1gW; 5 ¢ - 3 g'B,¢". (2.45)

From equation (2.45) we see, that ¢ corresponds to representation (1/2,1) of the
SU(2) x U(1). Let us put again m* < 0, m* = —m}, then Higgs phenomenon occurs.
Let ¢, has nonzero real vacuum expectation value

($2) = % (2.46)
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Let us introduce new notations, which generalizes (2.43)

_ 1 vty t_ (Yai=ty, n+to—18
¢_ﬁ<n+0+15)’ a Z " ) Gan

Similarly to how we deal with the fields substitution in Higgs model, we proceed here
and obtain in place of equation (2.44)

1
SO0V + 3 aaa o+ a§a§+—°(wl + &+’ + 2o+ 1)

_Z((% +& +0%)? +2;10(1//i +& +0)+2;1(1//i + & +30)+4;130+114)

1o i 10 000

_Z WMvav - Z WMVWMV - Z BMVBMV (248)
g i g

Sy W, - Lok Wl - g8+ S wlw!

2
Ui 0o 1 0 '
+LgW ~g'B WS -8B+

Here i = 1, 2. By dots we designate numerous additional terms, which does not enter
into definition of masses and mixing parameters of fields. From the beginning we as-
sume the negative sign for the mass squared of the scalar field. The condition of the
vacuum average of the redefined field o be equal to zero is exactly the same, as equa-
tion (2.32) in the original Higgs model. Provided nontrivial solution is realized, fields
v;, £ have zero masses and field o acquires mass V2 m,. Namely this particle, which
remains in the physical spectrum is called the Higgs boson H and we have

My =Y2my =nV2 A (2.49)

We see also from equation (2.48), that massless scalars again are united in combi-

nations similar to that of equation (2.36) and the corresponding vector fields obtain

masses. The charged W' are redefined in the following way:

. . 1 .

w, - W, - —a,y, (2:50)
Iz “ogy

and have now the following mass:

g
My, = —. 2,51
W= (251

Neutral fields Wg and B, form the following physical combination:

!
7-__8 w__5 _p._ 2 9, (2.52)

and the neutral vector boson Z has the following mass:

1 ET g
+8

M, = (253)
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Comparing equation (2.52) with equation (2.42), we see, that the Weinberg angle is
defined in terms of the coupling constants in the following way:

!

g g
VgZT+g”? Ve¥+g?
Again from equation (2.48) we also see, that the photon combination (2.42) remains
massless. Thus we explicitly trace the action of the Higgs effect in the electro-weak
theory and obtain masses of intermediate bosons and Higgs scalar, value of vacuum
average # and expression of Weinberg mixing angle in terms of initial parameters of
the theory: g, g', A, m,.

Let us obtain also relation, connecting the parameters of the theory with elemen-
tary electric charge e . We know, that charged W* are to have unit charge. Hence, the
upper components of scalars (2.43) have also unit charge. So in long derivative (2.45)
electromagnetic vector-potential has to enter with coefficient e. Substituting equa-
tion (2.42) into equation (2.45) we have

cos Oy = sin Oy, = (2.54)

!
e= _58 _ g sin Oy (2.55)

Let us proceed to a description of an interaction of vector and scalar fields with
leptons and quarks. The interaction of the charged bosons W* with leptons and quarks
are to be described by expression (2.21) with charged current (2.1). For the beginning
let us take only the first term of the current, which contain the electron and the electron
neutrino. We have to formulate a Lagrangian having exact SU(2) x U(1) symmetry. We
know, that W* interact only with left-handed components of leptons, whereas a pho-
ton interacts with both components. Therefore, a minimal set of spin one-half fields
consists of a doublet of left spinors and a right electron, which is singlet in respect to
weak SU(2).

1+ 1-
\IlL = Tk( ‘;e ), \PR = 2))5 e. (2.56)

The spinor containing part of the Lagragian has the following form

1 — _
Lw = z(\PLyocDoc\PL - Da\PLya\PL)
1, _ _ _
+z(\PRy(XD(X\PR - D, YRy, ¥Yr) + 8o (V ¥ + VY1), (2.57)
where
DY, =0, + byt -
T = 0,1 + B o VL —181B Y, D ¥g = 0,¥g —18,B, %, (2.58)

and corresponding expressions for Dirac conjugated spinors. Here as usually the
gauge interaction of a Yang-Mills triplet with a doublet is defined by the same gauge
constant g, which enters equations (2.44, 2.45). In respect to U(1) symmetry ¥, belongs
to representation (1/2,-2g,/g’) and ¥, to (0, -2g,/g’) one. We will soon explicate val-
ues of hyper-charges. Note, that the right singlet does not interact with W field. It as
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easy to understand the fact, because ¥ has weak isospin zero, so adding two zero
isospin state one never obtains isospin one of W. The last term in equation (2.57)
is very important, because it provides an electron with a mass. Really, substituting
equation (2.47) with account of (2.56) into this term we have

AL, = 821 (éreg +egep) + BeT 84

YooV2 V2 V2

The first term of this relation is just describing an electron mass, namely

(ereg +eger) + (erer — egeyr), (2.59)

m = Sl V28 My
V2 g

where we have used equation (2.51) for the W mass. Hence, the symmetry breaking
leads at the same time to appearing of a mass of the electron (and of other spin one-
half particles). The second term in equation (2.59) is describing the interaction of the
Higgs boson ¢ with an electron (and similar terms with other spinors). We come thus
to a conclusion, that an interaction constant of Higgs boson with a spinor particle a is
proportional to its mass

(2.60)

g, = gmg
a \/E MW N
Let us return to the interaction with gauge bosons. Substituting equation (2.58) into
equation (2.57) we have the following expression for the interaction Lagrangian

8 . byb 5 7
Ly =- > YT WM yM\I’L +81 \I’LBM yM\I’L +8, \PRBM yM\PR. (2.62)

(2.61)

First of all we demand the Lagrangian (2.62) to describe correctly the electromagnetic
interaction. Using equation (2.42) we extract the photon interaction

(% e v,e sinOy+(8; 87, €, + 8, Ery.€r) COS OW) A, =e(@y,e; +egy,er)A,. (263)

The right hand side of the expression describes the well-known electromagnetic inter-
action (1.36). Demanding independent terms in equation (2.63) be equal in both sides,
we obtain the following conditions

% sinOy; + g, cosOy =e, g, cosOy =e,

- % sinOy; + g, cosOy;, = 0. (2.64)

Solving the set of equations we obtain finally

e e e
1= 2 cosBy’ gz_cosﬂw

g — s g’ = gZ‘ (2.65)

sin ew ’

We encounter already the first relation and the last one gives values of weak hyper-
charges of the left and the right spinors respectively

Y — (%,—1), Y — (0,-2). (2.66)
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Of course, we can also express g; in terms of g
8, =28, =g tanby. (.67)

Now from equation (2.62) we have interaction terms for W and Z

g v PR
e X . ) wh - 8%k 2.68
int 2\/5(91’;4( +95)Ve ptVe yﬂ( +ys)e ") 2 cos Oy o
1 ! =
x(‘_’e)’ﬂ( -;yS)Ve‘FéYM (_(1_251n26W)(-;—y5) *2 SinzeW(z—yS)) e>.

The first two terms coincide with expression (2.21) with current (2.1). Then we have the
following relation
g
=g (2.69)
I3 Sw

This relation allows us to connect W mass with other parameters. Indeed, from (2.22)
and (2.69) we have

M2 = gz V2 _ e? V2 _ T
w 8GF sinz engF \/E Sil’l2 GW GF’

(2.70)

where « is the fine structure constant (1.38). Here «, G and sin 6, were known from
experiments before W discovery, so expression(2.70) served for prediction of W mass.
Using equations (2.51, 2.53), we have

_ My
| cosOy|

z 71
The term in brackets by the Z, in equation (2.69) is the weak neutral current. It can be
represented in the following form

o 1_ 1._ .2 _ 3(V-A .2
J. = EVeYy(l +Y5)Ve—ie)’,4(1 +ys)e+2 sin” Oy ey, e :IM( )42 sin GW]zm. (272)

Now we can include in the theory also other elementary leptons and quarks of the Ta-
ble 1.1. The expression for charge current J, is already presented in equations (2.1, 2.3).
As a matter of fact this means, that in addition to doublet (2.56), we introduce the fol-
lowing lepton and quark doublets

uL 2 \yu 2 \r
1+ys( u 1+ys( C
Yo =73 5<d’>’ Ya=—3 5(5')’ 73

All the lepton doublets are (1/2,-1) and all the quark doublets are (1/2,1/3) in re-
spect to SU(2) x U(1). The prime at lower components of doublets is explicated by



40 = 2 Thestandard model

Cabibbo-Kobayashi—Maskawa matrix (2.3). We are to have also right components for
charged lepton and for all quarks. So we have the following set of right spinors in ad-
dition to (2.56)

1- 1-

¥, = T"S w W= T"S T, @.74)
1-v 1-vs 1-vs

Yyr = — Yer = 5 6 Vg = — £,
1-vs 1-vs 1-vs

Ypr = 5 d, Y= 5 Wgr = 5 b.

Here all leptons (the first line) are (0,-2), up quarks (the second line) are (0,4/3) and
down quarks (the third line) are (0, -2/3).

These newly introduced objects interact with gauge bosons and scalars in the
same way, as the electron and its neutrino, so that we have electro-weak interaction
Lagrangian of W, Z, A with leptons and quarks in the following form:

(]pr+];W;) —0] Z +e]emA

Lipe = - £
242 2 cos
]g = %(Oeyp(l + Y5)Ve + \'}Myp(l + y5)VM + Oryp(l + ¥Y5)v,
+ Uy, (1 + ps)u+ Ty, (1 + ps)c + by, (1 + y5)t) (2.75)
_ %(éyp(l +y5)e+ ﬁyp(l + Y5+ fyp(l +95)T
+ ayp(l +y5)d + 3y, (1 + y5)s + Byp(l + y5)b) + 2sin® Oy, J"

_ _ _ 2 _ - 1 - _ .
I = ey e + fay,p + Ty,T ~ 3 (@y,u + Ty, + ty,t) + 3 (dy,d +3y,s + by,b).

2.1.1 Feynman rules for the electro-weak interaction

Propagators for intermediate bosons, scalars ¢ and ghosts w -n £-gauge:

B - _1)—rY
w* . Q)" (k2 — M2, + 1¢) (g,w +(¢-1) o )
—1
AR Qn)*(k2 - M2 +1¢) (g,w (&- 1) EMZ)

1

P T - 0
1

%2 G M2 10

¢ = :

H:
(2m)*(k* = MZ +1€)
+ —t

© 2 -, + )
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-1

“2 " 2 (k2 —EME + 16)

-1
2 + )
Here & = 1 corresponds to the Feynman gauge, £ = 0 corresponds to the Landau gauge
and the limit for £ — oo gives the unitary gauge without ghosts. Note that from here
we denote the surviving scalar field ¢; by H and name it the Standard Model Higgs
scalar particle (Higgs boson).
Vertices for the boson interactions are the following, where incoming momenta
are correspondingly presented in brackets

(2.76)

A,u W:’ W;(k’ b; q) : (277:)4 € (g‘uv(kp _pp) + gvp(.pp - q‘u) +gp,4(qv - kv));
Z, Wy W, (ks p, q) : (27)" g cos Oy (8,1, (k=D ) +81p(Pu=d,) +8pu (dv—K,))s
WEWIWSWE - ig? (27) (€™ (8 ,108p 8 up o) H€ " €™ (8o up=8GinE o)

adn nbc

+e (g,,pgw 8v8po))s
W;L_ld (2m)" —\/_yﬂ(l +95),
W;c_iu (27[) —\/_yﬂ(l +95),
- 4 18 ( _ § .2 )
Zﬂuu. (2m) 4cos€wy" (1+ys) 3 sin” Oy ),
i . ig 4, @.77)
Zﬂdd : (2m) Teo 6 Yu (—(1 +y5) + 3 sin 6W>,
Z, Vv : (2 n) yﬂ( +95)s
7 zg .
Z 1 (zfz)‘* “ootn Pu(—=(1 + y5) + 4sin” 0y),

HW, W, =1(2n)" g My g,,,»

4 §My
HZ,Z, =1(2n) cosOy 8w

4 8 MJ'
V2My,’
Now we can proceed to applications. At first we demonstrate simple tools to deal
with W and Z decays in the lowest approximation, corresponding to the so called tree

diagrams. In numerical estimates we use here values (the precise values are present
in corresponding tables)

HY)Y; = 1(2m)

Gp=1.166GeV™?, sin’ @), = 0.23,
My, = 80.4GeV, M; =91.2GeV. (2.78)

Let us start with W decays, which are described by vertices (2.77). Calculation of a
decay into a lepton pair gives the following partial width provided we neglect lepton
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masses ) ;
F(W+ N o VI) — 4 MW — GFIVIW

48 1 6 \/E T
The same expression multiplied by 3 (the number of colors) is describing the decay
W — ud. We have three lepton channels, according to e, y, T and two quark channels
ud, cs. So to obtain the total width one has to multiply (2.79) by 3 + 2 - 3, i.e.,

=~ 227 MeV. (2.79)

9G: M;
L(W)= =% - 9.227MeV = 2.043 GeV. (2.80)
6V2
Branching ratios for different decay modes follow form the above and are 1/9 for each
lepton mode and 1/3 for each quark mode. these simple results are valid with a con-
siderable accuracy.

To deal with Z decays, we have to note, that (2.79) describes a partial width no
matter which sign stands in brackets (1 + y5). Contributions of left and right parts do
not interfere in the approximation of zero spinor masses due to orthogonality prop-
erty (2.16), so we have for a partial width

7 Gr M; 2, .2
I'Z - YY) = ——=-(g; + &%) (2.81)
12v2n ot TSR
where g; p are coefficients afore (1 + y;) respectively in brackets of expressions (2.77)
for a corresponding vertex. We calculate in this way the total width and obtain
3

G M 2
r(Z)= ——% <21—405+ 16&) =~ 2.43GeV.
122 3

s = sin” 0. (2.82)

Again simple estimate gives a satisfactory value (T, = 2.4952 + 0.0023 GeV). It
easy to obtain also branching ratios for different decay modes. For instance. invisible
neutrino modes have each G; = 1, g = 0, so for three neutrinos we have

1—‘invis 3
dmis 2~ 0.1994, (2.83)
Top 21 -40s+ 19

to be compared with the measured value 0.2000 + 0.0008, that as is well-known, fix
the number of light neutrinos to be just three.

Thus simple tree-level calculations give satisfactory agreement with data. How-
ever, the lowest order of perturbation theory may be the same in different physical
theories. So, a real proof of of the validity of a theory can be achieved only after mea-
surement of radiative corrections. Such was the history of a justification of QED. Now
precision of experiments on electro-weak effects allows to measure also radiative cor-
rections. The totality of data gives now precision tests of the Standard Model, the part
of data are presented in Table 2.4. For proper comparison one have to take into account
the the electro-weak corrections as well as the QCD corrections.
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Let us discuss briefly the QCD corrections. First of all we have to take into account
the fact, that all quantities, connected with color objects become running with Q?.
That is, we have running strong coupling constant «(Q*) and running quark masses
mq(QZ). Secondly, all probabilities of quark — antiquark decay channels have to be
multiplied by the famous factor

MZ
+ “s( Z)

T

=1 (2.84)

S

This factor has to be introduced, e.g., in calculations of Z width. We have instead
of (2.82) with account of (2.84) and ag(M,) = 0.119

3
r(z) = iz (6 125+ 245 + R, (15 285+ 385
12V2n
that remarkably improves agreement with the experimental number. In the similar
way other radiative corrections are calculated with necessary precision that allows to
perform estimation of agreement of the theory with the experiment. The main points
of the comparison are presented in Table 2.4. The notations there are the following:

2

)) =2.494GeV, (285

hadronic peak cross-section at vs = M, oy

partial leptonic and hadronic widths L L I, O Ly I T, I, I
the total hadronic width I,=T,+;+T,+I[.+T,
ratios R;, Ry, R,

asymmetries Abe, ASp

The notations here needs explications, which follows below:

Linyis = Ti(2) - T, - r‘u - I —Th

Ty Ty . _ 12aT, T,

R=—, R, .= , Op=
1 b,c T, h FZM§

= , 2.86
T, (2.86)

and asymmetries are defined according to the following relation:

At ole et — bl_’)p —oalee” — bl_’)B, (2.87)
o(e"et — bb)r + o(e"et — bb)g

where o7 corresponds to the b-quark flying inside the forward hemisphere in direction
of the electron momentum.

2.1.2 Higgs scalar search
The existence of scalar Higgs particle is one of the main keystones of the electro-weak

theory. Let us summarize properties of the particle. Remind, that its coupling are pro-
portional to masses of particles. With My increasing its interaction becomes stronger.
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For My in the range 114-130 GeV the dominant decay channel of the Higgs boson is
H — bb. In the first approximation the partial width of a decay to a fermion pair is
the following

G 4mf 2
IH—ff)= ;\/F_MH f< 7 ) i (2.88)

The channel of Higgs decay to vector boson pair corresponds to the following partial
width

Gr M,
I'H - VV) = Ton \/_8‘,\/1 4x (1 - 4x+12x) X =

2
—Z 2.8
Mz (2.89)
where §y, =2, 5, = 1.

The decay channels to (yy), (Zy), (gluongluon) proceed via loop diagrams and the
resulting widths are written down below

2

I(H—yy)= 128 3 \/— |AW(TW) + Z N¢ Qf Af(Tf)| (2.90)
G S
I(H—gg)= 62 - \/_I zAf(Tf)l (291)

where 7, = M7, /(4 mfz) and

21 +37+3f(1)2T - 1))

Ay (1) = = (2.92)
20+ f(r)(r -1
ay(a) = 2D = 1)
T

where

flr) = - arcsin2 NT for T<1, (2.93)

VTl
=——|In - or 7> 1.

0=~ — =l S
For H — yy and for H — Z y the W loop provides dominant contribution for not very
large My.

The intensive search for the Higgs boson is performing at the LHC and recently it
results in discovery [57, 58] of aresonance at mass M = 125.7 +0.6 GeV with properties
consistent with those predicted for the Higgs particle. We shall return to discussion of
this discovery in the subsequent chapters.

2.2 Status of the standard model

We consider the Standard Model to be the reliable basis for description of elementary
particles physics.



2.2 Status of the standard model =— 45

Let us present the main experimental data in comparison to the SM calculations
according to [59] in Table 2.4. We have to compare the second column, representing
experimental results, with the rest three, which present results of the overall fit in the
framework of the electroweak theory. We see, that the agreement is satisfactory while
there are only two points, in which there are discrepancies slightly more than 2 stan-
dard deviations. The are the forward-backward asymmetry Agbb in decay Z — bb and
the relative probability of decay Z — bb. Nevertheless the overall fit is in good form,
so we may conclude on behalf of the agreement of the theory and the experiment.

We have also to bear in mind, that the totality of experimental data on hadronic re-
actions at high energies including the recent data from the LHC experiments agrees the
QCD predictions. In doing this comparison the behavior of the running coupling (1.69)
with parameters (1.70) is used. The value of a (M) quoted in (1.71) is taken just from
data, presented in Table 2.4.

There is only one suspicious point in all the totality of data. This is the anomalous
magnetic moment of the muon. We know, that a charged spin one-half particle has

Dirac magnetic moment
€

2m

D

0
m
The radiative corrections give additional contributions D,, = D?n(l + a,,) to this quan-

tity and according to measurements of this contribution to the electron [12] and the
muon [60] we have

a?® = 11596521807.3(2.8)- 107,
a;? = 11659208.9(6.3)- 10710, (2.94)

The first number for electron agrees calculations in the framework of QED with ac-
count of the electroweak and hadronic contributions. However the second number
deviates from such calculations, which give the following contributions to a,,

a?*’ =(11658418.853+0.037)- 107",

aﬁW =(154+2.0)-1071, aﬁ“""’" = (6967 +59)-1071%. (2.95)
theor _ _QED EW hadron
a,4 = a,4 + a,4 + a,4 .

Thus we have the following discrepancy with significance 2.9 ¢

Aa, = a? - al'* = (249 +87)- 107, (2.96)

The other method of processing of data [61-63] gives rather larger significance of
the effect

Aa, = a? - al'* = (349.3£82.3)- 107!, (297)

This would-be discrepancy may cause serious trouble for the perturbative electroweak
theory. We shall consider possible nonperturbative contributions to a, below.
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Table 2.4. Input values and fit results for the observable and parameters of the global electroweak
fit. The first and the second columns list respectively the parameters used in the fit and their experi-
mental values. In the third column the fit results are given

Parameter Experiment Fit result
M, [GeV] 125.7 £ 0.4 94%23
My [GeV] 80.385 + 0.015 80.377
M;[GeV] 91.1875 + 0.0021 91.1874
oD [nb] 41.540 + 0.037 41.478
RY 20.767 +0.025 20.7142
A% 0.0171 + 0.0010 0.01645
sin” 0l 0.2324 + 0.0012 0.2314
A 0.670 + 0.027 0.668
A, 0.923 + 0.020 0.935
ALS 0.0707 + 0.0035 0.0742
AP 0.0992 + 0.0016 0.1038
RO 0.1721 + 0.0030 0.1723
RY 0.21629 + 0.00066 0.21579
ag(My) - 0.1191 +0.0028

We present in Table 2.4 the comparison of experimental values of several parameters
with the corresponding calculated values being obtained from the overall fit.

We see from Table 2.4 possible discrepancy in value of forward-backward asym-
metry Agbb in process e* e~ — b b at energy /s = M,

40D _ 40.b
AAYY = 2P0~ _ 0,044 +0.016. (2.98)
AFBth

It is 2.8 s.d. effect, so the statistical significance in rather poor, however one may bear
this problem in mind also.

There is also one very interesting problem, which speaking formally contradicts
the Standard Model. We mean the problem of the neutrino oscillations.

In the electroweak Lagrangian (2.75) we assume neutrino masses to be zero.
However, there is no convincing argument for this prescription, contrary to cases of
gauge vector bosons (the photon and the gluons). In case masses of neutrinos are
not strictly zero, they may be mixed one with the other analogously the case of lower
quarks (d, s, b) mixing. This mixing is described by Cabibbo-Kobayashi-Maskawa
matrix (2.3). Let us for simplicity consider case of two different neutrino states v, and
v,. Let us suppose, that states with definite masses are not these electron and muon
neutrinos, but states, which we designate v; and v,. Then in general we have the
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following relations

Ve = €OS pV; +sin ¢v,, Vv, = sin §v; +cos PV, (2.99)

where ¢ is a mixing angle. Let us consider time dependence of state v,, having mo-

mentum p
—1Et —1E,t

[v(t) >=e cos|v; > +e sing|v, >, (2.100)

where

E, = \/p2 +m?, E,= \/p2 +m3. (2.101)
Now by writing in expression v, , in terms of v,, v, according to (2.99, we have

—1E,t —1Et e—zElt

[V (t) >= (Bt cos? $+e sin’ ¢) v, > +cos¢ sing (e v, >. (2102

Now the probability to detect the muon neutrino v, if for ¢ = 0 we have pure neutrino
electron state is the following

W, —v,) = % sin® 2¢ (1 - cos(E; — Ey)t). (2.103)

Substituting relations (2.101) into expression (2.103) and using distance x instead of
time ¢ we have the following result for probability of v, — v, transition

1 Am? x
W(veavﬂ):z sin’ 2¢ (1—cos > ),
p

Am? x
= sin® 2¢ sin® 4—, Am? = m% - m% (2.104)
1%

The probability for v, to remain itself is evidently the following

Am? x
W(v, > v,) = 1 — sin’ 2¢ sin’

(2.105)

The phenomenon of neutrino oscillations was predicted by B. Pontecorvo [64] and
discovered first in atmospheric neutrino studies [65].

We have in interaction Lagrangian (2.75) three neutrinos. Thus for complete de-
scription of oscillations we have to use all three neutrino mixing (see, e. g. [66]), which
is described by 3 x 3 matrix in the commonly adopted notations

—18
Ve C12C13 $12C13 € Si3 V1
_ 16 16
Vu | =| —S12€23 —€7C12513523 €12Cp3 —€ 512513523 €133 v, |. (2106)
’ 16 16
v —€7513C12C3 + 513523 =€ 513513023 — €12523 C13C23 V3

T

Here, as well as in expression (2.3), s;; = sin6; and ¢;; = cos 6;;.
After the discovery [65] the phenomenon was extensively studied and nowadays
we have considerable information on the parameters of neutrino oscillations, which
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may be found in [4]. Values of differences of the mass squared A m? are of the most in-
terest for the forthcoming discussion in the book. The available data are the following

sin® 20, = 0.857 + 0.024, sin’ 26,; > 0.95,
sin® 26,5 = 0.095 + 0.010,

Am?, = (7.50 + 0.20) - 107 eV?, 2.107)
Am3; = 0.00232 300002 eV?,

Strictly speaking nonzero masses of neutrinos and their mixing do not contradict to
the ideology of the electroweak interaction.

In any case the Standard Model seems to be in good form now. The only possible
deviations may be due to nonperturbative effects of the electroweak interaction. We
shall return to these considerations in the forthcoming chapters.

However, there are problems of hierarchy and of naturalness. The hierarchy prob-
lem is connected with the danger of an instability of the Standard Model in relation
to quantum corrections [67, 68]. This is connected with existence of the fundamental
scalar field of the Higgs boson. Even the second order correction to the scalar field
mass is quadratic divergent. We have already mentioned in Section 1.3, that natural
scale of effective cut-off may be connected with Planck mass (1.44). But then with in-
teraction of the Higgs scalar defined by rules (2.77) with other fields we see, that the
largest contribution is given by the t-quark loop with H ft vertex

g M;
V2 My,

One loop diagram gives the following contribution to (AMy)? after the Wick rotation

1(2m)" HY, ¥, (2.108)

AZ

3g° M} - M; 3g° M}
(AMy)* = 5 gz M; J {)Ey Mzt)z)dy ~ ST gz M; A’ = 0273A%.  (2109)
+ s
W o t w

where we take physical value g = 0.65 and masses from Tables 1.2 and 2.4. With typical
scale of the electroweak interaction

2M
n= TW = 247.221+0.002 GeV, (2.110)

we obtain the corresponding value of A

2aM
A=y W, 2 L 091TeV. 111)
gM, \3

Thus we are to have the effective cut-off somewhat less than TeV. That means that on
this level some New Physics have to manifest itself. However, all experiments devoted
to searches for the New Physics give negative results at this scale. Thus the problem of
hierarchy may cause troubles for good form of the Standard Model.
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There is also important problem, which consists in the question, what is the prin-
ciple, which defines values of numerous parameters entering the Standard Model. In-
deed, we have two gauge couplings and the Weinberg mixing angle, which are defined,
e. g., by the following relations

ay(M,) = 0.116 + 0.001, =127.916 + 0.015,

a(M,)
sin’ Oy = 0.23108 + 0.00005. (2.112)

We have masses of 6 quarks, 3 charged leptons and the W boson mass, which are pre-
sented in tables, and the Higgs boson mass, which we have, discussed above. Note,
that the W boson mass with use of parameters (2.112) defines also the Z boson mass
and vacuum average 7 (2.110). We have the Cabibbo—Kobayashi—-Maskawa matrix (2.3)
with four independent parameters. In addition it is necessary to have yet unknown
masses of three neutrinos and four parameters of the neutrino mixing matrix (2.106).
Thus we have at least 25 independent parameters, which defines the Standard Model
in the framework of the perturbation theory, and no leading reasons yet on how to un-
derstand their experimental values. This problem represents special interest for inter-
pretation of results to be considered in the book. It is also of considerable interest the
problem of how to calculate nonperturbative parameters, such as condensates (1.83).
We shall as well deal with these problems.

2.3 Properties of nonrenormalizable equations, instructive
example

All the theories consisting the Standard Model but the gravitation belongs to the class
of renormalizable interactions. However, the theories, which often used as effective
theories are formally nonrenormalizable, while as a rule it is assumed, that such the-
ories act in a restricted region of the momentum space. This could be achieved either
by introduction of a cut-off, or by using nonlocal variants, which as a matter if fact
lead to severe difficulties with maintaining of the unitarity and the locality. However
for a long time a phenomenon of arising of self-consistent damping in nonrenormal-
izable theories is known. Let us consider an example of this phenomenon [69], which
for our presentation is quite appropriate, because here we develop a method, which
shall be used throughout all the book.

Let us take a theory of interaction of massive vector fields A,(f ) with massless scalar
fields gb(i), which is invariant in respect to transformation of some group, and the mul-
tiplet of vector fields corresponds to adjoint representation of the group. Thus we take
the interaction Lagrangian in the following form

- oW
Line = Ay ¢? ;57 AL, (113)
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]
+

Fig. 2.2. Diagram representation of equation 2.115. Simple lines represent the scalar field and the
dotted ones represent the vector field.

Her ¢ are structure constant of the symmetry group. For example, for SU(2) ¢ = €
for SUB) ¢ = fijie-

Let us consider the full vertex function of the interaction of the scalar field with
the vector one. In doing this we use approximate equation for a vertex function,
which graphically is shown in Figure 2.2. It is evident, that the approximation, which
is used in this equation is equivalent to the well-known ladder approximation in
Bethe—Salpeter equations. Let us introduce for the diagram in the left-hand side of
the equation the following definition

(2m)" Mgy, = 2m)* A c o T, (0, ). (2.114)

The equation for function I,(p, k) in the ladder approximation is the following

al)’ J (+q)° -k - [(p*-g>)* - (k,p - q)°]/m’?

L,(p.k)=2p,Z
WPI) = 2P 2 T (- -mlq- 57+ 5

I,(g.k)dq,

(2.115)
where m is the vector field mass and a = 1 for SU(2) group, a = 3/2 for SU(3) group.
The possible renormalization of the vertex needs introduction of factor Z before
inhomogeneous term in the equation.
Let us consider equation (2.115) for ku = 0. In this case we succeed in obtaining an
exact solution of the equation. Vertex I, in this case has the following simple structure

I,(p,0) =2p,F(p?). (2.116)
Let us perform Wick rotation in equation (2.115). This means the following substitute
dg —1d'q, ¢, p% (pq) = -@*,-p*,-(pQ). (2.117)

where now d*q corresponds to integration in the four-dimensional Euclid space. In
what follows we shall always use the Wick rotation (2.117) in studies of analogous
equations.

Let us rewrite the equation in the following symbolic form

F=Z+I+K,F+K'F, (2.118)
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where

2 4 2
al J dq_ 29 F(g%), (2.119)

“mip? ) 2n)t ()

_a) ([ d'q [*-4)’(pg) 2] F(g%)
KoF= g2 J 2n)" [ v-a2 2P|
K'F= 4ar J d'q Pr’a’ -9’ F@)

P2 ' 0-9?lp-92+m] @7

Here the first line defines constant integral. Let us look for solution F in the form
F = F° + F', where the main part of the vertex function is defined from the follow-
ing equation

F'=Z+I+K,F°, (2.120)

and F' is defined by
F=KF +K +K)F. 2.121)

Here we study solution of equation (2.120). It is possible to show, that equation (2.121)
may be solved by iterations and these iterations converge [70].

Let us consider equation (2.120). We use spherical coordinates of the four-dimen-
sional Euclid space

gy =¢q cos6, ¢q, =q sin0 cos¢,

g, =g sinf sin¢ cosy, ¢, =g sin0 sin¢ siny, (2122)
d'q = % q* dq? sin® 66 sin ¢ d dy.

We choose 0 to be the angle between p and g, that is (pq) = pqcos6. Then equa-
tion (2.120) can be rewritten in the following form (from here we omit zero in the su-
perscript of F)

T

ar | .2 2
Fx)=Z+1- m J dyF(y) J sin” 0 cos” 0.dO
0 0
ax 7 LF(y) [ sin®6 Xy cos 0 do
—— | ydy(x -y)"—= , 2.12
+m2(2n)3jyy(x Y) y?2 Jx+y—2\/x_ycose (2123)
where x = p?, y = ¢*. Applying the simple, but very useful relation
T .2
sin” 6 dO m[1 1
—_— = — | =9(x - =9y -x|, 2.12
JX+y—2Wcos€ 2 [XS(X y)+y9(y X)] (2120

0
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where, as usually, 9(x) = 1 for x > 0 and 9(x) = O for x < 0, we obtain the following
equation

X X [e¢] 0
Gl1 (.2 2 dyF(y) o (dyF(y)
FO) = A + E[F [ vavro)- = [yayro) - 2x | e | 2,
0 0 X
G [ 3aa?
I=Z+ o 6[ dyF(y), G-= rymp— (2.125)
Here we have introduced the following notation
G o0
A=7+— de F(y), (2.126)
12 ]

and demand renormalization constant Z to be chosen in such a way, that quantity A
being finite. Finally constant (2.126) has to be defined by normalization condition

2 2 k 2
Lk =2p, Kk =-m", <pi 5) =0. (2.127)

Let us proceed with equation (2.125). If one try to solve the equation by iterations,
starting of zero approximation F, = A, already in the first approximation logarith-
mic divergent terms appear and in subsequent approximations appear power diver-
gences with growing powers. This picture is appropriate to nonrenormalizable charac-
ter of initial interaction (2.113). However, there exists the unique solution of the equa-
tion (2.125). The simplest way to show this is to reduce the equation (2.125) to a differ-
ential one by proper application of sequential differentiations. In such a way we are
persuaded, that equation (2.125) leads to the following differential equation

a1 d GF 4A
E[}E )] PR (2128)

This equation reduces to the well-known Meijer equation [71], which in the standard
form with substitution z = G x is the following

d d d d
<ZE+2> <ZE+1><ZE_1><ZE_2>+Z] F(z) = 4 A. (2.129)

Of course, not each solution of equation (2.129) satisfies integral equation, which with
use of variable z is the following

A1 (a2 L [dtFo [ dtFw
F(z)_A+12[226[tth(t) Za[tth(t) ZzJ ; +zJ 2 ],

z=Gx, t=Gy. (2.130)



2.3 Properties of nonrenormalizable equations, instructive example == 53

A solution of differential equation (2.129) has to fulfil boundary conditions at zero and
at infinity. For us to be able to formulate these conditions and to show, that they can
be fulfilled, we have to consider asymptotic behavior of solutions in this points.

A general solution of equation (2.129) has the following form

4
F(z) = Fy(2) + ). CiFy(2), (2.131)

i=1
where F,(z) is a particular solution of inhomogeneous equation (2.129), which evi-

dently is the following
4A

Fy(z) = —. (2.132)
z
Linearly independent solutions of homogenous equation F;, i = 1,2, 3,4 are just the
Meijer functions. In view of application to the present problem, as well as to numerous
problems being discussed in what follows, we present here necessary properties of
these functions:
F(x) = G;,”;(x|21 """ Z") (2.133)

------

is a solution of the following differential equation:

p q d
_1\p-m-n o _ b _ v 4
1) x}l;[(s a;+1) ]1:1[(5 b|Feo=0. s-x=.

Independent solutions are defined by proper choice of upper indices m, n of func-
tion (2.133).

An asymptotical behavior of a Meijer function for x — 0 is defined by the following
decomposition

. ™ T(b; - by) [T, T(1 + by, — a;)
L B I
| Hj:m+1 I(1 + by, - b]) l_[j:n+1 r(aj = by)

(2.135)

1+by—ay,...1+by—a,
xF, ._ -
P>q=1 | 14by=by,.o®ses 14+by=bys (-1)P 11 x | 2

p<gq or p=q and x| <1.

Here
F 1+by—ay,...1+by—a, _
P24=1 [ 14by=by s pen 1by—bys (1P x

(1+by—a;)--(1+by-ap)

1 _1p—m—n
+=1 A+bp=by).. v (A+by-ay) '

is a generalized hypergeometric series with p upper indices and g — 1 lower indices, in
which index with number h is omitted. The prime in the product of I-functions means,
that the term with j = h is also omitted. Note, that Meijer functions are defined for any
relation between parameters. In case of difference of some parameters being integer,
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that leads to singularities in expression (2.135), one has to supply the parameter by a
small increment ¢, and perform in expression (2.135) limit e — 0. This procedure leads
to an appearance of logarithmic terms In z, In® z etc in asymptotic (2.135).

For x — co we have

'n m
' h=1 Hj:n+1 I(1+ a; — ah) 1_[j:n+1 r(ah - b])

1+b;y —ays..» 1+by—ay

x F’I’P—l [1+a1—ah,...,*,...,1+ap—ah;(—1)‘1*’"*” x|’ (2.136)

qg<p, or p=q and |x]>1.

From (2.135) we see, that we have at x — 0 power behavior x’*, where by, is the
smallest parameter bj in the decomposition (2.135), or xPt In x in case of two coincid-
ing parameters b; = b; = by,. For x — oo we have asymptotic x“~* also with possible
logarithms in case of coinciding parameters. By the way, Meijer functions are prop-
erly defined for all values of parameters including coinciding and differing by integer
numbers. In this cases one has to introduce small difference ¢, perform necessary eval-
uations and take the limite — 0.

For x — oo G-function has power behavior provided p < g either

n>1, m+n>¥, |argx|<(m+n—¥>n, (2.137)
or
qg=p+1, |argx|—(m+n—p+2k—1)<§, (2.138)
where k is an integer number. Provided x — oo and p < g and
m > pwth’ n=0, J|argx|< (m—%)n, (2.139)

the G-function decreases exponentially. Under the same conditions for x, p, g the G-
function increases exponentially at the following regions:
if g > p = 2 one has to take either

m+n>p+q and |argx|—(m+n—w>n< E, (2.140)
2 2 2
or
m+n< I% forall argx. (2.141)
In case
m+n:p+q

G-function has oscillation asymptotic for real positive x

)% cos ((q - p)xﬁ +¢), (2.142)
q—p—1+22f:1ai—22;1:1bj
2(q-p) )
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A power factor with the same c appears also before a decreasing exponent in case (2.139)
and before an increasing one in case (2.140).

Let us apply this information to our problem of solution of integral equation (2.130)
using solution (2.131, 2.132) of differential equation (2.129). We may choose the follow-
ing set of linearly independent solutions F;

Fi(@) = Gy(z|1,-2,-1, 2),

Fy(2) = Goa(z12,-2,-1, 1), (2.143)
F3(2) = Gao(z1-1,1,2-1),

F,(2) =G(z|-2,1,2,-2).

Let us note here, that in case of p = 0 (no upper indices) we write lower indices in one
row.

First of all, let us formulate conditions for z — 0 and for z — oco. It is easy to see,
that in homogenous part of equation (2.129) b, = -2, b, = -1, b; = 1, b, = 2. Thus
we have solutions with asymptotic z’* at z — 0. Let us try asymptotic behavior

F(z) ~ le (2.144)

Substituting this behavior into integral equation (2.130) we reproduce only term with
asymptotic F ~ 1/z. Thus behavior (2.144) is excluded. In the same way we get con-
vinced, that a term with asymptotic behavior 1/z is to be excluded also.

On the other hand, solutions F;, i = 1, 4 forz — co with account of power
term (2.142) have following behavior

F =z Y Cy expla 42", (2.145)
k

where a,, are roots of equation a* = - 1, that is

a, =", a,=e™ ay=-e"", a,=-e"" (2.146)

Integrals in equation (2.130) are to converge at infinity. However, due to properties at
infinity (2.140) F,(z) and F,(z) exponentially increase at infinity. Therefore we may
choose only F5(z) or F,(z). From these F;(z) behaves as 1/z for z — 0, that is neces-
sary for cancelation of singular behavior (2.132) of the particular solution of inhomo-
geneous equation (2.129). Thus we are rested with F;(z) and this fixes the following
solution

F(2) :A(g -2G(z1-1,1, 2,—2)). (2.147)
According to (2.135)
G(z1-1,1,2,-2) = % (1 - %) +0(2), (2.148)

therefore undesirable terms containing 1/x cancel and F(0) = A. In the first approxi-
mation normalization condition (2.127) gives A = 1. Thus we obtain the unique solu-
tion (2.147) with A = 1 of equation (2.130).
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It also instructive to rewrite solution (2.147) in another way. Let us multiply differ-

ential equation (2.129) by operator
d

z e

then the equation becomes being a homogenous Meijer equation with set of parame-
ters b; : -2,-1, 0, 1, 2; a; : 0. Taking into account all boundary and normalization
conditions we again come to the unique answer

F(z) =26 521010 1.5)- (2.149)

Of course expression (2.149) is identic to (2.147) with A = 1. This is consequence of the
useful general relation

m
Gml (ZIO ) _ 1 Hf:Z r(1+bf)_
,b2,...b,,— -
1g+1 0,b2 g 1 z H;]:m+1 r(_b])

Gy (21 =1, by,..., by). (2.150)

Let us present also another useful relation, which is usually absent in textbooks. It
will be applied below in the book.

Gml (Z Il ) — M
1g+1 1,b2,..,b,,0 ][‘I:m+1 r(]. _ b])

- Gy (210, by,..., by). (2.151)

We have demonstrated the method of solution of this equation in view, that in
what follows we repeatedly will encounter similar equations and the method, de-
scribed here, will be applied.

It seems also advisable to show the expression for an integral, containing a Meijer
function and a variable power factor

j Xtemr (x|;;) dx = G (x|1'“f+“). (2152)

p+lg+1 bi+ «,0

We shall often encounter integrals of this type in what follows.
We would also present here few useful relations, which one encounters in calcu-
lations in the framework of approach being developed in the book

« ~mn a4\ _ ,~mn a;+a
x* Gpy (X|bi) =Gy, (x bi+“)’ (2153)
mn Aoyt @ Q150 @y ~mn-1 Aypevy A1 A0
Gpq (X|b1,...,bm,...,bq,1,a )— Gp_1g-1 (X bbby )’ (2.154)
mn Aoy b, Qs A )_ m-1n ( A sevs Ay A e A )
Gpg (XIbl,...,bm,l,b,bmﬂ,...,bq =Gy 14 X|b1,...,bm,1,bm+1,...,bq J (2.155)
o0
st C1) mn a;\ _ m+t,n+s Ay v Qo= 5005y Ap15005 Ay
j Guv (X dy qu (a)lel_) - Gp+V,II+u (w|bl,...,bm,—cl,...,—cu,bmﬂ,...,bq : (2‘156)
0

Relations (2.154, 2.155) means, that equal upper and lower indices cancel cross-wise.
Other useful formulas may be found in textbook [72].
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3.1 Origin of the approach

The compensation approach was introduced and elaborated by N. N. Bogoliubov
firstly in application to problems of statistical mechanics (see [40]). Let us illustrate
the approach with the case of an ideal isotropic ferromagnetic. Let us start with the
dynamical system with the following Hamiltonian (Heisenberg model)

1

H=-2 % I(fi-f)(8;, - Sp), (1)
(fuofy)

where (f) are space points corresponding to points of a crystal lattice, S; are spin vec-
tors with the usual commutation relations, I(f; - f,) are nonnegative numbers. We
assume, that I(f; - f,) are positive for points f;, f, being the nearest neighbors.

For this system each component of total spin § = } ) S; is the integral of the
motion. We have also

Si S] - S] Si =1 eijk Sk’ (32)
Now we have the following definition of an average (2() of a dynamical variable 2/
Trace (A e7H/°
@A) = Trace@e ) 33)

Trace (e H/9) ~
Due to S, commutes with H we have
Trace (Sy Sxe‘H/ 9) = Trace (Sy et/ GSX) = Trace (S, Sye‘H/ 0 ), (34)
and from (3.2) we immediately obtain
Trace (S, et/ 9) =0. (3.5)

The same relation is valid for S,, S, and so
Trace (Z Sf> = Trace (S) = 0. (3.6)
"

Let us introduce magnetization vector of the unit volume 9t = u/V' S. Then we have
from (3.3, 3.6)
(o) = 0. (€¥)]

Thus the usual average of vector 91 equals zero, that evidently corresponds to isotropy
of the system in respect to the rotation group. Let us emphasize, that result (3.7) is valid
for any temperature including those being below the Curie point. However we know
that in the last case the magnetization vector differs from zero and its direction can be
chosen arbitrary. Thus the state of statistical equilibrium is degenerated.
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Let us switch on an external magnetic field ve (v > 0, e* = 1) and change Hamil-
tonian (3.1) for the following expression

H,=H+v(e-IMV. (3.8)

Then bearing in mind well-known properties of a ferromagnetic below the Curie point
we see, that
(M) =eM,, (39)

where M, will tend to nonzero limit with intensity of the external field v tends to zero.
We have here instability of the usual averages with addition to Hamiltonian (3.1) of
term v (e - 9) V with infinitely small v, which result in a finite increment of average
().

Then Bogoliubov introduces the notion quasi-average. Let us take a dynamical
quantity A, which consists of combinations of products

St -+ SF (8,
and let us define quasi-average <A > of this quantity by the following prescription

(3.10)

ve>

<A>= lin(l)(A)

where (A),, is the usual average of A for hamiltonian (3.8).
In this way the existence of a degeneration immediately results in dependence of
quasi-averages on direction of unit vector e. It is evident also, that

(A) = j <A> de.

The conception of quasi-averages proves to be very effective in dealing with the
most interesting phenomena such as the superfluidity and superconductivity. In par-
ticular, this approach quite adequately describes phenomenon of spontaneous break-
ing of an invariance. Such problems, as we have seen in Section 1.6.2, inevitably arise
in problems of elementary particles interactions. In what follows we would discuss
these problems in details.

3.2 Application to QFT

Now we would like to apply N. N. Bogoliubov quasi-averages method [40, 42], which
is the most consistent and effective method of studying of a spontaneous symmetry
breaking problems, to problems of the Quantum Field Theory.

An important point of the quasi-averages method is connected with a compensa-
tion equation [40, 42]. Bearing in mind numerous applications of these equations in
the book, let us briefly formulate method of construction of the compensation equa-
tions. In the line of a study of a possible spontaneous symmetry breaking in quantum
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field theory problems in method [40] the following procedure is applied!. Let the initial
Lagrangian
L=1Ly+ Ly, (3.11)

to possess some symmetry. Let us add to expression (3.11) some term €L,,, which
breaks the initial symmetry. With this modification of the problem we perform evalua-
tions of necessary quantities and we sete — 0 only after these evaluations. Not always
the results of such a procedure (quasi-averages) coincide with results, obtained in the
framework of the initial symmetric problem (simply averages). In the line of these
evaluations of quasi-averages one has to solve compensation equations. For instance,
in a theory with the initial chiral symmetry fermions are to have zero masses. Let us
use the following small increment which breaks the symmetry

€L, =-€yy. (12

Now let us add to the modified Lagrangian (3.12) a possible mass term and subtract
the same. We have
L=Ly-myy+Ly,+myy—eyy. (3.13)

Let the fist two terms to be the new free Lagrangian while the three last terms now
comprise the new interaction Lagrangian. Then we have to demand the new interac-
tion does not contribute to the mass term, that is two-field Green function obtained
from the modified interaction Lagrangian be zero on the mass shell. This condition is
just the compensation equation of the problem. In the case under consideration this
condition leads to equation

-m+e+2(m)=0, (3.14)

where Z(m) is mass operator on the mass shell of the modified free Lagrangian. In
this equation one already can set e — 0. As a rule (see e.g. [73]) mass operator X(m)
is proportional to m and trivial solution of the compensation equation m = 0 always
exists. However a nontrivial solution m # 0 also may exist.

Thus the main principle of construction of a compensation equation consist in
the procedure “add-subtract” of symmetry breaking terms, one of these terms be-
ing related to the free Lagrangian and the other one being related to the interaction
Lagrangian. Then one has to compensate that term, which is to be zero in the corre-
sponding problem. This principle will be applied below.

1 At first methods [40, 42] where applied to quantum field theory problems in work [73].
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3.3 Aspontaneous generation of the Nambu-Jona-Lasinio
interaction

We have already discussed a spontaneous generation of a mass in Nambu-Jona-
Lasinio model (Section 1.5.2). It just corresponds to the procedure described in the
previous section. The natural question arises if one can achieve an effect of a spon-
taneous generation of an effective interaction itself. This possibility was first thought
on by the author after the discovery of the phenomenon of a mass generation. After
expiration of a long time I have returned to this problem and have developed the
method of dealing with it in the framework of the compensation conception [40, 42].
The explication of the method is the main goal of the present book.

Now let us illustrate the first considerations on the problem with Nambu- Jona-
Lasinio interaction taken as an example. We start with QCD Lagrangian with only light
quark doublet (u, d) assuming SU(2) isotopic invariance (see (1.85)). Thus we have
from (1.58)

L= > (47,9,9 - 0,3v,9) - Modq + &sqy,t.Auq - % (FaFa)>
Fi, = 0,A% — 0,A% + 8 fuc ALAS,  q = (u, d). (3.15)

L
2

Now we would like to find out, if the Nambu-Jona-Lasinio interaction (1.86) could be
spontaneously generated in the problem (3.15). In doing this we again proceed with
the add-subtract procedure:

L=Ly+Ly,
Ly = q(x)(10,y, — m)q(x)
G . o
- <7S (@)q(0) (g(x)gq(x)) - % (@00 7% y5q(0) (@) T ysq(X))>

21
4
Line = q00) (m — mgy)q(x)

+ <%(Q(X) q00)(g(x) g(x)) - %(q(x)r“ySq(x))(g(x)T“ySq(x))>

1

= 3 FFiy = FounFoy) + 85ayutaAyd- 317)

(FouFou)s (3.16)

It is important, that we have introduced different couplings for scalar iso-scalar terms
and pseudoscalar iso-vector terms due to introduction of mass m in both parts of the
Lagrangian: L, and L;,,. The presence of the mass evidently breaks the initial chiral
invariance (1.84) (for my, = 0). We assume, that interactions with couplings G p act
in restricted region of the momentum space, that is in four-dimensional Euclid space
for 0 < g* < A? with A being a cut-off to be defined in the course of the solution
of the problem. This means that the chiral invariance is broken only for this specific
region.
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e /\
+ + =0
G

Fig. 3.1. Diagrams corresponding to compensation equation for spontaneous generation of mass in
NJL model.

<O

Fig. 3.2. Diagrams corresponding to compensation equation for spontaneous generation of interac-
tion in NJL model.

Now let us formulate compensation equations. They are due to two reasons. The first
one is due to compensation of the improper mass term in the newly defined interac-
tion Lagrangian (3.17). The equation is similar to that being presented in graphic form
in Figure 1.5 in Section 1.6.2. However in the present formulation of the problem it is
necessary to add the contribution of gluon exchange into the mass, because this com-
pensation equation exclude improper mass term from the interaction Lagrangian (see
Figure 3.1).

The other two equations correspond to diagrams in Figure 3.2 presented here. Ver-
tices in Figure 3.2 correspond to those in the newly defined free Lagrangian (3.16).
These compensation equations exclude undesirable interaction terms from the free
Lagrangian.

Here we restrict ourselves with one-loop terms in the equations. The first approx-
imation, which gives constant solutions of equations, corresponds to an account of
such one-loop diagrams. Provided we include in a consideration also vertical dia-
grams, it would correspond to necessity of a dependence on variable (p —q)?, where p
is initial momentum and q is the final one. We shall see further, that such terms have
to be taken into account in the next approximation,described in Chapter 5

Calculations give the following set of compensation equations

3G} 2y m?
Gp —P<A2—m2 IHA;’">,

T2 m2
3G2 [ A2(A? + 3m? A2 +m?
g =— %—Bmzln;2 , (3.18)
2 A +m m

mag
m-mg+ In
m

A +m? 3mGg ( » 5 A2+ m?
= 5.0 A-m" In—— ).
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Note, that in calculation of the QCD term in the last equation we have used Landau
gauge, because in this case there is no contribution to structure y + up,,, which would
need renormalization of the wave functions of quarks.

We see that the first two equations have evident trivial solution

Gp=Gs=0, (3.19)
and in case m, = O the third one has trivial solution
m= 0. (320

However we look for a nontrivial solution, thus we divide the first and the second
equation by Gp and Gg respectively and the third one by m. It is also easy to see, that
expressions in brackets in the first and in the third equations coincide, so that after
introduction of the following dimensionless variables

GA>=x, GpA’ =y, Gpm’ =z, (3.21)

we obtain the following set of equations:

i(’M_f‘_Zlnu):L e=To (3.22)
2 y+z y m

3 - (y-2m L Z)=1, L SR A

271 z T z

Table 3.1. Physical parameters from solution of set (3.22) in dependence on strong coupling « for
mg = 5.5 MeV, all variables in MeV but dimensionless x, y, z

o x y z m -¥gq) m, G, G, A

0.6 12.24 8.24 0.625 255.4 237.2 131.1 323.2 265.1 927.5
0.7 13.00 8.40 0.717 263.3 233.4 128.0 310.9 2499 901.2
0.8 13.74 8.56 0.807 270.3 230.5 125.6 301.0 237.6 880.6
0.9 14.46 8.70 0.893 276.7 228.1 123.7 292.9 227.2 864.0
1.0 15.16 8.83 0.976 282.6 226.2 122.1  286.1 218.4 850.3

NIl=
NIl=

Now for given &, and e (meaning fixation of current mass m,) we look for solution of
set (3.22). All variables in the set are dimensionless, so to get knowledge on values of
initial variables m, G, Gp, A we have to introduce an additional relation. From equa-
tions (1.102, 1.101) with account of (3.21) we have

mV3(ln &2 - L

y+z

yrz Y _YZ
27T \/ln 4(y+z) 4(y+z)?

, fr=92.42+0.33 MeV. (3.23)
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Table 3.2. Physical parameters from solution of set (3.22) in dependence on strong coupling a; for
my = 6 MeV, all variables in MeV but dimensionless x, y, z

_1 _
2

o ' y z m -¥agq) m, G, G A

0.6 12.23 8.23 0.623 255.3 237.3 137.0 323.5 265.5 928.1
0.7 1298 8.40 0.715 263.1 233.5 133.8 3111 250.2 9017
0.8 13.72 8,55 0.805 270.2 230.6 131.2 301.2 237.8 881.0
0.9 14.44 8.70 0.891 276.6 228.2 129.2  293.1 2275 864.3
1.0 15.14 8.83 0.974 2825 226.2 127.5 286.3 218.6 850.5

NI=

Table 3.3. Physical parameters from solution of set (3.22) in dependence on strong coupling «g for
my = 6.5 MeV, all variables in MeV but dimensionless x, y, z

o x y z m -¥aq) m, G, G, A

0.6 12.21 8.23 0.621  255.1 237.3 142.7 323.8 265.8 928.8
0.7 1297 8.40 0.713 263.0 233.6 139.3 3113  250.5 902.2
0.8 13.70 855 0.803 270.0 230.6 136.6 3014 238.1 8814
0.9 14.42 8.69 0.888 276.5 228.2 134.5 2933 2277 864.6
1.0 1513 8.83 0.972 282.4 226.2 132.8 286.4 218.8 850.8

NI=
NI=

Expression (3.23) corresponds to the well-known Goldberger-Treiman relation [37, 45].
For definition of the m-meson mass we shall use Gell-Mann—Oaks—Renner rela-
tion (1.108)

m. f2 = -2m, (qq), (3.24)

where quark condensate (gq) is defined by (1.107). Due to this definition in our ap-
proximation it reads ,
(aq) = % e —In %) (3.25)
Using along with set (3.22) relations (3.23, 3.24, 3.25) we for each value of «, has defi-
nite solution. From phenomenological results of Section 1.6.2 we expect value of cut-
off A to be of order of magnitude ~1 GeV. For such scale value of strong coupling o,
from (1.69) can be estimated to be oy ~ 0.8. In the subsequent chapters we will get
convinced, that such values are natural for an average strong coupling in the non-
perturbative region. In any case here we present results for solution of the set for
values of ag = 0.8 + 0.2. The results are shown in Tables 3.1, 3.2, 3.3 for values of
my = 5.5, 6, 6.5 MeV respectively.
Let us emphasize, that for o, = 0 a solution does not exist at all. Comparing results
of the Tables with phenomenological results (1.106, 1.107), obtained in Section 1.6.2,
we see qualitative agreement. As for experimental data, agreement is even better, e. g.,
for quark condensate (gq). It seems, that the best agreement with both the pion mass
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and the quark condensate corresponds to m, = 6.5 MeV and
a; =0.8+0.1. (3.26)

As we shall see below, this value for strong coupling (3.26) in the nonperturbative re-
gion is consistent with its behavior with account of nonperturbative effects. However
value for m,, is rather higher than the estimated phenomenological value [4]

m, = 3.5703 MeV. (3.27)

This deviation might be prescribed to approximation being used here. On the other
hand we have to bear in mind, that result (3.27) corresponds to scale ~2 GeV and for
smaller scales we expect increasing of m,,.

Results being obtained allows to calculate other low-energy parameters. Let us
consider the interaction of composite particles, such as 7-meson or p-meson (see Ta-
ble 1.4) with constituent quarks. This means existence of such effective interactions

8oqq P 49>
18gqPn A T" G (3.28)
8paq ‘/’Z,M ar"y"q.
In the framework of the Nambu-Jona-Lasinio interaction coupling constants (3.28)
are to be calculated with account of one-loop diagrams represented in Figure 3.3.

q+p/2

q-p/2

Fig. 3.3. Diagrams corresponding to calculation of meson-quark coupling constants in NJL model.

In the course of the diagrams evaluation we have to single out terms being propor-
tional to p? and demand its coefficient being unity. Really it is normalization condi-
tion for bound state fields ¢, and ¢,. Straightforward calculations give for coupling
constants the following results, which we express in terms of variables (3.21)

g = 2r
o >
y+z _ y(13y?+27yz+122?)
\j3(ln z 12(y+z)3 )
2n
8= > (3.29)
yiz 22
\j3 (0% - 555)
.- Vin
P \/lnﬂ—9+ 92 _ _2
z 32 ' 8(y+z)  24(y+2)?
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For example, for my = 6.5, «; = 0.9 we have
8, =300, g,=259, g,=376. (3.30)

The knowledge of coupling constants allows to estimate masses of resonances. For
this purpose the procedure of “bosonization” was proposed. In simple words this pro-
cedure consists in the following identical transformation

1
2 G

8¢

2Gs . (3.31)

Gs . _ _ _ 2
5 4929+8,399, = 55~ (G599 + 8 ¢,)

While considering the QFT S-matrix an effective Lagrangian is placed in an exponent.
One may exclude quark fields by functional integration by dq dq. The quadratic com-

bination in (3.31) then enters the following functional integral
1 _ _
J exp [— (Gsqq+8, ¢,)° | dgdq. (332)
2Gg

Integral (3.32) is of Gauss type and it gives a normalization factor. Thus we are left with
the last term of expression (3.31) which is essentially scalar field ¢, mass term, corre-
sponding to the mass of the o-resonance. Indeed, the last term in expression (3.31) is
exactly the mass term of scalar field ¢, with mass

- (3.33)

m,
® G
Substituting into (3.33) numbers from Table 3.3 and results (3.30) we have for m, = 6.5
MeV and &, = 0.9
m, = 701 MeV. (3.34)

The satisfactory agreement of numerous parameters with their measured values,
starting only from two input quantities: m, and average «,, testifies to the approach,
which we exploit here.

However, the most interesting result of this section is the existence of the non-
trivial solution itself, because we now do not make an assumption on existence of an
effective interaction with arbitrary parameters, but obtain just the definite interaction
with definite parameters. Fixing purely QCD parameters «, and m, we calculate all
other parameters without any arbitrariness.

We have to admit, that the approximation used is rather rude. We have assumed
an existence of a cut-off A, which restricts a region of the effective interaction. The
problem is how to justify such assumption. In view of this goal we consider a com-
paratively simple model, involving one scalar field. The formulation and study of the
model will be performed in subsequent sections.
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3.4 Justification of the model choice

We have discussed in Section 1.6.2 the problem of effective interactions, which proves
to provide an adequate description of the most complicated items of elementary parti-
cles physics, e.g.low-energy hadron interactions. We have laid arguments on behalf of
a possibility to describe nonperturbative effects in terms of effective interaction. Start-
ing from these considerations we are to investigate this possibility and this will be the
main body of the present book. For example, the famous Nambu-Jona-Lasinio effec-
tive interaction is shown to describe low-energy region of strong interactions. How-
ever we are sure, that the genuine theory of strong interaction is QCD, which seem-
ingly has nothing to do with this effective interaction. Our aim is to find an approach,
which gives possibility to consider spontaneous generation of effective interactions
in the framework of firmly established gauge theories of the Standard Model. In do-
ing this we rely on Bogoliubov compensation approach, which provides possibility of
generation of quasi-averages. As a result nonperturbative effects was obtained in such
important problems, as phenomena of superconductivity, superfluidity etc.

We are willing to study the phenomenon of a spontaneous generation of an effec-
tive theory. The first attempt to consider this problem was made in the previous section
under assumption of existence of built-in cut-off A. In this way we have obtained sat-
isfactory results.

We have already remarked that to be more rigorous one has to consider more com-
plicated approximation, under which there is not necessary to introduce the cut-off
from the beginning.

The problem is to find a model, in which the main features of the approach may be
tested. Let us consider for the beginning elementary scalar fields. Their self-interaction
leads to a nontrivial quantum field theory, in which we would study a possible gener-
ation of an effective interaction. The purpose of the present work is to consider a sim-
ple model, which would allow to have exact solutions of (approximate) compensation
equations. Using these solutions one could study conditions under which the assump-
tions would be fulfilled. To some extent the model has to correspond to features of a
renormalizable theory. Namely we achieve a simplicity by considering a scalar field.
In view of coupling constants to have proper dimensions we choose dimensionality of
the space-time to be six. Really, in this case the coupling constant of interaction g ¢’ is
dimensionless and interaction G ¢* has constant of inverse mass squared dimension,
that corresponds to the dimension of a constant of a four-fermion interaction in four-
dimensional space-time. Thus we can consider the theory being chosen as a model for
NJL interaction (3.15). The model was considered in work [74].

So we introduce in the six-dimensional space-time a scalar field ¢ with initial
scale-invariant Lagrangian
1w 0 06 S

L=—-

3
2 ox# ox¥ 3! ¢ 2
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Let us choose the natural signature with one time and five space axes. The transi-
tion from this space-time to Euclidean six-dimensional space is accompanied by the
following substitutions

p>— -pp, d°p— 1dip. (3.36)

It was important for us to find a model, which corresponds to the approach under
consideration. So here we will not discuss physical meaning of a multi-dimensional
theory and we consider the chosen variant as purely model one, as well as two-
dimensional models are often considered.
Now we start with Lagrangian (3.35). Evident evaluations give one-loop renormal-
ization group equation [1] for g (u?)
dg’(w’)  3g" i

Y
- , L=logt .
dL AVEE e G37)

Solution of equation (3.37) has a form

2, 2 2 3ch) P‘Z -
= 1 log — . 3.38
& W) go( i an)y OgAg> (3.38)

Sometimes it is convenient to use parameter Fz(yz) defined by the following relation

_ o 388D (i)
h(u") = GGy log Az) (3.39)

where for transition from A3 to Aé we have used the standard tool analogous to that
in QCD:

4 (4m)?
385 ) '
Thus we get convinced, that the theory (3.35) is an asymptotic free one and expres-
sion (3.39) makes sense for ”z > Aé.

Note that in this theory there are quadratic divergences in the scalar field mass. It
is the common feature of theories with elementary scalars. The problem of the mass
of the scalar field will be considered in details later on.

2 2
Ny = A5 exp (—

3.5 Compensation equation in a six-dimensional scalar model

Let us have a massless scalar field of the six-dimensional space. The initial free La-
grangian possesses scale symmetry. We shall look for a solution, which breaks this
symmetry, with the aid of the Bogoliubov compensation approach being formulated
above in this chapter. Namely according to the rules of the approach we add to the
Lagrangian the following small increment
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Now the scale invariance is already broken and an appearance of nonlocal terms of
the form
G j F(x, x1, X5, X3, X,) (X1 )p(x2)p(x3)(x,,) dxy dx, dx5 dx,, (3.40)

is possible. Here G is a dimensional coupling constant and F (X, X1, X5, X3,%,) is a func-
tion of four differences of coordinates x — x;, which Fourier transform F(p,, p,, p;,P4),
where p; are momenta of legs, represents a form-factor, defining range of interac-
tion (3.40). We shall look for a solution, decreasing at momentum infinity and thus
defining a region of action of the effective interaction.

Let us add to the initial Lagrangian such a term with an interaction of the forth
power and subtract the same
1w 0 09 m’

L==

Mo Gooa € 8p Gooa M
2 oxt ox¥ 2¢ 4!F¢ 4!¢+3!¢+4!F¢+2¢’ G41)

where we use abbreviated notation - GF - (/)4 instead of expression (3.40). Of course
the presence of term (3.40) explicitly breaks the scale invariance, so we perform a pro-
cedure “add-subtract” for a mass term as well. Let us refer the forth power term with
the plus sign to the interaction Lagrangian and the same term with the minus sign we
refer to the free Lagrangian.

1 ., 00 0p m

_ > G 4 € 4
LO_Zg Oxt# ox” 2¢ 4!F¢ 4!(/)’

g G m?
Ly = 3—? ¢+ a F-¢* + > ¢’ (G42)

According to the compensation approach the interaction term with the negative sign
in (3.41, 3.42) has to be compensated. This means, that the new free Lagrangian leads to
zero four-particle connected Green functions and as a final result contains only terms
of the second power in fields. Thus performing evaluations with sign which is inherent
to the term in the new free Lagrangian, we come to the compensation equation, which
schematically looks in the following way: the first order term plus one-loop terms plus
two-loop terms etc. Emphasize once more, that here one has to use term + G ¢* as an
interaction Lagrangian. One has to equalize to zero the expansion obtained in such
a way . This condition is an equation for function F(p,, p,, p3,p4). We set e — 0 after
evaluations, in our case this means after compensation equations being obtained.
The equation explicitly differs from expansion in powers of interaction La-
grangian
Lipe = % F- ¢ 3B43)

in the sign of the interaction constant. In view of this note let us emphasize, that the
procedure being described can be applied only to symmetry breaking terms of even
powers in fields. For terms of odd powers, e.g. for three-linear ones, a fulfillment of
a compensation equation leads to vanishing of connected Green function, which is
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defined by an interaction Lagrangian, because the two expansions in this case differ
only in overall sign.

Note, that the presence of term — G ¢* in the new free Lagrangian may lead to
appearance of connected Green functions of higher powers in ¢, that is of the sixth
power, of the eighth power etc. Generally speaking, one has to construct a chain set of
compensation equations for all these Green functions. We start with an equation for
the fourth power Green function and delay the problem of higher Green functions to
be discussed and considered in the forthcoming studies.

Let us construct an approximated equation for the fourth power connected Green
function. First of all we choose the following kinematics: both left legs have zero mo-
menta and the right ones have momenta p and —p. We restrict ourselves by terms up
to two-loop ones inclusively. Namely, we have the first order term — the point; three
terms of the second order — simple loops, i.e. a horizontal one and two vertical ones
with permuted left legs; in the third order we have a horizontal and two vertical two-
loop chains and six terms “wine glass”: horizontal wine glasses having bases to the
left and to the right and vertical ones with bases up and down. The number of the last
terms is to be counted twice due to permutations of the left-sided momenta p and —p.
Generally speaking, in each vertex form-factor F is present. However we can solve only
a linear version of the equation, which is obtained by keeping in the equation the first
and the second order terms, the two-loop horizontal chain and the wineglass with the
basing to the right. Contributions of the rest third order terms we shall consider later
on. We proceed to the linear equation keeping form-factor F(p, -p, 0,0) = F(p?) in the
first order term and in right-hand vertices of the horizontal loop of the second order, of
the horizontal two-loop chain and of the wineglass in the third order. Other vertices in
diagrams we consider to correspond to point-like interaction in which the form-factor
is changed for its value at zero (F(0) = 1)

G 4 G 4

EF(O)gb = E¢ . (3.44)
In vertical simple loops, which as well serve as a kernel of the integral equation, we
substitute point-like vertices (3.44). Corresponding integrals diverge of course. In view
of our search for decreasing solutions at momentum infinity for F(p?), we introduce

some cut-off A, which existence is to be confirmed by results of a solution of the equa-
tion. In doing this we make the following substitution

(o)
J dg* — A%
0
For estimation of A order of magnitude we use the following definition

A% = J F(y)dy, (3.45)
0
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where one of vertices is changed for the form-factor. For justification of the approach
the problem of convergence of the integral in (3.45). We shall use the same cut-off A
in logarithmic diverging integrals. A possible difference of an actual cut-off in these
integrals from A leads to some change in constant term ¢, which enters into corre-
sponding expressions. It will come clear, that the solution will not depend on a value
of this constant. Thus the formulation of the equation in the framework of the accepted
approximations does not contain arbitrary assumptions.

We consider the equation in six-dimensional Euclidean space with the aid of sub-
stitutions (3.36). In the course of evaluations one has to perform angle integrations in
of functions ((p — ¢)?) ! and log(p - q)*> with powers of (pq). We have (for the logarith-
mic case see [75])

dQy 4n3< y < X >>
Jp2+q2—2pqcose 3 Ok~ Y)( 4x> +Oly-x) 4y 4y?

J dQ ln(p2 + q2 — 2pqcosB)

3 2 2
T (@(x y)(g—));—+121nx)®(y x)(%—;—+1zlny>>, (346)

12

J dQ¢(pq) ln(p2 + q2 — 2pqcos )

B 7r3 3y° 6 3y 3x 6.x 3x° 29
_E(G)(X_y)(T_ y— 52)+G)(y x)(—— 5)/2)) X=p,y=q.
First of all let us calculate one-loop integral keeping terms of zero and the first orders
in m?. We have for one such vertical diagram (x = p*, where p is the total momentum

along the loop)

2 3
1
1 G m (A +—xln(xz)+2mzln(i2>—cx), (3.47)
2(2m)® 3 A A
where A is the square of the cut-off being mentioned and c is a constant, depending
on a behavior of the form-factor.
Let us consider the linear compensation equation, obtained in agreement with the

formulated rules (see Figure 3.4). The equation in this approximation has the following
form

;2 pz P
2y _ A2y 2 B
GF(p)_z(lm)3 (3 + p ln +4m’ lnA ZCp)
G’ 1 (p q)2 2, (p-9)° 2
_8(27:)9”3@_ 9? In v2m nF —c(p-0)? | G49)

Fg>) o 3G A2 J F@®)

@+m)? "7 2eme | (@ m?)y?
Firstly let us note, that trivial solution G = 0 is evidently possible. In view of looking for
a nontrivial solution we cancel the equation by G. Performing here angle integrations
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Fig. 3.4. The graphic representation of the linear compensation equation (3.48).

by using formulas (3.46) we obtain the following one-dimensional integral equation

F(x) = 3A2 +%xlni+4m In %—20{)

2(47:)3( 37 A2

_3GZA2TyF(y) p G ( 1 JXyF(y)

4(4m)¢ J (y + m?)? Y= 18(4m)®\ 20x? ) (y + m?2)? dy
3 [ Y'Fy) J VF) J y F()
+4x J v m)? dy+3 log x mo)? dy+3x log x —(y+m2)2 dy
0 0 0
. 4JX YFy) o 3% T yEy) . X T Fy)
) (y+m2)2 4 (y+m2)2 20 (y + m?)?
® .3 2
y InyF@y) J(4+31n Yy FQy)
+3J (v +m?)? dax (y+m?)? dy)
X X 3.49
O _lJMdﬁJM e
12(4m)6\  x? ) (y + m?)? (y + m?)?

)
y F(y) Jy In yF(y)
+12 1n x! —(y+ m)? dy + 12 —(y+ )2 dy

[ yFo) , [ F)
+8x J —(y+m2)2 dy — x J —(y+m2)2 dy)

2 ® VF
G (In A2+3c)<J Y E)

T 6 @) yrmz Y

T VFy) m’ . o VFY)
XJ y+m)? dy) Gme A J(y+m2>2 a.
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A method of solution of equations of (3.49) type is developed in Section 2.3. Equa-
tion (3.49) is reduced to a differential one by sequential differentiations. Evident eval-
uation gives

4 4
o (e F)

2 2
(o (x5 FO ) g 207

(x + m?)2 A (x+m2)2 " 7 dx (x + m2)? T (4m)8

One easily see, that equation (3.50) can be rewritten in the form
d d d d d
(2 o) ) () iz -)
d d d 2
x<x5—1><xa—2><xa—3>+ Bx >F(x)
2

=2 /3m2x (F(x) + x‘;—f —xzin) , (351)
where two terms of expansion in m? are kept. From this form of the equation we im-
mediately conclude, that for x — 0 there are eight independent asymptotes, which
coefficients we denote as follows

a a
-2 -1
2’ X_’ ag, Ay In x, a X,
2 3
apyxIlnx, a,x’, azx. (3.52)

Eight independent asymptotes at infinity are the following

F.(x) = X316 exp<4([3xz)1/8 exp(%)) , k=1,2,...,8. (3.53)

Four of these asymptotes at infinity decrease exponentially (k = 3, 4, 5, 6), and the
rest four ones do increase.

Equation (3.51) is equivalent to the initial integral equation under definite bound-
ary conditions being fulfilled. First of all we can use only solutions, decreasing at in-
finity. To obtain conditions at zero we have to substitute expression

2 g4 4
x- d 2 d 2
FxX)=-—= — | X" — (X" F(x
@~ ga (g (¥ F0)
in integrals of equation (3.49) and perform sequential integrations by parts. The re-
sults are presented in the appendix to this chapter.
Substituting expressions (3.87) into equation (3.49), we have

a_ a_
F(X)ZF(X)—X—;—Tl—amlnx—auxlnx
Gn’ 2< GI > 2x (x) >
A (1- 2n(X)-2 .
T 220 <3 2m )T 3 M\ az) X (3:54)

+x(ln A+ 3c) aq,

[ YFEY)
1_6[—()/+m2)2d .
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From here we obtain the following condition (independently on values of A% and ¢)

2Gm?
a,=0, a,;=0, ag-= W’
Gr? V2P
LI bl 3.55
W30 T e (:55)
_ 2(4m)? _2 V2 656

G VB
The first four conditions (3.55) are boundary conditions for equation (3.51). A combina-
tion of four solutions decreasing at infinity with account of these boundary conditions
gives the unique solution. It can be expressed in terms of well-known special functions
for case m? = 0. Indeed, let us make the following substitution in equation (3.51)

_Bx

zZ= F, (3.57)

which reduces the equation to the canonical form of Meijer equation [71] of the eighth
order

((4)(4 DEDER

da 1 d d 3
X(ZE—E><ZE—1)<ZE—E>+Z)F(Z)—O. (3.58)

Conditions (3.55) fix the solution. Firstly, four solutions, decreasing at infinity, always
could be combined to set to zero three singular asymptotes at zero, i.e. to fulfill con-
ditions a_, = a_; = ay = 0. Such property has the following Meijer function (see

Section 2.3)
3 11 1
C~65°(z 2,1, 5, ,0,0, ——,—1).
(#1553 2
The constant is defined by the coefficient before vz In z. For small z this Meijer func-
tion behaves as follows
3 11 1 16
GSO(z =1, 5, —,o,o,——,—1)= —Vzlnz+---. 3,59
s\ Zl5 13 3 2 7T+3\/_HJr (9

Comparing the coefficient afore vz In z with (3.55), we obtain
C=—.
4

Performing integration (see [72]), we have in accordance with definition of I (3.54)

(¢}

Y 3 11 1 2v2
I= JF(y)dy:TJGgg %|z, 1, z, z, O, O, —z,—l dy:ﬁ’ (3.60)
0

0

that perfectly agrees with condition (3.55).
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Thus, solution

2
F(x) = V2 Ggg (% % 1, % % 0, 0,—%,—1), (3.61)
fulfills all conditions (3.55), and consequently the initial equation (3.49), which is an
approximate compensation equation. This solution is a nontrivial solution, which
contains dimensional parameter G, and hence it leads to the initial scale symmetry
breaking. Of course, as we have noted before, trivial solution F(x) = 0 is also possible.
Note, that the boundary conditions are not dependent on value of the form-factor at
zero. Equality F(0) = 1 will serve as an additional condition in what follows.

Let us take into account terms proportional to m*. We shall look for a correction
to the solution of equation (3.51) in the following form

F(x) = Fy(x) + A F(x). (3.62)

Substituting (3.62) into equation (3.51) we have the following equation in the first order
)
inm

[T
(: 1) (xge-2) (xg-3)+ ) A

dF, d’F,
=28m’x F, —0_x¥*==2). @6
/3mX<o(X)+de X =5 (3.63)
From equation (3.63) we can exactly define several terms of expansion of A F(x)
for small x. Indeed let us consider the following expression
2 m 2 dz FO

dF,
AF(x) = " (Fo(x) + Xd_XO —x W) (3.64)

YA 26 23\ V26’
—2m <—2ﬁx+—3(lm)3 (ln( BX) + 4y - 6)+—96(4n)6xlnx+0(x)),

where y = 0.577215665... is the Euler constant. Substituting expression (3.64) into
equation (3.63), we get convinced, that it fulfills the equation up to terms of X order,
because the differential operator in the left-hand side nullifies the terms presented
in (3.64) and subsequent terms up to the indicated order. We are interested just in
the presented terms (3.64) because they refer to the boundary conditions. Indeed ex-
pression (3.64) contains terms z7Y2 Inz, z'/? In z, which violate their boundary con-
ditions. Hence we are to add to expression (3.64) a combination of solutions of the
homogeneous equation to force the boundary conditions to be fulfilled. Finally we
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obtain
_ u o3 .11 1
AF(x) = AF(x) - _GOS 58 |z, 1, >3y 0,0,-1
X~ 3 1 1 1
GSO ﬁ ) 1; = O; O; _;__;_1
3 08(28 27772 272
43 X3 .11 1
_n#<y+ln2_E>Ggg(ﬁ_8|z’ 1, z, E,0,0,—z,—l), (365)

e’
”_2(47t)3'

From this expression we extract the exact value for F(0). While doing this one has
to bear in mind, that the presence of a term being proportional toInx at x — O isa
consequence of an expansion in m? at x » m?. Looking back at the corresponding
evaluations we see, that for x — 0 one has to change In x for In(4 m?). Now we have

V2

F(0) = —+y(4lnY+(16 )y + (14— 72y log 2 — 122 4 242

9 "7 13
For 4 = 0 we obtain F(0) = 1.11072. Condition F(0) = 1 defines the value of g4,
which is connected with mass (see (3.65))

) . (3.66)

p = 0.005789. (3.67)

Thus the solution, which is found here, satisfies all the necessary conditions pro-
vided (3.67) is valid. Emphasize, that (3.67) defines the mass of the scalar field. Note,
that the small value of (3.67) thoroughly justifies the account of only the first term of
the expansion in m?. We reject the second solution of condition F(0) = 1, which is of
order of unity, due to to its inconsistence with the expansion of the solution in m?.

We have mentioned already, that generally speaking one has to consider a total
chain of compensation equations including connected Green functions with six, eight,
etc. legs. Note, that corresponding equations will contain inhomogeneous parts, ex-
pressed in terms of Green functions of lower order, and homogeneous parts, being
proportional to the corresponding form-factor, e.g. Fy with six legs. Assuming our re-
sult the connected four-leg Green function be zero, we come to the conclusion, that
inhomogeneous part of equation for F, is zero, so trivial solution F; = O inevitably
exists. The analogous considerations lead to conclusions on possibility of existence
of trivial solutions of all higher Green functions. One may, of course, study possibili-
ties of existence of nontrivial solutions as well. However, the purpose of the present
work is to show that even though one nontrivial solution does exist, so we rely on fol-
lowing variant: nontrivial solution for four-leg connected Green function and trivial
solutions for all higher connected Green functions. The consideration of compensa-
tion equation for Green function with two legs, which defines mass of the scalar field
will be performed particularly later on.
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The next step of study should include nonlinear equation with account of all
possible diagrams. However this problem evidently do not admit analytic solution.
Approximate estimate of nonlinear corrections to the form-factor’s value at zero will
be obtained in what follows. Maybe future studies will be connected with numerical
methods. We are convinced, that the experience achieved in finding of the nontrivial
solution will help in formulation and realization of numerical methods. Presumably
result (3.67), which means the existence of a solution only for definite relation between
dimensional coupling constant and mass of scalar field, will be important.

3.6 Bethe-Salpeter equation and zero excitation

It is well-known, that a symmetry breaking is to be accompanied by an appearance
of an excitation with zero mass [40, 42, 43]. Let us consider this problem in the same
approximation. While constructing an equation for a bound state one has to keep in
mind, that here genuine interaction (3.43) acts, that one, which is referred to the inter-
action Lagrangian and remains, of course, not compensated. Bethe—Salpeter equation
for a massless bound state of two scalar fields in this case has the form

X

Gr’A  G*rPA N G*n® 1 ;
¥ = 20m°¢ 2020 ¢ 18(271)12(_ 202 (jy Yoy dy
+ ix Jyz Y(y)dy+3 Inx Jy\P(y) dy (3.68)
0 0

+ 3xlnxJ'\P(y)dy+ 4Jy\P(y) dy +3 Jy Iny¥(y) dy
0 0 X
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+x |(4+3Iny)¥P(y)dy +

2

Xl__’

3_x“j°w_y RS
4 y
X

N|><
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Xl—_’g

A = 6|'\P(y) dy.

Comparing this equation (3.68) with compensation equation (3.49), we see the main
difference in the sign before the kernel of the integral equation. Remind once more,
that the compensation equation is the condition of vanishing of the total expansion in
G in the modified free Lagrangian in expression (3.41) and therefore terms of the first
and of the third orders are situated in the same part of equation, e.g.in the left-handed
one, whereas in the Bethe—Salpeter equation the corresponding terms are situated in
different parts of equation.
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The sign before the kernel is very important. This means, that in a differential
equation sign before 3 changes as well

((X%+2><X%+1)<X%> (x%)(x%—1>
x(x%—1)(){%—2)(){%—3)—5}(2)‘1’()@:O. (3.69)

One easily see, that due to absence of term being proportional to x log x in the inho-
mogeneous part boundary conditions are the following

a,=a_=ag=ay=0. (3.70)

The change of sign before 3 leads to changing of asymptotes at infinity

¥, (X) =~ exp (4([3)(2)1/8 exp(#)), k=1,2,...,8. (3.71)

Now we have three decreasing asymptotes (k = 3, 4, 5), two oscillating ones (k =
2, 6), and the remaining three are increasing. Using the first five solutions, which
allow a definition of integrals at infinity, we fulfill four boundary conditions at
zero (3.70). As a result we obtain the following solution of equation (3.68)
2

¥(x) :AGQQ(% % 1, % 0, % o,—%,—1>, 3.72)
where constant A is defined by normalization condition of a Bethe—Salpeter wave
function. Direct calculation leads to result A’ = 0, so the inhomogeneous part of
equation (3.68) vanishes. Thus we have shown, that the equation for a bound state
with zero mass has a solution.

The solution being obtained proves the existence of zero mass excitation [40, 42,
43] in the model. Of course definition of a Bethe—Salpeter equation itself is possible
only provided a nontrivial solution of a compensation equation to exist and thus inter-
action (3.43) to act. The obligatory correspondence between a nontrivial solution of a
compensation equation and an existence of a zero excitation thoroughly corresponds
to Bogoliubov quasi-averages approach [40].

It is interesting to note, that with taking into account of three-fold interaction g ([)3
in the kernel of equation (3.68) the mass of the bound state becomes nonzero. One eas-
ily understands this, because interaction (3.68) itself leads to dimensional parameter
A 5 being present and thus the scale invariance being already broken.

3.7 Compensation equation for scalar field mass

Let us look at interaction Lagrangian (3.42). The mass term there is quite improper. To
solve the problem one has to formulate a compensation equation for Green function
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with two scalar legs. Let us consider this equation taking into account solution (3.62)
and three-fold interaction. The compensation equation means nullification of total
contribution of interaction (3.42) to the mass. In the first approximation the contribu-
tion of the four-fold interaction is described by the first order diagram “bubble” and
that of the three-fold one is represented by simple one-loop diagram (see Figure 3.5).

m?= +

Fig. 3.5. Compensation equation for mass of the scalar field.

Putting momenta of the external legs to be zero, we have for “bubble” diagram just so-
lution (3.62) in the vertex. As a result we obtain the following compensation equation
for scalar mass

2 G JF(qz)d6q gzj d’q

" ey ?+m2  (2n)° ) (g> + m?)?
G o0
U j ydy (Fo(y) + AF(y))
sz T gz <« y2 d)/
+ 2(47‘[)3 6" d)’Fo()/)_ 2(47_[)3 6" (y+m2)2’ (373)

Here in “bubble” diagram we perform an expansion in m* and take into account the
zeroth and the first orders of the expansion. By direct evaluation with the aid of ex-
pressions (3.61, 3.64, 3.65) we obtain that the zeroth order terms is zero and the first
order term is equal to 3 m?. The loop, which is described by the last term in (3.73),
quadratically diverges. Note, that in the initial theory (3.35) we introduce some cut-off
A 5, which corresponds to a physical limitation of a region of applicability of the the-
ory. As a result we have the following compensation equation for the mass provided
m< Aj

i A2
2(4m)3
Emphasize, that for the trivial solution G = 0 the first term in the right-hand side of
equation (3.74) is absent and we have a negative mass squared, i.e. a tachyon solution.
For the nontrivial solution we have

m?=3m* - (.74)

2
2 g 2
m° = A%
4(4m)3 3

(3.75)

It is well-known, that a scalar tachyon leads to instability for small fields. There-
fore the restoration of the normal sign of the mass squared, which is achieved pro-
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vided the nontrivial solution is valid, corresponds to a transition to a more stable
state.

So the value of the scalar mass is defined in terms of initial parameters of the
theory g and A ;. The value of parameter Y (3.67) gives the relation of the mass and of
the coupling constant G of the four-fold interaction. Thus all the parameters entering
into the nontrivial solution are defined in terms of the initial ones.

Note that the initial cut-off A; corresponds to some boundary energy, which
provides real physical cut-off of the corresponding integrals. In the physical four-
dimensional space-time it may be for example the Planck energy 1.22 - 10'° GeV. One
should expect the expressions similar to (3.74) also would lead to relations, which
connect the theory parameters with a boundary energy (e.g. the Planck one), which
enters into logarithmic divergent terms.

The final result for effective Lagrangian of the theory after the symmetry breaking
occurs is the following

106 9 m?

_10p 0p m 5 8o 3
L Yl TR 76

+ % JF(X, X1>X2> X3, X4) (1)) p(xX3)P(x,) dxq dx,dxsdx,,

where form-factor F is the solution of the compensation equation.

3.8 Estimate of nonlinearity influence

Till now our results were obtained in the framework of the linear approximation. The
decrease of the form-factor at infinity indicates an applicability region of the approxi-
mation. It evidently is incorrect for large momenta variables because the effective cou-
pling constant becomes too small in comparison to constant G, which was used to de-
fine the kernel of the integral equation. We can roughly take into account an influence
of a nonlinearity, using the following procedure.

Let equation (3.51) be valid for small x (we put m* = 0).

d d' F 2G°
W(XZW (XZF(X))> :—ﬁ%, B = Gme 3.77)

We use this equation with the corresponding (3.55) for x < x,, whereas for x > x,
one has to take into account a nonlinearity. Let us draw attention to the fact, that 8 is
proportional to G i.e. it contains the form-factor squared. Therefore for x > x, instead
of (3.77) we use the following equation

4 4 3
d (x2 d— (xZF(x))> = —ﬁF (X). (3.78)

dx* dx* x2

In this approximation we have correct behavior of right-hand sides at small (3.77) and
at very large (3.78) values of x. In the intermediate region there is a tear in the right
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hand side at x = x,. This means that the eighth derivative tears at this point. As we
shall see soon the form-factor and its derivatives up to the fifth order have to be con-

tinuous.
Let us introduce variable y = \/F x. One easily sees that for y — oo equation (3.78)

defines the following decreasing asymptotic

b 6b° 12p°

V2 SI704 7718y G79)

F(y) =

where b is a constant. At the same time equation (3.77) with account of boundary con-
ditions has the following solution in region (0, y,):

V2 G0 Yy 3,11 1
F = 17 = = 07 0’__7_1
») 4 256 |2

11 1
+C, G2 21,2 1 00-1 1
256 2’722 2
11 1
+C, G 2,1,0, =, =, 0,-=,-1 3.80
2 08(256'2 2’2 2 ) (3:80)
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where C; are constants. The appearance of the additional terms with these coefficients
multiplied by Meijer functions increasing at infinity is due to the fact, that now the
decrease at infinity is provided by asymptotic (3.79) and thus in region (0, y,) we have
to use all solutions of equation (3.77), which fulfill the boundary conditions at zero.
The first line here is solution (3.61), which was obtained earlier. Let us begin a se-
quential account of the new terms starting from the zero approximation, in which in
region (0, y,) we have this old solution, i.e. all C; = 0. This solution is matched to so-
lution (3.79) in point y,. It will come clear, that in expression (3.79) an account of the
first term is sufficient. Then from continuity of the function and of its first derivative
we obtain the following set of equations

Vago(¥ 3110 1 ) b _g
4 256 22722 2 V2
V2 s G50 Yo 2oL lo L )2 (3.81)
4 2562 702207 2 y2
Solution of the set:
Yo = 8.4980, b =7.5055. (3.82)

The second term in asymptotic (3.79) at y,, comprises 7.7 - 10~° times the first one, that
justifies the account of the first term only. The value of the form-factor at zero does not

change F(0) = 1.1107.
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Now let us take into account two additional terms in (3.80) with coefficients C,
and C,, which for small y give larger contribution than the remaining two terms. In
this case we have to match values of the function and of its derivatives up to the third
order. One obtains the set of four equations with aid of rules of differentiation of Meijer
functions [71]. Its solution reads

Yo =17.635, b=9.410, C,=0.0166, C,=-0.0538. (3.83)

The value of the form-factor at zero becomes

F(0) = n\/_ Cz

=1.0936. (3.84)

Now let us take into account terms with coefficients C;, C,. We consider them and
deviations from solution (3.83) as well to be small. Then matching the function and its
derivatives up to the fifth order, we obtain a set of six linear equations leading to the
following solution

Ay, =1.457, Ab=1.032,  AC, = -0.0094,
AC, =0.0223, C;=-0.0249, C, = 0.0136. (3.85)

Substituting the last result into (3.84), we have
F(0) = 1.1007. (3.86)

The sequence of numbers 1.1107, 1.0936, 1.1007 for value F(0) demonstrates stability
of the result in respect to contribution of nonlinear corrections

3.9 Conclusions of simple scalar model

Grounding on the results being obtained we conclude, that in the model under con-
sideration a nontrivial solution does exist, which breaks the initial scale invariance
and leads to a spontaneous appearance of effective interaction in Lagrangian (3.76),
acting in a restricted region of the momenta space in accordance with the value of
parameter G. Effective form-factor F(p) decreases exponentially with oscillations for
p®> — +00, i.e. both for space-like and time-like momenta. We confirm the existence
of a zero mass excitation, which has to be present for an occurrence of spontaneous
symmetry breaking.

We start with the renormalizable theory of a scalar field (in a six-dimensional
space), and we obtain as a result the definite theory with interaction breaking scale
symmetry. New dimensional parameters G"*/? and m are proportional to parameter
A 5, which defines the initial asymptotically free interaction. Let us emphasize once
more, that the interaction being obtained is an effective one, that first of all is reflected
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in a presence of form-factor F(p), which is just the solution of the compensation equa-
tion. At momentum infinity the theory becomes asymptotically free again.

It is quite important, that the problem under consideration has a consistent solu-
tion only provided triple interaction g ¢’ is acting. Really, albeit compensation equa-
tion (3.48) contains no contribution of this interaction, the nonzero scalar field mass
appears only for g # 0.If it is not the case the value of form-factor at zero F(0) is not
unity. In general one can not exclude a possibility of condition F(0) = 1 being ful-
filled for m = 0. However the experience obtained in considering the present problem
shows that this condition could be fulfilled only provided the model has very peculiar
properties. As a matter of fact the problem under consideration is defined not by com-
pensation equation (3.48) only, but by set of equations (3.48, 3.73), which explicitly
contains a contribution of triple interaction g ¢>. The same conclusion we are to make
after consideration of spontaneous generation of the Nambu-Jona-Lasinio effective
interaction in Section 3.3

It should be noted, that a possibility of a nontrivial solution strongly depends on
the choice of the theory. This may be demonstrated by comparison of different signa-
tures of the six-dimensional space-time. Namely if one instead of signature 1 + 5 will
choose signature 3 +3, then in definition (3.36) of a transition to Euclidean coordinates
the sign before 1 d°p changes. As a result all signs change for one-loop integrals. For
four-fold interaction we restore all previous results by simple substitution G — -G.
However the one-loop integral with two three-fold vertices inevitably changes sign and
relation (3.74) leads to tachyon mass. So we come to the conclusion, that for signature
3 + 3 only the trivial solution G = 0 is stable.

Of course, we base our conclusions only on exact solutions of approximate equa-
tions. However it is possible, that qualitative properties of solutions, which manifest
themselves in the model problem, will be quite useful in study of problems of sponta-
neous symmetry breaking in more realistic cases, when there is no hope for analytic
solution of corresponding equations and what is possible to apply are just numerical
methods. Attractive qualitative results are the existence of relations between param-
eters of the problem and the natural appearance of small parameter Y (3.67). The es-
sential result is connected also with the conclusion on the stability of the nontrivial
solution. The estimate of nonlinearity contribution, which does not lead to decisive
change of properties of the solution, provides additional argument on behalf of the
present approach.

The resulting theory is nonlocal and the question might arise, whether the gen-
eral principles of unitarity and causality are here valid. The initial theory (3.35) quite
corresponds to these principles. One should expect, that its solutions, nontrivial ones
as well, have also to fulfill these conditions. Therefore one can consider the present
example as a step in direction of formulating of a consistent nonlocal theory. Basing
on results of the present work we may assume, that such theory can be consistent not
for an arbitrary form-factor but for the one, which follows from a nontrivial solution
of an initially local theory.
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Without any doubt a possibility of spontaneous generation of an effective interac-
tion, containing a dimensional parameter, is of great interest for studies of problems
beyond the Standard Model. In particular, the phenomenon of a spontaneous gener-
ation of an effective interaction, provided it to occur in a genuine physical theory, e.g.
in the electro-weak theory, might essentially promote our understanding of bases of
the theory. A subsequent results in this direction and applications of the approach
to spontaneous generation of effective interactions in gauge theories of the Standard
Model will be presented below.

To conclude the present chapter we would state, that theory of massless scalar
field ¢ with interaction g¢> in six-dimensional space is considered. A possibility of
initial scale invariance breaking, which results in a spontaneous arising of effective
interaction G ¢*, is studied by application of Bogoliubov quasi-averages approach. It
is shown, that compensation equation for form-factor of this interaction in approxima-
tion up to the third order in G has a nontrivial solution. In the same approximation the
Bethe—-Salpeter equation for a zero-mass bound state of two scalar fields ¢ is shown to
have a solution. The conditions imposed on form-factor value at zero and scalar field
mass m fix the unique solution, which gives relations between parameters of interac-
tion g¢> and parameters G and m. Arguments are laid down in favor of a stability of
the nontrivial solution.

3.10 Appendix

Here formulas of integration by parts of expressions entering in equation (3.49) are
presented

( Y2 F(y) L d(yd
ﬁj(—dy X —(X W(X F(X))> (3.87)

y+m2)2 7 T dx3
0

+ 2xd—2 x* d—4 (XZF(X)) -2 i x* d—4 (XZF(X)) +12a
dx? dx* dx dx* 1
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ﬁ J mdy = —X3 W (XZ W (XZF(X))>
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&’ d* d d*
2 2 2 2 2
+ 3x W (X W (X 1'(X))> - 6x a (X _dX4 (X F(X)))

d4
+6x° ) (x2 F(x)) -12ay,
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4 Three-gluon effective interaction

In this chapter we begin to study nonperturbative effects in strong interactions. We
proceed from initial QCD, the main points of which is presented in the first two chap-
ters. We have already laid down, that there is unavoidable necessity to introduce non-
perturbative quantities, e.,g, condensate averages. In view to achieve a description
of nonperturbative contributions we shall rely on the main idea of the present book
and we shall look for effects of spontaneous generation of effective interactions. The
results to be discussed in the chapter are mostly obtained in work [76].

4.1 Compensation equation

For the beginning we consider pure gluon QCD without quarks. We start with La-
grangian with gauge group SU(3). That is we define the gauge sector to be color octet
of gluons Fy;.

L= —% FiFe, Fa, =0,Fi-03,F+gfuF Fs. (@.1)
where we use the standard notations. Let us consider a possibility of spontaneous
generation of an effective interaction

G

a b pc
—3 fabe F,F,F (4.2)

which may be called an anomalous three-gluon interaction.
: G a b pc : :
Here notation 3; - fy, F,, F), F,, means corresponding nonlocal vertex in the mo-
mentum space

(27)" G fupe (8, (0K — P, qK) + 8., (k,pq - ,DK)
+ gp‘u(pvqk - kqu) + q‘ukvpp - k‘upvqp)
x F(p,qg. k) 6(p+q+k)+---, (4.3)

where F(p, g, k) is a form-factor and p, u,a; g,v,b; k, p,c are respectively incoming
momenta, Lorentz indices and color indices of gluons.

In accordance to the Bogoliubov compensation approach [40-42] in application
to QFT, which was discussed in Chapter 3, we look for a nontrivial solution of a com-
pensation equation, which is formulated on the basis of the Bogoliubov procedure
add-subtract. Namely let us write down the initial expression (4.1) in the following
form

L=Ly+Ly,
1 G b

Lo=-7 FoFo, + 51 fave Fi, Fy FS,, (4.4)
G

L = fane Fo Fo o (4.5)

int:_3!
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Here isotopic and color summation is performed inside of each quark bi-linear
. . : G a b pc :
combination, and notation - 3 - fu. F,, Fy, F,, means corresponding nonlocal vertex
in the momentum space

27)" G fape (8,04, 0k — D ,4k) + 8, (k,Dq — q,0k) 46)
+8,u0ak - k,pq) + q,k,p, - k,p,q4,) Fp, 4. k) (p +q + k) + - -+,

where F(p, g, k) is a form-factor and p,u,a; g,v,b; k, p,c are respectfully incoming
momenta, Lorentz indices and color indices of gluons. We mean also that there are
present four-gluon, five-gluon and six-gluon vertices according to expression for F,’jv
(4.1). Note, that inclusion of total gluon term F,’jv F,’jv in the new free Lagrangian (4.4)
is performed in view of maintaining the gauge invariance of the approach.

Effective interaction (4.2) is called anomalous three-gluon interaction. Our inter-
action constant G is to be defined by the subsequent studies.

Let us consider expression (4.4) as the new free Lagrangian L,, whereas ex-
pression (4.5) as the new interaction Lagrangian L;,. It is important to note, that we
put into the new free Lagrangian the full quadratic in F term including boson self-
interaction, because we prefer to maintain gauge invariance of the approximation
being used. Indeed, we shall use both quadratic term from the last term in (4.4) and
triple one from the last but one term of (4.4). Then compensation conditions (see for
details Chapter 3) will consist in demand of full connected three-boson vertices of
the structure (4.6), following from Lagrangian L, to be zero. This demand gives a
nonlinear equation for form-factor F.

Such equations according to our terminology are compensation equations. In a
study of these equations it is always evident the existence of a perturbative trivial so-
lution (in our case G = 0), but, in general, a nonperturbative nontrivial solution may
also exist. Just the quest of a nontrivial solution inspires the main interest in such
problems. One can not succeed in finding an exact nontrivial solution in a realistic
theory, therefore the goal of a study is a quest of an adequate approach, the first non-
perturbative approximation of which describes the main features of the problem. Im-
provement of a precision of results is to be achieved by corrections to the initial first
approximation.

Thus our task is to formulate the first approximation. Here the experience ac-
quired in the course of performing works [74, 77, 78], as well as examples being con-
sidered above, could be helpful. Now in view of obtaining the first approximation we
would make the following assumptions.

(1) Inacompensation equation we restrict ourselves by terms with loop numbers 0, 1.
(2) We reduce thus obtained nonlinear compensation equation to a linear integral
equation. It means that in loop terms only one vertex contains the form-factor,

being defined above, while other vertices are considered to be point-like. In di-

agram form equation for form-factor F is presented in Figure 4.1. Here four-leg

vertex correspond to an interaction of four gluons due to our effective three-field
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p p P
+ +
-P -p -p
P P
0
+ +
0
-p Y
P P P
0 0 0
+ % + j} + :% =0
-p -p -p

Fig. 4.1. Diagrams, describing the compensation equation for vertex (4.6), denoted by the black
spot, open circles denote the same vertex without form-factor and also four-leg vertex (6.10) without
the form-factor. Simple lines correspond to gluons.

interaction. In our approximation we take here a point-like vertex with an inter-
action constant being proportional to g G.

(3) We integrate by angular variables of the 4-dimensional Euclidean space. The nec-
essary rules are presented in Section 5.8 and in paper [77].

Let us note that such approximation was previously used in works [77, 78] in the study
of spontaneous generation of the effective Nambu-Jona-Lasinio interaction. It was
shown in Chapter 3 that the accuracy of the approximation could be estimated to be
=~ 10-15 %. Thus we could hope for such accuracy in the present problem.

At first let us present the expression for four-gluon vertex

Vip,m, A; g,n, 05 k,r,1; Ls,m)
1 (2m)* -

gdﬂmﬂ%Umkman—U&%%nm@—U@kamnM+U@k&mﬁw

(4.7)

+Up,q;m, A 0,7) - U, q; 7, A, 0,m) —U(q,p;m, 0, A, 7) + U(q, p; 7,0, A, n))
+famfams(U(p, Lo, A,m, 1) - U(l,pso,m A1) - Up, L1, A, m,0)+ Ul p;T,7, A, 0)
+ Uk, q;m,1,0,A) —U(q, ks m,0,7,A) = Uk, g; A, 1,0, ) + U(q,k; A, 0, T, n))
—fas"famr(U(k,p; o, A1) -Up, ko A t,7n)+Up,km A 1,0) - Uk p;m,1, A, 0)
-UlLgt,m,0,A) +U(,g;A,m,0,7) - U(q, A, 0,7,7) + U(q, L1, 0, 71, /\))),

Uk, o, 7, A) = (ks 1 8y — Ko Uy 8 + K 1y 850 — (KD)Eo:8r)F (K, L —(k +1)).
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Here triad p, m, A etc. means correspondingly incoming momentum, color index,
Lorentz index of a gluon. Properties of structure constants f*™ of the SU(3) group are
explicated in Section 1.4.

Let us formulate compensation equations in this approximation. For free La-
grangian L, full connected three-boson vertices with Lorentz structure (4.6) are to
vanish. One can succeed in obtaining analytic solutions for the following set of mo-
mentum variables (see Figure 4.1): left-hand legs have momenta p and -p, and a
right-hand leg has zero momenta. However in our approximation we need form-factor
F also for nonzero values of this momentum. We look for a solution with the following
simple dependence on all three variables

P +p3+p3 ) “s)

F(pl’pz’p:i):F( 2

Really, expression (4.8) is symmetric and it turns to F(x) for p; = 0, pf = p% = X.
We consider the representation (4.8) to be the first approximation and we postpone
calculations of corresponding corrections for forthcoming studies. Now according to
the rules being stated above we obtain the following equation for form-factor F(x) due
to diagram representation in Figure 4.1

ZN Y X
F(x) =~ G Z(J F(y)ydy - JF(y)y3dy

64 12 x2
0 0
1 X Y 2 Y F()
- 2 X _xX 1w
t*ex JF(y)y dy + 5 JF(y)dy B J y dy)
0 X X
GeN [ GgN [ [ (x-4y)2Q2y-3%)
g g X — 4y Yy — 35X
" lom2 JF(y)dy+ 247:2( J X2 (x - 2y) Fy)dy
0 3x/4
Y(5x 6y) GgN Y3(x2 2y%)
== —F — F(y)d
+J x-2) (y)d”>+32n2(J 82y 2 [N
X
3(4y - 3x)2 (% - 4xy + 2y%)
F(y)d
i J 8x2(2y — x)? W) dy
3x/4
[ 5y - 12xy [ 32 — 4xy — 6y*
—— Fy)d ———— _F(@y)dy ). X
+J Tox v y+J 16)2 v y) 4.9)
0 X
2

four terms in brackets represent diagrams with one usual gauge vertex (see the last
three diagrams at Figure 4.1). These terms maintain the gauge invariance of results
in this approximation. Note that one can additionally check the gauge invariance by
introduction of longitudinal term d kﬂkv/(kz)2 in boson propagators to verify an in-
dependence of results on d, in this approximation. Ghost contributions also give zero
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result in the present approximation due to vertex (4.6) being transversal:

PV, 4K = 0, V0, 4, K) p = k, V(D, 4, K) 1y = O,
VD, 4, K)np = 8n(d,Pk — D ,4k) + 8., (k,pq — q,Pk) (4.10)
+8,u(0ygk - k,pq) + q,k,p, — kD, 4,

Gauge invariance might be also violated by terms arising from momentum dependence
of form-factor F. However this problem does not arise in the approximation corre-
sponding to equation (4.9) and becomes essential for taking into account of g* terms.
In this case ghost contributions also do not cancel. The problem of the gauge invari-
ance of the next approximations has to be considered in future studies.

We introduce in equation (4.9) an effective cut-off Y, which bounds a “low-
momentum” region where our nonperturbative effects act and consider the equation
at interval [0, Y] under condition

F(Y)=0. (4.11)

The value of this parameter is to be defined in the process of a solution of the com-
pensation equation. We shall solve equation (4.9) by iterations. That is we expand its
terms being proportional to g in powers of x and take at first only a constant term. Thus
we have

Y X
1
Fol0) = (j R0y - 55 | Fot)y’dy
0 0
1| r )
= 2 X _X | Lo
* ox jFo(y)y dy + G JFo(y)d 5 J y dy)
87GgN
Ty 6[1:0()’) dy. 4.12)

Expression (4.12) again provides an equation of the type which were already studied
in Chapters 2 and 3, where the way of obtaining solutions of equations analogous to
(4.12) are described. Indeed, by successive differentiation of equation (4.12) we come
to the Meijer differential equation

d d d d Gsz2
<xa + 2> <xa + 1> <xa - 1> <xa >F0( )+ ——=F(x) =4, 413)

Y Y
G°N 87GgN
A= (- [ oo+ SEEY [ Rnar),
0 0
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which solution again is expressed in terms of Meijer functions
Fo(x) = C,Gpo(211/2,1,-1/2,-1) + C,Gpa(211,1/2,-1/2,-1)
GN

Y
878
12822 G5z 1, 1/2,0-1/2-1) J(Gy—T>FO(y)dy,
0

31,0 1 30
Gis(z |1,1/2,0,—1/2,—1) =57 Goy(z11,1/2,-1,-1/2),
_ G’NX
C 102472

Constants C;, C, are defined by the following boundary conditions

&’ F,(2) d’F,(z) dF,(z)
2 0 0 0 _
[22 dz3 +9z 2 dz ]z:zo_o’
d*F,(z dF,(z
[Zz2 dzoz( ) +52 doz( )+F0(z)] =0
G>NY?
ZOZ—Z'
10247

Conditions (4.11, 4.15) defines set of parameters
ZOZOO, C1:O, CZZO

The normalization condition for form-factor F(0) = 1 here is

G*N | 87GgN [
- F, dy + —=- | Fo(y)dy = 1.
6“2! W)y + 25 J W) dy

However the first integral in (4.17) diverges due to asymptotic

31(_0 1
Gls(Z|1,1/2,o,—1/2,—1) -5 zZ — 00,

— 91

(4.14)

(4.15)

(4.16)

(4.17)

and we have no consistent solution. In view of this we consider the next approxima-
tion. We substitute solution (4.14) with account of (4.17) into terms of equation (4.9)
being proportional to gauge constant g but the constant ones and calculate terms pro-

portional to v/z. Now we have bearing in mind the normalization condition

. 85g VN vz
96

1975

Fz)=1
@ 168

(lnz+4y+4ln2—

z

1 31/ 0 2
+ 5615(20 |o,o,1/z,—1,—1/z) ~32 JF(t) tdt
0

22 ( 4 4z dt
- JF(t)T+ﬁJF(t)\/_dt+ - JF(t)W

(4.18)
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where y is the Euler constant. We look for a solution of (4.18) in the form
1 31/ 0 858 VN 31 1/2
F(z)= 5615 (Z |1,1/z,o,—1/z,—1) T 128n Gis (Z|1,1/z,1/2,—1/2,—1)
~ C,Gg (211/2, 1,-1/2,-1) + C, Goo (211, 1/2,-1/2,-1). (4.19)

We have also conditions

K 87gVN [ dz
1+8 J F(z)dz = TR JFO(Z) A (4.20)
0 0
F(zy) =0, (4.21)

and boundary conditions analogous to (4.15). The last condition (4.21) means smooth
transition from the nontrivial solution to trivial one G = 0. Knowing form (4.19) of a
solution we calculate both sides of relation (4.18) in two different points in interval
0 < z < z, and having four equations for four parameters solve the set. With N = 3
we obtain the following solution, which we use to describe QCD case

g(zo) = 3.8166, z, = 0.009553,
C, = -5.19055, C, =5.46167. (4.22)

We would draw attention to the fixed value of parameter z,. The solution exists only
for this value (4.22) and it plays the role of eigenvalue. As a matter of fact from the
beginning the existence of such eigenvalue is by no means evident. This parameter z,
defines scale appropriate to the solution. That is why we take value of running cou-
pling g in solution (4.22) just at this point.

Note, that we use notations F(z) and F(x) for the form-factor, bearing in mind, that
these two functions are connected by the substitution of variable according to (4.14).

Let us take three-loop expression for ocs(yz) (1.69) and take for normalization in
low energy region with Ny = 3 its value at mass of 7-lepton. We have

ag(M, = 1777 MeV) = 0.320 + 0.005. (4.23)

From here we obtain
A3 = (345 +19)MeV. (4.24)

We normalize the running coupling by condition

=1.15515, (4.25)

2
a5(Xo) = g—(j‘;:

where coupling constant g entering in expression (4.22) is just corresponding to this

normalization point. Now from definition of z (4.14) and value z, (4.22) we have

1
A

G= A;=(264+7)MeV. (4.26)

2
G
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Typical range around 250 MeV is natural for strong interaction. It is also worth men-
tioning the value of the momentum which corresponds to boundary of nonperturba-
tive region z,,. From equations (4.22, 4.26) we have for this momentum

Do = (630 + 18) MeV. (4.27)

Nonperturbative boundary (4.27) seems also natural from phenomenological point of
view.

We have to bear in mind, of course, that all these results are obtained under cho-
sen approximation. Generally speaking, results could change with another choice of
form of dependence on the three variables in expression (4.8). By considering exam-
ples, we have get convinced, that such change does not influence coefficient afore the
logarithm in brackets in expression for inhomogeneous part of equation (4.18), while
it may lead to some change in the constant term of the expression in brackets. It is
important to understand how small changes in this term influence results. In view of
this we consider additional term e in the inhomogeneous part of (4.18). Thus we have
the following modified expression

. 85gVN+z 1975 1

1 T3 (lnz Hay+hIn2 - —r kS Grs (20 10.01/2,-1.-1/2) * e). (4.28)

Let us take for example value € = 0.13. In this case instead of (4.22) we have

g(z,) = 3.11587,  z, = 0.0153348,
C, =-4.47289, C,=3.62922, (4.29)

that in the same way as for case € = 0 leads to the following parameters

1
“S(XO) = 0.7726, G = R
G

Ag=(273.5+7.0) MeV. (4.30)

>

Another example € = 0.15. In this case we have

g(z,) = 3.03685, z,=0.0163105,
C, =-437005, C, =3.43372, (4.31)

1
as(x) = 0.7339, G=—,
AG

Ag = (276.4+ 7.0)MeV.

4.2 Running coupling

In the previous section N. N. Bogoliubov compensation principle was applied to stud-
ies of a spontaneous generation of an effective nonlocal interaction (4.2) in QCD.

It is of the utmost interest to study an influence of interaction (4.2) on the behavior
of strong running coupling «,(Q?) in the region below z, i. e., Q < p, (4.27).
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For the purpose we rely on considerations connected with the renormalization
group approach [1] (for application to QCD see, e. g., [2]). We have the one loop pertur-
bative expression for QCD S-function.

3 2N,
Bg) = - (fn)z <11 - Tf> 4.32)

We shall take additional contributions for small momentum k* — 0 of our new inter-
actions according to diagrams shown in Figure 4.2, that gives instead of (4.32)

g [<11_ ﬂ)_ 405+/3 g(z0)

Bg) =

Y 3 P (D(O)] . (4.33)

Here we see a decisive difference in behavior of perturbative § (4.32), which acts at
large momenta p > p, and nonperturbative one for small p ~ 0 (4.33). The sign of f8
changes between these regions. So a(p?) for p> — 0 is also positive as well as for large
p. The behavior in between can not be obtained by application of renormalization
group. However, we may use the dependence of diagrams of Figure 4.2. It is described
by function ®(x):

Zo1

Fx-3z/4 [ 4(x-3z/4)
O(z) = J Y22 F(x)dx + J So22) F(x)dx, z<z01,
z 3z/4
T - 3z/00? 42py
D(z) = J; 2 —2/2) F(x)dx, zy <z< 3 (4.34)
3z/4

_V36g® V3G
© 327 o327

>

4z
D(2) =0, z>%, Zo1 = \Zo» X

Thus in approximation using the one-loop expression corresponding to diagrams
of Figure 4.2 with Ny = 3 we have

a(X,)
1 4 %) (2_7 _ 405v2§ng(z0)®(x))ln(%),
0

ay(x) = (4.35)

67 2

where ®(x) is defined by the loop diagrams of Figure 4.2. Due to this vertex being gauge
invariant, there is no contribution of ghost fields. With G defined by (4.26), g(z,) de-
fined by (4.22) and k* = Q* we have the behavior of «,(Q).

With fixed parameter ¢ in (4.28) we calculate the behavior of running coupling.
Let us begin with initial case ¢ = 0. We have value of « (Q) at the beginning point of

nonperturbative contribution z; = %zm, corresponding to Q = 726 MeV.

as(Zy1) = 0.936. (4.36)

The boundary of nonperturbative region Q, = 726 MeV seems quite reasonable.
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Fig. 4.2. Diagrams, describing the contribution of nonperturbative vertex (4.7), denoted by the black
spot, to the running coupling as(kz). Simple lines correspond to gluons and thick lines correspond

to quarks.

as(Q)

200 400 600 800 1000 1200 1400 QMeV

Fig. 4.3. Dependence of the running coupling . The continuous line corresponds to a with non-
perturbative contribution (4.35), the discontinuous one with a pole, denoted by the vertical line,
corresponds to the usual perturbative one-loop expression.

It is interesting to study a dependence on value of €. For example, for e = 0.13 we have
the dependence presented in Figure 4.4. We see, that qualitatively the dependence is
the same as in Figure 4.3, but the value of « at the maximum is lower. This, of course,
leads to change of mean value of the coupling in the nonperturbative region. Remind,
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as(Q)

15}

200

400 600 800 1000 1200 1400

QMeV

-0.5F

-1.0F

Fig. 4.4. Dependence of the running coupling «, for e = 0.13. The continuous line corresponds to
ag with nonperturbative contribution (4.35), the discontinuous one with a pole corresponds to the
usual perturbative one-loop expression.

that this parameter was essential for results of Nambu—Jona-Lasinio model, which was
considered in Section 3.3.

We have three-loop expression for a,(x) (1.69), which allows us to define value of
o at ﬁé = 4/3 pé. According to previous results we normalize the running coupling
by condition (4.36). The last values being presented correspond to central values of
parameters defined above.

We would like to draw attention to the result, presented at Figure 4.3, which con-
sists in absence of the Landau pole in expression (4.35). Remind, that in perturbative
calculation up to four loops the singularity at the Landau pole point is always present.
Only by taking into account of the nonperturbative effects we achieve elimination of
this very unpleasant feature, which was seriously considered as a proof of the incon-
sistency of the quantum field theory [10, 11].

There is also a feature of expression (4.35), which deserves being mentioned. The
limit of «,(Q) for Q — 0 is zero. It may be interesting for consideration of the color
confinement conditions [79, 80]. Let us note, that similar behavior of the running cou-
pling corresponds also to results, obtained by lattice calculations. For example, in the
most recent lattice work [81] the dependence of the running coupling resembles that
of Figure 4.4.

The average «, in the nonperturbative region for e = 0.13

12872,

—_— 4.37
3V3G (437

Qo
1
& = ~ j ,(Q)dQ = 0.87, Q= \j
Q
0
Fore = 0.15 &, = 0.84. These values, as well as value (4.36) of the coupling at the

boundary of the nonperturbative region, agree with estimate (3.26), which give sat-
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isfactory description of nonperturbative parameters including quark condensate and
the pion mass (see Section 3.3).

4.3 The gluon condensate
One of important nonperturbative parameters is the gluon condensate, that is the fol-

lowing vacuum average
2
_ 8 a ra

vV, = <mF,WF,W>. (4.38)
Let us estimate this parameter in our approach. We apply our method to the first non-
perturbative contributions, presented in Figure 4.5, which is proportional to g G. It is
important to introduce Feynman rule for contribution of operator (4.38) in brackets.
We denote it by skew cross in Figure 4.5

2
Ver(p, vip) =1 f:—z (8P’ —DuDP.). (4.39)

With distribution of integration momenta denoted in Figure 4.5 form-factor in
both types of diagrams according to (4.8) has the same argument:

F (pz + %q2> ) (4.40)

It comes out, that the second and the third terms in the second row of Figure 4.5
are twice each of the previous terms. Thus the sum is equal to the result for the first
diagram multiplied by 10.

We have after the Wick rotation

_10x248°G 2.3 2\ __ 12(0°¢° - pg’)
v =l K G Ferer ey

SES=Se S S=
o OO D

Fig. 4.5. Diagrams for calculation of the gluon condensate. Lines — gluons, black circle - triple ver-
tex (5.4), empty circle — four gluon vertex (6.10) with corresponding form-factor and skew cross —
vertex (4.39). Momenta directed to the right are p — q/2, g, -p — q/2 for bug-like diagrams and
p—q/2,p+ q/2for co-like diagrams.

> dpdq. (4.41)
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Using the following integral by angle 6

n sinz(e)de B T y\ 1 y 4]
J<pz+a—z)2—<pq)2_2(x+%) ["("‘Z>;+9(z"‘); )

0

x=p°, y=q¢,

we obtain the following expression for quantity (4.41)

5g3 211 VZo
V, = m J F(t) I, dt, (4.43)
0
N C—yre-sym i -y
y - y)2(t -3y -y
I-12 gy - - ,
‘ (!(t L)y = tj oy Y jt—y/zdy>
_G\3(. . 3y
t= 2571(X+ 4 )

We have already expressions (4.19, 4.22) for form-factor F(z), z = t2. So calculation
here is direct and we obtain, using values for g (4.22) and the central value in definition
of G (4.26)

3510 %
_58%2 4 B .
VZ = le (2 -6In 5)6[1:(2)\/2(12 = 0.0096 GeV N (4.44)

Provided we take nonzero value for € in expression (4.28) results for gluon condensate
read

V,=0.0120 GeV” (¢ = 0.13),
V,=0.0128 GeV* (¢ = 0.15). (4.45)

So in this approximation we have the nonzero nonperturbative parameter V,. Its
value agrees within accuracy of determination of this parameter with phenomenolog-
ical values (1.83), V, = 0.012 GeV* [24], V, =~ 0.010 GeV* [82]. Values (4.44, 4.45) show
variation in the range of an uncertainty of its phenomenological definition. Thus we
can state, that our nonperturbative approach allows to calculate safely this important
parameter.

Let us also estimate vacuum average V;

V3 = <g3fach‘ZvF\ijFf)M>* (4.46)

Quite analogous calculations give, e. g., with e = 0.13

g2V 4 %
R (z —6ln 5) JzF(z)dz — 0.00744GeV®. (4.47)
0

This value also agrees estimates (1.83).
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4.4 The glueball

The existence of anomalous interaction (4.2) makes possible to consider gluonic
states. We shall consider scalar glueball X, state to get indications if value of the
nonperturbative constant (4.26) may be used for adequate description of the non-
perturbative effects of the strong interaction. For the purpose we use Bethe—Salpeter
equation with the kernel corresponding to one-gluon exchange with our (point-like)
anomalous three-gluon interaction (4.2). We take for vertex of X, interaction with two
gluons in the following form

G

b
Tg Fy, Fp, Xo ¥ep(0), x = p’, (4.48)

where W, (x) is a Bethe-Salpeter wave function. We have for the first approximation
(zero momentum of X,,)

X
3G /1
ror (30 [ a0y -
0

% |

Yop(X) = — J yZ\Ifgb (y)dy (4.49)
0

Y Y 2 Yy )
bs b
-3 Jy‘l’gb(y)dy - X J Vg ()dly + J g—dy),
0 X X y
where we take again the upper limit Y of integration as in (4.9) due to form-factor of
interaction (4.2) F(x) = 0 for x > Y. Again by successive differentiations we obtain
from equation (4.49) the following differential equation:

d d 1 d 1 d C
(Z’E + 1) (Z’E + z) (Z’E - z) (Z’E - 1) \Pgb(zl) = Z’\Pgb(zl) + Z, (4.50)

2Cl
96X  , 9GY’

C:4J‘I’ that', 2 =7, t'=—"=.

) (0 12872 12872
Comparing variable z' in equation (4.50) with the initial variable z in Eq. (4.14) we see
relationz’ = 24 z. This means also, that z, = 24z, z, from solution (4.22). In new vari-
ables equation (4.49), in which we also have taken into account terms, proportional
to gauge coupling g and mass of the bound state squared m?, looks like

! !

z z
! 2 1N ! 4 ! !
\Pgb(z ) =1- ﬁ[ \Pgb(t )t dt + ﬁ J \Pgb(t )\/pdt
0 0
T Y)Y 2 ()
8! ! g !
——dt - — J at’, 4.51
T3 J N 3 v (451
z' z'
T 3gVZ\ [ Yarl)
_ NV g gb ]
1—4J‘I’gb(t)dt+(1c+—2n )J 77 dt.

0 0
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Here « is connected with the bound state mass m in the following way:
2
~ 3G My,
8V2m

According to expression (4.50) we look for the solution of equation (4.49) in the fol-
lowing form

(4.52)

T
¥, (2) = 0 Grs (Z'13 0.1/2-1/2-1) + C1 Gog (2'11, 1/2,-1/2,-1) (4.53)
+C, Goy (-2'11, 1/2,-1/2,-1).

By substituting expression (4.53) into set of equations (4.51) and using the values of g
and z, (4.22) we obtain unique solution for parameters

C; =1.07899, C(C,=-1.38099, x=-2.6415. (4.54)

Now from values (4.26, 4.54), using relation (6.60), we have the lightest scalar glueball
mass
Mgb = 1479 + 40 MeV. (4.55)

This value is quite natural, the more so, that the most serious candidate for being the
lightest scalar glueball is the state f;,(1500) (see recent review [83]) with mass 1507 +
5 MeV, that evidently agrees our number (4.55).

Now we have to obtain the coupling constant of the scalar glueball entering in the
expression of the effective interaction (4.48). For the purpose we use the normalization
condition for Bethe—Salpeter wave function ¥(t).

V2GE W ()2
- sb J a(t) dt'. (4.56)

nG vVE

Substituting into equation (4.56) solution (4.53, 4.54) and calculating the integral, we
obtain

G
6% = 2L - 18256,
& V21
Z,
S (t)?
I= j gi/(F) dt' =1.21732. (4.57)

From result (4.57) we have the following value of the glueball coupling:

. 1 _ 5.254
8>~ 190.337MeV  GeV °

(4.58)
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4.5 Conclusion

An existence of a nontrivial solution of a compensation equation is extremely restric-
tive. In the most cases such solutions do not exist at all. When we start from a renor-
malizable theory we have arbitrary value for its coupling constant. Provided there ex-
ists stable nontrivial solution of a compensation equation the coupling is fixed as well
as the parameters of this nontrivial solution. Note, that application of the same ap-
proach to the electro-weak theory to be described below also leads to strong restric-
tions on parameters of the theory including the coupling constant.

We also may state, that in the case, discussed in the present chapter, just the non-
trivial solution is the stable one, because the theory with the Landau pole is unstable.

We consider the results for the gluon condensate (4.44,4.45) and the glueball
mass (4.55) as a confirmation of efficiency of our approach in application to nonper-
turbative contributions to QCD.

We consider the present results for low-momenta «, to be encouraging and
promising for further applications of the Bogoliubov compensation approach to prin-
cipal problems of elementary particles physics. Let us emphasize, that elimination
of the Landau pole, which is achieved due to existence of the effective anomalous
three-gluon interaction, removes evident instability of the theory. This result may
serve as an additional argument for stability of the solution being obtained here in
comparison with the perturbative one. We shall consider problem of stability in more
details in what follows.

In the next chapter we apply the method to light hadrons and their interactions.
This problem is without doubt connected with nonperturbative effects. Let us watch,
how compensation approach works in this field.



5 Nambu-)ona-Lasinio effective interaction

5.1 Introduction

The Nambu-Jona-Lasinio model, which we have described in Section 1.6.2, has man-
ifested itself to be a good phenomenological tool for low-energy hadron physics. For
details of the Nambu-Jona-Lasinio model see works [31, 33-37]. In the present chap-
ter we consider the problem of a spontaneous generation of the Nambu-Jona-Lasinio
interaction, following the compensation approach, introduced and elaborated in pre-
vious Chapters 3 and 4.

It is well-known, that the fundamental perturbative theory QCD is valid in the
region of large g°. In low-momenta region NJL model supplements the fundamental
QCD. It is important, that common property of both theories consists in the chiral sym-
metry, which defines main features of low-energy hadron physics. However till now
there was no direct derivation of NJL. model from QCD. Therefore the problem to find
a relation between parameters of NJL and those of QCD for a long time was quite ac-
tual. Some attempts in this direction were accompanied by inevitable introduction of
additional parameters (see, e.g. [38, 84]).

We have already discussed main properties of the model in Section 1.6.2. In Sec-
tion 3.3 we have considered application of the N. N. Bogoliubov compensation ap-
proach [42] to the problem of spontaneous generation of the NJL interaction. The
results of Section 3.3 seems encouraging albeit the approximation being used there
is rather rude and needs an introduction of cut-off A, which however is defined in the
course of the solution of compensation equations.

In this chapter we use the method developed in Chapter 3 based on the N. N. Bo-
golubov compensation approach [42]. As a result we demonstrate the spontaneous
generation of the Nambu—Jona-Lasinio effective interaction, which contains no addi-
tional parameters but the QCD ones. For the first time main parameters of low-energy
hadron physics were calculated in this approach [77] in chiral limit that is for current
mass of light quarks m, = 0. In this chapter we develop the approach for demon-
stration of spontaneous generation of the Nambu-Jona-Lasinio interaction and apply
results for description of light spin zero and spin one mesons [78, 85].

5.2 Effective NJL interaction

Now we start with QCD Lagrangian with two light quarks (u and d) with number of
colors N = 3

2
_ _ — . aa 1 a ra
L= z (% (V/kyMaMWk - akayka) - MYy + gsvjkyMt Aka) - Z (Fvayv) S CR))
k=1

where we use the standard QCD notations.
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Let us assume that a nonlocal NJL interaction is spontaneously generated in this
theory. We use Bogoliubov approach, described in Chapter 3 (see also [40, 42]) to check
this assumption. In accordance to the approach, application of which to such prob-
lems are described in details in Section 3.5, we look for a nontrivial solution of a com-
pensation equation, which is formulated on the basis of the Bogoliubov procedure
add-subtract. Namely let us rewrite the initial expression (5.1) in the form

L=1Ly+ Lint’
1 a a
= 5 (‘/’YM ,41// V/YMV/) FO .quO;w
— 1 — - b - —
—mogy + St (T ysy oty - Gy oY)
G, . ) ] ]
+ S (PR Vv 9T i vy (.2)

— aa 1 a a a a
Ly =8 V/YMt A,ﬂlf - (F‘quyv _FOMVFOpv)
G1 ]
(9 ysy 9 ysy - Wy iy)

- 72 (P yy T v + Ty sy (5.3)

Here v is the isotopic doublet of quark fields, color summation is performed inside of
each fermion bilinear combination, F,,, = d,4, - d,4,, and notation G,/2 - yyyy
corresponds to nonlocal vertex in the momentum space

1(2m)" G, F,(p1,p2,p3,p4) 8(p1 + p2 + p3 + p4), (5.4)

where F; (p1,p2,p3,p4) is a form-factor and p1, p2, p3, p4 are incoming momenta.
In the same way we define vertices, containing Dirac and isotopic matrices. We com-
ment the composition of the vector sector, which here contain only iso-vector terms,
in what follows.

Let us consider expression (5.2) as the new free Lagrangian L,, whereas expres-
sion (5.3) as the new interaction Lagrangian L;,,. Then compensation conditions (see
again Chapter 3) will consist in demand of full connected four-fermion vertices, follow-
ing from Lagrangian L, to be zero. This demand gives a set of nonlinear equations for
form-factors F;.

These equations according to terminology of Chapter 3 are called compensation
equations. In a study of these equations the existence of a perturbative trivial solution
(in our case G; = 0) is always evident, but a nonperturbative nontrivial solution may
also exist. Just the quest of a nontrivial solution inspires the main interest in such prob-
lems. It is impossible to find an exact nontrivial solution in a realistic theory, therefore
the goal of a study is a quest of an adequate approach, the first nonperturbative ap-
proximation of which describes the main features of the problem. Improvement of a
precision of results is to be achieved by corrections to the initial first approximation.
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Thus our task is to formulate the first approximation. Here the experience ac-

quired in the course of considering of scalar model in Section 3.5 is useful. Now in
view of obtaining the first approximation we would make the following assump-
tions.

)

@

In compensation equations we restrict ourselves by terms with loop numbers 0,
1, 2. For one-loop case only trivial solution exists. Two-loop terms lead to integral
equations, which may have nontrivial solutions. So the account of two-loop terms
leads to the first nontrivial approximation.

In compensation equations we perform a procedure of linearizing over form-
factor, which leads to linear integral equations. It means that in loop terms
only one vertex contains the form-factor, while other vertices are considered
to be point-like. In diagram form equation for form-factor F; is presented in Fig-
ure 5.1.

Fig. 5.1. Diagram corresponding to compensation equation in the Nambu-Jona-Lasinio nonlocal
interaction.

®)

(4)

An accuracy of this procedure was estimated in Section 3.8 (see also work [74]) to
be of the order of magnitude of ten per cent.

While evaluating diagrams with point-like vertices diverging integrals appear.
Bearing in mind that as a result of the study we obtain form-factors decreasing at
momentum infinity, we use an intermediate regularization by introducing ultra-
violet cut-off A in the diverging integrals. It will be shown that results do not
depend on the value of this cut-off.

We use a special approximation for integrals, which is connected with trans-
fer of a quark mass from its propagator to the lower limit of momentum inte-
gration. Effectively this leads to introduction of infra-red cut-off at the lower
limit of integration by Euclidean momentum squared g* at value m>. To jus-
tify this prescription let us consider a typical integral to be encountered here
and perform simple evaluations. Functions which we use here depend on vari-
able of the form « q*, where « is a parameter having 1/m* dimension. Now we
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have

TF(a ) dg* _ TF(a (q”2 - m?) dg”
) (@ +m)k (g")*

_ ]’OF(aq’Z)dq’Z o ].OFI(“qIZ)quZ

@F @ 6

mZ

Thus the introduction of infra-red cut-off at m?> which actually consists in the
following substitution corresponds to accuracy, which is defined by parameter
am?. As we shall see, this parameter for our solutions does not exceed order of
magnitude of few per cent. We use this tool throughout the present book. In do-
ing this we keep at numerators only the leading terms in m expansions because
taking into account of the next terms evidently means supererogation of accu-
racy

TF(rx q’)dg’ T Flaq®)dq’

)@ my @F o0

(5) We shall take into account only the first two terms of the 1/N expansion. Ne-
glected terms gives contribution, which values are defined by parameter 1/(4 N).
Here additional factor 4 in the denominator is connected with structure of NJL
interaction in Lagrangian (5.3). Indeed a trace in color indices is always accom-
panied by a trace in spinor indices, which gives factor 4. Thus this approximation
defines accuracy = 8 %.

Let us formulate compensation equations taking into account all the prescriptions
being introduced. For free Lagrangian L, (5.2) full connected four-fermion vertices
are to vanish. One can succeed in obtaining analytic solutions for the following set
of momentum variables (see Figure 5.1): left-hand legs have momenta p and -p, and
right-hand legs have zero momenta. In particular this kinematics suits for descrip-
tion of zero-mass bound states. The construction of expressions with an arbitrary
set of momenta is the problem for the subsequent approximations. In the present
chapter we shall use the next approximation for obtaining parameters of scalar and
pseudo-scalar mesons.

Now following the rules being stated above we obtain the following equation for
form-factor F, (p) in scalar channel

GFl(p)_GZNAZ(l L_G_N(“ZN”F(q)dq)

4N  27% q
3G .G, . Pt 3, m0 (G? + 6G,G,)N
2A° In= -2 -1 1z :
82 ( VIS e 3276 G7)
-9 30-9’ my \ GiF,(q°)dgq
2A° In - )
XJ( - 5 2 20-97) @
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Here integration is performed in the four-dimensional Euclidean momentum space
with infra-red cut-off at mé. One-loop expressions contains terms proportional to N
and 1 while two-loop terms correspond to N> and N. The leading terms are the same
for scalar and pseudo-scalar cases. We perform the study with the scalar channel, be-
cause it defines spontaneous breaking of the chiral symmetry. Equation (5.7) evidently
has trivial solution G, = 0. Bearing in mind our goal to look for nontrivial solutions
we divide the equation by G, and perform angular integration in four-dimensional
Euclidean space. The necessary formulae for these calculation are presented in Sec-
tion 5.8. From (5.7) we have

2

Fi(x)= A+£<2A +xln——2x—ﬂ )
8n? A2 2 2x

(G +6G,G,)N

3270 ( J(y - 3u*)F, (y)dy

NIUJ

JyF (y)dy+lnnyF (y)dy+xlnxJF1(y)dy
# #

u
ylnyF, (y)dy+xj lny+— F 1 (y)dy

X‘——,S

3u2 J Fi(y)
y
X

dy + 2A - %x) JFl(y) dy (5.8)
u

NIUJ

-2 [yroay-m w([yrmayex [Forw) )
# # #

G2NA> 1 GN 1\
A= (1 — D% (14— JF )

272 4N 272 ( +21\1) 10 dy
u

pu=my, x=p’, y=gq.
Equation (5.8) by a sequential six-fold differentiation reduces to the following differ-
ential equation
& ( & d pmj Fi (%)
r( g (g (Rw) + SRR ) )= g
_(G1+6G,G,))N
B 16 n*

with corresponding boundary conditions.
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Equation (5.9) reduces to the Meijer equation. Namely with the simple substitution
we have

((z% —b) (z% —a) z% (z% - %) (z% - %) (Zdiz - 1) —z)Fl(z) =0,

(5.10)

_BxX go L-VI-64w 14 VI-6A, _ pmyg
o267 T 4 T 4 0T 64
Boundary conditions for equation (5.10) are formulated in the same way as in previous
cases. At first we have to choose solutions decreasing at infinity, that is combination

of the following three solutions

z

11

Fy(2)=C, G¥ (z L3 5.0.a b) (511)

1 1 1 1
c G"O(z 1, 1 b a —,o) c G‘*O(z 1,0 b a <, —).
+C; Gog | 2| 3 3 +C3Gog | 2| 55

Constants C; are defined by boundary conditions

36, BT
22 _Z | F(y)dy=0,
82 2 1(y) dy
mg
J yF,(y)dy =0, J Y’ Fi(y)dy = 0, (5.12)

2
0

2

m 0

m,

which one obtains from integral equation (5.8) by considering asymptotic behavior
of integral terms at infinity. These conditions and condition A = 0 as well provide
cancelation of all terms in equation (5.8) being proportional to A> and In A?. Thus the
result does not depend on a value of parameter A. By solving linear set (5.12), in which
solution (5.11) is substituted, we obtain the unique solution. Value of parameter v,
which is connected with initial quark mass, and ratio of two constants G; we obtain
from conditions F; (4) = 1 and

G,NA? 1 GN 1\ [
A=— 1+—- 2 (1+— JF dy | =
22 ( TuN 2n2( +2N> ] 1) y)

mO
~ (1+ L) G,NA? (1_ 6G,(4N +2) )
B 4N/ 2m? (G, + 6G,)(4N + 1)

=0, (5.13)

_Bm  N(Gi+6G,G,)my
o6 1024 n*

Fi(up) =1, uo

The last line here presents the obvious condition of normalization of a form-factor
on the mass shell. Now relations (5.13) give for N = 3 with the account of the first of
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conditions (5.12)

L3 G,. (5.14)

Uy =1.726-10°% ~2.10%, G, = 5

So G; and G, are both defined in terms of m,. Thus we have the unique nontrivial
solution of the compensation equation, which contains no additional parameters.
The form-factor now reads as (5.11) with

C,=0.28323, C,=-190129-10% (;=-3.42638-107", (5.15)

In what follows we use the notation F, (z) for expression (5.11), where z is always the
dimensionless variable defined by expression (5.10). We have F;(u,) = 1 and F,(2)
decreases with z increasing in the following way

F,(z) - 21 exp (-3 (1-1V3) z¢) + he,
Z6
where D is a complex constant. It is important, that the solution exists only for positive
G, and due to (5.14) for positive G, as well.
At this point we would comment the problem of accuracy of our method of tak-
ing into account of quark mass m,. A possible corrections being proportional to mé

correspond to dimensionless variable (5.5) where « = \/F/ 8
amy=\u, ~ 107, (5.16)

and so they are not significant for definition of form-factor F; ().

It is interesting to consider dependence of results, firstly for value m, on value of
number of colors N,. The set of equations (5.12) has unique solution for each value of
N_.. First of all, let us consider limit N. — co. The solution here is

1

Uug =0, C2=C3=0, Cl:ﬁ

1 40 11 1
Fi(z)=——=G (ZO,—,—,l,——,O). 5.17
1(2) > v Jos 10, 2. 5 5 (5.17)

This result means, that for N. — co we have the zero current mass for the light quark
doublet, in other words we have the exact chiral symmetry. This result seems natural.
We would emphasize, that it is obtained in the framework of the approach without
any additional assumption. In fact this result qualitatively explains smallness of the
light quarks’ current mass m,,.

With N, decreasing m,, increases achieving value (5.14) for N. = 3. Let us present
values of u, for several values of N,

N.=2:uy=1065-10", N.=4: uy=4.75-107,
N.=5:u,=174-10"°, N.=10: u, =8.00-10"'", (5.18)
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With one per cent accuracy we may approximate this results by the following simple
dependence
u, = iﬁ, A=2326710"° f=4.46366. (5.19)
C

We would also comment the composition of the vector sector. For a nontrivial solution
with G, # O we calculate one-loop terms giving contribution to equation for form-
factor of vector terms. As a result of the first approximation we obtain just the isotopic
vector terms, which are presented in expression (5.3).

Let us note, that at this stage we have two possibilities: trivial solution G; = 0 and
nontrivial one (5.11, 5.14, 5.15). We shall see below that a choice between the possibil-
ities will be determined by the QCD interaction.

5.3 Scalar and pseudo-scalar states

Now with the nontrivial solution of the compensation equation we arrive at an ef-
fective theory in which there are already no undesirable four-fermion terms in free
Lagrangian (5.2) while they are evidently present in interaction Lagrangian (5.3). In-
deed four-fermion terms in these two parts of the full Lagrangian differ in sign and
the existence of the nontrivial solution of compensation equation for Lagrangian (5.2)
means nonexistence of the would be analogous equation, formulated for signs of four-
fermion terms in interaction Lagrangian (5.3).

So provided the nontrivial solution is realized the compensated terms go out from
Lagrangian (5.2) and we obtain the following Lagrangian

[ _ 1 _
L= (9009 = 0,9%¥) = 3 FounFou — MoV ¥

_ 1
+ 8 V/y,utaAZV/ - Z (FZVFZV - ngvngv)

G - — — —

- S (v sy - Ty i) (5.20)
G T - — —

- 2 (P Y I v )

where G,, G, are defined by relations (5.14) and form-factor F, is defined by equa-
tions (5.11, 5.15).

1 In other words the fact, that sum of a series ¥ G"a,, = 0 for some value G, by no means leads to a
conclusion, that sum of the same series with G — — G vanishes as well.
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Here we have to comment the meaning of the strong coupling constant g,. We have
already discussed in Sections 1.4, 4.2 running coupling gs2 /47 = ay(q*) depending on
the momentum variable. We need this coupling constant in the low-momenta region.
However the perturbation theory in QCD does not work for small g*. We assume that in
this region «,(g*) may be approximated by its average value &;. This assumption is very
close to conception of a frozen strong coupling at low momenta [86]. The consideration
of average low-momenta value of &, performed in Section 4.2 (see also [86—90]) leads
to the definition of a possible range of values of &, from 0.7 up to 0.9. So in what
follows we use constant &; which is assumed to fit this interval of possible values. Let
us remind, that in Section 4.2 such average was calculated for several possible sets of
initial parameters and these averages turn to agree with the possible range of variation
of &,

0.7 < & < 0.9, (5.21)

in the nonperturbative region. In what follows in Chapter 5 we shall use notation «, =
a.
Thus, bound state problems in the present approach are formulated starting from
Lagrangian (5.20).
Let us write down Bethe—Salpeter equation for a state in zero-spin (scalar and
pseudo-scalar) channel in the same approximation as was used in equation (5.7). Let
us begin with massless states. The definitions of momenta are the same as in equa-

tion (5.7)

5. G N [¥(@)dg (G]+6G,G,)N
Y=o J I 3276 62
2 oo -@® 3. 5 m' \W(¢')dg
XJ(ZA +(p-9) ln—A2 2(p q) 2(p—q)2) Pea

Here mis a quark mass, which of course do not coincide with m,. We define the value
of m after considering the spontaneous breaking of the chiral symmetry.
After angular integrations we obtain the one-dimensional equation similar to
equation (5.8)
GN | ( (
Y(x) = 2;712 J P(y)dy + 377 5 J y¥(y)dy + é j(y2 -3m")¥(y)dy
m? m? m?

(G + 66162)1\1( 3

+Inx J y¥(y)dy + xIn x J Y(y)dy + J ylny¥(y)dy + x J(lny + %)‘I’(y)dy

[ee]

x2-3m* [ ¥(y) 3T

X

N W

J y¥(y)dy —In Az(J y¥(y)dy +x J Y(y) dy) ) (5.23)
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The corresponding differential equation for ¥(x) is almost the same, as the previous
one (5.9) with one essential difference. Namely the sign before f is opposite.

(1) )ef - 2)- (et 1) <)oo o

B’ o _-1+Vivehu o -1-Visehu - _pm"
267 7 4 T 4 T 64

In this case we have the following solution decreasing at infinity

zZ =

* 1 1 - 11 _ 3
\y(z)zclcgg(zu, 30,3, b) Ggg(zu 3304 b) (5.25)
g0 b1 L o) cia(zt a b Lo)
+c3c;06(z|1 . 33:0)+ Ci6X(z15.a b1, 5,0).
Constants C; are defined by the following conditions
| \P(\z/)_dz -0 [v@dz-o [vEr@dz-0. waw -1 60
z
u u

where u = ﬁm" / 2%, Let us remind, that boundary conditions (5.26) guarantee can-
celation of terms in equation (5.22) containing cut-off A. Performing integrations in
expressions (5.26), we have the following set of equations

1 1 - 11 -
* ~30 — -
ClG%(ull, 2.0, 3, b)+c2 GOG(ull 330, . B)
-1 1 1 1
* ~30 — * ~30 -
+CGY (u|1, @b 3 5. 0)+C;628 ul3.a b1, 3, 0)=1,
3 1 1 1 -
-ci6e (w3 1,5.0.5 +a 5 +b)
1606 \U13-1.5.0: 5 2

» ' (1
“|rrd_ard p " (410 20a8)

31 _1 -1 £ 30 1 .1 -31
G ( >lial b,—,1,o)—CG (u1,— a,—+b,—,—,o)=o,
3 |22+ 2773 4°6|2+2 2’2
I(2)
€ | e G (a0 110000)
r(_i)r(_a)r(_b) ,3/2,1,3/2,0,1+a,

. 3 N 3 3
—chgg(uu,%,z,m+a,1+b)—c3c;3 (u|2 1+a,1+h3, 5,0)

. 3 0 - 3
-C; Ggg(u|5, 1+4,1+b,2, 5, o) =0, (5.27)

I3
C* 2 = G31 5 3.5 3
’ [r(—l)r(—§ ~ar(-3-b (22303002 b)]

2
31 1 * ~31 1
-C,G (u; 3 3—3*)—CG (llss—s* 3)
1617 (U5 53 50,344, 248) = C3617 (U5 5,0 30525 30

31 1
-C; G (u 3,7 3.5 5 9 3 ):O-
4 =17 |2,5+a5 +b, 3,2,3,0
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For a given value of u these conditions (5.27) uniquely define four coefficients C;.
The result, that equation (5.22) has unique solution, which satisfies all boundary
conditions, corresponds to existence of a zero-mass state in the same approximation
as is used for compensation equation (5.7). This is quite natural due to Bogoliubov—
Goldstone theorem [40, 43, 44].

However we have to take into account the QCD interaction as well as an interaction
of these mesons (¢ and r,) with quarks. Indeed we have just shown the existence of
this states and so the following effective meson-quark interaction is to exist

—g(¢Ty+im i ysTay), (528)

where g is defined by normalization condition of zero-spin states

gzNI 1 L= J’ ¥(p?)? dp® :J'\P(z)zdz
4227 2 p> 2z

(5.29)

mZ

The form-factor of interaction (5.28) for our standard quark momenta prescription
(p,-p) is a Bethe—Salpeter wave function defined by egs. (5.25, 5.27). The account
of contributions of meson-quark interaction was considered in the framework of the
Nambu-Jona-Lasinio model, e. g., in works [91, 92] and was shown to be correspond-
ing to the next order of the 1/N, expansion. In diagram representation the Bethe—
Salpeter equation is shown in Figure 5.2.

Let us calculate a mass correction term due to these contributions. For the purpose
let us take into account terms of the first order in P?, where P is the momentum of a
scalar (and pseudo-scalar) meson and one-loop terms being due to quark-gluon QCD
interaction and quark-meson vertices. Note that for the last loops we use massless
meson exchange. We define momenta of left-hand legs in Figure 5.2 to be p + P/2 and

e (e

+

Fig. 5.2. Diagram corresponding to Bethe-Salpeter equation for the Nambu—-Jona-Lasinio effective
interaction.
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—-p + P/2 and obtain the following equation

Yp(q”)dq 3P?  (qP)’
\Pp(p)—znz;J qu (1__+(q2)2>

(G? + 6G,G,)N 3P? (qP)?

TJ(1——+ (q2)2> (530)
2 2 (p q) 3 m4

Yp(gHdg ([ & i ) ¥p(q*) dg

S +(4n"+8n‘* qu(q_p)z-

In the course of the QCD term calculation we use the transverse Landau gauge 2.
Let us multiply equation (5.30) by Wp(p*)/p? at P = 0 and integrate by p. Due to
equation (5.22) being satisfied we have

2 2,2 2 2 2 2
_P_J‘I’(q)dq+(gs +§_>J‘I’(p)dpJ Y(g)dg _ 631)

2 (q%)? 4 8mt p? q?(q-p)?

After an angular integration we obtain the following relation

P’ 282+ g* T 17 00‘I’(y)dy
> L= 3 J ‘I’(x)dx(; J Y(y)dy + J y )

mZ X
2gs +g2 OO‘I’(z)dz w(dt (282 +82) I
= , (5.32)
) T 2p
_Be BV
o647 64
The integral inside of I; with account of boundary conditions (5.26) reads
z
Y dt .. .30 1 3 1 1 -
J \/? —ClGOG(Z|E,1,E,O,z+(1,z+b)
£ ~30 311 _1 -
CZGOG(Z|O,1,E,E,E+(1,E+IJ)
£ ~30 31 _1 - 1
+C3GO6 (Z|E,z+a,z+b,o,z,1) (5.33)
* ~30 _ 1 - 1 3
+C4G06(Z|1; +a, z"’byoy z; z)’

and after a substitution of relation (5.33) into integral I; it is to be calculated numer-
ically. Note that while evaluating integral (5.33) we use the following relation, which

2 This gauge leads to an absence of renormalization of the both vertex and spinor field in the one loop
approximation.
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is formulated in Section 2.3 (see relations (2.150, 2.151)).

T(c)r(d
G171 (21} ca0.g.ap) = = (C)_() —~ ~ G (210,¢,d, g, a, b). (5.34)
(1 -g)Ir(1-a)l(1-b)

Integral I, turns to be positive, so the mass squared of scalar and pseudo-scalar
mesons is shifted to negative value

2

2 Xs g 815

== —+ == . 5.35
my <n+8n2) 31, (5.35)

This means that we obtain scalar and pseudo-scalar states with negative mass squared
(tachyons).

5.4 Spontaneous breaking of the chiral symmetry

The negative value of mi (5.35) means instability of the vacuum. Therefore we have
to consider an effective potential depending on scalar field ¢. In doing this we need
an expression for mass operator of the quark X(p*). The Schwinger-Dyson equation
defining this function in our approximation reads as follows

2 _ G N J’Z(qz)dq (G2 + 6G,G,)N
M=ot 5 2 7 32
2 oo -9 3. 5, om
xj(ZA + (-9 g 2 (- ) —z(p_q)Z)
2¢hdg (& | & | 3(¢*) dg
T +<4ﬂ“+8ﬂ“ 7’(q-p)* 36

The first approximation corresponds to m, = g; = g = 0. Then equation (5.36) exactly
coincides with equation (5.22) for Bethe—Salpeter wave function ¥(p?*) (5.25). Similar
situation takes place in standard NJL model [37]. For nonzero m, we have without
gluon and meson corrections

LX) = my + (M- mp) ¥(x), =(-m?) =m. (5.37)

Emphasize that approximate solution (5.37) of equation (5.36) exists for any value of
m. For definition of m one has to turn to the of the chiral symmetry.

Let us write down the effective potential which defines a possibility of the sym-
metry breaking. We look for terms proportional to ¢" for n = 1, 2, 3, 4. The term with
n = 2 is evidently defined by (5.35). For terms with n = 3, 4 we take quark-loop dia-
grams with three and four scalar legs respectfully and as a result we have the following
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effective potential

u, \ /4 1 o I. &

oo ({18 () &
C+m ( u 87t2+7tg2 Vul,
_(L+ o« \ L& 38 ((uo 1/

8n2  wg?) 2+ul, n?

u0>1/4) ) 3¢ g¢
1- (=2 L)+2=1,) &=22

+< <u “) T g2 d m

(e} (e}

¥(z)’ dz
b | S5 ]

I (538)

Here
¥(2)* dz

22 (5.39)

u u
The connection between terms with n = 1 and n = 2 is obtained from the fact, that the
tadpole term due to expression (5.37) gives just the same contribution as the two-loop
one up to factor (m — m,)/g. The contribution to the tadpole term being proportional
to m, is zero due to boundary conditions (5.26).

Effective potential is defined by relation (5.38) up to a constant term C, which does
not influence the position of a minimum. However this constant term shifts the value
of V that can be important for the problem of a stability of different solutions. We
discuss this point below.

As for one-loop terms with n > 5, they all converge with point-like vertices. In this
case they can be calculated and summed up to give the following additional term

1 3 782 138 25"
AV=m* —@1-8"In|1- - - , 5.40
m (167:2( V=S e 5 T ag 1922 (5:40)

which evidently does not destroy stability conditions and turns to influence results
quite insignificantly. Thus we neglect it.

We look for a minimum of potential (5.38) that is for a solution of the following
equation

oV _

ot
Constituent quark mass is expressed through the vacuum expectation value of scalar
field ¢

0. (5.41)

m=my+8n, n=(¢). (5.42)
Bearing in mind definitions (5.13, 5.25) of parameters u, and u, we come to the conclu-
sion, that the position of minimum &, has to be the following

& = (1—(1;—0)1/4) (563)

Thus from relations (5.29, 5.38, 5.41, 5.43) we obtain the following expression for o,

o = %ﬂ (1 —(L;—°)> (3(1—0)%13 +4<1 —(L;—O)%>L,> - 6112. (5.44)

Here all integrals are functions of u and so relation (5.44) defines function e (u).
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Now it is the proper place to comment the problem of stability. From the very be-
ginning we have two solutions: the trivial one G; = G, = 0, m = m, and the nontrivial
one, which in details is presented above. Here we have to study the constant term in
effective potential (5.38). It is connected with the following vacuum averages

1, 4 a _

C= 7 (F’NFW) + 2, m; (W ), (5.45)
where the first term represent the gluon condensate. The relation of gluon and quark
condensates to the problem of stability of the chiral symmetry breaking is considered
in works [96, 97]. The first term is proportional to the gluon condensate V,, which
in our approach is calculated in Section 4.3. The light quark condensate (gq) will be
considered below.

Provided the nontrivial solution corresponds to the minimal negative value of ef-
fective potential (5.38) while the trivial solution corresponds to its value zero we are to
conclude, that just the nontrivial solution is stable and thus the nontrivial solution is
to describe the observable physical quantities. We discuss details of the problem after
obtaining numerical results for parameters of the present approach.

We apply quark mass operator (5.37) to obtain also the expression for pion decay
constant f,.. Considering one-loop quark diagram for decay amplitude of process 7" —
" v, we have

N T d
b= i | (= w? o ) S

[ee]
gN Y(z)dz
= m((m—mo)lz+ moll), Il = J T (5.46)
u
Provided either m, = O or I, = I, we get with account of normalization condition (5.29)
just the original Goldberger-Treiman relation m = gf,. We use full relation (5.46).
However let us note, that values of the two integrals are close I, = I; and the simple

original relation works with sufficient accuracy.

5.5 Pion mass and the quark condensate

In relations (5.38, 5.46) we have used approximation (5.37) for the quark mass oper-
ator. For calculation of the pion mass and the quark condensate we need the next
approximation for mass operator. In view of this we reformulate equation (5.36) for

the following function

*(p?) -
(p?) = —(::l ) mmo, (5.47)
- 0
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and the first approximation for @ is just ¥. Then we introduce (5.47) into (5.36) to obtain

((m - my) ®(g?) + m,) dq 287 +¢° )
q’(”" J m—mg) @ (“G‘N(q—p)2
(GZ+6G G,)N (p q)2 3 m*
e j( +(p-9*hn -2p-0? 2(p—Q)2>
((m- mo)‘D(Q)‘Fmo)dq (5.48)
(m- mo)q

Now we subtract equation (5.30) from equation (5.48) and obtain the following
relation

((m - my) D(q°) + mg) dq
D(p )_ (J (m-my) g*
. J‘I’(q )dq (3132 (qP)2>> .\ (G? + 6G,G,)N
q° 4q*  (q?)? 3276
P-9° 3 m*
X(J(ZAZ-‘—(p_q)ZlnT__(p_q)z_W)
2 2 2
m-m, 4q (@)

4t (m-my)q*(q - p)? 649

D(p*) = o(p°) - ¥(p°).

N [§+ i] J ((m—mo>D(q2>+mo>dq_
8n*

The analogous procedure is applied in the standard NJL model [37, 38] while proving
the Gell-Mann—Oaks—Renner relation [46]. Then we again multiply (5.49) by ¥(p?)/p>
and integrate over dp. Due to equation (5.30) be satisfied only terms being proportional

either to P? = — mi or to m, do not cancel and finally we have the following relation
for mass of the 7-meson
2
2 m-my g
m = a,+=— | I, 5.50
4 Zn(m—mO)sz/ﬂ< s 87:) In (5:50)
In z 31 1 1
L= [ 229(2)dz = ¢! G ( 2 10%+az b,o)
In J\/‘() ul3, 30y ast

u
. 3 11 1
—chgg(m—,o,o,—,—+a,—+b)
2 22 2
31
—C*G3O(u—,—+a )
3 06 |2 2
" 1 1 31
+C4632(u|0,5+a,—+b, =, —,O).

We see that pion mass squared is proportional to m, in accordance to the result of
well-known work [46]. Note, that contributions being proportional to m,, arising from
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the first two terms of equation (5.49) are summed to overall zero due to consequences

of boundary conditions (5.27).
From equation (5.47) we obtain also the next approximation for ®, which leads to

a nonzero value of the quark condensate

_ 4N [ Z(g)-mg

qa = (2n)4j e d (5.51)
CNm-my)[a, g |[dz[ 1 [¥odt T ¥t
TP [n+8n2U z[vzj M ]

Nm-my)[a,  g> [T ¥®Intdt T w(t)dt
R B ]“ w2 [ 2]

n  8n?
After evaluating the integrals we have

gz]Bm

u

<5ICI> = [“s + Q

* 1 1 1
X [C1<Ggg(u|%, 5,0,0, STas+ b)
11
2°2

+ZG(3)2(u|1, , ,0,%+a, +b)> (5.52)

1
+ ZGgg(ull, 5+ a,

Scalar field ¢ corresponds to the o-meson. To estimate mass of the o-meson we
use relation (3.33), which was already presented in Section 3.3. Thus in the first ap-

proximation we have

8s
===, 5.53
My G, (5:53)

The o 7 = vertex gives according to triangle one-loop diagram the following cou-
pling constant
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g2 Nm r ¥v(z)?
8onn = 42 J S (5.54)
u
and the o-meson width reads
_3%m [
o = m \/ma - 4mn. (5.55)

5.6 Numerical results and discussion

Now we have expressions for all quantities under study. Then we proceed as follows.
(1) We calculate function « (5.44) depending on parameter u (5.25) and get con-
vinced, that the interesting range of «, corresponds to u varying in the following

region
0.0005 < u < 0.002. (5.56)

In doing this we use parameter u, = 1.725 1078 according to relation (5.14) and
calculate constants C;, i = 1,2, 3,4 from boundary conditions (5.27) thus defin-
ing ¥(2). Having ¥(z) we calculate integrals [, j = 1,2, 3, 4, 5.

(2) We fix value f, = 92.4 MeV.

(3) Then for given u in range (5.56) from (5.46) we obtain constituent quark mass m.

(4) Having m and o, we calculate m,, from (5.50).
For u in range (5.56) m,, varies insignificantly between 133 MeV and 127 MeV with
maximal value 134.8MeV at u = 0.0009, that corresponds to o, = 0.673 and
my = 20.27 MeV. Considering this maximal value of m,, we present a set of cal-
culated parameters for these conditions including quark condensate (5.52) and
parameters of the o-meson (5.53), (5.55) as well

a, =0.673, m, = 20.3 MeV,
m, = 134 MeV, f, =92.4MeV,
m, = 771.0MeV, I, = 367.7 MeV,
m = 295 MeV, (Gq) = - (222MeV)>, (5.57)
1

Gi=——F——, = 3.16.

17 2asoMevy 8
However we have no strong arguments on behalf of value « (5.57). Thus it would
be instructive to consider also other values of «,, that means other values of pa-
rameter u.
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Let us take u = 0.001. We have in this case

a, =0.700, my = 19.1 MeV,
m, = 132.0MeV, fr: =92.4MeV, (5.58)
m, = 767.2 MeV, I, = 385.5MeV,
m = 296.7 MeV, (Gq) = - (222.8MeV)?,
1

- =321
61 = 339.0Mev)? §=3

Let us take u = 0.0015. Then we obtain in the same way

a, =0.818, m, = 18.0 MeV,
m, = 128.9 MeV, f. =92.4MeV,
m, = 754.8 MeV, I, = 426.0MeV, (5.59)
m = 309.5 MeV, (Gq) = - (228.8MeV)>,
1
G, g =3.35.

= (2253 MeV)2’

For u = 0.002 we obtain in the same way

as =0.910, my = 17.3 MeV,
m, =127.3 MeV, f. =92.4MeV,
m, = 745.2 MeV, I, = 440.0MeV, (5.60)
m = 318.9 MeV, (qq) = - (232.9MeV)?,
1

61= Fleomev 8734

Note, that for these calculations uncertainties due to our method of infrared cut-
off are defined not by estimate (5.16) but by the following quantities

Vi = 31072 (u=0.001), Vu = 5107 (u=0.002),

that is the accuracy of numbers (5.57-5.60) is not better than (3-5) %. There are also
other sources of uncertainties and so we may estimate the overall accuracy to be of
order of 10 %. The main contribution to this estimate is provided by the next orders of
1/N expansion, according to the discussion in the Section 5.2.

Bearing in mind the last remarks, we may consider the correspondence of our re-
sultsform,, f, and (g g) to existing data being quite satisfactory. Indeed, in Section 4.2
of Chapter 4 we have calculated values of average running coupling &, in the nonper-
turbative region (4.37). It comes out to be approximately 0.8 — 0.9 in dependence on
the parameter e. This corresponds to results (5.59, 5.60). Value for the constituent light
quark mass is consistent, for example, with estimate (1.35), obtained from consider-
ation of the nucleon magnetic moments in Section 1.2. The quark condensate also is
close to its phenomenological value (1.83).
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Fig. 5.3. Diagram corresponding to the o 7 effective coupling
m constant. Simple lines represent quarks.

As for parameters of the o-meson, experimental data according to [4] give a wide
range for their possible values

400MeV < m, < 550MeV,
400MeV < I, < 700MeV. (5.61)

Let us note, that recent determinations [93, 94] of the o-meson parameters give more
definite results. They are respectfully the following

m, = (470 £ 30)MeV, T, = (590 % 40) MeV,
m, = (541 +39)MeV, T, = (504 % 80)MeV. (5.62)

There is also analysis of the 7 — 7 data with light o [95], which also agrees with ¢ pa-
rameters (5.61, 5.62). The data give values for m, essentially smaller, than that shown
in (5.57, 5.58 5.59, 5.60) of the present calculations. There is a reliable argumentation,
that the first approximation does not take into account effects of four quark admixture
in the o-meson [47]. The effective vertex o 7 7 in the first approximation is described
by diagram shown in Figure 5.3. According to the diagram we have the following ex-
pression for effective coupling g,,.,

_Ng3miO

¥(t)’
g(rrm - 4 71'2

; dt. (5.63)

Let us estimate contributions under discussion by taking into account of simple 7-
meson loop diagram, shown in Figure 5.4 This diagram give the following contribution
to the mass squared of the o-meson

(e}

2 3g§rm \P(Z)Z
A(m)) = - Tea? J 7dz, m, = \/m(z)(r + A(m2). (5.64)
u
L
[} o

Fig. 5.4. Diagram corresponding to contribution of
m meson loop to the sigma meson mass.
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Here we take for an effective vertex o 7 7 just the Bethe—-Salpeter wave function (5.25),
which defines ¢ g g interaction. Thus the result of the calculation can be only qualita-
tive and is to be understood as an estimate. However, it is important, that the sign of
contribution (5.64) is obtained safely and the result of reducing the ¢ mass due to an
account of four-quark contributions is quite reliable.

Let us also show expression for the o meson width

2
I = Bgmm \mtzr_4m721

= 5.65
g 16t m2 G.65)

Afterapplication of corrections (5.64) we come to the modified table of results. In these
calculations of the 0 meson parameters we take for pion mass m, = 138 MeV, which
corresponds to average of the charged and the neutral pion mass.

Let us take u = 0.001. We have in this case

ag = 0.700, my = 19.1 MeV,
m, = 132.0MeV, f. =92.4MeV,
m, = 458.9 MeV, T, = 548.4MeV, (5.66)
m = 296.7 MeV, (Gq) = - (222.8MeV)>,
1

Gy =— ~3.21.
17 (239.0 MeV)? g

Let us take u = 0.0015. Then we obtain in the same way

as =0.818, m, = 18.0 MeV,
m, = 128.9 MeV, f. =92.4MeV,
m, = 447.6 MeV, I, = 601.8MeV, (5.67)
m = 309.5 MeV, (Gq) = - (228.8MeV)>,
1
G =—————, =3.35.
1= (2253 MeV)? §
For u = 0.002 we obtain in the same way
a, =0.910, my = 17.3 MeV,
m, =127.3 MeV, fr: =92.4MeV,
m, = 444.9 MeV, I, = 630.1 MeV, (5.68)
m = 318.9 MeV, (Gq) = - (232.9MeV)>,
1
G =———, = 3.45.
1= (216.0MeV)? §

Now parameters of the ¢ meson are in agreement with experimental bounds (5.61,
5.62). For example, the sets of results for the three values u fit into error bars of the
first result (5.62). We are to bear in mind our estimated accuracy = 10 %.
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Let us also draw attention to value of the quark condensate (gq). The results for
this quantity also agree within 10 % accuracy with phenomenological value (1.83):
—(230MeV)>. The agreement is even better than in original Nambu-Jona-Lasinio
model (see (1.107) in Section 1.6.2), where agreement was achieved with adjusting of
four parameters.

Now let us comment the problem of stability. To estimate value of effective poten-
tial (5.38) we take numbers (5.57, 5.58, 5.59, 5.60) for «,, m, (g q) and use in expres-
sion (5.45) values for the gluon condensate (4.44, 4.45). In the point of a minimum in

expression (5.38) )

50:1_<“_0)“, £-8% (5.69)

u m

where ¢ is nonzero vacuum average of the scalar field. We have calculated mass m and
quark condensate (g q) for u and d quarks, while in (5.45) contribution of all quarks is
implied. As a matter of fact, contribution of s-quark may be essential, and the heavier
quarks may also give an additional increment. Just to get impression of the depen-
dence of stability conditions on values of average &, we assume that the contribution
of other quarks is equal to value m (g g) for one light quark. So we substitute for quark
condensate term in (5.45)

3m{qq), (5.70)

and now all parameters are in our disposal. Let us note, that similar arguments were
expressed in works [96, 97].

Substituting calculated values into (5.38, 5.45) we perform direct calculations for
three values of u. The results for vacuum density VD are presented in Table 5.1

We see from Table 5.1, that with &, increasing vacuum density VD decreases and
at some value of the average coupling became negative. The value for absence of non-
perturbative contributions, that is for the trivial solution, has to be zero. Thus we come
to the important conclusion.

There exists some critical value agf“, which corresponds to a phase transition. For
®; < o‘cgm the perturbative phase is realized, in which vacuum averages V, and (gq)
are zero and the trivial solutions for compensation equations are accomplished. On
the contrary, &, > o‘cgm corresponds to the nonperturbative phase, in which nontriv-
ial solutions of compensation equations are realized and both anomalous three-gluon
interaction (4.2, 4.6) and Nambu-Jona-Lasinio interaction (5.3, 5.4) are generated. Ac-

Table5.1. Vacuum density VD in dependence of average . Gluon condensate V, is defined in (4.38)

&y u g m  —(Gq)5 MeV V,GeV* VDGeV*
0.84 0.001608 3.375 3118 229.8 0.0128  0.0012
0.87 0.001765 3.408 314.9 231.2 0.0120  0.0004

0.91 0.002 3.450 318.9 232.9 0.0108  -0.0014
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cording to Table 5.1 under premise (5.70) this critical value is approximately
a = 0.88. (.71)

We conclude, that the description of low momenta nonperturbative region comes
out to be quite satisfactory in case we unite results of two Chapters 4 and 5. Thus we
effectively describe this region with the only parameter, which can be chosen to be
either A ocp or f,. Remind, that the interval of possible average values of the strong
coupling agrees with calculations of previous Chapter 4.

To conclude we would like to emphasize that the present approach for the first
time permits to determine parameters of effective interaction inherent to the Nambu-
Jona-Lasinio model in terms of parameters of the fundamental QCD. The optimal value
of a; = 0.8-0.9 in (5.67, 5.68) is quite reasonable from the point of view of the ex-
isting knowledge on its low-momenta behavior. As for value of current quark mass
m, = 18 MeV, it seems to be rather larger than usual values m,(2 GeV) =2-6 MeV(see
Table 1.2). To comment the situation let us note, that firstly the low value of m, be-
ing mentioned corresponds to perturbative region and the problem how this running
parameter varies while /g2 moves to low energy region deserves a special study. In
considering of the running m, we have to take into account the effective NJL interac-
tion as well. Secondly, the lattice studies give as a rule rather high values for m,, e. g.,
in work [98] values of m,, correspond just to few tens of MeV. The smaller values are
to be obtained in the continuous limit, which till now is performed only by an extrap-
olation procedure.

So we may state that the aim of the consideration is achieved. We have begun
with the demonstration of the nontrivial solution of the compensation equation. The
appearance of scalar and pseudo-scalar excitations (mesons) in the same approxima-
tion is a consequence of its existence. The account of QCD interaction and of meson-
quark interaction leads to the shift of their masses squared to the negative region, i.e.
to the appearance of tachyons, which are necessary for scalar condensate to arise. As
a result we obtain the standard scheme leading to the spontaneous breaking of the
chiral symmetry. Subsequent approximations of the approach are related to values of
the quark condensate and of the pion mass.

We have shown that the application of the method of our compensation method,
which is based on Bogoliubov compensation approach, to the low-energy region of
hadron physics leads to quite reasonable results. Let us once more emphasize that
we have no additional parameters but those entering in the low-energy QCD: «, and
m,. Thus we derive the effective interaction of NJL type from the fundamental QCD.
On this point we can do the more strong statement. Namely, the interval of possible
values of a,(z,) was calculated in Chapter 4 (see (4.25, 4.30). The most valuable in-
formation, which is to be compared with initial parameters is obtained in Section 4.2.
Indeed values for average &, in the nonperturbative region e. g., (4.37) are just fitting
the interval 0.8 < &; < 0.9. Remind, that this interval also includes the estimated

crit

ag" = 0.88 (5.71). Thus, we may state, that all the results for description of low-
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momenta being presented till now in Chapters 4 and 5 are obtained with the only one
initial parameter either A ocp or f,,. This conclusion illustrates very important prop-
erty of a theory with a spontaneously generated effective interaction. The conditions,
imposed by compensation equations are very restrictive. In the most cases these equa-
tions have no nontrivial solution at all. But with existence of a nontrivial solution, for
example, in the case, described in Chapters 4 and 5, the set of conditions defines al-
most all the parameters and functions, entering in the theory.

It is quite worth emphasizing, that the phenomenon of (ng“ (5.71) is occurring only
with combined action of both the three-gluon effective interaction and the Nambu-
Jona-Lasinio effective interaction. Thus these two parts of the theory are connected
by conditions of stability. So albeit we have considered conditions for spontaneous
generation of these interactions separately, it seems that they may be realized only in
a combination. It is important physical conclusion.

A development of the present approach in application to the hadron physics quite
deserves attention. In particular it is advisable to apply the approach to calculation of
parameters of vector mesons, e. g., of the p meson. We describe this application in the
subsequent section.

5.7 Vector mesons

In previous sections effective nonlocal SU(2) x SU(2) NJL model was derived in the
framework of the fundamental QCD. All the parameters of the model are expressed
through QCD parameters: current light quark mass m, and average nonperturbative
a,. The results for scalar and pseudo-scalar mesons are in satisfactory agreement to
existing data. In the present work the same model without introduction of any addi-
tional parameters is applied for a description of masses and strong decay widths of
p- and a,-mesons. The results for both scalar and vector sectors agree with data with
only one adjusted parameter m,, with account of average «,, which range of variation
is considered in the previous section.

We have shown above, that low-energy hadron physics is effectively described in
the framework of the Nambu-Jona-Lasinio model, which is spontaneously generated
with conventional QCD taken as an input.

In previous sections we have succeed in obtaining description of SU(2) x SU(2)
NJL model using only QCD parameters. As a result a nonlocal version of NJL. model was
obtained with uniquely defined form-factor. Thus ultra-violet divergences disappear,
therefore there is no need of introduction of parameter A. Constants G, and G, are
expressed through m, and strong constant «, in the nonperturbative region.

Remind, that application of these results to the sector of scalar and pseudo-scalar
mesons leads to satisfactory description of 7= and o masses, constant of weak pion
decay f, and of strong ¢ — nm decay. Emphasize, that only parameters m, and «,
were used.
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It is worth noting, that in Chapter 4 estimate of average nonperturbative value
a, was obtained. The same Bogoliubov approach for a study of the effective nonlo-
cal three-gluon interaction results in existence of the stable solution for the definite
form of nonperturbative contributions to running coupling «(g>). This corresponds
to average value for the running coupling in the nonperturbative region «, =0.7-0.9.
Taking into account this result only one parameter m, remains in our disposal. Note,
that previous results lead to a consistent value of the gluon condensate.

Here we use the nonlocal NJL model with the same parameters m, and «; for calcu-
lation of masses and decay widths of vector and axial-vector mesons p and a, . Remind
that we introduce no new parameters at all.

5.7.1 Compensation equations for effective form-factors

In this section we apply previous results to calculation of parameters of vector mesons.
In the same way as above we start from the standard Lagrangian of QCD (5.1) with two
light quarks and number of colors N = 3

Let us rewrite the initial expression (5.1) in the form

(m WV = Y ¥) - FO,WFO,W moy (5.72)
G
> @yt sy - Ty )+ 3 (I v Ry
_ ] Gy, o
+ P Ys Y YT ysy,,w) + 50 (IR PRy + Oy rsyy)

+8s V/YMt A,ﬂl’ (Fvayv FO MVFO yv)

G, b o
-5 (P vy I sy - v i y)
G, b ] ]
-5 (P I v+ 9y i vsyy)
G,
=5 (IR Iy + Py - 5.73)

Here v is isotopic doublet, color summation is performed inside each spinor bi-
linear combination, F,,, = 9,4, - 9,4,, and e.g. notation G, - g’ yyll/l[_/Tb Y,y means
nonlocal vertex in the momentum space

1(2m)* G, Ty, x "y, Fy(p1,p2,p3,p4) 8(p1 + p2 + p3 + p4), (5.74)

and form-factor F, depends on incoming momenta. The Lagrangian contains contribu-
tion of both G, and G; which are connected correspondingly to isovector and isoscalar
terms. Here we consider compensation equation only for isovector four-fermion terms.

Now we consider the first three lines of the Lagrangian (5.72) as new free La-
grangian L, and the four last ones as interaction Lagrangian L;,, (5.73). Then com-
pensation conditions again will consist in demand of full connected four-fermion
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vertices, following from Lagrangian L, to be zero. This demand gives a set of nonlin-
ear compensation equations for form-factors Fy,.

Let us emphasize, that again the existence of a perturbative trivial solution (in
our case G; = 0) is evident, but a nonperturbative nontrivial solution may also exist.
In the present problem as well as in previous ones we look for an adequate approach,
the first nonperturbative approximation of which describes the main features of the
problem. Improvement of a precision of results is to be achieved by corrections to the
initial first approximation.

The definition of the approximation is already formulated in Section 5.2.

Note, that in case of vector vertices there are two Lorentz structures and thus we
have generally speaking two form-factors instead of one in Section 5.2. However the
corresponding set of equations has no explicit solution similar to that described by
relations (5.11), (5.14), (5.15) and so we proceed in the following way. In our approxi-
mation we impose simplified kinematic condition that left-side legs of diagrams have
momenta p and —p, while right-side ones have zero momenta. Now in addition to terms
proportional to y, x y,, which we are interested in, terms of the form p x p may be also
present, Supposing, that the presence of a form-factor connected with the last struc-
ture gives small corrections we shall transform the initial equation (in diagram form
see Figure 5.1) to the scalar one contracting it with projector of the form

1 pp,
> (yg— e ) (5.75)

In the process of the study we have considered also equations obtained with use of
projectors of more general form, namely

1 pp
G- (yg—dp—z">. (5.76)
It becomes clear, that for values d between 1 and 2 the corresponding solutions lead
to spread of physical values under interest in the range of 5-7 %, that corresponds
accuracy of the method as a whole. So we take the formulated projection procedure as
a component of the first approximation.

Now the demand of compensation of full connected four-fermion vertices propor-
tional to G, multiplied by the vector form-factor leads us to the following equation,
which in diagram form has the same representation, shown in Figure 5.1, as the equa-
tion in the scalar case.

G,> (65 7 P\ 5
2 2 2 2 2
G5G, ( 43 , 5 5. (p? 3 2
- —p’hh(= )+ 2A
Y ( P TP )Ty

GzzNT 2 2 0A2 g 2 b
32n6mFV(k)(GZ NA? - 47%)d"k

+

0
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(5.77)
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( 20° >A2>Fv (k) d'k
" 96

p? (k?)?

‘(512 kp? “(k*p? - kp?
j( “p 2<p>+1/4gw>
192

-k’ p? -k’

=0.

i (kz)d"k>

(k)

Here a conversion to Euclidean momentum space is performed, at one-loop level terms
proportional to N and 1 are taken into account and for two loops respectively N> and
N. The lower limit of integration is defined by current quark mass m,, corresponding
to value u, = 1.78107%, which is obtained in the course of consideration of scalar
form-factor (see (5.14)). We also use relation

6

Gy = 73 G (5.78)

which is derived above. After dividing by G, that correspond to our intention to find
a nontrivial solution we integrate by angular variables of four-dimensional space and
we have as a result

X
Nif(Le2a_ L 2 1 )Jl
Fr+3 (((64 G - 356 0 ~ 1 & )% Fy ) dy

X
1 1 > y 4
+<9_6G2 96 G3 G2+ 55 O )JFFV(y)dy>m°
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13 1 r
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+(9 Gz 96Gan 1926 38463 )ln(x)xJFV(y)dy
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1 X
+ (5627 52 656a)n (X),,JyFV 0)dy
7 29 1 r
2 2
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Jr(3zG2 288 3027 35,657+ 19zG1 )Jy v dy
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" X ( 1152G3G2 * 12862 153663 76861 ] Y Fy(y)dy
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11520 3 636, + 2880
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In view of looking for solutions of equation (5.79) we apply the differential opera-
tor
& &P
ac N al de
to this equation. As a result we obtain a differential equation, which with account of
the following substitution

2 _ 1 NG,(12G,-7G;)
2= P, ﬁ_zﬁ 24

reduces to the following form

d d d d d
(o) (22 -b,) (22 -1y ) (2 b, ) (2 - 15)
d d d
X (ZE _bG) X (ZE —b7) (ZE —bg)Fv(Z) (5.81)
d d
z(zE—a1+1)<zE—a2+1)FV(z),

i.e. it is Meijer equation of the eighth order. Solutions of the equation are represented
in terms of the Meijer functions [71] with parameters b;, a;, which we can calculate
provided G; is defined. We can naturally admit G; = G, following rules of NJL model
(see [39] and Section 1.6.2). In what follows we present confirmation of this assump-
tion. In this case we have

> (5.80)

b, =15, b,=1, b;=0.499991384, b, =.500008866, (5.82)
bs = -1.45597130-10"7, by =0, b, =-0.50000003,
bg = -1.0000001, a, := —-0.3944464, a, := 1.9013991.

Values of parameters are calculated with account of value m,.

To obtain a solution of the integral equation we choose four linearly independent
solutions of equation (5.81) decreasing at infinity and form the following linear com-
bination with coefficients C;

_ 51 a,,a, ) 51 ( 2 )
Fy(2) = C1Gy (Z |ps.ba,b3,p2,b1,p8,67.66) + C2628 (2 |b6,b5,b3,b2,b1,b8,b7,b4

51 a;, a, ) 71 ( a;, a, )
+C5 G (2ly7 i p3.pansvens) + Ca G (Zlhsé pspnpsiosner) - 689

Coefficients C; are fixed by boundary conditions, which are obtained in the same way

as above
(o)

13 1
56,24 G2+ G, - GG) JF d
3(96G 19261 3847 T 96025) g ) v Y
m;

_____ + —_—= O, 5.84
12 22 48 n2G, 24 m2 689

JyFV ) dy =0, Jyz Fy (y)dy =0, Jy3 Fy (y)dy = 0.

2
0

8
8

m,
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As a result we have

C, == 03330348455, C, == 6.254973002- 1075, (5.85)
C; = 3.452159489-10"%, C, := 2.105889777-107".

Unlike of scalar case of Section 5.2 we here do not force the form-factor value at
lower integration limit to be unity. Using this condition one might try to define ra-
tio of G, and G;. However assuming equality of these constants we avoid solution of
additional complicated transcendental equation, but we acquire a criterion of self-
consistency of our approach as a whole, because calculations show, that changing
this ratio in reasonable range we have satisfactory results for values of the form-factor
at the normalization point. In our case we have Fy, (u,) = 0.96094 and so we consider
our assumption to be justified with reasonable accuracy. Admissible are values of ratio
GZ = x from 1 up to 1.2 as well. For the last value Fy(u,) = 1.098993576. As a mat-
ter of fact to fix the ratio one should consider also equation for isoscalar vector terms.
However this leads to a considerable complication of the procedure and so here we
only noting, that preliminary estimates show that just for range y = 1 - 1.2 values
of isoscalar vector form-factor differs from unity not more than by 10 %. So admitting
x = 1 we formulate the ground approximation bearing in mind necessity of further
corrections.

5.7.2 Wave functions of vector states

We have the nontrivial solution of the compensation equation and thus four-fermion
terms are excluded from free Lagrangian. There is of course no compensation in in-
teraction Lagrangian, which contains these terms with opposite sign. So we can study
a problem of bound states with account of this four-fermion interaction. The Bethe—
Salpeter equation for vector case in the same approximation as above (see Figure 5.2)
has the following form. Remind that the first approximation corresponds to zero-mass
states (in this approximation there is the same equation for vector and axial-vector).

X
N{ (3 ., G Jl
b4 =— — - — - Vv
v(y) p (m ((256G2 128 X v (y)dy
mZ
G2 G2\ [ 3 ., G
G, G
+<48+384)J V(y)dy) (11520G2 5760)

xy3 Gz X
XJ')?\PV()/)dy-"(_GZ 192)ln(X)XJ'\PV(y)dy

128

mZ

5 ( 139 62\ |

5 .2 2 G

+ 526, In (0) jy%(y)dy+(115262 + 192) [yrmay

m? m2
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Here besides the same kernel as in equation (5.79) we take into account also one-
gluon exchange and one-meson exchange with corresponding constants o, and g‘f /4.
Note that contributions of (pseudo-)scalar mesons here cancel. In equation (5.86) en-
ters constituent mass m instead of current mass in equation (5.79). For parameter m
we use results of previous results in Section 5.4 where it was obtained from stability
condition for the effective potential. This procedure allows to define m correspond-
ing to value of a,. In the same way as in Section 5.6 we take values of u = pBm",
which correspond to values of «, in the range under study. We perform calculations
foru = 0.001, 0.0015, 0.002. Values of «g, are presented in the summarizing table.
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Differential equation now is the following

(hn)en) (om0
(sl ) e

d d
:—z( d—— ><zd——a2+1>\l’v(z) (5.87)
where
o ~ 1 NG, (126G, -7G;)
Z_/3X ’ /3 247‘[4 ’ g_ 2
1 59&2 +6—\/8281E“+708EZ+36
a; =— 5 ,
80 £
2 4 2
a2:i595 +6+\/8281§ + 70887 +36 (538)
80 £

and coefficients b; are roots of the following equation ( G5 = G,)

Nm'G3 ( 2859b 12171 . 28195 b° L 435 b*
4 2704 676 2704 338

_11539p° 1388b6) . (% 3g§)

T

676 169 7 8n2
592b* 880b° 320b* 1216b° 512h°
32b- + + - +
3 3 3 3 3

+48b% - 128> - 176b" +640b° — 512b7 +256b% = 0. (5.89)

Solution of equation (5.87) decreasing at infinity has the following general form

Wy(2) = C, Gyg (Z |211:Z§,b3,b5,b4,b8,b7,b6) (590)
41 41
+C; Gyg (Z Ibl,bib3,b4,b5,b6,b7,b8 ) + C5Gy (Z Ibl,bz,bS,b6,b3,b4,b7,b8)
61 a;,a 61 a;,a
+C, Gyg (Z |b11,b§,b3,b4,b5,b7,be,b8) + C5 Gy (Z |b11,b§,b3,b5,b6,b8,b7,b4) .
For u = 0.001 with account of results (5.66) values of parameters b; read
b, =15, b,=1, b, =05, b; = 0.6309939, (591)
bs =0.1329938, bg =0, b, =-0.7007615, bg=-1.0632261.
In the same way we obtain parameters for two other values of u:
u = 0.0015 (5.67)
b, = 1.5, b,=1, b,=0.5, b; =0.6481721, (5.92)
bs =0.1365796, b =0, b, =-0.7118443, bg=-1.0729073,
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and u = 0.002 (5.68)

b, = 1.5, b,=1, b,=0.5, b; = 0.6625915, (5.93)
bs; =0.1384193, by, =0, b; =-0.7197738, bg=-1.0812370,
Parameters g; are the same as before (5.82). Coefficients C; are defined from the bound-

ary conditions

(e}

¥, (m?) =1, J‘I’v(y)dy=0, Jy‘l’v(y)dy=0,

8

(¢}

Jyz ¥y (v)dy = 0, Jy3 ¥y (y)dy = 0, (5.94)

and value g, is given by the iterative procedure being defined by normalization condi-
tion in one-loop approximation

Ng2 [¥, (2> B (G2 +6G,G,)N
_— _— = 1, = —1U, = A
o0 J s =g fo 6 (5.95)
u
Ratio 8 845
ey 596
B, 754 G96)

gives coefficients for transitions to variable z ~ p* respectfully for vector and scalar
sectors. Expression for 3, is obtained in Section 5.2.

For applications asymptotic of ¥, at infinity is essential. Considering equa-
tion (5.87) and its solution (5.90) we obtain with account of general expression (2.142)

5 +22iai—22ibi
12
Y a;=1.50695, Y b;=2, c=-0.334492. (5.97)
i i

W, (2), 0 = Cy 25 cos(625 +¢y), C=

>

Now we proceed to calculation of observable parameters. Initial estimate of p-meson
mass is given by expression (3.33), which for our case reads

_ &

M,, = >
G,

where G, is defined from relation (5.78) and values G, are calculated for chosen val-
ues u and are presented before in relations (5.57, 5.66, 5.67, 5.68). According to these
considerations we present below the first approximation Mg for the p-meson mass

In view of estimating of other important parameter of the p-meson, namely its
width we have to obtain the coupling constant in vertex p 7 7 in accordance with the
effective interaction

(5.98)

Lint = gprm eﬂbC P:; aynb ”C’ (5.99)
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Coupling constant g, of p-decay to two 7-mesons we find with triangle diagram ac-
cording to the following relation
, 3 © Y (z)? \I’V(éz)
8pnr = 8s 8v > dz, (5.100)

4 z
u

where ¥ (z) is the Bethe—Salpeter wave function for scalar states and g, is scalar meson
coupling according to definition in Section 5.3.
The width of p is the following

Sl )"

(5.101)
P 24 nMpz

This coupling constant in the first approximation is connected with quark loop,
presented in Figure 5.5.

T

Fig. 5.5. Diagram corresponding to the quark loop, which de-
n fines p 7 effective coupling.

Now we calculate parameters of the corresponding wave functions and using rela-
tions (5.95, 5.96, 5.98, 5.100, 5.101). With parameters (5.66):
1

u= 0.001, xg = 0.7, Gl = m,

we have
C, = 1.6997393, C, = 0.10299083, C; = 0.01072961, (5.102)
C, =0.005643271, C; = -0.0001956055, g, = 4.0046,
M,, = 6502MeV, g, =565, I, =134.1MeV.
With parameters (5.67):
1

u=00015, a=0818, G = oompos,

we have
C; = 1.6910230, C, =0.1290819, C; =0.0157750, (5.103)
C, =0.007378365, C; =-0.0003219670, g, =4.240,
M,, = 649.0MeV, 8pnn = 5.82, [, = 142.3 MeV.
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With parameters (5.68):

1
u = 0.002, =091, G =—
% = 0.9 1~ (216.0MeV)?
we have
C, = 1.6849163, C,=0.1515008,  C; = 0.0269341, (5.104)
C, = 0.00891981256, C; = -0.00045756, g, =4.415,
M,, = 647.8MeV, o = 589, T, = 146.2 MeV.

Bearing in mind also results for other parameters (5.57, 5.58, 5.59, 5.60) we see quite an
admissible agreement with data, especially for variant (5.60, 5.104). However, the p-
meson mass is significantly smaller than its physical value 775 MeV. It may mean, that
there are other contributions to the mass. Indeed, relation (5.98) take into account only
two-quark composition of the p-meson. The four-quark contributions may be taken
into account by considering a diagram with 77-meson loop. We have already taken into
account the 7-meson loop contributions while considering parameters of the o me-
son. The diagram corresponding to such contribution is presented in Figure 5.6. This
contribution is described by the following expression in case of point-like vertices in
effective Lagrangian (5.99)

gZ
AM?) = 8";’; J dq’. (5.105)

Integral in (5.105) evidently diverges. However, we know the nature of effective inter-
actions, which act only in a restricted region of the momentum space. In the Nambu-
Jona-Lasinio theory, which consequences we now are studying this restriction is pro-
vided by form-factor F(g?) and corresponding Bethe—Salpeter wave functions. In the
same way as in the case of the additional contribution to ¢ meson mass (5.64) in Sec-
tion 5.6, we use for the purpose wave function ¥y, being obtained above. Now we have

2 2
g o V2
AMZZPHHJT 22 g2 =2 T
( P) 87[2 V(q) q \/ﬁGl 14
mZ
I —T\PV(Z)Zdz (5.106)
v=| —=—dz .
UO \/E
m
P P

Fig. 5.6. The meson loop diagram, giving contribution
n to the p-meson mass.
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Due to asymptotic (5.97) of ¥, integral I, converges and we calculate the corrected
mass of the p meson according to the following expression

M, = \[|M? Sprer V2 I (5.107)
= + . 5107
g 00" 216, "

Thus we have the following change in results for values of u : 0.001, 0.0015, 0.002
respectively
Mp = 830.6 MeV, Mp = 820.2 MeV, Mp = 810.0 MeV. (5.108)

Thus p-meson mass is also consistent with experimental value M, = 775 MeV (see
Table 1.4) in the range of the anticipated accuracy = 10% for the range of values u
being considered here.

As a matter of fact, the effective wave function ¥(p 7 7r) has to be inserted in the
integral (5.106). However, for the moment this wave function is not obtained yet, and
we use instead of it wave function ¥y, which describes transition p g g. While calculat-
ing the additional term for the o mass, we have already mentioned, that the resultis to
be considered as an estimate. Nevertheless, in both cases results improve agreement
with the real physical parameters. It is remarkable, that albeit the estimation of inte-
grals is approximate, the signs of additional terms are defined exactly. In case of the
o meson it is negative and in case of the p meson it is positive, that just corresponds
to an improvement of the agreement in both cases.

5.7.3 Results and discussion

In the last two Chapters 4, 5 we have considered strong interactions in the nonpertur-
bative low momenta region. At first the three-gluon anomalous interaction was shown
tobe possibly spontaneously generated. It turns to be possible only provided the usual
gauge coupling constant g be fixed at the boundary of the nonperturbative region p,,.
The result is quite remarkable. Then we introduce dimensional coupling constant G,
which is fixed by a value of the running coupling «,(Q?) in the definite point. We have
taken for this point the mass of the  lepton, due to better precision of a(Q?) determi-
nation at this value of Q2. For example, for e = 0.13 (see (4.30, 4.37)) we have
1
(273.5MeV)?’
&, = 0.87. (5.109)

ag(zp) =0.773, G =

On the other hand, average value &, was one of the two initial parameters of the spon-
taneously generated Nambu-Jona-Lasinio interaction, which was in details studied
in Chapter 5. It could not be a coincidence, that just value (5.109) corresponds to the
region of better agreement for low-energy hadron physics, which manifests itself in
studying of parameters of 7, o, p mesons and the gluon and the quark condensates
(see relations (4.45, 5.59, 5.60)). This corresponds to region of & values 0.8—0.9.
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5.8 Necessary formulae

Let us present below the set of expressions for angle integrals in four-dimensional Eu-
clid space, which was used in this chapter and will be used in what follows. Integrals
involving logarithms may be found in textbook [75]. Remind, that x = p?, y = ¢°.

d"qF(qz)_ 200 i1 1
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6 Three-boson interaction

In previous chapters N. N. Bogoliubov compensation approach [40-42] was applied
to studies of spontaneous generation of effective nonlocal interactions in QCD. Spon-
taneous generation of Nambu-Jona-Lasinio like interaction was studied in Chapter 5.
We have achieved a description of the low energy hadron physics in terms of initial
QCD parameters, which turns to be quite successful including values of parameters:
average strong coupling in the nonperturbative region &, the gluon condensate V,,
the glueball mass M, the pion mass m,,, the pion decay constant f,,, the o meson mass
m,, the quark condensate (gq), the p meson mass and width M o Lo The starting point
of the application of the approach to QCD was the study of a possibility of a sponta-
neous generation of anomalous three-gluon effective interaction (4.2). The nontrivial
solution of compensation equation (4.9) was obtained. Consequences of the solution
was shown to be quite reasonable.

We may suppose, that such solutions may occur also in other nonabelian gauge
theories. The most interesting such theory is the Standard Model electroweak theory
EWT, which is briefly described in Section 2.1.

Let us consider the electroweak theory and consider a possibility of spontaneous
generation of an anomalous three-boson interaction of the form

- %  €ane Wi, Wo, W, 6.1)
In considering this possibility we follow the same approximation scheme, which was
used in QCD.

The main principle of the approach is to check if an effective interaction could be
generated in a chosen variant of a renormalizable theory. In view of this one performs
“add and subtract” procedure for the effective interaction with a form-factor. Then
one assumes the presence of the effective interaction in the interaction Lagrangian
and the same term with the opposite sign is assigned to the newly defined free La-
grangian. This transformation of the initial Lagrangian is evidently identical. How-
ever such free Lagrangian contains completely improper term, corresponding to the
effective interaction of the opposite sign. Then one has to formulate a compensation
equation, which guarantees that this new free Lagrangian is a genuine free one, that
is effects of the uncommon term sum up to zero. Provided a nontrivial solution of this
equation exists, one can state the generation of the effective interaction to be possi-
ble. Now we apply this procedure to our problem. The presentation of this chapter is
connected with results obtained in works [99-103].

In the present chapter we start with studying a possibility of a spontaneous gen-
eration of interaction (6.1).
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6.1 Compensation equation for anomalous three-boson
interaction

We start with the Lagrangian of the electro-weak interaction with 3 lepton y;, and color
quark g, doublets with gauge group SU(2). That is we restrict the gauge sector to triplet
of WZ only. Thus we consider U(1) abelian gauge field B to be decoupled, that means
approximation sin® 8, < 1. Thus we suppose that neutral component

W? = cos O Z +sinOy A, (6.2)

after the procedure of the symmetry breaking has the same mass as the charged ones.
Simply speaking we take W> = Z. However in applications to real processes we shall
use relation (6.2).

3
L= z (% (v_/ky,ua,uw}( - a,u"ﬁkYuWk) + % V_/kYMTa WZV/k)

=1

=~

3
z ( (qky‘u qu ay‘_]kyqu) + % Qky‘u‘ra W;lqk) (63)

b
- Z (WZVWZV), Wy, = 0, Wy — 0, W, + g e W, Wy,

where we use the standard notations. In accordance to the compensation ap-
proach [40-42] in application to QFT, described in Chapter 3, we look for a nontriv-
ial solution of a compensation equation, which is formulated on the basis of the
Bogoliubov procedure add-subtract. Namely let us write down the initial expres-
sion (6.3) in the following form

L=Ly+Ly

3
- _ _
Ly== z (E(kaMaMWk AN ) ~ MYV
k=1

) (qkyyaqu 0,1V ) - Mk@k‘]k) (6.4)

% W, Wy, 32 - Eqne Wi, Wy WS,
g > - a a = a a
Lie =3 k;(lﬂk)’ﬂ W,y + Qiy, T W,ﬂk)
G
T3
Here isotopic summation is performed inside of each quark bi-linear combina-
tion, and notation — 3 - €4, W“ Wb WC means corresponding nonlocal vertex in the

momentum space

b
- eape Wi, WP WE, 65)

3"

(277:)4 G €abc (g‘uv(qppk - pqu) + gvp(k‘upq - q‘upk)
+ 8,0 ak - k,pq) + q,k,p, - k,0,q,) F0,q, k) S + g+ k) +..., (6.6)
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where F(p, g, k) is a form-factor and p,u,a; g,v,b; k, p,c are respectfully incoming
momenta, Lorentz indices and weak isotopic indices of W-bosons. We mean also that
there are present four-boson, five-boson and six-boson vertices according to expres-
sion for W:v (6.3). Note, that inclusion of total W-boson term W:v W:v in the new free
Lagrangian (6.4) is performed in view of maintaining the gauge invariance of the ap-
proach.

Effective interaction (6.1) is usually called anomalous three-boson interaction and
it is considered for long time on phenomenological grounds [104]. Note, that the first
attempt to obtain the anomalous three-boson interaction in the framework of the Bo-
goliubov compensation approach was done in work [105]. Our interaction constant G
is connected with conventional definitions in the following way

A
G=-52. (67)
My,
The current limitations for parameter A read [106-108],
A=-0016"07, - 0.059 < 1 < 0.026(95%C.L.). 68)
Ay =-0.022 £0.019, - 0.038<A<0.030 (6.9)

where the first result in the second row (6.9) is obtained recently by joint analysis of
LEP data by the four experimental groups: ALEPH, DELPHI, L3, OPAL and the second
one is obtained in recent LHC studies. Due to our approximation sin® 8, <« 1 we use
the same My, for both charged W* and neutral W° bosons and assume no difference
in anomalous interaction for Z and y,i.e. 1, = 1, = A.

Let us consider expression (6.4) as the new free Lagrangian L,, whereas expres-
sion (6.5) as the new interaction Lagrangian L;,. It is important to note, that we
put into the new free Lagrangian the full quadratic in W term including boson self-
interaction, because we prefer to maintain gauge invariance of the approximation be-
ing used. Indeed, we shall use both four-fold term from the last term in (6.4) and triple
one from the last but one term of (6.4). Then compensation conditions will consist in
demand of full connected three-boson vertices of the structure (6.6), following from
Lagrangian L, to be zero. This demand gives a nonlinear equation for form-factor F.

In such way we again come to a compensation equation. In a study of these equa-
tions it is always evident the existence of a perturbative trivial solution (in our case
G = 0), but, in general, a nonperturbative nontrivial solution may also exist. Just the
quest of a nontrivial solution inspires the main interest in such problems. One can not
succeed in finding an exact nontrivial solution in a realistic theory, therefore the goal
of a study is a quest of an adequate approach, the first nonperturbative approximation
of which describes the main features of the problem. Improvement of a precision of
results is to be achieved by corrections to the initial first approximation.

Thus our task is to formulate the first approximation. Here the previous studies,
described in Chapters 3, 4, 5 could be helpful. Namely, in the first approximation we
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follow the same approximation which was formulated in Section 4.1. Let us recall the

main points of the approximation in application to the electro-weak case.

(1) In compensation equation we restrict ourselves by terms with loop numbers 0, 1.

(2) We reduce thus obtained nonlinear compensation equation to a linear integral
equation. It means that in loop terms only one vertex contains the form-factor, be-
ing defined above, while other vertices are considered to be point-like. In diagram
form equation for form-factor F is the same as presented in Figure 4.1. Here four-
leg vertex correspond to interaction of four bosons due to our effective three-field
interaction. In our approximation we take here point-like vertex with interaction
constant proportional to g G.

(3) We integrate by angular variables of the 4-dimensional Euclidean space. The nec-
essary rules are presented in Section 5.8.

We have already mentioned, that results of application of the approximation agree
with physical values with average accuracy = 10-15 %. Thus we could hope for such
accuracy in the present problem.

At first let us present the expression for four-boson vertex. The expression is
similar to (4.7) and the difference is connected with the change of symmetry group
SU(3) — SU(2).

V(p,m, A; g,n,05 k1,73 Ls,m)
(2m)* -
-Ulk, LA t,m0)-Ulko,m1,A)+ Ul kA r,t,0)

+U(p,q;m, A o,1) - Up,q;1, A, 0,m) — U(q, p; , 0, A, T)

+U(q,p; 1,0, A, n)) - e“ms(U(p, Lo, A7, )

-U(l,pso,m A1) -Up,Lt,A7m,0)+ Ul p;t, 7 A, 0)
+Uk,q;m,7,0,A) - U(q, ks, 0,7, A) — Uk, g5 A, 7, 0, 70)

+U(g, kA, 0,7, n)) +e*" eamr(U(k,p; o, A, T, 1) (6.10)
-Up,ko,1, A7) + Up, ks, 1, A, 0) — Uk, p; 1, A, T, 0)

-UlL,g A m,0,7) + U, q; 7,71, 0,A) — U(g, L7, 0,71, L)

+U(g, A, 0,7, T))),

U(k’ I; 0, T, 7, A) = ktr lr 8~ kcr IA 8 T kn IA 8ot
= (kDgy:8mr Fk, I, —(k +1)).

gG(eamnews ( Uklo,t,m,A)

Here triad p, m, A etc means correspondingly incoming momentum, isotopic index,
Lorentz index of a boson.

Let us formulate compensation equations in this approximation. For free La-
grangian L, full connected three-boson vertices with Lorentz structure (6.6) are to van-
ish. Thus we come to the compensation equation, which in diagram form is exactly the
same, as is presented in Figure 4.1. One can succeed in obtaining analytic solutions for
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the following set of momentum variables (see Figure 4.1): left-hand legs have momenta
p and -p, and a right-hand leg has zero momenta. However in our approximation we
need form-factor F also for nonzero values of this momentum. We have already define
the first approximation for a dependence on three variables in the form (4.8). So here
we also use the following simple dependence on all three variables

2 2 2
p—1+p2+p3>, (6.11)

F(pl’pz’p:i):F( 2

We consider the representation (6.11) to be the first approximation with a hope to con-
sider corrections in forthcoming studies.

Now according to the rules being stated above we obtain the following equation
for form-factor F(x)

ZN Y X
F)=- 2 Z(J F(y) ydy - JF(y)y3dy
0

64m 12 x?
0
1 X ¥ 2 M F()
1 2 X _X 2
+ = jF(y)y dy+ 2 jF(y)dy 5 J ” dy)
0 x X
GeN | GgN ([ Bx-4p*2y-3»
g g X — y y_ X
T 16m2 JF(y)der 24 ( J -2y OV
0 3x/4
[ (5x-6y) GeN ([ 362-2)
LX) rond J — F(y)d
+J (x - 2y) ») y>+32n2( 8(2y - x)? ay
. j( 3(4y—3x)2(x2—4xy+2y2)F( Vd (6.12)
8x2(2y - x)? d .
3x/4
[ 5y% - 12xy { 3¢ - 4xy - 6y°
+ (J;WF(Y)dy"'J TF(y)dy)

Here x = p* and y = ¢?, where q is an integration momentum, N = 2. The last four
terms in brackets represent diagrams with one usual gauge vertex (see three last dia-
grams at Figure 4.1). These terms maintain the gauge invariance of results in this ap-
proximation. Note that one can additionally check the gauge invariance by introduc-
tion of longitudinal term d, k, k. / (k*)? in boson propagators to verify independence of
results on 4, in this approximation. Ghosts contributions also give zero result in the
present approximation due to vertex (6.6) being transversal:

P.VW:4:6,0,=4, V0.4, K),,, = k, VD, 4, k)., = O,

VP, 410 uvp = 8 (@, Pk — D,k + 8, (k,pq — q,Dk) (6.13)
+gp‘u(.pvqk - kqu) + q‘ukvpp - k‘u.pvqp'
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Gauge invariance might be also violated by terms arising from momentum dependence
of form-factor F. However this problem does not arise in the approximation corre-
sponding to equation (6.12) and becomes essential for taking into account of g2 terms.
In this case ghost contributions also do not cancel. The problem of gauge invariance
of the next approximations has to be considered in future studies.

We again introduce in equation (6.12) an effective cut-off Y, which bounds a “low-
momentum” region where our nonperturbative effects act and consider the equation
at interval [0, Y] under condition

F(Y)=0. (6.14)

We shall solve equation (6.12) by iterations. That is we expand its terms being propor-
tional to g in powers of x and take at first only constant term. Thus we have

2

Y X
__GN __1 3
Fo(x) = 64HZ<JFo(y)ydy 72 JFo(y)y dy
0 0
1 [ )
- 2 X X | Lo
+ XjFo(y)y dy+6 JFo(y)d 1zj y dy)
87GgN [
Srusgiv
T12.72 jFo(y)dy. (6.15)

Expression (6.15) provides an equation of the type which were repeatedly studied
above starting from Chapter 2, where the way of obtaining solutions of equations anal-
ogous to (6.15) are described. Indeed, by successive differentiation of equation (6.15)
we come to Meijer differential equation

d d d d G* N x*
<Xa+2><Xa+1><Xa—1><X—X—Z>FO(X)+WFO(X) (6.16)

y y
G*N 87GgN
:4[ ] JFO() dy +512—gszo(Y)dY:|,
0

0

which solution looks like

Fo(2) = C; Gy (211/2, 1,-1/2,-1)

+C, Goo (211, 1/2,-1/2,-1) (617)
12872 Gis (Z|1,1/2,0,—1/2, 1 J( y-—==|Fo(y)dy,
0
31(_ 0 30
G15(2|1,1/2,o,—1/2,—1) GO4(Z|1 1/2,-1, 1/2)
Gsz

T 102472
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Constants C;, C, are defined by the following boundary conditions

& Fy(2) d*Fy(z) dFy(z) G*NY?
272 0 0 0 ’ _ ’
[ F T vz | dz . %= 102472
d* Fy(2) dFy(2)
[2 22 dzoz +5z dOZ +Fy(2) - =0. (618)
Conditions (6.14, 6.18) defines set of parameters
zg=00, C;=0, C,=0. (6.19)

The normalization condition for form-factor F(0) = 1 here is the following

GN [ 87GgN [
_6471’2 JFO(y)ydy+ 512i2 JFO(y)dy =1 (6.20)
0 0

However the first integral in (6.20) diverges due to asymptotic

1

31(_,0
Gls(Z|1,1/2,o,—1/2,—1) ~ 5 Z — 00,

and we have no consistent solution. In view of this we consider the next approxima-
tion. We substitute solution (6.17) with account of (6.20) into terms of equation (6.12)
being proportional to gauge constant g but the constant ones and calculate terms pro-
portional to vz. Now we have bearing in mind the normalization condition

+85g\/N\/Z

3160
Fz)=1
@) 9671 )

1 51/ 0
(ln zZ+ 4)/ +4 In 2+ z GlS (ZO |0’0’1/2’_1’_1/2) - W

2 [ 4 4z 2z ¢
+71quﬂ—;ﬁlﬂoﬁm— BmeV: BJFm  621)

where y is the Euler constant. We look for solution of (6.21) in the form

1 31/ 0 858VN 31/ 1
F(z) = 5615 (Z |1,1/z,o,—1/z,—1) T 8n Gis (Z |1,1/z,1/z,—1/z,—1)
+C1 Goo (211/2,1,-1/2,-1) + C, Goo (21, 1/2,-1/2,-1). (6.22)
We have also conditions

2z z,

1+8JF@n&=§1§ﬁ§JPM@95, 623)
32n vz

0 0

F(zy) = 0, (6.24)

and boundary conditions analogous to (6.18). The last condition (6.24) means smooth
transition from the nontrivial solution to trivial one G = 0 forz > z,. Knowing
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form (6.22) of a solution we calculate both sides of relation (6.21) in two different points
in interval 0 < z < z, and having four equations for four parameters solve the set.
With N = 2 we obtain the following solution, which we use to describe the electro-
weak case

g(zy) = 0.60366, zy =9.61750,
C, =-0.035096, C, =-0.051104. (6.25)

We would draw attention to the fixed value of parameter z,. The solution exists only
for this value (6.25) and it plays the role of eigenvalue. As a matter of fact from the
beginning the existence of such eigenvalue is by no means evident. This parameter z,
defines scale appropriate to the solution. That is why we take value of running cou-
pling g in solution (6.25) just at this point.

Let us remind, that the solution with smaller value of z, = 0.009553 and rather
large g(z,) = 3.8166, which with N = 3 corresponds to the strong interaction theory
QCD, was considered above in Chapter 4.

We have one-loop three fermion generation expression for running electroweak

coupling a,,, (p*) ; o
T &ew(Xo 2

67+ 5a,,00)In00x) P (6.26)

Oy (X) =

We normalize the running coupling by condition

Ay (Xo) = = 0.0290, (6.27)

8(2o)*
4w
where coupling constant g entering in expression (6.23) is just corresponding to this
normalization point. Note that value (6.27) is not far from physical value of «,, at the
W-boson mass

&y (My;) = 0.0337. (6.28)

To compare these values properly one needs a relation connecting G and My, which
follows from expression for the running coupling (6.26). Let us remind that connection
of variables z and x = p? is given in (6.17). Thus from value of «,,, in point z, we obtain
an equation for variable M ﬁ, G. Solving this equation for set of parameters (6.25) and
bearing in mind definition (6.7) we obtain corresponding value of parameter A

A|=2.88-107°. (6.29)

This result evidently does not contradict limitations (6.8, 6.9).

While considering the analogous interaction in QCD, we have studied the depen-
dence of results on value of parameter ¢, which was introduced to check stability of
result in respect to small perturbations. Let as also take expression (4.28) for the inho-
mogeneous part of equation (6.21) and consider variation of its solution in respect to
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value of . Let us present several examples. For e = 0.095 we have parameters of the
solution including also the corresponding value of A

g(z,) =0.6227, z, = 8.972601,
C, =-0.0432122, C, =-0.0535126,
A =-0.00747. (6.30)

Note, that condition (6.26) defines only |A |. However, bearing in mind, that our non-
trivial solution exists for positive G and A is defined by relation (6.7), we obtain the
negative sign in the last line of (6.30).

For ¢ = 0.11 we have

g(z,) = 0.6258, z, = 8.874286,
C, =-0.0445799, C, =-0.0538548,
A =-0.025. (6.31)

For e = 0.13 we have

2(zo) = 0.6299, 2, = 8.74465,
C, = -0.0464409, C, =-0.0542931,
A=-0.12. (6.32)

We see, that solutions (6.30, 6.31) are consistent with restrictions (6.8, 6.9), while so-
lution (6.32) already significantly contradicts these limitations. Thus limitations (6.8,
6.9),e.g.,—0.038 < A < 0.030, result in the following condition

€ < 0.1154. (6.33)

As a result of these considerations we see noticeable distinction in the two cases.
In QCD variation of € do not lead to crucial changes in physical parameters. For ex-
ample, the gluon condensate for O < € < 0.15 remains inside experimental uncertain-
ties. However in the electroweak theory the dependence on e is very sharp. As a matter
of fact this difference is mostly due to smooth momentum dependence of «,,, while
in QCD running coupling at small momenta varies significantly. So, from the point
of view of the effective interactions, the electroweak case at the present stage of the
study is much less predictive, than QCD. It would be desirable to have some additional
information, which could help to define G. Of course, direct searches for anomalous
three-boson interaction (6.1) at the upgraded LHC could either give definite answer, in
case of the discovery of the interaction, or provide more stringent limitations. However
in the same way, as the triple gluon interaction (4.2) leads in Section 4.4 to glueball
states, the interaction (6.1) may lead to states consisting of W bosons. Thus another
way to check possibility of an existence of the anomalous interaction can be provided
by searches for such W-balls. Let us consider this possibility in few subsequent sec-
tions.



150 —— 6 Three-boson interaction

Here we would present value for the analogue of the gluon condensate, which
could be named the W condensate. Indeed, all calculations, which were performed in
Section 4.3, could be applied to the electroweak case with obvious change of parame-
ters and transmutation SU(3) — SU(2). Now, let us define the following quantity

2
EW g
vy = < e Wy, W;‘V>. (6.34)

Then we use the same diagrams as shown in Figure 4.5 and calculate value (6.34). In
doing this we have to take into account the following considerations.
(1) The total convolution of structure constants for SU(3) is equal

fabcfabc — 24’ (6.35)

while for SU(2) the same quantity is equal

e b — g, (6.36)

Thus for the electroweak case one has to divide result (4.44) by 4, that is the ratio
of (6.35) and (6.36).
(2) One has to multiply result (4.44) by

333
2V2

due to definition of variable z, which is proportional to N.

(6.37)

After performing these simple substitutions we obtain the following expression for W
condensate (6.34)

)

45g%2° 4

w82 (5614 [

5 SViG 6n3 J (2)Vzdz
——45g29M3" (2—6lnﬁ>]'oF(z)\/Edz (6.38)
NPT 3 ‘ )

0

Here all parameters including those entering into definition of form-factor F(z) (6.22)
are defined in the present chapter. With different values of ¢ they are shown in (6.25,
6.29) for e = 0 and in (6.30, 6.31, 6.32) for € # O.

For example, for e = 0.11 we have

VoW = —2.55TeV", (6.39)

and for € = 0.13 we have
V5" = ~0.108 TeV". (6.40)

It is interesting, that unlike the QCD case this vacuum average is negative. We see here
also very sharp dependence on parameter e.
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6.2 Effective strong interaction in the weak gauge sector

In Section 6.1 the possibility of a spontaneous generation of effective nonlocal triple
gauge invariant interaction (6.1) was demonstrated. Let us here remind the form of
the interaction in view of further discussion of its properties
gi
- 2
3! My,

Wiv =cosby Z,, +sinfy A

b
F(pi) €abc WZv va W;w

. (6.41)

W3, = 0, W5 — 3, Wy + g € W, WS,
where g(My,) = 0.65 is the electro-weak coupling and uniquely defined form-factor
F(p;) guarantees effective interaction (6.41) acting in a limited region of the momen-
tum space. The accuracy of an approximate scheme being used, was estimated to be =
10 %. Experimental limitations for parameter of the anomalous interaction A [104] are
shownin (6.8, 6.9). Parameter A is connected with coupling constant G by relation (6.7)

Would-be existence of effective interaction (6.41) leads to important nonperturbative
effects in the electro-weak interaction.

Interaction (6.41) increases with increasing momenta p. For estimation of an ef-
fective dimensionless coupling we choose symmetric momenta (p,q,k) in vertex cor-
responding to the interaction

A
- (2m)* Ag/I_Z €abe (8 (@, Pk — p,qk)
w

+8,,(k,pq - q,0k) + 8,,(p,gk - k,pq) (6.42)
+q.kp, —k.p,q,) F0, . K) S +q + k) + ...,
where p, u,a; q,v, b; k, p, c are respectfully incoming momenta, Lorentz indices and
weak isotopic indices of W-bosons. We mean also that there are present four-boson,

five-boson and six-boson vertices according to expression for W:v (6.1). Inwhat follows
we shall use four boson vertex, which corresponds to the following interaction

G
AL = %eabc Caed WE WS W2 W, (643)

Explicit expression for the corresponding vertex is presented above (6.10). Form-factor
F(p, g, k) is obtained in Section 6.1 using the following approximate dependence on the
three variables

2, 2,12
F(p.q.k) = F(p—“fz rk ) (6.44)
Symmetric condition means
2 2 2
p_q¢ kK _x
= k = k == === 6.45
pq=pk=q 5 5 5> =3 (6.45)
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Interaction (6.41) increases with increasing momenta p and corresponds to effective
dimensionless coupling being of the following order of magnitude

lgAlp? (3D’
= ——— F - . 6.46
8o 2M2, 2 (646)
Form-factor F(x) in Section 6.1 is expressed in terms of the Meijer functions
1 31/ 0 858,V2 31, a1
F(z) = 5 Gis (Z |1,1/z,o,—1/z,—1) T 1287 Gis (Z |1,1/z,1/z,—1/z,—1)
+C, Goo (z11/2,1,-1/2,-1) + C, Go (211, 1/2,-1/2,-1). (6.47)
2, 2\2
LGP
51272
g, =0.6037, C,=-0.0351, C,=-0.0511, (6.48)

where g, is value of the electro-weak running coupling at momentum p,, correspond-
ing to value of variable z

zo =9.6175, (6.49)
and

F(z)=0, z > z,. (6.50)

Thus running g+ in dependence on variable t = G p? is the following
t 9¢ 2
)= —F| ——), t=Gp’ 6.51
Behavior of g,(t) is presented in Figure 6.1. We see that for ¢ = 22 the coupling reaches
maximal value g4 = 3.63, that is corresponding effective « is the following

gZ
Gy = 4%’; = 1.049. 652)

1 IR TR SRR (NN TR TR TR (NN SR S S N U1
80 100 120 140

-3F

Fig. 6.1. Behavior of the effective coupling g (), t = sz; Ger(t) = O fort > 148.
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Thus for sufficiently large momentum interaction (6.41) becomes strong and may lead
to physical consequences analogous to that of the usual strong interaction (QCD). In
particular bound states and resonances constituting of W-s — W-balls (W-hadrons)
may appeatr.

6.3 Scalar bound state of two W-s

Let us consider a possibility of existence of bound state X of two W with mass M;. For
the beginning let us consider such state X with spin 0 and weak isotopic spin also 0.
Then vertex of XWW interaction has the following form

G
7)‘ Wy, Wy, X ¥, (6.53)

where ¥, is a Bethe—Salpeter wave function of the bound state. Again due to gauge
invariance there is also three-boson term

a
-8 GX €abc WOMV

W, W X, (6.54)
where W, is the gauge W field without nonlinear [W,, W,] term. There are four-
boson terms also, but we do not use them here. In what follows we use expres-
sions (6.53, 6.54).

The main interactions forming the bound state are just nonperturbative interac-
tions (6.41, 6.53). This means that we take into account exchange of vector boson W
as well as of scalar bound state X itself. In diagram form the corresponding Bethe—
Salpeter equation is presented in Figure 6.2. We expand the kernel of the equation in

powers of Mﬁv and Ms2 and obtain the following equation with introduction of more
p p
= % + % +
-p -p
p p
-p -p
Fig. 6.2. Diagram representation of Bethe—Salpeter equation for W-W bound state. Black spot corre-
sponds to XWW vertex (6.53) with BS wave function. Empty circles correspond to point-like anoma-

lous three-gluon vertex (6.41), double circle — point-like XWW vertex (6.53). Simple point — usual
gauge triple W interaction. A double line represents the bound state X, a simple line represents W.
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suitable variable

~ GZ(pZ)Z ‘- GZ(qZ)Z
Co64m? T 64m?’
p is external momentum, g is the integration momentum.

i 2 4
Yy (2) =4 j ¥, (t)dt — j ¥, (Otdt + —— W j ¥, (t) Vt dt

4vE (W) . 2z [ W(t) 1

N

z
I

+izj\1’0(t)dt+6;fgql 2«/’j %00 4 zj \Itl()éf)dt)
_ HS( 821\/2 j\l’o(t)tdt - % j?o(t)\/fdt
+ 6:?/2 j\l’o(t)dt 5 j FoO ¢ —Z ]

12n 2z \/E 2

z z

k (1] 3 (0, VE w0
_ (Zojkpo(t)\/'du —J\I’O(t)dt+ EJ —JTdt>

g W (1) N Yo(t)
+E<" J\I’O(t)\/_dt+ 7J\Ifo(t)dt ZJ 7dt— \/ZZJ ; dt).

In equation (6.55) g is the electro-weak gauge coupling and the following notations
are used

G My, _GM; G
6n " 6 TG
The first five terms in the rhs of equation (6.55) is the main (zero approximation)
part. These terms and the terms being proportional to y* and /432 are obtained from the
main triangle diagram (the second one in the upper line of Figure 6.2) by expanding its
expression in powers of (M )*and (M, 2)” Then we take into account terms with n=0,1.
Estimates show, that higher powers can be neglected. The term being proportional to
«, that is to fo, corresponds to the third diagram in the upper line of Figure 6.2. Terms
with gauge electro-weak coupling g enters due to diagrams of the second line of Fig-
ure 6.2. Upper limit z; is introduced as usually in our approach, according to which z,
may be either co or some finite quantity. That is z; is defined in a process of solving the
problem. Physical meaning of this parameter corresponds to a definition of effective

U= (6.56)
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1= % + % +
% + ]%

Fig. 6.3. Diagram representation of normalization condition ¥,(0) = 1. Four leg vertex corresponds
to interaction (6.54). All the external momenta are zero. Other notations are the same as in Figure 6.2

cut-off A’, which bounds a low-momentum region, where the nonperturbative effects
are significant. For form-factor of interaction (6.41) the upper limit z, is defined by
results (6.25).

The Bethe—-Salpeter wave function in the first approximation is normalized by
condition ¥,(0) = 1, which corresponds to the following equality

! !

2v2 (gF() 3 Tg“%a) )
4!%ﬂﬂh—n j & m+3bﬁﬂ 2D e =1, 657)

where F(t) and z, are defined by equations (6.22-6.25). In diagram form this condition
is presented in Figure 6.3.

We have to take into account also the normalization condition for the Bethe-
Salpeter wave function, which defines interaction constant Gy. This condition guar-
antees the proper form of the effective propagator for bound state X, as we have men-
tioned in Section 1.5. In diagram form it is presented in Figure 6.4. Here each dia-
gram means a coefficient before external momentum squared p?, that is for expression
®(p?,..) we put

9 o2
apﬁq)(p 5 ...)pz:O.

Diagrams in Figure 6.4 correspond to the following expression

K 25 2\ _
57 (915, 0") = 1
T W2 (2) dz 1 VE¥,(2) dz
I:_L_nDﬁ__L_. 6.
o= |23 V2 (659

Fig. 6.4. Diagrams for normalization condition of X W W-vertex. Four-leg vertex corresponds to ver-
tex (6.10) being proportional to g G.
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We shall solve equation (6.55) by iterations. We take as the first approximation for
the problem the set of equations consisting of:
(1) the upper line of equation (6.55), that is (6.55) with y = y; = x = g = 0;
(2) condition ¥,(0) = 1 (6.57);
(3) normalization condition (6.58) for the BS wave function.

There are few solutions of set of equations (6.55, 6.57) but only one of them leads to
positive Msz. It reads in terms of Meijer functions

T 21/, .0 20 10
¥1(2)=5 Gis (213 01/2,-1/2,-1)* C1 Go” (@li1/2,-1/2,-1)+C2 G (=211 /2-1/2-1) > (659)
26 =44.151234, C;=3.05437, (C, =-0.0011964.

Now we use solution (6.59) and obtain parameter x (6.55) with the aid of normalization
condition for XWW coupling (6.58).
With ¥, (6.59) we obtain from (6.58)

x =0.592411. (6.60)

Then we multiply full equation (6.55) by ¥; (z) from the right and integrate the result
by z in interval (0, z;). It is easy to see by changing the order in double integrals, that
all terms being of zero order in y, y;, x, g vanish, and we have the following equation
3, 51, 951, 111, I >
<64 64 64k 8  64)"

; 31 -1,
+u(-L+3L+14L+61,) - E(IZ +30)+ —i - 0, (661
where
J Z) dz J'\Pl(t)tdt J\Pl(z) dz J\I’l(t)\/_dt
0
¥, (2) dz K (O dt
1:]—1 J\Ptdt, j\y J 4
’ 0 V2 0 0 0 vt
(6.62)
J Z) dz J\I’l(t)t\/fdt,
0
ZOg‘I’ (2)dz r ZOg‘I’ (2)dz r
I, = j saBE J\I’l(t)\/?dt, I, = j e J\I’l(t)dt.
0 0 0 0
Now we define running coupling g
g(2) = sMw) (6.63)

58°(My) 8myz
\/1+T2W1 (1+GMZ>
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It enters in integrals (6.61, 6.62). The next question is if one can define possible mass
M,? For example, provided we choose M, = 125.5 GeV that means

12557 660
s = H 5042 '
Then with this value of y, bearing in mind relations (6.56, 6.60) we have
0.00
Gy =0.000668GeV™", G = #. (6.65)
My,

Result (6.65) means parameter of anomalous three-boson interaction (6.41) with ac-
count of relation (6.7)
GMy,
g(My)
which doubtless agrees limitations (6.8). More than that, this value almost precisely
coincides with result (6.30). With this result we have simple dependence of such res-
onance mass on value of A

= -0.00744, (6.66)

0.00
= 1255, 2900 oy e

One can also connect value M, with parameter €, which was discussed above. Pro-
vided parameter ¢ in sets of results (6.29)—(6.32) increases, the mass of the scalar state
decreases, while for decreasing e the mass increases up. To illustrate this dependence
we present below estimates for the mass of the scalar W-ball for several values of
€=0: M, ~ 6400GeV,
€=0.11 : M, ~ 68.5GeV, (6.68)
€=0.13 : M= 31.2GeV.

Now there is a question, if a scalar W-ball really exists? For answering this ques-
tion one has to look for either WW or ZZ resonances with sufficiently high masses.
For example, one might ask, if this option could be applied to the newly discovered
state [57, 58] with mass 125.7 GeV, which we have already mentioned in Section 2.1.2.

Let us consider this possibility in more details. Now we have scalar state X with
coupling (6.53, 6.65). In calculations of decay parameters and cross-sections we use
CompHEP package [109]. We use parameter Gy (6.65) being obtained above and M, =
125 GeV. Cross-section of X production at LHC reads

op+p—X+.);0v=0.16pb,
O'(p +p — X+ ")8T€V = O].9pb (669)
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Parameters of X-decay are the following

I,(X) = 0.000502GeV,
BR(X — yy) = 0.430, BR(X — yZ) = 0.305,
BR(X — 41(u,e)) = 0.00092, BR(X — bb) = 0.000024,
BR(X — ye'e”) =0.0231, BR(X — yu'u") = 0.016,
BR(X — yt'77) = 0.0125, BR(X — yuii) = 0.0478, (6.70)
BR(X — ycc) = 0.0368, BR(X — ydd) = 0.0446,
BR(X — ys5)) = 0.0430, BR(X — ybb) = 0.0416.

For decay X — bb we calculate the evident triangle diagram and use m, (125 GeV)
2.9 GeV. Branching ratios for decays to other fermion pairs are even smaller.
Experimental data give in the region of the state the following results for o, =
ox BR(X — yy) [57, 58]. Let us draw attention to notation y, in the discussion of exper-
imental data on 125.7 GeV state. This notation, which is now used everywhere means
ratio of an experimental result for some quantity x to the value for the same quantity,
calculated for the Standard Model Higgs particle with mass 125.7 GeV. Thus all pa-
rameters under a study are to equal to unity provided the state under discussion is the
genuine Standard Model Higgs particle. Now for the decay channel to two photons we

have

I

_oX BR(X = yY)exp

= =13 +0.4, 6.71
0 X BR(X — yy)sur ©6.71)

0 xBR(X — yy)
~ 0 xBR(X = yY)su

Byy

exp

=1.6+0.4.

Hyy

Here 0 x BR(H — yy)gy = 0.04pb for /s = 7 TeV is the Standard Model value for the
quantity under discussion, upper line corresponds to ATLAS data [57] and the lower
line corresponds to CMS data [58]. Firstly both limitations are quite consistent. Sec-
ondly our value for the same quantity from (6.69, 6.70) reads

o =° XBRX = YWeale _ 4 ¢ (6.72)
" 6 xBR(X > yy)su - .

that also agrees results (6.71), however it essentially exceeds the SM value. At this point
it is advisable to discuss accuracy of our approximations.

The former experience concerning both applications to the QCD and the Nambu-
Jona-Lasinio interaction in Chapters 4, 5 and to the electro-weak interaction in Chap-
ter 6 shows that average accuracy of the method is around 10% in values of different
parameters. So we may assume, that in the present estimations of coupling constant
Gy we also have the same accuracy. For the cross-section this means possible deviation
up to 15% of the calculated value. Thus we would change (6.72) to the following result

tyy = (1.6 £ 0.24), (673)

In any case result (6.73) agrees (6.71).
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There are also data for the 125.7 GeV state production in the kinematical region of
vector boson fusion (VBF). Here there is a marked, but not decisive, deviation from the
Standard Model Higgs option. With our calculations we obtain significant difference:

#y,(VBF) =3.0£0.3. (6.74)
This could be compared with experimental value
uy,(VBF) = 2.3 £ 1.1.(CMS) (6.75)

There are also indications for an excess around 125.7 GeV in four leptons states. With
our numbers (6.69, 6.70) we have fordecay X — I' "I I"( = p, e):

o x BR = (0.00013 + 0.00003)pb. (6.76)

This is approximately six times smaller the the Standard Model result. This result is to
be compared to the latest data [110]

w(aDeys = 0.931 035 (stat) 3o (syst). 6.77)

Our estimation (6.76) already contradicts these data. Thus the interpretation of the
125.7 GeV state as a W-ball is not likely for the moment. The experimental data, which
become more precise with accomplishing of the LHC studies, give the increasing con-
firmation for the 125.7 state being just the Higgs scalar particle. Although some ad-
mixture of other scalar states may be also considered.

So we state, that a check of possible existence of W-balls, which we discussed
here needs a consideration of other possibilities. That means first of all, masses M,
being different from 125.7 GeV. Let us consider few possible examples. For example
we would take two possible masses of a scalar W-ball

M,, =150GeV, M,, = 200 GeV. (6.78)

By performing the same operations as in the previous case, we come for the first mass
in (6.78) the following value of coupling constant G,

Gy = 0.000558GeV . (6.79)

With this value we have the following result for scalar state X production cross-section
at \/s = 8 TeV
oy = 0.0792pb. (6.80)

The decay properties of the state is described by the following results

I,(150) = 0.617MeV, BR(X — Zy) = 0.635, (6.81)
BR(X — yy) =0.364, BR(X — I'T'T'T") = 0.00146.
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For the second value of the mass in (6.78)we have the following value of coupling con-
stant G,
Gy = 0.000419GeV™" (M, = 200GeV). (6.82)

With this value the result for scalar state X production cross-section at /s = 8 TeV
looks like
ox = 0.0323pb. (6.83)

And the decay properties of the state are the following

I,(200) = 6.538MeV, BR(X — Zy) = 0.184, (6.84)
BR(X — yy) =0.364, BR(X — W' W) =0.648,
BR(X - ZZ)=0.113, BR(X — I'l'l'l") = 0.0000457.

We would emphasize importance of channel X — y I*I” for identification of a state
as a W-ball. This channel may serve for an accurate test of our conjecture because the
SM values for this channel are essentially smaller [111].

According to (6.80, 6.81) we have for the process at +/s = 8 TeV with M, = 150 GeV

olpp —» (X - yl'") +..) = 0.0036pb, (6.85)

that is quite a significant effect.
The same calculations give for M; = 200 GeV

o(pp — (X - yI' ") +..) = 0.00043 pb, (6.86)

The main results of comparison with the would be option of M; = 125 GeV are
presented in the following Table 6.1. Here the signal-strength u is a ratio of a quantity
under consideration and of the same for the SM.

We have here comparison with data for both variants: the Standard Model Higgs
and wouldbe WW state. As we have already mentioned, the last data indicate on behalf

Table 6.1. Comparison of experimental data to SM Higgs option and the W-hadrons option

process Pexp Ucatc (W — ball)

H(X) — yy ATLAS 1.4+0.3 1.6

HX) — py CMS 1.6 £0.4 1.6
HX) — yyygr CMS 23+1.0 3.0

H(X) — 4 ATLAS 1.2+0.6 ~0.15

HX) — 41CMS  0.937325(st)* 303 (sys) =0.15
H(X) — bb ATLAS -0.4+1.0 =0

H(X) — bb CMS 1.0 £ 0.65 =0

H(X) — 77 ATLAS 0.16"1%2 =0

HX) — 77 CMS 0.78 £ 0.27 =0

HX) - pl'l” ? 7.0+1.4
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of the Standard Model Higgs option (see also [112]). We would emphasize importance
of channel X — yI'I” for identification of would W-balls, which may occur at other
values of masses.

We would draw attention to the nonperturbative effects, which are decisive for a
confirmation of the existence of anomalous three-boson interaction (6.1). Just W-balls
in case of confirmation of their existence would follow from nonperturbative electro-
weak physics almost in the same way as the usual hadrons follow from nonperturba-
tive effects in QCD. Let us note, that W-balls with higher spins are also of an interest.
In particular, in work [102] the possible WIW bound state with spin 1 is applied for an
interpretation of TEVATRON data [113, 114].

6.4 Muon g-2

We have already mentioned, that measurements of anomalous magnetic moments of
particles several times have been crucial points in verification of main theories of the
Standard Model. This refers to a, — anomalous magnetic moment of the electron in
QED (Section 1.3). There was also one of the decisive contribution to establishing of
the most important notion for strong interaction, namely of the color, which we have
discussed in Section 1.2. Measurements of the anomalous magnetic moment of the
muon (g-2),, (see the last publication [60] and the extensive review [115]) provides the
only significant deviation of the experiment from predictions of the Standard Model.
According to recent analysis of the problem [61-63] this deviation Aa,, safely exceeds
four s.d. and comprises the following values correspondingly

Aa,=(3.493 +0.823)107, (6.87)
Aa,=(3.935+0.523, £ 0.63,) 107",

The most recent analysis of the problem [63] gives rather lower values of the differ-
ence, which with two different methods of accounting the hadron contribution are
the following

Aa,=(2.87 £ 0.80)107, (6.88)
Aa,=(2.61 £ 0.78)10™".

+

These results do not contradict the previous ones (6.87) and the discrepancy on the
level of 3.5 s.d. persists.

It should be emphasized, that the deviation from the Standard Model calcula-
tions means the deviation from perturbative calculations in the electro-weak theory.
However there quite may be nonperturbative contributions to physical quantities, just

1 Of course, one have to bear in mind also other options for interpretation of the effect.
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those discussed above, in particular, the discrepancy might be due to the effect of a
spontaneous generation of effective nonlocal interaction in the electro-weak theory,
described in the the present chapter.

In the present section we apply the previous results to the problem of discrepancy
Aa,,. It will come clear, that the effect under discussion is quite natural in the theory
with account of the spontaneous generation of an effective interaction in the conven-
tional electro-weak theory, corresponding to expression (6.1).

Thus we start with the spontaneously generated anomalous three-boson interac-
tion of the form

a b c
31 Cabe Wity W, Wy (6.89)

which corresponds to three-boson vertex (6.6)

(2m)* G €gpe (8,n(a, 0k - ,ak) +8,,(k,pq - q,pk)
+gp‘u(pvqk - kqu) + q‘ukvpp - k‘upvqp)
xF(p,q,k)6(p+q+k)+..., (6.90)

where F(p, g, k) is a form-factor and p,u,a; q,v,b; k, p,c are respectfully incoming
momenta, Lorentz indices and weak isotopic indices of W-bosons. We mean also that
there are present four-boson, five-boson and six-boson vertices according to the well-
known nonlinear expression for W;‘V. Note, that in the approximation used we main-
tain the gauge invariance of the approach.

In the course of the study the following simple dependence of form-factor F on all
three variables was used

2 2 2
+ +
M ) N (6.91)

F(p17p27p3):F< 2

The expression for four-boson vertex is presented above (6.10), where triad p, m, A
etc means correspondingly momentum, isotopic index, Lorentz index of a boson; g is
the usual gauge coupling constant of the electro-weak interaction. Note, that in ver-
tex (6.10) only momenta of two legs are present in various combinations. Thus a leg
here is either “momentum” one or “sterile” one. We shall use these notations in what
follows while discussing distribution of momenta in diagrams.

Now in the way of studying the problem in this section we get convinced, that
there exists a nontrivial solution, which is expressed in terms of Meijer functions.

The solution for the form-factor is unique and has the the following form for 0 <
z < 2,

1 31/ 0 858V2 31/ _ap
F(z) = 3 Gis (Z |1,1/z,o,—1/z,—1) T S12a GIS(Z |1,1/z,1/z,—1/z,—1)+

+ € Gog(211/2, 1,-1/2,-1) + C, Ghy(2 11, 1/2,-1/2,-1).

Z:ﬁ X:pz
51272’ ’

(6.92)
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For z > z, we have the trivial solution
F(z) =0. (6.93)
Parameters of solution (6.92) are the following

g =8(zy) =0.60366, z,=9.61750,
C, =-0.035096, C, =-0.051104. (6.94)

We would draw attention to the fixed value of parameter z,. The solution exists
only for this value (6.94) and it plays the role of eigenvalue. As a matter of fact, from
the beginning the existence of such eigenvalue is by no means evident. The definite
value for g(z,) is also worth mentioning. Let us note, that g(z,) is the value of running
gauge coupling g at the momentum Q,, which is defined by relation G* Qg = 5127 z,.

Remind, that an existence of a nontrivial solution of a compensation equation is
extremely restrictive. In the most cases such solutions do not exist at all. When we
start from a renormalizable theory we have arbitrary value for its coupling constant.
Provided there exists nontrivial solution of a compensation equation the coupling is
fixed as well as the parameters of this nontrivial solution.

Now let us consider a contribution of interaction (6.89) with a form-factor defined
by relations (6.11, 6.92, 6.94) to the anomalous magnetic moment of the charged spin
one half particle with mass m, for example, of the muon. The first approximation de-
scribed by the simplest diagram presented in Figure 6.5 gives zero. This result is im-
mediately connected with Lorentz structure of anomalous vertex (6.90).

Fig. 6.5. One loop diagram for calculation of new contribution to the muon magnetic moment. Verti-
cal line represents the photon, simple lines - W bosons, black spot - triple vertex (6.1) with corre-
sponding form-factor. Double line represents the muon.

Thus to obtain nonzero contribution to a, we look for two-loop diagrams, which give
contribution to three-boson Lorentz structure of the usual gauge vertex.

Vp,p;q,v;k,p = g‘uv(q - p)p + gvp(k - q)ﬂ + gp‘u(p - k)v (6.95)

Diagrams shown in Figure 6.6, in which four-boson vertex corresponds to terms in
expression (6.10) with “momentum” legs entering to oval loops achieve this goal.
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k
-u+q/2+k/4 u-q/2+k/4
-q+k/2 q+k/2
-q+k/2
q+k/2 u+q/2+k/4 -u-q/2+k/4
p-k/2 p+q p+k/2 p-k/2 p+q p+k/2

p-k/2 p+q p+k/2

Fig. 6.6. Two loop diagrams for calculation of new contribution to the muon magnetic moment. Ver-
tical line represents the photon, simple lines — W bosons, black spots — triple vertex (6.6) and four
leg vertex (6.10) with corresponding form-factors. Double line represents the muon. The momenta
are directed downwards and rightwards (the muon). The momentum of integration in the oval-like
loops is denoted u.

The calculations are performed in the unitary gauge. The main contribution to the
result is given by increasing terms in nominators in vector boson propagators, con-
taining M}

9.9
gyv Mﬁ,
o
q - MW

while in denominators we put M, = 0. The estimate of accuracy of this procedure will
be given below.

In the course of calculations finite renormalization of the gauge coupling g is per-
formed. In doing this we single out the constant contribution to the Lorentz struc-
ture (6.95) of triple boson vertices including oval-like loops. After this procedure only
the two first diagrams in Figure 6.6 give contribution to the value of the magnetic mo-
ment. Remind, that the structure of the anomalous vertex (6.89) gives zero contribu-
tion.
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We have for the main contribution to a magnetic moment according to diagrams
Figure 6.6 the following Lorentz structure
ﬁ]}yg YHIA([? 1. ~ mi{))a_yai(

S A

which is multiplied by the two-loop integral, which we calculate in the Euclid four di-
mensional momentum space. The integration momentum inside an oval loop is u and
inside a triangle loop is g. Denoting u* = xand ¢* = y we have from (6.91) combination
X+ 34—” for arguments of both form-factors. Thus substitution

, (6.96)

3y
t=x+ —, 6.97
+ 4 (6.97)

is quite natural. Using variables t (6.97) and y we have the following expression for
coefficient before the magnetic moment structure with account of (6.96)

Y
meg?G* Jdt

12(167%)2 M}, ]

{ a3 3 2 2 3
() J 4tdy N J 4t(16t° — 48ty + 48ty — 15y°) dy 698)
(6t - 3y) 32t-y)y? T

0 t
where Y is defined by the relation
G Y?
=5
From (6.98) with definitions of variable z and of the form-factor (6.92, 6.94) we obtain
the following final result for the contribution to a,,

)
] - 13—3) X J F(2)dz = 2.775x107°.  (699)
0

2.2
a, - S (01
3 MW

4
3

where for the numerical result we have used only values of the muon mass and the W-
boson mass. All other parameters are defined by solution (6.92) with parameters (6.94).
Let us draw attention to the disappearance of the effective interaction coupling con-
stant G from expression (6.99). This is due to entering of factor G? into the denomi-
nator according to definition of variable z. Thus the main result does not depend on
A. This parameter influence only the next approximations. Let us estimate possible
corrections due to My, # 0. They are defined by the following parameter

V2gIM

= 0.0005, (6.100)
32n

with the maximal value of |[A| = 0.059 from restrictions (6.9). Thus this correction is
negligible. The other correction may be connected with the value of gauge coupling
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g(z,). It is taken from solution (6.25). However it is possible to calculate experimental
value for this parameter. Let us start from the well-known expression for the running
electro-weak coupling with the total number of flavors

2,A2 g
gQ)= ——————, (6.101)
5 2 QZ
+ i In[ i
327z My,
g =g(My) =065 Q(z)= —2 W
v Y V2giAl

Then with the same |A| = 0.059 we obtain g(z,) = 0.626 and with this value we have
instead of result (6.99)
Aa, =2.987x107°, (6.102)

This value is few per cent larger than value (6.99). There may be also other corrections
to result (6.99). The examples being studied earlier have given estimate for accuracy
of the approximation = 10% [74, 78]. Bearing in mind this estimate, the result for the
nonperturbative contribution to a, is advertised to be the following

Aa, = (2.78 £0.28)x 10™°. (6103)

The result, as well as values (6.99, 6.102), evidently agrees deviation (6.87) within error
bars.

There are proposals to connect the Aa, effect with theories beyond the Standard
Model, for example with effects of super-symmetric variants [116]. However with such
proposals one inevitably introduces additional parameters to adjust the discrepancy.
Here we have no adjusting parameters. Therefore the result (6.103) is to be consid-
ered as an evidence for confirmation of the Standard Model. What is necessary, is to
learn how to calculate nonperturbative contributions. The method, which is used in
the present calculations, gives quite an adequate result. Thus we consider the result
to provide a convincing confirmation of the approach.
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7.1 Four-fermion interaction of heavy quarks

Let us remind that the adequate description of low-momenta region in QCD can be
achieved by an introduction of the effective Nambu-Jona-Lasinio interaction [31, 32]
(see recent review [39]). We have considered this problem in the previous chapters.
In the framework of the compensation approach the spontaneous generation of NJL-
type interaction was obtained in works [77, 78] and is described in Chapter 5. In these
studies pions and other light hadrons are described as bound states of light quarks,
which are formed due to the effective Nambu—Jona-Lasinio interaction with account
of the QCD interaction.

In the present section we explore the analogous considerations and assume that
scalar fields which substitute elementary Higgs fields might be formed by bound states
of heavy quarks t, b. This possibility was proposed in works [117-119] and was con-
sidered in a number of publications (see, e.g. [120]). It comes clear, that estimates of
mass of the ¢t-quark in this model gives result which exceeds significantly its mea-
sured value. In the present consideration we obtain the four-fermion interaction in the
framework of Bogoliubov compensation approach, while in the works on the model
being cited, the interaction was postulated. In our approach parameters of the prob-
lem are defined by an unique solution of a set of equations quite analogously the
Nambu-Jona-Lasinio case considered above. In particular we shall see that the ¢-
quark mass is quite consistent with the current data.

We start with Lagrangian (6.3) in which both gauge bosons W and spinor par-
ticles (leptons and quarks) are massless. As the first stage we consider approxima-
tion in which only the most heavy particles acquire masses, namely W-s and the -
quark while all other ones remain massless. In view of this we introduce left doublet
¥, = (1+v5)/2-(¢t, b) and right singlet T, = (1 -y5)/2 -t. Then we study a possibility of
a spontaneous generation of the following effective nonlocal four-fermion interaction

Ly=G, W T TEW s+ G, ¥y T s Th ¥y,
+%\ngp\PLa\Pfyy\PLﬁ+ %TgyﬂTRaTgyﬂTRﬁ. (71)
where «, f3 are color indices. We shall formulate and solve compensation equations
for form-factors of the first two interactions, while consideration of the two last ones
is postponed for the next approximations. However, coupling constants G5, G, essen-
tially influence the forthcoming results. Here we follow the procedure described in
Chapter 5, which deal with four-fermion Nambu-Jona-Lasinio interaction.

In diagram form the compensation equation is shown at Figure 7.1. Form-factors

F, are introduced according to the following representation for four-quark vertices
1- 1-ys

o 1- 1- o
G, Fy(x)8° TyS xngYS +G, Fy(0) 85 TyS x 8= 72)



168 =—— 7 Possible four-fermion interaction of heavy quarks

><+>Q<+Q+

+ m + =0  Fig.7.1. The graphic represen-
tation of linear compensation
equations (7.3), (7.4).

Following our method, formulated in the previous chapters, we come to the follow-
ing compensation equations for form-factors F; (x) and F, (x), x = p?, corresponding
respectively to the first two terms in (7.1).
27\2 2 2 Y
A*(NZGi + 2N,G,G, + G5) (1 NG +Gy J (D(y)dy)
8m2(N,G, + G,) 8n? )

.\ <A2 X, X 2) y G? + G2 +2N,G,G, + 2G(N, + 1)(G, + G,)  (73)

D(x) =

Zlh= -
+ 2 n AZ 4 327T2(NC61 + Gz)
_Gi+G +2NeGiGy + 260+ (61 +Go) o
297"
v
_ AZGZ GZ d
F,(x) = = 1—g6|'F2()/) y
(24 X X _ 3% Git Gy + 26(G, + Gy (N + 1))
2 AZ 4 3277.'262 74)
G} + G5+ 2G(Gy + Gy (N, + 1 p %
GG+ 2(914+ 2 (N + )K><F2,<D(Y)=F2(Y):O’
T
N.GF, +G,F, . G3+G
op) = o1 Goly - p GrG 2
) NG, + G, G 2 e e

Here number N, = 3 and a kernel term in equations is the following

Y X
K xF=(A*-xInA?) j F(y)dy - InA* | F(y)ydy + é j F(y)y*dy
0 0

Y

F(y)dy + J y (ln y- %) F(y)dy

X

|
J

+ lnxJF(y)ydy+x(lnx— %)
0

6

X

Y 9 Y F
+Xx J InyF(y)dy + X J %dy. (7.5)

and A is an auxiliary cut-off, which disappears from all expressions with all conditions
for solutions be fulfilled.
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Introducing substitution
G,=pG, G, =uwG, (7.6)

and comparing the two equations (7.3, 7.4) we get convinced, that both equations be-
come being the same under the following condition

p = O. (7.7)

and we remain with one equation

Fy(z) = 2 +8“’{(1112 3)
. Inz | VZ(nz-3) { Fy(6)
16[6\/_JF2(t)\/_dt+ : JFz(t)dt+ : j at
1, VE [ FalD) F,(t)
+ZJ(lnt 3F, (O dt + Jl nt-2 dt + 6J dt] 78)
(w2 + 86‘))@2)(2 (w2 + 8w)GZy2 _ (w2 + 8w)G2Y2
= 214 4 , = 214 4 > %o = 214 4

Here we omit all terms containing auxiliary cut-off A due to their cancelation, which
occurs here in the same way, as in Chapter 5.

Performing consecutive differentiations of equation (7.8) we obtain the following
differential equation for F,

d 1 d d d 1 d 1 d
(ZE+ )( dZ)(zE)(zE—z)(za—z><za—1) F,(2)+zF,(z) =0, (79)

Equation (7.9) is equivalent to integral equation (7.8) provided the following boundary
conditions being fulfilled

Zy 5 Zy Zy
JFz(t) at = Y0 80 p -0, JFZ(t)\/?dt: 0, JFZ(t)dt: 0. (710)
Ve 8w 0 0

Note that just boundary conditions (7.10) lead also to cancelation of all terms con-
taining A. Differential equation (7.9) is a Meijer equation and the only solution of the
problem (7.9, 7.10) is the following (for a definition and properties of Meijer functions
see Section 2.3)

11 1
Fy(z G“O( |0, = 1,——,0), Zy = 00. 711
2( ) = \/— 06 | 5’ 2 5 0 = OO (7.11)
Here we also take into account condition F, (0) = 1 that gives
8
w=-. 712
3 (7.12)

We would draw attention to the fact, that unique solution (7.11) exists only for infinite
upper limit in integrals and solution (7.11) exponentially decreases at infinity.
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— = e .

Fig. 7.2. The graphic representation of the Bethe-Salpeter equation for the bound state (8.41). The
black spot represents the Bethe—Salpeter wave function, four-leg points represent interaction (7.1),
dotted line is gluon, double line is the bound state itself.

7.2 Doublet bound state ¥, T,

Let us study a possibility of spin-zero doublet bound state ¥; T, = ¢, which, as we
shall see, can be referred to a composite Higgs scalar. With account of interaction (7.1)
using results of the previous section we have the following Bethe—Salpeter equation,
in which we take into account the would-be t-quark mass (see Figure 7.2)

2

J\P(y) dy + G2 K* xV, (713)

) = 27 4

1672

where in the first approximation we neglect contributions of diagrams of the second
row in Figure 7.2. The modified integral operator K* is defined in the same way as
operator (7.5) with opposite sign, ¥ = co, and lower limit of integration being changed
for m?, where m is of order of magnitude of the would-be ¢t-quark mass (analogous
equation see in Chapter 5).

Then we have again differential equation

(e - Bk v -

(714)

_ G0’ _
ST 4 4

1++1+64y _1-1+64u  Gm'
T 4 =- > T o
where the main difference with the compensation equation is the other sign of the
last term, while variable z is just the same as in (7.9) with account of relation (7.12).
Boundary conditions now are the following

[ee]

E

—Zdt =0, J\I’(t)\/? dt =0, j\I’(t) dt=0, ¥(u) =1. (715)
I I
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Solution of the problem is presented in the following form

11 1 1
¥(z) = C,G (z|a1,a2, S5 1,0) 4,60 (z|o, S Lana, Z)

11 1 1
+C5 G2 (Z|§’ > 1,a1,a2,0> +C, Goo (z|a1,a2,0, >b E) . (716)

where C; for given u are uniquely defined by conditions (7.15).
We define interaction of the doublet ¢, consisting of ¥; Ty, with heavy quarks

Ly =84(¢" ¥, Tp + ¢ Tp'¥), (7.17)

where g, is the coupling constant of the new interaction to be defined by normaliza-
tion condition of solution (7.16) of equation (7.14). Then we take into account the con-
tribution of interaction of quarks with gluons and the exchange of ¢ as well (see Fig-
ure 7.2 the second row). Using standard perturbative method we obtain for the mass
of the bound state under consideration the following expression in the same way as
in Chapter 5, equations (5.30, 5.31, 5.35).

(e}

ZI’ 2
mé __ m; 5” I; — J M’ (7.18)
vrul z
. T(mnas(z) - g) ¥(2) dz J w(t) dt
> " lénz N

Here ay(2) is the strong coupling with standard evolution, normalized at the ¢-quark
mass, and we put m = m,. Provided term with brackets inside integral I ; being posi-
tive, bound state ¢ is a tachyon. Let us recall the well-known relation for ¢-quark mass,
which is defined by nonzero vacuum average of (¢; + ¢,)/V2. It reads

m - 5

ok

where from phenomenology we know the value of the electro-weak scalar condensate

n = 246.2 GeV. However in our approach there are additional contributions to this

mass, which are due to diagram shown at Figure 7.3. That means that for experimental
value of the t-quark mass we take the modified definition

(7.19)

8o M 8o M
m, = — + AM = — (7-20)
V2 V2
According to these diagrams we have the following expression for AM
TE@dz [a2)F,@dz [ m2)F, &) dz
AM = -4 2 J d —4 J , 721
e J NG 2nz N (721
Iz Iz
m,(z) :mt<1+7“s—(m ln£> "
8m Y
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Fig. 7.3. Contributions to the t-quark mass. Dotted lines represent gluons.

Here the first term corresponds to gluon exchange between external legs and the sec-
ond term corresponds to gluon exchanges inside the loop calculated with account of
standard renormalization group mass evolution. Contributions of gluon exchanges
from external legs to internal lines cancel. Now parameter f defined in (7.20) is the
following

[ee] [ee] [ee]

Fo1+ 4J' F,(z)dz J' a,(2)F,(2) dz . 4J' m,(2)F,(z) dz.
u

(7.22)

\z 2nz m; \z

Due to relation (7.10) factor f in (7.20, 7.22) is slightly larger than 2. For strong coupling
a,(z) we use the standard one-loop expression
Ta(u) . z -1
ay(2) = ag(u) <1 + 88—71 In ;) . ag(p) =0.108, (7.23)
where for strong coupling at the ¢-quark mass we take its value obtained by evolution
expression (7.23) from its value at M;: o (M) = 0.1184 + 0.0007.

Let us consider the possibility when relation (7.18) leads to a tachyon state. In this
case the neutral component of scalar ¢ consist of {; tg + t; thatis its vacuum average
n corresponds to f t condensate [117-119]. For Higgs mechanism to be realized we need
also four-fold interaction

A
Ly, = 3 (0" )% (7.24)
Coupling constant in (7.24) is defined in terms of the following loop integral

[ee]

3g; I J'\P(z)“dz
| ===

_ , - 7.25
1672 4 z e

u
From well-known relations (see Section 2.1) * = —mi /A and the Higgs mass squared

M} = —Zm(f5 we have

,  lemmll] . 2ml,

N = =

3ggval L, T AL

(7.26)
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Fig. 7.4. Diagram representation of the normalization condition for bound state ¢. Dotted lines rep-
resent gluons.

From (7.20) and (7.26) we have useful relation
B 1671 ;
3 gé f2yel I’
We obtain g4 from a normalization condition, which is defined by diagrams of Fig-
ure 7.4

(7.27)

3 (1 %W

377 (1; t o ((I5,)% + 21g)> =1, (7.28)
oo T‘I’(t) dt T\y(z) dz J ¥(t) dt
22 t 7 ) zyvz Vi

u

Here we use strong coupling at the t-quark mass (7.23) and perform necessary
calculations. In doing this we proceed in the following way: for six parameters
> 8g> 1> My, My, f we have five relations (7.20, 7.26, 7.27, 7.28) and the well-known ex-
pression

My, = g?’ (7.29)
where g is electroweak gauge interaction constant g(My,) at W mass. We obtain it by
usual renormalization group evolution expression (6.26) from value g at z, (6.25). Let
us remind that we consider My, as an input. Thus for the moment we have two input

parameters, which are safely known from the experiment
My, = 80.4GeV, #n=246.2GeV. (7.30)

The last value corresponds to value of electro-weak coupling g(My,) = 0.653. We
would once more draw attention to results of compensation approach on unique defi-
nition of physical parameters. In particular, the value for electro-weak charge at point
z, is consistent with this value. For explication of this point see relations (6.25, 6.29,
6.30, 6.31, 6.32).

Now we present thus obtained parameters

u=14067510""% f=2.034, 8y =2.074, (731)
m, =177.0GeV, My = 1803 GeV.
The most important result here is the ¢-quark mass, which is close to experimental

value M, = 173.3 + 1.1 GeV [4]. Really, the main difficulty of composite Higgs mod-
els [117-120] consists in too large m,. Indeed the definition of 8 in such models leads
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to g4 = 3 and thus m; = 500GeV. We have all parameters, including important pa-
rameter f, being defined by self-consistent set of equations and the unique solution
gives results (7.31), which for m, is quite satisfactory.

However the mass of the Higgs scalar particle is quite large. Such large mass of H
means, of course, very large width of H

Ty =3784GeV, BR(H — W' W) = 51.4%, (7.32)
BR(H — ZZ) = 25.6%, BR(H — tt),= 23.0%.

The large value for My seems to contradict to upper limit for this mass, which follows
from considerations of the Landau pole in the A¢* theory. Emphasize, that this limit
corresponds to the local theory and in our case of composite scalar fields is not rele-
vant.

The most important argument against Higgs mass (7.31), is the LHC discovery of
the state with mass 125.7 GeV, which properties are consistent with those of the Higgs
particle [57, 58]. In case of a final confirmation of the Higgs mass in accordance to
data [57, 58], results of this chapter are to be revised. Let us note, for example, that
the coefficient in relation (7.18) for mi is defined by difference 16ma, — gi, which con-
tains two approximately equal terms. Under the approximation being used there, this
difference turns to be positive, that corresponds to tachyon state \¥; ¥;. Just this result
leads to the interpretation of this state as corresponding to a constituent Higgs scalar
field. It might be, that with an account of the next corrections the sign in relation (7.18)
could change to the opposite. Then the state would be a usual ¥, ¥, resonance with
mass of the order of magnitude ~ TeV.

The most cardinal revision, while remaining in the framework of the compensa-
tion point of view, may consist in a conclusion, that one has to admit, that just triv-
ial solutions of compensation equations (7.3, 7.4) are realized. Bearing in mind dif-
ferent possibilities, we nevertheless would discuss some problems, connected with a
wouldbe existence of effective interaction (7.1).

As a matter of fact, predictions (7.31, 7.32) strictly speaking do not contradict ex-
perimental limitations yet. The possible effect would consist of registration of slight
increasing of cross-sections p+p —» WY+ W™ +X,p+p > Z+Z+X,p+p > t+t+X
in region of invariant masses of two heavy particles 1 TeV < M;, < 3 TeV.

7.3 Stability problem

In Chapter 5 we have considered conditions for stability of the nontrivial solution. We
have became aware of the fact, that with variation of &, the vacuum energy density
varies from positive (unstable) values to the negative ones, that corresponds to stabil-
ity of a nontrivial solution. How things are in the electro-weak case?

Let us construct the vacuum energy density for this case. It consist of vacuum
average of gauge boson term, vacuum average of the t-quark term (the ¢t condensate)
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and the scalar field term.

mz
VDgy = — (W W )+mt(tt)——(p +

AA.

A4
4<p . (7.33)

Here the W condensate is defined by relation (6.34) and the (ft) condensate can be
defined in exact analogy with (gq) condensate in Chapter 5. Let us use relation (5.51)
withu=u=0,my, =0

] ERN

- 3 [atm) | J ‘I’(t) Intdt 3

2 /B m ]

GZ
B= s (7.35)
where variable t is defined by expression (7.14).
Under the same conditions
VT 30 ( 1 1 1 )

\Il(t) - 2 GOG t|O’ 2 > 1; 2 > O; 2 > (7.36)

and the integral in relation (7.35) can be easily evaluated by parts with the use of rela-
tion (2.152)

T‘I’(t) Intdt 7

=—-—. (7.37)
Vit 2
0
With this result we come to the final expression for the ¢-quark condensate
2
(tt) = 3-2'mym | ag(my) + So | _ 3m m; “S(mt) g¢ (7.38)
|G, | m 8m? N m 87t

It is remarkable, that the situation here is quite contrary to the case of QCD. Indeed,
in Chapters 4, 5 we have the gauge field (gluon) condensate being positive and the
fermion (quark) condensate being negative. The two condensates almost cancel each
other. In the electroweak case the gauge field (W) condensate (6.38) is negative (6.39,
6.40), while the t-quark condensate is positive on the contrary. We have already esti-
mated the W condensate. The question is if these two condensates also close to can-
celing? So let us estimate expression (7.38). Using results (7.31, 7.23)

u=4067510"", g,=2.074, My=1.803TeV
=0.177TeV, ay(m,) = 0.108. (7.39)

we obtain the following value for the ¢-quark condensate

m,(ft) = 10.32TeV". (740)
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The coefficients in the scalar field part of expression (7.33) are defined by relations (7.18,
7.25). Then in the point of the minimum of expression (6.34) we have with account of
definition (6.34)
2 ) M2 2
VDpy = g— Vi m (i - =L, (74)

2

where VE" is defined by expression (6.34). Substituting values (6.30, 6.31, 6.32, 7.39,
740) and = 0.2462 TeV we obtain for values of e = 0.095, 0.11, 0.13 the following
values of the density VD, correspondingly

VDgy = - 692.8TeV", ¢ =0.095, (742)
VDpyw = -51.6TeV*,  e=0.11,
VDgy = 7.68TeV®,  e=0.13.

We see, that the transition to positive values of the vacuum density occurs somewhere
between the second and the third values of (7.42). The sharp dependence on the choice
of parameter € is connected with such dependence of the W condensate, as one readily
sees e. g., from expressions (6.39, 6.40). So the point of the phase transition occurs just
in this interval between € = 0.11 and € = 0.13, while our estimates of the preferable
values of parameters corresponds to e = 0.095, that gives without doubts stability for
the nontrivial solution.

7.4 Possible effects of the heavy quarks interaction

Interaction (7.1) of heavy quarks could manifest itself in physical effects. There is in-
teresting data on decay Z — bb. Interaction (7.1) give contribution to this process due
to diagram in Figure 7.5. From interaction (7.1) we see, that terms with couplings G,
and G; give contribution to diagrams in Figure 7.5. The previous experience teaches
to expect a significant contribution of these diagrams to the amplitude of the decay.
However, as we see from Table 2.4 there is no significant deviations from the SM fit. Let
us perform simple calculation of these diagrams, that gives the following contribution

L L L L R L
z YA z
L L L L R L

Fig. 7.5. Diagram describing the first contribution of four-quark interaction (7.1) toz — bb decay.
The left-side vertex corresponds to the SM Zft and Zbb vertices (2.77). The four-fermion vertices
with four L legs correspond to interaction with coupling G and the mixed LR vertex corresponds to
coupling G,. The distribution of color indices is shown in (7.1).
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to vertex Z — bb

1
AV = —35 5 _‘;Ys <G3 (—% - % sin’ 6W> + G, sin’ 6W> J dqz. (743)
s

From definition (7.6) and result (7.12) we have

AV 8§ 1+ <G3 (—l - % sin’ 6W> + %G sin’ 6W> quz. (744)

3222 2 273

Let us recall that G is the average of G5 and G,. For example, if we take G; to be equal
to this average, we obtain

AV = 32{[2 ! J;yS G, (—% +2 sin’ 6W> J dq’. (7.45)
Note, that the momentum integration is symbolically designated by J dq’. We have
to bear in mind, that there should be a form-factor in the integral, that leads to the
integral being inversely proportional to G/167°. In any case provided the expression
in brackets in (7.45) is of order of unity, the contribution AV will contradict the sat-
isfactory agreement of parameters of decay Z — bb with the Standard Model fit of
Table 2.4. However, expressions (7.44, 7.45) show an effective cancelation of two large
contributions. In case sin’ 0y = 0.25 we have zero for (7.45). The physical value is close
to this number, namely, sin’ Oy = 0.2324 +0.0012 (see Table 2.4). Thus we conclude,
that there is a mechanism of cancelation in the possible effect. The accuracy being
achieved for the moment do not allow to make more definite assertion. However, one
has to bear in mind, that just in this decay there are suspicious deviations from the
Standard Model fit, especially in the forward-backward asymmetry F fB (2.98), which
comprises around 2.8 s.d.. It would be advisable to consider possible contributions of
interaction (7.1) to this decay with better precision.

On the other hand, in case predictions of possible existence of interaction (7.1) will
contradict future experimental results, it will not disprove the approach in a whole. In
the framework of our reasoning it will mean, that set of equations (7.3, 7.4) leads to triv-
ial solution, which is always possible. This does not exclude realization of nontrivial
solutions in other cases.

To conclude we would emphasize, that albeit we discuss quite unusual effects, we
do not deal with something beyond the Standard Model. We are just in the framework
of the Standard Model. What makes difference with usual results is nonperturbative
nontrivial solution of a compensation equation. There is of course also trivial pertur-
bative solution. Which of the solutions is realized is to be defined by stability condi-
tions. The problem of stability is extremely complicated and needs a special extensive
study.

For the moment we can not exclude the possibility of realization of the trivial so-
lution of set of compensation equations (7.3, 7.4). Then the conclusion of the very high
mass of the Higgs scalar would be canceled.
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With the present results we would draw attention to two important achievements
provided by the nontrivial nonperturbative solution. The first one is unique determi-
nation of gauge electro-weak coupling constant g(My;) in close agreement with exper-
imental value. The second result consists in calculation of the t-quark mass. At this
point we would emphasize, that the existence of a nontrivial solution itself always
leads to additional conditions for parameters of a problem under study. These two
achievements strengthen the confidence in the correctness of applicability of the Bo-
goliubov compensation approach to the principal problems of elementary particles
theory.
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8.1 Short review of achievements of the compensation approach

In the book, which is proposed for the kind attention of a reader, the compensation
conception is introduced and defended. It consists in the following premise.

We consider totality of renormalizable interactions of the Standard Model to be
the genuine theory of the physical world. The excellent form of the perturbative cal-
culations in the framework of this theory serves as strong support for the assertion.

However necessity of account of the nonperturbative effects in the framework of
this genuine theory is evident. So the main premise of the book is the compensation
approach, which is motivated by the successful application of the Bogoliubov com-
pensation principle, first of all, to problems of statistical physics. That was famous su-
perfluidity and superconductivity problems. The first one was solved by Bogoliubov
himself, and his contribution to the solution of the second one is more than signifi-
cant. The solutions of these problems were purely nonperturbative. The application
of the same methods around fifty years ago had led to formulation of the conception
of a spontaneous generation of masses. In the present book we undertake the follow-
ing step and turn to the problem of a spontaneous generation of effective interactions.
The realization of the goal needs a formulation of the tool. The proposed tool is not
perfect, of course. When we perform the procedure of add-subtract, there is no ap-
proximation, but also there is not definite sense yet. Namely, how to formulate com-
pensation condition, which exclude nondesirable interaction terms from the newly
defined free Lagrangian? Strictly speaking it may be formulated only as a quantum
functional condition, which is firstly unknown yet, and secondly even in case of suc-
cessful formulation, problem of a solution is hopeless. Just this was said by N. N. Bo-
goliubov himself. So a formulation of an approximate procedure is inevitable, if one
has intention to find out even something.

However we know, that an adequate approximation scheme for a functional for-
mulation of a quantum field theory [1] is just the perturbation theory, i. e., the proper
introduction of Feynman graphs. In an analogy to this well-known conclusion we for-
mulate the first approximation also in terms of loop graphs with the number of loops
being restricted by either one or two.

Thus there is an approximation. If it is adequate or not can not be said from the
beginning. That is why we consider in the book a number of examples of an appli-
cation of the method. It comes out, that these examples are instructive. What we are
learning from these examples?

The first instructive example is the six-dimensional scalar model, which is consid-
ered in Sections 3.4-3.9. We start from a renormalizable g ¢> theory and ask, if there
may be spontaneously generated the theory G¢"* with dimensional coupling constant
G ~ 1/M?, which is similar to the four-fermion coupling constant in the usual four-
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dimensional space. With this example we have succeeded to apply the compensation
approach and to show how it works.

In Chapter 4 we consider the second example, being, as a matter of fact, the first
real physical one. It starts with QCD initial theory, which contains the fundamen-
tal dimensional parameter A ocp. The question, which we ask is if the anomalous
three-gluon interaction with dimensional constant G, having dimension inverse mass
squared, can exist? As the most important result we obtain the answer, that a non-
trivial solution does exist and thus the new effective interaction can be spontaneously
generated, provided initial gauge coupling constant g, defined on the boundary of
the nonperturbative region Q, has uniquely defined value of the order of magnitude
~ 3. This result is of high importance. Firstly, it demonstrates the obvious fact, that
as a rule, compensation equations have a trivial solution, that is we return to the ini-
tial perturbative problem without any change. However, there are sometimes special
conditions, the fulfillment of which leads to a nontrivial solution. As we have got con-
vinced, such conditions are imposed on parameters of the problem and not only on the
parameters of the effective interaction, but also on the parameters of the initial renor-
malizable theory. This just occurs in QCD. So, when we have discussed status of the
Standard Model we have recapitulated numerous parameters of the theory and have
admit, that all these parameters are arbitrary. It is the general belief that the Standard
Model exists for any value of a coupling constant, of a mass and of a mixing param-
eter. But already the example of Chapter 4 demonstrate, that if we choose theories,
admitting the effective interactions with dimensional coupling constants, we have ad-
ditional conditions imposed on the parameters of the initial theory. What may be the
physical reason for choosing of such theories? It may be the reason of the stability. We
have considered this problem in Chapter 4 and have mentioned that the theory with
the spontaneously generated effective interaction (SGEI) differs from the same theory
without (SGEI) by the absence of the Landau pole. While the Landau pole leads to in-
stability of the theory, we may pretend, that just the theory, described in Chapter 4
is stable and thus is realized in the Nature. Let us emphasize once more, this theory
can exist only for specified values of parameters. In particular, we obtain the value of
average «, in the nonperturbative region being ~ 0.8. As far as we know, there is no
other possibility to achieve such result without additional assumptions.

In Chapter 5 we consider the spontaneous generation of the Nambu-Jona-Lasinio
interaction and obtain the result, that when we start from QCD with two light quarks
having initial parameters m, and average «,, the interaction is completely defined
and agreement with low momenta hadron physics (the most nonperturbative problem
known) Starting from two initial parameters, e. g., & and f, we obtain a satisfactory
description of low momenta strong interaction of mesons consisting of light quarks
and gluons.

The important results of Chapter 6 refer to the electroweak interaction. As a matter
of fact the compensation equation for three-boson effective interaction is in essence
the same as for the three-gluon interaction in Chapter 4 (with change of SU(3) —
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SU(2)). It is of great interest, that this compensation equation has two and only two
solutions, one of them suits for QCD and another one suits for EWT. Again we obtain
unique value for coupling g(z,), which gives order of magnitude of the electroweak
interaction

that is close to the real physical value. I am forced to note once more, that there is no
another method, which can determine the coupling, the more so, as in close agree-
ment with its real value.

The existence of the electroweak anomalous three-boson effective interaction (6.1)
leads to several consequences. The resonances or bound states consisting of W W are
predicted. Maybe, some signs of these states are already present in the data. It seems,
that the particular importance provides result of Section 6.4. In this section we show,
that the existence of the three-boson interaction (6.1) leads to additional contribution
to the muon anomalous magnetic moment. The calculation with already defined pa-
rameters and the form-factor gives contribution, which removes the discrepancy in
measurement of the muon g —2. The author is inclined to consider this result as a deci-
sive confirmation of the approach. As a matter of fact, the problems with magnetic mo-
ments in many case play the decisive role in a confirmation of a theory. Let us remind,
that in QED such role was plaid by calculation of anomalous magnetic moment of the
electron a, (1.55). In QCD understanding of magnetic moments (also anomalous) of the
nucleons was crucial for establishing of the new quantum number color, as we have
described in Section 1.2. The author express his conviction, that just the result of Sec-
tion 6.4 on the muon anomalous magnetic moment may serve for justification of the
nonperturbative approach with the spontaneously generated effective interactions.

Let us note, that nowadays the status of the discrepancy in the muon g — 2 is not
finally determined. The overall uncertainty of the effect, which is defined by uncertain-
ties in both the experimental and the Standard Model theoretical results, comprises
from 3 s.d. up to 4 s.d. depending on a method of a calculation of hadron contribu-
tions to a,. One may hope for a progress in a resolution of this problem in the near
future. For example, the most recent publication [121], devoted to a calculation of the
hadron contribution to the effect, supports the more pronounced discrepancy on the
level of 4 s. d.. Provided the existence of the discrepancy being firmly established, our
result becomes quite sound.

In application to the electroweak interaction of quarks we have considered only
the heavy quarks (t, b) and the spontaneous generation of the ¢-quark mass only. In
the present approximation all other quarks including b are massless. The real case
needs consideration of all three quark and lepton generations. This means also in-
troduction of mixing angles. The problem is which are conditions, imposed by the
method, and on what extent mixing angles and fermion masses are defined. In any
case the previous results give the reason to expect here an interesting continuation.
Some examples of model results for mass ratios will be considered below.
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When we consider the electroweak theory we restricted ourselves by heavy quarks
only. The introduction of the real three generations of quarks needs also introduction
of mixing angles. The evaluations being performed in Chapter 7 in this case would
be much more complicated. As we have seen throughout the book, and in Chapter 7
in particular, the existence of a nontrivial solution impose strong restrictions on its
parameters. One may expect the same consequences for parameters describing three
generations of quarks. The model of Chapter 7 corresponds to only one massive quark,
namely the ¢-quark, which mass was calculated to be of the correct size. Is it possible,
that in a complicate case of three generations of quarks and leptons, one would suc-
ceed in obtaining satisfactory description of masses and mixing angles? The answer
may be obtained only by trying to consider the problem. “The proof of pudding is eat-
ing”.

It is worth mentioning, that in expressions for vacuum energy density (5.38, 5.45,
741) combinations of the gauge field condensate and of the quark condensate are
present

1 _
VDqcp = Z<FZV Fi)+ z mi{q:q:)» 8.1
i
1 -
VDgy = Z(WZV Wi,) + m(it). (8.2)

In both cases two terms of expressions have opposite signs. For QCD case (8.1) the
first term is positive and the second one is negative, while for the electro-weak case
vice versa the first term is negative and the second one is positive. In both cases cal-
culations (see Table 5.1 and results (7.42)) shows presence of a critical point of a phase
transition, in the vicinity of which total vacuum energy density is close to zero. In QCD
it corresponds to value of average strong coupling

a = 0.88, (8.3)

which corresponds to value of parameter ¢ is according to result (4.37) somewhat less
than € = 0.13. In the electroweak case according to (7.42) the point of the phase transi-
tion occurs to correspond to value of e also slightly less than € = 0.13. This remarkable
result one hardly can prescribe to simple coincidence.

The problem of vacuum energy density due to matter fields is very important for
consideration of evolution of the Universe, because this density is directly connected
with cosmological A term. The problem is widely discussed starting from the well-
known paper by S. Weinberg [124].

Indeed, the large value for the vacuum energy density means drastic change in
the cosmological A term and thus destroys any reliable model of the Universe evolu-
tion. However we need this quantity because it is the most important constituent of
the Higgs mechanism. Thus we need almost total cancelation of the vacuum energy
density. It may occur provided the real situation corresponds to close vicinity of the
phase transition point, where the density is almost zero.
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The result of approximate coincidence of phase transition points for the two main
matter interactions, the quantum chromodynamics and the electroweak theory may
be very important for this the most important ideological problem. We would empha-
size, that the result of closeness of these points is achieved just in the theory including
spontaneously generated effective interactions. For QCD we have interactions (4.2)
and (5.2). For the electroweak theory we have analogous interactions (6.1) and (7.1).

The closeness of the two critical points in our approach is due to the most im-
portant feature of the compensation method. Compensation equations always have
trivial solutions. And in most cases they do not have any other solution. An appear-
ance of a nontrivial solution is quite a rare event. The existence of the nontrivial solu-
tion always impose strong restrictions on parameters of the problem. In this way we
have obtained nontrivial solutions for spontaneous generation of effective anomalous
three gauge boson interactions (4.2) and (6.1). In both case the existence of a solution
is connected with strict fixation of the gauge coupling constant g(z,) on the bound-
ary z, of the nonperturbative region. For the present general discussion it would be
instructive to consider peculiarities of emerging of the solutions. Let us return to set
of equations (4.18, 4.28), which contain the flexible parameter . Let us take number
of colors N = 3. The set of equations for ¢ = 0 has two solutions. The results of calcu-
lation are presented in Table 8.1

Table 8.1. Solutions of the compensation equation (6.1) in dependence on parameter e for N=3

€ Zp1 91(Zo1) 2o 92(Z¢2)

-0.39 NO 0 12.7165  0.4344
-0.38 0.00000245 213.46 12.627 0.4358
-0.37 0.00002376 68.7832 12.538 0.4372
-0.3 0.0006909 13.0498 11.931 0.4472
0.0 0.009553 3.8166 9.6175 0.4929
0.3 0.024342 2.5837 7.7065 0.5439
0.6 0.044331 2.1071 6.1246 0.6009
1.0 0.080961 1.7140 4.4249  0.6879

1.4 0.13537 1.5068 3.0873 0.7902
2.1 0.36996 1.2711 1.2753 1.0338
2.2 0.47729 1.2282 0.9963  1.0910
2.256  0.67041 1.1697 0.71186  1.1587
2.257 NO NO NO NO

We would draw attention to several important points. Firstly, considering results, pre-
sented in Chapters 4 and 6 on properties of solutions of compensation equation (4.2,
6.1), which essentially are the same for both cases, we state, that for values of param-
eter e under the study there are two and only two solutions. The first one corresponds
to small boundary of the nonperturbative region z, and large coupling constant on
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Fig. 8.1. The behavior of the formfactor for QCD.

this boundary g(z,). Vise versa the second one gives large z, and small g(z,). Results,
presented in Table 8.1 for wider interval of parameter e give more information. We see
from the table, that two solutions exist only for some restricted interval of e. With € in-
creasing the two solutions tend each to other. Somewhere at ¢ = ¢, between e = 2.256
and e = 2.257 they coincide and for e > ¢, both solutions disappear. With e decreasing
the two solutions move away each from other and g(z, for the first one grows quickly
and tends to infinity at value of € between ¢ = —-0.38 and ¢ = —0.39. Thus the first
solution in this case also disappears.

We would emphasize, that situation, corresponding to calculated parameter € = O
and close to this value positive and not large values of € is quite remarkable. We have
just two possible Yang—Mills gauge theories. One with large value of coupling g and
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Fig. 8.2. The behavior of the formfactor for electroweak theory.



8.1 Short review of achievements of the compensation approach =—— 185

the other with smaller coupling. NOT MORE! And really we have in the Nature just the
strong interaction QCD and the electroweak theory with moderate interaction. The
first one has symmetry group SU(3) and the second one has symmetry group SU(2).
We prescribe such groups to the obtained theories, however here we follow the ready
knowledge. Are there real theoretical arguments for such prescription?

Two solutions are different. The main difference consists in number of zeros of
function F(z).

The first solution quoted in Table 8.1 corresponds to the QCD strong interaction
with large value g(z,) and its form-factor F(z) does not change sign between zero and
Z,. On the other hand, the second one with smaller value g(z,), which corresponds
to the electroweak interaction has the form-factor with extra zero between zero and
z,. With parameter e increasing values of g(z,) for two solutions tends each to other
and do coincide at € between 2.256 and 2.257. At the same point positions of zeroes
z, of formfactors coincide also and for ¢ > 2.257 both solutions disappear. When
parameter e decreases being negative, the QCD coupling increases very fast and at a
point between —0.38 and —0.39 becomes infinite and the solution also disappears. We
would show and discuss these properties to illustrate our general conclusion, that the
existence of a nontrivial solution of a compensation equation is really a rare event and
in the most cases there is only trivial solutions. Of course, parameter € is by no means
aflexible parameter. It is fixed in the framework of the approximation being used. Our
main approximation means ¢ = 0. However, we have tried other close values for €
mainly in view of a check of a stability of our results. We would emphasize the follow-
ing conclusion based on application of these attempts. Firstly, as we have discussed
just above, our value € = 0 hits in the narrow region of the existence of the nontrivial
solution. Secondly, as we have shown in Chapter 4 the best agreement with data are
achieved for small deviations from this calculated approximate value: 0.1 < € < 0.15,
that also corresponds to the stable existence area of the nontrivial solutions.

The existence of the electroweak anomalous three-boson effective interaction (6.1)
leads to several consequences. The resonances or bound states consisting of W W are
predicted. Maybe, some signs of these states are already present in the data. It seems,
that the particular importance provides result of Section 6.4. In this section we show,
that the existence of the three-boson interaction (6.1) leads to additional contribution
to the muon anomalous magnetic moment. The calculation with already defined pa-
rameters and the form-factor gives contribution, which removes the discrepancy in
measurement of the muon g — 2. The author is inclined to consider this result as a de-
cisive confirmation of the approach. As a matter of fact, the problems with magnetic
moments in many cases play the decisive role in a confirmation of a theory. Let us re-
mind, that in QED such role was plaid by calculation of anomalous magnetic moment
of the electron a, (1.55). In QCD understanding of magnetic moments (also anoma-
lous) of the nucleons was crucial for establishing of the new quantum number color,
as we have described in Section 1.2. The author express his conviction, that just the
result of Section 6.4 on the muon anomalous magnetic moment may serve for justi-
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fication of the nonperturbative approach with the spontaneously generated effective
interactions.

Of course, these results are obtained in the framework of the approximated calcu-
lations.

In application to the electroweak interaction of quarks we have considered only
the heavy quarks (¢, b) and the spontaneous generation of the ¢-quark mass only. In
the present approximation all other quarks including b are massless. The real case
need consideration of all three quark and lepton generations. This means also in-
troduction of mixing angles. The problem is which are conditions, imposed by the
method, and on what extent mixing angles and fermion masses are defined. In any
case the previous results give reason to expect here interesting results.

We would also mention the result for current mass of light quarks. The result is es-
sentially based on the extremely small value u, = 1.7 - 10~® (5.14), which necessarily
follows from the unique solution for compensation equation (5.8). Such small number
illustrates two important conclusion. Firstly, not all dimensionless parameters enter-
ing the description of the physics have to be of the order of magnitude of unity. The
author encounters such assertion repeatedly, starting from the student time. However
the example under discussion shows, that very small numbers may appear as solu-
tions of equations, describing physical problems. In our case we deal with compensa-
tion equations, which have nontrivial solutions only provided numerous conditions
being fulfilled. The appearance of such small numbers is by no means due the so called
fine tuning. It follows just from the solution of the problem.

The compensation approach allows to fix at least few parameters of the Standard
Model from those 25, being discussed in Section 2.2. We mean both coupling constants,
the strong one and the electroweak one. We also calculate the t-quark mass in terms
of the W boson mass. These results lessen number of parameters by 3. One dare to ex-
press well-founded hope, that subsequent studies will lead to achievement of a further
information on these parameters. Of course it needs extensive efforts e.g. in introduc-
tion of nonzero masses of other quarks in compensation equations of type (7.8). In the
next section we would try to consider simplified examples, which could show some
features of possible results.

8.2 Examples of additional relations in the compensation
approach

Following the approach used in Section 3.3 let us formulate the compensation equa-
tions for would-be four-fermion interaction of two types of quarks and two leptons,
that is we consider one generation of fundamental fermions. For simplicity we call
them “u”, “d”, “e” and “v”, which in the standard way are represented by their left
y; and right y; components. We admit initial masses for all participating fermions to
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be zero and we will look for possibility of them to acquire masses m;,i = 1, ...4 respec-
tively due to interaction with scalar Higgs-like composite field.

Then let us consider a possibility of spontaneous generation of the following in-
teraction

Log = Gyity ug g uy + God; dpdpd; + G, epépe;
+ G5 (U ug dg dy + d; dg tiguy) + Gs (il ug eg e, + &y ep ilg Uy)
+ Gg(ey eguigur + ep ey Uy ug) + Gy v vg Vg vr (8.4)
+Gg(Vy, vy dg dy + d; dg Vg vy) + Go(Vy, Vg g Uy + Uy, Ug Vg v[)
+G1o(V; Vg€ e; + e eg Vg Vy).
Here all coupling constants G; have dimension of the inverse mass squared M.

Now we would like to find out, if the four-fermion interaction (8.7) could be spon-
taneously generated. In doing this we again proceed with the add-subtract procedure

L=Ly+ Ly,
Ly=Y q()(d,y, - mq(x) + Y 10)(1d,y, - m)l(x) - L, (85)
u,d e,v

Lipe = Lot + Le/f'

Then we have to compensate the undesirable term L,z in the newly defined free La-
grangian. The relation, which serve to accomplish this goal, is called compensation
equation. Necessarily we use approximate form of this equation. In diagram form the
compensation equation for three fermions participating the interaction in one-loop
approximation is presented in Figure 8.3.

Let us define effective cut-off A in integrals of equation (8.7). We shall see below,
that A may be defined in the course of solution of compensation equations. With ac-
count of this definition we introduce the following dimensionless variables

S G\’ Gy A’
yl 87[2 > yZ_ 87[2 > y3_ 87[2 >
G, A? G, A? Gy A2
21 = 20 427 2 *3°7 2 (8.6)
8w 8 8n
LGN G GeA GgA?
17 gq2” 727 gg2 3T g2’ AT gg2
M _ms - My
El_ ml’ EZ ml’ E} ml'

Then we consider scalar bound state consisting of all possible fermion-
antifermion combinations iiu, dd, 8e and vv. The corresponding set of Bethe—Salpeter
equations is shown in Figure 8.4. In this way we come to the following set of ten
compensation equations presented in Figure 8.3 and four Bethe—Salpeter equations
shown in Figure 8.4. Let us note, that in Figure 8.4 we present also wouldbe contribu-
tions of gauge bosons exchanges, which in the present calculations are not taken into
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Fig. 8.3. Diagram representation of the compensation equation for spontaneous generation of inter-
action (8.7). Notations of quarks and lepton are shown by corresponding lines.
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Fig. 8.4. Diagram representation of the Bethe—Salpeter equation for scalar bound state, included
in set of equations (8.8). Notations of quarks and lepton are shown by corresponding lines. Contri-
butions of gauge bosons exchanges (the last diagrams in each equation are not taken into account

yet).
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account. Note also, that terms with factor A arise from vertical diagrams in Figure 8.3.
Let us remind, that the sign minus before linear terms in compensation equations is
connected with opposite signs of terms corresponding to effective interactions in the
new free Lagrangian and in the new interaction Lagrangian.

V1 +Ayi + 3(yi +y§) +xi +x§ =0,
) +Ay§§f + 3(y§ +y§) +x§ +xi =0,
V3 +A)’§ §1+3y3(y1 +Y2) + X1 X3 + X5, =0,
2 +AZE 30+ X0 12z + 2 =0, (87)
2 +ABE+30G+X) +25 +25 =0,

-z3 +Az§ E 8+ 3 (X X +X3X,) +2123 + 2,23 =0,
X3 +Axi & + 3y, +X3Y3) + X121 + X525 = O,
—X; +Ax§ &+ 300y, +X3Y3) + X121 + X323 = 0,

—X3 +Ax§ &8 + 3(xy5 + X,4Y3) + X125 + X2, =0,

Xy + Axi 8183 +3(X0)3 + X,4Y5) + X323 + X2, = 0O,

2 2
A= % n%,

% =3(yy +&1y3) + Exp + E3x,,
% =33 + §1Y2) + & x5 +&3x, ®8)
% =30 + §1x3) + &2 + 8325,
%3 =30, + &1 x,) + & 23 +&32,,
B=1+ zm—j’z In 1_\_2’

where m,, is the bound state mass and m is an average mass of participating fermions.
Let us comment the appearance of mass parameters &; in terms, corresponding to ver-
tical diagrams in Figure 8.3. Due to the orthogonality of matrices

1+ys 1-ys

5 5 (8.9)

terms containing ¢ cancel and we are left only with mass terms in spinor propaga-
tors. Introduction of the average m, instead of substituting in proper places different
masses m;, means of course an approximation. However due to logarithmic depen-
dence on this parameter, this approximation seems to be reasonable. Factor A has to
be very small and factor B has to be close to unity, because A > m;. Ten equations (8.7)
correspond to the set of compensation equations, while four equations (8.8) represent
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the Bethe—Salpeter equations. Let us remind, that after performing the compensation
procedure, which means exclusion of four-fermion vertices in the newly defined free
Lagrangian, we use the resulting coupling constants in the newly defined interaction
Lagrangian with the opposite sign.

The appearance of ratios ¢; in Bethe—Salpeter part (8.8) of the set presumably
needs explanation. We assume, that the scalar composite state, which in our approach
serves as a substitute of the elementary Higgs scalar, consists of all existing quark-
antiquark and lepton-antilepton pairs v, y (not only of heavy quarks ¥, ¥, as in
work [100]). Then coupling of this scalar with different fermions will give their masses
according to well known relation

g = &M
a \/EMW

On the other hand, Bethe-Salpeter wave functions are proportional to coupling con-
stants g,, where a is just the constituent particle. Thus we change a ratio of coupling
constants by a ratio of corresponding masses &;.

It seems advisable to refer here to the experience, acquired while considering the
subsequent approximations in studies of the Nambu—Jona-Lasinio interaction. The
first approximation, which was considered in Section 3.3 contains only horizontal di-
agrams. It leads to results, which reproduce the main features of the model. The next
approximation, developed in Chapter 5, is of course more informative, but neverthe-
less the first one seems to be quite reasonable.

Now let us consider solutions of set (8.7, 8.8). First of all let us remind, that param-
eter A is very small, so we look for solutions, which are stable in the limitA — 0. We
also will consider only real solutions, because our variables just correspond to physi-
cal observable quantities. A number of such solutions is at least six. Namely, we have
for A = 0.0001 these solutions

(8.10)

y; = 0.12500, y, =y, Y3 =-Y1»

Z1 =Y 2 =Y 23 ="Yp
X1 =Y X2==Y1, X3==Y1, X4=Y1, (8.11)
£ o=-1, £ =1, &=-1, B=100001.

y1=0.12500, y;=y1, y3=-Y1,

zZ; =Y 2 =Y Z3=Yp

X1 =Y X =Y X3=-Y1, X4=-Y1 (8.12)
£ =1, £,=1, &=1,  B=1.00001.
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y1 =0.24999, y,=0.33333, y; =0,

z; =0.24999, z, =0.56468, z; =-0.38570,

x; =-0.24999, x,=x3=x,=0, (8.13)
£, =086603, & =-1, & =0, B = 1.00003.

y, =0.33332, y, =0.057288, y;=0,

z, = 026344,  z,=056470, z;=-0.38570,

X; =%, =0, x3 =0.12285, x, =-0.17986, (8.14)
£, =& =6=0, B=1.00003.

y, = 0.29077, y, =0.29077, y; =—0.04256,

Zl = 0.25534, Zz = 0, Z3 = O,
x, =0.17801, x, =x, =0, x3 =0.17801, (8.15)
£ =1, £, = 14344, & =0, B = 1.00003.

y, =0.19313, y, =0.18758, y; =0.14295,

z; =0.857858, z,=0, z3=0,
x; = -0.14116, x, =x, =0, x3 = 0.14393, (8.16)
& =1.069, £ =026728, & =0, B =1.00002.

Of course, there is a temptation to confront these solutions with the existing gen-
erations of quarks and leptons. Let us note, that the fist three solutions (8.11, 8.12, 8.13)
contain mass ratios &; with negative signs, that is quite unnatural for fermions enter-
ing to one generation. Maybe the most suitable ones are the three last solutions (8.14,
8.15, 8.16). All these solutions have nonnegative parameters &; and at least one lepton
being massless, that might be a neutrino. The fourth solution (8.14) gives one (the first)
fundamental fermion (quark) being much heavier, than three others, that reminds sit-
uation of the third generation with the very heavy t quark. The fifth solution (8.15) gives
charged lepton mass approximately the same as those of quarks, that may hint the sit-
uation in the second generation with approximately equal masses of the muon and
of the s-quark. The sixth solution (8.16) gives two different masses for the quark pair,
while the wouldbe charged lepton has the mass approximately four times smaller than
that of the first quark. This resembles situation for the first generation. Indeed, let us
take for the electron mass its physical value m, = 0.51 MeV Then we have from (8.16)

m
m, =0.51MeV, m, = % _190MeV, m, = "% o 0uMev. 1)

2 2

The wouldbe u-quark mass fits into error bars of its definition, while the wouldbe d-
quark mass is rather lighter than its physical value [4]. Note, that in our estimates we
have not taken into account the phenomenon of mixing of down quarks (d, s, b).



8.2 Examples of additional relations in the compensation approach = 193

Of course, the similarity is rather reluctant and there is no overall explicit agree-
ment with the real situation. Maybe one could move further with an application of a
next approximation, which presumably needs a consideration of the Bethe—Salpeter
equations with account of gauge interactions contributions, that is with account of a
gluon exchange and of electroweak bosons exchanges. These exchanges are schemat-
ically drawn in Figure 8.4. The problem of an adequate formulation of the approxima-
tion needs a special investigation. Nevertheless, even a possibility to define ratios of
the fundamental masses in the compensation approach is of a doubtless interest.

We would also draw attention to the important point, that for all solutions pa-
rameter B is close to unity, just as we have expected. With decreasing of parameter
A, which is proportional to ratio squared of the mass of the first quark and cut-off A,
parameter B tends to unity exactly.

It might be also worth mentioning, that we obtain three possible solutions for
fermion generations, that just corresponds to the current knowledge.

The example being just considered shows possibility of definition of mass ratios
in the compensation approach. There are also mixing angles in the Standard Model,
e.g., the Weinberg angle 6;, in W°, B mixing and down quarks mixing angles and a
phase in the Cabibbo—-Kobayashi-Maskawa matrix. The example being just consid-
ered shows possibility of definition of masses ratios in the compensation approach.
There are also mixing angles in the Standard Model, e. g., the Weinberg angle 6, in
W°, B mixing (2.42) and lower quarks mixing angles and a phase in the Cabibbo—
Kobayashi—Maskawa matrix (2.3).

In view of this, let us consider another example, which deals with mixed states of
s and d quarks, which mixing is described by the well-known Cabibbo relation [48]

g, = cosf.d +sinf,s, g, = — sinf.d + cos0,s. (8.18)

where quarks g; (i = 1, 2) are lower members of quark doublets of the two first genera-
tions. Then in the test effective interaction we have to introduce terms with strangeness
nonconservation. Thus let us take for the study the following four-fermion effective in-
teraction of quarks g;

Loy = G2411918r @1r911 + G5G21928 Gor9or + G13(G11928 G1rGo1 + 921 918 D2 911)
+G10(@12 91r G2r 921 + 921 928 G1R 911) (8.19)
+G611(920 91r91r 91 + Q1. 91r D2r 91 + 412918 1R Do + 12 92r 91 911)
+G15(q11 92 G2r 921 + 921 2R Q1R 921 + G20 918 2R Do1 + 921 2R G2R 911)

where as usually the color summation is meant inside each antiquark-quark term. Due

to strangeness nonconservation the quadratic term in the corresponding Lagrangian
contains also a mixing term

AL=-my @19, -m&qyq, - my8(q14, + G2 91) (8.20)
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Now the set of compensation equations, which is analogue of (8.7) with notations (8.6,
8.20) looks like

Y2+ 305+ Va0 + 2V1) + AW, + 28y7, + 83,
+28y11(8y11 = 2y5) + 28158y, - 2y11)) = 0,

~ Vs +3 (V2 + Y10+ 2v1,) + A(yss + 28y, + Eye
+208y1,(8y1; = 2Y5) +28Yy,5(8ys - 2y1,)) = 0,

-Yi3+3 ()’%3 +Yi1 V1) AW Yas + 2EV1Y0 + E Ysyas
+ 82()’2)’5 + )’i3 +2Y11V12) = 280/, V12 + Y11V13 + Vs V11 +V12V13)) = 0,

~Y10t32Y10+ Y5 Y10 + 2V11V12) +A()’i1 + g(yio + yi3)
+& )’%2 +20y1,0y11 — 2Y10) +28Y13(8Y10 - 2Y11)) =0, (8.21)

Y11+ 32 Y11+ Y12 V10 + Y11 V13) A2 Vi1 + Vi1 a0 + Vi3)
+ 52)’12 Viz + 82()’2)’12 +Y10V11 *+ 2Y11Y13)
=82 Y10 *¥2V13 + Y10 V13 +)’i3 +2y1 Yt 2)’%1)) =0,

Y12+ 3 W5 V12 + Y11 Y10 V12 V13) + A1 V11 + EV12(V10 + V13)
+ 52)’12 Vs + 82()’5 Y11 +Y10Y12 + 2V12V13)
= 8(Vs Y10 +Ys Y13 +Y10Y13 +Yis + 2¥1, + 2Y11¥15)) = 0.
The mixing angle (8.18) is defined by parameters &, § according to the following rela-

tion
8(1 - 2sin’¢,) = — sing, (1 — &) \/1 — sin¢,. (8.22)

Masses of physical states d, s are the following

_ m; (cos® ¢, — Esin® ¢,) m = m, (€ cos® ¢ — sin® ¢,)

, = 8.23
cos? ¢, — sin® ¢, s cos? ¢, — sin® ¢, (6.9
The set of Bethe—Salpeter equations is now the following
1
B 3(0/2+&Y10+28Y11)s
% =3Eys +y10+28Y12) (8.24)
é
B= 3011 +&Y12 + 6Y13)-

Remind, that parameters A and B are already defined in (8.7, 8.8). Now, there are nu-
merous solutions of set of equations (8.21, 8.24). The most of them are complex and
thus inadmissible from the physical point of view. There are also solutions with pa-
rameter B, which differs significantly from unity, that contradicts to definition (8.8)



8.2 Examples of additional relations in the compensation approach = 195

of this quantity. Among the real ones with B = 1 there is a lot of solutions with either
8 = 0or& = 1. According to relation (8.22) the first possibility corresponds to zero mix-
ing sin ¢, = 0 and the second possibility corresponds to maximal mixing sin ¢, = + %
There are few solutions with values of § and &, which differ fromé = 0 and & = 1. Let
us show two examples of these solutions. The first one

B =1.00000333, E=-1, 8=-2.538663-10"",
¥, = 033333222, ys = 0.33333222, Y13 = 1.07460479 107,
Yio = 1.0736719-107", y,, = -4.31859573-10°%, y,, = 4.14358583-10°%,
(8.25)

The second one

B =1.00000333, £=2.148573-10"", 8=1.4655801-10",
¥, = 0.33333222, ys = 0.3333333 Y13 = 7.1707928-107",
Y10 = 5.05749407-107*, y,, = 4.885245-10°%, y,, = -1.72524533-107".
(8.26)
For solutions (8.25, 8.26) we have from relations (8.22, 8.23) respectively
sing. = £1.2693-107", my, = -m, = m,, ©27)
8.27
sing, = +1.4658-107", my =m,,
mg = -3.64595- 10 ’m,, (8.28)

We see here nonzero, but extremely small mixing angles. In the second case (8.28)
we obtain also an extremely small second mass. These results can not be related to
some real situation. However, they demonstrate, that physical parameters, namely
mass ratios and mixing angles, could be, in principle, defined in the framework of
the compensation approach. As a matter of fact, set of equations (8.21, 8.24) is over-
simplified and do not take into account upper quarks (u and c). We have seen while
considering one generation case above in this section, that an inclusion of all quarks
and leptons leads to physically reasonable results on the one hand, however to a con-
siderable complication of the problem on the other hand.

Provided one tries to introduce also other members of two generations into con-
sideration, this lead to an essential increase in a number of equations of the set. The
more so, as to approach the real situation one has to take into account three genera-
tions. Then the number of equations approaches a hundred. An analysis of solutions
of such set of nonlinear equations needs a dedicated and extensive work. Examples,
which were considered in the present section may just serve as a motivation for ac-
complishing this forthcoming work.
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8.3 Weinberg mixing angle and the fine structure constant

To conclude the considerations of possibilities of determination of parameters of the
Standard Model, let us demonstrate a simple model, which illustrates how the well-
known Weinberg mixing angle could be defined. In previous chapters N. N. Bogoliubov
compensation principle [41, 42] was applied to studies of a spontaneous generation of
effective nonlocal interactions in renormalizable gauge theories.

In particular, Chapter 6 deals with an application of the approach to the electro-
weak interaction and a possibility of spontaneous generation of effective anomalous
three-boson interaction of the form

- g Fege W, Wy W, Wi, =0, W5 — 3, Wy + g e W, WS (8.29)
with uniquely defined form-factor F(p;), which guarantees effective interaction (8.53)
acting in a limited region of the momentum space. It was done of course in the frame-
work of an approximate scheme, which accuracy was estimated in Chapter 3 to be
= (10-15)%. Would-be existence of effective interaction (8.29) leads to important non-
perturbative effects in the electro-weak interaction. Remind, that our interaction con-
stant G is connected with conventional definitions in the following way

A
G=- g_z (8.30)
My,
where g =~ 0.65 is the electro-weak coupling. The current limitations for parameter A
read [106]

A=-0.016"303], -0.059 <1< 0.026(95%C.L.. (8.31)

Solutions of the compensation equation correspond to QCD with g(z,) = 3.8 and
for the electroweak interaction with [100, 103]

g(zy) = 0.60366, 2z, =9.6175, |A|=2.88-10"° (8.32)

Value of boundary momentum, that is effective cut-off A is defined by expression [100,

103]
2GPAY 287 A% A"
5 = T =20 (8.33)
10247* 102472 My,

As a rule the existence of a nontrivial solution of a compensation equation impose
essential restrictions on parameters of a problem. Just the example of these restric-
tions is the definition of coupling constant g(z,) in (8.32). It is advisable to consider
other possibilities for spontaneous generation of effective interactions and to find out,
which restrictions on physical parameters may be imposed by an existence of nontriv-
ial solutions.

To begin the considerations of the present section, let us demonstrate a simple
model, which illustrates how the well-known Weinberg mixing angle could be defined.
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Let us consider a possibility of a spontaneous generation of the following quartic ef-
fective interaction of electroweak gauge bosons

Loy =G, WiWi WS, W2, + G, Wi W Wp(,w (8.34)
+G3 WiW(B,,B,, + G4 Z,Z, Wy, W), + G5 Z,Z,B ,,B,,.

where we maintain the residual gauge invariance for the electromagnetic field. Here
indices a, d correspond to charged W-s, that is they take values 1, 2, while index b
corresponds to three components of W defined by the initial formulation of the electro-
weak interaction. Let us remind the well-known relation, which connect fields W°, B
with physical fields of the Z boson and of the photon

W,? = cos Oy Z,4 + sin GWAM, B,4 = — sin Oy Z,4 + cos GWAM, (8.35)

Interactions of type (8.34) were earlier introduced on phenomenological grounds in
works [122, 123]. Let us introduce an effective cut-off A in the same way as we have done
earlier while considering the spontaneous generation of effective interactions in QCD
and in the electro-weak theory. Here we use for definition of A relation (8.33). Here we
shall proceed just in the same way as earlier. Then let us consider a possibility of a
spontaneous generation of interaction (8.34). Now we would like to find out, if inter-
action (8.34) could be spontaneously generated. In doing this we again proceed with
the add-subtract procedure. Provided we start with usual form of the Lagrangian (6.3),
which describes electro-weak gauge fields W and B

L=1Ly+ Ly,
1 1
LO Z(WO;W WO,W) - Z(B VB v)’ (8.36)
Lint = _4 (W W WQ,W WQ,W) (8.37)

W, =9, W -0, WS, BS, =9,B,-0,B,

and W:v is the well-known nonlinear Yang-Mills field of W-bosons. Then the we per-
form the add-subtract procedure of expression (8.34)

L= L + Lmt’
LO =Ly - Leﬁr, (8.38)
L;nt =Ly + Le/f' (8.39)

Now let us formulate compensation equations. We are to demand, that consider-
ing the theory with Lagrangian L;, (8.38), all contributions to four-boson connected
vertices, corresponding to interaction (8.34) are summed up to zero. That is the unde-
sirable interaction part in the would-be free Lagrangian (8.38) is compensated. Then
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Fig. 8.5. Diagram representation of set (8.40) (the first five equations) and (8.41) (the two last ones).
Simple line represent W-s, dotted lines represent B and lines, consisting of black spots, repre-
sent Z.

we are rested with interaction (8.34) only in the proper place (8.39) We have the fol-
lowing set of compensation equations

—x1+xi:0,
2 2 2
—X) + 2X5+2x: % + (1 —a”)x3x,a” x,x, = O,
2 2
— X3+ X X3+ 2XX3+ A" X, X5 + (1 —a”) x3%5 = O, (8.40)
2
— X4 + X1 X4 + 2 XX, + A" XyX5 =0,
2 2y.2
—X5 +2X3X4 +a" X, X5+ (1-a”)x; =0,
.- 3G, A
Yo64n?

Here a = cos 6y,. Factor 2 in several terms of equations here corresponds to sum by
weak isotopic index 87 = 2, a = 1, 2. Then following the reasoning of the approach
we assume, that the Higgs scalar corresponds to a bound state consisting of a com-
plete set of fundamental particles. Note, that in Chapter 7 we have considered only
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the heaviest particle ¢t quark as the main constituent of the Higgs scalar. We have to re-
mark, that this assumption could be hardly consistent with value of the Higgs particle
mass 125.7 GeV [57, 58]. Here we include the electro-weak bosons in consideration of
the Higgs interaction. There are two Bethe—Salpeter equations for this problem, be-
cause constituents are either W* W* or Z Z. In approximation of very large cut-off A
these equations have the following form

-a
X1 +R2+a)x; + X3+ B =1, (8.41)
1-a° 1
Q+a)x, + x5+E:—,
a a

where 8 describes additional contributions to equations. Now we look for solutions of
set (8.40, 8.41) for variables x;, a, 3. We consider as physical solutions those having
very small . Of course, there is the trivial solution with 8 = 1: all x; = 0. However
there are also nontrivial solutions. Namely, there are the the following two ones with
x;=1

X, =0, x3=0.729625, x,=0, x5=0, (8.42)
0.729625(a-1)
=1 pp= 0

for any a, and the following three ones with x; = 0

X, =0, Xx3=3.070337, x,=0, xs=3.61378,
a = 0.8504594, B=-506-10""%, (8.43)
x, =0.48772, x3=0, x,=1.2654, x;=0,
a=033801, f=-12-10,
X, =05, x3=1.09555, x,=0, x5;=0,
a=-0.75556, fB= 1.
Very small 8 = — 5 - 10 is appropriate only for the first solution of (8.43). (For solu-
tions (8.42) smallness of f is achieved only for the second one witha — 1, that is in
an absence of the mixing.) Thus the only solution with physical meaning is just this

one, which gives
sin’ B, = 1-a’ =0.27672. (8.44)
This value corresponds to scale A (8.33), which corresponds to parameter z,. At this

scale the electroweak coupling according to (8.32)

2
Con(20) = é% =0.028999 (8.45)

then electromagnetic coupling at the same scale is the following

a(Zy) = Xy (2o) sin’ Oy (2,) = 0.0080244. (8.46)
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With the well-known evolution expression for electromagnetic coupling we have for
six quark flavors (A > My,)
a(My,)

Sa(My) A?
1- aén In M_ﬁ,]

alzy) = = 0.0080244. (8.47)
This gives with value A from expression (8.33) with account of (8.32) the following fine
structure constant at scale of the W-boson mass

a(My) = 0.00772. (8.48)
to be compared with experimental value [4]
a(My,) =0.0077562 + 0.0000012. (8.49)

Of course, set of equations (8.40, 8.41) is approximate. It quite may be, that with ac-
count of necessary corrections the agreement of the result with experimental num-
ber (8.49) will be not such indecently good.

The second solution gives mach larger value for sin” 8, ~ 0.89. As a result this
leads to a(My,) = 0.0235, that is three times more, than (8.48, 8.49). Now we have
one solution (8.48) being in agreement with actual physics and another one being in
evident disagreement. Which one is to be used?

The answer is connected with the problem of a stability of solutions (8.43). The
stability in the model is defined by sum of vacuum averages

1 1
Z<WZ" WZV> + Z(Byv Byv>‘ (8.50)

In Chapter 6 contribution (6.38) to the first term, which is due to effective interac-
tion (8.29), is estimated. It was shown there, that the result is proportional to an inte-
gral involving the corresponding form-factor

J F(z) Vz dz, (8.51)
0

which turns to be negative. Here we also consider effective interaction (8.29) in the
framework of the electro-weak theory. Let us assume, that a still unknown form-factor
of interaction (8.29) also leads to negative value of integral (8.51). Then in the same
way as in Chapter 6 we conclude, that contribution of interaction (8.29) also leads
to the negative result. In view of the result being proportional to coupling constants
G;, the value of (8.50) is negative with larger absolute value for larger values of G;.
Thus the first solution of (8.43) might be stable in comparison to the second one with
B =-1.2-107". Thus result (8.48) may correspond to the most stable option.

The considerations of the present section can not be regarded as finally decisive
and they are rather indications of how things might occur.

We would also draw attention to an appearance of very small numbers in solutions
being considered. E. g., solution (8.43) contains parameter § = 5 - 1071°, This might
be useful in consideration of problems of hierarchy [67, 68].



8.4 Expectations = 201

8.4 Expectations

We have already emphasized above, that in case compensation equations have non-
trivial solutions there are always a number of additional conditions, which give rela-
tions between physical parameters. Thus in case these solutions satisfy stability con-
ditions and, as a result, realize in the Nature, these conditions are to be imposed on
the real physics. We have demonstrated, that in case both of QCD and the electroweak
theory nontrivial solutions with spontaneous generation of triple gauge boson interac-
tions (4.2, 6.1) turn to be stable. One of the most important consequences of existence
of these solutions are predictions of coupling constants of corresponding gauge theo-
ries. The conclusions may be formulated as follows:

there are two and only two Yang—Mills gauge vector theories, which differs by an in-
tensity of interaction: the first option corresponds to interaction constant «, being of
order of unity at the boundary of the nonperturbative region (for N. = 3 & = 0.9),
and the second option corresponds to interaction constant agy, =~ 0.03 for Ny, = 2,
that is surprisingly close to the physical value of the electroweak coupling. We have
already calculated the t-quark mass in terms of the W mass (7.26, 7.29, 7.31). We have
already mentioned, that with these results we shorten list of arbitrary constants of the
Standard Model by number 3. What else?

In Section 8.2 we have presented examples, which demonstrate how compensa-
tion equations may define ratios of fundamental fermion masses. Provided one will
succeed in considering analogous problem including all three generations of color
quarks and leptons the important information may be achieved. In the would-be set
of equations will be involved not only masses, but parameters of mixing as well. For
the moment we could not safely judge on number of conditions, which would be pro-
vided by the set. Let us suppose that all ratios of quark and lepton masses will be
defined by the set of compensation equations. Then from already calculated ¢-quark
mass (7.31) we obtain also masses of the light quarks u, d. But these masses enter in
QCD quantities and in the Nambu-Jona-Lasinio interaction, which is defined by QCD
scale. Thus we obtain strict relation of the two scales, namely the QCD scale, e. g., f,
or A ocp, with the electroweak scale, e. g., W mass.

We have demonstrated, that mixing angles may be also defined by the compen-
sation equations. It is remarkable, that a possibility of a definition of the Weinberg
mixing angle, which enters into important parameter sin® 8;,, was also demonstrated.
This result might be achieved by a consideration of an effective interactions of gauge
bosons W and B (see Section 8.3). In case of a successful realization of this possi-
bility, one could also define the value of the fine structure constant «, because gauge
constant g of the electroweak interaction is already calculated in Section 6.1 and

2

o = sin’ Ow g—. (8.52)
4
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Value (8.48) for the fine structure constant being estimated in the previous section
with satisfactory precision agrees its physical value. The author dares to express a
hope, that a consecutive consideration of interactions of the Standard Model leads to
definition of the totality of physical parameters, which is necessary to describe the to-
tality of data in elementary particles physics. It could be achieved provided one could
find the most stable solution of a total set of compensation equations and other nec-
essary relations, e. g., Bethe—Salpeter equations for corresponding bound states, es-
pecially scalar ones, including the Higgs scalar. Of course, realization of the program
needs extensive efforts and hard work. But the wouldbe result without doubt is worth
trying.

It is also worth mentioning, that further efforts are necessary to develop the next
approximations of the compensation approach. In the most cases we have worked
with solutions of linear equations, which were obtained in the approximate scheme
of linearization. The appropriate corrections to this scheme are needed.

In support of the approach under a discussion we would lay down just results of
the present book. Let us emphasize the main points.

(1) The compensation approach leads to derivation of the well-known and very ef-
fective in the low momenta region of the strong interaction Nambu-Jona-Lasinio
interaction, without introducing of any additional parameter but the fundamental
QCD ones. In Chapter 5 and in Section 3.3 we have demonstrated, that the resulting
scheme satisfactory describes data in the region of its applicability.

(2) The consideration of a possibility of spontaneous generation of anomalous three-
gauge boson interactions in both QCD and EWT results in definition of values of
gauge constants g in points of boundary of nonperturbative regions. Let us em-
phasize, that the values agree the nowadays knowledge on these fundamental
quantities. As far as we know, there is no other approach, which could provide
such result. The obtained results on the three-boson effective interaction allows
to calculate nonperturbative quantities, e. g., the gluon condensate, in agreement
with the phenomenology.

(3) We would also draw attention to a successful attempt of the calculation of the
additional contribution to the anomalous magnetic moment of the muon in
the framework of the electroweak theory with anomalous three-boson interac-
tion (6.1). Let us remind, that Schwinger’s calculation of the anomalous magnetic
moment of the electron was in proper time one of the decisive arguments on be-
half of quantum electrodynamics. Bearing in mind this history, the author dares
to consider results of Section 6.4 as a strong indication for the verity of the com-
pensation approach.

We have already mentioned a possible connection of the two fundamental scales: the
QCD scale and the electroweak scale. However, there is one more fundamental scale,
namely, the scale of gravitation, which is actually the Planck mass My, (1.44). Let us
ask the question, if it is possible to obtain a connection between the strong and the
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electroweak scales and the scale of the gravitation? From our point of view a possible
answer could be achieved by consideration of the wouldbe effective interactions in
the framework of the quantum gravitation theory. Of course, there is the essential dif-
ference between gauge theories of the Standard Model and the quantum gravitation.
Thelast theory is nonrenormalizable. However, the cumulative experience, which par-
tially is described in the book, may allow to hope for finding a possibility to deal with
the problem of a spontaneous generation of effective interactions in this case as well.
Just in view to support this assumption in the next section we consider an example,
which demonstrates, how gravitation interaction may be connected with conventional
particles’ interactions described in Chapters 1, 2. Provided one could succeed in a def-
inition of a connection of the scale of gravitation with the scales of the gauge theories,
we might come to description of the Nature in terms of only one dimensional parame-
tere. g., the Planck mass. All other physical quantities then would be defined in terms
of this fundamental Mp,. In this case we might state, that fundamental physical pa-
rameters correspond to the most stable option , which just is realized in the Nature.

Of course, for the moment it is a dream. But nevertheless the goal is very attractive.
Maybe, wouldbe realization of the dream might be achieved with the aid of notions
and tools, described in the book, which is proposed to a kind attention of a reader.

Let us emphasize, that this possibility is alternative to the option of anthropic prin-
ciple (see, e. g., [125]), which assumes multiplicity of Universes. The main foundation
of this postulate is just a complete absence of any principle, which could fix values of
parameters of the Standard Model. In Chapter 2 we have already noted, that the num-
ber Ny, of fundamental parameters of the Standard Model including those, which are
related to neutrinos, comprises as many as 25. Then if each possible set of these pa-
rameters corresponds to a really existing Universe, then the power of set of the totality
of Universes is

(continuum)NSM

On the other hand, the existence of a human being, who is capable to observe the
Nature and to try to understand Its laws, is closely connected with actual values of
the parameters of the Standard Model. The properties of nuclei and their isotopes are
connected with parameters defining low-energy strong interaction, that is in our no-
tations with &,, m,, m,. The most important parameters, which define the rich variety
of organic substances, which is inevitably necessary for the life generation and evolu-
tion, are just the fine structure constant « and the electron mass m,.

Thus the anthropic principle assumes, that we live in the only Universe, which
supplies conditions for an existence of a human being, that is in the Universe with
such parameters «, &, m,, my, m,, which we consider now as real physical ones. All
other Universes are principally unobservable.

The approach, which we have considered in the present book, provides a possibil-
ity to define at least some of these parameters. Indeed, in Chapter 4 we have obtained
value &, (see, e. g., (4.37)) in agreement with its physical value. As for other parame-
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ters, in Section 8.2 we have discussed possibilities of their fixing in the framework of a
spontaneous generation of effective interactions in the Standard Model. In Section 8.3
we have demonstrated a possibility to define the fine structure constant «. Relations,
being obtained in Section 8.2 are not to be considered as satisfactory ones, but the
examples, which give these results, may serve as leading indications for further more
reliable studies. In case of successful realization of the program, we shall have a pos-
sibility to understand how values of the fundamental parameters are fixed. Then the
conception of the uniqueness of the Universe might be established. That is, it might
be, that the observable Universe corresponds to the most stable nontrivial solution of
the Standard Model. The author does believe, that a possible way to this goal is con-
nected with a phenomenon of a spontaneous generation of effective interactions in
the framework of the Standard Model. Just this possibility we have considered in the
present book.

We have already noted that further studies might lead to some connection of scales
of the Standard Model with the scale of the gravity.

In view of considering of a possible connection of parameters of the Standard
Model with the gravitation scale, in the following section we consider an example of a
spontaneous generation of an anomalous three-graviton effective interaction, which
is analogous to effective interactions (4.2, 6.1) in gauge theories of the Standard Model.

8.5 A possible effective interaction in the general relativity

Due to well-known problems of the dark matter and the dark energy numerous possi-
bilities of modified gravity are considered (see, e.g.review [126] and recent work [127]).
This approach assumes existence of new effective interactions of the gravitational
field in addition to the fundamental Einstein—Hilbert Lagrangian. The main goal of
the book is just to find out how such interactions can be generated. In view of the ex-
treme interest of the problem of a modified gravity we would consider a possibility of
a spontaneous generation of an effective interaction using the methods, being devel-
oped above. We would also follow the close analogy with effective interactions being
studied in previous chapters.

In the present section we would show an example of how gravity interactions
could be connected with interactions of the Standard Model.

Namely, we would discuss a possibility of anomalous gravitation interaction in
terms of nonperturbative effects of the Einstein—Hilbert gravity. For the purpose we
rely on the compensation approach, which is described in the book. In Chapters 3, 4,
5, 6, 7 this approach was applied to studies of a spontaneous generation of effective
nonlocal interactions in renormalizable gauge theories. In particular, Chapter 6 deal
with an application of the approach to the electro-weak interaction and a possibility
of spontaneous generation of the effective anomalous three-boson interaction of the
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following form was demonstrated

g

== Fey WS W2 WE (8.53)
2 abc >
3IMy, By e b
”:v = a,u”j _av”;j +g€abc”ﬁ”5'

where g =~ 0.65 is the electro-weak coupling. Here F(p;) is a form-factor, which guar-
antees effective interaction (8.53) acting in a limited region of the momentum space.
This form-factor is uniquely defined by the compensation equation of the Bogoliubov
approach. We use an approximate scheme, which accuracy was estimated to be = (10—
15) %. Up to this precision the approach gives unique results for physical parameters,
so we have none adjusting parameter in the scheme. Would-be existence of effective
interaction (8.53) leads to important nonperturbative effects in the electro-weak inter-
action. Its consequences were considered above. Note, that interaction (8.53) is exten-
sively looked for experimentally and there exist experimental limitations for parame-
ter A (6.8).

We would take interaction (8.53) as a leading hint for choosing of an effective inter-
action in the gravity theory. Considering links between vector nonabelian gauge the-
ories and the theory of the gravity one easily sees that gauge field W:v plays the same
role as the Riemann curvature tensor Ry, .. Thus the anomalous interaction which is
strictly analogous to interaction (8.53) is the following

G
1 Fo V=8 €™ Ry Ry Ry X872 87 877 8114,
Rmn,w = 8ms Ri,w, (8.54)
S
S arrsiv _ ar"# N I LA o
nuv aXM aXv ru -nv rv -nw’
i _ l im(agmk : agml _ @)
72 Vad ok axm/)

Here curvature tensor wa indeed plays a part of gauge field W:v and two indices s, n
replace symmetry index a. The necessity of an introduction of absolute antisymmet-
ric tensor €""2™™ is connected with the antisymmetry of the curvature tensor in re-
spect to the last two indices. Here we have the direct analogy with the form of inter-
action (8.53). It is important to emphasize, that interaction (8.54) does not conserve
parity. Coupling constant G has dimension M. F;(g;) in definition (8.54) is again
some form-factor to be defined by a compensation equation. This equation in the first
approximation according to the procedure of our approach corresponds to diagrams
of Figure 8.6. The Lorentz structure of the anomalous three-graviton vertex is defined
in Section 8.6 with the use of the FORM program. We also use the standard Feynman
rules for the quantum gravitation [128, 129].
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Fig. 8.6. Diagram representation of the compensation equation in the first approximation. Dotted
lines correspond to gravitons, a black spot represents interaction (8.54), the striped triangle repre-
sents a contribution of the Standard Model diagrams.

Performing calculations using FORM we achieve the following integral equation with
integrations in the four-dimensional Euclid momentum space

362 ( 1 [, 40 6 3( s
P = Fog + oy~ Jy Fody+ = [y Fody - 2 Jy F)dy
+8 J'yl‘F(y)dy + 18 J y*F(y)dy - 25x J y3F(y)dy (8.55)
0 X X

+24x° JyzF(y)dy -11x° JyF(y)dy+ 2x* JF(y)dy), x=p°.

X

where F,,; means inhomogeneous part of the equation, which in Figure 8.6 is denoted
by the striped triangle.
Assuming F,,; = Const, we obtain by successive differentiations of equation (8.55)
the following linear differential equation for F(x). Introducing new variable
81G*x°

2= 156252 (8.56)

(= %)(Z%%)(zd%é)(zdi)

we have

z
(e 3)eE - )eE-3)EE5)
+z(z% + %)]F(z) =0. (8.57)

Integral equation (8.55) is equivalent to differential equation (8.57) with boundary
conditions. Taking into account these conditions we have the following solution,
which we obtain in terms of Meijer functions in the same way as other solutions in
the book

_ A50( . 1/15
Fiz)=C GlS( Zlo,1/5,2/5,3/5,4/5,~3/5 ~2/5,-1/5 ) (858)
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Constant C is defined by normalization condition at z = 0: F(0) = 1, that gives

. 61"(%)

- - 0.5972001. (8:59)
1251(%)

On the other hand, assuming F,; = 0, we may calculate F(0) from equations (8.55,

8.58), that gives

F(0) = 15—8 (8.60)

So there is evidently additional contribution to F(0), that is
Fog # O. (8.61)

This contribution might be given by diagrams including matter fields, for example, by
those being presented in Figure 8.7. First of all we would draw attention to presence
of Z exchange in Figure 8.7. The interaction of Z with neutrinos contains y; matrix
(see Feynman rules (2.77)) and so the Trace inevitably contains antisymmetric tensor
€apy9> Which is present in interaction (8.54). The vertex of a graviton interaction with
a neutrino, as well as with any spinor field, is the following

V(['l; V;pl,pz) =1K (YM (.pl +p2)v + yv (.pl +p2),4)’ (862)

where p, is the momentum of the incoming neutrino and p, is the same of the out-
coming one.

We readily estimate, that this diagram gives the following contribution to the in-
homogeneous part of the equation

g2K3

Fog = - Co—255—
00T "0416n2)° M2

2

n —g, (8.63)
mV

where « is the usual gravitation coupling constant, g is the electroweak gauge con-

stant, which is defined in Section 6.1, and Cj; is a coefficient of order of unity. From the

main equation (8.55) we have the following condition

F(O) + FOG = 1. (8.64)

ql

iql i ql 1 ql
1 1 1
1 1 1
i
i
Z = + +
7’ N
’ N ’ N ’ N v’ N
q3

q2

q2 q3 q2 q3 q2 q3
Fig. 8.7. Diagrams, describing the first approximation for the Standard Model contribution to three-
graviton vertex (8.54). Simple lines correspond to matter fermions (neutrino etc., double lines corre-
spond to weak bosons Z, W.
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Expression (8.63) has to be equal to
Fos = 1 - F(0) = -3.0028. (8.65)

Then with an account of number of neutrinos N, = 3 and previous relations (8.55,
8.65) we obtain the following estimate for the coupling constant of the effective inter-
action (8.54) G. In doing this we have to bear in mind, that integral equation (8.55) is
divided by coupling constant G due to the overall procedure for searches for nontrivial
solutions of compensation equations. Thus we have

g M
41672 M2 m2

v

G (8.66)

As a matter of fact, for the moment we can not substitute a reliable value for the
average neutrino mass m, in expression (8.66). We may safely assert, that it is not zero
due to existence of the effect of neutrino oscillations. In any case it may not be more
than 1072 eV (see data (2.107) in Section 2.2). In view of this we have taken for the
estimate just neutrinos, as particles having the smallest masses of all particles giv-
ing contribution to coupling constant G. It is evident, that massless particles, namely
photons and gluons, do not give contribution due to parity conservation of their in-
teractions. To obtain more definite connection between the two parameters G and «
one needs perform difficult calculations, which will be done elsewhere. However our
estimate (8.66) allows us to consider effects of the interaction (8.54) and to conclude
if it is advisable to continue studies in this direction.

With physical mass of Z and bearing in mind relation

where Planck mass (1.44) is very large, we understand, that possible value (8.66) is es-
sentially larger, than seemingly natural value, which one can estimate under premise,
that only gravitational effects can define the quantity under the study
1
Gy ~ 1 = —. (8.67)
My,

The interaction (8.54) due to a presence of the antisymmetric tensor e, gives no
contribution to spherically symmetric problems of gravitation (Schwartzschield solu-
tion, Friedmann solution etc.). However it could manifest itself in problems without
spherical symmetry in a rotating system (e. g., spiral galaxy). The considerable en-
hancement of possible value (8.66) in comparison to natural value (8.67) by the fol-
lowing factor

2702
M
G _ 8 Mu L =107, (8.68)
GPI 64m MZ
is quite remarkable and may lead to observable effects. Here we use also estimation of
the logarithm in (8.66).



8.6 Appendix =—— 209

Let us note, that the propagator of a graviton is the following [128]
8am8bn t 8an8bm — 8ab8mn
1(2m)* q?

and the three-graviton vertex is presented in Section 8.6.

Thus we have a possible additional effective interaction which could be consid-
ered in the framework of modified gravitation. On the other hand the example shows,
that spontaneous generation of effective interactions may occur in the gravitation the-
ory as well.

Of course, for the moment we can not say, that the gravity scale Mp, is somehow
connected with scales of the Standard Model. However, this example could give hints
on how this connection might be looked for.

D(a,b,m,n,q) = , (8.69)

8.6 Appendix

Here we present FORM program leading to the definition of vertex V corresponding
to interaction (8.54). The explicit expression of V takes much more space than the
program.

V k,p,q,91,92,93;

I a,b,c,d,f,g,m,n,r,s,u,v,t,w;

G F(a,b,c,d) = (d_(a,c)*d_(b,d)+d_(a,d)*d_(b,c));
G FG(a,b,m,n)=d_(a,m)*d_(b,n)+d_(a,n)*d_(b,m)-d_(a,b)*d_(m,n);
.sort

Print;

.store

V k,p,q,91,92,93;

I a,b,c,d,f,g,h,i,j,v,w,m,n,r,s,u,t;

G R(h,i,j,w,g,f)=F(i,w,g,f)*q(j)*q(m)-F(i,j,g,f)*q(w)*q(h)+
F(h,j,g,f)*q(w)*q(i)-F(h,w,g,f)*q(j)*q(i);

.sort

Print;

.store

V k,p,q,91,92,93;

I a,b,c,d,f,g,h,i,i1,i2,i3,j,v,w,m,n,r,s,u,t;

G R11=R(b,il,m,n,g,f);

id g=qi;

.sort

Print;

.store

V k,p,q,91,92,93;

I a,b,c,d,f,g,h,i,i1,i2,i3,j,v,w,m,n,r,s,u,t;
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G R12=R(b,i2,n,r,u,v);

id g=q2;

.sort

Print;

.store

V k,p,q,91,92,93;

I ab,c,d,f,g,h,i,i1,i2,i3,j,v,w,m,n,r,s,u,t;
G R13=R(a,i3,r,m,t,s);

id g=q3;

.sort

Print;

.store

V k,p,q,91,92,93;

I ab,c,d,f,g,h,i,i1,i2,i3,j,v,w,m,n,r,s,u,t;
G R1123=R11*R12#R13*e_(il1,i2,i3,a);

.sort

Print;

.store

V k,p,q,91,92,93;

I a,b,c,d,f,g,h,i,i1,i2,i3,j,v,w,m,n,r,s,u,t;
G R21=R(b,il,m,n,g,f);

id g=qil;

.sort

Print;

.store

V k,p,q,91,92,93;

I a,b,c,d,f,g,h,i,i1,i2,i3,j,v,w,m,n,r,s,u,t;
G R22=R(b,i2,n,r,t,s);

id g=q3;

.sort

Print;

.store

V k,p,q,91,92,93;

I a,b,c,d,f,g,h,i,i1,i2,i3,j,v,w,m,n,r,s,u,t;
G R23=R(a,i3,r,m,u,v);

id g=q2;

.sort

Print;

.store

v k’P’q’ql’q2’q3;

I a,b,c,d,f,g,h,i,il1,i2,i3,j,v,w,m,n,r,s,u,t;
G R2123=R21*R22%R23*e_(il1,i2,i3,a);
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.sort

Print;

.store

V k,p,q,91,92,93;

I a,b,c,d,f,g,h,i,i1,i2,i3,j,v,w,m,n,r,s,u,t;
G R31=R(b,il,m,n,u,v);

id q=q2;

.sort

Print;

.store

V k,p,q,91,92,93;

I a,b,c,d,f,g,h,i,i1,i2,i3,j,v,w,m,n,r,s,u,t;
S x,y;

G R32=R(b,i2,n,r,g,f);

id gq=qi;

.sort

Print;

.store

V k,p,q,91,92,93;

I a,b,c,d,f,g,h,i,i1,i2,i3,j,v,w,m,n,r,s,u,t;
G R33=R(a,i3,r,m,t,s);

id gq=q3;

.sort

Print;

.store

V k,p,q,91,92,93;

I a,b,c,d,f,g,h,i,i1,i2,i3,j,v,w,m,n,r,s,u,t;
G R3123=R31*R32#R33*e_(il1,i2,i3,a);

.sort

Print;

.store

V k,p,q,91,92,93;

I a,b,c,d,f,g,h,i,i1,i2,i3,j,v,w,m,n,r,s,u,t;
G R41=R(b,il,m,n,u,v);

id gq=q92;

.sort

Print;

.store

V k,p,q9,91,92,93;

I a,b,c,d,f,g,h,i,i1,i2,i3,j,v,w,m,n,r,s,u,t;
G R42=R(b,i2,n,r,t,s);

id 9=9q3;
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.sort

Print;

.store

V k,p,q,91,92,93;

I ab,c,d,f,g,h,i,il1,i2,i3,j,v,w,m,n,r,s,u,t;
G R43=R(a,i3,r,m,g,f);

id g=qil;

.sort

Print;

.store

V k,p,q,91,92,93;

I ab,c,d,f,g,h,i,i1,i2,i3,j,v,w,m,n,r,s,u,t;
G R4123=R41*R42#R43*e_(il1,i2,i3,a);

.sort

Print;

.store

V k,p,q,91,92,93;

I ab,c,d,f,g,h,i,i1,i2,i3,j,v,w,m,n,r,s,u,t;
G R51=R(b,il,m,n,t,s);

id g=q3;

.sort

Print;

.store

V k,p,q,91,92,93;

I ab,c,d,f,g,h,i,i1,i2,i3,j,v,w,m,n,r,s,u,t;
G R52=R(b,i2,n,r,g,f);

id g=qil;

.sort

Print;

.store

V k,p,q,91,92,93;

I a,b,c,d,f,g,h,i,i1,i2,i3,j,v,w,m,n,r,s,u,t;
G R53=R(a,i3,r,m,u,v);

id g=q2;

.sort

Print;

.store

v k’P’q’ql’q2’q3;

I a,b,c,d,f,g,h,i,i1,i2,i3,j,v,w,m,n,r,s,u,t;
G R5123=R51*R52*R53*e_(il1,i2,i3,a);

.sort

Print;



8.6 Appendix = 213

.store

V k,p,q,91,92,93;

I a,b,c,d,f,g,h,i,i1,i2,i3,j,v,w,m,n,r,s,u,t;
G R61=R(b,il,m,n,t,s);

id q=q3;

.sort

Print;

.store

V k,p,q,91,92,93;

I a,b,c,d,f,g,h,i,i1,i2,i3,j,v,w,m,n,r,s,u,t;
G R62=R(b,i2,n,r,u,v);

id q=q2;

.sort

Print;

.store

V k,p,q,91,92,93;

I a,b,c,d,f,g,h,i,i1,i2,i3,j,v,w,m,n,r,s,u,t;
G R63=R(a,i3,r,m,g,f);

id g=qi;

.sort

Print;

.store

V k,p,q,91,92,93;

I a,b,c,d,f,g,h,i,i1,i2,i3,j,v,w,m,n,r,s,u,t;
G R6123=R61*R62*R63*e_(il1,i2,i3,a);

.sort

Print;

.store

V k,p,q,91,92,93;

I a,b,c,d,f,g,h,i,i1,i2,i3,j,v,w,m,n,r,s,u,t;
G V(g,f,u,v,t,s)=1/2x(R1123+R2123+R3123+R4123+R5123+R6123) ;
.sort

Print;

.store

.end

After calculation we obtain vertex V(g,f,u, v, t,s), in which indices and momenta for
three legs are the following (for each leg there are two indices)

&fHa, wv,q, t5 qs. (8.70)

Just to illustrate the form of the total vertex, we can present the expression for the
Lorentz structure of the three-gluon vertex (8.54) on the mass shell i. e., with the fol-
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lowing conditions

4 =45 = 45 = (14>) = (4195) = (4>95) = O. @8.71)

Remind, that the FORM notations are connected with those used throughout the book
in the following way

pa) =p, d_(v,s) =8, e_(ab,cd) =€y (872

V(g,f,u,v,t,s) =
2%e_(q1,92,93,f)*d_(v,s)*ql (u) *q2(t) *q3(g)
-2xe_(q1,92,q93,f)*d_(v,s)*ql(t)*q2(g)*q3 ()
-2xe_(q1,92,q93,f)*d_(v,t)*ql(s)*q2(g)*q3 ()
+2xe_(ql1,92,q93,f)*d_(v,t)*ql(u)*q2(s)*q3(g)
+2xe_(ql1,92,q93,f)*d_(s,u) *ql (v)*q2(t)*q3(g)
-2xe_(q1,92,93,f)*d_(s,u)*ql (t)*q2(g)*q3(v)
+2xe_(ql1,92,93,f)*d_(u,t)*ql(v)*q2(s)*q3(g)
-2xe_(q1,92,93,f)*d_(u,t)*ql(s)*q2(g)*q3(v)
+2*e_(ql,92,93,g)*d_(v,s)*ql (u) *q2(t) *q3(£)
-2%e_(q1,92,93,g)*d_(v,s)*ql (t)*q2(£) *q3 (u)
-2%e_(q1,92,93,g)*d_(v,t)*ql(s)*q2(£) *q3 (u)
+2%e_(ql,92,93,g)*d_(v,t)*ql (u) *q2(s) *q3(£)
+2*e_(ql,92,93,g)*d_(s,u)*ql (v) *q2(t) *q3(£)
-2%e_(q1,92,93,g)*d_(s,u)*ql (t) *q2(£) *q3(v)
+2*e_(q1,92,93,g)*d_(u,t)*ql (v)*q2(s) *q3(£)
-2%e_(q1,92,93,g)*d_(u,t)*ql(s)*q2(£) *q3(v)
+2*e_(ql,92,93,v)*d_(f,s)*ql(u)*q2(t) *q3(g)
-2%e_(ql,92,93,v)*d_(f,s)*ql(t)*q2(g) *q3(u)
-2%e_(q1,92,93,v)*d_(f,t)*ql(s)*q2(g) *q3(u)
+2*e_(ql,92,93,v)*d_(f,t)*ql(u)*q2(s) *q3(g)
+2*e_(ql,92,93,v)*d_(g,s)*ql (u) *q2(t) *q3(£)
-2*e_(q1,92,93,v)*d_(g,s)*ql (t)*q2(£) *q3 (u)
-2%e_(q1,92,93,v)*d_(g,t)*ql(s)*q2(£) *q3(u)
+2*e_(ql,92,93,v)*d_(g,t)*ql (u) *q2(s) *q3(£)
+2*e_(ql,92,93,s)*d_(f,v)*ql(u)*q2(t) *q3(g)
-2*e_(q1,92,93,s)*d_(f,v)*ql(t)*q2(g) *q3 (u)
+2*e_(ql,92,93,s)*d_(f,u)*ql (v)*q2(t) *q3(g)
-2*e_(q1,92,93,s)*d_(f,u)*ql(t)*q2(g) *q3(v)
+2*e_(ql,92,93,s)*d_(g,v)*ql (u) *q2(t) *q3(£)
-2*e_(q1,92,93,s)*d_(g,v)*ql (t)*q2(£) *q3 (u)
+2*e_(ql,92,93,s)*d_(g,u) *ql (v) *q2(t) *q3(£)
-2*e_(q1,92,93,s)*d_(g,u)*ql (t) *q2(£) *q3(v)
+2*e_(ql,92,93,u)*d_(f,s)*ql(v)*q2(t) *q3(g)



-2xe_(ql,92,q93,u)*d_(f,s)*ql1(t)*q2(g)*q3(v)
+2xe_(q1,92,93,u)*d_(f,t)*ql(v)*q2(s)*q3(g)
-2xe_(ql,92,q93,u)*d_(f,t)*ql(s)*q2(g)*q3(v)
+2xe_(q1,92,93,u)*d_(g,s)*ql(v)*q2(t)*q3(f)
-2xe_(ql,92,93,u)*d_(g,s)*ql(t)*q2(£)*q3(v)
+2xe_(q1,92,93,u)*d_(g,t)*ql(v)*q2(s)*q3(f)
-2¥e_(ql,92,93,uw)*d_(g,t)*q1(s)*q2(£)*q3(v)
-2¥e_(ql,92,93,t)*d_(£f,v)*q1(s)*q2(g)*q3(w)
+2*xe_(ql1,q92,93,t)*d_(f,v)*ql(u)*q2(s)*q3(g)
+2*xe_(ql,q92,93,t) *d_(f,u) *ql(v)*q2(s)*q3(g)
-2%e_(ql,92,93,t) *d_(£f,u) *q1(s)*q2(g) *q3(v)
-2¥e_(ql,92,93,t)*d_(g,v)*q1(s)*q2(£)*q3(w)
+2*xe_(ql1,q92,93,t)*d_(g,v)*ql(u) *q2(s)*q3(£)
+2*xe_(ql1,q92,93,t) *d_(g,uw) *ql(v) *q2(s) *q3(£)
-2xe_(ql,92,93,t)*d_(g,u) *q1(s)*q2(£)*q3(v)
+2*xe_(ql,q2,f,s)*ql(v)*q2(t)*q3(g) *q3(u)
+2*xe_(ql,q2,f,s)*ql(u) *q2(t)*q3(g) *q3(v)
-4xe_(ql,92,f,s)*ql1(t)*q2(g)*q3(v) *q3(u)
+2*xe_(ql,q2,f,t)*ql(v)*q2(s) *q3(g) *q3(u)
-4xe_(ql,92,f,t)*ql1(s)*q2(g)*q3(v) *q3(u)
+2*xe_(ql,q2,f,t)*ql(u) *q2(s)*q3(g) *q3(v)
+2*xe_(ql,q92,g,s)*ql(v) *q2(t) *q3 (£) *q3(u)
+2*xe_(ql,92,g,s)*q1(u) *q2(t)*q3 (£) *q3(v)
-4xe_(ql,92,g,s)*q1(t)*q2(£)*q3(v) *q3(u)
+2%e_(q1,92,g,t)*q1(v)*q2(s) *q3 (£) *q3(u)
-4xe_(q1,92,g,t)*q1(s)*q2(£)*q3(v) *q3(u)
+2%e_(q1,92,g,t)*q1(u) *q2(s) *q3 (£) *q3(v)
+4*xe_(ql,q2,v,s)*ql(u)*q2(t)*q3(£) *q3(g)
-2xe_(ql,92,v,s)*ql1(t)*q2(£)*q3(g) *q3(u)
-2xe_(ql,92,v,s)*ql1(t)*q2(g)*q3(£) *q3(u)
-2%e_(ql,92,v,t)*q1(s)*q2(£)*q3(g) *q3(u)
-2xe_(ql,92,v,t)*q1(s)*q2(g)*q3(£) *q3(u)
+4*xe_(ql,q2,v,t)*ql(u) *q2(s)*q3(£f) *q3(g)
-4xe_(ql,92,s,u)*q1(v)*q2(t)*q3(£)*q3(g)
+2*xe_(ql,q92,s,u)*ql(t) *q2(£)*q3(g) *q3(v)
+2*xe_(ql,92,s,u)*ql(t) *q2(g) *q3 (£) *q3(v)
+4*xe_(ql,q92,u,t)*ql(v)*q2(s)*q3(£) *q3(g)
-2xe_(ql,92,u,t)*q1(s)*q2(£)*q3(g) *q3(v)
-2*e_(ql,92,u,t)*q1(s)*q2(g)*q3(£) *q3(v)
+2*xe_(ql,q93,f,v)*ql1(s)*q2(g) *q2(t) *q3(u)
-4xe_(ql,q3,f,v)*ql(u)*q2(s)*q2(t) *q3(g)
+2*xe_(q1,q93,f,v)*ql(t)*q2(g)*q2(s) *q3(u)
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-4xe_(ql,q3,f,u)*ql(v)*q2(s)*q2(t)*q3(g)
+2xe_(ql,q3,f,u)*ql(s)*q2(g)*q2(t)*q3(v)
+2xe_(ql,q3,f,u)*ql (t)*q2(g)*q2(s)*q3(v)
+2xe_(q1,q93,g,v) *ql (s)*q2(£) *q2(t) *q3 (u)
-4xe_(ql,q93,g,v)*ql(u)*q2(s)*q2(t)*q3(£f)
+2xe_(ql,q93,g,v)*ql(t)*q2(£f)*q2(s)*q3(u)
-4xe_(q1,93,g,u)*ql (v)*q2(s) *q2(t) *q3 (£)
+2xe_(q1,93,g,u) *ql (s) *q2(£) *q2(t) *q3(v)
+2xe_(q1,93,g,u) *ql (t)*q2(£) *q2(s) *q3(v)
+2xe_(ql,q3,v,s)*ql(u)*q2(£f)*q2(t)*q3(g)
+2*e_(ql,q3,v,s)*ql (u) *q2(g) *q2(t) *q3(£)
-4*e_(ql,q3,v,s)*ql(t)*q2(£) *q2(g) *q3 (u)
-4%e_(ql,q3,v,t)*ql(s)*q2(£) *q2(g) *q3 (uw)
+2*e_(ql,q3,v,t)*ql (u) *q2(£) *q2(s) *q3(g)
+2*e_(ql,q3,v,t)*ql (u) *q2(g) *q2(s) *q3(£)
-2%e_(ql,93,s,u)*ql (v) *q2(£) *q2(t) *q3(g)
-2*e_(ql,93,s,u)*ql (v) *q2(g) *q2(t) *q3 (£)
+4*e_(ql,q3,s,u)*ql (t) *q2(£) *q2(g) *q3 (v)
+2*e_(ql,q3,u,t)*ql (v) *q2(£) *q2(s) *q3(g)
+2*e_(ql,q3,u,t)*ql(v) *q2(g) *q2(s) *q3 (£)
-4*e_(ql,q3,u,t)*ql(s)*q2(£) *q2(g) *q3(v)
-2%e_(q2,93,f,v)*ql(s) *ql (u) *q2(t) *q3(g)
+4*e_(q2,93,f,v)*ql(s) *ql(t) *q2(g) *q3 (u)
-2%e_(q2,93,f,v)*ql (u) *q1 (t) *q2(s) *q3(g)
-4*e_(q2,93,f,s)*ql (v) *ql (u) *q2(t) *q3(g)
+2*e_(q2,93,f,s)*ql (v) *q1(t) *q2(g) *q3 (u)
+2*e_(q2,93,f,s)*ql (u) *q1 (t) *q2(g) *q3 (v)
-2%e_(q2,93,f,u)*ql (v) *q1(s) *q2(t) *q3(g)
-2%e_(q2,93,f,u)*ql (v) *q1(t) *q2(s) *q3(g)
+4*e_(q2,93,f,u)*ql(s) *ql(t) *q2(g) *q3(v)
+2*e_(q2,93,f,t)*ql (v) *q1(s) *q2(g) *q3 (u)
-4*e_(q2,93,f,t)*ql(v) *ql(u) *q2(s) *q3(g)
+2*e_(q2,93,f,t)*ql(s) *ql (u) *q2(g) *q3 (v)
-2xe_(q2,93,g,v)*ql(s)*ql(u) *q2(t) *q3(£)
+4*e_(q2,93,g,v)*ql (s) *ql (t) *q2(£) *q3 (u)
-2*e_(q2,93,g,v)*ql (u) *q1 (t) *q2(s) *q3 (£)
-4xe_(q2,93,g,s)*ql (v) *ql (u) *q2(t) *q3 (£)
+2%e_(q2,93,g,s)*q1 (v) *q1 (£) *q2(f)*q3(u)
+2*e_(q2,93,g,s)*ql (u) *q1 (t) *q2(£) *q3(v)
-2*e_(q2,93,g,u)*ql (v) *q1(s) *q2(t) *q3(£)
-2*xe_(q2,93,g,u) *q1(v) *q1(t) *q2(s) *q3 (f)
+4*e_(q2,93,g,u)*ql (s) *q1 (t) *q2(£) *q3(v)
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+2xe_(q2,93,g,t)*ql(v)*ql(s)*q2(f)*q3(u)
-4xe_(q2,93,g,t)*ql(v)*ql(u)*q2(s)*q3(£f)
+2xe_(q2,93,g,t)*ql(s)*ql (u)*q2(£f)*q3(v)
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This monograph is devoted to the non-perturbative dynamics in the Standard
Model (SM), the basic theory of all fundamental interactions in nature except gravity.
The Standard Model is divided into two parts: the quantum chromodynamics (QCD)
and the electro-weak theory (EWT) are well-defined renormalizable theories in which
the perturbation theory is valid. However, for the adequate description of the real physics
non-perturbative effects are inevitable. This book describes how these non-pertur-
bative effects may be obtained in the framework of spontaneous generation of effective
interactions. The well-known example of such effective interaction is provided by
the famous Nambu-Jona-Lasinio effective interaction. Also a spontaneous generation
of this interaction in the frame-work of QCD is described and applied to the method
for other effective interactions in QCD and EWT. The method is based on N.N.
Bogoliubov’s conception of compensation equations. As a result we then describe
the principal features of the Standard Model, e.g. Higgs sector, and significant
non-perturbative effects including recent results obtained at LHC and TEVATRON.
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