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Preface

The Jahn–Teller effect (JTE) is one of the most fascinating phenomena in

modern physics and chemistry. It emerged in 1934 in a discussion between two

famous physicists, L. Landau and E. Teller, and grew into a general tool for

understanding and an approach to solving molecular and crystal problems,

which is applicable to any polyatomic system. The first formulation of this

effect as instability of molecular configurations in electronically degenerate

states proved to be the beginning of a whole trend which rationalizes the origin

of all possible instabilities of high-symmetry configurations, and the peculiar

nuclear dynamics resulting from these instabilities as well as the origins of all

structural symmetry breakings in molecular systems and condensed matter.

Intensive development of the JTE theory began in the late 1950s together

with a wave of main applications to spectroscopy, stereochemistry, and struc-

tural phase transitions, which lasted a couple of decades. The next significant

resurgence of interest in the Jahn–Teller effect is related to the late 1980s and is

still continuing. It was triggered by one of the most important Nobel Prize

discoveries in physics of our times inspired by the Jahn–Teller effect: the high-

temperature superconductivity. As explained by the authors of this discovery,

‘‘the guiding idea in developing this concept was influenced by the Jahn–Teller

polaron model’’ (J.G. Bednorz and K.A. Müller, in Nobel Lectures: Physics,

Ed. G. Ekspong, World Scientific, Singapore, 1993, p. 424).

Another recent discovery in solid-state physics, the colossalmagnetoresistance,

is also explained with essential implication of the Jahn–Teller effect.With regard

to recent achievements in application to molecular systems, in addition to vast

numbers of solutions of structural, spectroscopic, and magnetic problems, the

Jahn–Teller effect has been most instrumental in explaining the properties of a

novel class of compounds, the fullerenes, and it is now invoked in growing

applications to the origin of reactivity and mechanisms of chemical reactions.

xi



This book is devoted to presenting the JTE phenomenon in its integral unity,

including the background of the theory and its main applications in physics

and chemistry with emphasis on more recent achievements (as explained in

more detail in the introduction). The goal is also to make the JTE more

accessible to a wider circle of readers, meaning more visual explanation of

the origin of the effects, omitting bulk mathematical deductions, where pos-

sible, and, in view of the multidisciplinary nature of the subject, trying to avoid

heavy professional language specific for narrow groups of researchers. To

compensate for any possible inconvenience for some of the readers created

by this style, detailed references and cross-references have been included,

allowing one to reach the desired level of description. We tried to address all

aspects of the JTE theory and applications to all kinds of molecular systems

and crystals, making the book almost encyclopedic in this respect.

The presentation in this book is based on our experience in this field.

I started thinking on the Jahn–Teller effect in 1959 when reading a paper on

the crystal field theory and have continued to work in this field ever since, so

I witnessed and participated in its main achievements. My first book on this

topic in English was published in 1984 (the first book on the JTEwas published

by R. Englman in 1972). Another book prepared together with V.Z. Polinger

for a narrower circle of theoreticians was published in English in 1989 (the

Russian version of this book was published in 1983). Together with my

coworkers we published in 1984 a bibliographic review of the JTE publications.

The new book follows the style of presentation of my first book and it uses

some materials from, and references to, the book of 1989. In essence the new

book is quite novel with regard to both the content and the level of presenta-

tion: in view of the achievements of the last two decades, the previous books,

mentioned above, look rather incomplete (and in some respects obsolete).

However, the book of 1989 authored with V. Z. Polinger remains valid with

respect to many theoretical derivations referred to in the new book.

During the preparation of this book I benefited from the cooperation with

my previous and present coworkers and colleagues from the community of

scientists working in this field. My thanks are due to C.A. Bates, G. Bevilacqua,

G. I. Bersuker, J.E. Boggs, S.A. Borshch, L. S. Cederbaum, A. Ceulemans,

L.F. Chibotaru, J.T. Devreese, J.L. Dunn, R. Englman, J. P. Fackler, Jr.,

P. Garcia-Fernandez, M.D. Kaplan, H. Koizumi, H. Köppel, N.N. Kristoffel,

A.A. Levin, L. Yu, W. J.A. Maaskant, N. Manini, L. Martinelli, T.A. Miller,

M. Moreno, K.A. Müller, I.Ya. Ogurtsov, Yu. E. Perlin, V.Z. Polinger,

D. Reinen, S. S. Stavrov, E. Teller, B. S. Tsukerblat, C.-L. Wang, and

Yu.V. Yablokov. I am especially thankful to V.Z. Polinger for continuing

discussion of JT problems of this book, and to J.E. Boggs for support and
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cooperation. I am thankful also to E. Teller for an encouraging chat on some

aspects of the JTE; unfortunately, he did not survive to write the (promised)

foreword to this book.

I acknowledge the cooperation of many publishers of academic journals and

books for their kind permission to reprint figures, including the American

Chemical Society, the American Institute of Physics, the American Physical

Society, Elsevier Science Publishers, Helvetica Chimica Acta Verlag, the

Institute of Physics, John Wiley & Sons, Kluwer Academic Publishers, NRC

Research Press, Princeton University Press, the Royal Society London,

Springer Verlag, and Taylor & Francis. I am grateful to the team of

Cambridge University Press for help and cooperation in the copy-editing

and production of this book.

Isaac B. Bersuker
Austin, Texas, January 2005

Preface xiii





Abbreviations

AA – adiabatic approximation

AO – atomic orbitals

APES – adiabatic potential energy surface

BCS – Bardeen–Cooper–Schrieffer

BLYP – Becke–Lee–Yang–Parr (DFT functional)

BOD – bicyclooctadienediyl

CASSCF – complete active space SCF

CI – configuration interaction

CJTE – cooperative JTE

CNDO – complete neglect of differential overlap

COT – cyclooctatetraene

CPJTE – cooperative PJTE

DFT – density functional theory

DPH – diphenylhexatriene

EPR (ESR) – electron paramagnetic resonance (electron spin resonance)

EXAFS – extended X-ray absorption fine structure

HF – Hartree–Fock

HOMO – highest occupied MO

HTSC – high-temperature superconductivity

INDO – intermediate neglect of differential overlap

IR – infrared

JT – Jahn–Teller

JTE – Jahn–Teller effect

LSD – local spin density

LUMO – lowest unoccupied MO

MCSCF – multicenter SCF

MCZDO – multicenter zero differential overlap

MFA – mean-field approximation

xv



MINDO – modified INDO

MO – molecular orbitals

MO LCAO – MO linear combination of AOs

MP – metal porphyrin

MPc – metal phthalocyanine
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1

Introduction

This introductory chapter has two goals. The first one is usual for books of

this kind and is aimed at providing the reader with a brief outline of the

background history of the subject, its main content, form of presentation,

and correlation with other related subjects. The second goal is to give this

introduction in a waywhich allows the reader to get a general (althoughmaybe

rather rough and superficial) impression of the whole subject and its possi-

bilities, a very brief insight into this trend without reading the corresponding

chapters or sections. This is done keeping in mind that quite a number of

physicists, chemists, and biologists, who at present are not engaged in the use

of the Jahn–Teller effect, may be interested to know in general the status quo in

this field and make a fast choice of the parts of it they may be interested in.

In other words, the introduction is aimed at giving a very brief qualitative

description of themain features of the Jahn–Teller effect theory in a way useful

also for the reader who has no intention to read the whole book or its parts.

The applications of the theory to chemical problems andmolecular systems are

given in Chapter 7, while the Jahn–Teller effect in specific solid-state problems

is considered in Chapter 8.

1.1 The history and evolution of understanding of the Jahn–Teller effect

The so-called Jahn–Teller (JT) effect (JTE), which includes the proper JTE,

pseudo JTE (PJTE), andRenner–Teller effect (RTE), nowadays forms awhole

trend in the theory of structure and properties of molecules and crystals jointly

termed JT vibronic coupling effects, or abbreviated JTE (this abbreviation is

used throughout the whole book). In fact the JT theory is an approach to (a tool

for) general understanding and solving of molecular and crystal problems,

which is in principle applicable to any system with more than two atoms.
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As for many other fundamental properties of matter, the JTE was first

formulated in the early thirties of the twentieth century [1.1–1.4]. There were

four persons who initiated this trend: L. Landau, E. Teller, H. Jahn, and

R. Renner. In 1934 L.D. Landau in a discussion with E. Teller about his

student’s (R. Renner’s) work first formulated the statement that a molecule in

an orbitally degenerate electronic state is unstable with respect to spontaneous

distortion of the nuclear configuration that removes the degeneracy (see in [1.4]).

Presumably, Landau’s arguments were based on ideas similar to that used in

the proof of the von Neumann–Wigner theorem about crossing electronic

terms [1.5]. This Landau statement was later verified by E. Teller and

H. Jahn and more rigorously formulated as (what is now known as) the

Jahn–Teller theorem [1.1].

Theproofof this theorem(Section2.5) is basedonperturbation theory, inwhich

the influence of the nuclear displacements (vibrations) via electron–vibrational

(vibronic) interactions is considered as a perturbation to the degenerate states,

and only linear terms of this vibronic coupling of the electronic states to the

nuclear displacements are taken into account. Qualitatively (roughly) the origin

of instability of molecules in high-symmetry configurations with orbital degener-

acy can be easily understood if one takes into account that when there are two or

more electronic distributions with the same energy, they are necessarily nontotally

symmetric with regard to the environment (cf. three atomic p states, px, py, and pz),

and hence the electron on any one of them distorts the otherwise symmetrical

environment, thus lowering its energy (Section 2.5).

In the linear approximation (first order in the vibronic coupling) linear

geometries are exceptions from the JT theorem (Renner’s molecule CO2 was

just such an exception, with regard to which, at first sight, Landauwas wrong).

However, linear molecules are subject to similar instabilities when the quad-

ratic terms of vibronic coupling are taken into account [1.3], and then it is

called the RTE (Section 4.4). Another exception from the JT theorem is a spin

double degenerate (Kramers) term, which cannot be split by nuclear displace-

ments (it splits under magnetic fields only).

Before World War II only one more paper was devoted to the JTE, that of

Van Vleck [1.6]. In this paper the simplest JT problem of a twofold degenerate

electronic term E interacting with twofold degenerate e vibrations (hereafter

the vibrational modes are indicated with small letters), the E� e problem, was

explored, and it was shown that in this case the adiabatic potential energy

surface (APES) has the form of a ‘‘Mexican hat’’ (Section 3.2).

Among other things the author of this publication Van Vleck, wrote that

‘‘it is a great merit of the JTE that it disappears when not needed.’’ This

declaration reflects the situation when there was very poor understanding
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of what observable effects should be expected as a consequence of the JT

theorem. The point is that the simplified formulation of the consequences of

the JT theorem as ‘‘spontaneous distortion’’ is incomplete and therefore

inaccurate, and may lead to misunderstanding. In fact, there are several (or

an infinite number of) equivalent directions of distortion (like in the three

p-state directions in the example above), and the system may resonate

between them (the dynamic JTE). In a more rigorous treatment (Chapters

3–5) the lack of minimum of the APES results in a variety of novel properties,

but it does not necessarily lead to observable nuclear configuration distor-

tion, and this explains why such distortions often cannot be observed directly

(Section 7.1).

This period of ‘‘stagnation,’’ misunderstanding of the JTE, lasted almost

two decades. Even in 1960 Low in his book [1.7] stated that ‘‘it is a property of

the JTE that whenever one tries to find it, it eludes measurements.’’

In 1950 Abragam and Price [1.8] first revealed the dynamic nature of the JT

distortions by analyzing the temperature dependence of ESR spectra of Cu(II)

compounds [1.9] (Section 6.3.1). The usually well-defined anisotropy of the

ESR signal from octahedral complexes of Cu(II) disappeared at certain

temperatures due to the thermal averaging over the different directions of JT

distortions in the E� e problem (in fact the JT dynamics is more complicated,

involving tunneling splitting, Sections 5.3 and 6.3.1). This was seemingly the

first experimental observation of the JTE.

In 1957 Öpik and Pryce [1.10] developed a method of calculation of the

possible JT distortions (Section 3.3) and revealed the number and kind of

extrema points of the APES for threefold degenerate states interacting with

both e and threefold degenerate t2 vibrations, the linear T� (eþ t2) problem

(Section 3.3), showing that in this case either tetragonal or trigonal distortions

are possible. In this paper the PJTE problem was formulated for the first time.

The idea behind the PJTE is that not only exact degeneracy (required by the

JT theorem), but sufficiently close-in-energy (pseudodegenerate) states may

produce instabilities, similar to those of the JTE (Section 4.1). The condition

of the PJT instability requires that the energy gap between the mixing states is

sufficiently small in comparison with other vibronic parameters of the system.

The PJTE became most important later when it was shown that it is the only

source of instability of high-symmetry configurations of polyatomic systems in

nondegenerate states.

In 1957–58 Longuet-Higgins et al. [1.11] and independently Moffit and

Thorson [1.12] calculated the vibronic energy levels of systems with the linear

E� e problem, transitions to and from these states, and band shapes of optical

spectra involving such degenerate states. It was the first demonstration of the
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JTE in optical spectroscopy showing that it results in specific forms of the band

shape (Section 6.3.1). Liehr and Ballhausen [1.13] explored the JT E� e

problemwith quadratic terms of vibronic interactions and revealed the so-called

warping of the Mexican-hat-type APES. This warping results in the formation

of three equivalentminima along the bottom of the trough, which correspond to

three directions of tetragonal distortions of the system (Section 3.2).

An explosion of publications began at this point, from which we mention

here a few main contributions, which explored in detail the origin of differ-

ent kinds of JT dynamics. An account for the publications of the whole

period from inception up to 1979 inclusive is given in the bibliographic

review [1.14].

In 1961–63 Bersuker [1.15] first considered the splitting of the lowest vibro-

nic energy levels due to the tunneling of the system between the equivalent

distorted configurations (Section 5.3) and its influence on ESR spectra

(Section 6.3.3). In 1964 O’Brien [1.16] calculated numerically the vibronic

energy levels in the E� e problem with linear and quadratic terms of vibronic

coupling included (Section 3.2). In 1965 Ham [1.17] generalized the idea of

vibronic reduction factors (Section 5.6). The latter are of special interest since

they allow one to calculate physical properties of electronic origin without

fully solving the vibronic coupling problem.

An important development of the JTE theory began with the treatment of

interactions of JT centers, especially regular JT centers in crystals, known as

the cooperative JTE (CJTE) (Sections 8.2–8.4). Kanamori [1.18] in 1960 first

explicitly explored such cooperative phenomena in JT crystals, while Elliot

et al. [1.19] and other authors essentially advanced this important trend in

application to rare-earth zircons (Section 8.2.1). In 1966 Bersuker [1.20]

first suggested the vibronic theory of ferroelectricity as a cooperative PJTE

(Section 8.3). While the idea of interactions between JT centers in crystals and

the consequent ordering of JT distortions was physically transparent and quite

understandable, the very possibility of the PJTE in dielectric crystal centers

with relatively large band energy gaps and their interaction to lead to ferroelectric

(and other) phase transitions was questionable at that time.

The book of Englman in 1972 was the first to give a comprehensive review of

this field as a whole [1.21] (before that a review of this topic was published by

M.D. Sturge [1.22]). With this book the first stage of the JTE theory was

accomplished, resulting in a full understanding of the basics of this phenom-

enon: the JTE became a firmly established trend in the theory of matter. This

was also marked by the beginning of separate JT symposia; the first four

symposia took place in Bad Honnef (1976), Leoni (1977), Trento (1978), and

Chantilly (1979).
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In the 1970s most of the further efforts in this field were devoted to spectro-

scopic consequences of the JTE (Chapter 6), aswell as to cooperative phenomena

in crystals (Sections 8.2 and 8.3). During the 1980s, alongside applications of

the JTE to physical and chemical phenomena, new developments of the

theory emerged. First, numerical calculations of vibronic coupling effects

became more widespread, allowing a more detailed insight into observable

JTE (here we stop citing the names of contributors because they are many;

they can be found in the books and reviews cited below, as well as in the

corresponding sections with more detailed description).

Among chemical applications attentionwas paid to the JTE in stereochemistry

and chemical activation (Section 7.1), and in mixed-valence compounds

(Section 7.6.2). In the general theory more attention was also paid to the

multimode problem (Section 5.4). Quite a number of papers in the 1970s and

1980s were devoted to the JTE in impurity centers in crystals (Section 8.1).

At this point the geography of JT symposia became more widespread and they

attracted more participants: the Vth Symposium took place in Oxford (1980),

the VIth in Nijmegem (1981), the VIIth in Liblice (1983), the VIIIth

in Marburg (1985), the IXth in Nottingham (1987), the Xth in Kishinev

(1989), the XIth in Ovronnaz (1992), the XIIth in Tartu (1994), the XIIIth in

Berlin (1996), the XIVth in Erice (1998), the XVth in Boston (2000), and the

XVIth in Leuven (2002), and an international workshop was organized in

Beijing (2004).

The next important achievement of the theory was made by proving that

the PJTE not only explains possible structural instabilities of systems in pseudo-

degenerate electronic states, but also is the only possible source of instability

of such systems (Section 4.1). Moreover, it was shown that any instability of

high-symmetry configurations of any system is of JT (in degenerate states),

PJT (in nondegenerate states), or RT (in linear systems) origin.With this result

all polyatomic systems became subject to JT vibronic coupling effects, and any

of their spontaneous distortions is of JT, PJT, or RT origin.

A new wave of increasing interest in the JTE emerged in the late 1980s and

early 1990s following the discovery of high-temperature superconductivity,

which was inspired by the JTE, and the colossal magnetoresistance, the origin

of which is explained in essence by the JTE (Section 8.4). In the 1990s several

other advances emerged in this field. First, the theory of the JTE was enriched

by exploring its tight relation to the so-called topological phase problem

(Section 5.7), with important consequences for observable properties of JT

systems (Section 5.3). Also the JTE was shown to be very instrumental in

explaining the properties of fullerenes, including their superconductivity

(Sections 3.4, 5.6, and 7.5.3). Further achievements were reached in treating

1.1 The history of the JTE 5



phase transition with the CJTE (Section 8.2). Novel fields of applications

emerged in reactivity and mechanisms of chemical reactions (Chapter 7).

Thus the evolution of understanding of the JTEwent from the simple idea of

spontaneous distortions of some very specific systems to a general method

of solving molecular and crystal problems via revealing the complex JT

dynamics, tunneling splitting, cooperative phenomena, and the essential role

of the PJTE which includes all the polyatomic systems under the same JT

vibronic coupling approach. The role and place of this approach in modern

physics and chemistry is outlined in Section 1.2. Earlier stages of development

of this field are presented in a series of books and reviews [1.22–1.57]; the

intention of this book is to present a full account of the trend as a whole.

1.2 The role and place of the JTE in modern physics and chemistry

As mentioned in the previous section, in the evolution of understanding

and development of the theory the JTE grew into a general approach to

understanding and solving molecular and crystal problems. Now we intend

to explain why this approach is different from other existing approaches and

how they are interrelated.

First we notice that the main interaction which results in the JTE is the

vibronic (electron–vibrational) coupling between electronic and nuclear

motions. Vibronic interaction in molecules or electron–phonon interaction

in crystals is one of the main elements of any theory of matter; it has been

well studied since the very inception of quantummechanics. So what is novel in

the JT approach to the problem?

Consider polyatomic systems with discrete energy spectra. For them the

essential difference between the usual approaches that include vibronic

(or electron–phonon) coupling and the JT approach is in the number of

electronic states and hence the kind of vibrations involved in this procedure.

While the traditional approaches consider the coupling of phonons (vibra-

tions) to a given (usually ground) electronic state, the JT approach requires

necessarily two or more (degenerate or pseudodegenerate) electronic states

that are mixed under these vibrations in a nonadiabatic coupling. In other

words, the JTE involves a new quality, namely, the mixing of electronic states

by vibrations, and the back influence of this mixing on the nuclear motion,

resulting in special coupled electron–nuclear dynamics that influences all the

properties of the polyatomic system.

Since the ‘‘one-state’’ coupling may be described by the diagonal

matrix element of the operator of vibronic coupling, while the mixing of

different electronic states is an off-diagonal (nonadiabatic) effect, the two
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approaches, ‘‘usual’’ and JT, may be related as diagonal and off-diagonal

vibronic (electron–phonon) coupling. The diagonal coupling is nonzero for

totally symmetric vibrations only, and therefore they do not distort the sym-

metry of the system, whereas the off-diagonal elements involve low-symmetry

JT distortions.

In the case of metals or semiconductors with states that are continuous

or very close in energy the traditional theory includes all possible inter-

actions with the phonons, but in a simplified manner without involving the

nonadiabatic coupling between the electronic and nuclear motions. In other

words the non-JT approach ignores the mixing of electronic states by nuclear

displacements and the back influence of this mixing on the phonon spectrum.

The JT electron–phonon coupling in metals involves many electronic

states, which in our classification is a combination of JT (at the Fermi level)

and PJT problems (Section 4.2). This is the so-called band JTE considered in

Section 8.2.5.

An illustration of the JT approach to electron–phonon coupling in solids

may be found in themodern attempts to explain the origin of high-temperature

superconductivity (HTSC) (Section 8.4). Experimental data show that the

electron–phonon interaction is essential in this phenomenon. The existing

Bardeen–Cooper–Schrieffer (BCS) theory of superconductivity takes into

account the electron–phonon interaction ‘‘in general’’ as an interaction of the

electrons with the ‘‘bath of phonons’’ without detailed analysis of the local

aspects of this interaction leading to the JTE. As shown in Section 8.2.5, for

broad-band metals with widely delocalized electrons the JT electron–phonon

coupling is weak and the JTE may be ignored. This is why the BCS theory

explains the origin of superconductivity at low temperatures without

taking into account the JTE. For narrower bands (which are characteristic

of systems withHTSC) the JTE becomes significant, and the application of the

achievements of the JTE theory to the HTSC problem seems to be most

appropriate. This is indeed the subject of most current attempts to treat the

HTSC yielding reasonable (reassuring) results (Section 8.4).

Another important point is the universality of JT symmetry breaking. The

most widespread knowledge about the JTE is that it results in distortion of

high-symmetry configurations of polyatomic systems. As mentioned above,

this statement may be inaccurate, but under certain conditions the JTE does

indeed trigger a breaking of the high symmetry of the system (Sections 7.1

and 8.2). Symmetry breaking is an important phenomenon employed to

explain the evolution of the universe by cooling, beginning from the big

bang. In condensed matter (atoms, molecules, crystals) symmetry breaking

looks like a phase transition that takes place under the condition that at a

1.2 JT vibronic coupling effects 7



certain temperature both the symmetry and the entropy of the system become

lower at lower temperatures, and this condition is satisfied in the presence of

the JTE (Sections 4.5 and 8.2). Moreover, since the JTE has been shown to be

the only source of spontaneous distortion of high-symmetry configurations,

we come to the conclusion that the JTE is a unique mechanism of all the

symmetry breakings in condensed matter (Section 8.2).

With regard to computational chemistry and physics another question

emerges. As follows from that said above and in more detail from Section 2.5,

the JTE is basically a perturbational approach in which two or more electronic

states are mixed by the vibronic coupling. The main result of this perturbation

is the instability of the reference configuration meaning the lack of minimum

on the APES at the point of degeneracy or pseudodegeneracy. On the other

hand, modern computational (numerical) methods allow one to (relatively

easily) calculate the APES with its main features including the extrema points.

These computationally revealed features of the APES obviously cover the

predictions of the JTE with regard to instabilities. Then where is the heuristic

role of the JTE in these problems?

To begin with, numerical computations of APES are (so far) limited to

molecular systems and clusters of moderate size and limited numbers of

vibrational degrees of freedom, and this does not allow one to consider

extended systems. The JTE has no such limitations, but this is not the main

point of importance of the JTE. More important is the general relevance of the

JTE. Indeed, it is well known that the mainstream computational chemistry

calculations of electronic structure at fixed nuclei that reveal the APES of

specific molecular systems may be regarded as (have all the features of)

computer experiments; the results cannot be transferred directly to other

molecules. To rationalize such computer data, i.e., to explain their origin,

they should be put in correspondence with more general models obtained by

simplification and reasonable assumptions introduced in the first principles.

The JTE serves as an approved general model, which allows one to rationalize the

results on molecular structure and properties obtained by other methods.

Note that in the presence of degeneracy or pseudodegeneracy conventional

electronic structure calculations with fixed nuclei, strictly speaking, do not

predict observable properties; the calculated APES in these cases loses

its physical meaning of the potential energy of the nuclei because of the

strong nonadiabacity (Sections 2.1 and 2.5). The vibronic coupling theory

thus remains here the only criterion of reliability of the results. To calculate

observable magnitudes, the system of coupled equations (2.6) should

be solved, and this contributes to a higher level of computational chemistry

and physics.
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1.3 Main goals of this book and means of their realization

The main goal of this book is to present a generalized picture of the status quo

in the theory and applications of the JTEwith a stronger emphasis on the latest

achievements. Following the request of the publisher and our experience with

previous books on related subjects, the presentation of the material is given in

a way suitable for a wide circle of college-level physicists and chemists. This

means that we avoid bulky mathematical deductions (or give them in a way

that they may be skipped, if not necessary) and restrict heavy professional

language, where possible. On the other hand, detailed citations and a full list of

references to each chapter are included to allow the reader to go to original

work for more details, if necessary.With regard to the citations (of which there

are thousands) we tried to avoid listing the authors’ names in the text (but they

are all given in the citations!). Several names mentioned above in the brief

history are exceptions made for the ‘‘founders’’ of this trend, meaning people

who contributed essentially to the first stages of its development; without their

names there is no history of this subject.

The material of this book is arranged as follows. Chapter 2 introduces the

problem of vibronic coupling and the JT theorem. Chapters 3 and 4 formulate

in general the JT, PJT, andRTproblems and reveal their APES,while Chapter 5

discusses the solutions of the JT problems, including perturbation theory,

numerical methods, tunneling splitting, the multimode problem, vibronic

reduction factors, and the topological phase implications.

The theoretical background of the JTE in one of the most widely used

experimental methods of investigation – spectroscopy – is given in Chapter 6.

Chapter 7 (largest in volume and number of cited publications) deals with all

kinds of applications of the JT theory to specific molecular formations, includ-

ing molecules, radicals, and ions from different classes of compounds, plus

clusters, coordination compounds, andmixed-valence systems, as well as some

more general chemical problems. Chapter 8 is devoted to specific JT problems

in solid-state physics, including impurity centers in crystals, the cooperative

JTE in phase transitions (the largest part of the chapter), and contributions to

the JTE in HTSC and colossal magnetoresistance.

The appendix, subject index and formula index are deemed to help the

reader navigate through the vast material of this book with a large number

of cross-references. The Formula Index is of special interest, allowing

the reader to easily find the specific molecular and solid-state systems con-

sidered with regard to the JTE, thus contributing to the attempt to introduce

encyclopedia features with regard to the trend under consideration. The list of

abbreviations is intended to play a similar helpful role.
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2

Vibronic interactions

In this chapter we present the basic expressions for the changes in electron–

nuclear interactions due to nuclear motions (vibronic interactions) in degen-

erate and nondegenerate electronic states, which lie in the background of the

JT vibronic coupling theory.

2.1 The adiabatic approximation

In molecular and solid-state theory the electron–nuclear interaction is treated

quantum-mechanically, e.g., based on the Schrödinger equation:

ðH�EÞCðr; QÞ¼ 0 (2:1)

where C(r, Q) is the full wavefunction, r and Q denote the whole set of

coordinates of the electrons ri, i¼ 1, 2, . . ., n, and nuclei Q�, �¼ 1, 2, . . ., N,

respectively,H is the energy operator (Hamiltonian) of the system, andE is the

total energy. The exact solution of Eq. (2.1) is extremely difficult except for

very simple systems of two or three atoms. Fortunately there is a very good and

widely acceptable approximation that makes the problem soluble for the

majority of all small to moderate and some large to very large molecular

systems and crystals, the adiabatic approximation (AA). Notice that the very

notion of nuclear configuration (geometry of the nuclear framework) of poly-

atomic systems employs essentially the AA.

The AA is based on the fundamental inequality of the masses and velocities

of electrons and nuclei. Since the nuclear mass is about 2000 times that of the

electron, the velocity of the latter is much larger than that of the former.

Therefore we can assume that for each instantaneous positionQ of the nuclei,

a stationary (relaxed) distribution of the electronic cloud C(r, Q) is attained,

while the nuclei move in the averaged field of the electrons, which is thus a

function of the nuclear coordinatesQ. This assumption enables us to solve the
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problem in two steps: first we solve the electronic part of the Schrödinger

equation (2.1) for each of the fixed nuclear coordinates Q and then we use the

obtainedmean electronic energy as the potential energy for the nuclear motions.

Divide the total Hamiltonian H in Eq. (2.1) into three parts:

H ¼ Hr þHQ þ Vðr; QÞ (2:2)

where Hr is the electronic component which includes the kinetic energy of the

electrons and the interelectronic electrostatic interaction, HQ is the kinetic

energy of the nuclei, andV(r,Q) is the energy of the interaction of the electrons

with the nuclei and internuclear repulsion.

In Cartesian coordinates

Vðr;RÞ ¼
X
i;�

hi;� þ
X
�;�

G�;� (2:2a)

where

hi;� ¼ �e2Z�

�
~ri � ~R�

�� �� (2:2b)

and

G�;� ¼ e2Z�Z�

�
~R� � ~R�

�� �� (2:2c)

The operator V(r, Q) can be expanded as a series of small displacements of

the nuclei about the pointQ�¼Q�0¼ 0, chosen as the origin (hereafter we use

symmetrized coordinates Q�, for nuclear displacements, defined below,

instead of ~R�):

Vðr;QÞ ¼ Vðr; 0Þþ
X
�

ð@V=@Q�Þ0Q�þ
1

2

X
�;�

ð@2V=@Q� @Q�Þ0Q�Q� þ � � �

(2:3)

Taking only the first term of this expansion as the potential energy of the

electrons in the field of nuclei fixed atQ�¼ 0, one can solve the electronic part

of the Schrödinger equation

½HrþVðr; 0Þ� "0k�’kðrÞ ¼ 0 (2:4)

and obtain a set of energies "0k and wavefunctions jk(r) for the given nuclear

configuration corresponding to the point Q�0¼ 0.

In order to see how these solutions vary under nuclear displacements, the

full Schrödinger equation (2.1) must be solved. Let us expand the total wave-

function C(r, Q) in terms of electronic functions jk(r),

2.1 The adiabatic approximation 13



Cðr; QÞ ¼
X
k

�kðQÞ’kðrÞ (2:5)

where the expansion coefficients �k(Q) are functions of the nuclear coordi-

nates. On substituting Eq. (2.5) into Eq. (2.4) one obtains, after some simple

transformations, the following system of coupled equations for the energies

and the functions �k(Q):

½HQ þ "kðQÞ � E ��kðQÞ þ
X
m6¼k

WkmðQÞ�mðQÞ ¼ 0 (2:6)

where Wkm(Q) denotes the electronic matrix element of vibronic interactions,

i.e., that part of the electron–nuclear interaction V(r, Q) which depends on Q:

Wðr; QÞ ¼ Vðr; QÞ � Vðr; 0Þ

¼
X
�

ð@V=@Q�Þ0Q� þ 1

2

X
�;�

ð@2V=@Q� @Q�Þ0Q�Q� þ � � � (2:7)

and

"kðQÞ ¼ "0k þWkkðQÞ (2:8)

is the potential energy of the nuclei in themean field of the electrons in the state

jk(r). In the absence of electronic degeneracy or pseudodegeneracy e(Q) is the

potential energy of the nuclei in the field of the electrons in this state, the

adiabatic potential energy surface (APES).

It is seen from the system of coupled equations (2.6) that if vibronic mixing

of different electronic states can be ignored (Wkm(Q)¼ 0 for k 6¼m), coupling

between these states vanishes, and the system of equations decomposes into a

set of simple equations:

½HQ þ "kðQÞ � E��kðQÞ ¼ 0; k ¼ 1; 2; 3; : : : (2:9)

Each of these equations for given k represents the Schrödinger equation for

the nuclei moving in the mean field ek(Q) of the electrons in the state jk(r).

In other words, in the case under consideration themotions of the nuclei and

electrons are separated and the problem as a whole can be solved in the two

stages mentioned above. In the first stage the electronic states jk(r) are

determined as solutions of Eq. (2.4) and used to calculate the potential energy

of the nuclei ek(Q) by means of Eq. (2.8). In the second stage, the wave-

functions �k(Q) and energies E of the nuclei are determined by Eq. (2.9), the

total wavefunction being C(r, Q)¼jk(r)�k(Q). This is the crude adiabatic

approximation, or the Born–Oppenheimer approximation [2.1, 2.2].
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Thus the simple (crude) AA is valid if and only if the terms of the vibronic

mixing of different electronic states in Eq. (2.6) can be ignored. It can be shown

[2.3] that the perturbation of the total wavefunction by vibronic interactions is

sufficiently small if

�h! � "0m � "0k
�� �� (2:10)

where �ho is the energy quantum of vibrations in the electronic state under

consideration (k or m), and "0m and "0k are the energy levels of Eq. (2.4).

Equation (2.10) may be considered as the criterion of validity of the adiabatic

approximation. Its deduction implies that the electronic state is stable and gene-

rates localized vibrational states. Obviously, criterion (2.10) does not hold when

the two electronic states are degenerate or close in energy (pseudodegenerate).

In the full adiabatic approximation the electronic part of the Schrödinger

equation includes the electron–nuclear interaction V(r, Q) in the whole range

of nuclear coordinates, making the electronic wavefunction j(r, Q) and ener-

gies e(Q) dependent on Q as on a parameter (cf. Eq. (2.4)):

½Hr þ Vðr; QÞ � "0kðQÞ�’kðr; QÞ ¼ 0 (2:11)

Accordingly, the full wavefunction is taken asC(r, Q)¼jk(r, Q)�k(Q), and

Eqs. (2.6) are significantly modified, mainly because of the Q derivatives (in

HQ) applied to j(r, Q): instead of Wkm(Q) in Eqs. (2.6) we get the operator of

nonadiabacity �km(Q) [2.1–2.3] (M� is the nuclear mass),

�kmðQÞ ¼ ��h2
X
�

ð1=M�Þ A
ð�Þ
km ðQÞ @=@Q� þ 1

2
B
ð�Þ
km ðQÞ

� �
(2:12)

with

A
ð�Þ
kmðQÞ ¼

Z
@� ’�

k @’m=@Q�; B
ð�Þ
km ðQÞ ¼

Z
@� ’�

k @
2’m=@Q

2
�

If the electronic state is nondegenerate and the criterion (2.10) holds, the full

AA is more accurate than the simple one. General estimates by orders of

magnitude show (see, e.g., in [2.3]) that in the simple AA the error in energy

is of the order ðm=MÞ
1
2 � 2:3� 10�2 (m and M are the electron and proton

masses, respectively), while in the full AA the error is ðm=MÞ
3
4 � 3� 10�3.

However, if the criterion (2.10) is not satisfied, as in the case of electronic

degeneracy or pseudodegeneracy, none of these estimates is valid, and the

problem should be solved in another way. In these cases Eqs. (2.6) (rather than

the full AA with �km instead of Wkm) are more suitable as a starting point of

the JT vibronic coupling theory.
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The nonadiabatic corrections (2.12) have diagonal (k¼m) and off-diagonal

(k 6¼m) terms. Both types of corrections depend on the rate of wavefunction

changes with nuclear displacements, which is the strongest in the regions of the

Q� coordinates where the energies of the states under consideration are close.

Therefore, in the same approximation as the AA, the vibronic coupling of the

degenerate term to other terms may be neglected, provided the energy gaps

between themare sufficiently large (however, see Section 4.1). Then for an f-fold

degenerate term only f coupled equations remain in the system of Eqs. (2.6).

The nonadiabatic coupling between different electronic states at APES

intersections described by the terms (2.12) is presently a topic of intensive

study, especially as related to corresponding chemical reactions and collision

scattering [2.4–2.23]. This trend was developed significantly during the last

decade. It emerged in connection with special properties of systems with

conical intersections on their APES (Section 3.2) where the nonadiabatic

corrections in Eq. (2.6) produce essential singularities. A related subject, the

topological (geometric) phase problem is one of the most studied too in this

field (Section 5.7).

For strong vibronic coupling the electronic wavefunctions in the adiabatic

approximation change rapidly with the nuclear coordinatesQ and have singu-

larities at conical intersections (similar to that of the APES). This means that

the nonadiabatic corrections (2.12), as off-diagonal coupling elements, may

also have singularities, which complicate the solution of Eqs. (2.6). To avoid

these difficulties, it is sometimes useful to pass to diabatic wavefunctions,

obtained approximately as an adiabatic-to-diabatic matrix transformation.

The latter is chosen to produce wavefunctions that are smooth functions of

Q with the kinetic energy as a diagonal matrix (in case of strong vibronic

coupling) and the potential energy acquiring off-diagonal elements, which are

also functions of Q with no singularities. In a recent application to JT systems

[2.10, 2.11] the authors [2.11] extended their diabatic approach to be able to

treat seams of symmetry-allowed conical intersections by means of construct-

ing ‘‘regularized’’ diabatic states, in which only the singular parts of the

nonadiabatic coupling elements are removed. Diabatic bases in simpler sys-

tems are discussed, e.g., in [2.8].

The treatment of nonadiabacity in the diabatic approximation led to some

interesting consequences, one of which is the demonstration of the full analogy

between the equations obtained in this scheme for molecular systems with

vibronic coupling and the Yang–Mills equations of field theory derived to

describe interactions between elementary particles (see [2.20] and references

therein). For reviews and further achievements in the solution of nonadiaba-

city problems see [2.12–2.23].
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2.2 Vibronic interactions. Vibronic coupling constants

If by solving the electronic Schrödinger equation (2.4) with nuclei fixed at the

point of reference configuration Q�¼ 0 (see below) we get states that are

degenerate or relatively close in energy, then the criterion (2.10) does not

hold and the AA is invalid. To solve the problem in these cases, the system

of Eqs. (2.6), which couple the several degenerate or pseudodegenerate states,

should be solved.

As can be seen from Eqs. (2.6), the mixing of the states is put into effect by

the matrix elements Wkm(Q) of the vibronic interaction operator (2.7) that

contains linear, quadratic, cubic, etc., terms. For most cases it is enough to

take into account the linear and quadratic terms in order to reveal the vibronic

effects, provided the initial configuration has been chosen correctly (cubic

terms may also be important, Section 3.2). In the quadratic approximation

the use of normal coordinates essentially simplifies the investigation due to

symmetry considerations and application of group theory.

Let us define the reference configuration which is the starting nuclear

arrangement in space at Q�¼ 0. First, the reference configuration is that of

high symmetry for which the electronic term is degenerate or pseudodegene-

rate. This definition gives no unique indication of the real geometric arrange-

ment of the atoms because there may be different configurations that produce

degenerate or pseudodegenerate states. For instance, an AX4 systemmay have

degenerate states in its tetrahedral, planar-quadratic, pyramidal-quadratic,

and bipyramidal-triangular configurations. The JTE in these cases is signifi-

cantly different, resulting in a variety of different observable properties.

Therefore, in the absence of other information all these possibilities should

be tried. But there is no degeneracy in any configuration intermediate to these

four. The symmetries of configurations that produce degenerate terms are

known from group theory (Section 2.5 and Appendix).

For pseudodegeneracy the choice of the reference configuration is more

complicated since electronic states that are close in energy may be present in

any nuclear configuration. However, in this case the notion of high symmetry

has a very good criterion: the first derivative of the APES with respect to the

distortions under consideration at the high-symmetry point should be zero. As

shown below (Section 2.5), at the point of electronic degeneracy this first

derivative of the APES in nonlinear systems is nonzero, but it is such because

of the vibronic interactions. Without the vibronic coupling this derivative is

zero too.

In other words, the reference configuration in JT vibronic coupling pro-

blems should have sufficiently high symmetry to produce either a degenerate
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term (in proper JT and RT systems), or states that are close in energy (pseudo-

degenerate) with zero first-order derivatives of the lower branch of the APES

with respect to the expected distortions.

For the high-symmetry reference configuration the normal coordinates can

be related to normal vibrations. The latter have a real meaning only for stable

configurations. In the adiabatic approximation for nondegenerate electronic

states normal vibrations can be determined by Eq. (2.9) in which the APES

" ¼ "0k þWkkðQÞ is taken in the aforementioned quadratic (harmonic) approxi-

mation. With quadratic terms includedWkk(Q) (the diagonal matrix element of

a part of Eq. (2.7)),

WkkðQÞ ¼
X
�

ð@Vkk=@Q�Þ0Q� þ
1

2

X
��

ð@2Vkk=@Q� @Q�Þ0Q�Q� (2:13)

can be reduced by means of normal coordinates to the canonical (diagonal)

shape, in which the linear and cross-terms containing Q�Q� vanish (and only

terms of type ��c�Q
2
� remain), while the kinetic energy operator maintains its

additive form: �ð�h2=2Þ��M
�1
� ð@=@Q�Þ2.

The normal coordinates can be determined by means of symmetrized dis-

placements, meaning collective (concerted) nuclear displacements which, under

the symmetry operation of the molecular point group, transform according to

one of its irreducible representations; they can be found by methods of group

theory [2.24–2.26] and are available in tabular form. If a molecule hasN atoms,

then the number of vibrational degrees of freedom and hence the number

of symmetrized displacements is 3N� 6 (or 3N� 5 for linear molecules).

Examples of their classification by irreducible representations are shown in

Table 2.1. Tables of irreducible representations of the most usable point groups

are given in the appendix. The corresponding atomic displacements are illu-

strated in Figs. 2.1–2.4. Expressions for symmetrized displacements in terms of

Cartesian coordinates (shown in Fig. 2.3(a) and 2.4(a)) are given in Table 2.2.

Table 2.1. Classification of symmetrized displacements � for several types of

molecules with N atoms (the number of normal vibrations 3N� 6 is indicated in

parentheses)

N Symmetry Example, shape �

4 (6) C3v NH3, pyramid A0
1;A

00
1 ;E

0;E 00

5 (9) Td MnO�
4 , tetrahedron A1;E;T

0
2 ;T

00
2

7 (15) Oh CrF3�
6 , octahedron A1g;Eg;T2g;T2u;T

0
1u;T

00
1u
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c d

a

y1

x1

x3 x2

y3 y2

b

Fig. 2.1. Symmetrized displacements of atoms in a triangularmolecular system:
(a) labeling of Cartesian displacements; (b) totally symmetric displacements of
the type A1; (c) E

0-type Qy displacements; and (d) E 0-type Qx displacements.

Fig. 2.2. Symmetrized displacements of atoms in a square-planar molecular
system: (a) labeling of Cartesian displacements; (b) totally symmetric dis-
placements of the type A1; (c) B1g-type Qy displacements; and (d) B2g-type
displacements.
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z2

y2
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Fig. 2.3. The shapes of symmetrized displacements of atoms in an octahedral
complex ML6: numbering and orientation of Cartesian displacements
(a), totally symmetric A1g (b), Eg-type Qe (c), Eg-type Q# (d), and T2g-type
Q� (e) displacements. For degenerate displacements, any linear combination
of them can be realized, e.g., (Q�þQ�þQ�)/˛3 for T2g (f).
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a

c

g

e

y2 z2z3

y3

y1

z1

x3 x2

x1

x4

y4

z4

Fig. 2.4. The shapes of symmetrized displacements of atoms in a tetrahedral
complex: numbering and orientation of Cartesian coordinates (a), totally
symmetric A1 (b), E-type Qe (c), E-type Q# (d), T2-type Q� (e), T

0
2-type Q0

�
(f) displacements. In the case of degeneracy any combination of component

displacements can be realized, e.g., ðQ� þQ� þQ�Þ=˛3 (g) and ðQ0
� þQ0

� þ
Q0

�Þ=˛3 (h).

2.2 Vibronic interactions 21



Table 2.2. Symmetrized displacements Q (normal coordinates) expressed by

Cartesian coordinates for some trigonal, tetragonal, tetrahedral, and octahedral

systems (Figs. 2.1–2.4) (X0, Y0, Z0 are the Cartesian displacements of the

central atom, Sz is an axial vector)

Q
Symmetry
type

Transformation
properties

Expressions by
Cartesian coordinates

Trigonal systems X3. Symmetry D3h

Q
ðtÞ
x

x ðX1 þ X2 þ X3Þ=
ffiffiffi
3

p

E 0

Q
ðtÞ
y

y ðY1 þ Y2 þ Y3Þ=
ffiffiffi
3

p

Q
ðrÞ
a2

A0
2 Sz ð2X1 � X2 �

ffiffiffi
3

p
Y2 � X3 þ

ffiffiffi
3

p
Y3Þ=

ffiffiffiffiffi
12

p

Qa A0
1 x2þ y2 ð2Y1 þ

ffiffiffi
3

p
X2 � Y2 �

ffiffiffi
3

p
X3 � Y3Þ=

ffiffiffiffiffi
12

p

Qx 2xy ð2X1 � X2 þ
ffiffiffi
3

p
Y2 � X3 �

ffiffiffi
3

p
Y3Þ=

ffiffiffiffiffi
12

p

E 0

Qy x2� y2 ð2Y1 �
ffiffiffi
3

p
X2 � Y2 �

ffiffiffi
3

p
X3 � Y3Þ=

ffiffiffiffiffi
12

p

Square-planar systems ML4. Symmetry D4h

Qa A1g x2þ y2 (1/2)(Y1þX2�Y3�X4)

Q1 B1g x2� y2 (1/2)(Y1�X2�Y3þX4)

Q2 B2g xy (1/2)(X1þY2�X3�Y4)

Q0
a A2g Sz (1/2)(X1�Y2�X3þY4)

Qx x (1/2)(X1þX2þX3þX4)
E1u

Qy y (1/2)(Y1þY2þY3þY4)

Q0
x x X0

E 0
1u

Q0
y y Y0

Tetrahedral systems ML4. Symmetry Td

Qa A1 x2þ y2þ z2 (1/2)(Z1þZ2þZ3þZ4)

Q# 2z2� x2� y2 (1/2)(X1�X2�X3þX4)
E

Qe
ffiffiffi
3

p
ðx2 � y2Þ (1/2)(Y1�Y2�Y3þY4)

Q0
� x, yz (1/2)(Z1�Z2þZ3�Z4)

Q0
� T 0

2 y, xz (1/2)(Z1þZ2�Z3�Z4)

Q0
� z, xy (1/2)(Z1�Z2�Z3þZ4)

Q00
� x, yz (1/4)ð�X1 þ X2 � X3 þ X4Þ

þ ð
ffiffiffi
3

p
=4Þð�Y1 þ Y2 � Y3 þ Y4Þ
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The ƒ-fold degenerate representations (symmetry types) � have ƒ lines g (see
Appendix). For instance, the twofold degenerate representation �¼E has two

lines, g ¼ #, ", while g¼ �, �, � for the threefold representation �¼T. As usual,

for degenerate representations the division into components corresponding to

the g lines is rather conventional. The displacement types shown in Figs. 2.1–2.4

are commonly used. Below, the notation introduced by Mulliken will be used

wherever possible:A, B for nondegenerate terms, E for twofold, T for threefold,

G for fourfold, and H for fivefold degenerate representations.

Table 2.2. (cont.)

Q Symmetry
type

Transformation
properties

Expressions by
Cartesian coordinates

Q00
� T 00

2 y, xz (1/4)ð�X1 � X2 þ X3 þ X4Þ
þ ð

ffiffiffi
3

p
=4ÞðY1 þ Y2 � Y3 � Y4Þ

Q00
� z, xy (1/2)(X1þX2þX3þX4)

Qx x X0

Qy T2 y Y0

Qz z Z0

Octahedral systems ML6. Symmetry Oh

Qa A1g x2þ y2þ z2 ðX2 � X5 þ Y3 � Y6 þ Z1 � Z4Þ=
ffiffiffi
6

p

Q# 2z2� x2� y2 ð2Z1 � 2Z4 � X2 þ X5 � Y3 þ Y6Þ=2
ffiffiffi
3

p

Eg

Qe
ffiffiffi
3

p
ðx2 � Y2Þ (1/2)(X2�X5�Y3þY6)

Q� yz (1/2)(Z3�Z6þY1�Y4)
Q~� T2g xz (1/2)(X1�X4þZ2�Z5)
Q~� xy (1/2)(Y2�Y5þX3�X6)

Q0
x x (1/2)(X1þX3þX4þX6)

Q0
y T 0

1u y (1/2)(Y1þY2þY4þY5)

Q0
z z (1/2)(Z1þZ3�Z5þX6)

Q00
x x ðX2 þ X5Þ=

ffiffiffi
2

p

Q00
y T 00

1u y ðY3 þ Y6Þ=
ffiffiffi
2

p

Q00
z z ðZ1 þ Z4Þ=

ffiffiffi
2

p

Qx x X0

Qy T1u y Y0

Qz z Z0

Q0
� x(y2� z2) (1/2)(X3þX6�X1�X4)

Q0
� T2u y(z2� x2) (1/2)(Y1þY4�Y2�Y5)

Q0
� z(x2� y2) (1/2)(Z2þZ5�Z3�Z6)
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The symmetrized displacements that belong to the irreducible representa-

tions, which occurs only once in the group-theoretical classification for the

system under consideration (Table 2.1) are automatically normal coordinates.

For repeated types of symmetrized displacements (e.g., T 0
2 and T 00

2 in tetra-

hedral systems, E 0 and E 00 in C3v symmetry, etc.) the normal coordinates are

linear combinations of the symmetrized ones and can be obtained by means of

an additional (sometimes involved) procedure.

Theoperatorof vibronic interactions (2.7) canbewritten innormal coordinates:

Wðr; QÞ ¼
X
�g

ð@V=@Q�gÞ0Q�g þ
1

2

X
�0g0�00g00

ð@2V=@Q�0g0 @Q�00g00 Þ0Q�0g0Q�00g00 þ � � � (2:14)

Consider the coefficients of this expansion, which are derivatives of the

operator of electron–nuclear interaction V(r, Q). The matrix elements of

these derivatives calculated with the electronic function of the degenerate

term are the constants of vibronic coupling or vibronic constants. They are

very important in the analysis of vibronic interaction effects: vibronic constants

characterize the measure of coupling between the electronic structure and nuclear

displacements, i.e., the measure of influence of the nuclear displacements on the

electron distribution and, conversely, the effect of the changes in the electron

structure upon nuclear dynamics.

Denote the electronic states by the corresponding irreducible representa-

tions �, �0 of the symmetry group of the molecular system, and assume first

that the states � and �0 are not degenerate. The matrix element

F
��0ð Þ

�
¼ h�j @V

@Q�

� �
0

j�0i (2:15)

is called the linear vibronic constant. Following the rules of group theory, F
��0ð Þ

�
is

nonzero if and only if�� �0 ¼ �. If� or �0 or both are degenerate (in this case�

may also be degenerate), a set of linear vibronic constants corresponding to all

the lines g and g0 of the two representations � and �0 and their combinations

F
ð�g�0g0Þ
�g

must be introduced instead of one vibronic constant (2.15). This can be

easily done if one takes into account that thematrix elements within a degenerate

term differ solely in numerical coefficients, their values being known. Indeed,

according to the group-theory Wigner–Eckart theorem [2.27], for any physical

operator X�g which transforms according to line g of representation � we have

h�gjX�gj�
0g0i ¼ h�kX�k�

0ih�g�0g0j�gi (2:16)
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where �kX�k�0� 	
is the reducedmatrix element (which does not depend on g, g

and g0) and �g�0g0j�g
� 	

are the Clebsch–Gordan coefficients available from

tabular data [2.27].

Using formula (2.16) for the operatorX�g ¼ ð@V=@Q�gÞwe obtain the follow-
ing relation between different components of the linear vibronic constants:

F
�g�0g0ð Þ

�g
¼ F

��0ð Þ
�

h�g�0g0j�gi (2:17)

It follows that if one knows at least one vibronic constant F
ð�g�0g0Þ
�g

, all the

others can be easily calculated by Eq. (2.17) using tabular data of the

Clebsch–Gordan coefficients.

Some of the linear vibronic constants have a clear physical meaning. The

diagonal constant of the linear coupling F
ð�g�gÞ
�g

� F
ð�gÞ
�g

has the meaning of the

force with which the electrons in state �g affect the nuclei in the direction of

symmetrized displacements Q�g (see also [2.28]). For instance, EE"
E� denotes the

force with which the electrons in the state E" distort the nuclear configuration

in the direction of the Q# displacements, illustrated in Fig. 2.4.

For degenerate states �, according to the group-theoretical requirements,

the diagonal matrix element F
ð�Þ
�

is nonzero if the symmetrical product [���]

contains �: � 2 ½�� �� (compare this with the condition for off-diagonal

elements: � 2 �� �0). For nondegenerate states [���]¼���¼A1, where

A1 is the totally symmetric representation. It follows that for nondegenerate

states the symmetry of the vibronic perturbation should be � ¼ A1, and the

electrons can distort the nuclear configuration only in the direction of totally

symmetric displacements, for which the symmetry of the system does not change.

If the electronic state � is degenerate, the symmetric product [���] contains

nontotally symmetric representations along with the symmetric one. Indeed,

for cubic symmetry systems [E�E]!A1þE, [T�T]!A1þEþT1þT2; for

D4h symmetry systems [E�E] ! A1þB1þB2, etc. In these cases � may be

nontotally symmetric (degenerate E, T, or nondegenerate B1, B2, etc.). Hence

under the influence of the electrons the nuclear configuration undergoes

corresponding distortions, which are not totally symmetric. It is just these

distortions that are predicted by the JT theorem (Section 2.5).

The quadratic vibronic constants can be introduced in principle in a fashion

similar to the linear ones. However, complications arise because the diagonal

matrix elements of some of the second derivative (@2V/@Q�0g0 @Q�00g00) in

Eq. (2.14) in appropriate combinations form the curvature of the APES, or the

force constants (in the equilibrium position). The remaining terms and the off-

diagonal matrix elements contain the quadratic vibronic constants, which should
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be distinguished from the force constants. In order to investigate this question we

subject the second (quadratic) term in Eq. (2.14) to further group-theoretical

transformations.We introduce the tensor convolution (denoted in braces) {(@2V/

@Q�0 @Q�00)0}�g, which means the linear combination of second derivatives with

respect to the Q�0 and Q�00 coordinates that transforms according to line g of the
representation �2 �0 � �00. This combination can be found by means of group

theory and theWigner–Eckart theorem (2.16). Similarly, the corresponding tensor

convolution for the coordinates {Q�0 �Q�00}�gmaybe introduced. It canbe shown

[2.3] that in this notation the vibronic interaction operator (2.14) takes the form

Wðr; QÞ ¼
X
�g

@V

@Q�g

� �
0

Q�g

þ 1

2

X
�g

X
�1�2

@2V

@Q�1
@Q�2

� �
 �
�g

Q�1
�Q�2

f g�gþ � � � (2:18)

In this expression all the terms are grouped such that the terms in each group

transform according to a specific representation of the symmetry group of

the system.

Now we introduce matrix elements of the quadratic term coefficients in

Eq. (2.18):

G��0

�g
ð�1 � �2Þ ¼

1

2
h�j @2V

@Q�1
@Q�2

� �
0


 �
�g
j�0i (2:19)

Similar to the linear case considered above, the representation �2�1��2

for nondegenerate states in the diagonalmatrix elementG��
�

can only be totally

symmetric, �¼A1, while for degenerate states it can be both totally symmetric

and non-totally symmetric. It is clear that since �2�1��2, for the totally

symmetric part �¼A1 we have �1¼�2 (the product of only equal irreducible

representations containsA1). In this case the totally symmetric combination of

second derivatives in Eq. (2.19) is as follows:

@2V

@Q2
�

� �
0

( )
A1

¼
X
g

@2V

@Q2
�g

 !
0

(2:20)

For instance,

@2V

@Q2
E

� �
0


 �
A1

¼ @2V

@Q2
E�

� �
0

þ @2V

@Q2
E"

� �
0

(2:21)

Similarly, fQ2
�
gA1

¼
P

gQ
2
�g
; in particular, Q2

E

� 
A1
¼ Q2

E� þQ2
E".
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The totally symmetric part of the diagonal matrix element in Eq. (2.19)

G��
�

� K �
0�
is an important component of theAPES curvature, or force constant

(at its minimum), discussed in Section 2.4, while the off-diagonal elementsG��0

�g

are quadratic vibronic coupling constants.

2.3 Orbital vibronic constants

One of the special features of the operatorV(r,Q) in Eq. (2.2), which includes the

electron–nuclear and the nuclear–nuclear interactions (see Eqs. (2.2a)–(2.2c)) is

its additive nature with respect to the electrons (the nuclear–nuclear interaction

does not depend on electron coordinates). This allow us to present V(r, Q) as

follows:

Vðr; QÞ ¼
Xn
i¼1

Viðri; QÞ

Viðri; QÞ ¼ �
X
�

e2Z�

~ri � ~R�

�� ��þ 1

n

X
� 6¼�

e2Z�Z�

~R� � ~R�

�� �� (2:22)

where n is the number of electrons.

This additivity of the operator V(r, Q) allows further simplification of the

vibronic coupling constants (2.15) and (2.19). Indeed, assume that the wave-

function of the electronic state under consideration can be presented in a

multiplicative one-determinant form:

�j i ¼ detj’1ðr1Þ’2ðr2Þ� � �’nðrnÞj (2:23)

where ’iðrÞ are one-electron molecular orbitals (MOs) that describe the elec-

tronic state. On substituting Eqs. (2.22) and (2.23) into (2.15) and introducing

linear orbital vibronic constants [2.29],

f
ðijÞ

�g
¼ h’iðrÞ

�� @Viðr; QÞ
@Q�g

 !
0

��’jðrÞi (2:24)

we find that the diagonal vibronic constant is a sum of orbital vibronic

constants multiplied by the MO occupation numbers q�i ,

F
ð��Þ
�

¼
X
i

q�i f
ðiiÞ

�
(2:25)
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For the off-diagonal vibronic constant, a simple formula can be obtained in

the ‘‘frozen orbital’’ approximation, in which it is assumed that the one-

electron excitation �! �0 can be described by the change of MO occupations

in the one-electron i! j transition, while the otherMOs remain unchanged. In

this approximation

F
ð��0Þ
�g

¼ f
ðijÞ

�g
(2:26)

or, more generally,

F
ð��0Þ
�g

¼ ðqi � qjÞf ðijÞ
�g

(2:27)

where qi and qj are the occupation numbers of the ith and jth orbitals,

respectively. Equation (2.27) is more useful in applications because it may be

valid also for fractional q values.

In the same approximation a similar relation can be obtained for the

diagonal quadratic vibronic constants:

G
ð��Þ
�g

ð�1 � �2Þ ¼
X
i

q�i g
ðiiÞ
�g
ð�1 � �2Þ (2:28)

where, similar to Eq. (2.19),

g
ðiiÞ
�g
ð�1 � �2Þ ¼

1

2
h’iðrÞ

�� @2V

@Q�1
@Q�2

� �
0


 �
�g

��’jðrÞi (2:29)

is the definition of the quadratic orbital vibronic constant (as in (2.19), the braces

mean tensor convolution that transforms as the g line of the � representation).

A similar expression can be derived for the force constantK �
0�

presented as a

sum of orbital contributions ki
�
,

K �
0�

¼
X
i

q�i k
i
�

(2:30)

but the dependence of ki
�
on the orbital vibronic constant is more complicated

(Section 2.4, Eq. (2.38)).

It follows fromEq. (2.25) that the distorting influence of the electrons on the

nuclear framework with a force F
ð��Þ
�

is produced additively by all the corre-

sponding MO single-electron contributions f
ðiiÞ

�
. A clear physical meaning for

the linear diagonal orbital vibronic constant follows immediately: f
ðiiÞ

�g
equals

the force with which the electron of the ithMO distorts the nuclear configuration
in the direction of the symmetrized displacement Q�g minus the corresponding

part of the internuclear repulsion in this direction (see Eq. (2.22)).
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The orbital vibronic constants thus complement the MO description of

polyatomic systems with fixed nuclei by additional parameters of back

influence of the MO electrons on the nuclear configuration and dynamics.

It is important that if the orbital vibronic constants are known, changes in

nuclear stable configurations, force constants, and anharmonicities due to

small changes in electronic structure (changes in MO occupation numbers

q�
i , e.g., by ionization, excitation, coordination to active centers, etc.) can be

numerically predicted using Eq. (2.25) (see Chapters 7 and 8).

In Fig. 2.5 the new parameterization of the molecular structure is illustrated

for the highest occupiedMO (HOMO) 5	 and lowest unoccupiedMO (LUMO)

2p of two molecules N2 and CO taken as examples [2.29]. It is seen that

Fig. 2.5. Illustrations to the vibronic molecular-orbital description of elec-
tronic structure. In addition to the MO energies and wavefunctions the
orbital vibronic constants characterize the contribution of the orbital
electron to the distorting force f (shown by arrows; values are given in 10�4

dyn) and force-constant coefficient k (shown by springs; values are given in
106 dyn/cm): (a) HOMO and LUMO of the nitrogen molecule – the HOMO
5	 is bonding ( f> 0), whereas the LUMO 2p is antibonding ( f< 0); and
(b) HOMO and LUMO of carbon monoxide – the HOMO is weakly
antibonding, whereas the LUMO is strongly antibonding.
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in addition to theMO energy value and wavefunctions (shown schematically in

Fig. 2.5 by their symmetry), the electron of the HOMO in the N2 molecule

tightens the nuclei with a force f 5	
R ðN2Þ ¼ 3:51� 10�4 dyn (R is the distance

between the nuclei), while in the CO molecule the electron of the analogous

MOpushes them away with force f 5	
R ðCOÞ ¼ �4:5� 10�4 dyn (more precisely,

the binding of the nuclei by the electron is less than their repulsion by

this amount). The electron of the LUMO 2p pushes away the nuclei in

both the N2 and CO molecules with forces f 2p
R ðN2Þ ¼ �8:18� 10�4 dyn

and f 2p
R ðCOÞ ¼ �12:1� 10�4 dyn, respectively. For the corresponding one-

electronMO contribution to the force constant (Eq. (2.30)) shown in Fig. 2.5 by a

spring, we have k5	R ðN2Þ¼ 0:29�10�6 dyn/cm, k5	R ðCOÞ¼�0:08�10�6 dyn/cm,

k2pR ðN2Þ ¼ �0:79�10�6 dyn/cm, and k2pR ðCOÞ¼ �0:83�10�6 dyn/cm.

It follows from these data that the orbital 5	 is bonding in N2 and anti-

bonding in CO, whereas the 2p MO is antibonding in both cases. Note that

when there are several orbitals of the same type, as in the cases under con-

sideration (5	, 4	, 3	, . . . ), it is difficult to reveal the bonding nature of each of

them, even qualitatively, without the vibronic approach. The latter also pro-

vides quantitative information about the degree of the bonding or antibonding

nature of theMO and its contribution to the distorting force, force constants, and

anharmonicity constant (Section 2.4). As mentioned above, this information is

of special importance for analysis of the influence of electronic rearrangements

on the nuclear configuration behavior (Section 7.1.3).

The diatomics N2 and CO, taken as examples, are the simplest. In poly-

atomic molecules the orbital vibronic constants and the orbital contributions

to the force constants containmuchmore information than just the measure of

the bonding or antibonding nature of the MO. Indeed, following the group-

theory rules, the linear orbital vibronic constant (2.24) is nonzero if the direct

product of the irreducible representations �i and �j of the i and jMOs contain

the � representation of theQ� displacement. Dependent on �i and �j, �may be

of any type possible for the symmetry group of the system under consideration.

For the diagonal constant f ii
�
, � must be the component of the symmetrized

product [�i��j]. Therefore (quite similar to the discussion above of the

integral vibronic constant), if �i and �j are nondegenerate, � is totally sym-

metric. In other words, the electrons of nondegenerateMOs distort the nuclear

configuration along QA1
, which does not change its symmetry. Dependent on

the sign of f ii
�
, theseMO are either bonding ( f ii

�
> 0) or antibonding ( f ii

�
5 0).

For degenerate MOs the product [�i��j] contains nontotally symmetric

representations in addition to the A1 one. It follow that the electrons of
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degenerate MOs distort the nuclear framework, changing its symmetry in

accordance with (and in directions determined by) the JTE (Section 2.5). In

addition to this distortion (in limited directions), the orbital electron softens,

or hardens, the nuclear framework (Section 2.4).

The idea of orbital vibronic coupling and its direct influence on a variety of

molecular and crystal properties is exploited in many papers relevant to

different molecular and crystal problems, from spectra in fullerenes and

mixed-valence compounds to superconductivity in molecular systems and

crystals (Chapters 7 and 8). As a simple tool for analyzingmolecular properties

it was used in combination with the extendedHückel theory to work out direct

correlations between orbital occupation numbers and molecular shapes [2.30].

Some general rules controlling calculation of vibronic constants along the

periodic table are discussed in [2.31].

2.4 Force constants, anharmonicity, and instability

Consider a polyatomic system in a nondegenerate state and electrostatically

equilibrated reference configurationQ�¼ 0 for which, in the adiabatic approxi-

mation, the first derivative of the APES in the Q direction is zero. The

configuration instability of this system with respect to Q� displacements

means that the curvature K �
�

of the APES in this direction (E�(Q) is the total

energy in the state �),

K�
�
¼ 1

2

@2E�

@Q2
�

 !
0

(2:31)

is negative at this point, K�
�
5 0. Configuration instability does not mean that

the system decays; it may be stable at other configurations with Q� 6¼ 0.

Employing the equation (see (2.1))

E�ðQÞ ¼ C� Hj jC�
� 	

(2:32)

where C� and H(r, Q) are the full wavefunction and Hamiltonian of the

system, and using some obvious relations similar to the Hellman–Feynman

theorem [2.32] (see also [2.33]), we get

K�
�
¼ C�

0 ð@2H=@Q2
�
Þ0

��� ���C�
0

D E
þ 2 C�

0 ð@H=@Q�Þ0
�� ��ð@C�=@Q�Þ0

� 	
(2:33)

where C�
0 and all the derivatives are taken at the reference point Q¼ 0. The

derivative C0
0 ¼ ð@C=@Q�Þ0 can be presented by the perturbation-theory first

correction to C. Then (primes on H denote derivatives)
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K�
�
¼ C�

0 H 00
Q

�

��� ���C�
0

D E
� 2

X
�0

C�
0 H 0

Q
�

��� ���C�0

0

D E��� ���2
E�0
0 � E�

0

(2:34)

where E�
0 is the reference-state energy, while E�0

0 and C�0

0 are the energies and

wavefunctions of the excited states (in the same configuration) that yield

nonzero matrix elements C�
0

� ��H 0
Q

�
C�

0

�� 	
, i.e., for which ���0 2 �. Taking

into account that @H/@Q¼ @V/@Q and employing the definitions of the vibro-

nic constants from Eq. (2.15) in Section 2.2, we come to the formula

K�
�

¼ K�
0�

�
X
�0 6¼�

F
ð��0Þ
�

��� ���2
��0�

(2:35)

where ��0� ¼ 1
2
ðE�0

0 � E�
0 Þ and

K�
0�

¼ C�
0 H 00

Q
�

��� ���C�
0

D E
(2:36)

By comparison with Eq. (2.19) we see that K�
0�

is the totally symmetric part

of the diagonal matrix element of the quadratic terms of the vibronic coupling.

For reasons given below K �
0�

may be called the primary (nonvibronic) con-

tribution to the curvature, while the second part of Eq. (2.35) denoted by K �
v�
,

K �
v�

¼ �
X
�0 6¼�

F
ð��0Þ
�

��� ���2
��0�

(2:37)

which essentially depends on the linear vibronic coupling of the state under

consideration � to the excited states �0 of appropriate symmetry is the vibronic

contribution to the curvature. Obviously, as a second-order perturbation con-

tribution K �
v�
50.

It is shown in Section 4.1 that this vibronic contribution to K is just the

summarized pseudo JTE of the vibronic coupling to all the excited states that

destabilize or soften the ground state in the given directionQ�. Equation (2.35)

can be applied also to excited states �. But for them the sum (2.37) includes

terms of coupling to states that are lower in energy for which��0�50, meaning

that K �
v�

is not necessarily negative.

From Eq. (2.32), by direct derivation with one-determinant wavefunctions,

similar to that resulting inEqs. (2.26) and (2.27) (and in the same approximation),

we get the formula (2.30) for the curvature in terms of orbital vibronic constants:

K�
0�

¼
X
i

q�i k
i
�

(2:30)
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where

ki
�
¼ ki

0�
�
X
j

f
ðijÞ

�

��0�
(2:38)

ki
0�

¼ g
ðiiÞ
�

is the totally symmetric part of the quadratic diagonal orbital

constant of Eq. (2.29) (determined similarly to K�
0�

from Eq. (2.19)), and

��0� has the same meaning as in (2.35) with the �0 term formed by the one-

electron i! j excitation from the reference state �.

The presentation of the APES curvature or force constantK in Eq. (2.31) as

a sum of two terms after (2.34)–(2.37),

K ¼ K0 þ Kv (2:39)

has some interesting features which will be discussed in more detail in subse-

quent sections. In particular, it was shown that the primary contribution K0 is

always positive [2.34, 2.35], K0> 0. This means first of all that the system

under consideration in the reference nondegenerate state may not be unstable

without the vibronic contribution, and the instability (K< 0) occurs when

jKvj > K0. In view of the note above about the PJT origin of the vibronic

term, we come to the conclusion that the PJTE is the only source of config-

uration instability of polyatomic systems in nondegenerate states (Section 4.1).

If jKvj5K0, then K> 0 and the APES has a minimum at the reference

configuration. However, the Kv contribution is still rather important in

lowering the absolute value of K and hence the vibration frequency at the

minimum point. But even more important is its contribution to the anharmo-

nicity of the vibrations. As follows from Eq. (2.37), the negative contribution

to the K value due to the vibronic coupling to excited states increases with

the decrease of the energy gap ðE�0
0 �E�

0 Þ. In a typical situation illustrated in

Fig. 2.6 it results in strong anharmonicity of the ground-state vibrations

(vibronic anharmonicity). Distinct from the proper anharmonicity which is

due to the cubic (in nuclear coordinates) and higher-order terms in the expan-

sion (2.3), the vibronic anharmonicity may occur already in the linear and

quadratic approximation of this expansion: it is not just the large amplitude of

nuclear displacements themselves but the presence of appropriate low-lying

excited electronic states that creates the anharmonic nuclear vibrations.

Note that the anharmonicity may produce larger errors in the AA calcula-

tions than the AA itself. Indeed, the harmonic approximation is valid if the

nuclear displacements from the minimum point �Q are small compared with

the interatomic distances d. Using the semiclassical approximation, it can be
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shown [2.3] that the root-mean-square ð�Q2Þ
1
2 	 dðm=MÞ

1
4, and hence

ð�Q2Þ
1
2=d 	 ðm=MÞ

1
4 � 0:15. On the other hand the simple AA, as mentioned

above (Section 2.1), introduces an error of ðm=MÞ
1
2 � 0:02, provided the state

is nondegenerate and the criterion (2.10) holds. It follows that for nondegene-

rate stable states anharmonicity corrections are more important than the

nonadiabacity in the simple AA.

If only two electronic states participate in the vibronic mixing in theKv term

(2.37), the system may have some special features. In particular, for the two-

level system we have

K �
�

¼ K �
0�

�
F

ð��0Þ
�

��� ���2
��0�

(2:40)

K �0

�
¼ K �0

0�
þ

F
ð��0Þ
�

��� ���2
��0�

(2:41)

Since K0> 0, the excited state curvature K �0

�
> 0. This means that in the

two-levelmodel any configuration instability of the ground state shouldbe accom-

panied by a stable excited state, which causes the instability of the ground state.

If there is more than one excited state contributing to the instability of the

ground state, each of them gets a positive vibronic contribution equal to its

negative contribution to the ground-state value, but this does not mean that the

K value for these excited states will be positive because of possible negative

contributions of higher energy states of appropriate symmetry. Usually the num-

ber of excited electronic states that are vibronically considerably strong coupled

to the ground state is small, and a two-level model may be valid in many cases.

ε(Q )

h ω

εΓ 
(Q )

εΓ ′(Q )

Q 

Fig. 2.6. Anharmonicity of the APES due to the vibronic mixing of the
ground state with the near-lying excited state (vibronic anharmonicity). The
APES of noninteracting states are shown by dashed lines.
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2.5 The Jahn–Teller theorem

So far we have not considered possible solutions of the system of equations

(2.6) in case of electronic degeneracy when the criterion (2.10) does not hold

and the AA is invalid. The direct solution of these equations is discussed in

Chapter 5. However, a general understanding and a variety of qualitative and

semiquantitative results can be obtained based on the JT theorem [2.36], which

initiated this whole trend.

The JT theorem is based on a perturbational group-theoretical analysis of

the behavior of the APES of polyatomic systems near the point of electronic

degeneracy. Similar to other group-theoretical statements, the JT theorem

allows one to deduce a series of qualitative results without specific calculations.

Assume that by solving the electronic Schrödinger equation (2.4) for the

nuclei fixed at the pointQ�g ¼ Q0
�g ¼ 0 we obtain an f-fold degenerate electro-

nic term, i.e., f statesjk(r), k¼ 1, 2, . . ., f, with the same energies "0k ¼ "0. How

do these energy levels vary under nuclear displacements Q�g 6¼ 0? To answer

this question the APES for arbitrary coordinates near the point of degeneracy

should be determined. This can be done by estimating the effect of the vibronic

interaction terms W(r, Q) in Eq. (2.14) on the energy level positions "0k.

For sufficiently small nuclear displacements Q�g the APES "k(Q) for an

f-fold degenerate electronic term � can be obtained as solutions of the secular

equation of the perturbation theory:

W11 � " W12 � � � W1f

W21 W22 � " � � � W2f

..

. ..
. ..

. ..
.

Wf 1 Wf 2 � � � Wff � "

���������

���������
¼ 0 (2:42)

where Wij are the matrix elements of the operator (2.14) calculated with the

wavefunctions of the degenerate term. Since the degeneracy is assumed due

to the high symmetry of the system, the totally symmetric displacements QA

do not remove the degeneracy and do not change the symmetry; they will

not be considered in this section as nonessential (however, see Section 3.2).

Again, second-order terms may also be omitted due to the assumed small

values of Q�g. Keeping only linear terms in the vibronic corrections to the

electronic energy (see below and Section 3.1), Wij ¼
P

�ghijð@V=@Q�gÞ0j j iQ�g

and, taking into account Eq. (2.17), we have

W�g�g0 ¼
X
�g

F �g�g0

�g
Q�g ¼

X
�g

F ��
�

Q�g �g�g0j�g
� 	

(2:43)
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where F ��
�

are the linear vibronic constants (2.15). If at least one of them is

nonzero, then at least one of the roots of Eq. (2.42) contains linear terms in the

corresponding displacements Q�g, and hence the APES "k(Q) has nominimum

at the point Q0
�g ¼ 0 with respect to these displacements.

On the other hand, the question of whether the vibronic constant
F ��
�

¼ �h j @V=@Q�

� �
0
�j i is zero or not may be easily answered by means of the

well-known group-theoretical rule: F ��
�

is nonzero if and only if the symmetric

product [���] contains the representation of the symmetrized displacement �;

for instance, for a doubly degenerate E term [E�E]¼A1þE. Thus, if the

system under consideration has E vibrations (see the classification of vibrations

given in Table 2.1), it has no minimum at the point of degeneracy with respect to

the E displacements.

Jahn and Teller [2.36] examined all types of degenerate terms of all symmetry

point groups and showed that for any orbital degenerate term of any molecular

system there are nontotally symmetric displacements with respect to which

the APES of the electronic term (more precisely, at least one of its branches) has

no minimum; molecules with linear arrangements of atoms are exceptions (see

below). Itwas latershownbyJahn[2.37] thatasimilar statement isvalidalso incase

of spindegeneracywith theexceptionof two-folddegeneracy forsystemswith total

spin1/2(Kramersdegeneracy).Thestatementabouttheabsenceofanextremumat

the point of degeneracy is just the Jahn–Teller theoremwhich may be formulated

morerigorouslyas follows: if theAPESofanonlinearpolyatomic systemhas several

(f> 1) sheets coinciding at one point (f-fold degeneracy), at least one of themhas no

extremum at this point, the cases of Kramers degeneracies being exceptions.

The variation of the APES in the simplest case of a doubly degenerate

electronic term in the space of only one coordinate Q is shown schematically

in Fig. 2.7; many other cases are considered in Chapter 3. It is seen that the two

curves intersect at the point of degeneracy. Away from this point the energy

term splits, and the degeneracy is removed. As a result, the energy is lowered so

that the small nuclear displacementsQ are of advantage. For larger values ofQ

the quadratic, cubic, and higher-order terms become important and further

distortion of the system may be inconvenient energetically (see Chapter 3).

The exclusion of linear molecules from the JT statement needs clarification.

For linear molecules the nontotally symmetric displacements are of odd type

with respect to reflections in the plane containing the molecular axis,

whereas the product of wavefunctions of the degenerate term is always even

with respect to such reflections. This means that the corresponding vibronic

constant (2.15) equals zero, and hence the APES at the point of linear config-

uration, as opposed to nonlinear molecules, has no linear terms, i.e., it is an
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extremum.However, in these cases the effect of quadratic terms of the vibronic

coupling is nonzero. Pure quadratic coupling may also lead to lack of mini-

mum at the point of degeneracy, as illustrated in Fig. 2.8, but distinguished

from the linear case the quadratic instability is possible only for sufficiently

strong coupling. In case of linear molecules this instability results in the

Renner–Teller effect described in Section 4.4, but it may take place also in

nonlinear systems in which the linear coupling constant, although allowed to

be non-zero by symmetry considerations, is in fact ‘‘accidentally’’ zero or

negligibly small (while the quadratic coupling is significant).

Q

EJT

Q 0

ε (Q)

Fig. 2.7. Variation of the adiabatic potential of a molecular system in a
twofold orbitally degenerate electronic state with respect to one active
coordinate Q. At the point of degeneracy Q¼ 0 there is no minimum. EJT is
the JT stabilization energy.

(a)

Qϑ
Qϑ

Qϑ

Qε Qε Qε

ε ε ε(b) (c)

Fig. 2.8. Branching of the APES at the point of twofold degeneracy in the
cases of (a) nonzero linear coupling (conical intersection); (b) zero linear and
weak quadratic coupling; and (c) sufficiently strong quadratic coupling.
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The lack of a minimum of the APES at the point of electronic degeneracy

is often interpreted as instability of the nuclear configuration, which leads

to its real (observable) spontaneous distortion that removes the electronic

degeneracy. This formulation and interpretation of the JT theorem initiated

by its authors [2.36] appears in some monographs and handbooks and has

found widespread use in the general treatment of experimental results.

Meanwhile, as will be shown later in this book, the actual situation in systems

with electron degeneracy may be much more complicated than implied by the

simple statement of instability. Moreover, taken literally, this statement is not

true and may lead to misunderstandings [2.38] (this misinterpretation led to a

period of ‘‘stagnation’’ in the understanding of the consequences of the JT

theorem mentioned in Chapter 1). The conclusion about the lack of a mini-

mum of the APES "(Q) at the point of degeneracy was reached as a conse-

quence of the solution of the electronic part of the Schrödinger equation, and

therefore it cannot be attributed directly to the nuclear behavior. The latter is

determined by the solution of the nuclear motion equations (2.6).

The absence of a minimum of the function "(Q) may rigorously be inter-

preted as instability only when there is no degeneracy. Indeed, in the absence of

degeneracy (or in areas far from the point of degeneracy) the electronic and

nuclear motions can be separated in the AA (Section 2.1), so that the APES

"(Q) has the meaning of the potential energy of the nuclei in the mean field of

the electrons, and hence the derivative (d"/dQ)0 means the force acting upon

the nuclei at the point Q�g¼ 0. Here the condition (d"/dQ)0 6¼ 0 may be inter-

preted as a nonzero distorting force (in the Q direction) due to which the

nuclear configuration becomes unstable.

However, in the presence of electronic degeneracy "(Q) loses the meaning

of potential energy of the nuclei in the mean field of the electrons because

the motions of the electrons and nuclei near the point of degeneracy cannot

be separated. In this area the notion of APES becomes formal, without unam-

biguous physical meaning. Accordingly, the reasoning about distorting forces

and instability is, strictly speaking, invalid here. In these cases the term ‘‘instabil-

ity’’ should be taken formally as an indication of the lack of a minimum of the

APES, but not as an observable nuclear feature. The latter, as indicated above,

must be deduced from the solutions of Eqs. (2.6) for nuclear dynamics.

The nuclear distortions due to the JTE and the PJTE in the absence of low-

symmetry perturbations are in general of a dynamic nature, for which the

nuclear configuration (determined quantum-mechanically as the C-averaged

values of the nuclear coordinate operators) is not distorted [2.38] (see also

Eq. (5.136) in Section 5.6). It is not simply the nuclear configuration distortion,

but rather the special nuclear dynamics that is predicted by the JTE and PJTE
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in free (unperturbed) molecular systems. In many cases the electronic degene-

racy is not removed either, but it is transferred from the electronic to the

vibronic degeneracy (Chapter 5). The consequences of the lack of minimum

of the APES at the point of degeneracy result in a variety of most important

effects that include also structural distortions of the reference configuration as a

particular case in the presence of external perturbations or cooperative effects.

The specific JT behavior of the APES due to electronic degeneracy or

pseudodegeneracy can be explained by simple images. Consider, for example,

the case of one electron in one of three equivalent p orbitals (px, py, and pz) of

the central atom of a hexacoordinated molecular system MX6 (term T1u), the

ligand X bearing negative charge (Fig. 2.9). It is clear that if the electron is on

the px orbital, it interacts more strongly with the nearest ligands 1 and 3,

pushing them away (and producing a potential well for itself). As a result the

octahedral complex becomes tetragonally distorted along the Ox axis.

Similarly, the electron on the py orbital pushes away ligands 2 and 4, distorting

the complex equivalently to the previous case, but along the Oy axis; and for

the electron on the pz orbital the distortion is along Oz.

Note that in the absence of the ligands the electron has no specific location

within the degenerate manifold, but in the presence of the ligands the distorted

configuration with the electron in one of the three orbitals becomes preferable

energetically. Since the three states in cubic fields remain equivalent, the

system has three minima, corresponding to the three directions of distortions,

1 1y

x

pz py px

2 2

z

6 6

3 3

5 5

4 4

1

2

6

3

5

4

Fig. 2.9. A rough illustration of the electrostatic origin of JT distortions of
the nuclear configuration of an octahedral ML6 complex in a threefold
degenerate electronic state. If the electron of the central atom falls into one
of the three equivalent states, it repels (or attracts) the corresponding pair of
ligands, resulting in a tetragonal distortion. The three equivalent directions of
distortion are shown by arrows.
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and no minimum in the high-symmetry octahedral configuration due to

obvious electrostatic forces. The same result emerges from theMO description

with the atomic p orbital taking part in the corresponding antibonding MO

(for bonding orbitals the distortions are of opposite sign). Note also that in the

case of the T term under consideration in this visual example alternative

trigonal distortions are also possible (Section 3.3).

The proof of the JT theorem by means of an examination of all types of

degenerate terms in all symmetry point groups [2.36] as illustrated above,

although rigorous, cannot be considered elegant. More general proofs have

been obtained in [2.39, 2.40] (see also in [2.3]). These proofs deal with molecular

groups only.Aproof of the JT theorem for bothmolecular and space groupswas

suggested in [2.41]; for further discussion and improvements see in [2.42–2.44].

However, theproofby examinationof all possible degenerate terms [2.36] has its

advantages, one ofwhich is to reveal the JT activemodes, i.e., the nuclear displace-

ments Q� for which the vibronic constant F ��
�

is nonzero and which remove the

degeneracyof the electronic term�. Theseactivemodes (activevibrations) are very

important basic components of the JT problem since they form the space of the

nontotally symmetric nuclear displacement in which the JTE is realized.

If the types of possible vibration of the system under consideration are

known (Table 2.2), the JT active nuclear displacement Q� can be obtained

easily. As indicated above, F ��
�

is nonzero if the symmetric product [���]

contains the representation of the symmetrized displacement �. It follows that

displacements Q� can be found as the irreducible parts of the reducible repre-

sentation [���]. The nontotally symmetric components of the latter are just the

representation � of the active displacements Q�. For instance, for an Eg term

in an octahedral system [Eg�Eg]¼A1gþEg, and hence the JT active displace-

ments are of Eg type. Similarly, for a T term in a tetrahedral system

[T�T ]¼A1þEþT2, and both the E- and T2-type displacements are JT active.

The JT-active displacements for all important point groups are given inTable 2.3.

With the JT-active coordinates Q� known the symmetry of the JT-distorted

configuration can be predicted by means of group-theoretical considerations

using the epikernel principle [2.45]. If the symmetry group of the system in the

reference configuration is G, then as a result of theQ� distortion it reduces to S,

G �!Q�
S

where S is a subgroup of G in which only those symmetry operations (elements)

of G that leave Q� invariant remain. In other words, in the S subgroup Q� is

totally symmetric, whereas in the G group Q� is nontotally symmetric (by

definition) and it belongs to one of the degenerate irreducible representations �

of the groupG (e.g., in tetrahedral Td groupQ� belongs to the E representation).
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Table 2.3. Expansion of symmetric [���]¼ [�2] and antisymmetric

{���}¼ {�2} products of irreducible representations of degenerate terms of

systems with different symmetry groups (antisymmetric products refer to terms

� classified by double groups); the nontotally symmetric representations in these

expansions describe the JT-active modes (adapted from [2.3])

Group [�2], {�2}

C1;v ½E 2
k � ¼ A1 þ E2k ðk ¼ 1; 2; :::Þ

D1;h ½E 2
kg� ¼ ½E 2

ku� ¼ A1g þ E2k;g ðk ¼ 1; 2; :::Þ

C2pþ 1 ½E 2
k � ¼

Aþ E2k k 
 p=2
Aþ E2pþ1�2k k > p=2



ðk ¼ 1; 2; :::; pÞ

C2p ½E 2
k � ¼

Aþ E2k k5p=2
Aþ 2B k ¼ p=2
Aþ E2p�2k k > p=2

ðk ¼ 1; 2; :::; p� 1Þ

8<
:

D2pþ 1

C2pþ 1;v
½E 2

k � ¼
A1 þ E2k k 
 p=2
A1 þ E2pþ1�2k k > p=2



ðk ¼ 1; :::; pÞ

D2p

C2p;v

½E 2
k � ¼

A1 þ E2k k5p=2
A1 þ B1 þ B2 k ¼ p=2
A1 þ E2p�2k k > p=2

ðk ¼ 1; :::; p� 1Þ

8<
:

C2pþ 1;i ½E 2
kg� ¼ ½E 2

ku� ¼
Ag þ E2k;g k 
 p=2
Ag þ E2pþ1�2k;g k > p=2

ðk ¼ 1; :::; pÞ



C2p;i ½E 2
kg� ¼ ½E 2

ku� ¼
Ag þ E2k;g k5p=2
Ag þ 2Bg k ¼ p=2
Ag þ E2p�2k;g k > p=2

ðk ¼ 1; :::; p� 1Þ

8<
:

D2pþ 1;i ½E 2
kg� ¼ ½E2

ku� ¼
A1g þ E2k;g k 
 p=2
A1g þ E2pþ1�2k;g k > p=2

ðk ¼ 1; :::; pÞ



D2p;i ½E 2
kg� ¼ ½E2

ku� ¼
A1g þ E2k;g k5p=2
A1g þ B1g þ B2g k ¼ p=2
A1g þ E2p�2k;g k > p=2

ðk ¼ 1; :::; p� 1Þ

8<
:

C2pþ1;h

D2pþ1;h

½E 02
k � ¼ ½E 002

k � A0 þ E 0
2k k 
 p=2

A0 þ E 0
2pþ1�2k k > p=2

ðk ¼ 1; :::; pÞ



S4p ½E 2
k � ¼

Aþ E2k k5p
Aþ 2B k ¼ p
Aþ E4p�2k k > p

ðk ¼ 1; :::; 2p� 1Þ

8<
:

S4p;v ½E 2
k � ¼

A1 þ E2k k5p
A1 þ B1 þ B2 k ¼ p
A1 þ E4p�2k k > p

ðk ¼ 1; :::; 2p� 1Þ

8<
:

T ½E 2� ¼ Aþ E

½T 2� ¼ Aþ E þ T

f�2
8g ¼ Aþ E þ T
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Table 2.3. (cont.)

Group [�2], {�2}

Td ½E 2� ¼ Aþ E

½T 2
1;2� ¼ Aþ E þ T2

f�2
8g ¼ A1 þ E þ T2

Th ½E 2
g � ¼ ½E 2

u � ¼ Ag þ Eg

½T 2
g � ¼ ½T 2

u � ¼ Ag þ Eg þ Tg

f�2
8gg ¼ f�2

8ug ¼ Ag þ Eg þ Tg

Oh ½E 2
g � ¼ ½E 2

u � ¼ A1g þ Eg

½T 2
1g� ¼ ½T 2

1u� ¼ ½T 2
2g� ¼ ½T 2

2u� ¼ A1g þ Eg þ T2g

f�2
8gg ¼ ½�2

8u� ¼ A1g þ Eg þ T2g

I ½T 2
1 � ¼ ½T 2

2 � ¼ Aþ V

½U 2� ¼ AþU þ V

½V 2� ¼ AþU þ 2V

f�2
8g ¼ Aþ V

f�2
9g ¼ AþU þ V

Ih ½T 2
1g� ¼ ½T 2

1u� ¼ ½T 2
2g� ¼ ½T 2

2u� ¼ Ag þ Vg

½U 2
g � ¼ ½U 2

u � ¼ Ag þUg þ Vg

½V 2
g � ¼ ½V 2

u � ¼ Ag þUg þ 2Vg

f�2
8gg ¼ f�2

8ug ¼ Ag þ Vg

f�2
9gg ¼ f�2

9ug ¼ Ag þUg þ Vg

The kernel of � in G, denoted K(G, �), is the subgroup of G that includes all

symmetry elements that are represented in � by unit matrices (see tables in the

appendix). This means that in the kernel subgroup all the basis functions of �

are totally symmetric. An epikernel of � in G, denoted E(G, �) is the subgroup

of G that contains all the symmetry elements for which at least one basis

function of � remains totally symmetric. The epikernel principle can be for-

mulated as follows [2.45]: extrema points on a JT surface prefer epikernels; they

prefer maximal epikernels to lower-ranking ones. Stable minima are to be found

with the structures of maximal epikernel symmetry.

This statement implies that, although forced to distort in order to remove

the electronic degeneracy, the system prefers nuclear configurations with

higher symmetry compatible with this requirement. In this formulation the

epikernel principle can be related to a more general statement formulated by

Pierre Curie in 1894 [2.46]: the symmetry characteristic of a phenomenon is the

maximal symmetry compatible with the existence of this phenomenon.

The epikernels can be found directly from the character tables of the corres-

ponding point groups: E(Td, E)¼D2d; E(Td, T2)¼C3v, C2v, Cs; E(Td, EþT2)¼
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D2d,D2,C3v,C2v,C2,Cs. In the latter case it is assumed that theE andT2 vibrations

have the same frequency, forming a five-fold degenerate JT-active space. For the

octahedralOh groupE(Oh,E )¼D4h,C4v,E(Oh,T2)¼D3,C3v, and so on.

The epikernel principle is formulated for the JT distortions that are linear in

the active coordinates Q�. This means that it can be violated when higher-

order vibronic interaction terms in Eq. (2.7) are taken into account.

Topological problems related to the JTE are discussed also in [2.47–2.50].

A DFT analysis is given in [2.51].

The formulation of the JT theorem given above is the basis of the JT effects,

which cover a large variety of molecular and crystal properties outlined in this

book. With the inclusion of the PJTE and RTE, and especially after the proof of

theuniquenessof thevibronic coupling instabilities (Section4.1), thebasic theorem

needs extensions and reformulation [2.52, 2.53]; they are discussed in Section 4.5.
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3

Formulation of Jahn–Teller problems.
Adiabatic potentials

This chapter is to formulate in general the different ‘‘traditional’’ situations

that occur due to the lack of minimum of the APES in systems with degenerate

electronic terms, as predicted by the JT theorem (Section 2.5). They are labeled

as JT problems. Each of them is characterized by the type of degenerate

electronic term � and the JT-active vibrational modes gi (denoted as the

�� (g1þ g2þ � � �) problem), and has a specific APES. The latter is most

important to the solution of the vibronic coupling equations (2.6), which

yield the energies and wavefunctions considered in Chapter 5. But the APES

has also independent value, allowing qualitative and semiquantitative evalu-

ation of important properties of the system. Other (less traditional) situations

including PJT, RT, and product JT problems are formulated in Chapter 4.

3.1 Basic formulation. The simplest (E˜ b1) and E˜ (b1þ b2) problems

The JT problems refer to polyatomic (molecular and crystalline) systems with

degenerate electronic states, for which the JT theorem is operative. As follows

from group-theoretical considerations, degenerate states may occur in systems

with high symmetry that have at least one rotational or rotoflection axis of the

order n> 2. The higher the symmetry, the more and higher-order degenerate

terms are possible. Systems with axial symmetry have twofold degenerate E

terms, cubic systems haveE and threefold degenerateT terms (with spin–orbital

interaction included they may have also fourfold degenerate G terms), while

icosahedral systems have E, T, G, and fivefold degenerate H terms (see the

corresponding point groups in the appendix). The JT theorem reveals the

symmetry of the JT-active displacements for each of these terms in the corres-

ponding symmetry group (Table 2.3).

For each degenerate electronic term, the vibronic coupling to one or several

types of JT-active nuclear displacements has its specific features forming a
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separate JT problem. If there is more than one type of JT-active coordinates for

a given term, the problem may be further divided into several sub-problems.

For instance, as follows from Table 2.3, twofold degenerate E terms may have

JT-active nondegenerate displacements of the type b1 and b2, if the system has

an axis of symmetry of the order 4n, where n¼ 1, 2, . . ., (and then the JT

problem is E� b1 or E� b2 or E� (b1þ b2)), or twofold e-type degenerate

vibrations in all the other cases (the E� e problem). Hereafter for convenience

the nuclear-displacement (vibrational) symmetry representations are denoted

by small letters to distinguish them from the capital letters used in general cases

and for electronic terms. For T terms there may be T� e, T� t2 and

T� (eþ t2) problems, and so on. If the system has two or more or an infinite

number of JT-active vibrations of the same symmetry (e.g., t02 and t002 in

tetrahedral systems), the JT problem is called multimode (Section 3.5), to

distinguish it from the problems above, called ideal.

The special features of each JT problem can be evaluated from the solution

of the vibronically coupled equations (2.6). However, some important proper-

ties can be revealed using general theoretical considerations. In what follows in

this chapter the formulation of the JT problems and brief discussion of some of

their general qualitative features is given. Full solutions to these problems are

considered in Chapter 5.

It follows from the Jahn–Teller theorem that at the point of the nuclear

configuration where the electronic state is degenerate the surface of the poten-

tial energy of the nuclei in the mean field of electrons (the APES) has no

minimum. The question of whether this surface possesses any minimum, and,

if so, where it is situated, then arises. A more general formulation of this

problem is as follows: what is the stable configuration of the nuclei, their

dynamics, and energy spectra in the presence of the JT effect? To answer this

question the shape of the APES of the system "(Q) in the configurational

space of all nuclear displacements Q must be determined first. For a non-

degenerate electronic state the expression for "(Q) is given by Eq. (2.8). If the

electronic state is f-fold degenerate, the APES has f sheets "k(Q), k¼ 1, 2, . . ., f,

which intersect at the point of degeneracy Q�g¼ 0. The functions "k(Q) are

determined by the secular equation (2.42).

Before proceeding to the solution of Eq. (2.42) for specific JT problems,

some general considerations may be appropriate. First we separate the totally

symmetric part of the diagonal matrix elements of the quadratic vibronic

interactions, which is the force constant K�
�
(Section 2.4). Then we choose

the initial reference configuration of the system at the pointQ�g¼ 0 and assume

that the proper anharmonicity (Section 2.4) may be neglected. Under these

conditions (see [3.1, 3.2] for more details) the following expressions can be
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obtained (the � superscript denoting the electronic term symmetry is hereafter

omitted where possible):

"kðQÞ ¼ 1

2

X
�g

K�Q
2
�g þ "vkðQÞ; k ¼ 1; 2; . . .; f; (3:1)

where "vkðQÞ are the roots of the secular equation of the type (2.42) written here
in a converted form:

W v
gg0 � "vI

��� ���¼ 0; g; g0 ¼1; 2; . . .; f: (3:2)

Here W v
gg0 is an f� f matrix in which, unlike Eq. (2.42), the diagonal matrix

elementsWv
gg do not contain the totally symmetric part of the quadratic terms

used in formation of the force constant K�
�
, and I is a unit matrix of the same

order f.

With theadiabaticpotential"k(Q)known, thevibronic systemofequations (2.6),

which determine the nuclear energy spectrum and dynamics, can be solved

(in principle).However, the determination of theAPES is of special, independent

interest. In the regionofnuclear configurations far from thepointof degeneracy

(especiallynear theminimaof theAPES in the caseof strongvibronic coupling),

the energy gap between different sheets of theAPES can be sufficiently large. In

this case the nuclei may be approximately treated semiclassically as moving

along the APES. Knowledge of the shape of this surface makes possible quali-

tative analysis of the nuclear behavior, and the information thus obtained may

sometimes be as important as that deduced from the numerical solution of the

vibronic equations (2.6).

To calculate the matrix elementsWv
gg0 in Eq. (3.2) we should turn to specific

JT problems. The simplest one, mentioned above, is E� (b1þ b2) or its parti-

cular case E� b1 (or E� b2). These problems are possible for systems posses-

sing symmetry axes of fourth order or multiples of four, for which, according

to group theory, [E�E ]¼A1þB1þB2. The full problem is thus

E� (a1þ b1þ b2), but since the totally symmetric coordinates of A1 type do

not distort the symmetry of the system, they can be neglected in the general

consideration (however, they may be significant in special cases).

In the remaining E� (b1þ b2) problem the two JT-active modes Qb1 � Q1

and Qb2 � Q2 (Fig. 2.2), and two linear Fb1 � F1 and Fb2 � F2 vibronic con-

stants should be introduced:

F1 ¼ B1h j @V=@Q1ð Þ0 B1j i ¼ � B2h j @V=@Q1ð Þ0 B2j i
F2 ¼ B1h j @V=@Q2ð Þ0 B2j i

(3:3)
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where B1j i and B2j i are the two wavefunctions of the E term in systems with

fourfold symmetry transforming as x2– y2 and xy, respectively. The matrixW

in the second-order secular equation (3.2) is thus

W ¼ F1Q1 F2Q2

F2Q2 �F1Q1

� �
(3:4)

with the solutions for ",

"v� ¼ �ðF 2
1 Q

2
1 þ F 2

2 Q
2
2Þ

1
2

Taking the two primary force constants as Kb1 � K1 and Kb2 � K2, we get

the following expression for the two APES (Fig. 3.1(a)):

"�ðQ1; Q2Þ ¼ 1
2
ðK1Q

2
1 þ K2Q

2
2Þ � ðF 2

1 Q
2
1 þ F 2

2 Q
2
2Þ

1
2 (3:5)

Its two extrema points and JT stabilization energies are

Q
ð0Þ
1 ¼ �F1=K1; Q

ð0Þ
2 ¼ 0; E

ð1Þ
JT ¼ F 2

1 =2K1 (3:6)

and

Q
ð0Þ
1 ¼ 0; Q

ð0Þ
2 ¼ �F2=K2; E

ð2Þ
JT ¼ F 2

2 =2K2 (3:7)

For the two wavefunctions presented as a1 B1j i þ a2 B2j i the solution at the

point (3.6) yields a1¼ 1, a2¼ 0 and a1¼ 0, a2¼ 1, while for (3.7) a1¼ 1/˛2 and
a2¼�1/˛2, respectively.
The new curvatures K 0

1 and K 0
2, in comparison with K01 and K02 without the

vibronic interaction, are given by the following relations:

K 0
1 ¼ K01; K 0

2 ¼ K02½1� ðEð2Þ
JT =E

ð1Þ
JT Þ� (3:8)

at the points (3.6), and

K 0
1 ¼ K01½1� ðEð1Þ

JT =E
ð2Þ
JT Þ�; K 0

2 ¼ K02 (3:9)

at the points (3.7).

It follows that if E
ð1Þ
JT > E

ð2Þ
JT , the points (3.6) are minima and those of (3.7)

are saddle points, and if E
ð1Þ
JT5E

ð2Þ
JT , the opposite is true: the points (3.7) are

minima and those of (3.6) are saddle points. IfE
ð1Þ
JT ¼ E

ð2Þ
JT , an elliptical trough

of equal-energy minima is realized, and if F1/K1¼F2/K2, the trough is cir-

cular, similar to the E� e problem (Section 3.2). If the vibronic coupling with

one of the JT-active modes is negligible (one of the vibronic constants is small
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compared with the other), we obtain the E� b1 problem, its APES shape

being shown in Fig. 3.1(b). In a recent work [3.3] the case of E
ð1Þ
JT ¼ E

ð2Þ
JT was

analyzed under the condition of K1 6¼K2 that results in an APES with an

elliptical trough of equivalent minima. The author [3.3] shows that under

certain conditions the classical motion in such an elliptical trough may

become chaotic.

Upon taking into account the quadratic terms of the vibronic interactions a

coexistence of both types of minima, (3.6) and (3.7), becomes possible [3.4].

Indeed, with the quadratic terms of the vibronic coupling W of Eq. (2.18)

ε ± (Q)

ε ± (Q)

(a)

(b)

Q2
Q1

Q1

Fig. 3.1. The APES of a quadratic X4 molecule in an E state linearly coupled
to b1 and b2 displacement (E� (b1þ b2) problem) when EJT

(1)>EJT
(2):

(a) general view; and (b) cross-section along the Q1 coordinate (E� b1
problem) with illustration of distortions of the square at the minimum points.
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included the matrix elements of the secular Eq. (3.4) contain terms QaQ1 and

QaQ2, where Qa is the totally symmetric displacement:

W ¼ F1Q1 þ G1QaQ1 F2Q2 þ G2QaQ2

F2Q2 þ G2QaQ2 �F1Q1 � G1QaQ1

� �
(3:10)

Here the quadratic vibronic coupling constants G1�G(A�B1) and

G2�G(A�B2) of Eq. (2.19) are introduced; for the terms Q2
1;Q

2
2, and Q1Q2

the quadratic vibronic coupling constants vanish.

The solution of Eq. (3.10) is straightforward. Together with the harmonic

terms it yields the following two sheets of the APES in the space of the three

coordinates Qa, Q1, and Q2:

"�ðQa;Q1;Q2Þ ¼ 1
2
ðK1Q

2
1 þ K2Q

2
2 þ KaQa

2Þ
� ½ðF1 þ G1QaÞ2Q2

1 þ ðF2 þ G2QaÞ2Q2
2�

1
2 (3:11)

As in the linear case, this APES has two kinds of stationary points:

Q0
1 ¼ � F1Ka

K1Ka � G2
1

Q0
2 ¼ 0

Q0
a ¼

F1G1

K1Ka � G2
1

(3:12)

which feature the b1 (rhombic) distortion, and

Q0
1 ¼ 0

Q0
2 ¼ � F2Ka

K2Ka � G2
2

Q0
a ¼

F2G2

K2Ka � G2
2

(3:13)

for the b2 (rectangular) distortions. The two correct first-order wavefunctions

remain the same as in the linear case. The energy depths of these stationary

points read off the point of degeneracy, the JT stabilization energy, are

E b1
JT ¼ F 2

1 Ka

2ðK1Ka � G2
1Þ

(3:14)

E b2
JT ¼ F 2

2 Ka

2ðK2Ka � G2
2Þ

(3:15)
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The minimum conditions for the stationary points (3.12) and (3.13) show

[3.4] that the b1 points (3.12) are minima (rhombic distortions) when

K1Ka > G2
1

and

F 2
1

K1
>

F 2
2

K2
1þ G1ðF1G2 � F2G1Þ

K1KaF2

� �2 (3:16)

while the b2 points (rectangular distortions) became minima when

K2Ka > G2
2

F 2
2

K2
>

F 2
1

K1
1þ G2ðF2G1 � F1G2Þ

K1KaF1

� �2 (3:17)

It is seen from the formulas (3.16) and (3.17) that in the linear approxima-

tion when G1, G2! 0 only one type of minima may exist, either b1 or b2,

because the presence of one type of minima excludes the other type. However,

if the quadratic vibronic constants G1 and G2 are nonzero, there are ranges of

parameter values dependent on the second terms in the brackets of Eqs. (3.16)

and (3.17) where the two types of minima coexist. The coexistence area may be

reached with small G1 and G2 values when F 2
1 =K1 � F 2

2 =K2. Figure 3.2 illus-

trates the two minima in the Qa space for the following parameter values [3.4]

(F1 and F2 in 103 cm�1/—, K and G values in 104 cm�1/—2): F1¼ 3, F2¼ 1,

Ka¼ 2,K1¼ 1.8,K2¼ 4,G1¼ 1, andG2¼�0.5. These parameters are arbitrary

but reasonable. Since in this numerical example F 2
1 =K1 ¼ 2F 2

2 =K2, the distor-

tion is rhombic when the quadratic coupling is ignored, while a local minimum

that is higher in energy (attainable at higher temperatures) occurs when the

–0.2 –0.1 0.1 0.2

–100

–300

Rh

Re

E (cm–1)

Qα (A)°

Fig. 3.2. A cross-section of the APES of theE� (aþ b1þ b2) problem along the
projection on theQa axis connecting rhombic (Rh) and rectangular (Re)minima
(obtained by ab initio calculations with parameter values given in the text) [3.4].
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quadratic coupling is included. Quadratic coupling reduces also the barrier

height between the two equivalent rhombic distortions.

Coexistence of two (or several) kinds of distortions described by local

(nonequivalent) minima on the APES seems to be of general importance in

JT systems, and we will come back to the discussion of this phenomenon in

later sections (see, e.g., Section 3.3).

3.2 The E˜ e problem

The JT problem for a molecular system in an orbital doubly degenerate

electronic E state interacting with doubly degenerate e modes, the E� e

problem, is one of the simplest and most widespread. As mentioned above, E

terms are possible for molecules which possess at least one axis of symmetry of

not less than third order (see the appendix). The triangular molecules of the

type X3 and triangular-pyramidal, tetrahedral, octahedral, cubic, icosahedral,

pentagonal, and hexagonal molecular systems are among those having two-

fold degenerate E terms in the ground or excited states that interact with e

displacements shown in Figs. 2.1–2.4. In this problem [E�E ]¼A1þE and

hence in addition to the e vibrations the totally symmetric vibrations a1 may be

effective, so the problem is in fact E� (a1þ e).

Consider first the E� e problem. The two electronic wavefunctions of the E

term may be denoted by #j i and "j i with symmetry properties of the well-

known functions # � 3z2 � r2 and " � x2 � y2 (or # � dz2 and " � dx2�y2 in the

transition metal d function nomenclature). The two components of the normal

E-type (tetragonal) displacements Q# and Q" are illustrated in Fig. 2.4, while

the expressions in Cartesian coordinates of the nuclei are given in Table 2.2.

Accordingly, the matrix elements Wv
gg0 and hence "vkðQÞ in Eq. (3.2) depend

only on these two coordinates. In all the other coordinates the APES, in line

with Eq. (3.1), retains a simple parabolic form:

"kðQÞ ¼ 1

2

X
�l;� 6¼E

K�Q
2
�g (3:18)

Using the definition of vibronic constants introduced above (see Eqs. (2.15)

and (2.19) and the Wigner–Eckart theorem (2.16)), we can evaluate the

remaining four nonzero matrix elements of the vibronic interaction W by

means of one linear and one quadratic constant. Denote, respectively,

FE ¼ #h j @V

@Q#

� �
0

#j i; GE ¼ #h j @2V

@Q# @Q"

� �
0

"j i (3:19)
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Then, retaining only the linear and second-order terms in Q, the explicit form

of W in Eq. (3.2) for the E� e problem is [3.5]

W ¼ FEQ# þ GEðQ2
# �Q2

"Þ �FEQ# þ 2GEQ#Q"

�FEQ# þ 2GEQ#Q" �FEQ# � GEðQ2
# �Q2

"Þ

����
���� (3:20)

In the matrix form it can be presented as

W ¼ FEðQ#�̂z �Q"�̂xÞ þ GE½ðQ2
# �Q2

"Þ�̂z þ 2Q#Q"�̂x� (3:200)

where some of the Pauli matrices,

�̂x ¼
0 1

1 0

� �
�̂y ¼

0 �i

i 0

� �

�̂z ¼
1 0

0 �1

� �
�̂0 ¼

1 0

0 1

� � (3:2000)

are employed.

In polar coordinates

Q# ¼ � cos�; Q" ¼ � sin� (3:21)

the solution to Eq. (3.2) with the matrix W from (3.20) is

"v�ð�; �Þ ¼ ��½F 2
E þ G2

E�
2 þ 2FEGE� cosð3�Þ�

1
2 (3:22)

Substitution of these values into Eq. (3.1) yields the following expression for

the APES in the space of Q# and Q" coordinates:

"v�ð�; �Þ ¼ 1
2
KE�

2 � �½F 2
E þ G2

E�
2 þ 2FEGE� cosð3�Þ�

1
2 (3:23)

In particular, in the linear coupling case [3.6], i.e. neglecting quadratic terms

(GE¼ 0) this surface simplifies to

"v�ð�; �Þ ¼ 1
2
KE�

2 � FEj j� (3:24)

We see that in this linear approximation the APES is independent of the

angle � and has the form of a surface of revolution, often called the ‘‘Mexican

hat’’ (Fig. 3.3). The radius �0 of the circle at the bottom of the trough and its

depth, read off from the degeneracy point at �¼ 0, the JT stabilization energy

EE
JT, are given by the relationships

�0 ¼ FEj j=KE (3:26)

EE
JT ¼ F 2

E=2KE (3:27)
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If the quadratic terms in W are taken into account, this surface warps, and

along the bottom of the trough of the ‘‘Mexican hat’’ three wells occur,

alternating regularly with three humps (Figs. 3.4 and 3.5). The extrema points

(�0, �0) of the APES (3.23) are

�0 ¼
�FE

KE 	 ð�1Þn2GE
; �0 ¼ np=3; n ¼ 0; 1; : : :; 5 (3:28)

the upper and lower signs corresponding to cases FE> 0 and FE< 0, respec-

tively. If FEGE> 0, the points with n¼ 0, 2, and 4 are minima, while those with

n¼ 1, 3, and 5 are saddle points, whereas for FEGE< 0 these two types of

extrema points interchange. For the JT stabilization energy we get

EJT ¼ F 2
E=2ðKE � 2 GEj jÞ (3:29)

while the minimal barrier height � between the minima is

� ¼ 4EJT GEj j=ðKE þ 2 GEj jÞ (3:30)

In the linear approximation the curvature K at the bottom of the trough is

the same at all points. Along the trough K�¼ 0 and in the perpendicular

ε

EJT

Qϑ

φ ρ0

Qε

Fig. 3.3. The APES for a twofold degenerate E term interacting linearly
with the twofold degenerate E-type vibrations described by Q# and Q"

coordinates with a conical intersection at Q#¼Q"¼ 0 (linear E� e problem,
the ‘‘Mexican hat’’). EJT is the JT stabilization energy, �0 is the radius
of the trough (reprinted with permission from [3.25]. Copyright 1996 John
Wiley & Sons, Inc.).
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(a) (b)

ε

Qε Qε

QθQθ

Fig. 3.4. The APES for the E� e problem with both the linear and quadratic
terms of the vibronic interaction included: (a) general view (the ‘‘tricorn’’);
(b) equipotential sections of the lower sheet; three minima and three saddle
points are indicated by black circles and triangles, respectively (courtesy
of P. Garcia-Fernandez).

Fig. 3.5. The section of the lowest sheet "� of the APES of the quadratic E� e
problem along the line of steepest slope that connects the minima and saddle
points in Fig. 3.4, with illustration of the distortions of octahedral and
tetrahedral systems at the points of minima.
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(radial) direction K�¼KE, while in the absence of vibronic coupling

K�¼K�¼KE; in the denotation of the tetragonal symmetry of the minima

K�¼KA and K�¼KB. Taking into account the quadratic terms, we obtain at

the minima [3.1]

K� ¼ KE � 2 GEj j; K� ¼ 9 GEj jðKE � 2 GEj jÞ=ðKE � GEj jÞ (3:31)

It follows that if 2|GE|>KE, the system under consideration has no minima

at the point �0 and decomposes, provided higher-order terms in Q in the

vibronic couplingW, neglected above, do not make the system stable at larger

distances (see in Chapter 5). At the minima points the curvature equals the

force constant, which is proportional to the square of the frequency of the

corresponding vibrations.

The two wavefunctions w�, which are the solutions of the perturbation

problem (3.20), corresponding to the two sheets (3.22) are

w�ð�; �Þ ¼ cosðW=2Þ #j i � sinðW=2Þ "j i
wþð�; �Þ ¼ sinðW=2Þ #j i þ cosðW=2Þ "j i

(3:32)

where

tanW ¼ FE sin�� GEj j� sinð2�Þ
FE cos�þ GEj j� cosð2�Þ (3:33)

It is often assumed thatW¼�, which is true only in the absence of quadratic

vibronic coupling (GE¼ 0).

As seen from Figs. 3.3 and 3.4, the point of degeneracy on the APES is a

conical intersection, which was shown to be very important in JT problems,

especially in relation to the topological phase problem (Section 5.7). There

may be more than one conical intersection in the E� e problem (see below in

this section), and they affect strongly the spectroscopic properties of JT

systems (Sections 5.2 and 5.3). The known shapes of the symmetrized displace-

ments Q# and Q" and their values at the minima points can be used to

determine the corresponding JT distortions of different types of molecules.

Some distortions for tetrahedral and octahedral systems are illustrated

in Fig. 3.5.

The motion of the nuclei can be investigated properly by solving Eq. (2.6)

with the APES obtained above. However, some qualitative features of the

nuclear behavior, as indicated earlier, can be clarified in the semiclassical

approximation by considering the nuclei moving along the APES. This treat-

ment has some physical basis when the energy gap between different APES

sheets is sufficiently large, i.e., for strong vibronic coupling and for nuclear
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configurations near the minima of the lowest (ground) sheet where in the E� e

problem the gap equals 4EJT.

If only linear terms are considered, i.e., when the lowest sheet of the APES

has the shape of a ‘‘Mexican hat,’’ the nuclear configuration performs free

rotations in the space of Q# and Q" coordinates along the circle of minima in

the trough. In this case [3.7] each atom of, say, a triangular molecule X3,

describes a circle of radius �0
ffiffiffi
3

p
. The variation of the Cartesian coordinates

of the atoms xi, yi (i¼ 1, 2, 3) during the motion of the system along the trough

is given by the following expressions:

x1¼ð1=
ffiffiffi
3

p
Þ� cos�; y1¼ð1=

ffiffiffi
3

p
Þ� sin�

x2¼ð1=
ffiffiffi
3

p
Þ� cos½�� ð2p=3Þ�; y2 ¼ð1=

ffiffiffi
3

p
Þ� sin½�� ð2p=3Þ�

x3¼ð1=
ffiffiffi
3

p
Þ� cos½�� ð4p=3Þ�; y3 ¼ð1=

ffiffiffi
3

p
Þ� sin½�� ð4p=3Þ�

(3:34)

It is seen that the circular motions of these atoms are correlated: the vectors

of their displacements are shifted in phase through an angle of 2p/3 (Fig. 3.6).
At any instant of time the equilateral triangle X3 is distorted into an isosceles

triangle, and this distortion travels as a wave around the triangle’s geometric

center performing a specific internal rotation.

Fig. 3.6. Distortions of a triatomic molecule X3 caused by moving along the
bottom of the trough of the lowest sheet of the APES in the linear E� e
problem. Each of the three atoms moves along a circle, their phases being
concerted. The bold points indicate the minima positions when quadratic
terms are taken into account. The dashed triangle corresponds to the point
�¼ 0 in Eq. (3.23) (Q"¼ 0, Q�¼ � in Fig. 3.3), and the case of compressed
triangles is shown; with the opposite sign of the vibronic coupling constant
the triangles are elongated.
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In the case of an octahedral molecule, which in a trigonal projection looks

like two equilateral triangles, the two deformation waves traveling around

each of the latter are opposite in phase. As a result the octahedron becomes

elongated (or compressed) alternatively along one of the three fourfold axes

and simultaneously compressed (or elongated) along the remaining two axes

(Fig. 3.7). For more on trajectories in different JT problems see in [3.8].

When the quadratic terms of the vibronic interaction are taken into account,

the lowest sheet of the APES has three minima, at each of which the octa-

hedron is elongated (or compressed) along one of the three axes of order four

(Fig. 3.4). The nuclear motions along the APES surface when allowing for

quantum effects are likewise hindered rotations and tunneling transitions between

the minima. Starting with the configuration in one of these minima, the JT

dynamics in this casemay be presented, byway of illustration, as ‘‘pulse’’ motions,

(or ‘‘fluctuations’’) along the three axes, which are discussed in Chapter 5.

As indicated earlier, since [E�E ]¼A1þE, the totally symmetric displace-

ments of A1 type are also JT active in the twofold degenerate E state (as in all

(c)

ε

(b) (d)

(a)

120°
EJT

Qθ

Qε

Fig. 3.7. Distortions of an octahedral system ML6 at different points along
the bottom of the trough of the ‘‘Mexican hat’’ in the linear E� e problem.
At the points �¼ 0, 2p/3, and 4p/3 the octahedron is tetragonally distorted
along the three fourfold axes, respectively (a)–(c). In between these points the
configuration has D2h symmetry (d) and varies continuously from one
tetragonal configuration to another.
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the other cases): strictly speaking, in general the E� (eþ a1) problem must be

solved instead of the E� e problem considered above. However, totally sym-

metric displacements do not change the molecular symmetry; they change

proportionally only the interatomic distances. Therefore, considering vibronic

effects, it may be assumed that the reference configuration is taken at a new

minimum position with regard to the A1 coordinates, so that the interaction

with the a1 displacements, as with all other JT-inactive modes, becomes

unimportant here. This cannot be done when one has to compare vibronic

effects in different systems or in a series of systems, for which the a1 displace-

ment contributions may be different. For this and other reasons the more

rigorous expressions for the APES, which include interaction with all the

active modes, may be useful.

Let us denote the linear vibronic constant and the corresponding force

constant for totally symmetric displacements �A by FA and KA, respectively.

Then the APES is as follows [3.5]:

"ð�A; �; �Þ¼ 1
2
KA�

2
A � FA�A þ 1

2
KE�

2

� fF 2
E þ G2

E�
2 þ 2FEGE ½� cosð3�Þ � 2

ffiffiffi
2

p
�A�

þ 4G2
E�A½2�A �

ffiffiffi
2

p
� cosð3�Þ�g

1
2

(3:35)

The extrema points for this surface are (cf. Eq. (3.28))

�0 ¼
�ðFE þ 2

ffiffiffi
2

p
�FAÞ

KE 	 ð�1Þn2GE � 4�GE

�A0 ¼FA=KA � 2
ffiffiffi
2

p
��0 ¼ �0A0 � 2

ffiffiffi
2

p
��0

(3:36)

where �¼GE/KE characterizes the role of the quadratic terms of vibronic

interactions with respect to the ‘‘homogeneous hardness’’ of the system KA.

In strongly coupled E� e problems the totally symmetric (breathing) mode

alters a variety of properties, in particular, the absorption spectra (Section 6.1).

Note that Eqs. (3.28)–(3.33), as well as (3.35) and (3.36), are deduced under

the assumption that GE<KE, i.e. the quadratic coupling is small. In the limit

GE
KE the following approximate formulas can be useful for estimation of

parameters:

EJT � F 2
E=2KE

�0 ¼ FE=KE

� � 4EJT GEj j=KE

(3:37)
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In more widespread notations in dimensionless units with energy in �ho units,

time ino�1, length in (�h/mo)1/2, and normal coordinates inmass-weighted length

(�h /o)1/2, we have KE¼ 1, FE¼ k, GE/KE¼ g/2,D¼EJT/�ho¼ k2/2, � / �ho¼ k2g,

and Eq. (3.23) can be written in the following form:

"�ð�; �Þ ¼ 1
2
�2 � �½k2 þ 1

4
g2�2 þ kg� cosð3�Þ�

1
2 (3:38)

If cubic terms are included in the vibronic coupling, the two branches of the

APES look as follows [3.9a]:

"�ð�; �Þ ¼ 1
2
�2 þ g�3 cosð3’Þ

� �fk2 þ kg� cosð3’Þ þ ½2kg1 þ ð1=4Þg2��2 � gg1�
3 cosð3’Þ þ g21�

4g
1
2

(3:39)

where in addition to the constants above we introduced anharmonicity con-

stants: g, the totally symmetric part of the matrix elements of the cubic terms

of W in Eq. (2.18), meaning the usual (nonvibronic) anharmonicity constant,

and g1, the E-symmetry part of these cubic terms that emerge due to the

electronic degeneracy. As we see from this formula, the cubic terms produce

qualitatively the sameAPESwarping (resulting in threeminima) as the quadratic

coupling terms, so the question of their relative contributions to this warping

emerges [3.9a]. For contributions of higher order terms see [3.9(b)].

An important development of the E� e problem emerged recently when it

was realized that since the linear and quadratic coupling terms of the vibronic

interactionW in Eq. (2.14) are described by rather independent constants, the

quadratic coupling is not necessarily small compared with the linear coupling.

If the quadratic coupling is sufficiently large, the form of the APES and all

the consequent properties change essentially. Indeed, as seen from Eq. (3.23)

or (3.38), the two branches of the APES in this case intersect not only at �¼ 0

(central conical intersection), but also at

� ¼ 2k=g; � ¼ p=3; p; 5p=3 (3:40)

These additional three conical intersection points are positioned along the

three lines that include the central conical intersection and the three saddle

points on the APES [3.10]. Figure 3.8 shows one of these points in the cross

section of the APES with a plane containing the minimum M at �¼ 0, the

saddle point at �¼ p, and two conical intersections, the central one C and the

additional one in this direction. Figure 3.9 illustrates the APES with the three

additional conical intersections [3.11]. Their presence was confirmed by direct
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Fig. 3.9. A general view (conventional) of a part of the APES of an E� e
system with strong quadratic coupling that produces three additional conical
intersections (see Fig. 3.8) (courtesy of G. Bevilacqua).

ε+

ε–

C ′
S

C
M

Fig. 3.8. A cross-section of the APES of an E� e system (with linear and
quadratic terms included) with a plane containing one minimum M, the
central conical intersection C, and a saddle point S. For sufficiently strong
quadratic coupling an additional conical intersection C0 emerges at �¼ 2k/g.
There are three (equivalent) such additional conical intersections on the
APES (see Fig. 3.9).
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numerical calculations for specific systems NiF3 [3.12], Li3 [3.13], and

Na3 [3.14], as well as in general for systems with E� e and T� t2 problems

and different coupling constants [3.15, 3.16].

If g (or GE) is small, the additional conical intersections are far away from

the central conical intersections, the minima positions, and the saddle points,

thus almost not affecting the main properties of the system. However, the

quadratic coupling gmay be sufficiently large, and then it affects dramatically

the spectral properties, in particular, the tunneling splitting and our general

understanding of the problem (Sections 5.2 and 5.3).

Another interesting development is related to APES of short-lived (meta-

stable) states [3.17]. In application to linear and quadratic E� e problems, it

was shown that by introducing an imaginary term in the equation of APES to

stand for its lifetime, the JT coupling affects significantly both the form of the

real APES (producing additional minima and conical intersections) and its

imaginary part, the lifetime of the state under consideration. Ab initio calcula-

tions that allow for numerical estimations of these effects were carried out on

�-type resonance states of the tris(boramethyl)amine anion.

Further developments for theE� e problem are more related to the solution

of the system of vibronically coupled Eqs. (2.6) than to just evaluation of the

APES. Therefore they are discussed in Chapter 5.

3.3 T˜ e, T˜ t2, T˜ (eþ t2), and �8˜ (eþ t2) problems for triplet

and quadruplet terms

Threefold orbitally degenerate terms are possible for molecular systems with

cubic or icosahedral symmetry point groups T, Td, Th,O,Oh, I, and Ih (see the

appendix). There are two types of orbital triplets,T1 andT2. Since the vibronic

effects in these two states are similar, the results obtained for one of them can

be easily transferred to the other one. We consider first the term T2. Its three

functions, which transform as the coordinate products yz, xz, and xy, are

denoted by �j i; �j i; and 	j i, respectively. In the T term problem, distinct

from the E case, there are five JT-active nontotally symmetric coordinates

(Table 2.3): two tetragonal (E type), Q# and Q", and three trigonal (T2 type),

Q�, Q� , and Q	 (see Fig. 2.3 and Table 2.2). For all the other (JT-inactive)

coordinates the APES remains parabolic (i.e., they provide no vibronic

contributions "vk in Eq. (3.1)). The JT problem is thus T2� (eþ t2).

With three electronic functions, the secular equation (3.2) that determines

the vibronic contribution "vkðQÞ to the APES is of third order. The matrix

elements Wv
gg contain two linear vibronic constant FE and FT and several
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quadraticG� depending on the number of nontotally symmetric tensor convolu-

tions that can be prepared by different quadratic combinations of QEg and QTg

(Section 2.4). It can be shown [3.1] that for aT term theremay be four quadratic

vibronic constants: GE(E�E), GE(T�T), GT(T�T), and GT(E�T).

Consider first the linear approximation for which all G�¼ 0. Denote

FE ¼ 	h j @V

@Q#

� �
0

	j i; FT ¼ �h j @V

@Q�

� �
0

	j i (3:41)

According to Eq. (2.16) all the matrix elements of the linear terms of the

vibronic interaction can be expressed by means of these two constants, and the

matrix W in the secular equation (3.2) for "vkðQÞ takes the form [3.18]

W ¼
FE

1
2
Q# �

ffiffi
3

p

2
Q"

� 	
�FTQ	 �FTQ�

�FTQ	 FE
1
2
Q# þ

ffiffi
3

p

2
Q"

� 	
�FTQ�

�FTQ� �FTQ� �FEQ#

2
664

3
775 (3:42)

The three roots of Eq. (3.2) with this matrix, "vkðQÞ, k¼ 1, 2, 3, are the three

electronic parts of the surfaces in the five-dimensional space of the above five

coordinates Q�g. Together with the elastic (nonvibronic) part in Eq. (3.1) they

determine the three sheets of the APES (in the space of these coordinates),

crossing at Q�g¼ 0:

"kðQÞ ¼ 1
2
KEðQ2

# þQ2
"Þ þ 1

2
KTðQ2

� þQ2
� þQ2

	Þ þ "vkðQÞ; k ¼ 1; 2; 3 (3:43)

However, the analytical solution of Eq. (3.2) with W from Eq. (3.42) is

difficult. In [3.18] a special procedure was worked out to determine the

extrema points of the surface (3.43) without the full solution of Eq. (3.42).

This procedure is based on the fact that the minimization of the expression

(3.43) to find the extrema points is equivalent to solving a system of equations,

which in the matrix form can be written as follows (for more details see [3.1,

3.18]). Denote (cf. Eqs. (3.1) and (3.2))

Û ¼ 1
2

P
�l

K�Q
2
�gI þW

where I is a unit matrix and W is the vibronic coupling matrix (both have the

rank of the electronic degeneracy). Assume that â is the eigenvector (a column

vector) of Û. Then we have

Ûâ ¼ "â; âþâ ¼ 1; âþ
@Û

@Q�g
â ¼ 0 (3:430)

3.3 T� e, T� t2, T� (eþ t2), and �8� (eþ t2) 63



By solving these equations with respect to Q�g we get the extrema points of

the APES. It was also shown [3.18] how, by calculating second-order pertur-

bation corrections to the energies at the extrema points, one can determine the

kind of the latter: minimum, maximum, or saddle point.

This approach, which has widely been used to evaluate distortions in JT

systems, was also extended to the so-called method of isostationary functions

[3.19] in which the Eqs. (3.430), which minimize the energy with respect to the

nuclear coordinates, are transformed into equations for the electronic wave-

function coefficients.

To solve Eq. (3.2) using the method of [3.18], consider first the particular

case when FT¼ 0 while FE 6¼ 0 (the T� e problem). In this case the matrix

(3.42) is diagonal and Eq. (3.2) can be solved directly:

"v1ðQ#; Q�Þ ¼ �FEQ#

"v2ðQ#; Q�Þ ¼FE
1

2
Q# þ

ffiffiffi
3

p

2
Q"

 !

"v2ðQ#; Q�Þ ¼FE
1

2
Q# �

ffiffiffi
3

p

2
Q"

 ! (3:44)

Substitution of these solutions into Eq. (3.43) yields the APES consisting of

a set of paraboloids, of which only those containing the tetragonal Q# and Q"

coordinates have minima displaced from the origin. In these coordinates the

surface has the shape of three equivalently displaced paraboloids intersecting

at the point Q#¼Q"¼ 0 (Fig. 3.10). The positions of the three minima are

given by the following coordinates:

ðQE
0 ; 0Þ;

1

2
QE

0 ;

ffiffiffi
3

p

2
QE

0

 !
;

1

2
QE

0 ; �
ffiffiffi
3

p

2
QE

0

 !
(3:45)

whereQE
0 ¼ FE=KE . For the depth of theminima, the energy of JT stabilization,

we have

EE
JT ¼ F 2

E=2KE (3:46)

Note that the relief of the surface sheets near the point of degeneracy

(Fig. 3.10) differs from that of the E term (Figs. 3.3 and 3.4): in the case of

the T term there is a real intersection of the surface sheets at the point

Q# ¼ Q" ¼ 0, whereas for the E term a branching of the APES occurs at this

point with a conical intersection. The three wavefunctions �j i; �j i; and 	j i for
the three paraboloids, as distinct from the three functions in the three minima
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of the E-term case, are mutually orthogonal and are not mixed by the tetra-

gonal displacements (therefore no tunneling between the minima occurs,

Section 5.3).

In the other particular case when FE¼ 0, but FT 6¼ 0 (the T� t2 problem) the

third-order Eq. (3.2) with the matrix W in (3.42) cannot be solved directly in

simple expressions. Using the method [3.18], one can determine the extrema

points of the APES by solving Eqs. (3.430), without solving Eq. (3.2). For

the case in question the surface "ðQ�, Q�, Q	Þ in the space of the trigonal

coordinates has four minima lying on the C3 axis of the cubic system at the

points ðm1Q
T
0 , m2Q

T
0 , m3Q

T
0 Þ, where the four sets of the (m1, m2, m3) numbers

are (1, 1, 1), (�1, 1, �1), (1, �1, �1), and (�1, �1, 1), and

QT
0 ¼ 2FT=3KT (3:47)

At these minima the system is distorted along the trigonal axes. The kind of

displacements of the atoms corresponding to this distortion for an octahedral

system are illustrated in Fig. 3.11. The six ligands, in two sets of three ligands

each, move on the circumscribed cube toward two apexes lying on the corres-

ponding C3 axes [3.7, 3.18]. The JT stabilization energy is

ET
JT ¼ 2F 2

E=3KE (3:48)

M2
M1

M3

Qθ

Qε

Fig. 3.10. The APES for the JT T� e problem: three paraboloids intersect at
Q�¼Q"¼ 0; M1, M2, and M3 are the three minima.
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In this case the frequencyoT of the trigonalT2 vibrations splits into two [3.1]

(for other frequency relations, see in [3.1]):

oA ¼ oT or KA ¼ KT and oE ¼ ð2=3Þ
1
2oT

The electronic wavefunctions at the minima are given by the relationship

w ¼ 1ffiffiffi
3

p ðm1 �j i þm2 �j i þm3 	j i (3:49)

with the values of the sets of numbers mi, i¼ 1, 2, 3, given above.

In the general case of the T� (eþ t2) problem, when simultaneous interac-

tion with both the tetragonal (FE 6¼ 0) and trigonal (FT 6¼ 0) displacements is

taken into account, the APES in the five-dimensional space of the five coordi-

natesQ�g is rather complicated, but the extrema points may be obtained using

the procedure of Eqs. (3.430) [3.18]. In general, the APES for the linear

T� (eþ t2) problem has three types of extrema points summarized in Table 3.1.

(1) Three equivalent tetragonal points, at which only tetragonal coordinates Q#

and Q" are displaced (from the origin Q�g¼ 0). Here the coordinates of the

minima and their depths are the same as in the linear T� e problem and

are given by Eqs. (3.45) and (3.46). (2) Four equivalent trigonal points at

which only the trigonal coordinates Q�, Q�, and Q	 are displaced (Fig. 3.11).

The minimum coordinates coincide with those obtained in the T� t2 problem

(see Eqs. (3.47) and Table 3.1). (3) Six equivalent orthorhombic points at each

of which one trigonal and one tetragonal coordinate is displaced (Table 3.1);

their depth is given by

E 0
JT ¼ 1

2
EE
JT þ 3

4
ET
JT (3:50)

x

z

y

Fig. 3.11. Trigonal distortion of an octahedron in an electronic T state (cf. the
Q�þQ�þQ	 displacement in Fig. 2.3).
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In this problem, if EE
JT>ET

JT, the tetragonal extrema points are deepest and

hence absolute minima, while the trigonal ones are saddle points. If, however,

EE
JT5ET

JT, the trigonal points are minima and the tetragonal ones are saddle

points. The orthorhombic extrema points are always saddle points in the linear

approximation.

The curvature of the APES at the extrema points can also be investigated by

the method of [3.18]. In each of the three equivalent tetragonal minima the

symmetry Oh of the system is reduced to D4h and the irreducible representa-

tions of the JT-active displacements Eg and T2g are reduced: Eg¼A1gþB1g

and T2g¼B2gþEg. While the A1g and B1g vibrations remain degenerate, the

B2g and Eg ones split:

~o2
A1

¼ ~o2
B1

¼ o2
E ; ~o2

B2
¼ o2

T ; ~o2
E ¼ o2

Tð1� ��1Þ;
� ¼ EE

JT=E
T
JT

(3:51)

Similarly, at the trigonal extrema points the JT displacements transform as

Eg and A1gþEg of the D3d group; the transformed vibrational frequencies are

~oA ¼ oT , while two frequencies ~oE are solutions that diagonalize the matrix

o2
E 1� 2

3
�


 �
�
ffiffi
2

p

3
oEoT

ffiffiffi
�

p

�
ffiffi
2

p

3
oEoT

ffiffiffi
�

p 2
3
o2

T

�����
����� (3:52)

Table 3.1. Extrema points of the APES of an electronic T term in the linear

T� (eþ t2) problem

Number of
equivalent
extrema points

Nature of
the extremum

Coordinates of the extremum
in five-dimensional space
(Q#, Q
, Q�, Q�, Q	)

3 Tetragonal minima
or saddle points

(FE/KE, 0, 0, 0, 0)
(�3FE/2KE, FE/2KE, 0, 0, 0)
(�3FE/2KE, �FE/2KE, 0, 0, 0)

4 Trigonal minima
or saddle points

(0, 0, 2FE/3KT, 2FE/3KT, 2FE/3KT)
(0, 0, �2FE/3KT, �2FE/3KT, 2FE/3KT)
(0, 0, �2FE/3KT, 2FE/3KT, �2FE/3KT)
(0, 0, 2FE/3KT, �2FE/3KT, �2FE/3KT)

6 Orthorhombic
saddle points

(�FE/2KE, 0, 0, 0, FT/KT)
(�FE/2KE, 0, 0, 0, �FT/KT)
(3FE/4KE, �FE/4KE, 0, FT/KT, 0)
(3FE/4KE, �FE/4KE, 0, �FT/KT, 0)
(3FE/4KE, FE/4KE, FT/KT, 0, 0)
(3FE/4KE, FE/4KE, �FT/KT, 0, 0)
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This quadratic form is positive definite if the determinant of (3.52) is

positive:

2
3
o2

Eo
2
Tð1� �Þ > 0 (3:53)

meaning �51 ðEE
JT5ET

JTÞ:
At the orthorhombic extremapoints the symmetry group isD2h,Eg¼A1gþB1g

and T2g¼A1gþB2gþB3g, and for the five vibrational frequencies we get

~o2
A ¼ o2

E ; ~o2
A0 ¼ ~o2

B3
¼ o2

T ;

~o2
B1

¼ o2
Eð1� �Þ; ~o2

B2
¼ o2

T

� � 1

� þ 1
(3:54)

By comparing Eqs. (3.51)–(3.54) we can conclude that in the linear

T2� (eþ t2) problem, depending on the value of � ¼ EE
JT=E

T
JT, either tetra-

gonal or trigonal extrema points are absolute minima, whereas the orthor-

hombic points can never be absolute minima. Indeed, it follows from Eq. (3.54)

that for any value of � there is at least one negative value of o2 meaning

negative curvature (K¼Mo2) in the corresponding direction. If �> 1, all the

tetragonal frequencies are positive, whereas some of the trigonal ones are

negative. In the opposite case of �< 1 all the trigonal frequencies are positive,

while some of the tetragonal ones become negative.

In the particular case whenEE
JT ¼ ET

JT all the extremumpoints (including the

orthorhombic ones) have the same depth. It was shown [3.20] that in this case a

continuum of minima is realized, forming a two-dimensional trough on the

five-dimensional surface of the APES (in a sense similar to the ‘‘Mexican hat’’

in the E� e problem). If, additionally, KE¼KT, the problem is of equal

coupling to e and t2 displacement (the T� d problem [3.20]). In this situation

the two-dimensional trough in the five-dimensional space of Q#;Q";Q�;Q�,

and Q	 coordinates can be conveniently described by a spherical surface. For

the minima points along the bottom of the trough, using polar coordinates #

and �, we have [3.1, 3.20]

Q0
# ¼ �0ð3 cos#� 1Þ; Q0

" ¼ �0
ffiffiffi
3

p
sin2 # cosð2�Þ;

Q0
� ¼ �0

ffiffiffi
3

p
sinð2#Þ sin�; Q0

� ¼ �0
ffiffiffi
3

p
sinð2#Þ cos�;

Q0
	 ¼ �0

ffiffiffi
3

p
sin2 # sinð2�Þ

(3:55)

with �0 ¼ FE=2KE, and the JT stabilization energy

EJT ¼ F 2
E=2KE (3:56)
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In this case the classical motion of an octahedron along the trough corres-

ponds tomotions of the ligands around identical spheres centered at the apexes

of the octahedron [3.1]. The displacements of different ligands are correlated:

at every instant their radius vectors drawn from the center of the sphere, if

shifted to a common origin, form a star, the apexes of which produce a regular

octahedron rotating around its geometric center (the T� d problem is relevant

to mostly large-radius F-centers in solids, Section 8.1).

In the quadratic approximation the vibronic T� (eþ t2) problem is very

complicated [3.21–3.24] (cubic terms have also been taken into account [3.24]).

Similar to the E-term problem, the quadratic terms of the vibronic interaction

W in Eq. (2.18) produce significant changes in the shape of the APES for a

T term. With these terms included, the matrix (3.42) contains the previous two

linear plus four quadratic vibronic constants. The latter span the following

symmetries: E�E, T2�T2(EþT2), and E�T2. Among them, the constant

GE(E�T2), which mixes the E-and T2-type displacements, seems to be most

important in changing the shape of the APES. Therefore, certain qualitative

and semiquantitative results can be obtained by retaining only one quadratic

constant,

G ¼ GEðE þ T2Þ ¼
1

2
�h j @2V

@Q� @Q�

� �
0

�j i (3:57)

and disregarding all the other vibronic constants [3.21].

In this approximation the APES contains five parameters: FE, FT, KE, KT,

and G. It was shown [3.21] that only two dimensionless combinations A and B

of these five parameters are necessary to describe the main features of the

system:

A ¼ GðKEKTÞ�
1
2; B ¼ FEG=FTKE (3:58)

The linear vibronic coupling at G¼ 0 corresponds to the origin (0, 0) on the

plane (A, B) shown in Fig. 3.12. Along the two lines A ¼ �ð
ffiffiffi
3

p
=2ÞB, the

energies at the tetragonal and trigonal extrema points are the same

(the positions and depths of these points are not affected by the E�T2-type

quadratic vibronic interaction). In the cross-hatched area the trigonal extre-

mum points are deeper than the tetragonal ones, whereas in the hatched area

the opposite is true. In all cases the stability of the system requires that A< 1,

which means that G2<KEKT.

An account of theE�T2-type quadratic terms is most essential in determin-

ing the positions and pattern of the six equivalent orthorhombic extremum

points which, in the linear approximation, are only saddle points. Their depth
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and the coordinates of one of them are as follows (the others can be easily

derived from symmetry considerations) [3.21]:

E O
JT ¼F 2

E ð4A2 � 4A2Bþ B2Þ=8KEB
2ð1� A2Þ

Q0
� ¼Q0

� ¼ Q0
" ¼ 0

Q0
	 ¼FTð2� BÞ=2KTð1� A2Þ

Q0
# ¼�FEðB� 2A2Þ=2KEBð1� A2Þ

(3:59)

When approaching the point G¼ 0 (A¼B¼ 0) along the lines

A ¼ �ð
ffiffiffi
3

p
=2ÞB on the plane (A, B) (Fig. 3.12), the depth of the orthorhombic

extremum points in question, E O
JT, becomes equal to that of the trigonal and

tetragonal distortions (E O
JT ¼ ET

JT ¼ EE
JT), resulting in the two-dimensional

trough of minima on the five-dimensional APES. Away from this point

E O
JT 6¼ EE;T

JT , and the trough is warped; as in the E-term case, wells and

humps emerge regularly, alternating along the line of the minima. It is impor-

tant that for a large area of the A and B parameters shown in Fig. 3.13 the

orthorhombic extremum points become absolute minima.

Beside these three types of extremum points, the quadratic terms of the

vibronic interaction generate three new types with 12, 12, and 24 equivalent

extremum points, respectively. Calculations carried out numerically [3.21]

show that the latter type (24 points) is irrelevant since for the parameters for

–1

–1

1

1

2 3 B

A

–3

A
 =

 –
 B

 √3/2

A =B
 √3

/2

–2

Fig. 3.12. Areas of stability in (A, B) coordinates of a molecule with a JT
quadratic T� (eþ t2) problem. The molecule is stable when |A|< 1. Along
the lines A ¼ �B

ffiffiffi
3

p
=2 the tetragonal and trigonal stationary points have the

same energy. In the cross-hatched area the tetragonal stationary points have
lower energy, whereas in the remaining area the trigonal points have lower
energy [3.1].
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which it might occur, the system is unstable, while the first two types (with

12 points each) never become absolute minima. A group-theoretical consid-

eration of possible extremum points on the APES is given elsewhere [3.25].

The classical motion of atoms along the APES in this case was discussed in

[3.8, 3.26].

Figure 3.14 shows the areas of A and B parameters (Eqs. (3.58)) where the

three types of minima on the APES are realized. An important feature in this

1–2 –1

–1

1

2 3 B

A

–3

Fig. 3.13. The area of existence (hatched) of orthorhombic absolute minima
of the APES for a quadratic T� (eþ t2) problem [3.1].

Fig. 3.14. Areas of existence and coexistence of different types of minima
of the APES for the quadratic T� (eþ t2) problem (in A and B
coordinates); vertical, horizontal, and oblique shadings correspond to
areas of existence of tetragonal, trigonal, and orthorhombic minima,
respectively. Overlap shading shows areas of coexistence of corresponding
minima (from [3.21]).
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graphic presentation is the areas of coexistence of different types of minima

(cf. coexistence in the E� (b1þ b2) problem, Section 3.1). This coexistence

means that for the same parameter values (more precisely for the same

values of the combinations A and B of the parameters) the APES of the

system has two types of coexisting minima (tetragonal and trigonal, tetra-

gonal and orthorhombic, trigonal and orthorhombic), while for some mar-

ginal values all three types of minima coexist. However, the presence of

minima on the APES is just one of the necessary conditions of possible

observance of different kinds of minima, the others being relatively low

energy with respect to the absolute minimum and sufficiently high barriers

between them.

Another type of quadratic terms, namely GT2
ðT2 � T2Þ, was considered

for the T� t2 problem [3.22]. Similar to the case above, for some of the

vibronic coupling parameters the orthorhombic stationary states, which are

saddle points in the linear approximation, become minima in this quadratic

approximation. The GE(E�E) and GT2
ðT2 � T2Þ couplings in the T� (eþ t2)

problem were taken into account in [3.23, 3.24]. In [3.24] similar cubic terms

(E�E�E and T2�T2�T2), as well as totally symmetric a1 displacement,

were also included (see also [3.27]). The conclusions from these works are

qualitatively similar to those described above in [3.21], but with rather compli-

cated dependence on (more) coupling parameters and additional changes in

the a1 coordinates at the minima.

An important feature of orbital T terms, as distinct from E terms, is the

large splitting caused by spin–orbit interaction (in first-order perturbation

theory). Therefore, if the system in question has unpaired electrons or, in

general, if the total spin S of the state under consideration is nonzero, we do

not deal with T terms as such, but with their components which result from

spin–orbital splitting. For instance, the spin doublet 2T (one unpaired elec-

tron in an orbital T state) under spin–orbit interaction splits into two com-

ponents, �8þ�6, of which the first (�8) is a spin quadruplet and the second

(�6) is a spin doublet. The latter can be treated like the doublet E, considered

above (Section 3.2), whereas the quadruplet term �8 requires additional

treatment.

Since [�8��8]¼A1þEþT2 (Table 2.3), the JT-active displacements for

the �8 state are ofE andT2 type, so the problem is �8� (eþ t2). The solution of

the secular equation (3.2) results in two sheets of the APES (two spin doublets)

given by the following expression [3.7, 3.1]:

"�ð�; QÞ ¼ 1
2
ðKE�

2 þ KTQ
2Þ � ðF 2

E�
2 þ F 2

TQ
2Þ

1
2 (3:60)
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where �2 ¼ Q2
# þQ2

" and Q2 ¼ Q2
� þQ2

� þQ2
	 . It is seen that the surface (3.60)

depends on only two (� and Q) of five coordinates, being thus a surface of

revolution for the remaining three (the angle � in the polar coordinates

Q#¼ � cos� and Q"¼ � sin�, and similar angles � and � in the corresponding

spherical coordinates forQ�,Q�, andQ	). On the other hand, expression (3.60)

formally coincides with Eq. (3.5) for the APES of the E� (b1þ b2) problem,

which means that in (�, Q) space the surface (3.60) has the shape illustrated in

Fig. 3.1, provided only positive values or Q1¼ � and Q2¼Q are taken into

account. It follows that, depending on the relation between the JT stabilization

energies EE
JT and ET

JT,

EE
JT ¼ F 2

E=2KE ; ET
JT ¼ F 2

T=2KT (3:61)

the minimum of the surface will be either tetragonal,

�0 ¼ FE=KE ; Q0 ¼ 0 (3:62)

or trigonal

�0 ¼ 0; Q0 ¼ FT=KT (3:63)

The first case (tetragonal distortion) occurs if EE
JT > ET

JT, the second case

(trigonal distortion) is specific for the opposite inequality. Since the other three

coordinates remain arbitrary at the minimum points, the latter produce a

three-dimensional continuum, a three-dimensional trough [3.28] (formally

analogous to the one-dimensional trough of displacements in the E� e pro-

blem, Section 3.2). If EE
JT ¼ ET

JT, an additional trough in the (�, Q) space

occurs, resulting in a four-dimensional trough in the five-dimensional space

of e and t2 coordinates.

3.4 The T˜ h, pn˜ h, G˜ (gþ h), and H˜ (gþ h) problems

for icosahedral systems

The latest achievements in preparation and studies of icosahedral systems

(fullerenes) stimulated their further intensive and extensive investigation,

although the first work on the JT effect in such systems [3.29] was published

before the discovery of fullerenes. An essential contribution to the develop-

ment of the JTE theory in application to icosahedral systems was made in a

series of works [3.29–3.60], partly reviewed in [3.30].

In icosahedral systems, there are fourfold (G) and fivefold (H) orbitally

degenerate electronic terms in addition to the T terms that are present also in

systemswith lower symmetry. The typical JT problems here areT� h (aT term
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interacting with fivefold degenerate nuclear displacements h), G� (gþ h)

(a G term interacting with fourfold g and/or fivefold h vibrations), and

H� (gþ h) (an H term interacting with g and/or h vibrations). Because of

the high symmetry of the icosahedron additional degeneracy between atomic

terms (up to the angular momentum L¼ 2) may occur, producing pn� h JT

problems. Figure 3.15 illustrates the possible JT distortions of an icosahedron

with Ih symmetry as a result of vibronic coupling to the corresponding sym-

metrized nuclear displacements [3.2] (see also Table 2.3).

In the formation of molecular terms in fullerene ionic states Cn�
60 special

relations between interelectron Coulomb interaction (that favors the Hund’s

rule high-spin states) and JT coupling (that favors degenerate states) should be

taken into account [3.38]. Numerical calculations show that low-spin states

prevail in negative ions, whereas high-spin states dominate all positive ions.

For obvious reasons of higher complexity, the JT problems in icosahedral

systems are less studied than those in the simplest systems, discussed above,

although the number of publications on the JTE in fullerenes is significant and

is increasing continuously.

The T� h problem [3.29–3.32, 3.37] is similar to the particular case of the

T� (eþ t2) one when the vibronic coupling to the e and t2 vibrations and

their frequencies are the same (cf. the T� d problem, Section 3.3). The five-

dimensional space of the JT effect in this case can be presented as combined

from the two e coordinates, Q# � dz2 and Q" � dx2�y2 , and three t2 coordi-

nates, Q�� xz, Q�� yz, and Q	� xy, of the cubic group. It is convenient to

denote them byQi, i¼ 1, 2, . . ., 5, and present them in ‘‘polar’’ coordinates with

D2h

Th h h

g h

e

g

Ih

C3i

Ci

C2h

e2

e1

e

D3d

D5d

τ

Fig. 3.15. Possible distortions (symmetry reduction) of an icosahedral system
with Ih symmetry in degenerate states under g and h modes (displacements),
and further distortions of the lower-symmetry configurations under e and t2
modes; all modes are even, as required by the JT theorem; ‘‘i’’ means
inversion (reprinted with permission from [3.2]. Copyright 1972 John
Wiley & Sons, Inc.).
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one radial distance 0�Qh<1 and four angles 0��< p/3, 0� l< p,
0�#< p/2, and 0��< 2p:

Q1 ¼ Qh½ð1=2Þð3 cos2 #� 1Þ cos�þ ð
ffiffiffi
3

p
=2Þ sin2 # sin� cosð2gÞ�

Q2 ¼ Qh½ð
ffiffiffi
3

p
=2Þ sin2 # cosð2�Þ cos�þ ð1=2Þð1þ cos2 #Þ cosð2�Þ

� sin� cosð2gÞ � cos# sinð2�Þ sin� sinð2gÞ�

Q3 ¼ Qh½ð
ffiffiffi
3

p
=2Þ sin2 # sinð2�Þ cos�þ ð1=2Þð1þ cos2 #Þ sinð2�Þ

� sin� cosð2gÞ þ cos# cosð2�Þ sin� sinð2gÞ�

Q4 ¼ Qh½ð
ffiffiffi
3

p
=2Þ sinð2#Þ cos� cos�� ð1=2Þ sinð2#Þ cos� sin� cosð2gÞ

þ sin# sin� sin� sinð2gÞ�

Q5 ¼ Qh½ð
ffiffiffi
3

p
=2Þ sinð2#Þ sin� cos�� ð1=2Þ sinð2#Þ sin� sin� cosð2gÞ

� sin# cos� sin� sinð2gÞ�

ð3:64Þ

Following the Wigner–Eckart theorem (2.16), the vibronic coupling con-

stants F
Qi

h to all these displacements differ by only numerical (Clebsch-

Gordan) coefficients. For the T1� h problem, which we consider first,

F
Q3

h ¼ F
Q4

h ¼ F
Q5

h ¼
ffiffiffi
3

p
F

Qi

h ¼
ffiffiffi
3

p
F

Q2

h . With this in mind the secular equation

(3.2) of the vibronic coupling that determines the electronic states "v of the

threefold degenerate T1 term as a function of the coordinates (3.64) in the

linear approximation with regard to the latter is very similar to (3.42):

W ¼
Fh

1
2
Q1 �

ffiffi
3

p

2
Q2

� 	
�FhQ3 �FhQ4

�FhQ3 Fh
1
2
Q1 þ

ffiffi
3

p

2
Q2

� 	
�FhQ5

�FhQ4 �FhQ5 �FhQ1

2
664

3
775 (3:65)

This matrix is simpler than (3.42) because it contains the same constant Fh in

all the matrix elements which is thus a common factor. It can be shown

[3.29–3.32] that with the solutions "vi of Eq. (3.2) with this matrix the lowest

branch of the APES (3.1) has a two-dimensional trough of minima points in

the five-dimensional space, similar to the one-dimensional trough of minima

on the two-dimensional APES of theE� e problem (Section 3.2). It means that

the minima points are characterized by just three coordinates instead of five.

This can be seen directly if we look into a cross-section of the five-dimensional

surface, say, at �¼ 0 and g¼ 0, at which only the first terms in the coordin-

ate presentation (3.64) remain (they correspond to the five coordinates of
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d symmetry in the cubic group mentioned above, such as those in Eq. (3.42)).

With these coordinates Eq. (3.65), distinguished from (3.42), leads to a simple

solution that is independent of the polar angles # and �:

"v1 ¼ �FhQh

"v2;3 ¼ 1
2
FhQh

(3:66)

which together with the elastic term in (3.1) gives for the lowest branch of the

APES (Kh is the primary force constant, Section 2.2)

"1 ¼ 1
2
KhQ

2
h � FhQh (3:67)

This curve has a minimum at

Q0
h ¼ Fh=Kh (3:68)

We see that neither the electronic energies "vi nor the total energy "i as a

function of the five nuclear displacements (3.64) depend on the angles # and �.

In other words, the surface has the sameminimum energy in any of these # and

� directions, thus forming a two-dimensional trough in the five-dimensional

space (3.64). For the wavefunction of the branch (3.67) in the same basis of the

three T2 term functions �j i, �j i, and 	j i as in Section 3.3, we have

uj i ¼ sin# cos� �j i þ sin# sin� �j i þ cos# 	j i (3:69)

Similar to the one-dimensional trough in the E� e problem (Section 3.2),

the presence of a two-dimensional trough on the five-dimensional APES

emerges due to (is an indication of) the higher symmetry of the JT

Hamiltonian in the linear (in vibronic coupling) approximation than that of

the original system (SO(3) instead of Ih of the icosahedron). In the SO(3)

symmetry (the symmetry that specifies a point on a three-dimensional unit

hypersphere) the Hamiltonian contains additional symmetry elements that are

not present in the icosahedral group [3.30, 3.31], and this happened because of

the simplifications introduced by the linear approximation.

The SO(3) symmetry of the trough allows a simple presentation of the mode

of distortion of the icosahedron as a rotating distortion shown in Fig. 3.16.

Denoting the two coordinates of distortion by the angles # and �, we can

illustrate the motion along the bottom of the trough as an internal free rotation

of quadrupole distortions of a sphere. Let us present the threefold degenerate

electronic state by three atomic states and assume the initial state is pz-like with

the spheroidal distortion along theZ axis, #¼ 0. Onmoving along the trough the

sphere remains quadruply distorted, but the direction of distortion is gradually
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changing along the (#, �) directions. Note that, as in other JT pseudorotations,

an internal rotation of the distortion, not a rotation of the system as a whole,

takes place. The system is thus performing free internal rotation along the

bottom of the trough at which its symmetry is lower than icosahedral.

If the quadratic terms of vibronic coupling are taken into account, the initial

lower (icosahedral) symmetry is restored in the Hamiltonian [3.30]. This

results in warping of the trough (again, similar to the E� e case) with minima,

maxima, and saddle points along its bottom. At each of these extremum points

of the same kind, the icosahedron is distorted equivalently in different direc-

tions, the latter being complementary to each other, so that the system (dyna-

mically) regains its icosahedral symmetry. Figure 3.17 illustrates this case [3.30]:

there are six D5d-type minima (maxima) on the spherical surface at the vertices

of the icosahedron, tenD3d maxima (minima) at the vertices of a dodecahedron,

and 15 D2h saddle points at the centers of the edges of either polyhedron.

Figure 3.18 shows schematically one of the D5d distortions. Changing the sign

of quadratic coupling interchanges the minima and maxima, leaving the

saddle points intact. Depending on the coupling strength, these minima may

be deep enough to quasi-localize the distorted configuration. In this case the

system performs hindered rotations – tunneling transitions between the minima

via the lowest barriers at the saddle pints (Sections 5.3 and 7.1.1).

Calculations show [3.37] that minima of D5d symmetry are realized when

15
ffiffiffi
2

p
=8 > 3G2=Kh >

ffiffiffi
5

p
G3=Kh > �15

ffiffiffi
2

p
=8 (3:70)

Fig. 3.16. Three orientations in the pseudorotation of a quadrupole-distorted
spherical surface. The principal axis of the associated electronic p state is
shown below each distortion (reprinted with permission from [3.30].
Copyright 1997 Princeton University Press).
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Fig. 3.17. Illustration of the D5d-type minima on the spherical surface of an
icosahedral system with a T� h problem, which occupy the vertices of the
icosahedron, while the maxima are at the vertices of the dodecahedron.
Changing the sign of the quadratic coupling interchanges the maxima and
minima (reprinted with permission from [3.30]. Copyright 1997 Princeton
University Press).

Fig. 3.18. Illustration to the D5d distortion of a C60 cage produced by an h
mode of Q# type with its axis along a fivefold axis of the octahedron. Cubes
represent displacements outwards and spheres displacements inwards.
The magnitude of the displacement is proportional to the cube/sphere size
(reprinted with permission from [3.30]. Copyright 1997 Princeton University
Press).
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while minima of D3d symmetry occur if

15
ffiffiffi
2

p
=8 >

ffiffiffi
5

p
G3=Kh > 3G2=Kh > �15

ffiffiffi
2

p
=8 (3:71)

where G2 and G3 are the two constants of quadratic vibronic coupling to D5d

and D3d displacements, respectively. The JT stabilization energies are

ED5d
¼ 1=ð5� 4

ffiffiffi
2

p
G2=KhÞ

ED3d
¼ 1=ð5� 4

ffiffiffiffiffi
10

p
G3=3KhÞ

(3:72)

If instead of the T1 term a T2 one is considered (the T2� h problem), the

secular equation is very similar to (3.65), provided the following symmetry-

controlled substitutions are made:

Q1 ! Q1; Q2 ! Q4; Q3 ! �Q5; Q4 ! �Q2; Q5 ! �Q3 (3:73)

Obviously, a similar solution emerges with a two-dimensional trough with

somewhat different distortions at the minima, and the quadratic terms of

vibronic coupling produce similar warping of the trough [3.30–3.32].

The high symmetry of the icosahedron, which becomes even higher (SO(3))

in the linear approximation with regard to the vibronic coupling, allows

further simplifications of its JT problems. First, all the angular momentum

states up to L¼ 2 (S, P, andD states) remain unsplit in icosahedral symmetry.

This means that all the states with the same spin formed from atomic config-

urations pn can be considered as a degenerate term (d n may have states with

L> 2, and states with different spin are not coupled by the vibronic interac-

tion). For instance, in p2 and p4 the interelectron interaction in the L–S

coupling scheme produces the terms 3P, 1D and 1S. While 3P is a typical T1u

term and should be treated as shown above (the 3T1u� h problem), the 1D and
1S terms form together a joint manifold that should be treated as six degen-

erate states coupled by the vibronic interaction. The S state has no diagonal

matrix elements of the linear vibronic coupling, but there are nonzero elements

for S–D coupling. The matrix W in the secular equations (3.2) of the linear

vibronic coupling in this case looks as follows [3.30]:

W ¼

0
ffiffiffi
2

p
FhQ1

ffiffiffi
2

p
FhQ4

ffiffiffi
2

p
FhQ3

ffiffiffi
2

p
FhQ2

ffiffiffi
2

p
FhQ5ffiffiffi

2
p

FhQ1 �FhQ1 �1
2
FhQ4 FhQ3 FhQ2 �1

2
FhQ5ffiffiffi

2
p

FhQ4 �1
2
FhQ4 Fh �1

2
Q1�

ffiffi
3

p

2
Q2

� 	
�
ffiffi
3

p

2
FhQ5 �

ffiffi
3

p

2
FhQ4 �

ffiffi
3

p

2
FhQ3ffiffiffi

2
p

FhQ3 FhQ3 �
ffiffi
3

p

2
FhQ5 FhQ1 0 �

ffiffi
3

p

2
FhQ4ffiffiffi

2
p

FhQ2 FhQ2 �
ffiffi
3

p

2
FhQ4 0 FhQ1

ffiffi
3

p

2
FhQ5ffiffiffi

2
p

FhQ5 �1
2
FhQ5 �

ffiffi
3

p

2
FhQ3 �

ffiffi
3

p

2
FhQ4

ffiffi
3

p

2
FhQ5 Fh �1

2
Q1 þ

ffiffi
3

p

2
Q4

� 	

����������������

����������������
(3:74)
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It can be shown that the lowest value of the lowest energy level occurs at

"v1 ¼ �2FhQ (3:75)

with the wavefunction

uj i¼ ð1=
ffiffiffi
3

p
Þ sj i þ ð1=2Þð3 cos2 #Þ D1j i þ ð

ffiffiffi
3

p
=2Þ sinð2#Þ cos� D2j i

þ
ffiffiffi
3

p
sin2 # cos� sin� D3j i þ ð

ffiffiffi
3

p
=2Þ sin2 # cosð2�Þ D4j i

þ ð
ffiffiffi
3

p
=2Þ sinð2#Þ sin� D5j i (3:76)

where Dij i, i¼ 1, 2, . . ., 5, are the five wavefunctions of the atomic D state.

Note that were it not for the high symmetry of the icosahedron, the

(1Dþ 1S)� h problem would require two coupling constants, one for D–h

and the other for the pseudo JT coupling S–D (assuming that the five frequen-

cies of the h vibrations are the same).

For the p3� h problem, p3 produces 4S, 2D and 2P terms, of which only

the eight states 2Dþ 2P are subject to vibronic coupling (S is a non-JT

state) [3.30].

The G� (gþ h) problem [3.29–3.34, 3.36, 3.42] is more complicated since it

involves 4þ 5¼ 9 degrees of freedom in JT distortions with two types of

constants of linear, Fg and Fh, and quadratic, Gg and Gh, vibronic coupling

to g and h displacement, respectively. Similar to the T� (eþ t2) problem

(Section 3.3), the approach to the solution is to consider first the particular

cases when the coupling to one of the two types of vibrations is much stronger

than to the other one. This allows one to ignore the weaker coupling in the

zeroth-order approximation and to take it into account as a perturbation

afterwards. Another approach can be employed when the two types of cou-

pling are of approximately the same magnitude, which would allow one to

ignore their difference in the zeroth approximation.

For the G� g problem the four coordinates of g type may be chosen

with the following angular dependence (similar to the ‘‘polar’’ coordinates

in (3.64)):

Q6 ¼ Qg sin# sin�; Q7 ¼ Qg sin# cos�

Q8 ¼ Qg cos# sin �; Q9 ¼ Qg cos# cos�
(3:77)

with 0�Qg<1, 0�#< p/2, 0��< p/3, and 0��< 2p (cf. the angles in

(3.64)). In these coordinates and using electronic functions for the fourfold

degenerate term G as shown in [3.30], the secular equation (3.2) of the linear

vibronic coupling problem yields
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W ¼

�FgQ8 �FgQ9 �FgðQ6 �Q8Þ �FgðQ7 þQ9Þ
�FgQ9 FgQ8 FgðQ7 �Q9Þ �FgðQ6 þQ8Þ

�FgðQ6 �Q8Þ FgðQ7 �Q9Þ FgQ6 �FgQ7

�FgðQ7 þQ9Þ �FgðQ6 þQ8Þ �FgQ7 �FgQ6

��������

��������
(3:78)

Direct analytical solution of Eq. (3.2) with this vibronic coupling matrixW

is difficult. However, using the method [3.18] (Eqs. (3.430)), we can determine

the coordinates of the extremum points on the APES and estimate (by means

of perturbation theory) whether they are minima, maxima, or saddle points. In

the coordinates (3.77) one of the minima is located at the point

ðQg; #; �; �Þ¼ Qg;
p
4
;
3p
2
;
p
2

� �
(3:79)

where with Kg as the primary force constant (Section 2.2)

Qg ¼
3Fgffiffiffi
2

p
Kg

(3:80)

and the JT stabilization energy

EJT ¼ �
9F 2

g

4Kg
(3:81)

At this minimum point the icosahedron is tetrahedrally distorted (Th dis-

tortion, Fig. 3.19).

Presenting the wavefunction in terms of the four basis functions of the G

term, Gij i, i¼ 1, 2, 3, 4, we get

uj i ¼ sin# sin� G1j i þ sin# cos� G2j i þ cos# sin� G3j i þ cos# cos� G4j i
(3:82)

with the angles (#, �, �) at the minimum point from Eq. (3.79). There are four

more minima that are equivalent to this one and can be found by symmetry

operations on the icosahedron. The coordinates of all the five minima of

tetrahedral Th symmetry are listed in Table 3.2.

It is difficult to visualize the positions of these extremum points in the five-

dimensional space of the APES as a function of the four coordinates. Figure 3.20

gives some impression of the minima and saddle-point positions projected on the

plane (�, �). The five minima form a square mesh, each of them having the other

four as neighbors in equivalent positions, so that the five equidistant points (with

the same distance from the origin) form a four-dimensional analog of a tetra-

hedron. There are also ten saddle points of D3d symmetry at the midpoint
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between the minima on the (�, �) plane, but with slightly different Qg and

# values. Table 3.3 lists some additional information about this APES.

The G� h problem is much similar to the G� g one, and it has also features

that are similar to the T� h problem, considered above. The W matrix in the

secular equation (3.2) for the four electronic energy levels in the space of the

five coordinates (3.64) in the linear approximation with respect to the vibronic

coupling is as follows:

W ¼
Fhð�

ffiffiffi
3

p
Q1 þ 2Q4Þ 2FhQ5 FhðQ4 �Q2Þ FhðQ3 �Q5Þ

2FhQ5 Fhð�
ffiffiffi
3

p
Q1 � 2Q4Þ Fhð�Q3 �Q5Þ Fhð�Q4 �Q2Þ

FhðQ4 �Q2Þ Fhð�Q3 �Q5Þ Fhð
ffiffiffi
3

p
Q1 � 2Q2Þ �2FhQ3

FhðQ3 �Q5Þ Fhð�Q4 �Q2Þ �2FhQ3 Fhð
ffiffiffi
3

p
Q1 þ 2Q4Þ

��������

��������
(3:83)

Fig. 3.19. Illustration to a Th distortion of a C60 cage produced by g-type
modes. Cubes represent displacements outwards and spheres displacements
inwards. The magnitude of the displacement is proportional to the cube/
sphere size (reprinted with permission from [3.30]. Copyright 1997
Princeton University Press).

Table 3.2. The positions (g, �, �, �) of the five minima of an

icosahedron with a linear G� g JT problem; g0¼ (9�h/2og)
1/2kg,

where kg is the coupling constant ( from [3.30])

g � � �

Min 1 g0 p/4 3p/2 p/2
Min 2 g0 p/4 7p/10 9p/10
Min 3 g0 p/4 3p/10 p/10
Min 4 g0 p/4 11p/10 17p/10
Min 5 g0 p/4 19p/10 13p/10
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Fig. 3.20. Energy contours for the lowest APES in the G� g problem plotted
on an (�, �) surface, with� horizontal. The range of� and � is (0, 4p), �¼ p/4,
and g is constant. The minima are numbered to show how each one recurs
with a period of 2p in each direction. The projections of the saddle points onto
this surface are midway between neighboring minima (reprinted with
permission from [3.30]. Copyright 1997 Princeton University Press).

Table 3.3. Four types of extrema points in the icosahedral JT

G� g and G� h problems and their energies in the linear

coupling approximation [3.30] (kg is given in units where �ho¼ 1)

Symmetry E(G� g) E(G� h)

D3d (I) �ð3=2Þk2g�hog �ð3=2Þk2h�hoh

D2h (II) �ð1=4Þk2g�hog �4k2h�hoh

D3d (III) �ð1=6Þk2g�hog �ð25=6Þk2h�hoh

Th (IV) �ð9=4Þk2g�hog 0
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As in the G� g case, the method [3.18] (Eqs. (3.430)) allows an investigation

of the extremum points of the APES with the "vi values as solutions of Eq. (3.2)

with the matrix (3.83). As a result, the APES has ten D5d minima, which are

also possible minima in the T� h problem (Fig. 3.17), but distinguished from

the latter in that the six D5d symmetry points are lines of degeneracy (surface

intersections), not stationary points. There are also (other than in the T� h

problem) 15D2h saddle points near the shortest path between pairs of minima

which form the lowest energy barrier between the latter. Table 3.3 gives

additional information, while Figs. 3.21 and 3.22 provide some illustrations

to these two G� g and G� h problems [3.32].

In the general case of the G� (gþ h) problem some complications emerge,

but in the linear approximation with respect to the vibronic coupling the

α

γ

Fig. 3.21. Topology of the APES for preferential G� g coupling in an
icosahedral system. The five vertices of the graph represent the five
tetrahedral minima (�), while the ten edges refer to isomerization paths
over trigonal transition states (g) [3.32].

β

δ

Fig. 3.22. Topology of the APES for preferential G� h coupling in an
icosahedral system. The ten vertices of the graph represent the ten trigonal
minima (�), while the 15 edges refer to isomerization paths overD2 transition
states (�) [3.32].
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solution of this problem can be essentially reduced to that obtained for the

particular case ofG� g andG� h. Indeed, it can be shown that in this (linear)

approximation the APES has the same number and kind of extremum points

as in the two particular cases shown in Table 3.3. If the coupling to the g

vibrations predominates, the minima are of Th type and the path of lowest

energy between them is via theD3d(I) saddle points (Fig. 3.21). Conversely, if

the h coupling is stronger, the minima are of D3d(III) type and the inter-

mediate saddle points are of D2h symmetry (Fig. 3.22). All the above points

coincide in energy when k2g�hog ¼ k2h�hoh (the equal-coupling regime, see

Table 3.3). In this case the symmetry of the Hamiltonian, SO(4), is higher

than the icosahedral symmetry of the system. The energy plot in Fig. 3.23

shows how theminima and saddle points of one type gradually change to that

of the other type on moving from one predominant type of coupling (say, h)

to the other one (g).

The linearH� (gþ h) problemwas considered in amost general way in [3.33]

(see also in [3.29, 3.30]). It was shown that since [H�H ]¼AþGþ 2H, there

are two types of JT-active h displacements that influence the main features of

the APES (in the first work on the H� h problem [3.29] only one generalized

type of h displacements was considered). Denote the two h distortions by ha
and hb. Then the corresponding JT stabilization energies from interactions

with g, ha, and hb displacements can be expressed in terms of the linear vibronic
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Fig. 3.23. The JT stabilization energies of the four types of minima in the
linear G� (gþ h) problem as a function of the coupling constant. If the
coupling to the H-type modes dominates, the D3d minima are the lowest,
whereas if the G-type modes dominate, the Th minima are lower.
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coupling constants (Fg, Fha, and Fhb, respectively) and primary force constants

(Kg, Kha, and Khb, respectively) as follows:

E
g
JT ¼�1

2
F 2
g =Kg

E ha
JT ¼�1

2
F 2
ha
=Kha

E hb
JT ¼�1

2
F 2
hb
=Khb

(3:84)

The average JT stabilization energy E av is

E av¼ð4E g
JT þ 5E ha

JT þ 5E hb
JTÞ=14 (3:85)

where the coefficients of the corresponding EJT values stand for degeneracies.

Another parameter �E characterizes the difference in strengths of the two h

distortions:

�E ¼ð5=56Þð4E g
JT þ 5E ha

JT � 9E hb
JTÞ (3:86)

Similar to the G� (gþ h) problem, three types of stationary points of the

APES were found in this approximation: pentagonal D5d, trigonal D3d, and

two sets of D2h points. If �E> 0, the D5d points are minima, whereas the D3d

points are minima in cases of �E< 0. The D2h stationary points are always

saddle points in this approximation: one set yields isolated points, while the

other is situated on continuous curves in the phase space. Figure 3.24 illus-

trates the energy-level splitting of the fivefold degenerate H term in the two

types of distortions that lead to pentagonal and trigonal minima, while

Fig. 3.25 gives additional insight into the D3d minima positions and paths

between them (Section 5.3).

Thus, in spite of their complexity, the icosahedral JT problems G� (gþ h)

andH� (gþ h) are in fact reduced to two-mode problems when the interaction

with one of the modes is independent of the interaction with the other one, and

they compete just in forming the absolute minima. This situation is similar to

that of the T� (eþ t2) problem (in the linear approximation), where either

tetragonal or trigonal minima occur, depending on the predominant coupling

to either e or t2 vibrations, respectively, while the intermediate orthorhombic

stationary points are always saddle points (Section 3.3).

However, as stated in Section 3.3, in the T� (eþ t2) problem the quadratic

terms of the vibronic coupling change the APES topology essentially.

In particular, with quadratic terms included the orthorhombic saddle points

may become minima, and there is a variety of different types of coexisting

minima [3.1, 3.21–3.24]. As far as we know, solutions of the G� (gþ h) and

H� (gþ h) problems with quadratic vibronic coupling have not yet been
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published. It can be expected that, similar to the E� e, T� t2, T� (eþ t2), etc.

JT problems, the quadratic terms alter significantly the topology of the APES,

thus influencing essentially the tunneling splitting and other properties.

A more detailed insight into this rather complicated H� (gþ haþ hb) pro-

blem, that is very rich in physical content, can be reached by considering several

particular cases. In the H� g problem the matrix W in the secular equation of

linear coupling to the four symmetrized coordinates (3.77) with an appropriate

choice of the basis set of electronic wavefunctions is as follows [3.30]:

W ¼

0 2
ffiffiffi
3

p
FgQ8 2

ffiffiffi
3

p
FgQ7 �2

ffiffiffi
3

p
FgQ6 2

ffiffiffi
3

p
FgQ9

2
ffiffiffi
3

p
FgQ8 �4FgQ6 FgðQ7 �Q9Þ FgðQ6 �Q8Þ 4FgQ7

2
ffiffiffi
3

p
FgQ7 FgðQ7 �Q9Þ �4FgQ8 �4FgQ9 Fgð�Q6 �Q8Þ

�2
ffiffiffi
3

p
FgQ6 FgðQ6 �Q8Þ �4FgQ9 4FgQ8 FgðQ7 þQ9Þ

2
ffiffiffi
3

p
FgQ9 4FgQ7 Fgð�Q6 �Q8Þ FgðQ7 þQ9Þ �4FgQ6

�����������

�����������
(3:87)

E2

E

E

Qp

Qt

A1

A1

(a) a : D5 (E1 > 0)

(b) b : D3 (E1 < 0)

E1

Fig. 3.24. Splitting of the electronic fivefold degenerate state under a pentagonal
Qp (a) and trigonalQt (b) distortion in the linearH� (gþ 2h) problem (reprinted
with permission from [3.33]. Copyright 1990 American Institute of Physics).
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As in the previous cases, using the method of Eqs. (3.430), one can reveal the

stationary points of the APES, avoiding the need for a full solution of Eq. (3.2)

with this matrix. Table 3.4 shows the types of stationary points obtained in this

way. The lowest in energy are the ten D3d minima. In the four-dimensional

space of the coordinates (3.77) each minimum has six others as equidistant

nearest neighbors and three at a greater distance. If plotted on the vertices of a

dodecahedron, the two vertices related by inversion symmetry form one mini-

mum, and the six nearest-neighbor minima of the H� h problem are not at

near-neighbor vertices; there are only three of the latter and they form the three

minima at larger distances in the four-dimensional space of this problem. The

remaining six pairs of inversion-related vertices produce the six near-neighbor

minima. As compared with Table 3.3, if only g displacements are included, the

(a) a : C2 paths

(b) b : C1 paths

µ

β

ν

β

Fig. 3.25. Topology of the APES in the case of trigonal minima of the � orbit
(cf. Fig. 3.22). The ten vertices of the graphs represent the ten equivalent
trigonal minima. The 15 edges in (a) refer to C2 isomerization paths over D2

transition states belonging to orbit �. The 30 edges in (b) refer to C1

isomerization paths over C2 transition states belonging to orbit . Each
graph is complementary to the other (reprinted with permission from [3.33].
Copyright 1990 American Institute of Physics).
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D2d stationary points becomeTd ones at which (as atD5d points) the electronic

term remains degenerate.

In the H� (haþ hb) problem the coupling to the two h-type displacements

can be described by the two linear vibronic coupling constants, Fhaand Fhb ,

each of which generates its own vibronic coupling matrix W for the secular

equation (3.2) that determines the electronic energy levels "vi as a function of

the five coordinates (3.64) [3.30]:

Wha ¼

0
ffiffiffi
3

p
FhaQ4 �

ffiffiffi
3

p
FhaQ3 �

ffiffiffi
3

p
FhaQ2

ffiffiffi
3

p
FhaQ5ffiffiffi

3
p

FhaQ4 Fhað
ffiffiffi
3

p
Q1 þQ2Þ FhaðQ3 þQ5Þ FhaðQ4 �Q2Þ FhaQ3ffiffiffi

3
p

FhaQ3 FhaðQ3 þQ5Þ Fhað�
ffiffiffi
3

p
Q1 þQ4Þ FhaQ5 FhaðQ4 þQ2Þffiffiffi

3
p

FhaQ2 FhaðQ4 �Q2Þ FhaQ5 Fhað�
ffiffiffi
3

p
Q1 �Q4Þ FhaðQ3 �Q5Þffiffiffi

3
p

FhaQ5 FhaQ3 FhaðQ4 þQ2Þ FhaðQ3 �Q5Þ Fhað�
ffiffiffi
3

p
Q1 �Q2Þ

������������

������������
(3:88)

and

Whb ¼

4ffiffi
3

p FhbQ1 � 1ffiffi
3

p FhbQ4 � 1ffiffi
3

p FhbQ3 � 1ffiffi
3

p FhbQ2 � 1ffiffi
3

p FhbQ5

� 1ffiffi
3

p FhbQ4 Fhb � 1ffiffi
3

p Q1 þQ2

� 	
FhbðQ3 þQ5Þ FhbðQ4 �Q2Þ FhbQ3

� 1ffiffi
3

p FhbQ3 FhbðQ3 þQ5Þ Fhb � 1ffiffi
3

p Q1 �Q4

� 	
�FhbQ5 Fhb ðQ4 �Q2Þ

� 1ffiffi
3

p FhbQ2 FhbðQ4 þQ2Þ �FhbQ5 Fhb � 1ffiffi
3

p Q1 þQ4

� 	
Fhbð�Q3 �Q5Þ

� 1ffiffi
3

p FhbQ5 FhbQ3 FhbðQ4 �Q2Þ Fhbð�Q3 �Q5Þ Fhb � 1ffiffi
3

p Q1 �Q2

� 	

����������������

����������������
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The first one, taken separately, yields D3d minima with energies

E ha
JT ¼ �

8F 2
ha

3Kha

(3:90)

while the second equation gives D5d minima at

Ehb
JT ¼ �

8F2
hb

3Khb

(3:91)

Table 3.4. Special points on the APES of the H� g problem and

their energies [3.30]

Symmetry Type Energy

D3d Minima �32F 2
g =3Kg

Td (I) Degenerate �4F 2
g =Kg

Td (II) Degenerate �9F 2
g =Kg

D5d Degenerate 0
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For the general problem H� (haþ hb) the secular equation (3.2) for "vi can

be presented by the following matrix equation, which is a linear combination

of the above two equations:

½ðFh=FhaÞ sin ��Wha þ ½ðFh=FhbÞ cos��Whb � "vI ¼ 0 (3:92)

where the angle 0<�< 2p covers all the possible combinations of the two

types of coupling to the ha and hb displacements, and Fh is introduced for

normalization. Figure 3.26 illustrates the behavior of the lowest energy level as

a function of � for D3d and D5d distortions. We see that in the regions where

the coupling to hb is dominant (for � values near 0, p, and 2p), we get the D5d

distortions at lower energies (deeper minima), while in between these � values

the ha coupling is dominant and theD3d minima are lower. For the application

of graph theory to icosahedral problems, in particular, to theH� 2h problem,

see in [3.45].

A more detailed consideration of the coupling to only one of the h

displacements, say hb, reveals two types of saddle points in addition to the

D5d minima and D3d saddle points. Their relative energies are shown in

Table 3.5. There are several other particular cases of the icosahedral pro-

blem considered in the literature [3.29–3.60] (see also Sections 5.4, 5.6,

and 7.5.3).

D5

2

1

0

–1

–2

0 π

β

2π

D3 D5 D3 D5

Fig. 3.26. The eigenvalues of Eq. (3.92) as a function of the parameter �.
Solid and dashed lines are D5d and D3d eigenvalues, respectively.
In both symmetries heavy lines indicate nondegenerate states, while
the light lines correspond to doubly degenerate states. The ranges
of appearance of the two types of minima on the lowest APES are
indicated [3.30].
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3.5 Adiabatic potentials in multimode problem

It is known that in a nonlinear molecular system with N atoms (N> 2) there

are 2N� 6 degrees of freedom, which in the harmonic approximation are

conveniently described by normal coordinates that transform according to

corresponding irreducible representations of the symmetry point group of the

system (see Section 2.2 and the appendix). If N is not very small, there may be

two or more (or an infinite number for a crystal lattice) normal modes of the

same symmetry, which are active in the JTE. For instance, even in a simple

tetrahedral system of type MA4, there are two types of normal coordinates of

T2 symmetry, T 0
2 and T 00

2 (Table 2.1), both JT active. In this case the APES

features must be considered in the space of not three, but six coordinates

transforming as T 0
2 and T 00

2 , and the problem will be not T� (eþ t2), but

T � ðeþ t02 þ t002Þ. Such problems in which there is more than one set of JT

active coordinates of given symmetry are called multimode problems. Unlike

the latter, those with only one JT-active mode of given symmetry are called

ideal problems [3.2].

The multimode problems are very important in the investigation of polya-

tomic molecules, especially crystals in which the JT center in question and its

nearest neighbors cannot be isolated from the remaining lattice. The number

of JT-active modes with a particular symmetry increases with the number of

coordination spheres around the JT center, making the multimode problem

much more complicated. For the above example of the MA4 molecule,

the number of JT active coordinates is eight, instead of five in the ideal

problem.

In addition to the increasing dimensionality of the JT-active space, the

number of vibronic constants is also increasing because in general the vibronic

coupling to each of themodes has to be described by its own vibronic constants

(however, see below). Fortunately, there is an important feature of the

Table 3.5. Stationary (extrema) points on the APES of the

H� hb problem and their energies (adapted from [3.30])

Symmetry Type Energy

D5d Minima �54F2
hb
=Khb

D2h (I) saddle points �40F2
hb
=Khb

D2h (II) saddle points �ð45=2ÞF2
hb
=Khb

D3d saddle points �ð50=3ÞF2
hb
=Khb
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multimode problem which allows some simplification, at least at the stage of

qualitative consideration. With this simplification the stationary points of the

multimode-problem APES are similar to those of the corresponding ideal

problem. As an example we illustrate this statement for the two-mode

E � ðb01 þ b001Þ problem. The corresponding ideal problem is E� b1, which

leads to a simple APES illustrated in Fig. 3.1(b).

SetQb0
1
¼Q1 andQb00

1
¼Q2 and denote the corresponding constants of linear

coupling with b01 and b001 displacements by F1 and F2, respectively. Then the

vibronic coupling matrix W in the secular equation (3.2) takes the form

W ¼ F1Q1 þ F2Q2 0
0 �F1Q1 � F2Q2

����
���� (3:93)

with roots of Eq. (3.2)

"v� ¼ �ðF1Q1 þ F2Q2Þ (3:94)

which, upon substitution into Eq. (3.1), yield the following APES (the force

constants are denoted by Kb0
1
¼K1 and Kb00

1
¼K2):

"�ðQ1; Q2Þ¼ 1
2
ðK1Q

2
1 þ K2Q

2
2Þ � ðF1Q1 þ F2Q2Þ (3:95)

with minima at the points

Q0
1 ¼ �ðF1=K1Þ; Q0

2 ¼ �ðF2=K2Þ (3:96)

at depth

EJT¼ 1
2
½ðF 2

1 =K1Þ þ ðF 2
2 =K2Þ� (3:97)

It is seen that in the E � ðb01 þ b001Þ problem, as in the corresponding ideal

E� b1 problem, there are two equivalent minima of the APES. But in the

multimode case both coordinates Q1 and Q2 are displaced at the minima,

whereas in the ideal problem only one coordinate is shifted. However, the

expression (3.95) allows a linear transformation to other coordinates, in which

only one mode will be displaced at the minima (as in the ideal case). These new

coordinates are given by

q1¼ ½ðF1=K1ÞQ1 þ ðF2=K2ÞQ2�=F
q2¼ð�F2Q1 þ F1Q2Þ=F

ffiffiffiffiffiffiffiffiffiffiffi
K1K2

p
F ¼ ½ðF 2

1 =K1Þ þ ðF 2
2 =K2Þ�

1
2

(3:98)

92 3 Formulation of Jahn–Teller problems



In terms of these coordinates the APES (3.95) takes the form

"�ðq1; q2Þ ¼ 1
2
ðq21 þ q22Þ � Fq1 (3:99)

with minima displaced only in q1:

q01 ¼ �F ; q02 ¼ 0 (3:100)

The depth of the minima remains as in (3.97).

In other words, by means of a coordinate transformation the APES of the

two-mode problem has been reduced to qualitatively the same shape as that of

the ideal problem, i.e., with the same vibronic features, and the same number

and types of minima in which only one coordinate, the ‘‘interaction mode,’’ is

displaced. This result, illustrated here by the E � ðb01 þ b001Þ problem, is of

general validity [3.1].

Note that the reduction of the multimode problem to the form in which

vibronic effects are expressed by only one mode does not mean that some of

the atoms of the polyatomic system are excluded from participation in the

JTE. Actually, the coordinates of all the atoms are present in the interaction

mode q1,2 given by Eq. (3.98). However, the displacements of different atoms

in the JT distortion are not independent, but concerted (coherent), and there-

fore they can be taken into account by means of an essentially smaller number

of coordinates.

For instance, in case of the linear multimodeE� (e1þ e2þ � � �) problem the

APES can be reduced to that of the ‘‘Mexican hat’’ for the ideal E� e problem

(Fig. 3.3). When the system is moving along the trough, the circular motions

of the atoms of the first coordination sphere (ideal system), described in

Section 3.1, involve in these motions the atoms of all the coordination spheres

through the vibronic and vibrational coupling. This produces a wave of defor-

mations, which rotates around the JT center, drawing into this rotation all the

coordination spheres of atoms, the magnitude of deformation falling with the

distance from the JT center (Section 5.5).

As indicated above, the number of JT-active modes and vibronic constants

increases with the number of next-neighbor coordination spheres involved in

the vibronic interaction. There are cases, however, when the electronically

degenerate term is strongly localized and therefore the proper vibronic cou-

pling (of the electrons with the nuclear displacements) is negligible beyond the

first, or first few coordination spheres. In this case there is no need to introduce

as many vibronic constants as there are JT-active modes: the number of these

constants may be greatly reduced, in many cases to one, which characterizes

the vibronic interactionwith the atomic displacements of the first coordination
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sphere. This does not mean, however, that the problem ceases to be multimode

and becomes ideal, since the displacements of the first coordination sphere

enter into all the symmetrized displacements e1, e2, . . ., etc. The coupling to

even one (the first) coordination sphere involves all the modes in the JTE, but

the fewer the number of nonzero vibronic constants, the easier the solution of

the problem.

Consider for instance, the n-mode E� e problem (the E� (e1þ e2þ � � � en))
problem) with only one vibronic coupling constantFE. The APES, as indicated

above, can be reduced, by means of a coordinate transformation, to the shape

of a trough, similar to that illustrated in Fig. 3.3. In this trough there is a free

‘‘rotation’’ of the system (a rotation of the wave of the JT deformation) around

the JT center, and harmonic vibrations along the remaining 2n� 1 coordi-

nates. The dimensions of the trough, its radius and depth, are determined by

the contributions of all the modes ei proportional to Fei ¼ FEaei , where

aei ¼ aiðEÞ is the coefficient with which the displacements of the first coordin-

ation sphere enter the ei mode in question according to the general formula

Q� ¼
X
�

a�ð�Þq� (3:101)

The numerical values of the coefficients aei are known, provided the

dynamic problem of molecular vibrations is solved: for crystals, aei are called

Van Vleck coefficients [3.61] (see also [3.1]). As a result, the JT stabilization

energy equals the sum of the contributions Ei
JT of each JT-active mode ei:

Ei
JT¼F 2

ei
=2Kei ¼ F 2

Ea
2
ei
=2Kei

EJT¼ 1
2
F 2
E

P
i

ða2ei=KeiÞ
(3:102)

Thus with known coefficients aei and corresponding force constants

Kei ¼Meio
2
ei
(for a crystal lattice the phonon density of states �(o) is employed

instead of Kei ), the shape of the APES for the multimode problem can be

determined. It must be emphasized, however, that the transformation (3.98),

essentially simplifying the expression for the APES and allowing separation of

a single active JT mode (the interaction mode), does not simplify the multimode

problem as a whole, especially the calculations of the energy spectra and

wavefunctions. In general, this transformation does not separate the variables:

as a result of the APES simplification the expression for the kinetic energy will

become more complicated [3.1]. But in some particular cases, especially for

strong vibronic coupling, this simplification may be very useful; Section 5.5

continues the presentation of this topic.
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As mentioned earlier, the JT parameters of ideal systems can be calculated

numerically by means of existing methods of electronic structure calculations.

This refers also to multimode problems, provided the number of JT active

modes is not very large, meaning molecular systems of small to moderate size.

For large systems and impurity centers in crystals, for which the number of JT

modes is very large or infinite, the numerical methods cannot be applied

directly. However, if the vibronic coupling is essentially localized around the

JT center (the wavefunctions of the degenerate term are rather localized), the

so-called quasimolecular (cluster) models may be useful as an approximation

to the real system. In these models a cluster with a limited number of atoms

around the JT center is cut off from the lattice and considered separately, and

then the interaction with the lattice is taken into account using reasonable

approximations.

Obviously, the JT parameters of the multimode cluster can be calculated

numerically, while the influence of the rest of the crystal may be approximated

by analytical potentials, the simplest being the Madelung potential. A more

elaborate ab initiomodel-potential-embedding method was suggested recently

[3.62] for this procedure. In this method the cluster-environment Coulomb and

exchange interaction (without correlation effects) is included in the embedded

cluster calculations, yielding reasonable results for the JT parameters of

impurity centers in ionic crystals (Section 8.1). More on the cluster model see

in Section 5.5.

Again, the APES parameters of JT systems, as outlined in Section 3.1, have

limited applicability in revealing observable properties. To obtain the energy

spectrum and wavefunctions, the dynamic problem formulated by the vibro-

nic coupling equations (2.6) should be solved. The dynamic multimode

problem in JT systems considered in [3.1, 3.63–3.84] is given full attention

in Section 5.5.

3.6 Multicenter systems

So far we have considered molecular systems with one JT center, usually an

atom or ion in a degenerate electronic state with its near-neighbor environ-

ment (pseudodegenerate states are considered in Chapter 4). However, in some

cases, within the same polyatomic system there are two or more such JT

centers with sufficiently strong interaction between them, which influences

the energy spectrum and wavefunctions of the system as a whole. The vibronic

interaction in suchmulticenter systems is important for twomain reasons. First,

they are of special interest as coordination systems, mixed-valence compounds,

interacting impurity centers in crystals, and in molecular biology (Section 7.6).
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Second, polynuclear clusters serve as a model system for crystals with a coop-

erative JT or PJT effect and structural phase transitions (Sections 8.2 and 8.3).

If there are direct chemical interactions (no intermediate binding atoms)

between the JT centers, the direct exchange interaction between them is very

strong, resulting in corresponding energy gaps of the order of several electron-

volts in the energy spectrum. In such cases the vibronic coupling can be

considered for each of the exchange terms separately, thus resulting in one of

the vibronic problems discussed above, the only distinction being that the

electronic state involves not one but all the JT centers participating in the

direct exchange. Usually these states are coupled to a relatively large number

of vibrational degrees of freedom, and hence the vibronic problem is a multi-

mode one (Sections 3.5 and 5.5).

The situation is rather different when there are bridging atoms between the

JT ions. In this case we have the so-called indirect superexchange with corre-

sponding relatively small splittings of the order of 10–100 cm�1 in the energy

spectrum. If the vibronic coupling at each center is sufficiently weak, the

exchange interaction has to be considered first, and then the possibility of

vibronic mixing of exchange-coupled terms with the same multiplicity must be

included. Even when there is no orbital degeneracy at each center, such

degeneracy may occur as a result of the exchange interaction of pure spin

multiplets. For instance, the exchange interaction within a system of three

electronic spins positioned at three corners of an equilateral triangle results in

the multiplets 4A2 and 2E [3.85]. The latter corresponds to a wave of spin

density propagating around the perimeter of the triangle clockwise or counter-

clockwise. In this case theE� e-type JTE takes place for the exchange 2E term,

but the vibronic coupling is expected to be rather small. The vibronic mixing of

such spin states in three- and four-center systems is considered in [3.86–3.88].

Below in this section the opposite limit of strong vibronic coupling on each

center is considered. In this case the vibronic interaction has to be taken into

account first, and then the indirect exchange coupling may be included as a

small perturbation. Various many-center JT systems differ in both the number

of interacting JT centers and the mode of their coordination. For instance,

two octahedral complexes of the type ML6 can form a two-center system

(bioctahedron) in three different ways with the two central atoms lying on

the common axes of symmetry of the fourth, third, and second order, respec-

tively (Fig. 3.27). Quite a large number of three- and four-center JT systems

are well known, some of them containing several identical metal atoms

(exchange-coupled clusters) [3.89, 3.90]. Other examples are provided by

crystals with two or more JT impurities occupying near-neighbor lattice cells

(Section 8.1).
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Among the polynuclear clusters, the bioctahedron with a common vertex

(Fig. 3.27(a)) is the most studied from the point of view of vibronic coupling.

The adiabatic potentials of a bioctahedron with an E� e JTE at each of the

two centers were considered first in [3.91]. In [3.92] this problem is treated as a

first step to the cooperative JTE in spinels (see also [3.93]). A different

approach based on the analysis of vibrational dynamics is suggested in

[3.94]. In [3.95, 3.96] the energy of the system is minimized with respect to

nuclear displacements within the framework of a simple model with a

Born–Mayer potential and Coulomb interaction between nearest-neighbor

ions; in this way the problem is reduced to electronic interaction of the

orbitally degenerate states of the centers. The molecular field approximation

is employed in [3.97] in order to explain the temperature dependence of the

exchange interaction. Further advance were achieved in a series of papers

[3.98–3.105].

The results obtained in these studies differ in some respects. As shown

below, these differences are due to different ways of accounting for the

translational degrees of freedom of the octahedrons, in particular, for the

differences in the masses of central atom and ligands. The problem and its

possible solutions are illustrated below by considering the example of vibronic

interactions in a bioctahedron based on the results of the works mentioned

above, and following the presentation in [3.1].

Consider a 13-atom system of D4h symmetry shown in Fig. 3.27(a).

We assume first that each of the two ions in an octahedral environment has

an orbital double 2Eg state formed by a single electron (or a hole) in the highest

Fig. 3.27. Three types of JT two-center bioctahedral systems with a common
symmetry axis of fourth (a), second (b), and third (c) order [3.1].
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occupied orbital eg. Labeling the two electronic states by # and ", the two

centers by 1 and 2, and the two spin states by a and b, one can form 28 two-

electron determinants describing the possible symmetrized electronic states of

the two-center system. The group-theoretical classification according to the

representations of theD4h group and total spin S1þS2 results in the following

possible terms: 41A1gþ 21B1gþ 21B2uþ 21A2uþ 23B1gþ 23B2uþ 23A2u. We

thus arrive at a very difficult problem of the vibronic mixing of 10 singlet

and 18 triplet states by a considerable number of nuclear displacements, which

it is hardly possible to solve without simplifications.

The first approximation that can be introduced is based on the fact that the

interaction between the electrons is much stronger when they are localized on

the center than when they are delocalized over two centers. This allows us to

use the Heitler–London approach and to exclude the high-energy states, i.e.

those for which both electrons are localized on one center (the vibronic

coupling to these states is considered below). Then the number of mixing

electronic states is reduced to 16, 21A1gþ 1B1gþ 1B2uþ 23A2uþ 3B1gþ 3B2u.

Since the states with the same spin and spin projection quantum numbers only

are mixed by the vibronic interaction, the modes of nuclear displacements

mixing these states are of the types A1g, A2u, B1g, and B2u.

If the exchange interaction (and hence the overlap of the wavefunctions of

different centers) is neglected, the symmetrized determinant representation may

be omitted, and any linear combination of the above 16 degenerate wavefunc-

tions can be chosen as a basis set. In particular, the multiplicative states on the

centersw
ð1Þ
Eg1

ðr1Þ�1wð2Þ
Eg2

ðr2Þ�2, where r1 and r2 are the electron (hole) coordinates,

and �1 and �2 are the spin states of the two centers can serve as such a set. Since

different spin states are not mixed by the vibronic interaction, these 16 multi-

plicative states can be divided into four groups with different orbital parts only.

Thematrix of vibronic interaction is the same for all these groups. Thus we have

reduced the problem to the investigation of the vibronic mixing of four states

w
ð1Þ
# ðr1Þwð2Þ

# ðr2Þ, wð1Þ
# ðr1Þwð2Þ

" ðr2Þ, wð1Þ
" ðr1Þwð2Þ

# ðr2Þ, and w
ð1Þ
" ðr1Þwð2Þ

" ðr2Þ by the

displacement of A1g, A2u, B1g, and B2u symmetry.

The second simplification canbe introduced in the vibrational subsystem. The

full vibrational representation of the 13-atom molecule shown in Fig. 3.27(a)

contains the following irreducible representations of the D4h group:

4A1gþA1uþ 4A2uþ 2B1gþB1uþB2gþ 2B2uþ 4Egþ 5Eu. The number of

active modes, even if the totally symmetric representation A1g is excluded, is

too large (4A2uþ 2B1gþ 2B2u¼ 8). It could be reduced by themethod described

in Section 3.5 by passing to the so-called interaction modes. However, an easier
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way is possible here. Remembering that Eg terms interact only with local eg
vibrations (Section 3.2), the elastic energy of isolated octahedra can be presented

as a sum of the main contributions from eg vibrations,

U0 ¼
1

2

X
n¼1;2

KE ½Q2
#ðnÞ þQ2

"ðnÞ� (3:103)

where n labels the two octahedra, and KE is the corresponding force constant

for the eg vibrations. Using the group projection operator one can form the

following linear combinations of the QEg(n) coordinates transforming as the

irreducible representations of the D4h group [3.1]:

QðA1gÞ¼ ð1=
ffiffiffi
2

p
Þ½Q#ð1Þ þQ#ð2Þ�

QðB1gÞ¼ ð1=
ffiffiffi
2

p
Þ½Q"ð1Þ þQ"ð2Þ�

QðA2uÞ¼ ð1=
ffiffiffi
2

p
Þ½Q#ð1Þ �Q#ð2Þ�

QðB2uÞ¼ ð1=
ffiffiffi
2

p
Þ½Q"ð1Þ �Q"ð2Þ�

(3:104)

The resulting symmetrized displacementsQ(A2u),Q(B1g), andQ(B2u) of the

bioctahedron as a whole are illustrated in Fig. 3.28. In these coordinates the

elastic energy (3.103) is

U0 ¼ 1
2
KE ½Q2ðA1gÞ þQ2ðA2uÞ þQ2ðB1gÞ þQ2ðB2uÞ� (3:105)

Now one has to take into account the shared (bridging) atom due to which

the two octahedrons are not isolated. Its displacements introduce additional

Fig. 3.28. Symmetrized atomic displacements in a bioctahedron with D4h

symmetry, which transform as the irreducible representations A2u (a),
B1g (b), and B2u (c) [3.1].
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coupling conditions, which can be evaluated in the following way. The

Cartesian displacements of this atom can be expressed by the symmetrized

displacements of either the first octahedron Q�g(1), or the second Q�g(2).

By equating these two expressions for each component x, y, and z, we

get three conditions of coupling. If only eg and translational degrees of

freedom are considered (the latter have no elasticity), then all the Q�g(n)

coordinates are zero except Q#(n), Q"(n), Qx(n), Qy(n), and Qz(n). On separ-

ating the motion of the bioctahedron center of mass we find that two of

three coupling relations become identities, while the third one can be

reduced to

Q#ð1Þ þQ#ð2Þ¼
3m

M þ 6m

� �1
2

½Qzð1Þ þQzð2Þ� (3:106)

wherem is the mass of the ligand andM is the mass of the central atom, and we

use mass-weighted coordinates. If the mass of the central atom is much larger

than themass of the ligands, i.e.,M 6m, then the right-hand side of (3.106) is

close to zero, and to a good approximation one can assume that

Q#(1)þQ#(2)¼ 0. This obvious result means that if M 6m, then the trans-

lational motion of the octahedra can be neglected due to the high interia of the

central atoms, and the axial elongation of one of the octahedra has to be

accompanied by equal compression of the other. However, in general, this is

not the case, since the octahedra can adjust to each other at the expense of

translational degrees of freedom.

For crystals with a pair of impurity atoms the intermediate case becomes

important when the translational motion of the octahedra is not completely

excluded, but is not free either. Corresponding results in this case can be

obtained by adding to (3.105) the term 1
2
KT1u

½Q2
zð1Þ þQ2

zð2Þ� which describes

the elastic energy of the shift of the octahedra.

To take into account the condition (3.106), let us change to new coordi-

nates [3.1]:

qðA1gÞ¼
l2

1þ l2
QðA1gÞþ

l

1þ l2
~QðA1gÞ

~qðA1gÞ¼ �1

l
QðA1gÞþ ~QðA1gÞ

qðA2uÞ¼QðA2uÞ
qðB1gÞ¼QðB1gÞ
qðB2gÞ¼QðB2gÞ

(3:107)
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where l ¼ ½3m=ðM þ 6mÞ�
1
2, and ~QðA1gÞ ¼ ½Qzð2Þ �Qzð1Þ�=

ffiffiffi
2

p
is the coordi-

nate describing the relative motion of the octahedra, the other Q(�) being

determined by Eq. (3.104). Since ~q(A1g)¼ 0 (see Eqs. (3.104) and (3.106)), the

elastic energy in new coordinates acquires the form

U0 ¼ 1
2
KE ½q2ðA1gÞ þ q2ðA2uÞ þ q2ðB1gÞ þ q2ðB2uÞ� (3:108)

while the reduced mass for the coordinate q(A1g) equals (1þ l2)/l2. In the old

coordinates expression (3.108) is more complicated (see in [3.1]). It shows

that as a result of coupling condition (3.106) the degeneracy of the e vibrations

of the octahedra is removed; the translational motion of the octahedra in

the axial direction is no longer free but elastic with an elastic constant

l2KE/2(1þ l2)2, while the nuclear displacements Q#(n) and Qz(n), which

belong to the same irreducible representation A1 of the local symmetry

group of the center, are no longer independent, but mixed.

With these transformations, the resulting four adiabatic potential surfaces

are [3.1]

"ðqÞ ¼ 1
2
KE ½q2ðA1gÞ þ q2ðA2uÞ þ q2ðB1gÞ þ q2ðB2uÞ� � FEj j½�ð1Þ 	 �ð2Þ�

(3:109)

where, taking into account Eqs. (3.104), (3.106), and (3.107), we have

�ð1Þ ¼ f1
2
½qðA1gÞ þ qðA2uÞ�2 þ 1

2
½qðB1gÞ þ qðB2uÞ�2g

1
2

�ð2Þ ¼ f1
2
½qðA1gÞ � qðA2uÞ�2 þ 1

2
½qðB1gÞ � qðB2uÞ�2g

1
2

(3:110)

The extrema points of the lowest sheet (corresponding to the lower signs in

Eq. (3.109)) form a two-dimensional equipotential manifold (a trough):

qð0ÞðA1gÞ ¼ ð1=
ffiffiffi
2

p
Þðcos’1 þ cos’2Þ

qð0ÞðB1gÞ ¼ ð1=
ffiffiffi
2

p
Þðsin’1 þ sin’2Þ

qð0ÞðA2uÞ ¼ ð1=
ffiffiffi
2

p
Þðcos’1 � cos’2Þ

qð0ÞðB2uÞ ¼ ð1=
ffiffiffi
2

p
Þðsin’1 � sin’2Þ

(3:111)

where ’1 and ’2 are arbitrary parameters varying between 0 and 2p, and
�0¼ |FE|/KE. The JT stabilization energy is EJT ¼ F 2

E=KE.

The physical meaning of this result can be understood if one notes that EJT

equals the sum of JT stabilization energies of the two isolated octahedra.
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Taking into account Eqs. (3.104)–(3.107), the extrema point coordinates

(3.111) can be written as

Q
ð0Þ
# ð1Þ ¼ �0 cos’1

Q
ð0Þ
# ð2Þ ¼ �0 cos’2

Qð0Þ
" ð1Þ ¼ �0 sin’1

Qð0Þ
" ð2Þ ¼ �0 sin’2

(3:112)

These relations mean that in a bioctahedron with one common (bridging)

atom the rotations of the waves of deformation around each JT center are not

correlated, i.e., they proceed independently in each octahedron. This is due to

the inclusion of the translational degrees of freedom, which remove any

constraint on the packing of the two octahedra with distortions [3.86].

However, if the mass of the central atoms is much larger than the mass of

the ligands (M 6m), then l � 0 and the coupling condition (3.106) imposes

restrictions on the angular parameters’1 and ’2, namely, ’1�’2¼ p, i.e., one
of them is no longer independent. It follows from this equation, in particular,

that _’1 � _’2 ¼ 0 (overdots denote time derivatives). This means that in the

bioctahedron with one bridging atom and a heavy central atom the two waves

of deformations propagate around each center not independently, but with a

certain phase shift, the motions along the bottom of the trough occurring

either in the same direction ð _’1 ¼ _’2Þ, or in opposite directions ð _’1 ¼ � _’2Þ.
These two possibilities are shown schematically in Fig. 3.29.

The presence of a trough in the potential energy surface means that the

symmetry of the APES is higher than that of the bioctahedron in its initial

high-symmetry configuration (D4h). This is due to the approximations used

above: neglect of exchange interactions and tetragonal crystal fields, the

Fig. 3.29. Correlated motions of the waves of E-type deformations of each of
the two octahedra in an bioctahedron with an E� e problem on each center:
(a) in-phase motion corresponding to ferrodistortive ordering of the
distortions; (b) anti-phase motion for antiferrodistortive ordering.
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limitation to one-center vibronic coupling, and the linear vibronic interaction.

The removal of any one of these approximations restores the D4h symmetry,

resulting in the corresponding warping of the trough.

Taking into account the quadratic terms of vibronic interactions leads to a

more general result [3.92, 3.93]. Indeed, on replacing in expressions (3.109) and

(3.110) the square roots from Eq. (3.23), we obtain four types of extrema

points with coordinates given in Table 3.6. All the coordinates are propor-

tional to �0 (cf. Eq. (3.28)),

�0 ¼ FEj j=ðKE � 2 GEj jÞ (3:113)

and therefore only the corresponding coefficients are given in Table 3.6. The

JT stabilization energies for all nine extrema points coincide and are given by

EJT ¼ F 2
E=ðKE � 2 GEj jÞ (3:114)

which is exactly twice the EJT value for an isolated octahedron, Eq. (3.29).

This allows us to give the following physical interpretation of the results [3.91].

As in cases of linear vibronic coupling at each center, the octahedron distor-

tions are not correlated, and the resulting nuclear configuration is determined

only by the packing of differently distorted octahedra; as in the linear case, this

becomes possible due to inclusion of the translational degrees of freedom of

the octahedra.

Table 3.6. Coordinates of the nine types of extrema points on the APES of

a bioctahedron with a JT E� e or T� e problem on each of the two centers

(in units of �0) [3.1, 3.94, 3.101]

Symmetry q(A1g) q(A2u) q(B1g) q(B2u) Q#(1) Q"(1) Q#(2) Q"(2)

D4h

ffiffiffi
2

p
0 0 0 1 0 1 0

D2h �
ffiffiffi
2

p
=2 0

ffiffiffi
6

p
=2 0 �1/2

ffiffiffi
3

p
=2 �1/2

ffiffiffi
3

p
=2

D2h �
ffiffiffi
2

p
=2 0 �

ffiffiffi
6

p
=2 0 �1/2 �

ffiffiffi
3

p
=2 �1/2 �

ffiffiffi
3

p
=2

D2d �
ffiffiffi
2

p
=2 0 0

ffiffiffi
6

p
=2 �1/2

ffiffiffi
3

p
=2 �1/2 �

ffiffiffi
3

p
=2

D2d

ffiffiffi
3

p
=2 0 0 �

ffiffiffi
6

p
=2 �1/2 �

ffiffiffi
3

p
=2 �1/2

ffiffiffi
3

p
=2

C2v

ffiffiffi
2

p
=4 3

ffiffiffi
2

p
=4

ffiffiffi
6

p
=4 �

ffiffiffi
6

p
=4 1 0 �1/2

ffiffiffi
3

p
=2

C2v

ffiffiffi
2

p
=4 3

ffiffiffi
2

p
=4 �

ffiffiffi
6

p
=4

ffiffiffi
6

p
=4 1 0 �1/2 �

ffiffiffi
3

p
=2

C2v

ffiffiffi
2

p
=4 �3

ffiffiffi
2

p
=4

ffiffiffi
6

p
=4

ffiffiffi
6

p
=4 �1/2

ffiffiffi
3

p
=2 1 0

C2v

ffiffiffi
2

p
=4 �3

ffiffiffi
2

p
=4 �

ffiffiffi
6

p
=4 �

ffiffiffi
6

p
=4 �1/2 �

ffiffiffi
3

p
=2 1 0
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However, if M 6m (l� 0) the translations become rather inertial and

the condition (3.106) is reduced to the requirement Q#(1)¼�Q#(2),

i.e., q(A1g)¼ 0. With this condition none of the nine extrema points obtained

above remains. Instead, others appear, but with the same types of symmetry,

D2h, D2d, and C2v [3.94]. At the extrema points of the type D2h, Qe(1)¼Qe(2),

while for D2d type, Qe(1)¼�Qe(2). These two types of extrema points corres-

pond to two special types of packing of the distorted octahedra. In the case of

Qe(1)¼Qe(2), when q(0)(B1g) 6¼ 0 and q(0)(B2u)¼ 0, the packing is ‘‘parallel’’

(Fig. 3.28(b)), or of ‘‘ferro’’ type, and it is called ferrodistortive, whereas for

Qe(1)¼�Qe(2), q
(0)(B1g)¼ 0 and q(0)(B2u) 6¼ 0, the packing is antiferrodistor-

tive (Fig. 3.28(c)). Such an ordering of local JT distortions in crystals with

regular JT centers results in the cooperative JTE (Section 8.2).

Consider now the case when the JTE on each center of the two-center

bioctahedral system has aT� e coupling, i.e. the electronic state of the isolated

octahedron is threefold degenerate and the vibronic coupling with the t2g
vibrations can be neglected. In the same approximation as above, the potential

energy operator can be written as in Eqs. (3.1) and (3.2) with the W matrix

from Eq. (3.42) and with FT¼ 0 for each center. In the basis of nine multi-

plicative states w
ð1Þ
Tg1

ðr1Þwð2Þ
Tg2

ðr2Þ we get a 9� 9 diagonal matrix, and therefore

the APES can be evaluated directly, quite similar to the one-center case that

yields the solutions (3.44). The electronic contribution to the potential energy

is linear with respect to the normal coordinates, and the adiabatic potential

consists of nine intersecting paraboloids [3.101]. The minima coordinates are

given in Table 3.6. Here, instead of (3.113) for theE� e problem, the �0 value is

�0 ¼ jFE j=KE (3:115)

In a similarway, the JTE in a bioctahedronwithT� t2 coupling at each center

can be considered. The minima configurations in this case can be presented as

different possible packings of the two trigonally distorted octahedra. The bio-

ctahedron with two edge- and face-shared octahedra is considered in [3.104].

More complicated four-center JT systems of the type Cu4OX6L4 are con-

sidered in [3.102, 3.103]. In these systems with the initial nuclear configurations

of Td symmetry four identical transition metal ions occupy the vertices of a

tetrahedron, and the configuration of the atoms nearest to the vertices hasC3v

symmetry. The local trigonal symmetry splits the 2D term of the JT Cu2þ (d9)

ion into A1þE 0 þE, allowing a two-fold degenerate ground state with E� e

coupling on each center. As in the previous cases, the JTE results in the wave of

deformation of the local environment of each center, and the waves of defor-

mation of different centers, owing to intercenter interactions, are correlated in

phase and magnitude. In the linear approximation of the vibronic interaction
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the lowest sheet of the adiabatic potential has a continuum of equivalent

minima points in the space of e displacements (a trough).

Figure 3.30 illustrates the five-sheet APES obtained for this case in the space

of two interaction modes Q# and Q" that reduce the multimode space to the

one-mode one (Sections 3.5 and 5.5). The results obtained explain the origin of

the anomalous, nonmonotonic dependence of the magnetic moment on tem-

perature in some of these complexes [3.102]. The quadratic terms of vibronic

interactions result in a warping of the trough with alternating tetragonal

minima and saddle points on its bottom. The nuclear configuration at the

minima is, in principle, similar to that of the one-center Jahn–Teller tetra-

hedral E� e problem in accordance with the general symmetry requirements

(Section 3.2).

For arbitrary multicenter JT systems with significant elastic interaction

between the centers, an effective-Hamiltonian method was suggested [3.104,

3.105], in which the extrema points of the APES can be found by analyzing an

effective APES in the space of the active one-center displacements only. This

method was applied to the problem of a bioctahedron with two edge- and face-

shared octahedra [3.105].

Two-center, three-center, and other multicenter JT and PJT systems are

widespread among exchange-interacting mixed-valence compounds. Since

their treatment involves essentially the PJTE (Chapter 4), vibronic coupling

in mixed-valence compounds is considered later, in Section 7.6.3.

E′
E

A1

E(Qθ,Qε)

Qθ

Qε

0

Fig. 3.30. The APES of a tetrahedral four-center systemwith a JTCu2þ (d9) 2D
term and trigonal symmetry on each center producingA1þEþE 0 branches in
the space of the interaction e mode Q# and Q" of the reduced multimode
problem [3.102].
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4

Pseudo Jahn–Teller, product Jahn–Teller,
and Renner–Teller effects

This chapter is to introduce the reader to JT problems that may be considered

as ‘‘less traditional’’ in the sense that they do not follow exactly from the

original (‘‘classical’’) JT theorem. Indeed, the PJTE considered below takes

place in nondegenerate states, while the RTE is relevant to linear molecules,

which are exceptions in the original JT formulation. The product JTE is an

approximation to both JT and PJT problems. All these effects are inalienable

components of the JT trend as a whole.

4.1 Two-level and multilevel pseudo JT (PJT) problems. Uniqueness of the

PJT origin of configuration instability and its bonding nature

Among the JT vibronic coupling effects the pseudo JT (PJT) effect occupies an

outstanding place. Indeed, while the occurrence of the JT and RT effects is

limited to polyatomic systems in degenerate electronic states, the PJT effect

may take place, in principle, in any system without a priori limitations. This

circumstance enlarges essentially the possible subjects of the JT vibronic

coupling effects, transforming the JTE theory into a general tool for better

understanding and solving problems of structure and properties of molecules

and crystals. The waiver of the degeneracy restrictions together with the proof

of the uniqueness of the PJT origin of structural instabilities of polyatomic

high-symmetry configurations elevates the JT effect theory to a general

approach to molecular and crystal problems.

The PJT effect emerges directly from the basic equations (2.6) for the

vibronically coupled electronic states. If written for the nondegenerate ground

state k, the vibronic coupling to the excited states is given by the last term on its

left-hand side controlled by the matrix elements of the vibronic coupling

Wkm(Q). If Wkm(Q) is sufficiently small, the system (2.6) can be decoupled

and reduced to the usual equation of the adiabatic approximation for
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nondegenerate states. However, in many cases the vibronic coupling between

the ground and excited states (or two excited electronic states) Wkm(Q) is not

small. In these cases the system of coupled equations (2.6) should include all

the vibronically coupled states.

The effects originating from the vibronic mixing of two (or several) nondegene-

rate electronic states under nuclear displacements are called the pseudo JT effect

(PJTE). This notion comes from the two-level problem, ground and excited,

discussed below: sufficiently strong vibronic coupling to the excited state

leads to the ground-state instability, which in many respects is similar to the

JT instability. The effect as a whole can be regarded as emerging from avoided

JT crossing, and it is equally applicable to any two (or several) interacting

states, not just ground and excited. The PJT effect was considered first by Öpik

and Price [4.1] and emerges as a natural extension of the JT effect when a small

perturbation that splits the degenerate term does not remove completely the

JT instability and distortion.

Note that the term ‘‘second-order JT effect’’ sometimes used instead of

pseudo JTE may be misleading: there are no first-order (JT) and second-

order (PJT) effects, the two effects are described by different and unrelated

vibronic coupling constants, and involve different distortions; the PJTE may

be very strong when the proper JT effect is zero and vice versa.

Consider first an easy case of two nondegenerate states � and �0 separated

by an energy interval of 2�. In order to obtain the adiabatic potential of these

states the vibronic contributions "vk must be calculated as solutions of secular

equation (3.2). Assuming that only one coordinateQ ¼ Q�, � ¼ �� �0, mixes

the two states (in principle, there may be more than one coordinate of type �)

and taking into account only linear terms in the vibronic interaction W in

Eq. (2.14), we obtain (the energy is read off the middle of the 2� interval

between the initial levels)

W ¼ �� FQ
FQ �

����
���� (4:1)

where

F ¼ �h j @V=@Q�

� �
0
�0j i (4:2)

is the off-diagonal linear vibronic coupling constant. Inserting the solutions of

Eq. (3.2) with W from (4.1),

"vk ¼ �ð�2 þ F2Q2Þ
1
2 (4:3)
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into Eq. (3.1) and assuming that the primary force constant ðK0 ¼ M!2Þ is the
same in both states, K0¼K0�¼K0�0, we obtain

"�ðQÞ ¼ 1
2
K0Q

2 � ð�2 þ F2Q2Þ
1
2 (4:4)

or, after expanding the second term in Q,

"�ðQÞ ¼ 1
2
ðK0 � F2=�ÞQ2 ��� 1

4
ðF4=�3ÞQ4 � � � � (4:5)

It is seen from this expression that, on taking into account the vibronic

coupling, the two APES curves change in different ways: in the upper sheet the

curvature (the coefficient at Q2, the force constant) increases, whereas in the

lower one it decreases. But until�>F 2/K0 the minima of both states corre-

spond to the pointQ¼ 0, as in the absence of vibronic mixing. This is the case

of the weak PJTE (Fig. 4.1(a)).

However, if

�5F 2=K0 (4:6)

the curvature of the lower curve of the APES becomes negative, and the

system is unstable with respect to the Q displacements. This is the strong

PJTE (Fig. 4.1(b)). The minima of the APES in this case are given by

�Q0 ¼ ½ðF2=K2
0 Þ � ð�2=F 2Þ�

1
2 (4:7)

Fig. 4.1. The APES in the case of (a) weak PJTE, the ground state is softened
but remains stable; and (b) strong PJTE, the ground state becomes unstable at
Q¼ 0. The terms without vibronic coupling are shown by dashed lines.
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with the JT stabilization energy

EJT ¼ F 2

2K0
�� 1��K0

2F 2

� �
(4:8)

and curvature at these minima points

K ¼ K0 1� �K0

F 2

� �2" #
(4:9)

For �¼F 2/K0 the curvature is zero everywhere.

If K0� 6¼K0�0, then

"�ðQÞ ¼ 1
2
ðK0� � F 2=�ÞQ2 ��þ 1

4
ðF 4=�3ÞQ4 � � � �

and

"þðQÞ ¼ 1
2
ðK0�0 þ F 2=�ÞQ2 þ�� 1

4
ðF 4=�3ÞQ4 þ � � � (4:10)

Following these equations, the curvatures of the APES of the two states

� and �
0
that are coupled by the PJT interaction in the Q� direction,

K�
�
¼ K�

0�
� F ��0

�

��� ���2.� (4:11)

and

K�0

�
¼ K�0

0�
þ F ��0

�

��� ���2.� (4:12)

depend on the linear vibronic coupling constant F��0

�
, which is nonzero only if

the two states � and �
0
obey the symmetry restriction � 2 �� �0. This means

that only selected excited (higher in energy) states contribute to the instability

of the ground (lower-energy) state in a given direction �, and this contribution

is the larger, the smaller � and the larger F.

If there is more than one excited state with required symmetry, all of them

may contribute to the instability of their ground (or lower in energy) state. In

the linear coupling approximation the total effect is a sum of contributions of

all higher-energy states (cf. (2.35)):

K�
�
¼ K�

0�
�
X
�0

F ��0

�

��� ���2.��0� (4:13)

and the condition of instability, instead of Eq. (4.6), becomes as follows:

X
�0

F ��0

�

��� ���2.��0� > K�
0�

(4:14)
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Equations (4.13) and (4.14) pertain to the linear multilevel PJT effect,

provided no degenerate terms, ground or excited, are involved in the vibronic

coupling. If at least one of the coupling terms is degenerate or the quadratic

vibronic coupling terms are taken into account, the problem becomes more

complicated as laid out in the next sections.

The nonadiabacity terms (2.12) ignored so farmay have significant influence

on the PJTE. If the diagonal matrix element of the nonadiabacity (2.12) is

taken into account, the off-diagonal elements still being ignored, the system of

Eqs. (2.6) is decoupled into two independent equations for the lower and upper

sheets of the APES, but Eq. (4.3) changes to the following [4.2]:

"�ðQÞ ¼ 1
2
K0Q

2 � ½�2 þ F 2Q2�
1
2 þ ð�ho�Þ2ðF 2=K0Þ=8ð�2 þ F 2Q2Þ2 (4:15)

The last (nonadiabacity) term decreases rapidly with increasing distance Q

from the reference configuration. It changes from (�ho)2(F 2/K0)/8�
2 at Q¼ 0

to (�ho�)2/(F 2/K0)
3 at the point Q0 of the minimum of the APES given by

Eq. (4.7). Since it is assumed that �<F 2/K0 (Eq. (4.6)), the nonadiabacity at

the minima points (but not at the barrier top at Q¼ 0) may be neglected. If

in addition to Eq. (4.6) �� �ho, then the diagonal nonadiabacity may be

neglected everywhere.

Wewill show now that the PJT origin of instability is unique in the sense that

the condition (4.14) is both necessary and sufficient for the instability to occur,

and hence there are no other sources of such instability of high-symmetry

configurations [4.3–4.5]. In Section 2.4 we presented the curvature K of the

APES in the directionQ as a sum of two terms (for simplicity, the � indices are

omitted):

K ¼ K0 þ K� (4:16)

where (prime indicates Q derivative)

K0 ¼ w0h jH 00
Q w0j i (4:17)

and

Kv ¼ w0h jH 0
Qjw0

0i þ hw0
0jH 0

Q w0j i (4:18)

or

Kv ¼ 2
X
n

w0h jH 0
Q wnj i

��� ���2
E0 � En (4:19)
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Since for the ground state En>E0, expression (4.19) is negative. It follows

that the excited states for which w0h jH 0
Q wnj i 6¼ 0 destabilize the system in the

ground state in the direction of the displacements Q. Expressions similar to

(4.19) were used by different authors to explain the possible origin of molecular

instability (see [4.6] and references therein).

On the other hand Eq. (4.19), as demonstrated above, is equivalent to the

summarized PJT contributions of the corresponding excited states to the

destabilization of the ground state. Since K � < 0, the instability K< 0 may

be due to either K0> 0 and |K�|>K0 or K0< 0. In general, if the inequality

K0< 0 cannot be a priori excluded, then the system may be unstable with

respect to Q displacement even without the PJT contribution K�, and then

the PJT contribution is just one of the possible reasons for instability, as

implied in [4.6] (see the discussion below in this section). However, if

K0 > 0 (4:20)

the condition (4.14) of vibronically induced instability is both necessary and

sufficient, and the PJT mechanism of instability is the only possible one in

polyatomic systems.

There are several particular proofs of the inequality K0> 0 for different

kinds of polyatomic systems. First the formulation of the problem and a

general (but not very rigorous) proof was given [4.3]. Then this proof was

significantly improved and expanded [4.4], followed by more rigorous proofs

for particular cases [4.5] (see also [4.2]). To illustrate the idea of these proofs

(but not to repeat them), consider the expression (4.17) for K0 in more detail.

The second derivative of the Hamiltonian H 00
Q equals the second derivative

of the electron–nuclear and nuclear–nuclear interactions V(r, Q) given by

Eq. (2.3). Since the transformation from normal to Cartesian coordinates is

unitary, Qk¼�i akUk (Uk stands for the coordinates Xi, Yi, and Zi),

@2H

@Q2
k

¼
X
i

a2ki
@2V

@U2
i

(4:21)

For the Coulomb interaction terms V there is a general formula

0h j @
2V

@X 2
i

0j i ¼ 4p
3
eZi�i þ eZiQ

ðiÞ
xx (4:22)

where �i is the numerical value of the electron density at the ith nucleus, and

Q
ðiÞ
xx is the gradient of the electric field created by the electrons and other nuclei

at the given one i (not to be confused with symmetrized coordinates); the

ground state is denoted by 0j i. By definition, QxxþQyyþQzz¼ 0 and �i> 0.
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Hence the first term on the right-hand side of (4.22) is always positive (eZ is the

absolute value of the nuclear charge), and if the environment of the displacing

nuclei under consideration is cubic, Qxx¼Qyy¼Qzz¼ 0 and

K0 ¼ 0h j @2H

@Q2
k

� �
0

0j i ¼ 4pe
X
�

a2k�Z��� ‡ 0 (4:23)

If the environment is not cubic, the first term in 4.22 is still positive, but the

second one, the gradient of the electric field at the given nucleus, is nonzero

and it can be either positive or negative; but it was shown that the second term

is much smaller than the first [4.2, 4.3–4.5].

A less rigorous but more general proof that the nonvibronic contribution

K0> 0 is based on the representation of the electronic wavefunction of the

ground state in the form of a Slater determinant in the MO LCAO approx-

imation, 0j i ¼
ffiffiffiffi
N

p
det w1w2 � � � wNj j, wherewi ¼ ��Ci�’�, Ci� are the LCAO

coefficients, and f� is the appropriate atomic function [4.4]. Calculating the

diagonal matrix element (4.17) with this function and making reasonable

approximations, one can see that K0 consists of two contributions: positive

terms of the order of ��q��
3
�Z�, which are due to the interaction of the

displacing nuclei with their own atom-in-molecule electronic shells with the

most contribution from s electrons, and possible negative terms of the order of

��,�Z�Z�R
�3
�� due to the second derivative of internuclear interactions. If the

inner and valence electrons are separated, �� is the parameter of the Slater ns

orbital of the � atom of the first ns shell not included in the core, q� is the

electronic population of this ns orbital, and R�� are interatomic distances.

Since ���Z� (this is true also when Z� is the effective charge of the core),

R��	 2 a.u., and q�� 1, the positive term ���Z
4
� is much larger than the

possible negative ones ���;�Z�Z� provided Z� > 1. Thus K0 is also positive

in the general case of arbitrary structure and symmetry, and this proves the

PJT origin of the structural instability of any system, provided it exists in the

high symmetry configuration.

The case Z�¼ 1 when the displacing nuclei are hydrogens requires additional

consideration (in all other cases, including that of the core–valence-electron

separation approximation, Z�> 1). For this case nonempirical calculations

ofK0 were carried out together with an evaluation of the vibronic contribution

to the curvature for several series of molecular systems in high-symmetry

configurations that are unstable with respect to symmetrized nuclear displace-

ments of hydrogen atoms [4.4]. In all these (and any other) cases with any

Z� K0 calculated by Eq. (4.17) is positive.
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As can be seen from the discussion above, the proof of the inequality K0> 0

is not trivial. Several authors tried to sidestep the necessity to prove it by

stating implicitly (as, e.g., in [4.6(a)]) or explicitly (see, for example, [4.6(b),

4.7]) that K0> 0 because the wavefunction w0 in the definition (4.17) is a

solution of the Schrödinger equation which minimizes the energy w0h jH w0j i.
This is a typical example of wrong reasoning: the energy is minimized with

respect to the variation of w0, not the nuclear coordinates Q. Only for single

atoms does a shift transformation make the two minimization procedures

equivalent, but this cannot be done for molecules and crystals because of

essential interatomic interactions.

With respect to ab initio calculations of K0 and K�, which provide a further

insight into the origin of PJT instability of high-symmetry configurations of

polyatomic systems, a more elaborate investigation was performed recently

[4.8]. The first attempts to calculate K0 and K� by ab initio methods [4.4]

encountered essential difficulties. First, although the relative values of K� for

different distortions, as mentioned above, depend mainly on the first several

excited states, the absolute values depend significantly on all other states that

are higher in energy in the sum of Eq. (4.19), including the continuum spec-

trum (in [4.4] this difficulty was overcome by means of including derivative

functions in the basis set to partially account for the floating of inner orbitals).

The reason that the lowest several excited states are still sufficient for a

comparable analysis of the possible distortions in spite of the much larger

contribution of higher states and the continuum spectrum is due to the fact

that the contribution of the latter (being mostly an intraatomic, not inter-

atomic, feature) is approximately the same for all distortions and does not

influence significantly their relative values.

Second, the K value in Eq. (4.16) is a small difference of two large terms, K0

andK�, meaning that a much higher accuracy of the calculation is required for

reasonably accurate results. At present accurate calculation of the K0 values

encounters essential difficulties because there are no basis sets available with

sufficiently accurate behaviors of the atomic orbitals near the nuclei (due to the

singularity of the potential at the nuclei). The low accuracy of existing basis

sets for calculations of nuclear displacement derivatives is an essential obstacle

to using Eqs. (4.16)–(4.19) for ab initio evaluation of instabilities.

The authors [4.8] overcome both these difficulties in ab initio calculations of

vibronic instabilities by introducing two main innovations. First the calcula-

tion of K� is performed using Eq. (4.18) in which, distinct from the traditional

Eq. (4.19), the infinite sum over excited states is substituted by wavefunction

derivatives. Second, it is taken into account that for a free atom the curvature

for any nuclear displacement is zero, K¼K0þK�¼ 0, or K0¼�K�, and this
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relation is independent of the electronic structure of the atom, so it should be

valid for each atomic orbital ��i taken separately (cf. ‘‘floating orbitals’’). In

other words,

h��ijh00X�X�
j��ji þ hð��iÞ0X�

jh0X�X�
j��ji þ h��ijh0X�X�

jð��jÞ0i ¼ 0 (4:24)

and this equation can be easily verified for any atomic orbitals.

Equation (4.24) allows one to exclude the diagonal in � terms that appertain

to the same atom in the corresponding sums ofK0 andK� calculated in theMO

LCAO approximation. Finally one gets [4.8] (for h see Eq. (2.2b), Section 2.1)

K ¼ ~K0 þ ~Kv (4:25)

~K0 ¼
X
g

D2
g

XN
m¼1

X
�i;�j

Cm
�iC

m
�jh��ijh00XgXg

j��jið1� ���gÞ þ
X
g;�

DgD�G
00
XgX�

(4:26)

~Kv ¼ 2
X
g;�

DgD�

XN
m¼1

X
�i;�j

Cm
�iC

m
�jh��ijh0Xg

jð��jÞ0X�
ið1� ���g�Þ þ Cm

�iðCm
�jÞ

0
X� ��ih jh0Xl

��j

�� �h i
(4:27)

where Cm
�i are the LCAO coefficients of the MO LCAO method in the one-

determinant presentation, and Dg are the coefficients in the transformation of

the Q displacements to Cartesian coordinates Xg:

Q ¼
X
g

DgXg

Similar formulas for a more sophisticated approximation using configura-

tion interaction were also derived [4.8]. Illustrative results of calculation using

these formulas are given in Section 7.6. Another approximation to the evalua-

tion of the PJT instability using floating orbitals was employed in [4.9].

The proof that K0> 0 means that configuration instability with K< 0 is due

to, and only to, the vibronic coupling to the excited states. For a two-level

system, the curvatures of the adiabatic potentials of the two states at the point

of instability are given by Eqs. (4.11) and (4.12). BecauseK0�> 0 andK0�0 > 0,

the curvature of the excited state K0�0 þ F2=� is positive while that of the

ground-state K0� � F2=� under condition (4.6) is negative. Thus instability of

the ground-state is accompanied by a stable excited state, coupling with which

produces the instability. This result, prediction of the existence of stable excited

states in dynamically unstable ground-state configurations, is one of the general

consequences of vibronic instability, which may have interesting applications.
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If more than one excited state contributes to the instability of the ground

state in Eq. (4.13), the relation among the K values of all these states becomes

more complicated, but the general idea is the same: the negative contribution

to the curvature of the ground state, which makes the latter unstable, equals

the sum of positive contributions to the excited states. As a result of vibronic

mixing, the excited states become stabilized. If the excited state that causes the

instability of the ground state is occupied by electrons, the instability dis-

appears: Eqs. (4.11) and (4.12) show that the total change of curvature of the

two interacting states equals zero. Therefore, inmolecular orbital approximations

vibronic coupling between fully occupied MOs does not contribute to the

instability.

For a further understanding of the origin of vibronic instability, the terms in

the sum (4.13) or (4.19) for Kv may be divided into two groups.

1. The basis wavefunctions 0j i and ij i in the matrix element F ð0iÞ ¼ 0h jð@V=@QÞ0 ij i are
mainly from the same atom. The term � F ð0iÞ�� ��2=�i0 in Eq. (4.13) calculated with

these functions can be interpreted as the contribution to the polarization of this

atom by the displacements of other atoms. For instance, for the instability of the

central position of the Ti ion in the octahedron of oxygens in the [TiO6]
8� cluster

of BaTiO3 with respect to off-center displacements, discussed in Section 4.3, the

contribution to the polarization of the oxygen atom by the off-center displacement

of the titanium ion is given by the mixing of the oxygen 2p(O) and 3s(O) atomic

functions under this displacement [4.2, 4.10]:

K pol
v ¼� 2p	zh jð@V=@QzÞ0 3sj i

�� ��2=�3s2p (4:28)

In the integrals F ð0iÞ ¼ 0h jð@V=@QÞ0 ij i calculated with the orthogonal (ground

and excited) wavefunctions of the same atom we can transform the symmetrized

coordinate Q into Cartesian coordinates. Then taking the corresponding deri-

vative of the Coulomb potential V ¼ e2 r� R�

�� ���1
, we come to integrals of the

type Ix ¼ 0h jðx� X�Þ= r� R�

�� ��3 ij i, where x are the electronic coordinates of

the polarized atom and X� are the nuclear coordinates of the displacing atoms. If

we assume that approximately R� is much larger then the atomic size (which is true

for the second and next coordination spheres), then Ix 	 R�3
� 0h jx ij i, and

the polarization contribution is

Kpol
v � e2�xR

�6
� (4:29)

where, according to quantum mechanics,

�x � e2 0h jx ij ij j2=�i0 (4:30)
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is the part of the atomic polarizability in the x direction that is due to the contri-

bution of the ith excited state (the summation over i gives the full atomic polariz-

ability in this direction).

2. The two functions in F (0i) are mainly from two different (near-neighbor) atoms. In

this case the vibronic contribution is due to new covalency produced by the distortion.

Indeed, in the reference configuration the overlap of these two electronic states is

zero (they are orthogonal), hence their vibronic mixing means that a nonzero

overlap occurs under the low-symmetry displacements Q.

For the Ti ion’s off-center displacements with respect to the oxygen octahedron,

the covalent contribution is due to the new overlap of the ground-state t1u combi-

nation of the highest occupied 2ppz(O) functions of the oxygen atoms with the

lowest unoccupied dxz(Ti) function of the titanium ion (Section 4.3):

Kcov
v 	� 2ppzðOÞh jð@V=@QxÞ0 3dxzðTiÞj i

�� ��2=�3d 2p (4:31)

The new overlap (which is forbidden by symmetry in the reference configuration)

produces new (additional) covalency. Inequality (4.6), made possible by this term,

means that with the new covalency the energy is lower than that of the reference

configuration, resulting in instability. Figure 4.2 illustrates this case. Another case of

new covalency in MA4 (C4v) systems is illustrated in Fig. 4.3.

O3

O5

O6

Ti y

+ –

– ––

–

–

+

+

+

+

+

z

O2

Fig. 4.2. Symmetry properties of the HOMO t1uzj i and LUMO 3dyz
�� �

in the
octahedral cluster [TiO6]

8� in the yz plane (the oxygen numbering follows
that of Fig. 2.3). The overlap integral between these orbitals (hatched area) is
zero in the high-symmetry configuration and becomes nonzero upon
displacement of the Ti4þ ion along the y axis.
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Both kinds of vibronic contribution to instability, new covalency and

atomic polarization, may be significant, but the numerical calculations per-

formed so far show that the covalency contribution is larger by an order of

magnitude than the polarization. Table 4.1 shows three examples of such

calculations [4.11]: the instability of NH3 in the planar configuration with

respect to out-of-plane displacements of the nitrogen atom (toward the stable

C3v configuration), ½CuCl5�
3� in the trigonal-bipyramidal configuration with

respect to E 0 displacements (toward a square pyramid), and the ½TiO6�8�
cluster in BaTiO3 with respect to T1u (Ti off-center) displacements initiating

the spontaneous polarization of the crystal [4.10] (see also Section 8.3). In all

these examples the new covalency contribution to the instability is indeed

much more significant, by at least an order of magnitude. As seen from these

illustrative examples, the PJT distortion is a (covalency) bonding effect.

One of the fundamental consequences of the uniqueness of the vibronic

instability, the existence of stable excited states that cause the instability of the

ground state, has applications in various fields of physics and chemistry. In the

MOpresentation, considering the symmetries of the appropriateMOs, one can

control (manipulate) the geometry (configuration instability) of molecular

+

+ +

––

– –+

pz

a

pz dz2 pz

b

pz dz2

+

+ +

+

Fe NN Fe

NN

Fig. 4.3. Illustration to the visual treatment of the origin of the PJTE using the
N—Fe—N fragment of the square-planar FeN4 group as an example (cf. iron
porphyrin, Section 7.6): (a) when Fe is in theN4 plane (on theN—Fe—N line)
the dp–pp overlap between the HOMO (nitrogen pp) and LUMO (iron dz2 )
orbitals is zero; (b) the out-of-plane displacement of the Fe atom results in
nonzero dp–pp overlap and additional bonding which lowers the curvature of
the APES in the direction of such a displacement [4.20] (reprinted with
permission from [4.20]. Copyright 1996 John Wiley & Sons, Inc.).
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systems by means of electronic rearrangements: charge transfer, excitation,

ionization, MO population changes by coordination, redox processes, and so on

(Section 7.1).

In addition to instability of the high-symmetry configuration, strong vibronic

mixing of the ground state with the excited states causes anharmonicity in

the nuclear motions of the former (vibronic anaharmonicity, Section 2.4). In

some cases the vibronic anharmonicity is more important than the proper

anharmonicity caused by the higher-order terms in the expansion (2.3).

4.2 Pseudo JT (AþE)˜ e, (AþT)˜ t, (T1þT2)˜ e, and combined

JT and PJT problems

If the excited state that influences vibronically the nondegenerate ground state

A is degenerate, the vibronic coupling problem becomes more complicated

because more than two electronic states are involved in the vibronic inter-

action. For instance, if the excited state involved is doubly degenerate E, the

Table 4.1. New covalency Kcov
v versus polarization Kpol

v contributions to the

instability of the high-symmetry configuration of several polyatomic systems

[4.11]

NH3 CuCl5
3� TiO6 in BaTiO3

Reference
configuration

Planar D3h Trigonal
bipyramidal D3h

Octahedral Oh

Instability
coordinate

A00
2 E0 T1u

Ground statea 1A0
1[2pz(N)] 2A0

1[3dz2 (Cu)]
1A1g[2p(O)]

Excited state –
covalentb

1A00
2

2pz(N)!1s(H)

2E0

3s(Cl)!3d(Cu)

1T1u

2p(O)!3d(Ti)

Kcov
v �0.62mdyn/— �2.85� 1028s�2c

Excited state –
polarizedb

1A00
2

2pz(N)!3s(N)

2E 0

3dxy(Cu)!3dz2

1T1u

2p(O)!3s(O)

Kpol
v

�0.06mdyn/— �0.05� 1028s�2c

Kcov
v =Kpol

v
10.3 57 11

a The main contributing AOs are indicated in brackets.
b Corresponding one-electron excitations are shown.
c In mass-weighted units.
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number of coupled states becomes three and the problem is (AþE)
 e; for T

excited states we get four electronic states involved, the A and T states being

mixed by t vibrations (the (AþT)
 t problem). If both mixing states are

degenerate, their PJT coupling involves five states in the (EþT)
 (t1þ t2)

problem, six states in the (T1þT2)
 (eþ t2) problem, and so on.

Considering just the PJT mixing of two terms in the above problems may

be a rough simplification because any degenerate state is subject to the JT

effect within itself, which may affect also its PJT coupling to other states.

This means that if the PJT mixing involves degenerate terms, the problem in

fact becomes a combined JTþPJT one. In particular, the PJT (AþE)
 e

problem is in fact a combination of the JT E
 (aþ e1) and PJT (AþE)
 e2
problems, resulting in (AþE)
 (aþ e1 þ e2). The two e-type couplings in the

combined problem should be described by two coupling constants, one for

the twoE states coupled to e vibrations, the other forA–E coupling to the same

e vibrations. Similarly, the PJT (AþT)
 t problem is strictly speaking a

combination of the PJT problems (AþT)
 t and T
 (aþ eþ t2), yielding

(AþT )
 (aþ eþ t2þ t) with four vibronic coupling constants (t is either

t1 for T¼T1, or t2 for T¼T2).

But the simplified (AþE)
 e, (AþT)
 t, (T1þT2)
 e, (T1þT2)
 t, etc.,

pure PJT problems may still be important as a first approximation to the more

complex problem, especially when the PJT coupling is stronger than the JT

effect within the degenerate term (note that the two kinds of couplings, JT and

PJT, are controlled by different and unrelated vibronic coupling constants).

Consider first the PJT A1þE problem (the ground state A1 is shown first)

for a system with C4v symmetry [4.12]. In this case the JT problem on the E

term is not E
 (a1þ e), but E
 (b1þ b2) (Section 3.1), and hence the combined

problem is (AþE)
 (eþ b1þ b2). Ignoring the JTE on the excited E term

(i.e. the coupling to b1 and b2 displacements; they do not mix the A and E

terms directly, but they may affect the latter indirectly), we come to the PJT

(AþE)
 e problem. The results below are similar for the (EþA)
 e problem,

i.e., when the E term is lower than the A one. For a system with C4v symmetry

the two wavefunctions of the E term transform as the x and y coordinates,

while the A1 term is totally symmetric and transforms as an atomic s function.

If we denote the two components of the e mode by Qx and Qy and the energy

gap between the E and A1 levels by 2�, the matrix W in the secular equation

(3.2) in the linear vibronic coupling approximation takes the form

W ¼
� 0 FQx

0 � FQy

FQx FQy ��

������
������ (4:32)
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where F ¼ sh jð@V=@QxÞ0 xj i is the PJT linear coupling constant (Section 2.2).

In polar coordinates

Qx ¼ � cos
; Qy ¼ � sin
 (4:33)

the solutions of the Eqs. (3.2) with this matrix W are

"1;3 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ F 2�2

p
; "2 ¼ � (4:34)

which for the APES of the ground state yields

"ð�; 
Þ ¼ 1
2
KE�

2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ F 2�2

p
(4:35)

It is seen that in the linear approximation the adiabatic potential is inde-

pendent of the angle f, it is a surface of revolution. Similar to the two-level

case (Section 4.1), if�<F 2/KE, the surface has a maximum at the point �¼ 0

(dynamic instability) and a circular trough at

� ¼ �0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðF 2=K 2

E Þ � ð�2=F 2Þ
q

(4:36)

The depth of the trough (read off the point "(0)=�� ) is the same as in the

two-level problem (4.8),

EPJT ¼ F 2

2K0
�� 1��K0

2F 2

� �
(4:37)

If quadratic terms of the vibronic interaction are taken into account, the two

states of the E term become mixed by quadratic e displacements, and two

quadratic constants G1 and G2 must be introduced.

Denote

G1 ¼
1

2
xh j @2V

@Q2
x

� �
0

xj i; G2 ¼
1

2
xh j @2V

@Qx @Qy

� �
0

yj i (4:38)

ThenW in the secular equation (3.2) for the case in question takes the form

W ¼
�þ G1ðQ2

x �Q2
yÞ 2G2QxQy FQx

2G2QxQy �� G1ðQ2
x �Q2

yÞ FQy

FQx FQy ��

�������
������� (4:39)

Turning to polar coordinates (4.33), it can be shown that the APES corres-

ponding to Eq. (4.39), as distinct from the linear case, is dependent on angle f;
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four minima regularly alternating with four saddle points occur on the APES

as a function of f (along the trough (4.35)), restoring the C4v symmetry of the

problem. At the extremum points f¼ np/4, n¼ 0, 1, 2, . . ., 7. If G1>G2, the

minima are given by


0 ¼ np=4; n ¼ 1; 3; 5; 7 (4:40)

and the saddle points are at n¼ 0, 2, 4, 6. In the opposite case G1<G2, the

minima and saddle points interchange, and ifG1¼G2 the surface preserves the

shape of the rotation body (the trough) of the linear approximation.

In systems with trigonal symmetry the full problem of vibronic coupling of a

ground nondegenerate state A with an excited E state, as mentioned above,

includes both their PJT interaction via e displacements, (AþE)
 e, and the

E
 (a1þ e) JT effect in the E term itself (Section 3.2), resulting in the combined

(AþE)
 (a1þ e1þ e2) problem. In this case the two E state functions can be

taken as |zxi and |zyiwith the A state function as |si (as in the local Ni site in

KNiCl 3 [4.13]), while the two e displacements are described by the coordinates

Qzx and Qx2�y2 . The two linear coupling constants to the e vibrations are thus

F1 ¼ sh jð@V=@QzxÞ0 zxj i (4:41)

F2 ¼ zxh jð@V=@Qx2�y2Þ0 zxj i (4:42)

and an additional two constants should be introduced for the interaction with

the totally symmetric displacementQs and the quadratic coupling respectively:

FA ¼ zxh jð@V=@QAÞ0 zxj i (4:43)

G ¼ zxh jð@2V=@Q2
zx � @2V=@Q2

zyÞ0 zxj i (4:44)

With these denotations the matrixW in the vibronic coupling equation (3.2)

is [4.13]

W ¼
�� F1Qzx F1Qzy

F1Qzx �þ F2Qx2�y2 þ GðQ2
zx �Q2

zyÞ þ FAQA �F2Qxy þ 2F2
1QzxQzy

F1Qzy �F2Qxy þ 2F2
1QzxQzy �� F2Qx2�y2 � GðQ2

zx �Q2
zyÞ þ FAQA

������
������

(4:45)

For discussion of the solutions of this equation, consider first the linear

approximation with respect to the PJT effect ignoring the quadratic terms and

the interaction with totally symmetric displacements. It can be shown [4.13]
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that in this case the APES has a trough of minima points that are equivalent in

energy in the space of theQzx andQzy coordinates. Introducing the parameter

combinations

f ¼ F2
1=KE1

�; g ¼ F2
2=KE2

� (4:46)

we can derive the conditions of the PJT instability in the Qzx, Qzy space as

follows ( f and g are positive) [4.13]:

4f � g40 and 2f5g� 1 and=or f4 1
2

(4:47)

with the stabilization energy

EPJT ¼ 2ð2f � 1Þ2=ð4f � gÞ (4:48)

Figure 4.4 illustrates these conditions. We see that when f ¼ 1
2 or less�

F2
1

	
K

E1
� 1

2
�


the PJT instability disappears, while for the JT stabilization

within the E term there are limitations,

2f þ 15g54f ; or 2F 2
1 =KE1

þ�5F2
2=KE1

54F2
1=KE1

(4:49)

As in the E 
 e JT problem (Section 3.2), the quadratic terms of the PJT

coupling produce a warping resulting in three minima alternating with three

saddle points when moving along the trough [4.13].

A special case of the PJTE occurs in JT systems with spin–orbital splitting.

If the latter is of significant value compared with the JT stabilization energy,

it should be taken into account simultaneously with the vibronic interaction,

resulting, as shown below, in a PJT problem. Consider a spin doublet 2E term,

which is in fact a quartet. The four basis functions of the latter can be taken

as w�j i � 1
2

�� �, wþ
�� �

� 1
2

�� �, w�j i � � 1
2

�� �
, and wþ

�� �
� � 1

2

�� �
, where w� and wþ are

0.5 1 f0

1

g

Fig. 4.4. The region of f and g parameters of Eq. (4.46) (the blank area on
the ( f, g) plane) for which the PJT instability takes place in the
(AþE)
 (a1þ e1þ e2) problem. The greater f, the stronger the PJTE [4.13].
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given by Eq. (3.32), and 1
2

�� � and � 1
2

�� �
are the two spin functions for the spins

S ¼ 1
2
and S ¼ � 1

2
, respectively. Under the influence of the linear vibronic

coupling to the e vibrations and the spin–orbital interaction operator lð~L~SÞ
(~L is the orbital momentumwith quantum numbers�1 for the two E states and

l is the spin–orbital coupling constant) we get for the matrixW in Eq. (3.2):

W ¼

� l
2

FE� 0 0

FE�
l
2

0 0

0 0
l
2

FE�

0 0 FE� � l
2

��������������

��������������
(4:50)

With this matrix Eq. (3.2) decomposes into two equivalent equations,

yielding two solutions for two branches of the APES of Eq. (3.1), each being

twofold degenerate:

"i;� ¼ 1

2
KE�

2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F 2
E�

2 þ l2

4

s
; i ¼ 1; 2 (4:51)

For a given i value this expression coincides with Eq. (4.4) for a two-level

PJTE with 2�¼ l: the spin–orbital splitting transforms the JT E
 e problem

(Section 3.2) into a PJT (�þ�)
 e problem. This transformation modifies

essentially the APES. Indeed, the radius �0 of the two-dimensional trough on

the lower sheet of the APES (instead of (3.26)) and the JT stabilization energy

(instead of (3.27)) become as follows:

�0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðFE=KEÞ2 � ðl=2FEÞ2

q
(4:52)

EE
JT ¼ F 2

E

2KE
� l
2

1� lKE

2F 2
E

� �
(4:53)

As in all the other PJT problems, the energy gap l created by the spin–orbital

splitting is essential in determining the possible distortions, which decrease

with increasing l. If

l52F2
E=KE (4:54)

there is still distortion, which disappears at the threshold value l ¼ 2F2
E=KE .

At l > 2F2
E=KE there is no distortion. The spin–orbital interaction diminishes

the JTE and completely reduces the distortions at sufficiently large values of the

4.2 Pseudo JT problems 127



spin–orbital coupling constant. However, the effect of vibronic coupling

remains significant because it changes the curvature of the two terms as they

should follow the PJT formulas (4.11) and (4.12) with � ¼ l: A quite similar

treatment of simultaneous vibronic interaction and spin–orbital coupling for

the E
 (b1þ b2) problem is given in [4.14].

Consider now an example of a threefold degenerate excitedT state in a cubic

or icosahedral system that influences vibronically a nondegenerate ground

state A, the (AþT)
 t PJT problem. Since the JT problem for the T term is

T
 (aþ eþ t2) (Section 3.3), the full (combined) problem, as mentioned

above, is (AþT)
 (aþ eþ t2þ t), where t has the same symmetry as T (T1

or T2). In particular, if the system has an inversion center with A¼A1g and

T¼T1u, the eg and t2g displacements do not couple the A1g and T1u terms

(although they affect this coupling indirectly), and the cross-section of the

APES in the T1u space is given by the pure PJT (A1gþT1u)
 t1u problem. This

particular case is especially important in applications because the t1u displace-

ments result in the formation of dipole moments, which may trigger ferro-

electric phase transitions (Sections 4.3 and 8.3).

Taking the A1g function as an jsi type, the three T1u functions as jxi , jyi ,
and |z i , and the three components of the t1u displacements as Qx, Qy,

and Qz, respectively, we easily obtain the following matrix W in the secular

equation (3.2):

W ¼

�� FQx FQxy FQz

FQx � 0 0
FQy 0 � 0
FQz 0 0 �

��������

��������
(4:55)

where 2� is the energy gap between the A1g and T1u terms and

F ¼ sh jð@V=@QxÞ0 xj i is the PJT linear vibronic coupling constant. The solu-

tion of the secular equation (3.2) with this matrix is straightforward. In polar

coordinates �; #; 
; �2 ¼ Q2
x þQ2

y þQ2
z ;

"v1;2 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ F 2�2

p
"v3;4 ¼ �

(4:56)

which together with the elastic term in (3.1) yields the APES in the three-

dimensional t1u space with the lower sheet as

"ð�; #; 
Þ ¼ 1
2
K0�

2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ F2�2

p
(4:57)

This is a surface of two-dimensional revolution in the three-dimensional

space. As in the two-level case (Section 4.1), if � ‡F 2/K0, this surface

has one minimum point at �¼ 0. In this case the system is stable in the
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high-symmetry configuration in which the T term remains threefold degen-

erate. But the PJT coupling is still important since it lowers the frequency of

the t1u vibrations in the ground state. Indeed, similar to Eq. (4.5), by expand-

ing the square root in Eq. (4.57) with regard to small � displacements from

the point �0¼ 0 we get

"ð�; #; 
Þ ¼ 1
2
½K0 � ðF 2=�Þ��2 þ 1

4
ðF 4=�3Þ�4 ��þ � � � (4:58)

meaning that the curvature at the minimum is

K ¼ K0 � ðF 2=�Þ (4:59)

However, if

�5F 2=K0 (4:60)

the APES has amaximum at �¼ 0 and a two-dimensional trough of equivalent

(equipotential) minima points at

�0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðF 2=K 2

0 Þ � ð�2=F 2Þ
q

(4:61)

and arbitrary # and 
 angles. The JT stabilization energy at these minima is

quite similar to the two-level case (4.8):

EPJT ¼ F 2=2K0 ��ð1��K0=2F
2Þ (4:62)

As in the previous JT and PJT problems, when the quadratic terms of the

vibronic interaction are taken into account, the two-dimensional trough of

equipotential minima points becomes warped, with regularly alternating max-

ima and minima along its path.

If the JT effect within the T term is also taken into account, the problem

becomes (AþT)
 (aþ eþ t2þ t), where t has the same symmetry as T.

Consider the (A1gþT1u)
 (a1gþ egþ t2gþ t1u) problem important to applica-

tions (Section 8.3). The matrix (4.55) is now complicated by the additional

nonzero matrix elements for the coupling of the degenerate states to a1g, eg,

and t2g displacements described by means of the following vibronic coupling

constants, respectively:

FA ¼ z ð@V=@QAÞ0
�� ��z� �

FE ¼ z ð@V=@Q#Þ0
�� ��z� �

FT ¼ x ð@V=@QxyÞ0
�� ��y� � (4:63)
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Then we get

W ¼

�3� FQx FQy FQz

FQx �� FE
1
2
Q# �

ffiffi
3

p

2
Q"

� 

þ FAQA FTQxy FTQxz

FQy FTQxy �� FE
1
2
Q# þ

ffiffi
3

p

2
Q"

� 

þ FAQA FTQyz

FQz FTQxz FTQyz �þ FEQ# þ FAQA

����������

����������
(4:64)

where, following [4.15], we put the A1g level at�3� and the T1u level at�, the

energy gap thus being 4�. Let us introduce the following combinations of

constants:

h ¼F 2
A=4KA�

f ¼F 2=K0�

e ¼F 2
E=4KE�

t ¼F 2
T=3KT�

(4:65)

With these constants the method of Öpik and Price [4.1] (Section 3.3) allows

one to reveal three types of minima points on the APES with energies (in

� units) (Fig. 4.5) [4.15]

Fig. 4.5. Three domains of existence of different JT and PJT distortions in
MX6 systems with (ns)2 lone pairs in each of the two e–f and t–f planes: E1 –
no distortions (inert lone pair); E2 – combined dipolar T and either tetragonal
Eg (in the e–f plane), or trigonalT2g (in the t–f plane) distortions; E3 – pure JT
distortions, either tetragonal (in the e–f plane) or trigonal (in the t–f plane)
(reprinted with permission from [4.15]. Copyright 1991 Institute of Physics).
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E1 ¼�3

E2 ¼ 1� 2g

E3 ¼ð f þ 2� 2gÞð f � 2Þ=2ð f � gÞ � ð f þ 1Þ
(4:66)

with

g ¼
eþ h; in the space of tetragonal distortions

tþ h; in the space of trigonal distortions

(
(4:67)

which can be rewritten as

E2 ¼E1 � 2ðg� 2Þ
E3 ¼E1 � ð f � 2Þ2=2ð f � gÞ
E3 ¼E2 � ð f þ 2� 2gÞ2=2ð f � gÞ

(4:68)

In the region E1 (Fig. 4.5) the system is undistorted. In E2 the pure JT

distortions described in Section 3.3 prevail, i.e. either tetragonal e type (three

equivalent ‘‘tetragonal’’ minima), or trigonal t2 type (four equivalent ‘‘trigo-

nal’’ minima). In the E3 area combined PJT trigonal (dipolar) t1u and JT either

tetragonal e, or trigonal (nonpolar) t2, distortions take place. We see that if

g< 2 and f< g, the minima are at the points with energies E1 where no

distortion takes place. At g> 2, f< g, and fþ 2< 2g, the E2 points are the

lowest and the system is under the pure JT effect with three tetragonal (if e > t)

or four trigonal (for e< t) minima of the APES. Finally, if f> g, f> 2, and

fþ 2> 2g, the minima of the APES at the points E3 correspond to much lower

symmetry of combined trigonal dipolar t1u with JT either e (if e> t), or

nonpolar t2 (trigonal) (when e< t) distortions.

In many cases of local distortions from octahedral symmetry in coordination

compounds and crystals, a PJT (T1gþT2g)
 eg problem may be important

[4.16], which is a particular case of the full (T1gþT2g)
 (
P

i yi) problem with

all possible active modes yi. It turns out that in some real systems there are

grounds to ignore the JT coupling in theT1g state which is weakly involved in the

bonding of the central atom with the ligands (has small vibronic coupling

constants), and to consider preferably tetragonal distortions of e type. This leaves

us with the (T1gþT2g)
 eg PJT and (T1gþT2g)
 (egþ e0g) combined problems.

For the (T1gþT2g)
 eg problem we denote the linear coupling constant by

F ¼ ht1gjð@V=@Q#Þ0jt2gi, where the e displacements are taken as Q# and Q"

(Section 3.2), while jt1gi and jt2gi are wavefunction components of the two
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termsT1g andT2g. The 6� 6matrixW in the secular Eq. (3.2) has the following

nonzero matrix elements:

Wii ¼ ��; i ¼ 1; 2; 3

Wii ¼ �; i ¼ 4; 5; 6

W14 ¼ W41 ¼
1ffiffiffi
2

p F Q# þ
1ffiffiffi
3

p Q"

� �

W25 ¼ W52 ¼
1ffiffiffi
2

p F �Q# þ
1ffiffiffi
3

p Q"

� �

W36 ¼ W63 ¼ �
ffiffiffi
2

3

r
FQ"

(4:69)

The roots of Eq. (3.2) with this matrixW can be obtained straightforwardly.

In polar coordinates (4.33) we get [4.16]

"v1;4 ¼�½�2 þ ð2=3ÞF 2�2 sin2 
�
1
2

"v2;5 ¼�½�2 þ ð2=3ÞF 2�2 sin2ð
þ p=3Þ�
1
2

"v3;6 ¼�½�2 þ ð2=3ÞF 2�2 sin2ð
� p=3Þ�
1
2

(4:70)

The lowest three sheets of the APES for the three negative values of the

electronic energy levels "vi with i¼ 1, 2, 3 are

"ið�; 
Þ ¼
1

2
K0�

2 þ "vi ð�; 
Þ; i ¼ 1; 2; 3 (4:71)

If� ‡ (2/3)F2/K0, all the three branches of the APES have one minimum at

�¼ 0. However, if

�52F 2=3K0 (4:72)

each of the three surfaces (4.71) has a saddle point at �¼ 0 and two equivalent

minima along one line at

�0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2F 2=3K 2

0 Þ � ð3�2=F 2Þ
q

(4:73)

The coordinates of these minima are (�0, p/2) and (�0, 3p/2) for the "1
surface, (�0, p/6) and (�0, 7p/6) for "2, and (�0, 5p/6) and (�0, 11p/6) for "3.
All the six minima have the same JT stabilization energy

EJT ¼ F 2

3K0
�� 1� 4K0�

3F 2

� �
(4:74)

and are situated along a circle of radius �0 with an interval of p/3.
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However, they are only interconnected pairwise via a saddle point on the

same branch of the surface, so in fact we have three equivalent pairs of minima

situated on three equivalent branches of the APESwith two equivalentminima

in each of them. In each of these minima the octahedral symmetry Oh of the

system is lowered to D2h in which three diagonals of the octahedron along the

fourfold axes become different in length, with one shortened and another

elongated compared with the third one which remains unchanged (see the Q"

coordinate in Fig. 2.3). In the other minimum of the pair the longer axis is

interchangedwith the shorter one; the three equivalent pairs are determined by

the three different fourfold axes that remain unchanged (along these axes the

surface has a minimum at �¼ 0).

The remaining three branches of the APES formed by the three positive

values of "vi , i¼ 4, 5, 6, in (4.70) have only one minimum at �¼ 0.

In the more elaborate combined problem (T1gþT2g)
 (egþ e 0g) a second

vibronic coupling constant for the JT e 0g-type interaction within the T2g term

should be introduced:

F 0 ¼ t2g ð@V=@Q#Þ0
�� ��t2g� �

(4:75)

This constant is nonzero only for diagonal coupling thus affecting the three

diagonal matrix elements W44, W55, and W66, which instead of (4.69) become

as follows [4.16]:

W44 ¼�þ 1ffiffiffi
2

p F 0 Q# �
1ffiffiffi
3

p Q"

� �

W55 ¼�� 1ffiffiffi
2

p F 0 Q# þ
1ffiffiffi
3

p Q"

� �

W66 ¼�þ
ffiffiffi
2

3

r
F 0Q"

(4:76)

With these matrix elements the electronic energy levels (4.70) and the APES

(4.71) change, resulting in the followingAPES of the combined problem [4.16]:

"01ð�; 
Þ ¼
1

2
K0�

2 � �2 þ 2

3
F 2�2 sin2 
þ 1

6
F 02�2 cos2 
þ

ffiffiffi
2

3

r
F 0�� cos


 !1
2

"02ð�; 
Þ ¼
1

2
K0�

2 � �2 þ 2

3
F 2�2 sin2 
þ p

3

� 

þ 1

6
F 02�2 cos2 
þ p

3

� 
�

�
ffiffiffi
2

3

r
F 0�� cos 
þ p

3

� 
#12

"03ð�; 
Þ ¼
1

2
K0�

2 � �2 þ 2

3
F 2�2 sin2 
� p

3

� 

þ 1

6
F 02�2 cos2 
� p

3

� 
�

�
ffiffiffi
2

3

r
F 0�� cos 
� p

3

� 
#12

(4:77)
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These three branches of the APES are significantly different from those for

the pure PJT problem. Depending on the values of the two vibronic coupling

constants F and F 0 and their relation to the energy gap�, the extremum points

have much lower symmetry than theD2h ones above. To clarify the features of

these surfaces, consider the branch "1, for convenience presenting it as a

function of the two e-type coordinates Q#¼ � cos f and Q"¼ � sin f,

"01ðQ#;Q"Þ ¼
1

2
K0ðQ2

# þQ2
"Þ � �2 þ 2

3
F 2Q2

" þ
1

6
F 02Q2

# þ
ffiffiffi
2

3

r
F 0�Q#

 !1
2

(4:78)

and examine this APES in cross-sections. In the cross-section Q#¼ 0

"01ðQ#Þ ¼
1

2
K0Q

2
" � �2 þ 2

3
F 2Q2

"

� �1
2

(4:79)

This surface has the same features as the pure PJT one (4.71): a minimum at

Q"¼ 0 if �> (2 / 3)F 2/K0, and amaximum at this point if�< (2/3)F 2/K0 with

two minima at

Q0
" ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2F 2=3K 2

0 Þ � ð3�2=2F2Þ
q

(4:80)

In fact this result is similar to that of a PJT T1g–T2g interaction with F 0 ¼ 0,

except that the direction of the axis of the distortion is rotated by p/2 as

compared with the pure PJT case: the two equivalent minima in the latter

case have the coordinates (�0, p/2)and (�0, 3p/2) instead of (�0, 0) and (�0, p) in
the combined problem. We get thus the same Q" (Oh!D2h) distortion at the

minima, but in another (perpendicular) direction.

In the other cross-section Q"¼ 0 (which is equivalent to the assumption

that F¼ 0)

"01ðQ#Þ ¼
1

2
K0Q

2
# � �2 þ 1

6
F 02Q2

# þ
ffiffiffi
2

3

r
F 0�Q#

 !1
2

(4:81)

there is no extremum at Q#¼ 0: the JT tetragonal distortion Oh!D2h due to

theT2g
 e coupling takes place for any nonzero F 0 value, but it is accompanied

by PJT implications (� 6¼ 0) which depend on the sign of F 0. The other two

branches of theAPES, "02 and "
0
3 in (4.77), have the same features as "01, but with

the D2h (Q") axis of distortion rotated by angles p / 3 and 2p / 3, respectively,
compared with that of "01. The picture as a whole emerges as a combination

of the PJT D2h distortion of the octahedron described above combined with
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the JT D4h distortion along the axis that remained intact in theD2h distortion.

The resulting symmetry of the system may be very low, thus violating the

epikernel principle (Section 2.5). Further discussion of this superposition of

distortions is given in Section 4.3 in connection with the product JT effect. The

combined JT plus PJT (T1u þT1g)
 (agþ hgþ auþ t1uþ hu) problem relevant

to the icosahedral system C�
60 is considered in [4.17].

4.3 Product JTE problems

The so-called ‘‘product JT effect’’ (the term was introduced in [4.18]) is an

approach to some rather complicated JT and PJT problems in which there are

multi-electron open-shell configurations that produce degenerate terms that

are sufficiently close in energy. The traditional approach requires that one

reveals first the possible terms, their wavefunctions and energies, and then,

using the methods described above, considers the implications produced by

vibronic coupling, the JT and PJT effects. In cases of two or many resulting

degenerate terms this way may be very difficult. On the other hand, it may

happen that the interelectron interaction which leads to term formation is

smaller than the vibronic coupling. If this assumption holds, we can try to

solve the vibronic coupling problem first, and then to introduce the interelec-

tron repulsion. This means that the vibronic coupling problem can be con-

sidered using one-electron states (e.g. MOs) as a basis set. It simplifies

essentially the treatment and allows one to get solutions in reasonable

approximations.

Consider a system in which the ground and excited states are formed by two

different electron configurations (two different electronic shells). For instance,

assume that the excited state is produced by the HOMO ! LUMO one-

electron excitation in which both the HOMO and the LUMO are degenerate.

Denote their symmetry representations by �a and �b. The usual scheme for

treatment of such cases, as mentioned above, is to find all the energy terms of

both electronic configurations, and then to treat the vibronic coupling within

each of the terms, as well as their PJT interaction. The terms arising from the

interelectron repulsion in these configurations can be found from the direct

product �a�� b of the two representations.

However, in some special situations (especially in large polyatomic systems)

the interelectron repulsion may be small, so the different terms formed by this

interaction may be almost degenerate. This happens, in particular, in full-

erenes C60, where the additional electron in the excited state is distributed over

the large icosahedral surface, thus producing very weak additional electron

repulsion.
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In such cases we can assume that the JT stabilization energy is larger than

the term splitting within the manifold in question and consider the vibronic

coupling problem in the one-electron approximation taking the product of

�a�� b degenerateMOs as a basis set of the problem. Themanifold of�a�� b

functions acts thus as a single degenerate term, for which the JT active

coordinates Qgi will be those from the symmetric products [�a�� a] and

[�b�� b]. This model problem was called the product {�a
�b}
 {�igi} JT

problem [4.18].

Consider, for example, the product {T1
T2} problem [4.18]. In this case gi
displacements are eþ t2 (the totally symmetric displacements are ignored; see

Section 3.1), so the product problem is {T1
T2}
 (eþ t2). Assume that the

two configurations that produce this problem emerge from the one-electron

excitation t1! t2 in a cubic (or higher-symmetry) system. Denote the three T1

functions by x, y, z, and the three T2 functions by �, �, � (Section 3.3). Then the

T1
T2 space can be taken as the corresponding products (x, y, z)
 (�, �, �),

yielding the nine functions x�, x�, x�, y�, y�, y�, z�, z�, z�. There should be also

four vibronic coupling constants for the coupling of the two configurations to

two JT-active displacements e and t2: F
T1

E ;FT1

T ;FT2

E , and FT2

T (an equivalent

denotation of the problem will then be T1 
 T2f g 
 ðe0 þ e00 þ t02 þ t002Þ).
Consequently, the secular equation (3.2) will be of ninth order with respect

to the five eþ t2 coordinates Q#, Q", Q�, Q�, Q�.

In the linear approximation with respect to these coordinates the problem is

relatively simple, as its JT Hamiltonian can be presented as a sum of the

coupling to, respectively, e and t2 displacements taken separately. Similar to

the pure T1
 e (or T2
 e) problems, the {T1
T2}
 e problem yields a

diagonal matrix (3.3); it allows direct evaluation of energies "vi as functions

of Q# and Q" coordinates, which together with the elastic energy
1
2
KEðQ2

# þQ2
"Þ form the APES. It has two types of minima depending on the

relative sign of FT1

E and FT2

E . If FT1

E FT2

E > 0, the lower part of the surface has

three potential wells with absolute minima along the tetragonal directions

(Fig. 3.10). The coordinates of the minima points are very similar to those

obtained in the T
 e problem (Section 3.3, Eqs. (3.45) and (3.46)), but with a

different distortion in the minima that summarizes both T1 and T2 contribu-

tions (Table 4.2):

Q
ð1Þ
0 ¼ ðFT1

E þ FT2

E Þ=KE (4:82)

and

ED4h

JT ¼ ðFT1

E þ FT2

E Þ2=2KE (4:83)
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More novel results emerge in cases of different signs of the two coupling

constants, FT1

E FT2

E 50. In this case there are six equivalent minima of orthor-

hombic D2h symmetry situated in between the tetragonal turning points. The

C2 axis of thisD2h subgroup coincides with theC2
4 elements of the cubic group,

so the minimum point symmetry isD2hðC2
4), in accordance with the E kernel of

the epikernel principle (Section 2.5). The parameters of these six minima are

given in Table 4.3 with

Q
ð2Þ
0 ¼

ffiffiffi
3

p
ðFT1

E � FT2

E Þ=KE (4:84)

and

ED2h

JT ¼ �½ðFT1

E Þ2 � FT1

E FT2

E þ ðFT2

E Þ2 �=2KE (4:85)

Table 4.2.Wavefunctions and coordinates of the three equivalent tetragonal D4h

minima in the product {T1
T2}
 e problem with FT1

E FT2

E > 0 (their JT

stabilization energy is given in Eq. (4.83) (adapted from [4.18]))

Label
Wavefunction
(x, y, z)
 (�, �, �) Q0

# Q0
"

x� (1, 0, 0)
 (1, 0, 0) 1
2
Q0 �

ffiffiffi
3

p
Q0=2

yZ (0, 1, 0)
 (0, 1, 0) 1
2
Q0

ffiffiffi
3

p
Q0=2

z� (0, 0, 1)
 (0, 0, 1) Q0 0

Table 4.3. Wavefunctions and coordinates of the six equivalent orthorhombic

D2h minima in the product {T1
T2}
 e problem with FT1

E FT2

E 5 0 (their JT

stabilization energy is given in Eq. (4.85) (adapted from [4.18]))

Label
Wavefunction
(x, y, z)
 (�, �, �) Q0

# Q0
3

x� (1, 0, 0)
 (0, 1, 0) ð1=2ÞQð1Þ
0 �ð1=2ÞQð2Þ

0

y� (0, 1, 0)
 (1, 0, 0) ð1=2ÞQð1Þ
0 ð1=2ÞQð2Þ

0

x� (1, 0, 0)
 (0, 0, 1) �ð1=4ÞQð1Þ
0 þ ð

ffiffiffi
3

p
=4ÞQð2Þ

0 �ð
ffiffiffi
3

p
=4ÞQð1Þ

0 � ð1=4ÞQð2Þ
0

y� (0, 1, 0)
 (0, 0, 1) �ð1=4ÞQð1Þ
0 þ ð

ffiffiffi
3

p
=4ÞQð2Þ

0 ð
ffiffiffi
3

p
=4ÞQð1Þ

0 þ ð1=4ÞQð2Þ
0

z� (0, 0, 1)
 (1, 0, 0) �ð1=4ÞQð1Þ
0 � ð

ffiffiffi
3

p
=4ÞQð2Þ

0 �ð
ffiffiffi
3

p
=4ÞQð1Þ

0 þ ð1=4ÞQð2Þ
0

z� (0, 0, 1)
 (0, 1, 0) �ð1=4ÞQð1Þ
0 � ð

ffiffiffi
3

p
=4ÞQð2Þ

0 ð
ffiffiffi
3

p
=4ÞQð1Þ

0 � ð1=4ÞQð2Þ
0
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From these data, it follows that both the symmetry and the magnitudes of

distortion and the minima depths are strongly influenced by the interference of

the two contributions from the two configurations with opposite signs of

vibronic coupling.

The origin of orthorhombic minima is quite unusual and needs clarification

(there are no such minima in T
 e problems). Consider, for instance, that the

two configurations emerge from the six-electron system t51t
1
2. Figure 4.6 shows

schematically the MO energy level behavior of the two configurations in the

space of tetragonal e-type (Q#) distortions of an octahedron under the assump-

tion of FT1

E 50 (tetragonal compression produced by the t1 hole) and FT2

E > 0

(elongation along the same axis). We see that in both cases the electronic state

under these distortions remains degenerate either due to the t2 electron in the

compressed configuration, or to the t1 hole in the elongated case. According to

the JT theorem these tetragonally distorted configurations remain unstable

with respect to further distortions of lower symmetry.

The outcome is that when the system is distorted, say, elongated along one

of the C4 axes due to the larger configuration contribution with FT2

E > 0, the

second (smaller) contribution from the other configuration with FT1

E 50 will

produce its required tetragonal compression along another C4 axis. As a

result the system is orthorhombically distorted. Figure 4.7 illustrates this

case: the vector sum of two possible distortions of opposite signs in three

Compressed Elongated

t1

t2

Qθ

Fig. 4.6. A two-shell system of the type t51t
1
2. The t1 shell induces tetragonal

compression, while the t2 shell favors tetragonal elongation (reprinted with
permission from [4.18]. Copyright 2000 American Physical Society).
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tetragonal minima of the APES leads to six orthorhombic distortions. Note

that if FT1

E ¼ FT2

E , distortions in all the six minima become tetragonal with

three positive (elongation) and three negative (compression) signs of the

deformations.

The T1 
 T2f g 
 t2 problem is more complicated because the vibronic

coupling matrix, as in the T 
 t2 problem (Section 3.3), is not diagonal.

However, using the method of Öpik and Price [4.18] (Section 3.3) the extre-

mumpoints of the APES can be retrieved. If the two coupling constantFT1

E and

FT2

E have the same sign, the APES has two types of extremum points: four

trigonalD3d and six orthorhombicD2h (cf. theT
 t2 problem, Section 3.3), the

former being minima, while the latter are saddle points. The parameters of

these two types of extremum points are given in Tables 4.4 and 4.5 with

Q
ðtÞ
0 ¼

ffiffiffi
2

p
ðFT1

T þ FT2

T Þ=KT (4:86)

ED3d

JT ¼ ðFT1

T þ FT2

T Þ2=3KT (4:87)

E
D0

2h

JT ¼ ðFT1

T þ FT2

T Þ2=4KT (4:88)

hole

electron

resultant

Qθ

Qε

Fig. 4.7. The orthorhombic distortions in the Q# and Q" plane caused by
dominant JT forces of the hole and particle. The resultant vectors are the
sums of the hole and particle vectors that have the smallest angle between
them (reprinted with permission from [4.18]. Copyright 2000 American
Physical Society).
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At theD3d minima the nine energy levels above split into one nondegenerate

ground state A2, two doubly degenerate E states, and an accidentally fourfold

degenerate E3 (A1, A2, E) state:

E0ðA2Þ ¼ �ðFT1

T þ FT2

T Þ2=3KT

E1ðEÞ ¼ ½2ðFT1

T Þ2 þ FT1

T FT2

T � ðFT2

T Þ2�=3KT

E2ðEÞ ¼ ½�ðFT1

T Þ2 þ FT1

T FT2

T þ 2ðFT2

T Þ2�=3KT

E3ðA1;A2;EÞ ¼ �2ðFT1

T þ FT2

T Þ2=3KT ¼ �2ED3d

JT

(4:89)

If the signs of FT1

E and FT2

E are different, the APES becomes much more com-

plicated [4.18],withsixorthorhombicD2h ðC2
4; 2C2Þ (theaxesofdistortionaregiven

in parentheses) and 12C2h ðC2Þ extremumpoints with JT stabilization energies.

Table 4.4. Wavefunctions and coordinates of the four equivalent trigonal D3d

minima in the product fT1 
 T2g 
 t2 problem with FT1

E FT2

E 5 0 (their JT

stabilization energy is given in Eq. (4.87) (adapted from [4.18]))

Label
Wavefunction ða ¼ 1=

ffiffiffi
3

p
Þ

aðx; y; zÞ 
 að�; �; �Þ Q0
� Q0

� Q�

x� að1; 0; 0Þ 
 að0; 1; 0Þ Q
ðtÞ
0 Q

ðtÞ
0 Q

ðtÞ
0

y� að0; 1; 0Þ 
 að1; 0; 0Þ Q
ðtÞ
0 �Q

ðtÞ
0 �Q

ðtÞ
0

x� að1; 0; 0Þ 
 að0; 0; 1Þ �Q
ðtÞ
0 Q

ðtÞ
0 �Q

ðtÞ
0

y� að0; 1; 0Þ 
 að0; 0; 1Þ �Q
ðtÞ
0 �Q

ðtÞ
0 Q

ðtÞ
0

Table 4.5. Wavefunctions and coordinates of the six equivalent orthorhombic

D0
2h saddle points in the product fT1 
 T2g 
 t2 problem with FT1

E FT2

E 40 (their

JT stabilization energy is given in Eq. (4.88) (adapted from [4.18]))

Label
Wavefunction ða ¼ 1=

ffiffiffi
2

p
Þ

aðx; y; zÞ 
 að�; �; �Þ Q0
� Q0

� Q�

xy a(1, 1, 0)
 a(1, 1, 0) ð3=2ÞQðtÞ
0

xy a(1, �1, 0)
 a(1, �1, 0) �ð3=2ÞQðtÞ
0

xz a(1, 0, 1)
 a(1, 0, 1) ð3=2ÞQðtÞ
0

xz a(1, 0, �1)
 a(1, 0, �1) �ð3=2ÞQðtÞ
0

yz a(0, 1, 1)
 a(0, 1, 1) ð3=2ÞQðtÞ
0

yz a(0, 1, �1)
 a(0, 1, �1) �ð3=2ÞQðtÞ
0
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E
D0

2h

JT ¼ ðFT1

T � FT2

T Þ2=4KT (4:90)

EC2h

JT ¼ ½ðFT1

T Þ2 � ð2=3ÞFT1

T FT2

T þ ðFT2

T Þ2�=3KT (4:91)

Depending on the vibronic-constant ratio FT1

E =FT2

E , eitherD0
2h or C2h saddle

points become absolute minima. Figure 4.8 shows the regions of existence of

these two types of minima on the FT1

T versus FT2

T plane in the {T1
T2}
 t2
problem. The boundaries of D2h and C2h phases are given by the following

straight lines:

FT1

T ¼ �3FT2

T and FT1

T ¼ �ð1=3ÞFT2

T (4:92)

In the general case of the {T1
T2}
 (eþ t2) problem all the four vibronic

coupling constants enter the interplay yielding a variety of extremumpoints on

the APES, including orthorhombic D2h ðC2
4; 2C2Þ, C2h ðC2Þ, and C2h ðC4Þ

points in addition to the D3d and D4h extremum points of the T
 (eþ t2)

problem (Section 3.3). In [4.18] all these special points of the APES are

revealed and analyzed.

The most important general conclusion emerges from the fact that in the

presence of two competing distortions produced by each of the two config-

urations the resulting symmetry of the system is lower than that produced by

5

4

3

2

1

54321

0

0

–1

–1

–2

–2

–3

–3

Trigonal

Orthorhombic

C 2h

C 2h

C 2h

F T 2t

F T 1t

Trigonal

–4

–4
–5

–5

Orthorhombic

C 2h

Fig. 4.8. Regions of existence of absolute minima of different symmetries for
the {T1
T2}
 t2 product JT system (reprinted with permission from [4.18].
Copyright 2000 American Physical Society).
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each of them. If the ratio between FT1

T andFT1

E produces trigonalD3d minima in

the linear T1
 (eþ t2) problem (Section 3.3), while for the T2
 (eþ t2) pro-

blem the FT2

T and FT2

E constants are such that the tetragonal symmetry D4h is

lower in energy, neither D3d nor D4h geometry is a solution for the

{T1
T2}
 (eþ t2) problem: its APES minima are found at C2h (C2) sym-

metry, which is the intersection ofD4h andD3d. If the minima on the APES are

of the same symmetry in both configurations T1 and T2, say D4h, the resulting

distortion will be at still lower symmetry D2h (3C4
2), which is the highest

common subgroup of two D4h groups with different principal axes (see the

discussion above and illustrations in Figs. 4.6 and 4.7).

Another example of the product JT problems emerges from a real situation

in icosahedral fullerenes C60, where the lowest excitation is produced by a one-

electron hu! t1u transition resulting in the two-shell configuration h9ut1u, as

illustrated in Fig. 4.9 [4.19]. The two open-shell configurations that contribute

to the JT vibronic coupling are thus h9u with the JT problem H
 (gþ 2h)

(Section 3.4) and t1u with the T1
 h JT effect. Provided we can neglect the

interelectron interaction, as outlined above, the vibronic coupling can be

treated starting with the product {T1
H}
 (gþ 2h) JT problem. A detailed

consideration of this problem is given in [4.19].

Since the T1 manifold is not coupled to the g vibrations, the Hamiltonian

of the coupling to g remains as in the H
 (gþ 2h) problem (Section 3.4), and

the two types of distortions in the two open shells may interfere only via

h displacements. Therefore it is worthwhile to consider first the product

{T1
H}
 2h problem. In the linear approximation with respect to the vibro-

nic coupling there are three independent linear vibronic coupling constants

(cf. Eq. (3.70)): FT1

h , FH
ha
, and FH

hb
(the T1 term is coupled to only one

h displacement). Depending on their values, the APES has a very rich structure

with four types of extremum points of D5d, D3d, D2h, and C2h symmetry, and

equipotential troughs of SO(3) and SO(5) symmetry in between these extre-

mum points.

FHbh

FHah

({g-mode} + {h-mode })

FT1hT1u

Hu

FHg

Fig. 4.9. A schematic description of the vibronic coupling of the product
{T1
H}
 (gþ 2h) JT system. The two electronic levels are interacting via
coupling to common vibrational modes (reprinted with permission from
[4.19]. Copyright 2001 American Physical Society).

142 4 Pseudo JT, product JT, and RT effects



Figure 4.10 shows schematically the regions of occurrence of lowest-in-

energy extremum points of different symmetries as a function of the vibronic

coupling constant ratios FH
ha
=FT1

h and FH
hb
=FT1

h . As seen from this diagram and

further explanations in [4.19], the space on the (FH
ha
=FT1

h )–(FH
hb
=FT1

h ) plane is

divided into four regions (wedges) by two diagonal lines of ‘‘equal coupling’’ at

F H
ha

¼ �ð3=
ffiffiffi
5

p
ÞFH

hb
(4:93)

In the left-side lower wedges we have the usualD5d andD3d minima separated

by the line FH
ha

¼ ð3=
ffiffiffi
5

p
ÞFH

hb
, along which the system has SO(3) symmetry with

an equipotential two-dimensional trough in the five-dimensional space of

h displacements (Section 3.4). In these two regions the contributions of the

two open-shell configurations to the distortion of the system are ‘‘in phase’’

and enhance each other.

The JT stabilization energy in the D5d minima is given by

ED5d

JT ¼ ð
ffiffiffi
2

p
FH
hb
� FT1

h Þ2=5Kh (4:94)

while in the D3d minima

ED3d

JT ¼ ð
ffiffiffiffiffi
10

p
FH
ha
� 3FT1

h Þ2=45Kh (4:95)

–10 –8 –6 –4 –2 0

FHbh / FT1h

F
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ah
 /  F

T
1h

2 4 8 106
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D2h
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D2h

D ′

C2h

C2h

C ′2h

C ′

D5d

D3d

8
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4
2
0

–2
–4
–6
–8

–10
–12
–14

11

9

3

2h

2h

Fig. 4.10. The phase diagram for the {T1
H} 
 2h problem as a function of
the vibronic coupling-constant ratios FH

ha
=FT1

h and FH
hb
=FT1

h . The encircled
numbers refer to the stationary points (for more details see [4.19])
(reprinted with permission from [4.19]. Copyright 2001 American Physical
Society).
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and along the trough between them

E
SOð3Þ
JT ¼ ð

ffiffiffi
2

p
FH
h0
b
� FT1

h Þ2=5Kh (4:96)

where h 0
b is chosen to satisfy the condition of a trough (4.93) for this case

[4.19].

In the two upper and right wedges in Fig. 4.10 the two sources of distortion

from the two configurations are ‘‘out of phase,’’ resulting in lower symmetries of

the system, D2h and C2h. Along the line dividing these two regions,

FH
ha

¼ �ð3=
ffiffiffi
5

p
ÞFH

h00
b
, there is a two-dimensional trough too, while the state

remains twofold degenerate (the authors [4.19] call it an ‘‘anti-JT trough’’ because

the degeneracy is not lifted in this approximation). Its stabilization energy is

E
SOð3Þ
JT ¼ ð

ffiffiffi
2

p
FH
h00
b
þ FT1

h Þ2=5Kh (4:97)

Figures 4.11 and 4.12 provide a further insight into the energy level splitting

of the two open-shell configurations under the pentagonal QD5d
(one of them

can be presented asQD5d
xz ¼ ð1=

ffiffiffiffiffi
10

p
Þð

ffiffiffi
3

p
Q# �Q" þ

ffiffiffi
6

p
Q�Þ) and trigonalQD3d

,

QD3d
xz ¼ ð1=

ffiffiffi
6

p
ÞðQ# þ

ffiffiffi
3

p
Q" þ

ffiffiffi
2

p
Q�Þ, distortions of an octahedron. More

results and detailed discussion of this problem are given in [4.19].

The limitation to the product JT approximation imposed by the require-

ment that the term splitting (including the energy gap between the ground and

excited configurations) should be smaller than the JT stabilization energy does

not hold in the majority of JT systems, although, as mentioned above, it may

2 FT1h10√
FT1h10√

2–

–

FHbh5√
1

1

T1

H

Qxz

FHbh2 5√

D5d

Fig. 4.11. Term splitting by pentagonal distortions along QD5d
xz in the

{T1
H}
 2h problem. The JT forces acting on the orbital singlet

components of the H and T1 terms are given by �ð2
ffiffiffi
5

p
ÞFH

hb
and ð2

ffiffiffiffiffi
10

p
ÞFT1

h ,

respectively (reprinted with permission from [4.19]. Copyright 2001American
Physical Society).
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be valid for specific problems in large polyatomic systems, such as C60 full-

erenes, polymers, and crystals. The applicability of this approximation may be

essentially enlarged if complemented with a PJT parameter �, the energy gap

between the ground- and excited-state configurations.

Indeed, consider the usual MO LCAO scheme of an octahedral cluster in

Fig. 4.13, which is qualitatively the same or similar in all octahedral transition

metal systems and local sites in crystals [4.20]. Depending on the number of

2 FT1h10√
2 FHah
3

1

1

T1

H

Qxz

6

D3d

FT1h10√

FHah

1
2

FHah

–
–

–

Fig. 4.12. Term splitting by trigonal distortions alongQD3d
xz in the {T1
H}
 2h

problem. The JT forces acting on the orbital singlet components of the H and

T1 terms are given by �ð2=3ÞFH
ha

and ð2
ffiffiffiffiffi
10

p
ÞFT1

h , respectively (reprinted with

permission from [4.19]. Copyright 2001 American Physical Society).
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t 2g

2∆t 1u

4s

3d

*

*

Fig. 4.13. A schematic presentation of the HOMO and LUMO for the
[TiO6]

8� cluster in the BaTiO3-type crystal [4.20].
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d electrons of the central atom and ligand electrons on the atomic orbitals

participating in the formation of MOs, the threefold degenerate t2g, t1g, t1u,

and t�2g are more or less populated, forming the HOMOand LUMO.While the

t2g, t1g, and t1u MOs formed mainly by ligand orbitals are very close in energy

(and produce terms that are close in energy), the t�2g MOs (emerging mostly

from the central atom) are separated by a considerable gap 2�. We thus have a

situation with two separated open shells, for which the approximation of small

interelectron interaction compared with vibronic coupling may be applied to

each of the open shells, but not to their separation 2�. This approach was first

realized in the problem of the origin of dipolar distortions and spontaneous

polarization in crystals [4.10, 4.21] long before the term ‘‘product JT problem’’

was introduced [4.18].

Consider, for example, the possible PJT instability of a transition metal

cluster of octahedral symmetry, e.g. titanium in an octahedral oxygen envir-

onment as in the cluster ½TiO6�8� in BaTiO3, with regard to odd t1u displace-

ments that produce dipolar distortions [4.21]. The ground state of this cluster is

nondegenerate (the Ti4þ ion has a d 0 configuration and the O2� ions have

closed shells too). For the approximate treatment in the sense of a product PJT

effect, one may restrict the problem by considering the vibronic mixing of a

group of close-in-energy electronic terms that are well separated from the

other terms. A typical qualitative scheme of theMO energy levels and electron

occupation numbers for this complex is shown in Fig. 4.13.

It is seen that at least the nine MOs, t2g, t1u, and t�2g forming the

HOMO–LUMO group (occupied by 12 electrons in the ½TiO6�8� cluster)

should be taken into account in the approximate (zeroth-order) consideration.

There are also three t1g orbitals in the same energy range, but they are pure

ligand (nonbonding) orbitals, which do not participate in the vibronic coupl-

ing with t1u displacements. With allowance of interelectron repulsion, these

orbital states form the ground 1A1g and a variety of excited states, from which

those of the same multiplicity (singlets) are 1A2u,
1Eu,

1T1u,
1T2u,

1A2g,
1Eg,

1T1g, and
1T2g. For reasons given above in the treatment of the product

problem, the vibronic interactionsmay be considered at an earlier stage, before

multi-electron term formation. As a first approximation we can also neglect

the weak covalency in the p-bonding of the above-mentioned t2g, t1u, and

t�2g orbitals (the main Ti—O bonding is formed by the inner, lower-in-energy

	-bonds of the eg, a1g, and t1u orbitals, see [4.20]). In this approximation the

t�2g orbital is formed by three 3dp atomic functions of the Ti 4þ ion (dxy, dxz, and

dyz), while the six combinations of the 2pp atomic functions of O2� ions

produce the three t1u and three t2g MOs (see Table 5.1 in [4.20]).
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The T1u nuclear displacements form a dipole moment in this cluster, one of

the components of which,Qz, is shown schematically in Fig. 4.14. Under these

T1u-type displacements the t1u ligand states mix with the central atom t�2g
states, producing additional (p-type) covalent bonding (Section 4.2; in the

regular octahedral configuration these two types of orbital are orthogonal).

However, the t1u–t2g mixing between the pure ligand orbitals under the t1u
displacements, although allowed by symmetry considerations, does not

affect the metal–ligand bonding (has a zero coupling constant with regard to

metal–ligand displacements). The problem is thus a product {T1u
T2g}
 t1u
problem, which incorporates a simpler PJT (A1gþT1u)
 t1u problem. If we

neglect thep-bonding in the reference configuration, the t1uMOs are pure ligand

(oxygen) orbitals, while the t2g ones are of pure Ti origin. This means that the

JTE in each of them, taken separately, is irrelevant to theT1u-type metal–ligand

displacements that produce a dipole moment (see below). In this case the

product problem is reduced to a simpler PJT one: (A1gþT1u)
 t1u.

The vibronic coupling matrix W in secular equation (3.2) with the basis set

above is as follows:

W ¼

� 0 0 FQy FQx 0
0 � 0 FQz 0 FQx

0 0 � 0 FQz FQy

FQy FQz 0 �� 0 0
FQx 0 FQz 0 �� 0
0 FQx FQy 0 0 ��

������������

������������
(4:98)

z

xy

Fig. 4.14. TheZ-component of the chosen T1u displacement in the octahedral
TiO6 cluster [4.20].

4.3 Product JT problems 147



where

F ¼
�
2py
��ð@V=@QxÞ0

��3dxy� (4:99)

and 2� is the energy gap between the 3dxy and 2py atomic states of respectively

the Ti4þ and O2� ions.

There are three types of possible T1u-type dipolar nuclear displacements in

the octahedral cluster ½TiO6�
8� [4.20], but the results below do not depend

essentially on the choice of any of them or their linear combination. For

simplicity we choose the T1u coordinates as shown in Fig. 4.14 for the Qz

component, the other two components Qx and Qy being equivalently oriented

along the x and y axes, respectively. With this choice of the t1u displacements it

is more convenient to involve another basis set for the problem that includes all

the nine atomic functions mentioned above: three functions dxy, dxz, and dyz of

the Ti atom and six combinations of the 12 pp functions of the oxygen atoms,

which we take in the following symmetry-adapted form (see Fig. 5.1(a) in

[4.20]): p1x � p4y;p1y � p4x;p2x � p5y; p2y � p5x; p3x � p6y; andp3y � p6x; with
our choice of theQ displacements (Fig. 4.14) only these six combinations of the

12 pp oxygen functions are active in the vibronic coupling.

With this basis set of nine functions the matrix W is

W ¼

� 0 0 0 0 0 FQx FQy 0
0 � 0 FQz 0 FQx 0 0 0
0 0 � 0 FQz 0 0 0 FQy

0 FQz 0 �� 0 0 0 0 0
0 0 FQz 0 �� 0 0 0 0
0 FQx 0 0 0 �� 0 0 0

FQx 0 0 0 0 0 �� 0 0
FQy 0 0 0 0 0 0 �� 0
0 0 FQy 0 0 0 0 0 ��

������������������

������������������

(4:100)

The solutions of Eq. (3.2) with this matrixW can be obtained straightforwardly:

"v1;2 ¼ �½�2 þ F 2ðQ2
x þQ2

yÞ�
1
2

"v3;4 ¼ �½�2 þ F 2ðQ2
y þQ2

zÞ�
1
2

"v5;6 ¼ �½�2 þ F 2ðQ2
x þQ2

zÞ�
1
2

"v7;8;9 ¼ �� (4:101)

Of these nine levels only the lower six are occupied in the ground state by the

12 electrons mentioned above. On substituting "v1; "
v
3; and "

v
5 from Eqs. (4.101)
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into Eq. (3.1) we obtain the following expression for the ground-state APES

(read off from the undistorted configuration at Qi¼ 0) [4.21]:

"ðQx;Qy;QzÞ ¼ 1
2
K0ðQ2

x þQ2
y þQ2

zÞ � 2f½�2 þ F 2ðQ2
x þQ2

yÞ�
1
2

þ ½�2 þ F2ðQ2
x þQ2

zÞ�
1
2 þ ½�2 þ F2ðQ2

y þQ2
zÞ�

1
2g (4:102)

The shape of this surface depends on the relation among the constants�, F,

and K0. If � > 4F 2=K0, the surface has one minimum at the point

Qx¼Qy¼Qz¼ 0 and the system remains undistorted. This is the weak pseudo

Jahn–Teller effect (Fig. 4.1). However, if (cf. Eq. (4.6))

�54F 2=K0 (4:103)

the surface (4.102) acquires a rather complicated shape with four types of

extremum points.

1. One maximum at Qx¼Qy¼Qz¼ 0 (instability).

2. Eight minima at the points Qxj j ¼ Qy

�� �� ¼ Qzj j ¼ Q
ð1Þ
0 ,

Q
ð1Þ
0 ¼ ½ð8F 2=K 2

0 Þ � ð�2=2F 2Þ�
1
2 (4:104)

with the JT stabilization energy

E
ð1Þ
JT ¼ 3½ð4F 2=K0Þ þ ð�2K0=4F

2Þ � 2�� (4:105)

At these minima the Ti atom is displaced along the trigonal axes, equally close to

three oxygen atoms and removed from the other three.

3. Twelve saddle points at Qp

�� �� ¼ Qp

�� �� 6¼ 0, p, q, r¼ x, y, z, with a maximum in the

section r andminima along p and q. At these points the Ti atom is displaced toward

two oxygen atoms lying on the p and q axes, respectively.

4. Six saddle points at Qp ¼ Qq ¼ 0; Qr ¼ Q
ð2Þ
0 ;

Q
ð2Þ
0 ¼ ½ð16F 2=K 2

0 Þ � ð�2=F2Þ�
1
2 (4:106)

with a depth

E
ð2Þ
JT ¼ 2½ð4F 2=K0Þ � ð�2K0=4F

2Þ � 2� (4:107)

With covalency and multi-electron term formation included, these results,

especially their quantitative expression, are modified, but the main qualitative

conclusions do not alter.
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The origin of the instability of the position of the Ti4þ ion in the center of

the octahedron can be given a visual treatment already mentioned in

Section 4.1. When the Ti atom is in the central position exactly, the overlap

of its dxy atomic orbital with the appropriate (T1u) combination of the

oxygen py orbitals is zero on grounds of symmetry (positive overlaps are

compensated by negative ones). However, if the Ti atom is shifted toward

any of the oxygens, resulting in its off-center position (Fig. 4.14), the over-

lap becomes nonzero and produces additional covalent bonding that lowers

the energy by such distortions (Fig. 4.2). Note also that if the number of

d electrons of the central atom is nonzero, the condition of strong PTJE

(4.103) required for dipole moment formation deteriorates, and if the

excited t2g level is fully populated by six electrons, the PJT interaction is

totally vanished (Section 8.3).

The BaTiO3 crystal is an example of the well-studied phenomenon of

ferroelectricity, and the dipolar t1u distortions in the minima of the APES

of the Ti site explain the origin of spontaneous polarization (Section 8.3). In

many other crystals the local distortions of the octahedral sites with non-

degenerate ground states are of eg type, i.e. tetragonal with preservation of

the inversion center. Looking at the MO LCAO scheme in Fig. 4.13 for

octahedral complexes, we see that the eg-type distortion may occur as a result

of the product JT plus PJT T1g 
 T2g

 �

 ðeg þ e0gÞ problem [4.16]. Indeed, as

in the previous example, the combination of three t1u, three t2g, and three t1g
ground and excited MOs that are most active and close in energy (Fig. 4.13)

produces a bundle of degenerate terms, among which only the vibronic

coupling between T1g and T2g or within the T2g terms results in eg distortions;

the JT effect within the T1g term, as noticed in Section 4.2, is usually small

and may be neglected. Since the t1u MOs do not participate directly in the

(linear) vibronic coupling with eg displacements, the authors [4.16] used a

simpler basis set for the product problem, namely the three t1g plus three t2g
MOs with an energy gap 2� between them, making the problem combined JT

plus PJT T1g 
 T2g

 �

 ðeg þ e0gÞ.

The solution for the nonproduct ðT1g þ T2gÞ 
 ðeg þ e0gÞ problem is given

in Section 4.2, Eqs. (4.77). In the product problem these solutions are just

one-electron energy levels to be populated by electrons, the number of

which (the number of central-atom and ligand electrons on the atomic

orbitals that were used to form the t1g and t2gMOs) depends on the problem.

In nondegenerate d0 complexes (½TiF6�2�, PF�
6 , WF6) there are six electrons,

which occupy the three energy levels of Eq. (4.77), resulting in the following

APES [4.16]:
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with the same two vibronic coupling constants F and F 0 and energy gap� as in

the one-electron case, Eqs. (4.77).

Distinct from the one-electron case, however, the APES in this product

problem is more complicated with an interference of JT distortions somewhat

similar to that described above for other product problems. Although the

saddle points remain at the same six positions, 
 ¼ 0; p=3; . . .; p=5, the

minima positions change significantly: with the increase of the F 0 constant

(the JT coupling within the T2g term) the minima points approach pairwise the

saddle point between them, forming three equivalent pairs, and simulta-

neously the energy of this saddle point lowers, while that of the remaining

three saddle points (between the three pairs) increases. At F 0 �F two minima

in each pair merge, resulting in the usual three equivalent tetragonal minima of

the T
 e problem with three saddle points (Section 3.3).

4.4 The Renner–Teller effect

The RT effect refers to linear molecules, which were excluded from the

formulation of the JT effect in its earlier versions. The peculiarity of the linear

molecules emerges from the fact that for them the orbital angular momen-

tum determines the parity of the wavefunctions in inversion transformations,

in which CLMðrÞ is multiplied by (�1)L. All the wavefunctions of a degene-

rate state have the same quantum number L and hence they are all either

odd (for odd L values), or even (for even L). Therefore any matrix element of

an odd operator with the functions of a degenerate term equals zero by

symmetry considerations. Since the bending distortion of the linear configura-

tion of any linear molecule is of odd nature, the matrix element (2.15)

that defines the linear vibronic coupling constant equals zero. Hence no linear

JTE is possible in linear molecules. However, for the quadratic terms of

vibronic coupling the coupling constant is nonzero, resulting in a nonzero

Renner–Teller effect (RTE).
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TheRTE first suggested for triatomicmolecules in [4.22] (see also [4.23]) was

extended to tetraatomic systems [4.24], higher-order interactions [4.25, 4.26],

and other advances (for reviews see [4.23–4.30]). In this section we consider

only examples of RT APES with continuation in Chapters 5 and 7.

Consider a linear triatomic molecule in a doubly degenerate electronic �

state with the orbital quantum number �¼ 1 in the space of a doubly degen-

erate bending e vibration (formally similar to the E
 e problem in nonlinear

molecules). As stated above, no linear JTE is possible in this system, but the

limitation of the JT theorem to just first-order linear displacements from the

high-symmetry configuration is an unnecessary constraint. For the quadratic

terms of e bending in the vibronic interactions in Eq. (2.14), which transform

as [E�E ]¼A1þE, the matrix element of vibronic coupling (2.19) is nonzero,

resulting in the nonzero RTE under consideration.

The linear molecules in the reference configuration have cylindrical symme-

try, so we can introduce the two components of the bending distortion in polar

coordinates, Qx ¼ � cos
;Qy ¼ � sin
, with �2 ¼ Q2
x þQ2

y. Accordingly, the

quadratic terms of the vibronic coupling between the two electronic terms are

equal to 1
2
g�2 with 1

2
g as the quadratic vibronic coupling constant (2.19). The

vibronic coupling matrix in the secular equation (3.2) for this case is

W ¼ 0 1
2
g�2

1
2
g�2 0

����
���� (4:109)

with the solution of Eq. (3.2),

"v� ¼ �1
2
g�2 (4:110)

Then, by including the elasticity term of Eq. (3.1), we get

"�ð�Þ ¼ 1
2ðK0 � gÞ�2 (4:111)

The two branches (4.111) of the APES are shown in Fig. 4.15(a). We see

that, as far as g<K0, the APES is just split into two by the bending vibrations.

For larger g values the curvature of the lower surface becomes very small (and

negative when g>K0), so fourth-order terms may be essential in the APES

behavior (third-order terms vanish for the same reason as the first-order ones).

With the fourth-order terms included the APES acquires the following form

( j is the fourth-order coupling constant):

"�ð�Þ ¼ 1
2
ðK0 � gÞ�2 þ j�4 (4:112)
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At �¼ 0 and g>K0 this surface has a maximum on the lower sheet and a

minimum on the higher sheet with additional equivalent minima on the lower

sheet at a distance �0 from the center (Fig. 4.15(b)),

�0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðg� K0Þ=4j

p
(4:113)

The minima positions (4.113) do not depend on the rotational angle 
,

meaning that the APES has a two-dimensional trough. Some results on the

solution of the vibronic equations with the APES (4.112) are given in Section

5.1 and further discussed in Section 7.1.1 for specific systems.

For a� term with �¼ 2 the APES problem is similar to that of the � term,

but the energy levels and wavefunctions are quite different (Section 5.1).

The vibronic coupling in an accidentally fourfold degenerate (		p) state of
a triatomic system is considered in [4.31]. Elaborate methods of calculation

of RT interaction matrices using Green’s function formalisms are presented

in [4.32].

The RTE is not the only source of bending of the linear configuration of

molecules. Another important bending force arises from the PJT mixing of

the electronic state under consideration with other states (of appropriate

symmetry) under the bending distortion. Similar to other cases, bending con-

figurations in linear molecules in nondegenerate states may occur as a result

of the PJT effect. For a linear system, the bending displacements are of doubly

degenerate � symmetry. This means that if the system is in a nondegenerate

� state, the bending may occur due to the vibronic coupling to the excited

state of � symmetry (���¼�), provided the coupling is strong enough

and the inequality (4.6) holds. The same is true for the PJT mixing of two

excited states.

Although the bending produced by the PJT �–� mixing is geometrically

the same as in the RTE for degenerate terms, in fact these two distortions are

somewhat different in nature and this results in significant differences in the

observable effects. In the PJT case there is an additional parameter �, the

Fig. 4.15. Variation of the APES of a linear molecular system with respect to
odd displacements Q in the case of the RTE: (a) weak coupling – term
splitting without instability; (b) strong coupling – dynamic instability of the
ground state.
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energy gap between the mixing states, which is significant in forming the APES

(involving also the totally symmetric displacements [4.2]). Most important, the

PJT distortions may be linear in the bending coordinate [4.33], whereas the RT

ones are always quadratic (or of even higher order). The result is that theAPES

in these two cases are different, the PJT one beingmore complicated because of

anharmonicity and possible conical intersections.

If the linear system with more than two atoms has a center of inversion, the

PJT vibronic mixing between electronic states of opposite parity (say, �g with

�u) may remove the center of inversion and form a dipole moment in the

minima, leaving the linear configuration intact. The RTE does not produce

this kind of dipolar distortion.

The study of PJT distortions in linear systems is at its beginning, although

the first investigations were carried out more than two decades ago [4.33]. In

this work the authors derived the general Hamiltonian of such �–� vibronic

coupling in linear systems and applied it to the linear-to-bent transition in

HCNandDCN to explain their photoelectron spectra. The solution of the PJT

problem of vibronic coupling between the � and� states with energies E	 and

Ep, respectively, including the two bending vibrations with coordinatesQx and

Qy (�
2¼Qx

2þQy
2) and the totally symmetric one Qg (with frequencies o and

og, respectively) yields the following three branches of the APES (in conven-

tional units [4.33]):

Vp ¼�Ep þ 1
2
o�2 þ 1

2
o2

gQ
2
g þ 2

1
2kpQg (4:114)

V� ¼ �1
2
ðEp þ E	Þ þ 1

2
o�2 þ 1

2
o2

gQ
2
g þ 2

1
2ðkp þ k	ÞQg

� f½1
2
ðEp � E	Þ þ 2

1
2ðkp � k	ÞQg�2 þ 2l2�2g

1
2 (4:115)

where kp and k	 are the constants of vibronic coupling of, respectively, the �

and � states to the Qg vibrations, and l is the constant of the �–� PJT

coupling.

It is seen from these equations that one of the branches (Vp) is not affected

by the bending, while the distortion in the other two depends on the value of

Qg. Figure 4.16 illustrates this effect for the cationic states of HCN that are

most important in the photoelectron spectra. For Qg¼ 0 (note that this read-

off of the totally symmetric coordinate is conventional) and

4l2> |E	�Ep| the lower branch of the potential V� is unstable at the point

� ¼ 0 that corresponds to the linear configuration. It has a continuum of

minima forming a circle at the bottom of a trough, at which the configuration
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of the system is bent. In the linear HCN molecule the totally symmetric

displacement Qg involves H—C and C—N stretching, which thus play a

significant role in the ��� PJT coupling and formation of the APES.

The two sets of curves in Fig. 4.16, (a) and (b), should be regarded as two

cross-sections along the totally symmetric coordinate Qg illustrating the com-

plexity of the fully anharmonic APES in which the different kind of vibrations

are nonseparable.

4.5 Reformulation of the JT theorem

The JT theorem for degenerate states as formulated by its authors [4.34] and

the corrected version [4.2] are analyzed in Section 2.5. The simplest formula-

tion of this theorem is as follows: the nuclear configuration (geometry) of a

nonlinear molecule in an orbitally degenerate electronic state (except twofold

spin degeneracy) is unstable with respect to nuclear displacements that remove

Fig. 4.16. The APES curves for the lowest cationic states of HCN as functions
of the bending coordinate � ¼ ðQ2

x þ Q2
yÞ

1
2 for (a)Qg¼ 0 and (b)Qg¼�1.26.

The three curves represent (from top to bottom) Vþ, Vp, and V� in
Eqs. (4.113) and (4.114) (reprinted with permission from [4.33]. Copyright
1979 Elsevier Science Publishers).
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the degeneracy. As explained in Section 2.5, this statement cannot be directly

applied to observable properties. Indeed, as seen from the proof of this

theorem, it is related to the behavior of the APES near the point of degeneracy,

which is by itself not observable. Also, because the proof [4.34] is carried out by

including linear coupling terms only (Section 2.5), it excludes the RTE for

molecules with linear configurations.

A more rigorous formulation of the JT theorem [4.2] given here with some

further improvements is devoid of the failures noted above: for any polyatomic

system with two or more branches of the APES that intersect at the point of

degeneracy or are tangential and interact sufficiently strongly at this point, there

is at least one branch that has no minimum, the case of twofold spin degeneracy

being an exception. This formulation concerns the specific properties of the

APES of systems with both JTE and RTE, which lead to a variety of obser-

vable effects (when solving the nuclear motion problem with this APES) but

not necessarily to distortions. The lack of minimum of the APES at the point

of degeneracy results, first of all, in special dynamics of the nuclear configura-

tion, it may lead to observable distortions in particular cases in the presence

of external peturbations (Sections 2.5, 7.1.1). Therefore the terms instability

and distortions, which are widely in use to describe JT situations also in this

book, should not be taken literally, but as an abbreviation of the lack of

minimum of the APES, which under certain conditions may result in observa-

ble distortions.

Still this formulation of the basic theorem does not include the PJTE

discussed in this chapter. Before the latest achievements on this topic, when

the PJTE was considered as a case of quasidegeneracy (as a small deviation

from the JTE produced by a small splitting of the degenerate term), there was

no necessity to include it in the formulation of the basic theorem. As shown in

Section 4.1, it follows from numerical calculations that the energy gap between

the strongly mixing terms may be very large (tens of electron-volts), and

anyhow it is not the crucial limiting parameter of the strong PJTE as there

are other parameters, that compensate for the large energy gap. Moreover,

since the PJTE is the only possible source of instability of high-symmetry

configurations of polyatomic systems in nondegenerate states (Section 4.1),

it expands the application of the JT vibronic coupling theory to any molecular

system and to crystals, embracing all the possible structural instabilities of

high-symmetry configurations. Obviously, it is desirable that the basic state-

ment of this trend incorporates all these possibilities.

Following the discussion above, we suggest an extended and more rigor-

ous formulation of the JT theorem as follows (see also [4.35]): the necessary

and sufficient condition of instability (lack of minimum of the APES) of the
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high-symmetry configuration of any polyatomic system is the presence of two or

more electronic states that are either degenerate in this configuration, or non-

degenerate but sufficiently strongly interacting under the nuclear displacements

in the direction of instability, the twofold spin (Kramers) degeneracy being an

exception.

In this formulation, compared with the previous one above, there are several

novel aspects. First, it refers to any polyatomic system without exceptions.

Second, it includes all the JT vibronic coupling effects, JTE, RTE, and PJTE.

Third, it implies that these effects are necessary and sufficient for the instability

to occur, meaning that there are no other mechanisms to produce structural

instabilities of high-symmetry configuration. The case of twofold (Kramers)

spin degeneracy remains the only exception as it cannot be removed by nuclear

displacements (Kramers degeneracy can be split only by magnetic fields).

Note that the term high-symmetry configurations in this formulation is

introduced to satisfy the condition of uniqueness of the PJT origin of instabil-

ities of molecular systems in nondegenerate states, which requires that the first

derivative of the APES in the direction of instability is zero. This does not limit

the cases of JTE or RTE because electronic degeneracies are inherent in

systems with no less than a threefold axis of symmetry, and for them the first

derivative of the APES in the direction of instabilitywithout vibronic coupling is

zero too.

In all the formulations of the JTE above it is implicitly assumed that the

reference configuration is a bonded polyatomic system, i.e. the degenerate or

pseudodegenerate electronic states are inherent to the nuclear configuration of

a polyatomic system formed by a set of bonded atoms at (or near to) equili-

brium. Meanwhile, in the proof of these statements the atoms of the reference

configuration are not required to be necessarily bonded. The only essential

requirement in the proof of the JT theorem is the presence of two or more

electronic states, which become mixed under nuclear displacements from the

reference configuration.

However, so far all the applications of the JT effect theory were considered

only for chemically bonded systems in their high-symmetry configuration and

transition states of chemical reactions. It was shown that this is an unnecessary

restriction [4.35–4.37]: the JT instabilities are inherent to all the cases of

degeneracy or pseudodegeneracy, including nonbonded states in molecule forma-

tion from atoms, intermolecular interaction, and chemical reactions.

Consider first chemical bonding, i.e. the formation of molecules from

atoms. In the formation of a homonuclear molecule, the two electronic states

of the two identical atoms at large interatomic distances R have the same

energy, and hence they form a doubly degenerate state. Introducing for
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convenience the coordinate QM¼ 1/R, we get for the interaction between the

atoms treated by perturbation theory the same secular equation as in the JT

E
 b1 problem (Section 3.1), in which V(r, Q) is the operator of interatomic

interaction (H is the Hamiltonian):

H11 � " 0 V12

V12 H22 � " 0

����
���� ¼ 0 (4:116)

with

" 0
1;2 ¼ 1

2
fH11 þH22 � ½ðH11 �H22Þ2 þ 4 V12j j2�g

1
2 (4:117)

For degenerate statesH11¼H22, making one of the two states (4.117) lower

and the other higher than the corresponding energies at Q¼ 0 (Fig. 4.17(a)).

The lower level describes the bonding that lowers the symmetry from that of

spherical atoms to the symmetry of diatomics. This reasoning can be easily

expanded to the bonding of more than two identical atoms or groups of atoms

and to chemical reactions. Bonding may thus formally be considered as a

typical JT effect in nonbonded (K0¼ 0) systems.

For the bonding in heteronuclear diatomics we start from a pseudodegene-

rate term of the two different atoms atQ¼ 0 and get the same secular equation

(4.116) with the solutions (4.117). Again, one of the solutions leads to bonding

with the same decrease in symmetry as in the homonuclear case (Fig. 4.17(b)),

and this picture is similar to any other cases of the PJTE (cf. the right-hand side

of Fig. 4.1(b)). It can easily be extended to the bonding of several different

atoms or groups of atoms.

We see that there is a full similarity between the JT (or RT) and PJT

distortions of stable polyatomic systems and the formation of, respectively,

QMQM Q M
0Q M

0 00
(b)(a)

ε(QM) ε(QM)

Fig. 4.17. The APES "(QM) of interacting atoms or groups of atoms as a
function of the inverse coordinate of their approach QM (QM¼ 0 when the
interatomic distance is infinite, Q0

M is the point of equilibrium): (a) the
interacting atoms are identical, the system is degenerate at infinity – the
bonding curve is similar to the JTE one; and (b) the interacting atoms
(groups) are different, the bonding curve is similar to the PJTE one [4.37].
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homonuclear and heteronuclear diatomics, as well as bonding in extended

systems. The formation of molecules from atoms (or bonding of groups of

atoms) is thus another particular case of spontaneous symmetry reductions

controlled by the JT vibronic coupling effects. The differences between the

particular cases of JT instability are in the details of the APES behavior at

the point of degeneracy: in the proper JT case the level crossing is linear in

Q (Section 2.5), whereas in the RT effect it is quadratic (Section 4.4; see also

Fig. 2.8), in the PJTE it is quadratic with an energy gap between the twomixing

states (Section 4.1), in homonuclear bonding it is rather exponential with

K0¼ 0 (Fig. 4.17(a)), and in heteronuclear bonding it is exponential too with

a PJT energy gap and K0¼ 0 (Fig. 4.17(b)). In the latter case, there is also

another distinction from the general PJT case: because K0¼ 0 there is no

limiting threshold of the type (4.6) in the formation of heteronuclear diatomics;

instead the possibility of formation of bonding states gradually vanishes with

increasing energy gap 2�.

In chemical reactions with a transition state the latter is a typical JT or (in

most cases) PJT situationwith the instability coordinate leading to the formation

of products (Section 7.1.3). For pure Van derWaals interaction of closed-shell

systems the polarization and correlation effects that lead to intermolecular

bonding can in principle be described by the mixing of the ground state of one

system with the excited state of the other one, which form together the

pseudodegenerate situation of the PJTE.

With the chemical bonding and other interatomic and intermolecular interac-

tions presented as a JT or PJT (or RT) effect, and taking into account the results

of Sections 8.2 and 8.3, in which all first- and second-order phase transitions are

shown to be triggered by the same effects, we can formulate the uniqueness of the

JT mechanism of all the symmetry breakings in molecular systems and condensed

matter [4.36, 4.37], which will be discussed in Section 8.2.5.

The broad formulation of the JT theorem given above, which is valid for any

polyatomic system, including nonbonded systems, brings us back to the state-

ment in the introduction that the JTE grew into a general approach to (tool

for) understanding (rationalizing) and solvingmolecular and crystal problems,

and to the question of the difference between this approach and other existing

ones. The JTE emerges directly from the interaction of the electronic states

with the nuclear displacements (vibrations), which in principle are well known

as electron–vibrational interactions in molecules and electron–phonon inter-

actions in crystals, and are included in any approaches to relevant problems.

The novelty of the JT approach in this respect is that it involves more than one

electronic state in the nonadiabatic interaction with the vibrations, and conse-

quently there may be low-symmetry phonons that mix these states to result in
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what we call now the JTE. A general comparison of the JT with other (tradi-

tional) approaches to the electron–vibrational (electron–phonon) coupling

problem is illustrated in Table 4.6.

As shown elsewhere in this book, in molecular systems and impurity centers

and clusters in crystals the JTE may be most important. In metals there are

many close-in-energy band electronic states and even degenerate states at the

Fermi level which produce combined JT andPJT problems. As shown in Section

8.2.5, this results in a window of bandwidth for which the band JTE is most

important. For broad bands and delocalized electronic states the JT electron–

phonon interaction is weak and the JTE implications may be ignored. For

narrower bands (as in the crystals with high-temperature superconductivity)

the JTE becomes most important (Section 8.4). For very narrow bands the JT

electron–phonon coupling is again small and the band JTE becomes negligible.
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4.1. U. Öpik and M.H. L. Pryce, Proc. R. Soc. London A 238, 425 (1957).
4.2. I. B. Bersuker and V. Z. Polinger, Vibronic Interactions in Molecules and

Crystals, New York, Springer, 1989.
4.3. I. B. Bersuker, Nouv. J. Chim. 4, 139 (1980); Teor. Eksp. Khim. 16, 291 (1980).
4.4. I. B. Bersuker, N.N. Gorinchoi, V.Z. Polinger, Theor. Chim. Acta 66, 161

(1984); I.B. Bersuker, V.Z. Polinger, and N.N. Gorinchoi, J. Struct. Chem.
(THEOCHEM) 5, 369 (1992).

4.5. I. B. Bersuker, Pure Appl. Chem. 60, 1167 (1988); Fiz. Tverd. Tela 30, 1738
(1988).

4.6. (a) R. F.W. Bader, Mol. Phys. 3, 137 (1960); Can. J. Chem. 40, 1164 (1962);
R. F.W. Bader and A.D. Bandrauk, J. Chem. Phys. 49, 1666 (1968);
(b) R.G. Pearson, Symmetry Rules for Chemical Reactions. Orbital Topology
for Elementary Processes, New York, Wiley,1976.

4.7. M. J. Bearpark, L. Blancafort, and M.A. Robb, Mol. Phys. 100, 1735 (2002).

Table 4.6. Comparison of the main features of the JT approach to solving

vibronic (electron–phonon) coupling problems with other (traditional)

approaches (HTSC, high-temperature superconductivity; BCS,

Bardeen–Cooper–Schrieffer)

Approaches
Electronic states
involved Active vibrations Recent example: HTSC

Traditional
approach

One state (ground) Totally symmetric BCS theory

JT approach Two or more Low symmetry
(distorting)

JTE theory

160 4 Pseudo JT, product JT, and RT effects



4.8. I. B. Bersuker, N. B. Balabanov, D. Pekker, and J. E. Boggs, J. Chem. Phys.
117, 10 478 (2002).

4.9. L. F. Chibotary and F. Chimpoesu, Internat. J. Quant. Chem. 65, 37 (1997);
F. Chimpoesu,Rév. Romaine Chim. 44, 929 (1999); F. Chimpoesu andK.Hirao,
Adv. Quant. Chem. 44, 369 (2003).

4.10. I. B. Bersuker, Ferroelectrics 164, 75 (1995).
4.11. I. B. Bersuker, New J. Chem. 17, 3 (1993).
4.12. I. B. Bersuker and S. S. Stavrov, Coord. Chem. Rev. 8, 1 (1988).
4.13. Z.W. Hendrikse and W. J.A. Maaskant, Z. Physik. Chem. 200, 21 (1997).
4.14. C. J. Ballhausen, Theor. Chim. Acta 3, 368 (1965).
4.15. W. J.A. Massnant and I. B. Bersuker, J. Phys.: Condens. Matter 3, 337 (1991).
4.16. S. A. Borshch, I. Ya. Ogurtsov, and I. B. Bersuker, Zh. Strukt. Khim. 23, 7

(1982).
4.17. A. Ceulemans and L. F. Chibotary, Phys. Rev. B 53, 2460 (1996-I)
4.18. A. Ceulemans and Q.C. Qiu, Phys. Rev. B 61, 10 628 (2000-II).
4.19. Q. C. Qiu, L. F. Chibotary, and A Ceulemans, Phys. Rev. B 65, 035104 (2001).
4.20. I. B. Bersuker, Electronic Structure and Properties of Transition Metal

Compounds. Introduction to the Theory, New York, Wiley, 1996.
4.21. I. B. Bersuker, Phys. Lett. A 20, 589 (1966).
4.22. R. Renner, Z. Phys. 92, 172 (1934).
4.23. G. Gerzberg and E. Teller, Z. Phys. Chem. B 21, 410 (1933).
4.24. A. V. Petelin and A.A. Kiselev, Internat. J. Quant. Chem. 6, 701 (1972).
4.25. J. A. Pople and H.C. Longuet-Higgins, Mol. Phys. 1, 37 (1958).
4.26. R.N. Dixon, Mol. Phys. 9, 357 (1965).
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5

Solutions of vibronic equations: energy spectra
and JT dynamics

Themain effects of JT vibronic couplings are due to the special dynamics of the

nuclear configuration that follows from the JT instability. The energy levels

and wavefunctions describing these effects are solutions of the system of

coupled equations (2.6) in Section 2.1. They were obtained for the most

important JT problems formulated in Chapters 3 and 4, and are discussed in

this chapter.

5.1 Weak vibronic coupling, perturbation theory

Calculation of the energy spectrum and wavefunctions of a JT or PJT

molecule as solutions of the coupled equations (2.6) is a very complicated

problem which cannot be solved in a general form, without simplifications,

for arbitrary systems. However, as in similar quantum-mechanical situa-

tions, analytical solutions for some limiting cases in combination with

exact numerical solutions of some particular cases yield the general trends

and provide understanding of the origin and mechanism of the phenomenon

as a whole.

For vibronic problems the limiting cases of weak and strong vibronic

coupling with relatively small and large vibronic coupling constants, respec-

tively, can be solved analytically. A quantitative criterion of weak and strong

coupling can be defined by comparing the JT stabilization energy E�
JT with the

zero-point energy n��ho�=2 of n�-fold degenerate � vibrations. Denote

l� ¼ 2E�
JT=n��ho�. Then, if l�� 1 ð2E�

JT � n��ho�Þ, the vibronic coupling

will be regarded as weak, and if l�� 1, the coupling is strong; l� is the

dimensionless vibronic coupling constant. Note that the vibrational frequency

in the minima of the distorted configurations may be different from that in the

reference configuration.
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In the limiting case of weak vibronic coupling the depths of the adiabatic

potential minima formed by the vibronic interactions are much smaller than

the zero vibration energies, and therefore there are no local states in the

minima. In the strong coupling case such local states exist. Nevertheless, in

both cases the system is delocalized into all the equivalent minima, provided

stationary states of the free system (and not instantaneous or specially

prepared ones) are considered. However, the terms ‘‘dynamic JTE’’ and

‘‘static JTE’’ may still be meaningful if the latter is used to indicate

the situation when, in the limiting case of very deep minima, the one-

minimum state for the given process of measurement may be regarded as

quasistationary (see the ‘‘relativity rule concerning the means of observa-

tion’’ in Section 7.1.1).

Consider first the solutions of the vibronic equations for weak coupling,

when l� 1. General considerations show (for more details see [5.1, 5.2]) that

in this case the angular momenta of the electrons and nuclei are not preserved

separately but as their vector sum [5.3–5.5]. Therefore, to characterize the

energy levels of the system as a whole, an additional special quantum number,

which comprises the quantum numbers of the projections of the angular

momenta of electrons and nuclei, is required. This situation is similar to that

in atomic theory where orbital L and spin S angular momenta in the weak

coupling limit are summarized by the L–S coupling scheme, so we can use

some results of spin–orbital coupling theory.

When l� 1 the energy levels of the system with vibronic interaction can be

obtained by means of perturbation theory. For the linear E� e problem, the

unperturbed system is a dimeric oscillator with energies En¼ �hoE (nþ 1),

n¼ 0, 1, 2, . . . Here, the angular momentum of the nuclei defined by the

quantum number l¼ n, n� 2, . . .,�nþ 2, �n is preserved, and therefore each

energy level is (nþ 1)-fold degenerate with respect to the vibrational quantum

numbers; taking into account the twofold electronic degeneracy, it results in a

total 2(nþ 1)-fold degeneracy.

If the vibronic interaction is sufficiently weak, the quantum number l

remains ‘‘good.’’ In addition, the total angular momentum of the electrons

and nuclei defined by the quantum numberm ¼ l � 1
2
must be preserved (the

effective angular momentum of the electrons in the doubly degenerate state is

defined by quantum numbers�1
2
). As a result the following expression for the

energy levels has been obtained using second-order perturbation theory with

respect to linear vibronic interaction terms [5.3] (Figs. 5.1 and 5.2):

Enlm ¼ �hoE ½nþ 1þ 2lEðl2 �m2 � 3
4
Þ� (5:1)
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l ¼ n; n� 2; . . .; �nþ 2; �n

m ¼ �1
2
; �3

2
; . . .; �ðnþ 1

2
Þ

(5:2)

where lE ¼ EE
JT=�hoE ¼ F 2

E=2�hoEKE (see Eq. (3.27)).

Since l and m are not independent, the energy Enlm depends on only two

quantum numbers, say n and l, soEnl¼ �hoE[nþ 1þ 2lE(� l� 1)]. It is seen that

the (2nþ 1)-degenerate level with given n splits into nþ 1 components (since l

may have nþ 1 values). Each level remains twofold degenerate because the

Fig. 5.1. Cross-sections of the APES and vibronic energy levels for a linear
E� e problem (A) and the same levels with indication of the quantum
numbers and symmetries (B) for three values of the dimensionless coupling
constants: (a) lE¼ 0.1; (b) lE¼ 0.5; and (c) lE¼ 2.5. Energy levels with the
same vibrational quantum number n are linked by dashed lines. All levels with
a given m have the same symmetry indicated at the lowest level.
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energy (5.1) does not depend on the sign ofm. The ground state is also twofold

degenerate:

E00�1=2 ¼ �hoEð1� 2lEÞ ¼ �hoE � 2EE
JT (5:3)

However, some of these levels, namely, those with quantum numbers

m ¼ 3
2
,�9

2
,�15

2
, . . ., pertain to the symmetry A1þA2, which indicates that

they are incidentally degenerate, the others being of E symmetry and therefore

regularly degenerate.

The energy distance between the extreme doublets for a given value of n is

4n�hoElE ¼ 4nEE
JT. Hence according to the criterion of validity of the pertur-

bation theory Eq. (5.1) is valid if and only if this value 4nEE
JT is much smaller

than the distance to the next vibrational level, i.e., if EE
JT � �hoE=4n.

The wavefunctions of the unperturbed two-dimensional oscillator may be

written in the form

C�n1n2 ¼ w� n1n2j i (5:4)

3 , 3 , 5 / 2
3 , 1 , 1 / 2
3 , 1 , 3 / 2

2 , 2 , 3 / 2

2 , 2 , 5 / 2

2 , 0 , 1 / 2

1 , 1 , 1 / 2

1 , 1 , 3 / 2

0 , 0 , 1 / 2

n , l , m
ρ ρ

ω

λE 
= 0.125

0

n

1

2

3

1
2

KEρ2
 + |FE|ρ 1

2
KEρ2

 – |FE|ρ

Fig. 5.2. More detailed illustration of the cross-section of the APES and
vibronic energy levels for the linear E� e problem with weak vibronic
coupling, lE¼ 0.125, with indication of quantum numbers n, l, m. The
positions of vibrational levels without vibronic coupling are shown by
dashed lines.
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where n1n2j i is the vibrational harmonic function, in which one of the compo-

nents of the twofold degenerate e vibration (say, the e# component) is in the

n1 state, the other in the n2 state, and the electronic functions w� are given in

the general form by [5.1]
wþ ¼ #j i þ i "j i
w� ¼ #j i � i "j i

(5:5)

where #j i and "j i are the two wavefunctions of the E term (Section 3.2).

Then, the perturbed functions of the ground state assume the following

form [5.1]:

Cþ00ðr; QÞ ¼ wþ 00j i � ið2EE
JT=�hoEÞ

1
2�w� 01j i

C�00ðr; QÞ ¼ w� 00j i þ ið2EE
JT=�hoEÞ

1
2�wþ 10j i

(5:6)

It is seen that a weak linear vibronic coupling mixes the ground state with

the first vibrational excited state.

In the E� b1 and E� b2 problems there are no nonadiabatic terms in

Eq. (2.6) that couple the two electronic states of the E term, and hence all

the vibrational levels are just shifted by an amount of magnitude EJT, the JT

stabilization energy. Similarly, for a T term coupled to only e vibrations (the

T� e problem) the energy levels of the initial three-dimensional oscillator

En¼ �hoT [nþ (3/2)] under the influence of vibronic interaction are not split,

but shifted down by an amount EJT. This result has a general meaning and

remains valid in the strong coupling case too [5.6].

When coupling with only trigonal t2 vibrations is taken into account

(the T� t2 problem), the initial zero-approximation system is also a three-

dimensional oscillator with energy levels En¼ �hoT [nþ (3/2)] but, unlike the

T� e problem, the vibronic interaction mixes the electronic and nuclear

motions. The quantum number of the vibrational angular momentum

l¼ n, n� 2, n� 4, . . ., 1 or 0, in case of weak coupling remains a ‘‘good’’ one.

Besides, the energy is classified by the quantum numberm of the square of the

total angular momentum equal to the sum of the orbital and vibrational

momenta: m¼ 1, l � 1 for l ‡ 1, and m¼ 1 for l¼ 0. The resulting expression

for the energy in the approximation of second-order perturbation theory is [5.5]

Enlm ¼ �hoTfnþ ð3=2Þ þ ð9=16ÞlT ½mðmþ 1Þ � lðl þ 1Þ � 6�g (5:7)

where lT ¼ 2ET
JT=3�hoT . Each of these levels is (2mþ 1)-fold degenerate with

respect to the quantum number of the projection of the angular momentum,

which is also preserved. In particular, for the ground state n¼ 0, l¼ 0, m¼ 1,

2mþ 1¼ 3, i.e., the ground state is threefold degenerate, as is the initial

electronic T term.
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The energy gap between the extreme components of the split level with a

given value of n equals 3
4 (2nþ 1)ET

JT. Therefore, the perturbation theory

formula (5.7) is valid until ET
JT � 4�hoT=3ð2nþ 1Þ.

If the coupling with both e and t2 nuclear displacements is taken into

account simultaneously (the T� (eþ t2) problem), the solution becomes con-

siderably more complicated even in the limiting case of weak vibronic cou-

pling. Analytical expressions for the splitting of several first vibronic levels in

the second-order perturbation theory approximation have been obtained by

means of a special functions [5.7]. If the coupling to the e vibration is stronger

than to t2, the vibrational energy levels do not split under the influence of weak

vibronic coupling to t2 vibrations, they are just shifted down by the JT

stabilization energy EE
JT, as in the T� e problem.

The �8� e problem (Section 3.3) is quite similar to the E� e one [5.8], with

the same vibronic splitting properties. Indeed, the �8 term may be regarded as

an 2E term with nonzero spin–orbital coupling. Since the spin states are not

related directly to the vibronic E� e problem (spin states are not mixed

by vibronic interaction), the system of coupled equations (2.6) decomposes

into two equivalent equations with the result that the vibrational level splitting

is the same as in Eq. (5.1); the only difference is that all the levels are quad-

ruplets instead of doublets E (since they are additionally twofold degenerate

by spin), and the coincidentally degenerate doublets are �6þ�7 instead of

A1þA2 (see Fig. 5.1).

For similar reasons the �8� t2 problem may be formally reduced to the

T� t2 one with a pseudo spin 3
2
, for which the vibrational energy level splitting

under weak vibronic coupling is given by Eq. (5.7) withm ¼ l � 3
2
; l � 1

2
if l> 1,

m ¼ 3
2
� 1 if l¼ 1, and m ¼ 3

2
if l¼ 0 [5.9].

For weak PJT coupling of two nondegenerate states, as shown in Section 4.1,

there is no instability but just a change in the curvature of the two APES given

by Eqs. (4.11) and (4.12). Accordingly the vibrational frequencies in the two

states of an (AþB)� b problem are changed, being decreased in the ground

state and increased in the excited state. Assuming that the primary (nonvibronic)

frequencies o are the same in the two mixing states, we get [5.1, 5.10]

o2
� ¼ o2 1� F 2=�K0

1� ð�ho=2�Þ2

 !
(5:8)

where 2� is the A–B energy gap. Accordingly, for the energy levels we get

Eð�Þ
n ¼ �ho�

�
nþ 1

2

�
��þ 1

2

�ho
2�

� �2
F 2=K0

1� ð�ho=2�Þ2
(5:9)

5.1 Weak vibronic coupling, perturbation theory 167



Equations (5.8) and (5.9) differ from that which can be obtained directly

from Eqs. (4.11) and 4.12) with K0�¼K0�0 ¼K0 and K0¼Mo2 because of the

nonadiabacity terms in Eq. (4.15) that emerge when the operator of kinetic

energy is included in Eqs. (2.6). The discrepancy disappears when �ho� 2�

and the nonadiabacity can be ignored.

Obviously, the weak coupling limit and the second-order perturbation

theory used to obtain Eqs. (5.8) and (5.9) imply that �>F 2/K0 and

2�� �ho. If the two levels are closer and 2� � �ho, another form of perturba-

tion theory for quasidegenerate states should be applied, resulting in [5.10]

Eð�Þ
n ¼ n�ho� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 2n�hoF 2=K0

p
(5:10)

with �¼ �ho� 2�.

Note that �¼ 0 means exact resonance between the vibrational quantum

and the energy gap 2� between the two states A and B. Still for weak pseudo

JT coupling 2� should be large enough, �>F 2/K0.

The Renner–Teller effect in linear molecules with weak vibronic coupling

splits the rotational levels [5.11–5.18]. For a triatomic molecule in a doubly

degenerate state � (with the orbital quantum number �¼ 1), which in the

absence of vibronic coupling is a two-dimensional oscillator in the space of the

two components of bending vibrations, the energy levels under the quadratic

vibronic coupling (Section 4.4) in the second-order perturbation theory are as

follows [5.11, 5.18].

(a) For the rotational quantum number K¼ 0 (vibronic � states; do not confuse this

quantum number K with the curvature K0 or K
�):

Eð�Þðn; 0Þ ¼ �hoðnþ 1Þ
ffiffiffiffiffiffiffiffiffiffiffi
1þ "

p
; n ¼ 1; 3; 5 (5:11)

(b) For K 6¼ 0 and n¼K – 1 (lowest vibronic levels �, �, . . .):

Eðn; KÞ ¼ �ho½ðnþ 1Þ � 1
8
"2KðK þ 1Þ� (5:12)

(c) For K 6¼ 0 and n>K� 1 (other �, �, . . ., levels):

Eð�Þðn; KÞ ¼ �hoð1� 1
8
"2Þðnþ 1Þ � 1

2
�ho"

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ 1Þ2 � K 2

q
(5:13)

where o is the bending frequency and "¼ g/K0 is the dimensionless RT

vibronic coupling constant: g is the quadratic vibronic coupling constant

that mixes the two states of the � term by bending distortions (Sections 4.4),

and K0 is the usual primary (nonvibronic) curvature (Section 2.4).
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Aswe can see from these formulas and Fig. 5.3, the splitting of the rotational

levels with quantum numbersK< nþ 1 is of the order of 1
2�ho", while forK¼ 0

the vibronic coupling does not mix the two states essentially, their vibrational

frequencies being adjusted to the modified curvatures K(�)¼K0(1� ")

(Section 4.4; again, don’t confuse curvatures with the rotational quantum

number K; the latter has neither subscripts nor superscripts). The levels with

K¼ nþ 1 are special, they are called ‘‘unique,’’ in the sense that for them, distin-

guished from other vibronic levels, the orbital momentum is not quenched

and the degeneracy is not lifted, meaning they are subject to spin–orbital

splitting and the Zeeman effect.

For a similar treatment of� states with �¼ 2 the fourth-order terms of the

APES ( jQ4 in Eq. (4.14)) were involved, resulting in the following vibronic

energy levels [5.15b].

(a) For K 6¼ n or nþ 2:

Eð�Þðn;KÞ ¼ �hoðnþ 1Þ � 3ajfðn2 � K2Þ½ðnþ 2Þ2 � K2�g
1
2

� ða2j2=�hoÞðnþ 1Þ½17nðnþ 2Þ þ 3K2� (5:14)

(b) For K¼ n:

Eðn; KÞ ¼ �hoðnþ 1Þ � ða2j2=�hoÞKðK þ 1ÞðK þ 2ÞðK þ 35Þ (5:15)

(c) For K¼ nþ 2:

Eðn; KÞ ¼ �hoðnþ 1Þ � ða2j2=�hoÞKðK � 1ÞðK þ 1ÞðK þ 2Þ (5:16)

where a ¼ �h2o2=2K2
0 , j is the constant of coupling with the fourth-order terms

defined in Section 4.4 (Eq. (4.14)), and the levels with K¼ n and K¼ nþ 2 are

‘‘unique’’ in the sense described above.

5.2 Strong vibronic coupling. Some simple cases

In the other limiting case of strong vibronic coupling, when 2E�
JT > n��ho�,

some analytical solutions have been obtained too. Consider first the linear

E� e problem. The corresponding APES has the shape given in Figs. 3.4

and 3.5. If the JT stabilization energy EJT is sufficiently large (as assumed in

the strong coupling case), the energy separation from the ground-state sheet of

the APES to the upper one in regions far from the branching point is also large

(near the bottom of the trough this distance equals 4EE
JT). It follows that for

the nuclear motion in these areas the vibronic equations (2.6) may be
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Fig. 5.3. Variation of the �, �, and � vibronic energy levels of a � electronic state of a linear triatomic molecule XY2 as a
function of the Renner parameter ". The bending frequency is assumed to be 500 cm�1, so the lowest level occurs for "¼ 0
and K¼ 1. The broken-line correlations correspond to Eqs. (5.12) and (5.13) [5.18].



approximately decoupled, and the HamiltonianH of the lowest branch of the

APES (see below) in polar coordinates takes the form [5.20]

H ¼ � �h2

2M

1

�

@

@�
�
@

@�

� �
þ 1

�2
@2

@�2

� �
þ 1

2
KE�

2 � FEj j� (5:17)

In the Schrödinger equation (2.1) with this Hamiltonian the variables � and

� separate. The motions along the trough described by the � coordinate are

free rotations (more precisely, pseudorotations, see below) with energies

m2ð�hoEÞ2=4EE
JT and wavefunction (2p)

1
2 exp(im�), where m is the rotational

quantumnumber, while radialmotions (along �) are describedwell by harmonic

vibrations with energies �hoEðnþ 1
2
Þ and oscillator wavefunctions �n(�� �0).

The resulting energy and wavefunction are (the factor 1=
ffiffiffiffiffiffiffiffi
2p�

p
is introduced

for normalization)

Cnmðr; �; �Þ ¼ w�ðr; �Þ�nð�� �0Þ expðim�Þ=ð2p�Þ
1
2

Enm ¼ �hoEðnþ 1
2
Þ þm2ð�hoEÞ2=4EE

JT � EE
JT

n ¼ 0; 1; 2; . . .; m ¼ �1
2
;�3

2
;�5

2
; . . .

(5:18)

where w�(r, �) is the electronic function of the lower sheet of the APES

determined by Eq. (3.32). The half-integer values of the quantum number

m of the rotational motions follow from the special condition of the problem,

namely from symmetry properties of the electronic function w�(r, �), which

changes sign every 2p rotation, whereas the total wavefunction must remain

unchanged. This issue is discussed in more detail in Section 5.7. The �0 andEJT

values are given by Eqs. (3.26) and (3.27), respectively.

It is seen from Eq. (5.18) that in this limiting case of strong linear vibronic

coupling, every level of radial vibration (with frequency �hoE) is accompanied

by a series of doublet levels of rotational motion with energy intervals

�Erot ¼ ð3 mj j þ 1Þð�hoEÞ2=4EE
JT equal to the quantum of rotational frequen-

cies. Since �hoE � EE
JT the usual relation between the frequencies of molecular

motion is maintained: �Eel � �Evib � �Erot:

The general picture of nuclear motions described by Eq. (5.18) is as follows.

At any point of the bottom of the trough the distorted (as shown in Fig. 3.7)

system performs radial (E-type) vibrations with frequency oE while simulta-

neously moving over � along the bottom of the trough with a rotational

frequency much smaller than oE. Unlike the vibrations, the rotation along

� is not a real rotation of the system, but rather a kind of internal rotation often
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called pseudorotation. In real rotations, all the atoms bend synchronously

around a common axis of rotation, whereas in motion along the trough each

atom bends around its individual axis, the angular motions of these axes being

correlated (see Section 3.7, Fig. 3.6). As a result of this ‘‘rotation’’ a slow

(compared with the vibrations) change of the nuclear configuration in the

space of E coordinates takes place (Fig. 3.7); actually the molecule does not

rotate itself, but the direction of its E-type deformations does rotate (see also

Section 7.1.1).

The adiabatic separation of the two coupled equations (2.6) for the E term

resulting in the Hamiltonian (5.17) with the solution (5.18) is made possible by

neglecting the nonadiabatic term that couples the two sheets of the APES

(Fig. 3.3). It can be shown [5.1] that this neglected term equalsm2(�hoE)
2/2K0�

2.

Since it does not contain the angle �, this term does not affect the rotational

motions. However, it does affect the radial motions in the trough. With the

nonadiabatic term included the Hamiltonian of the radial motion may be

written as follows:

H� ¼ � �h2

2M

@2

@�2
þ V�ð�Þ (5:19)

where

V� ¼ 1
2
KE�

2 � FEj j�þm2ð�hoEÞ2

2KE�2
(5:20)

is the effective potential energy for this motion. Figure 5.4 shows this potential

energy behavior as a function of � [5.19]. Its main feature is the divergence at

�¼ 0 due to the last term in Eq. (5.20), the centrifugal energy. Note that since

the quantum number m is half-integer, this term never vanishes. Following

Eq. (5.20), the minima points of the two sheets in Fig. 5.4 are

�0 ¼
FEj j
KE

1þm2ð�hoEÞ2

4E2
JT

 !
(5:21)

for the lower branch of the APES, and

�0 ¼
m2ð�hoEÞ2

KE FEj j

 !1
3

1� KE

3 FEj j
m2ð�hoEÞ2

KE FEj j

 !1
3

2
4

3
5 (5:22)

for the upper branch.

For strong vibronic coupling the minima position of the lower sheet

�0 � FEj j=KE coincides with that in Eq. (3.26) obtained earlier without
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nonadiabacity, while for the upper sheet �
ðþÞ
0 � 0. At this point the elastic term

1
2
KE�

2
0 in Eq. (5.20) is negligible, and the minimum (5.22) results from the

compensation of the JT distortion force FE with the centrifugal force

m2(�hoE)
2/2K0�

2 (centrifugally stabilized states [5.21]). On the contrary, at �0
in the lower branch of the APES the centrifugal term is negligible, and the JT

force –|FE| is compensated by the elastic term (elastically stabilized states). For

the lowest states in this case the � coordinate in the small centrifugal term in

(5.20) can be substituted by �0, making this term constant. This allows one to

solve the Schrödinger equation with the HamiltonianH� from (5.19) resulting

in the solution (5.18).

When the quadratic and/or cubic terms of vibronic interaction are taken

into account, the warping of the APES produces regularly alternating wells and

humps along the bottom of the trough every 1208 of the � angle (Section 3.2,

Eq. (3.23), Figs. 3.4 and 3.5). The bigger the quadratic barrier height � given by

Eq. (3.30), the more the motion along such a warped trough differs from free

rotations.

Assume first that the values of � are small compared with the quantum of

radial vibrations (�� �hoE), while the criterion of strong linear vibronic

coupling EE
JT � �hoE is preserved (the case � > �hoE is treated below). In this

limit the expansion of the APES, Eq. (3.23), with respect to the small quadratic

vibronic coupling is valid, and the approximate Hamiltonian for motion near

the bottom of the trough takes the form [5.20]

Fig. 5.4. The APES of the linear E� e problem including centrifugal energy:
(a) a general view of Eþ (upper sheet) and E� (Mexican-hat-type lower
sheet); and (b) the two-valued APES of radial motion (radial cross-section
of (a)) (reprinted with permission from [5.19]. Copyright 1984 Elsevier
Science Publishers).
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H ¼ � �h2

2M

1

�

@

@�
�
@

@�

� �
þ 1

�2
@2

@�2

� �
þ 1

2
KE�

2 � FEj j�þ GE�
2 cosð3�Þ (5:23)

Exact separation of the variables � and � in Eq. (5.23) is impossible due to

the additional term GE�
2 cos(3�) that is not present in Eq. (5.17). However,

if this term is sufficiently small (as was actually assumed in [5.20])

and the difference in the aforementioned frequencies of the radial and

rotational motion is sufficiently large, an approximate separation of these

variables is possible in the adiabatic approach. Indeed, under these con-

ditions stationary (fast) radial motions along � are adjusted for every

instantaneous configuration of the system corresponding to a fixed angle �,

and hence the kinetic energy of the motions along � may be neglected when

considering radial motions (another way of separation of these variables is

discussed in [5.22]).

Following the adiabatic approach (Section 2.1), the total wavefunction may

be sought in the form �0
nð�; �Þ�ð�Þ, where �0

nð�; �Þ is determined by the

solution of the equation for the fast subsystem (5.23), in which the term

@2/@�2 is neglected. If the last term of this equation, regarded as small, is

also neglected, the remaining equation is independent of � and yields the same

solution �n(� – �0) (with normalizing factor 1=
ffiffiffi
�

p
) as in the linear case. On

substituting this solution into Eq. (5.23) and averaging over the variables �

with the ground-state function �0, the following equation of motion along � is

derived [5.20]:

��
@2

@�2
þ � cosð3�Þ � Em

� �
�ð�Þ ¼ 0 (5:24)

where � ¼ �h2=3M�20 and � ¼ GE�
2
0.

This equation was solved numerically by means of the expansion�¼�mCm

exp(im�) in the free-rotation functions exp(im�) with the Cm coefficients

calculated by a minimization procedure. The energy levels obtained as func-

tions of �/� are illustrated in Fig. 5.5. It is seen that some of the doublet

rotational levels (5.18) for �¼ 0, namely those transforming after the irredu-

cible representationsA1þA2 (i.e., accidentally degenerate), become split when

the quadratic vibronic coupling is taken into account, i.e., when � 6¼ 0.

The total wavefunction in this case is

Cðr; �; �Þ ¼ ð2p�Þ�
1
2w�ðr; �Þ�0ð�� �0Þ

X
m

Cm expðim�Þ (5:25)
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where the finite number of m values, m ¼ �1
2
; �3

2
; . . .; �k corresponds to

the number of functions of free rotations in the trough chosen as a basis of

the calculations, Cm are the expansion coefficients mentioned above, and the

electronic function w� (r, �) is given by Eqs. (3.32) and (3.33).

In the case of small quadratic vibronic coupling under consideration the

motions in the circular trough, as distinct from the linear case, cease to be free

pseudorotations. At every point of the trough (as in the linear case) the

distorted system performs fast radial vibrations with frequency oE, and the

distortion of the nuclear configuration changes slowly while assuming a

continuous set of geometric figures in the space of e displacements, illustrated

in Fig. 3.7. However, unlike the linear case for which the ‘‘motion’’ of the

distorted configuration along the bottom of the trough is uniform, in the case

of nonzero quadratic and/or cubic vibronic coupling the above changes

in nuclear configuration are hindered (or even reflected) by the quadratic

barriers. As a result, the system remains longer at the minima (Fig. 3.5) than

at the barrier maximum area. The picture as a whole is that of hindered internal

rotations of the JT distortions.

Fig. 5.5. Energy levels for the quadratic E� e problem – solutions of
Eq. (5.24) – as functions of the ratio of the quadratic and linear vibronic
constants, �/� [5.20].
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Note that the solution of Eq. (5.24) in the form (5.25) shown in Fig. 5.5 is

valid for sufficiently small values of the quadratic barrier presented by the

� parameter. Indeed, for � values of the order of or larger than the quantum

of radial vibrations �ho� the motion along � and � cannot be separated

and the quadratic terms cannot be considered as a perturbation to the

ground vibrational state. To overcome this important limitation, a variational

calculation of the lowest vibronic energy level "E and "A was suggested [5.23].

As trial wavefunctions for the ground vibronic E and first excitedA1 levels one

may choose

wEð�; �Þ ¼ NE

cosð�=2Þ
sinð�=2Þ

� �
exp½v cosð3�Þ�q1

2 exp½uðq� 1Þ2=2�

wAð�; �Þ ¼ NA1
cosð3�=2Þ exp½v cosð3�Þ�q1

2 exp½uðq� 1Þ2=2�
(5:26)

where q¼ �/�0 and v and u are variational parameters.

With these functions, the numerical minimization of the total energy for

the APES parameter values l ¼ 2EE
JT=�ho� and g¼ 2�/�ho� yields the results

presented in Table 5.1. We see that for small g values (small � values) these

variational results are very similar to that obtained above in the perturbational

approach. However, for g> 2.6 (not shown in Table 5.1) the energy gap

3�¼E(A1)�E(E) (the tunneling splitting, see the next section) becomes nega-

tive, which is essentially different from the results in Fig. 5.5. This challenging

result is discussed in Section 5.3.

A somewhat similar treatment is possible for the particular case of the

T� (eþ t2) problem with EE
JT ¼ ET

JT and KE¼KT, when a two-dimensional

trough in the five-dimensional space of the e and t2 vibrations is realized

(Section 3.3). It was shown that, using polar coordinates to describe the

motion along the trough, the angular coordinates # and � can be separated

from the ‘‘radial’’ motions [5.6, 5.21]. The free motion along the trough

corresponds to the rotation of the Jahn–Teller distortion, and it can be

described by spherical functions Ylm(#, �). If EE
JT 6¼ ET

JT, then additional

humps and wells, corresponding to trigonal, tetragonal, and orthorhombic

extremum points, occur along the bottom of the trough (Section 3.3). In other

words, the two-dimensional trough is ‘‘warped,’’ quite similarly to the quad-

ratic E� e problem.

If the height of the barriers dividing the minima of the adiabatic potential is

less than the magnitude of the quantum of radial vibrations, then the angular

motion can be separated from the radial one by the adiabatic approximation,

in the same way as in the E� e case. The Hamiltonian of the slow (angular)

subsystem is
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H ¼ ð�hoEÞ2KE

6F 2
E

� 1

sin#

@

@#
sin#

@

@#

� �
� 1

sin2 #

@2

@�2

� �
þ Vð#; �Þ (5:27)

whereV (#, �) is the lowest sheet of the APES averaged over the coordinates of

the fast subsystem. This function can be expanded in a series with respect to

cubic harmonic functions. Cutting off this expansion after the fourth-order

harmonics, one obtains (see also [5.24])

Vð#; �Þ � �EJT þ�

�
Y4;0ð#; �Þ þ

ffiffiffiffiffi
5

14

r
½Y4;4ð#; �Þ þ Y4;�4ð#; �Þ�

�
(5:28)

whereEJT is given by (3.27), while� is here a coefficient, independent of # and�.

It can easily be checked that the APES (5.28) has the same extremum points

as the exact surface V(#, �). For instance, for negative � values the three

points with the coordinates

ð#; �Þ ¼ ð0; 0Þ; ðp=2; 0Þ; and ðp=2; p=2Þ (5:29)

Table 5.1. Lowest energy levels "E and "A, tunneling splitting 3�, and

dimesionless variational parameters v and u in the wavefunction (5.26) for the

E� e problem with the dimensionless linear vibronic coupling lE ¼ EE
JT=�hoE ¼ 2

as functions of the height of the barrier between the minima g¼ �/�hoE (at larger g
values 3� becomes negative) (data from [5.23])

2g

E level A level
Tunneling splitting
3�¼ "A� "Ev u "E v u "A

0.0

0.2 0.071 4.774 �2.590 0.036 4.544 �2.208 0.382

0.4 0.140 4.908 � 2.456 0.071 4.619 �2.134 0.322

0.6 0.206 5.019 �2.332 0.105 4.694 �2.062 0.270

0.8 0.269 5.104 �2.218 0.138 4.755 �1.993 0.225

1.0 0.329 5.165 �2.111 0.170 4.815 �1.926 0.185

1.2 0.385 5.219 �2.013 0.201 4.870 �1.861 0.152

1.4 0.438 5.271 �1.921 0.231 4.926 �1.799 0.122

1.6 0.489 5.298 �1.835 0.260 4.974 �1.738 0.097

1.8 0.536 5.336 �1.753 0.289 5.018 �1.679 0.075

2.0 0.581 5.356 �1.677 0.317 5.059 �1.621 0.056

2.2 0.623 5.374 �1.604 0.344 5.096 �1.565 0.039

2.4 0.663 5.400 �1.535 0.370 5.130 �1.511 0.024

2.6 0.701 5.415 �1.469 0.396 5.168 �1.457 0.012
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are tetragonal minima. For positive � values the minima are situated at four

points with the coordinates

ð#; �Þ ¼ ð#0; np=2Þ; n ¼ 1; 3; 5; 7 (5:30)

where cos#0 ¼ 1=
ffiffiffi
3

p
. These points prove to be of trigonal symmetry. At

arbitrary� values the surface (5.27) has an additional six extremum points at

ð#; �Þ ¼ ðp=4; np=2Þ; ðp=2; p=4þ np=2Þ; n ¼ 0; 1; 2; 3 (5:31)

which have orthorhombic symmetry and are always saddle points. These

results coincide qualitatively with those obtained in Section 3.3 for the linear

T� (eþ t2) problem.

The numerical diagonalization of the Hamiltonian (5.27) was carried out in

the same way as for the E� e problem. The rotational functionsYlm(#, �) were

Fig. 5.6. Vibronic energy levels for the T� (eþ t2) problem – solutions of the
Hamiltonian (5.27) – as functions of the parameter � of the APES (5.28), in
units ð�hoEÞ2KE=6F

2
E . The dashed lines show the energy at the minima of

APES (reprinted with permission from [5.6]. Copyright 1969 American
Physical Society).
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taken as a basis set for the calculations, the total function being presented by

the following expansion [5.6, 5.24]:

��gð#; �Þ ¼
X
lm

C
�g
lmYlmð#; �Þ (5:32)

The results obtained in [5.6] with all the terms up to l¼ 13 kept in the expan-

sion (5.32) are illustrated in Fig. 5.6. The motion of the system in this case can

be visualized as hindered rotations of the JT distortion, in much the same way

as in the case of the quadratic E� e problem.

5.3 Tunneling in JT systems

As mentioned in the introduction, the nonzero slope of the APES predicted by

the JT theorem for systems in degenerate electronic states (Section 2.5) cannot

be observed directly, so the real meaning of the JTE is in the far-reaching

consequences of the JT theorem. One of the first predicted observables in the

JTE was the tunneling splitting [5.1, 5.25] (originally, it was called inversion

splitting by analogy with inversion splitting in ammonia). In the majority of JT

problems under certain conditions (mostly strong quadratic coupling) there

are several equivalent APES minima divided by potential barriers. If the latter

are sufficiently high, the phenomenon of tunneling between the equivalent

minima resulting in relatively small (tunneling) splitting of the corresponding

energy levels should be expected.

Consider the E� e problem (Section 3.2). For sufficiently large quadratic

and/or cubic vibronic coupling terms when the quadratic barrier � in Eq. (3.30)

is of the order of, or greater than, the vibrational quanta �hoE, the APES

acquires three equivalent minima with high barriers between them (for the

T, G, and H terms the minima appear already in the linear approximation,

Sections 3.3 and 3.4). In the E� e problem with � � �hoE, the separation of

variables � and � performed in Section 5.2 is not valid, so the problemmust be

solved by another technique. Since the minima of the APES are deep enough,

local states arise at each of them, which in the limiting case of high barriers

between theminimamay be considered as quasistationary states. Therefore, as

far as the lowest vibronic states are concerned, the local states in the three

minima can be taken as a starting approximation in the calculations and then

modified due to their interactions (finite barrier height �) by means of pertur-

bation theory [5.25]. A similar approach is applicable to all JT systems with

several equivalent minima which are sufficiently deep, with high barriers

between them, and with the electronic states of different minima mutually

non-orthogonal (see below).
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Let us assume that in the absence of tunneling the system performs small

harmonic oscillations near the minimum, and for the lowest states localized in

the ith well the wavefunction can be taken as

CðiÞ
n ðr; QÞ ¼ w�ðr; QÞ�nðQ�QðiÞÞ (5:33)

wherew� (r,Q) is the electronic wavefunction for the lower sheet of the adiabatic

potential, and �n(Q – Q(i)) is the vibrational wavefunction in the ith well,

Q(i) being the coordinate of its minimum point. In particular, for the quadratic

E� e problem, Q(i) for the three minima are given in polar coordinates by

Eq. (3.28), and the frequencies of the harmonic vibrations near these minima

are determined by the corresponding curvatures of the adiabatic potential given

by Eqs. (3.31).

For the sake of simplicity the Born–Oppenheimer functions with fixed

nuclear coordinates in the electronic functions

CðiÞ
n ðr; QðiÞÞ ¼ w�ðr; QðiÞÞ�nðQ�QðiÞÞ (5:330)

will be used hereafter instead of the adiabatic ones given by Eq. (5.33), and we

assume that FE> 0 and GE> 0. Then, on substituting the minima coordinates

(3.28) into the expression of w� (r, Q(i)) from (3.32) and taking into account

Eq. (3.33), one finds the following three functions for the ground states in the

three minima:

Cð1Þ
0 ¼ #j i�0ðQ�Qð0ÞÞ

Cð2Þ
0 ¼

ffiffiffi
3

p

2
#j i � 1

2
"j i

 !
�0ðQ�Qð2ÞÞ

Cð3Þ
0 ¼ �

ffiffiffi
3

p

2
#j i � 1

2
"j i

 !
�0ðQ�Qð4ÞÞ

(5:34)

where the superscript n in Q(n) corresponds to the value n in (3.28).

In the absence of tunneling transitions the states (5.34) localized in the wells

have the same energy and form a triply degenerate term due to the equivalency

of the three minima. Assuming the tunneling to be weak (the criterion of weak

tunneling is given below), one can use perturbation theory to diagonalize the

full Hamiltonian (2.2) using the functions (5.34) as a basis set; the solution is

sought as a linear combination of the latter:

C ¼
X3
i¼1

CiC
ðiÞ
0 ðr; QÞ (5:35)

180 5 Solutions of vibronic equations



On substituting this expression into the Schrödinger equation, multiplying it

by CðkÞ�
0 on the left-hand side and integrating over the r and Q variables, we

obtain the following systemof equations for the energyE and the coefficientsCi:X
i

HkiCi ¼ E
X
i

SkiCi (5:36)

Here Ski is the overlap integral for the basis functions (5.34) (which are not

orthogonal) and Hki are the Hamiltonian matrix elements. A nontrivial solu-

tion of the system (5.36) is possible if

det Hik � ESikj j ¼ 0 (5:37)

For the E� e problem, by using symmetry considerations, one can easily

show that Hik¼H12, Hii¼H11, and Sik¼S12¼S, thereby reducing (5.37) to

H11 � E H12 � ES H12 � ES
H12 � ES H11 � E H12 � ES
H12 � ES H12 � ES H11 � E

������
������ ¼ 0 (5:38)

The three localized states (5.34) belong to a threefold reducible representa-

tion of the symmetry point group of the molecule, which decomposes into the

irreducible representationsA1þE (if FE< 0 orGE< 0, it will beA2þE). Since

the latter does not contain repeating representations, the symmetry-adapted

wavefunctions are the correct zeroth-order functions, and they can be found

directly using projection operators:

CA¼
1ffiffiffi
3

p ðCð1Þ
0 þCð2Þ

0 þCð3Þ
0 Þ

CEþ¼
1ffiffiffi
3

p ðCð1Þ
0 þ e2pi=3Cð2Þ

0 þ e4pi=3Cð3Þ
0 Þ

CE� ¼
1ffiffiffi
3

p ðCð1Þ
0 þ e�2pi=3Cð2Þ

0 þ e�4pi=3Cð3Þ
0 Þ

(5:39)

The initial triply degenerate energy level is split by tunneling into a singletA

and a doublet E,

EðAÞ ¼ CAh jH CAj i
CAjCAh i ¼ H11 þ 2H12

1þ 2S
(5:40)

EðEÞ ¼ CE�h jH CE�j i
CE� jCE�h i ¼ H11 �H12

1� S
(5:41)
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The magnitude of the tunneling splitting of the ground state is thus

3� ¼ EðAÞ � EðEÞ; � ¼ H12 �H11S

1þ S � 2S2
(5:42)

The matrix element H12 and the overlap integral S can be calculated

as follows. Owing to the multiplicative form of the basis functions (5.34)

the integration over the electronic variables can be carried out directly.

For the overlap of two vibrational functions from the near-neighbor

minima the meaning of the symmetrized vibrational coordinates Q(n) in

the minima should be clarified. Figure 5.7 illustrates the following choice

of the two coordinates Q
ðnÞ
# and Q

ðnÞ
" in the three minima as functions of

the Q# and Q":

Q
ð1Þ
# ¼ Q# � �0; Q

ð1Þ
" ¼ Q"

Q
ð2Þ
# ¼ � 1

2
Q# þ

ffiffiffi
3

p

2
Q" � �0; Q

ð2Þ
" ¼ � 1

2
Q" �

ffiffiffi
3

p

2
Q#

Q
ð3Þ
# ¼ � 1

2
Q# �

ffiffiffi
3

p

2
Q" � �0; Q

ð2Þ
" ¼ � 1

2
Q" þ

ffiffiffi
3

p

2
Q#

(5:43)

Fig. 5.7.General (Q#,Q") and local ðQðiÞ
# ; Q

ðiÞ
" ÞE-type symmetrized coordinates

at the minima in the E� e problem.
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where �0 is given by Eq. (3.28). In these coordinates the ground-state functions

of the two-dimensional harmonic oscillator in the two minima, 2 and 3,

respectively, are

�0ðQ�Qð2ÞÞ ¼ N exp �M$A

2�h
� 1

2
Q# þ

ffiffiffi
3

p

2
Q" � �0

 !2
� M$B

2�h

ffiffiffi
3

p

2
Q# þ

1

2
Q"

 !22
4

3
5

�0ðQ�Qð4ÞÞ ¼ N exp �M$A

2�h
� 1

2
Q# �

ffiffiffi
3

p

2
Q" � �0

 !2
� M$B

2�h

ffiffiffi
3

p

2
Q# �

1

2
Q"

 !22
4

3
5

(5:44)

Here M is the mass of the oscillator, $A and $B are the frequencies of the

normal vibrations (in the minimum configuration) determined by Eqs. (3.31),

�0 is given by Eq. (3.28), and N ¼ Mð$A$B=p2�h
2Þ

1
2 is the normalization

constant (reminder: Kn ¼ Mo2
n)

As a result of straightforward calculations, we obtain

S ¼ � 1

2
g; Hii ¼ �EE

JT þ 1

2
�hð$A þ$BÞ (5:45)

H23 ¼ H11S þ 3EE
JTgð9þ 54l� 6l3 � l4Þ
2ð9� l2Þð1þ 3lÞ2

(5:46)

where l¼$A/$B¼ [9GE/(KE – GE)]
2, EE

JT is given by Eq. (3.29), and g is the
overlap integral for the vibrational functions (5.44):

g ¼ 16l

3l2 þ 10lþ 3

� �2
exp � 6EE

JT

�h$A

l
1þ 3l

� �
(5:47)

Neglecting l2 compared with unity, we find [5.1, 5.25–5.27]

3� ffi 9gEE
JT

9þ 54l� 6l3 � l4

2ð9� l2Þð1þ 3lÞ2
(5:48)

In particular, if |GE|�KE, i.e. when l� 1, we have

3� � 18EE
JT

ffiffiffiffiffiffiffiffi
l=3

p
exp � 6lEE

JT

�hoE

� �
(5:49)

It follows from Eqs. (5.48) and (5.49) that the criterion of validity of the

perturbation theory used above requires that EE
JT 
 �hoE , which means that

there is at least one localized state in the well.
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The picture of deep minima of the APES separated by relatively high

barriers is typical for polyatomic systems in degenerate electronic states with

strong vibronic coupling. Therefore the tunneling phenomenon is a character-

istic feature of JT systems, and the method of calculation of the tunneling

splitting given above is, in general, valid for all these cases of strong coupling.

The physical meaning of the tunneling splitting is as follows. As discussed

above, if the APES has a continuum of equivalent minima (a trough), the

orbital momentum (the sum of the momenta of electronic and nuclear

motions) is preserved, and free rotations of JT distortions of the nuclear

framework take place (Section 5.2). For a finite number of minima when the

potential barriers between them are small compared with the quanta of radial

vibrations, the rotations of the JT distortions are hindered.

When the barrier height becomes comparable to or larger than the quantum

of radial vibrations, the angular motion cannot be separated from the radial

motion, and the idea of rotation of the JT distortion loses physical sense. In

this case the dynamics of the system is well described by localized vibrations at

the minima accompanied by tunneling between neighboring equivalent

minima. Analogously to the previous cases, this phenomenon can be visualized

as pulse motions of the JT distortion: the distorted nuclear configuration at the

minimum periodically changes its orientation (‘‘fluctuates’’) in space in accor-

dance with the symmetries of the other minima equivalent to the first one. It

does this with a frequency proportional to the tunneling splitting, which is

much lower than the frequency of vibrations within the well. Note that in all

the cases discussed above the term ‘‘motion of JT distortions’’ means the

concerted motions of both the nuclear framework and the electrons.

Although outwardly the pulse motions look like fluctuations of the distorted

configuration, in origin these two types of motion are quite different, the latter

being driven by accidental, thermally controlled stochastic processes, while the

pulse motions are just quantum-mechanical tunnelings that occur when the

system is prepared in one of the minima.

The free and hindered rotations of JT distortions and their pulse motions form

a new type of intramolecular motion (which should not be confused with the

usual rotation of the molecule or its separate parts); it essentially distinguishes

the JT systems from non-JT ones.

The tunneling splitting in electronic T states can be considered in a similar

way. In the T� (eþ t2) problem without tunneling (Section 3.3) the ground

vibronic states localized within each of the four trigonal minima of the APES

form a fourfold degenerate term. In the cubic symmetry groups there are

no fourfold irreducible representations, and therefore the fourfold degeneracy

is accidental. The tunneling removes the degeneracy, resulting in a singlet
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A1 (or A2) and triplet T2 (or T1 ) state, A1þT2 (or A2þT1). The magnitude of

the tunneling splitting is (cf. Eq. (5.42))

4� ¼ EðAÞ � EðTÞ; � ¼ H12 �H11S

1þ 2S � 3S2
(5:50)

For the T� t2 problem, if the harmonic approximation is employed for the

states localized in the wells, and taking into account the redetermined frequen-

cies of vibrations near the bottom of the wells given by Eqs. (3.50) and (3.51),

we obtain [5.1, 5.26]

4� � 2ET
JT exp �1:24

ET
JT

�hoT

� �
(5:51)

where the JT stabilization energy is given by Eq. (3.47). Note that here 4�> 0,

and hence the ground state is a vibronic triplet with the same symmetry

properties as the initial electronic term. However, this inequality may be

reversed by strong quadratic coupling (Section 5.4).

The tunneling splitting in the presence of six orthorhombic minima of

the APES in the quadratic T� (eþ t2) problem (Section 3.3) results in two

lowest vibronic triplet states T1 and T2 with the splitting magnitude given by

[5.1, 5.27–5.30]

6� ¼ 3EO
JT

2

24� 28B� 2B2 þ 9B3

ð4� 3BÞð4� 3B2Þ
S

1� 4S2
(5:52)

where the expressions for B and the JT stabilization energy EO
JT are given by

Eqs. (3.57) and (3.58), respectively, and

S ¼ exp � 3EO
JT

2�ho
12� 20B� 11B2

ð4� 3BÞð4� 3B2Þ

� �
(5:53)

In this case too, the ground state is a vibronic triplet with the same trans-

formation properties as the initial electronic T term. Table 5.2 summarizes

some of these results.

The magnitude of the tunneling splitting, as shown above, is determined by

the overlap S of the localized states of nearest-neighbor minima, i.e., by the

behavior of the tails of the wavefunctions under the potential barriers. From

this point of view the harmonic approximation used above with oscillator

functions of the type (5.44) may lead to a rather crude approximation for the

splitting, because these functions, although satisfactory near the minimum

points, decrease too fast in the most important region under the barrier. This
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fault is partly removed by diagonalizing the exact Hamiltonian, which involves

a variational procedure. However, the basis set of (5.34) and (5.44) is very

limited, and therefore the results obtained above should be considered as

semiquantitative estimations of the magnitude of the tunneling splitting.

These results can be improved in two ways. First, one can increase the number

of vibrational functions in the basis set and evaluate the tunneling splitting

numerically with a computer program. In this way the splitting can be obtained

with any desired accuracy (see in the next section). The second method is to

improve the behavior of the basis functions in the barrier region. This can be

done by an appropriate choice of parametrically dependent probe functions in a

variational procedure [5.23] or by involving semiclassical approaches (see below).

Table 5.2. Expressions for energies and wavefunction coefficients

(in formulas of the type (5.35) with H11¼ 0 and H12¼U) for tunneling

states in JT systems with three, four, and six equivalent minima

Number of
equivalent
minima

Symmetry of
the tunneling
states Energy

Wavefunction coefficientsa

N�(C1�, C2�, . . ., Cr�)

3

E � U

1� s

½6ð1� SÞ��
1
2ð2;�1;�1Þ

½2ð1� SÞ��
1
2ð0; 1;�1Þ

(

A 2U

1þ 2s
½3ð1þ 2SÞ��

1
2ð1; 1; 1Þ

4

T � 3U

1� s

½4ð1� SÞ��
1
2ð1;�1;�1; 1Þ

½4ð1� SÞ��
1
2ð1;�1; 1;�1Þ

½4ð1� SÞ��
1
2ð1; 1;�1;�1Þ

8><
>:

A U

1þ 3s
½4ð1þ 3sÞ�

1
2ð1; 1; 1; 1Þ

6

T1

2U

1þ 2s

½4ð1þ 2SÞ��
1
2(1, 1, 1, 1, 0, 0)

½4ð1þ 2SÞ��
1
2ð1; 0;�1; 0; 1; 1Þ

½4ð1þ 2SÞ��
1
2ð0;�1; 0; 1; 1;�1Þ

8><
>:

T2 � 2U

1� 2s

½4ð1� 2SÞ��
1
2ð1;�1; 1;�1; 0; 0Þ

½4ð1� 2SÞ��
1
2ð�1; 0; 1; 0; 1; 1Þ

½4ð1� 2SÞ��
1
2ð0;�1; 0; 1;�1; 1Þ

8><
>:

aN� is a common factor.
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Note also that the oscillator wavefunctions in the wells of the type (5.44)

can be regarded as coherent states of harmonic oscillators [5.31] with the

shift parameters determined by the minimum point coordinates. Hence the

tunneling splitting can be evaluated by the method of coherent states [5.32]

(similar anharmonic coherent states with Morse potentials are considered

in [5.33]). These calculations in essence repeat the first paper’s [5.25] approach.

In these papers the splitting of the degenerate vibrational frequencies at

the minimum point due to reduced symmetry is ignored. Meanwhile, the

difference in frequencies of vibrations in the minima (e.g., different frequencies

of radial and angular vibrations in the minima of the E� e problem) is very

important in evaluation of the magnitude of the tunneling splitting because

it changes the vibrational wavefunctions in the minima and their overlap in the

region under the potential barrier. The solutions (5.48), (5.49), (5.51), and

(5.52) were obtained by directly taking into account this vibrational frequency

splitting by means of parameter l¼$A/$B. This anisotropy of vibrations

was also taken into account in more recent works on tunneling splitting in

icosahedral systems [5.34].

A more accurate behavior of the wavefunctions in the region under the

barriers can also be reached within the quasi-classical approximation. In the

simplest cases the multidimensional problem can be reduced to one dimension

along the line of steepest slope from the barrier top to the minimum point

(Fig. 3.4). Postponing the discussion of this approximation to the end of

this section, we present here some results obtained by calculation of the tunne-

ling splitting in the E� e and T� (eþ t2) problems using the so-called

Wentzel–Kramers–Brillouin approximation [5.35].

For the three minima of the APES of the E� e problem the quasi-classical

tunneling splitting is

3� ¼ 3�h$B

2p
exp � 1

�h

Z b

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m½"�ðqÞ � E0�

p
dq

� �
(5:54)

Here, as above,$B is given by Eq. (3.31), a and b are the turning points at the

entrance to and exit from the forbidden region under the barrier, respectively,

"�(q) is given by Eq. (3.23),E0 is the energy of the ground state in theminimum

configuration, m is the effective mass of the ‘‘particle’’ corresponding to the

generalized coordinate q [5.35], and the integration is carried out along the line

of steepest slope from the top of the barrier to the minimum (Fig. 3.4).

Equation (5.54) has a clear-cut physical meaning: it represents the prob-

ability of decay per second of the metastable state in the well. Indeed � is

proportional to the number of ‘‘particle’’ collisions with the barrier wall per
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second,$B/2p, and to the probability of tunneling through the barrier at each

of these collisions,

D ¼ exp � 1

�h

Z b

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m½"�ðqÞ � E0�

p
dq

� �

The factor of three in (5.54) is related to the equal probability of the

‘‘particle’’ occurring at any of the three minimum configurations, i.e., to the

existence of three equivalent metastable states.

Evaluating the integral in Eq. (5.24) and assuming that GE�KE, we obtain

[5.35] (cf. Eq. (5.49))

3� � 2:46�hoE
l3EE

JT

�hoE

� �
exp � 16lEE

JT

9�hoE

� �
(5:55)

Analogously, for the T� t2 or T� (eþ t2) problems with four equivalent

trigonal minima the tunneling splitting of the ground vibronic level is given by

the expression

4� ¼ 2�h$E

p
exp � 1

�h

Z b

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m½"ðqÞ � E0�

p
dq

� �
(5:56)

Here $E � oT

ffiffiffiffiffiffiffiffi
2=3

p
is the frequency of the ‘‘particle’’ collisions with the

barrier wall, "(q) is the lower sheet of the APES, and the integral has to be

taken again along the steepest slope path.

Note, however, that in this case the tunneling is in fact multidimensional

[5.27]. Figure 5.8 illustrates the equipotential cross-sections of the APES for a

T� t2 problem of a cubic system mapped onto the surface of a unit sphere

x2þ y2þ z2¼ 1 (we remind you that the trigonal distortion coordinates are

Q� � yz; Q� � xz; andQ	 � xy). There are eight trigonal extrema points (four

saddle points and four minima separated by six orthorhombic saddle points

along x,�x, y,�y, z, and�z. In each of the minima wells the system has three

equivalent ways to tunnel to the nearest-neighbor equivalent well via the

steepest descent (shown by a broken line), which connects two near-neighbor

vertexes in a cubic system, and two tetrahedral vertexes in a tetrahedral system

(note that this tunneling sidesteps the orthorhombic saddle points). It was

shown [5.27] that in spite of this three-dimensional nature of the tunneling, the

formula (5.56) for the magnitude of the tunneling splitting obtained by

approximate reduction of the problem to the one-dimensional case remains

valid, owing mostly to the high symmetry of the problem.
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Numerical calculation [5.36] of 4� using Eq. (5.56) requires knowledge of

the APES curve "(q) along the steepest descent, which is a curvilinear motion.

This may involve further simplification and corrections beyond the adiabatic

approximation [5.27, 5.29, 5.35], in particular, the inclusion of a centrifugal

term in the equation of the APES (Section 5.2). Further discussion of this

important problem is given in Section 5.4.

Some general features of the tunneling splitting can be obtained from

symmetry considerations [5.27, 5.37–5.39]. If we denote the symmetry group

of the system in the undistorted (reference) state by G and that in the distorted

(at the minimum) state by L (which is a subgroup of G; see also Section 3.1),

than the factor group F¼G/L (G¼F�L) is important to establish the possi-

ble tunneling energy levels. In particular, for sufficiently deep minima (strong

enough vibronic coupling) when the overlap integral of two near-neighbor well

wavefunctions Ci and Cj may be neglected, the tunneling splitting is deter-

mined by the resonance integrals Cih jH Cj

�� 	
(cf. Eqs. (5.42) and (5.50)).

The formula for the energy of any tunneling level (not to be confused with

the magnitude of the tunneling splitting n� in Eqs. (5.42) and (5.50)) is [5.27]

E� ¼
X
k

mkð�ÞH1k (5:57)

whereH1k is the resonance integral between the first and kth minima (the same

for the whole group of equivalent minima labeled by k),mk(�) is the weight of

2

1

3′

x y

z

4

Fig. 5.8. Illustration to the multidimensional nature of the tunnelling in
the T� t2 problem by means of equipotential cross-sections of the APES
mapped onto the surface of a unit sphere x2þ y2þ z2¼ 1. The minima
wells are labeled 1, 2, 3, and 4, with the corresponding antipodal doubles as
10, 20, 30, and 40. The broken line is the steepest descent between the minima
1 and 30 [5.27].
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equivalent 1–k tunnelings, and the sum is taken over all the non-equivalent

groups of equivalentminima. Themultidimensional tunneling is thus reduced to

a sum of much simpler tunnelings between the wells 1 and k that is determined

by steepest descent along the APES between these minima.

On the other hand, themk(�) values are fully determined by the symmetry of

the factor group F¼G/L. There are no general formulas for these values; they

should be evaluated for each particular case [5.27]. For instance, for the

icosahedral H� h problem the reference symmetry group is Ih, and there are

ten trigonal minima on the APES with local symmetry D3d (Section 3.4).

Accordingly, the factor group is Ih/D3d¼D5. The simplest system with all

the elements of D5 is a five-center regular pentagon. It has two kinds of

intercenter resonance integrals: between two near-neighbor centers H1a and

between any center and its second neighborH1b. Hence there are two terms in

the sum (5.57). Without tunneling, the ten equivalent states in the ten minima

form a tenfold accidentally degenerate term, which splits into three levels, A,

G, and H, with the following energies [5.40]:

EA ¼ 6H1a þ 3H1b; EG ¼ H1a � 2H1b; EH ¼ �2H1a þH1b (5:58)

By comparison of Eq. (5.58) with (5.57) we find that ma(A)¼ 6, mb(A)¼ 3,

ma(G)¼ 1, mb(G)¼�2, ma(H)¼�2, and mb(H)¼ 1.

For a tetrahedral Td reference group and trigonal C3 minima the factor

group F¼Td/C3v¼D2. The simplest system withD2 symmetry is a four-center

tetrahedron, for which there is only one type of tunneling resonance integral,

H12¼H13¼H14.

As for the tunneling between two minima of the strong pseudo JT effect

(Section 4.1), the problem may be reduced to conventional tunneling between

two equivalent wells with a barrier between them [5.42], provided the influence

of the excited state (the nonadiabacity terms in (4.15)) may be neglected.

One of the features of the solution (5.48) is that for small l values 3�> 0 and

hence the doublet E level of the tunneling splitting is lower than the singlet A.

Together with similar results for the JT T-term problems (where the vibronic

T level is the lowest), this prompted generalizations that formed a stable

paradigm: the lowest vibronic levels have the same symmetry and degeneracy

as the initial electronic state. This paradigm has been broken recently when it

was shown by direct calculations for large quadratic terms, and in some cases

even for specific values of only linear terms, that a crossover of the ground and

next excited vibronic levels takes place, making the ground-state vibronic

energy level nondegenerate.
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This crossover phenomenon follows already from the solutions obtained

above in the approximation of strong vibronic coupling. As is seen from

Eq. (5.48), in the JT E� e problem the crossover between the vibronic E and

A energy levels takes place at l
 2.587, where 3� becomes negative. Note that

nondegenerate ground states were obtained already in the first calculations of

the tunneling splitting [5.25] performed for the case of very large (infinite)

barriers between theminima, but since this result contradicted that obtained in

more accurate calculations for finite (small) barriers [5.20], and especially

since it contradicted the conclusions from the Berry-phase implications

(Section 5.7), it was attributed to the rough approximation used that yielded

the ‘‘wrong sign’’ of the tunneling splitting.

An attempt to elucidate this unclear situation was made by means of numer-

ical calculations of 3� in the E� e problem using the variational method with

two parameters [5.23] described in Section 5.2. Again, for large quadratic coup-

ling a vibronic level E–A crossover takes place, and the A level becomes the

ground one (see the end of Table 5.1; the negative 3�¼ "A � "E values were not

included in Table 5.1 because of their possible inaccuracy, in view of the above

contradiction, but they follow directly from the calculations outlined in [5.23]).

A correct solution of this problem was given recently [5.43, 5.44], where it

was shown that the crossover phenomenon emerges from direct numerical

calculations of Eqs. (2.6) with the APES given by Eq. (3.38) to which a fourth-

order term f�4 is added in order to provide the necessary stability of the system

as a whole (with large quadratic terms without fourth-order terms the system

decomposes). For the E� e problem the results are illustrated in Fig. 5.9(a),

where the calculated energy difference between theA and E vibronic levels as a

function of the linear coupling k and quadratic coupling g is given.We see that

for any g value (in the region of large enough g values) there is a k value for

which the two levels intersect and the nondegenerate A level becomes the

ground state.

The interpretation of this effect is that for sufficiently large g values the three

additional conical intersections discussed in Section 3.2 (see Eq. (3.9) and

Figs. 3.8 and 3.9), approach the central conical intersection, thus creating an

alternative pass for the tunneling between the near-neighbor minima [5.43]

(Fig. 5.10). This additional pass goes around all the four conical intersections,

in contrast to that for small g values, which encircles only one, the central

conical intersection.

In a conjecture with the Berry-phase problem (Section 5.7) this means that

by encircling one conical intersection, the wavefunction changes sign, resulting

in the ground state with a half-integer quantum number and double degen-

eracy. If the four conical intersections are encircled, the phase of the
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Fig. 5.9. Illustration to the vibronic energy level E–A crossover in JT E� e
problems: the absolute values of the energy difference |EA – EE| between the
lowestA and E levels (a) and the ratios of the tunneling rates via paths P1 and
P2 plotted as |exp(S1�S2)� 1|, as functions of k for f¼ 0.05 and three values
of g. Calculated points are indicated by þ and polynomially interpolated
curves for the values g¼ 2.0, 1.9, and 1.8 are depicted by solid, dotted, and
dash–dotted lines, respectively. Inset: the g versus k values at the crossing
points EA¼EE (solid line) and at S1¼S2 (dotted line) (reprinted with
permission from [5.43]. Copyright 1999 American Physical Society).

Fig. 5.10. The APES of a JT E� e system for parameter values k¼ 0.9, g¼ 2,
and f¼ 0.05: (a) cross-sections with (solid line) and without (dotted line)
the Born–Huang contributions at Q2¼ 0. C1 and C2 indicate conical
intersections, while P1 and P2 indicate two saddle points; and (b) contour
plot of the APES; * and þ indicate a conical intersection and a minimum,
respectively. The two tunneling paths P1 and P2 of steepest descent are shown
by thick lines (reprinted with permission from [5.43]. Copyright 1999
American Physical Society).
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wavefunction does not change, and a double degeneracy of the ground state is

not required. The crossing of the two levels, A and E, and a nondegenerate

ground state A emerges when the tunneling path around all the four conical

intersections is lower in energy. Approximate calculations for the two tunnel-

ing passes illustrated in Fig. 5.9(b) and 5.10 confirm this interpretation [5.43].

For a similar (but more complicated) T� t2 problem with quadratic and

fourth-order coupling terms included [5.44] there are four trigonal and six

orthorhombic minima, conventionally shown in Fig. 5.11. They are separated

by saddle points and conical intersections. Distinct from the much simpler

E� e problem where the quadratic terms produce an additional (to the central

one) three conical intersections, in the T� t2 problem with quadratic coupling

there are four lines of conical intersections between the trigonal minima that

originate from the center of the tetrahedron (1, 2, 3, and 4 in Fig. 5.11) and

proceed along the four trigonal directions that cross the centers of its four faces

(Fig. 5.12), plus six lines of conical intersections that connect each two of the

four points 1, 2, 3, 4, as indicated in Fig. 5.12.

An easier way to visualize this rather complicated topology is to look into

cross-sections. Figure 5.13 brings one such cross-section perpendicular to one of

the lines of conical intersections, showing the energy contours around the three

original minima, 1, 2, and 3, and three orthorhombic minima, A, B, and C,

Fig. 5.11. A schematic presentation of the positions of the six orthorhombic
minima A, B, C, D, E, and F, and four trigonal minima 1, 2, 3, and 4 in the
space of the x, y, and z coordinates of the t2 displacements in the T� t2
problem. The vibronic coupling parameters used are k¼ 1, g¼ 1.6, and
f¼ 0.1 (reprinted with permission from [5.44]. Copyright 2000 American
Institute of Physics).
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Fig. 5.12. The ten lines of conical intersection in the lowest potential-energy
surface of the T� t2 problem. Four of them drawn by thick lines extend from
(0, 0, 0) in the directions of (1, 1, 1), (1,�1,�1), (�1, 1,�1), and (�1,�1, 1).
The other six lines connect two of the following four points: (2k/3g, 2k/3 g, 2k/
3g), (2k/3g,�2k/3g,�2k/3g), (�2k/3g, 2k/3g,�2k/3g), and (�2k/3g,�2k/3g,
2k/3g). The vibronic coupling parameters are k¼ 1, g¼ 1.6, and f¼ 0.1
(reprinted with permission from [5.44]. Copyright 2000 American Institute of
Physics).
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Fig. 5.13. (a) Cross-sections of the lowest APES in the X–Y plane at the
trigonal minima (Z¼ 0.157) for k¼ 1, g¼ 1.6, and f¼ 0.1. The letters A, B,
and C and numbers 1, 2, and 3 denote three orthorhombic and three trigonal
minima, respectively. Conical intersections are located at (X, Y)¼ (0, 0)
and�0.45[cos(2np/3), sin(2np/3)], n¼ 0, 1, 2. (b) The same around
(X, Y)¼ (0, 0), enlarged; * indicates the position of conical intersections
(reprinted with permission from [5.44]. Copyright 2000 American Institute
of Physics).
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and the central conical intersection plus three lateral conical intersections. The

six additional conical intersections between the orthorhombic minima are out-

side the picture in the well-seen directions.

The positions of minima and conical intersections depend on the parameter

values. For strong linear coupling and weak quadratic coupling only trigonal

minima are important and only the four lines of intersections that originate

from the center (Fig. 5.12) are significant in formation of the energy spectrum.

On increasing the quadratic coupling, the orthorhombic saddle points become

minima and the six additional lines of conical intersection become significantly

involved. As a result, similar to the E� e case, a new tunneling path occurs,

which encircles an even number of conical intersections. For parameter values

for which this path is lower, the nondegenerate A state becomes the ground

state. Figure 5.14 illustrates some of these results [5.44]. As in the E� e

problem, the parameter f stands for the contribution of the fourth-order

terms that provide the necessary chemical stability of the system.

For some problems the crossover of vibronic energy levels takes place

already in the approximation of linear coupling, i.e. without quadratic and

higher-order terms. This result emerged for the first time in the investigation of

the icosahedral H� h problem [5.40] (see also [5.41]), which contributed sig-

nificantly to the solution of the vibronic ground-state problem and the collapse

of the paradigm that the vibronic ground-state symmetry and degeneracy

should be the same as that of the initial electronic term. Figure 5.15 depicts
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Fig. 5.14. The energy difference between the lowest T and A vibronic states
for f¼ 0.1 (a) and f¼ 0.01 (b), as a function of k and g. Thick lines are zero
contour lines. The letters T and A denote the regions of T and A ground
states, respectively (reprinted with permission from [5.44]. Copyright 2000
American Institute of Physics).
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the results of the calculations [5.40] that show explicitly that at a certain value

of the vibronic coupling constant k the higher-in-energy A level crosses the

lower one (H), thus becoming the ground state at higher values of k. The

explanation of the origin of the crossover in this case is in principle similar to

that for the E� e and T� t2 problems: for theH� h problem with ten trigonal

minima there are two kinds of possible passes of tunneling between two near-

neighbor wells, which are shown to generate different Berry phases, p and 0

[5.45] (see also [5.27]). If, depending on the vibronic coupling constant k, the

former pass dominates, the lowest vibronic level isH (with the same symmetry

and degeneracy as the reference electronicH term), while for the pass with no

Berry phase that dominates at larger k values, the level order reverses and the

nondegeneate A level becomes the ground state. Further developments in the

solution of this problem using higher-level investigation of the APES topology

are seen in [5.46].

Similar results were obtained for the T� (eþ t2) problem [5.47]. Numerical

solutions of Eq. (2.6) for this case yield results that are partially illustrated in

Fig. 5.16, from which it is seen that for relatively large coupling to the trigonal

distortions, for instance, for kt¼ 5 and a tetragonal-to-trigonal ratio of vibra-

tional frequencies equal to 5, there is a range of constants of vibronic coupling

to tetragonal displacements ke � 1.6–2.7 for which the tunneling splitting

"A� "T becomes negative and theA level is the lowest, which is quite similar to

the above cases of E� e, T� t2, andH� h problems. The physical explanation

Fig. 5.15. Tunneling splitting and A–H level crossover as a function of the
linear coupling constant k in the H� h problem with D3d minima (in
�ho units). At certain values of k the EA–EH splitting becomes negative and
the nondegenerate A level becomes the ground state (the EG–EH splitting is
also shown) (reprinted with permission from [5.40]. Copyright 2000
American Institute of Physics).
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of this result is expected to be similar to the previous ones: there should be at

least two different paths between the equivalent minima, which have different

energy barriers and different wavefunction (Berry) phase shifts. However, so

far the attempt to reveal the two competing paths (similar to the E� e

case above [5.43]) using a simple APES with either trigonal or tetragonal

minima has been unsuccessful [5.48]. This does not influence the result of

the exact numerical solution [5.47]: the analytical APES used in [5.48] is far

from being sufficiently accurate because it does not include the centrifugal

energy (Section 5.2), which was shown to be very important in these problems

[5.43, 5.44].

For the parameter values under consideration the system has four trigonal

minima, plus three tetragonal and six orthorhombic saddle points (Section 3.3).

The paths connecting three minima and going across the tetragonal saddle

points have a trivial Berry phase p that results in a vibronic T ground-state

energy level, while for passing through the orthorhombic saddle points the

Berry phase is zero, leading to the nondegenerate ground-state A level. An

energy analysis of these two paths shows that when the e-mode coupling is very

weak, the tetragonal paths are forbidden: the only paths accessible are the

orthorhombic paths as in the T� t2 problem. The tetragonal paths become

significant when the couplings to e and t2 displacements become comparable

(and in this case the problem is similar to the H� h one in Section 3.4). This

mechanism explains the origin of the vibronic T–A energy-level crossing at
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Fig. 5.16. Calculated tunneling splitting E(A) – E(T2) as a function of the kE
coupling constant in the linear T� (eþ t2) problem with �hoE=�hoT ¼ 5 (in
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certain values of vibronic coupling parameters and the occurrence of the

nondegenerate ground state A at larger couplings found in the numerical

diagonalization of the linear T� (eþ t2) problem [5.47].

The change of the ground-state symmetry and degeneracy is most impor-

tant in the spectroscopy and low-temperature dynamics of the system

(Sections 6.1.2 and 8.2). It is particularly important for the theory of first-order

vibronicreductionfactors,which is invalid if the symmetryof thegroundvibronic

energy level is different from that of the reference electronic state (Section 5.6).

Amore general conclusion from the works on tunneling splitting that lead to

either degenerate or nondegenerate ground states as a function of the vibronic

coupling parameters, illustrated above, is that the orbital degeneracy of the

ground term is not necessarily related to the global symmetry of the system, it

is rather dependent on internal interactions. A somewhat similar situation

emerges in the so-called spin crossover phenomenon in transitionmetal complexes

in which the ground-term orbital and spin degeneracy changes from high-spin

to low-spin configuration as a function of the strength of the ligand field

(see, e.g., in [5.49]).

In a series of papers (see [5.48, 5.50] and references therein, as well as

examples mentioned above and in Sections 5.4–5.6 and 7.5) vibronic energy

levels and tunneling splitting in systems with E� e, T� t, T� (eþ t2), and

icosahedral symmetry problems with strong vibronic coupling were calculated

using an approach which is in essence similar to that discussed above in

this section. The total wavefunction is presented as a linear combination of

the wavefunctions in the equivalent minima (as in (5.39)), but the latter

(e.g., (5.44)) are obtained by means of unitary transformations (Section 5.4).

In the earlier works the anisotropy of vibrations in the minima, mentioned

above, was ignored, but it was taken into account in more recent publications

by means of a scaling transformation [5.34].

5.4 Numerical methods and general solutions

Approximate analytical solutions of the vibronic equations (2.6) are possible

in limiting cases of very weak or very strong vibronic coupling and for a limited

number of lowest vibronic states, as outlined in the previous three sections.

A series of other analytical methods [5.51–5.54] were employed to overcome

these limitations in the solution of JT (mostly E� e) problems. However, in

general cases with arbitrary vibronic coupling constants (that include the

majority of JT systems) numerical solutions are unavoidable; some of them

arementioned above. The simplest approach to this problem followswell-known

methods of quantum chemistry by presenting the unknownwavefunctions of the
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vibronic states sought as an expansion over a finite number of zeroth-order

basis functions – solutions for the reference undistorted configuration.

For example, in the T� t2 problem the wavefunction of the undistorted con-

figuration in the adiabatic approximation is presented as a product of

the threefold degenerate electronic state C�g, g¼ a, b, c, and three-

dimensional oscillator functions �nxnynzðQÞ ¼ jx; nxi  jy; nyi  jz; nzi, where
x; nxj i; jy; nyi, and z; nzj i are the corresponding one-dimensional harmonic

oscillators, nx, ny, and nz being their vibrational quantum numbers. The

wavefunction of the vibronic state �0g0 is sought as the following expansion:

C�0g0 ðr; QÞ ¼
X
g

X
nx;ny;nz

Cð�0g0Þ
g;nx;ny;nzC�gðr; QÞ�nxnynzðQÞ (5:59)

where the coefficients C
ð�0g0Þ
g;nx;ny;nz should be determined from the condition of

minimum energy of the Hamiltonian (2.2) with the vibronic coupling from

Eq. (2.14). By diagonalizing this Hamiltonian we come to a secular equation

the order of which is determined by the number of functions in the expansion

(5.59), which is obviously limited by the computer time and cost. For instant,

in the T� (eþ t2) problem, if the vibrational functions of the lowest

unperturbed e and t2 vibrations up to n¼ 8 are included in the basis of

calculations, the secular equation to be solved has the order 3861� 3861,

and if the spin–orbit interaction is included, the matrix becomes of order

15 444� 15 444 (the group-theoretical classification by irreducible represen-

tations of the symmetry group reduces these dimensions by a factor of 3–4).

On the other hand, in order to obtain accurate results larger numbers of basis

functions should be included.

Therefore this approach has important limitations. Although it fares well for

weak and intermediate coupling, it is practically unacceptable for the case of

strong vibronic coupling, when the vibronic states are localized in the minima

where they are significantly different from the basis functions of non-displaced

oscillators. It is obvious that the stronger the vibronic coupling, the more

terms of the expansion (5.59) must be kept, and the greater the dimensionality

of the Hamiltonian matrix. The algorithms of diagonalization of the matrix

that are usually used in numerical calculations require storage of the whole

matrix in the operative memory. If the dimensionality of the basis space (i.e.,

the number of terms in the expansion (5.59)) is N, then the number of the

operative memory cells needed for computer storage is proportional to N2.

The restricted size of the operative memory of the computer thus determines

the upper limit for the vibronic constant values for which the numerical

diagonalization of the vibronic Hamiltonian in the above scheme gives
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reasonable results. Another limitation is the fact that the finiteness of the basis

set influences the accuracy of the results. The nearer the energy of the states

under consideration to the upper limit of the energy spectrum of the basis

states, the less accurate the results. Therefore reasonable accuracy can be

obtained only for a relatively small number of the lowest vibronic states.

In order to weaken these constraints symmetry considerations are usually

employed. An example of such symmetry-based simplification is considered

above in Section 5.2, where in the solution of the E� e problem the radial and

angular motions are separated, and the numerical method is applied to the

angular motion only. In more rigorous solutions symmetry-adapted basis sets

in (5.59) simplify the matrix Hamiltonian significantly [5.1].

The first numerical results for the vibronic energy levels and wavefunctions

of the linear E� e problem as functions of the dimensionless vibronic constant

were obtained in [5.8, 5.55]. As expected, for small values (l � 0:25) of the

dimensionless vibronic coupling l ¼ EE
JT=�hoE the positions of the vibronic

levels resulting from the numerical solutions agree well with that obtained

from the analytical expression (5.1) for the weak coupling case, while for large

values of l they follow expression (5.18). With the energies and wavefunctions

obtained the authors calculated the probabilities of transition to these states

from the vibrational states of the nondegenerate electronic A term, and vice

versa (A ! E and E ! A transitions). The resulting spectra are discussed

in Section 6.1.

The first numerical calculations for the T� t2 problem were carried out in

[5.56]. The vibronic energy levels as functions of the ratio ET
JT=�hoT , illustrated

in Fig. 5.17, were obtained using expansion (5.59) simplified by symmetry

considerations. It is seen that without vibronic interactions the spectrum

contains equidistant levels spaced according to those of the three-dimensional

oscillator En ¼ �hoT ½nþ ð3=2Þ�. In the other limiting case of very strong vibro-

nic coupling, all the levels are fourfold degenerate (in accordance with the four

minima of the APES) and join into two groups of equidistant levels with steps

�E ¼ �hoT ¼ �hoA and �E ¼ �hoT

ffiffiffiffiffiffiffiffi
2=3

p
¼ �hoE , respectively; these two fre-

quency distances are due to splitting of theoT frequency into two components:

oA1
¼oT and oE ¼

ffiffiffiffiffiffiffiffi
2=3

p
oT in the trigonal minima (Section 3.3). In the area

where ET
JT=�hoT 
 2, the levels correspond to those predicted by the theory of

tunneling splitting (Section 5.3).

The same approach was used in the papers [5.57, 5.58] for numerical solu-

tion of the quadratic E� e and �8� e problems. The vibronic energy levels as

functions of the quadratic coupling constant are similar to the approximate

results given in Fig. 5.5. In the limit of strong coupling corresponding to deep
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APES minima, the lowest energy levels are grouped in tunneling multiplets,

forming almost equally spaced sets that correspond to small vibrations at the

bottom of the minima. However, there is no quantitative agreement between

these results and those of Fig. 5.5. The differences becomemore important as the

vibronic constant decreases; at EE
JT=�hoE92:5 only the lowest vibronic doublet

and singlet may be satisfactorily described in terms of the results of Section 5.2.

For the zero value of the linear vibronic constant the Hamiltonian of the

quadratic E� e problem reduces to that of the RTE (Section 4.4). Figure 5.18

illustrates the vibronic energy levels for a RT system obtained in [5.58] by

numerical diagonalization of theHamiltonian. In accordance with Eq. (4.111),

for the quadratic coupling constant g¼KE the lowest sheet of the adiabatic

potential is planar. As seen fromFig. 5.18, for this value of g the vibronic levels

condense into a continuous spectrum. Similar ideas were employed for numer-

ical solutions of the JT (AþB)� b [5.59] and (AþE)� e problems [5.60, 5.61],

as well as the RT problem (AþE)� e [5.62].

Fig. 5.17. Vibronic energy levels for the linearT1� t2 problem as a function of
ET
JT=�hoT [5.56]. For the T2� t2 problem the level subscripts 1 and 2 should be

interchanged.
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In more complicated cases special algorithms for matrix diagonalization

best suited to the JT problems under consideration, in particular, the method

of minimal iterations, the Lanczos method [5.63, 5.64], proved to be most

useful (see also [5.65]). This method is based on building a new basis set

obtained by the action of the Hamiltonian on a given initial function w1j i:

w2j i ¼ H w1j i � w1j i w1h jH w1j i
w1 j w1h i

w3j i ¼ H w2j i � w1j i w1h jH w1j i
w1 j w1h i � w2j i w2h jH w2j i

w2 j w2h i

(5:60)

and so on. The process is continued according to the formula

wnþ1

�� 	
¼ H wnj i þ gn1 w1j i þ gn2 w2j i þ    þ gnn wnj i (5:61)
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Fig. 5.18. Vibronic energy levels (in �hoE units) as a function of the quadratic
vibronic coupling constant g (in KE units) of the E� e problem with zero
linear coupling, which is in fact a RT problem (reprinted with permission
from [5.58]. Copyright 1978 Taylor & Francis).
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where

gik ¼
wkh jH wij i
wkjwkh i (5:62)

until the zero vector is obtained. An interesting feature of the Lanczos method

is that when choosing the initial function to belong to a certain line of an

irreducible representation of the symmetry group we obtain, by means of the

recurrence formulas (5.61), a new basis of states that has the same transform-

ation properties. The recurrent process results in the zero vector when the set

of states of given symmetry is exhausted, while the dimensionality of the

resulting basis space of states w
ð�gÞ
i is the number of repeating irreducible

representations � in the initial basis of the weak coupling.

For non-Kramers electronic degeneracy of the initial JT term theHamiltonian

matrix in the basis of states (5.60) and (5.61) is tridiagonal [5.65]. This circum-

stance is very important as it provides for a significant economy of computation

time and operative memory. Approved algorithms with rapid convergence are

available for numerical diagonalization of tridiagonal matrices [5.66].

The Lanczos algorithm was first used in [5.67] in the numerical solution of

the E� (b1þ b2) problem (Section 3.1) by means of the diagonalization of the

231� 231 matrix (equivalent to mixing the first n1þ n2� 20 vibrational levels

of the unperturbed system). The results also include data for the linear E� e

problem as a particular case when K1¼K2 and F1¼F2 (Fig. 5.19). An inter-

esting feature in the behavior of the excited vibronic levels occurs for large

vibronic coupling: with increasingly large vibronic coupling their energies

oscillate near the mean value �hoEðnþ 1Þ � EE
JT, and then one of these levels

descends smoothly, ultimately taking its place among the levels of the rota-

tional structure of the strongly coupled spectrum (see also Fig. 5.20).

In fact the multiple accidental degeneracy at the points where the levels

intersect first revealed in the �8� t2 problem (see below), may be non-

accidental. Analyzing the nature of the degeneracy in the �8� t2 problem, it

was concluded [5.69] that a similar phenomena should take place in the linear

E� e problem. This was observed indeed in the numerical calculations [5.67],

which were obtained seemingly independently from the paper [5.69]. Some

considerations about its nature are given in [5.67–5.69], but up to now no full

group-theoretical analysis of the Schrödinger equation has been performed in

order to reveal the internal dynamic symmetry which determines this degen-

eracy. Another important feature of this solution is the strong dependence of

the vibronic level positions on the coupling constant even when the coupling is

weak (Figs. 5.19 and 5.20), meaning that vibronic effects in the problems under

consideration cannot be neglected even in the weak-coupling limit.
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For further general applications of the Lanczos method, see in [5.70], as well

as in the solution of the E� (e1þ e2) problem [5.71], in determination of

the ground-state wavefunction [5.72], etc. (see the review paper [5.73]).

The discussion of this approach and its improvements in application to JT

problems are given in a series of papers [5.74–5.76]. For other numerical

calculations for E terms, see in [5.77–5.79], in particular, the application of

high-level ab initio coupled-cluster approximations [5.78].

Numerical solutions of the E� e problem with large quadratic coupling

were obtained recently [5.43]. The results are discussed in Section 5.3 because

they are most important in understanding the tunneling phenomena in

JT systems, in particular, the crossover of the lowest vibronic energy levels

A and E (Figs. 5.9 and 5.10) which, together with other contributions

[5.41, 5.45–5.47] removed the paradigm that the ground vibronic state must

be of the same symmetry and degeneracy as the initial electronic state.

On moving to higher-degeneracy problems we note that the number of

mixing states which should be kept in the expansion (5.59) is determined not

only by the magnitude of the constant of vibronic coupling, but also by the

number of JT-active vibrational degrees of freedom. The degeneracy of the nth

level of the s-dimensional isotropic oscillator is of the order of ns�1/(s� 1)!,

and therefore, considering the mixing of N excited quantum states in the

expansion (5.59), we must deal with a basis dimension of the order Ns/(s� 1)!.

If we take into account also the electronic quantum number, then the

full dimension of the basis has to be multiplied by f�, the degeneracy of the

electronic term.

For instance for the T� (eþ t2) problem ( f�¼ 3, s¼ 5), taking into account

the admixture of the vibrational states with n# þ n" þ n� þ n� þ n	 � 20; a

59 136� 59 136 matrix should be diagonalized in the numerical solution. The

classification of the states according to irreducible representations reduces the

Hamiltonian matrix to a block form, the dimension of each block being

less than that of the initial matrix by approximately an order of magnitude.

But even after such a simplification, the diagonalization of each block requires

significant computer time and cost. Again, the cutoff of the basis by vibra-

tional state s with N¼ 20 allows one to obtain reliable results only for moder-

ate vibronic coupling (k� 4) and only for the lowest vibronic states.

The status of calculations of the vibronic spectrum for the linear T� (eþ t2)

problem is illustrated schematically in Fig. 5.21. As can be seen from this

figure, the works [5.6, 5.8, 5.21, 5.56, 5.80–5.82] in fact cover most of the

domain of possible values of vibronic constants for which the problem is

solved. Of course, the borders of the regions in this figure are conventional.

In some of these calculations rough approximations andmodels are employed.
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One of them is the so-called d-mode approximation (Section 3.3). In this model

it is assumed that EE
JT ¼ ET

JT and KE¼KT, and consequently the Hamiltonian

acquires higher symmetry (O(3)), than the initial one (this approximation is

adequate to the situation in some F-centers in crystals in which the diffuse

electronic orbitals are insensitive to the cubic symmetry of the local environment

in the lattice [5.83]). The same vibronic Hamiltonian is suitable for the T� h

problem in icosahedral systems (Section 3.4). The high symmetry of the

Hamiltonian allows one to use the powerfulRacahmethod for its diagonalization

[5.21, 5.84–5.86], or the symmetry advantages of the Lanczos method [5.66, 5.87].

The Lanczos method was also employed for more elaborate numerical

calculations of the linear T� (eþ t2) problem [5.47]. In these calculation the

crossover between the lowest A and T vibronic energy levels was found
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Fig. 5.21. Illustration to the results of numerical calculations for the
T� (eþ t2) problem obtained by different methods. The dimensionless
values of JT stabilization energies EE

JT and ET
JT in units �hoE¼ �hoT¼ �ho are

plotted on the axes with a logarithmic scale. In the area with horizontal
shading the perturbation theory [5.5] is valid. The thin-spaced oblique
shading shows the area of applicability of the numerical results [5.56]. The
wider-spaced oblique shading corresponds to the validity of the perturbation
theory [5.80]. Along the line EE

JT ¼ ET
JT the results of the d model [5.89] are

valid. Double shading at large EE
JT and ET

JT values corresponds to the
qualitative results [5.6, 5.21]. The area of applicability of numerical results
[5.81] and [5.82] is shown by points (from [5.1]).
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(Section 5.3 and Fig. 5.16), similar to the crossover in the linear T� h problem

[5.40, 5.41]. Crossover was also found in the T� t2 problem with large quad-

ratic coupling terms [5.44] (similar to the E� e case), discussed in Section 5.3

and illustrated in Figs. 5.11–5.14.

The solution of the �8� (eþ t2) problem is more complicated because it has

a larger number of electronic states involved, but it simplifies owing to its

additional integrals of motion [5.1]. The results of numerical calculations

for the �8� t2 problem obtained in [5.8, 5.68, 5.88, 5.89] are given in Fig. 5.22.

Excited vibronic levels of the linear �8� t2 case oscillate as a function of
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Fig. 5.22. Vibronic energy levels as a function of the dimensionless linear
vibronic coupling constant ET

JT=�hoT for the �8� t2 problem. Dashed lines
show mean values around which the excited-state energy levels oscillate
(cf. Figs. 5.19 and 5.20) (reprinted with permission from [5.89]. Copyright
1977 Institute of Physics).
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the vibronic constant about the mean values �hoT ½nþ ð3=2Þ� � ET
JT, and at

some vibronic coupling values they coincide, forming nodal points of accidental

degenerate multiplets, similar to those in the linearE� e problem (cf. Fig. 5.20),

mentioned above.

This accidental degeneracy was found first in [5.88], ten years before the

similar degeneracy was discovered in the E� e problem [5.67]. In order to

explain this specific behavior of the vibronic levels of the �8� t2 problem the

differences between the matrix Hamiltonians for different quantum numbers

m were analyzed, and it was shown that the intersections of the corresponding

energy levels occur at J1ð2k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 3

p
Þ ¼ 0, where Jn(z) is a Bessel function

(which is independent of the quantum number m), and k is the coupling

constant [5.69].

The numerical solution of the linear �8� t2 problem in the d-mode approxi-

mation, i.e., at EE
JT ¼ ET

JT and KE¼KT, is given in [5.89]. After the separation

of the cyclic variables the secular matrix W in the basis of weak coupling has

the same form as in the linear E� e and �8� t2 cases, the only difference being

that the quantum number m has to be replaced by 2
þ (3/2), where 
 is

half-integer. In this problem, too, the excited vibronic levels oscillate about

the mean values �ho[nþ (5/2)]�EJT coinciding at nodal points at specific

values of the linear vibronic coupling constant.

The PJT problem with a small energy gap � between the electronic

terms, �� �ho, where �ho is the quantum of JT-active vibrations, can be

considered by means of perturbation theory (Section 5.1; see also the band

JTE in Section 8.2.5). If �
 �ho, the PJT problem should be solved by a

different method. The same is true when the group of neighboring electronic

terms mixed by the vibrations arises because of spin–orbital splitting

(Section 4.2). If the spin–orbital interaction results in splitting in first-order

perturbation theory, then this splitting, as a rule, is not small, and it has to be

taken into account along with the vibronic interaction. A simple two-level

problem with spin–orbital coupling is considered in Section 4.2. Another

typical example of this kind is the cubic polyatomic systems in a triply degen-

erate electronic state. The effective Hamiltonian of the 2Sþ1T term including

the second-order perturbation terms with respect to the spin–orbital inter-

action has the form

HSO ¼ 	~L~S þ 
ð~L~SÞ2 þ �ðL2
xS

2
x þ L2

yS
2
y þ L2

zS
2
z Þ (5:63)

where Lx, Ly, and Lz are the matrices of the operator of the orbital momentum

of the electrons determined in the basis of electronic states of the T term (they

coincide with the matrices of the energy spin [5.1]), Sx, Sy, and Sz are the spin
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matrices, and 	, 
, and � are the parameters of the effective spin Hamiltonian

(in the approximation of the crystal field theory the constants 	, 
, and � are

simple functions of the crystal field parameter Dq [5.90]). If, besides the

spin–orbital interaction, the low-symmetry tetragonal or trigonal crystal

field is also significant, an additional two parameters of coupling to the crystal

field, " and � , enter the Hamiltonian (5.63).

The problem of the JTE for the 2Sþ1T term in the presence of spin–orbital

interactions and low-symmetry crystal fields is therefore one of the most compli-

cated in the theory of vibronic interactions. The difficulties are caused by a large

number of JT-active vibrational degrees of freedom (s
 5 in the T� (eþ t2)

problem) and mixing states ( f¼ 3(2Sþ 1)), and by the low symmetry of the

problem,which prevents effective use of group-theoreticalmethods. The vibronic

Hamiltonian in this case contains a large number of independent parameters

(two frequencies oE and oT or force constants KE and KT, two vibronic con-

stants FE and FT, three spin–orbital constants 	, 
, and �, and a parameter of the

low-symmetry crystal field, " or �), thus requiring multiple calculations of the

vibronic spectrum (in contrast to, say, the linear E� e problem).

These difficulties can be reduced if one looks for the solution to the so-called

partial eigenvalue problem, i.e., when only one or a few of the most important

eigenvalues and eigenfunctions are sought. For this partial solution of the

problem some more powerful and rapidly converging methods have been

worked out [5.65, 5.66], allowing significant economy of computer time and

on-line storage.Most of the algorithms used in numerical methods for solution

of the partial eigenvalue problem are based on the variational principle.

The lowest eigenvalue corresponds to the wavefunction that minimizes the

so-called Rayleigh quotient:

EfCg ¼ Ch jH Cj i
CjCh i (5:64)

Here the energy depends on the probing function (5.59); in the matrix repre-

sentation this quotient is a function of the coefficients of the expansion (5.59).

In [5.82], the method of coordinate relaxation [5.65] was used to determine

the lowest vibronic eigenvalues and eigenfunctions of the JT 3T� (eþ t2)

problem with spin–orbital interaction, taking into account also the influence

of trigonal crystal fields. The method is based on the idea of the coordinate

slope by successive minimization of the Rayleigh quotient along each of the

coordinates in the multidimensional space in which the function E{C} is

defined. In these calculations there is no need to keep the whole matrix

(to be diagonalized) in the computer memory. The simplicity of the matrix

elements of the vibronic Hamiltonian defined with vibrational oscillator
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functions allows one to calculate them each time they are needed, and to use

the on-line memory of the computer for storing the calculated eigenvectors

only. If the dimension of the basis set isN, the volume of the computermemory

used in this method is proportional to N and not to N2, as in the case of the

full solution of the eigenvalue problem. This increases the computational

possibilities (see also [5.87]).

It is important that in all the iteration methods based on the variational

principle, as in the Lanczos method mentioned above, the transformation

properties of the probe function are preserved during the minimization.

If Cð0Þ
�g transforming as the g line of the irreducible representation � is chosen

as the trial function, the iteration process results in the exact eigenfunction

C�gwith the same transformation properties for the lowest energy level.

Some other numericalmethods for the diagonalization of the JTHamiltonians

using their specific forms of so-called block-band and sparse matrices have also

been proposed [5.73, 5.89].

Multi-particle methods (mainly the Green-function method) that proved to

be very useful in quantum theory, in general, have not found widespread

application in JTE calculations. The reason lies in the difficulties that occur

with direct application of these methods [5.91, 5.92], due mainly to the degen-

eracy of the ground state inherent to all the JT problems with not very

large couplings. This difficulty may be partly overcome by introducing addi-

tional restrictions that allow one to separate one of the states in the degenerate

manifold [5.93, 5.94], like applying an external field that removes the degen-

eracy [5.95, 5.96].

As mentioned in Chapter 2, there is a formal analogy between the JT

problem and that of pion–nucleon interaction in the static model of the

nucleon [5.97]. This analogy was employed [5.98] in order to use the ideas

and methods of the scattering theory, developed in quantum field theory

[5.99], to solve JT problems. In particular, the Green-function method was

applied in this way to solve the multimode problem [5.95–5.98] (Section 5.5).

The perturbation version of this approach was used to consider the T� t2,

T� d, and �8� t2 problems [5.98] (see also [5.100]). For more recent works on

application of field theory (Yang–Mills equations) to problems with conical

intersections and nonadiabacity see in [5.101].

Themethod of unitary, or canonical, transformations proved to be very useful,

especially during the earlier stage of application of the multi-particle theory to

JT problems (for a comprehensive review see [5.102]). This method is based on a

transformation of the Schrödinger equation to a new set of coordinates, for

which the operator of potential energy contains a small parameter, so that the
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usual perturbation theory may be used with respect to this small parameter. In

JT problems with strong vibronic coupling the nuclear motion is localized in

low-symmetryminima of the APES, and the transformation to new coordinates

in the minima can be reduced to a shift transformation of the type

Û ¼ expðlŜÞ

where Ŝ is proportional to the vibronic coupling constant F� and it is deter-

mined from the condition that in the transformedHamiltonian the linear terms

of the perturbation vanish (see in [5.1]). On applying this to the Hamiltonian

H¼H0þW we get

ÛHÛ�1 ¼ ~H0 þ ~W

where the transformed operator of vibronic interaction ~W is proportional to

the renormalized constant of vibronic coupling, F� expð��E�
JT=�ho�Þ, and � is

a numerical coefficient. The parameter l in the transformed Hamiltonian

is determined from the condition of minimum ground-state energy. The

renormalized coupling constant, as seen from its expression, can serve as a

small parameter of the perturbation theory both for F� ! 0 and for F� ! 1.

Therefore it may be expected that the perturbation theory with this para-

meter will yield reasonable results in the region of intermediate coupling too

[5.102, 5.103].

The attempts to use the ideas of coherent states in JT problems [5.32, 5.104]

are also related to the method of canonical transformations, since the transi-

tion to coherent states is performed by a similar shift transformation. The use

of the so-called para-Bose operators [5.105] may also be relevant.

All these methods are based on the variational principle. Therefore they are

expected to give satisfactory results when applied to ground-state calculations;

they become less accurate when used for excited states. Nevertheless, good

agreementwith exact numerical results was also obtained for some excited states

[5.106]. Unitary transformations were used to analyze the full E� (eþ t2) pro-

blem with strong vibronic coupling, orthorhombic minima, and tunneling

[5.107] and in calculations of vibronic energy levels and tunneling splitting in a

series of systems including fullerenes (Sections 5.3, 5.6, and 7.5).

The principal shortcoming of the method of unitary transformations (as of

other variational methods) consists in the fact that it is not so universally

applicable as, for instance, the Green-function method. Another deficiency in

this method (and some other approaches) emerges from neglecting the changes

of the frequencies of vibrations in the minima of the adiabatic potentials

compared with the initial frequencies mentioned in Section 5.3; it results in
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inaccurate behavior of the ‘‘tools’’ of the wavefunctions and consequently

inaccurate energy intervals in the spectrum. This failure was corrected by

introducing an additional scale transformation to take into account the aniso-

tropy of vibrations in the JT wells [5.34]. More difficulties follow from the fact

that the transformation shifts the system towards one of the minima, thus

lowering the symmetry of the Hamiltonian and complicating the calculations

[5.108] (see also [5.109]).

A general treatment of anE term interacting with harmonic oscillators in the

presence of external fields employing some forms of unitary transformations

with applications to the cyclobutane radical cation is given in [5.110].

Canonical transformations are also used in considering the PJTE in an E� e

problem with a small splitting of the E term [5.111]. Analytical expressions for

vibronic energy levels and wavefunctions in the (sþ p)� t1u problem are

obtained in [5.112].

Calculation of vibronic coupling in positive and negative fullerene ions has

its specific features in the competition of interelectron interaction controlled

by Hund’s rule and JT stabilization that favors degenerate terms. In a series of

works devoted to Cn�
60 ions [5.113] calculations reveal important details of these

interactions. In particular, in negative ions low-spin states prevail, whereas in

positive ions high-spin states dominate, with the exception of ions with

4� n� 6, for which the nonadiabatic corrections that soften the vibrations

and lower the zero-point energy push the states with lower spin below that of

high spin. In a series of works (see [5.114] and references therein) the so-called

Bogoliubov–de Gennes formalism was used to explore the JTE in fullerenes

and their ions (see also Sections 7.5.3 and 8.4). For calculations for negative

fullerene ions Cn�
60 with the n excessive electrons in t1u orbitals and JT p2� h and

p4� h problems see in [5.115]. Here it is worth noting also attempts to find

exact analytical solutions for some vibronic problems [5.116].

5.5 Solutions of multimode problems

As formulated in Section 3.5, themultimode JT problem occurs when there are

more than one JT-active vibrational modes of the same symmetry, distinct

from the ideal problems where there is only one such mode. Qualitatively, it is

clear that in general all the JT-active vibrations are involved in the JT distor-

tions (and in the rotations of this distortion around the JT center), but the

measures of their involvement may be different. If the degenerate electronic

state is localized mostly on the JT center, the first coordination sphere around

this center (the near-neighbor atoms) will be directly involved in the JT
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distortion by the vibronic coupling, while the next and further away layers of

atoms will be affected indirectly, via their vibrational interaction with the

directly coordinated atoms. Obviously, the further the atomic layer from the

JT center, the smaller the distortion influence. The dynamic picture is thus a

wave of distortions around the JT center that, strictly speaking, covers the

whole polyatomic system, but the amplitude of distortion is rapidly falling

with distance from the center. In the crystal environment this looks like an

electron–vibrational formation of a polaron type, which performs free (in case

of an equipotential trough on the APES) or hindered (in the presence of

potential barriers between equivalent wells) rotations or pulse motions (for

high barriers and tunneling), similar to the corresponding dynamics in ideal

JT systems (Sections 5.1–5.4).

Mathematically, in the multimode problem the JT-active coordinates of the

same symmetry (symmetrized coordinates) are linear combinations of the dis-

placements of all the atoms of the system, but the vibronic coupling to them is the

larger, the greater the coefficient of contribution of the atoms of the first

coordination sphere. By including all of them in the vibronic interaction directly

we get a very difficult multidimensional problem. As shown in Section 3.5, as far

as the form of the APES in this multidimensional space is concerned, the number

of active modes can be reduced to one effective mode, sometimes called the

interactionmode. This cannot be done for the solution of the vibronic equations.

With regard to the solution for the energy spectrum andwavefunctions there

are two aspects of the multimode problem. For molecular systems and clusters

with a limited number of coordination spheres around the JT center the

number of vibrational modes to be included in the vibronic coupling is finite,

mostly a small number, beginning with two. In many cases this problem can be

solved by numerical methods, similar to the ideal problem (see below).

However, if the environment of the JT center is large (like in the case of an

impurity center in crystals) the number of JT-active modes becomes very large

(infinite), and the solution of the problem requires other approaches.

The solution of themultimode JT problem is discussed in a series of papers (see

[5.1, 5.70–5.72, 5.97–5.98, 5.117–5.131] and references therein). For the simplest

linearmultimode (n-mode)E� (e1þ e2þ    þ en) problem the vibronic coupling

to each of these modes leads to formation of a circular trough of equipotential

minima on the APES, so its lowest sheet as a function of the polar coordinates of

all these modes including their interaction looks as follows [5.117]:

"ð�i; �iÞ ¼
1

2

X
i

o2
i �

2
i �

�X
i

k2io
2
i �

2
i þ 2

X
i>j

kikjoioj�i�j cosð�i � �jÞ
�1

2

(5:65)
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where, following the references above, we used here dimensionless vibronic

coupling constants ki (Section 3.2), and set �h¼ 1, so o is given in units of

energy and � is dimensionless too (�i and �i in Eq. (5.65) stand for the

coordinates of all the modes). The minimum of this expression is attained at

�i0 ¼ ki; �i0 ¼ �j0 ¼ � (5:66)

meaning that the n circular troughs may have different radii, but a common

rotational angle �, the energy being independent of the latter. Similar to the

ideal problem, the JT stabilization energy (the energy at the minima) is

EJT ¼ "ð�i0; �Þ ¼ � 1

2

X
i

k2ioi ¼ � 1

2
k2effoeff (5:67)

Here the effective coupling constant k2eff ¼
P

i k
2
i and effective frequency

(energy) oeff ¼
P

i k
2
ioi=k

2
eff are introduced for convenience (cf. Section 3.5).

For the energy levels with the potential (5.65), the dynamic problem should be

solved. The energies for the ideal problem with one active vibration in the

strong coupling limit are given by Eq. (5.18), which in the notations of this

section are

Enm ¼ � 1
2
k2oþ ðn� 1

2
Þoþ 1

2
ok�2m2 þOðk�4Þ (5:68)

where the vibrational energy here is read off that of the doubly degenerate

oscillator (at n¼ 0) and the last term stands for higher-order corrections in

terms of the inverse coupling constant. In the multimode case the problem is

more complicated essentially because of the shift of the vibrational frequencies

oi due to the mode interactions via the vibronic coupling. The new modes �j
follow the transcendental equation [5.1, 5.130]

X
j

k2jo
3
j

o2
j � �2

¼
X
i

k2ioi (5:69)

Graphic analysis of this equation shows that it has many solutions. For any

ki andoi the lowest solution is �1¼ 0. This is the ‘‘soft mode’’ of free rotation in

the circular trough. The other solutions follow the inequalities oj�1� �j�oj,

the �j value being nearer to the mode with weaker coupling (smaller kj ; at

kj¼ 0, �j¼oj). In particular, for a two-mode problem E� (e1þ e2)

�1 ¼ 0

�2 ¼ ½o1o2ðk21o2 þ k22o1Þ=ðk21o1 þ k22o2Þ�
1
2 (5:70)
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Figure 5.23 shows schematically the relative positions of �j and oj in

Eq. (5.69).

With the frequencies �j known the lowest energy levels in the multimode

problem are given by the following equations [5.130]:

E0m ¼ � 1

2
k2effoeff þ

1

2

X
j

ð�j � ojÞ þ
m2

2
P
j

k2jo
�1
j

(5:71)

where m is the same as in Eqs. (5.18) and (5.68).

In the ‘‘effective-mode’’ approximation [5.117] which avoids calculation of

the new (real) frequencies �j, an average squared frequencyo2 ¼
P

i k
2
io

2
i =k

2
eff

is introduced (in addition to the above oeff ¼
P

i k
2
ioi=k

2
eff ), with which the

multimode E� (e1þ e2þ    þ en) lowest-state energy is

E0;�1=2 ¼ � 1

2
k2effoeff �

1

2
oeff �

1

4

o2 � o2
eff

oeff
þOðk�2

eff Þ (5:72)

with more complicated terms for higher m values.

Numerical calculations for a two-mode problem [5.130] show that the

differences between this expression and the more accurate Eq. (5.71) with the

frequencies �j from Eq. (5.70) is the larger, the greater the difference between

the two frequencies o1 and o2 and reaches �5% of oeff at o2¼ 10o1.

A similar formula was derived [5.130] for the multimode problem

T� (h1þ h2þ   þ hn) for fullerene systems (Section 3.4). In particular, the

ground-state energy is given by a formula similar to Eq. (5.72),
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Fig. 5.23. Comparison of uncoupled (old) vibrational frequencies oi with the
(new) frequencies �i coupled via vibronic interaction in a multimode JT
problem with strong vibronic coupling obtained from approximate
(semiclassical) solution of Eq. (5.69). The thin lines represent low-lying
pseudorotational levels (reprinted with permission from [5.130]. Copyright
1998 American Institute of Physics).
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E0 ¼ � 1

2
K 2

effoeff þ
X
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ð�j � ojÞ þOðK�2
eff Þ (5:73)

The results of numerical calculations for an eight-mode problem

T� (h1þ h2þ   þ h8) of C
�
60 are given in Table 5.3.

The formulas for the energy levels are simpler for systems with weak

vibronic coupling taken into account by perturbation theory. It turned out

(see [5.1]) that odd-order perturbation corrections to the energy vanish, so for

the E� (e1þ e2) problem the fourth-order correction to the ground-state

energy is [5.118]

E
ð4Þ
0 ¼ 1

2

�
F 4
1 =K

2
1

�ho1
þ F 4

2 =K
2
2

�ho2

�
þ 2

ðF 2
1 =K1ÞðF 2

2 =K2Þ
�ho1 þ �ho2

(5:74)

where in the notations of Section 3.2 the first term gives the sum of corrections

to the JT stabilization energies of the two modes (cf. Eq. (3.96)) and the last

term stands for their interaction via the vibronic coupling. In the same

approximation the energy gap to the lowest excited state (which is �ho1 in the

unperturbed system) is [5.118]

�E
ð4Þ
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F 4
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(5:75)

The energy gap to the next excited state (equal to �ho2 in the zeroth-order

approximation) can be obtained by interchanging the indices 1 and 2 in (5.75).

The second term diverges at o1¼o2, where there is accidental degeneracy of

Table 5.3 Frequencies oi, coupling constants ki, energies
1
2
ki
2oi, and new

frequencies �i in the eight-mode JT problem T� (h1þ h2þ    þ h8) for

C�
60(from [5.130])

i oi (cm
�1) ki 1

2
ki
2oi (cm

�1) �i (cm
�1)

1 270.0 0.868 101.71 0.0
2 430.5 0.924 183.78 329.5
3 708.5 0.405 58.11 633.8
4 772.5 0.448 77.52 742.3
5 1099.0 0.325 58.04 1031.8
6 1248.0 0.000 0.00 1248.0
7 1426.0 0.368 96.56 1302.4
8 1575.0 0.368 106.65 1519.0

oeff¼ 581.1 Keff¼ 1.532
P

i
1
2
K2

i oi ¼ 682:36
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the two single-phonon states. In this case degenerate perturbation theory has

to be employed. If o1<o2, the second term in Eq. (5.75) is negative, which

means that the mixing of the modes results in the reduction of the smaller

energy gap. These results are confirmed also by numerical calculations for the

E� (e1þ e2) problem [5.69–5.71, 5.117–5.119, 5.130].

The case of an infinite number of JT-active modes of the same symmetry

inherent to JT impurity centers in crystals is most important in solid-state

applications (Section 8.1). For so-called impurity centers of ‘‘small radius,’’ for

which the wavefunctions of the degenerate state are rather localized, the

situation is somewhat similar to a finite-mode problem, but the infinite num-

ber of active modes makes it technically different. One of the approaches

mentioned above is to assume that the vibronic coupling is nonzero only to

the first coordination sphere, while all the other atoms in further layers are

involved via their vibrational interaction with the first neighbors to the JT

center. The active JT modes of the system are described by symmetrized

coordinatesQn�g that involve the normal coordinates qk of all the (n) coordina-

tion spheres (see Eq. (3.100)):

Qn�g ¼
X
k

akðn�gÞqk

where the coefficients ak(n�g) can be evaluated for specific cases [5.132, 5.133].

In these coordinates the vibronic coupling contains phonon interaction terms

including the interaction of the first coordination sphere n¼ 1 with all the

others, which for the E� (e1þ e2þ   ) problem in polar coordinates is

Hint ¼
X
n

K
ðEÞ
n1 �n�1 cosð�n � �1Þ (5:76)

where

K ð�Þ
nm ¼

X
k

akðn�gÞakðm�gÞKð�Þ
k (5:77)

andK
ð�Þ
k is the crystal analog of the force constant (K¼Mo2) for the k branch

of the � phonons.

This interaction leads to expressions that in essence are similar to Eq. (5.65)

and results in the same condition of minimum at �n¼�1 which means that

rotation of the distortion of the first coordination sphere involves the whole

crystal forming a polaron-like formation that travels around the impurity

center. This concerted rotation is stationary because the correspondingmomen-

tum is an integral of motion [5.1]. In spite of this physically visual picture

of the phenomenon, its quantitative treatment is rather complicated. In the
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weak-coupling limit the corrections to the energy spectrummay be obtained by

second-order perturbation theory, which makes the JT contributions of differ-

ent modes additive. Using the Green-function method, it was shown [5.1, 5.98,

5.100] that in the limit of weak coupling, the JTE produces some local and

pseudolocal resonances. If the initial density of states in the crystal is

�
ð0Þ
� ðoÞ ¼

X
k

a2kð�gÞ�ðo2
k � o2Þ (5:78)

the redetermined density of states has the shape of a Lorentzian [5.1]:

�ðoÞ � 1

p
g�

ðo� o�Þ2 þ g2�
(5:79)

where for the E� (e1þ e2þ   ) problem (the prime means derivative)

g� � �
ð0Þ
E ðo�Þ=½rð0ÞE ðo�Þ�0 (5:80)

and r
ð0Þ
E is a Gilbert transform,
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Hereomax is the largest frequency of the lattice vibrations ando� are the roots

of the transcendental equation

1� 4p
�ho

r
ð0Þ
E ðoÞ ~EE

JT ¼ 0 (5:82)

where ~EE
JT ¼

P
n F

2
nE=KnE is the ‘‘total’’ JT stabilization energy equal to the

sum of all active mode contributions.

If some of the roots fall within the forbidden zone where �
ð0Þ
E ðoÞ ¼ 0, �(o) in

Eq. (5.79) becomes a �-function, and Eqs. (5.82) and (5.81) yield a local state.

As seen from the dispersion equation (5.82), its roots depend essentially on the

total JT stabilization energy ~EE
JT.

Hence even weak vibronic coupling may lead to essential redetermination of

the density of states in the impurity crystal, in particular, to the formation of

local (pseudolocal) states in the forbidden zone. These states can be interpreted

as follows. Without the vibronic coupling the continuous spectrum of the

lattice can be considered as a spectrum of free phonons. In the presence of

weak vibronic coupling the wavefunction of the ground state becomes mixed

with one-phonon excited states and describes finite motions of the electron–

phonon system that can be considered as coupled states of the impurity

center with a phonon. The weak vibronic coupling produces a low-symmetry
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electron distribution that rotates around the JT impurity center involving one

phonon captured in a stationary orbital.

In general such local and pseudolocal states split off from the continuous

phonon bands in crystals (often called ‘‘hybrid states’’ and ‘‘dialectric modes’’)

were considered in solid-state theory (see, e.g., [5.134] and the review article

[5.135]). The specifics of the JT local mode is that it is created by a low-

symmetry distortion that rotates around the impurity center (most studied

totally symmetric polarons have no rotational properties). This is one of the

essential differences between usual (traditional) and JT approaches to electron–

phonon coupling mentioned in the introduction and in Section 4.5 (see also

Section 8.2.5). It may result in qualitatively new properties of the system (see,

e.g., superconductivity in Section 8.4).

The multimode T � ðtð1Þ2 þ t
ð2Þ
2 þ   Þ and �8 � ðtð1Þ2 þ t

ð2Þ
2 þ   Þ problems

in the weak-coupling limit using Green’s function method were considered

in [5.98].

In the other limit of the multimode JT problems with strong vibronic

coupling the lowest energy states with the lowest sheet of the APES

(Section 3.5) can be considered in the adiabatic approximation, similar to

the ideal case. With an infinite number of JT active modes the problem has

some features which are similar to that of a limited number of modes,

described above. For the E� (e1þ e2þ   ) problem with only linear coupling

the APES can be presented as follows [5.1] (cf. Section 3.2, Eq. (3.23)):
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where the last term is a crystal analog of the centrifugal energy of the ideal case

in Eq. (5.20) (see also Fig. 5.4) with I as the moment of inertia of the concerted

rotation of the distortion,

I ¼
X
n

F 2
nE=KnE

o2
nE

(5:84)

On introducing the angular velocity of this rotation W¼m�h/I and using the

condition of minimum energy in (5.83), we get for the W value the following

equation which is similar to Eq. (5.69) [5.1]:

W
X
n

ðF 2
nE=KnEÞo2

nE

ðo2
nE �W2Þ2

¼ m�h (5:85)
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Figure 5.24 illustrates the graphic solution of this transcendental equation in

two cases: (a) interaction with only optical vibrations of the lattice that have

relatively high frequencies onE (this case is similar to the molecular problem

with a limited number of JT active modes of the same symmetry); and (b) the

infinite number of acoustic modes of the latticeonE are JT active. In the former

case for sufficiently strong vibronic coupling the minima of the left-hand-side

expression in Eq. (5.85) as a function of W lie above the line m�h¼ constant.

Therefore there are only two roots of Eq. (5.85): 0<W�<omin andWþ >omax

Ω – Ω +

Ω +

Ω

Ω

ω min ω max

ω max

(a)

(b)

mh

mh

Fig. 5.24. Graphical solution of the transcendental Eq. (5.85) for the
multimode JT E� (e1þ e2þ   ) problem with strong vibronic coupling. (a)
Molecular multimode vibronic coupling with one optical vibrational mode.
The dashed lines are the asymptotes of the left-hand side of the equation
crossing at the points W¼on. For strong vibronic coupling only two
solutions, Wþ and W�, remain. (b) A JT (impurity) center in a crystal
interacting with the acoustic vibrational mode. The sloping dashed line is
the envelope of the minimum points of the left-hand side of the equation for
low frequencies (from [5.1]).
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(Fig. 5.24(a)). Here omin and omax are the lower and upper limits of the optical

band frequencies, andW� andWþ are the JT concerted rotation frequencies in

the lower and upper branches of the APES, respectively.

If the acoustic modes are involved in the JT distortions their frequenciesonE

begin from o0E¼ 0, so we come to the solution of Eq. (5.85) illustrated in

Fig. 5.24(b). We see that there may be an infinite number ofW values, beginning

with very small ones. The envelope of the minima between the singularities

W¼onE shown by the dashed line in Fig. 5.24(b) follows the expression

F2
Eo

�4W, whereo�k is defined quite similarly too�2 in the text before Eq. (5.72):
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Here the definitions KE ¼ Mo2
E and K

�1

E ¼ M�1o�2
E are implied.

For omin¼ 0, we get W � 0, meaning solutions with low-to-zero concerted

rotation frequencies for which the moment of inertia I� ¼m�h/W� tends to

infinity. For the small onE values the force constant KnE¼MonE is also very

small, making the radius of the JT trough �(0) tend to infinity too

(�
ð0Þ
n � FnE=KnE). Hence in the radial direction the lower sheet of the APES

has a ‘‘ravine’’ with a warped bottom going to infinity. However, this sing-

ularity does not affect very strongly the solution of the problem: the density of

the limiting long-wavelength acoustic phonons is negligibly small, so the

ravine contracts rapidly with the distance from the impurity center.

With infinite moment of inertia I the concerted rotation of the distortion

cannot be excited. On the other hand the interaction of the first coordination

sphere (which is most affected by the vibronic coupling) with the low-

frequency acoustic phonons is proportional to o3 [5.1] and hence tends to

zero, so these phonons may be neglected in the first approximation. This

means that quasistationary rotations are possible, yielding rotational

resonances in the vibronic density of states, which are subject to weak decay

due to the participation of the utmost long-wavelength vibrations.

The mathematical realization of these physical ideas is not straightforward.

For the linear E� (e1þ e2þ   ) problem the peaks in the density of states are

located at frequencies which are the roots of the following equation [5.120(a)]:

2prð0ÞE ðoÞ þ o�2 ¼ 0 (5:87)
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where r
ð0Þ
E is given by Eq. (5.81). The relaxational broadening of these rota-

tional states is considered in [5.120(b)]. From the general physical point of view

these rotational states of JT distortions around the impurity center may be

viewed asmultiphonon electron–vibrational formations of polaron type localized

on a degenerate quasistationary orbital. The stronger the vibronic coupling,

the greater the lifetime of this low-symmetry quasi-polaron and the smaller the

width of the rotational resonances.

The treatment of the upper branch of the APES in the E� (e1þ e2þ   )
problem bymeans of perturbation theory considering the termHint in (5.76) as a

small perturbation leads to rotational resonances, sometimes called Slonczewski

resonances [5.97, 5.121]. A similar treatment of the lower branch proved to be

incorrect as a general approach, but may be satisfactory when the interaction of

the first coordination sphere with the remaining lattice is sufficiently small, as in

the cluster model [5.1]. The Green-function method was also applied to the

multimode �8� (eþ t2) problem with strong vibronic coupling [5.122].

So far only linear multimode vibronic coupling has been considered.

However, the quadratic and cubic terms of vibronic couplingmay be significant,

as discussed in more detail in the treatment of ideal problems (Chapters 3–5).

In particular, for the E� e problem the joint contribution of quadratic, cubic,

and PJT coupling results in three equivalent minima along the bottom of the

trough (of the APES in the linear coupling approximation) divided by three

barriers, leading to essential redetermination of the spectrum of vibronic states,

including the tunneling phenomena (Section 5.3). In the multimode

E� (e1þ e2þ   ) problem the treatment can be carried out in a similar (to the

ideal problem) fashion [5.123]. In the approximation when themotion along the

trough is much slower than the radial vibrations, the former obey the following

equation (cf. Eq. (5.24)):

��
@2

@�2
� � cosð3�Þ � Em

� �
�ð�Þ ¼ 0 (5:88)

where

� ¼ �h2

2M
ðFEK

�1

E Þ�2; � ¼ GEF
2
E ðK

�1

E Þ�2 (5:89)

and (following Eq. (5.86))

K
�1

E ¼ M�1o�2
E ; GE ¼

X
n

GnEF
2
nE=F

2
E (5:890)

with the lattice-averaged radial distortion as � ¼ FEK
�1
.
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Equation (5.88) is formally similar to Eq. (5.24) for the ideal case, but with

the constants � and � after (5.89) that includes the ‘‘averaged’’ multimode

information, especially the phonon and vibronic coupling dispersion in

Eqs. (5.86) (5.89) and (5.890).

The solutions of Eq. (5.88) are discussed in detail in Section 5.2. They

correspond to hindered rotations of the polaron-type formation with multiple

over-barrier reflections. For large � values the minima of the adiabatic poten-

tial are divided by rather high barriers. In a visual interpretation, themotion of

the polaron formation in this case is reduced to tunneling through the barriers:

for most of the time the quasi-polaron is centered at one of the minima along

the fourth-order axis of the cubic system, jumping from time to time from one

axis distortion to another one with the frequency of tunneling splitting.

The energy spectrum of the system under consideration is a superposition of

the continuous spectrum of the fast subsystem (vibrations at the bottom of the

minimum) and the discrete spectrumof the slow subsystem (hindered rotations

along the trough or tunneling between the minima). Owing to the strong

vibronic coupling the positions of the rotational levels of the slow subsystem

are shifted toward the region of low frequencies where the density of states of

the fast subsystem is small. For this reason the nonadiabatic corrections

causing the broadening of the energy levels of the discrete spectrum are

expected to be very small; this broadening was estimated in [5.123]. The

approximation of the adiabatic separation of the radial and angular motions

resulting in Eq. (5.88) also constrains the magnitude of the constant of quad-

ratic vibronic interaction:GEK
�1
E � 1. The magnitude of the tunneling splitting

can be calculated, in principle, in a manner similar to the ideal case by

using the method discussed in Section 5.3, which is valid for the multimode

JT systems as well.

In some JT problems tunneling between the minima of the adiabatic poten-

tial is forbidden by symmetry restrictions. A simple example of this kind is

provided by the E� (b1þ b2) problem. In such cases the modification of the

vibronic spectrum is caused by the change of the curvature of the minima for

the lowest states, and by the vibronic anharmonicity of the adiabatic potential

for higher states. Since the change of the minimum curvature is of local origin,

the problem can be reduced to that of changes in the force constant and can be

relatively easily solved. A similar treatment for the multimode T� (eþ t2)

problem with predominant coupling to e vibrations (where the tunneling is

forbidden) is given in [5.124].

In cases where the tunneling is not forbidden by symmetry (these cases are in

the majority, see Section 5.3) the vibronic spectrum of local and pseudolocal

vibrations in the minima is complicated by additional lines of tunneling
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splitting, and the whole spectral picture is complicated by relaxational broad-

ening. Indeed, the tunneling energy levels are superimposed over the contin-

uous vibrational spectrum, and the interaction of the vibrational system with

the dynamic (tunneling) subsystem (not taken into account in the above

treatments) results in relaxational broadening of the discrete energy levels.

The magnitude of this broadening g is proportional to the projected density of

vibrational states �(o) of the dissipative subsystem at the frequency of the

tunneling splitting �¼ r�, r¼ 3, 4, 6, . . . (Section 5.3). For low-frequency

acoustic vibrations with a Debye dispersion law, �(o) is proportional to o4

and hence g � (r�)4. To observe the tunneling splitting r�, the broadening g
should be less than r�. In the case of strong vibronic coupling r� may be very

small, and since g has a higher order of smallness, the above requirement is

satisfied. As the vibronic coupling decreases, r� increases, but g � (r�)4

increases faster and the effect of tunneling splitting disappears in the relaxational

broadening.Note, however, that due to the strong exponential dependence of r�

on EJT, tunneling splitting takes place even for rather moderate intermediate

vibronic couplings, and therefore the range of applicability of the tunneling-

splitting theory with respect to the vibronic coupling constant is rather large.

The tunneling states occur as weakly broadened peaks (resonances) in the

vibronic density of states which, as above, can be interpreted as multi-phonon

formations of a polaron type coupled with the impurity, i.e., as low-symmetry

inhomogeneities of the electronic density surrounded by a phonon fur coat.

The multimode T � ðtð1Þ2 þ t
ð2Þ
2 þ   Þ problem with tunneling and relaxa-

tion was considered in [5.136] in the limit of strong coupling and localized

states in the four trigonal minima taken as a starting approximation (Section

5.3). Employing phonon densities �T(o) and Green functions, an expression

for the tunneling splitting was derived in terms of the JT stabilization energy

ET
JT and averaged frequencies

o�mh i ¼
Z
�TðoÞo�m do (5:90)

In the same approximation the relaxational broadening g was estimated as

g � 0:425ET
JT ET

JT=�ho
2
T o�1

 	� �1

2 exp �1:29ET
JT=�ho

2
T o�1

 	� �

(5:91)

where oT ¼ o�2

 	 ��1

2. For a single acoustic phonon band and the Debye

model of phonon dispersion the following approximate expressions were

obtained for the tunneling splitting 4� and relaxational broadening g:

4� ¼ 0:2ET
JT expð�0:96ET

JT=�homÞ (5:92)
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g � 0:5ET
JTðET

JT=�homÞ
1
2 expð�1:72ET

JT=�homÞ (5:93)

where om is the maximum phonon frequency in the Debye model.

Equations (5.92) and (5.93) allow an approximate estimate of the condition

g< 4� for the tunneling splitting to be observed in spite of relaxational

broadening: ET
JT
 1:5�hom. In other words, as mentioned above, in the

strong-coupling limit the stronger the coupling, the better the conditions of

observation of the tunneling splitting, in spite of the decrease in 4� with the

strength of coupling (the g value decreases faster). The condition for observa-

tion of tunneling is also improved by lower values of the Debye frequency om.

For the intermediate coupling neither weak- nor strong-coupling limits

apply, and the problem becomes more complicated. Some progress was

achieved by using the methods of quantum field theory mentioned above

applied to the pion–nucleon interaction, which has some analogies with

the JT vibronic coupling theory [5.1, 5.97, 5.98(b)]. In particular, the method

of dispersion equations applied to the lowest states of the multimode

JT E� (e1þ e2þ   ) problem for impurity centers with intermediate coupling

and a continuous spectrum of JT-active lattice vibrations yields the following

local resonance frequency [5.98(b)]:

or �
�ho2

F2
EKEðK

�2

E Þ
(5:94)

This resonance corresponds to the transition from the ground state with

m¼ 1/2 to the rotational state with m¼ 3/2 [5.125]. The broadening of this

level due to the processes of direct one-phonon decay is [5.98(b)]

g � FE�
ð0Þ
E ðorÞ (5:95)

Again, it follows from Eq. (5.94) that the rotational frequency decreases

with the increase of the average vibronic coupling constant FE, but the density

of phonons �
ð0Þ
E ðorÞ decreases faster, thus reducing the broadening g.

The results above obtained under the assumption of a continuous phonon

spectrum can nevertheless be applied to the ideal JT problem by assuming that

the phonon band is infinitely narrow and has one frequencyoE. In so doing the

following expression was obtained for the energy gap�E between the ground

and first excited vibronic states [5.98(b)]:

�E ¼ E3=2 � E1=2 ¼ �hoE 1þ q2F 4
E

K2
E�h

2o 2
E

 !1
2

� qF2
E

KE�hoE

2
4

3
5 (5:96)
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where q¼KE(E) is here the vibronic reduction factor for E-type operators in

the E� e problem (Section 5.6).

Similar analysis of possible low-frequency resonances in the spectral density

was carried out for theE� (b1þ b2),T� t2, andT� (eþ t2) problems [5.98(b)].

These resonanaces may be considered as characteristic demonstrations of the

multimode JT effect.

In the theory of impurity centers in crystals significant attention is paid to

the so-called quasimolecular (cluster) model mentioned in Section 3.5. In this

model a cluster with a limited number of atoms around the impurity center is

cut off the lattice and considered separately from the remaining crystal, taking

into account the influence of the latter as a perturbation or by means of

an additional potential (e.g., a Madelung-like potential). In the cluster part

the problem can be reduced to a multimode one with a limited number of

JT-active modes.

The cluster-model treatment of JT problems proved to be successful inmany

applications. In particular, the results obtained in evaluation of expected ESR

spectra of JT defects (Section 6.3) are in good agreement with the low-

temperature experimental data in spite of the ignorance of the continuous

phonon spectrum (for a review see [5.137] and Section 8.1). As above in

considering the relaxational broadening, the explanation of this result lies in

the small density of low-frequency phonon states. Simple estimates show that

the density of states below the region of �0.1�hoD, where oD is the Debye

frequency, is negligibly small and does not contribute to the relaxation,

whereas the phonon states above �0.1�hoD are not populated at sufficiently

low temperatures. The relaxation processes become important at higher temp-

erature where the JTE implications in the EPR spectrum disappear. With the

cluster problem solved, the influence of the rest of the lattice can be included

in a phenomenological way [5.71(b), 5.117(a), 5.126].

Another example where the cluster model works satisfactorily is the quali-

tative evaluation of the impurity optical absorption band shape (Section 6.1).

Indeed, as discussed in Section 3.5, the APES for the multimode problem has

qualitatively the same features as for the ideal problem, and therefore the

envelope of the individual absorption lines, which for sufficiently strong

coupling are determined mostly by the shape of APES, can be predicted with-

out involving the details of the phonon spectrum. The optical band shapes

can be evaluated also quantitatively, provided the JT characteristics of the

APES are considered as adjustable parameters (Section 6.1).

To summarize, the cluster model may be very useful in describing either

properties of JT systems at sufficiently low temperatures or integral (with

regard to the spectrum), ‘‘averaged’’ characteristics, like JT distortions, local
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dynamics, optical band shapes, etc. However, the fine structure of the spec-

trum is not reproduced well by this model.

An improvement of the cluster model is reached in the so-calledmodel of the

relaxing cluster, in which the influence of the lattice on the cluster is taken into

account by perturbation theory (see the review article [5.127]). Obviously, this

approximation is valid only when the influence of the lattice is smaller than

that of the cluster energy spacing in crystals with narrow phonon bands. An

advanced method is suggested in the so-called ‘‘embedded cluster’’ model

(Sections 3.5 and 8.1, [3.57]). Another idea employs renormalization-group

theory [5.128]. For a review of some of the earlier works on this topic see

[5.127]. In [5.129] the statistical distribution of irregular vibronic energy levels

in multimode problems is considered.

5.6 Vibronic reduction factors

The reduction of ground-state physical quantities of electronic origin in JT

systems is one of the important effects of vibronic coupling. It originates from

the back influence of the JT nuclear dynamics on the electronic structure and

related properties. As follows from the discussions in Sections 5.1–5.5 in this

chapter, in the majority of JT problems, except for strong quadratic coupling

in the E� e and T� t2 problems and the special relation between the vibronic

coupling constants in the linear T� (eþ t2) and T� h strong-coupling pro-

blems, the ground vibronic state has the same symmetry and degeneracy as the

electronic term in the reference configuration. This coincidence of important

characteristics of the ground states with and without vibronic coupling is very

significant and allows essential simplification of the calculations of many

properties of electronic origin. Already in the first calculations of the spin–

orbital splitting of the ground vibronic state [5.138] it was shown that, ignoring

the mixing with other vibronic levels, this splitting is proportional not only to

the spin–orbital-coupling constant, as in the usual nonvibronic cases, but

to this constant multiplied by the overlap integral between the vibrational

functions of different minima, equal to g in Eq. (5.47). Since g< 1 the vibronic

coupling essentially reduces the spin–orbital splitting, sometimes by several

orders of magnitude. Ham [5.139, 5.140] generalized this idea and has

shown that such a reduction occurs for any physical quantity, provided its

operator depends on electronic coordinates only. This reduction is often called

the Ham effect.

A series of works contributed to the earlier development of the vibronic

reduction theory [5.138–5.155]. In review of these contributions, the following

theorem of vibronic reduction can be formulated [5.1]. Suppose we need to
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calculate the matrix element of the physical quantity X�gðrÞ (transforming

according to the g line of the � irreducible representation of the symmetry

group of the system) which depends on the electronic variables only, with the

functions of the ground vibronic stateC�g(r,Q). We denote the corresponding

wavefunctions of the initial electronic term byw�g(r). The theorem of vibronic

reduction states that the matrix element of the operator X�gðrÞ (which repre-

sents the corresponding observable properties) calculated with the vibronic

functionsC�g(r,Q) is proportional to the matrix element of the same operator

calculated with the initial electronic wavefunctions w�g(r) of the reference

configuration:

hC�g1ðr;QÞjX�gðrÞjC�g2ðr;QÞi ¼ K�ð�Þhw�g1ðrÞjX�gðrÞjw�g2ðrÞi (5:97)

where K�ð�Þ is a constant which depends on the JT vibronic properties of the

� state and the symmetry � of the operator X, independent of its nature.

The constant K�ð�Þ is called the vibronic reduction factor (not to be confused

with the curvature or force constants denoted by K�). If the vibronic reduction

factors K�ð�Þ are known, there is no necessity to solve the vibronic problem in

order to obtain electronic properties of the ground state; they can be calculated

from wavefunctions of the initial electronic term. In particular, the K�ð�Þ
constants can be determined from some experimental data, and then used to

predict the vibronic contribution to all the other observable properties.

In an extended definition, off-diagonal vibronic reduction factors K��0 ð�Þ are
also used to estimate the difference between off-diagonal matrix elements

calculated by vibronic state wavefunctions and their pure electronic compon-

ents. Such reduction factors emerge when there is an excited vibronic (tunnel-

ing) state �0 close to the ground-state one �, and the matrix elements of

the operator X under consideration contain off-diagonal elements. Since the

electronic part in all the tunneling state wavefunctions is built up from the

same electronic functions of the degenerate electronic term, the off-diagonal

elements contain the same electronic reduced matrix element w�h j X�

�� �� w�j i,
but with different coefficients that depend on the symmetries of the two states

and the overlap integrals of the vibrational functions in two near-neighbor

minima. Therefore the off-diagonal matrix element can be presented in a

manner formally similar to the diagonal one bymeans of off-diagonal vibronic

reduction factors K��0 ð�Þ [5.1, 5.139]:

C�1g1ðr; QÞ

 ��X�gðrÞ C�2g2ðr;QÞ

�� 	
¼ K��0 ð�Þ w�ðrÞh j X�ðrÞ

�� �� w�ðrÞj i �g�2g2
���1g1


 	
(5:970)
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where the tabulated Clebsch–Gordan coefficient �g�2g2
���1g1


 	
satisfies the

symmetry requirements. Note, however, that while K�ð�Þ is always reducing
the matrix element (K�ð�Þ � 1Þ, the off-diagonal factor K��00 ð�Þmay be either

reducing or enhancing, so its denotation as a reduction factor should not be

taken literally. To calculate K�ð�Þ or K��00 ð�Þ, Eqs. (5.97) and (5.970) can be

employed directly, provided the wavefunctions of the initial electronic and

final vibronic states for the JT problem under consideration are known.

In the majority of practical cases the operator X�gðrÞis a perturbation, and

there are important cases when second-order perturbation corrections deter-

mine the property under consideration. In such cases second-order vibronic

coupling constants K
ð2Þ
� ð�Þ are important (see below).

Approximate analytical expressions for the vibronic reduction factors in the

linear E� e problem KE (A2) and KE (E), often denoted by p and q, respec-

tively, can be derived immediately from the approximate solutions to the

problem (Sections 3.2, 5.1, and 5.2) by calculating the ratio of the integrals

in Eq. (5.97). It can be shown that for the ideal problem with linear coupling

the following relationship is valid:

2q� p ¼ 1 (5:98)

In the case of weak vibronic coupling with EE
JT � �hoE ,

p � expð�4EE
JT=�hoEÞ (5:99)

For arbitrary coupling the value of p can be derived from the numerical

solutions [5.55]; for �0:1�EE
JT=�hoE93:0 they obey the function [5.142]

p ¼ exp½�1:974ðEE
JT=�hoEÞ0:761� (5:100)

These data are illustrated in Fig. 5.25. For sufficiently strong vibronic

coupling p¼ 0 and q ¼ 1
2
. Note that in this limit case the asymptotic behavior

of p is not exponential: p � ðEE
JT=�hoEÞ�2.

The relation (5.98) is, strictly speaking, invalid in the general case. In

particular, it fails in the multimode problem, as well as under quadratic

vibronic coupling. In general 2q� p� 1, and the deviation from unity may

be regarded as an indicator of quadratic and/or multimode effects. It can be

shown [5.120(a)] that in the multimode E� e problem with strong vibronic

coupling p¼ 0 and q¼ 1
2
exp(�M/2), whereM
 0 and depends on the value of

the dimensionless vibronic constant.
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Although in general the relationship (5.98) does not hold in multimode

problems, it still holds in second-order perturbation theory in the weak-

coupling case. In fourth-order perturbation theory we have [5.95, 5.147]

(Section 5.5)

p ¼ 1� 2
X
n

F 2
nE=KnE

�hon
þ 4

X
n

F 2
nE=KnE

�hon

 !2

q ¼ 1

2
ð1þ pÞ � 1

2

X
n;m

F 2
nE=KnE

�hon

F 2
mE=KmE

�hom

on � om

on þ om

� �2 (5:101)

In the multimode E� e problem with strong linear vibronic coupling p¼ 0

(this is a result of the adiabatic approximation), while q¼ 1
2
(1þ p)¼ 1

2
.

Quadratic terms of the vibronic interaction also result in violation of the

relationship (5.98). In the limit of strong vibronic coupling, using the tunneling

states (5.39)–(5.41) to determine q and p, we find [5.148, 5.149]

p ¼ 0; q � 1

2
(5:102)
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Fig. 5.25. Vibronic reduction factors p¼KE(A2) and q¼KE(E) as functions
of the dimensionless coupling constant lE ¼ EE

JT=�hoE for the linear E� e
problem. Exact numerical values are shown by points; the dashed line is
chosen to fit the numerical data in the region 0.1� lE� 3.0 [5.140].
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Strong vibronic coupling means tunneling levels that are close in energy

(Section 5.3), the mixing of which under perturbations may influence signifi-

cantly the observable properties. To take into account this effect in the

vibronic coupling problems the off-diagonal vibronic reduction factors men-

tioned above (Eq. (5.970)) can be employed. For the E� e problem, there is

only one such off-diagonal reduction factor for the mixing of the lowest E and

A tunneling states KAE(E), often denoted by r. In the limit of strong coupling

r ¼ �1=
ffiffiffi
2

p
[5.139].

Similarly, for the T� (eþ t2) problem in the limiting case of weak coupling

we have [5.1]

KTðEÞ ¼ 1� 9

4

ET
JT

�hoT

KTðT1Þ ¼ 1� 3

2

EE
JT

�hoE
� 9
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�hoT

KTðT2Þ ¼ 1� 3

2

EE
JT

�hoE
� 3
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JT

�hoT

(5:103)

In the absence of vibronic interactions with t2 vibrations the T� e problem

can be solved exactly. Simple calculations result in

KTðEÞ ¼ 1; KTðT1Þ ¼ KTðT2Þ ¼ exp � 3

2

EE
JT

�hoE

� �
(5:104)

If the vibronic coupling to t2 vibrations is stronger than the e coupling

(Section 3.3), the limiting values of the vibronic reduction factors for very

strong coupling are

KTðEÞ ¼ 0; KTðT1Þ ¼ 0; KTðT2Þ ¼ 2
3

(5:105)

Approximate expressions for intermediate coupling were estimated by inter-

polation between the strong- and weak-coupling expressions [5.139] (Fig. 5.26):

KTðEÞ � KTðT1Þ ¼ exp � 9

4

ET
JT

�hoT

� �

KTðT2Þ �
1

3
2þ exp � 9

4

ET
JT

�hoT

� �� � (5:106)

The results of numerical calculations of the wavefunctions of the ground state

in theT� t2 problem [5.56], and consequently the vibronic reduction factors (see

also [5.165]), confirm approximately the validity of the formulas (5.106), but there

are some remarkable discrepancies. As seen from Eqs. (5.106) and Fig. 5.26,
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KTðT2Þ approaches the limit value of 2
3
from above, while the numerical values

[5.56, 5.67 ] show that at large coupling constant it becomes slightly lower than
2
3
KTðT2Þ and reaches a minimum value of 0.65 [5.67]. The reason for this was

shown [5.140, 5.150] to be due to the crude adiabatic approximation employed

that ignores the dependence of the electronic wavefunctions on the nuclear

coordinates within the minimum, which lowers the inter-minima overlap S. In

the more accurate calculations the strong-coupling formulas are [5.150]

KTðT1Þ ¼ 0; KTðEÞ ¼ S=ð1þ SÞ; KTðT2Þ ¼
2

3
� þ 3

2
S

� ��
ð1þ SÞ

(5:106 0)
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Fig. 5.26. Vibronic reduction factors for the linear T� t2 problem as

functions of the dimensionless parameter X ¼ ð3ET
JT=2�hoTÞ

1
2. The dashed

lines correspond to the approximate expressions (5.106) [5.140].
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Fig. 5.27. Vibronic reduction factors for the linear T1� h problem as functions
of the dimensionless vibronic coupling constant l ¼ ET1

JT=�hoT [5.159].
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where � is a parameter slightly smaller than 1. Note, however, that this

correction is small.

By comparison of the reduction factors in Eqs. (5.103), (5.104), (5.105), and

(5.106) one can easily see that [5.141]

KTðEÞ þ 3
2
½KTðT2Þ � KTðT1Þ� ¼ 1 (5:107)

but with the corrections above this equation is approximate too.

Numerical results for reduction factors for theT� (eþ t2) problem are given

in [5.82] (see also [5.68, 5.81 ]). For reduction factors for �8-term problems see

in [5.156].

The strong dependence on the JT coupling taken as the dimensionless ratio

EJT/�ho is a general feature of almost all reduction factors; it may result in

reducing physical quantities by several orders of magnitude. As mentioned

above this was shown first in [5.138] where the vibronic reduction of the

spin–orbital splitting in the 2T termwas evaluated. In [5.139, 5.140] the general

nature of the reduction phenomenon was revealed and generalized in the

theory of vibronic reduction of electronic operators of arbitrary symmetry.

The expressions for the vibronic reduction factors in the T� e and T� t2
problems for cubic systems (5.103)–(5.107) were modified for a practically

useful case of a trigonal system regarded as a trigonally distorted tetrahedron

[5.157]. It was shown that while the T� e factors remain the same as in the

regular cubic case, the T� t2 reduction factors may differ significantly.

For orthorhombic minima of the APES in the quadratic T� (eþ t2) pro-

blem (Section 3.3) subject to equal tetragonal and trigonal vibration frequen-

ciesoE¼oT¼o, (and henceKE=KT=K, whereK is here the force constant),

we have [5.29]

KTðEÞ ¼ ð1þ 8S þ 6 ~SÞ=ð4þ 8SÞ
KTðT1Þ ¼ ð3S þ ~SÞ=ð1þ 2SÞ
KTðT2Þ ¼ ð1þ 6SÞ=ð2þ 4SÞ

S ¼ 1
2
expf�K ½3ðQð0Þ

# Þ2 þ 2ðQð0Þ
	 Þ2�=4�hog

~S ¼ 1
2 exp½�KðQð0Þ

	 Þ2=�ho�

(5:1070)

where the coordinates of the minimum points Q
ð0Þ
g are given by Eq. (3.58) in

Section (3.3). A quantum field approach to the calculation of reduction factors

in cubic systems is discussed in. [5.158]

A general result applicable to all JT problems and physical-quantity opera-

tor symmetries was obtained for the vibronic reduction factors Kð�Þ in the

limiting case of very strong coupling [5.98b]: Kð�Þ � Q0ð�Þ;where Q0ð�Þ is
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the distance from one of the equivalent minima of the APES to the high-

symmetry point of the reference nuclear configuration in the subspace of

nuclear displacements Q�g. For instance, for the T� t2 problem the trigonal

minima of the APES are displaced from the high-symmetry reference point in

the subspace of the t2 vibrations only:Q0ðT2Þ ¼ 2=
ffiffiffi
2

p
(in conventional units),

while Q0(E)¼ 0. It follows that the limiting values of KT(T2) and KT(E) in the

strong-coupling case under consideration are KT(T2) 6¼ 0 and KT(E)¼ 0.

Similar conclusions about the magnitudes of reduction factors in the limiting

case of strong vibronic coupling are summarized in [5.98(b)] for many

JT problems. These results are also valid for the multimode problems.

For higher-symmetry (icosahedral) systems (Section 3.4) vibronic reduction

factors were discussed already in the first work on the JT effect in such systems

[5.159] and further advanced in [5.160–5.164, 5.166–5.175]. For the simplest

T� h problem there are three vibronic reduction factors: KT(A), KT(T ), and

KT(H) (T�T¼Aþ [T ]þH; T¼T1 or T2, and square brackets indicate the

antisymmetric part of the Kronecker product), but totally symmetric operators

A are not reduced: K(A)¼ 1 for all the JT problems. The numerical values

[5.159] for linear coupling illustrated in Fig. 5.27 show thatKT(T) as a function

of EJT/�ho ranges from 1 for extremely weak coupling to KT (T)� 0 at

EJT=�ho0 4, while KT (H) falls from 1 to a constant value of KTðHÞ ¼ 2
5
for

the same region of couplings. For arbitrary coupling these two reduction

factors are related by the following equation [5.161] (cf. Eqs. (5.98) and (5.107)):

5KTðHÞ � 3KTðTÞ ¼ 2 (5:108)

Note that while KT1
ðT1Þ ¼ KT2

ðT2Þ, the importance of these two reduction

factors in applications is essentially different. Indeed, the angular momentum

transforms asT1, whereasT2 is irrelevant to angular-momentummatrix elements.

Thismeans that the spin–orbital splitting, that goes to zero in icosahedralT1 states

with sufficiently strong vibronic coupling, will not be reduced at all in T2 states.

If quadratic coupling is included, the equipotential two-dimensional trough

of the linear case becomes warped, yielding either pentagonal D5d, or trigonal

D3dminima depending on the relative coupling strengths (Section 3.4). For both

types of minima of the quadratic T� h problem with strong coupling, employ-

ing the method described in Section 5.3 [5.1, 5.25 ], symmetry-adapted vibronic

states were constructed [5.162], and explicit expressions for the reduction factors

were evaluated using Eq. (5.97) [5.163, 5.164]. For pentagonal D5d minima

KT1
ðT1Þ ¼ 2Sp=ð1þ SpÞ

KT1
ðHÞ ¼ 2ð1þ 4SpÞ=5ð1þ SpÞ

KT2
ðHÞ ¼ 2

5

(5:109)
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while for trigonal minima

KT1
ðT1Þ ¼ 2Stð1þ 4StÞ=ð3þ 5St þ 2S 2

t Þ
KT1

ðHÞ ¼ 2ð3þ 8St þ 14S 2
t Þ=5ð3þ 5St þ 2S 2

t Þ
KT2

ðHÞ ¼ �2ð3� 7St þ 4S 2
t Þ=5ð3� 5St þ 2S 2

t Þ

KGðT1Þ ¼ �ð2=3Þ
1
2St=ð1þ StÞ

KGðHÞ ¼ ð2=9Þ
1
2ð1þ St � 2S 2

t Þ=ð1� S 2
t Þ

(5:110)

where the overlap integrals between, respectively, two near-neighbor penta-

gonal Sp and two trigonal St minima are quite similar to those calculated in

Section 5.3 (cf. Eqs. (5.45)–(5.47)). Calculations yield

Sp ¼ exp½�30EH
JTðE

D5d

JT Þ2�
St ¼ exp½�ð50=3ÞEH

JTðE
D5d

JT Þ2�
(5:111)

Here EH
JT ¼ F2

H=5KH�hoH is the dimensionless JT stabilization energy due to

linear coupling to h displacement, while ED5d

JT ¼ ð5� 4
ffiffiffi
2

p
G2=KHÞ�1 and

ED3d

JT ¼ ð5� 4
ffiffiffiffiffi
10

p
G3=KHÞ�1 in F 2

H=KH�hoH units are the additional stabiliza-

tions due to the formation of pentagonal D5d and trigonal D3d minima via

corresponding quadratic couplings G2 and G3, respectively (Section 3.4). At

G2¼G3¼ 0, ED5d

JT ¼ ED3d

JT ¼ 1
5
, meaning that a two-dimensional trough of depth

equal to EH
JT is formed.

It can easily be seen that the expressions (5.109) and (5.110) obey the sum

rule (5.108).

For the icoshedral G term there are four nontrivial reduction factors

(KG(A)¼ 1) that obey the sum rules [5.161]:

KGðT1Þ ¼ KGðT2Þ; 4KGðGÞ þ 5KGðHÞ � 6KGðT1Þ ¼ 3 (5:112)

Limiting values for infinitely strong coupling when the overlap of vibra-

tional functions of different minima is negligibly small yield the following

numbers [5.167]. For the G� g problem with minima of Td symmetry

(Section 3.4):

KGðT1Þ ¼ KGðT2Þ ¼ KGðHÞ ¼ 0; KGðGÞ ¼ 3
4

(5:113)

For the G� h problem with minima of D3 symmetry:

KGðT1Þ ¼ KGðT2Þ ¼ 0; KGðHÞ ¼ 5=9; KGðGÞ ¼ 5=90 (5:114)
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For the generalG� (gþ h) problemwith a finite vibrational overlap integral

SAB between two tetrahedral minima (the analog of S23 in Eqs. (5.45)–(5.47) in

Section 5.3 and the Sp and St above), we have [5.161, 5.166, 5.167]

KGðT1Þ ¼ KGðT2Þ ¼ KGðHÞ ¼ �5SAB=ð1� SABÞ
KGðGÞ ¼ ð3� 8SABÞ=4ð1� SABÞ

(5:115)

The SAB integral was calculated [5.167] as

SAB ¼ � 1
4
expð�4EG

JT=3Þ (5:116)

where the dimensionless JT stabilization energy for these minima is

EG
JT ¼ 3F 2

G=KG�hoG.

IfD3 minima dominate, there are two types of vibrational overlap integrals,

Sab and Sac (Section 3.4), and the reduction factors are

KGðT1Þ ¼ KGðT2Þ ¼ �5N2
Gð3Sab � 42SacÞ

KGðGÞ ¼ ðN2
G=18Þð1� 12Sab þ 21SacÞ

KGðHÞ ¼ ð5N2
G=18Þð2� 6Sab þ 18SacÞ

(5:117)

with N 2
G ¼ ð1� 2Sab þ SacÞ�1. For Sab and Sac we have [5.167]

Sab ¼ �ð2=3Þ exp½�ð10=81ÞðEG
JT þ 5EH

JTÞ�
Sac ¼ ð1=6Þ exp½�ð5=81ÞðEG

JT þ 20EH
JTÞ�

(5:118)

where the dimensionless JT stabilization energies are EG
JT ¼ 3F 2

G=8KG�hoG and

EH
JT ¼ 3F 2

H=10KH�hoH . First-order vibronic reduction factors (5.117) are illu-

strated in Figs. 5.28 (a) and (b).

There are also off-diagonal reduction factors in this problem for matrix

elements that couple the ground vibronic G level with the next A level via G

perturbations, as well as the A level with an H one via H operators:

KAGðGÞ ¼ ð
ffiffiffi
2

p
NG=12Þð1þ 3Sab þ 6SacÞ

1
2

KAHðHÞ ¼ ð5NG=6Þð1þ 3Sab þ 6SacÞ
1
2

(5:119)

For extremely strong coupling S� 0 and Eqs. (5.114) and (5.117) coincide

with (5.112) and (5.113), respectively.

As discussed in Section 3.4, the calculations for the fivefold degenerate H

term that generates the JT H� (gþ h) problem encounter additional difficul-

ties because the Kronecker product H�H¼AþT1þT2þ 2Gþ 2H contains

repeating irreducible representations G and H. In general this yields a 2� 2
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matrix for each of these two symmetries [5.168] (meaning two diagonal and

two off-diagonal reduction factors), but a proper separation of the two kinds

of g and h distortions eliminates the off-diagonal quantities [5.169]. Hence only

two components (two symmetries) of the repeating representationsGa andGb,

and Ha and Hb, remain and hence there are six physically relevant diagonal

reduction factors K�ð�Þ for the H� (gþ h) problem under consideration.

Their calculation for D5d minima yields [5.168] (Fig. 5.29)

KHðT1Þ ¼ KHðT2Þ ¼ KHðGaÞ ¼ KHðGaÞ ¼ KHðHaÞ ¼ �6SAB=ð1� SABÞ
KHðHbÞ ¼ 4

5
� 2SAB

(5:120)

Fig. 5.28. First-order reduction factors for an icosahedral G term, KG(�), as a
function of the vibronic coupling constants: (a) kg, with wells of T symmetry
(one off-diagonal constantKAG(G) is also shown); and (b) kh, with wells ofD3

symmetry and kg¼ 0 (reprinted with permission from [5.167]. Copyright 2002
Institute of Physics).
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with

SAB ¼ � 1
5
expð�8EHb

JT=5Þ (5:121)

and

EHb

JT ¼ 3F 2
Hb
=10KHb

�hoHb

There is also one off-diagonal reduction factor KAH(Hb) for operators that

mix the vibronic ground state H with the next tunneling state A by Hb

perturbations [5.168]:

KAHðHbÞ ¼ ð2
5
� 2SABÞ=ð1� SABÞ

1
2ð1þ 5SABÞ

1
2 (5:122)

For the other H component KAH(Ha)¼ 0.

For the ten D3d minima of the H� (gþ h) problem (Section 3.4), as in the

case of the G� (gþ h) problem considered above, there are two different

vibrational overlap integrals (which, however, are different from the (5.118)

values):

Sab ¼ �ð1=3Þ exp½�ð40=81ÞðEG
JT þ 2EHa

JT Þ�
Sac ¼ ð1=3Þ exp½�ð40=81Þð2EG

JT þ EHa

JT Þ�
(5:123)

Fig. 5.29. First-order reduction factors for an icosahedralH term in theH� h
problem with minima of D5d symmetry, KH(�), as a function of the vibronic
coupling constant khb ; one off-diagonal constant KAH(Hb) is also shown
(reprinted with permission from [5.168]. Copyright 2002 Institute of Physics).
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The K�ð�Þ expressions as functions of these integrals are [5.168] (Fig. 5.30)

KHðT1Þ ¼ KHðT2Þ ¼ �ð2N 2
H=3Þð4Sab � 5SacÞ

KHðGaÞ ¼ ð2N 2
H=9Þð2� 9Sab þ 12SacÞ

KHðGbÞ ¼ �6N 2
HSab=ð1� 2Sab þ SacÞ

KHðHaÞ ¼ ð2N 2
H=9Þð2� 18Sab þ 3SacÞ

KHðHbÞ ¼ �2N 2
Hð2Sab � SacÞ

(5:124)

with N 2
H ¼ ð1� 2Sab þ SacÞ�1:

For the tunneling G states of the H� (gþ h) problem with D3 minima

similar reduction-factor expressions were obtained [5.168] (Fig. 5.31):

KGðT1Þ ¼ �KGðT2Þ ¼ �ð2
ffiffiffiffiffi
10

p
N 2

G=3ÞðSab þ SacÞ
KGðGaÞ ¼ �ð2

ffiffiffi
2

p
N 2

G=9
ffiffiffi
5

p
Þð1� 9Sab � 12SacÞ

KGðHaÞ ¼ ð4N 2
G=9Þð1� 3SacÞ

(5:125)

with N 2
G ¼ ð1þ Sab � 2SacÞ�1; several off-diagonal KGHð�Þ reduction factors

are also evaluated in this paper [5.168].

In many cases physical observables are defined as second-order perturba-

tion corrections of operators acting upon the electronic states, sometimes

resulting from simultaneous action of two first-order perturbations

Fig. 5.30. First-order reduction factors for an icosahedralH term in theH� h
problem with minima of D3d symmetry, KH(�), as a function of the vibronic
coupling constant kha (kg¼ 0) (reprinted with permission from [5.168].
Copyright 2002 Institute of Physics).

5.6 Vibronic reduction factors 239



(e.g., spin–orbital coupling and an external magnetic field). As mentioned

above, to take into account the effect of vibronic coupling on properties of

the system determined as second-order corrections in perturbation theory, we

introduce second-order vibronic reduction factors K
ð2Þ
� ð�Þ. They can be

defined by inserting into Eqs. (5.97) or (5.970), instead of the operator X�g, a

symmetrized component ��g� of its second-order expression [5.1, 5.139]:

X
ð2Þ
��g� ¼

X
g1;g2

X�g1

X
nv

Cnvðr; QÞj i Cnvðr; QÞh j
E0 � Env

 !
X�g2

�g1�g2
����g�


 	
(5:126)

whereCnv(r,Q) are full excited-state wavefunctions, and the Clebsch–Gordan

coefficients �g1�g2
����g�


 	
are introduced to get the ��g� symmetry component

from the product �� � of the perturbation. If the vibronic coupling is not

included, as on the right-hand side of Eq. (5.97), the wavefunctionCnv(r,Q) is

multiplicative with regard to the electronic and vibrational parts, and sinceX is

a pure electronic operator, the orthonormalized vibrational functions disap-

pear, making the expression (5.126) pure electronic. This cannot be done on

the left-hand side of definition (5.97) with the operator X
ð2Þ
�g because of the

essential non-multiplicative wavefunctions of the vibronic coupling states. The

second-order vibronic reduction factor is thus the ratio of the matrix elements

of X
ð2Þ
�g with and without the vibronic coupling.

Fig. 5.31. First-order reduction factors for an icosahedralH term in theH� g
problem, KH(�), as a function of the vibronic coupling constant kg (kha ¼ 0)
(reprinted with permission from [5.168]. Copyright 2002 Institute of Physics).
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Since the product �� �, in general, contains several irreducible representa-

tions �� of different symmetries, the second-order vibronic reduction factor

may be different for each of them. If the second-order perturbation occurs as a

product of two perturbations with different symmetries, say X�1g1
and Y�2g2

,

they should stay on the two sides of the infinite sum in Eq. (5.126). Therefore a

more general definition of the second-order vibronic reduction factor is

K
ð2Þ
� ð��; �1 � �2Þ, where � is the symmetry of the initial electronic term in

the JT problem. Similar to first-order off-diagonal reduction factors K��0 ð�Þ
there are also off-diagonal second-order reduction factors K

ð2Þ
��0 ð��; �1 � �2Þ.

For themost important diagonal second-order reduction factors with one kind

of perturbation �1 ¼ �2 ¼ �, we use the notation K
ð2Þ
� ð��;�Þ or, omitting the

� symbol where possible, K
ð2Þ
� ð��Þ.

Second-order reduction factors were introduced and first used to consider

spin–orbital interaction in a JT system with a T term in the T� e problem

[5.139, 5.140]. Denoting the spin–orbital operator as lð~L~SÞ and taking the L�

as the operator X in the above definitions, one finds the following expression

for the spin Hamiltonian of the second-order perturbation theory:

H
ð2Þ
SO ¼ �ðl2=�hoEÞ½fað~L~SÞ2 þ ðfa � fbÞðL2

xS
2
x þ L2

yS
2
y þ L2

zS
2
z Þ (5:127)

where fa and fb serve as second-order reduction factors,

fa ¼ expð�3EE
JT=�hoEÞgð3EE

JT=2�hoEÞ
fb ¼ expð�3EE

JT=�hoEÞgð3EE
JT=�hoEÞ

(5:128)

and

gðxÞ ¼
Z x

0

ðet � 1Þt�1dt � x�1ex 1þ 1

x
þ 2

2!x2
þ 2  32

3!x3
þ   

� �
(5:129)

For strong vibronic coupling when EE
JT � �hoE the first term in (5.127) goes

to zero, while the second yields the following asymptotic expression:

ðl2=�hoEÞðfa � fbÞ � l2=3EE
JT (5:130)

The vibronic reduction is thusK ð2Þ � 1=3EE
JT. Since 3E

E
JT is the energy gap to

the upper sheet of the APES at the point of the minimum in the tetragonal

distortion (see the T� e problem, Section 3.3), the effect of very strong

vibronic coupling is equivalent to that of a tetragonal field with only one

(the lowest) excited state taken into account in the second-order perturbation.

It follows that in the second-order perturbation-theory splitting given by
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Eq. (5.127) the second-order reduction factor decreases with EE
JT as ðEE

JTÞ
�1

and thus changes much slower than the almost exponential first-order splitting

(first-order reduction factors). Therefore in this limit case the second-order

reduction may be stronger than the first-order one for large values of EJT.

Second-order reduction factors were calculated for quite a number of JT

problems. In continuation of the first calculations [5.139, 5.140], analytical

formulas for the T� t2 problem with trigonal distortions and the T� (eþ t2)

problem with orthorhombic minima were obtained [5.170(a)]. The calcula-

tions for the T� t2 problem were further improved to take into account the

anisotropy (splitting) of t2 vibrations in the trigonal minima [5.170(b)].

Numerical calculations of second-order reduction factors were carried out

for spin–orbital coupling in T� t2 and T� d problems [5.171]. Figure 5.32

(from [5.172]) illustrates the analytical results [5.170(a)] in comparisonwith the

numerical values [5.171] for the T� t2 problem.

A general theory of second-order vibronic reduction factors based on sym-

metry arguments only was given in [5.173]. Using symmetry-adapted wave-

functions for the tunneling levels and basic group-theory theorems the authors

derived a general formula for K
ð2Þ
� ð��; �1 � �2Þ, which is in principle applic-

able to any JT problem and any second-order perturbation symmetry �1 ¼ �2

or two first-order perturbations �1 6¼ �2, as well as off-diagonal factors

K
ð2Þ
��0 ð��; �1 � �2Þ. Applied to the T� e, T� t2, and T� (eþ t2) problems

A
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Fig. 5.32. Second-order reduction factors A ¼ � 1
2
K

ð2Þ
T ðT1Þ;BE ¼ K

ð2Þ
T ðEÞ;

BT ¼ K
ð2Þ
T ðT2Þ, and C ¼ 1

3
K

ð2Þ
T ðA1Þ calculated including anisotropy, compared

with the numerical results [5.171] denoted by¤, �, ~, and�, respectively (data
from [5.172]).

242 5 Solutions of vibronic equations



[5.172], the general formulas yield in the weak-coupling limit the same results

as in the earlier simpler andmore straightforward evaluations [5.139, 5.140]. In

particular, for the T� t2 system with a T1-type perturbation, for which

�� ¼ T1 � T1 ¼ A1 þ E þ T1 þ T2, one gets

K
ð2Þ
T ðA1Þ ¼ 2K

ð2Þ
T ðEÞ ¼ 2K

ð2Þ
T ðT1Þ ¼ �9ET

JT=2�h
2o2

T

K
ð2Þ
T ðT2Þ ¼ �15ET

JT=4�h
2o2

T

(5:131)

Similarly, in the weak-field limit of the T� e problem and T1 perturb-

ation [5.172]

K
ð2Þ
T ðA1Þ ¼ K

ð2Þ
T ðEÞ ¼ 2K

ð2Þ
T ðT1Þ

K
ð2Þ
T ðT1Þ ¼ 2K

ð2Þ
T ðT2Þ ¼ �3EE

JT=2�h
2o2

E

(5:132)

In the T� (eþ t2) problem with weak coupling to both e and t2 displace-

ments the second-order reduction factors for T1 perturbations are sums of the

two reduction factors obtained above separately for the T� e and T� t2
problems:

K
ð2Þ
T ðA1Þ ¼ �9ET

JT=2�h
2o2

T � 3EE
JT=�h

2o2
E

K
ð2Þ
T ðEÞ ¼ �9ET

JT=4�h
2o2

T � 3EE
JT=�h

2o2
E

K
ð2Þ
T ðT1Þ ¼ �9ET

JT=4�h
2o2

T � 3EE
JT=2�h

2o2
E

K
ð2Þ
T ðT2Þ ¼ �15ET

JT=4�h
2o2

T � 3EE
JT=2�h

2o2
E

(5:133)

In the limit case of very strong vibronic coupling when the system with a T

term is trapped in one of the trigonal minima of the T� t2 problem, it was

shown that the second-order reduction factors are proportional to the first-

order factors [5.172]: K
ð2Þ
T ð��;T1Þ ¼ �ð1=3ET

JTÞKTð��Þ: With the values of

KTð��Þ in the limit of strong coupling from (5.105) and with KTðA1Þ ¼ 1,

we get

K
ð2Þ
T ðA1Þ ¼ �1=3ET

JT; K
ð2Þ
T ðEÞ ¼ K

ð2Þ
T ðT1Þ ¼ 0; K

ð2Þ
T ðT2Þ ¼ �2=9ET

JT

(5:134)

For the off-diagonal second-order reduction factor applied tomatrix elements

between the T1 and A2 tunneling states in the same approximation we have

K
ð2Þ
T1A2

ðT1Þ ¼ �1=ð3
ffiffiffi
3

p
ET
JTÞ (5:135)

As above (see Eq. (5.130)), 3ET
JT is the energy gap to the upper sheet of the

APES at the point of the trigonal minimum (Section 3.3) and hence the inverse
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proportionality of the reduction factors with 3ET
JT may be interpreted as the

corresponding contribution of the lowest excited state to the second-order

perturbation (without vibronic coupling this energy gap is zero).

Second-order reduction factors were also evaluated for JT problems in

icosahedral systems [5.164, 5.167, 5.168, 5.174, 5.175]. For the T1u� hg pro-

blem that occurs, in particular, in the ground state of the icosahedral system

C�
60, second-order factors were calculated assuming that the excited states in

the infinite sum in Eq. (5.126) are excited vibrational harmonic-oscillator

states in the distorted configuration of the minimum of the APES [5.164].

The analytical results obtained for all possible kinds of second-order reduction

factors for both trigonal and pentagonal minima contain the overlap integrals

(5.111), as well as infinite sums emerging from harmonic-oscillator matrix

elements.

The approximation of vibronic states taken as linear combinations of dis-

placed oscillators employed in the work [5.164] is strictly speaking valid only

when the JT distortions are large, with infinite barriers between theminima. Its

possible validity for limited barriers remains unclear because of the problem of

overfilled basis sets. Another approach to this problem was suggested [5.174],

in which the Franck–Condon approximation is used to convolute the infinite

sum of excited (vibrational)-state overlaps with the ground one into a delta

function. In this approximation the limiting values of the second-order reduc-

tion factors aremore accurate than those obtained in [5.164]. Further improve-

ments of this method were achieved by means of introducing perturbational

non-Condon corrections into the Franck–Condon approximation, which were

shown to be inversely proportional to the square of the JT stabilization energy

[5.175].

The same approximation of displaced-oscillator excited states was applied

to evaluate analytically the second-order reduction factors in the G� (gþ h)

[5.167] andH� (gþ h) [5.168] problems, considering the cases of D5d and D3d

minima separately. Figures 5.33–5.36 illustrate the results obtained for the

main reduction factors of these problems. Note that in the majority of cases

given in Figs. 5.33–5.36 the second-order vibronic reduction factors are nega-

tive, meaning that if the first-order reduction factor is small the vibronic

coupling described by these second-order reduction factors results in reversal

of the energy-level ordering.

As mentioned above, the first-order reduction factors decrease with the

coupling strength much faster than the second-order ones, and hence the latter

may prevail over the former for some values of the strong vibronic coupling.

Also, it may happen that the first-order perturbation corrections are forbidden

by symmetry considerations. In all these cases the energy-level reversal is an
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expected reality. To the best of our knowledge, there have been no attempts so

far to reveal this effect experimentally.

Another kind of second-order vibronic reduction factors emerges when one

tries to take into account the admixture of the excited electronic states of the

system with the ground-state JT term in calculation of the second-order

Fig. 5.33. Second-order reduction factors K
ð2Þ
� ð�� �Þ (the symmetry of the

perturbation is that contained in �� �) for the JT G� g problem as a

function of kg: a¼K
ð2Þ
T1

ðG� GÞ, Kð2Þ
T2

ðG� GÞ, K ð2Þ
Ha

ðG� GÞ; b¼K
ð2Þ
Ga

ðG� GÞ;
c¼K

ð2Þ
A ðG� GÞ;d¼K

ð2Þ
T1

ðT1 � T1Þ,K ð2Þ
T1

ðT2 � T2Þ,K ð2Þ
T1

ðH �HÞ,K ð2Þ
T2

ðH �HÞ,
K

ð2Þ
Ha

ðH �HÞ; e¼K
ð2Þ
Ga

ðH �HÞ; f¼K
ð2Þ
A ðT1 � T1Þ,K ð2Þ

A ðT2 � T2Þ,K ð2Þ
A ðH �HÞ

(reprinted with permission from [5.167]. Copyright 2002 Institute of Physics).

Fig. 5.34. Second-order reduction factors K
ð2Þ
� ð�� �Þ for the JT G� h

problem as a function of kh: a¼K
ð2Þ
T1
ðT1 � T1Þ, K ð2Þ

T2
ðT2 � T2Þ, K ð2Þ

H ðT1 � T1Þ,
K

ð2Þ
H ðT2 � T2Þ; b¼K

ð2Þ
A ðT1 � T1Þ, K ð2Þ

A ðT2 � T2Þ (reprinted with permission
from [5.167]. Copyright 2002 Institute of Physics).
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Fig. 5.35. Second-order reduction factors K
ð2Þ
� ð�� �Þ for the JT H� g

problem with perturbations of T1 and T2 symmetries as a function of kg
(reprinted with permission from [5.168]. Copyright 2002 Institute of Physics).

Fig. 5.36. Second-order reduction factorsK
ð2Þ
� ð�� �Þ for the JTH� h problem

as a function of khb : (a) K
ð2Þ
T1

ðHb �HbÞ, K
ð2Þ
T2

ðHb �HbÞ, K
ð2Þ
Ga

ðHb �HbÞ,
K

ð2Þ
Gb

ðHb �HbÞ, K
ð2Þ
Ha

ðHb �HbÞ; (b) K
ð2Þ
Hb

ðHb �HbÞ; (c) K
ð2Þ
A ðHb �HbÞ; (d)

K
ð2Þ
T1

ðT1 � T1Þ, K ð2Þ
H ðT1 � T1Þ, K ð2Þ

T1
ðGa � GaÞ, K ð2Þ

G ðGa � GaÞ, K ð2Þ
H ðGa � GaÞ,

K
ð2Þ
T1

ðHa �HaÞ,K ð2Þ
T2

ðHa �HaÞ, K ð2Þ
Ga
ðHa �HaÞ,K ð2Þ

Gb
ðHa �HaÞ,K ð2Þ

Ha
ðHa �HaÞ;

(e)K
ð2Þ
Hb

ðHa �HaÞ; (f)K ð2Þ
A ðT1 � T1Þ,K ð2Þ

A ðGa � GaÞ,K ð2Þ
A ðHa �HaÞ (reprinted

with permission from [5.168]. Copyright 2002 Institute of Physics).
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perturbations [5.154]. Such excited-state admixture changes the electronic

matrix elements, and these changes may be taken into account by second-

order ‘‘reduction’’ factors ~K (2) (similar to K (2)) that depend on the spectrum of

the excited electronic states. In particular, if only one excited electronic state is

taken into account and the energy gap to this state � is much larger than the

gaps between the vibronic (tunneling) energy levels, these second-order reduc-

tion factors are approximately equal to the first-order reduction factors,
~K ð2Þð�Þ � K�ð�Þ. But this is not true in the general case [5.154].

From the discussion above it follows that only the first-order diagonal

reduction factors are positive and reduce the value of the matrix elements

ðK�ð�Þ � 1Þ, while the off-diagonal K��0 and second-order K
ð2Þ
� and K

ð2Þ
��0

reduction factors may be both positive and negative, and may either reduce

or enhance the physical magnitudes.

On the other hand, we have considered so far only electronic perturbations.

It can be shown that if the perturbation operator X�g is a function of nuclear

coordinatesQ, the first-order effect of vibronic coupling will be enhancing, not

reducing (see also Section 7.1.1). Indeed, assume that X�g is first order in the

JT-active nuclear coordinates Q�g. It can be shown that their reduced matrix

elements on vibronic states are [5.1, 5.140]

C� Q�

�� ��

C�i ¼ �ðF�=K�ÞK�ð�Þ (5:136)

where K�ð�Þ is the first-order reduction factor and F�=K� is proportional to

the JT distortion in the Q�g direction (see Chapter 3; do not confuse the force

constant K� with the reduction factors K�ð�Þ), and

hC�gjQ�gjC�gi ¼ hC�kQ�kC�ih�g�gj�gi (5:136a)

Since in the absence of vibronic coupling C�kQ�kC�


 	
¼ 0, the JTE results

in enhancing the perturbation Q�g. For strong vibronic coupling to Q� dis-

placements for whichK�ð�Þ is a nonzero constant, the effect of perturbation is

proportional to the JT distortion and increases with the vibronic coupling

strength. For instance, in the T� t2 problem the limit value of KT(T2) is
2
3

(Eq. (5.105)), and for a tetrahedral system T2 distortions are dipolar. The

operator of interaction of this system with a corresponding external electric

field ~E is proportional toEQT2
and the effect of this perturbation, which is zero

without the vibronic coupling (no polarization effects are taken into account),

will be proportional to (FT/KT)KT(T2).

Note that without external perturbation the average distortion of the JT

system in stationary states is also zero. Indeed, for the mean displacement
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hQ�gi in the degenerate state we have to evaluate the sum of such values over all

the states of the degenerate term:

hQ�gi ¼
X
g

C�g

 ��Q�g C�g

�� 	
¼ �ðF�=K�ÞK�ð�Þ

X
g

�g�gj�g

 	

¼ 0 (5:137)

The meaning of this result is that without external perturbations the JT

distortions are of dynamic nature, preserving, in stationary states, the initial

high symmetry of the reference configuration, but in the presence of external

perturbations the behavior of the JT system is quite different from that without

vibronic coupling (see also Section 7.1.1).

5.7 Conical intersections and the topological phase problem

As discussed in Section 3.2, one of the simplest JT E� e problems with linear

vibronic coupling yields an APES in the form of a ‘‘Mexican hat’’ (Fig. 3.3)

with a characteristic conical intersection of the two sheets in the center, at the

point of twofold degeneracy. When the quadratic and/or cubic terms of

vibronic coupling are included, there are three additional conical intersections

placed symmetrically around the central one (Fig. 3.9). In more complicated

JT problems, there are multiple conical intersections and seams of conical

intersections in extended space coordinates (Section 3.3). We have also seen

that these conical intersections, their number and their positions affect essen-

tially the vibronic energy spectrum of JT systems and related properties

(Sections 5.2–5.4).

For a long time, up to the last decade, not very much attention was paid to

these conical intersections; rather they were viewed largely as a ‘‘theoretical

curiosity.’’ This perception changed recently in view of the latest achievements

in the treatment of such systems (see [5.176–5.184] and references therein). One

of these achievements is a generalization directly related to the JTE and now

known as the topological (geometric) phase, or the Berry-phase problem

(others are related mostly to chemical reaction dynamics).

Consider the two electronic wavefunctions in the linear JT E� e problem as

functions of the nuclear coordinates � and � in Eq. (3.32) with GE¼ 0. It can

easily be seen that these wavefunctions are not single-valued: when moving

along the bottom of the trough in Fig. 3.3, along the angle �, from �¼ 0 to

�¼ 2p (i.e. coming back to the same starting point) the wavefunctions (3.32)

change sign! On the other hand the total wavefunction should be single-valued.

To satisfy this condition a phase factor eim� should be attached to the electro-

nic wavefunctions (3.32) and (5.18) (or to their nuclear counterparts) with
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half-integer values of m: m ¼ �ð12Þ; �ð32Þ; �ð52Þ; . . . Since with these m values

eim(�þ2p)¼�eim�, the additional phase is here �0¼ np with n¼ 1, 3, 5, . . .

The energy is a function ofm2 (see (5.1) and (5.18)), and hence all the energy

levels with the above quantum numbers, including the ground state, are

doubly degenerate. It follows that the singularity of the conical intersection

produces a very strong effect, making the ground and excited states doubly

degenerate. Some of these degeneracies are removed by quadratic coupling

(Section 5.2), but as was shown in [5.185], the ground state, due to the

periodicity condition for the vibrational function along the trough, remains

that with m ¼ �1
2
(the E state) and it is not split by the quadratic terms. The

first exited state with m ¼ �3
2
splits into A1þA2. Only very strong quadratic

coupling that involves the additional three conical intersections makes the

ground state nondegenerate (see section 5.3 and the discussion below).

The wavefunction phase problem, which is directly related to the conical

intersection on the APES (the topological phase), as shown above, was first

revealed from the solution of the E� e problem [5.55, 5.186]. Berry [5.187]

generalized this result and proved that similar phase problems occur in many

other situations where the physical quantity depends on a parameter adia-

batically, resulting in novel observable effects (see also his precursors

[5.188–5.190]).

The Berry-phase theorem [5.187] (not to be confused with Berry pseudo-

rotation, Section 7.1) was proved for any adiabatic process when the

Hamiltonian of the system H(R) depends on a parameter R, or several para-

meters, and changes slowly (adiabatically) with the changes of these para-

meters. The slow changes mean that at every instant in time the Schrödinger

equation for stationary states is valid:

HðRðtÞÞjnðRðtÞÞi ¼ EnðRðtÞÞjnðRðtÞÞi (5:138)

The full wavefunction C(t) is proportional to nðRðtÞÞj i with a dynamic

phase factor, which in traditional quantum mechanics can be shown to be

equal to exp½ð1=i�hÞ
R
EnðRðt0ÞÞdt0� (for fully stationary states En is a constant

and the phase is simply expð�iEnt=�hÞ). Berry showed that if under these

conditions the system is transferred along a closed path in the parameter (R)

space, an additional geometric phase g(t) occurs, the total phase being

exp½igðtÞ þ ð1=i�hÞ
R
EnðRðt0ÞÞdt0�. The geometric phase can be easily calculated

[5.187]:

gnðCÞ ¼ i

I
C

hnðRÞjrRnðRÞidR (5:139)
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where the integral is taken along any (adiabatic) closed path C (the expression

hnðRÞjrRnðRÞi is imaginary, so g is real). The parameter R may represent

either an external perturbation (and then it is under experimental control), or

internal dynamic variables, e.g., nuclear coordinates in the adiabatic approx-

imation, as in the JT case discussed above. In the former case a series of

experimental confirmations of the significance of the geometric phase were

obtained, including the Aharonov–Bohm effect [5.191] which was shown to be

a particular case of the Berry phase [5.187, 5.189], rotation of the polarization

vector of light propagating in optical fibers [5.192], high-field NMR experi-

ments [5.193], the fractional quantum Hall effect [5.194], conductance in low-

dimensional metals [5.195], l doubling in diatomics [5.196], etc. The situation

is more complicatedwhen the parameter space is formed by dynamic variables,

which are beyond experimental control. In these cases the Berry-phase impli-

cations result in indirect effects, like the double degeneracy of the vibronic

states of the E� e problem mentioned above.

The wavefunction topological phase depends on just the presence of conical

intersections, all the other characteristics of the APES being irrelevant, and

becomes essential when some global property like transport around a finite

closed circuit on the surface is considered. As a simple example of somewhat

similar phase behavior, consider parallel translation of a vector on the surface

of a sphere [5.197], the length of the vector and the angle it makes with the

surface of the sphere being kept constant. If this vector is transported along the

perimeter of a spherical triangle with all the three angles equal to 908, the
vector returns to the initial point rotated by 908 with respect to its initial

orientation. This p/2 phase rotation is obviously due to the curvature of the

surface. Such holomony occurs also in other topology conditions, including JT

systems.

We see that the special phase of the wavefunction required in the presence of

conical intersection is not a ‘‘pure mathematical’’ result: the physical conse-

quences of the presence of the topological phase are quite real and can be

observed experimentally. This circumstance may serve as an additional source

of wonder about how abstract mathematical notions like complex numbers

(the wavefunction phase is complex) and analyticity turn out to be astonish-

ingly applicable to the real (natural) world [5.198, 5.199] (cited from [5.200]).

In application to JT problems, we note first that the adiabatic (slow) changes

of the electronic wavefunction as a function of nuclear coordinates may be

achieved only for strong vibronic coupling and low-energy states. With regard

to conical intersections in JT systems the following alternative analysis is

illustrative. Assume that we keep the electronic wavefunction single-valued

(meaning with an attached phase factor) and consider the equation of nuclear
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motions in the adiabatic approximation, i.e., when the total wavefunction can

be presented as a product of the electronic and nuclear wavefunctions:

C(r, Q)¼w(r, Q)�(Q). Conventionally, a general expression for this equation

for Q vibrations can be presented as follows [5.201]:

½12Mð�i @=@Qþ AQÞ2 þ "ðQÞ��ðQÞ ¼ E�ðQÞ (5:140)

where in addition to the usual terms of the ordinary Hamiltonian a gauge

potential AQ is added,

AQ ¼ �i

Z
w�ðr; QÞð@w=@QÞdr (5:141)

which coincides with nðRÞjrRnðRÞh i in Eq. (5.139).

If the electronic functions can be chosen single-valued and real, then AQ¼ 0

and Eq. (5.140) acquires its usual form for nuclear motions with the potential

energy "(Q). However, in the presence of conical intersections, as well as under

some other conditions mentioned above, the electronic function has an

attached phase factor which makes it essentially not real, and AQ 6¼ 0. With

the wavefunctions (5.18) or (5.25) the integral
H
C AQ dQ taken around the

conical intersection equals 2pm. On the other hand, the gauge potential A is

nonzero in the presence of a magnetic field. Therefore, the implication of a

conical intersection is equivalent to that of an additional magnetic field. The

conical intersection acts as a fictitious magnetic field that makes all the energy

levels doubly degenerate. In [5.189] this effect was called the ‘‘molecular

Aharonov–Bohm effect.’’ It follows that the electromagnetic vector-potential

A has a more general physical significance than just as a tool for calculation

of the influence of an electromagnetic field. For a comprehensive review

of geometric phases in physics and chemistry see [5.176–5.184, 5.200,

5.202–5.204].

An important feature of the Berry-phase implications in JT problems is that

the peculiar phase factor that changes the sign of the electronic wavefunctions

and makes the ground vibronic state degenerate occurs only when one or an

odd number of conical intersections are encircled, while it retains the same sign

if an even number (including zero) are encircled. This was shown by direct

calculation of the phase (5.139) in the E� e problem [5.205]. In fact, the phase

is �0¼ np, where n is the number of conical intersections encircled; for n¼ 0, 2,

4, . . . the sign of the wavefunction does not change. For large quadratic

coupling the three marginal conical intersection of the E� e problem

(Fig. 3.9) approach the central one, and the tunneling between the minima was

shown to encircle all the four conical intersections [5.43] (Section 5.3) resulting
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in �0¼ 4p. In this case there is no phase problem: the ground state becomes

nondegenerate.

However, as shown in a more rigorous treatment [5.206],the total phase in

cases of multiple conical intersections may be model-dependent, meaning that

it depends on how the conical intersections are encircled, the distance, and the

speed of circling. The authors [5.206] suggested an experimental situation

where these phase peculiarities can be observed.

Similarly, in the T� t2 problem with not very large quadratic terms, the

ground vibronic state is shown to be threefold degenerate T (Section 5.3) due

to the Berry phase. As in theE� e case [5.185], the boundary conditions for the

vibrational wavefunction that should change sign when encircling a conical

intersection (to compensate for the sign change in the electronic wavefunction)

cause the lowest nondegenerate state A to have more nodes than the lowest

T state [5.207]. This in turn results in the T state being lower than the A one;

without the Berry phase attached the A state would be the ground state.

The lower vibronic T state in the T� t2 problem with small to moderate

quadratic coupling is confirmed multiply by direct numerical calculations.

However, as shown recently [5.44], for larger quadratic coupling constants a

crossover takes place between the A and T vibronic levels, and the A level

becomes the ground-state one. The analysis of the possible tunneling paths

shows that for sufficiently large quadratic coupling the tunneling goes around

an alternative path that involves both types of lines of conical intersections in

Fig. 5.12, for which the Berry phase is zero or 2p (Section 5.3). This explains

the origin of the crossover resulting in the nondegenerate ground state A.

Further discussion of Berry-phase implications in JT problems has been

given for the T� (eþ t2) problem [5.208], which separates into two problems,

T� e and T� t2, when one of the couplings is larger than the other. The

�8� (eþ t2) problem with strong vibronic coupling has two twofold degener-

ate terms (the Kramers degeneracy is not removed) for which the extended

proof of the Berry-phase theory for degenerate states [5.196] was employed

[5.209]. If the coupling to one of the two types of distortions is predominant,

the problem reduces to the previously considered E� e or E� (eþ a) pro-

blems. However, if the two types of couplings have the same strength, the

problem becomes more complicated and the Berry phase becomes a 2� 2

matrix [5.209].

Amore important situation emerges when the spin–orbital interaction splits

the orbital degenerate electronic term, transforming the JT problem into a PJT

one (Section 4.2). In the JT E� e case the spin–orbital splitting of the E term

(�) reduces the problem to the PJT effect (Section 4.1). In the adiabatic

approximation with strong linear PJT coupling k and ignoring quadratic
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coupling in the geometric phase g was shown to depend on the radius R of the

circle around the point of pseudodegeneracy [5.210, 5.211]:

gJTðRÞ ¼ �p½1þ "ð�; RÞ� (5:142)

"ð�; RÞ ¼ �=kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�=kÞ2 þ R2

q (5:143)

The same (in principle) dependence of the geometric phase on�, k, andR is

expectedwhen the splitting� is produced by an external magnetic field [5.212].

At first sight the dependence of the phase on the radius R of the circle

around the pseudodegeneracy (highest-symmetry) point seems to be essential.

In fact, however, the adiabatic approximation required for the physicality of

the Berry phase is valid just at the bottom of the trough (or the minima) of the

APESwhereR � �0 (provided k is sufficiently large and�< k2; see Chapters 3

and 4). For the PJT case under consideration �0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � ð�=kÞ2

q
(Eq. (4.7)) and

"ð�; RÞ ¼ �=k2 (5:144)

Thus the correction to the dependence of the geometric phase on the

spin–orbital splitting is essential in transforming the JT problem at �¼ 0

(where the phase implication is significant) into a PJT problem at larger �

values; at �¼ k2, �0¼ 0, and the geometric-phase implications disappear

(together with the PJT instability), as expected in the absence of conical

intersections.

For the PJT (EþA)� e problem (Section 4.2), when the JTE in theE term is

ignored and the E–A energy gap is taken equal to zero, the spin–orbital

splitting � of the E term produces the following geometric phase [5.210]:

gPJTðRÞ ¼ 2p"ð�; RÞ (5:145)

For R � �0, using (5.144), we have gPJT (R)¼ 2p�/k2 (where k is here the

constant of PJT coupling between the two split states). This means that the

phase implications (which are absent at �¼ 0 since the vibronic coupling

in the E state is ignored) are proportional to �, but for large � values the

adiabacity of the system deteriorates (and �0¼ 0 at �¼ k2). Effects of ‘‘open

path phase’’ may occur in degenerate and nondegenerate states in conditions

reflecting the situation as if the conical intersection (or the pseudodegene-

racy point) is not fully encircled [5.213] with some consequences mentioned

above [5.206].
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For icosahedral systems, the relation of the vibronic level H–A crossover

(Section 5.3) to the geometric phase in the H� h problem is discussed in

[5.214]. The geometric phase in Cþ
60 and C2þ

60 is considered in [5.41].

Somewhat outstanding is the Berry-phase problem for JT crystals

[5.215–5.217], which was shown to be related to a variety of crystal properties

(Chapter 8). It was shown [5.217] that in a crystal with JT centers that have

an E� e coupling problem and a geometric phase as described above, the

Bloch electron wavefunction acquires a geometric phase too. This crystal

conduction-electron Berry phase can change drastically the expected band

structure, and may lead to an orbital ordering and orbital density wave. The

crystal geometric phase has a site-to-site variation within the lattice period

and changes essentially with the lattice constant. It explains also the origin

of the stripe structure of manganites with colossal magnetoresistance

(Section 8.4).

In development of the presentation of the Berry-phase implications as a

fictitious magnetic field at the conical intersection (Eqs. (5.140) and (5.141)) it

was shown [5.216] that when a real electromagnetic field is added to the

fictitious one, their joint effect is very peculiar because the latter counteracts

the former. As a result the ground-state wavefunction is essentially unaltered

by a (weak) real magnetic field showing rigidity against penetration of an

external electromagnetic influence (U(1) gauge symmetry breaking [5.216]).

The predicted consequences of this result are most interesting (Section 8.4).
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5.210. J. Schön and H. Köppel, J. Chem. Phys. 108, 1503 (1998).
5.211. H. Koizumi and S. Sugano, J. Chem. Phys. 102, 4472 (1995).
5.212. G. Bevilacqua, L. Martinelli, and G. P. Parravicini, Phys. Rev. B 63, 132403

(2001).
5.213. R. Englman, A. Yahalom, and M. Baer, Eur. Phys. J. D 8, 1 (2000); Phys.

Lett. A 251, 223 (1999); R. Englman and A. Yahalom, Phys. Rev. A 60, 1802
(1999); J. Phys.: Condens.Matter 11, 1059 (1999); A. J. C. Varandas,M. Baer,
and R. Englman, J. Chem. Phys. 111, 9493 (1999).

References 261



5.214. N.Manini and P. de Los Rios, in Electron–Phonon Dynamics and Jahn–Teller
Effects, Eds. G. Bevilacqua, L. Martinelli, and N. Terzi, Singapore, World
Scientific, 1999, p. 37.

5.215. H. Koizumi, Phys. Rev. Lett. 76, 2370 (1996).
5.216. H. Koizumi, Phys. Rev. 59, 8428 (1999-I).
5.217. H. Koizumi, T. Hotta, and Y. Takada, Phys. Rev. Lett. 80, 4518 (1998).

262 5 Solutions of vibronic equations



6

The Jahn–Teller effect in spectroscopy:
general theory

With this chapter we begin the applications of the general theory of the JTE to

all-range spectroscopy, molecular structure, and solid-state physics (Chapters

6–8). Among them the JTE in spectral properties is the most significant due to

the sensitivity of spectra to changes in electronic structure and vibronic cou-

pling. On the other hand, the influence of vibronic coupling on spectra is very

specific; it depends on both the system parameters and the spectral range under

consideration. Still there are some general features common to all systems with

the same JT problem.

This chapter is devoted to such a general theory of the JTE in spectroscopy.

More particular problems are considered in Chapters 7 and 8, together with the

correspondingspecific systems,but the separationof thegeneral theory frommore

system-orientedquestions is toa largeextent conventional.Obviously, there isalso

substantial overlap with calculations of vibronic states presented in Chapter 5:

spectroscopy is inalienable from energies andwavefunctions of the system.

6.1 Electronic transitions

6.1.1 Optical band shapes

Optical band shapes with the JTE were subjected to multiple investigations by

many authors (see the reviews [6.1–6.10] and references therein).

The term band shape means an envelope of elementary transitions between

vibronic states, each ofwhichhas a specificwidth so that the vibronic linesmerge

into a continuous band. The light-absorption coefficient K12(W) due to the

electronic transition 1!2 is determined by the relation I¼ I0 exp[�K12(W)l],

where I0 and Iare the intensitiesof the incidentand transmitted light, respectively,

and l is the absorption-layer thickness.K12 (W) has the following form [6.3, 6.11]:

K12ðWÞ ¼ ð4p2NW=3cÞF12ðWÞ (6:1)
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where

F12ðWÞ ¼
X
�;�0

�1� 1�h j ~M 2�0j i
�� ��2�ðE2�0 � E1� � �hWÞ (6:2)

is the shape function of the band,N is the number of absorbing centers per unit

volume,M1�2�0 ¼ 1�h jM 2�0j i is the matrix element of the transition moment, �

and �0 label the vibronic ground and excited states, respectively, �1� is the

probability that the ground energy state E1� is populated according to the

Boltzmann distribution,

�1� ¼ expð�E1�=kTÞ=Z1 (6:3)

Z1 ¼
P

�00 expð�E1�00=kTÞ is the sum of states of the ground term, and the

�-function takes into account the energy-conservation law, due to which the

transition 1�!2�0 is possible only if �hW¼E2�0 �E1�.

A simple relationship links the shape function for the emission band due to

the 2!1 transtion, F21(W), with the above function F12 (W) for the correspond-

ing absorption [6.3]:

F12ðWÞ ¼ ðZ2=Z1ÞF12ðWÞ expð��hW=kTÞ (6:4)

where Z2 is the sum of states of the excited term.

The main features of the shape function can be determined in the semiclas-

sical approximation. In this approximation it is assumed that at not very low

temperatures, kT � �ho, where o is the vibrational frequency, during the

electronic transition the nuclei remain fixed at their positions Q of the initial

state (in accordance with the Franck–Condon principle), and therefore the

energiesE1� andE2�0 can be taken approximately equal to the respective values

of the APES at the point Q: E1�¼ "1(Q) and E2�0 ¼ "2(Q). Then, on passing

from summation to integration in Eq. (6.2), we obtain

F12ðWÞ ¼
Z

�1ðQÞ ~M12ðQÞ
�� ��2�½"2ðQÞ � "1ðQÞ � �hW�dQ (6:5)

where

~M12ðQÞ ¼
Z

C�
1ðr;QÞ ~MC2ðr;QÞd� (6:6)

If both states, ground and excited, are nondegenerate, then

"1ðQÞ ¼ 1
2
KQ2; "2ðQÞ ¼ �hW0 þ 1

2
KðQ�Q0Þ2 (6:7)
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where Q is the totally symmetric coordinate, Q0 is the shift in position of the

minimum in the excited state with respect to the ground one (the other

coordinates remain undisplaced), and W0 is the frequency of the zero-phonon

line (Fig. 6.1). On substituting these expressions into Eqs. (6.5) and (6.6) and

neglecting the weak dependence of M12 on Q, we obtain

F12ðQÞ ¼ ~M
ð0Þ
12

��� ���2 exp½��h2ðW�W0Þ2=2kTKQ2
0�

ð2pkTKÞ
1
2Q0

(6:8)

It follows that the band has a Gaussian form.

Assume now that the excited state is degenerate. Then, besides the totally

symmetric coordinates, the nontotally symmetric JT-active coordinates are dis-

placed. For the A!E transition in the linear vibronic coupling approximation

with polar coordinates � and � for the eg displacements (Section 3.2), we have

"1ðQ; �; �Þ ¼ 1
2
KAQ

2 þ 1
2
KE�

2

"2ðQ; �; �Þ ¼ �hW0 þ 1
2
KAðQ�Q0Þ2 þ 1

2
KE�

2 � FEj j� (6:9)

E2

E1

E
Q1

0
Q2

0

ε2(Q)

ε1(Q)

Ω1 Ω2Ω0

Q

Fig. 6.1. The AP curves, vibrational states, and ‘‘vertical’’ transition between
two electronic states. W0, W1, and W2 are the pure electronic (zero-phonon),
maximum absorption, and emission frequencies, respectively, while Q0

1 and
Q0

2 are the minimum positions of the ground and excited states, respectively.
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On substituting these expressions into Eq. (6.5) with Q0¼ 0, i.e., neglecting

the contribution of the totally symmetric vibrations to the band shape, we get

F12ðQÞ ¼
~M

ð0Þ
12

��� ���2�h W�W0j j
4kTEJT

exp½��h2ðW�W0Þ2=2kTEJT� (6:10)

The relationship (6.10) is presented graphically in Fig. 6.2(a). It has a

symmetric shape with two humps and a dip at W¼W0. This band shape can

be interpreted as being due to JT splitting of the nonvibronic band. The splitting

(distance between the two maxima) equals ð8EJTkTÞ
1
2. The first calculations of

F12(Ω)

(a)

(b)

(c)

F12(Ω)

F12(Ω)

Ω0

Ω0 Ω

Ω

ΩΩ0

Fig. 6.2. Schematic presentation of the band shape of the A!E transition
calculated in the semiclassical approximation including the linear coupling
with e and a vibrations: (a) the coupling with totally symmetric vibrations a is
neglected (XA¼ 0, XE 6¼ 0); (b) the a vibrations are included, but the coupling
to e vibrations is predominant (XA 6¼ 0, XE 6¼ 0, but XE>XA); and (c) the
coupling to a vibrations is predominant (XE<XA).
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the electronic absorption-band shapes of JT systems in a semiclassical approx-

imationwere performed in [6.12, 6.13], and then improved in [6.14], taking into

account also the weak splitting of the E term by external fields in the A!E

transition.

If the contribution of the totally symmetric vibrations is taken into account,

then Q0 6¼ 0, and the expression (6.10) becomes more complicated. Its main

feature depends on the relation between the stabilization energies

EE
JT ¼ F 2

E=2KE and EA
JT ¼ F 2

A=2KA (Section 3.2). If the high-temperature lim-

itation kT � �ho is removed, then the parameters XE ¼ F 2
E cothð�hoE=2kTÞ

and XA ¼ F 2
A cothð�hoE=2kTÞ should be compared. If XA¼ 0, but XE 6¼ 0, we

get the shape function shown in Fig. 6.2(a); for XA 6¼ 0, but XA<XE, the band

shape loses its singularity at W¼W0, becoming as shown in Fig. 6.2(b); at

XA>XE the two-humped feature of the curve disappears and the band

acquires the usual (in our case Gaussian) shape for transitions to nondegene-

rate terms (Fig. 6.2(c)).

For RT problems the band shapes of electronic transitions were evaluated in

the semiclassical approximation in [6.15].

The semiclassical approximation yields rather rough results that neverthe-

less allow one to reveal the main qualitative features of the band structure of

spectra of JT systems at sufficiently high temperatures. More accurate results

were obtained by means of numerical calculations of the vibronic energy levels

En� and wavefunctions n�j i that allow direct calculation of the individual

transition probabilities M1�2�0 ¼ 1�h jM 2�0j i and the shape function (6.2).

The first such calculations (which were also the first calculations of the optical

JTE) were performed in [6.16, 6.17] for the transition between a nondegenerate

A and twofold degenerate E terms.

The E-term vibronic energy levels in the linear vibronic coupling approx-

imation are classified by the quantum numberm ¼ � 1
2
; � 3

2
; . . . (Section 5.1),

while for the A term the ground vibrational state has m¼ 0 (zero quanta of

e vibrations), and for dipolar transitions �m ¼ � 1
2
. Therefore in the A!E

absorption at T¼ 0, transitions to vibronic levels m ¼ � 1
2
only are allowed.

Figure 6.3 illustrates the results obtained for A!E and E!A transitions at

T¼ 0 and three different values of vibronic coupling in the E� e problem

taken in dimensionless units l ¼ EE
JT=�ho. We see that, compared with the

semiclassical picture (Fig. 6.2), the two-humped band shape for the A!E

transition has significant asymmetry and nonzero intensity at W¼W0. The

asymmetry decreases with increasing vibronic coupling. The E!A transition

has a bell-shaped curve in both approaches. The equidistant positions of the

lines are due to the assumed equally spaced rotational energy levels.
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Further improvements in such calculations were achieved in several works

[6.18–6.21]. In particular, for very large coupling constant (l� 400) the envel-

ope of the high-frequency wing of the spectrum has additional structure

[6.18–6.20], shown in Fig. 6.4, which is sometimes called Slonczewski reso-

nances [6.18, 6.20, 6.21], illustrated in Fig. 6.5. The temperature dependence of

the shape function of A!E transition is demonstrated in Fig. 6.6 [6.22].

So-called continued-fraction numerical calculations for A!E transitions

were performed in [6.23].

Higher-order terms of vibronic interaction and external low-symmetry

fields increase the complexity of the spectrum [6.24, 6.25]. The strong anhar-

monicity of the APES and nonadiabacity (Sections 2.1 and 2.4) make the

numerical calculations of the spectra most difficult, in particular, because of

the failure of the Franck–Condon approximation in the optical transition

[6.25, 6.10]. Other approaches, including the independent-ordering approxima-

tion [6.14, 6.26, 6.27] and the method of canonical transformations [6.28]

(Section 5.4) were tried and compared with numerical results. Approximate

A

A

E

E

A

A

E

E

A

A

E

E

(b)

(c)

(a)

Fig. 6.3. Frequencies and relative intensities of vibronic components and the
band shape (envelope) for A!E and E!A transitions calculated at T¼ 0 for
the following values of the dimensionless vibronic constant: (a) l¼ 2.5; (b)
l¼ 7.5; and (c) l¼ 15. The position of the zero-phonon line is shown by an
arrow (from [6.16]).
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analytical treatments were also suggested [6.29, 6.30]. The A!E transition in

tetragonal systems with the JT E � ðb1 þ b2Þ problem is discussed in [6.31].

This paper considers also 1A!2E transitions in trigonal systems including the

spin–orbital coupling in the 2E state (see below). E!E transitions treated

semiclassically in the strong vibronic coupling limit yield a four-humped

envelope curve for the band shape [6.14] corresponding to the transitions

from the two sheets of the lower E term to the two sheets of the upper E term.
2E!2T transitions in tetrahedral systems were also considered in a similar

approximation [6.32].

For theA!T transition the first calculations of the absorption spectra were

performed in [6.33] assuming that the linear coupling to the t2 mode only is

effective in the T state, the linear T � t2 problem (Section 3.3). The vibronic

spectrum of the latter, obtained earlier [6.34] by numerical solution of the

vibronic coupling equations (2.6), was used to calculate optical transitions

from the ground state to individual vibronic levels of the excited state. Then,

replacing each of the absorption lines by a Gaussian band, the envelope of the

A!T band was revealed. The results are shown in Fig. 6.7. A special feature of

these curves is their asymmetrically positioned three peaks. Qualitatively, this

band shape emerges also in the semiclassical approximation based on Eq. (6.5)

[6.13]. The A!T transition with the full T � ðeþ t2Þ problem in the excited

state was considered in [6.35]. For the T!A transition the use of the relation

20 40 60–60 –40 –20 0

0

0.01

0.02

0.03

F

Ω

Fig. 6.4. The band shape of the A!E transition at T¼ 0 and
lE ¼ EE

JT=�hoE ¼ 400. Vertical lines are exact numerical solutions [6.19],
while the dashed and solid curves show the semiempirical results obtained
with [6.1] and without [6.14] the centrifugal interaction, respectively.W is read
off from the Franck–Condon transition frequency WEA (in oE units); F is the
form factor (6.2).
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(6.4) is useful in establishing the band shape [6.36]; at high temperatures the

more-than-one-peak structure of the band disappears because of the

Boltzmann factor expð��hW=kTÞ.
The band shape of the A!T transition was also evaluated by means of the

independent-ordering approximation [6.37], and by the method of cumulant

expansion [6.38]. The transition to the nearly degenerate A1gþT1u state with

an ðA1g þ T1uÞ � ða1g þ eg þ t1u þ t2uÞ problem (Section 4.2) was also dis-

cussed [6.39]. Operator methods for similar problems were used in [6.40]; a

bibliography of previous publications on the subject is also given in this paper.

10 20 30–20 –10 0
(Ω – ΩEA) / ω

(a)

(b)

E

ω

A

F(Ω)

Fig. 6.5. Optical transitions A!E with strong excited-state E� e vibronic
coupling: (a) the band shape at lE ¼ EE

JT=�hoE ¼ 64; and (b) the APES cross-
sections for the A and E terms with corresponding transitions shown by
arrows (reprinted with permission from [6.18]. Copyright 1973 Springer-
Verlag).
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The spectra of A!T transitions are often complicated by the spin–orbital

splitting of the T term. For instance, as mentioned earlier, the 2T1 term splits

into aKramers doublet�6 and a quadruplet�8. Although only the latter is a JT

term subject to the JT �8 � ðeþ t2Þ problem (Section 3.3), the doublet �6

cannot be excluded from the treatment because the vibronic coupling mixes

the two terms in a PJTE. The full consideration is thus of a JT �8 � ðeþ t2Þ
plus PJT ð�6 þ �8Þ � ðeþ t2Þ problem. In [6.12(b)] the latter is taken into

account by perturbation theory (see also [6.41]).

A similar problem emerges in the transition 1A1g!ð1T1u þ 3T1uÞ for the

so-called A and C absorption bands of thallium-like impurities in alkali halide

crystals [6.42]. The A-band shape, taken separately and including vibronic

coupling to the t2 vibrations only, is discussed in [6.13], where the PJT (and

spin–orbital) mixing of the 1T1u and 3T1u terms is also considered in the

Fig. 6.6. The temperature dependence of the absorption band shape of the
A!E transition obtained by numerical solution of the linear E� e problem
including the coupling with a vibrations, lA¼ 0.5, and e vibrations, lE¼ 0.5
(a) and lE¼ 5.0 (b) [6.22]. The frequency with respect to the pure electronic
transition W¼ 0 is given in oE units, and �¼ �hoE/KT. For strong vibronic
coupling and at high temperatures the absorption curve approaches the
semiclassical limit shown by the dashed line (cf. Fig. 6.2).
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framework of perturbation theory (similarly to [6.12(b)].) The B-band shape of

the transition 1A1g!ð3A1u þ 3T1u þ 3Eu þ 3T2u þ 1T1uÞ that includes all the
vibronicmixing interactions in thallium-like centers was evaluated bymeans of

the semiclassical approximations [6.43]. A detailed bibliography of studies of

the shapes of the A, B, and C absorption bands in thallium-like centers is given

in [6.8, 6.44, 6.45].
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Fig. 6.7. Band shapes of the electronic A!T transitions (envelopes of
elementary transitions) in absorption (I, II) and T!A transitions in
emission (III) with a T� t2 problem in the T state at various temperatures:
kT / �hoE¼ 0 (a), 0.5 (b), 1.0 (Ic, IIc), and 4 (d), and two values of the coupling
constant, lE ¼ EE

JT=�hoE ¼ 2=3 (I, IIIb) and 3.527 (II, IIIa, IIId) [6.33].
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More general discussion of the band shape of the 2A!2T transition in the

semiclassical approximation taking into account the spin–orbital interaction

and the coupling to the a1, e, and t2 vibrations is given in [6.46]. Figure 6.8

illustrates the results. The band shape is strongly dependent on the relations

between the constants of vibronic coupling to the three types of activemodes in

the T state and the spin–orbital constant. As in the A!E transition (Figs. 6.2

and 6.3), the totally symmetric vibrations smooth out the humps of the band.

If the coupling to the e vibrations is predominant (the T � e problem), and

the spin–orbit interaction is zero, the absorption band of theA!T transition is

not split, in spite of the significant splitting of the adiabatic potential (Section

3.3). In the case of predominant coupling to the t2 vibrations, the absorption

band is split into three, and its envelope depends to a large extent on the

magnitude of vibronic coupling to all the active vibrations, a1, e, and t2.

The special case of a T2 term equally coupled to e and t2 modes (the d-mode

model, Section 3.3) with the spin–orbit interaction included was considered in

[6.47–6.50]. The same d-mode approximation in numerical diagonalization of

the �8 � ðeþ t2Þ problem was used to elucidate the band shape of the

�6ð2T1Þ!�8ð2T1Þ transition [6.51]. Similarly to the A!E case (the orbital

parts of �6 and �8 are similar to those of the A and E terms, respectively;

Section 3.3), the�6ð2T1Þ!�8ð2T1Þ transition has a two-humped structure, and

FE = 0.2

FT = 0.2

FE = 0.2
FT = 0.6

FE = 0.6

FT = 0.2

FE = 0.6

FT = 0.6

FA = 0.215
0.430
0.645

0.860
1.075

FA

FA FA

FA

FA = 0.355
0.711
1.066
1.421

FA = 0.294

0.587
0.881
1.175

FA = 0.408
0.815
1.223
1.631

Fig. 6.8. The band shape of electronic A!T transitions with coupling to e, t2,
and a vibrations in the T state obtained in the semiclassical approximation of
the T� (aþ eþ t2) problem [6.46]. FE, FT, and FA are the dimensionless
vibronic coupling constants. The three-humped curve becomes essentially
smoothed with the increase of totally symmetric a vibrations.
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for very strong vibronic coupling a third peak is resolved on the high-frequency

wing (cf. Figs. 6.4 and 6.5), which is interpreted as a Slonczewski resonance.

The PJT mixing of one of the two combining states with a third one

essentially influences the spectrum of transitions between them. Optical man-

ifestations of this effect have receivedmuch attention ever since the foundation

of the theory of vibronic interactions. First the vibronic mixing of nondegene-

rate electronic states was introduced in order to explain the occurrence of

optically forbidden bands in the electronic absorption spectrum [6.52]. This

intensity-borrowing effect, which is taken into account by means of a perturba-

tion expansion of the electron wavefunctions in terms of the vibronic coupling

constant, is known today as the Herzberg–Teller effect.

A comprehensive review of the large number of publications in this area is

outside the scope of this book; we just cite some representative examples

[6.51–6.56] including numerical calculations of the vibronic band structure of

the optical transition A!ðAþ BÞ � b [6.51], semiclassical calculations of the

envelope band shape [6.54], and explanations of different spectroscopic phe-

nomena using the one-mode PJT Hamiltonian [6.55]. In [6.56] the PJT mixing

of the ground stateEwith the excitedT2 in tetrahedral d
1 systems was shown to

influence both optical and EPR spectra. The PJTE becomes more complicated

if one takes into account the additional totally symmetric vibrations that

modulate the energy separation of the interacting states (Section 3.2).

In the analysis of band shapes in JT systems the method of momentsmay be

useful [6.3, 6.5]. The integral

Wnh i ¼
Z þ1

�1
WnF12ðWÞdW (6:11)

is called the nthmoment of the optical band. The first fewmoments have specific

physical meaning: the zeroth moment W0
� �

equals the integral intensity of the

band (the area limited by the band curve), the first moment W1
� �

gives the

center of gravity of the band, the second moment W2
� �

is equal to the half-

width of the band, the third moment W3
� �

characterizes the asymmetry of the

band, and so on.

It appears that if the initial state of the transition is nondegenerate, the

moments of the band can be calculated exactly [6.1, 6.3, 6.5, 6.57, 6.58]. Since

these moments can also be determined experimentally from the band shape,

some new possibilities regarding how to evaluate the system parameters arise.

In particular, the vibronic constants of the excited degenerate electronic state

can be estimated from the absorption band shape and its behavior under

external perturbations [6.58].
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Important relationshipscanbeobtainedbyexamining thepolarizationdichro-

ism caused by the uniaxial stress. As indicated, theT term of a systemwith cubic

symmetry under tetragonal uniaxial deformation splits into theA andE terms of

theD4hgroup.The transitionfromanondegenerateA termto theA component is

allowed under parallel (l) polarization and transition to the E component is

allowed under perpendicular (t) polarization. The change of the first moments

�W ¼ Wh i � Wh i0 relative to the initial value Wh i0 for the unsplit T term is

� Wh il¼ �e#PE=�h; � Wh it¼ �e#PE=2�h (6:12)

where e# is the component of the strain tensor eEg, g¼#, ", and PE is the

electron–strain coupling constant. The second moments do not change under

the influence of stress:

W2
� �

l
¼ W2

� �
t
¼ W2

� �
0

(6:13)

It is important that the contributions of the totally symmetric and nonto-

tally symmetric JT-active modes to the second moment (half-width) of the

band �2(�) can be separated with respect to their symmetries (A, E, and T2 for

the T term and A and E for the E term). For the term in question

W2
� �

0
¼ �2ðAÞ þ �2ðEÞ þ �2ðT2Þ (6:14)

where

�2ð�Þ ¼ C�o2
� cothð�ho�=2kT Þ (6:15)

and C� ¼ F 2
� =2�ho�K� if �¼A, E, and CT2

¼ F 2
T2
=�hoT2

KT2
. In particular, at

zero temperature �2ð�Þ ¼ C�o2
�.

For the third moments (� is the sign of the polarization, l or t)

W3
� �

�
¼ W3

� �
0
�ð3=2Þ� Wh i��2ðT2Þ

or

� W3
� �

�
¼ �ð3=2Þ� Wh i��2ðT2Þ

(6:16)

Under uniaxial stress along the trigonal axis

� Wh il ¼ 2eTPT=�h
ffiffiffi
3

p

�hWit ¼ ��hWil=2
(6:17)

For the second moments, the same relationships (6.14) and (6.15) as for

tetragonal stress are valid, while for the third moments

� W3
� �

�
¼ �ð1=2Þ� Wh i�½3�2ðEÞ þ �2ðT2Þ� (6:18)
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The general group-theory formula [6.59, 6.60] for the change of the

moments of the A!� transition under external influence is

� W3
� �

�
¼ � Wh i�

X
�

	ð�Þ�2ð�Þ

W2
� �

¼
X
�

�2ð�Þ

	ð�Þ ¼ ½��ð�1ÞJð�ÞþJð~�Þ � � ~�

� � �

( )
� 1

(6:19)

where � is the representation of the JT active modes, [� ] is its dimension, ~� is

the representation of the external influence, J(�) is the quasi-moment of the �

representation, and the braces denote the 6� symbol [6.61].

From (6.18) and (6.19) it can be found that

�ð3=2Þ�2ðT2Þ ¼ � W3
� �tetr

�
=� Wh itetr�

�ð3=2Þ�2ðEÞ � ð1=2Þ�2ðT2Þ ¼ � W3
� �trig

�
=� Wh itrig�

(6:20)

It follows that if the changes of the first and third moments of the band

under induced polarization dichroism can be estimated from the experimental

absorption curves, the contributions of vibrations of �2(�) of different sym-

metries and the corresponding vibronic parameters can be obtained from Eq.

(6.15). Since the above relationships are precise, the accuracy of the vibronic

constant determined in this way depends only on the precision of the experi-

mental determination of the band shape and its first and third moments.

By way of example, we illustrate the evaluation of the numerical values of

�2(�) from the optical absorption band shape of the F center in SrCl2 (A1!T2

transition)bymeans of themethodofmoments [6.60]. In this case a complication

arises due to thepresence of the termA1,whichmixes stronglywith the excitedT2

term by t2 vibrations. Therefore, besides the T2 term JTE, the PJTE caused by

mixing the pair of termsA1 andT2 contributes to the band shape. As a result the

second moment contains not three terms as in Eq. (6.14), but four terms:

W2
� �

0
¼ �2ðA1Þ þ �2ðEÞ þ �2ðT2Þ þ �2ðT 0

2Þ, the last term taking into account

theA1–T2mixingcontribution.Bymeansof trigonalandtetragonalstressdichro-

ism andmagnetic circular dichroism, the following equations can be derived:

2� W3
� �tetr

�
¼ � Wh itetr� ½3�2ðT2Þ þ 2�2ðT 0

2Þ�

2� W3
� �trig

�
¼ � Wh itrig� ½�2ðT2Þ þ 3�2ðEÞ þ 2�2ðT 0

2Þ�

2� W3
� �

� ¼ � Wh i�½3�2ðT2Þ þ 3�2ðEÞ þ 2�2ðT 0
2Þ�

(6:21)
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Now, using the empirical data for the bandmoment changes, one obtains (in

units of the second moment W2
� �

) �2(A1)¼ 0.025, �2(E)¼ 0.159, �2(T2)¼ 0.36

and �2ðT 0
2Þ ¼ 0:456. It is seen that in this case the main contributions to the

second moment of the band are from the JTE and the PJTE. The contribution

of the totally symmetric vibrations A1 is unimportant.

If spin–orbital splitting is taken into account, additional parameters appear

in Eqs. (6.20) and (6.21). However, the number of equations can also be

increased by introducing additional perturbations, that induce polarization

dichroisn, as in the above example [6.60]. Spin-forbidden transitions are

treated using the method of moments in [6.62].

The method of moments has been developedmainly for application to optical

properties of impurity centers in crystals and to exciton absorption. The applica-

tionof this effectivemethod tomolecular spectroscopy, to spectroscopyof transi-

tionmetal and rare-earth coordination compounds, etc., seems to be very useful.

So far we have considered ideal systems only. In the multimode JT problems

(Sections 3.5 and 5.5) the evaluation of the optical band shapes is significantly

more complicated. However, if the conditions of the semiclassical approxima-

tion are satisfied, the differences between the ideal andmultimode problem are

essentially diminished. Indeed, as shown in Section 3.5, the APES of the JT

multimode problem can be reduced to that of a corresponding one-mode

(ideal) problem by means of an appropriate choice of the parameters of the

generalized interaction mode. In general this leads to more complicated

expressions for the kinetic energy, but in the semiclassical approximation

quantum effects in the nuclear motions are ignored; the nuclei are considered

moving classically along the APES and hence the latter only determines the

band shape (see Eq. (6.5)).

Using the method of moments outlined above one can obtain the multimode

expressions for the momenta of the band shape as a sum of each mode’s con-

tributionand,bycomparisonwith the experimentaldata, extract thecorrespond-

ing parameter values of the vibronic interaction. For instance, for the A!E

transition, the secondmoment (characterizing the half-width of the band) is

W2
� �

¼ �2ðEÞ ¼
X
n

ð2EE;n
JT on=�hÞ cothð�hon=2kTÞ (6:22)

where EE;n
JT ¼ F2

E;n

�
2KE;n is the n-mode JT stabilization energy, while the third

moment is

W3
� �

¼
X
n

2EE;n
JT o2

n=�h (6:23)
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In comparison with the expressions for the ideal case (6.15) at T¼ 0, we see

that the effective one-mode values for the multimode problem are (cf. (5.86))

[6.63, 6.64]

EE
JT ¼

X
n

EE;n
JT ; oeff ¼

X
n

E E;n
JT o2

n

.X
n

EE;n
JT on (6:24)

For a continuous spectrum of JT-active vibrations of the same symmetry in

the multimode problem of an impurity center in crystals Eq. (3.101) may be

involved. This leads to a modification of Eq. (6.22):

�2ðEÞ ¼
X
n

F 2
� a

2
nð�Þ

2�hK�;n
on (6:25)

where theVanFleck coefficients an(�) [6.65] characterize the participation of the

displacements of the first coordination sphere (that is coupled to the electronic

state via the common coupling constant F�) in the nth �-type mode [6.3, 6.5].

The semiclassical approximation and the method of moments work better

for strong vibronic coupling when the separation of different APES sheets is

sufficiently large. In cases of weak coupling and a finite number of discrete

modes in the multimode coupling problem the more accurate Eq. (6.2) should

be employed. Although, in general, individual mode contributions are inter-

related via the vibronic coupling to the same electronic state, in the weak-

coupling limit these contributions can be estimated as additive second-order

perturbation corrections. Under these conditions the shape function (6.2) can

be presented as a convolution of the partial contributions of each mode (the

convolution approximation [6.66]). Examples with this approach are consid-

ered in Section 6.2.

6.1.2 Vibronic fine structure, zero-phonon lines, and tunneling splitting

In this section we discuss the general features of fine structure of JT spectra

when individual spectral lines can be observed. The fine structure of the

spectrum carries more information about the electronic structure and JT

vibronic coupling effects than the band shape, but the two aspects of the

electronic light absorption are in fact complementary, and their separation is

conventional.

The fine structure of the spectrum can be observed when the individual

transitions between the vibronic states of the two electronic terms are resolved.

From the theoretical point of view this means that the vibronic energy levels

and wavefunctions are calculated for the two combining electronic terms and
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the probabilities of transition between them are evaluated. Methods of calcu-

lation of vibronic states are given in Chapter 5, while calculations of spectra for

specific systems are discussed in Chapters 7 and 8.

Some general features of the expected vibronic spectra were already

described in the first publications on numerical calculation of transitions

between the vibronic states in the A!E and E!A [6.16, 6.17] and A!T and

T!A spectra [6.33] discussed in the previous section. A series of works

devoted to the vibronic spectra in relatively small organic and some other

molecules with detailed discussion of the numerical procedures and results

gives a real impression of the significance of the vibronic coupling [6.6, 6.10,

6.25, 6.69–6.77]. Some results for specific molecules obtained in these papers

are discussed in Chapter 7.

For impurity centers in crystals, in addition to the influence on the optical

band shapes, the JT vibronic coupling produces local and pseudolocal reso-

nances and affects the zero-phonon line (Section 5.5). The local resonances

occur as a result of the multimode JTE [6.78–6.81, 6.59], and are in a way

similar to the low-frequency JT transitions in ideal systems (e.g., tunneling

splitting, Section 5.3), broadened by the influence of other vibrations of the

continuum phonon spectrum. They determine the fine structure of the optical

absorption band at low temperatures. Figure 6.9 shows an illustrative example

[6.82] of both the band shape (envelope curve) and the low-frequency structure

Fig. 6.9. The R0 band in KCl: comparison of the experimental spectrum
(continuous curve) with the numerical solution of the E� e problem
(vertical lines) in absorption A!E (a) and luminescence E!A (b). The best
agreement is obtained for EE

JT=�hoE ¼ 2:5, �hoE ¼ 395 cm�1. The zero-
phonon line indicated by the sign N occupies the same position in both
spectra [6.82].
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of the R0 band in KCl with the zero-phonon line in both absorption and

luminescence.

The vibronic implications in the zero-phono-line problem need some more

detailed attention. It is obvious that if the adiabatic potentials "1 (Q) and "2 (Q)

of the two combining terms (Fig. 6.1) have the same curvature, the energies of

the transitions 0!0, 1!1, 2!2, . . . coincide, the corresponding lines in the

spectrum of optical absorption are superimposed, and at this frequency only a

single line is observed. These are the zero-phonon transitions, and the corre-

sponding line in the optical spectrum is called the zero-phonon line. A distin-

guishing feature of this line is that its position coincides in absorption and

luminescence (Fig. 6.9). The idea that many zero-phonon transitions can add

up to contribute to one narrow spectral line remains valid also for multimode

systems, in particular, for crystals, where the zero-phonon line is a sharp

intense peak on the background of the continuous multi-phonon absorption.

The difference between the curvatures of the APES "1(Q) and "2(Q), and

hence between the frequencies of vibrationso1 ando2, produces differences in

the energies of the zero-phonon transitions 0!0, 1!1, 2!2, . . . As a result,

the zero-phonon line is slightly split into many lines, which in multimode

systems merge into one broadened zero-phonon line. The influence of this

so-called frequency effect (sometimes called the Dushinski effect) on the width

of the zero-phonon line of optical transitions between nondegenerate states is

well studied [6.3, 6.5]. The anharmonicity of the potential curves "1(Q) and

"2(Q) is another cause of broadening and shifts of the zero-phonon line.

The generalization of the theory of zero-phonon lines (which has been

developed for polyatomic systems with nondegenerate electronic states) to

include the vibronic coupling in cases of degenerate and pseudodegenerate

terms is not trivial, even when the JTE occurs in only one of the combining

electronic terms. First, with the vibronic interaction included the oscillator

occupation numbers of the JT-active normal vibrations cease to be good

quantum numbers, and the vibronic states of the JT systems are no longer

characterized by the phonon numbers. From this point of view, the ‘‘zero-

phonon transitions,’’ for which the ‘‘vibrational state’’ of the Jahn–Teller

system does not change, have no physical meaning. Second, the vibronic

energy levels are distinctly not equally spaced (see, e.g., Fig. 5.19 in Section

5.4), and therefore the coincidence of the energies of the allowed transitions,

and hence the corresponding superposition of the spectral lines, is extremely

improbable.

Nevertheless, the experimentally observed optical bands of absorption and

luminescence of JT systems at low temperatures in some cases display a sharp

peak: the zero-phonon line. At T¼ 0K it is the lowest-frequency line of the
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absorption spectra, i.e., it is located at the low-frequency edge of the band.

With increasing temperature the zero-phonon line of JT systems rapidly

broadens, its intensities decreasing, and at higher temperatures it ceases to

be seen against the background of the multi-phonon band.

In JT systems at T¼ 0K only the ground vibronic state of the term (from

which the optical transition starts) is populated, and therefore the lowest-

frequency line seen in the absorption spectrum corresponds to the 0!0 transi-

tion, i.e., to the transition between the lowest vibronic states of the combining

terms. (Note that the zeros in the expression ‘‘0!0 transition’’ are no longer

the vibration occupation numbers as in the case of transitions between non-

degenerate states). In molecular systems and clusters with a discrete vibronic

spectrum, the 0!0 transition line is similar to other �-type spectral lines.

The situation is different in multimode vibronic systems with continuous

vibrational spectra, in particular, in crystals with JT impurity centers.

As mentioned above and in Section 5.5, the vibronic interaction in the loca-

lized JT center affects the electron–vibrational energy spectrum of the system

as a whole, resulting in the occurrence of local and pseudolocal vibronic states

(resonances). For weak-to-intermediate vibronic coupling (for which the

zero-phonon line can be expected, in general) these changes take place only

in separate discrete regions of the spectrum; in other respects the density of

states remains the same as without the impurity JTE. If the vibronic reso-

nances are neglected, the properties of the zero-phonon line of the system are

in many ways similar to its properties in transitions between nondegenerate

states. In particular, the density of vibrational states near the ground state is

very small. Therefore at T¼ 0K there is a gap in the optical absorption band

on the right-hand side of the 0!0 transition line, and this gap allows the

separation of the zero-phonon line (Fig. 6.9).

Since the vibronic interaction is localized at the JT impurity center, the

vibronic coupling of the electron and nuclear motions takes place only for

several collectivized degrees of freedom localized near this center (Section 5.5).

For most long-wave vibrations for which o�! 0 the impurity JTE hardly

changes the oscillator nature of their motion. In this sense, one can view the

system approximately as a set of vibronic states for the JT degrees of freedom

of the impurity center plus oscillator vibrational states for most lattice modes.

Therefore, as in the non-JT case, the zero-phonon line can be considered as

resulting from electron transitions that do not change the vibrational quantum

numbers of these lattice modes, while the one-phonon, two-phonon, etc. side

bands result from transitions involving one, two, etc. phonons.

The one-phonon transitions, comparable in their integral intensities to the

zero-phonon transition, have frequencies distributed over a spectral interval of
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the order of the width of the band of vibrations, whereas the zero-phonon

transitions are concentrated in one narrow line (for this reason the zero-

phonon line is considerably more intense than the one-phonon satellite).

If the vibronic couplings in the initial and final electronic terms (between

which the optical transition takes place) are significantly different, their

APES minima are displaced and the overlap integral of the wavefunctions of

the lowest vibronic states of these two terms (and hence the integral intensity of

the zero-phonon line) will be small. In this case, in spite of its otherwise higher

intensity, the zero-phonon line will not be seen against the background of the

broad multi-phonon band.

The separation of the zero-phonon line has physical meaning only for rather

weak vibronic coupling in both combining electronic terms, when the

Debye–Waller factor determining the integral intensity of this line is not very

small and it can be experimentally observed. The region of intermediate

vibronic coupling constants, for which the zero-phonon line is still observable,

is superimposed on the region of large vibronic constants, for which the

formulas of strong coupling become approximately valid (Section 5.2). This

allows us to investigate the properties of the zero-phonon line using also the

analytical results of Chapter 5.

Consider first the case of weak coupling. Assume that for both electronic

terms taking part in the optical transition the vibronic interaction is a small

perturbation that slightly splits the equally spaced levels of the zero

Hamiltonian (Section 5.1). In this case the oscillator occupation numbers

may still be considered approximately as ‘‘good’’ quantum numbers, so that

one can characterize the vibronic states of the JT system with phonon num-

bers. It is obvious that the optical transitions 0!0, 1!1, 2!2, . . ., for which

the ‘‘vibrational state’’ does not change, result in spectral lines occupying a

narrow frequency interval with a small spread caused by the weak splitting of

the excited oscillator levels (Section 5.1).

Recall that the ground vibronic level of the system for both electronic terms is

not split by the vibronic interaction in any order of the perturbation theory (we do

not consider here the ground vibronic level crossover due to large quadratic

coupling, see Section 5.3). Therefore at T¼ 0K when the population of the

excited vibronic states of the initial electronic termvanishes, the vibronic structure

and the width of the zero-phonon line are frozen out, and in the optical spectrum

only the unsplit narrow peak of the zero-phonon transition 0!0 remains. Some

attempts [6.83, 6.84] to obtain the splitting of the zero-phonon line at T¼ 0K

without considering low-symmetry crystal fields seem to be ungrounded.

As the temperature increases, the excited vibronic states of the initial elec-

tronic term become populated, and the lines of the transition 1!1, 2!2, etc.,
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at frequencies slightly different from that of the 0!0 transition, are added to

the latter. This may lead to the temperature-dependent changes in structure of

the zero-phonon line.

Consider as an example the zero-phonon line of the optical transition A!E

with weak linear vibronic coupling of the E term with e vibrations. On sub-

stituting the equally spaced energy values of the e vibrations for the non-JT A

term,Em1,m2
¼ �ho(m1 þm2 þ 1), and for theE term from Section 5.1 (Eq. (5.1))

into Eq. (6.2), one gets the following expression for the shape function (6.2)

for the zero-phonon line of this transition [6.86]:

FðxÞ ¼ tanhð
E=2Þ expð
E xj j=2lEÞ
X1
n¼�1

�ðx� 2nlEÞ; n ¼ 0; 1; 2; : : :

(6:26)

where 
E¼ �hoE/kT, x¼ [�hW� (EE �EA � 2EJT
E )/�hoE], and lE ¼EJT

E /�hoE.

From this equation we see that the single intense line of vibrationless transi-

tions between the A and E terms (at x¼ 0 and lE¼ 0) is split by the weak

vibronic coupling into many lines (at x¼ 2lE) with different frequencies

spaced at �W¼ 2EJT
E /�h. The intensities of these lines are determined by the

Boltzmann exponents. The structure of the zero-phonon line described by

Eq. (6.26) is illustrated in Fig. 6.10(a).

If the influence of the frequency effect (different vibrational frequencies in

the two electronic states) is taken into account [6.86], the frequencies of the e

vibrations in the electronic states of the A and E terms do not coincide:

�o¼oE(A)�oE(E) 6¼ 0, and the fine structure of the zero-phonon line of
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Fig. 6.10. Vibronic structure of the zero-phonon line of the optical A!E
transition without (a) and with (b) a strong frequency effect [6.86].
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the A!E transition becomes asymmetric and further structured. Figure 6.10(b)

shows the zero-phonon line of the A!E transition with a strong fre-

quency effect and weak vibronic coupling: �o/oE(E)¼�0.98� 10�2,

lE¼ 0.25� 10�2, and 
E¼ 0.26. An anomalous temperature dependence of

the homogeneous width of the zero-phonon line (T 3 instead of the usual T 7)

was shown to result from the JTE in the E� e problem of the excited state

[6.85]. The theory was applied to the nitrogen N-V center in diamond.

If the electronic T term is coupled to both e and t2 vibrations with the latter

predominant, the e vibrations cause just a shift of all the vibronic energy levels,

so the zero-phonon line structure is determined by the coupling to t2 vibrations

in the T� t2 problem (Section 3.3). Figure 6.11 shows the vibronic structure of

the zero-phonon line of the A!T transition for three different temperatures,


T¼ �hoT/kT¼ 2.74, 1.45, and 0.37, obtained by means of summing up the

zero-phonon contributions in Eq. (6.5). As seen from this figure, three quali-

tatively different types of zero-phonon line of the A!T transition are possible:

at low temperatures (Fig. 6.11(a) the intensity of the line of the 0!0 transition

–10

–3–2

–3 –2

–1 0 1 2 3

4 5 6 7 8 9 10–5–9 –8 –7 –6 –4 –1 0 1 2 3

–3 –2 4 5–5 –4 –1 0 1 2 3

R
el

at
iv

e 
in

te
ns

ity

R
el

at
iv

e 
in

te
ns

ity
R

el
at

iv
e 

in
te

ns
ity

3EJT(T)
Ω4

3EJT(T)
Ω4

3EJT(T)
Ω4

(a) (b)

(c)

Fig. 6.11. Vibronic structure of the zero-phonon line of the optical A!T
transition at three temperatures: �hoT/kT¼ 2.74 (a), 1.45 (b), and 0.37
(c) [6.1].
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is predominant; at intermediate temperatures (Fig. 6.11(b) the intensity of the

line of the 0!0 transition and the intensities of components of the fine

structure nearest to it are comparable; and at high temperatures

(Fig. 6.11(c)) the line shifted from the 0!0 one towards the low-frequency

region by �W ¼ 3
4
ET
JT=�h is predominant. It is noteworthy that in this case the

fine structure of the zero-phonon line is also equally spaced with intervals

�W ¼ 3
4
ET
JT=�h.

At higher temperatures the width of the wings of the zero-phonon line

increases as kT, while their intensity decreases. As a result the zero-phonon

line again becomes narrow, its position being shifted by �W ¼ 3
4
ET
JT=�h in

the long-wavelength region with respect to the 0!0 transition. The frequency

effect oT (A) 6¼ oT(T) causes its further broadening and asymmetry. The

rather complicated problem of the influence of the multimode (continuous

phonon spectrum) problem on the zero-phonon line is discussed in [6.3, 6.5,

6.86–6.89].

For intermediate and strongvibronic couplingEJT0�ho, even a small increase

of temperature from T¼ 0 results in significant broadening of the zero-phonon

line, and the latter becomes invisible against the background of thewide band of

the multi-phonon absorption or luminescence.

For vibronic coupling constants for which the ground vibronic state of a JT

system has the same transformation properties as its electronic term (Section

5.6), the splitting of the 0!0 transition line is possible under the influence of

low-symmetry perturbations that remove the degeneracy of the ground vibro-

nic state. If this perturbation is described by an electronic operator, i.e., it is

independent of nuclear coordinates, the magnitude of the observed splitting is

reduced compared with the primary (nonvibronic) splitting due to the vibronic

reduction factors (Section 5.6). However, for vibronic coupling constants at

which the ground-state vibronic energy-level crossover takes place (Section

5.3), both crossing levels may be seen in the zero-phonon line as a correspond-

ing splitting without any external influence. So far this issue has not been

considered in detail.

In transitions from nondegenerate to degenerate states the primary

splitting of the zero-phonon line under perturbations can be extracted from

the change of the first moment of the band (the centroid of the spectrum)

under the influence of the strain perturbation (Section 6.1.1). For instance,

for the A!T transition under the influence of tetragonal strain the T term is

split into the terms E and A of the group D4h. In the parallel polarization

the transition is allowed only to the electronic singlet term, whereas in the

perpendicular polarization it is allowed to the E term. The change of the

first moment of the band (normalized with respect to the oscillator
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strength) is given in Eq. (6.12), from which we find the primary electronic

splitting

�WE ¼ � Wh il �� Wh it
�� �� ¼ ð3=2�hÞ PE"#j j (6:27)

The observable zero-phonon-line splitting due to the above tetragonal defor-

mation equals �WEKT (E), where KT (E) is the vibronic reduction factor.

Similarly, in the case of trigonal deformation we find from Eq. (6.17)

�WT ¼ � Wh il �� Wh it
�� �� ¼ ð

ffiffiffi
3

p
=�hÞ PT"Tj j (6:28)

and the experimentally observed splitting should be�WTKT(T2). The ratios of

the corresponding experimental splitting of the zero-phonon line to the �WE

and �WT values allow one to estimate the vibronic reduction factors KT (E)

and KT (T2), respectively.

In this way experiments on polarization dichroism of A!� (�¼E, T, etc.)

optical transition bands and their zero-phonon lines allow direct observation

of the effect of vibronic reduction unambiguously determined by the JTE.

An experimental example of the effect of vibronic reduction of the zero-

phonon line splitting in the 4A2!4T2 impurity absorption in V2þ : KMgF3

taken from [6.90] is shown in Fig. 6.12. It is seen that the calculated spectrum

with unreduced spin–orbital interaction does not correspond to the experi-

mental zero-phonon line. The observable splitting of the latter is less than half

the unquenched value of the splitting. Its interpretation in terms of the vibro-

nic reduction shown inFig. 6.12(b) looks quite satisfactory. For other examples

see in [6.3, 6.9, 6.90–6.92] and in Section 8.1.

As mentioned above, at T¼ 0K the line of the 0!0 transition is positioned

at the low-frequency edge of the absorption band. On the high-frequency side

of this line there are the lines of the allowed transitions 0!m from the ground

vibronic state of the lower electronic term to the vibronic states of the upper

electronic term. Among the latter there may also be excited components of the

tunneling sublevels (Section 5.3), provided the corresponding transitions are

allowed. If the vibronic coupling is sufficiently strong and hence themagnitude

of tunneling splitting is relatively small, the spectral lines of the transition to a

group of tunneling levels of similar energy are observed as one zero-phonon

line split by the tunneling. Thus the effect of tunneling splitting can be observed

in the splitting of the zero-phonon line.

Although the transition to some of the tunneling sublevels is often forbid-

den, there are always some low-symmetry perturbations, which remove (partly

or completely) this restriction. For impurity absorption in crystals these

transitions can be allowed due to random strain and inhomogeneities of the
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crystal structure, clustering of the impurities, and the presence of other nearby

defects, e.g., dislocations. External low-symmetry perturbations, e.g., uniaxial

stress, can be even more efficient.

Consider a cubicE termwith a quadratic JTE� e problem under tetragonal

stress. The three lowest vibronic (tunneling) states of the tunneling splitting

3�¼EA�EE (Section 5.3) can be labeled aj i, #j i, and "j i, with which the strain
perturbation matrix W in the secular equation of the type (3.2) is [6.1]

W ¼
EA rPEe# 0

rPEe# EE � qPEe# 0
0 0 EE þ qPEe#

������
������ (6:29)

where q¼KE(E) and r ¼ KEðA Ej jEÞ are the diagonal and off-diagonal vibro-

nic reduction factors, respectively, and, as in Section 6.1.1, PE is the electron-

strain coupling constant and "# is the component of the strain tensor.
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Fig. 6.12. Vibronic reduction of the spin–orbital splitting of the zero-phonon
line of the 4A2!4T2 transition in the optical absorption spectrum of V2þ:
KMgF3: (a) the expected line positions without the JTE in the 4T2 state; (b)
the same with the vibronic reduction due to the JTE; and (c) the experimental
spectrum (reprinted with permission from [6.90]. Copyright 1970 American
Physical Society).
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The solution of the secular equation (3.2) with the matrix (6.29) yields

E1 ¼ EA þ qPEe#

E2;3 ¼
1

2
ðEA þ EE � qPEe#Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEA � EE þ qPEe#Þ2 þ ð2rPE"#Þ2

q
(6:30)

In Fig. 6.13 the splitting of the zero-phonon line of the magnetic-dipole

transition 5T2g!5Eg in a cubic impurity system Fe2þ :MgO observed at

T¼ 1.5K under uniaxial stress along the direction [001] is illustrated [6.93].

It is seen that on increasing the stress the forbidden line of the transition

to the vibronic singlet emerges on the high-frequency side of the split line

of the 0!0 transition. In Fig. 6.13(b) the full line shows the energy levels

versus the stress described by Eq (6.30); the points in this figure correspond

to the experimental results and demonstrate excellent agreement with

the predictions of the theory. It follows from this experiment that for the
5E term of Fe2þ :MgO the magnitude of the tunneling splitting
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Fig. 6.13. Splitting of the zero-phonon line of the optical 5T2!5E transition in
the impurity center Fe2þ :MgO under uniaxial stress along the [001] axis: (a)
the line shape at T¼ 1.5K and different stress values shown at the right in 108

Pa; and (b) observed (dots) and theoretical predicted (solid lines) absorption
maximum positions (reprinted with permission from [6.93]. Copyright 1977
American Physical Society).
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The first experiments in which the tunneling splitting of the zero-phonon

line of the A!E transition was observed by the piezospectroscopic method

were performed in 1965 and reported in [6.94, 6.95]. For Eu2þ impurity centers

in CaF2 and SrF2 crystals, the values 3� 	 15.3 cm�1 and 3� 	 6.5 cm�1,

respectively, were obtained, and for Sm2þ impurities in CaF2 and SrF2 the

magnitudes of 27 and 26 cm�1 were evaluated. The interpretation of these

experiments in terms of tunneling splitting was given in [6.96]. For other

examples see in Section 8.1.

6.1.3 The JTE in excited-state decay

If the excited state is subject to the JT and/or PJT effects, its lifetime and hence

the emission spectrum (luminescence and phosphorescence) are essentially

influenced by the multi-minimum and anharmonic form of its APES. Let us

begin with the temperature dependence of the polarization of luminescence.

The polarization of the incident light can be chosen in such a way that the

optical transition to one of the minima of the adiabatic potential of the excited

term takes place. The tunneling relaxation of the excitation equalizes the

population of equivalent minima, resulting in a depolarization of the lumines-

cence. At low temperatures, if the radiative lifetime is much shorter than the

time of the tunneling relaxation, the polarization of the incident light is

predominant in the emission spectrum. An increase of the temperature leads

consequently to:

(a) population of the excited states in the minima for which the potential barrier is

lower and hence the tunneling rate is higher;

(b) temperature-induced jumps of the system to other minima through excited vibro-

nic states of the lower sheet of the APES of the excited state which are higher in

energy than the saddle points of the potential barriers; and

(c) population of states of the higher sheets of this APES.

All these processes lead to depolarization of the emission. They take place at

rather strong vibronic coupling when the nuclear motions corresponding to

different sheets of the APES are less interrelated. For weak and intermediate

coupling the depolarization of the luminescence can be explained by dynamic

and stochastic mechanisms of relaxation [6.97]. Experimental investigations of

the polarized luminescence in alkali halide crystals activated by T1-like ions

were reported in [6.98].

The dependence of the polarization of luminescence on the polarization of

the incident light provides the opportunity to evaluate the symmetry of the JT

minima of the excited state [6.99, 6.100]. Consider, for example, allowed
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magnetic-dipole transitions in a cubic center with Oh symmetry. If in the

minima of the APES the cubic system is tetragonally distorted, the polarized

absorption with the magnetic field vector of the incident light ~H jjC4 results in

polarized luminescence with the same polarization, while the polarization of

the absorbed light ~H jj C3 gives completely depolarized luminescence. For

trigonal distortions in the minima the luminescence is partly polarized for

~H jj C3 and depolarized for ~H jj C4 in the absorption light. These results are

based on the assumption that after absorption the system has time to relax to

the minima states before emission.

The dependence of the degree of polarization of luminescence light on the

frequency of the exciting light can also be a characteristic feature of the JTE

[6.99]. If the absorption center is selectively excited to the vibrational states near

the bottom of the minimum of the APES, the polarization of luminescence

should be maximal, and the depolarization increases with increasing frequency

of excitation. The influence of the vibrational relaxation on the process of

depolarization is discussed in [6.101]. Another interesting topic is the JTE in

nonradiative decay of excited states [6.102, 6.103]. An approach to the problem

based on quasi-classical treatment of the nuclear motion on separate sheets of

the APES was proposed in a series of papers [6.104–6.106] (see the review article

[6.107]).Note also some archetypal cases in [6.108]. The influence of the PJTEon

nonradiative decay may be most significant. Numerical calculation of the occu-

pation probability of the upper electronic state 2B2g of the ethylene cationC4H
þ
4 ,

due to the PJT ð2B2u þ 2B2gÞ � ðag þ auÞ coupling [6.109] (see also [6.10]), shows
that the calculated ultrafast decay may explain the absence of emission from the
~A2B2g state in this molecule. More generally, it was proposed [6.10] that the

absence of detectable fluorescence may be expected whenever there exists a

conical intersection close to the minimum of the corresponding APES.

Another interesting effect confirmed by numerical calculations is the

quenching of radiative decay rates for systems in individual vibronic states

[6.10]. The fluorescence decay rate of any vibronic state written in the form of

Eq. (2.5), �ðr; QÞ ¼
P

k�kðQÞ’kðrÞ, can be shown to gain contributions from

the mixed electronic states [6.10]:

� ¼
Xf
k¼1

gk �k j�kh i (6:300)

where gk are the decay rates of the individual electronic states and�k satisfy the

normalization condition
Pf

k¼1h�kj�ki ¼ 1: The value of � is smaller than the

largest of the decay rates gk. Therefore the lifetime of the corresponding

vibronic level, defined as the inverse decay rate ��1, in the presence of vibronic
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coupling must always be longer than the shortest lifetime of the mixed electro-

nic states. The first suggestion that the anomalously long radiative lifetimes

observed for some molecules arise due to the mixing of different electronic

states was given in [6.110]. Equation (6.300) thus provides a quantitative

description of this effect.

This result explains, for instance, the situation in the NO2 molecule where

the radiative decay rate of the excited electronic term 2B2 was found to be one

or two orders of magnitude smaller than expected from the integrated absorp-

tion coefficient [6.111]. Theoretical calculations [6.112] (see also [6.10]) con-

firm the assumption that the anomalously small fluorescence decay rates of the

excited B2 vibronic states of the NO2 molecule are caused by the strong PJT

interaction between the 2A1 and
2B2 electronic states (

2A1 has zero decay rate).

In a recent work [6.113] mentioned also in Section 3.2 the linear and quad-

ratic E� e problems were considered for short-lived (metastable) excited

states. It was shown that by introducing an imaginary term into the equation

for the APES to stand for its lifetime, the JT coupling affects significantly both

the form of the real APES (producing additional minima and conical intersec-

tions) and its imaginary part, the lifetime of the state under consideration.

Ab initio calculations that allow numerical estimations of these effects were

carried out on P-type resonance states of the tris(boramethyl)amine anion.

6.2 Vibronic infrared and Raman spectra

6.2.1 Vibronic infrared absorption

The separation in electronic, vibrational, and rotational spectra based on

frequency differences may be invalid in JT systems for two reasons. First,

due to the complicated and essentially anharmonic APES (Chapter 3) the

vibrational frequencies of the free and hindered internal pseudorotations

(Chapter 5) fall within the region of non-JT pure rotational frequencies.

Second, the frequencies of electronic transitions between different sheets of

the APES (with the energy gap �EJT) fall within the region of infrared (IR)

absorption. Therefore the term ‘‘vibronic infrared spectra’’ instead of ‘‘vibra-

tional spectra’’ seems to be appropriate.

The operator of the electric-dipole transition is~e~D, where~e is a unit vector of

the electromagnetic wave polarization and

~D ¼ ~DeðrÞ þ ~DnðQÞ (6:31)

is the vector of the dipole moment of the electrons and nuclei of the polyatomic

system.
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The dipole moment of the nuclear framework ~DnðQÞ can be expressed as

~DnðQÞ ¼ ~Dð0Þ
n þ

X
�g

Z�Q�g~n�g (6:32)

where the summation is performed over the irreducible representation � to

which the components of the vector belong;~n�g are the symmetrized combina-

tions of the unit vectors of the coordinate system related to the high-symmetry

reference configuration Q0 of the polyatomic system (Section 2.2); Z� is the

effective charge of the polar vibrational mode that produces a dipole moment

(for nonpolar displacements Z� ¼ 0), and ~D
ð0Þ
n is the dipole moment of the

nuclei fixed at the initial nuclear configurationQ0. The operator ~D
ð0Þ
n obviously

causes only pure rotational transitions between the states of a rigid top.

Molecules for which ~D
ð0Þ
n 6¼ 0 are called rigid-dipole molecules. For simplicity

we restrict our consideration to high-symmetry molecules for which ~D
ð0Þ
n ¼ 0.

The scalar product~e~Dn can be written then in the form of a convolution of

irreducible tensor operators:

~e~Dn ¼
X
�g

Z�Q�ge�g (6:33)

Vibronic effects in the IR spectra occur only when the electromagnetic

radiation interacts with the JT or PJT degrees of freedom of the polyatomic

system. If one assumes that the electronic dipole moment ~DeðrÞ ¼ 0 and the

total interaction of the radiation with the molecule is described by Eq. (6.32),

then vibronic IR spectra are possible only for molecules for which the

JT-active normal vibrations are also dipole active. In other words vibronic

effects are possible in the IR spectra only for dipolar-unstable systems

(Sections 4.1 and 4.4).

However, in the presence of both dipolar and non-dipolar JT-active coordi-

nates, they are indirectly coupled via the same electronic state, with which they

interact. Therefore the electromagnetic irradiation, which interacts only with

dipole-active vibrations, causes a response of the whole JT system, including

those JT vibrations which are not dipole active. In particular, weak JT inter-

action allows IR absorption in the region of non-dipolar JT vibrations, which

is forbidden in non-JT systems. This circumstance was first noted in [6.114].

Another important issue emerges from the fact that in nondegenerate mole-

cules in the harmonic approximation the operator (6.33) is subject to selection

rules n�g ! n�g þ 1, where n�g is the vibrational quantum number of the

oscillator Q�g. Because of the equal spacing of the energy spectrum of the
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normal vibrations, all the transitions n�g ! n�g þ 1 correspond to the absorp-

tion at the same frequency W¼o�. Therefore the temperature population of

the excited levels does not cause new lines in the IR absorption; the probabil-

ities of allowed transitions are redistributed among the partial contributions to

each line of the fundamental tone, the total intensity remaining unchanged. It

follows that in the harmonic approximation the IR spectra of molecules in

nondegenerate states are independent of temperature. Small anaharmonicity

results in a temperature transfer of the intensity from the lines of the funda-

mental tone to that of the overtones, but this effect is usually negligible.

In contrast to this, the energy spectrum in the presence of the JTE is strongly

unequally spaced (Chapter 5) and the population of excited states at T 6¼ 0

results in the formation of new spectral lines. This is manifested as a strong

temperature dependence of the vibronic IR spectra.

Consider now the effects caused by the interaction of electromagnetic

radiation with the dipole moment of the electrons. As in Eq. (6.33), the scalar

product~e~DeðrÞ can be written in the form of a tensor convolution,

~e~DeðrÞ ¼
X
�g

e�gD�gðrÞ (6:34)

where the summation is performed over the irreducible representations � of

the vector representation. The matrix elements of the operator D�gðrÞ calcu-
lated with the JT states of the electronic term � are nonzero if � 2 ½�2�.
Therefore the interaction of the radiation with the dipole moment of the

electrons causes a response of the JT system only in cases when the symme-

trized square of [�2] contains dipole-active representations. Since, on the other

hand, the irreducible representations contained in [�2], except the trivial one

A1, determine the JT-active normal vibrations (Section 2.5), we come to the

condition formulated above: the vibronic effects in the IR spectra occur only for

dipolar-unstable polyatomic systems, i.e. for systems for which the JT-active

displacements produce a dipole moment.

As mentioned in Section. 4.1, the occurrence of a dipolar instability is also

possible due to the vibronic mixing of a given term � with another one �
0
, i.e.,

due to the PJTE on dipole-active vibrations, provided the product ���
0

contains dipole-active representations. This case is more general and can be

realized for both degenerate and nondegenerate electronic states.

The coefficient of electric-dipole IR absorption is described by the expres-

sions (6.1) and (6.2), where M ¼~e~D with the operator ~D from Eq. (6.32) and

both indices 1� and 2� correspond to the ground electronic term. In trigonal

systems (e.g., in the triatomic molecule X3) with a linear JT effect for the
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E term the actual symmetry is axial (Section 3.2), and it is convenient to write

Eqs. (6.33) and (6.34) in the form

~e~DðrÞ ¼ ezDzðrÞ þ e�DþðrÞ þ eþD�ðrÞ (6:35)

and

~e~Dn ¼ ZEðe�Qþ þ eþQ�Þ (6:36)

where

e� ¼ ðex þ ieyÞ=
ffiffiffi
2

p
; D� ¼ ðDx þ iDyÞ=

ffiffiffi
2

p

Q� ¼ ðQ# � iQ"Þ=
ffiffiffi
2

p
¼ � expð�i�Þ

(6:37)

have the transformation properties of the momentum Jz¼�1 (the contribu-

tion of the Dz component vanishes in systems with axial symmetry). This

allows one to deduce simple selection rules for the quantum number m of the

operator Ĵz for the IR transition in the linear E� e system:m¼m� 1 (Section

5.1). In particular, at T¼ 0, if only the ground vibronic state 0; �1
2

�� �
is

populated (Sections 5.1 and 5.2), the following changes of m are allowed in

transition: � 1
2
! þ 1

2
; � 1

2
! � 3

2
; 1

2
! 3

2
; and 1

2
! � 1

2
.

The frequency structure is the same for electronic and vibrational dipole

transitions because they have the same selection rules. The relative intensities

of the spectral lines are determined by the effective charge ZE and the reduced

matrix element M for each specific system (see Eq. (6.2)). Unlike the non-

degenerate case where the contributions of the electric dipole moment and

nuclear dipole moment in the IR absorption can be separated because they

have different frequency ranges, in the JT case they fall within the same

frequency range, and in general they cannot be separated from one another.

Nevertheless, in some special cases these contributions can be separated if the

sums (6.33) and (6.34) contain terms that have significantly different values of

the reduced parametersZ� andM� for given �. The separation can be realized

by considering the IR absorption of polarized light taking into account the

corresponding selection rules.

The vibronic IR spectrum for arbitrary values of the vibronic coupling

constant can be obtained from Eq. (6.2) using the results of numerical solution

of the vibronic equations (Chapter 5). Figure 6.14 illustrates the vibronic

structure of the IR absorption spectra for a linear E� e problem obtained by

means of numerical calculations [6.115]. The set of lines corresponding to

transitions to the vibronic states with the same m value forms an almost

equally spaced paling; the lines above and below the abscissa correspond to
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the values mj j ¼ 1
2
and mj j ¼ 3

2
, respectively. The nature of the accidentally

equal spacing of the lines is discussed in Sections 5.2 and 5.4.

The numerical results in Fig. 6.14 can be explained by means of the

approximate solutions of the vibronic equations obtained in Chapter 5.

In the case of weak vibronic coupling of the wavefunctions obtained from

perturbation theory, the correct (symmetry-adapted) zeroth-order functions

nlmj i can be used as a starting point for the solution of the problem. In this

approximation the vibrational quantum number n is still a good quantum

number. The matrix elements of the operators Q� are nonzero when n

changes by a unit, i.e., for transitions from the ground vibronic state

(at T¼ 0K) to only the first excited vibrational level weakly split into two

sublevels by the vibronic interaction (Section 5.1). The matrix elements

of these transition are [6.115]
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Fig. 6.14. Intensities of the vibronic components of the IR spectrum of a linear
E� e systemobtained by numerical calculations forEE

JT=�h!E ¼ 0 (a), 0.125 (b),
0.25 (c), 0.375 (d), 0.5 (e), 1.0 (f), and 2.5 (g) (note the different scales). The lines
above and below the abscissa correspond to transitions |m|¼ 1

2
!|m|¼ 1

2

and |m|¼ 1
2
!|m|¼ 3

2
, respectively. The lowest frequency of intersheet

transition is shown by an arrow (reprinted with permission from [6.115].
Copyright 1962 Institute of Physics)
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h0; 0; � 1
2
jQ�j1; 1; � 3

2
i ¼ h0; 0; � 1

2
jQ�j1; 1; 
 1

2
i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�hoE=2KE

p
(6:38)

Accordingly, the fundamental line of the e vibrations in the IR spectrum is

slightly split by �W ¼ 2EE
JT=�h (Fig. 6.14(b)).

The electronic dipole moment does not change the vibrational quantum

number, and at T¼ 0K it just causes transitions between the degenerate states

� 1
2
! 
 1

2
of the ground vibronic term. These transitions cannot be observed

directly since the IR frequency isW¼ 0. However, they determine the intensity

of the transitions between the rotational states of the free molecule related to

the ground vibronic level (see below).

If the vibronic coupling is sufficiently strong, the energies and wavefunctions

of the vibronic states are those of Eq. (5.18). All the IR transitions in this case

can be divided into intrasheet transitions between the vibronic states of the same

lower sheet of the adiabatic potential, and intersheet transitions between the

states of different sheets. At T¼ 0K the lowest-frequency line of the intersheet

transitions corresponds to the energy gap �hW0 	 "þð�ðþÞ
0 Þ � "�ð�0Þ that con-

nects the minima of the upper and lower sheets of the adiabatic potential

(Sections 3.2 and 5.2). Intrasheet transitions correspond to frequenciesW<W0.

It can be seen that Q� causes only intrasheet transition

�; n; mj i! �; n0;m� 1j i. If we take �¼ �0þ r, then after Eq. (6.36)

Q� ¼ ð1=
ffiffiffi
2

p
Þ�0e�i� þ ð1=

ffiffiffi
2

p
Þre�i� (6:39)

In the harmonic approximation the first term causes transitions with n0 ¼ n,

while the second term causes transitions with n0 ¼ n� 1. At T¼ 0K only

transitions from the ground vibronic state remain, withmatrix elements [6.115]

�; 0; � 1

2
jQ�j�; 0; 
 1

2

� �
¼ �; 0; � 3

2
jQ�j�; 0; � 1

2

� �
¼ FE=KE

ffiffiffi
2

p

(6:40)

�; 0; � 1

2
jQ�j�; 1; 
 1

2

� �
¼ �; 0; � 3

2
jQ�j�; 1; � 1

2

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�hoE=4KE

p
(6:41)

The transitions (6.40) correspond to two intense lines at the frequencies

W¼ 0 andW ¼ �h=�20. Of course, the lineW¼ 0 cannot be observed directly but,

as already mentioned, it is related to the transitions between the rotational

states of a free molecule (see below).

The transitions (6.41) correspond to two weak lines at W¼oE and

W ¼ oE þ �h=�20, their intensities being 2EE
JT=�hoE times weaker than those of

the lines (6.40). The anharmonicity of the potential surface "�(�) allows also
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overtones with n 0> nþ 1. In the region of weak anharmonicity (small n) their

intensities decrease with n and then, when passing to the region of strong

anharmonicity (large n), they begin to increase (Fig. 6.14).

The electronic operators cause both intrasheet �; n; mj i! �; n; m� 1j i
and the intersheet �; n; mj i! 
; n0; m� 1j i transitions. The intensity of

the latter is determined by the Franck–Condon overlap integrals

�nð�� �0Þ
����ðþÞ

n 0 ð�� �
ðþÞ
0 Þ

D E
. In this sense the intersheet transition is reduced

to the usual electronic transition between electron–vibrational states of two

singlet electronic terms with significantly anharmonic APES.

At T¼ 0K when only the ground vibronic state is populated the following

two types of intersheet transitions are possible: �; 0; � 1
2

�� �
! þ; n; 
 1

2

�� �
and

�; 0; � 1
2

�� �
! þ; n; � 3

2

�� �
. As mentioned in Sections 5.2 and 5.4, the energy

spectrum of vibronic states of the linear E� e system with fixed m values is

almost equally spaced and therefore each of the above two types of transition

results in an almost equally spaced series of spectral lines with a bell-shaped

envelope. The frequency of the envelope maximum is that of the

Franck–Condon transition between the sheets (Fig. 6.14):

�homax ¼ "þð�0Þ � "�ð�0Þ ¼ 4EE
JT (6:42)

Vibronic effects in the IR absorption in multimode JT systems can be

described in the framework of the same approximations of weak and strong

coupling. As mentioned above, in the case of weak vibronic coupling, the

transitions caused by the electronic dipole moment cannot be observed

directly, and therefore one can assume that the ~e~D magnitude is determined

by the nuclear term (6.33). In particular, for an uncharged impurity in a

homopolar crystal with a trigonal E term in the ground state, the operator

~e~D acquires the form (6.36), where Q� are the symmetrized displacements of

the atoms of the nearest coordination sphere. By substituting (6.36) into

Eq. (6.2), it can be shown [6.1, 6.79] that the IR spectrum of the multimode

JT system reproduces the density of vibrational states substantially renorma-

lized by the vibronic coupling. In particular, it contains JT local and pseudo-

local resonances (Section 5.5).

In themultimode system, as in the ideal case considered above, the approach

based on separation of the sheets of the adiabatic potential is applicable for

strong vibronic coupling. The broad band of the IR absorption is composed of

intrasheet and intersheet transitions. The latter are due to the operator of the

electronic dipole moment and differ slightly from multi-phonon bands of

electronic transitions between nondegenerate terms. The zero-phonon line

of the above band is positioned at the frequency W0 	 EE
JT. The main
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contribution to the intrasheet transitions comes from d ¼~e~Dn, the operator of

the interaction of light with the dipole moment of the nuclei, which, consider-

ing Eq. (6.39), can be written in the form d¼ d0þ d1, where

d0 ¼ ZE�0ðeþe�i� þ e�e
i�Þ=

ffiffiffi
2

p
; d1 ¼ ZErðeþe�i� þ e�e

i�Þ=
ffiffiffi
2

p
(6:43)

For strong vibronic coupling the contribution of d0 is obviously predomi-

nant because �0�FE. The operator d0 causes transitions between rotational

states of the system with m0 ¼m� 1. Since the states with different m values

correspond to different equilibrium coordinates of the trough (see Eq. (5.21)),

this transition is accompanied by a pulse of radial vibrations of the nuclei.

In a sense this phenomenon is analogous to the Mössbauer effect, with the

distinction that in the case under consideration the momentum is transferred,

rather than the photon impulse. As in theMössbauer effect, the IR absorption

spectrum contains an intense line at the frequency W0, which corresponds to

the process ‘‘without recoil,’’ and weak phonon satellites reproducing the

modified density of radial vibrations [6.116].

If the quadratic terms of the vibronic interaction are included in the

strong-vibronic-coupling problem, three deep minima occur at the bottom

of the trough of the lowest sheet of the adiabatic potential (Section 3.2) and

the nuclear motion is localized at the bottom of these minima (Section 5.3).

If we neglect the tunneling between the minima, the system (once prepared)

remains in the distorted configuration of the minima for an infinitely long

time (at low temperatures). For instance, in the minima configurations the

molecule X3 has the form of an isosceles triangle (symmetry C2v), octahedral

molecules ML6 acquire the symmetry D4h, etc., and the degeneracy of the e

vibrations at the minimum point is removed due to the lower symmetry

(Section 3.2). Therefore when tunneling is neglected the IR spectra of JT

systems coincide with the usual IR spectra of normal molecules in the con-

figuration of the lower symmetry at the minima [6.115]. Here the lines of the

fundamental tone are split in accordance with the splitting of the frequencies

in the minima (Section 3.2).

Allowing for tunneling, the spectral lines of the IR absorption are split and

the possible transitions are determined by the usual selection rules. For

instance, for a D3h system with a quadratic E� e problem and a doublet

ground vibronic level, in the dipole approximation, the IR transitions from

the ground vibronic E state to all excited states are allowed (because

E�E¼A1þA2þE). In particular, an intense line corresponding to the tran-

sition between the tunneling sublevels of the ground state can be expected at

the frequency W ¼ 3�=�h (in the microwave range) [6.117].
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The special JT features of the vibronic IR spectra described above are

general for all JT systems. Anomalous IR spectra for molecular systems with

E� (b1þ b2), T� (eþ t2), and �8� (eþ t2) type effects and weak vibronic

coupling are considered in [6.118]. Strong vibronic coupling with one of the

two types of vibrations in the �8� (eþ t2) system and weak coupling with the

other one is discussed in [6.119]. Detailed tables of optically active vibrations

for molecular systems with different symmetries are given in [6.115, 6.119].

Vibronic IR spectra of systems with intermediate vibronic coupling can be

obtained from numerical solutions of the vibronic equations (Section 5.4) in a

way similar to that used to determine the spectral lines given in Fig. 6.14. IR

spectra of molecular systems with a 3T term including the spin–orbital and

linear vibronic interactions with e and t2 vibrations were obtained by numer-

ical calculations [6.120]. A simple case of the PJTE for two close-in-energy

nondegenerate electronic terms mixed by one vibration (Section 4.1) was

considered in [6.121, 6.122]. As in the usual JT case, the IR spectra of such

systems have a complicated unequally spaced structure with a complicated

temperature and polarization dependence.

The discussion of the IR spectra of free molecules cannot be complete

without considering transitions between the rotational levels. Consider first a

simple JT system, the X3 molecule. It is well known that anymolecule withD3h

symmetry in a nondegenerate electronic state has no dipole moment (i.e., it is

not a rigid-dipolar molecule), and therefore it does not display a purely

rotational absorption of electromagnetic radiation. However, in degenerate

electronic states such a molecule may have a (linear in the electric field) dipole

moment (a linear Stark effect), since the external electric field removes the

electronic degeneracy. The Hamiltonian of the Stark interaction has the form

of Eq. (6.35). This operator may cause purely rotational transitions [6.115]. On

the other hand, in the absence of vibronic coupling the electric dipole interac-

tionwith the nuclei (6.36) does not lead to purely rotational transitions since its

matrix elements are nonzero only when n0 ¼ n� 1. The vibronic interaction

removes this restriction on n and allows purely rotational electric-dipole

absorption with n0 ¼ n based on the nuclear dipole moment.

This conclusion has a clear-cut physical sense. In systems without an inver-

sion center, including the molecule X3 under consideration, the dipole moment

in the minima of the adiabatic potential can occur due to the JTE on dipole-

active vibrations. The contribution of the nuclear dipole moment to the

electric-dipole rotational IR spectra is the larger, the greater the magnitude

of this moment in the minima of the APES, i.e., the stronger the vibronic

interaction. In the case of strong vibronic coupling the contribution of the

nuclear dipole moment to the purely rotational transitions can be dominant.
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The JTE influences both the intensities and the positions of the spectral lines

of the rotational IR absorption. As follows fromSection 3.2 (and asmentioned

above), the JT internal rotation moment J int equals the sum of the electronic

and vibrational momenta (see [6.1]). Taking into account this total momentum

of the internal rotation in the Coriolis interaction, the Hamiltonian of the

rotational motion of a symmetric-top-type molecule can be written in the form

(see [6.123], Section 104)

Ĥrot ¼ BðJ � J intÞ2 þ ðA� BÞðJz � J int
z Þ (6:44)

where A and B are the rotational constants and J is the preserved total

momentum of the top (for the sake of simplicity we neglect the dependence

of the molecule’s moment of inertia on nuclear displacements; additional

effects related to this dependence are considered in [6.124]). If the vibronic–

rotational interaction is neglected, the total wavefunction of the molecule can

be written in the form of a product of the vibronic function nmj i (n is the

quantum number of the radial motion and m ¼ � 1
2
; � 3

2
; . . . is the quantum

number of the electron–vibrational momentum in the linear E� e system;

see Sections 5.1 and 5.2) and the rotational wavefunction of a symmetric

top JKMj i:

nmJKMj i ¼ nmj i JKMj i (6:45)

The Hamiltonian Hrot from (6.44) averaged over the states (6.45) yields the

rotational energy Erot. Omitting the constants that are independent of the

rotational quantum numbers, we have [6.115, 6.124, 6.125]

Erot ¼ BJðJ þ 1Þ þ ðA� BÞK2 � 2AK� (6:46)

where the constant

� ¼ nmh jJ int nmj i ¼ ð�e � 1
2
Þ nmh j�̂z nmj i þm (6:47)

is the Coriolis interaction, and �e is its electronic contribution (�z is the Pauli

matrix (3.2000)).

For the rotational levels accompanying the ground vibronic term (n¼ 0,

m ¼ � 1
2) the matrix element nmh j�̂z nmj i is expressed by the vibronic reduction

factor p (Section 5.6), and therefore

� ¼ pð�e � 1
2
Þ signðmÞ þm (6:48)

In particular, for strong vibronic coupling when p 	 0, � 	 m. Thus the

expression (6.46) for the energy of the rotational levels agrees with the usual
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results for nondegenerate molecules, but the constant of the Coriolis interac-

tion changes significantly from one vibronic level to another [6.124].

The selection rule for rotational transitions�K¼�1 follows from the trans-

formation properties of the operators (6.37). For instance, for the Q-type

transitions (J¼ J0) (do not confuse with the Q coordinate) we obtain from

(6.46) a set of lines with frequencies corresponding to the energy gaps [6.115]

�EK ¼ ½Að1þ 2�Þ � B�ð2K þ 1Þ (6:49)

With the wavefunctions (6.45) known, one can determine the intensities of the

lines of induced dipole transitions caused by the operators (6.35) and (6.36).

As mentioned above, in the case of strong vibronic coupling the contribution

of the operator (6.36) is dominant, and therefore the probability of rotational

transitions between the states that accompany the ground vibronic doublet is

determined by the matrix element (6.40).

All the foregoing means that due to the dipolar instability the JT systems

which have no nuclear dipole moment show the properties of rigid-dipole

systems with a dipole moment corresponding to a distorted molecule in the

minimum of the adiabatic potential. It follows that the division of all the

molecules into those having a proper dipole moment (rigid-dipole molecules)

and those without is to a large degree conventional. This conclusion was first

drawn in [6.126] on the basis of the temperature dependence of the averaged

dipole moment of freely orienting JT molecules with dipolar instability.

The difference between rigid-dipole and symmetric molecules depends on

temperature [6.127]. The corresponding dependence of the averaged dipole

moment on temperature is given by �D� tanh(r�/KT), where r� (r¼ 3, 4, 6, . . .)

is the magnitude of the tunneling splitting (Section 5.3). In the limit of high

temperature r�� kT we get �D �T�1, i.e., the classical result for rigid-dipole

molecules. In the other limiting case of low temperature �D becomes a constant,

independent of temperature, which is characteristic of symmetric molecules

that have no proper dipole moment.

The rotational IR spectra of JT spherical-top molecules that have dipolar

instability (symmetry group Td, T� t2 problem) were considered in [6.128].

Figure. 6.15 gives an approximate scheme of the rotational energy levels which

(in the absence of a rotational–vibronic interaction) adjoin the vibronic levels

T2 and A1 of a tetrahedral molecule with tunneling splitting due to strong

vibronic coupling (Section 5.3):

ET2J ¼ BJðJ þ 1Þ; EA1J ¼ 4�þ BJðJ þ 1Þ (6:50)

Here B is the rotational constant and 4� is the magnitude of the tunneling

splitting determined by Eq. (5.50).
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For each rotational level the wavefunction can be written in the form of a

product of the vibronic function �gj i and the rotational function of a spherical

top JKMj i (cf. Eq. (6.45)):

�gJKMj i ¼ �gj i JKMj i (6:51)

With these wavefunctions one can determine the probabilities of transitions

and the intensities of the induced dipole transitions �J!�0J 0 per unit of

radiation density [6.128, 6.129],

W�J!�0J 0 ¼ 8p3M2
0N

9�h2c2Z
ðE�0J 0 � E�JÞ½expð�E�J=kTÞ � expð�E�0J 0=kTÞ�CJJ 0g�JðIÞ

(6:52)

where Z is the statistical sum of tunneling–rotational levels (6.50),

CJJ 0 ¼
2J þ 1Þð2J þ 3Þ; J 0 ¼ J þ 1

ð2J þ 1Þ2; J 0 ¼ J
ð2J þ 1Þð2J � 1Þ; J 0 ¼ J � 1

8<
: (6:53)

g�J (I) is the statistical weight that depends on the nuclear spin I, M0 is the

modulus of the nuclear dipole-moment vector of the system in the trigonal

minimum, and N is the number of absorbing centers per unit volume.

From the expression (6.52) it can be seen that three types of transitions with

J 0 ¼ Jþ 1 (R transitions) are possible: T2J!T2(Jþ 1) labeled R, A1J!A1

(Jþ 1) labeled R0, and T2J!A1 (Jþ 1) labeled R00, while the Q transition

with J¼ J 0 is allowed as T2 J!A1J, and the P transition is T2 J!A1 (J� 1).

Fig. 6.15. Tunneling–rotational energy levels and allowed transitions for a
spherical-top molecule with dipolar instability (Td symmetry and T� t2 JT
problem) with 4�< 2B (a) and 4�> 2B (b). The transitions related to
different branches are divided by dashed lines [6.128].
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If 4�¼ 0 (more exactly 4��B), the transition frequencies in the three R-type

bands coincide and the resulting spectrum consists of lines with a constant

spacing of 2B, without the P and Q branches. As 4� increases, each of these

lines splits and the Q transition occurs at the frequency 4�, its intensity being

small because the two tunneling levels have almost the same population.

If 4�>B, the picture of the spectrum changes significantly (Fig. 6.16).

Besides the increase of the frequency separation of the lines of the three

branches, their intensities also change, increasing for the T2!A1 transitions

and decreasing for the A1!T2 ones. Simultaneously the Q transition becomes

stronger and the lines of the P transition emerge. The number and the intensity

of the latter increase as the inequality 4�>B strengthens. Note that in the

usual purely rotational spectra only the R-type transitions are possible,

whereas all the branches of R, P, and Q transitions can be observed simulta-

neously in the rotational structure of the vibrational band [6.130]. In the

predicted vibronic spectrum all the branches can be observed in the region of

purely rotational transitions, with the distinction that there will be three R

branches, while the P and Q branches occur only for large tunneling splitting.

At lower temperatures the intensity of the Q transition increases more

rapidly than that of the other lines, and hence at some specific temperature

the Q line becomes distinct from the background of the band (Fig. 6.17). This

line corresponds to the transition with no change of the rotational quantum
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Fig. 6.16. Calculated line positions and intensities of the rotational IR
spectrum of a system with dipolar instability (Td symmetry and T� t2 JT
problem) with 4�¼ 15 cm�1, B¼ 5.24 cm�1, kT¼ 200 cm�1 [6.128]. The R00,
R0, andR branches are labeled by rings, crosses, and no symbols, respectively.
The Q and P transitions are shown by an arrow and a dashed arrow,
respectively.
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number, and in terms of its shape and temperature features it is quite analog-

ous to the zero-phonon line in the optical spectra (Section 6.1.2). Therefore it

can be called the ‘‘zero-rotational’’ line. This line has been mentioned above as

a transition between the tunneling states [6.117].

Unlike in systems with dipolar instability, the spherical-top molecules for

which the dipole-active vibrations are not simultaneously JT active have no

pure rotational spectra. Examples of this kind can be found, in particular,

among tetrahedral molecules with a JTE term in the ground state. For twofold

degenerate electronic states of spherical-top molecules there is no rotational

fine structure in the excited vibronic state as well. Indeed, as shown inChapter 5,

in this case all the JT states transform as the representations E, A1, andA2, the

squares of which do not contain the triplet representation of the operator of

the dipole moment that induces the transition.

Nevertheless, as shown in [6.131], the spin–orbital interaction, by mixing in

the excited T term (in the approximation of the second-order perturbation

theory), removes this prohibition, allowing the rotational structure in the

infrared (microwave) spectrum of the ground E term. For instance, under

the influence of the spin–orbital interaction the electronic 2E term of a tetra-

hedral molecule becomes a cubic Kramers quadruplet �8, its symmetrized

square containing the T2 representation of the dipole moment. This explains

the origin of the expected new type of rotational spectrum.

The spin–vibronic–rotational interaction for a C3v molecule in an electro-

nic 2E state and the hyperfine Hamiltonian for the corresponding nuclear-

spin–electron-spin interaction is investigated in [6.125].

The existence of rigid-dipole properties in some JT molecules that have no

proper dipole moment can be manifested also in the collision-induced absorp-

tion of light by spherical-topmolecules in degenerate orbital states [6.132]. The
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Fig. 6.17. The same as in Fig. 6.16 for kT¼ 50 cm�1, the intensity scale being
reduced by a factor of 100 [6.128].
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collision of two molecules induces a dipole moment, which interacts with the

electromagnetic wave, resulting in its absorption [6.133]. In the absence of

electronic degeneracy the first nonzero multipole moments of spherical-top

molecules determining their interaction at large distances are the octapole and

hexadecapole (Oh symmetry) moments. But if the ground electronic term of

the molecule is degenerate, then the first nonzero multipole moment is quad-

rupole or even dipole (in cases of dipolar instability). The estimates given in

[6.132] show that the effective quadrupole moments under consideration may

reach magnitudes comparable to the quadrupole moments of symmetric-top

molecules.

Vibronic effects in infrared spectra of linear molecules were considered in

terms of the RTE by various authors (Sections 4.4 and 5.1). Several reviews

[6.134–6.138] provide details of expected energy spectra and wavefunctions for

spectroscopic properties, similar to that considered above for E- and T-term

JT systems. Further discussion involving specific molecules with the RTE is

given in Chapter 7.

6.2.2 Raman spectra and birefringence

As stated above, vibronic effects in the IR spectra take place only for

Jahn–Teller systems with dipolar instability. Similar spectra for systems with-

out dipolar instability can be obtained by means of Raman light scattering.

Raman spectra are determined by other selection rules, and they are in a sense

complementary to the IR spectra.

The shape function of the Raman spectrum accompanied by a transition of

the Jahn–Teller system from the vibronic state �n (�1) to the state �m (�1) is

determined by Eq. (6.2) with 1� and 2�0 from the same term andW¼Ws�Wi as

the frequency difference between the incidentWi and scatteredWs light, while d

is the two-photon transition operator determined by the tensor of electronic

polarizability P	
 [6.139]:

d ¼
X
	;


ni	ns
P	
ðr;QÞ; 	; 
 ¼ x; y; z (6:54)

Here ni and ns are the unit vectors of polarization of the incident and scattered

light, respectively.

The scalar convolution (6.54) can be written in the form of a convolution of

irreducible tensor operators,

d ¼
X
�g

N�gP�gðr;QÞ (6:55)
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where � are the irreducible representations (of the symmetry group of the

system) contained in the square of the vector representation, and N�g and P�g

are linear combinations of the components of the second-rank tensors ni	, ns

and P	
, respectively, which have the transformation properties of �g. For
example, for a cubic system of Oh symmetry vectors transform as T1u, and

therefore �¼T1u�T1u¼A1gþEgþ T1gþT2g,

N�g ¼
X
	;


ni	ns
 T1u	T1u
j�gh i; P�g ¼
X
	;


P	
 T1u	T1u
j�gh i (6:56)

and T1u	T1u
j�gh i are Clebsch–Gordan coefficients.

Thus by choosing different polarizations for the incident and the scattered

light one can separate the scattering effects determined by polarizabilities of

different symmetry. For instance, for the Oh group one can distinguish A1g

scattering, Eg scattering, etc. We can also separate symmetric and antisym-

metric representations, i.e., those contained in, respectively, the symmetric and

antisymmetric squares of the vector representation. This is important because

the selection rules for the symmetric scattering are the same as for the electric

quadrupole moment, and therefore the spectral features and the temperature

dependence of the corresponding components of scattering are the same as

those for the quadrupole IR absorption. For the antisymmetric scattering the

selection rules are the same as those for the operator of the magnetic dipole

moment, and therefore the spectra and temperature dependence of the anti-

symmetric components of scattering are the same as for magnetic-dipole IR

absorption.

All the results obtained for the vibronic effects in the IR absorption are

equally valid for Raman spectra, with the distinction that instead of the

frequency W of the absorbed IR irradiation we deal here with the frequency

shift of the scattered light. In particular, for systems without a center of

inversion, among the irreducible representations � in the sum (6.55), there

are representations to which the components of a vector belong. The corre-

sponding components of the tensor P�g cause the same transitions as the

components of the dipole-moment vector do in IR absorption. The remaining

components of the tensor P�g produce transitions which do not appear in the

IR spectra. Therefore the Raman spectra have a richer vibronic structure. For

instance, the rotational spectra of free JT spherical-top molecules contain O

and S branches for which�J¼�2 in addition to the P, Q, andR lines in the IR

spectra, discussed above [6.140].

Now we take into account that in non-resonant Raman scattering the

dependence of the polarizability operatorP�g (r, Q) on the nuclear coordinates
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Q is weak [6.141]. This dependence originates from the vibronic JT or PJT

interactions in the excited electronic states, which serve as the intermediates

in the two-photon Raman process. We can expand this operator in a

power series:

P�gðr;QÞ ¼ P
ð0Þ
�g ðrÞ þ

X
�1g1

P
ð1Þ
�g�1g1

ðrÞQ�1g1þ � � � (6:57)

where

P
ð1Þ
�g�1g1

ðrÞ ¼ @P�gðr; QÞ
@Q�1g1

����
Q¼Q0

(6:58)

The first term in Eq. (6.57) is the electronic polarizability of the system in the

reference nuclear configuration Q0. This operator is similar to the operator of

the electronic quadrupole or magnetic dipole moment (in the sense mentioned

above). For systems without a center of inversion there are some components

of this operator which have the transformation properties of a vector, and

therefore in the limited basis of the electronic states of the JT term �1 they are

represented by the same matrix elements as the operator of the electronic

dipole moment (6.35). It follows that the Raman transitions caused by the

terms containing P
ð0Þ
E do not differ from the IR transitions caused by the

operator (6.35).

It is important that in the absence of degeneracy the term P
ð0Þ
�g ðrÞ produces

Rayleigh scattering only, and hence the Raman scattering caused by this

operator is an essential feature of JT systems.

The second term in Eq. (6.57) describes what is known as Raman scattering

of the first order. As mentioned above, its contribution is weak compared with

the zeroth-order Raman scattering. It is estimated [6.115] to be of the order of

Pð1Þ � FE=ðoeg �WiÞ, where FE is the vibronic coupling constant in the

excited electronic states (that serves as an intermediate), oeg ¼ ðEe � EgÞ=�h is

the Bohr frequency of the dipole transition from the ground state to the excited

intermediate one with the energies Eg and Ee, respectively, and Wi is the

frequency of the incident light. In non-resonant Raman scattering this para-

meter is relatively small, Pð1Þ9 0:1 (see, however, [6.142]).

The second term of Eq. (6.57) has the same transformation properties �g as
the zeroth-order terms P

ð0Þ
�g ðrÞ, and therefore it is subject to the same selection

rules. Accordingly, the first-order Raman scattering contains the same allowed

transitions as the Raman scattering caused by the zeroth-order terms.

Therefore the separation of its contribution to the Raman scattering spectra

is, in general, impossible. However, this can be done in limiting cases of weak
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and strong vibronic coupling. For instance, in the case of weak coupling when

the vibrational occupation numbers n�g are still good quantum numbers, the

term linear inQ�g causes the Raman transitions n�g!n�g � 1. This means that

the corresponding spectral lines at T¼ 0K are at the frequencies W 	 o�. On

the other hand, the pure rotational Raman spectra related to the ground

vibronic state are caused only by the operator P
ð0Þ
�g ðrÞ and are positioned in

the immediate neighborhood of the Rayleigh line, i.e., they lie in a different

range of frequencies.

If the vibronic coupling is strong, the low-energy vibronic states can be

approximately considered as localized in the minima of the APES (Chapter 5).

For this reason the coordinatesQ�g in Eq. (6.57) can be replaced byQ
ð0Þ
�g þ q�g,

where Q
ð0Þ
�g are the minima coordinates and q�g are small displacements from

these minima. The terms containing Q
ð0Þ
�g merge with P

ð0Þ
�g ðrÞ, while the terms

linear in q�g lead to the first-order Raman scattering modified by the vibronic

interaction. Since the occupation numbers at the bottom of the minimum are

good quantum numbers, the operators q�g at T¼ 0K cause Raman scattering

at the frequencies W 	 ~o�, where ~o� are the modified frequencies of normal

vibration at the bottom of the minimum (Chapter 3). The remaining terms of

the polarizability operator result in Raman transitions at frequencies

Wj j9�ho2
�K�=F

2
� between the rotational vibronic states (Section 5.2), and

between the tunneling states for stronger coupling (Section 5.3). In multimode

JT systems the first-order Raman scattering reproduces the vibrational density

of states modified by the vibronic interaction (Section 5.5).

If the distance from resonance oeg �Wi

�� �� in the non-resonant Raman

scattering is sufficiently large, the first-order scattering is negligible and

the main contribution originates from the first term in Eq. (6.57). The

intensity of the Rayleigh line is determined in this case by the square of

the matrix element of the electronic polarizability operator P
ð0Þ
�g ðrÞ calculated

with the vibronic wavefunctions of the ground state. This matrix element is

obviously proportional to the square of the corresponding vibronic reduc-

tion factor (Section 5.6), provided the polarizations of the incident and the

scattered light are chosen to separate out the contribution of the polariz-

ability component that belongs to a given irreducible representation �. The

total intensity is equal to the zeroth-order moment of the Raman band

(Section 6.1.1). It follows that it is possible to estimate the values of the

vibronic reduction factors from the Raman scattering experiments with

an appropriate choice of polarizations of the incident and the scattered

light [6.143, 6.144].
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The vibronic spectrum of the Raman scattering of Cu2þ impurity centers in

CaO crystals observed at T¼ 4.2K [6.141, 6.145] is given in Fig. 6.18 as an

illustrative example. In the upper right-hand corner the low-frequency part of

the spectrum containing the line at the frequency �hW 	 4 cm�1 is shown on a

larger scale. This line is interpreted as the E!A transition between the tunnel-

ing states of the ground electronic E term of the Cu2þ ion.

It can be shown (see in [6.1]) that by substituting Eq. (6.55) into Eq. (6.2) we

get for the intensity of the Raman scattering the following expression:

IðWÞ �
X
�

G�ðWÞð1=f�Þ
X
g

jN2
�gj (6:59)

where f� is the dimensionality of the representation � and G� (W) is the

contribution of the component of � symmetry. Since the magnitudes jN2
�gj

are composed of the components of the vectors of the incident and scattered

light polarizations with respect to the symmetry axes of the scattering system,

this formula determines explicitly the angular dependence and polarization

properties of the scattered light.
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Fig. 6.18. The vibronic Raman spectrum of Cu2þ : CaO at T¼ 4.2K. The
inset shows the part of the spectrun containing the E!A transition between
the tunneling levels at a frequency of 4 cm�1 (Reprinted with permission from
[6.141]. Copyright 1975 American Physical Society.)

6.2 Vibronic infrared and Raman spectra 309



For randomly oriented systems (molecules in gas phase and solutions,

polycrystals, and so on) the magnitudes jN2
�gj should be averaged over the

orientations of the scattering systems. Direct calculation shows that the orient-

ational averages jN2
�gjj=f� are the same for different irreducible representations

�s 6¼ A1 contained in the symmetric square of the vector representation (i.e.,

for symmetric scattering) and separately for the representations �a contained

in the antisymmetric square (i.e., for antisymmetric scattering, see in [6.146],

Section 2).

On introducing

Gs ¼
X
�s 6¼A1

G�s
; Ga ¼

X
�a

G�a
(6:60)

we obtain from Eq. (6.59) (see also [6.139], Section 61)

IðWÞ � ½GA1
ðWÞ ~n�s~ni

�� ��2þð1=10ÞGsðWÞð1þ ~ns~ni
�� ��2�ð2=3Þ ~n�s~ni

�� ��2Þ þ ð1=6ÞGaðWÞð1� ~ns~ni
�� ��2Þ�
(6:61)

Denote the angle between the direction of the scattering ~ks and the direction

of the polarization of the incident light~ni by #. The scattered light contains two

independent components: one polarized in the plane ð~ks;~niÞ (intensity I1) and

one perpendicular to the plane (intensity I2). The ratio �1¼ I2/I1 is called the

depolarization ratio. For the scattering of linear polarized light we obtain from

Eq. (6.61)

�1 ¼
3GsðWÞ þ 5GaðWÞ

30GA1
ðWÞ þ GsðWÞð3þ sin2 #Þ þ 5GaðWÞ cos2 #

(6:62)

Specifically, at # ¼ p=2 we have

�1 ¼
3GsðWÞ þ 5GaðWÞ
30GA1

ðWÞ þ 4GsðWÞ (6:63)

If the incident light is natural (nonpolarized), the expression (6.61) should be

averaged over the directions of polarizations ~ni for a given direction of the

incident light ~ks. In the case of scattering to an angle of p/2 the expression for

the depolarization ratio is related to �1 by the simple formula

�nðWÞ ¼ 2�1ðWÞ
1þ �1ðWÞ ¼

6GsðWÞ þ 10GaðWÞ
30GA1

ðWÞ þ 7GsðWÞ þ 5GaðWÞ (6:64)

An important feature of molecules in nondegenerate electronic states is that

the tensor of polarizability P	
 is real and symmetric (see [6.139], Section 62).

It follows that there is no antisymmetric scattering in such molecules,
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i.e.,Ga¼ 0. FromEq. (6.64) we obtain in this case �n 6/7, and fromEq. (6.63)

we obtain �1  3/4. An essential feature of JT molecules is thus the possibility

of antisymmetric scattering with �n> 6/7 and �1  3/4 [6.115]. The first

calculations for Raman scattering in JT systems were obtained [6.115] for

the E� e problem in an X3 molecule by means of direct substitution of the

vibronic energy levels and wavefunctions obtained by numerical computation

(Section 5.4) into Eq. (6.2).

Further discussion of the problem is given in a series of works in which

approximate weak- and strong-coupling results, as well as the intermediate-

coupling case in the multimode JTE, were explored [6.79, 6.116, 6.143,

6.147–6.150]. Selection rules for first-order Raman scattering in JT systems

were obtained in [6.151]. Rotational Raman spectra of free spherical-top

molecules near the Rayleigh line for E and T terms were considered in [6.140].

The tensor of Rayleigh scattering of light by molecules is closely related to

their polarizability in the ground state [6.139]. The traditional description of

the electric properties of a molecule is based on the assumption that the charge

distribution (either classical or quantum-theoretical) is totally symmetric with

respect to the equilibrium nuclear configuration. It follows that, for instance,

for a spherical-top molecule in a nondegenerate state only the scalar apart of

the polarizability is nonzero.

In degenerate states the situation is significantly different. Using the

group-theoretical selection rules for the matrix elements of the polarizability

operator, it can easily be seen that there may also be nonzero matrix elements

for components of the irreducible tensor operators of the polarizability and

multipole moments, which are not totally symmetric. If the vibronic ground

state transforms as the irreducible representation �, then the nonzero con-

tribution to the polarizability arises from the components of the operator

of polarizability transforming as the irreducible representations in the

symmetric square [�2], or the antisymmetric square {�2} if � is a two-valued

representation of a double group. It means that in degenerate states the

point symmetry of the charge distribution may be lower than in the nondegene-

rate case.

In nondegenerate states the diagonal matrix element of an operator is the

same as the mean value of the corresponding quantity (polarizability, multi-

pole moments, etc.), whereas in the case of degeneracy there is no such direct

relation between the matrix elements and observable properties. Indeed, in the

basis of the degenerate states each physical quantity corresponds not to a

matrix element but to a matrix. Therefore the correlation between the matrix

elements and the observable properties has to be carried out for each distinct

experimental situation separately.
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Such an analysis of birefringence in gases of spherical-top molecules, in

particular the Kerr and Cotton–Mouton effects, is performed below. The

depolarization of light in Rayleigh, hyper-Rayleigh, and purely rotational

Raman scattering by degenerate molecules is considered in [6.152]. A similar

investigation of the temperature-dependent optical activity of symmetric JT

and PJT systems in a magnetic field is presented in [6.153]. All these problems,

as well as some other manifestations of the anomalous electric properties of

molecular systems with the JTE and PJTE, are reviewed in [6.129].

So far we have discussed non-resonant Raman scattering for which the

spectral density is determined by the vibronic properties of the ground electro-

nic term only and does not depend on the properties of the virtual excited

states through which the non-elastic scattering of light takes place. The situa-

tion is different in resonant Raman scattering when the frequency of the

incident light W i lies within the absorption band of the JT system. In this

case the operator P	
 in Eq. (6.54) that causes the two-photon transition

cannot be reduced to the electronic polarizability; it depends strongly on the

nuclear coordinates [6.154]:

P	
ðr;QÞ ¼
X
k

D	ðrÞ
�

ð��Þ
k ðr;QÞ

��� E
�

ð��Þ
k ðr;QÞ

D ���
okn �Wi � igk

D
ðrÞ (6:65)

HereD	(r) are the Cartesian components of the vector of the dipolemoment of

the electrons, �� is the index of the excited electronic term (or of a group of

terms that are close in energy) which is in resonance with the scattered light,

okn ¼ ðE��k � E�1nÞ=�h is the Bohr frequency of the transition, and gk is the

natural line width. In Eq. (6.65), as usual, the terms containing non-resonant

denominators are omitted.

As seen from this equation, the intensity of the scattered light in resonant

Raman spectra depends strongly on the properties of the excited states

through which the scattering takes place. In the simplest situation when both

the initial and final states are from the nondegenerate electronic term �1¼A1,

the spectrum of the shifted scattering reproduces the equally spaced vibra-

tional energy spectrum of the A1 term, while the intensity of the lines depends

on the frequency Wi that determines the resonant excited state.

Of special interest is the case when the excited states are JT states.

Figure 6.19 shows the dependence of the intensity of the resonant Raman

scattering on the frequency of the incident light Wi when the scattering takes

place through the excited E term with an E� e Jahn–Teller problem, while the

ground term is A1. This result is obtained [6.155] by means of numerical

calculations of the vibronic states of the linear and quadratic E� e problem
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and substitution of the results into Eq. (6.65). The dashed line in Fig. 6.19

shows the dispersion of the depolarization ratio of natural light. It is seen that

the depolarization ratio of the overtones depends on the frequency of the

incident light Wi, this dependence being stronger for larger values of the

quadratic vibronic coupling constant GE, and this result can be used for

experimental estimation of GE. Similar results were obtained [6.156] for the

excited resonance T term with a T� t2 problem. The multimode aspects of

resonant Raman scattering in JT systems are discussed in [6.157, 6.158].

The semiclassical approach in the limiting case of strong vibronic coupling

[6.158] gives satisfactory agreement with numerical quantum-mechanical

calculations.

Another phenomenon in which JT spherical-top molecules manifest aniso-

tropic properties is the birefringence in external electric fields, the electro-

optical Kerr effect. The origin of this phenomenon in polar liquids and gases

containing rigid-dipole molecules can be explained by the Langevin–Born

mechanism. In accordance with this theory the random orientation of the
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Fig. 6.19. Excitation profiles (solid lines) and depolarization ratios (dashed
lines) for the resonance Raman scattering via the excited E term at
EE
JT=�h!E ¼ 1 as a function of the incident light frequency W in oE units (the

zero energy corresponds to the position of the degenerate E term) for GE¼ 0
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overtone. (Reprinted with permission from [6.155]. Copyright 1977 Elsevier
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rigid-dipole molecules in space results in the macroscopic isotropy of the

matter. Under the influence of an external electric field the molecules tend to

orient along the field, causing the optical anisotropy of the medium, and hence

the birefringence. A wave of light in this medium splits into two components

with mutually perpendicular planes of polarization. One of these components,

the ordinary ray, has the plane of polarization perpendicular to the external

electric field, whereas the other one, the extraordinary ray, is polarized along

the electric field.

The difference in the path lengths of the two rays in units of the wavelength

is Bl‹2, where l is the path length of the light ray as a whole in the medium, ‹ is

the intensity of the electric field, and B is the Kerr constant characterizing the

difference between the refractive indices of the ordinary and extraordinary

rays. The orientation of the molecules along the external electric field is

hindered by their thermal motions, and therefore B is inversely proportional

to the square of the temperature [6.159]. In addition, the Kerr constant

depends on the magnitude of the dipole moment of the molecule and the

wavelength of the light.

Besides the orientational Langevin–Born mechanism, the anisotropy of

the medium may be caused by the deformation of the molecular electronic

shell induced by the electric field, i.e. by the anisotropy of the hyperpolariz-

ability (the Voight mechanism). The contribution of this effect to the Kerr

constant is relatively small and independent of temperature. At first sight it

seems that for spherical-top molecules, which have no anisotropy in the

absence of external fields, the birefringence may occur as a result of the

Voight mechanism only.

However, this conclusion implies that the ground state of the molecule is

nondegenerate and transforms according to the totally symmetric representa-

tion. As mentioned above, the molecules with dipolar instability that have no

proper dipole moment manifest rigid-dipole properties due to the JTE or

PJTE. For these molecules birefringence of the Langevin–Born orientational

mechanism should occur. The temperature dependence of its Kerr constant

may be different from that indicated above because the dipole moment itself

depends on temperature. It emerges from the theory given below that even in

the absence of dipolar instability (say, when the vibronic coupling constant is

negligibly small) the presence of electronic degeneracy determines the aniso-

tropy of electronic polarizability, causing birefringence in external electric

fields of the Langevin–Born type [6.160, 6.161].

Consider, for instance, a molecule with Td or Oh symmetry in a twofold

degenerate ground-state E term. Neglecting rotational quantization, the

molar Kerr constant mB is related to the components of the tensor of
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polarizability of the molecule in a constant homogeneous electric field ‹
parallel to the z axis as follows [6.162]:

mB ¼ 2pNA ‹
�2½hPzzðW i;‹Þi � hPxxðWi;‹Þi�

n o
‹!0

(6:66)

where NA is the Avogadro number, P	
 is the operator of electric polariz-

ability determined by Eq. (6.65), and Wi is the frequency of incident light

propagating in the direction perpendicular to the electric field. All the states

�
ð��Þ
k and corresponding transition frequencies okn in Eq. (6.65) and hence the

components of the tensor of polarizability in Eq. (6.66) depend on the intensity

‹. The angular brackets in this equation mean the average over all the vibronic

states of the ground E term, and over all the orientations of the molecules.

The calculations were performed in a series of works including [6.160, 6.161]

(see the review [6.129] and references therein, as well as in [6.1]). The results are

briefly as follows.

In the absence of vibronic coupling we have for the orientational contribu-

tion to the Kerr constant [6.160]

mB
ðorÞ ¼ ð6pNA=5kTÞPð0Þ

E ð0ÞPð0Þ
E ðWiÞ (6:67)

where P
ð0Þ
E ð0Þ and P

ð0Þ
E ðWiÞ are the static and dynamic electronic polarizabil-

ities, respectively. Thus, even without taking into account the vibronic cou-

pling, the electronic degeneracy of the ground state results in an anomalous

Kerr effect in spherical-top molecules with the Kerr constant proportional to

T�1. The estimates in [6.160] show that the corresponding contribution to mB

is comparable to the Kerr constant of anisotropically polarizable molecules.

When we include the vibronic coupling, the expression (6.66) changes. These

changes can be taken into account by a special factor QT(E) [6.161]:

mB
ðorÞ ¼ ð6pNA=5kTÞPð0Þ

E ð0ÞPð0Þ
E ðWiÞQTðEÞ (6:68)

The factor QT(E) depends on temperature and it is similar to the vibronic

reduction factors (Section 5.6). ThereforeQT(E) may be called the temperature-

dependent vibronic reduction factor in theKerr effect. The letterE in parentheses

indicates that the operator containing the E components of the polarizability

is reduced. In the absence of vibronic coupling QT(E)¼ 1. In the limiting case

of low temperatures when only the ground vibronic state is populated

QT(E)¼K2
T ðEÞ, where KT(E) is the usual vibronic reduction factor introduced

in Section 5.6. As the constant of vibronic coupling increases from zero to

infinity, KT(E) lowers from 1 to 1
2
, and hence QT(E) changes from 1 to 1

4
.
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At sufficiently high temperaturesQT(E) can be represented by the first terms

of the expansion in 
¼ 1/KT:

QTðEÞ 	 1� ð2EJT=3kTÞ (6:69)

On substituting this expression into (6.68) we come to an interesting result:

mB
ðorÞ 	 A

kT
þ B

ðkTÞ2

A ¼ ð6pNA=5ÞPð0Þ
E ð0ÞPð0Þ

E ðWiÞ
B ¼ �2

3
AEE

JT

(6:70)

Thus, in addition to the dependence on T�1, a term � T�2 characteristic of

rigid-dipole molecules is present. In accordance with the estimates in [6.161]

the corresponding contribution to the Kerr constant at room temperature may

be more than 20% of the pure electronic value.

In [6.161] the electro-optical Kerr effect for the electronic �8 term in cubic

molecules of Oh symmetry is also discussed. The contribution to the Kerr

constant in this case is given by the electronic polarizability of the eg and t2g
components. If the vibronic coupling is taken into account, both these con-

tributions are reduced by QT(E) and QT(T2), respectively, for which approx-

imate expressions are found in the limiting cases of high and low temperatures,

respectively.

As mentioned in Section 6.2.1, spherical-top molecules with a degenerate

ground state possess a quadrupole moment (or even a dipole moment, in cases

with dipolar instability). It is clear that such quadrupole molecules should

orient themselves in inhomogeneous external electric fields, resulting in optical

anisotropy of the medium and birefringence. The additional contribution to

the difference between the refractive indices of the ordinary and extraordinary

rays �n(or) due to the orienting action of the gradient of the electric field on

molecules of cubic symmetry in degenerate electronic states (in the absence of

dipolar instability) is considered in [6.163]. It emerges that �n(or) is propor-

tional to the absolute value of the gradient of the electric field, and in the case

of the ground E term it is described by an expression similar to Eq. (6.68), with

the distinction that instead of P
ð0Þ
E ð0Þ (the static polarizability) the reduced

matrix element of the operator of the quadrupole moment is introduced.

The temperature dependence of �n(or) is determined by a term proportional

to T�1 and by the factor QT(E).

Similar to the Stark splitting of the vibronic and rotational energy levels,

which determines the Kerr effect, the Zeeman splitting of these levels in an
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external magnetic field also results in optical anisotropy and birefringence.

This is known as the Cotton–Mouton effect, the theory of this effect is similar

to that of the Kerr effect. The difference in the path length of the ordinary and

extraordinary rays isCl›2, where l is the optical path length of the ray of light

in the medium, and › is the intensity of the magnetic field, C being the

Cotton–Mouton constant, which depends on the composition of the matter,

the wavelength of light, and temperature. According to widespread opinion,

spherical-top molecules do not orient under the external magnetic field, and

hence the only reason for their optical anisotropy is the influence of the

magnetic field on the molecular electronic shell, which gives no temperature

dependence to the Cotton–Mouton constant. As shown in [6.164], this con-

clusion is based on the implicit assumption of the absence of electronic

degeneracy, and it is invalid in the presence of degeneracy. Neglecting rota-

tional quantization, the molar Cotton–Mouton constant is given by the

following expression, similar to (6.66):

mC ¼ 2pNAf›�2½hPzzðWi; ›Þi � hPxxðWi; ›Þi�›!0 (6:71)

where P		(Wi, ›) is the polarizability of the system in the magnetic field ›
parallel to the z axis, other notation being the same as in Eq. (6.66). By means

of arguments similar to those employed above, one can separate the orienta-

tional contribution to the Cotton–Mouton constant. The theory [6.164] shows

that the latter has three components. In the absence of vibronic coupling the

first contribution is quadratic in T�1. The second and third contributions are

linear in T�1. Usually, for paramagnetic molecules the first contribution is

dominant, and the temperature dependence as a whole is mC � T �2. For

diamagnetic molecules the first and the third contributions are zero and

hence mC � T�1.

If the vibronic coupling is taken into account, all three contributions

are reduced by temperature-dependent reduction factors, similar to the

above QT(�). Therefore the resulting temperature dependence of the

Cotton–Mouton constant is rather complicated. Nevertheless, in the limiting

case of very low temperatures when the population of excited vibronic states

may be neglected, the temperature-dependent reduction factors transform into

a combination of the usual vibronic reduction factors of electronic operators

that are independent of temperature. In this case the temperature dependence

is qualitatively the same as without the vibronic coupling. At higher tempera-

ture, the temperature dependence becomes more complicated, and drawing

unambiguous conclusions about the paramagnetic properties of molecules

from the dependence of mC on T is rather difficult.
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In [6.164] the general theory of the anomalous Cotton–Mouton effect for JT

molecules, including the analysis of the temperature behavior of the vibronic

reduction factors at high and low temperatures, is given and examples of

birefringence by cubic molecules in the �8 ground state are shown.

The problems considered in this section are also related to the optical

activity of JT molecules in Rayleigh and hyper-Rayleigh light scattering

induced by external magnetic fields. This topic is discussed in [6.165].

6.3 Magnetic resonance and related spectra

6.3.1 The JTE in electron paramagnetic resonance spectra

The method of electron paramagnetic resonance (EPR) (or electron spin

resonance, ESR) has played a most important role in the development of

research on the JTE and vibronic interaction in the post-war years. In the

early fifties Bleaney and coworkers [6.166, 6.167] discovered unusual magnetic

resonance properties of divalent copper compounds, in particular, a distinctive

temperature dependence of the fine and hyperfine structure of the spectrum.

A qualitatively correct interpretation of the high-temperature component of

these spectra as due to the JT dynamics of the nuclear configuration was first

given in [6.168]. Subsequently, the origin of the main features of the more

complicated low-temperature spectrum was clarified on the basis of the theory

of tunneling splitting [6.169]. These and other related results had a strong

impact on the development of the trend as a whole.

EPR theory, which takes into account the vibronic JTE and PJTE, com-

prises a large proportion of the work on, and applications of, the EPRmethod,

often occupying whole chapters in relevant monographs and textbooks

[6.1, 6.2, 6.170, 6.171]. The achievements in this area are well presented also

in reviews [6.172–6.176] (see also the bibliographic review [6.177]). In this

section, applications of the vibronic interaction theory to EPR and related

techniques, as well as some recent achievements, are presented.

It is known that EPR spectramay be described satisfactorily bymeans of the

spin Hamiltonian H; its matrix elements determine the positions and intensi-

ties of the absorption lines in the radio-frequency range of electromagnetic

radiation. The electronic (~S) and nuclear (~I) spin and the external magnetic

field intensity < (and their combinations) in the spin Hamiltonian are opera-

tors with coefficients depending on the structure and properties of the system.

It is convenient to group the terms of the spin Hamiltonian in such a way that

they pertain to (transform as) the irreducible representations of the point-

group symmetry of the problem. This allows us to obtain the selection rules for
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the matrix elements directly. For instance, in a system within cubic symmetry

(tetrahedral, octahedral, cubic) the corresponding symmetry-adapted parts of

the spin Hamiltonian are [6.1, 6.170]

HA1
¼ g1
ð<; ~SÞ þ ~A1ð~I ; ~SÞ þ gN1

ð<; ~IÞ (6:72)

HE# ¼ 1
2
g2
½3<zSz � ð<; ~SÞ� þ 1

2
~A2½3IzSz � ð~I ; ~SÞ� þ 1

2
gN2


N½3<zIz � ð<; ~IÞ�
þ 1

2P2ð3I2z � I2Þ
(6:73)

(and a similar component HE");

HT2 ¼ g3
ð<ySz � <zSyÞ þ ~A3ðIySz þ IzSyÞ þ gN3

Nð<yIz þ <zIyÞ þ P3ðIyIz þ IzIyÞ

(6:74)

(and similar components HT2� and HT2�);

HT1x ¼ gL
<x þ lSx þ aIx (6:75)

(and similar components HT1y and HT1z).

In these expressions gi is the electronic g-factor, gL is its pure orbital part,

gN1
is the nuclear g-factor, 
 and 
N are the electronic and nuclear Bohr

magnetons, respectively, Ãi is the hyperfine structure constant, Pi is the quad-

rupole interaction constant, l is the electronic spin–orbital interaction para-

meter, and a is a constant determining the magnitude of the interaction of the

nuclear magnetic moment with the magnetic field of the electrons.

The physical meaning of each component of the spin Hamiltonian, describ-

ing the corresponding magnetic interaction within the system and with the

external field, is well known [6.170]. As a result of averaging with electronic

functions, there are no electronic coordinates in Eqs. (6.71)–(6.74). The matrix

elements – parameters of the spin Hamiltonian – can be calculated approxi-

mately. For example, in the E state formed by d electrons in cubic-symmetry

systems in the crystal-field-theory approximation of second-order perturba-

tion theory,

g1 ¼ gs � ð4l=�EÞ
g2 ¼ �ð4l=�EÞ
~A1 ¼ �P½�� ð4l=�EÞ�
~A2 ¼ �P½6 þ ð4l=�EÞ � ð4l=�EÞ�

(6:76)

where �E¼ 10Dq is the parameter of the splitting of the d states in cubic

crystal fields, gs¼ 2.0023 is the pure spin g-factor, P ¼ 2gN
 N r�3
� �

; r�3
� �

is
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the averaged value of r�3, � is the constant of the contact Fermi interaction

of the electronic shell with the nucleus, and  is a numerical factor (for the
2D term ¼ 2/21).

If the energy levels and wavefunctions of the system are known,

Eqs. (6.71)–(6.75) can be used to estimate the perturbation of the states by

the magnetic field (the Zeeman effect), transitions between Zeeman levels, and

resonance absorption of electromagnetic radiation in the radio-frequency

range which, together with relaxations and other temperature effects, deter-

mine the EPR spectrum.

The parameters (6.76) are calculated on the assumption that the nuclei are

fixed, and hence the vibronic effects in the EPR spectrum in this approach are

ignored completely. If vibronic effects are taken into account, the solution of

the problem becomes complicated and the resulting EPR spectrum changes

significantly. In isolated systems the main JTE in EPR is vibronic reduction

and tunneling splitting. In actual situations these effects are modified by

relaxations and small random deformations. We consider each of these

effects in turn.

In accord with the results obtained in Section 5.6, the matrix elements of

physical properties, which depend only on electronic coordinates in the ground

state�, as a result of vibronic coupling are multiplied by the vibronic reduction

factor K�ð�Þ, where � is the irreducible representation to which the physical

quantity in question corresponds. Therefore, if the ESR spectrum is deter-

mined only by the ground vibronic state, the influence of the vibronic interac-

tion can be evaluated immediately by means of direct multiplication of the

matrix elements – the parameters of the spin Hamiltonian – by the respective

reduction factorK�ð�Þ. Since the totally symmetric operators are not reduced,

K�(A1)¼ 1 (provided second-order vibronic reduction factors may be

neglected; see Section 5.6), all the parameters of the spin Hamiltonian HA1

remain unchanged. However, the parameters of HE ; HT2
, and so on

(see Eqs. (6.71–6.74)), become multiplied by K�(E), K�(T2), etc., respectively.

The resulting reduced parameters of EPR spectra in the case under considera-

tion are

~g1 ¼ g1;

~g2 ¼ K�ðEÞg2;
~g3 ¼ K�ðT2Þg3;
~gL ¼ K�ðT1ÞgL;

A0
1 ¼ ~A1

A0
2 ¼ K�ðEÞ ~A2

A0
3 ¼ K�ðT2Þ ~A3

(6:77)

Taking into account vibronic parameters, the frequencies of the two EPR

transitions between the components of the two Kramers doublets of the
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ground vibronic 2E level in the E� e problem for a system of cubic symmetry

(Oh, O, Td, T) are

�hW� ¼ ðg1
< þ ~A1�IÞ � qðg2
< þ ~A2�IÞf

f ¼ ½1� 3ðl2m2 þ l2n2 þm2n2Þ�
1
2

(6:78)

where q¼KE(E), �I is the quantum number of the hyperfine interaction

(I is the nuclear spin) and l, m, and n are direction cosines of the magnetic

field vector <. In particular, for the angular dependence of the corresponding

two g-factors, we have

g1;2 ¼ gs � g2 � qg2 f (6:79)

Note that without vibronic interaction, q¼ 1 (Section 5.6), whereas in the

limiting case of strong vibronic coupling q ¼ 1
2
. These two limiting cases of

angular dependence of the ESR lines are presented in Fig. 6.20 together with

experimental data for Cu2þ :MgO obtained at temperature T¼ 1.2K [6.178,

6.974]. It is seen that the experimental measurements clearly confirm the

results of vibronic theory with a reduction factor q 	 1
2
. At present there are

quite a number of such clear experimental illustrations of the essential influ-

ence of the JTE on the ESR spectra of systems with degenerate E terms

(see Section 8.1, reviews [6.172–6.176], and the bibliographic review [6.177]).

The behavior of the threefold orbitally degenerate T term differs from the

E-term case in cubic systems by (1) a strong spin–orbital splitting in first-order

20 40 60 800–20

2.0

2.1

2.2

2.3
g

2.4

θ°

Fig. 6.20. Two limiting cases of angular dependence of the g-factor for the JT
linear E� e problem with strong (q ¼ 1

2
, solid line) and no (q¼ 1, dashed line)

vibronic coupling. Experimental data [6.178, 6.179] are shown by points.
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perturbation theory (in trigonal systems the E term is also split in the first

order), and (2) a larger orbital contribution to the Zeeman energy. As a result,

the ground vibronic level 2Sþ1T of the 2Sþ1T electronic state is split by the

spin–orbital interaction. If allowance is made for Zeeman interaction, the spin

Hamiltonian for this ground vibronic level in first-order perturbation theory

yields [6.170]

H ¼ KTðT1ÞgL
ð<; ~LÞ þ gs
ð<; ~SÞ þ lKTðT1Þð~L; ~SÞ (6:80)

where KT(T1) is the vibronic reduction factor which, according to Eq. (5.106),

varies from zero in the limiting case of very strong vibronic coupling to unity in

the limiting case of very weak coupling (Section 5.6, Fig. 5.26).

Assuming that Zeeman splitting is smaller than reduced spin–orbit and

tunneling splitting, one obtains the following expression for the g-factor of

the ground state in the crystal-field approximation (the Landé formula with

vibronic reduction):

gðJÞ ¼ f	KT ðT1ÞgL½JðJ þ 1Þ þ 2� SðS þ 1Þ� þ gs½JðJ þ 1Þ � 2þ SðS þ 1Þ�g=2JðJ þ 1Þ
(6:81)

where J is the quantum number of the total angular momentum, which

assumes all values between S � 1j j and Sþ 1 via unity, and 	 is a known

numerical factor.

For example, for the 5T2(3d
6) term S¼ 2, J¼ 1, 	¼�1, and g ¼ 1

2
½3gsþ

KT2
ðT1ÞgL�, while for the 4T1(3d

7) term S ¼ 3
2
; J ¼ 1

2
; 	 ¼ � 3

2
;

g ¼ 5
3
gs þ KT1

ðT1ÞgL. Comparison of these results with experimental data in

Section 8.1 shows that, say, for Fe2þ : CaO (the 5T2(3d
6) term) the experi-

mental value is g¼ 3.30, and hence the nonvibronic value gL¼ 1 is reduced by

KT2
ðT1Þ ¼ 0:6 (a part of this reduction may be due to covalency). For another

case, Cr : Si with the same term, g¼ 2.97 and hence KT2
ðT1Þ 	 0. This com-

plete reduction of the orbital contribution is due to the presence of strong

vibronic coupling (see Eq. (5.106) andFig. 5.26). Similarly, complete reduction

of the orbital contribution takes place in the case of Mn : Si (term 4T1ð3d7Þ),
while for the same term in Feþ :MnO, KT1

ðT1Þ ¼ 0:2. Other examples are

given in Section 8.1.

The angular dependence of the EPR spectrum can be used to reveal the

nature of the T-term APESminima. In particular, if the vibronic constants for

coupling with E and T2 displacements are of the same order of magnitude,

orthorhombic minima may occur, as shown in Section 3.3. The observed

angular spectra for Ni� : Ge, Pd� : Si, and Pt� : Si [6.180] may be attributed

to orthorhombic minima.
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For strong spin–orbital splitting of the T term, the vibronic effect in the �8

state should be considered (Section 3.3). It occurs commonly from the 2T2(3d
1)

term, which is split into �8 and �6. It can be shown that without vibronic

interactions, the �8 term is nonmagnetic, i.e., it does not split under the

influence of the external magnetic field, its g-factor vanishing due to complete

compensation of the orbital and spin contributions of opposite sign [6.170].

When vibronic interactions are taken into account, the orbital contribution to

the g-factor becomes reduced, but the spin contribution does not: the �8 term

becomes magnetic [6.181]. The resulting g-factor is given by the expression

g ¼ 2
3
½1� K�8

ðT1Þ�, and it is seen that g¼ 0 only when the vibronic reduction is

neglected, in which case K�8
ðT1Þ ¼ 1.

A full consideration of the magnetic properties of a 2T2 term of d1 and d5

configurations in cubic environment taking into account the JT and PJT

coupling, spin–orbital interaction, covalence-reduction factors, and low-

symmetry crystal fields is given in [6.182]. A giant second-order Zeeman effect

was observed in d1 systems in cubic environment ð½TiðH2OÞ6�
3þ in titanium-

doped cesium gallium alum), and it was attributed to a strong JTE with close

vibronic energy levels that are mixed by the magnetic field [6.183]. Other

examples see in Chapters 7 and 8.

For strong vibronic coupling, when the conditions of the tunneling

splitting approximation are valid, there is a low-lying excited vibronic

level, which influences the ground-state properties (Sections 5.2 and 5.3).

In this case, the concept of vibronic reduction of the corresponding orbital

contribution to the g-factor is insufficient because the two vibronic levels

mix under the magnetic field. For the 2E term, Zeeman mixing of the

tunneling ground 2E and excited 2A levels can be determined by perturba-

tion theory. Taking into account that the two spin states with Sz ¼ � 1
2
are

independent of the orbital state, the corresponding sixth-order secular

equation (3.2) may be reduced to two equations of third order with the

matrix W as follows [6.169]:

W ¼

3�� 1
2
g1
< � 1

4
rg2
<ð3n2 � 1Þ �

ffiffi
3

p

4 rg2
<ðl2 �m2Þ

� 1
4
rg2
<ð3n2 � 1Þ � 1

2

< g1 � 1

2
qg2ð3n2 � 1Þ

� 	
�

ffiffi
3

p

4
qg2
<ðl2 �m2Þ

�
ffiffi
3

p

4 rg2
<ðl2 �m2Þ �
ffiffi
3

p

4 qg2
<ðl2 �m2Þ � 1
2

< g1 þ 1

2
qg2ð3n2 � 1Þ

� 	

���������

���������
(6:82)

Here 3� is the tunneling splitting and r is the second-order vibronic reduction

factor, r ¼ KEðA1 Ej jEÞ; for strong vibronic coupling r ¼ �q
ffiffiffi
2

p
¼ �1=

ffiffiffi
2

p

(see Section 5.6).
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For the magnetic field along theOz axis (the fourfold axis of the octahedron)

l¼ 1, m¼ n¼ 0, Eq. (6.82) is simplified, and its roots can be derived directly:

"�1 ¼ 1
2
f3�� 
<ðg1 � qg2Þ þ ½ð3�� 1

2
qg2
<Þ2 þ r2g22


2<2�
1
2g

"�2 ¼ 1
2
f3�� 
<ðg1 � qg2Þ � ½ð3�� 1

2
qg2
<Þ2 þ r2g22


2<2�
1
2g

"�3 ¼ 1
2

<ðg1 þ qg2Þ

(6:83)

The behavior of these levels with respect to the magnetic-field intensity is

shown in Fig. 6.21; the arrows indicate the allowed ESR transitions as deter-

mined by the wavefunctions of the states (6.83), solutions of Eq. (6.82). In

order to analyze the expected ESR spectrum, it is convenient to distinguish

three ranges, depending on the relation between the magnitude of the tunnel-

ing splitting 3� and the anisotropic part of the Zeeman interaction g2
<: the
low-frequency range I where g2
< � 3�, the intermediate range II, and

the high-frequency range III, where g2
< � 3�. In range I where mixing of

the ground vibronic state with the excited one is relatively weak, the ESR

spectrum consists of three lines, two of which have the g-factor (6.79) of the

isolated ground orbital doublet. The third line arises from the excited non-

degenerate state and is isotropic with g¼ g1. The intensity of this line is

proportional to the population of the excited level, which is zero at T¼ 0K

and increases with temperature.

In the high-frequency range III another three transitions are allowed, with

g-factors which, in the limiting case of strong vibronic coupling when q ¼ 1
2
and

3+

3

3

E

22

1

1

1+

3–

1–

2–

δ

II III
H II 0z

Fig. 6.21. Lowest vibronic energy levels of a system with E� e coupling and
tunneling splitting �¼ 3� in magnetic fields ~H jj Oz. Magnetic-dipole-
allowed transitions in regions I and III are shown by arrows [6.169].
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3�	 0, are gk ¼ g1 þ g2 and g?¼ g1 � 1
2
g2 if the excited tunneling level isA2, and

gk ¼ g1 � g2 and g? ¼ g1 þ 1
2
g2 if this level is A1. Similar relationships for the

constants of the hyperfine structure are ~Ak ¼ ~A1 þ ~A2 and ~A? ¼ ~A1 � 1
2
~A2 if

A2 is the nearest excited level, and ~Ak ¼ ~A1 � ~A2 and ~A? ¼ ~A1 þ 1
2
~A2 ifA1 is the

nearest level. In the intermediate range II the two spectra coexist, the low-

frequency spectrum fading slowly and the high-frequency spectrum growing

uniformly on moving from range I to range III.

The spectrum in range III is seen to be that of the statically distorted system

frozen at the APES minimum, whereas the spectrum in range I corresponds to

its free or hindered rotations (Sections 5.1–5.3). Therefore, the transition from

the spectrum in range III to the spectrum in range I is often called the transition

from the static to the dynamic JTE. Taking into account the relativity rule

concerning the means of observation (Section 7.1.1), the static JTE in the EPR

spectra of real systems (for which 3� 6¼ 0) can be observed if the lifetime � of

the distorted configuration in the pulsating (fluctuating) motion (Section 5.2)

is larger than the characteristic time of measurement interaction � 0. In the case

under consideration � 0 is determined by the anisotropic part of the Zeeman

interaction g2
<. For typical situations this means that the tunneling (pulsa-

tion) frequency is slower than 109 s�1. In the above case of < k Oz the strong

external field in range III depresses the pulsations, locking the system in the

minimum along the Oz axis.

When the direction of the magnetic field < does not coincide with Oz (with

the tetragonal axes of an octahedron), the energy levels (6.83) approach each

other, and the differences between the g-factors of different lines decrease.

Along the trigonal axes of a cubic system all the g-factors become identically

equal to g1.

6.3.2 Random strain and relaxation in EPR

The vibronic EPR spectrum described above relates to ‘‘ideal’’ systems with

electron degeneracy or pseudodegeneracy, when each molecule may be

regarded as isolated, unaffected by the environment. In real systems, as men-

tioned above, there are two main effects which influence the spectra in ques-

tion: random strain and relaxations. The latter are inherent in any system with

energy dissipation, whereas random strain has special importance for JT

systems. This is due to the fact that, since either Zeeman or tunneling splitting

is relatively small, even small external perturbations split the degenerate

ground vibronic state, and this splitting may suffice to cause changes in the

expected EPR spectra.
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If the low-symmetry perturbation is ‘‘regular,’’ i.e., it is the same for all

paramagnetic centers, it does not affect very strongly the resulting spectrum

because the system, in principle, remains ‘‘ideal.’’ Such is the case of a poly-

atomic molecule or a crystal, in which the paramagnetic center is weakly

affected by the second coordination sphere that has lower symmetry than the

first coordination sphere. However, there are cases when these low-symmetry

perturbations are of random magnitude and direction. For instance, if in the

above example themolecules or paramagnetic centers in crystals are arbitrarily

oriented with respect to the magnetic field, the changes in the ESR spectrum

(compared with that for the unperturbed system) will be as if the perturbation

distortions are random.

Paramagnetic centers in crystals, for which the most precise ESR measure-

ments are performed, are of special interest. Here random distortions occur

due to imperfections of the host crystal lattice, i.e., due to small local distor-

tions of the regular symmetry caused by dislocations, mosaic structure, impur-

ities, locally uncompensated charges, and other defects.

Qualitatively, the role of random strain is obvious. For example, in theE� e

problem with three equivalent APES minima, external distortions, if strong

enough, make these minima nonequivalent. As a result the pulsating motion

and tunneling cease, and the system is locked in one (the deepest) minimum

(similar to the above case when the system is locked in the minimum by the

magnetic field). The random nature of the direction of distortion determines

only at which of the three equivalent minima the system is locked. Comparing

this result with the above transition from the dynamic to the static JTE, we

conclude that random deformations promote a transition to the static JTE.

Quantitatively, the influence of random strain is determined by the magni-

tude of the vibronic energy-level splitting� produced by this strain. In general,

the expected EPR spectrum depends on the relationship among themean value

of the strain effect ��, the tunneling splitting r�, and the anisotropic part of the

Zeeman interaction g2
<. Note that the stronger the vibronic coupling, the

larger the effect of the strain influence. Indeed, the external distorting influence

displaces the nuclear coordinates and the latter influence the electronic states

through vibronic coupling, resulting in a corresponding energy-level splitting.

Therefore the random strain is most important in cases of strong vibronic

coupling.

The effect of random strain on the vibronic EPR spectra is best studied for

theE� e problem. Consider first the isolated ground vibronic doublet 2Ewhen

the first excited vibronic singlet 2A is well removed, 3� � g2
< [6.171].

In order to describe the low-symmetry strain perturbation ~W , we introduce

the strain tensor and the electron–strain interaction constants in the form of
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respective components e
�g and P�, which transform according to the corre-

sponding irreducible representation, ~W �
P

�gC�ge�gP� (cf. Section 6.1).

Only one constant PE and two components eE# ¼ e# and eE"¼ e" are essential

to the E-term splitting. Instead of these two components, their modulus e and

orientation � given by

e ¼ ðe2# þ e2"Þ
1
2; tan� ¼ e#=e" (6:84)

are more convenient for practical use. Under this strain the E level splits

in two:

E1 ¼ qePE ;

E2 ¼ �qePE ;

w1 ¼ ð1=
ffiffiffi
2

p
Þ½ð1� cos�Þ

1
2 #j i þ ð1þ cos�Þ

1
2 "j i

w1 ¼ ð1=
ffiffiffi
2

p
Þ½�ð1þ cos�Þ

1
2 #j i þ ð1� cos�Þ

1
2 "j i

(6:85)

It follows that the orientation � of the strain (in the (Q#,Q") plane) does not

affect the splitting, but considerably influences the wavefunctions.

The energy levels (6.85) are Kramers spin doublets. If the strain splitting

�¼ 2qePE is large compared with the Zeeman interaction, but still small

compared with the tunneling splitting, 3� � g2
<, the splitting of each of

the levels (6.85) in themagnetic fieldmay be treated independently bymeans of

perturbation theory. Then (Fig. 6.22)

E�
1 ¼ qePE � 1

2
½g1 þ qg2 cosð�� 	Þ f �
< (6:86)

E�
2 ¼ �qePE � 1

2
½g1 � qg2 cosð�� 	Þ f �
< (6:87)

where the angular direction 	 of the magnetic field satisfies the equation

tan	 ¼
ffiffiffi
3

p
ðl2 �m2Þ=ð2n2 � l2 �m2Þ (6:88)

The two pairs of levels (6.86) and (6.87) give rise to two allowed EPR

transitions with the following frequencies (the expressions in brackets equal

the g-factors):

�hW1;2 ¼ ½g1 � qg2 cosð�� 	Þ f �
< (6:89)

Thus, with the strong influence of strain in question, the frequencies of the

EPR transitions at a given paramagnetic center depend on the angle ��	 of

the orientation of the strain with respect to the direction of the magnetic field.

In particular, for ��	¼�p/2 the EPR spectrum is isotropic with g¼ g1,

and for ��	¼ 0 or p the spectrum is the same as in the absence of strain.
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With intermediate values of ��	 (between 0 and p/2) the anisotropic part of
the g-factor varies from 0 to �qg2 f. It can be shown that the transition

probabilities (intensities) at frequencies given by Eq. (6.89) are independent

of the strain and magnetic-field directions.

Therefore in the presence of strain with random orientations with respect to

the direction of the magnetic field < (originating both from random orienta-

tions of the strain with regard to different paramagnetic centers, and from

constant orientation of the strain with regard to the centers but random

orientation of the centers with respect to the magnetic field), the EPR frequen-

cies (or the corresponding resonance values of <) vary from one center to

another within �qg2 f, which is equivalent to inhomogeneous broadening of

the EPR lines. Assuming that the EPR line of each paramagnetic center has a �

character (�(x)¼ 0 if x 6¼ 0, and �(x)¼1 if x¼ 0) and averaging over the

random strain orientations �, one can derive the absorption coefficient K as

a function of the resonance magnetic-field intensity in the form [6.1, 6.171]

Kð<Þ ¼ ðp2ZÞ�
1
2�ðZÞ; Z ¼ ðqg2 f
<Þ2 � ð�hW� g1
<Þ2 (6:90)

Fig. 6.22. The lowest-energy-level scheme for an octahedral system in the
2E state: (a) free-ion term; (b) crystal-field splitting; (c) tunneling splitting;
(d) splitting of the ground vibronic 2E level into two Kramers doublets by
random strain; and (e) Zeeman splitting by the magnetic field. Allowed
transitions in the radio-frequency region are shown by straight arrows,
whereas relaxation transitions without spin reversal are demonstrated by
wavy arrows. (Reprinted with permission from [6.189]. Copyright 1975
American Physical Society.)
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where W is the radio frequency and Y(Z) is a step function: Y(Z)¼ 1 if Z> 0,

and Y(Z)¼ 0 if Z< 0.

The line shape determined by Eq. (6.90) is illustrated in Fig. 6.23(a).

Its unusual, abrupt form is due to the assumed � character of the absorption

at each center. If a Gaussian form for this absorption (with a certain half-

width) is assumed instead of the � one, the line shape becomes more natural

(Fig. 6.23(b)). Another feature of the line shape (6.90) is its independence of

temperature, in spite of the Boltzmann temperature population of the strain-

split levels assumed when deriving Eq. (6.90). This is a consequence of aver-

aging over random orientations of the strain.

With hyperfine splitting, each of the lines (7.89) contains 2Iþ 1 components

that have the following frequencies:

�hW1;2ð�1Þ ¼ ðg1
<þ ~A1�1Þ � 1
2
qðg2
< þ ~A2�1Þ cosð�� 	Þ f (6:91)

(�1 is the corresponding quantum number, introduced above.)

The coefficient of absorption (line shape) is

Kð<Þ ¼ ðp2ZÞ�
1
2�ðZÞ; Z ¼ ðqg2f
< þ ~A1v1Þ2f 2 � ð�hW� g1
< � ~A2v1

2Þ
(6:92)

Fig. 6.23. The ESR line shape for a ground state 2E under averaged random
strain assuming that the individual transitions are �-functions (a), or that they
are Gaussian bands with a half-width equal to 0.2W (b). The first derivative of
the latter is shown in (c).
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The above picture of the ESR spectrum cannot be regarded as complete,

since the influence of the dissipative subsystem (lattice vibrations, collisions,

etc.) has been disregarded. Under the influence of the dissipative subsystems

(thermostat) there are continuous transitions between the energy levels split by

the strain. These transitions lower the lifetime of the corresponding states and

broaden their energy levels (Fig. 6.22). The usual ESR relaxation transitions

take place between the energy levels of Kramers doublets (split in the magnetic

field) that lead to spin reversal; they are affected by the thermostat indirectly

through rather small spin–orbit interaction, being thus much less probable

than direct non-spin transitions.

Denote by W the probability of relaxation transition without spin reversal.

The general theory of relaxation [6.184] yields, instead of Eq. (6.90), the

following expression for the line shape [6.185]:

Kð<Þ � 2Wg2

ðE2 � g2 þ 4E2WÞ (6:93)

where Eð<Þ ¼ �hW� g1
< and

gð<Þ ¼ qg2
< cosð�� 	Þ f (6:94)

The relaxation probability depends strongly on temperature. For low tem-

peraturesW� g, and Eq. (6.93) describes two Lorentzian lines (with centers at

frequencies given by Eq. (6.89)):

Kð<Þ � W

ðE � gÞ2 þW
þ W

ðE þ gÞ2 þW
(6:95)

For high temperatures W� g, and Eq. (6.93) describes one Lorentzian line

centered at frequency �hW ¼ g1
<:

Kð<Þ � W 2
eff

E2 þW 2
eff

; Weff ¼ g2=W (6:96)

As a result the vibronic EPR spectrum, which at low temperatures has a

well-resolved doublet structure, narrows and transforms into one isotropic line

when the temperature increases. Visually, this result is due to the fact that at

low temperatures relaxation transitions seldom occur, and the lifetime of the

energy-level states is larger than the characteristic time of the act of measure-

ment, so that the latter finds the system in one of the two Kramers doublets

given by Eq. (6.86). In this case two lines are seen in the EPR spectrum at the

same frequencies W1 and W2, as in the absence of relaxation. At high tempera-

tures the relaxation is so fast that during the measurement the system performs
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multiple transitions from one state to another, resulting in an averaged

isotropic line at the mean frequencyW1þW2/2. Such a temperature narrowing

of the EPRband is, in principle, similar to the well-known exchange narrowing

in concentrated magnetic systems, and to motional narrowing in liquids

[6.184]. Similar temperature effects are observed in the hyperfine structure of

Mössbauer spectra (see below).

The anisotropic part of the Zeeman interaction g(<)¼ qg2
< cos(��	) f in

(6.94) and hence the line K(<) depend on the angle � of strain orientation.

If the latter has a random character, averaging should be performed. At low

temperatures, for most orientations � the inequality W� g is valid, and the

vibronic EPR spectrumhas the form illustrated in Fig. 6.24(a). Comparedwith

the above spectrum without relaxation (Fig. 6.23(b)), the edges here are

smoother due to relaxation broadening. A small absorption in the central

range at �hW ¼ g1
< is due to the presence of paramagnetic centers, for

which ��	 	 �p/2 and the inequality W� g is invalid. This absorption is

Fig. 6.24. The influence of relaxation without spin reversal on the ESR line
shape (temperature narrowing): (a) at low temperatures the number of pairs
with narrowing relaxation is small; and (b) at higher temperatures the
narrowing produces an isotropic line in the center of the band at the
expense of the intensity of the wings.
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in contrast to the edges of the band, for which the angular dependence of the

absorption follows the function f in Eq. (6.88).

With increasing temperature, the number of centers for which W� g
increases, and the corresponding pairs of lines converge into one averaged

isotropic line at �hW ¼ g1
< (Fig. 6.24(b)). This leads to an enlarged isotropic

band in the center of the spectrum at the expense of the intensity of the

anisoptropic wings. The temperature dependence of this spectrum, as seen

from Eqs. (6.82)–(6.84), is determined by the temperature dependence of the

relaxation probabilitiesW, their calculation being a complicated task based on

the solutions of the multimode JT problem [6.185–6.187].

The above vibronic EPR spectrum becomes more complicated when the

vibronic singlet (Kramers doublet) 2A (2A1 or 2A2) approaches the ground

state 2E and the tunneling splitting 3� in the E � e problem becomes compar-

able to Zeeman or strain splitting [6.188–6.190]. Consider first the case when

3� is still large, approaching the �� value, and �� � g2
<. In this case, the

mixing of the vibronic levels A1 and E under the magnetic field can be

neglected, while their mixing by the strain e#PE may be taken into account

by means of perturbation theory. In the zeroth approximation the spectrum is

as that obtained above in the absence of the A level; at low temperatures it has

the form given in Fig. 6.25 for small ��/3� values. Assume that the magnetic

field lies in the plane (110), i.e., l¼m. Then 	¼ 0 (see Eq. (6.88)) and for the

perturbation of the two peaks for which ��	¼ 0 or p we have �¼ 0 or p.
On substituting these values into Eq. (6.84) we obtain e"¼ 0, i.e., the peaks of

the spectrum are due to the e# component of the strain tensor. The resulting

g-factors corresponding to the two peaks of the spectrum perturbed by the

approaching A1 level are [6.191]

g# ¼ g1 � 1
2
½qþ ð2r2e#PE=3�Þ�g2ð3n2 � 1Þ

g" ¼ g1 þ 1
2
qg2ð3n2 � 1Þ

(6:97)

It follows that only one of the two peaks of the spectrum is shifted; which

of them and in what direction depends on the signs of e#; g2, and 3n2� 1.

For example, if e# > 0, g2> 0, and 3n2� 1> 0, the right-hand-side peak corres-

ponding to larger resonance fields < is shifted to the right. If instead of the

vibronic A1 level the A2 level approaches the ground E state, the sign of the

effect changes, and the left-hand-side peak is shifted to the left. All these

possible cases are summarized in Table 6.1. Also, with the dispersion of the

absolute values of the strain, the perturbed peak is not only shifted, but in

addition becomes somewhat flattened (i.e., wider and lower in its intensity).
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When tunneling splitting becomes comparable to strain splitting �� 	 3�,

perturbation theory becomes invalid, and the problem must be solved by

numerical solution of the sixth-order secular equation, in which splitting

of the three vibronic doublets by the magnetic field and their mixing by

random strain are taken into account simultaneously. The results obtained

[6.188–6.190] are illustrated in Figs. 6.25–6.29.

The dependence of the spectrum on the ration ��=3� is illustrated in

Fig. 6.25 for low temperatures, when only the lowest Kramers doublet is

populated. It is seen that a small broadening begins even at ��=3� ¼ 0:01

and rapidly increases, simultaneously shifting to the left when the ��=3�

value increases. At ��=3� ¼ 1 the rate of shifting decreases, and at ��=3� ¼ 5

the extreme value of the static JTE corresponding to 
< ¼ �hW=ðg1 þ 2qg2Þ is
attained. As the temperature increases, first the nextKramers doublet becomes

populated (Fig. 6.26), and then the third one, resulting in a complicated

spectrum (Fig. 6.27).

In Fig. 6.28 the angular dependence of the spectrum is presented with

respect to the magnetic field < lying in the plane (1�10) (containing the main

directions of < parallel to [001], [110], and [111]) at low temperatures, when

only the lowest Kramers doublet is populated. At ��=3� ¼ 0:01 the angular

dependence is symmetric with respect to < parallel to the [111] direction of the

magnetic field for which, according to Eq. (6.89) with cos(��	)¼ 1, the two

Table 6.1. The shift of one of the two peaks (right and left) in the vibronic ESR

spectrum of the 2E level under the influence of the mixing with the 2A level (< ||

[110], l¼m, 3n2> 1, and < increases from left to right; for 3n2< 1 all the results

change to the opposite)

Sign of g2 Nearest excited orbital singlet A Shifted peak Direction of shift

Ground Kramers doublet 2E

þ A1 Right Right

þ A2 Left Left

� A1 Left Left

� A2 Right Right

Excited Kramers doublet 2E

þ A1 Right Left

þ A2 Left Right

� A1 Left Right

� A2 Right Left
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peaks coincide. When ��=3� increases, the anisotropy of the perturbed peak

increases (Table 6.1), and at ��=3� � 5 the angular dependence corresponds to

that of an axially symmetric spectrum of the type [001], [010], and [100] of the

static JTE.

The ratio ��=3� can be derived from the ESR spectrum using the data of Fig.

6.28. For this purpose the angular dependence of the unperturbed peak of the

observed spectrummust first be matched with the single curve in Fig. 6.28 and

the values of g1 and qg2 (as well as the hyperfine constants ~A1 and ~A2) should

be estimated. Then, by matching the angular dependence of the perturbed

peakwith one of the curves in the figure, we get the ��/3� value indicated on the

left- and right-hand sides of this curve. Similar considerations can be applied

to the case of angular dependence of the spectrum when rotating the magnetic

field in the plane (001) (Fig. 6.29).

Fig. 6.25. ESR line shapes calculated for a system with an E� e problem at
low temperatures and magnetic field < || [001] with different values of ��=3�
indicated on the curves. The lowest nondegenerate vibronic level is assumed
to be A2 with g1¼ 2.0, qg2¼ 0.05, q ¼ 1

2
, r ¼ �

ffiffiffiffiffi
2q

p
, nE¼W / 2p¼ 9GHz,


<1 ¼ �hW=ðg1 þ 2qg2Þ, 
<2 ¼ �hW=ðg1 þ qg2Þ, and 
<3 ¼ �hW=ðg1 � qg2Þ.
(Reprinted with permission from [6.189]. Copyright 1975 American
Physical Society.)
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The two cases of < rotating in the planes (110) and (001) cover the main

resonances of the spectrum but, in principle, there may be more compli-

cated spectra in other directions considered in [6.189]. In the low-

temperature spectra of systems with the 2E terms under the magnetic

field < in the (100) plane at an angle of 308 to the [001] axis, besides the

usual dynamic and static JTE spectra at ��=3� ¼ 0:0033 and at ��/3� ¼ 5,

respectively, there is a rather complicated spectrum at intermediate values

of ��=3�. Also complicated is the spectrum with < parallel to [111] and

intermediate JT effects; in the limit cases of dynamic and static JTE it

converts into a single line with g-factors

gdyn ¼ ½g21 þ 1
2
ðqg2Þ2�

1
2

gstat ¼ ½g21 þ 2ðqg2Þ2�
1
2

(6:98)

respectively.

Comparison of the spectra described above with experimental spectra

allows one to determine the vibronic parameters of the system. Such a

Fig. 6.26. The change in the ESR spectrumdue to population of the first excited
Kramers doublet in the E� e problem with random strain: line shapes of the
excited (a) and ground (b) doublets and the summarized line (c) at T¼ 1.5K,
��=3� ¼ 0:13,�¼ 1.0, qg2¼ 0.1, and other data as in Fig. 6.25. (Reprintedwith
permission from [6.189]. Copyright 1975 American Physical Society.)
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comparison is illustrated in Fig. 6.30 for the Cu2þ ion in the CaO lattice

[6.188]. Since in the above expressions the orders of magnitude are estimated

with respect to the radio-frequency quantum �hW¼ g1
< of the EPRmeasuring

instrument, by changing this �hW value we can obtain different spectra for the

same specimen (cf. the relativity rule concerningmeans of observation, Section

7.1). Therefore, as mentioned earlier, at small �hW the case g2
<j j � �� is

realized, for which the value of ��=3� can be derived from comparison of

experimental and theoretical spectra. At sufficiently large values of �hW the

ratio g2
<=3� can be determined in much the same way. The values of �� and

3� can be estimated by combining the data obtained via these two methods of

measurements (by means of low and high frequencies). Some of these data are

listed in Tables 8.2–8.7 of Section 8.1.

With increasing temperature the vibronic EPR spectrum changes for two

reasons: relaxation broadening and population of higher Kramers doublets.

Relaxation transitions in the static JTE, similar to the dynamic JTE discussed

above, result in the occurrence of a single isotropic line at the average

frequency

ð�hWÞ ¼ ð1
3
gl þ 2

3
gtÞ
< þ ð1

3
~Al þ 2

3
~AtÞ�1 ¼ g1
<þ ~A1�1 (6:99)

T = 1.3 K

= 0.13∆
3Γ
A2 LOWER

Γ = 50 cm–1 Γ = 0.5 cm–1

Γ = 0.1 cm–1Γ = 2.0 cm–1

r = –√2q

q = 0.5

νe = 9 GHz
H  [001]
g1 = 2.0
qg2 = 0.1

50 G

� �

Fig. 6.27. The ESR line shape with the contribution of all three Kramers
doublets at T¼ 1.3K and different values of the tunneling splitting 3�; other
data are as in Fig. 6.26. (Reprinted with permission from [6.189]. Copyright
1975 American Physical Society.)
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On the other hand, the same isotropic line may occur as a result of the

population of the Kramers doublet originating from the nearest vibronic

singlet (A1 or A2). Therefore, it is often impossible to distinguish between

these two reasons for the origin of the averaged spectrum.

There may be a third reason for the temperature dependence of the EPR

spectrum, and that is the strong temperature dependence of the tunneling split-

ting itself caused by the temperature dependence of the barrier height between

the minima of the APESwhich, in turn, is due to the temperature dependence of

the population numbers for the vibrational modes in the multimode problem

(Section 5.5). Visually, with an increase in temperature the frequency of pulsa-

tions increases due to the decrease of the ‘‘viscosity’’ of the environment [6.169].

More rigorously, the temperature dependence of the tunneling splitting 3�

emerges from the solution of the multimode problem when taking into account

anharmonicity. Some discussion of this problem is given in Section 5.5.
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Fig. 6.28. The angular dependence of the low-temperature ESR spectrum of
a system with a JT E� e problem shown by rotating the magnetic field < in
the plane (1�10). The absolute values of < in kG are plotted on the ordinate.
The lowest nondegenerate vibronic level is A2. In the case of A1 the picture
should be reflected about the axis g� g1¼ 0. The ��=3� values are shown on
the left- and right-hand sides of the curves. (Reprinted with permission from
[6.189]. Copyright 1975 American Physical Society.)
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Fig. 6.29. The angular dependence of the low-temperature ESR spectrum of a
system with a JT E� e problem shown by rotating the magnetic field < in the
plane (001) for different values of ��=3� (other data are as in Figs. 6.25–6.28).
Angles 0, 458, and 908 correspond to the magnetic field along [100], [110], and

[010], respectively. At values ��=3�0 0:2 a third line appears in the spectrum,

while at ��=3� � 5:0 one of the lines becomes isotropic. (Reprinted with
permission from [6.189]. Copyright 1975 American Physical Society.)
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Taking into account the temperature dependence of the tunneling splitting

3�, both the static JTE at low temperatures when 3� is small (but ��/3� and

g2
<=3� are large) and the dynamic JTE at higher temperatures can be

obtained for the same values of �� and g2
<. All the above temperature effects

may be present in combined form in experimentally observed temperature

transitions from one EPR spectrum to another, as illustrated in Table 8.1 of

Section 8.1.

A low-symmetry environment, cooperative phenomena, and structural

phase transitions (Section 8.2), which stabilize the low-symmetry configura-

tions of the JT system, influence the expected EPR spectra [6.192–6.196].

Let us summarize briefly the above results obtained for the vibronic

EPR spectra in JT systems with the E � e problem and cubic symmetry.

The dynamic JTE spectrum is observed at low temperatures with

g2
<=3�50:1 and ��=3�50:1.When g2
<=3� � 5 or ��=3� � 5 the spectrum

becomes that of the static JTE. In the intermediate range, when

0:15g2
<=3�  5 or 0:15 ��=3�  5, the following special features of the

spectrum are expected: (1) selective broadening and shifting of one of the

two peaks of the dynamic spectrum; (2) a special angular dependence

CaO : Cu2+

q = 0.5

r = –√2q

= 0.67∆
3Γ

10G

� [III]

�

νe = 8.7 GHz

T = 1.3 K

∗ ∗

Fig. 6.30. Experimental (upper) and calculated (lower) ESR spectra of Cu2þ :
CaO with a JT E� e problem at T¼ 1.3K and �E¼W /2p¼ 8.7GHz.
Vibronic parameters obtained by comparing experimental and theoretical
angular dependences in the plane (110) using Fig. 6.28 are given on the left.
Arrows indicate forbidden transitions induced by quadrupole interactions
[6.188].
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of the spectrum different from both the dynamic and static JTE; and (3)

complicated fine structure of the spectrum for arbitrary orientations of the

magnetic field.

With a rise in temperature, larger 3� values shift the spectrum from

static to dynamic, while the population of the excited tunneling energy level

and the relaxation gradually reduce the whole complicated spectrum to one

isotropic line.

6.3.3 Nuclear g -resonance, microwave absorption, and ultrasonic

attenuation

Similar to EPR, vibronic effects should be inherent in nuclear magnetic

resonance spectra, nuclear quadrupole resonance, and nuclear g-resonance
(NGR) (Mössbauer) spectra. By way of illustration consider the hyperfine

structure of the Mössbauer NGR spectrum for an E � e system with strong

vibronic coupling. The Mössbauer nucleus is assumed to be at the center of a

high-symmetry coordination system which gives no quadrupole splitting if

vibronic interactions are disregarded. Using the wavefunctions of the tunnel-

ing energy levels given by Eq. (5.18), it was shown [6.197] that for the nuclear

transition ðI ¼ 1
2
Þ!ðI ¼ 3

2
Þ (e.g., for the iron nucleus), taking into account

vibronic interactions, six lines should be observed, their frequencies (read off

the undisplaced line) and intensity rations being given by the following

relations:

�hW1;4 ¼ �ð3�=2Þ½1� ð1þ xÞ
1
2�

�hW2;5 ¼ 
2qa

�hW3;6 ¼ ð3�=2Þ½1
 ð1þ xÞ
1
2�

(6:100)

I1;6 : I2;5 : I3;4 ¼
2x

xþ ½1þ ð1þ xÞ
1
2�2

:1 :
2½1þ ð1þ xÞ

1
2�2

xþ ½1þ ð1þ xÞ
1
2�2

(6:101)

Here a is the usual constant of quadrupole coupling of the electrons with the

nucleus, q¼KE(E) is the vibronic reduction factor (Section 5.6), x ¼ 2(B/3�)2,

B¼ bqa, b is a numerical factor of the order of unity depending on the height of

the quadratic barrier, and 3� is the tunneling splitting, as above. It is seen that

in this case, for arbitrary values of 3�, the NGR spectrum has six lines, which

are symmetric in positions and intensities (Fig. 6.31).

In the limiting case of very deep minima when 3�� a, the six lines are

arranged in two groups of three lines positioned at �a with similar values of
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frequencies and intensities, the spectrum as a whole being similar to that

expected for a statically distorted system, but with a quadrupole splitting

reduced by one half (q ¼ 1
2, static JTE). For larger 3�, two lines from each of

the two groups of three lines split off, one shifting toward the center of the

spectrum and increasing its intensity, the other shifting in the opposite direc-

tion and lowering its intensity. If the resulting spectrum is, as usual, not well

resolved, it appears as if the quadrupole splitting should decrease when 3� is

increased. Taking into account the above statement about the growth of the

tunneling splitting 3� with temperature, we come to the general qualitative

conclusion that, in the JT system under consideration, a reduction of quadru-

pole splitting should be observed as the temperature increases. Such a tem-

perature reduction of quadrupole splitting in the NGR spectra has been
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Fig. 6.31. Mössbauer absorption line shapes for a JT system with an E� e
problem calculated including both vibronic coupling and relaxation
effects with qa¼ 3, b¼ 4, 3�¼ 8, and (a) l1¼ l2¼ 0; (b) l1¼ l2¼ 0.1;
(c) l1¼ 1.0, l2¼ 0.01; (d) l1¼ 0.01, l2¼ 1; (e) l1¼ l2¼ 1.0; and
(f) l1¼ l2¼ 10 (all in units of line width) [6.197].
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observed experimentally in many cases (e.g., see the spectra of ½FeCl4�
2�

[6.198] and FeCr2O4 [6.199]).

As for EPR, relaxation processes are of great importance here. In the E � e

problem under consideration, with the lowest E andA tunneling energy levels,

one may introduce two relaxation transition probabilities, for the transitions

within the two E states (l1) and between the E and A states (l2). Then, the
influence of relaxation transitions on the NGR spectrum can be taken into

account by means of the stochastic approach [6.197]. The results for some of

the important values of the relaxation constants l1 and l2 are given in Fig. 6.31.
With increasing values of the constants l1 and l2 (for a given system – with

increase in temperature) the six-line spectrum changes first to a doublet and

then to the usual singlet inherent to an undistorted system, the two constants

l1 and l2 affecting these changes differently.

TheT-term problemmay be evenmore important in the NGR spectra, since

the most studied high-spin Fe2þ and low-spin Fe3þ octahedral complexes

pertain to this case. The problem has been considered with allowance for

magnetic hyperfine interaction with the electron spins 0, 1
2
, and 2, but disre-

garding relaxation [6.200, 6.201].

In particular, for the term 5T2 (e.g., the Fe
2þ ion in the high-spin state of a

cubic-type environment) with strong vibronic coupling and trigonal minima of

the APES (Section 3.3) the spin–orbital interaction together with the tunneling

splitting produce the following lowest vibronic energy levels [6.201]:

"ð�6Þ ¼ 2ET
JTg

"ð�1Þ ¼ "ð�0
4Þ ¼ "ð�0

5Þ ¼ �2
3
ðET

JT þ 4lÞg

"ð�3Þ ¼ "ð�4Þ ¼ �2
3ðE

T
JT � 2lÞg

"ð�5Þ ¼ �2
3
ðET

JT � 6lÞg

(6:102)

where ET
JT is the usual JT stabilization energy (Section 3.3), l is the constant of

spin–orbital coupling, and g is the overlap integral between the equivalent

minima of the APES (Section 5.3; cf. Eq. (5.47) for the g value in the E � e

problem). The hyperfine interaction with the nuclear spin I is of the order of

10�3 cm�1 and, in general, may mix the levels (6.102). But already for g� 10�3

this mixing may be neglected, and the influence of the nuclear spin on each of

these levels may be considered separately by perturbation theory. For l> 0 the

coinciding levels �1, �
0
4, and �0

5 are the lowest, while for l< 0 the lowest is the

�5 level. In the latter case the NGR spectrum is determined by the splitting of

this level due to the interaction with the nuclear spin states I¼ 3
2
and I¼ 1

2

342 6 The JTE in spectroscopy



and transitions between the latter. Presenting this interaction in dipole–dipole

and quadrupole terms, one gets four levels (�6, �7, 2�8) for I¼ 3
2
and two levels

(�7, �8,) for I¼ 1
2
with seven allowed transitions between them; their positions

and intensities are strongly dependent on the g value (in addition to the nuclear
quadrupole moment).

Figure 6.32 illustrates these spectral line positions and intensities for two

values: g¼ 0.001 and g¼ 0.1. We see that at small g values (strong vibronic

coupling, deep equivalent minima) the lines are well separated, and they

converge with increasing g, approximately coalescing at g � 0.15 when the

nonzero band width is taken into account. If we assume that g is temperature

dependent, the NGR spectrum looks like having quadrupole splitting at low

temperatures, which decreases and finally disappears with increasing tempera-

ture. Random strain may modify this picture [6.202].

Vibronic effects in ultrasonic and electromagnetic microwave (nonmag-

netic) absorption are closely related to the effects in EPR and NGR spectra

discussed above. To begin with, resonance absorption of microwaves due

to direct transitions between the tunneling energy levels can be antici-

pated [6.117]. Transitions between the lowest vibronic levels, which in general

are allowed only as magnetic dipolar transitions, may be allowed also

as electric dipolar transitions in the absence of an inversion center. Taking

into account relaxations and crystal imperfections, which are especially

important in the cases under consideration when tunneling splitting is small,

the expected absorption lines may be rather broad and sometimes unresolved.

–1 0 1

–1 0 1

(a)

(b)

Fig. 6.32. Hyperfine splitting of the Mössbauer spectrum for a system in a
5T2 state with strong vibronic coupling at low temperatures (in units
of ha30=Z3i�10�2 cm=s, where a0 is the quadrupole coupling constant):
(a) g¼ 0.001; and (b) g¼ 0.1 [6.201].
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Experimentally observed [6.203] additional microwave loss due to Mn3þ ions

in yttrium–iron garnets (E term) seems to be of the tunneling origin under

consideration. Indeed, this absorption has a clear-cut frequency dependence

with a temperature-dependent maximum position (�max¼ 15 kMc at 37K and

�max¼ 56 kMc at 58K) in accord with the strong dependence of tunneling

splitting on crystal temperature, as described above.

Similarly, transitions between tunneling levels under acoustic perturbations

which lead to ultrasonic absorption can be considered [6.204, 6.205].

As distinct from acoustic spin resonance which is due to acoustic transitions

between spin levels in magnetic fields, tunneling transitions are much more

intense, since they are not limited by the low-probability processes of spin

reversal mentioned earlier. For the E!A transition between the vibronic

(tunneling) levels of theE � e problem for systems with a cubic-type symmetry

under the assumption that �hW� kT, we obtain the following expression

for the sound absorption coefficient as a function of frequency W [6.204]:

�E!A ¼ p
3

NR2FEW2

kT�3d
gðWÞL (6:103)

whereN is the number of absorption JT centers per unit volume in the crystal,

R is the minimal metal–ligand distance, FE is the linear vibronic constant, v is

the velocity of sound, g(W) is the shape factor of the line determining its shape

dependence on the relaxation processes in the crystal,

Z1
0

gðWÞ dW ¼ 1 (6:104)

andL is the factor which takes into account the sound-propagation direction n

and polarization m

L ¼
X
i

m2
i n

2
i �

1

2

X
i 6¼j

minimjnj; i; j ¼ x; y; z (6:105)

and mi and ni are the direction cosines.

Estimates for hydrated copper complexes, taking FE¼ 2.5� 10�4 dyn, give

�	 3.5� 10�11W2(4pT )�1L (in cgs units), which (neglecting random strain,

see below) is several orders of magnitude greater than the magnetic acoustic

resonance absorption. Note that under the same conditions the probability P

of relaxation due to direct transitions under thermal vibrations is given by

[6.206] P	 4� 10�13W2T/4p2. It follows that, at least for low temperature, the

width of the tunneling levels is small compared with the transition frequency.

The absorption frequency can be regulated bymeans ofmagnetic fields [6.205].
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Introducing the relaxation time � �P�1, the absorption line shape can be

expressed as

gðWÞ ¼ 2

p
�

1þ ðW�W0Þ2�2
(6:106)

where �hW0¼ 3� is the tunneling splitting. As � is strongly temperature depen-

dent, g(W) has a maximum as a function of temperature, which can be derived

from the expression (W�W0)�(Tmax)¼ 1, provided the temperature depen-

dence of 3� is neglected.

Acoustic loss due to the JTE was observed experimentally in Ni3þ : Al2O3

[6.207] (see also [6.208]). However, the authors [6.207] claim that this loss is due

to relaxation processes involving tunneling effects, not to resonance transi-

tions between tunneling levels, the motivation being that the random strain

causes much greater splitting ( �� � 2 cm�1) than the tunneling (estimated as

3�� 10�1 cm�1). These objections are unconvincing since it can be shown

[6.172] that the intensity of sound absorption depends strongly on the influ-

ence of the strain and decreases with increasing strain as the ratio (3�)2/

[(3�)2þ�] (for a two-minimum system). It follows that the centers which

are strongly affected by random strain do not actually absorb the sound,

and only those centers which are not affected (or are only slightly affected)

by the strain absorb the sound. The number of resonance-absorbing centers,

and hence the total absorption intensity, is thereby strongly decreased by

random strain. However, this has little influence on the possibility of experi-

mental observation of the sound absorption since, as shown above, the effect

itself is very strong. A more complete treatment of the influence of random

strain on sound absorption has yet to be carried out.

Acoustic paramagnetic resonance in JT systems was considered elsewhere

[6.174, 6.209–6.211]. Experimental data allow one to estimate the tunneling

splitting 3� which, for Cr2þ :MgO and Cr2þ : KMgF3, lies in the range

7.6–32 cm�1 (see also Section 8.1).
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6.72. H. Köppel, L. S. Cederbaum, W. Domcke, and S. S. Shaik, Angew. Chem.,

Int. Edn. Engl. 22, 210 (1983).
6.73. L. S. Cederbaum, W. Domcke, J. Schirmer, and H. Köppel, J. Chem. Phys.
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7

Geometry, spectra, and reactivity
of molecular systems

7.1 General: JT vibronic coupling effects in geometry and reactivity

This chapter is devoted to applications of the JTE, PJTE, and RTE theory to

solve the problems of origin of geometry and spectra, as well as other proper-

ties of molecular systems. With regard to geometry, as mentioned in the

introduction, increased computer power allows sufficiently accurate calcula-

tions of APES of small to moderate-sizedmolecular systems to determine their

absolute minima, which are assumed to define the molecular geometry. In

many cases and for many electronic states, ground and excited, the APES

are rather complicated: there may be several equivalent minima which do

not correspond to the high-symmetry configuration that one may expect

from a general, classical point of view. Instead, complicated dynamics due to

the multi-minimum APES, anharmonicity, conical intersections, and lines of

conical intersections may occur. Obviously, molecular properties other than

geometry, including spectra and reactivity, are strongly dependent on the

APES too.

On the other hand, as follows from the previous chapters, the JT vibronic

effects are the only sources of instability of high-symmetry configurations.

Therefore the vibronic effects may serve as a fundamental basis for under-

standing (rationalizing) the results of quantum-chemical computations (as

well as results obtained by other methods). In addition, for large systems

ab initio calculations with geometry optimization are impossible or impracti-

cal, leaving the perturbational vibronic approach as the only source of infor-

mation on bulk and local instabilities.

Where they have been possible, ab initio calculations of systems with JT and

RT degeneracies confirm the general predictions of the theory and extend

them to larger distortions for which the perturbation theory is not that

accurate. The PJT situation is more complicated because until recently there
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was no proof that the distortions of high-symmetry configurations in non-

degenerate states are due to, and only to, their PJT mixing with electronic

states that are higher in energy. The proof of this statement (Section 4.1) allows

one to classify all (calculated and/or observed) nuclear configuration instabil-

ities as due to JT or PJT effects.

For the purpose of investigation of JT vibronic coupling effects it is

convenient to group the molecular systems with respect to their reference

high-symmetry configuration (Section 2.2), i.e. the configuration from which

the JT, PJT, and RT distortions start. We emphasize that without a reference

configuration there is no way to formulate the JT problems. In this respect

it is important to follow the terminology below: electronic ground state in

the high-symmetry configuration means the calculated ground state of the

system when it is fixed in this configuration. If this state is degenerate,

the nuclear configuration is unstable and the ground state of the stable

(APES minimum) configuration may differ from the ground state of the

reference configuration.

Obviously, in some cases the choice of reference configuration may be

somewhat ambiguous. For instance, a strongly distorted flattened tetrahedron

may be regarded also as a distorted square-planar configuration. The choice of

the reference configuration in such cases is conventional, but all possibilities

should be tried.

In this and the next few sections we discuss many examples that illustrate

these statements, as well as experimental confirmation of various vibronic

effects. Citing numerical data from different papers, we try to keep the form

of presentation and units of the original work, where possible. The variety of

the applications presented below in this and the next chapters confirms that the

JTE is now a general approach to understanding (rationalizing) and solving

molecular and solid-state problems.

7.1.1 Dynamic molecular shapes of JT systems

Molecular geometry, or stereochemistry, underlies chemical intelligence:

without assumptions of molecular shapes there is no way to rationalize

molecular structure and chemical transformations. On the other hand, the

definition of molecular shape is not always straightforward. The widespread

idea is to identify themolecular geometry with its configuration at the absolute

minimum of the APES. But if there are other close-in-energy minima on

the APES or they are equivalent, as in the JT situations, the configuration

at the minimum under consideration may be unobservable. To observe a

molecular system in a given configuration, it should have a ‘‘lifetime’’ � that
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is larger than the characteristic ‘‘time of measurement’’ � 0 determined by the

means of observation:

� > � 0 (7:1)

The lifetime of a given molecular configuration is directly related to

the presence of other minima and the energy barriers � between them. The

quantum-mechanical necessary condition of an observable configuration is

the presence of localized vibrational states in the minimum, which is possible

when at least

� > �ho (7:2)

where o is the vibrational frequency in the minimum (cf. the condition of

strong vibronic coupling, Section 5.1).

Obviously, to observe these vibrational states the inequality � 0> 2p /o
should hold. On the other hand, in JT systems with several minima under

the condition (7.2), there is tunneling splitting, r�, r¼ 3, 4, 6, . . . (r�5 �ho)
(Section 5.3), so the lifetime in the minimum is � � 2p�h / r�. According to

Eq. (7.1), to observe the configuration at the minimum, the inequality

� 0< 2p�h/r� should hold. It follows that the JT-distorted configuration can

be observed if and only if

2p�h=r� > � 0 > 2p=o (7:3)

Since the time � 0 is dependent on the method of measurement (usually the

higher the frequency in resonance methods, the lower � 0), we come to the

conclusion that in JT systems the observable nuclear configurations depend on

the means of observation andmay vary with the method of measurement [7.1] (see

also [7.2, 7.3]). In particular, we can observe the distorted configuration of the

APES minima, say, in optical experiments and the undistorted (averaged over

all the equivalent minima) geometry of the same system at the same tempera-

ture in EPR spectra, but not vice versa.

In the case of ‘‘full dynamics’’ or free pseudorotations, as, e.g., in the JT

linear E� e problem (Section 3.2, Figs. 3.3 and 3.4), there are no localized

states for instant distorted configurations (� ¼ 0), and hence no distorted

configurations can be observed experimentally. As shown in Section 5.6

(Eq. (5.136)), in a stationary state of any JT system the averaged configuration

corresponds to the initial undistorted (reference) configuration. However, this

free JT pseudorotation can be easily violated (stopped) by small external

perturbations that depend on nuclear coordinates Q. In the first order such

perturbations are enhanced by the vibronic coupling (see Eqs. (5.135)
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and (5.1350)), in contrast to electronic perturbations, which are reduced. Here

we bring a simple and rather visual description of this effect.

Consider a systemwith a linearE� e problemand aMexican-hat-typeAPES

(Section 3.2). Under the influence of a small distorting perturbation, say,

elongation in the Q# direction, the circular trough becomes distorted, namely,

an additional potential well appears in theQ# direction at the point (�0, �0) (and

a hump in the opposite �Q# direction). If the depth of the well is greater than

the kinetic energy of the circular motion in the trough Ek (which in the E� e

problem equals �h2=8M�20), then at sufficiently low temperatures the nuclear

motions are localized in this well and the corresponding distorted nuclear

configuration near the point point (�0, �0) can be observed in the experiments.

Low-symmetry perturbations distort the system anyway, but in the presence

of the JTE, as mentioned above, the distortion is essentially amplified

(Section 5.6). In the absence of vibronic coupling the magnitude Q0 of distor-

tion can be found from the fact that the perturbation energyW transforms into

strain energy:W ¼ 1
2
KEQ

2
0, whereKE is the force constant for theE distortions

under consideration (Section 3.2); henceQ0 ¼ ð2W=KEÞ
1
2. If the vibronic effects

are taken into account, QJT
0 ¼ �0 þQ0, where �0 is the radius of the trough

(Eq. (3.26)), and the amplification coefficient, equal to the ratio of the corre-

sponding distortions, is [7.1]

Pa ¼ QJT
0 =Q0 ¼ 1þ ðEJT=WÞ

1
2 (7:4)

Here the relationship �0 ¼ ð2EJT=KEÞ
1
2 is employed (see Eqs. (3.26) and (3.27)).

The maximum amplification is attained when W¼Ek:

Pmax
a ¼ 1þ 4ðEJT=�hoEÞ ¼1þ 4lE (7:5)

It follows that the vibronic amplification may be very large since the lE
value may be substantial. For example, if we assume that lE is about 5–10

(as expected in many cases, e.g. for octahedral clusters of Cu(II), Mn(III),

Cr(II), etc.), then Pmax
a � 20–40. Similarly, the system may be ‘‘locked’’ in one

of its equivalent minima in the JT problems with several minima on the APES.

Temperature effects were omitted in the above consideration. It can be

shown [7.4] that for a Jahn–Teller system with a threefold degenerate T term

interacting with t2 nuclear distortions (the T� t2 problem, Section 3.4) at not

very low temperatures (and with a sufficiently strong external electric field as a

perturbation), the approximate temperature dependence of the vibronic

amplification of external distortions Pa is

Pa � ET
JT=kT (7:6)
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whereET
JT is the Jahn–Teller stabilization energy. For instance, ifE

T
JT� 103 cm�1,

then Pa� 10 even at room temperatures.

The rough estimates (7.1)–(7.6) are aimed at qualitative general assessment

of the possible observation of molecular shapes of JT systems. The main

conclusion is that, strictly speaking, in the absence of external perturbations

JT distortions are of dynamic nature and are not manifested in an absolute

way in molecular shapes (stereochemistry), but relatively small perturbations

may lock the system in the distorted configuration predicted by the JTE.

Hence in multiminima systems the means of observation that obey inequality

(7.3) show the distorted configuration in the minima.

As stated in Chapters 3–5, the internal dynamics in JT systems may be

presented as free (pseudo) rotations (in linearE� e and other similar problems),

hindered rotations (when there are small barriers between the APES minima),

and pulsating (fluctuating) motions (in cases of sufficiently deep minima and

high barriers between them). These internal motions can be called pseudo-

rotations, although pulsating motions are more similar to large-amplitude (slow)

vibrations. They can be observed experimentally in the NMR spectra, isotopic

substitution experiments, central-atom nuclear quadrupole resonance spectra,

tunneling splitting (Section 5.3), and other spectroscopic measurements.

Pseudorotations in molecular systems, in general, were known for a long

time but their JT and/or PJT origin was revealed just recently. Berry [7.5]

assumed that the APES of such systems has several equivalent minima

(without specifying their origin) with small energy barriers between them, and

the observed pseudorotations are due to the transitions between the minima.

For instance, the pseudorotation molecule PF5 is assumed to have an energy

minimum in the trigonal-bipyramidal (TBP) configuration, and as a result of the

combined E-type displacements transforms into the (higher in energy) square-

pyramidal (SP) configuration, which by further transformation converts again

into the TBP configuration, but with other F atoms on the threefold axis.

Another example is the SF4 molecule with minima at C2v symmetry, which

can be considered as either a strongly distorted tetrahedron or a less distorted

square-planar configuration with two angles F—S—F of 1838 and 1048. Here

the Berry rotation consists of transitions between two equivalent distorted

configurations via the intermediate unstable square-planar geometry; this

mechanism of interconversion in SF4 is confirmed by dynamic NMR experi-

ments [7.6] and by direct electronic structure calculations [7.7].

In both examples the intermediate configuration has a maximum of the

APES of the nondegenerate ground state with respect to a specific symme-

trized direction of distortion. According to the conclusions of the vibronic

theory, the instability of the high-symmetry intermediate configuration is due
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to the vibronic mixing of its electronic ground state with some excited states of

required symmetry determined by the nonzero vibronic constant. The Berry

rotations under consideration are thus pseudorotations caused by a strong

PJTE resulting in a corresponding APES.

It is important that the pseudorotations of Jahn–Teller distortions in orbitally

degenerate ground states do not follow Berry rotations. Indeed, consider an

MX5 system in the TBP configuration outwardly similar to the PF5 molecule,

but with a doubly degenerate electronic E term (examples of such systems, are

mentioned in Section 7.6.1). According to the general solution of the E� e

problem (Section 3.2), in a D3h system there are three minima of the adiabatic

potential in the space of two E-type displacements (Fig. 3.4). In the case under

consideration these minima correspond to three SP (or near to SP) configura-

tions shown in Fig. 7.1.

The pseudorotations here are just interconversions between the three SP

configurations. Direct examination of the APES in the E� e problems

(Figs. 3.4 and 3.7) shows that the lowest pathway to overcome the barriers

between theminima never goes through the high-symmetry TBP configuration

D3h, and hence the latter is not involved in the pseudorotation; the coordinates

of interconversion do not include the point Q#¼Q"¼ 0. Thus the JT pseudo-

rotation cannot be reduced to the direct TBP ! SP interconversions, as in

the Berry mechanism, which is based on the PJTE.

I
1

1

1

1

2
2

2

3

3
3

3

II

II

III

2

Fig. 7.1. Pseudorotation in the [CuCl5]
3þ-type system with the E� e JT

problem and three equivalent equilibrium configurations of square-pyramidal
(SP) (or near-SP) symmetry (top view); the interconversion between them goes
beyond the trigonal-bipyramidal (TBP) configuration. The arrows show
(schematically) the displacements of the equatorial ligands transforming one
configuration into another (the axial ligand displacements are not shown).
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The situation for tetrahedral systems is similar: the pseudorotation of the JT

distortions is different from that predicted by the Berry mechanism. Indeed, in

the Fe(CO)4 complex taken as an example [7.8, 7.9], the ground-state electro-

nic term T is threefold degenerate and the JT problem is T� (eþ t2). As

mentioned above, if both types of displacements, e and t2, are active (this is

determined by the corresponding vibronic constants), the epikernel of the

problem is C2v (Section 2.5), and this is the symmetry of the six minima for

the distorted tetrahedron. The experimental data confirm these distortions:

the configuration of the Fe(CO)4 complex is similar to SF4 with the two angles

C—Fe—C at �1458 and �1208, respectively (Fig. 7.2).

In the Berry rotation scheme the interconversion between two C2v config-

urations goes via the high-symmetry square-planarD4h configuration or tetra-

hedral Td intermediates. The latter seem to be more appropriate for Fe(CO)4
in view of the relatively large angles between the bonds (compared with

those of SF4). However, the experimental data do not confirm such a pathway

in the mechanism of interconversion of equivalent distorted configurations

in Fe(CO)4.

The pseudorotation in this system was studied experimentally by means of

ligands marked by 13C and 18O isotopes [7.8]. If in the systemFe(CO)2(
13C18O)2

Fig. 7.2. Pseudorotation in the Fe(CO)4 system. The interconversion between
two distorted C2v configurations: (a) predicted by the Berry mechanism; and
(b) observed experimentally. The two ligands bearing isotopes 13C and 18O are
markedby stars (the complex studied experimentally is Fe(CO)2(

13C18O)2 [7.8]).
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an isomerization is induced by means of an infrared laser which excites the

C—O bond, the expected Berry interconversion is that shown in Fig. 7.2(a).

The observed interconversion is illustrated in Fig. 7.2(b); it does not reduce

to the Berry rotations. Meanwhile, if one examines the APES of the

T� (eþ t2) problem (Section 3.3), one can see that the isomerization

observed experimentally (Fig. 7.2(b)) corresponds directly to the pathway

via the lowest energy barrier between two nearest-neighbor minima of C2v

symmetry. As in the JT E� e problem forMX5 complexes, considered above,

the pathway of the transition between two equivalent minima via the lowest

energy barrier does not cross the configuration of highest symmetry.

The difference between the PJT (Berry) and JT (non-Berry) mechanisms of

pseudorotation has an even more important reason than that of energy bar-

riers. To make this statement clear, consider the simple case of the E� b1 JT

problem (Section 3.1). The twofold degenerate electronic E term, for instance,

in square-planar systems, interacts with one JT-active coordinate Q(b1g),

resulting in two minima, atþQ0 and�Q0, as shown in Fig. 3.1. It is important

that the electronic functions of these two minima configurations are mutually

orthogonal, and therefore in the absence of additional perturbations no transi-

tions between these two configurations are possible; they are strictly forbidden.

If additional interactions are nonzero (e.g., the interaction with b2g coordi-

nates in the aboveE� b1g problem thatmakes itE� (b1gþ b2g)), then there is a

nonzero probability of transitions between the two configurations via b2g
coordinates, but not directly along b1g.

In the above-discussed JT systems the situation is much the same as in

the E� b1 problem. Indeed, the Berry rotation in Fig. 7.2(a) is a transition

between two C2v minima of the adiabatic potential of the tetrahedral

T� (eþ t2) problem. The configurations in these minima can be regarded as

tetrahedra distorted, respectively, to þQ0� and �Q0� from the regular config-

uration. As in the E� b1 problem, the electronic wavefunctions of these two

configurations are orthogonal to each other, and hence the direct transition

between them is forbidden. However, the transitions via other coordinates are

not forbidden.

In the PF5 and SF4 systems, discussed above, the ground state is non-

degenerate and hence the electronic states in the minima are not orthogonal.

If the excited state producing the instability of the ground state is also non-

degenerate, there is only one coordinate of inter-minimum conversion, namely

the coordinate which mixes the two states. Here the Berry mechanism is the

only possible one. If the excited state is degenerate, theremay bemore than one

coordinate of interconversion of the minima configurations, and hence both

the Berry and the non-Berry mechanisms of pseudorotation are possible.
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Quite a few studied cases of JT and PJT pseudorotations are discussed below

in several subsections. In coordination compounds pseudorotations are some-

times called ‘‘flexional behavior’’ [7.10]. As seen from the examples considered

above, in many cases the JT and PJT dynamics can be interpreted visually as a

continuously changing ‘‘flexional’’ configuration. One of the first observations

of such a behavior relates to Cu(II) compounds [7.10(b)]. Another kind of

flexionality takes place in coordination compounds with the so-called alter-

dentate ligands; they offer to the metal ion two or more equivalent coordina-

tion sites, and hence under certain conditions the metal can resonate between

them (e.g., in the alloxan radical anion [7.10(c)]).

With regard to experimental observation of pseudorotation, modern laser

systems are able to produce pulses of a few femtoseconds in temporal width,

and on this timescale nuclear motion is effectively frozen. Multiple-pulse

techniques (so-called ‘‘pump–probe’’ experiments) utilize carefully controlled

time-delays, which may be used to take snap-shots that permit one to follow

nuclear dynamics. Such techniques have already been shown to be capable of

detecting pseudorotation of molecules in real-time. For example, time-

resolved two-photon ionization experiments indicate that in its excited

B state Na3 pseudorotates with a period of �3 ps [7.11].
An important aspect of such ultrafast dynamics experiments as applied to

JT systems is that they offer direct access to pseudorotation rates. Such

experiments should permit elucidation of the vibronic coupling parameters

in circumstances where this is not otherwise possible. An interesting example

of this may be found in the negative ions of C60. As proposed in [7.12],

rotational reorientation measurements involving Cn�
60 ions generated electro-

chemically in solution should permit direct measurement of pseudorotation in

these ions. The temperature dependence of these rates allows one to separate

the contributions of quadratic coupling terms from linear contributions.

7.1.2 Types of JT and PJT distortions. The lone-pair effect

In the JT effect the distorted configurations are determined by the JT-active

coordinates (Section 2.5). Since the JT theorem is based on perturbation

theory, only relatively small deviations from the reference configuration can

be predicted by these coordinates. The final symmetry of the JT-distorted

system can be predicted in a general way by means of group-theoretical

considerations using the epikernel principle [7.13] discussed in Section 2.5:

extrema points on a Jahn–Teller APES prefer epikernels; they prefer maximal

epikernels to lower-ranking ones. Stable minima are to be found with the structures

of maximal epikernel symmetry.
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This statement implies that, although forced to distort in order to remove the

electronic degeneracy, the system prefers nuclear configurations with higher

symmetry compatible with this requirement. As mentioned in Section 2.5, in

this formulation the epikernel principle is related to the more general statement

of Pierre Curie given in 1894 [7.14]: the symmetry characteristic of a phenomenon

is the maximal symmetry compatible with the existence of this phenomenon.

Remarkably, the JTE is the only general quantum-mechanical mechanism of

breaking the (expected in classical physics) structural symmetry of molecular

systems and crystals (Section 8.2.5).

If the conditions of the epikernal principle are obeyed (see below), one can

predict the possible distorted configurations of the system in a given degen-

erate state, and vice versa, to explore the origin of the observed distorted

configuration by tracing it back to the degenerate term of the reference con-

figuration. For a system with a point-group symmetry G in the reference

configuration and JT-active coordinates � (Table 2.3) the epikernels E(G, �)

can easily be found directly from the character tables of the corresponding

point groups (see the Appendix). For a systemwithTd symmetry and anE orT

term coupled to e vibrations (the E� e or T� e problem) the epikernel is D2d:

E(Td, e)¼D2d. Similarly E(Td, t2)¼C3v, C2v, Cs; E(Td, eþ t2)¼D2d, D2, C3v,

C2v, C2, Cs. In the last case it is assumed that the e and t2 vibrations have the

same frequency, forming a fivefold degenerate JT-active space (Section 3.2).

For the octahedral Oh group E(Oh, e)¼D4h, C4v, E(Oh, t2)¼D3, C3v, and so

on. These distortions are well known from the general formulation of the JT

problems in Sections 3.1–3.4.

As illustrations of the epikernel principle, some specific examples may be

mentioned: Ni2þ (d8) and Cu2þ (d 9) four-coordinated complexes usually have

the D2d structure compatible with an electronic T term and e distortions of a

tetrahedron (similar Zn2þ complexes have undistorted tetrahedra, but some of

themmay be subject to PJT distortions); Fe(CO)4 exhibitsC2v distortions, as if

resulting from a T� (eþ t2) problem (see the discussion below), while the

Co(CO)4 fragment shows trigonal geometry [7.13, 7.15].

However, in general, it is not excluded that the epikernel principle can be

violated. In particular, this can take place when higher-order vibronic inter-

action terms in Eq. (2.7) are taken into account. But the greatest concern about

the applicability of the epikernel principle arises when one tries to use it to

reveal the origin of observed or numerically calculated distorted configura-

tions when the deviation from the reference configuration is large. Indeed, in

these situations the distortion may include a large amount of PJT contribu-

tions. The bottom line is that molecular configurations at the minimum of the

APESmay result from combined JT and PJT effects (Section 4.3) to which the
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epikernel principle is not applicable. Neglecting the possible PJT contributions

may lead to controversies and useless discussions [7.16, 7.17].

The PJTE is important and may contribute to solving many stereochemical

problems. Consider, for example, MXn systems, where M is a transition

element. In a planarMX4 system the typical electronic configuration ofMOs is

� � � ða1gÞ2ðb1gÞ2ðeuÞ4fðb2gÞðegÞð2a1gÞð2b1gÞgða2uÞ0ð3a1gÞ0 (7:7)

where theMOs in braces should be populated by the d electrons. If the ground

electronic state is nondegenerate, the distortion of the square towardsD2d and

tetrahedral Td symmetry requires strong mixing of the ground state with the

excited state by B2u-type nuclear displacements. This excited state can be

obtained by one of the following one-electron transitions: eu!eg, b1g!a2u,

or b2u!2a1g (b2u is an inner MO). Therefore, if the eg and 2a1g MOs are fully

occupied by d electrons, but the 2b1g MO is unoccupied, the square-planar

configuration is stable. In other words, low-spinMX4 (d
8) complexes ofNi(II),

Pd(II), and Pt(II) are expected to be square planar. On the contrary, high-spin

d5 and d10 complexes with an occupied 2b1g MOmay be unstable in the planar

configuration due to the strong mixing with the low-lying B2u(2b1g!a2u) term.

Passing on to octahedral MX6 systems, let us consider the example of XeF6.

Non-empirical calculations of the electronic structure of this molecule

[7.18] show that the outer MOs are arranged in the following sequence:

(t2g)
6(t2u)

6(t1u)
6(t1g)

6(eg)
4(a1g)

2(2t1u)
0, with an energy gap of about 3.7 eV

between the a1g and t1u MOs. This results in instability of the system with

respect to T1u-type displacements. For comparison, the calculations [7.19]

performed for a similar system SF6 yield the following sequence of MOs:

(t2g)
6(eg)

4(t1u)
6(t2u)

6(t1g)
6(a1g)

0(2t1u)
0. Since the energy gap between the highest

occupied t1g and unoccupied t1u MOs, as distinct from XeF6, is sufficiently

large, the Oh symmetry configuration of SF6 is stable with respect to odd

(dipolar) displacements.

By comparison one can see that the pair of electrons in the a1g MO in XeF6

(absent in SF6) is subject to the PJTE that produces the distortion. Since the a1g
MO is formed from the (5s)2 electrons of the Xe atom, the distortion is called a

‘‘lone-pair effect’’ (see below). A series of investigations of the XeF6 system,

including electronographic and spectral measurements and MO LCAO calcu-

lations (see in [7.20]), confirm the PJT origin of the instability with respect to

the odd T1u displacements (dipolar instability). For recent more elaborate

calculations of the electronic structure of this system see [7.21]. The PJT origin

of the distortions in this and other systems was subjected to special investiga-

tion (Section 4.1) [7.22].
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The lone-pair effect is of general importance in stereochemistry and deserves

a more general treatment in view of its PJT origin. In the semiclassical

approach (see [7.3], Chapter 9) the lone pairs are considered as repulsion

units alongside the bond pairs, and as such they occupy a coordination place

distorting the otherwise symmetric coordination polyhedron. However, in

some systems the polyhedron is not distorted, in spite of the presence of a

lone pair, and in these cases the latter is called an inactive or ‘‘inert lone pair.’’

Very often the lone pair originates from the (ns)2 configuration, with n¼ 4,

5, 6; the post-transition elements In(I), Tl(I), Pb(II), Sb(III), Te(IV), Xe(VI),

and so on are of this type. In ½SbBr6�
3� and ½TeCl6�

2�, for example, the (ns)2

lone pair is stereochemically inert (the octahedron is not distorted), whereas in

XeF6, ½InCl6�
5�, . . ., the octahedron is distorted. The (ns)2 pair itself is spheri-

cally symmetric and it does not cause distortions. Hence to explain the origin

of distortion one has to assume that there is a strong hybridization of the ns

states with the np ones, resulting in a directed lone pair [7.23, 7.24].

Amore rigorous and full explanation of the origin of the lone-pair effect can be

achieved based on the PJTE [7.25]. Consider the general MO LCAO scheme for

an undistorted octahedral systemMX6 (Fig. 7.3) which, in the representation of

local M—X bonds, has an (ns)2 electron pair above the six bonding pairs. In this

scheme the two ns electrons occupy the antibonding MO a1g (pMOs and ligand

non-bonding MOs are not indicated in Fig. 7.3). The ground state of the

Fig. 7.3. The MO LCAO energy-level scheme for an MX6 system with an
(ns)2 configuration above the closed shells of M and X. Six ligand �(sp) AOs
together with the central atom ns and np AOs form the bonding a1g and t1u
MOs and the non-bonding eg MOs occupied by 12 electrons, while the
antibonding MO a1g

� is occupied by the two (ns)2 electrons (p MOs and
ligand non-bonding MOs are not indicated).
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system as a whole, A1g, is nondegenerate, but the excited T1u states formed by

one-electron excitations a1g!t1u are relatively close in energy. The pseudo

Jahn–Teller mixing of the ground 1A1g state with the excited 1T1u by T1u-type

nuclear displacements results in the instability of the ground state with respect to

t1u distortions (Section 4.3), provided the condition of instability (4.6) is satisfied.

This distortion is somewhat similar to the dipolar instability produced by

the same A1g–T1u mixing in the ½TiO6�8� octahedron (Section 4.4), but the

change from d electrons in Ti to sp electrons in theMX6 systems under study in

this section introduces significant alterations. It can be shown that in the linear

approximation with respect to the vibronic coupling terms in the Hamiltonian

the s–p (A1g–T1u) vibronic mixing ((A1gþT1u)� t1u JT problem) results in a

trough of minima in the space of t1u distortions (Section 4.3), and only the

second-order terms make the eight trigonal directions preferable.

However, this problem may be complicated by the fact that the excited T1u

term is degenerate and hence it is subject to the JT T1u� (egþ t2g) coupling. If

the latter is taken into account, the vibronic problem as a whole is a combined

PJT and JT problem (A1gþT1u)� (t1uþ eg+ t2g), meaning that there may be

distortions of three types: t1u, eg, and t2g. The solutions obtained in the

linear approximation with respect to the vibronic coupling in Section 4.2,

Eqs. (4.63)–(4.68), show that, depending on the vibronic coupling constants

and the energy gap 4� between the ground A1g and excited T1u states, several

possibilities arise. Assume that FA, F, FE, and FT are the coupling constants to

the a1g, t1u, e, and t2g displacements, KA, K0, K
E
0 , and KT

0 are the respective

primary force constants, and the energies of the two mixing terms are

E(1A1g)¼�3�, E(1T1u)¼�. Then the corresponding JT stabilization energies

in units of � can be presented as in Eqs. (4.65):

h ¼ F 2
A=4K0� (7:8)

f ¼ F 2=K0� (7:9)

e ¼ F 2
E=4KE� (7:10)

t ¼ F 2
T=3KT� (7:11)

With these constants and the additional relation (4.67),

g ¼
eþ h; in the space of tetragonal distortions

tþ h; in the space of trigonal distortions

8<
: (7:12)
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we get the following results presented schematically in Fig. 7.4. In the regionE1

the system is undistorted. In E2 the pure JT distortions described in Section 3.3

prevail, i.e. either tetragonal e type (three equivalent ‘‘tetragonal’’ minima), or

trigonal t2 type (four equivalent ‘‘trigonal’’ minima). In the E3 area combined

PJT trigonal (dipolar) t1u and JT either tetragonal e, or trigonal (nonpolar) t2
distortions take place. We see that if g< 2 and f< g, the minima are at the

points with energies E1 where no distortion takes place. At g> 2, f< g, and

fþ 2< 2g, the E2 points are the lowest and the system is under the pure JT

effect with three tetragonal (if e> t) or four trigonal (for e< t) minima of the

APES. Finally, if f > g, f > 2, and f þ 2> 2g, the minima of the APES at the

points E3 correspond to much lower symmetry of combined trigonal dipolar

t1u with JT either e (if e> t), or nonpolar t2 (trigonal) (when e< t) distortions.

All these distorted configurations of MX6 systems with (ns)2 lone-pair

configurations are found in different systems (see in Section 7.6). Moreover,

the combined distortions, described above, explain the origin of complicated

(helicoidal) crystal structures (Section 8.2.4). In particular, in the InCl crystal

(InCl5�6 units) both types of distortions in the E2 area of Fig. 7.4, trigonal t2g
plus dipolar t1u, and tetragonal eg plus dipolar t1u, are observed in two phases

of the crystal, yellow and red, respectively [7.26].

Fig. 7.4. Three domains of existence of different JT and PJT distortions in
MX6 systems with (ns)2 lone pairs in each of the two e–f and t–f planes:
E1 – no distortions (inert lone pair); E2 – combined dipolar T and either
tetragonal Eg (in the e–f plane), or trigonal T2g (in the t–f plane) distortions;
E3 – pure JT, either tetragonal (in the e–f plane) or trigonal (in the t–f plane)
distortions.
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The vibronic origin of the lone-pair effect in a variety of molecular systems

was also confirmed by ab initio (DFT) calculations using a method that allows

one to separate different contributions to the geometry formation and discri-

minate the lone-pair effect [7.27, 7.28].

Lone-pair distortions, discussed above, are dipolar-type distortions, in the

sense that they lead to the formation of a dipole moment in nonpolar mole-

cules. But dipolar distortions are not necessarily related to lone pairs: the PJT

mixing of any pair of electronic states of different parities in systems with an

inversion center results in softening or instability of the system with regard to

odd displacements of dipolar type. In systems without an inversion center the

mixing states producing dipolar distortions are easily found from symmetry

considerations.

In molecular systems or local formations in crystals dipolar distortions are

often produced by out-of-center displacements of the central atom, as, e.g., in

½TiO6�
8� (Sections 4.3 and 8.3), off-center impurities in crystals (Section 8.1),

out-of-plane displacement of the iron atom in hemoproteins (Section 7.6), etc.

7.1.3 JT-induced reactivity and chemical activation

The possibility to use JT distortions in prediction of specific reactivity was

suggested first for octahedral complexes of Cu(II) and other similar MX6

systems with a JT E� e problem and an elongated octahedron at the APES

minima [7.29]. In such systems the two axial ligands are less bonded and/or

more vulnerable to substitution, favoring the formation of trans-substituted

not cis-substituted, CuX4Y2 complexes. This conclusion is fully confirmed by

a lot of experimental data. There are now many known examples of JT-driven

chemical transformations, some of which are cited below in this chapter.

It is obvious that the JT and PJT distortions create distinguished directions

along which the molecular system is most vulnerable for transformations, thus

essentially influencing the mechanisms of elementary chemical reactions. In

some cases this may lead to unimolecular reactions, e.g., dissociation in the

direction of the JT distortion; in other cases it just lowers the energy barrier of

interaction with other molecular systems in this direction [7.2, 7.3].

In general the reaction curve in the direction of the reaction path Q is a

cross-section of the APES in this direction. In the absence of vibronic coupling

it can be presented as (Fig 7.5)

"0ðQÞ¼ 1
2
K0Q

2 � g0Q
3 (7:13)

where K0 is the force constant and g0 is the cubic anharmonicity constant.
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By differentiating, one can easily make sure that the barrier height D0 and

the coordinate of the maximum of the energy barrier Q0D are

D0 ¼ K3
0=54g

2
0 (7:14)

Q0D ¼ K0=3g0 ¼ ð6D0=K0Þ
1
2 (7:15)

and it is implied that Q¼ 0 is the equilibrium position of the system.

With the vibronic coupling included a nonzero force F (the JT distorting

force equal to the linear vibronic constant) occurs, and the other constants of

the curve may also change: and K¼K0þ�K and g¼ g0þ�g. Then

"ðQÞ¼FQþ 1
2
KQ2 � gQ3 (7:16)

with

D¼ðK � 6gQ0Þ3=54g2 (7:17)

where Q0 is the new equilibrium position of the reactants:

Q0 ¼ðK=6gÞ½1� ð1þ 12gF=K2Þ
1
2� (7:18)

The new position of the maximum of the energy barriers is

QD ¼ K=3g�Q0 (7:19)

Fig. 7.5. A section of the APES of a molecular system in the direction of the
reaction path Q: (1) the free molecule (dissociation curve); (2) the influence of
another reactant (reaction curve); and (3) the influence of the catalyst
(activation curve).
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Compared with the non-perturbed values, we have

D=D0 ¼ ðK � 6gQ0Þ3g20=K3
0g

2 (7:20)

All the parameters on the right-hand side of (7.20) can, in principle, be

estimated from empirical data. K and K0 are directly related to IR spectra:

K0 ¼Mo2
0, and K¼Mo2, where o0 and o are the corresponding vibrational

frequencies in the initial and vibronically rearranged states, respectively, Q0 is

the new equilibrium position (JT distortion). The coefficients in the cubic

terms g0 and g can be expressed by the spectroscopic anharmonicity correction

ox [7.30]: g0=g ¼ �
1
2ðK0=KÞ

3
2ð�ho=�ho0Þ ¼ �

1
2K0=K , where � ¼ o0x0/ox is the

ratio of the anharmonicity corrections in the initial and rearranged systems,

respectively (usually, for small rearrangements � does not differ very much

from unity).

For the change ��D of the activation energy due to the vibronic coupling

we have

��D ¼ D�D0 ¼ D0½1� ðK=K0Þ3ðg=g0Þ2� þ K2Q0=3g� 2KQ2
0 þ 4gQ3

0

(7:21)

The last term proportional to Q3
0 is very small (Q0 is of the order of 10

�1 Å)

and can be neglected. The remaining expression can be presented as two terms:

��D ¼ D0½1� �ðK=K0Þ� þ KQ0ðQD �Q0Þ (7:22)

where QD�Q0¼Q0D is the coordinate distance between the minimum R and

maximum M in the rearranged system (Fig. 7.5), and in the same notations

QD ¼ ð6�D0=K0Þ
1
2 �Q0. The following formula may be convenient:

D=D0 ¼ ðK=�
1
2K0ÞðQ0D=Q0DÞ3 (7:23)

If the quadratic vibronic interaction terms are neglected, thenK¼K0, g¼ g0,
and the expression (7.25) is simplified:

��D ¼ ð12D0EJTÞ
1
2 � 4EJT (7:24)

where EJT is the JT stabilization energy. For instance, for a system with a

doubly degenerate electronic E term EJT¼F2/2K0 (Section 3.2), and

��D ¼ Fð6D0=K0Þ
1
2 � 2F 2=K0 (7:25)

The calculation of the chemical activation ��D for a PJT system becomes

more complicated since an additional important parameter emerges: the

energy gap 2� between the ground state and the excited states whose admixing
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produces the instability of the ground state of the reactants. Figure 7.6 shows

the two reaction curves without and with the PJTE in the direction of the

reaction path Q.

If the condition of strong PJTEK0<F2/� (Eq. (4.6)) holds, the ground state

is unstable at Q¼ 0 and the adiabatic potential curve (4.4) has two minima at

the points (4.7) with the curvature at the minima points given by Eq. (4.9).

Taking into account the anharmonicity produced by the interacting reactants,

we can present the reaction curve by adding a negative cubic anharmonicity

term to Eq. (4.4) or (4.5) which, unlike (7.13) or (7.16), should be of sixth order

to preserve the symmetry conditions:

"ðQÞ ¼ 1
2
K0Q

2 � ð�2 þ F 2Q2Þ
1
2 � gQ6 (7:26)

This curve has not been studied in detail as yet. Approximately, by expan-

sion of the square root, we get

"ðQÞ ¼ 1
2
KQ2 þ ðF 4=4�3ÞQ4 � gQ6 (7:27)

with K¼K0�F2/�, and for the points of the minimum Q0 (stable system),

and maximum QD (activated complex) we have

Q0;D ¼ fðF 4=12�3gÞ½1� ð1þ 24gK�6=F 8Þ
1
2�g

1
2 (7:28)

with the minus sign for Q0 and plus sign for QD. Note that, due to Eq. (4.6),

K< 0, and hence for real roots of Eq. (7.28) the condition j24gKj<F8/�6 must

be obeyed. If this inequality is sufficiently strong, we have approximately

Q0 � ð�=F Þ½1� K0�=F 2�
1
2 (7:29)

Fig. 7.6. The adiabatic potential curves along the reaction pathQ without (1)
and with (2) the strong PJTE that mixes the states 1 and 3. (Reprinted with
permission from [7.3]. Copyright 1996 John Wiley & Sons, Inc.)
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Q0 � ½ðF 8 þ 6�6KgÞ=6g�3F 4�
1
2 (7:30)

By substituting the parameters (7.28) or (7.29) and (7.30) into (7.26), one can

estimate the activation energy modified by the PJTE:

D ¼ "ðQDÞ � "ðQ0Þ (7:31)

and the chemical activation ��D¼D0�D (with D0 according to (7.14)).

Both the JT and PJT-induced activation are due to the instability of the

reference configuration with respect to distortions in the direction of the active

coordinate Q. In the JT systems the latter are the JT-active coordinates

determined by the degeneracy of the electronic state and the vibronic coupling

constants, while in the PJTE Q may be of any symmetry, depending on the

excited states that contribute to the PJT distortion.

Similar chemical activation may take place in molecular systems subjected

to relatively small (perturbational) electronic rearrangements. The latter

include (but are not limited to) excitation, ionization, oxidation, reduction,

and any other change of MO population numbers due to coordination to

(interaction with) other molecular systems, e.g., in catalysis. According to

the adiabatic approximation, any changes in the electronic structure of the

system produces corresponding changes in the APES via the vibronic cou-

pling, and these changes proved to be similar to that produced by the JT and/

or PJT distortions shown in Figs. 7.5 and 7.6. To explore this kind of influence

of vibronic coupling, the orbital vibronic constants introduced in Section 2.3

are of indispensable value [7.2, 7.31–7.34].

According to the definition (2.25), the diagonal linear orbital vibronic

constant f i
�� equals the force with which the electron of the ith MO distorts

the nuclear framework in the direction of the symmetrized displacements Q��

minus the proportion of the nuclear repulsion force in this direction per

electron. Consequently, the total force distorting the molecule in this direction

(the integral vibronic constant F �
��) is given by Eq. (2.26): F �

�� ¼
P

i q
�
i f

i
�� ; q

�
i is

the electron occupation number for the ith MO in the electronic state � under

consideration. If the system is (statically) stable with respect to the Q��

displacement, then

F �
�� ¼

X
i

q�i f
i

�� ¼ 0 (7:32)

The orbital vibronic constants are different for different orbitals: the

nuclear repulsion per electron is independent of theMO, whereas the electron

distribution changes considerably from one MO to another. In particular, in
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diatomics the bonding influence of the electron of the bonding MO is stron-

ger than the nuclear repulsion per electron, f i
R > 0 (R is the interatomic

distance), whereas for the antibonding orbitals the opposite is true: f i
R5 0.

The orbital vibronic constants are thus a measure of the MO bonding. At the

point of stability these different values of orbital vibronic constants compen-

sate each other exactly and Eq. (7.32) holds. Similarly, according to

Eqs. (2.30) and (2.38) the curvature of the reaction curve in a given direction

K�
�� equals the sum of orbital contributions ki�� . However, unlike the orbital

vibronic constants, the orbital coefficient ki�� is determined not only by the ith

MO, but also by the contribution of the vibronic mixing with other MOs.

From the latter, only the free and not fully occupied MOs should be taken

into account: the contributions of the mixing of any two fully occupied MOs

vanish because they enter the sum for K�
�� twice with opposite signs (see also

Eq. (2.27)).

Electronic rearrangements that change the occupation numbers

qi! qi þ�qi obviously violate the condition (7.32), as well as Eqs. (2.30)

and (2.38). Assuming that the rearrangement is a small perturbation, we

may ignore its influence on orbital vibronic constants (as a second-order

correction). If the initial system is stable, F�� ¼ 0 and K��> 0 (the super-

script � of the electronic state of the system as a whole is omitted), the

substitution qi! qi þ�qi in Eqs. (7.32), (2.30), (2.38), and (7.27) leads to

the following relationships (as above, qi and qj are orbital occupation num-

bers, cf. Eq. (2.27)):

F�� ¼
X
i

�qif
i

�� (7:33)

�K�� ¼ K 0�� � K�� ¼
X
i

�qi k i
�� þ

X
j 6¼i
ðqi� qjÞ f ðijÞ��

��� ���2��ji

 !
(7:34)

Hence the electronic rearrangement taken into account by the changes in

orbital occupancies �qi results in a nonzero distorting force F�� 6¼ 0 and a

change of the force constant �K�� in the direction Q��, for which f i
�� 6¼ 0 (i is

the index of the MO for which �qi 6¼ 0). The direction of the distorting force

Q�� depends on the symmetry �i of the ith MO: f i
�� is nonzero if the symmetric

product [�i	�i] contains �
�
. If �i is nondegenerate, �¼A1 is totally sym-

metric: electrons of nondegenerate MOs distort the molecule in the direction

of totally symmetric displacements A1, which do not change the symmetry of

the system. If �i is degenerate, �
�
can be nontotally symmetric, but it should

be JT active.
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As for the change of the force constant �K��, �
�
can be of any symmetry

allowed in the appropriate point group. This is seen directly from the second

term in Eq. (2.38), in which f
ðijÞ
�� is nonzero if �� ¼�i	�j , while �i and �j for

the ground and excited states, respectively, may belong to any symmetry

representations. Similar expressions can be obtained for the change of the

anharmonicity constants �g.
The occurrence of distorting forces and changes in the force constants and

anharmonicities induced by electronic rearrangements via vibronic coupling

directly explain the change in the reactivity of the molecule – its chemical

activation. With the new constants of the rearranged electronic structure F,

K¼K0þ�K, and g¼ g0þ�g, the rising portion of the reaction curve becomes

as given in Eq. (7.16) and Fig. 7.5 with all the consequent formulas

(7.17)–(7.34) for the change in activation energy of chemical reactions given

above.More details with semiempirical applications of this approach are given

in [7.2] and [7.3]. Examples of JT-induced reactivity in specific systems are

discussed in Sections 7.3–7.6.

7.1.4 Mutual influence of ligands

There is a large amount of experimental and correlation data on the mutual

influence of ligands in coordination compounds and similar effects in other

molecular systems. The trend began in the mid-1920s with the works of

Chernyaev [7.35], who demonstrated convincingly that in the substitution

reactions with square-planar Pt(II) complexes PtXYZVþU!PtXYZUþV,

the ligandV to be substituted first is determined by the properties of that located

in the trans position to V (trans-influence), and all the ligands can be arranged in

a series of their trans-influence power. Later it was established that not only a

trans-effect, but also a cis-effect, as well as other mutual influence of ligands is

manifest in many properties of transition metal compounds, including stereo-

chemistry and reaction kinetics.

For a review of the mutual influence of ligands in coordination compounds

and its interpretation the reader is referred to Chapter 9 of [7.3]. Here we

present just a brief account of the vibronic origin of this phenomenon. Indeed,

the substitution of one ligand in the complex by another can be regarded as a

change in the electronic structure, which produces changes in the nuclear

configuration via vibronic coupling. In the previous Section 7.1.3 we discussed

vibronic changes in geometry and reactivity produced by electronic rearrange-

ment. A somewhat similar idea is used here in this section to consider the

mutual influence of ligands or, more precisely, the change in mutual influence

brought about by changing ligands [7.36–7.38].
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Consider a homo-ligand coordination system of the type MXn with a non-

degenerate electronic ground state. Its Hamiltonian can be presented as

H ¼ Hel þW (7:35)

where Hel is the electronic part of the Hamiltonian for fixed nuclei and W is

the vibronic coupling (2.14). In the stable configuration Q�¼ 0, �¼ 1, 2, . . .,

N, the APES "(Q�) has a minimum with respect to all symmetrized coordi-

nates Q�, and in the harmonic approximation "(Q�) has the usual quadratic

form (3.1).

Upon substitution of the ligand X by Y, the change of the Hamiltonian

(7.35) can be presented just by adding the so-called substitution Hamiltonian

HS equal to the difference between the Hamiltonians of the MXn� 1Y and

MXn systems:

H ¼ Hel þW þHs (7:36)

Now we assume that HS can be considered as a perturbation. This implies

that changes in energy states induced by HS are small. Then, to obtain the

APES of the system, one has to consider two perturbations,HS andW, instead

of W only in the MXn system. With the two perturbations the adiabatic

potential "0(Q�) is [7.36]

"0ðQ�Þ ¼ "ðQ�Þ þ h00 �
X
j

h20j=�j 0 � 2
X
�;j

h0jF
ð0jÞ
� Q�=�j0 (7:37)

where we denoted

h0j ¼ h0 jHs j ji (7:38)

and F ð0jÞ� ¼ h0 j ð@H=@Q�Þ0 j ji are the vibronic coupling constants (2.15), �ij

being the energy gaps. From Eq. (7.37) one can see that in addition to the

constant terms h00 and �
P

j h
2
0j=�j0 which shift the energy levels, there is a

term which is linear in Q�. Added to the quadratic terms in "(Q�) this linear

term displaces the minimum position in theQ� (or�Q�) directions, the sign of

this displacement being determined by the sign of the product h0jF
ð0jÞ
� . The new

equilibrium positions are

Q0
� ¼ 2

X
j

h0jF
ð0jÞ
� =�j 0K�0 (7:39)

where K�0 is given by Eq. (2.36).

Thus the idea of vibronic mutual influence of ligands is that if one substi-

tutes one of the ligands, the changes in the electronic structure are no longer
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consistent with the previous geometry, and other ligands relax to new equili-

brium positions (newminima of the APES). To find them, the matrix elements

of the vibronic coupling (the vibronic constants F ð0jÞ� ) and the substitution

operator h0j should be analyzed. This can be done by a model description for

more specific types of systems.

Consider, for example, the MO LCAO model for octahedral �-bonded

complexes MX6 of the following three basic types.

(i) M is a transition element, and there are 12 electrons in the valence � MOs.

(ii) M is a non-transition element in a low oxidation state, and there are 14 electrons

in the � MOs (i.e., there is an electron lone pair).

(iii) M is a non-transition element in a higher oxidation state.

The typical MO energy-level schemes for these systems are illustrated in

Fig. 7.7. By populating the one-electron MOs with the number of valence

electrons available, we easily find the HOMO and LUMO. For the group

(i) the HOMO is t1u, while the LUMO is e�g, for (ii) the HOMO and LUMO are

a�1g and t�1u, respectively, and so on (Table 7.1).

The next step of simplification is to restrict the treatment by considering the

HOMO and LUMO only. With this constraint there is only one off-diagonal

matrix element (7.38), h01¼ h, only one vibronic constant F (01)¼ F, and one

energy gap �10¼�, and Eq. (7.39) simplifies significantly:

Q� ¼ 2hF�=�K� (7:40)

Table 7.1. The parameters characterizing the distortions in �-bonded complexes

of transition and non-transition elements produced by the substitutions

MX6!MX5Y in octahedral and MX4!MX3Y in square-planar complexes

(adapted from [7.36, 7.37]; CA stands for central atom)

Type of
Complex HOMO LUMO

Distortion
mode with
F� 6¼ 0

AOs of
CA with
h 6¼ 0 Distortion coordinate Q�

Octahedral
(i) t1u e�g T1u, T2u pz; dz2 Q00z ¼ ðZ1 þ Z4Þ=

ffiffiffi
2
p

(ii) a�1g t�1u T1u s, pz Q00z ¼ ðZ1 þ Z4Þ=
ffiffiffi
2
p

(iii) eg a�1g Eg dz2 , s Q#
00 ¼ ð2Z1 � 2Z4 � X2

þX5 � Y3 þ Y6Þ=2
ffiffiffi
3
p

Square-Planar
(i) eu b�1g Eu pz; dx2�y2 Qx ¼ ðX2 þ X4Þ=

ffiffiffi
2
p

(ii) a�1g e�u Eu s, px Qx ¼ ðX2 þ X4Þ=
ffiffiffi
2
p
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Thus only one type of symmetrized coordinates is nonzero, and this is

determined by the selection rules. Indeed, the vibronic constant is nonzero if

the product of the irreducible representations of the ground j0i and excited j1i
states contains the irreducible representation of the derivative of the

Hamiltonian over Q� (Section 2.2). The representation of this derivative

coincides with that of Q�. Hence, for nonzero F�, it is required that �0	�1

contains ��. For instance, for complexes of the type (i), j0i and j1i are the

HOMO and LUMO t1u and e�g, respectively, and since T1u	Eg¼T1uþT2u,

only Q(T1u) and/or Q(T2u) distortions can, in principle, occur as a result of the

above substitution MX6!MX5Y.

On the other hand, the nonzero distortion after (7.39) also requires that

h ¼ h0jHsj1i should be nonzero, which means that the HOMO and LUMO

should contain the atomic orbital of the substituted atom. To obey this

condition, if Y is on the z axis, the t1u and e�g MOs should contain the pz and

d 2
z orbitals of the central atom, respectively. With these orbitals F is nonzero

for Q(T1u) only, namely for its Q00z component: Q00z¼ (Z1þZ4)/˛2 [7.3]. This

distortion displaces the two ligands in the trans positions 1 and 4 along the

z axis (both in the same direction) with respect to the plane of the central atom

and the other four ligands. In the same manner the distortion coordinates Q�

that are active in the mutual influence of ligands were obtained for other types

of coordination systems as shown in Table 7.1.

Thus within the limits of the HOMO–LUMO approximation, the coordi-

nates of mutual influence of ligands can be revealed directly without detailed

Fig. 7.7. Typical � MO energy-level schemes for octahedral MX6 complexes
of transition (i) and non-transition (ii, iii) elements. The HOMOs are (i) t1u,
(ii) a1g

� , and (iii) eg (for the denotations (i), (ii), and (iii) see the text).
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calculations. As seen from Table 7.1, the distortions induced by ligand substitu-

tion are indeed directed, and for the most part these directions are along the

trans-coordinate (trans-influence), except the case (iii) in octahedral �-bonded

complexes of non-transition elements in high oxidation states, in which the

active Q0 coordinate yields both trans and cis displacements with opposite

signs, the cis-influence being weaker by a factor of two than the trans-influence.

However, the picture as a whole remains incomplete, even qualitatively,

without knowledge of the sign of Q�. Following (7.40), the sign of Q� is

determined by the sign of the product hF�, so we should analyze the signs of

h and F� in Eqs. (7.38) and (2.15), respectively. This can be done by an

approximate model description of the donor properties produced by the

X!Y substitution [7.36]. By applying this approach to different specific

situations the authors [7.36–7.38] got a reasonable qualitative description of

the origin of mutual influence of ligands in coordination compounds, includ-

ing themost widespread trans- and cis-influence (see also [7.3]). For a review of

further details and applications of this approach see in the book [7.37].

7.2 Linear configurations of simple molecular systems

In this section we consider molecular systems that are linear or ‘‘quasilinear’’

(see below) in the high-symmetry configuration, but may be unstable with

regard to RT and PJT distortions.

7.2.1 Linear triatomic and tetraatomic systems

The configurations of presumably linear triatomics have been of special atten-

tion to researchers ever since the dawn of quantum mechanics (see [7.39–7.48]

and references therein). According to the RTE theory (Section 4.4) the linear

configuration of any molecular system is unstable with respect to bending if its

electronic state is degenerate and the vibronic coupling is sufficiently large.

This explains directly why the NH2 radical is bent in the ground state

H—N—H configuration (one unpaired p electron forms a doubly degenerate

� term in the linear configuration) and linear in the excited nondegenerate

state. Similarly AlH2, BH2, HCO, H2O
þ , NO2, etc., are bent in the ground

state and linear in the lowest excited state [7.44, 7.49]. In contrast, CO2 is linear

in the ground nondegenerate state and bent in the excited state [7.39, 7.50].

A direct probe of both linear and RT (static) bent configurations of this

molecule was achieved recently bymeans of the triple-ion-coincidencemomen-

tum technique [7.51]. The radical CHþ2 is bent in the ground state and becomes

linear upon absorption of light [7.52–7.54].
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More recent numerical calculations [7.47] confirm the earlier qualitative

assignments and allow one to predict the distortions quantitatively in agree-

ment with experimental data. Ab initio calculations of the NH2 radical [7.55]

yield the unstable linear configuration in the degenerate 2�u ground state, and

the bent configuration with the ground 2B1 and excited 2A1 states (with

H—N—H angles of 1038 and 1438, respectively) in the minimum APES con-

figurations. Figure 7.8 illustrates the calculated bending potentials of these two

states in comparison with that derived from spectroscopic data [7.56].

For BH2 the
2�u state of the reference linear configuration is unstable too; the

stable ground state 2A1 is bent with anH—B—Hangle of 1298, while the excited
state 2B1 is linear [7.57]. Several examples of ab initio calculation are given in

Table 7.2. The C3, NCO, and BO2 molecules seem to be linear in the degenerate

ground state, which may be explained by very weak RT coupling (Section 4.4).

Calculations of vibronic coupling constants have not been reported.

An interesting APES with a conical intersection in the excited state was

obtained by electronic-structure calculations of the HCO molecule [7.81].

Figure 7.9 illustrates a part of the complicated APES of this molecule. It

confirms that conical intersections with consequent vibronic coupling effects

Fig. 7.8. Comparison of ab initio calculated effective bending potential curves
for the 2B1 and 2A1 states of NH2 (full lines) [7.55] with the counterparts
derived by fitting experimentally observed vibronic band positions (dotted
lines) [7.56]. (Reprinted with permission from [7.47]. Copyright 1995 Kluwer
Academic Publishers.)
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take place more often than it would seem at first sight. By means of numerical

calculations carried out for the four lowest electronic states of HCO the

authors [7.81] explained the origin of several important features of this mole-

cule. In particular, it was shown that theA bands in the hydrocarbon flame are

due to electronic transitions from the strongly bent configuration of the ~B 2A0

state to the ground state X 2A0.

Table 7.2. Calculated ab initio Renner–Teller distortions of linear

configurations of triatomic molecules ABA and ABC (adapted from [7.47])

System

Linear
ground
state

Stable
state

ffA—B—A
or A—B—C
(degrees) Reference

See also
references

BH2
2�u

2A1
2B1

129
180 [7.57]

[7.64, 775,
7.76, 7.79]

CHþ2
2�u

2A1
2B1

141
180 [7.53, 7.54]

[7.71, 7.72]

CH2
1�g

1A1
1B1

103
137 [7.58]

[7.71, 7.72]

NHþ2
1�g

1A1
1B1

108
155 [7.59]

NH2
2�u

2B1
2A1

103
143 [7.55]

[7.73, 7.74]

OHþ2
2�u

2B1
2A1

109
180 [7.60]

[7.73]

AlH2
2�u

2A1
2B1

118
180 [7.61]

SiHþ2
2�u

2A1
2B1

119
180 [7.62]

PH2
2�u

2B1
2A1

91
122 [7.63]

SHþ2
2�u

2B1
2A1

93
128 [7.65]

HNOþ 2� 2A0 125 [7.66]

HNF 2� 2A00
2A0

101
123 [7.67]

C3
1�u

1B1,
1A1 180 [7.68] [7.77]

NCO 2� 2A0 180 [7.69]

BO2
2�g

2B2,
2A2 180 [7.70]

CCN 2� [7.78]

NCN 3�u [7.80]

}

}

}

}

}

}

}

}

}

}

}
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Further work on HCO may be found in [7.47, 7.82–7.84]. Ab initio calcula-

tions of ground and excited states confirm the presence of several conical

intersections and avoided (PJT) crossings with bent configurations in the

excited states due to the RTE and PJTE coupling. A full interpretation of

the spectroscopic data for this system seems to remain a difficult task.

For the somewhat similar systems HNOþ and HONþ the RT geometry and

energy levels were calculated in ab initio CASSCF–MRCI approximation

[7.84]. In both systems the 2� electronic state in the linear configuration reduces

to the two states X 2A0 and A 2A00 in the RT minima, in which the molecule is

bent. A conical intersection arises at the crossing of the first excited 2�þ state

with the X 2� one along the collinear dissociation pathNOþðX 1�þÞ þHð2SÞ.
The RT and dissociation barriers are illustrated in Figs. 7.10 and 7.11.

Rovibronic and rovibrational levels are also calculated in this work.

The RTE splits the APES into two branches and influences very strongly

the expected spectral properties. Even for weak RT coupling when the mole-

cule remains linear in both branches of the APES, the rotational levels split,

as follows from Eqs. (5.11)–(5.16) in Section 5.1. For stronger coupling with

bending instability the influence of the RTE on the spectra is much stronger.

Figures 7.12 and 7.13, respectively, illustrate how the energy levels are changed

by the RTE in the 2�u state of BH2 (split into X 2A1 and A 2B1 in the bent

configuration at the minima) [7.79], and in a similar state of NH2 [7.73]. Other

studies of the RTE in triatomics were performed for CCH [7.85], HCNþ [7.86],

SO2 [7.87], O3 [7.88], O3
þ [7.89], NO2 [7.90], H2S [7.91], Cl2O and Cl2O

þ [7.92].

CH

∠HCO

E

2Π

2Π

2Σ+

2Σ+

(2)2A′

(1)2A′

2A″

Fig. 7.9. A schematic presentation of the APES of the lowest three states of
the HCO molecule; the CO bond length is kept fixed. (Reprinted with
permission from [7.81]. Copyright 1979 American Institute of Physics.)
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As mentioned in Section 4.4, the RTE is not the only source of bending of

the linear configuration of molecules. Another important bending force arises

from the PJT mixing of the electronic state under consideration with other

states of appropriate symmetry under the bending distortion. If the system is in

a nondegenerate � state, the bending may occur due to the mixing with the

excited state of � symmetry (�	�¼�), provided the coupling is sufficiently

strong and the inequality (4.6) holds. The same is true for the PJT mixing of

two excited states.
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Fig. 7.10. Energy profile of the X2A0 ground state of the complex [Hþ , NO].
Calculated bond lengths are shown in Bohr units with angles in degrees.
(Reprinted with permission from [7.84]. Copyright 2001 Elsevier Science
Publishers.)
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The first investigation of such�–� vibronic coupling in linear systems [7.93]

was applied to the linear-to-bent transition in HCN and DCN to explain their

photoelectron spectra. The solution of the PJT problem of vibronic coupling

between the� and� states with energies E� and Ep, respectively, including the

two bending coordinatesQx andQy (�
2¼Qx

2þQy
2) and one totally symmetric

coordinate Qg with frequencies o and og, respectively, yields the three

branches of the APES given in Eqs. (4.113) and (4.114), and illustrated in

Fig. 4.16 (Section 4.4) for cationic states of HCN that are most important in

the photoelectron spectra. ForQg¼ 0 and 4l2> jE�� Ep| the lower branch of

the APES is unstable in the linear configuration and has a continuum of

minima forming a circle at the bottom of a trough, at which the configuration

of the system is bent. In the linear HCN molecule the totally symmetric

H+
 + NO (X2 Π) H+

 + NO (X2 Π)
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1.96 2.14H N O

E
nergy (cm
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Fig. 7.11. The energy profile of the 2A00 state of the complex [Hþ, NO].Calculated
bond lengths are shown in Bohr units with angles in degrees. (Reprinted with
permission from [7.84]. Copyright 2001 Elsevier Science Publishers.)
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displacement Qg involves H—C and C—N stretching, which play thus a

significant role in the PJT coupling �–� and formation of the APES.

Bymeans of numerical calculations taking into account this complex APES,

the authors [7.93] succeeded in explaining the origin and vibronic structure of

the first photoelectron band at 14 eV and the excitation band at �9 eV. The
RTE in the excited (cationic) � state is also important, but by itself it cannot

explain the origin of the vibronic structure of the spectra.

For the main APES features that determine the geometry, qualitative results

can be obtained with much less effort than in the above-mentioned investiga-

tions. The following example, the series of six molecular systems, two tri-

atomics Ag3 and I3 and their positive ðAgþ3 ; I
þ
3 Þ and negative ðAg�3 ; I

�
3 Þ ions,

is given here in somewhat more detail in order to show some of the intimate

electronic transformations that accompany JT vibronic coupling effects [7.94].

There are several works devoted to these systems in which theoretical calcula-

tions [7.95–7.98] combined with femtosecond spectroscopy [7.99, 7.100] and

Fig. 7.12. Bending AP curves for the X 2A1 and A 2B1 electronic terms of the
BH2 molecule. Full horizontal lines correspond to vibronic levels with K¼ 0;
dashed, dashed–dotted, and dotted lines correspond to K¼ 1, K¼ 2, and
K¼ 3, respectively. Vibronic levels in the minimum are assigned in ‘‘bent’’
notations, while those in the upper states are labeled with the notation of the
‘‘linear’’ molecule. (Reprinted with permission from [7.79]. Copyright 1981
NRC Research Press.)
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X-ray measurements [7.101] allow one to conclude that Ag�3 and I�3 are linear,

while the neutral molecules and their positive ions are bent and have the

configuration of mostly an isosceles triangle; Agþ3 is an equilateral triangle,

while Ag3 is not equilateral because of its degenerate electronic ground state

resulting in the JTE (Fig. 7.14; see also Section 7.3.1).

Starting with the high-symmetry linear configuration, one can determine

approximately its electronic structure and estimate the numerical values of the

PJTE parameters and the curvature of the adiabatic potential with respect to

the PJT-active displacements. The electronic structure of the linear configura-

tion of all the six systems under consideration was calculated [7.94] by means

of the semiempirical extended-Hückel method including self-consistency

with respect to the atomic charges and electron configurations and the

Fig. 7.13. Bending AP curves for the X 2A1 and A 2B1 electronic terms of the
NH2 molecule. Full horizontal lines and dashed lines correspond to vibronic
levels with K¼ 0 and K¼ 1, respectively. (Reprinted with permission from
[7.73]. Copyright 1980 Taylor & Francis Publishers.)
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intramolecular electrostatic effects. The method itself is not very reliable for

getting exact numbers to be comparedwith experimental data. However, in the

case under consideration the question is about large effects of orders of

magnitude, which provide a general understanding of the problem and allow

one to make qualitative and semiquantitative predictions, especially when

series of related systems are considered in comparison to each other.

With the calculated MOs and taking the excited states as one-electron

excitations i!� from the occupied MO to the virtual one, the authors [7.94]

estimated the constants of RT vibronic coupling F
ðijÞ
Q from Eq. (4.2) (where Q

is the bending coordinate and jii and j ji are the ground and excited states), the
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Fig. 7.14. Schematic APES cross-sections for Ag3
�, Ag3, and Ag3

+along the
bending coordinate. The energies indicated are drawn from a multiplicity of
sources and represent the best present knowledge of this system. (Reprinted
with permission from [7.100]. Copyright 1997 American Chemical Society.)
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primary force constant K (0) from Eq. (4.17), the vibronic contribution to the

curvature of the adiabatic potential energy from Eq. (4.13), and the full

curvature with respect to Q displacements (bending distortions). Some results

are shown in Tables 7.3 and 7.4.

FromTable 7.3 it can be seen that all the excited states that contribute to the

bending of the linear configuration are of �,p type, which confirms the

general explanation of the origin of the PJT instability [7.2, 7.3] (Section 4.1):

in the linear configuration the overlap of � and p orbitals is zero, while in the

bent geometry this overlap becomes nonzero, thus producing additional cova-

lent bonding. The two main vibronic contributions arising from the PJT

mixing of the ground state with two low-lying excited states �u formed by one-

electron excitations 3�g ! 2p�u and 2�u! 3pg decrease on passing along the

Table 7.3. Contributions of the PJT coupling to the excited

states �u (formed by one-electron excitation i! �) to the

ground-state force constant forAg3
n systems (n¼�1, 0,þ1); all

values are in mdyn/Å [7.94]

i!� Ag3
� Ag3 Ag3

þ

3�g!2pu �7.56 �6.87 �5.08
2�u!3pg �4.43 �1.44 �
1pg!2�u � �1.13 �1.72
2pg!2�u � �0.42 �0.79
K(	)¼

P
iKi

(	) �11.99 �9.86 �7.59
K¼K(0)þK(	) 1.55 �0.47 �2.17

Table 7.4. Contributions of the PJT coupling to the excited

states �u (formed by one-electron excitation i!�) to the

ground-state (Ag) force constant for I3
n
systems (n¼�1,

0,þ1); all values are in mdyn/Å [7.94]

i!� I3
�

I3 I3
þ

1pg!3�u �0.44 �0.38 �0.38
1pu!3�g � �2.62 �4.96
2pu!3�g � �0.58 �0.89
K(	)¼

P
iKi

(	) �0.44 �3.58 �6.23
K¼K(0)þ K(	) 3.13 �2.71 �7.90
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series Ag�3 , Ag3 and Agþ3 . The decrease of the former contribution is due to

some increase of the energy gap between the ground and excited states, while

for the latter it is due to the decrease of the occupation number of the 2�u MO

(2 in Ag�3 , 1 in Ag3 and 0 in Agþ3 ).

Note that these two main contributions come from the excited states asso-

ciated with a transfer of electron density from occupied � to the vacant p
orbital. For Ag3 and Agþ3 , significant contributions come also from the vibro-

nicmixing to the two�u excited states formed by one-electron excitations from

the occupied d shell to the 2�u MO (1pg! 2�u and 2pg! 2�u excited states),

which is partly occupied in Ag3 and unoccupied in Agþ3 . As a whole, the

resulting negative vibronic contribution Kv decreases on going from Ag�3 to

Agþ3 , but more slowly than the decrease of the positive K0 values.

As a result the value of the curvature of the ground-state adiabatic potential

with respect to the bending displacements is positive for Ag�3 and negative for

Ag3 and Agþ3 , and the increase of instability along this series will be stronger

when the contribution of the 5s electron density (which is omitted in the

estimation of K0) is taken into account. The not very large value of K for

Ag3 is in agreement with ab initio calculations of its APES, which yield the 2B2

ground state and bent nuclear configuration in the minima [7.95]. The excited
2�þu state with linear geometry is close in energy to the 2B2 state, and the bent
2B2 state minima were found to be shallow.

For I3, in contrast to the silver series, the negative vibronic contribution to the

curvature increases in absolute value on going from I�3 to I3 and Iþ3 (Table 7.4).

This is due to the fact that in I3 and I
þ
3 there are two new (as compared with I�3 )

excited pu states for which the vibronic mixing to the ground state gives

significant contribution to the K value. These excited states are formed by

one-electron excitations from the occupied jpui and j2pui MOs to the j3�gi
MO, which is singly occupied in I3 and unoccupied in Iþ3 .

The vibronic mixing to the excited �u state formed by the one-electron

excitation 1pg! 3�u, which exists in all three iodine systems, gives a relatively

small contribution to the K value. Since, moreover, the positive nonvibronic

contribution decreases in this series, the whole value of curvature K decreases

essentially on passing from I�3 (for which it is positive) to I3 and to Iþ3 (for

which it is negative). The contribution of the 5s electron density at the nuclei

omitted in the estimation ofK0 just increases all these values by approximately

the same amount. All the excited states of pu symmetry active in the PJTE are

associated with a transfer of electron density from occupied p to the not fully

occupied � bonds, which explains the new covalent bonding created by distor-

tion [7.2, 7.3] (Section 4.1).
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Linear tetraatomic systems were considered mainly in the theoretical treat-

ment of the RTE [7.43]. For acetylene, the high-resolution absorption spec-

trum in the region of 1205–1255 Å [7.102], as well as the highly excited

(Rydberg) states [7.103, 7.104], and the ground state of C2H
þ
2 [7.104–7.106]

were analysed in this way. Further investigation of C2H
þ
2 and C2D

þ
2 in the

~X 2�u and ~A 2�þg states using ab initio CASSCF/CASPT2 electronic structure

and quantum wave-packet calculations reveals a conical intersection of the
2�þg and 2�u states that explains the extremely short lifetime of the 2�þg state

with respect to fast internal conversion [7.107]. Quantum-dynamic examina-

tion of the vibronic singlet and triplet spectra in this molecule is reported in

[7.108].

The RTE was also employed to analyze the ground state of tetraatomics

HCCS [7.109], to predict the spectra of B2H2 (electronic I 1�g term) [7.110,

7.111], B2H
þ
2 (X 2�u term) [7.112–7.114], and to interpret the spectra of HCCO

[7.115, 7.116] and HCCS [7.117, 7.118]. Further details on these and other RT

systems can be found in [7.44–7.47, 7.118].

7.2.2 ‘‘Quasilinear’’ molecules

We call the system quasilinear if it has a linear framework in the high-

symmetry configuration with additional hydrogen atoms that make it non-

linear. This definition is conventional, suited here for JT vibronic coupling

problems, and it may differ from other definitions.

An interesting example of combined JT and PJT effects in a simple seven-

atom quasilinear system is the allene radical cation C3H
þ
4 , the final state of the

photoelectron spectrum of allene. This system was investigated in a series of

papers [7.119–7.124]. In its high-symmetry D2d geometry C3H
þ
4 has a twofold

degenerate ground-state 2E term, the next term being 2B2. The system has a total

of 15 vibrational modes, of which 11 modes, 3A1þB1þ 3B2þ 4E, are JT and

PJT active. Since [E	 E]¼A1þB1þB2, three totally symmetricA1 plus four B

type, B1þ 3B2, are JT active in the distortion of this system in its electronic
2E state. The vibronic mixing of the latter with the first excited 2B2 state takes

place under E vibrations (E 	 B¼E). The authors [7.119] calculated the APES

using a polarized valence triple-� basis set with MP2 perturbation theory for

correlation effects, and determined the linear vibronic coupling constants.

The numerical data for the constants of coupling to all the 11 types of

vibrational modes and their vibrational frequencies are given in Table 7.5. It

is seen that, as expected, the 2E term is coupled to all the three A1 and four

B-typemodes, while the four degenerateEmodes participate in the PJTmixing
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Table 7.5. Constants of linear vibronic coupling of the 2E and 2B2 states to A1 displacements (kA(
2E) and kA(

2B),

respectively) and of the 2E state to B-type displacements (kB(
2E), the 2E� 2B2 mixing (k(2E� 2B2)), and the harmonic

vibrational frequencies o in the ground state 1A1 for the 11 JT and PJT active modes 
i, i¼ 1, 2, . . ., 11, in C3H4
þ

(all quantities in eV) [7.119]


1(A1) 
2(A1) 
3(A1) 
4(B1) 
5(B2) 
6(B2) 
7(B2) 
8(E) 
9(E) 
10(E) 
11(E)

kA(
2E) 0.321 0.294 0.180

kB(
2E) 0.103 0.308 0.114 0.371

kA(
2B2) �0.165 �0.445 �0.005

k(E�B2) 0.245 0.237 0.133 0.044

o 0.3945 0.1846 0.1359 0.1110 0.2944 0.2529 0.1782 0.4055 0.136 0.1069 0.0446



of the 2E and 2B states. The JT distortions with regard to A1 and B2 displace-

ments are illustrated in Fig. 7.15. These results are essential for interpretation

of the photoelectron spectra [7.119, 7.120] and provide a nice demonstration of

the importance of the PJTE in the spectra of even relatively small molecules

such as allene.

Note that the C3H
þ
4 molecule has D2d symmetry in its ground state, in

contrast to cumulenes with an even number of carbons, which belong to the

D2h symmetry. This seemingly small difference in symmetry is very important

from the point of view of the JT and PJT effects: the D2d molecules possess

twofold degenerate electronicE states and e vibrations, whereasD2h symmetry

has no degenerate representations. But theE states of theD2d molecules do not

interact with the e vibrations. Similar toD4h,D4d,D8h,. . . groups, the JT-active

coordinates here are b1 and b2 ([E	E]¼A1þB1þB2) instead of e in trigonal

and cubic groups (Section 3.2), so the JT problem is E� (b1þ b2) instead of

E� e. However, the degenerate e vibrations may be very significant in PJT

mixing of E terms with nondegenerate A or B states.

The final states in the photoelectron spectrum of allene are those of C3H4
þ,

which in theD2d configuration has the ground term ~X 2E followed by the terms

20
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Fig. 7.15. The cross-sections of the APES for the A 2E and ~B 2B2 electronic
states of the allene radical cation (C3H4

þ) along the dimensionless normal
coordinates (a) Q2 (A1 symmetry), (b) Q5 (B2 symmetry), and (c) Q7

(B2 symmetry). The equilibrium geometry of allene in its electronic ground
state (1A1) corresponds to Q¼ 0. (Reprinted with permission from [7.119].
Copyright 1999 American Institute of Physics.)

390 7 Geometry, spectra, and reactivity



~A 2E and ~B 2B2 (formed by one-electron excitation from the 2e, 1e, and 3b2
valence orbitals, respectively), the latter two being rather close in energy. The

photoelectron band of transitions to the ~X 2E state (around 10 eV) was shown

to be JT active with respect to the b1 vibrations (E � b1 problem) [7.123], but a

more elaborate theoretical consideration [7.121, 7.122] shows that one of the

(three) b2 vibrations is also involved significantly.

The spectrum produced by transitions to the ~A2E and ~B 2B2 terms (the ~A2E /
~B 2B2 system) is more complicated. First, a small peak between the ~X 2E band

and the ~A2E /~B 2B2 system at 12.7 eV, initially considered as a correlation

peak, was reconsidered [7.120] and shown to be (possibly) due to a non-

Franck–Condon transition to the mixed state formed by the strong vibronic

coupling between two excited states, namely, the higher component of the JT-

split ~X2E state and the lower component of the ~A2E state that intersect at the

dihedral angle of 1448.
The ~A 2E /~B 2B2 system was subjected to a much more elaborate investigation

[7.119]. In a three-state vibronic Hamiltonian, using the ab initio-determined

vibronic coupling parameters mentioned above and numerical calculations

of the vibronic energy levels and transition probabilities, they took into

account both the JTE in the ~A2E state and the PJT coupling between this

state and the ~B 2B2 one by the degenerate e-type vibrations. The multimode

(15-mode) problem was simplified by introducing effective interaction modes

(Section 3.5). The results explain well this part of the photoelectron spectrum

and show that, while the lower-energy part of it follows relatively well the yield

of earlier calculations of the ~A2E band as due to the JT E� b coupling,

the higher-energy part of the spectrum is essentially determined by the PJT

coupling between the ~A2E and ~B 2B2 states which affects significantly both

the vibronic energy-level positions and the intensities of transitions. This part

of the spectrum cannot be understood, even roughly, without involving

the PJTE.

Further work on this ~A2E/~B 2B2 system in C3H4
þ including all the 15 vibra-

tional modes and quadratic vibronic coupling [7.124] allowed the authors to

significantly improve the assignment of the observed spectral lines to the

corresponding vibrational modes. Vibronic coupling was also used to explain

dynamic processes in polyenes at an ultrafast timescale [7.125].

Another example with another kind of PJT treatment is provided by

formaldehyde in excited states. Formaldehyde, H2CO, is planar in the ground

state, but it is nonplanar in the two lowest excited states 1A2 and
3A2, and has an

elongated C—O bond (1.32 Å instead of 1.2 Å in the ground state) with an

angle between the C—O bond and the H—C—H plane of 208 in the 1A2 state
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and 358 in the 3A2 state [7.126]. The PJTE explains qualitatively and semiquan-

titatively the origin of these peculiar geometries [7.127].

According to the theory (Section 4.1) the planar configuration of H2CO in a

given electronic state may become unstable with respect to the out-of-plane

bending of the C—O bond if, and only if, there are such excited (higher in

energy than that under consideration) states, the vibronic coupling to which is

strong enough to produce the inequality (4.6). To compare the instabilities of

two excited states, singlet and triplet, a more detailed consideration of the

interelectron interaction as it affects the parameters in (4.6) is given, employing

the single-transition approximation (STA), as well as configuration interac-

tion (CI) with single and double excitations [7.127].

The calculation of the excited singlet and triplet states of H2CO for the

planar configuration was performed with a simple basis set, STO-6G,

which proved to be satisfactory for this problem. In the ground state the

molecule is planar withC2v symmetry and the following interatomic distances:

R(C—O)¼ 1.216 Å, R(H–H)¼ 1.8497 Å, R(C—H)¼ 1.093 Å, and R(O–H)¼
2.0308 Å. With this symmetry, the numerical data for the one-electron MO

energy levels and wavefunctions were obtained.

The CI included all the configurations produced by single and double

excitations form the HOMO 2b2 to the lower four MOs 2b1ðp�2Þ; 6a1ð��2Þ,
3b2, and 7a1 that remain unoccupied in the ground state; higher MOs are

neglected. The energies and wavefunctions of the excited singlet and triplet

states obtained in the STA and CI approximations show that the lowest

excited singlet 1A2 and triplet 3A2 states are mainly formed by the electron

excitation from the HOMO 2b2(n2pO) to the LUMO 2b1(p2�), while the next
excited states may be more implicated in the CI approximation. With these

data, the ratio KB1(
3A2) /KB1(

1A2) of the PJT contributions to the instability of

the planar configuration (b1 distortions) in the exited states 1A2 and 3A2 was

estimated by Eq. (4.13) as approximately equal to 1.20 in the STA approxima-

tion and 1.31 in the CI approximation.

Thus the essentially nonplanar geometry of the formaldehyde molecule in

two excited states, singlet 1A2 and triplet 3A2, as compared with the planar

configuration in the ground state, was attributed to the vibronic PJTmixing of

these states with higher excited states of appropriate symmetry: 1B2(2b2!6a1)

and 1B2(2b2!7a1), and
3B2(2b2!6a1) and

3B2(2b2!7a1), respectively [7.127].

This vibronic coupling produces the b1 distortion of the planar configuration

as predicted by the general theory. It is shown also that the elongation of the

C—Obond in the excitedA2 states as compared with the ground state is due to

the change of the corresponding diagonal orbital vibronic constants (see

Eqs. (2.24) and (2.25)) produced by the above one-electron excitation [7.127].
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7.3 Trigonal molecular systems

7.3.1 Triangular triatomics X3

Equilateral triangular triatomics X3 are the simplest systems with a threefold

axis of symmetry that allow for twofold degenerateE terms, ground or excited.

In these states, if only the linear coupling is taken into account, the JT

distortions result in the ‘‘Mexican-hat’’-type APES with a conical intersection

in the center (Section 3.2, Fig. 3.3).With the quadratic coupling terms included

the APES acquires three equivalent minima, becoming a ‘‘tricorn’’ (Section 3.2,

Figs. 3.4 and 3.5); at each of these minima the equilateral triangle is distorted

to an isosceles one.

For triangular H3 the topography of the APES was shown [7.128] to have

these ‘‘tricorn’’ features with instability and dissociation to H2þH along the

three minima (see also [7.129–7.136] and references therein). The presence of

the upper branch of the Mexican hat and the topological phase factor

(Section 5.7) influence essentially the reactive scattering process of this system

and its isotopomers [7.137–7.139]. Since triangular H3 is stable in some excited

states, most important are the implications of this topography in the emission

spectra. The optical emission spectra of Rydberg-excited (n¼ 3) H3 and D3

was calculated taking into account the JTE in the ground state (2p)1E0. In the

excited-state components (3d)1E 00 and (3d)3E0 (separated by about 200 cm�1),

which give the most contribution to the spectrum, the JTE is very weak and

hence the emission band shape is expected to be ‘‘two-humped’’ due to the JT

APES in the ground state (Section 6.1.1). Using the time-dependent wave-

packet method and the vibronic coupling theory the authors [7.137] calculated

the expected emission spectra in good agreement with the experimental data.

For the JTE in the Hþ3 ion see [7.134, 7.136].

The alkali trimers Li3, Na3, andK3 are stable, and they possess an electronic

ground-stateE term in the regular triangular configuration. Quite a few papers

are devoted to the JTE in these systems (see [7.140–7.161] and references

therein). The first calculations of their APES beyond the HF approximation

were carried out in the DFT approach (LSD approximation) using pseudo-

potentials for the contribution of core electrons [7.140] (see references in

[7.140] for earlier attempts). In all the three cases the equilateral triangular

D3h configuration is unstable, with a conical intersection at this point (as in

Figs. 3.3 and 3.4 in Section 3.2) and extrema points at the three obtuse

(isosceles with the apex angle larger than 608) and three acute triangles.

In Li3 all these extrema points have approximately the same energy, so there

is a trough along which the system performs free rotations (more precisely,
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pseudorotations) as illustrated in Fig. 3.5 (Section 3.2). This means that the

quadratic coupling and cubic anharmonicity is very weak to negligible (at least

in this approximation of the calculations). For Na3 the obtuse configurations

are minima, while the acute ones are saddle points that form a potential barrier

between the minima of about 1 kcal/mol. The K3 system APES is qualitatively

the same as in Na3 with some different interatomic distances and angles in the

distorted triangle. The ionized systems, the cations Liþ3 ; Naþ3 ; and Kþ3 , are

regular triangles in the ground state, as expected for the nondegenerate elec-

tronic states without PJT implications.

Some numerical data for alkali X3 geometry are given in Table 7.6. Vibronic

coupling constants and other JT parameters estimated based on the APES

geometry and spectroscopic data are given in Table 7.7 for several of the

systems with a threefold axis of symmetry and an electronic degenerate

E state discussed below in this and the next sections. They include the dimen-

sionless JT stabilization energy D¼EJT/�hoE, the vibronic coupling constants

k and g (Section 3.2, Eqs. (3.38)), as well as the JT-active oE and totally

symmetric oA vibrational frequencies, where available. Because of compli-

cated topology with conical intersections, minima, and saddle points, and

approximations used in their evaluation, not all the data in this table seem to

be sufficiently reliable.

Among the triangular JT X3 systems Na3 and Li3 are the most studied

both theoretically and experimentally. The reason is their relatively simple

electronic structure and existence in the vapor phase that allows one to use jet-

cooled supersonic beam expansion and optical–optical double resonance

with high-resolution resonant two-photon ionization techniques [7.143]. The

molecule Na3 may be regarded as a probe system serving to provide better

Table 7.6. Some numerical data for Li3, Na3, and K3 in their minima (obtuse

triangular) and saddle-point (acute triangular) configurations; R is the smallest

interatomic distance, De is the dissociation energy, and � is the apex angle

Extrema points Parameters and units Li3 Na3 K3

Minima De (eV) 0.64 0.38 0.38

R (a.u.) 5.3 6.0 7.5

� (degrees) 73 80 77

Saddle points De (eV) 0.64 0.35 0.36

R (a.u.) 5.1 5.8 7.2

� (degrees) 52 50 41
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understanding of the implications of the JT and PJT effects which can be used

as a base for the treatment of more complicated systems.

To explain the high-resolution two-photon ionization spectrum of Na3 the

authors [7.143] attributed the so-called B band (600–625 nm) to transitions to

the excited electronic state, which is an E state too. Figure 7.16 illustrates

their identification of the spectral lines. From the experimental spectrum we

see, first, a long progression composed of nearly equally spaced doublet

lines at o� � 128 cm�1 which can be attributed to the higher-frequency radial

vibrations in the trough along the � coordinate (Section 3.2, Figs. 3.3 and 3.4,

Eq. (3.31)), plus a series of more closely spaced lines that represent the

pseudorotation energy levels for the motions along �. A series of weaker

lines was attributed to the totally symmetric harmonic vibrations with

oa¼ 137 cm�1. Ignoring the latter and considering the pseudorotations to

be free rotations (i.e. neglecting the energy barrier between the minima along

Table 7.7. Dimensionless JT stabilization energies D¼EJT/�hoE, linear k and

quadratic g vibronic coupling constants, and frequencies of E-type and totally

symmetric A-type vibrations for the JT E� e problem in some small molecules

with a threefold axis of symmetry

System D¼EJT/�hoE k g oE (cm
�1) oA(cm

�1) Reference

Li3 1.92 1.96� 0.33 0.22� 0.07 278� 61 [7.59]

Li3 2.53 2.25� 0.24 0.14� 0.06 250� 41 [7.140]

Na3 4.50 3.00� 0.08 0.20� 0.03 97� 5 [7.142]

Na3 7.56 3.89� 0.22 0.21� 0.06 98� 9 [7.140]

K3 21.98 6.63� 2.48 0.44� 0.53 34� 11 [7.140]

Cu3(
2E0) 2.27 1.86 0.223 137 269.5 [7.167]

Cu3(
2E0) 2.48 2.23 0.154 224 [7.162]

Cu3(X
2E0) 11.99 4.90� 1.41 0.35� 0.19 94� 27 [7.164]

Cu3(X
2E0) 1.22 1.56 0.274 132 270 [7.141]

Cu3(
2E00) 0.04 0.273 0.127 138.7 [7.141]

Ag3(
2E0) 1.86 1.93 0.25 99 121 [7.173]

Ag3(
2E0) 3.72 2.73 134 [7.163]

Ag3(
2E00) 0.02 0.19 0.02 96 158.2 [7.173]

Ag3(A
4E0) 0.29 0.757 3.86 61.9 179.7 [7.176]

VF3 0.306 0.78 0.044 784 692 [7.183]

C3H3
� 2.10 2.04� 0.04 0.02� 0.02 1410� 51 [7.211]

C3(CH2)3 3.79 2.75� 0.03 0.04� 0.01 701� 13 [7.227]

MnF3 3.10 2.490 0.896 810 758 [7.184]
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the � coordinate), these energy levels may be approximated by the following

equation:

En; j ¼ ðnþ 1
2
Þo� þ Am2 (7:41)

where n is the quantum number of the high-frequencyo� vibrations,A¼ �h2=2I

is the constant of internal rotations with the moment of inertia I¼M�0
2, M is

the reduced mass of Na3, �0 is the distortion amplitude (Eq. (3.37)), and m

is the half-integer quantum number that emerges from theoretical treatment

(Eq. (5.18)).

By fitting the experimental line positions with this formula and with the

constants of the Hamiltonian, Eq. (3.38), the authors [7.143] got a reasonable

estimation of the constants of the JT linear coupling, k¼ 4.04, and quadratic

coupling, g¼ 0.012, the JT stabilization energy EJT¼ 1050 cm�1, the barrier

between the minima �¼ 26 cm�1, and the tunneling splitting 3� � 3–5 cm�1.

The authors claim that these results are the first manifestation of the half-

integer quantum numbers for the pseudorotation in the exited state of Na3
predicted by the theory (Section 3.2, Eq. (5.18)).

However, this identification of the B band in the Na3 spectrum has been

contested in a series of consequent papers [7.141, 7.151, 7.152]. First, ab initio

calculations by the GVB CI method [7.144] revealed that the linear vibronic

(b)

(a)

605 610 615 620 625 [nm]

475 500 525 550 575 600 625 650 675 [nm]

3/2 1/2

9/2 7/2 5/2 3/21/2
9/2 7/2 5/2 3/21/2

9/2 7/2 5/2 3/21/211/2
5/2

Fig. 7.16. (a) The resonant two-photon ionization spectrum of Na3 in the
visible region. Spectra in different regions are not rigorously normalized with
respect to variation in dye-laser parameters. (b) Expanded spectrum of the
region 600–625 nm. State labels correspond to the assignment given in [7.143].
(Reprinted with permission from [7.143]. Copyright 1986 American Physical
Society.)
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coupling in the excited 2E 0 state is weak, but there is an 2A1 state very close in

energy above the 2E 0 state which affects essentially the electronic transition to

the latter (theE–A energy gap�� 100 cm�1). The pseudo JT 2E–2A1 mixing of

these two states (Section 4.2) was fully considered in [7.151], with the result

that the origin of the individual transitions in the B series should be recon-

sidered. The authors [7.151] solved the combined problem for two models:

(1) a JT model in which the PJT E–A coupling constants, linear l and quad-

ratic f, are neglected; and (2) a PJTmodel in which the JT coupling is neglected

(k¼ g¼ 0) (in both cases the E–A energy separation is neglected, �¼ 0).

By fitting the first 19 energy levels to those observed experimentally, it was

shown that the PJT model with l/o¼ 3.07 and f/o¼ 0.0045 (o¼ 127 cm�1) is

considerably better than the JT model (the root-mean-square error in the

former is 1.7 cm�1 as compared with 2.3 cm�1 in the latter).

The lowest branch of the APES in this PJT system in the space of the two

E-type vibrations is a trough, similar to the JT E� e problem one, but with

a different behavior at the intersection (Fig. 7.17). Hence there are pseudo-

rotations along the bottom of the trough. If we neglect the rather weak

quadratic PJT coupling ( f¼ 0), the energy levels follow the equation [7.151]

En;j ¼ ðnþ 1
2
Þo� � ð�2oÞ þ ðo3=4�2Þm2 (7:42)

where l, as above, is the PJT linear coupling constant, andm¼ 0, 1, 2, . . . is the

quantum number of the free pseudorotation which, distinct from the JT case,

is an integer: in the PJTE there is no wavefunction sign-change upon encircling

Fig. 7.17. A schematic presentation of the cross-section of the APES in the
case of an (EþA)� e PJTE along one of the E-type coordinates (quadratic
terms are neglected). The whole APES is cylindrically symmetric and allows
free pseudorotation of the distorted configuration.
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the origin (Section 5.7), and no superimposed condition of half-integer m

values (no fractional quantization).

The PJTmodel was confirmed bymore elaborate calculations of the relative

intensities of the individual lines in comparison with the experimental values.

To get the vibronic states, the E0 data for the ground electronic state were

re-estimated for the best fit to theAPES and then refined for the PJT spectrum.

The obtained parameter values are k¼ 5.350, g¼ 0.076, o�¼ 82.2 cm�1,

o�¼ 49.7 cm�1 and, �¼ 199 cm�1. The comparison of intensities obtained in

the JT and PJT models confirms, again, that the latter fits the experimental

data better.

An even more unambiguous experimental confirmation of integer (not

fractional) quantization of the vibronic energy levels in the excited state of

the B site of the Na3 spectrum was obtained from the analysis of the rotational

structure of, and Coriolis interaction in, the spectral bands [7.147]. For a

triangular X3 (symmetric-top) molecule the rotational energy is given by the

following approximate expression [7.48] (see Eq. (6.46)):

E ¼ BJðJ þ 1Þ � ðB� CÞK 2
c � 2C�Kc (7:43)

whereB andC are the rotational constants (theC axis is perpendicular to the X3

plane), J and Kc are the rotational quantum numbers of a symmetric top, and

the last term describes the Coriolis interactions with the Coriolis constant �. For

a strong JTE or PJTE the effective Coriolis constant can be taken equal to the

quantum number of pseudorotation m [7.48] (see also Eq. (6.48) with p¼ 0).

It emerges from Eq. (7.43) that the Coriolis splittings for different Kc values

and integer m values will differ essentially from those for half-integer m.

Moreover, the ground vibronic state with m¼ 0 should not be split by the

Coriolis interaction, whereas it should be split in the state with fractional

quantization where m ¼ 1
2
. The analysis of the high-resolution rotational

structure of the optical transitions [7.147] confirms the integer-quantization

model. For m¼ 0 only one P and one R branch of unsplit lines are observed,

while for nonzero m values both the P and R lines are split, the splitting

being approximately equal to 4CKcm. A total of 106 transitions for n¼ 1, 2

and m¼ 0, 1, 2, 3, 4, 5 were assigned in this way. This assignment based

on rotation and pseudorotation interaction (rovibronic coupling) was further

refined taking into account more sophisticated theoretical consideration

[7.152] and the influence of quadratic coupling which makes the pseudo-

rotation not free, but hindered.

With these works the spectrum of the Na3 system has been given one of the

most detailed interpretations known so far for JT and PJT systems.
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Another detailed interpretation of high-resolution spectra with essential JT

implications has been performed on Li3 [7.154–7.157]. This molecule is similar

to Na3, but has fewer electrons (meaning advantages in ab initio calculations)

and a smaller mass (meaning a larger rotational constant that allows better

resolution of the rovibronic-transition single lines). The authors used two-

photon ionization of 21Li3 with continuous-wave lasers and mass-selective

detection of Liþ3 to record rotationally resolved spectra of the electronic

A 2E00 X2E0 transition. The spectra were analyzed by optical double-

resonance techniques in combination with accurate ab initio calculations of

the APES and rovibronic energy levels of both electronic states. The APES of

theE state was shown [7.155] to have the JT stabilization energyEJT¼ 502 cm�1

and the barrier between the minima �¼ 72 cm�1 in the ~Xð12E0Þ electronic state,
yielding a ground-state tunneling splitting of 3�¼ 36 cm�1, while in the ~Að12E00Þ
state EJT¼ 787 cm�1, �¼ 156 cm�1, and 3�¼ 5 cm�1 (for Na3 the tunneling

splittings for these two states are 0.003 cm�1 and 0.017 cm�1, respectively

[7.154, 7.160]). The 3� values give the splitting between the lowest E and next

A pseudorotation states.

Using an effective rovibronic Hamiltonian [7.161] the authors [7.155] ana-

lyzed the rotational structure of the rovibronic spectra and, after a series of

corrections, reached an accuracy of 0.001 cm�1. The results confirm that the

ground vibronic state isE, in accordance with the Berry-phase requirement for

this case of rather weak quadratic coupling (Section 5.3), and the rovibronic

energy levels are described well by an effective pseudorotation Hamiltonian

with five parameters: three rotational constants for the system in the minimum

C2v configuration plus the vibronic and Coriolis coupling constants.

Further understanding of Li3 was achieved by investigating the origin of

the hyperfine structure of the A 2E00  X2E0 transition [7.156]. The authors

calculated the vibronic density matrices that generate nonsymmetrical effective

spin densities at the nuclei of the JT-distorted system, and showed how they

give rise to a large variety of observed hyperfine patterns in the transition lines.

For Cu3 calculations [7.141, 7.162–7.166] yield a Mexican-hat-type APES

in the ground state with three minima and three saddle points, in accordance

with general theory (Section 3.2). At the minima, the configuration

Cu1–Cu2–Cu3, similar to the alkali metals, is an obtuse isosceles triangle:

R(1–2)¼R(1–3)¼ 4.474 a.u., R(2–3)¼ 5.035 a.u. At the saddle points the

triangle is acute: R(1–2)¼R(1–3)¼ 4.753 a.u., R (2–3)¼ 4.383 a.u. [7.162,

7.163]. The JT stabilization energy is estimated as EJT¼ 555 cm�1 with a

barrier between the minima �¼ 171 cm�1. In another estimation [7.165]

EJT¼ 280 cm�1 and �¼ 59 cm�1.
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The parameters of the APES can also be determined from comparison of

the vibronic energy-level positions with those extracted from absorption, emis-

sion, two-photon ionization, and photoelectron spectra [7.141, 7.162, 7.167,

7.168]. In particular, by fitting the calculated energy levels obtained from numer-

ical diagonalization of the Hamiltonian (3.38), the authors [7.167] obtained the

APES shown in Fig. 7.18 with the numerical values of the vibronic coupling

constant k¼ 1.86, g¼ 0.223, and oE¼ 137 cm�1 in the D3h configuration (the

totally symmetric vibration frequency is estimated as oA¼ 269.5 cm�1). They

estimated the JT stabilization energyEJT¼ 305 cm�1 and the barrier between the

minima �¼ 111 cm�1. With the zero-point vibrations at 118 cm�1 (higher than

the barrier �), the authors [7.167] concluded that there are no localized states

in the minima in this system and the JT distortions perform hindered pseudo-

rotations along the bottom of the trough of the Mexican hat (Section 3.2).
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Fig. 7.18. The lower APES for the 2E 0 state of Cu3 obtained from the
experimental spectra [7.167]. The contour spacing equals 27.4 cm�1. Dashed
contours correspond to the classical turning points of the zero-point level.
(Reprinted with permission from [7.167]. Copyright 1986 American Chemical
Society.)
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The JT distortions in the ground state 2E0 of the copper trimer Cu3 (Fig. 7.18)

and its obtuse triangular configurations in the C2v minima were confirmed

by ESR measurements of copper isolated in an adamantane matrix [7.169].

The spin density was found to be localized mainly on the two terminal atoms.

However, the interpretation of the nature of the excited state that participates

in the electronic transition observed at 5397 Å in two-photon ionization and

fluorescence [7.170, 7.171] was a subject of controversial discussion [7.168].

The first assignments of this spectrum as due to 2E00 !2E0 transitions was

questioned [7.168] based on a more detailed comparison with the 2A01 2E0

transition in the fluorescence spectrum, especially on the selection rules for

vibronic transitions from the vibrationally excited 2A01 levels. More work on

intensities may be useful to further elucidate this problem.

The APES of Ag3 in the ground state is similar to that of Cu3. Ab initio

calculations [7.163] (see also [7.172, 7.173]) show that at theminima the regular

triangle configuration is distorted to an obtuse isosceles triangle, R(1–2) ¼
R(1–3)¼ 5.119 a.u. and R(2–3)¼ 5.810 a.u., while at the saddle points the

triangle is acute: R(1–2)¼R(1–3)¼ 5.452 a.u. and R(2–3)¼ 5.054 a.u.,

with EJT¼ 498 cm�1, �¼ 108 cm�1, and oE¼ 134 cm�1. The corresponding

vibronic constants together with data obtained by other authors are listed in

Table 7.7.

The absorption spectrum of Ag3 was interpreted [7.174] as due to the

electronic transitions 2E00 2E0 with a strong JTE in the ground state 2E0

(k¼ 1.93, g¼ 0.25) and a much weaker JTE in the excited state 2E00 (k¼ 0.19,

g¼ 0.02). These parameters give a good fit of the calculated vibronic level

positions with those observed experimentally in the lower range of vibrational

energies. However, at higher energies the calculations predict fewer bands than

observed. The authors [7.174] assume that inclusion of spin–orbital inter-

actions quenched by vibronic reduction factors (Section 5.6) may resolve the

problem. No full calculations of this kind have been performed so far.

In the series Ag�3 ;Ag3;Agþ3 discussed above (Section 7.2.1), the first system,

Ag�3 , is linear, Ag3 is a JT-distorted triangle, and Agþ3 is a regular triangle

(Fig. 7.14). This sequence of configurations was confirmed by experimental

studies of ultrafast dynamics using a charge-reversal technique based on

femtosecond spectroscopy [7.100]. It can be understood qualitatively by

means of JTE-based argumentation: Agþ3 has a nondegenerate ground state

and remains in a regular triangle configuration, whereas in Ag3 the additional

electron occupies the twofold degenerate 2E0 state in the triangular configura-

tion, resulting in the JT distortion with an obtuse triangle and the electronic

state 2B2 at the APES minimum. The next electron in Ag�3 , if occupying the
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same E 0 orbital, enhances the distortion of the triangle, resulting in a more

stable linear configuration in the state 1� 0g.

For Au3 [7.163, 7.172, 7.173, 7.175–7.177] in the ground state 2E0 the APES

is qualitatively similar to Cu3 and Ag3, but the quadratic coupling is very

weak [7.175], EJT¼ 561 cm�1 and �¼ 45 cm�1, so the system is assumed

to perform almost free pseudorotations. The distortions at the minima are

R(1–2)¼R(1–3)¼ 5.021 a.u., and R(2–3)¼ 5.469 a.u., while at the saddle

points R(1–2)¼R(1–3)¼ 5.287 a.u. and R(2–3)¼ 4.932 a.u. Recent relativistic

coupled-cluster calculations [7.177] confirmed the low energy barrier between

the minima.

The complicated vibronic spectrum of the so-called ~A ~X system

(13,300–14,000 cm�1) observed in Au3 by means of resonant two-photon

ionization technique [7.176] is assigned to a spin-forbidden doublet (S ¼ 1
2
)-

to-quartet (S ¼ 3
2
) transition, ~A4E0  ~X 2E0, in which both states are JT active.

The assignment is based on fitting 25 vibronic levels of the excited ~A state

taking into account the linear JT coupling plus spin–orbital interaction and

significant anharmonicity. The combined effect of spin–orbit coupling and

anharmonicity in the JT problem is considered seemingly for the first time in

this paper [7.176].More elaborate calculations [7.178] show that the spin–orbital

splitting of the order of�0.2 eV quenches the JT distortion in the groundE state

of Au3, so the system in this state retains theD3h symmetry (Section 4.2). Similar

calculations for Pb3 and Pbþ3 [7.179] show that while in Pbþ3 the JT distortion is

quenched by the spin–orbital interaction, it is not completely removed in the

neutral Pb3 system, the latter thus being subject to the JTE with a tri-minimum

APES of the E� e problem. Regarding calculations for Al3, see in [7.180].

7.3.2 Trigonal tetraatomic AB3 systems

First consider the JT MX3 systems with M as a transition metal and X as a

halogen or hydrogen (see [7.181–7.197] and references therein). CuF3 is one of

many examples. In the ground singlet state 1E of the planarD3h configuration

this system has the outer electron configuration (e00)4(a 01)
2(e0)2 (note that only

one of the twofold degenerate e orbitals is occupied by two electrons). At

the minima of the JT E� e APES within the planar configuration, CuF3 is

almost T-shaped with C2v symmetry and the following interatomic distances

[7.181]: R1(Cu—F1)¼ 1.7305 Å, R2(Cu—F2)¼R3(Cu—F3)¼ 1.7148 Å, and

ffF1—Cu—F2¼ffF1—Cu—F3¼ 95.48. The EJT value and saddle-point

positions are not reported. The lowest triplet excited state 3A02 has undistorted

D3h symmetry.
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VF3 has a 3E00 ground state in the D3h configuration [7.182] and three

equivalent C2v minima on the APES, one of them at R1(V—F1)¼ 1.768 Å,

R2(V—F2)¼R3(V—F3)¼ 1.748 Å and ffF2—V—F3¼ 1298. At one of the

saddle points these parameters are 1.744 Å, 1.761 Å, and 1128, respectively.
The JT stabilization energy is estimated as EJT¼ 270 cm�1 with the barrier

between the minima �¼ 24 cm�1.

Similar to CuF3, theMnF3molecule has a strong JTE in the ground 5E0 state

of the planar D3h symmetry (for which the Mn—F distance is R¼ 1.754 Å)

[7.183]. At the minima of the APES the molecule remains planar with a nearly

T-shaped C2v symmetry: R(Mn—F1)¼ 1.735 Å, R(Mn—F2)¼R(Mn—F3)¼
1.753 Å, and ffF2—Mn—F3¼ 145.28. At the saddle point these parameters are

1.777 Å, 1.734 Å, and 105.28, respectively. The JT stabilization energy is rather

large, EJT¼ 2515 cm�1, with �¼ 726 cm�1.

In another work on MnF3 [7.184], similar data obtained by both gas-phase

electron diffraction and quantum-chemical calculations are reported.

The system has three equivalent C2v minima with a distorted planar config-

uration and R(Mn—F1)¼ 1.728� 0.014 Å, R(Mn—F2)¼R(Mn—F3)¼
1.754� 0.008 Å, and ffF2—Mn—F3¼ 143.3� 2.08. The JT stabilization

energy is calculated as 25 kJ/mol on the CASPT2 level with the barrier between

the minima �¼ 6.4 kJ/mol. Similarly, three minima with equivalent T-shaped

configurations and an energy barrier of 3.6 kcal/mol between themwere found

in AuF3 by means of electron diffraction and electronic-structure calculations

[7.185]. However, correctly attributing the distortions to the JTE, the authors

[7.185] did not reveal the degenerate E state of the D3h configuration that

causes this effect: they refer to the states 3A0 at 46 kcal/mol (above the bottom

of the minimum) and 1A0 at 13 kcal/mol higher, both nondegenerate; these

states do not produce the JTE. Note that similar MX3 systems in nondege-

nerate states (e.g., CrF3 [7.195], FeF3 [7.196], etc.) have regular undistorted

D3h symmetry (see also [7.197, 198] and Section 7.6.1).

Relativistic calculations for AuH3, AuF3, and AuCl3 are reported in [7.186].

Other MF3 andMH3 systems withM¼N, P, As, Sb, and Bi were studied with

regard to the barrier to inversion, slightly involving the JTE and PJTE in the

interpretation of the results [7.187, 7.188]. Recent relativistic calculations of

EF3 with E¼ I, At, and the element 117 show that sufficiently strong relati-

vistic interactions quench the JT instability [7.189].

Several series of trihydrides MH3 with M¼Sc, Ti, V, Fe [7.190], M¼Cr,

Mo, W [7.191], M¼Cu, Ag, Au [7.192], and M¼Mn [7.193] were calculated

using high-level ab initio methods. In the first of these series only TiH3 and

VH3 have low-lying excited degenerate E states with small JT distortions

[7.190]. In the second series all the trihydrides, CrH3, MoH3, and WH3, were
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found to be pyramidal with large energy barriers to inversion [7.191]. This

geometry is a consequence of the PJT instability of the planar configuration

with respect to A002 type out-of-plane displacement of the central atom due to

the vibronic mixing to the excited A002 state, quite similar to the NH3 molecule

(see below and Section 4.1).

In the first excited state 4E 0 of CrH3 the JT distortion of the planar

configuration is strong: R1(Cr—H1)¼ 1.563 Å, R2(Cr—H2)¼R3(Cr—H3)¼
1.681 Å, and ffH2—Cr—H3¼ 167.78 in the minima (in the 4B2 state), while

R1¼ 1.733 Å, R2¼R3¼ 1.592 Å, and ffH2—Cr—H3¼ 83.88 at the saddle

points (in the 4A1 state). The JT stabilization energy is EJT¼ 5246 cm�1. In

MoH3 and WH3 the lowest excited state is 2E001 , for which the JTE is expected

to be much weaker [7.191]. In the CuH3, AgH3, and AuH3 series [7.192]

(see also [7.186, 7.194]) the ground state in the planar configuration D3h is

degenerate,1E0, and undergoes a relatively strong JT distortion. In the lowest

excited triplet state 3A02 the planar configuration is unstable due to the PJTE;

the two equivalent minima of the APES correspond to pyramidal structures,

similar to those discussed for the CrH3, MoH3, and WH3 series.

MnH3 in its ground state 5E 0 ofD3h symmetry is unstable subject to a strong

JTE [7.193]. In the APES minima R1(Mn—H1)¼ 1.6831 Å, R2(Mn—H2)¼
R3(Mn—H3)¼ 1.6488 Å, and ffH2—Mn—H3¼ 44.68 and EJT¼ 7647 cm�1.

At the saddle points R1¼ 1.5973 Å, R2¼R3¼ 1.6602 Å, and ffH2—Cr—H3¼
91.28. The energy barrier between the minima is relatively high, �¼ 1829 cm�1,

meaning that there should be localized states in the minima and tunneling

splitting of their vibrational levels (Section 5.3).

Other similar series of tetraatomics studied with regard to the JTE include

AH3 andAX3 systemswithA¼N,P,As, Sb, Bi;X¼F,Cl, Br, I [7.27, 7.28, 7.200,

7.201]. The authors present the PJT vibronic coupling of the ground state

(s-type state of the atom A) with the excited one (that includes p type of A) as

an (ns)2 lone-pair effect, discussed in more detail in Section 7.1.2, which is in

fact an (AþT1u)� t1u PJT problem (Section 4.2). Using the DFT method of

electronic-structure calculations they succeeded at separating the contribution

of vibronic coupling to the optimized geometry and showed that the distor-

tions from high-symmetry configurations are due to the PJTE (see also [7.22,

7.202]). The E� e problem for the NO3 molecule was considered with a sixth-

order Hamiltonian derived in a diabatic presentation (Section 2.1) [7.203].

Al3O is an E� e JT system in the ground state [7.204–7.208]. High-level

UB3LYP/6-31þG� calculations [7.208] yield the following interatomic

distances in the base triangle with the oxygen atom in the center:

R(1—2)¼ 1.992 Å and R(1—3)=R(2—3)¼ 1.835 Å with the obtuse angle
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�¼ 1638 at the minima, and R(1—2)¼ 1.780 Å, R(1—3)¼R(2—3)¼ 1.950 Å

with �¼ 91.98 at the saddle points, the energy barrier between them being

�¼ 2.71 kcal/mol. Note that different methods of calculation yield significantly

different numerical values of these parameters [7.204–7.207]. A rather large value

of the JT stabilization energy EJT¼ 26.4kcal/mol is reported in MP2/6-31G ab

initio calculations [7.204], but the authors are not sure of this number. For Al3O
�

in the same approximation as for Al3O [7.208] the above parameters for the 1A

state in the minimum are R(1—2)¼ 2.012 Å, R(1—3)¼R(2—3)¼ 1.835 Å,

and R(1—2)¼ 1.735 Å, R(1—3)¼R(2—3)¼ 1.987 Å at the saddle points

[7.208]. It is noticeable that in this system the lowest term in D3h symmetry is

nondegenerate and stable with regard to distortions (provided the PJTE is

weak), but the next closest in energy is a JT 1E term that by distortions reduces

to 1A states (in the minima), which are lower in energy than the D3h states.

For JT distortions in H3O see [7.205], while the treatment of the JTE in the

hydronium ion H3O
þ is given in [7.209].

An example of how the origin of observed geometry of small molecular

systems can be explained as due to the PJT distortion of high-symmetry

configurations is provided by the calculations for molecular ammonia NH3

[7.199]. In a recent publication [7.210] a rather full vibronic-coupling investi-

gation of the combined JTE in the ~A2E state and its PJTmixing with the ~X2A1

state is performed in order to explain the origin of photoelectron transitions to

these states and the radiationless decay of the ~A2E state. The authors calcu-

lated the JT and PJT vibronic coupling parameters and Franck–Condon

factors using high-level ab initio calculations, while the photoelectron band

shapes were obtained with all the six vibrational degrees of freedom included.

A conical intersection on the APES occurs due to the JT splitting of the ~A2E

state; combined with the ~X� ~A PJT interaction it causes a rather fast decay

of this state. The PJTE seems to be most important in the origin of the

photoelectron spectrum of NH3.

The JTE in the 2E0 state of SOþ3 was analyzed in a model of linear coupling

to two e modes, o3 and o4 [7.153]. By fitting the corresponding calculated

frequencies and intensities of the electronic transitions to the experimentally

determined band shapes of the photoelectron spectrum of SO3 the authors

determined that the JT stabilization energies for each of the two modes

are D3¼E 0JT/�ho3¼ 0.06, D4¼E00JT/�ho4¼ 0.35, the total being thus

EJT¼E0JTþE00JT¼ 230.4 cm�1 (o3¼ 1390 cm�1 and o4¼ 420 cm�1).

Vibronic coupling in the radiationless decay of the 2E0 state of NO3 is

considered in [7.211]. The APES in Al3H was explored in [7.180]. Distorted

configurations were found in geometry optimization of Si3C, Si3C
þ, and
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Si3C
�, as well as in Si3O, Si3O

þ , and Si3O
� [7.212], but the authors do not

discuss their origin in terms of the JTE.

7.3.3 Other systems with a threefold symmetry axis

Systems with a threefold axis of symmetry which have more than four atoms

possess the same E terms and E� e JT problems as X3 and MX3, but their

quantitative consideration is complicated by the presence of more vibrational

modes and more than one e-type vibration. The rigorous treatment of such

JT systems should involve the multimode JT problem (Sections 3.5 and 5.5).

However, in some cases the motions of the atoms outside the main triangular

framework can be considered as separated from (or, alternatively, completely

incorporated in) the latter, thus not participating essentially (individually) in

the JT vibronic coupling (see Sections 3.5 and 5.5 for possible reduction of the

multimode problem to an ideal one-mode one).

We begin with pentaatomic systems. A full theoretical investigation of the

JTE in the methoxy radical CH3O was carried out using high-level ab initio

(CASSCFþMRCI) calculations including all the three active e-type JT modes

and three totally symmetric (from a total of nine) vibrations and anharmoni-

cities [7.213] (for earlier calculations see the references in [7.214–7.218]). This is

seemingly the first multimode JT problem solved in full by ab initio calculations

with some simplifications but without adjustable parameters. Tables 7.8–7.12

list some of the results on vibrational frequencies without and with the vibronic

coupling included (both at the minima and at saddle points), the geometry

parameters, the vibronic coupling constants, and anharmonicity.

Table 7.8. Geometry parameters of CH3O in the undistorted high-symmetry C3v

configuration and in the JT-distorted minima and saddle points of the APES

(from [7.254])

CH3O

R(C—O)

(Å)

R�(C—Hb)

(Å)

R(C—Ha)

(Å)

ffHb—C—O

(degrees)

ffHa—C—O

(degrees)

ffHa—C—Hb

(degrees)

Undistorted,

C3v 1.3934 1.0892 1.0892 109.975 109.975 109.975

Distorted,Cs

minimum 1.3934 1.0923 1.0876 105.3 112.3 107.9

Distorted,Cs

saddle point 1.3934 1.0867 1.0904 113.4 108.3 110.3
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Table 7.11. Bilinear constants bij that couple different displacements in

the quadratic approximation of the JT E� e problem in CH3O (in cm�1)

(from [7.213])

b14 b24 b34 b15 b25 b35 b16 b26 b36

�8.1 �26.7 3.7 �15.3 106.5 �54.1 31.1 �35.5 �128.5

Table 7.9. Vibrational harmonic frequencies (in cm�1) of A (o1, o2, o3) and

twofold degenerate E (o4, o5, o6) symmetry in the undistorted configuration

and at the JT minima and saddle points of CH3O (under the distortion the

e vibration splits into a0 and a00, but o4 does not split; the imaginary o6(a
00)

indicates the saddle point) (from [7.213])

CH3O o1 o2 o3 o4(a
0) o4(a

00) o5(a
0) o5(a

00) o6(a
0) o6(a

00)

Undistorted C3v 3065 1470 1070 3153 3153 1509 1509 1116 1116
JT-distorted Cs

minimum 3065 1470 1070 3145 3147 1544 1512 1003 896
JT-distorted Cs

saddle point 3065 1470 1070 3144 3144 1482 1542 1180 799i

Table 7.10. Linear (ki, i¼ 4, 5, 6) and quadratic (gii and gij) vibronic

coupling constants and anharmonicity constants (fi) for CH3O (in cm�1)

(from [7.213])

i ij

1 2 3 4 5 6 45 46 56

ki �55.4 �216.6 �617.0
gii 8.0 27.2 �80.3
gij 5.4 �16.9 40.9

fi 178 141 569

Table 7.12.Dimensionless JT stabilization energies Di and inter-minima barriers

�i in CH3O for three JT-active displacements i¼ 4, 5, 6 (from [7.213])

D4 D5 D6 �4 �5 �6

0.000 16 0.010 63 0.157 16 0.005 14 0.035 89 0.145 79
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In this calculation of the JT pentaatomic system there are nine vibrational

frequencies, three linear coupling constants ki, i¼ 4, 5, 6, to the three JT-active

e coordinates, six quadratic constants, three diagonal gii, i¼ 4, 5, 6, for

coupling to the three e coordinates, and three off-diagonal gij, ij¼ 45, 46, 56,

that represent mixed e coordinates, nine bilinear constants that stand for the

terms of mixed a and e coordinates (three a coordinates mix with three

e coordinates; see Eq. (3.35) for the E� (eþ a) problem in Section 3.2), and

three anharmonicity constants fi, i¼ 1, 2, 3, for the totally symmetric vibra-

tions. It emerges from the JT stabilization energies that the mode o6 is most

involved in the JTE, the other two emodes being less effective. In this calcula-

tion the authors reached an agreement with the experimental data within

10 percent for some vibronic energy levels.

This work on CH3O was extended to include bilinear coupling between a1
and e vibrational modes and analyze its influence on the spin–orbital splitting

in the photoelectron spectra of CH3O
� and CD3O

� [7.219]. This is seemingly

the first attempt to solve a quadratic PJTE problem. The most important

influence of the additional terms was shown up in photoelectron spectral

intensities that explain the relatively strong excitation of the JT active modes


5 and 
6 and almost complete absence of the totally symmetric modes 
2 and


3 (in both CH3O and CD3O). For a recent similar work on CH3F see [7.217].

The methoxy radical can be regarded as a representative example of a series

of CX3Y pentaatomic systems considered with respect to the JTE in spectro-

scopy [7.213–7.224]. They include the methoxy family CH3O, CH3S, CF3O,

and CF3S, and organometallic monomethyl radicals MgCH3, CaCH3,

ZnCH3, and CdCH3. All these systems have E terms, ground or excited, ~X
2
E

in the ground state of the methoxy family and Ã 2E in the excited state of the

organometallics, with three totally symmetric a1 and three doubly degenerate

e vibrations. In the organometallic series only one of the latter, 
6, seems to be

significant in the JTE, while the spin–orbital coupling is rather weak, except for

CdCH3. In the methoxy family the JTE is much stronger, as shown above

for the methoxy radical. Table 7.13 provides some of the parameters obtained

from fitting the spectroscopic data. Recently [7.224] rather full high-level

ab initio calculations of the CH3S molecule were performed, and it was shown

that, in contrast to the CH3O system, the spin–orbital interaction almost

completely quenches the JT distortion. For more details on the JTE in this

series see the review [7.218], as well as [7.213–7.224] and references therein.

Among hexaatomic systems we note first the triangular C3H3
� [7.225] and

isoelectronic N3H3
2þ [7.226] systems. The calculations of the latter reveal

several interesting features that emerge due to the JTE in the ground 1E0

state of the D3h configuration and the PJT vibronic coupling of this state to
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the excited 1A01 state. Both the JT E� e and PJT (E 0 þA01)� e vibronic

couplings contribute to the E-type distortions that make the initial equilateral

triangle isosceles.

Ab initio calculations of the APES of N3H3
2þ with �–p CI and a basis set

of double-� quality including polarization functions yield R(N1—N2)¼
R(N1—N3)¼ 1.622 Å for the long and R(N2—N3)¼ 1.279 Å for the short

sides of the triangle. The authors [7.226] explored also the out-of-plane

bending of the hydrogen atoms (pyramidalization of the nitrogen atom).

The strongest pyramidalization takes place at the distinct nitrogen N1 with

the angle �1� 758 between the N1—H bond and the N1N2N3 plane, the

pyramidalization of the two other nitrogens being much weaker (�2 � �38).
The nonplanarity was attributed to the PJT p–� mixing of the ground

and corresponding excited states. This work was one of the first to explicitly

involve the PJTE for the explanation of the origin of the puckering distortions

in small molecules. Similar PJT explanation of out-of-plane distortions

in organic compounds is given in different subsections of this section (see,

e.g., puckering in Section 7.5.2).

At the saddle points the triangle is obtuse with R(N1—N2)¼ 1.375 Å and

R(N2—N3)¼ 1.675 Å, and angles of pyramidalization �1¼ 3.68 and �2¼ �518.
The energy barrier between the minima is rather high, �¼ 8165 cm�1, which

means very strong quadratic couplingwith all the consequences (not explored so

far) for the vibronic energy spectra discussed in Sections 5.1–5.4, especially JT

tunneling (Section 5.3). The JT stabilization energy is EJT � 20,390 cm�1,

seemingly the highest reported so far for JT systems. Together with the large

� value, this makes the ðNHÞ3
2þ system one of the most strongly influenced by

Table 7.13. JT stabilization energy EJT and E-type vibration frequencies

in molecular XCH3, XCD3, and XCF3 systems with a JT E� e problem

(see Tables 7.8–7.12 for more details on OCH3)

System EJT (cm�1) oE (cm�1) Reference

OCH3 255.6 1065 [7.218]
OCD3 165 825 [7.218]
SCH3 41.1 913 [7.218]
OCF3 20.9 465 [7.218, 7.280]
SCF3 76.8 320 [7.218, 7.280]
MgCH3 17.9 633 [7.218]
CaCH3 15.3 767 [7.218, 7.221, 7.223]
ZnCH3 37.5 749 [7.218, 7.221]
CdCH3 14.2 710 [7.218, 7.222]
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the JTE� e-type distortions. Similar strong vibronic coupling has been found in

the isoelectronic C3H3
� [7.225]. It could be very exciting to confirm these out-

standing values of JT parameters by independent calculations with the most

accurate methods available now.

The two-photon absorption spectra of cyclopropane-h6 (I) and cyclopropane-

d6 (II) were interpreted as due to electronic transitions to the JT 3s E0 state

[7.227]. The JTE in the latter was considered in a model with linear coupling

to two active e modes, 
10 for the carbon-ring deformation and 
11 for the

methylene wag mode. The linear coupling constants that fit the spectra

are k10¼ 1.38 and k11¼ 2.45 for I, and k10¼ 1.48 and k11¼ 2.59 for II, the

corresponding frequencies of the two modes being, respectively, o10¼ 436 cm�1

and o11¼ 690 cm�1 for I, and o10¼ 415 cm�1 and o11¼ 610 cm�1 for II.

Thus the JT distortions in the excited E0 state are significant, while there is no

energy barrier to the pseudorotation (in this model). However, the two kinds of

pseudorotations (corresponding to the two e modes) seem to be correlated.

Recently [7.228] a rather full theoretical investigation of the JT interactions

in the ground state ~XE0 of the cyclopropane radical cation was performed in

the ab initio quantum-dynamic approach. The calculated photoelectron spec-

trum pertinent to the ionization to this state is in good agreement with the

experimental data. The analysis of the results reveals a series of interesting

details concerning both the JT dynamics in this system and vibronic structure

of the spectrum.

In the cyclic configuration of a regular triangle of C3H3 (I), C3(CH2)3 (II),

and C3(C3H5)3 (III) the ground state 1A1
0 is nondegenerate, while the ionized

ground state is doubly degenerate 2E00 followed by excited states 2E 0 and 2A2
00.

According to the JTE theory (Section 6.1.1), the band for the A!E transition

in the photoelectron spectrum in general should be double-humped. The

JT-split two-humped bands for 1A1
0 !2E00ðpÞ and 1A1

0 !2E 0ð�Þ were observed
in the photoelectron spectrum [7.229]. Figure 7.19 shows the second band
1A1
0 !2E0ð�Þ for all the three compounds mentioned above. This assignment is

confirmed by MINDO/3 calculations. Three equivalent JT minima were

obtained in an earlier work [7.230] on the somewhat similar system

Au(CH3)3 by means of extended Hückel calculations.

7.4 Distorted tetrahedral and square-planar systems

7.4.1 Tetraatomic X4 and pentaatomic MX4 systems

The simplest tetraatomic (X4) JT system H4
þ was shown by calculations

[7.231–7.233] to be unstable in both high-symmetry configurations, tetrahedral
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Td and planarD4h, in accordance with the JTE for their ground T2 and E states,

respectively. Ab initio QCISD calculations with a 6-211G�� basis set yield a

planar C2v ground state like Hþ3 þH [7.233] (Hþ3 is an isosceles triangle).

Three tetrahedral systems, P4, As4, and Sb4, have a doubly degenerate 2E

term in the final ionized states Pþ4 , Asþ4 , and Sbþ4 of the photoelectron spectra.

The ionized systems are thus JT unstable and subject to the E� e problem

[7.234–7.238]. By solving the vibronic coupled equations (2.6) by means of

direct diagonalization of the Hamiltonian with a two-dimensional oscillator

basis set, the authors [7.234] revealed the parameters of vibronic coupling for

Pþ4 by fitting the results of expected photoelectron transitions to this state with

the experimental data. In this way they obtained (in eV) EJT¼ 0.65, k¼ 0.22,

g¼ 0.0004. For Asþ4 and Sbþ4 in the linear coupling approximation the JT

stabilization energies are 0.84 eV and 1.4 eV, respectively.

10.5

11.3

10.7

11.5

10.459.7

I

II

III

Fig. 7.19. The JT splitting of the 1A01!2E 0(�) band in the photoelectron
spectra of C3H3 (I), C3(CH2)3 (II), and C3(C3H5)3 (III) (numbers are in eV).
(Reprinted with permission from [7.229]. Copyright 1978 Verlag Helvetica
Chimica Acta AG.)
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Alongside the 2E ground state the next one 2T2 (formed by ionization of the

2t2 orbital) is important in the photoelectron spectrum of these Xþ4 systems

[7.235]. Figure 7.20 shows the general band system in the region of transitions

from the nondegenerate 1A1 state of neutral P4 to the ground state 2E (le�1) of

Pþ4 and to its excited state 2T2ð2t2�1Þ. The band shapes directly follow the

predictions of the JTE theory (Section 6.1.1): the band of theA1!E transition

is two-humped, while that of the A!T transition has three humps. The

separations between the component bands are directly related to the strengths

of the JT coupling.

Much fuller information is contained in the high-resolution spectrum

[7.235]. For the 2T state, as distinguished from the E state, the spin–orbital

interaction may be important. It was shown [7.235] that, as expected, the

spin–orbital interaction is most significant in Sbþ4 and less effective in Pþ4 .

Note that the JTE reduces the spin–orbital interaction by the vibronic reduc-

tion factors (Section 5.6). However, there is no full treatment of the combined

JT and spin–orbital interaction in these systems as yet.

The Pþ4 system was reconsidered [7.236] taking into account that the excited
2T2 state in the tetrahedral configuration is close in energy to the ground 2E

state and contributes significantly to the distortion of the system in the ground
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Fig. 7.20. The (1e)�1 and (2t2)
�1 bands of the P4

þ photoelectron spectrum.
Three component functions are drawn to show the three components in the
(2t2)

�1 bands. (Reprinted with permission from [7.235]. Copyright 1990
American Institute of Physics.)
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state via the PJTE. Ab initio SCF calculations performed on this system [7.236]

reveal a rather complicated APESwith a variety of conical intersections. The Pþ4
2E-term JT parameters fromEq. (3.38) are (in eV) k¼ 0.24, g¼�6.6	 10� 3 and

oE¼ 0.045 (the latter is taken from experimental data). For the 2T2 term

(T� (eþ t2) problem) the linear vibronic coupling constants to e and t2 vibra-

tions are e¼ 0.005 and r¼ 0.14, respectively, with ot¼ 0.0577 eV. The

authors [7.236] included also the coupling to the totally symmetric vibrations

(Section 3.2) that yields the coupling constants kg
E ¼ �0:09 and kgt ¼ �0:05. The

pseudo JT 2E–2T2 mixing between the two JT terms (making the overall problem

(EþT)� (aþ eþ t2)) emerged with the vibronic coupling constant 
¼ 0.12

which is of the same order of magnitude as the JT coupling with the e and t2
manifolds separately. It was shown [7.236, 7.237] that with these parameters,

dynamic calculations using a large basis set of harmonic oscillator states explain

well the observed photoelectron spectra of P4. While the gross features of the

band shape can be revealed in the simpler model of the JT coupling considered

above [7.234, 7.235], the PJT vibronic mixing of the 2E and 2T electronic states

contributes substantially to the fine structure of the spectrum.

In spite of strong JT coupling in the E� e problem of the Pþ4 , Asþ4 , and Sbþ4
ions, high-energy peaks (Slonczewski resonances, Section 5.2) are not seen in

the high-resolution photoelectron spectrum. The reason for this fact was the

subject of a special investigation [7.238], and it was shown that these reso-

nances are quenched by the breathing mode, the coupling to the totally

symmetric vibrations that produce the E� (eþ a1) problem instead of E� e

(Section 3.2). Recently [7.240] the reduced forms P�4 and P2�
4 were also con-

sidered, and it was shown that the degeneracy produced by the excess electrons

results in strong activation of the P—P bond with respect to cleavage.

Pu4 was shown [7.239] to be unstable in the tetrahedral Td configuration; its

most stable state is 2Ag (C2h) with rhombic symmetry, which may be regarded

as the state in one of the minima of the distorted D4h configuration of the

system in a degenerateE state. A similar rhombicD2h geometry is predicted for

Bþ4 [7.16], which is JT unstable in both Td and D4h symmetry. The discussion

[7.17] about the JT origin of the distortion and the electronic state in the

minimum of the APES in this system, on whether it emerges from the distorted

tetrahedron or from the square-planar configuration seems to be pointless.

Indeed, the JTE predicts possible small distortions from configurations with

degenerate terms but, strictly speaking, in general there is no direct reversal of

this statement: in many cases distortions (especially large distortions) cannot

be unambiguously attributed to just one type of JTE from a given configura-

tion, mainly because of a possible PJTE. Large deviations from a given
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configuration may involve combined JT and PJT effects, sometimes in a

multilevel problem, which should be taken into account when considering

the origin of distortions. Many calculations reviewed in this book confirm

this statement.

The methane radical cation CHþ4 is another example of the simplest JT

systems. The ground state of this cation is triply degenerate in the regular

tetrahedron configuration, leading to theT� (eþ t2) JT problem (Section 3.4).

In this case, if only linear terms of vibronic coupling are significant, the theory

predicts either tetragonal or trigonal minimawith orthorhombic saddle points.

If the quadratic coupling is sufficiently strong, the orthorhombic saddle points

become minima too, and there is a range of parameters within which different

kinds of minima coexist (Section 3.4).

There are many works reported aimed at calculating the APES of this

system (see in [7.241–7.253]). Ab initio calculations in the MRSDCI (multi-

reference singles and doubles configuration interaction) approximation with a

6-31G�� basis set [7.241] show that the six equivalent global minima are at C2v

symmetry with two C—H distances at R1¼ 1.155 Å and an angle between

them of �1¼ 538, and the other two C—H distances at R2¼ 1.075 Å with

�2¼ 1278, the remaining four angles H—C—H being the same and equal to

�3¼ 1138 (Fig. 7.21). The saddle points between these minima are 3.1 kcal/mol

higher and have the Cs symmetry with the four C—H distances, respectively

(in Å), 1.147, 1.100, 1.117, and 1.117, and angles �1¼ 140.88, �2¼ 142.38,
�3¼�4¼ 104.88, and �5¼�6¼ 85.88. The C2v ground-state symmetry in the

minima is seemingly consistent with experimental ESR data [7.254]. In relation

to the general theory, the C2v minima are ‘‘orthorhombic’’ (the term comes

from octahedron distortions) in which one E-type vibration (leading to D2d

symmetry) and one T2-type (leading to C3v symmetry) vibration are displaced

(Section 3.4). This means that the quadratic coupling is sufficiently strong. In

view of the novel achievements in tunneling-splitting theory (Section 5.3) this

system may be an interesting test example.

As mentioned above, the JT distortions in molecular systems are definitively

important in chemical reactions (Section 7.1.3). Some examples of JT-driven

transformations are mentioned below in Section 7.5. Reactions with partici-

pation of CH4may serve as further examples. The abstraction of hydrogen from

CH4 (orCD4) by oxygen in its triplet state O(3P) was shown [7.255] to involve an

intermediate system OCH4 in a doubly degenerate 3E state, the JT distortion of

which influences the consequent transformations. In another process [7.256]

the impact of a proton on CH4 abstracts an electron, resulting in the 2T state of

CHþ4 discussed above. This determines the energy-transfer and charge-transfer

reaction mechanisms. For DFT calculations of the JTE in CClþ4 see [7.257].
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The results of computations for SiHþ4 [7.258–7.263] are less illustrative with

regard to the JTE. Different authors give different ground-state symmetries in

the minima from C3v to C2v to Cs. The latest more elaborate calculations

[7.258, 7.262] seem to indicate that the configuration that is lowest in energy

corresponds to Cs symmetry with the geometry of a van der Waals-like com-

plex SiHþ2 þH2 and with R1¼R2¼ 1.4590 Å, R3¼ 1.9730 Å, R4¼ 1.9240 Å,

�1¼ 120.28, �2¼ 22.18, �3¼�5¼ 33.4058, and �4¼ 99.2928. This geometry

can be considered as emerging from the C2v symmetry of the T2� (eþ t2) JT

effect plus a PJT influence of the corresponding excited state. However, such a

possibility has not been explored as yet. Calculations for XH4 systems with

X¼C, Si, Ge, Sn, Pb are presented in [7.263].

Fig. 7.21. Geometry of CH4
þ

at different symmetry points. The energy
minimum is at C2v with the Cs saddle points between them. The C3v

configuration has a nondegenerate ground electronic state, whereas at C03v
the ground state is degenerate. (Reprinted with permission from [7.241].
Copyright 1988 American Institute of Physics.)
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Ab initio CASSCF level calculations of the APES of the ground 2E and first

excited 2T2 states of tetrahedral VF4, NbF4, and TaF4 revealed their

JT distortions toward D2d configurations in the minima of both states (e-mode

distortions) [7.264]. The JT stabilization energy was estimated (in cm�1) as,

respectively, 412, 1856, and 5970 in the 2E state, and 3584, 6259, and 6611 in

the 2T2 state.

In the tetrahedral VCl4 the APES for the ground state 2E was calculated

using DFT methods [7.265] (for earlier attempts see references in this paper).

The JT distortion is rather small, EJT¼ 52 cm�1 and �¼ 12 cm�1,

which corresponds to the following constants in Eq. (5.38):

FE¼ 1311� 6 cm�1 Å�1, GE¼ 1260� 50 cm�1 Å� 2, KE¼ 19084� 100 cm�1

Å� 2 and � ffi FE/KE¼ 0.068 Å. For the excited state 2T2 the JTE was shown

to result in the distorted D2d configuration with the stabilization energy

EJT¼ 264 cm�1 which explains the absorption spectrum [7.266].

Similarly, the JTE in tetrahedral CuX2�
4 yields three minima with E-type

distortions at which the system has D2d symmetry (see [7.267, 7.268] and refer-

ences therein). For instance, the tetrahedron cluster of CuCl4
2� in Cs2CuCl4 is

considerably flattened, �1¼�2¼ 1298 with FE¼ 4500 cm�1 Å�1 [7.269, 7.270].

This system is an example of an MX4 cluster in the crystalline state. There are

many such systems; they are discussed in more detail in Section 7.6.

7.4.2 Cyclobutadiene, cyclobutane and tetrahedrane radical cations

The cyclobutadiene radical cation C4H4
þ is one of the simplest systems with a

square-planarD4h geometry in the high-symmetry configuration and a doubly

degenerate 2Eg term resulting in a JT E� (b1þb2) problem (Section 3.1).

Geometry optimization of this system has been reported in several papers

[7.271–7.276]. Qualitatively, the possible JT and PJT distortions of this system

are shown in Fig. 7.22 [7.272].

According to the general theory (Section 3.1), JT-active coordinates are of

either b1g or b2g symmetry, resulting in D2h configurations of a rhombus or

rectangle, respectively. These configurations are not final because the PJTE

may produce further distortions. In particular, if there is a sufficiently strong

(in the sense of inequality (4.6)) vibronic coupling of the ground state 2B3g of

the rectangular configuration to the excited 2B3u state, an Au-type distortion

(puckering, Section 7.5.2) of this configuration takes place (B3g	B3u¼Au).

Similar puckering of the rhombus (b1u distortion) is produced by strong

pseudo JT coupling to its 2A2u excited state. However, if in the rectangle the

PJT coupling to the other 2A1u state is strong, the distortion b3u leads to a

trapezium configuration, which may also be subject to further puckering due
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to the influence of an excited 2A1 state. The rhombus can also be distorted to a

kite (b3u distortions) and the latter may be puckered by the PJT B1	A1

vibronic coupling. Quadratic coupling terms may also be important.

The energy differences between these configurations may be small.

Therefore only a very high level of correlated ab initio calculation may be

able to reveal the real minima and saddle points. Figure 7.23 illustrates the

optimized geometries obtained [7.272] in the RMP2/6-31G(2d, p) level of

ab initio calculations (RMP2/6-31G� for the puckered parallelogram). The

energy differences between those configurations are given in Fig. 7.24 together

with the results obtained with other methods. The best results show that the

puckered rhombus gives the absolute minimum energy (Fig. 7.23), while the

planar rectangle is also a minimum, which is 2.5 kcal/mol higher in energy

than the puckered rhombus. The puckered parallelogram is a transition state

(saddle point) between these twominima at an energy 4.6 kcal/mol higher than

the absolute minimum.

From symmetry considerations, there are two planar-rectangle minima

(two directions along which to elongate the square into a rectangle). The

calculations show that they are E
B2g

JT ¼ 5:9 kcal/mol lower in energy than the

square-planar geometry; the energy barrier between them is �¼ 4.2 kcal/mol.

The system is a planar rhombus at the saddle point (at the top of the barrier).

For these parameters, similar values ofEJT¼ 7.0 kcal/mol and �¼ 1.0 kcal/mol
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Fig. 7.22. Possible JT and PJT distortions of a square-planar configuration in
an electronic E state. (Reprinted with permission from [7.272]. Copyright
1995 Elsevier Science Publishers.)
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were obtained in a simpler calculation at the CI/STO-3G level [7.271]. Further

distortion shown in the last row of Fig. 7.22 did not emerge from these

calculations.

By comparison of these results with those expected from the JTE theory, one

gets an understanding of the origin of the calculated geometries. In particular, we

see that the linear vibronic coupling to B2g-type nuclear displacements is signifi-

cant in distorting the square-planar C4H4
þ system to a planar rectangle with a
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Fig. 7.23. Ab initio calculated geometry of neutral cyclobutadiene and its
radical cations. (Reprinted with permission from [7.272]. Copyright 1995
Elsevier Science Publishers.)
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stabilization energy of about 6kcal/mol (�2100 cm�1). The coupling to the B1g

displacements is weaker, making the planar rhombus geometry a saddle point of

the APES, in full accord with the theory (in cases of strong quadratic coupling the

rhombic saddle points become minima too [7.277], Section 3.1). Thus the JTE

alone does not explain the origin of the calculated absolute minima.

By including the pseudo JT coupling of the ground state 2B2g of the planar

rhombus to the 2B2u excited state via b1u displacement, we get a puckering

distortion, which makes this geometry the absolute minimum. There is no

pseudo JT energy gain in puckering of the planar rectangle configuration, but

the latter serves as the lowest transition state from the planar rectangle to the
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Fig. 7.24. Relative energies of the cyclobutadiene radical in different
geometries calculated by the ab initio methods indicated. M and TS denote
minima and transition state, respectively. (Reprinted with permission from
[7.272]. Copyright 1995 Elsevier Science Publishers.)
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puckered rhombic minima. Unfortunately, the authors [7.272] have not calcu-

lated the excited states, which would allow them to estimate vibronic coupling

constants and the direction of expected PJT distortions.

As already emphasized earlier, APES cannot be observed directly. With the

complicated APES obtained by numerical calculations the nuclear dynamics

should be evaluated by solving the system of coupled equations (2.6). In this

way the true energy spectrum and observables can be predicted. However, as

mentioned above, the APES allow one to make reasonable qualitative predic-

tions for many such observables. The authors [7.272] estimated the scaled SCF

zero-point energies, which reduce the effective energy difference between the

minima and saddle points to about 0.54 kcal/mol, making the APES almost

flat to the corresponding pseudorotations.

Directly related to the cyclobutadiene radical cation is its isomer, the

tetrahedrane (TH) cation C4H4
þ with an initial (reference) tetrahedral

symmetry. It is distinguished from the cyclobutadiene (CB) cation in that the

doubly degenerate electronic state of THþ in the configuration of a regular

tetrahedron leads to a JT E� e problem (instead of E� (b1þ b2) in CBþ).

Numerical calculation [7.278] allowed the authors to reveal the stationary

points of the APES illustrated in Fig. 7.25. By comparison with analytical

formulas, Eqs. (3.26)–(3.30) in the general theory of the JT effect (Section 3.2),

they estimated the JT stabilization energy EJT and the linear FE and quadratic

GE vibronic coupling constants, as well as the primary force constant KE and

the barrier between the minima �. At the UQCISD/6-31G� level

EJT¼ 25.07 kcalmol�1, �¼ 5.62 kcalmol�1, KE¼ 5.04	 102 kcalmol�1 Å�2,

FE¼ 1.45	 102 kcalmol�1 Å�1, GE¼ 0.32 kcalmol�1 Å�2.

The authors [7.278] calculated also the transition steps from the less stable

JT minimum TH1 (Fig. 7.25) of the tetrahedron to the more stable minimum

of the rectangular cyclobutadiene cation CBþ (Fig. 7.23), which show that this

isomer-interconversion reaction is driven by the JT distortion of the THþ

configuration (see JT-induced reactivity in Section 7.1.3). Such JT-driven

(triggered) reactions take place rather often. Other examples of PJT-driven

transformation are given in Sections 7.5 and 7.6.

Similar numerical calculations of the APES and analysis of the JT and PJT

distortions were performed on the cyclobutane radical cation C4H
þ
8

[7.279–7.284]. The results obtained depend significantly on the level of calcula-

tions involved. The ESR spectra for this system are consistent with a puckered

rhomboidal structure [7.285] (Fig. 7.22). This corresponds to the absolute

minimum found bymeans of the most accurate (so far) account for correlation

effects in ab initio calculations on the QCISD(T)/6-31G�//UMP2/6-31G� level

of theory [7.279]. In the majority of other works on this system that employ a
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lower level of calculations [7.281] the planar trapezoidal geometry was found

as the global minimum, and it was suggested that the rhomboidal structure

observed by ESR might be reinterpreted in terms of rapidly interconverting

equivalent trapezoidal structures.

As mentioned above, observable properties cannot be obtained directly

from the APES, although some specific features of the later may be very useful

as qualitative indications of possible properties. With regard to ESR spectra a

special theory of what can be expected as a result of vibronic coupling and

multi-minima APES has been developed (Section 6.3). In particular, if as a

result of the solution of the system of Eqs. (2.6) the ground vibronic state has

the same degeneracy and symmetry as the initial electronic state at the point of

degeneracy (see, however, Sections 5.3 and 5.4), the vibronic reduction factors

allow reliable and reasonable prediction of the ESR spectra. There is not
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Fig. 7.25. Geometry of C4H4
þ

at stationary points calculated by ab initio
QCISD (indicated by normal font) and B3LYP methods (italic). TH and
CB denote tetrahedrane and cyclobutadiene radical cations, respectively.
THO is neutral TH. TH2 and TS are saddle points; all other structures are
energy minima. (Reprinted with permission from [7.278]. Copyright 1997
American Chemical Society.)
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enough physical meaning in comparison of the observed spectra with the

calculated minima positions on the APES without involving the theory of

ESR with vibronic coupling (Section 6.3).

Note that the neutral cyclobutane system C4H8 is not planar either

(Fig. 7.26), its nonplanarity being confirmed by both electron-diffraction

experiments [7.286] and ab initio calculation [7.279]. The out-of-plane distor-

tion of the reference square-planar configuration is a good example of the PJT

effect, the proof of which requires knowledge of the B1u-type excited states.

In the cyclic system C4(CH2)4 with D4h symmetry the transition from the

nondegenerate ground state 1A1g to the ionized ground state 2Eg in the photo-

electron spectrum is not split by the JTE in the 2Eg state because in this case, as

in the square-planar system C4H4
þ, the JT problem for an 2Eg term is

2Eg� (b1gþ b2g) (not
2Eg� e), with two different coupling constants to the

b1g and b2g displacements toward a rhombus and rectangle, respectively

(Section 3.1). If the coupling to one of them is much stronger than that to

the other one, the problem is reduced to Eg� b1g or Eg� b2g. For any of them

the band of A!E transition is singly peaked (Section 6.1). Equal coupling to

both kinds of vibrations (provided their frequencies are equal too) would

convert the problem to E� e with a two-humped band of the A!E transition.

The calculations in the MINDO/3 approximation [7.287] allowed the authors

to estimate the JT stabilization energies for the two kinds of distortions as

7.5 kcal/mol and 20.1 kcal/mol, respectively.

7.5 The benzene and cyclopentane families and some larger systems

7.5.1 The benzene-family molecular and radical cation and anion systems

The JT study of benzene-like systems and their derivatives has a long history

(see [7.273, 7.288–7.333] and references therein). Neutral benzene, C6H6, has
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C

Fig. 7.26. An ab initio (MP2/6-31G�) optimized structure of cyclobutane
[7.279]. Values in parentheses are from the electron-diffraction study
[7.286]. (Reprinted with permission from [7.279]. Copyright 1993 American
Chemical Society.)
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D6h symmetry and excited E terms. The JTE in these states was confirmed by

spectroscopic data and vibronic-coupling calculations [7.312–7.313].

The JTE in the benzene cation C6H6
þ was subjected to multiple investi-

gations [7.237, 7.273, 7.291, 7.297–7.311, 7.328, 7.331]. Using high-resolution

threshold photoionization spectra of benzene in combination with the theore-

tical predictions for the JT E� e problem (Section 3.2), the structure of

the ground E state of this system was shown [7.303] to follow the APES of

the ‘‘Mexican hat’’ (Fig. 3.3) along the E-type C—C—C in-plane bending

vibration (o6¼ 536 cm�1) with �0¼ 0.12 Å and EJT¼ 208 cm�1. At the mini-

mum, the C—C—C angle is 118.18. The vibronic constants, according to

Eq. (3.38), are k¼ 0.88 and g¼ 0.02, which give an estimate of the barrier

between the minima �¼ 8.32 cm�1. This � value was confirmed [7.304] in

ab initio calculations (BLYP with a 6-311G� basis set) and ZEKE (zero

electron kinetic energy) photoelectron spectra. Compared with the zero-

point energy this small barrier � means almost free rotations.

JT coupling parameters derived from DFT-calculated APES of the lowest

three electronic states ~X 2E1g; ~B
2E2g, and ~D 2E1u of C6H6

þ were obtained

recently [7.331]. These data do not include the PJTE contributions.

However, the PJT coupling plays an essential role in the structure and spectra

of all benzenoid cations. The excited state ~B 2E2g of C6H6
þ is close to the

~C 2A2u electronic state with an energy separation of 0.31 eV [7.298]. The

calculations [7.298, 7.302] show that there is a rather strong PJTE and an

inter-state conical intersection between these two electronic states via two e2u

vibrational modes 
16 and 
17. Together with the JTE on the ~B2E2g state,

which involves the e2g modes 
6 and 
8, this explains the origin of the

photoelectron band profile of the two overlapping states and the diffuse

appearance of the ~C state in the band. The same PJT coupling in C6H6
þ and

C6D6
þ between the two states, ~B and ~C, was taken into account [7.306] to

interpret the vibrationally resolved photoinduced Rydberg ionization spectra

of the dipole-forbidden ~B2E2g ~X2E2g transition. For the calculations, the

authors [7.306] employed a two-mode PJT model [7.316]. The JT coupling

parameters used to fit the calculated spectral lines to the observed ones are

given in Table 7.14

For higher excited states ~D2E1u and ~E2B2u of C6H6
þ, multiple surface

intersections and strong PJT coupling between them was revealed [7.305].

Using Green’s function calculations (with correlation effects included), the

coupling constants for the JTE in the E1u state and the PJT mixing of the E1u

and B2u states were estimated (Table 7.15). Note that both the JTE and the

PJTE are triggered by the same four e2g modes, 
15, 
16, 
17, and 
18.
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The calculated envelope of the corresponding transitions explains well the

origin of the observed diffuse photoelectron band. The authors [7.305] per-

formed also wave-packet dynamic simulations and showed that the ~E!~D

internal conversion process is very fast, occurring within several fs. This result

is important for the explanation of the mechanism of fragmentation dynamics

of C6H
þ
6 in the electronically excited state as a stepwise ~E!~D!~C!~B!~X

internal conversion (nonradiative) process. The ~C 2A2u!~B 2E2g!~X2E2g fast

nonradiative decay (�250 fs) was studied earlier [7.297] in a manner based on

the investigation of the conical intersections, JTE and PJTE, and wave-packet

dynamic calculations of this process.

Significant advances in the treatment of the JT and PJT effects in C6H
þ
6

were achieved recently [7.300]. The authors considered combined vibronic

coupling within (JTE) and between (PJTE) its following five electronic

Table 7.14. Vibronic coupling parameters for the JTE in the ground ~X2E1g state

(via the 
6 (e2g) mode) and PJT mixing between the excited ~B2E2g and ~C2A2u

states via the 
16 (e2u) and 
17 (e2u) modes in C6H6
þ and C6D6

þ (from [7.306])

System
Vibrational

mode oE (cm�1) DJT¼EJT/�hoE G¼ �/2EJT DPJT¼EPJT/�hoE

C6H6
þ 
6 (e2g) 540 0.377 0.020


16 (e2u) 333 0.44


17 (e2u) 673 0.17

C6D6
þ 
6 (e2g) 506 0.345 0.024


16 (e2u) 259 0.75


17 (e2u) 642 0.18

Table 7.15. Vibronic coupling constants for the JTE in the excited ~D2E1u state

and PJT mixing between this state and the ~E2B2u state in C6H6
þ (in eV) (from

[7.305])

b2g Mode o JT linear coupling PJT coupling


15 0.4048 0.0971 0.0664

16 0.2055 0.1032 0.1701

17 0.1497 0.0579 0.1288

18 0.0757 0.1755 0.0417
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terms (vertical ionization potentials are shown in parentheses in eV): ~X2E1g

(9.27), ~B 2E2g (12.15), ~C
2A2u (12.61), ~D2E1u (14.43), and ~E 2B2g (14.88). This

amounts to eight electronic states interacting with 28 of the 30 nuclear

degrees of freedom that results in an 8	 8 matrix Hamiltonian of the

vibronic coupling problem of Eq. (3.2). High-level ab initio calculations

with only linear coupling constants taken into account show that only

14 vibrational modes contribute significantly to the vibronic coupling.

One of themain results of this work [7.300] is the finding of a whole sequence

of low-energy conical intersections (Sections 3.2 and 5.7) between the eight

branches of the APES of the five terms. Figure 7.27 illustrates the positions of

themost important of them. In addition to the three conical intersections of the

APES of the three degenerate E states in the D6h configuration, there are

another five at lower-symmetry geometries.Wave-packet dynamic simulations

for these coupled APES branches were performed for the ~X�~B� ~C and
~B� ~D�~E manifolds, directly demonstrating the importance of nonadiabatic

interactions at the conical intersections, which produce a stepwise population

transfer on a timescale of 10–100 fs. Vibronic line spectra were also calculated

and compared with previous results. The papers [7.300] seem to be the first

quantum-dynamic study with more than three coupled APES branches.

In benzene derivatives not all substitutions remove the orbital E degeneracy

of the electronic states. Even in disubstituted benzenes the double degeneracy

of the p levels remains if the two substitution groups are, respectively, a donor

–6 –4 –2 0
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E 2B2u
~

D 2E1u
~

C 2A2u
~

B 2E2g
~

X 2E1g
~

Qeff

Fig. 7.27. A cross-section of the APES of the benzene cation displaying the
most important conical intersections highlighted by open circles. (Reprinted
with permission from [7.300]. Copyright 2002 American Institute of Physics.)
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and acceptor of the same strength and they occupy para positions (antisym-

metric substitution) [7.320]. If the strengths of the donor and acceptor groups

are different, the E term splits accordingly. In tri-substituted benzenes with

symmetric substitution the threefold axis of symmetry and hence the possibi-

lity of E terms is preserved with all the consequences for the JTE. In the earlier

works the JT parameters of the ground 2E state of sym-C6F3H
þ
3 , sym-C6F3D

þ
3 ,

and sym-C6Cl3H
þ
3 were estimated from emission spectra [7.288–7.290, 7.294].

In these papers the multimode nature of the JTE is ignored. For later works

and reviews on these and related systems see [7.218, 7.294, 7.318, 7.328].

For a similar system, the sym-triazine cation H3C3N
þ
3 , the authors [7.295,

7.314] calculated the vibronic energy spectrum in the ground E state linearly

and quadratically coupled to a single active ring-distortion e mode 
6. The

calculated energy levels and transition intensities were compared with those

observed in the two-photon absorption spectrum of the 3s1 E0 Rydberg state,

and good agreement between them was obtained for the JT parameters

k¼ 2.14 and g¼ 0.046. This gives us D¼EJT/�hoE¼ 2.29 and �0 ¼ �/�hoE¼
0.21; with oE¼ 661 cm�1, EJT¼ 1514 cm�1 and �¼ 139 cm�1, which means

hindered pseudorotation in the ground vibronic state [7.295]. Exceptions from

the so-called maximum hardness principle (see, e.g., in [7.3]) observed in

nitrogen heterocycles are explained by the PJTE [7.299].

The pseudorotation with a frequency ofo�¼ 150 cm�1 in the excited E state

of cyclohexane was revealed [7.296] based on the analysis of the ultraviolet

spectrum of the two-photon transition from the lowest excited 1A1g state to the

3s1 Eg Rydberg state. The E� e problem in this system is a multimode one

[7.313]; the major contribution to the linear JT distortion comes from five

E-type modes with a total of EJT¼ 2550 cm�1. The barrier to pseudorotations

is �� 140 cm�1.

Benzene negative ions have distorted geometries due to PJT interactions

[7.319]. The PJTE was shown to cause the ultrafast radiationless decay of the

high-energy Rydberg states in toluene [7.315]. Vibronic coupling is taken into

account to explain the origin of the absorption singlet–singlet and singlet–

triplet bands in pyridazine [7.329]. B3N3H6, which is isoelectronic to benzene,

is considered in [7.334].

In C6F
þ
6 , as in C6H

þ
6 , all the four e2g modes 
14, 
16, 
17 and 
18 are active in

the JTE in the ground state ~X2E1g [7.290, 7.291, 7.294, 7.328]. Table 7.16 lists

the contribution of each of these modes to the JT distortions. The total JT

stabilization energy equals 831 cm�1. The quadratic coupling is shown to be

negligible, except for 
17 where it is small, g¼ 0.006. For more details on the

JTE in these systems see in [7.328].
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The JTE and PJTE in substituted benzene radical anions have been studied

(see [7.321–7.327, 7.332, 7.333] and references therein). Using ab initio ROHF

approximation with a 6-31G� basis set plus MP2-level correlation calculations

at the extrema points of the APES, the authors [7.324] obtained a detailed

structure of this surface produced by the JTE and PJTE in C6F
�
6 . In the planar

configurationD6h the ground state is 2A1g with low-lying excited states 2E2u at

15.3 kcal/mol and 2E1u at 24.2 kcal/mol. The small separation of these states

allows their vibronic mixing under the appropriate nuclear displacements. The

JTE on the 2E2u term produces e2g distortions within the planar configuration

with three D2h minima and three saddle points corresponding to electronic

states 2B1u and
2Au, respectively. The PJT

2A1g–
2E2u mixing under the out-of-

plane e2u distortions further reduces the symmetry at each minimum, forming

two mirror-symmetry C2v structures, while at the saddle points two D2 struc-

tures are formed. As a result, the system has the six minima and six saddle

points illustrated in Fig. 7.28. The JT stabilization energy at the minima is

estimated as 16.9 kcal/mol. In comparison with neutral C6F6 it is seen that the

electron affinity of this system is due to combined JT and PJT effects. Several

substituted benzene radical anions of the type C6FnH
�
m are considered from

this point of view [7.332].

7.5.2 The cyclopentadienyl radical and cyclopentane: puckering

The JTE in the cyclopentadienyl (Cp) radical C5H5 and its ionic, deuterated,

and substituted states were considered in a series of papers (see [7.273, 7.330,

7.335–7.346] and references therein) beginning with the earliest publications

on the JTE [7.335]. In more recent calculations [7.336, 7.337] the ground

E term of planar C5H5 in D5h symmetry is shown to have distorted C2v config-

uration at the minima due to the JTE. In a relatively simple ab initio UHF/

STO-3G approximation [7.336] the JT stabilization energy EJT¼ 14.5 kcal/mol

with a barrier between the minima �¼ 3.5 kcal/mol and contraction of the

Table 7.16. JT parameters for the ground state ~X2E1g of C6F
þ
6 [7.294]


15 
16 
17 
18

EJT (cm�1) 370 61 289 101
k 0.68 0.32 1.17 0.87
g �0 �0 0.006 �0
oE (cm�1) 1609 1220 247 116
� (cm�1) �0 �0 3.5 �0
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most distorted C—C bond �RCC¼ 70 mÅ. In a more elaborate calculation

that includes also CI in the p space [7.337] EJT¼ 7.1 kcal/mol and �� 0, which

means free pseudorotation of the distortion. In distorted-configuration 2A2

and 2B1 states, the interatomic distances (in parentheses for the 2B1 state) are

(in Å):R(C1—C2)¼ 1.407 (1.457),R(C2—C3)¼ 1.496 (1.371), andR(C3—C4)¼
1.360 (1.509), with almost unchanged angles of the pentagon. The authors

[7.337] calculated also the APES of the cyclopentadienyl cation C5H
þ
5 taking

into account the PJT mixing of the ground state 1A01 with the lowest excited
1E02 state (at 23 kcal/mol) by e02 distortions, which produces deeper minima at

EJT¼ 13.4 kcal/mol, but without a considerable barrier between the minima

(meaning free pseudorotation). Note that in both cases, C5H5 and C5H
þ
5 , the

distortion coordinate E allows pseudorotation that avoids the high-symmetry

D5h configuration. Figure 7.29 illustrates the pseudorotation pattern for C5H
þ
5 .

In the papers [7.340–7.342] the rotationally resolved laser-induced fluores-

cence spectra of the ~A2A002$ ~X2E001 transition in C5H5, C5D5, C5H4D, and

C5HD4 are analyzed in detail in view of the JTE implications. While the

authors found clear evidence of the JT pseudorotation in the ground state,

the parameter values of the JT distortions that emerge from the spectral data

are significantly smaller than those in the ab initio calculations discussed

above. The low barrier between the APES minima in C5H5 and C5D5 was

D2

D2

D2

D2

C2v

C2v

C2v

C2v

C2v C2v D2

D2

Fig. 7.28. Combined JT plus PJT pseudorotation in C6F
�
6 . C2v(z) and D2

structures correspond to the APES minima and saddle points, respectively.
Equivalent structures are congruent upon the S6 symmetry operation. The
pseudorotation coordinate Q(b1) is shown in the center. (Reprinted with
permission from [7.324]. Copyright 1999 Elsevier Science Publishers.)
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confirmed by recent ab initio calculations [7.343] aimed at interpretation of the

spectroscopic data on the ~A2A002! ~X2E001 transition. The authors calculated a

variety of parameters of molecular structure and vibronic coupling in the ~X

and Ã states. In particular, they obtained a JT stabilization energy of

EJT¼ 2147 cm�1 with the barrier to pseudorotation �¼ 3.6 cm�1. Of the four

JT-active e modes 
9, 
10, 
11, and 
12, only three, 
10, 
11, 
12, contribute

significantly to the distortion, the mode 
10 being most active. The vibrational

frequencies and distortions produced by each of these modes were evaluated.

These and other estimated JT parameters are used to predict the ~X� ~A electro-

nic spectra of C5H5 and C5D5.

An original (non-perturbational) treatment of the ground states of C5H5

and C5H
þ
5 based on a valence-bond analysis and the so-called method of

Longuet–Higgins loops was suggested in [7.345].

The APES of fluorinated cyclopentadienyl cations, C5H4F
þ, and C5H4CH

þ
3

in singlet states were studied by MNDO and ab initio MP2/6-31G
�
methods

[7.338]. The results are related to the pseudorotation surface of C5H
þ
5 .

Vibronic effects in excited states of furan are considered in [7.346], while the

vibronic structure of the p-photoelectron bands in furan, pyrrole, and thio-

phene is investigated in [7.347].

Cyclopentane, C5H10, in contrast to C5H5, has no degenerate ground state,

but like C5H
þ
5 above it may have PJT distortions due to the vibronic mixing to

the excited states. On the other hand, C5H10 is a good example to illustrate the

phenomenon of puckering.

In any system with more than three atoms and a reference planar config-

uration some atoms or atomic groups may undergo out-of-plane displace-

ments resulting in the so-called puckering. Several examples mentioned in the
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Fig. 7.29. Pseudorotation in the lowest singlet state of the cyclopentadienyl
cation, distorted in an e02 mode. (Reprinted with permission from [7.337].
Copyright 1979 American Chemical Society.)
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subsections above illustrate such distortions. The out-of-plane bending of the

C—O bond in H2CO [7.127] considered in Section 7.2.2 may also be regarded

as an element of puckering.

Puckering is shown mostly as an effect of nonplanarity of organic ring

structures. In the saturated five-member ring of cyclopentane C5H10 the

reference planar configuration has D5d symmetry, and the puckering distor-

tion has e00 symmetry. Figure 7.30 shows the two components of the e00

displacements of the atoms in the five-member ring. The Z-displacements

of the individual carbon atoms along the fivefold axis in this symmetrized

‘‘concerted’’ e00 displacement are given by the following equation [7.348]:

Zi ¼ ð2=5Þ
1
2q cos½�þ ð4p=5Þði � 1Þ�; i ¼ 1; 2; . . .; 5 (7:44)

where q is the amplitude of distortion and � is the phase angle: on changing �

from 0 to 2p the structure goes from one component of displacement (at �¼ 0,

36, 72, . . ., 3248) to the other one (at �¼ 18, 54, . . ., 3428). This kind of typical

puckering was revealed first from thermodynamic data [7.349] and then con-

firmed multiply by various experimental techniques (see [7.350] and references

therein). Calculations of APES [7.348] confirm that in cyclopentane the planar

configuration is unstable: the puckered configuration is lower in energy by

�4.2 kcal/mol (the experimental value is 5.2 kcal/mol), and the motion of the

puckering distortion along the ring is rather a free internal rotation

(pseudorotation).

The planar configuration of cyclopentane has a closed-shell A1 electronic

ground state and a variety of excited states, among which there are those

belonging to the E00 type. Obviously, the vibronic mixing of the ground state

A1 with the excited E00 under e00 vibrations (A1	E00 ¼E00) softens the former

with respect to e00 displacements. If this softening is strong enough (the vibro-

nic coupling is strong and the inequality (4.6) holds), the ground state becomes

unstable with regard to these displacements.

Fig. 7.30. Two components of the e00-type displacements (puckering) in a five-
membered ring with D5h symmetry. (Reprinted with permission from [7.348].
Copyright 1975 American Chemical Society.)
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To the best of our knowledge, the PJT origin of this puckering has not been

explored so far. The numerical data show as a fact that the system is distorted,

giving no information concerning its origin as due to the implication of the E00

excited electronic state that causes the instability of the ground state with respect

to e00 displacements. The authors [7.348] explain the puckering as determined by

the balance between the increased strain produced by the decrease in the bond

angle (which is smaller in the puckered configuration) and decreased torsion

strain (which is the greatest in the planar configuration). The PJT explanation is

muchmore general and straightforward: the puckering distortion, bymixing the

A1 and E00 electronic states, provides additional covalent bonding that lowers the

energy of the system, quite similar to many other cases considered above. As

mentioned in Section 4.1, in the general formulation employed in this trend, the

PJT implication of the excited electronic states is the only possible source of

instability of the ground state in the high-symmetry configuration. Several other

puckering situations are mentioned in this chapter.

7.5.3 Larger organic systems

Similar to C5H5, cycloheptatrienyl C7H7 has anE� e trough (Section 3.2) with

EJT¼ 0.859 kcal/mol [7.273]. In triphenylene and coronene negative ions

EJT¼ 0.385 kcal/mol and 0.299 kcal/mol, respectively [7.273]. Note that these

numerical datawere obtained by semiempirical calculations.More recent ab initio

calculations [7.351], aimed at guiding the assignment of the A2E003 X2E002
transition in the two-photon ionization spectra of C7H7 and C7D7, were

performed for the ground E002 and excited E003 states in the distorted C2v config-

urations. On the CASCF and B3LYP levels of computation the JT stabilization

energy EJT in the ground state of the E� e problem in C7H7 was found to

be 0.213 eV and 0.149 eV, respectively, while the energy barrier between the

minima is very small (0.020 eV and 0.065 eV, respectively), meaning almost

free pseudorotation of the distortions along the ring. In the excited state

EJT¼ 0.365 eV.

Distortions in cyclooctatetraene were considered recently [7.352], but the

interpretation that only some of them are due to the PJTE, the others not, is

based on a misinterpretation of this phenomenon: as shown in Chapter 4, any

distortion of high-symmetry configurations of molecular systems in non-

degenerate states is of PJT origin, its magnitude and symmetry being dependent

on the excited state that causes the distortion via the PJT coupling.

An interesting mechanism of photorearrangement of the cyclooctatetraene

radical cation C8H
þ
8 (COTþ) into the radical cation of bicyclooctadienediyl

(BODþ) was suggested to proceed by virtue of JT distortion of the excited
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2E state of COTþ [7.353]. Figure 7.31 shows schematically the main elements of

the calculated APES obtained on the RMP2/6-31G�//ROHF/6-31G� level of

computation. The BODþ system emerges as due to a strong JTE in the second

p-excited 2E state followed by the PJTE in the 2B3 minimum (which is lower

than the first excited state 2A2 of COTþ). Similarly, it was shown that the

rearrangement products of the syn-tricyclooctadiene radical cation are

Fig. 7.31. APES cross-sections illustrating the JTE and PJTE driving the
phototransformation of the cyclooctatetraene radical cation (COTþ) in
oxidized bicyclooctadiene (BODþ). The excited 2E state is subject to a JT
E� (b1þ b2) coupling, while the transition state TS is formed due to the PJT
distortion in the C2 direction. (Reprinted with permission from [7.353].
Copyright 1995 American Chemical Society.)
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determined by the PJT distortions [7.354]. Several analogous examples including

ring-opening rearrangements in oxirane and bicyclopentane radical cations have

been shown to take place along the coordinate predicted by the PJTE [7.355].

MCSCF calculations for a series of seven- and eight-member unsaturated

heterocycles with eight p electrons were performed with the goal of elucidating

the PJT distortions from planarity [7.356]. From the author’s conclusions, ‘‘the

monocyclic systems examined were found to show a variety of structural

changes. Azepine and oxepin undergo the pseudo JT distortion from a planar

C2v to a boat Cs conformation. In 1,5-diazocine, the pseudo JT distortion takes

place in two stages, the initial step being from a symmetric planar D2h to a skew

C2h structure and the subsequent step from a skewC2h to a tubC2 structure. The

1,3,5,7-tetrazocine molecule undergoes pseudo JT distortions from a symmetric

planar D4h to skew C4h and crown-like D2d structure through the respective

in-plane and out-of-plane nuclear deformations. Moreover, the C4h and D2d

structures are distorted into the same tub-shaped S4 conformation’’ [7.356].

A series of papers is devoted to the JTE in acenes, fluoroacenes, phenan-

threne, cubanes, and related systems [7.357–7.369]. The special feature of these

works is that they handle the vibronic coupling in terms of orbital vibronic

constants (Section 2.3) and aim at revealing possible superconductivity (how-

ever, it is unclear how the authors of some of the above papers handle the

multimode problem). Orbital vibronic constants (Section 2.3) were calculated

for anthracene, tetracene, penthacene, and their full deuterides, and used to

explain the origin of the inverse isotope effects in superconductivity of such

systems as due to the increase of the vibronic coupling in the C—C stretching

mode by H/D substitution [7.357(a)]. Similar calculations were performed for

benzene, naphthalene, anthracene, tetracene, penthacene, and hexacene mono-

cations and monoanions [7.357(b)], for which the superconductivity transition

temperatures were also estimated; they are much lower in monocations than in

monoanions. Monoanions of polycyanodienes are treated in a similar way in

[7.358]. For negatively charged B, N-substituted acenes the vibronic coupling

constants are much lower than in corresponding acene anions [7.359].

By means of calculating the orbital vibronic coupling constants for the

HOMO and LUMO of (CH)8 and (SH)8 and their cations and anions, the

authors [7.360–7.362] estimate the vibronic contributions to a variety of their

properties. In particular, they analyze the electron transition band (based on

the one-electron transition t2g(HOMO)!t1u(LUMO)), investigate the precon-

dition of high-temperature superconductivity under the assumption that the

vibronic coupling between the LUMO and intramolecular vibrations plays

an essential role, reveal the role of hydrogen atoms in this vibronic coupling,

and investigate the isotope effect. A similar investigation was performed on
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fluoroacenes [7.363(a)] and phenanthrene [7.363(b)]. Orbital vibronic con-

stants were also used recently to assign the photoelectron spectrum and

explain other properties of naphthalene [7.364].

The vibronic coupling in a series of related organic systems including [18]annu-

lene, [30]annulene, triphenylene, coronene, and corannulene was considered

recently [7.365–7.369] (see also [7.273]). In particular, in the ground E state of

the anions and cations of coronene, the largest contribution of the JTD6h!D2h

distortion (in the minima of the APES) comes from the eg vibration at 1668 cm
�1

that includes the C—C stretching; the C—H stretching mode of 3177 cm�1 is

also important, more so in coronene than in deuterocoronene [7.365]. Possible

superconductivity in monoanions of coronene and corannulene is considered

based on calculation of the vibronic coupling constants [7.369] (Section 8.4).

The ESR spectra of the corannulene monoanion C20H
�
10 were interpreted in

terms of pseudorotation about theC5v JT crossing [7.367]. The barrier between

the (five) equivalent minima was estimated as �2.2	 10�3 eV. The JTE in

monoanions and trianions of {6}- (I) and {18}-hetero(A,B)annulenes (II) was

discussed in [7.366]. These systems have a threefold axis of symmetry and a

degenerate E term, thus being subject to the JT E� e problem. On the B3LYP/

6-31G� level of computation the authors calculated orbital (Section 2.3) and

integral vibronic coupling constants, which are shown to be most significant

for the modes at 1500 cm�1 in I and <500 cm�1 in II.

The JTE in larger systems with trigonal symmetry, triptycene [7.370] (9,10-

dihydro-9,10 [10200] benzenoanthracene) (I) and 9-fluorotripticene [7.371] (II),

was investigated to explain the origin of the vibronic structure of their resolved

S1(E) S0(A1) two-photon ionization spectrum. For (I), a single-mode E� e

problem with k¼ 1.65, g¼ 0.426, and excited state frequency oE¼ 47.83 cm�1

accounts for �98% of the observed absorption band intensities in the

0–350 cm�1 region (the a2 mode appears through nonzero momentum cou-

pling). For (II), three models were considered: E� e, (AþE)� e, and

(AþE)� (eþ a2). TheE� e interpretation yields essentially correct frequencies,

while the coupling to the 1A1 state improves the intensities. In the (AþE)� e

model k¼ 1.145, g¼ 0.152, and oE¼ 61.4 cm�1. The tunneling splitting A2–E

due to pseudorotation and quadratic barriers is 1.5 cm�1 (see also [7.372]).

Orbital vibronic-constant calculations are also used to discuss cubane–

cyclooctatetraene conversion, as well as correlations between orbital occupation

numbers and molecular properties [7.373].

The PJTE in the excited state of a relatively large molecule, diphenylhexa-

triene (DPH), is described in [7.374]. DPH is planar and hasC2h symmetry in the

ground state A1g with lowest excited states 2Ag and
1Bu related to the Raman

spectra. The observed spectral properties are explained on the basis of
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significant vibronic mixing of the 2Ag and
1Bu states by a bu-type vibrational

mode (Q2) near 40 cm
�1 involving also the totally symmetricAg type vibrational

mode (Q1) at 1700 cm
�1. A three-level problem in which the ground state A1g is

coupled toQ1 only (with a coupling constant of 1.65 eV Å�1 amu�1/2), while the

two excited states are mixed by Q2 only (with a coupling constant of

0.2 eV Å�1amu�1/2), yields the APES illustrated in Fig. 7.32. The results explain

the origin of the observed two bands and the broadening in the Raman spectra.

The twisted configuration of ionized bicyclo[2.2.2]oct-2-ene was shown to

be stabilized by the PJT coupling to the corresponding excited state [7.375].

Fullerenes constitute a special group of large organic systems with the highest

possible symmetry for localized systems. Theoretical problems for fullerenes

and their properties are reviewed in Section 3.4. Here we mention several

examples of further application of the JTE theory to these systems, especially

to their charged and/or substituted forms [7.376–7.396]. For fullerene anions

Cn�
60 with the electronic configuration tn1u, using a simple ‘‘quasi-atomic’’ model,

it was shown [7.377] that the vibronic coupling of the t1u electron to the hg mode

results in combined JT �� hg and PJT (�1þ�2)� hg problems (Section 4.2).

The ground state of C3�
60 with the three excess electrons in the three orbital

t1u states is nondegenerate. This conclusion is in contradiction with the super-

conductivity of A3C60 (A¼K, Rb, Cs) and insulator properties of A4C60. The

problem was treated in several papers [7.378, 7.379, 7.392, 7.393] (see also

Section 8.4). In particular, it was shown [7.392, 7.393] that the joint inter-

electron interaction and JT distortion under certain conditions results in dispro-

portionation of the three t1u orbital occupancies: t
2
1uðxÞt11uðyÞt01uðzÞ instead of

the usually assumed t11uðxÞt11uðyÞt11uðzÞ. Similarly, the insulator properties of

A4C60 are explained [7.378] as due to a JT-induced transition from a

Mott–Hubbard to a band insulator state.

A detailed study of the photoelectron spectrum of gaseous C60 revealed three

tunneling states (Section 5.3) attributed to the tunneling between theD3dminima

of the JT-distorted cation Cþ60 [7.380(a)]. However, this interpretation of the

spectrum was questioned in [7.380(b)]. For fullerene anion systems with the

T1u� hg JT problem anisotropic phenomena in the D5d and D3d minima and

tunneling between the latter are further explored [7.381]. By analyzing experi-

mental data on the shift in infrared and Raman scattering spectra due to doping

in fullerene compounds and separating charge-transfer effects the authors [7.382]

(among other things) succeeded in extracting the values of the vibronic coupling

constant of the T1u� hg problem in C�60 in good agreement with those obtained

from photoemission spectroscopy data. Coupling constants were also obtained

by solving the multimode (eight-mode) problem (Section 5.5) for C�60 [7.383].
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Fig. 7.32. (a) Effective potentials for the totally symmetric C¼C stretching
coordinate around 1700 cm�1 in the three vibronically coupled states of
diphenylhexatriene (DPH). In the 2Ag state the PJTE leads to a double-well
potential (abscissa values of elongation are normalized with respect to the
zero-point oscillation for this mode Q10). (b) An enlarged segment of the
range of avoided level crossing between the 1Bu and 2Ag singlet states;
potential curves are given for two different vibronic coupling constants.
(c) A contour diagram of the effective two-dimensional vibrational potential
for the first excited singlet state ofDPH resulting from strong vibronic coupling;
the cut at Q2¼Q20/2 represents the lower potential in (b). (Reprinted with
permission from [7.374]. Copyright 1998 Elsevier Science Publishers.)
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The out-of-center position of the Liþ ion in Li : C60, called in [7.385] ‘‘degen-

eracy loss,’’ is in fact an obvious PJTE (the authors do not refer to the JT

vibronic coupling effects). Off-center positions of Liþ ions in other molecular

systems and as impurities in crystals were considered multiply (Section 8.1.1).

The cluster Ti8C12 regarded as a substituted C20 dodecahedron is considered

with respect to its two possible structures, Th and D3d, and it is shown that in

combination with the JTE the zero-spin state occurs for theD3d configuration

[7.386]. The symmetry implications of JT distortions of charged fullerenes in

entropy estimations are discussed in [7.387].

Magnetic succeptibilities and g-factors for C�60 were calculated taking into

account the JTE and spin–orbital coupling [7.389]. The latter is strongly

reduced compared with that of the carbon atom (Section 6.3), so are the

effective weak-field g-factors of low-lying states; for the ground-state doublet

the g-factor is predicted to be negative: g��0.1. High-resolution far-infrared

transmission spectra of C60-tetraphenylphosphoniumiodide show a doublet

splitting in the two t1u modes in accordance with the JT D5d andD3d distorted

ball, as well as interband electron–phonon coupling modes [7.388]. The E� e

problem in C3�
70 is considered in [7.390].

For the JTE in infrared absorption of charged C60 see in [7.391(a)]. JT

excitons in resonant Raman spectra of C60 were studied [7.391(b)], and it

was shown that the tunneling splitting 3T3g�3T1g explains the experimental

triplet-state data. The depolarization ratio was also calculated. D2h distortion

in the C�60 ion fixed by the crystal-field influence in single crystals of

½AþðC6H5Þ4�2C�60B� was observed by means of ESR spectra [7.394].

The C60!Cþ60 photoemission spectrum is calculated using the Lanczos

method for the diagonalization of the vibronic Hamiltonian (Section 5.4)

with all the JT-active vibrations included, and it is shown that the separation

(�230meV) of the first shoulder from the main peak is due to the hu vibronic

excitation [7.395].

Orbital vibronic constants (Section 2.3) were employed in a simple scheme

to estimate the vibronic coupling in C60 relevant to resistivity [7.396(a)], while

in [7.396(b)] a full ab initio calculation of the electron–phonon coupling via

orbital vibronic constants was performed, with a brief discussion of its rele-

vance to superconductivity.

7.6 Clusters, coordination, and mixed-valence systems

Applications of the JT and PJT effect to metal clusters and coordination

compounds are vast, especially during the last two decades (for an account
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of older publications through 1979 see [7.15]). They overlap essentially with

solid-state problems, for which local properties and lattice defects are often

considered in cluster presentation, at least as a first approximation to the

problem. Therefore the separation of the JT problems in this section from

many of those in Chapter 8 is rather conventional. Nevertheless, we made this

distinction by including here clusters and coordination compounds that may

exist outside a crystal lattice, or considering mostly molecular properties of JT

clusters, leaving the problems of crystal interactions to the next chapter.

On the other hand, there are very vague distinctions between clusters and

coordination compounds (for the definition of the latter see [7.3]). For exam-

ple, [Cu(H2O)6](BrO3)2 is a coordination system in which the main JTE takes

place in the cluster [Cu(H2O)6]
2þ. But there are free multicenter systems like

Cu4O12H8, which are often called clusters too, and there are just pure metallic

clusters like Ni5 and Pb6. Taking all this into account, there is no sense in fully

separating clusters from coordination systems when discussing the JTE.

Mixed-valence systems stay separate by definition although they have many

features in common with coordination compounds.

7.6.1 JT clusters and coordination systems

The number of coordination systems and clusters studied with respect to their JT

vibronic coupling effects is innumerable. In addition to some more recent works

outlined in this section we refer the reader to several reviews [7.1–7.3, 7.15,

7.267, 7.268, 7.397–7.404] and to theoverlapping topics inSections 7.6.3 and8.1.

Among JT systems Cu(II) coordination systems and clusters with the elec-

tronic configuration of the central atom (CA) 3d 9 aremost studied. The reason

is that Cu ions are among the strongest JT centers; in fact they served as the

first experimentally observed confirmations of the JTE in EPR [7.405].

Divalent Cu2þ (3d 9) systems in ligand environments with at least one threefold

symmetry axis have doubly degenerate electronic 2E terms. The simplest of

these studied are trigonal bipyramidal (TBP) complexes of the CuX5 type with

nondegenerate ground state and excited E terms. X-ray analysis in combina-

tion with EPR and calculations [7.406–7.410] shows that the TBP cluster

[CuCl5]
3� in the crystal [Co(NH3)6][CuCl5] is unstable with regard to e dis-

placements toward a square-pyramidal (SP) configuration; in fact it performs

pseudorotation between the three equivalent SP configurations demonstrated

in Fig. 7.1 (Section 7.1.1). Since the ground state of this cluster in the TBP

configuration A01 is nondegenerate, its distortion and pseudorotation should

be driven by the PJT mixing of the ground state with the excited E0 states that

produce the observed TBP!SP e displacements. Semiempirical calculation of
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the PJT contribution of several excitedE states to the instability confirmed this

picture and allowed one to better understand the origin of the distortions as

due to the formation of new covalence between the valence orbitals of Cu and

charge-transfer states on the ligands [7.411].

This investigation enabled one to solve another related problem. The cluster

[ZnCl5]
3� in the very similar crystal [Co(NH3)6][ZnCl5] exists under the same

conditions as the [CuCl5]
3� cluster above, with the distinction of there being just

one d electron more in the Zn2þ (d10) configuration instead of Cu2þ (3d9), but

its distortion from the TBP configuration is of A002 type (not E
0 type), resulting

in a distorted tetrahedron plus one ion on (almost) the trigonal axis:

[ZnCl5]
3�(TBP)![ZnCl4]

2�(tetrahedron)þCl�. Calculations [7.412] quite

similar to those performed on [CuCl5]
3� explain directly the origin of the

differences between these two clusters: while there are E0 andA002 excited electro-

nic states (and they produce, respectively, e0 and a002 PJT distortions) in both

clusters, the MO energy positions and vibronic coupling constants in these two

systems are different. As a result the e0 distortions are stronger than the a002 ones

in [CuCl5]
3�, whereas the opposite situation is realized in [ZnCl5]

3�.

The MoCl5 complex in the TBP configuration has the ground electronic

E term. The fact of pseudorotation in this complex emerges from its electron-

diffraction spectra [7.413]. The authors interpreted the experimental data as

compatible with a picture in which about 56% of the molecules have the SP

configuration C4v, while the remaining molecules have D3h (TBP) symmetry

with large amplitudes of the corresponding vibrations (if normal vibrations are

assumed, 18% of the molecules need be considered as dimers). This explanation

ignores the vibronic effects and consequent pseudorotation. The experimental

results [7.413] are well understood as pseudorotations based on the vibronic

coupling scheme discussed above and illustrated in Fig. 7.1; the percentages

of different configurations extracted from the experimental datamay even allow

one to estimate the barrier height between the distorted configurations.

Experimental data and calculation for PF5 (see [7.414, 7.415] and references

therein) show that this system has equivalent TBP configurations with a

barrier of about 0.17 eV between them at the C4v symmetry and performs

Berry pseudorotations. The latter is qualitatively different from the pseudo-

rotations in the JT systems as discussed in Section 7.1.1.

In a series of papers the specific geometry of the expected tetragonally

distorted octahedral complexes of Cu(II), namely whether they are elongated

or compressed octahedra, was discussed in detail using both theoretical and

experimental evidence [7.416–7.418]. While the JTE theory allows for either

elongated or compressed octahedra, depending on the sign of the vibronic

coupling constants, it was shown [7.416] (see also [7.419]) that configuration
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interaction of the electronic 3d9 configuration of Cu2þ with the higher-in-

energy 4s2 configuration, as well as anharmonicity, makes the elongated con-

figuration more favorable.

Nevertheless ESR and X-ray data on some of the crystals with octahedral

Cu(II) sites were first interpreted as due to compressed octahedra. Octahedral

Cu(II) units in K2CuF4, Ba2CuF6, g-Cs2PbCu(NO2)6, (3-chloroanilinium)8
[CuCl6]Cl4, etc., were originally misinterpreted as compressed by the JTE,

while a more elaborate investigation including EXAFS measurements (see

[7.417, 7.418] and references therein) shows that in fact the local octahedra

are elongated, but their positions in the crystal are either randomly oriented

(disordered) or antiferrodistortively ordered (Section 8.2), giving the average

picture of compressed octahedra instead of elongated ones.

In a similar problem EXAFS investigations of the intraatomic distances in

the crystals [Cu(H2O)6](BrO3)2, [Cu(H2O)6]SiF6, and [Cu(ONC5H5)6](ClO4)2
show that the CuA6 octahedra are tetragonally elongated in full accordance

with the JTE [7.420]. This result is in contradiction with the previous conclu-

sion based on crystallographic studies that these octahedra are regular, serving

as just another example of the relativity of the means of observation of JT

molecular shapes (Section 7.1.1). Compressed tetragonal [CuF6]
4� clusters

were observed in KAlCuF6 [7.421], but in this case the octahedral units are

strongly interlinked in chains via the axial fluoride ligands, forming a super-

exchange system. A strong off-center JT distortion was found by ESR in the

[CuF8]
6� cluster as a doped impurity in SrF2 [7.422].

Among other papers devoted to the JTE in octahedral hexacoordinated

transition metal clusters see, e.g., [7.423–7.437]. Ab initio SCF and correlated

pair-functional (CPF) calculations [7.423(a)] of the APES of the octahedral

systems of [Cu(H2O)6]
2þ, [Cr(H2O)6]

2þ and [Mn(H2O)6]
2þ in their ground E

state (JT E� e problem) show that they are tetragonally distorted at the

minima with the ratios of, respectively, axial to equatorial (Cu—Oax) / (Cu—Oeq)

distances (in Å) of 2.25/2.05, 2.36/2.15, and 2.15/1.99, JT stabilization energy

EJT (cm�1)¼ 930, 749, and 1170, and energy barriers between the minima

� (cm�1)¼ 136, 256, and 193. These energy values are much lower than those

observed experimentally. For [M(H2O)6]
3þ with M¼Zn, Cd, and Hg, where

the ground state is nondegenerate, a PJT coupling to the excited state was

revealed using Hartree–Fock and effective-core-potential calculations [7.423(b)].

The results show a rather flat potential in these systems that explains the

softness of, e.g., the Hg—O bonds and a large spread in their mean values

(see also the plasticity effect in Section 8.1). The JTE in hydrated transition

metal ions definitely influences the water-exchange reactions [7.424], as well as

in the presence of heteroligand [7.425].
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A strong JTE in tris-chelate octahedral complexes formed in the solution of

Cu2þ ions in ethylene glycol was revealed by means of isotopic substitutions in

time-of-flight neutron diffraction [7.427]. In explanation of the pressure-

induced change from fluorescence 4A2g 4T2g to phosphorescence spin-

forbidden 4A2g 2Eg transitions in the octahedral [CrF6]
3� complex of

(NH4)3[CrF6] the authors [7.428] involved the PJT mixing of the 4A2g and
2Eg terms which approach each other under pressure. This suggestion seems to

be invalid because the vibronic coupling does not contain spin operators and

hence it does not mix terms with different spin multiplicities. However, in

principle, this mixing may take place if there is a strong spin–orbital coupling.

For [CrCl6]
3� clusters as a doped impurity in Cs2NaScCl6 the JTE in the

infrared luminescence was revealed [7.429(a)], and the influence of pressure

on the excited 4T2g state of this system was analyzed [7.429(b)].

For some gas-phase octahedral systems the discussion of the JT origin of

their properties is continuing. A sound example is XeF6 and isoelectronic

systems. There is a rather long history of electronic-structure investigation of

these systems (see [7.21, 7.22, 7.430–7.435] and references therein). As shown

in Section 7.1.2, the PJT mixing of the ground nondegenerate A1g state

(formed by the two ns electrons that occupy the antibonding MO) with the

low-lying excited T1u states (formed by the a1g!t1u excitation to the t1u MO

that originates from the np states) may lead to the trigonal t1u-type distortion

of the octahedron, provided the inequality (4.6) holds [7.3, 7.25]. This PJT

distortion may be complicated by the proper JTE in the degenerate T1u state.

Depending on relations between the coupling parameters, the resulting distor-

tion of the octahedral configuration is (Fig. 7.4) (a) combined PJT dipolar t1u
with either tetragonal eg or trigonal t2g JT distortions; this is the so-called

stereochemically active lone-pair effect; (b) pure JT either tetragonal or trigo-

nal distortions (when the JTE on the excited T1u term dominates over the

PJTE); or (c) no distortions (regular octahedra) when neither the PJTE nor the

excited state JTE are sufficiently strong (inert lone pairs) (Section 7.1.2).

Ab initio and other calculations [7.21, 7.22, 7.430–7.435] and experimental

data confirm these qualitative predictions: XeF6, SeF
2�
6 , and IF�6 are trigon-

ally distorted, ClF�6 ; BrF
�
6 , and BiCl3�6 seem to be regular octahedra (in the

condensed phase), while SeCl2�6 ; SeBr2�6 ; TeCl2�6 ; and TeI2�6 may be either

distorted or regular octahedra, depending on the counter ions (the environ-

ment may quench the pseudorotations).

Recent more elaborate calculations of the electronic structures of some of

the above systems [7.21] show that correlation and relativistic effects diminish

the PJT distortions, stabilizing undistorted octahedral configurations (for this
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reason RuF6, AtF�6 ; andPoF
2�
6 emerge as regular octahedra). This result

seems to be quite reasonable: higher symmetry favors better correlated elec-

tron distribution (and this will be reflected directly in the vibronic coupling

constants of the PJTE), while the relativistic contraction of the ns electrons

increases the A1g–T1u energy gap �; both these factors decrease the PJTE

contribution to the softening of the system with respect to distortions, as well

as the possible contribution of the JTE in the excited T1u state (Section 7.1.2).

The authors [7.21] claim that ‘‘none of the available simple models . . . is able

to predict or rationalize all these structures.’’ This statement is to say the least

ungrounded: the PJTE contains the necessary tool that explains qualitatively

all these structural observations. The authors [7.21] just did not try this

possibility, for which the estimation of the excited states and vibronic coupling

constants would be required. Amethod of ab initio calculations that allows one

to analyze the PJT origin of molecular geometries was worked out recently

[7.22] and applied to several series of compounds chosen as examples. In

particular, it was shown that in the three isoelectronic systems considered in

[7.21], TeF3�
6 ; IF�6 , and XeF6, the latter only is subject to PJT instability. In a

series of octahedral hydrides MH6 with M¼ Sc3�, Ti2�, V�, Cr, and Mnþ the

PJT softening of the ground state increases from left to right, making only the

last two of them unstable [7.22].

The mixed PJT (dipolar) and JT distortions mentioned above are most

important in explaining the origin of complicated (helicoidal) crystal structures

and chirality [7.436, 7.437]. In particular, in the InCl crystal ([InCl6]
5� clusters)

both types of combined dipolar distortions, dipolar t1u plus trigonal t2g, and

dipolar t1u plus tetragonal eg, are observed in two phases of the crystal, yellow

and red, respectively (see also Section 8.2). Vibronic energy levels of IrF6 were

considered in [7.438]. For the vibronic origin of the lone-pair effect in a series

of other systems revealed by means of DFT calculations see in [7.27, 7.28].

The geometry, energy, vibrational frequencies and EPR parameters of

V(CO)6 in Oh, D3d, D4h, and D2h symmetries were computed using DFT and

high-level ab initio methods [7.439]. The lowest configurations are of D3d

symmetry in accordance with the JTE in theT2g term of the regular octahedron

(Section 3.3) with the JT stabilization energy ET
JT ¼ 731 cm�1. The barrier

height between the D3d minima �¼ 210 cm�1 at a D2h saddle point. This

structure agrees well with a variety of experimental data including EPR, IR,

and Raman spectra.

Coordination systems of gold are mentioned in Section 7.3.2. The CASSCF

method was applied to calculations for a series of AuCln systems [7.440]. It was

shown that in accordance with the JTE AuCl3 has three equivalent minima

withC2v symmetry 29 kcal/mol lower in energy than theD3h configuration and

442 7 Geometry, spectra, and reactivity



with barriers of �6 kcal/mol between the minima. This distortion is smaller

than in AuF3. The tetrahedral AuCl�4 is also subject to JT distortions.

Coordination systems with T terms are less studied than E-term systems,

except for a series of works reported recently onT-term and partlyE-term JTE

in octahedral aquo-complexes of transition metals [7.441–7.453]. In a compre-

hensive study of mostly magnetic measurements in combination with Raman

spectra, neutron diffraction, and numerical calculations the authors revealed

the main features of the JTE in [Ti(H2O)6]
3þ, [V(H2O)6]

3þ, [Mn(H2O)6]
3þ,

[Cr(H2O)6]
2þ, and [Ru(H2O)6]

3þ in different crystal environments, including

also cooperative phenomena and phase transitions. In particular, the cubic-to-

orthorhombic phase transition at �12K in CsTi(SO4)2 �12H2O observed by

EPR and neutron scattering is interpreted as triggered by local JT distortions

in the [Ti(H2O)6]
3þ complexes. In the high-temperature phase this distortion

splits the t2g (Oh) orbital, leaving the eg orbital lower in energy, while the JT

Eg� eg problem with cooperative interaction between the centers results in the

orthorhombic phase [7.441, 7.448]. This explains the anomalous ground-state

g factors, gk¼ 1.25 and g?¼ 1.14, as due to the low-symmetry distortion (in

previous interpretations the phase transition was not taken into account). The

same model explains also the ground-state magnetic susceptibilities of the

system [7.442, 7.448]. By numerical diagonalization of the vibronic

Hamiltonian including spin–orbital interaction and vibronic coupling to the

water environment of the titanium ion (involving also librational modes for

the sulfate group) the authors achieved a very good fit to the magnetic

measurement data and Raman spectra for the [Ti(H2O)6]
3þ cluster in the

b-alum lattice.

The anomalous magnetic behavior of titanium(III)-doped cesium gallium

alum with the magnetization strongly dependent on the strength of the mag-

netic field is explained as due to the second-order (giant) Zeeman effect pro-

duced by the mixing of low-lying vibronic states by the magnetic field [7.443].

The EPR spectrum of Ti(III) in CsAl(SO4)2 �12H2O was carefully reexam-

ined by novel techniques and fully interpreted as due to the dynamic JT

coupling and the influence of low-symmetry strain (Section 6.3.2) [7.446,

7.448]. The splitting (�2720 cm�1) of the T1g ground state of the octahedral

[V(H2O)6]
3þ cluster in [Rb(H2O)6][V(H2O)6](SO4)2 due to the trigonal distor-

tion in the minima was observed in Raman scattering, and the band shape was

well reproduced based on the (3Aþ 3E)� e combined JT plus PJT vibronic-

coupling model (Section 4.2) [7.447].

For the [Cr(OD2)6]
2þ cluster in Tutton salt (ND4)2Cr(OD2)6(SO4)2 inelastic

temperature-dependent neutron-scattering data are consistent with the JT
5E� e problem perturbed by low-symmetry strain [7.453].
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With the aim of explaining spectroscopic properties of impurity centers in

crystals (Section 8.1) the JTE in ground and excited orbital triplet T states of

the [MnF6]
4� (I) and [CrF6]

4� (II) clusters were analyzed [7.454]. For the
4T1g(G),

4T2g(G),
4T2g(D), and 4T1g(D) states of (I) and the 4T2g state of (II) the

authors calculated values of the constants FE of vibronic coupling to e distor-

tions in the crystal-field approximation in reasonable agreement with some

spectroscopic Huang–Rhys factors.

Monatomic clusters Ni6 [7.455], Pb6, [Pb6]
þ, and [Pb6]

� [7.456] were also

considered with respect to the possible JT distortions of the reference octa-

hedral configuration. InNi6 the authors [7.455] found two distorted configura-

tions of C2v (most stable) symmetry in the 9Bg electronic state, and D2h in the

state 9B3g. In the lead complexes [7.456] the JT distortions are almost com-

pletely quenched by the spin–orbital interaction (Section 4.2).

Multicenter JT problems (Section 3.6) serve as a bridge between mono-

center systems and JT poly-center formations in crystals. Four-center systems

of the type Cu4OX6L4 are mentioned in Section 3.6 where they serve as a

prototype for the solution of the four-center JT problem [7.457–7.460].

Following the solution of Section 3.6 in the strong-coupling limit, the APES

was evaluated and, using the Heisenberg spin Hamiltonian for exchange

interactions, the temperature dependence of the effective magnetic moment

eff(T) was calculated in good agreement with experimental data for

L¼OP(C6H5)3 and X¼Cl, Br; L¼ (C6H5N) and X¼Br; and L¼ (tmn) and

X¼Cl. In particular, the origin of the unusual non-monotonic dependence of

eff(T) for some clusters was explained. The role of spin–orbital interaction

was also considered.

Four-center clusters Cu4O12H8 as local formations in superconducting

copper oxide compounds were considered from the point of view of vibronic

coupling presented as a sum of orbital vibronic contributions (Section 2.3)

[7.461]. The role of HOMO and LUMO versus the most active modes in this

coupling is discussed. The JTE in six-center transition metal clusters was

considered recently [7.462, 7.463]. Using DFT electronic-structure calcula-

tions with geometry optimization it was shown that [Re6S8Cl6]
3� has a ground

E term with three minima ofD4h symmetry on the APES (as expected from the

E� e problem), in which the reference configurationOh is compressed. The JT

stabilization energy is EE
JT � 0:06 eV with a small barrier between the minima

of �� 0.005 eV. These distortions were observed experimentally in

(n-Bu4N)3[Re6S8Cl6] at 100K.

In the somewhat similar system [W6Cl14]
� the ground state in the Oh con-

figuration is T2u, which is known to produce much smaller distortions then the

E term. The calculations [7.462] yield shallow (�0.001 eV) D4h minima,
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meaning that the JT T� e problem is realized, the coupling to t2g displace-

ments being less important (Section 3.3). The so-called continuous symmetry-

measure methodology was applied to explore JT distortions in Cu(II)

complexes quantitatively [7.464].

Examples of distortions for several tetrahedral MX4 systems with an elec-

tronically threefold degenerate T ground state are given in Table 7.17 in terms

of tetrahedral angles �. There are many other examples of this kind in the

review articles mentioned at the beginning of this section. The D2d

distortions (�� 858) of the NiX4 cluster in Ni(NMTP)4[BF4]2, where NMTP¼
N-methyl-2-thiooxopyrrolidine, allowed the authors [7.465] to estimate the

vibronic coupling constants FE¼ 3250 cm�1 Å�1, GE� 0, and EJT¼ 1595 cm�1.

In the analogous cluster with Zn (instead of Ni), which has a nondegenerate

ground state, there are practically no distortions except those that can be attri-

buted to crystal packing.

The photochromic effect in sodium nitroprusside, Na2[Fe(CN)5(NO)] �2H2O

was explained based on a PJT model [7.466] that involves in the vibronic

coupling the following three electronic states of mainly the Fe—N—O triangle:
1A1½Fe2þð�2

1�
2
1 �2Þ�, 1B2½Fe3þð�2

1�
2
1 �2Þ�1ðp�xNOÞ�; and 1A2½Fe3þð�2

1�
2
1 �2Þ�1

ðpyNOÞ�; where �1, �2, and �1 are the MOs belonging to the corresponding

irreducible representations A1, A2, and B2 of the C2v group, respectively. These

states are mixed by a1 and b1 displacements, resulting in the PJT problem

(A1þA2þB2)� (a1þ b1). A model solution of this problem allowed the

authors [7.466] to obtain the APES illustrated in Fig. 7.33. It shows the

ground-state (GS) minimum with two excited (metastable) minima (MS1 and

MS2), at which in the distorted triangle the angle Fe—N—O is 1468, 74.88, and
0.18, respectively, in goodagreementwith the experimental data (1768, 828, and38,
respectively). The three minima are thus separated by relatively large barriers

of conversion from theFe—Nbond in theGS to theFe—Obond inMS2via the

intermediate side-on coordination inMS1, and this explains the long lifetime of

the excited metastable states.

Table 7.17. Bond angles and bond lenths forMX4 polyhedra in cat[MX4], where

cat is p-xylylene bis(triphenylphosphonium)2þ [7.410]

[Co(NCS)4]
2� [Ni(NCS)4]

2� [Cu(NCS)4]
2� [CuBr4]

2�

�1 (degrees) 113.9 115.6 135.0 134.5
�2 (degrees) 116.1 126.3 139.5 136.9
�3¼�4¼�5¼�6
(degrees) 106� 1 103� 2 97� 1 98� 2
R(M—X) (Å) 1.96 1.93 1.92 2.39
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The crystal stereochemistry of a series of coordination systems

[Cu(phen)2Br][Y] with Y¼Br��H2O, ClO�4 , NO�3 �H2O, PF�6 , and BPh�4 was

qualitatively explained based on the JTE and especially PJTE in the basic

cluster CuN4Br [7.467].

Combined quantum-mechanical/molecular-mechanics (QM/MM) and

molecular-dynamics (MD) simulations were used to study hydrated Cu2þ ions

inwater and ammonia solutions [7.468, 7.469]. The radial distributions of Cu—O

and Cu—N distances were calculated in four different models of a hydrated

ion with one and two heteroligands (NH3) in cis and trans positions. The

results confirm the dynamic JT distortions in the octahedral [Cu(H2O)6]
2þ

cluster and a characteristic time of<200 fs for the inversion of the JT distortions

(meaning rather large tunneling splitting). Another conclusion is the strong

and position-dependent weakening influence of the heteroligands on the Cu—O

bond: the acceleration of water exchange by a factor of�2 for one ligand NH3,

�3 in the case of two NH3 molecules in cis position, and �6.5 for two NH3

molecules in trans position (cf. mutual influence of ligands in Section 7.1.4).

JT-induced preorganization in copper complexes important to their reactiv-

ity is considered in [7.470]. ESR spectra of [Cu(en)2H2O]SO4 at low tempera-

tures and high frequencies (73GHz) were interpreted as due to two

nonequivalent JT centers in the unit cell with coupled dynamic distortions

[7.471]. The C3v symmetry of the reference configuration of [(Z6-benzene)

Nb(CO)3]
þ with consequent low-energy singlet and triplet E terms allows

one to apply the JTE to evaluate the observed geometries of this and related
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Fig. 7.33. The APES of sodium nitroprusside (obtained in a PJT model),
showing the ground-state minimumGS and two excited (metastable) minima
MS1 and MS2 (Reprinted with permission from [7.466]. Copyright 2003
Elsevier Science Publishers.)
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systems [7.472]. In particular, it was shown that there are two JT-active

e modes related to bending and inversion of the metal-carbonyl moiety.

Unusually large Stokes’ shifts in the phosphorescence of AuL3,

L¼ phosphine, were explained by the JT distortions in the excited triplet

state 3E00 explored by means of hybrid quantum-mechanical/molecular-

mechanics calculations with quantum mechanics applied to the [Au(PH3)3]
þ

complexes [7.473]. DFT calculations of the JT distortions and stabilization

energies in [Cu(en)3]
2þ are used as a model to understand the properties of

macrobicyclic cage complexes of Cu(II) studied by ESR [7.474]. Similar JT

systems of Ag(II) studied by ESR are considered in [7.475] (see also [7.476]).

Moving to two-center and multicenter coordination systems, we note first

thatmixed-valence systems are considered in the next Section 7.6.3. In an edge-

sharing bioctahedral structure with two octahedral Mo centers, cis-Mo2(m2-
O2CCH3)2(m2-DXyIF

2,6)2, where DXyIF
2,6 is the anion of N,N0-di-(2,6-xylyl-

formamidine), the Mo2(m2-O) ring distortion is attributed to the PJTE [7.477]

An interesting example of a polyatomic Td structure with a JTE in the excited
1T2 state is presented by Sn6(m5-O)4(m3-OH)4 [7.478]. By means of ab initio

calculations with geometry optimization, it was shown that the system in the
1T2 state undergoes a JT distortion from Td to C2v (as predicted by the theory),

which is 23.7 kcal/mol lower in energy. This explains the observed spectral

properties, which were earlier interpreted as being due to the formation of

Sn—Sn bonds (the authors [7.478] show that no such bonding takes place).

The JTE was shown to be important in formation of multi-ion complexes in

heteropolytungstates [7.479].

Coordination centers play important roles in biological systems, especially

in metalloenzymes and other metallobiochemical formations, where the JT

vibronic coupling effects are of significant importance. The general under-

standing here is that the transition-metal center in these systems provides the

necessary degenerate or close-in-energy orbital states, while the large organic

environment creates a series of soft modes, both (degenerate states and soft

modes) favoring JT and PJT distortions [7.3] (cf. the � and K0 values in the

inequality (4.6)). A large class of such systems is formed by hemoproteins, the

active site of which can be modeled by metalloporphyrins; many of their

properties can be explained by the PJTE [7.400, 7.480–7.485].

With the metal atom in the center of the cavity of a planar porphyrin ring,

out-of-plane displacements of the iron atom were shown to play an essential

role in the functioning of hemoglobin (Hb) and other hemoproteins, providing

the trigger mechanism of oxygenation [7.486]. It was shown that the out-of-

plane displacement of the iron atom in iron porphyrin is a PJTE and its return

to in-plane position upon oxygenation inHb is due to the electron rearrangement
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that quenches the PJTE (destroys the inequality (4.6)) [7.400]. In the C4v

symmetry of the nearest environment in the metal porphyrin (MP) center the

out-of-plane displacement of the metal is an a2u mode, for which the nonzero

PJT coupling requires appropriate symmetries of the mixing orbital states that

produce the instability. Figure 7.34 illustrates the HOMO–LUMO energy-

level positions [7.486, 7.487] for several MPs, with M¼Mn, Fe, Co, Ni, and

Cu, and manganese phthallocyanine (MnPc). It is seen that the small energy

gap� between the a1g and a2uMOs required to satisfy inequality (4.6) in order

to get PJT a2u displacement is satisfied for MnP and FeP, whereas other

transition metals might not be appropriate for this distortion, and this con-

clusion is in accordance with experimental evidence (see in [7.400]).

In MnPc the energy gap� is large too, and its configuration is planar. This

particular case shows that the previous explanation of the out-of-plane dis-

placements as due to the non-fit of the ionic radius with the cavity dimensions

does not work: the cavity is smaller in phthalocyanine than in porphyrin, but

MnPc is planar, while MnP is not. Again, a series of MPs with ionic radii of M

larger than Fe(II) (e.g., Sn(IV) andMo(IV)) are planar. The PJTE explains all

these stereochemical facts in a unique fashion.

MnPc
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Fig. 7.34. HOMO and LUMO energy levels for some metal porphyrins (MP)
and manganese phthallocyanine (MnPc) with indication of the ground state
for the in-plane position of the metal. The two MOs forming the energy gap
2� between the ground and excited states that mix under the A2u

displacement are shown by dark arrows [7.487].
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For the out-of-plane position of the iron ion in FeP (or in Hb) its return to

in-plane position upon oxygenation is shown to be due to the increase of the

energy gap � between the ground and excited states active in the PJTE that

invalidates the inequality (4.6). Figure 7.35 illustrates this statement.
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Fig. 7.35. The MO energy levels for several HOMOs and LUMOs of iron
porphyrin with indication of the ground term: (a) the out-of-plane
displacement of the iron atom is �R¼ 0.49 Å; (b) the deoxy form of
hemoglobin (Hb), �R¼ 0.62 Å; (c) Hb—CO; (d) planar iron porphyrin
�R¼ 0; (e) Hb—O2. The energy gap 2� between the two states that
mix under the out-of-plane displacement of the iron atom are shown by
arrows.
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Another important feature of many metalloenzymes that can be explained

by means of the PJTE is the geometry of coordination of small ligands (O2,

CO, CN, NO) to the metal center, which influences their reactivity and

dissociation. Again, the PJT mixing of ground and excited states of the

reference high-symmetry configurationwith the ligand in linear end-on coordin-

ation to MP was shown to explain the origin of the E-type bending distortions

for some ligands, resulting in their different geometries of coordination

[7.400, 7.481, 7.482]. Figure 7.36 illustrates some of these results.

There are two main PJT mixings that contribute to the E-type bending of

the ligand. Following Eq. (4.14), one can evaluate the resulting condition of

end-on configuration instability, which in our case of one-electronMOpresenta-

tion yields

ðq1 � q3ÞF 2
1

�1
þ ðq2 � q3ÞF 2

2

�2
> KE (7:45)

where in addition to the energy gaps 2�1 and 2�2 and corresponding vibronic

coupling constants F1 and F2 the populations q1, q2, and q3 of the three active

b c
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Fig. 7.36. MO energy-level diagrams for linear end-on coordination of
diatomics to metalloporphyrins: (a) CO, (b) NO, and (c) O2. The arrows
indicate the energy gaps 2�1 and 2�2 between the e and a1 MOs that mix
under the bending (E-type) displacement of the ligand.
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MOs (e1, e2, and a1, respectively) are introduced. In the case of the MP—CO

bonding only the lowest e1 level is populated, meaning that q2� q3¼ 0, and since

2�1 is too large, no PJT bending occurs: CO is expected to be coordinated

linearly end on. ForMP—NO coordination the e2MO becomes occupied when

the number n of d electrons of the metal plus the antibonding p� electron of NO

exceeds six, nþ 1> 6, for which case both terms in Eq. (7.45) contribute to the

instability, resulting in a bent configuration. This happens when n> 5. Thus the

PJTE formetals with n� 5 the linear end-on coordination of theNOmolecule is

stable, while for n> 5 it is unstable, in full agreement with experimental data

(note that the variations of the energy gaps 2�1 and 2�2 and vibronic constants

F1 and F2 for different metals and ligands are small). For MP—O2 bonding the

two contributions in Eq. (7.45) are of the same order of magnitude, resulting in

instability of the end-on configuration; in fact the coordination of O2 is side on.

One of the consequences of different geometries of ligand coordination is

manifest in their dissociation features, especially in flash-photolysis [7.400,

7.482]. Indeed, due to the strong dependence of the geometry of coordination

on the population of the correspondingMOs (Eq. (7.45)), some optical excita-

tions result in essential changes of this geometry. Obviously, if the vertical

excitation from a stable ground state (as, e.g., in the MP—CO linear end-on

coordination) falls into the point of instability of the excited state (in the case

ofMP—CO thismay happen by excitation to the e2MO), the quantum yield of

photodissociation will be maximal. Different possibilities based on the PJTE

picture given above were considered [7.400, 7.482]. Recent experimental data

confirm these predictions [7.488].

The problem of proton dynamics in the porphyrin ring was investigated

involving the PJTE [7.489]. In the reference D4h configuration with two pro-

tons, one above and one below the plane of the porphine ring, the ground A1g

and excited Eg terms mix under the PJT eg nuclear displacements, making this

configuration unstable. The resulting APES has four minima with the protons

localized near opposite nitrogen atoms accompanied by the corresponding eg
type out-of-plane distortion of the macrocycle. At low temperatures the sys-

tem is localized near one of the minima. As the temperature increases transi-

tions between theminima (correlated jumping of the protons to another pair of

nitrogens) occurmore often. The temperature dependence of the probability of

these transitions was calculated considering the thermal interaction of the

minima states with the out-of-plane vibrations of the porphine skeleton and

its environment. The results obtained agree well with the experimental data on

NMR measurements of proton migration in tetraphenylporphyrin.

The PJTE was also shown to be instrumental in explaining enzymatic cata-

lysis in Cu systems, like CuL3þX2!CuL3XþX [7.490], their mechanism
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being similar to the JT- and PJT-induced chemical activation discussed in

Section 7.1.3. Regarding activation of small molecules by their coordination

to transition metal clusters see also in [7.491].

7.6.2 Vibronic coupling in mixed-valence systems

Mixed-valence (MV) compounds can be defined as systems with one or two

excess electrons to occupy two or more equivalent centers with energy barriers

between them. Depending on the magnitude of these barriers, the excess

electrons may be either asymmetrically localized on some of the centers or

delocalized over some or all centers. Roughly speaking, the localization–

delocalization alternative is themain problem ofMV compounds.MV systems

proved to be important to many areas of physics, chemistry, and biology,

including, for instance, redox catalytic action, metalloenzyme functioning,

molecular electronics, and superconductivity (see [7.398, 7.492–7.498] and

references therein).

On the other hand any full treatment of MV systems is impossible without

involving vibronic coupling. Indeed, the excess electron localization is inevi-

tably accompanied by the nuclear relaxation to the new equilibrium positions,

which are determined by the vibronic coupling constants. The vibronic theory

of MV systems began with the Piepho–Krausz–Schatz model [7.495, 7.496] in

which it is assumed that there is one excess electron in a dimer with two

equivalent closed-shell centers, 1 and 2, and the one-electron states at each

center,’1 and’2, are nondegenerate. This means that when the excess electron

is localized at one of the centers, it distorts its near-neighbor environment

along the totally symmetric coordinate. The corresponding local distortion

(breathing) coordinates can be denoted by Q1 and Q2, respectively. The

coupling of the electronic state to these distortions is described by the vibronic

constant F (Section 2.2):

F ¼ ’1 ð@H=@Q1Þ0
�� ��’2

� �
¼ ’2 ð@H=@Q2Þ0

�� ��’2

� �
(7:46)

where H is the Hamiltonian.

For the system as a whole the presentations of the wavefunctions,

�� ¼
ffiffiffiffiffiffiffiffi
1=2

p
ð’1 � ’2Þ (7:47)

and coordinates,

Q� ¼
ffiffiffiffiffiffiffiffi
1=2

p
ðQ1 �Q2Þ (7:48)
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are more convenient. Qþ is a totally symmetric coordinate of the system

describing the simultaneous (synchronous) breathing distortion of both cen-

ters, while Q� gives the asymmetric distortion of the anti-phase breathing of

the two centers corresponding to the electron localization.

If there is an overlap between the two states ’1 and ’2, they form bonding

�þ and antibonding�� states with an energy gap 2w, where w is the resonance

integral:

w ¼ ’1 Hj j’2h i (7:49)

This parameter is most important for the MV theory characterizing the

strength of the intercenter interaction and hence the electron-transfer rate.

With the notations (7.46) through (7.49), the problem of the excess electron

in theMVdimer under consideration can be formulated as a vibronic problem.

Indeed, the two states �� at Q1¼Q2¼ 0 (Q�¼ 0) mix under the nuclear

displacements Q� and shift under Qþ. For the problems considered in this

section the shift Qþ is not important and can be excluded by an appropriate

choice of the energy read off. The mixing of the two electronic states by the

nuclear displacements Q� taken as a perturbation results in the PJT problem

(Section 4.1) with the APES (4.4) as the solution (K0 is the force constant of the

Q1 or Q2 distortions):

"�ðQ�Þ ¼ 1
2
K0Q

2
� � w2 þ F 2Q 2

�
� �1

2 (7:50)

These two curves are analyzed in Section 4.1. For jwj>F2/K0 both have a

minimum at Q�¼ 0. However, if (cf. (4.6))

wj j5F 2=K0 (7:51)

the lowest curve has a maximum at Q�¼ 0 and two minima at �Q0,

Q0
� ¼ ½ðF 2=K2

0 Þ � ðw2=F 2Þ�
1
2 (7:52)

The curve "�(Q) for this case is illustrated in Fig. 4.1 of the PJTE. It is seen

that if the condition (7.51) is obeyed, that is, if the contribution to the energy

due to the localization distortionQ� is larger than that of the electron transfer

w, the minimum energy (and the wavefunction) corresponds to the localization

of the excess electron at one of the two centers. In the opposite case when

jwj>F2/K0, Q�¼ 0, and there are no localization minima, the electron is

uniformly delocalized over the two centers. Thus forMV dimers the inequality

(7.51) serves as the condition of localization of the excess electron.

One of the observable properties inMV systems is the intervalence transition

(IT) band of light absorption produced by the transition from the minimum

7.6 Clusters, coordination, and mixed-valence compounds 453



(localized) ground state to the excited (delocalized) state. Both the frequency

and the probability (band shape) of the IT are dependent on the parameters of

electron transfer w and vibronic coupling F. To calculate the band shape more

accurately, one has to compute the vibronic states of the system with the

potential (7.50), individual transitions between them, and the envelope band

shape as described in Section 6.1.1. If there is a sufficiently strong PJTE on

each center, the picture of electron localization is more complicated, in parti-

cular, because the two centers are nonequivalent [7.499].

The simplest model of the MV dimer, discussed above, may be insufficient

for describing real systems. The main complications may be caused by (1) the

existence of more than two equivalent centers (polynuclear clusters), (2) the

presence of more than one electronic state on each center that can be occupied

by the excess electron; (3) the influence of low-symmetry crystal fields and

spin–orbital interactions; and (4) the occurrence of open-shell (nonzero-spin)

cores, resulting in magnetic exchange coupling between the centers (double

exchange interaction). These and other related questions (including important

implications of magnetic interactions) are considered in a series of papers

outlined in the review article [7.398] and in several examples below.

One of them is related to MV trimers [7.398, 7.500]. Regular three-

center triangular clusters are most widespread, the series of carboxylates

[M3O(RCOO)6]L3 being a well-known example; in Fig. 7.37 the one with

M¼Fe, R¼CF3, and L¼H2O is illustrated.

Consider a trimericMV cluster and assume (as in the case of a simple dimer)

that there is only one excess electron over the three metal centers with closed

shells and only one nondegenerate state on each center ’i, i¼ 1, 2, 3, to be

occupied by the excess electron. In the triangular symmetry C3v the three one-

electron states �i form three MOs of A and E symmetry (cf. Section 5.3):

CA ¼ ð1=
ffiffiffi
3
p
Þð’1 þ ’2 þ ’3Þ

CE� ¼ ð1=
ffiffiffi
6
p
Þð2’1 � ’2 � ’3Þ

CE" ¼ ð1=
ffiffiffi
2
p
Þð’2 � ’3Þ

(7:53)

Denoting, as above, the intercenter resonance integral (the electron-transfer

parameter) by w (cf. (7.49)), we find easily that the splitting "(A)� "(E)¼ 3w.

As in the case of a dimer the excess electron, when localized at the center,

distorts its environment, thus violating theC3v symmetry of the system, and this

distortion is very important for the electron-transfer phenomenon. Since the ’i

states are nondegenerate, the totally symmetric local distortions Qi (i¼ 1, 2, 3)

only are affected by the excess electron. Similar to the wavefunctions (7.53), it is
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more convenient to take these three local coordinatesQ1,Q2, andQ3 in symme-

trized combinations for the system as a whole (Section 7.1):

QA ¼ ð1=˛3ÞðQ1 þQ2 þQ3Þ
Q� ¼ ð1=˛6Þð2Q1 �Q2 �Q3Þ
Q" ¼ ð1=˛2ÞðQ2 �Q3Þ

(7:54)

WhileQA is totally symmetric in the C3v configuration,Q� andQ" form two

components of the twofold degenerate E displacement. The totally symmetric

coordinateQA, similar to the dimer, can be separated by an appropriate choice

of the energy read off.

With these denotations, the electronic energy levels "0(Q) as functions of the

coordinates Q� and Q" can be found by solving the corresponding secular

equation of the type (3.2) which in polar coordinatesQ�¼ � cos ’,Q"¼ � sin ’

is [7.500]

"30 � ðF 2�=2þ 3w2Þ"0 � 2w3 � ð2=3Þ
1
2F 3�3 cosð3’Þ ¼ 0 (7:55)

Fig. 7.37. The structure of the MV trimer M3O(RCOO)6L3 with M¼Fe,
R¼CF3, and three ligands L¼H2O marked by 14, 19, and 20, respectively.

7.6 Clusters, coordination, and mixed-valence compounds 455



where F is the constant of vibronic coupling with the Qi displacements (7.46).

The three roots of Eq. (7.55) "i0 ði ¼ 1; 2; 3Þ together with the strain (deforma-

tion) energy 1
2
K�2 form three sheets of the adiabatic potential surface:

"ið�; ’Þ ¼ 1
2
K�2 þ "i0 (7:56)

For simplicity, we assume that the K values are the same for the two

oxidation states of the center and, as above, we use dimensionless units for

Q, F, and w.

It can be shown that the solutions of Eq. (7.55) "i are periodic functions of ’

with a period of 2p/3. The extremal points of the APES (7.56) are at ’¼ pn/3,
n¼ 0, 1, . . ., 5. If F< 0, then for the lowest sheet the even values of n

correspond to maxima along ’ (and saddle points if other coordinates are

included, see below), while the odd values give minima, and vice versa for

F< 0.

Consider the radial dependence of the adiabatic potential in the extremal

cross-section’¼ 0 (or, equivalently,Q"¼ 0). The solutions of Eq. (7.55) in this

case are

"1 ¼ �F�=˛6� w

"2;3 ¼ 1
2
½w� F�=˛6� 3ðF 2�2=6� 2w�=3˛6þ w2Þ

1
2� (7:57)

Further investigation of this expression requires knowledge of the sign of

the parameter of intercenter electron transfer w. While for dimers the sign of

w is not important, for the trimers it is essential. If w> 0, the electronic

doublet is lowest. Its adiabatic potential shape is then similar to that in the

JT E� e problem with the quadratic terms of the vibronic interaction included

(Section 3.2).

In the case at hand the warped APES (7.57) results from simultaneous JT

and PJT distortions in the linear approximation with respect to the vibronic

interaction terms. The three minima of the APES describe the three possibi-

lities of localization of the excess electron at each of the three centers. Since

there is no minimum at Q�¼ 0 (where the three centers are equivalent), it

follows that in trimer MV compounds with w> 0 fully delocalized electron

distributions are not possible.

The systems with w< 0 seem to be more interesting. Indeed, they have

singlet ground electronic terms, and the APES shape, as in the dimer, is

completely determined by the parameter jwj/F 2. On substituting

� ¼ ð2=3Þ
1
2ð wj j=FÞð2˛2 sinh t� 1Þ (7:58)
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into Eq. (7.57), we obtain the following transcendent equation for the extrema

points of the adiabatic potential:

4˛2 sinh 2tð Þ þ ½1� ðjwj=F 2Þ� cosh t� 3 sinh t ¼ 0 (7:59)

Figure 7.38 illustrates the calculated shapes of the extremal cross-sections of

the APES at �¼ 0 for different jwj/F2 values. Its behavior at �¼ 0 can be

investigated by means of the expansion of the potential function into a power

series of � keeping the terms up to �2. If jW j=F 25 2
9
(Fig. 7.38a), the point

�¼ 0 is a local maximum, and the potential has three absolute minima M at

� 6¼ 0. One more minimum at � 6¼ 0 in Fig. 7.38(a) at the point S and two

other equivalent minima at ’¼ 2p / 3 and 4p / 3 are in fact saddle points. If

jwj=F 24 2
9
, a minimum occurs at �¼ 0, but this is not necessarily accompanied

by the disappearance of the minima at � 6¼ 0. In the interval 2
9
5 jwj F 250:255

these two types of minima coexist. Finally, when jwjF2> 0.255 the only mini-

mum exists at �¼ 0.

The minimum at �¼ 0 describes the state of the excess electron uniformly

delocalized over the three-centers, whereas the minima at � 6¼ 0 correspond to

electron localized (at one of the three centers) states. Thus we come to the

Fig. 7.38. Cross-sections �¼ 0 of the APES of a MV trimer as a function of
jwj/F2: (a) jwj/F2< 2/9, (b) 2/9< jwj/F2< 0.255, and (c) jwj/F2> 0.255.M are
minima, S is a saddle point [7.398].
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conclusion that for three-center MV compounds in a certain interval of para-

meter values a coexistence of localized and delocalized electron distributions

is possible [7.398, 7.500] (see also [7.498] and JT minima coexistence in

Section 3.3). The region of parameter values required for this coexistence of

two alternative electron distributions is relatively small. This region is expected

to increase when the difference between the frequencies of the local one-center

totally symmetric vibration in the two valence states is taken into account.

The coexistence of localized and delocalized electron distributions was

observed first in a series of compounds of the type [Fe(II)Fe2(III)

(CH3COO)6L3] (see [7.501] and references therein). In these works it is

shown that the Mössbauer spectra, besides the lines corresponding to the

Fe(II) and Fe(III) ions with the intensity ratio 1: 2, also contain quadrupole

doublets that are characteristic of iron ions in the intermediate oxidation state.

The electronic structure with geometry optimization of a trinuclear copper

(II, II, III) MV system [Cu3O2L3]
3þ (I) with L¼N-permethylated(1R,2R-

cyclohexanediamine), which in its active form [Cu3O2(NH3)6]
3þ (II) can

serve as a model for several biochemical systems (such as H2O-lactase, ceru-

loplasmin, and ascorbate oxidase), was determined on a QM/MM level with

the QM site (II) calculated by means of DFT [7.502]. In theD3h configuration

the active site (II) has a doubly degenerate 3E ground state that produces three

equivalent minima on the APES of the E� e problem (Section 3.2) with a JT

stabilization energy EE
JT ffi 0:2 eV. The minima correspond to the localized

Cu(II)Cu(II)Cu(III) structure. A delocalized structure with three equivalent

Cu atoms was found to be higher in energy. For the localized state further

calculations of spectra and spin-manifold splitting were performed. The

authors [7.502] indicate that DFT proved to be instrumental in describing

the APES along the localization–delocalization path.

The MV systems under consideration form, as a rule, molecular crystals in

which the interaction between the molecules depends on the intramolecular

electron distribution and nuclear configuration distortions. It follows that the

cooperative properties of MV compounds in the crystal state depend on their

electron localization or delocalization state. APES curves of the type consi-

dered above were used to analyze possible types of phase transitions in crystals of

MV trimers [7.503] (Section 8.2).

The above results are based on the assumption that there is only one excess

electron above the three zero-spin cores of the three centers, and the validity of

these results for clusters containing Fe(II), Fe(III), . . . in the high-spin state

(where for each value of the total spin there are several A and E energy levels)

may be questioned. However, if one takes into account the exchange aniso-

tropy (i.e., the difference between the exchange parameters in the pairs
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Fe(II)–Fe(III) and Fe(III)–Fe(III)), then these levels are relatively displaced

from each other, and it may be possible to consider each set of pairs ofA and E

levels separately, as was done above.

For a more detailed evaluation of the trimer properties the vibronic energy

levels and wavefunctions of the MV system with the APES (7.56) should be

computed. Such computations have been performed for different values of the

parameters F and w, and the results were used to evaluate the band shapes of

the IT spectra [7.504, 7.505]. For further developments in the theory of

tricenter MV systems see in [7.506].

Most significant to the properties of MV systems are the magnetic implica-

tions, which, similar to the IT spectra, are strongly influenced by the vibronic

coupling. If the cores of the equivalent centers of the MV system contain

nonzero spins, they interact with each other via the excess electron (double-

exchange interaction) resulting in an effective ferromagnetic coupling (see

[7.398, 7.507–7.511] and references therein, as well as further examples

below). The combination of double exchange with vibronic coupling, the

so-called spin-dependent electron delocalization proved to be most important in

optical and magnetic properties of polynuclear MV systems. For the tricenter

[Fe3S4]
0 cluster [7.508, 7.509], which is present in many proteins and their

synthetic models, the analysis of the APES formed by the combined action of

the excess-electron transfer (which produces double-exchange coupling of the

paramagnetic Fe(III) cores), vibronic coupling (trapping the excess electron at

the centers), and the usual antiferromagnetic exchange interaction was per-

formed on a model with a d1–d1–d2 electronic configuration on the three

centers.

The distribution of the excess electron was shown to depend on the ratio

g¼w/(F2/2K), wherew is the electron-transfer integral (7.52), while F 2/2K is the

vibronic stabilization (trapping) energy. For small g values the electron is trapped
at one center. If g 1 and the electronic manifold contains degenerate states

(AþE) in the C3v group, the excess electron is trapped in a pair-delocalized

state on two sites of the trinuclear system. For the tri-iron d5–d5–d6 system the

strongest vibronic stabilization on two sites is realized for the spin state S¼ 2

[7.508, 7.509], in full agreement with experimentally observed properties of these

systems. In a similar study of four-center [Fe4S4]
3þ clusters [7.510] analogous

pair-delocalized states were formed for S ¼ 1
2
in agreement with the spectro-

scopic data for high-potential iron proteins. These effects are also important in

conductivity in metals and intermolecular electron transfer [7.512, 7.513].

When there are two excess electrons and three centers in the MV system the

delocalization may stabilize spin-singlet ground states instead of the usually

expected triplet states [7.514]. Similarly, localized electronic pairs may be
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formed when there are two excess electrons in dodecanuclear (or other poly-

nuclear)MV polyoxometalates [7.515, 7.524]. The problem for this systemwas

solved by evaluating the electronic singlet and triplet states formed in the

double-transfer process, and their vibronic coupling leading to combined JT

and PJT (3T1þ 3T2)� (eþ t2) and (1A1þ 1Eþ 1T2)� (eþ t2) problems

(Section 4.2). The APES in the one-mode space (one vibronic constant) reveals

a rich variety of charge distributions and localizations. In particular, partial e-

mode delocalization over four sites of the Td structure with a partial deloca-

lization over only two of the three metal octahedra of each of theM3O12 triads

was found in the case of weak coupling, and partial e-mode delocalization over

two sites of the Td structure was found in the case of strong coupling.

For multilevel vibronic-coupling problems in MV systems, a good example

is provided by the calculations for the dimeric Creutz–Taube ion, [(NH3)5
Ru(pyz)Ru(NH3)5]

5þ, where pyz is pyrazine [7.516–7.518].

The coupling of the excess electron to intercenter (multicenter) vibrations (in

addition to the local on-center vibrations) was suggested to be significant in

MV systems: while the coupling to local vibrations traps the electron at the

center, the intercenter vibrations promote its delocalization [7.519, 7.520]. The

author [7.519] was the first to show that the localization–delocalization pro-

blem in a dimeric MV system is exactly equivalent to a PJTE, and the orbital

vibronic coupling constants (Section 2.3) can be used to parameterize the

dominant features of this effect. Combined local (breathing) and intercenter

vibrations together with the double-exchange interaction were used to reveal

the hyperfine-interaction spectra in dimeric MV clusters [7.520].

From more recent developments, a simple MO LCAO treatment (on the

extended Hückel level) of tricenter MV systems with three octahedral iron–

oxygen units (Fe3O16 and Fe3O12 clusters) shows that more than one

parameter is needed to describe the intercenter interaction (instead of w in

the one-electron models above). In general each MO involved in this process

should be represented by its own orbital vibronic coupling constant [7.521].

The localization–delocalization alternative for the excess electron becomes

multi-featured too.

Vibronic reduction effects (Section 5.6) were taken into account in a variety

of electron-transfer processes between MV centers [7.522]. Using the vibronic

theory of MV systems it was shown [7.454, 7.523] that in the decatungstate

anion [W10O32]
4� there is a partially delocalized electron distribution of the

excess electrons which coexists with the localized state at a tungsten site. This

result explains the mechanism of the photocatalytic reaction, in which the

intermediate (transient) form can be assigned to the partly delocalized distri-

bution attained from the (initially localized) photoexcited state.
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Bielectron transfer via the central atom in trimers was considered in [7.525].

For further developments and applications of the vibronic MV theory see in

[7.526, 7.527].

From MV clusters there is a direct way to consider infinite MV chains

[7.528–7.530]. Obviously, vibronic local distortions transform into Peierls

transitions of the chain structure (Section 8.2.5).
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7.59. M. Perić, R. J. Buenker, and S.D. Peyerimhoff, Astrophys. Lett. 24, 69 (1984).
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7.63. M. Perić, R. J. Buenker, and S.D. Peyerimhoff, Can. J. Chem. 57, 2491 (1979);
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7.70. M. Perić, K. Phanuprakash, and R. J. Buenker, Mol. Phys. 65, 403 (1988).
7.71. P. Jensen, M. Brumm, W. P. Kraemer, and P.R. Bunker, J. Mol. Spectrosc.

171, 31 (1995).
7.72. G. Osmann, P.R. Bunker, P. Jensen, and W. P. Kraemer, Chem. Phys. Lett.

171, 31 (1995); 172, 194 (1995).
7.73. Ch. Jungen, K.-E. J. Hallin, and A. J. Merer, Mol. Phys. 40, 25, 65 (1980).
7.74. W. Gabriel, G. Chambaund, P. Rosmus, S. Carter, and N.C. Handy, Mol.

Phys. 81, 1445 (1994).
7.75. M. Kolbuszewski, P. R. Bunker, W. P. Kraemer, G. Osmann, and P. Jensen,

Mol. Phys. 88, 105 (1996).
7.76. M. Brommer, R. Rosmus, S. Carter, and N.C. Handy, Mol. Phys. 77, 549

(1992).
7.77. Ch. Jungen and A. J. Merer, Mol. Phys. 40, 95 (1980).
7.78. A. J. Merer and D.N. Travis, Can. J. Phys. 43, 1795 (1965); 24, 177 (1992).
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7.93. H. Köppel, L. S. Cederbaum,W. Domcke, andW. VonNiessen,Chem. Phys.
37, 303 (1979).

7.94. N.N. Gorinchoi, F. Chimpoesu, and I. B. Bersuker, J. Mol. Struct.
(THEOCHEM) 530, 281 (2000).

7.95. K. Balasubramanian and M.Z. Liao, Chem. Phys. 127, 313 (1988).
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7.107. R. C. Gallen, B. Ostojić, and W. Domcke, Chem. Phys. 272, 1 (2001).
7.108. K. Malsch, G. Hohlneicker, R. Shork, and H. Köppel, Phys. Chem. Chem.
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L. Wöste, Chem. Phys. Lett. 225, 28 (1994).
7.147. W.E. Ernst and S. Rakowsky, Phys. Rev. Lett. 74, 58 (1995); Ber. Bunsenges.

Phys. Chem. 99, 441 (1995); Can. J. Phys. 72, 135 (1994).
7.148. J. Higgins, W.E. Ernst, C. Callegari, J. Reho, K.K. Lehmann, G. Scoles, and

M. Cutowski, Phys. Rev. Lett. 77, 4532 (1996).
7.149. N. Ohashi, M. Tsuura, J. T. Hougen, W.E. Ernst, and S. Rakowsky, J.Mol.

Spectrosc. 184, 22 (1997).
7.150. D. T. Vituccio, O. Golonzka, and W.E. Ernest, J. Mol. Spectrosc. 184, 237

(1997).
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7.498. M. Riley, H.U. Güdel, and A.H. Norton, Chem. Phys. 166, 19 (1992).
7.499. S.A. Borshch, Zh. Strukt. Khim. 28, 36 (1987).
7.500. S.A. Borshch, I. V. Kotov, and I. B. Bersuker, Chem. Phys. Lett. 89, 381

(1982).
7.501. H.G. Jang, S. J. Geib, Y. Kaneko, M. Nakano, M. Sorai, A. L. Pheingold,

B. Monter, and D.V. Hendrickson, J. Am. Chem. Soc. 111, 173 (1989).
7.502. C. Daul, S. Fernandez-Ceballos, I. Ciofini, C. Ranzy, and C.-W. Schläpfer,
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8

Solid-state problems: local properties
and cooperative phenomena

8.1 The JTE in local properties of solids

Local properties in crystals are strongly affected by JT vibronic coupling

phenomena, quite similar to molecular systems discussed in the previous

chapter. There is no sharp border between clusters and coordination systems,

considered in Sections 7.6.1 and 7.6.2, and local formations in crystals (which

are often modeled by clusters). Differences occur for impurity centers for

which the JT problem is in fact a multimode one (Sections 3.5 and 5.5) with

a very large (infinite) number of JT activemodes that are significantly involved

in the vibronic coupling. Another important crystal problem emerges when

there aremultiple JT impurity centers at sufficiently small intercenter distances

with sufficiently strong interaction between them. In the limit of an infinite

number of such JT centers that occupy regular positions in the lattice we come

to the cooperative JTE (CJTE) considered in Sections 8.2 and 8.3. The JTE in

superconductivity and colossal magnetoresistance is discussed in Section 8.4.

8.1.1 Impurity centers in crystals

We start with a single JT center in a regular crystal in the form of an impurity

center or a lattice defect that has localized electronic states. The latter may be

either orbitally degenerate and subject to the JTE (when the crystal field of the

environment has at least one axis of symmetry of third or higher order), or

pseudodegenerate with a PJTE (for which there are no symmetry restrictions,

but the ground state should be force-equilibrated in the reference configura-

tion, Section 4.1). Crystal lattices overwhelmingly have sufficiently high local

symmetry, and with the PJTE included, similarly to molecular systems, there

are no impurity centers that can be a priori exempt from JT vibronic coupling

effects.
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We emphasize again that the JT problem for an impurity in a regular

crystal lattice is essentially a multimode one, as discussed in general in

Sections 3.5 and 5.5. As shown in Section 5.5, the multimode solutions are

rather complicated and require knowledge of the phonon spectrum of the host

crystal. Often a simple solution based on a cluster-like presentation of the

impurity system at low temperatures is possible. The success of such a relatively

rough approach that ignores the detailed phonon spectrum is due to the small

density of low-frequency phonon states, while those with higher frequencies are

not populated at low temperatures (see the discussion at the end of Section 5.5).

However, this low-temperature region may be too low for many problems.

Passing to the JTE in specific crystals with impurity centers, we note first

that the number of publications on this subject, as for molecular systems, is

innumerable. Earlier works are well presented in a series of books and reviews

[8.1–8.14], more specifically on EPR measurements [8.3, 8.10], optical spectra

of impurities in II–VI and III–V crystals [8.11], mercury-like impurities [8.12],

transitionmetal impurities [8.13], and phonon spectroscopy [8.14], as well as in

the general bibliographic review [8.1] that cites all the publications on the JTE

up to 1979 inclusive. These references contain most interesting examples of

manifestation of the JTE in impurity systems, which, however, will not be

repeated here in detail. Instead we present an overview of those results in the

form of Tables 8.1–8.6 with a variety of impurity systems and their JT para-

meters. An outline of examples of more recent work will follow to demonstrate

the applications of the latest achievements in this field and provide references

as a tool for further investigations.

EPR spectra of Cu2þ impurity ions in zinc fluorosilicate crystals provided the

first experimental confirmation of the JTE [8.15–8.17] (Section 6.3.1). Further

investigations of similar Cu2þ systems were carried out afterwards (see [8.1–8.3,

8.10, 8.18] and references therein). As shown in Section 6.3.1, the transition from

dynamic to static JT EPR spectra takes place within a temperature interval

which is characteristic of the magnitude of the JT coupling. Table 8.1 shows

some examples with the range of transition temperatures. In a variety of

metalloorganic complexes with octahedral Cu2þ impurities the JT parameters

are rather similar in value, which allowed the authors [8.38, 8.39] to suggest

useful averages. For CuN6 and CuO6 units with an E� e problem (Section 3.2)

the averaged JT parameters from 12 and 15 complexes, respectively, are

�0 (—)¼ 0.304(42) and 0.330(70), EE
JT ð103 cm�1Þ ¼ 2:01ð21Þ and 1.81(0.19),

�hoE (cm
�1)¼ 319(41) and 254(27), andKE (mdyn/—)¼ 0.85(0.24) and 0.62(13).

With regard to other JT data in Tables 8.2–8.6, we note that they were

obtained mainly during the seventies and eighties, and in the overwhelming

majority are based on models which neglect the multimode nature of the
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impurity problem (Sections 3.5 and 5.5). Therefore these parameters should be

regarded as approximate estimations that may serve as a starting point for

further improvements. In particular, the frequencies of the JT-active vibra-

tions oG (Tables 8.2 and 8.5) should be taken as some effective (or averaged)

phonon frequencies. In spite of this shortcoming, the data in Tables 8.1–8.6

give a fairly adequate qualitative and semiquantitative picture of the JT effect

in a large variety of impurity systems.

Table 8.1. Examples of JT-induced temperature transition in ESR spectra

(term 2E )

Ion Host

Range of
transition
temperature (K) References

Cu2þ (3d 9) ZnSiF6
.6H2O 12–50 [8.15, 8.16. 8.19]

Zn(BrO3)2.6H2O 7–35 [8.15, 8.16. 8.19]

La2Mg3(NO3)12.24H2O 42–44 [8.15, 8.16. 8.19]

Bi2Mg3(NO3)12.24H2O >20–<90 [8.15, 8.16. 8.19]

Cu3La2(NO3)12.24H2O 170–270 [8.15, 8.16. 8.19]

AgCl 90–300 [8.20]

MgO >1.2–<77 [8.21]

CaO >1.2–<77 [8.22]

Zn(pyNO)6(BF4)2 47–56 [8.23]

(NH4)2Cu(H2O)6(SO4)2 <30–>77 [8.24]

LiKSO4 �247 [8.25]

LiNH4SO4 �247 [8.25]

LiNaSO4 �247 [8.25]

[CuCl6]
4� CsCdCl3 90–140 [8.26]

Ag2þ (4d 9) LiCl 40–316 [8.27]

NaCl 95–348 [8.27]

KCl 160–373 [8.28]

Rh2þ (4d7) AgBr 35–77 [8.29]

Niþ (3d 9) NaF 130–230 [8.30]

Y2þ (4d1) CaF2 4–10 [8.31]

La2þ (5d1) CaF2 10–12 [8.32]

Sc2þ (3d1) CaF2 >1.5–<10 [8.33, 8.34]

SrF2 >1.5–<10 [8.33, 8.34]

Ni3þ (3d7) CaO 62–68 [8.35, 8.36]

Pt3þ (5d7) Al2O3 >4.2–<79 [8.37]
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Table 8.2. JT stabilization energy EJT, energy barrier between the minima �,

vibrational frequency of the JT active mode �hoG, tunneling splitting rG, and the

vibronic coupling constant F for impurity centers in crystals, obtained from

EPR and optical spectra (asterisk indicates excited state)

System JT problem

EJT

(cm�1)

�
(cm�1)

�hoG

(cm�1)

rG
(cm�1)

F

(eV/—) References

Cu2þ : CaO E� e 4300 � 45 300 4 �2.4 [8.40]

Cu2þ : CaO E� e 1600 93 0.67 [8.41]

Ni3þ : Al2O3 E� e 1100 120 465 60 [8.42, 8.43]

Mn3þ : Al2O3 E� e 52 [8.44]

Cr2þ : AgCl E� e 1425 195 1.33 [8.45, 8.46]

Cr2þ : AgBr E� e 1275 155 1.50 [8.45, 8.46]

Fe2þ : CdTe E� e 4.2 38 [8.47]

Cr2þ : ZnS T� e 300 90 0.27 [8.48]

Cr2þ : ZnSe T� e 340 70 0.35 [8.48]

Cr2þ : ZnTe T� e 320 50 0.31 8.48]

Cr2þ : CdTe T� e 370 35 0.23 [8.48]

Cr2þ : GaAs T� e 660 70 [8.49, 8.50]

Ni2þ : CdF2 T� t2 1730 �430 0.80 [8.51]

Ni2þ : CaF2 T� t2 1600 �400 0.77 [8.51]

Fe2þ :MgO� Excited E� e,

transition
5T2g–

5Eg

1600 270 14 1.31 [8.52]

Fe2þ : AgCl� The same 2040 195 1.59 [8.45, 8.53]

Fe2þ : AgBr� The same 1610 155 1.68 [8.45, 8.53]

Fe2þ : KMgF3
� The same 1750 260 1.44 [8.54]

Fe2þ : CdCl2
� The same 1550 93 0.66 [8.55]

Fe2þ : CdBr2
� The same 1160 66 0.61 [8.55]

Ti3þ : AgCl� Excited E� e,

transition
2T2g–

2Eg

1040 250 1.45 [8.45, 8.46]

Ti3þ : AgBr� The same 1130 150 1.37 [8.45, 8.46]

Ti3þ : Al2O3
� The same 3010 515 3.42 [8.56]

Eu2þ : SrF2
� Excited E� e �103 6.5 [8.57, 8.58]
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Table 8.2. (cont.)

System JT problem

EJT

(cm�1)

�
(cm�1)

�hoG

(cm�1)

rG
(cm�1)

F

(eV/—) References

Eu2þ : CaF2
� The same �103 15 [8.57, 8.58]

Sm2þ : SrF2
� The same 26 [8.57, 8.58]

Sm2þ : CaF2
� The same 27 [8.57, 8.58]

Ti2þ : CdS� Excited T� t2,
3A2–

3T1(F),
3A2–

3T1(P),
1050 78 0.38

0.13

[8.59]

[8.59]

Ti2þ : CdSe� The same 700 [8.60]

Ti2þ : CdTe� The same 520 [8.61]

Fe2þ : CdF2
� Excited T� t2,

5Eg–
5T2g

3750 110 0.77 [8.62]

Co2þ : CdF2
� Excited T� t2,

4A2g–
4T1g(F),

4A2g–
4T1g(P),

4A2g–
4T1g(P),

2100

1900

1900

210

170

160

1.12

0.85

0.81

[8.62. 8.63]

[8.62. 8.63]

[8.62. 8.63]

Mn2þ : ZnS� Excited T� e,
6A1–

4T1g(
4G),

>180 90 [8.64, 8.65]

Mn2þ : ZnSe� The same >140 70 [8.64, 8.65]

Table 8.3. JT parameters for impurity centers in crystals with an E� e problem

obtained from ESR measurements at low (T1) and high (T2) temperatures

(q¼KE(E) is the reduction factor, 3G is the tunneling splitting, and ��=3G is the

ratio of averaged strain influence to the tunneling splitting (Section 3.6))

System T1 (K) T2 (K) q 3G (cm�1) ��=3G References

Cu2þ : CaO 1.3 77 ffi3 0.67 [8.66]

Ag2þ :MgO 1.3 0.577 4.8 0.13 [8.66]

Ag2þ : CaO 1.3 77 0.610 3.9 1.2 [8.66]

Ag2þ : SrO 4.2 223 0.682 [8.66]

Niþ:MgO 4.2 ffi0.6 [8.67]

Ni3þ :MgO 4.2 0.67 [8.67]

Rh2þ :MgO 4.2 77 0.64 [8.68]

Pt3þ :MgO 4.2 77 >56 [8.69]
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In general, as in the molecular case, Cu2þ impurity centers in cubic-

symmetry environments are among the strongest JTE systems with an E� e

problem, and hence most studied. A series of more recent works [8.92–8.104]

deals with a variety of JT properties of Cu impurities. One- and two-phonon

spectroscopy was used to study d10!d 9s transitions in Cuþ : NaF with degen-

erate excited states in the d 9s configuration [8.92]. Some of the band splittings

were attributed to the JTE (Section 6.1), but the overall JT interpretation of

the spectrum seems to need further investigation.

Table 8.4. JT parameters for some d1 ions in alkaline-earth

halides

System EJT/�ho q References

Sc2þ : CaF2 0.4 0.69 [8.3, 8.70, 8.71]

Sc2þ : SrF2 0.5 0.63 [8.70]

Sc2þ : BaF2 0.5 0.66 [8.70]

Sc2þ : SrCl2 0.1 0.86 [8.70]

Sc2þ : ZnS 0.51 [8.72]

Y2þ : SrCl2 0.5 0.65 [8.70]

La2þ : CaF2 �0.5 [8.71]

La2þ : SrF2 1 0.57 [8.71]

Table 8.5. JT parameters for impurity centers in crystals with a T� e problem

obtained from optical and phonon spectra (KT (E ) is the vibronic reduction

factor, FE is the linear vibronic coupling constant, and R is the mean cation–anion

distance (adapted from [8.14]))

System EE
JT (cm

�1) oE (cm
�1) KT(E ) FER (cm�1) References

Ti3þ : Al2O3 200 200 0.21
�7000� 3500
>6000

[8.73, 8.74]
[8.74, 8.75]
[8.76]

V4þ : Al2O3 320 200 0.09 15 000� 4000
9000� 1000

[8.73, 8.42]
[8.76]

Cr5þ : Al2O3 0.025 [8.77]

V3þ : MgO 135 450 0.64 1600 [8.78]

Ti2þ : CaO 350 350 0.2 �2600 [8.79]

V3þ : CaO 1600 350 �10�3 �8500 [8.80]
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DFT calculations were employed to reveal off-center z-displacements of the

Cu2þ ion as a substitute in CaF2, SrF2, and SrCl2 crystals [8.93]. The values of,

respectively, z0¼ 0, 0.3, and 1.1 —, and PJT stabilization energies of 0, 0.12,

and 0.29 eV explain well the experimental EPR data. The Cu2þ : CaF2 system

undergoes an orthorhombic distortion of the cubic environment of Cu2þ. This

correlates with EPR experiments for Cu2þ in CaF2 under uniaxial stress [8.94],

which show that the JT ion in the cubic eightfold-coordinated environment

occupies six equivalent D2h positions, and at 4.2K reorients between them in

accordance with the T2� (eþ t2) JT problem. Similar JT eightfold-coordinated

Cu2þ centers were studied in copper-doped fluorite-type crystals Sr1�xBaxF2

andCaxSr1�xF2 bymeans of EPRat frequencies 9.3 and 37GHz in the range of

4.2–250K [8.101]. The orthorhombic JT distortions attributed to the

T2� (eþ t2) problem have a stabilization energy of EJT¼ 1200–1600 cm�1

and a small tunneling splitting, <0.5 cm�1. The latter is assumed to occur as

a spin-flip tunneling, which is possible when one takes into account the

spin–orbital interaction in the T state.

EPRmeasurements at�9.5GHz in the temperature interval 4.2–393Kwere

performed on a single crystal of potassium oxalate monohydrate

(K2C2O4
.H2O) doped with Cu2þ ions [8.95]. The latter occupy four magneti-

cally nonequivalent (two pairs of physically equivalent) sites, of which two are

JT active with a static spectrum below 172K and a dynamic spectrum above

Table 8.6. JT parameters for impurity centers in crystals with a T� (eþ t2)

problem obtained from phonon spectroscopy (denotations and units as in

Table 8.5) (adapted from [8.14])

System EE
JT EE

JT KT (E ) KT (T ) FER FTR References

V3þ : Al2O3 0.037 56 350 4 575 [8.81]

Cr4þ : Al2O3 0.036 14 850 6 630 [8.82]

Fe2þ :MgO 110 83 0.09 0.09 6 300 5 300 [8.83, 8.84]
[8.85]

Fe2þ : KMgF3 0.058 0.10 15 000 12 700 [8.86]
[8.87]

Fe2þ : CaO 1 0.15 [8.86]

Fe2þ : Al2O3
� 1 0.19� �20 000 [8.88]

Cr3þ : GaAs 2800 1/4 1/2 25 000 �17 000 [8.89]

Cr2þ : GaAs 1720
480

1
1

10�14

�10�4
�16 700� 1 700 [8.90]

[8.91]

8.1 Local properties of solids 485



this point (Section 6.3.1). The low-temperature spectrum shows that there is a

basic E� e JTE of the Cu2þ ion in an octahedral environment with an admix-

ture of a PJTE that results in orthorhombic distortions. The tetragonally

compressed octahedral environment of the Cu2þ ions in perovskites,

Cu2þ : K2MgF4, is explained by the lattice influence which overcomes the

local tendency toward elongated octahedra [8.96].

DFT cluster calculations [8.97(a)] of the Cu2þ :MgO system reveal a weak

E� e JTE with the dimensionless coupling constant lE ¼ EE
JT=�hoE ¼ 0:65

(Section 3.2) consistent with the observed isotropic (cubic) EPR spectrum. For

Cu2þ : SrO l is three times larger, explaining the origin of the low-temperature

static JT spectrum (Section 6.3.3). The APES of Cu2þ :MgO was also calcu-

lated ab initio using the embedded-cluster model (Section 5.5) with the goal of

explaining electronic absorption spectra [8.97(b)]. The results for Cu2þ :MgO

in [8.97(a)] are implicitly questioned in [8.98] in an attempt to explain the EPR

and Raman spectra. The author [8.98] considered in more detail the ‘‘classical’’

system Cu2þ : CaO, for which the tunneling splitting 3G¼ 4 cm�1 was revealed

from the Raman spectra [8.40] (see Section 6.2.2, Fig. 6.18) with the other

parameters given in Table 8.2. In a better fit to the EPR and Raman spectra he

obtained EE
JT ’ 1730 cm�1 and �hoE ’ 216 cm�1. Vibronic EPR parameters

for Cu2þ : CaO obtained by comparison of the experimental spectrum with

the calculated one including the JTE and random strain (Section 6.3.2) are

given in Fig. 6.30 and in Table 8.3.

Cu2þ ions in spinels CuxZn1�xCr2O4 and Cu1�xNixCr2O4 [8.99] occupy JT-

distorted tetrahedral positions with a T� e problem and JT stabilization

energy that increases with the concentration x due to cooperative effects via

elastic interactions (Section 8.2). EPR, optical, and magnetic-susceptibility

studies of [Cu{(NH3)2sar}](NO3)4.H2O, where the Cu2þ ion is in a macro-

bicyclic cage with six nitrogen atoms in the nearest octahedral environment

[8.100], show that there is a dynamic E� e-type JTE above 290K, a situation

intermediate between dynamic and static in the range of 290–122K, and a

static JTE below 122K (Section 6.3.1). The JT stabilization energy

EE
JT ¼ 2125 cm�1, while the radius of the distortion �0¼ 0.195 — (Section 3.2).

Spin–lattice relaxation measurements in the temperature range of 10–50K

show that the JT dynamics in Cu(H2O)6 complexes of Cu2þ :

Cs2Zn(SO4)2.6H2O is too slow to dominate the EPR spectra [8.102].

Cu2þ ions in two-dimensional perovskite layers in Cu2þ : (CH3NH3)2CdCl4
and (CH3NH3)2CuCl4 [8.103], and Cu2þ : (C3H7NH3)2CdCl4 [8.104] were stu-

died by EPR in the range of 10–300K both in powder and single crystals.

The Cd2þ compressed D4h sites become elongated when replaced by Cu2þ,
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with the elongated axis lying within the two-dimensional layer. The dynamic

features of the spectrum are associated with a two-minimumwell reflecting the

two-dimensional host lattice.

Ag2þ impurities are similar to Cu2þ in many respects, but the ionic radius of

the former is larger, with important consequences for the magnitude of the JT

distortions. Indeed, the size of impurity ion influences directly the overlap of

its wavefunctions with those of the environment atoms that determines

the primary (nonvibronic) force constant K0 in the formulas of JT distortions

in all the JT (Chapter 3) and PJT (Chapter 4) problems. In particular

Ag2þ : CaF2 and Ag2þ : SrF2 exhibit trigonal distortions of an intermediate-

to-strong T2� t2 JTE [8.105, 8.106]. Similarly, trigonal distortions are

formed in Ag2þ : CaxSr1�xF2 and Ag2þ : Sr1�xBaxF2 with a stabilization

energy EJT¼ 2000–2500 cm�1 [8.101]. The authors explored also the influence

of strain and tunneling in these systems. For Ag2þ : NaF the EPR spectrum is

tetragonal at 4.2K and becomes dynamically averaged above �40K, in full

agreement with that expected in the E� e JT problem (Section 6.3.1) [8.107].

For earlier work on Ag2þ : CaO and Ag2þ :MgO see in Table 8.3.

Niþ (d 9) centers are electronically similar to Cu2þ, and hence may exhibit a

similar JTE. The latter was found by means of an EPR study in Niþ: CsCaF3

[8.108], where some of the centers have an octahedral environment with an

E� e problem. For Ni2þ in tetrahedral sites in NixZn1�xCr2O4 and

Cu1�xNixCr2O4 the ground state 3T1 is orbitally similar to the 3T2 state of

Cu2þ and results in a similar T� e JT problem [8.99]. Ni3þ in nickelates

LaSrNiO4�� and LaSrAl1�xNixO4�� forms NiO6 centers with a JTE of E� e

type observable by EPR [8.109].

In a series of works on Fe2þ impurities (Fe2þ : CdTe [8.111], Fe2þ : ZnS

[8.112, 8.113], Fe2þ in a series of cubic II–VI and III–V semiconductors

[8.114]) the authors employed numerical methods to calculate vibronic energy

levels in the ground 5E and excited 5T2 states and intensities of transi-

tions between them corresponding to infrared absorption. In so doing, a variety

of improvements on the Lanczos and Glauber methods were introduced

(Section 5.4), in particular, by using the recursion method with modifications

that allow one to create the chain of states ‘‘dipole-free’’ (i.e., not dipole coupled

to a given initial state). In this case the transition intensity is determined by the

initial state only [8.111]. Good agreement with experimental data was achieved

for the first five lines of Fe2þ : CdTe with the following parameters: spin–orbital

coupling lSO¼� 100 cm�1, averaged JT-active mode �hoE¼ 36 cm�1, crystal-

field splitting Dq¼ 256.5 cm�1, and JT stabilization energy EE
JT ¼ 232 cm�1

[8.111(a)] (a vibronic matrix of the order 37 500 was solved in this paper).
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For Fe2þ : ZnS a multimode version of the calculations was suggested

[8.112], in which, instead of just the one averaged JT-active mode used in the

previous case of Fe2þ : CdTe, the range of G3 (e-type) frequencies in the multi-

mode T2� e problem is divided into three with averaged frequencies (in cm�1)

�hoE¼ 25, 125, and 300, respectively. The corresponding JT stabilization ener-

gies for these three regions were estimated as (in cm�1) EE
JT ¼ 50; 130; and 70,

respectively. For improved calculations for this system using a modified

Lanczos-type algorithms see in [8.113].

Similar numerical methods were employed to interpret zero-phonon lines in

extended absorption of Fe2þ impurities in ZnS, GaAs, InP, and GaP, taking

into account the JT vibronic coupling in a two-mode (one acoustical and one

optical) scheme [8.114]. Table 8.7 shows the estimated JT parameter values

for the averaged acoustical �hoEðacÞ;EE
JTðacÞ and optical �hoEðoptÞ;EE

JTðoptÞ
JT-active vibrational frequencies and stabilization energies, respectively

(s ¼ EE
JT=�hoE is the dimensionless coupling constant), that allow one to

explain the origin of several main lines in the high-energy spectrum. The JTE

in the far-infrared spectrum of Fe2þ : ZnSe was analyzed in [8.115]. The JTE

with spin–orbital coupling in this system was also considered in [8.116].

A comparison of optical crystal-field and charge-transfer excitations of

Fe6þ impurities in Fe :K2XO4, X¼ S, Se, Cr, with those of Cr4þ in oxides

was carried out by means of DFT calculation of tetrahedral [FeO4]
2� and

[CrO4]
4� clusters, respectively, taking into account the JTE in the excited

states [8.117]. For earlier work on Fe2þ impurities in crystals see in

Tables 8.2 and 8.3.

Table 8.7. Averaged accoustical �hoE(ac) and optical �hoE(opt) JT modes and

corresponding stabilization energies EE
JT (ac) and EE

JT (opt), and their ratios

S¼EE
JT=�hoE for Fe2þ impurities in a series of hosts, with energy in units of cm�1

(adapted from [8.115])

Host

CdTe ZnTe ZnSe ZnS GaAs InP GaP

�hoE(ac) 35 50 70 100 85 75 105

EE
JT(ac) 210 220 210 190 160 170 180

S(ac)¼ EE
JT=�hoE 6.0 4.20 3.00 1.90 1.88 2.27 1.71

�hoE(opt) 150 180 250 340 260 320 350

EE
JT(opt) 30 30 40 55 40 60 50

S(opt)¼ EE
JT=�h!E 0.20 0.17 0.16 0.16 0.15 0.19 0.14
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Chromium impurity ions in a variety of lattices are studied widely, mostly

as laser materials. The JTE parameters of a series of systems, including

Cr2þ :MgO, Cr2þ : CaO, Cr2þ : SrO, and Cr2þ : KMgF3, were obtained by

means of ab initio calculations within the framework of the model-

potential-embedding method (Section 5.5) [8.118]. For the two lowest electro-

nic states 5Eg and
5T2g of the low-spin configuration of the Cr2þ (d7) ion in an

octahedral environment ([CrO6]
10� and [CrF6]

4� clusters) ab initio CASSCF

and ACPF (averaged coupled-pair-functional) calculations including cluster-

environment Coulomb and exchange interactions were performed to obtain

the APES in the space of eg displacements (Eg � eg and T2g� eg problems).

The JT parameters for Eg states of the four systems above are, respectively

(in cm�1), �eg ¼ 520, 345, 280, and 540; EE
JT ¼ 480, 605, 565, and 365;

�¼E(compressed) –E(elongated)¼�5, 20, 75, and 5. For the T2g state,

respectively, �eg ¼ 520, 340, 270, and 550, while EE
JT¼ 100, 155, 170, and 40.

The local configuration at the minimum of the APES is thus an elongated

octahedron in Cr2þ :MgO and a compressed octahedron in the other three

systems, with rather small barriers between the minima and strongest linear

coupling (EE
JT=�eg ) for Cr

2þ : CaO and Cr2þ : SrO.

Cr2þ ions in eightfold coordination of the crystal lattice in SrF2 and CaF2 in

the ground state 5T2g with the T2g� (egþ t2g) quadratic JT problem resulting in

six orthorhombic minima (Section 3.4) were considered in [8.119]. The authors

employed a theoretical model with a spin Hamiltonian that includes random

strain (Section 6.3.2) in order to explain EPR spectra [8.120], and the parameters

that fit the spectra well were evaluated. Orthorhombic distortions were also

confirmed by EPR spectra of Cr2þ in CdF2 and CaF2 [8.121]. The Cr
2þ ion in

Cr2þ : ZnSe and Cr2þ : ZnS with the 5T2 � ðeþ t2Þ ground-state problem shows

relatively strong vibronic coupling, mostly to the t2 mode [8.122(a)]. This was

demonstrated by computation of the vibronic energy levels and spectra in the

emission and absorption (from and to the lowest excited state 5E), with a variety

ofdetails revealedanddiscussed.A similar calculationwasemployed to study the

JTE in the luminescence spectra of V2þ in V2þ : ZnSe and V2þ : ZnS [8.122(b)].

Cr3þ is one of the impurity ions that have been most studied by optical

spectroscopy, in view of its applications in laser materials. For Cr3þ ions

in fluorides that form octahedral [CrF6]
3� clusters, the vibronic coupling

constants FA1g
and FEg

in the first excited state 4T2g (in contrast to oxide

host, where it is 2Eg) were estimated using multiple-scattering X� and self-

consistent-charge extended Hückel methods of electronic-structure calcula-

tions [8.123]. They found (in cm�1/pm units) FA1g
¼ �182 and FEg

¼ �130.

For the Cr3þ ion in Cs2NaScCl6 the T� e JT problem for the 4T2g state was
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studied in [8.124(a)], while in [8.124(b)] the more complicated excited-state

absorptions 4T2g! 4T1gð4F Þ and 4T2g! 4T1gð4PÞ where analyzed taking into

account the JTE with the same T� e scheme in both states. Figure 8.1 shows

the cross-section of theAPES of the 4T2g and
4T1g(F ) excited states in the plane

of one of the Eg displacements, which clarifies the origin of the JT implications

in the above transitions (Section 6.1.1).

To explain the origin of the Cr3þ : CdIn2S4 luminescence spectrum, the PJT

coupling in the excited manifold of the 2E and 4T2 terms of the Cr3þ (3d3) ion

was considered [8.125]. The mixing of the three G8 levels that emerge from the

spin–orbital interaction by totally symmetric a vibrations was accounted for in

a PJT ðG8 þ G0
8 þ G00

8 Þ � a1 problem, which allowed the authors to fully explain

the temperature dependence of the luminescence kinetics and intensity of the

emission U-band, as well as the spectral shape of this band.

For another laser material, Co2þ :KZnF3, the [CoF6]
4� cluster was studied

using an ab initiomodel-potential method that includes correlation and embed-

ding effects to take into account the influence of the lattice [8.126] (Section 5.5).

The estimated JT parameters (Section 3.3) for the ground a 4T1g and excited
4T2g

and b 4T1g states in the T� e coupling scheme are, respectively (in cm�1),

EE
JT¼ 8, 120, and 545; �¼ 8, 93, and 415; �eg ¼ 402, 399, and 419; and �a1g ¼ 502,

518, and 516. At the minima the distorted ground a 4T1g and first excited
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Fig. 8.1. A cross-section of the APES of the first (4T2g) and next (4T1g(
4F ))

excited states in the impurity system Cr3þ : Cs2NaScCl6 along the Q#

coordinate of the eg displacements. The T� e JT coupling is assumed to be
dominant in both states with the three electronic T-term functions as �, �, �
and �, �, g, respectively. The thick vertical arrow shows the expected
electronic transition from the minimum of the lower state in the excited-
state absorption. (Reprinted with permission from [8.124(b)]. Copyright
2002 American Institute of Physics.)
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4T2g state geometries are elongated octahedra, while the excited b 4T1g state

produces a compressed octahedron. For Co2þ substituting Sr2þ in SrLaGa3O7

the authors [8.127] found a T� t2 coupling with ET
JT ¼ 507 cm�1.

There is spectroscopic evidence of distortion of the [CrO4]
3� tetrahedron

and splitting of the 2E ground state in Cr5þ-doped spodiosites Sr2(VO4)Cl

[8.128].

The JTE in Ti3þ impurity centers in cesium gallium alum (I) [8.129(a)] and

cesium aluminum alum (II) [8.129(b)] were studied by low-temperature mag-

netization and EPR. In I, the JT coupling results in the formation of low-lying

vibronic states that mix under the magnetic field, producing a strong depen-

dence of the magnetization on the magnetic field. This allows measurements of

the Zeeman coefficients up to the third order. In II, the measured gk and g?
factors could be modeled only under the assumption of a combined influence

of the JT coupling and low-symmetry strain (Section 6.3.2).

JT broadening of emission and absorption bands (Section 6.1.1) in Ti3þ-

and Mn3þ-doped Be3Al2(SiO3)6 was suggested to explain the origin of super-

broad bands of stimulated emission [8.130]. The excited state a 4T1 in Mn2þ :

ZnS was studied by INDO calculations of the MnS4 cluster with point-charge

influence of the next coordination sphere [8.131]. The JT T� e coupling in this

state was shown to have a stabilization energy of ET
JT ¼ 650 cm�1, with the t2

mode influencing (reducing) the barrier height between the minima.

The JT center Rh2þ : NaCl was studied by DFT cluster calculations of the

[RhCl6]
4� center plus several coordination spheres with up to 87 Na and Cl

atoms (JT distortions were optimized within a 39-atom cluster,

RhCl6Na12Cl8Na6Cl6) [8.132]. The E� e coupling problem was confirmed,

with ET
JT ¼ 1200 cm�1, FE¼ 90 cm�1/pm, �hoE¼ 165 cm�1, and �¼ 213 cm�1,

meaning that there is a strong linear effect (ET
JT=�hoE 	 7:5) and possible

localized states in the three minima of elongated octahedra (Rax¼ 270.7 pm,

Req¼ 2.44.5 pm).

For the emission spectrum of Pb : CsCl [8.133], similar to Tl : CsI [8.134], a

model is suggested in which two bands at 4.1–3.9 eV and 3.55 eV are attributed

to transitions from, respectively, the coexisting trigonal and tetragonalminima

(Section 3.3) of the relaxed excited T state of the Pb2þ ion, the whole spectrum

being described as due to the coexistence of this state with an exciton localized

near the impurity ion.

Pr4þ in PrO2 was shown by neutron-spectroscopic measurements of mag-

netic excitations to have localized 4f 1 states with a dynamic JTE on the G8

ground electronic state described in a G8� t2 coupling model [8.135]

(Section 3.3). The JTE in this state is confirmed also by the observed ordered

momentum-reduction factor �0.5 (Section 5.6) [8.136]. For the calculation of
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the cross-section of neutron diffraction the vibronic energy levels of the Pr4þ

ion in the PrO2 crystal environment were calculated by the Lanczos method

(Section 5.4), taking into account the vibronic coupling to one or two e or t2
modes and it was shown that the t2 two-mode problem explains well the

neutron-spectroscopy measurements [8.137].

In a systemwith amolecular impurity [ReO4]
2� replacing the Cl� ion inKCl

there is a tetrahedral d1 configuration with an E� e problem; calculations for

the free impurity reveal a relatively strong JT distortion, EJT¼ 762 cm�1,

which is enhanced in the crystal to EJT¼ 932 cm�1 [8.138].

Among nonmetallic JT impurity centers and defects in crystals we mention

here the relaxed F center in KCl (see [8.139, 8.140] and references therein), the

arsenic ‘‘anti-site’’ defect in GaAs [8.141] in which the JTE in the A1!T2 transi-

tion (T � t2 coupling) was studied by recursion-method calculations (Section

5.4) and under uniaxial stress, and the O� center in CaF2, for which the [OF6]
7�

cluster was shown by multiple-scattering X� calculations to have a strong JT

tetragonal distortion [8.142]. ESR spectra of Gaþ : KBr showing the coexistence

of tetragonal and trigonal JT minima (Section 3.3) were obtained in [8.143].

For two equivalent holes in a series of double acceptors (Zn and Be in Ge,

bound excitons at the pair of acceptors Al, Ga, and In in Si, as well as Sn in

GaAs) an inverted level ordering with the level J¼ 0 below the ones with J¼ 2

(the latter is required to be lower by Hund’s rule) was shown to be due to the

PJT stabilization of the J¼ 0 state (vibronically coupled to the two J¼ 2

states), which is larger than the spin-pairing energy [8.144]. For the JTE in

In, Ga, and Te impurities in AIVBVI semiconductors see [8.145].

An unusual temperature dependence (T3 instead of T7) of the zero-phonon

line width (Section 6.1.2) and red shift (T2 instead of T 4) was shown to be

induced by the JTE with the linear E� e coupling [8.146]. The theory was

applied to nitrogen N-V centers in diamond.

The evolution of applications of the PJTE theory to off-center impurities in

crystals is similar to that of its application in other fields: there was a long-

lasting paradigm that the PJTE requires very small energy gaps� between the

mixing ground and excited electronic states, which limits essentially its appli-

cation to real systems. This paradigm disappeared when it was shown that the

magnitude of � should not necessarily be small, as it may be compensated by

other parameters in the inequality (4.6) of the strong PJTE (Section 4.1).

Moreover, if there are low-symmetry dipolar (off-center) distortions of high-

symmetry configurations, they are due to, and only to, the PJTE. The para-

digm above explains why the many earlier works on off-center impurities in

crystals did not make use of such a powerful tool as the PJTE, which explains

in a natural way the origin of the distortion and consequent properties.
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Off-center distortions in crystals were first considered as being due to the

PJTE for the Ti4þ ion in BaTiO3 [8.147] in order to explain the origin of local

dipole-moment formation and the cooperative interaction of dipoles to pro-

duce a ferroelectric phase transition [8.147–8.149] (see Section 8.3 for more

details). Many examples of such distortions in impurity crystals are given

above. In their majority they were considered in cluster models which ignore

the multimode problem (Section 5.5). Below are several examples in which the

multimode problem is taken into account.

An estimate of the PJT instability criterion (4.6) for the Liþ ion in Li :KCl

was given in [8.150], but more elaborate consideration of the problem was

published in a series of works on the multimode PJTE in off-center systems

[8.151, 8.152].

For the system Cu2þ : SrO the off-center position of the copper ion, the

multi-minimum APES, possible tunneling, and relaxation processes were

investigated by solving a multimode combined JT plus PJT problem

ðEg þ T1uÞ � ðeg þ t1uÞ (Section 4.2) in its multimode presentation (Section 5.5)

[8.151]. It was shown that in each of the three minima of the starting multi-

modeE� e problem the JT admixing of the excited T1u state via multimode t1u
off-center distortions results in an additional eight minima of Cs symmetry

(four in each direction of the tetragonal axis), in which the system has a dipole

moment (the JTE in the excited T1u state is ignored). The positions of the

minima are obtained as functions of the multimode parameters of the crystal

(Section 5.5) and the possible transitions between them are evaluated. In a

rough estimation the results are in qualitative agreement with the experimental

data on EPR spectra of this system in the temperature interval 1.6–78K

[8.153].

A general theory of the PJT origin of off-center positions of impurities with

a nondegenerate ground state in a cubic environment is presented by solving

the combined multimode (A1gþT1u)� (t1uþ egþ t2g) problem, which takes

into account the PJT (A1gþT1u)� t1u plus JT T1g� (egþ t2g) couplings

[8.152, 8.154, 8.155]. In application to Liþ : KCl the eight equivalent off-center

displacements toward the chlorines on the diagonals of the cubic coordination

environment in the minima of the APES are further investigated and the

transitions between them evaluated. With some reasonable phonon-spectra

parameters of the lattice the estimated transition probability has the same

order of magnitude as the experimental value.

The interaction between PJT off-center impurities in crystals is considered in

[8.154, 8.155]. For strong PJT off-center displacements in the minima, like in

Liþ : KTaO3, the tunneling between the minima on each center is negligible,

but the Liþ ions can still overcome the barrier between the minima if assisted
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by the crystal phonons, provided the maximum frequency of the latter is large

enough, �homax0�, where � is the energy gap between the state in the mini-

mum and the lowest excited state that is delocalized over all the minima [8.154,

8.155]. The local dipole-moment reorientation is thus temperature dependent

with an Arrhenius-type behavior (� being the activation energy); it freezes at

temperatures for which �homax<�.

The phonon-excited Liþ ion may relax in another equivalent minimum by

emitting a phonon which excites the near-neighbor Liþ center, the two centers

becoming thus coupled via phonons. Calculations of this phonon-mediated

intercenter interaction between the two PJT centers show that it increases the

activation energy�, thus increasing the temperature of the phase transition Tc

to the freezing state, where the Liþ ions rest in one minimum. Obviously� and

Tc are dependent on the concentration x of Liþ ions. Calculations reveal good

qualitative agreement between calculated and experimentally observed Tc

values in Liþ : KTaO3.

The dynamics of the Liþ ions in Liþ : KCl was further evaluated using

Mathieu’s equation to solve for the motion along the ground-state APES

[8.156]. Cation off-centricity in the IV–VI rocksalt chalcogenides of divalent

Ge, Sn, and Pb is attributed to PJT lone-pair activity on the basis of DFT

calculations, in which the mixing states were shown to include the p states of

the anion [8.157].

A big off-center displacement of the Niþ ion in Niþ : CaF2 was found by

means of DFT calculations performed on the cluster [NiF8Ca12]
17þ in the

presence of an electrostatic potential to account for the influence of the rest

of the lattice [8.97, 8.110]. With the unpaired electron located on the b2 � xy

orbital, the system is strongly distorted along the fourfold axis with theNiþ ion

at z0¼ 1.07— in the APES minimum, in qualitative agreement with ESR data.

The computational details show that this off-centricity is due to a balance

between the new (additional) covalent bonding to four (of the eight) ligands

acquired by the tetragonal off-center distortion and electrostatic repulsion that

prevents further distortion, in accordance with the general theory (Section 4.1).

For Cu2þ and Ag2þ ions in a similar environment in CaF2 there are no off-

center PJT distortions because of the predominant repulsion (the inequality

(4.6) is not realized because of the large K0 value), but in this case there are JT

distortions, as mentioned above [8.97]. For the same ions in SrF2 there are PJT

off-center distortions [8.158, 8.159].

The discussion on whether off-center distortions of impurity centers in

crystals are of PJT origin or occur due to ‘‘chemical rebonding’’ [8.160] from

our point of view (presented in this book) has no sense because, as shown in

Section 4.1, starting from the high-symmetry on-center configuration, all the
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off-center distortions are due to, and only to, the PJTE. The latter includes the

‘‘chemical rebonding’’ phenomenon (plus a minor polarization contribution),

so there are no two distinct mechanisms of distortion, it is one bonding

mechanism fully presented by the general theory of the PJTE.

For two JT centers sharing a common axis of symmetry of third order (but not

commonnear-neighboratoms)withanE� eproblemoneachof them, taking into

account their interaction via the crystal phonons, the solutions for theAPES in the

space of local e vibrations are of two kinds: a circular trough for free in-phase

rotations of the e-type distortion of the two centers in the same direction and a

hindered counter-phase rotation of the two waves of e distortions in opposite

directions (cf. the similar pseudorotations in a two-center bioctahedron,

Section 3.6). The rotation is free for zero intercenter coupling, and located at the

minima in cases of strong coupling [8.161(a)]. Applied to EPR transitions, this

interaction reduces the spectrum to one isotropic resonance line [8.161(b)]. Inter-

acting JT E� e impurity centers also reduce the elasticity modulus of the crystal

lattice [8.162]. The PJTE in impurity centers was employed recently to predict

novel materials with high dielectric constants for modern electronics [8.163].

A novel field of application of the JTE and PJTE was explored recently in

the theory of semiconductor quantum dots (see [8.164] and references therein).

The theory was developed for spherical dots, for which the electronic energy

levels are degenerate or quasidegenerate, and for non-spherical dots, for which

the degeneracy is removed, but the PJTE is significant. For the phonon system

the authors [8.164] involve the so-calledmultimode dielectric model, in which a

finite number of phonon degrees of freedom is taken into account. It was

shown that both the JT and PJT couplings are most important in the spectro-

scopic properties of quantum dots. The theory has been applied to ensembles

of spherical (CdSe, CdxSe1�xSx, and PbS), self-assembled (InAs/GaAs and

CdSe/Zn/Se), brick-shaped (InAs/GaAs) quantum dots, as well as CdS/HgS/

CdS quantum-dot heterostructures.

8.1.2 The local JTE in formation of special crystal structures

The cooperative interaction of JT and PJT distortions of regular centers of the

crystal that lead to the formation of special lattice properties and structural

phase transitions is known as the cooperative JTE (CJTE), as mentioned

above and discussed below in Sections 8.2 and 8.3. However, there are some

special cases of JT- and PJT-induced crystal structures that are not described

exactly by the mainstream CJTE theory. In this subsection we consider briefly

three examples of such specific lattice effects: the plasticity effect, distortion

isomers, and temperature-dependent solid-state conformers.

8.1 Local properties of solids 495



As stated earlier, the JT- and PJT-induced distortions in free molecular

systems are dynamic in nature; they were classified in Section 5.2 as free

rotations, hindered rotations, and pulsating (‘‘fluctuating’’) motions. In

Section 7.1.1 we discussed the role of small external perturbations that quench

the dynamics of the distortions and make them static, so that a very small

perturbationmay result in strong distortion (vibronic amplification of external

perturbations). The symmetry of this static distortion corresponds to that of

the external influence, provided that it is uniaxial in the direction of one of the

JT-active coordinates. It follows that among the many possible equivalent

distortions of a coordination system predicted by the JTE theory (Chapters 3

and 4), the only ones realized in the crystal state are those that correspond to

the symmetry of the environment, and in a measure allowed by this environ-

ment. Hence the same coordination polyhedron may have significantly different

shapes in different crystals. This phenomenon looks as if the coordination

polyhedron has a soft (plastic) coordination sphere, which in the crystal state

takes the form of the crystal environment; it is called the plasticity effect [8.165,

8.166] (see also ‘‘flexional behavior’’ [8.167, 8.168]). The first observation of

such effect is mentioned in [8.169].

Note that the plasticity effect is essentially local: the dynamic distortion

is made static by the local low-symmetry environment, distinct from the

CJTE where the static distortion is created by the interaction between the

JT-distorted regular centers of the lattice.

The best examples to illustrate the plasticity effect are octahedral coordina-

tion compounds with a twofold degenerate E term [Cu(II), high-spin Mn(III)

and Cr(II), low-spin (Co(II), etc.]. For them the APES in the case of weak

quadratic terms (small GE constants; Section 3.2) has the form of a Mexican

hat, which allows for any distortion of the coordination sphere along the

symmetrized Q# and Q" displacements within the limits Q2
# þQ2

" ¼ constant

(Figs. 3.3 and 3.7). If the quadratic and/or cubic vibronic coupling terms are

significant, only three directions of tetragonal distortions along the fourth-

order axes remain equally probable (Fig. 3.4). In other systems with other

degenerate terms, distortions with three tetragonal, six orthorhombic, and so

on, equivalent directions, as well as continuous sets of distortions (a trough),

are possible (Chapters 3 and 4).

These predictions of the theory are confirmed by a large amount of experi-

mental data. X-ray analysis shows that the hexacoordinated polyhedron about

the metals with Eg terms is not a regular octahedron even when all the ligands

are identical, and in themajority of known cases the octahedron is tetragonally

distorted. In Table 8.8 the crystallographic distance to the two axial (RL) and

four equatorial (RS) ligands in series of CuO6 and CuN6 polyhedra, as well as
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in similar octahedralMn(III) systems in different compounds, are given [8.166,

8.170–8.172] (see also [8.18]).

It follows from this table and references above that the six-atom polyhedra

around the Cu(II), Mn(III), and Cr(II) centers in different crystals are mainly

elongated octahedra, RL>RS, with two ligands on the long axis and four on

the short axes. Although for some of the tabulated compounds the atoms from

Table 8.8. Examples of equatorial RS and axial RL interatomic distances M—X

in compounds containing MX6 clusters, M=Cu, Mn; X=O, N (adapted from

[8.18])

Compound RS (—) RL (—)

Cu(acac)2 1.92 3.08

Ca(Cu,Zn)4(OH)6(SO4)2.3H2O 1.96 2.43

Cu6(Si6O19).6H2O 1.97 2.68

(C14H19N2)Cu(hfacac)3 2.02 2.18

CdCu3(OH)6(NO3)2.H2O 2.03 2.43

K2BaCu(NO2)6 2.04 2.29

Cu4(NO3)2(OH)6 2.04 2.34

Ca(Cu,Zn)4(OH)6(SO4)2.3H2O 2.06 2.23

Cu(OMPA)3(ClO4)2 2.07 2.07

Cu(H2O)6SiF6 2.07 2.07

Cu(IPCP)3(ClO4)2 2.07 2.11

Ca(Cu,Zn)4(OH)6(SO4)2.3H2O 2.11 2.11

Cu(ClO4)2.6H2O 2.13 2.28

(NH4)2Cu(SO4)2.6H2O 2.15 1.97

Cu(phen)3(ClO4)2 2.05 2.33

Cu(l-pn)3Br2.2H2O 2.09 2.31

K2PbCu(NO2)6 2.11 2.11

Cu(en)3SO4 2.15 2.15

g-K2PbCu(NO2)6 2.23 2.05

Mn(trop)3 1,94 2.13

Mn(acac)3 2.00 1.95

Mn(Et2dtc)3 2.38–2.43 2.55

Abbreviations: acac, acetoacetate; OMPA, octamethylpyrophosphoramide;
hfacac, hexafluoracetylacetonate; IPCP, tetraisopropylmethylene-diphosphonate;
PCP, octamethylmethylene-diphosphonic diamide; phen, o-phenanthroline; en,
ethylenediamine; pn, 1,2-propanediamine; dien, diethylenetriamine; and Et2dtc,
diethyldithiocarbamate.
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the second and next coordination spheres are different (and in the crystal state

the interatomic distances also depend on the packing of the molecules in the

lattice), the large number of these compounds confirms statistically that the

deformation of the coordination sphere around Cu(II), Mn(III), and Cr(II)

is due to internal forces, i.e. the JTE. The relations between RL and RS in the

Cu—O and Cu—N distances within the corresponding octahedra follow the

rules of Q# distortion, thus allowing estimation of the vibronic coupling

constants [8.18, 8.166].

In the diversity of crystal environments, there may be cases when not one,

but two or several configurations of the coordination sphere are stabilized.

If these configurations are sufficiently close in energy, but differ in the magni-

tude and direction of distortion, they may be observed as different crystal

isomers. The so-called distortion isomers of Cu(II) originally synthesized and

studied in [8.166, 8.172] may serve as an example of this kind. These isomers

have the same total composition and the same Cu(II) ligand environment, but

differ in the interatomic metal–ligand distances in the distorted coordination

centers. Distortion isomers also differ in their properties, such as color,

appearance, crystal form, chemical behavior, solubility, and spectroscopic

data. They pass from one to another under the influence of pressure, heating,

or long-term storage. In some cases, besides the two principal isomers (usually

called a and b), intermediate species have been obtained.

One of the simplest compounds that has distortion isomers is Cu(NH3)2X2,

where X¼Cl, Br. The local PJTE on the Cu centers accompanied by the

stabilizing influence of the crystal lattice provides quite a natural explanation

of the origin of distortion isomers. The Cu(NH3)2X2 crystal contains mutually

parallel chains, each of which is arranged as illustrated in Fig. 8.2(a), where all

the X atoms occupy equivalent bridge positions. There is a strong interaction

between the Cu(II) centers via these bridging atoms inside the chain, while the

van derWaals interactions and/or hydrogen bonds between the chains areweak.

If we assume that the X atoms in the plane form a regular square with two

NH3 groups in the axial trans positions, the polyhedron Cu(NH3)2X4 is a

tetragonally distorted octahedron that belongs to D4h symmetry, the degen-

eracy of the groundCu(II) state in the octahedron is removed, and the 2Eg term

is split into 2A1g and
2B1g. Denote the splitting by 2�. The two-level PJTE on

theA1g and B1g terms is considered in Section 4.1, so the results obtained there

may be applied directly. In particular, the normal coordinate Q, which mixes

the states A1g and B1g, transforms according to B1g (A1g 
 B1g¼B1g) and the

corresponding B1g displacements in the D4h group coincide with the Q" dis-

placement of the Oh group given in Fig. 2.3 and Table 2.1. The vibronic

constant of the mixing of the two electronic states is F¼hA1gj(@H/@Q)0jB1gi,

498 8 Solid-state problems



and the APES in the space of theQ coordinate has the form given by Eq. (4.4).

If the instability condition (4.6),�<F 2/K0, is satisfied, we obtain two minima

on the lower sheet of the adiabatic potential at �Q0, determined by Eq. (4.7).

Thus the PJTE at each center distorts the bipyramidal environment: the

equatorial square with four X atoms at the apexes transforms into a rhombus

with the major diagonal alongQx, corresponding to the minimum I in Fig. 8.3,

or along Qy (minimum II).

Owing to the strong interaction between the distortions of neighboring

centers in the chain through the ligands X in common, a ferrodistortive

ordering of these distortions along the chain takes place (Section 8.2), and

this ordering remains unchanged up to high temperatures. As a result of this

ordering, it can be assumed that each of the chains has two stable configura-

tions, I and II of Figs. 8.2(b) and 8.2(c), respectively, that correspond to the

two minima in Fig. 8.3 (I and II, respectively).

Another important factor is the interaction between the chains in the crystal

lattice. The analysis of the structure of the crystal composed by parallel chains

indicates that the intermolecular interaction between the chains is optimal

when the chains are not distorted and the entire crystal is cubic. In this cubic

state the intermolecular distances (between two most strongly interacting

atoms of different chains) are minimal, and they increase with intrachain

distortions toward configuration I or II. The authors [8.165, 8.166] assumed

that the interchain interaction in the crystal has a minimum atQ¼ 0 (Fig. 8.3),

(a)

(b)

(c)

Cu NH3 Br, Cl

I

II

Fig. 8.2. The chain structure of the crystal Cu(NH3)2X2 in the cubic
undistorted unstable b isomer (a), and in two equivalent configurations of
the a isomer, I and II, (b) and (c), resulting from the in-chain cooperative
PJTE. (Reprinted with permission from [8.166]. Copyright 1976 Elsevier
Science Publishers.)
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whereQ is the coordinate of the cooperative intrachain distortion correspond-

ing to the B1g distortion at each center. Hence the total energy of the crystal

shown schematically in Fig. 8.3 has three minima: besides the two equivalent

minima I and II for the stable distorted configurations of the chains, there is a

third minimum for the undistorted (cubic) crystal, and it is also assumed that

the interchain interaction is of the same order of magnitude as the intrachain

PJT one.

This explains qualitatively the origin of all the main features of the distortion

isomers in Cu(NH3)2X2: the a isomer corresponds to the deepest minimum of

the APES (I or II) with the structure illustrated in Fig. 8.2(b) or 8.2(c), the

unstable b isomer with the cubic structure corresponds to the shallower mini-

mum at Q¼ 0, and the observed intermediate preparations with non-cubic

structures correspond to the additional relative minima for the uncorrelated

chain distortions. This interpretation also agrees well with the experimental

features of the isomers, including their behavior under stress and temperature,

the dependence on conditions of their preparation, spectral properties, and

transitions from one isomer to another [8.166, 8.172].

Approximate estimates of the PJT distortions of the Cu(NH3)2X4 poly-

hedron were obtained by means of the angular-overlap model using empirical

data for the value K0 [8.173]. At the minima QB1g
(calculated) 	 0.5 —, while

QB1g
(experimental) 	 0.4 —.

Under the influence of the crystal environment the dynamic JT and PJT

distortions may be reduced to static distortions in different ways, resulting

Fig. 8.3. The potential-energy curve for the Cu(NH3)2X2 crystal as a function
of the cooperative ferrodistortive intrachain distortion which is of B1g

symmetry on each center. I and II correspond to the PJT minima, while the
additional minimum at Q(B1g)¼ 0 corresponds to the best-fit interchain
interactions of undistorted chains (dashed lines) [8.165].
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in a variety of possible configurations, including temperature-dependent con-

figurations that are not related to phase transitions. One type of them is called

temperature-dependent solid-state conformers [9.174]. They occur when there

are two or several rapidly converting distorted configurations, which are

slightly nonequivalent due to the crystal influence, and the observed averaged

configuration is thus temperature dependent.

Consider the system [Cu(bpy)2(ONO)]NO3 (bpy is bipyridine) with the

copper polyhedron cis-CuN4O2. In the high-symmetry configuration of

[Cu(bpy)3]
2þ the system has D3 symmetry with a twofold-degenerate 2E

ground state. The substitution of one of the bpy groups by ONO reduces

the symmetry to C2 and splits the 2E term into 2A and 2B. Similar to the

distortion isomers discussed above, there is the possibility of a PJTE and

consequent instability of the ground state 2A with respect to B-type displace-

ments (A
B¼B), provided that the vibronic coupling constant

Ah j@H=@QB Bj i is sufficiently large and the inequality (4.6) holds. The

B displacements emerge from Q" (Fig. 2.3 and Table 2.1) and have the

same geometry.

Assuming that the inequality (4.6) is satisfied, we get for theAPES curve as a

function of the coordinateQB the picture shown in Fig. 4.1(b) and reproduced

here on Fig. 8.4 together with the indication of the modes of distortion of

the CuN4O2 polyhedron in the minima. The value of the distortion coordinate

(the coordinate Q"¼ 1
2
(X2 –X2 –Y3þY6); see Table 2.1) in our denotation

in the cis-CuN4O2 polyhedron is

Q ¼ 1
2
½�RðCu—N1Þ þ�RðCu—O1Þ ��RðCu—N2Þ ��RðCu—O2Þ (8:1)

where N1, N2, O1, and O2 are the two nitrogen and two oxygen atoms in the

plane containing the C2 axis (Fig. 8.4) and �R denotes the elongation of the

bond with respect to that in the high-symmetry configuration. It can easily be

shown that for linear distortions (R(X) indicates the bond length Cu—X)

Q ¼ 1
2
½RðN1Þ � RðN2Þ þ RðO1Þ � RðO2Þ� (8:2)

In the unstable high-symmetry configurationQ¼ 0, while in the twominima

Q ¼ �Q0 6¼ 0. If the energy barrier between the minima (i.e., the PJT stabili-

zation energy) is not very large, the system converts rapidly between the

minima configurations, and in some experimental measurements (say, by

X-ray diffraction methods) the average undistorted configuration will be

observed (if the minima are shallow and have no localized states, the average

configuration will be observed with all the methods, Section 7.1).
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The situation changes when, due to the crystal environment, the twominima

become slightly nonequivalent, as shown in Fig. 8.4 by the dashed line, but the

energy difference � between the minima is smaller than the barrier height

(otherwise, the second minimum disappears). In this case there is no complete

averaging over the two configurations because the two minima are not equally

populated. Denote the relative populations of the two configurations by n1
and n2, respectively. According to Boltzmann’s thermal populations, n2¼ n1
exp(–�/kT ) with the normalization n1þ n2¼ 1. Then the observed thermal

averaged distortion is Qav¼ (n1 – n2)Q0 or

Qav ¼ Q0½1� expð��=kTÞ�=½1þ expð��=kTÞ� (8:3)

Thus the observable averaged distortion Qav is temperature dependent, its

absolute value being determined by both Q0 and �.

Fig. 8.4. Two minima of the adiabatic potential in the [Cu(bpy)2(ONO)]NO3

crystal with a strong PJTE on each center and slightly different minima
depths (��) due to the crystal environment (the influence of the next
coordination sphere).
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These distorted configurations of the same compound which change gradu-

ally with temperature can be called temperature-dependent solid-state confor-

mers. At high temperature when kT� �, in the first order with respect to �/kT,

expð��=kTÞ 	 1� �=kT , and

Qav ¼ Q0�=2kT (8:5)

In the opposite limit case when kT �, expð��=kTÞ 	 0 and Qav¼Q0.

The observed distortions in [Cu(bpy)2(ONO)]NO3 and similar systems

[8.174, 8.175] follow these rules rather well. The atomic structure of this

compound has been determined in four temperature regions of 20, 100, 165,

and 296K. Table 8.9 shows the corresponding interatomic distances and the

values calculated after Eq. (8.2) for different temperatures, as well as the same

data for [Zn(bpy)2(ONO)]NO3 at 295K, for comparison. In the Zn compound

there is no PJTE of the type present in [Cu(bpy)2(ONO)]NO3 and hence no

temperature-dependent conformers.

The data in Table 8.9 are very illustrative for temperature-dependent solid-

state conformers; the temperature dependence ofQav closely follows Eq. (8.4).

In particular, if we assume that atT¼ 20K,Q0¼Qav¼ 0.3, while atT¼ 296K

Eq. (8.5) holds, we obtain directly �¼ (Q0/Qav)2kT 	 69 cm�1. The author

[8.174] performed amore exact estimation, giving �¼ 74 cm�1. Note that in the

Zn(II) compound Qav, as expected, is small to zero, and the absence of

conformers in the Zn(II) compound is also seen from the temperature factors

in X-ray experiments [8.174, 8.175]. A somewhat similar but more elaborate

effort to explain the temperature dependence of the crystal structure and

EPR spectrum of bis(1,3,5-trihydroxycyclohexane)copper(II) tosylate is

given in [8.176].

Table 8.9. Bond lengths R(X)¼R(M—X) (in Å) and distortion coordinate

values Qav in the MN4O2 polyhedra of [M(bpy)2(ONO)]NO3 with M¼Cu at

different temperatures, and for M¼Zn

M¼Cu M¼Zn

20K 100K 165K 296K 295K

R(N1) 2.142(2) 2.110(2) 2.098(2) 2.085(2) 2.085(2)

R(N2) 2.028(2) 2.060(2) 2.071(2) 2.074(4) 2.082(3)

R(O1) 2.536(2) 2.414(2) 2.351(3) 2.320(5) 2.204(3)

R(O2) 2.051(2) 2.155(2) 2.204(3) 2.230(5) 2.223(3)

Qav 0.299 0.155 0.087 0.050 0.008
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The solid-state conformers under consideration differ from each other by

having different interatomic distances, and in this sense they are similar to the

distortion isomers discussed above. However, the latter coexist at the same

temperature, whereas different conformers are observed at different tempera-

tures, and the larger the temperature difference, the larger the structural

differences of the conformers. Also important is the fact that the structural

changes with temperature in conformers take place gradually, in contrast to

structural phase transitions, which take place abruptly, at a certain

temperature.

The idea of JT-induced plasticity, distortion isomers, and temperature-

dependent solid-state conformers was applied and further developed in differ-

ent ways in order to explain the origin of a huge variety of crystal structures.

For example, the plastic deformation of the complex [Cu(H2O)6]
2þ in

Cs2Zn1�xCux(ZrF6).6H2O, with x¼ 0.01, 0.6, 0.8, and 1.0, was observed by

EPR spectra in the range 4.2–330K and X-ray analysis in the range 150–327K

(for x¼ 1.0), as well as under pressure, and explained as due to the combined

influence of small lattice strains at higher T and ferroelastic strain below the

phase transition [8.177–8.179].

Two nonequivalent JT CuN6 centers were observed in Cu(mtz)6(BF4)2,

where mtz is 1-methyltetrazole, with different kinds of JT behavior induced

by the local environment [8.180]. In one of them the system is trapped in one of

the three JT minima of the E� e coupling (Section 3.2) with a glassy distribu-

tion of the distorted octahedra at low temperatures, while in the other center

the system performs temperature-dependent pulsating motions (Section 5.3).

The picture as a whole is produced from EPR and X-ray measurements at 293,

123, and 93K.

For other examples of plasticity investigation see in [8.181–8.186] (the

number of references to the papers [8.165, 8.166], in which the plasticity

phenomenon was explored, is over 400). For instance, in [8.181] the plasticity

effect is used to explain the nonplanarity of amino acid complexes in the

crystalline state, in which three types of polyhedra are observed. Distortion

(and related) isomerism is discussed also in [8.187–8.190].

8.2 Cooperative phenomena

8.2.1 Ordering of JT distortions and structural phase transitions

Consider a crystal in which some of the regular (translational) centers are in

degenerate (or pseudodegenerate) states (JT or PJT centers, respectively) as

described by means of local APES given in Chapter 3 and 4. Without
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interaction between these centers, the motion of each is determined by its own

APES and does not depend on the motions of other centers, and the dynamic

distortions around different centers are not mutually correlated. When the

interaction between the centers is taken into account, the mean ‘‘molecular

field’’ produced by the environment and influencing each center is not isotropic

at any given instant. Therefore, equivalent distortions in free centers become

nonequivalent when the interaction is nonzero. When this happens the mini-

mumof the free energy corresponds to the crystal state in which each JT or PJT

center is statically distorted and the distortions at different centers are corre-

lated. The structure of such a crystal may be essentially different form that

expected without vibronic interaction.

Let us illustrate this process by considering a simple case when the JT centers

in the crystal possess a twofold orbitally degenerate E term vibronically

coupled to the b1 vibrations (for the E� b1 problem, Section 3.1; the E� b2
problem is similar). Such a situation may occur, for example, when the crystal

E-term centers in question possess local D4h symmetry. For simplicity assume

that the JT centers are square planar. The APES with two equivalent minima

and the rhombic distortions (b1g displacements) of the square at each of the

minima are illustrated in Fig. 8.5 (cf. Fig. 3.1). In the absence of interaction

between the centers, the two configurations (hereafter denoted by (þ) and (�),

respectively) are equally probable and the JTE has the above-discussed

dynamic nature (the mean distortion equals zero and the initial symmetry is

preserved).

The resulting picture changes when interactions between centers are taken

into account. For two interacting centers at each of which the E� b1 problem

is realized, under the assumption of parallel orientation of their squares, there

Fig. 8.5. A cross-section of the APES of a system with a JT E� b1g problem
along the b1g displacementsQB1g

showing the two equivalent minima with the
distortions of a square-planar (D4h) system in each of them (Section 3.1).
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may be four configurations in which the one-center distortions are correlated:

(þþ), (��), (þ�), and (�þ) (Fig. 8.6). It is clear that if the attractive

interaction is stronger with parallel orientation of the distortions ( ferrodistor-

tive interactions), the energy of the configurations (þþ) and (��) is lower

than that of the (þ�) and (�þ) cases. On the other hand, if the configurations

(þ�) and (�þ) possess lower energy, the distortions directed antiparallel to

each other are preferred (antiferrodistortive interactions). In both cases the two

configurations of each center are no longer equivalent, since the interaction

energy depends on the kind of distortion at the other center. This conclusion

can be generalized to many interaction centers and, in the limit, to the

whole crystal.

It is evident that at suitably low temperatures, the configuration of mini-

mum free energy is realized, in which the crystal has statically distorted and

distortion-correlated centers. In the case of ferrodistortive interactions, such

an ordering of local distortions ( ferrodistortive ordering) leads to a macro-

deformation of the crystal as a whole. New properties of the crystal arising

from the correlation (ordering) of the JT (PJT) center distortions, including

the formation of new crystal structures and structural phase transitions, are

called cooperative JTE (CJTE) and cooperative PJTE (CPJTE), respectively.

Fig. 8.6. Four types of possible packing of two interacting JT centers. For
each of them the E� b1g problem of a square-planar system with b1g
distortions (Fig. 8.5) is realized.
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As in any other phase transition, the CJTE or (CPJTE), described above,

results in symmetry breaking (Section 4.5) because the symmetry of the crystal

with correlated distortions is lower than its initial symmetry. In fact the solution

of the problem with thermodynamic features included, at sufficiently low tem-

peratures yields correlated configurations, e.g., (þþ) and (��), which are

equivalent and, in principle, the pair of correlated centers may resonate between

the (þþ) and (��) states, dynamically preserving the initial symmetry.

However, in the case of a large number of centers of the macroscopic crystal

the barrier between the equivalently distorted configurations of the entire

crystal (þþþ � � �) and (���� � �) becomes so high that spontaneous transi-

tions between them are practically impossible (improbable), and the crystal

remains in one of them. The situation here is quite similar to that found in

ferromagnetics, in which there are also different equivalent directions of

magnetization but no spontaneous inversion of the magnetic moment.

In these cases, as distinct from the one-center problem, the symmetry of the

ground-state configuration of the crystal is lower than that of theHamiltonian,

resulting in the effect of ‘‘broken symmetry’’ (Sections 4.5 and 8.2.5). Strictly

speaking, such a crystal state is not stationary, but due to the infinitely large

energy barrier it may remain there for an infinitely long time.

It is clear that lattice vibrations and temperature fluctuations tend to destroy

the correlation between JT distortions. Therefore, in principle, for any given

energy of distortion interactions, there is a certain temperature above which

the distortion ordering becomes destroyed. The lattice acquires another, more

symmetric structure with an independent dynamic JTE at each center (pro-

vided the crystal does not melt). This temperature-dependent breakdown of

the JT center distortion correlations (disordering) is nothing else than a

structural phase transition. The stronger the JTE at each center and the energy

of distortion interactions, the higher the temperature of the phase transition to

the disordered state.

At the temperature of phase transition Tc the free energies of the two phases

should be equal:

U1 � TcS1 ¼ U2 � TcS2 (8:5)

where U1 and U2 are the internal energies and S1 and S2 are the entropies.

Hence

Tc ¼ ðU1 �U2Þ=ðS1 � S2Þ (8:6)

Since the entropy of the higher-temperature (disordered) phase is higher

than that of the lower-temperature phase, S1>S2, for Tc> 0 the internal
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energy of the latter should be lower than that of the former,U2<U1; the lower

energy of the ordered phase is provided by the interaction between the

JT-distorted centers.

Equation (8.6) is valid also for any other structural phase transition from

higher to lower symmetry: the higher-symmetry phase has higher entropy,

S1>S2, and hence the condition for Tc> 0 is again U2<U1. Here too lower

energy U for lower symmetry is provided by the JTE.

The structural phase transition to the crystal state with ordered JT or PJT

local distortions is one of the most important features of the CJTE or CPJTE.

The first studies of the CJTE appeared in the late fifties and early sixties

[8.191–8.194]. Cooperative PJT ordering leading to spontaneous polarization

and ferroelectric phase transitions has been established independently using

another approach (Section 8.3). Rapid development of the CJT trend began in

the seventies, when the JT origin of structural phase transitions was confirmed

experimentally in a series of rare-earth orthovanadates (Section 8.2.2). The

results obtained are summarized in a series of reviews [8.1, 8.195–8.200]. Below

in this section we discuss the main features of this phenomenon with illustra-

tive examples omitting bulky mathematical proof, where possible.

From the theoretical point of view the most difficult problem is to calculate

the interaction between the JT centers and its dependence on the orientation of

the local distortions. This interaction takes place via the phonon field (in the

pseudo JT case theremay be dipolar distortions and dipole–dipole interactions

between the centers).

The general form of the Hamiltonian of the JT crystal can be written as

follows (see also [8.196]):

H ¼
X
n

HJTð~nÞ þ
1

2

X
n;m

Qþð~nÞKð~n� ~mÞQð~mÞ (8:7)

where ~n ¼ ðn1; n2; n3Þ and ~m ¼ ðm1;m2;m3Þ label the elementary cells of the

crystal,HJTð~nÞ is the vibronic Hamiltonian of the elementary cell, its electronic

matrices being determined in the space of localized site states, while the last

term in (8.7) describes the commonly used form of bilinear interactions

between the atomic displacements of different elementary cells in lattice

dynamics. Here the vector notation is used: Qð~mÞ is a column vector that has

3s components of QGgð~mÞ, where s is the number of atoms in the elementary

cell and QGgð~mÞ are the symmetrized coordinates (Section 2.2). Accordingly,

Kð~n� ~mÞ is a 3s
 3s matrix with KG1g1G2g2ð~n� ~mÞ elements that describe the

constants of intercell interaction. The terms with n¼m describe the elastic

properties of isolated elementary cells, and therefore they are separated from

the double sum in (8.7) and included in HJTð~nÞ.
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For simplicity, it is assumed that there are no atoms on the borders between

the elementary cells. The complication of the theory, which arises due to the

non-orthogonality of some of the QGgð~mÞ coordinates for neighboring values

of n (in cases when there are border atoms belonging simultaneously to two

elementary cells), is considered in [8.201].

Another approximation used in Eq. (8.7) is that the vibronic coupling of the

electrons of the JT center to the atomic displacements of the nearest-neighbor

coordination spheres of the same elementary cell only is taken into account. In

some works, using the Hamiltonian (8.7) as a starting point, additional

approximations are introduced. In particular, the displacements QGg that are

inactive in the JTE in the isolated elementary cell are excluded from the

calculations (see, e.g., the review [8.197]). As in the one-center JT systems,

this simplifies the solution significantly.

Finally it is assumed here that the inter-site resonance interaction of loca-

lized electronic states that form the energy bands is negligibly small. Inmost JT

crystals the width of the electronic bands formed by atomic d and f orbitals is

much smaller than the characteristic phonon quantum, and this justifies the

above approximation. Additional effects related to the finite width of the

electronic band are considered in [8.202]. For band JTE see Section 8.2.5.

There are two approaches in the theory of the CJTE due to the existence of

two classes of JT polyatomic systems, with or without significant nonadiaba-

ticity (Section 2.1 and Chapter 3). The first group is inherent in systems with

E � e;T � t2; etc. problems where there is a branching of the APES at the

point of degeneracy, while the second one corresponds to the E � b1, T� e,

etc., and similar systems where there is a real intersection of different branches

of the APES at this point (Section 3.1). In the latter case there is no overlap

between the wavefunctions of the states in the near-neighbor minima and

hence no tunneling between them; this allows one to present each of the

distorted configurations of the JT center with its own wavefunction and

consider their reorientation and intercenter interaction by the method of pseudo-

spin. It cannot be done in the former case, in general, except for very deep

minima and negligible tunneling.

The intercenter interaction between the local JT distortions on each center

takes place via the phonon field of the crystal (via the displacements of the

intermediate atoms produced by the distortions), and as such it is a function of

the wave vectors of the phonons, i.e., the phase of the overlapping displace-

ments from neighboring JT centers. The minimization of this function allows

one to evaluate the wave vector~q0 at which the free energy of the crystal in the

two phases, ordered and disordered, coincides, thus determining the tempera-

ture of the phase transition in Eq. (8.6).
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On the other hand ~q0 determines also the type of ordering in the low-

symmetry phase. If ~q0 ¼ 0, the JT distortions are uniformly ordered, all of

them being frozen in-phase (‘‘parallel’’), and the size of the unit cell a (the

lattice period) remains unchanged. This is the ferrodistortive ordering, an

example of which we consider below for the E � b1 problem on each center

(Section 8.2.2). If q0 ¼ ðp=a; p=a; p=aÞ, antiferrodistortive ordering takes place
with ‘‘anti-parallel’’ ordered distortions and a doubled lattice period in all the

three directions. In principle, there may be intermediate extremal values of~q0,

for which gelicoidal or even incommensurate phases are formed (Section 8.2.4).

‘‘Parallel’’ and ‘‘anti-parallel’’ orientation of the distortions is a valid descrip-

tion when there are only two minima on each JT center and two directions of

distortion. The situation becomes more complicated in cases of three or more

minima on each center (Section 8.2.3).

For quantitative evaluation of the intercenter interaction, further simplifi-

cations of the Hamiltonian (8.7) can be achieved assuming (as is usually done

for description of phase transitions in solid states) that each elementary cell in

the low-temperature phase is actually affected by a low-symmetry field created

by all the other elementary cells. This field lowers the symmetry of the cell

under consideration, which thus becomes a source of the low-symmetry field

for other cells contributing to the resulting overall low-symmetry crystal

field. Owing to the thermal motion of the cell atoms the low-symmetry crystal

field fluctuates. The approximation which neglects these fluctuations and

takes into account only the averaged self-consistent crystal field is called the

mean-field approximation (MFA).

Asmentioned above (Section 5.5), in the absence of vibronic interactions the

electronic density in degenerate electronic states rotates around the JT center

and can freely orient along the external field. These properties of degenerate

electronic states can be described by means of the operators of energy spin

(pseudospin) mentioned above. The low-symmetry distribution of the electro-

nic density creates an anisotropic electric field. For instance, the p orbitals have

a dipole moment, the d orbitals have a quadrupole moment, etc. The appro-

priate dipole–dipole, quadrupole–quadrupole, and similar interactions of the

electronic states of the centers may lead to an ordering in the electronic

subsystem. The electric fields of separate cells in this case are summed to an

averaged electric field.

A similar ordering in the electronic subsystem results from the non-

Coulomb (exchange, superexchange, and so on) interactions of the electronic

states. In the absence of vibronic coupling this ordering will not influence

the nuclear behavior, i.e., it will not result in a structural phase transition.

By neglecting the intercenter interaction of the electronic states we exclude the
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possibility of an ordering in the electronic subsystem without the participation

of the vibrational degrees of freedom of the lattice. Such effects of pure orbital

ordering were considered elsewhere [8.203, 8.204].

In principle, the ordering of local distortions may take place without the

participation of the electronic subsystem. The mechanism of such phase

transitions is assumed to be due to the proper anharmonicity of the lattice

[8.205]. However, as shown in Section 2.4, for small nuclear displacements the

main part of the anharmonicity comes from the PJTmixing of the ground state

with the corresponding excited states. The Hamiltonian (8.7) does not take

into account the proper lattice anharmonicity; the PJT mechanism of struc-

tural ordering is considered in Section 8.3.

In the MFA the Hamiltonian of the crystal is reduced to a sum of commu-

tative terms, each of which describes an isolated elementary cell in the external

mean field (see e.g. in [8.196]):

HMFA ¼
X
~n

Hð~nÞ; Hð~nÞ ¼ HJTð~nÞ þ
X
Gg

fGgð~nÞQGgð~nÞ (8:8)

where

f ð~nÞ ¼
X
~m6¼~n

Kð~n� ~mÞ Qð~mÞh i (8:9)

and Qð~mÞh i is the averaged value of the coordinate. The density matrix of the

crystal described by the Hamiltonian HMFA from (8.8) is factored into a

product of density matrices of separate cells, and the latter is factored into a

product of density matrices of separated degrees of freedom. Note that f(~n)

has the physical meaning of the force with which the molecular field acts

upon the cell ~n. The solution with this Hamiltonian depends on the specific

JT problem on each center. Related cooperative phenomena in mixed-

valence compounds (Section 7.6.2) are discussed in [8.206, 8.207], while

phase transitions in the JT impurity subsystem of crystals are considered

in [8.208].

8.2.2 The simplest cooperative JT E˜ b1 problem: rare-earth zircons

As mentioned above, the simplest JT E � b1 problem is realized on centers

with tetragonal symmetry (Section 3.1). Tetragonal rare-earth zircons of gen-

eral formula RXO4, where R is a rare-earth element and X¼V, As, P, which

include the orthovanadates, are very convenient examples for illustration of

the CJTE. In these crystals the JT ion is in an environment of tetragonal

symmetry, in which a twofold degenerate E term is coupled to nondegenerate
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vibrations b1, resulting in the simplest vibronic E � b1 problem. From the

viewpoint of possible experimental evaluation of JTE parameters, zircons

have certain comparative advantages. First, they are transparent and hence

allow a series of convenient optical and spectroscopic methods of investigation

to be used in order to determine the positions of the energy levels and their

shifts. Second, the expected CJT structural phase transition occurs at low

temperatures (�10K), at which the measurements are not masked by thermal

effects. Third, phase transitions at low temperatures mean that the corre-

sponding JT energy-level splitting is small (see below) and can be easily

changed by external perturbations.

The JT ion in rare-earth zircons is the rare-earth element. Figure 8.7 shows

the energy levels of the ground and first excited states in three orthovanadates,

TmVO4, DyVO4, and TbVO4. The Tm
3þ ion has a ground state 3H6 (electron

configuration 4f 12), which in the tetragonal D4h field of the VO4
3� ions in

TmVO4 reduces to an orbital doublet E. The latter is coupled predominantly

to the b1g vibrations, which distort the square of ligands into a rhombus and

split the E term into two nondegenerate terms, as shown in Figure 8.7. The

Dy3þ ion in the same environment has a ground, orbitally nondegenerate

Kramers doublet E 0 and another close excited state E 00 at an energy interval

of �9 cm�1. The two Kramers doublets E 0 and E 00 mix strongly under the

Fig. 8.7. Energy levels of the lowest vibronic states of the rare-earth ions
in the crystals TbVO4, DyVO4, and TmVO4 with (left) and without (right)
the CJTE.
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b2g displacement, resulting in PJT instability and B2g-type distortion.

This increases the E 0–E 00 splitting. For the Tb3þ ion in TbVO4 there are four

such nearby energy levels, which mix under b1g displacements.

Consider first the simplest case of TmVO4. The APES of theE � b1 problem

in question consists of two intersecting parabolas with two minima corre-

sponding to the possible directions of distortion of a square into a rhombus

(two signs in the minima of Figs. 8.5 and 8.6). The fact that the b1g vibration is

nondegenerate and the states (þ) and (�) are described by orthogonal electro-

nic wavefunctions (there is no continuous transition from one minimum to

another along the b1g coordinate, see Fig. 8.5) essentially simplifies the problem

of the JT distortion correlations in the crystals. The twoAPESminimum states

are formally similar to two possible spin states for systems with S¼ 1
2
, which

can be described in the pseudospin method by means of the Pauli matrix 	̂z
(Eq. (3.2000)) that has two eigenvalues 	z¼�1. In this case the averaged

distortion coordinate Qð~mÞh i in Eq. (8.9) can be presented by the ordering

parameter 	̂zh i ¼ 	 with 	¼ 0 in the disordered phase and 	¼ 1 in the fully

ferrodistortive ordered lattice.

The ordering lowers the symmetry of the molecular field, which splits the

degenerate E level by an amount�E proportional to 	. It can be shown (see in

[8.200]) that with the Hamiltonian (8.8) only one parameter l is needed to

describe the ferrodistortive interaction between the centers, but the splitting

�E depends also on the homogeneous deformation of the lattice as a whole,

which accompanies the ferrodistortive phase transition. Denoting the electron–

deformation coupling parameter by 
, and introducing a total parameter of

correlation of JT distortions g¼ lþ
, we get [8.200]

�E ¼ 2g	 (8:10)

	 ¼ tanhð�E=2kT Þ (8:11)

Herefromwe get the phase-transition temperatureTc for which the ordering

parameter 	 falls to zero,

kTc ¼ g (8:12)

The temperature dependence of the E-term splitting has been determined

experimentally from the position of the line of optical transition to the lowest

excited singlet level 1G4 (�hO¼ 20 940 cm�1) [8.209], as well as by magnetic

measurements [8.210] (see below). The results are shown in Fig. 8.8. It is

seen that, at T¼ 0, �E¼ 2g¼ 3 cm�1 and hence g¼ lþ
¼ 1.5 cm�1.

At Tc¼ 2.1K the splitting �E becomes zero. At this temperature a structural
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phase transition from the rhombic to the tetragonal phase is observed.

Figure. 8.9 illustrates the phase transition by showing the temperature depen-

dence of the heat capacity [8.211]. This value of Tc coincides with that pre-

dicted by the theory, Eq. (8.12).
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Fig. 8.8. Splitting of the ground vibronicE level of the Tm3þ ion in TmVO4 as
a function of temperature obtained from the positions of the line of optical
transition to the excited 1G4 level (shown by circles) and magnetic
measurements (crosses). Vertical lines at T>T0¼ 2.14K show the
experimental error due to crystal imperfections. (Reprinted with permission
from [8.200]. Copyright 1975 Institute of Physics.)
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Fig. 8.9. The temperature dependence of the heat capacity of the TmVO4

crystal near the phase transition due to the CJTE.
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The values of l and 
 can be obtained separately by piezospectroscopic

measurements. Under external pressure P, the E-term splitting is [8.212]

�E¼ 2(lþ
)	þ�P, where � is proportional to 
. Therefore, by measur-

ing the splitting �E as a function of P at T¼Tc [8.213], one obtains

l¼�0.75 cm�1 and 
¼ 2.25 cm�1.

The orbital doublet E also splits under the influence of a magnetic field <z,

in the presence of which expressions (8.11) take the form

�E ¼ 2g tanhð�E=2kTÞ

�E ¼ ½4g2	2� þ g2KE
2ðTÞ�2<2�

1
2 (8:13)

where 	� ¼ 	ð�Þ
z

� �
is the ordering parameter in the magnetic field and, besides

the g-factor, the influence of the magnetic field is reduced by the vibronic

reduction factor KE(T ) (Section 5.6; here T indicates the symmetry of the

magnetic field, not temperature!). It follows that the phase-transition tempera-

ture Tc at which 	� decreases to zero depends on the magnetic field:

kTc ¼ 1
2
�v=arctanh ��=2gð Þ

�v ¼ gKEðTÞ�<z

(8:14)

Hence Tc decreases with increasing magnetic-field intensity<z. At<z > <cr,

where the critical value <cr ¼ 2g=KEðTÞ�, no phase transitions can occur at

real temperatures. The magnetic field also reduces the ordering parameter

	� ¼ 	� g2K2
EðTÞ�2<2=4g2. Substitution of this expression into Eq. (8.13)

yields that for <z5<cr the E-term splitting �E does not depend on <z.

If<z > <cr, 	�¼ 0 and�E increases linearly with<z. This result is in complete

agreement with experimental data on optical absorption in magnetic fields

[8.210] presented in Fig. 8.10 (see also [8.214]).

Thus for the TmVO4 crystal under consideration, comprehensive qualitative

and quantitative experimental (optical, magnetic, piezospectroscopic) confirma-

tion of the JT nature of the low-temperature structural phase transition has been

obtained. These results are also confirmed by Raman spectra, neutron scatter-

ing, ultrasound absorption, X-ray analysis, heat conductivity, and so on.

A similar explanation of the JT origin of structural phase transitions in other

rare-earth zircons can be given. In DyVO4, as distinct from TmVO4, the PJTE

is realized in the Dy3þ ion centers (Fig. 8.6), and as a result of their ferro-

distortive interaction and cooperative structural phase transition, the splitting

of the energy levels is given by (cf. Eq. (4.3))

�E ¼ ðg2	2 þ�2Þ
1
2 (8:15)
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where 2� is the splitting in the high-symmetry phase, for which 	¼ 0. On the

other hand, as in the case of TmVO4, the condition of ordering in a two-level

system gives

�E ¼ 2g tanhð�E=2kTÞ (8:16)

and the phase-transition temperature Tc is determined by

� ¼ g tanhð�=kTcÞ (8:17)

It follows from this equation that if � > g, there is no phase transition.

An important consequence of the structural phase transition of ferrodistor-

tive type is the aforementioned homogeneous deformation of the crystal as a

whole, due to which the elasticity constants C become temperature dependent

near the phase transition. The effect was first observed in DyVO4, for which

the cooperative JT structural phase transition takes place at Tc¼ 14K.

Figure 8.11 presents the observed temperature dependence C(T )/C0 for this

crystal as determined by sound-velocity measurements [8.215] and calculated

by the formula

CðTÞ=C0 ¼ ½�� ðlþ 
Þ tanhð�=kTÞ�=½�� l tanhð�=kTÞ� (8:18)

with l¼�3.6 cm�1 and 
¼ 14.7 cm�1 (C0¼ 0.63
 1011 dyn cm�2 is the elas-

ticity constant in the region far from the phase transition). These results are
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Fig. 8.10. The splitting �E of the Tm3þ ion ground state in TmVO4 in
magnetic fields H. At H�Hcr¼ 5.4 kOe and T¼ 1.4K, �E is independent
of H. (Reprinted with permission from [8.200]. Copyright 1975 Institute
of Physics.)
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also confirmed by other experiments, in particular, by piezospectroscopic

measurements [8.216]. Relationships between elastic and dielectric parameters

of this crystal can be found elsewhere [8.217].

In TbVO4 the local vibronic problem for the Tb3þ center is a four-level one

(Fig. 8.7). TheA1–B1 splitting due to the CJTEwith b1g distortions is similar to

the E 0–E 00 one, Eq. (8.15):

�E1 ¼ 2ðg2	2 þ�2Þ
1
2 (8:19)

where 2� is the initial energy gap. The splitting of the doublet E is

�E2 ¼ 2g	 (8:20)

It follows that the phase-transition temperature Tc obeys the equation [8.219]

ðg=�Þ þ ðg=�Þ sinhð�=kTcÞ ¼ 1þ coshð�=kTcÞ (8:21)

Fig. 8.11. The temperature dependence of the elasticity modulus C(T ) (in C0

units) of the DyVO4 crystal near the phase transition (at 14 K) induced by the
CJTE. (Reprinted with permission from [8.215]. Copyright 1972 American
Physical Society.)
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The phase transition in TbVO4 has been observed at Tc¼ 33K. The temp-

erature dependence of the splitting of the phonon E mode in this crystal,

determined experimentally by Raman spectra and calculated in the MFA, is

illustrated in Fig. 8.12. Good agreement between theory and experiment

confirms the JT origin of this phase transition.

Similar conclusions have been drawn for other rare-earth zircons men-

tioned above, including TbAsO4 (27.7K), DyAsO4 (11.2K), TmAsO4

(6.1K), and TbPO4 (3.5K), where the CJTE or CPJTE phase-transition

Fig. 8.12. Temperature dependences of the phonon e-mode splitting near the
phase transition induced by the CJTE in DyVO4 (a) and TbVO4 (b) crystals.
The points indicate experimental data obtained fromRaman scattering, while
the solid lines follow theoretical results obtained in the mean-field
approximation. (Reprinted with permission from [8.197]. Copyright 1972
Royal Society London.)
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temperatures are given in parentheses. Some other classes of rare-earth

compounds, such as pictides with general formula RX (X¼N, P, As,

and Sb), sulfides, and others of type TmCd and PrAlO3, have a similar

CJTE (or CPJTE). For example, DySb has a structural phase transition at

Tc¼ 9.5K, its JT nature being confirmed by experiments on magnetic

susceptibility, neutron scattering, electric conductivity, etc. [8.200]. For other

examples see in [8.195].

More recent results on the CJTE obtained for such systems with a

simple E � b1 problem on each JT center are published in a series of papers

(see [8.218, 8.219] and references therein), in which the sensitivity of these

crystals to external perturbations shown above is further exploited. First we

note the theory of JT structural phase transitions induced by external mag-

netic fields and applied to crystals of the type TmPO4 and TbxY1�xVO4

[8.218]. Distinct from the influence of magnetic fields on existing phase

transitions mentioned in different parts of this and the next sections, the

phase transitions considered in [8.218] take place at temperatures where

there are no transitions in the absence of the magnetic field, reentrant

structural phase transitions. They were shown to influence a variety of opti-

cal, magnetic, and elastic properties of these crystals, some of which were

confirmed experimentally in giant magnetostriction [8.218(b)] and Raman

scattering [8.218(a)].

In other cases the magnetic field ‘‘reverses’’ the elastic domain of the crystal,

producing reorientation phase transitions that influence thermodynamic, elas-

tic, and magnetic properties [8.219(a)]. The theory was applied to such crystals

as TmAsO4 and DyVO4.

Among other effects revealed in such JT crystals we mention here the

coexistence of spontaneous deformations of different symmetries in crystals

of the type DyxTb1�xVO4 [8.219(b)], and the JT-induced negative Poisson’s

ratio (when uniaxial distortion (e.g., elongation) produces the same kind of

distortion (elongation) in the perpendicular direction) in crystals of DyVO4

type [8.219(b)].

8.2.3 Ordering of JT tri-minima distortions

If there are three equivalent minima of the local APES on each JT center of the

lattice, as in the E� e, T� e, etc. problems (Sections 3.2–3.4), the local distor-

tions may have three directions. In the T� e case the three distorted config-

urations are described by three independent (non-overlapping) wavefunctions

that can be presented by three spin orientations in the method of pseudospin

used above. In theE� e case this can be done only for sufficiently deepminima
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when the tunneling can be neglected. Assume for the sake of definiteness that

eight octahedral JT centers occupy the apexes of a cube in a cubic crystal and

the three directions of local tetragonal distortions of the octahedron in the

T� e or E� e problems coincide with the three axes X, Y, and Z. Then the

interaction of the distortions of two near-neighbor centers can formally be

described by two constants vk and v? which include, respectively, the interac-

tions between correspondingQ# andQ" displacements (Fig. 2.3 and Table 2.1)

on the two centers [8.220].

The total number of possible mutual orientations of the eight-center

three-direction distortions is 38, and calculations of their energies "0 as a

function of vk and v? yield that many of them are degenerate. Figure 8.13

shows their mutual positions divided into five groups with different "0 values,

each of them having N structures divided into C symmetry-equivalent

classes. The orientations of the distortions of the eight octahedra in each of

these classes are shown in Table 8.10 with the numeration of the eight

octahedra indicated in Fig. 8.14. Restricting further discussion to only

regions 1 and 3 and only to structures which can be described in terms of

two sublattices, we see first that in the region 1 with "0¼�6(vkþ v?) the

ordering is perfectly ferrodistortive with all the local JT tetragonal distor-

tions parallel to each other. In region 3 both interactions are antiferrodistor-

tive. Neglecting the classes 5 and 6 (they have elevated energies due to the

N = 18, C = 2

N = 114, C = 6 N = 6, C = 1

N = 48, C = 4

N = 3, C = 1

ε0 = 3 (v – v⊥) ε0 = – 6 (v  + v⊥)

ε0 = 3 (v  + v⊥) ε0 = – 6v 

ε0 = –   (v – 3v⊥)3
2

V

V⊥

2 1

5

4

3

Fig. 8.13. Division of the nearest-neighbour interactions in a cubic eight-
center cluster (see the text) into five groups with different energies "0, on the
(v?, vk)-parameter plane. The number of classes C and ground-state
configurations N is also shown. (Reprinted with permission from [8.220].
Copyright 1978 Springer-Verlag.)
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Table 8.10.Orientations (along X, Y, Z) of the distortions of the eight octahedra

in each of the classes of the five regions in Fig. 8.13 (the numeration of these

octahedra is shown in Fig. 8.14 (adapted from [8.220]))

Configurations

Regions Classes 1 2 3 4 5 6 7 8

I 1 Z Z Z Z Z Z Z Z

II 1 X Y X Y X Y X Y

2 X Y X Y Z Z Z Z

III 1 X Y X Y Y X Y X

2 X Y X Y Y X Z X

3 X Y X Z Z X Y X

4 X Z X Y Z X Y X

5 X Y Z Y Y X Z X

6 X Z Y Z Y X Z X

IV 1 Z Y Z X Z X Z Y

2 Z X Z Y Z Y Y X

3 Z Y Z X Z X Y Y

4 Z Y Z Y Z X Z X

V 1 Y Y Y Y X X X X

Fig. 8.14. Ground-state configurations in the antiferrodistortive ordering in
region 3 of Fig. 8.13: (a) Q2 structure; and (b) Q3 structure [8.220].

8.2 Cooperative phenomena 521



strong interaction with the elastic strain field), we come to three possible

structures [8.220]:

(a) Q2 ordering, where all the octahedra of the sublattice A are distorted along Z

(octahedra 1, 3, 6, and 8 in Fig. 8.14(a)), while in the other sublattice B they

(octahedra 2, 4, 5, and 7) are distorted along X (or Y ); this is a perfect antiferro-

distortive ordering with the lattice space group P42mc(C7
4v);

(b) Q3 ordering (Fig. 8.14(b)), in which the sublattice A is the same as in the Q"

structure, while in the B sublattice the distortions are distributed randomly along

X and Y with equal weight; the space group is Pnbm(D3
4h); and

(c) intermediate ordering, which is basically similar to the case (b), but with different

statistical weights of octahedra distorted along X and Y; the lattice space group is

Fmm2(C18
2v).

The zero-point entropies of these three structures are different. Since they

are degenerate with the same "0 value at T¼ 0, the highest-entropy (less

ordered) case (b) will be realized at T> 0. On the other hand, the antiferrodis-

tortive structure (a) is preferred when the interaction with the uniform strain

is taken into account. Figure 8.15 shows the phase diagram for the antiferro-

distortive interaction under consideration, taking into account the coupling to

the strain g and the entropy (c in the ordinate expression g2/cVR is the value of

the Eg component of the bare elastic tensor and VR is the parameter of the

intercenter interaction of the distortions). In a certain (small) region between

Tc2 and Tc3 the intermediate structure (c) is preferred.

Fig. 8.15. The phase diagram for the antiferrodistortive ordered configurations
of region 3 inFig. 8.13 taking into account their coupling to elastic strain. In the
area between Tc2 and Tc3 the intermediate structure (c) is realized. (Reprinted
with permission from [8.220]. Copyright 1978 Springer-Verlag.)
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Note that the high degeneracy of the possible structures is mainly accidental

and will be lifted when the lower-symmetry field of the next-nearest neighbors

to the eight octahedra under consideration is taken into account. In this

respect only the full ‘‘molecular field’’ of the crystal may determine the real

ground-state ordering.

If the dynamics of the JT distortions on each center is taken into account,

the problem becomes more complicated. Consider the case of an E� e pro-

blem in cubic systems with strong vibronic coupling, EJT
E � �hoE at each JT

center. When the quadratic and/or cubic terms of vibronic interaction are

taken into account, the local APES has three minima, which in the space of

polar coordinates � and � of the (Q#, Q") plane form a regular triangle with

coordinates (�0, 0), (�0, 2p/3) and (�0, 4p/3) (Section 3.2). In the absence of

external low-symmetry perturbation and for high inter-minimum barriers, the

system performs local pulsating motions, i.e., tunneling transitions between

theminima. If the lowest tunneling levels areE (ground) andA1 (orA2) and the

tunneling splitting 3G is much smaller than the vibrational quantum �hoE, the

problem may be reduced to a three-level one, or to a pseudospin problem with

the spin S¼ 1, 2Sþ 1¼ 3.

Under the influence of the anisotropic ‘‘molecular field’’ of the adjacent

center distortions, the three minima become nonequivalent, the vibronic E

and A1 levels being displaced. The calculated dependence of the tunneling

levels on the external tetragonal field f# of Eq. (8.9) in the Q# direction,

together with the relative probabilities that the system is at each of the three

nonequivalent minima, is shown schematically in Fig. 8.16 [8.198, 8.221].

When f#> 0, the system in its ground state is in the main minimum (�0, 0)

situated along the Q# axis, which is the deepest. When f#< 0, the other two

minima, (�0, 2p/3) and (�0, 4p/3), are deeper in the ground state, and the system
occupies them both with equal probability. At T¼ 0 the lowest energy corres-

ponds to the stabilization of the system in the distorted configurations. When

T> 0, all three vibronic levels become populated after Boltzmann, and the

mean value Q#h i, which characterizes the distortion of a given center in theQ#

direction, becomes temperature dependent.

A simple result can be obtained in the case of ferrodistortive tetragonal

interactions between the centers in the limiting case of very strong vibronic

coupling, when 3G 	 0. In this case, for the ordering parameter 	 ¼ Q#h i=�0
(cf. Section 8.2.2), we have [8.222]

	 ¼ ðeu � e�2uÞ=ð2eu þ e�2uÞ (8:22)

where u¼ g	/2kT. Assuming that at the phase-transition temperature the free

energies in the ordered and disordered phases are identical, E(	)¼E(0), and
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taking into account the equivalency of all the centers in the crystal, the

following expression can be obtained:

u	 ¼ 2 ln½ðeu þ 2e�u=2Þ=3� (8:23)

Equations (8.22) and (8.23) can be solved together to obtain the structural

phase transition temperature:

kTc ¼ 3g=16 ln 2; 	 ¼ 1
2

(8:24)

Antiferrodistortive ordering in the CJTE of the E� e problem in the strong-

coupling case and three-level approximation under consideration results in

two low-symmetry phases depending on the mode of correlation between the

JT centers (much similar to the two phases (a) and (b) obtained above in the

eight-center cluster). In one of them the tetragonal distortions of the sublat-

tices QA and QB are the same, but they are oriented along different axes,

Fig. 8.16. Tunneling energy levels in systems with the JT E� e problem in
tetragonal molecular fields f# that make the three minima nonequivalent; the
size of the black circles indicates the relative distortions in the latter (zero
distortion is shown by open circles). The signsþ and� indicate the respective
phase of the wavefunction [8.198].
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resulting in a structure similar to that of multiaxial spin ordering. In the other

phase, distortions in the two sublattices differ according to the different signs

of the tetragonal molecular field. For one of the sublattices we have f# > 0, and

in accordwith the foregoing the (�0, 0) minimumalong theQ# axis is stabilized.

For the other sublattice the inequality f# < 0 is valid, and the states of the other

two minima (�0, 2p/3) and (�0, 4p/3), are stabilized, the dynamics between

them being preserved since they remain equivalent ( Q#h i ¼ �0=2; Q"h i ¼ 0).

The resulting structure is a ferridistortive one, due to incomplete compensa-

tion of oppositely directed distortions.

Table 8.11 lists some examples of JT crystals with ferrodistortive and anti-

ferrodistortive ordering. For other examples see in [8.222–8.228].

If the JT coupling on each center is not strong enough, the possible ordering

is more complicated. In the general case the type of ordering and structural

phase transition depends on the relative values of linear and quadratic vibronic

coupling at each center and the kind of interaction between the latter.

Qualitatively different results may be expected for strong, intermediate, and

weak vibronic coupling (characterized by the dimensionless vibronic coupling

constant lG ¼ EG
JT=nG�hoG, Chapter 3) in all possible combinations of strong,

moderate, and weak correlations between the centers (characterized by the

parameter g) [8.196, 8.198, 8.222, 8.229–8.236]. Structural phase transitions in
fullerene anions induced by the CJTE are considered in [8.237].

The results above refer mainly to crystals with cubic symmetry. Similar

situations in other crystal structures lead to quite different effects. For example,

in a trigonal crystal the case illustrated in Fig. 8.14(a) corresponds to a

noncollinear weak ferrodistortive ordering.

In themore complicated versions of theE� e problem, as well as in themore

complicated T � ðeþ t2Þ;G8 � ðeþ t2Þ, etc., problems, the solution cannot be

obtained using the simple model with only several low-lying tunneling levels.

More vibronic levels of the JT center can be obtained by numerical solution

and included in the molecular field of the crystal [8.221, 8.222]. However, even

in simple cases more complicated types of ordering may be expected, some of

which are discussed below.

8.2.4 Helicoidal structures, incommensurate phases, and

structural-magnetic orderings

Besides the ferrodistortive and antiferrodistortive orderings considered above,

the CJTE and CPJTE may lead to phase transitions to more complicated

crystal structures. Suppose that in the above three-level E� e problem,

owing to special distortion correlation interactions, the resulting molecular
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field is negative and directed at an angle �< p/2 to theQ# axis ðf#5 0; f" 6¼ 0Þ,
and that this angle, and hence the f" component, vary smoothly along the

crystal, assuming periodically all values between given positive and negative

numbers including zero. In this case, the two minima (�0, 2p/3) and (�0, 4p/3)
at each center are no longer equivalent ( Q#h i 6¼ 0) and the degree of non-

equivalency (the Q#h i value) changes from one center to another, repeating the

periodicity of the f" component of the molecular field.

In terms of pseudospin terminology, the three equivalent minima of the

E� e problem can be presented by three directions of the pseudospin S¼ 1 at

angles 0, 2p/3, and 4p/3. Then, the case f#< 0, f"¼ 0 corresponds to the

Table 8.11.Examples of crystals with CJT ferrodistortive and antiferrodistortive

ordering (adapted from [8.195])

Compound Crystal structure
Symmetry change
during transition

Critical
temperature

(a) Ferrodistortive ordering

CuFe2O4 Spinel Oh,D4h 360 8C
Mn3O4 Ditto Ditto 1170 8C
NiCr2O4 Ditto Ditto 300K

TmVO4 Zircon D4h,D2h 2.1K

DyVO4 Ditto Ditto 15K

TbVO4 Ditto Ditto 34K

TbAsO4 Ditto Ditto 27.7K

TmAsO4 Ditto Ditto 6.1K

TbPO4 Ditto D4h,C2/m 2.12K

DySb Pnictide Oh,D4h 9.5K

Ba2Zn1�xCuxWO6 Elpasolite Ditto 250–1000K

(b) Antiferrodistortive ordering

K2PbCu(NO2)6 Elpasolite Th,D2h 7 8C
Rb2PbCu(NO2)6 Ditto Ditto 40 8C
Tl2PbCu(NO2)6 Ditto Ditto 120 8C
Cs2PbCu(NO2)6 Ditto Ditto 33 8C
KDy(MoO4)2 Sheelyte D14

2h , C2=mð?Þ 14K

CsDy(MoO4)2 Ditto Ditto 38K

RbDy(MoO4)2 Ditto Ditto 19K
La2CuO4 K2NiF4 D4h,D2h 525K
Rb2NaHoF6 Elpasolite Th,D2h 170� 2K
Rb2NaTmF6 Elpasolite Ditto 130� 2K
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equivalent minima with pseudospin directed at angles 2p/3 and 4p/3, respec-
tively (Fig. 8.17(a)), its averaged value being oriented along theQ# axis (in the

negative direction). When f" 6¼ 0 the averaged value of the pseudospin acquires

a nonzero " component. In this case the pseudospin behavior can be presented

in terms of changes in its direction from one center to another, depending on

the absolute value of f". As a result, under the above conditions the pseudospin

rotates from one center to another, forming fan-shaped helicoidal structures

shown in Fig. 8.17(c) (similar to known helical structures of real spin in the

theory of magnetism). In such a crystal, in which the structure is changed due

to the CJTE, the lattice period increases. If the period of f" is a multiple of the

initial lattice period of the high-symmetry phase, a superstructure is formed.

In particular, antiferrodistortive ordering results in a superstructure with a

double lattice period.

Interesting examples of helicoidal ordering of local JT distortions are

presented by the chain-like hexagonal perovskite structure of the type ABX3,

where A is a monopositive ion, B is a bivalent metal, and X¼Cl�, Br�, and I�

[8.238–8.244]. Consider the crystal CsCuCl3. Its parallel chains in the lattice

contain octahedral CuCl6 polyhedra which are interlinked by triple bridges

produced by three chlorine atoms, the latter thus forming a common triangu-

lar face for two nearest-neighbor polyhedra (Fig. 8.18). Each Cu(II) center,

Fig. 8.17. The dependence of the type of ordering of the JT distortions on the
molecular field fg in the CJTEwith anE� e problem on each center: (a) f#� 0,
f"¼ 0; (b) f#> 0, f"¼ 0; and (c) f#� 0, while f" 6¼ 0 and varies smoothly from
center to center assuming periodically all the values between some limits�f 0

" .
The directions of expected distortions on the centers in a perovskite structure
in the cases (a) and (b) are also shown (cf. Fig. 8.14 for an eight-center system)
[8.196].
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due to the JTE, requires a tetragonally distorted octahedron of six chlorine

atoms, and there are three equivalent directions of distortions corresponding

to three fourfold axes. However, because of the common ligands the distor-

tions of the nearest-neighbor octahedra in the ordered phase are correlated.

In particular, if the direction of distortion for the given polyhedron is, say,

along the z axis, its neighbor should distort along either the x or the y axis.

Figure 8.19 illustrates this situation. From the point of view of the trigonal axis

along which the Cu atoms are located in the chain, the directions of the

distortions of the two neighboring octahedra in this case are rotated by an

angle �¼ 608 (from one apex of the interfacing triangle to the next). This is

shown schematically in Fig. 8.20(a). As one can see, the period of the lattice in

the distorted helicoidal screw-like configuration in CsCuCl3 is six times larger

than that of the latice in the undistorted (reference) configuration [8.238].

However, the tilts of the triangles in the AX3 layers depend on the size of the

A ion. In particular, in the case of b-RbCuCl3 the angle between them is not

608 as in CsCuCl3, but 1808 (Fig. 8.21). For this reason b-RbCuCl3 retains the

inversion center at the Cu ions and the ordering of the JT distortions is just

antiferrodistortive [8.241]. In Fig. 8.20 the helicoidal structure of the crystal

(CH3)4NCuCl3 and that of the undistorted high-temperature crystal

(CH3)2CHNH3CuCl3 are illustrated. In the formation of these and other

similar structures magnetic exchange interaction in addition to the CJTE

Cl Cs

Cu

a

c

Fig. 8.18. The crystal structure of CsCuCl3.
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may be important [8.241]. An effective Hamiltonian to handle these cases was

suggested recently [8.245].

Another interesting crystal with complicated helicoidal JT distortions is the

yellow InCl (see [8.246–8.248] and references therein). Its structure looks like a

distorted rocksalt type, but no phase transition to the latter was observed: at

390K it transforms into red InCl with another structure. On the other hand,

there is no simple description of the deviations from the rocksalt structure, but

since we know that all distortions of high-symmetry reference configurations

are of JT type (Section 4.1), one can try to describe the origin of the observed

structure of InCl as resulting from appropriate vibronic coupling.

First we notice that in the cubic environment of Cl� ions in the reference

rocksalt structure the Inþ ion has a lone pair (5s)2 which in the cluster InCl6
produces anA1g ground term followed by aT1u term at an energy gap 2�. This

situation is considered in Sections 4.2 and 7.1.2 as a combination of the PJTE

ðA1g þ T1uÞ � t1u with the JTE in the excited state T1u � ðeg þ t2gÞ resulting
in the problem ðA1g þ T1uÞ � ða1g þ t1u þ eg þ t2gÞ [8.249]. As shown in

Section 4.2, it may lead to a polar distortion t1u accompanied by either

tetragonal eg or trigonal t2g displacements. All in all, in the two phases of

InCl (yellow and red) five differently distorted InCl6 octahedral are found,

which are classified as trigonal (three types), digonal, and tetragonal.

Fig. 8.19. Illustration of the formation of a helicoidal structure in the
CsCuCl3 crystal. Owing to the common shared octahedral face with three Cl
ligands on the apexes of a regular triangle the JT-elongated axes of the two
octahedra (shown by thicker lines) are rotated in phase by ’¼ 608. (Reprinted
with permission from [8.238]. Copyright 1986 Institute of Physics.)
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The digonal distortion is unusual (not predicted by the theory [8.249]), as it

contains a strong t2u component assumed to be due to the PJT

ðA1g þ T1uÞ � ðt1u þ t2g þ t2uÞ problem [8.246]. In the cubic cell of yellow

InCl there are 20 trigonally and 12 digonally distorted octahedra. In the

cooperative picture the yellow InCl structure is a subgroup of NaCl and can

be presented as a rocksalt structure distorted by three equally strong lattice

modes [8.247, 8.248]. Their combination leads to ferrodistortive chirality,

tetrahedron formation, and antiferrodistortive spiral formation. Figure 8.22

illustrates the helix formation from a combination of polar (t1u) and circular

(t2u) displacement vectors.

Fig. 8.20. Illustration of the formation of helicoidal structures as a
superstructure of JT distortions on each center (schematically shown by
arrows) in chain-like crystals with common triatomic faces between its
octahedra: (a) b-CsCuCl3; the JT tetragonal distortions of the near-
neighbour polyhedra in the chain are shifted in phase by ’¼ 608 and the
lattice period along the chain is six times larger than in the undistorted crystal;
(b) (CH3)2CHNH3CuCl3 in the high-temperature phase; (c) b-RbCuCl3; and
(d) (CH3)4NCuCl3. (Reprinted with permission from [8.238]. Copyright 1986
Institute of Physics.)
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In some cases, the periodicity of the f" component of the molecular field

might not be amultiple of the lattice period. The ‘‘superstructure’’ is then called

incommensurate: distortions of the crystal centers are frozen with a wave

vector which is incommensurate with its limiting values. By taking into

account the details of the JT center interactions, in particular, the interaction
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RbCuCl3 CsCuCl3

Fig. 8.21. Comparison of shifts in phase of the JT-elongated axes of
the octahedra around the Cu2þ ions (and hence the triangles of Cl� ions)
due to the different sizes of the A atoms in b-CsCuCl3 (’¼ 608, cf. Fig. 8.19)
and b-RbCuCl3 (’¼ 1808): while the former is a helix, the latter preserves the
inversion center with antiferrodistortive ordering of the distortions.
(Reprinted with permission from [8.241]. Copyright 1995 Springer-Verlag.)

Fig. 8.22. A schematic illustration of the formation of a helix from the
combination of a t1u polar vector with a t2u circular (axial) vector [8.247, 8.248].
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of each center with its second-nearest neighbors [8.250], the helical structure

becomes one of the stable phases of the CJTE, and a structural phase transi-

tion to the incommensurate phase may take place. The crystal K2PbCu(NO2)6
appears to be an interesting example of this kind.

K2PbCu(NO2)6 is a representative of the family of A2BCu(NO2)6 crystals in

which the CJTE takes place. In these crystals the [Cu(NO2)6]
4� octahedra have

an environment of cubic symmetry, which at high temperatures does not

remove the pulsating (fluctuating) transitions between the three equivalent

minima of the E� e problem with strong vibronic coupling (Section 3.2).

Owing to the CJTE, a structural phase transition to the ordered state may be

expected at lower temperatures.

Two phase transitions are observed in K2PbCu(NO2)6. At room tempera-

ture the crystal is cubic (the a phase). At 280K, a phase transition to the

pseudotetragonal structure (the b phase) is observed, and at 273K transition

to a structure with symmetry lower than orthorhombic (the g phase) takes

place [8.251, 8.252]. JT distortions around the Cu2þ centers are also confirmed

by ESR measurements [8.252, 8.253].

The nature of the low-temperature b and g phases has been subject to

discussion in the literature (the discussion is, however, not concerned with the

general JT origin of these phases, which is beyond doubt). X-ray investigation

shows that in the low-symmetry phases, the elementary cell is pseudotetragonal,

c/a< 1. Therefore, it was assumed [8.251, 8.254] that at low temperatures the

crystal consists of compressed octahedra, which are ferrodistortively ordered

due to the CJTE. This point of view was disputed [8.255, 8.256] (see also the

review article [8.199]) by showing that the observed crystal structure of the g
phase fits the description of antiferrodistortive ordering of elongated octahedra.

As a result of such ordering themean value of the observedCu—Ndistanceswill

appear as if the octahedra are compressed but packed in ‘‘parallel’’ (cf. Fig. 8.14).

This description is confirmed by direct and indirect data, including a

detailed analysis of the ESR spectra of this and related crystals (as well as

other copper compounds with a CJTE) and comparison of the thermal ellip-

soids in X-ray analysis of nitrogen and oxygen atoms in theNO2 groups. In the

b phase the same JT distortions (elongated octahedra) are assumed but, as

opposed to the g phase, the dynamics of the distortions in the plane is supposed

to be preserved, cooperative ordering being present only along one direction.

In the high-temperature phase (above 280K) complete dynamics of these

elongated octahedra (with no ordering) is attained (cf. similar partial ordering

in different phases of BaTiO3, Section 8.3).

The structural phase transitions in question were studied bymeans of X-ray-

and neutron-scattering techniques [8.257, 8.258]. Using diffuse X-ray
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scattering the authors succeeded in observing and studying in detail the super-

structure of the two low-temperature phases. It was shown that the

[Cu(NO2)6]
4� octahedra of the crystal under consideration are elongated,

and the interaction between them is of antiferrodistortive nature. In the

high-temperature phase the three elongated configurations are equivalent;

pulsations between them take place at each center independently. In the low-

temperature g phase (below 273K), a typical antiferrodistortive structure with

alternating parallel and perpendicular packing of the elongated octahedra is

realized (cf. Fig. 8.14(a)).

In the intermediate b phase (at temperatures from 280K to 273K), an

incommensurate helical structure discussed above (Fig. 8.17(c)) is formed.

The structure of the crystal in the cubic phase is given in Fig. 8.23 (JT dynamics

being disregarded), while observed displacements of NO2 groups (and Pb

atoms) in the b (incommensurate) and g (antiferrodistoritive) phases are

shown (in projection ) in Fig. 8.24. In the g phase the displacements corres-

ponding to the elongation of the octahedra and their antiferrodistortive

packing in the crystal produce a crystal mode with the wave vector

q0¼ (1
2
; 1

2
; 1

2
) conforming with the border of the vibrational band. These

displacements, as mentioned above, correspond to the formation of a

K

Pb
Cu
NO2

Fig. 8.23. The crystal structure of K2PbCu(NO2)6 in the reference high-
symmetry configuration.
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superstructure with a doubled period of the lattice. However, in the b phase

the corresponding displacements change from one cell to another not quite

‘‘regularly,’’ but forming a wave along the crystal with a period which is

incommensurate with (not a multiple of) the period of the initial lattice. The

wave vector of these displacements is shown to be (0.425, 0.425, 0). This result

confirms the theoretical prediction [8.221] of possible stabilization of incom-

mensurate phases in these crystals due to the CJTE.

Within the described series of hexanitrocomplexes of general formula

A2BCu(NO2)6, only in the case B¼Pb is the above antiferrodistortive ordering

Fig. 8.24.Atomic displacements in theZ¼ 0 layer of theK2PbCu(NO2)6 crystal
in the incommensurate phase b (a) and antiferrodistortive phase g (b) [8.258].
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observed. The reasons are discussed elsewhere [8.199] and explained mainly by

the presence of the additional unshared pair of electrons on the Pb2þ ion

mentioned above. MO LCAO calculations of the APES of the octahedra of

the hexanitrocomplexes of Co(II) and Cu(II) have been carried out in [8.249].

Another JT situation emerges when the JT centers in the crystal have

unpaired electrons. In this case the CJTE structural phase transition strongly

affects the possible electron orbital momentum and spin orderings leading to

structural–magnetic phase transitions. Consider a crystal with cubic symmetry

and octahedral JT centers in a ground Eg state corresponding to transition

metals with electronic configuration d 9 (e.g., Cu2þ, Niþ, Ag2þ), d 4 (Mn3þ,

Cr2þ), and low-spin d7 (Co2þ, Ni3þ). In these cases theEg term is formed by the

contribution of two d functions, dz2 and dx2�y2 . Depending on the nature of the

distortion, the unpaired electron of the Eg term falls either in the dz2 state

(producing a compressed octahedron for d 9 and an elongated one for d4 and

d7) or in the dx2�y2 state (forming an elongated octahedron for d 9 and a

compressed one for d 4 and d7).

Consider the K2CuF4 crystal with a perovskite structure. The lattice has a

layered structure formed by the CuF6 octahedra, which are interlinked in the

(001) plane by common fluorine atoms. If the octahedra are elongated in the

ordered phase, the unpaired electron at each center is in the dx2�y2 orbital,

whereas the dz2 orbital is occupied by two electrons. If the ordering of the JT

distortions is ferrodistortive, the respective orbital and spin ordering corres-

ponds to that shown schematically in Fig. 8.25(a). It follows that planar

antiferromagnetic ordering of the spins should be expected as a result of

superexchange interaction through the common fluorine atoms.

dx2
 – y2 dx2 – y2 dx2

 – y2 dz2 

P P

a b

Fig. 8.25. An orbital- and spin-ordering scheme for crystals containing
corner-connected octahedral Cu2þX6 clusters in the (001) plane in the
cases of their ferrodistortive (a) and antiferrodistortive (b) orderings in the
crystal [8.199].
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In fact, planar ferromagnetism is observed [8.260]. Therefore, it was

assumed [8.261] that in K2CuF4 antiferrodistortive ordering of the Cu2þ

orbitals (and hence of the elongated CuF6 octahedra) takes place in the (001)

plane. The orientations of the orbitals and spins in line with this ordering lead

to ferromagnetic interaction of the spins of the occupied dz2 orbital and half-

filled dx2�y2 orbital (Fig. 8.25(b)). In this case planar ferromagnetism of

Heisenberg type is realized. This assumption has been confirmed by ESR

[8.262(a)] and direct X-ray [8.262(b)] measurements.

Passing to the KCuF3 crystal, one can see that (as distinct from K2CuF4)

the CuF6 octahedra are linked by fluorine atoms in common not only within

the (001) plane, but also along the [001] direction (Figs. 8.26 and 8.27).

Here, the antiferromagnetic exchange interaction along the [001] direction

between the unpaired spins of the dx2�y2 orbitals is much (�103 times)

stronger than the ferromagnetic interaction between the occupied dz2 and

half-filled dx2�y2 orbitals within the (001) plane. Therefore resulting linear

antiferromagnetism is expected, in accordance with the experimental data

[8.260] (see also [8.263]).

These ideas also explain the origin of the magnetic structure of other types

of Cu(II) compounds in which the CJTE takes place [8.199, 8.264]. In parti-

cular, the compounds Cu(ONC5H6)6X2, X¼BF4
� (I) and X¼ClO4

� (II) were

considered [8.264], in which, unlike in the crystals KCuF3 and K2CuF4

where JT octahedra are strongly coupled by ligands in common, the

[Cu(ONC5H6)6]
2þ octahedra have no ligands in common and occupy the

apexes of a slightly trigonally distorted cube [8.265]. The magnetic properties

of the two crystals, I and II, are different: at low temperature, 91K, the

crystal I is planar antiferromagnetic, whereas crystal II is one-dimensionally

Fig. 8.26. Antiferrodistortive ordering of elongated octahedra in perovskites
ABX3: (a) a three-dimensional sketch; and (b) projection into the (001)
plane [8.199].
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ferromagnetic. The superexchange schemes in Fig. 8.25 can be used to assume

that for elongated octahedra, as a result of the CJTE, ferrodistortive ordering

takes place in the fluoroborate I, whereas antiferrodistortive ordering is real-

ized in the perchlorate II. A study of ESR and electronic absorption spectra at

different temperatures confirms these assumptions. At room temperature the

distortions of the [Cu(ONC5H6)6]
2þ octahedra are of dynamic nature, as

confirmed by the magnitude and shape of the temperature ellipsoids in X-ray

analysis [8.265]. The distortions can be evaluated from the temperature-ellipsoid

dimensions using the technique given in [8.266]. In the cases under considera-

tion the distortions are �0 	 0.37— for I and �0 	 0.35— for II; these

values agree with the spectroscopic absorption-band splitting.

Phase transitions in these crystals take place at lower temperatures (at 90K

in I and 77K in II). ESR data imply that low-temperature phases correspond

to ferrodistortively ordered elongated octahedra in I and antiferrodistortively

ordered elongated octahedra in II (compressed octahedra are unacceptable).

The difference in the nature of JT center distortion interactions in the two

crystals is apparently due to the different orientations of the BF4
� and ClO4

�

groups in the lattice. The Cu(ONC5H6)6(NO3)2 crystal remains ordered up to a

temperature of 298K.

Cu2+ L

[001] directions

a b

1 1

11

Cu2+

Fc
–

Fa
–

Fa
– Cu2+

dx2
 – y2 dz2

 

Fig. 8.27. Antiferromagnetic ordering of orbitals and spin in KCuF3: (a) the
ordering scheme along the [001] direction; and (b) three-dimensional orbital
location [8.199].
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Analogous results in magnetic-structure investigations have also been

obtained for Mn(III) and Cr(II) compounds with the d 4 electronic configura-

tion [8.199, 8.267]. For example, a series of compounds A2CrCl4, where

A¼Cs, Pb, NH4, and K, crystallizes in the same structure as K2CuF4, and

similar to the latter exhibits ferromagnetic properties. The scheme of super-

exchange interaction, analogous to the octahedral compounds of Cu(II),

is shown in Fig. 8.28 (cf. Fig. 8.25). It is seen that for the plane layers,

ferromagnetism occurs only if an antiferrodistortive ordering of elongated

octahedra takes place, whereas ferrodistortive ordering leads to an anti-

ferromagnetic structure. Similar properties were observed in AMnF4 with

A¼Cs, Pb, NH4, and K.

In the above examples, ordering of the JT distortions in the crystal due to the

CJTE leads to some orientation of the orbitals of the unpaired electrons which,

in turn, determines the nature of the exchange interaction between the spins,

and hence the spin ordering. The structural and magnetic phase-transition

temperatures are not necessarily the same, since they are determined by

different correlation constants (though there may be conditions under which

the two temperatures coincide).

On stabilizing the distorted configuration of each center, cases in which

structural ordering changes its orbital and spin ground state arise. Consider

crystal centers with an orbitally nondegenerate ground state of type 6A2 and a

close orbitally degenerate excited state of another spin multiplicity, say 2T2.

Such a situation with two close terms of different multiplicities is in fact often

1

dz2 

P P

a b

1dz2 

dx2
 – y2 dx2

 – y2

dx2
 – y2

Fig. 8.28. Orbital and spin ordering of corner-connected MX6 clusters, where
M is a d 4 transition ion, in the (001) plane: (a) ferrodistortive ordering of
compressed octahedra; and (b) antiferrodistortive ordering of elongated
octahedra [8.199].
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realized, for example, in a series of iron (as well as other transition metal)

compounds. In particular, it is found in H[Fe(5-Clthsa)2], where thsa is thio-

semicarbazon. Another situation of this kind, with 1A1g and
5T2g terms instead

of 6A2 and
2T2, is observed in Fe(III) compounds such as [Fe(phen)2(NCX)2]

þ,

X¼ S, Se. In these compounds the ‘‘crossover’’ phenomenon takes place for

which, at certain temperatures, the magnetic moment (magnetic susceptibility)

changes such that the 2T2 term becomes the ground one instead of 6A2 (or
5T2g

instead of 1A1g) or vice versa (see the review [8.268]). In many cases, this

transition from onemagnetic state to another is of a magnetic phase-transition

nature accompanied by a structural phase transition [8.269]. Spin-crossover

phase transitions in combination with the JT E� e problem explain the

variable-temperature Raman spectra of Mn(III) complexes with large organic

ligands [8.270] (see also [8.271]).

8.2.5 The band JTE, Peierls distortions, and first-order phase transitions.

A general view on symmetry breaking

In the above consideration of JT crystals with orbitally degenerate centers a

simplifying assumption was made, namely that the resonance interactions

between the electronic states, which broaden the electronic terms into bands,

may be neglected. This assumption allows one to reduce the problem to the

interactions of a separate elementary cell with the molecular field of the

environment, and to include the translational symmetry of the crystal at a

later stage.

In the general case of broad bands and weakly coupled (almost free) electrons

the translational symmetry has to be taken into account from the very begin-

ning. The appropriate group-theoretical analysis of the matrix elements of the

operator of vibronic coupling for space groups was performed and the con-

sequent conclusion about the possible CJTE in crystals with degenerate elec-

tronic bands was drawn in [8.272–8.274] (see also in [8.275]). The mixing of

electronic states with the same wave vector is produced by the boundary

vibrations (~q¼ 0) (corresponding to a relative shift of the crystal sublattices),

which, in some cases, in its final stage can be reduced to the local JTE in a

separate elementary cell [8.274]. In general, however, the possibility of locali-

zing the vibronic interaction is more relevant to some dielectric crystals.

In this section we consider crystals with partly occupied and relatively broad

energy bands. The system is thus a metal; it has electrical conductivity.

In systems with delocalized metallic bonds the JT vibronic coupling involves

phonons with nonzero wave vectors producing corresponding (sometimes

non-traditional) structural instability of the lattice. In systems with broad
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bands the conduction electrons are weakly bonded and delocalized, meaning

that the electron–phonon coupling is weak and in many cases the JTE implica-

tions may be neglected (see below).

Consider first the simplest example – a linear monatomic chain with one

electron in the valence s orbital at each atom [8.196]. The Hamiltonian of the

system, in contrast to the three-dimensional case, has only one acoustic branch

of vibrations and its wave vector ~q is a scalar (wavenumber), –p/a� q� p/a
(a is the lattice constant). If only the nearest-neighbor atoms interact,

oðqÞ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffi
A=M

p
sinð qj ja=2Þ (8:25)

where A is the constant of elastic coupling between the neighbors andM is the

nuclear mass. If the energy read off is taken as the electronic energy level of the

atom and the resonance interactions of only nearest-neighbor atoms are taken

into account, then the energy levels may be taken as

"ðkÞ ¼ �2h0 cosðkaÞ (8:26)

where h0 is the corresponding resonance integral. All the energy levels (8.26)

are doubly degenerate with respect to the direction of the electron momentum,

"(k)¼ "(�k).

Since the number of states in the band is 2N, while the number of electrons is

N, the band is half filled and the Fermi surface is at the middle of the band.

As first shown in [8.276] and [8.277] (see also [8.278]), in this case the crystal is

unstable with respect to spontaneous deformation of the lattice towards a

doubling of its period (Peierls distortion) (Fig. 8.29(a)). Under this antiferro-

distortive ordering of distortions the conduction band splits into two bands.

The lowest band is fully occupied and goes down in energy, whereas the upper

one is empty and goes up in energy; the total energy is thus lowered, and this

explains the origin of the distortion under consideration.

The doubling of the lattice period – the alternation of the bond lengths

(Fig. 8.29) – can be described by the nuclear displacement Qn¼ (�1)nQ¼
Q exp(�ipn), which after a Fourier transformation to the chain coordinates

yields [8.196]

QðqÞ ¼
ffiffiffiffi
N

p
Q�q;�q0 (8:27)

where q0¼ 2kF¼ p/a; kF is the Fermi momentum of the electrons. Then by

taking into account only one mode Q that doubles the lattice period, and

introducing the local (elementary-cell) vibronic coupling constant F for this

active mode, we can present the vibronic coupling operator as Hint � FQ; it
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mixes the state of a given value of the wavenumber k with another electronic

state from the first Brillouin zone with the wavenumber kþ p /a or k –p/a. The
corresponding vibronic coupling matrix

He þHint ¼
"ðkÞ FQ
FQ "ðkþ 2kFÞ

����
���� (8:28)

has a characteristic form inherent to systems with the PJTE (Section 4.1).

Thus the electron–phonon interaction in a linear chain with a half-filled

electronic band, taking account of one active vibrational mode with the

wavenumber �2kF, is reduced to the PJTE for different pairs of one-electron

states mixed by one nondegenerate vibration. The energy gap between these

states is 4h0 cosðkaÞj j. There are twomixing stateswith a zero energy gap, and for

them the mixing is equivalent to the JTE. There are also quite a few pairs of

mixing states near the Fermi surface with a very small energy gap between them.

The eigenvalues of the matrix (8.28), the one-electron contributions to the

APES, are

"�ðkÞ ¼ 1
2
½"ðkÞ þ "ðkþ 2kFÞ� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4
½"ðkÞ � "ðkþ 2kFÞ�2 þ F 2Q2

q
(8:29)

Fig. 8.29. A sketch illustration of a Peierls transition in a one-dimensional
lattice with a half-filled band presented as an antiferrodistortive ordering with
a doubling of the lattice period: (a) ferrodistortive distortion of a lattice with a
doubled period; and (b) odd antiferrodistortive distortion of a lattice with a
tripled period (vertical lines separate elementary cells). The areas of increased
overlap of the nearest-neighbor atomic s orbitals resulting in additional
covalency (PJTE) are shown by hatching (d) [8.196].
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Considering the symmetry of the electronic band with respect to the Fermi

surface "F, "(kþ 2kF )� "F¼� ["(k)� "F], the expression (8.29) can be

reduced to a simpler one:

"�ðkÞ ¼ "F �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½"F � "ðkÞ�2 þ F 2Q2

q
(8:30)

By comparison with Eq. (4.3) we see that the depth of the occupied energy

level under the Fermi surface is half the energy gap between themixing states in

the PJTE.

Neglecting the Coulomb and exchange corrections for the sake of simplicity,

we present the APES of the ground state of the crystal "0(Q) as a sum of the

one-electron energies of the occupied states and the elastic energy of the active

mode (cf. Eq. (3.1)):

"0ðQÞ ¼ ðN=2ÞMo2
0Q

2 þ 2N
XkF

k¼�kF

"�ðkÞ (8:31)

where o0 ¼
ffiffiffi
2

p
oð2kFÞ. On substituting here the expression for "�(k) from

(8.29), introducing the density of one-electron states in the band �
ð0Þ
el ð"kÞ, and

performing a series of other transformations [8.196], we come to the following

expression for the APES:

"0ðQÞ ¼ ðN=2ÞMo2
0Q

2 � ðN=pÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4h20 þ F 2Q2

q
EðzÞ

z ¼ 2h0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4h20 þF 2Q2

q�
(8:32)

where E(z) is a full second-order elliptical integral,

EðzÞ ¼
Zp=2

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2 sin’

p
d’

Using its expansion near the point z¼ 1, EðzÞ 	 1þ 1
2½lnð4=z0Þ � 1

2�z02, where
z0 ¼

ffiffiffiffiffiffiffiffiffiffiffi
1� z

p
, we obtain for the function "0(Q) near the pointQ¼ 0 (correspond-

ing to the high-symmetry nuclear configuration) [8.196]

"0ðQÞ ¼ E0 þ ðN=2ÞðMo2
0 � F 2=�effÞQ2 þ ð2Nh0=pÞðFQ=2h0Þ2 ln FQ=2h0j j

(8:33)

Here E0¼�4Nh0/p is the electronic energy in the undistorted lattice, and

�eff 	 1.6656h0.

The analysis of the expression (8.33) shows that for arbitrary values of the

vibronic constant the branches of the curve "0(Q) in the close vicinity of the

pointQ¼ 0 are turned down, while the derivative of "0(Q) at this point is zero.

At F 2 � Mo2
0�eff an additional instability determined by the first terms of
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(8.33) occurs. Nevertheless, at large values of Q the logarithmic term in (8.33)

becomes dominant, and the wings of the curve "0(Q) turn up. Although

similar in shape to the lowest sheet of the APES for systems with the PJTE

(Fig. 4.1), the curve "0(Q) obtained here is free from the restriction of the

inequality (4.6) required for the instability of the high-symmetry configuration

in the usual molecular case. This result (the instability at Q¼ 0 for arbitrary

values of the vibronic constant and other lattice parameters) is a characteristic

feature of the JTE, and arises here due to the significant contribution of the

mixing of states with energies at or near the Fermi surface.

The shape of the curve "0(Q) corresponding to the definition (8.31) is shown

schematically in Fig. 8.30. The adiabatic potential of the ground state has a

symmetric double-well shape characteristic of JT systems. As in the usual JT

cases, the distortion of the lattice at the minima �Q0 and the JT stabilization

energy EJT increase with the vibronic constant F. However, in the case under

consideration this dependence on F is more complex. In particular, the most

important contribution to the instability at Q¼ 0 determined by the degen-

erate and quasidegenerate states with " 	 "F depends on the density of states at

the Fermi level �
ð0Þ
el ð"FÞ. Since the free energy of the crystal at T¼ 0 coincides

with "0(Q), the double-well adiabatic potential means that the low-temperature

phase corresponds to a distorted lattice with a doubled period (Fig. 8.29).

Thus the band JTE in a linear monatomic lattice with a half-filled electronic

EJT
Q

ε

∆

Fig. 8.30.TheAPESofamonatomic linear chainwithahalf-filledelectronicband
as a function of the coordinate of nuclear displacements that double the lattice
period. The conduction band (empty at T¼ 0) is shown by hatching [8.196].
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band results in structural instability with respect to distortions with the wave-

number q0¼ 2kF. This conclusion coincides with the Peierls–Frohlich statement

mentioned above [8.276, 8.277], and the corresponding structural phase transi-

tion is the Peierls transition.

We neglect here the role of fluctuations, which are known to quench phase

transitions in one-dimensional systems. However, real systems are never ide-

ally one-dimensional. A weak interaction between the chains or any spatial

complication of the chain itself usually remove the fluctuation restriction.

Note that the resonance integral h0 is proportional to the overlap integral S of

the atomic orbitals of the nearest-neighbor lattice sites that form the conduction

band, h0 � S, while the vibronic coupling constant F is proportional to the

derivative of S with respect to the interatomic distance, F � S0 (see the expres-

sion for F in Section 2.2, Eq. (2.15) that characterizes the rate of changes in

interatomic coupling with the interatomic distance; there is an erroneous state-

ment in [8.196] that F�S). For large S values (broad bands), meaning rather

full overlap between atomic orbitals of the conduction band, S0 is small (the

overlap integral has a maximum and falls exponentially with the interatomic

distance), and the JTE is small. With the band narrowing S0 and F increase and

hence the band JTE increases. For very narrow bands the S0 and F values (at the

tool of the exponent) become again very small and the JTE vanishes. Hence the

band JTE requires a delicate balance between not very broad and not very narrow

conduction bands. This conclusion about the ‘‘window of opportunity’’ in the

conduction bandwidth with regard to the possible JTE is important, in parti-

cular, in considering its implications in superconductivity (Section 8.4).

Similar to other cases of the PJTE discussed above, the gain of energy in the

Peierls transition is due to the formation of new covalent bonds by distortion

(by the pairing of the atoms in the linear chain, Fig. 8.29(d)). The diagonaliz-

tion of the matrix (8.28) leads to the formation of bonding and antibonding

orbitals w�ðkÞ ¼ ðwk � wk�q0
Þ=

ffiffiffi
2

p
. Transformed back to localized orbitals,

they result in bonding ‘‘molecular’’ orbitals of pairs of atoms, shown in

Fig. 8.29(d). Here, as in Section 8.3, while the cooperative properties of the

chain are very important for the phase transition, they alone cannot produce the

distortions: the instability of the high-symmetry configuration is triggered not

by cooperative, but by short-range local forces of chemical bonding. Obviously,

the bond alternation in corresponding long-chain and conjugated molecules

[8.279, 8.280] is of the same origin as the Peierls distortion and period doubling.

The change of the electronic structure of the crystal due to the Peierls

transition can be interpreted as the formation of a standing longitudinal

wave of electron density with wavenumber q0¼ 2kF in the low-symmetry

phase. Simultaneously, in the electronic spectrum a forbidden band of width
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�0EJT arises (Fig. 8.30). At T¼ 0K, when only the ground state is occupied,

the crystal becomes dielectric. Therefore the Peierls transition is also a metal–

dielectric or a metal–semiconductor transition, depending on the size of the

energy gap �.

In the treatment of the Peierls transition with a doubling of the lattice period

one can start with the extended elementary cell containing two atoms

(Fig. 8.29(b)). In this case the transition is equivalent to a ferrodistortive

ordering of local totally symmetric distortions of the cells, i.e., the transition

is isostructural. However, the PJTE origin of the Peierls instability is more

obvious when one starts with the elementary cell containing three atoms

(Fig. 8.29(c)). In each elementary cell of three atoms one can form three

molecular orbitals, two even and one odd. They mix under the symmetrized

odd displacements (shown in Fig. 8.29(c)), realizing the PJTE in a linear

triatomic system of the type BAB for three states mixed by one odd vibration,

quite similar to the two-level case considered in Section 4.1 (see also

Section 4.4). If the vibronic constant is sufficiently large, the PJTE is strong

and the high-symmetry configuration in the elementary cell becomes unstable

with respect to the odd distortion under consideration. By interaction through

the phonon field the local distortions form an antiferrodistortive ordering

(Fig. 8.29(c)). The active mode here is the odd optical vibration with the

wavenumber q¼ 0. In this sense the Peierls transition with a doubling of the

lattice period is similar to the antiferroelectric ordering considered in

Section 8.3. The analogy between the Peierls transformation and antiferro-

electric phase transitions was noted in [8.281].

The arguments resulting in the Peierls instability are applicable also to one-

dimensional metals with the conduction band other than half occupied. In this

case the distortion of the lattice with the change of the lattice period results in a

band splitting such that its occupied part goes down in energy, leading to an

energy gain. For instance, if the electronic band is filled up to the states with the

Fermi momentum kF¼ p/6a, the active mode (in the sense discussed above) is a

normal vibration with the wavenumber q0¼�2kF, which triples the lattice

period. For other electronic band occupancies there may be transformations

into structures with periods that are incommensurate with the initial one.

Following [8.276], one can assume that a similar instability of vibronic origin

may be present in two- and three-dimensional metallic systems, but so far there is

no full exploration of the band JTE for such systems similar to that illustrated

above for linear chain systems [8.196]. The non-coincidence of the shape of the

Wigner–Seitz cell and the Fermi surface in combination with a sufficiently strong

vibronic coupling and great density of states at the Fermi surface may be the

reason for the rather complicated crystal structures often observed inmetals of

8.2 Cooperative phenomena 545



relatively simple composition (see, e.g., [8.282]). Some details of what can

actually happen in these cases are discussed in [8.283]. Usually the observed

structure is a result of one of several ways of stabilizing the initial (reference)

unstable structure by deformations. Some special cases of layered crystals of

the type PbFCl, ZrSiS, BiOCl, Co2Sb, Fe2As, were investigated in [8.284,

8.285]. Three possible ways to stabilize a square lattice, suggested in [8.286],

are presented in Fig. 8.31. Amonatomic cubic lattice was shown to have no less

than 36 differentmeans of stabilization by lattice distortion [8.287]. Twoof these,

shown in Fig. 8.32, correspond to black phosphorus and arsenic structures.

The deformation pulls down some of the states from the Fermi-level region.

But because the shape of the Wigner–Seitz cell does not coincide with the

Fermi surface, it might not be possible to remove all the states from the Fermi-

level region. Some of the electrons remain in the conductive band and some of

the holes remain in the valence band. Therefore the material may still be a

conductor (see also [8.288(a)]). The JTE and PJTE in quasi-one-dimensional

systems of the type SbSI were considered recently [8.288(b)].

The one-electron treatment above does not take into account the effects of

electroncorrelation.The latter,bymeansofcoupling theorbital and spin statesof

different lattice sites, may lead to an ordering in the electronic subsystem accom-

paniedby awaveof chargedensity [8.289]. TheMott transitions (the transitionof

a metal to a dielectric), as well as bond alternation in conjugated hydrocarbons,

are examples of this kindof phenomenon.Also related to these phenomena is the

antiferromagnetic instability resulting in giant spin waves in crystals [8.290]. The

relation of the band JTE to superconductivity is discussed in Section 8.4.

Fig. 8.31. Three examples of alternating bond lengths in amonatomic square-
planar lattice. (Reprinted with permission from [8.286]. Copyright 1977
Elsevier Science Publishers.)
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In all these cases the phase transition in the electronic subsystem is accom-

panied by the formation of an energy gap in the electronic spectrum that may

strongly influence the vibronic interactions. For instance, the Mott transition,

transforming a metal into a dielectric, removes the degeneracy of the one-

electron states at the Fermi surface and hence the special combination of the

JT and PJT effects mentioned above. The joint consideration of both the

vibronic interaction and electronic correlation effects is a complex problem.

Variational calculations, (e.g., in [8.291]) show that the Peierls instability and

electronic correlations are not always competing effects, and sometimes the

correlationsmay even enhance the transition to the Peierls state. This conclusion

is also confirmed by perturbation theory with respect to the mean field [8.292]

and to the constant of electron–electron interaction [8.293], as well as byMonte

Carlo calculations [8.294] and exact computations for finite systems [8.295].

On the other hand, the electron–phonon interaction may be excluded,

for instance, in second-order perturbation theory, to result in an effective

Fig. 8.32. Two examples of Peierls ordering of local distortions in a
monatomic cubic lattice: (a) the reference high-symmetry (cubic) lattice;
(b) the low-symmetry structure of black phosphorus; and (c) the low-
symmetry structure of crystalline arsenic. (Reprinted with permission from
[8.287]. Copyright 1981 American Institute of Physics.)
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electron–electron interaction. Therefore the Peierls instability causes also

instability in the electronic subsystem. For example, it was shown in [8.289]

that the Peierls instability is always accompanied by BCS instability, i.e., by

the occurrence of Cooper pairs. But without taking account of vibronic inter-

action the phase transition in the nuclear subsystem (the structural phase

transition) cannot take place.

The investigation of one-dimensional structures has grown into a wide-

ranging branch of scientific activity, mostly due to the hypothesis about

the possibility of high-temperature superconductivity in some one-

dimensional system [8.296]. For a long time the efforts of researchers

were directed to quasi-one-dimensional compounds like V3Si with an A-15

structure, as well as to organic compounds, like TTF-TCNQ (TTF is tetra-

thiofulvalene, [(C3S2)HCH3]2, and TCNQ is tetracyanoquinonedimethane,

(CN)2C(C6H6)C(CN)2)), which exhibit structural phase transitions and

anomalies in the temperature dependences of their electrical properties.

Different models developed for the description of the structural transforma-

tions in these compounds [8.297–8.299] employ, in one form or another, the

above ideas based on the vibronic nature of the Peierls instability. In particu-

lar, they link the spontaneous deformation of the lattice with the high density

of states at the Fermi surface.

An interesting example of a quasi-one-dimensional conducting system

which undergoes a Peierls transition into a dielectric phase is the trans mod-

ification of the polyacetylene polymer (CH)x. There are two theoretical models

describing the properties of this polymer [8.300]. Both are based on the

vibronic mechanism of the structural instability of the chain trans-(CH)x.

Linear chain compounds with Peierls and Peierls-like phase transitions are

widely considered also asmixed-valence systems. For examples and as a source

of further references see [8.301–8.308]. For instance, in [8.305, 8.306] dimeric

MMX chains were considered (M is a metal and X is a halogen), and it was

shown that the Peierls transition results in torsion distortion inside the dimer

MM, instead of the off-center displacement of the halogen in the more often

discussed monomeric MX chains. Mixed-valence compounds are discussed in

more detail in Section 7.6.2.

So far in this and the next section we consider the ordering of JT units and

structural phase transitions in solid-state or chain structures which can be

classified as second-order phase transitions. However, nowhere in these

treatments have we used any limitations on the behavior of the JT units

near the phase transition. The only limitation employed together with

Eq. (8.6) is that the lower-temperature phase has lower symmetry and

lower internal energy, both provided by the JTE or PJTE. This means
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that the same ideas of ordering and phase transitions can be applied to first-

order transitions.

The liquid-crystal phase transition (crystallization) as triggered by the JT

effect was considered first in [8.309]. The authors start with the idea that, in

accordance with literature data, the instant local ordering in, for instance,

monatomic liquids is of high (isocahedral) symmetry [8.310]. Recently this

assumption was additionally confirmed experimentally [8.311]. High symme-

try results in high electronic degeneracy or pseudodegeneracy, and hence in JT

vibronic instability with several equivalent minima of lower (e.g., cubic) sym-

metry of the APES. At high temperatures the local order in the liquid state is

short-lived and the distorted configurations at the minima are oriented arbi-

trarily with a complicated dynamics of transition between them. At the critical

temperature Tc an ordering of these distortions takes place, and the system

transforms into a crystal with the symmetry determined by the local distorted

configurations and their interaction, quite similar to phase transitions in

crystals. Another possibility is that the liquid state transforms into an amor-

phous state if, depending on the interaction between the centers, the freezing of

the randomly oriented distortions takes place before their ordering [8.309].

The parameters of the JT distortions were calculated by theX�method for a

series of crystals and found to be in good agreement with experimental melting

temperatures [8.309]. The details of the theory and specific calculations see-

mingly require additional refinements, but the main idea of the JT origin of the

liquid-crystal phase transition seems to be quite reasonable. This work thus

makes an important next step toward a better understanding of the relation

between the macroscopic property of phase transitions and the microscopic

electronic structure, the JTE parameters.

In the paper [8.309] the possibility of a similar gas–liquid transition is also

mentioned. For a simple system of a monatomic gas [8.312], assume first that

the atoms are at sufficiently large interatomic distances that their interaction

can be neglected. The symmetry of such a system is very high, its Longuet–

Higgins symmetry group being G¼R(3)p(N)Ci, where R(3) is the group of

rotations of the free atom, p(N) is the group of permutations of N identical

atoms, and Ci is the group of inversion. The high symmetry determines the

high degeneracy of the electronic states: all the independent combinations of

N atomic functions correspond to different states with the same energy.

On approaching each other, the atoms begin to interact, the symmetry

lowers, and the degeneracy is removed (completely or partly). This behavior

is quite similar to the JT one, provided the splitting of the electronic states

results in lowering the ground-state energy due to either chemical bonding or

Van der Waals interaction [8.312].
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Consider an illustrative example. Assume that N¼ 13 and choose the coor-

dinate of mutual approach of atoms QL that leads to the formation of an

icosahedron deemed (as above) to be the instantaneous local order in the

monatomic liquid. Take the scale of QL such that QL¼ 0 at large distances

and QL¼QL
(0) for the icosahedron configuration. For simplicity assume also

that each atom has one electron above the closed shell which occupies a

nondegenerate ns orbital (an alkali-metal-like atom).

At the starting pointQL¼ 0 with the symmetry G¼R(3)p(13)Ci the electro-

nic state is 13-fold degenerate, and hence it splits under the icosahedral distor-

tion QL (the maximum allowed degeneracy in icosahedral symmetry is

fivefold). Since the number of electrons (13) is smaller than the number of

states (26), the icosahedral configuration at QL¼QL
(0) in the ground state

has lower energy than at the point of degeneracy QL¼ 0. The picture as a

whole is similar to the above JT description of bonding in homonuclear

diatomics (Section 4.5). If all the active atomic states are fully occupied by

electrons (as in inert-gas atoms), there is still an interaction that results in a Van

derWaalsminimum; as shown in [8.312], it can be presented as a kind of PJTE.

This explains the instant local order formation required for the transition to

the liquid phase. Similar reasoning is valid for molecular interactions that

result in the transition of separate gas molecules to local formations in liquids

that represent their instant local ordering. Thus the necessary condition of

gas–liquid phase transition, the spontaneous decrease in energy and symmetry

by formation of instant local order in liquids from the gas units, may also be

presented qualitatively as initiated by the JT or PJT effect.

Treatment of the first-order phase transition in UO2 was reported recently

[8.313]. In this case the 5f 2–5f 2 superexchange between the U4þ ions is the

major driving force causing magnetic and orbital ordering and suppressing

the CJTE.

An interesting example of JT-like cooperative effects is presented by enan-

tiomer formation. It was shown in [8.314] that enantiomers can be regarded as

the low-symmetry, PJT-distorted configurations of a hypothetical high-

symmetry structure, and as such their interaction in the liquid phase via

collisions under special conditions may lead to some kind of ‘‘cooperativity’’

and ‘‘phase transition’’ resulting in a single-enantiomer broken-symmetry

phase. Another peculiar mechanism of chirality generation via cooperative

action of polarized light and vibronic coupling is discussed in [8.315].

With the first-order and second-order structural phase transitions shown to

be due to the JT or PJT coupling, we can try to formulate a general view on

structural symmetry breaking (SB) in nature [8.312]. The phenomenon of SB
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(roughly meaning the lower symmetry of the objects in the world compared

with the high symmetry of the Hamiltonian of the particles from which they

are formed) is very important as it describes the consecutive transformations

of matter in the Universe brought about by cooling, beginning with the

Big Bang.

In particle physics the concept of SB is associated with degeneracy [8.316]. In

condensed matter too the SBs are triggered by degeneracy or pseudode-

generacy via the JTE [8.312]. As shown in Section 4.5, atom–atom interactions

to form molecular systems, as well as intermolecular interactions in chemical

transformations, can be regarded as due to the JT, PJT, or RT effects. Looking

at SB as a kind of phase transition, we can involve Eq. (8.6) that relates the SB

to the JT stabilization energy by lowering the symmetry, and to a similar

decrease in entropy. This allows us to present all the structural SBs in a unique

picture shown in Fig. 8.33.

In this figure, at T� 104 K the ensemble of free atoms, as mentioned above,

has very high symmetry and hence degenerate and/or pseudodegenerate states.

According to the JTE theory and Eq. (8.6) this system under certain conditions

is subject to JT instability, and by cooling at a certain temperature undergoes a

SB to a gas of correspondingmolecules. The latter still has very high symmetry

and electronic degeneracy or pseudodegeneracy that causes the next phase

transition to the liquid state at lower temperatures, as discussed above in this

section. Then follows, at lower temperatures, liquid–solid and solid–solid

phase transitions, which bring us to the real world. Together with the concept

of SB in particle physics being associated with degeneracy, mentioned above

[8.316], we can speculate about a general picture of consecutive transforma-

tions of matter via degeneracy-based SBs that are similar in nature, beginning

with the Big Bang [8.312].

8.3 The cooperative PJTE. Ferroelectric phase transitions

Except for very small energy gaps between the mixing electronic states (as in

the case of DyVO4 discussed in Section 8.2.2), the cooperative PJTE (CPJTE)

stays apart from all the other cooperative phenomena in JT crystals for two

reasons. First, the role of the large-gap PJTE in configurational instabilities

was recognized much later than in the JT case. Second, more importantly, PJT

distortions on each center of a dielectric, in general, cannot be presented as

orientational units that can be ordered in the lattice by means of a pseudospin-

like approach, because of the very strong overlap of the wavefunctions of the

PJT APES minima.
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Fig. 8.33. The conventional scheme of consequent temperature-dependent symmetry breakings
triggered by JT or pseudo JT effects. G¼R(3)p(N)Ci is the symmetry of an atomic gas, where R(3)
is the group of rotations of the free atom, p(N) is the group of permutation, and Ci is inversion; the
primed values have the same meaning for the gas of molecules. Crystal I and crystal II denote two
crystal phases with decreasing symmetry, respectively.QM,QL,QC,QC0, andQC0 0 are the separate and
independent JT coordinates of symmetry breaking, while the temperature scale is in common.



On the other hand, PJT distortion may lead to dipole-moment formation

and hence the CPJTE may result in spontaneous polarization of the crystal

(ferroelectricity). This possibility for perovskites (e.g., BaTiO3) was sug-

gested first in 1966 [8.317]. At that time this suggestion was rather bold

since it implies that dipolar distortions are of local (not cooperative) PJT

origin (meaning that they should be present in all the phases), and they are

partly (or fully) ordered in the lower-temperature phases. No experimental

data were available at that time to support this point of view. On the

contrary, the dominant Cochran [8.318], Anderson [8.319], and Ginzburg

[8.320] theory for displacive phase transitions excluded such polar distortion

of local origin.

Nowadays the predictions of the PJT vibronic theory of ferroelectricity are

fully confirmed by various experimental techniques (see the review [8.149]). In

view of the uniqueness of the PJT origin of instabilities in nondegenerate states

(Section 4.1), this theory may serve as a model for all the structural phase

transitions in dielectric crystals.

Consider the perovskite structure and specifically BaTiO3 as a model for

discussing the PJT local dipolar distortions and their cooperative interaction

in the crystal [8.317].We begin with the local off-center displacements of the Ti

ion. Assume that the titanium ion can be regarded as a single impurity in the

lattice. Using some cluster-model molecular-orbital (MO) description of the

electronic structure of the [TiO6]
8� cluster and the Madelung potential of

the remaining crystal lattice (enlarging the cluster size doesn’t change the

qualitative results obtained below), we get the qualitative MO energy-level

scheme shown in Fig. 4.13; it is a typical MO LCAO scheme for octahedral

transition metal d 0 systems [8.321]. The ground state of the system A1g is

formed by the occupied 12 oxygen 2pp orbitals of t1u, t2g, t1g, and t2u symmetry

(t1g and t2u are not shown in Fig. 4.13 since they are inessential in this

treatment), while the lowest unoccupied MO consists of the three dp (t2g)

orbitals (dxy, dxz, and dyz) of Ti
4þ. The t2g orbitals of Ti and O form p-bonds

which are weak compared with the main 	-bonds.

The PJTE in such a cluster is considered in Section 4.3. The off-center

displacements of titanium with respect to the oxygen octahedron and the

remaining crystal are of the threefold degenerate T1u(Qx, Qy, Qz) type

(Fig. 4.14). Under these displacements, only the t1u and t2g states become

mixed. Neglecting the weak p-bonding and considering the linear terms of

the vibronic coupling as a perturbation, the secular equation for the electronic

energies as a function of these nuclear displacements "(Q�) is of the ninth order

(Section 4.3). Its roots can be determined directly [8.196, 8.317]; they are given

in Eqs. (4.101). The six electrons of the oxygens occupy the lowest three
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orbitals, yielding the following adiabatic potential "(Q�) for this site in the

space of the T1u displacements, which includes also the harmonic term of core

interactions (Eqs. (4.102)):

"ðQx; Qy; QzÞ ¼ 1
2K0ðQ2

x þQ2
y þQ2

zÞ � 2f½�2 þ F 2ðQ2
x þQ2

y�
1
2

þ ½�2 þ F 2ðQ2
x þQ2

z �
1
2 þ ½�2 þ F 2ðQ2

y þQ2
z �

1
2g � 6�

(8:37)

where 2� is the energy gap between the 2pp(O) and dp(Ti) states, K0¼Mo2
0 is

the bare force constant for the T1u displacements determined by Eq. (2.35),

and F is the vibronic coupling constant (section 2.2),

F ¼ 2pzpðOÞ
� ��ð@H=@QxÞ0 3dxzðTiÞj i (8:38)

The adiabatic potential surface (8.37) has very interesting features discussed

in Section 4.3. If K0> 4F 2/� the surface has one minimum at Qx¼Qy¼Qz

with the titanium ion at the center of the octahedron. But if

4F 2=� > K0 (8:39)

the point Qx¼Qy¼Qz¼ 0 is a maximum (meaning instability), and there are

eight minima at

Qxj j ¼ Qy

�� �� ¼ Qzj j ¼ ½ð8F 2=K0Þ � ð�2=2F 2Þ�
1
2 (8:40)

at a depth

E ð1Þ ¼ � ¼ 3�ðY þ Y�1 � 2Þ; Y ¼ 4F 2=K0� (8:41)

twelve saddle points at Qp

�� �� ¼ Qq

�� �� 6¼ 0; Qr¼ 0 ( p, q, r¼ x, y, z) with a depth

that lies between E(1) and E(3) (the latter is given below), and six saddle points

at Qp

�� �� ¼ Qq

�� �� ¼ 0; Qr ¼ ½ð16F 2=K0Þ � ð�2=F 2Þ�
1
2 with a depth E ð3Þ ¼ 2

3
E ð1Þ.

Since the � value is relatively large in this case (�2–3 eV in the BaTiO3

crystal) the realization of inequality (8.39) was doubted for a long time, until it

was confirmed by direct numerical calculations on this (see below) and other

similar PJT systems [8.322, 8.323]. Since it has been proved that the PJTE is the

only possible source of such instability, there is no ground to doubt the

inequality (8.39) if the instability exists.

The cooperative interaction of these local distortions, as mentioned above,

cannot be handled similarly to the CJTE because they are strongly inter-

dependent, and the PJT electronic states form a significant bandwidth. In this

case it seems more appropriate to handle the ferroelectric (antiferroelectric)

distortion of the lattice as a whole. In the band-structure formulation of the
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crystal as a whole [8.148, 8.324, 8.325] Qx, Qy, and Qz are the optical phonon

coordinates with thewave vector~q¼ 0, which describe themutual displacements

of the titanium and oxygen sublattices. Approximately, the adiabatic potential

surface is qualitatively (in the sense of the relative positions of minima and

saddle points) the same as in the local (titanium-site) presentation given above

[8.324]. With a simple dispersion law for the band states and without dispersion

of the vibronic coupling constant (see below) the authors obtained the following

conditions of ferroelectric and antiferroelectric instability of a rocksalt-type

diatomic lattice with valence p electrons (GeTe type) [8.148, 8.325].

For ferroelectric instability,

Mo2
0f5

X
k

F 2A�1 sin2ðkxaÞ (8:42)

For antiferroelectric instability,

Mo2
0a5

1

2

X
k

F 2 sin2ðkxaÞf½cosðkxaÞ � sinðkxaÞ�½cosðkxaÞ þ sinðkxaÞ��1


ðA�1 � B�1Þ þ A�1 þ B�1g ð8:43Þ

where

A�2 ¼ �2 þ h2 cos2ðkxaÞ

B�2 ¼ �2 þ h2 sin2ðkxaÞ
(8:44)

and o0f and o0a are the bare frequencies (calculated without the vibronic

coupling) of the ferroelectric and antiferroelectric displacements, respectively

(analogs to theo0 value for the localT1u displacements),M is the reducedmass

of the elementary cell, and h is the resonance integral determining the band-

width when an orthogonal basis is used (for a non-orthogonal basis

h 0 ¼ h�S�, where S is the overlap integral).

Simplifications of the conditions (8.42) and (8.43) are possible by means of

approximate summation over the k values. For BaTiO3 this results in the

following condition of ferroelectric instability [8.324]:

Mo2
0f5ð2F 2=�Þ½1� hðh� S�Þ=2�2� (8:45)

or

Mo2
0f52F 2=�eff (8:46)

where

�eff ¼ �½1� hðh� S�Þ=2�2��1 (8:47)

8.3 The cooperative PJTE 555



This expression is formally similar to Eq. (8.39) but with different para-

meters (a factor of 1
2 on the right-hand side of (8.46) as compared with (8.39)

emerges from the summation over k of a function of the type sin2(ka); note that

theM value on the left-hand side is also smaller than the cluster valueM0). The

most important difference between (8.39) and (8.46) is in the phonon fre-

quency o0 which, due to the long-range attraction forces mentioned above,

is obviously lower for the coherent (ordered) displacements of all the Ti atoms

with respect to the oxygen sublattice than for the displacement of one atom

only. Together with the full qualitative similarity of the adiabatic potentials,

this conclusion means that, as far as the internal energy only is concerned (the

entropy term is ignored), the ordered distortion of the crystal as a whole is

preferable (however, see the discussion below).

Numerical estimates [8.325] based on Eqs. (8.45) and (8.47) show that for

reasonable values of the lattice parameters and vibronic coupling constants the

lattice may become unstable with respect to ferroelectric or antiferroelectric

distortion, and it has the specific features of the PJT APES described above.

Figures 8.34 and 8.35 provide some illustrations for the order of magnitude of

the parameters used and distortions obtained. In particular, it is seen that the

calculated displacements in the minima are quite reasonable (�10�1—) for the

parameters used, and under the condition that o0f¼o0a ferroelectric distor-

tions are preferable rather than antiferroelectric ones. An important point here

is that the increase of the bandwidth h makes the condition of both ferro-

electric and antiferroelectric distortions deteriorate, and for any combination

of K0 ¼ Mo2
0 and F there is an upper limit value of �¼ h/� for which the

distortions disappear (Fig. 8.35). This critical value of �¼ h/�, ceteris

paribus, is much larger for ferroelectric distortions than it is for antiferro-

electric ones.

An attempt to estimate numerical values of the parameters to check directly

the condition of instability of ferroelectric crystals was made in [8.326]. For

two series of perovskites, titanates ATiO3 with A¼Ca, Sr, Ba, and BaMO3,

with M¼Ti, Zr, Hf, band-structure calculations were performed in the semi-

empirical MO LCAO extended Hückel (Hoffmann) approximation for crystal

structures. The wavefunction is taken in the following form:

’ik ¼
X
m

CmiðkÞN�1
2

X
q

bmð~r� ~Rq � ~RmÞ exp½ikð~Rq þ ~RmÞ� (8:48)

where bm(~r� ~Rq � ~Rm) is the AO localized on the mth nucleus of the qth cell

and Cmi are the LCAO coefficients. With these functions and corresponding

energy gaps "pk – "ik the orbital vibronic constants ikh jð@H=@QÞ0 pkj i were

estimated, Q being the G15 (t1u-type) phonon at q¼ 0. Then the nonvibronic
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Fig. 8.34. Numerical calculations of the cross-section of the APES of a
rocksalt-type crystal along the [111] direction Q for the following parameter
values (in � units): band width �¼ h/�¼ 4.5, vibronic coupling constant
F/�¼ 3.3
 10�2 dyn/eV, and three values of bare force constant M!2

0=�
(in 106 dyn/cm eV): 5.0 (I), 7.5 (II), and 9.0(III); f and a denote ferroelectric
and antiferroelectric ordering, respectively, for the same parameter values, in
particular, o0f¼o0a [8.325].

Fig. 8.35. Equilibrium ferroelectricQ0f (f ) and antiferroelectricQ0a (a) lattice
distortions as a function of the bandwidth parameter �¼ h/� for the same
parameter values, in particular, o0f¼o0a. �f and �a are the upper limits of
bandwidth for which, respectively, ferroelectric and antiferroelectric
distortions are possible [8.325].
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(bare) force constant can be calculated as follows (O is the volume of the

Brillouin zone):

K0 ¼ W�12
X
i;k

ikh jð@2H=@Q2Þ0 pkj i (8:49)

while the vibronic contribution is

Kv ¼ �W�1
X
k

X
i;p

ikh jð@H=@QÞ0 pkj i
�� ��2.ð"pk � "ikÞ (8:50)

Some results obtained in this way for the above five crystals under the

additional assumption that the electronic participation of the A2þ ion may

be ignored are illustrated in Table 8.12. The calculations were carried for the

interatomic distances R(Ti—O)¼ 1.91—, 1.95—, and 2.0 — for A¼Ca, Sr,

and Ba, respectively, R(Zr—O)¼ 2.095 —, and R(Hf—O)¼ 2.086 —. The

corresponding forbidden bandwidths obtained from these calculations are

(in eV) 3.6 (Ca), 3.5 (Sr), and 2.9 (Ba), respectively, for the first series (the

experimental values lie in the interval 1.9–3.4 eV), and much less satisfactory

results for BaZrO3 and BaHfO3 (10.0 and 12.5 eV, while the experimental

values are about 5 and 6 eV, respectively).

Concerning absolute values, the results of Table 8.12 cannot be considered

sufficiently reliable, especially for K0. Indeed, K0 depends critically on the

values of the atomic wavefunction at the nuclei (to which ns functions only

contribute), where they are not well defined in the semiempirical method used

in the calculations (see also [8.327] and the discussion in Section 4.1).

Therefore the values of K0 in Table 8.12 are rather approximate. However,

the relative values of K along the series of the very similar perovskites under

Table 8.12. PJT contributions of excited band states to the instability of the

lattice with respect to G15 (t1u)phonon displacements at q¼ 0 in a series of

perovskites (one-electron excitations are shown as Gi!Gp) [8.326]

i!p CaTiO3 SrTiO3 BaTiO3 BaZrO3 BaHfO3

1G15!G250 �0.52 �0.43 �0.33 �0.08 �0.07
1G15!G250 �0.16 �0.14 �0.11 �0.06 �0.05
2G15!2G2 �0.24 �0.20 �0.16 �0.02 �0.02
1G15!2G12 �0.14 �0.13 �0.11 0.0 0.0
2G15!2G12 �0.35 �0.35 �0.34 �0.01 �0.01P

�1.51 �1.33 �1.15 �0.20 �0.17
K0 1.41 1.23 0.98 0.83 0.86
K �0.10 �0.10 �0.17 0.63 0.69
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consideration seem to be reasonable. They show that the instability does

indeed increase toward BaTiO3, with the longest Ti—O distance in the series

of titanates in agreement with its best ferroelectric properties, while in the

second series of perovskites BaMO3 with M¼Ti, Zr, and Hf, the instability

decreases due to the increasing overlap of the metal valence 3d, 4d, and 5d

orbitals, respectively, with the corresponding oxygen orbitals in the cubic

configuration and decreasing vibronic coupling constant in this series

(Section 8.2.5). Improvements of these calculations, including a better estima-

tion of K0, based on the novel contributions to the methods of calculation of

PJT parameters can be obtained [8.328].

Band-structure calculations for vibronic ferroelectrics using different tech-

niques and including also dispersion of vibronic constants have been per-

formed multiply by different authors (see [8.148, 8.149, 8.321–8.334] and

references therein).

The change of the band structure under the influence of the PJT distortions

may strongly influence all the properties of the crystal that depend on the band

structure. This is seen from the interaction of one-electron states "1(k) and

"2(k) from the two mixing bands under the distortion Q,

"�ðkÞh i ¼ 1
2
½"1ðkÞ þ "2ðkÞ� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4
½"1ðkÞ � "2ðkÞ�2 þ G2

0 Qh i2
q

(8:51)

obtained also in a more rigorous self-consistent treatment [8.335], where G0 is

the q¼ 0 vibronic coupling constant. The temperature dependence of the order

parameter hQi determines the characteristic temperature dependence of the

band structure and, in particular, the effective mass of the charge carriers

[8.336]. The change of temperature may lead to essential modification of the

electronic bands that changes the number of extrema of the APES and their

symmetry. In its turn this influences the VanHove singularities in the density of

states. The latter should be manifested in the interband absorption, which can

serve an exact method of investigation of the dispersion in vibronic problems.

The anomalies of the temperature and frequency dependences of the coeffi-

cient of interband light absorption are investigated in [8.336, 8.337]. In [8.338]

spontaneous birefringence in a vibronic ferroelectric was investigated. For this

purpose the contribution to the optical dielectric susceptibility, renormalized

by the vibronic interaction of the active bands, was calculated. Using the

tetragonal phase of BaTiO3 it was shown that the main aspects of spontaneous

birefringence can be thought of as a natural consequence of the vibronic theory.

In particular, the temperature dependence of the difference between the refrac-

tive indices is determined by the square of the order parameter in accordance

with the well-known phenomenological theory.
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These conclusions are essentially based on the vibronic mixing of the elec-

tronic bands and cannot be obtained from the one-band model with lattice

anharmonicity. Together with other experimental data (see below) they can

serve as experimental confirmation of the PJT origin of ferroelectricity.

Another example of this kind is the influence of the magnetic field on the

ferroelectric phase transition. In the model of lattice anharmonicity, the mag-

netic field, which directly influences only the electronic subsystem, should not

influence the phase transition. The influence of the magnetic field on the

ferroelectric properties of the crystal is thus a direct indication of the vibronic

nature of ferroelectricity.

The influence of the magnetic field on the soft-mode frequency in ferro-

electrics was investigated by the method of Green’s functions [8.334]. Since the

quantizing magnetic field contracts the band states into Landau levels, the

influence of the magnetic field on the spontaneous polarization and Curie

temperature is essentially determined by the dispersion of the vibronic con-

stant Gqð~kÞ. If the vibronic constant does not increase with k, then the con-

traction of the band states leads to an effective increase in the energy gap

between the bands, and this decreases the softening vibronic contribution to

the soft-mode frequency. The resulting increase of the latter (and hence of the

Curie temperatureTc) has an oscillating behavior because of the ejection of the

Landau levels from the band. A strong effect should be expected for relatively

large-gap vibronic ferroelectrics in which the phase transition is determined by

the PJTE. Themagnetic-field corrections near the point of the phase transition

and the corrections to Tc are significant. Estimates made for an activated

SrTiO3 crystal show that the correction to the Tc value, even for magnetic

fields of the order of 105 Oe, is important. The change of the ferroelectric

properties under the influence of external magnetic fields is confirmed experi-

mentally [8.340].

The vibronic theory was also confirmed in a set of experimental observa-

tions including the changes of the band structure of ferroelectrics at the phase

transition, as well as in photoinduced effects in ferroelectrics, in particular, in

the shift of the Curie temperature under irradiation [8.336, 8.341]. Other

experimental evidence in support of the vibronic theory of ferroelectricity

includes the interband photogalvanic effect, polar thermo-EMF and thermal

conductivity, magnetization by illumination, and other effects produced by

intensive electromagnetic irradiation [8.342, 8.343]. Impurity properties of the

vibronic ferroelectrics are discussed in [8.343–8.345]. Note also the attempt in

[8.346] to describe the domain structure of the crystal in terms of tunneling

between the equivalent minima. Ferroelectricity in non-centrosymmetric crys-

tals explained by the cooperative JTE is considered in [8.347].
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A distinguishing feature of the results outlined above is that they allow, in

principle, for a novel explanation of the origin of ferroelectric and other

structural phase transitions. Assume first that the condition of local instability

(8.39) is fulfilled. In this case the position of the Ti ion in the center of the

oxygen octahedron in BaTiO3, as shown above, is unstable with respect to T1u

distortions due to local interactions only, and they occur without any long-

range forces and cooperative effects. In contrast to the theories of displacive

origin of the distortions where the dipolar displacements and ferroelectricity

are due to cooperative interactions only, the vibronic approach predicts for

this case local distortions that exist without cooperativity and may be, or may

be not ordered at higher temperatures.

If the condition (8.39) is not satisfied, the local position of the titanium ion

has aminimum at the center of the octahedron and there are no local off-center

displacements of each Ti ion independent of the molecular field of other ions.

However, even in this case, as a result of the vibronic coupling the position of

the Ti ion is softened. The softening of the Ti position with respect to the T1u

displacements can be easily demonstrated bymeans of expanding the potential

(8.37) with respect to small Q� displacements (similar to Eq. (4.58)): for

nonzero vibronic coupling F the force constant in the T1u direction is

K0� 4F 2/� (instead ofK0), i.e., it is lowered by 4F2/�. With the local position

of the titanium atom softened but not unstable, the condition of instability of

the lattice as a whole may still hold because of the above-mentioned lower

value of the crystal Mo2
0 compared with the local one (see below).

The special form of the APESwhich emerges from the vibronic coupling with

the inequality (8.39) allows a direct qualitative interpretation of all the phases

observed in BaTiO3 and similar systems. The main prediction of the vibronic

theory concerning these phases is that only the low-temperature rhombohedral

one is fully ordered, the other two ferroelectric phases being, respectively, one-

dimensionally and two-dimensionally disordered, and the paraphase is three-

dimensionally disordered. Table 8.13 summaries these results.

For the crystal as a whole the qualitative picture has been considered in a

simple semiclassical model [8.149, 8.348] in which the phase transition is

considered as occurring at high temperatures when the amplitude of vibrations

in the minima of the adiabatic potential becomes sufficiently large to transfer

the system from oneminima to another. Obviously, by heating the system, first

the lowest barrier between two nearest-neighbor minima is overcome via the

orthorhombic saddle points, resulting in an average orthorhombic polariza-

tion of the crystal. At higher temperatures the next barrier at the tetragonal

saddle points is surmounted, yielding an average (over four minima) tetra-

gonal polarization. Finally, the last (highest in temperature) phase transition
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takes place when themotion of the crystal involves all the eightminima and the

lattice, on average, is in the cubic paraphase (Table 8.13).

In this treatment, also an estimation of the Curie temperature Tc is possible.

It obviously depends on the parameters that determine the instability: the

minima depth �, given by Eq. (8.41), and the positions of the corresponding

saddle points. Figure 8.36 illustrates this situation in a rather conventional

manner (in fact the whole APES picture requires four-dimensional space).

Depending on the mutual positions of the extrema points, some phases might

Table 8.13. Phases, phase transitions, and disorder dimensionality in BaTiO3-

and KNbO3-type crystals predicted by the vibronic theory of ferroelectricity

[8.149]

Phase

Rhombohedral Orthorhombic Tetragonal Cubic

Direction of
polarization

[111] [011] [001] —

Dimensionality
of disorder

0 1 2 3

Number of minima
involved in disorder

Two, [111]
and [�111]

Four Eight

Temperature of
phase transition

Tc (I) < Tc (II) < Tc (III)

Fig. 8.36. A schematic illustration of the order–disorder phase transition in
ferroelectrics. Depending on the relative positions of the saddle points (Eqs.
(4.105)–(4.108)) (i.e., on the relationship among the �1, �2, and �3 values),
some of the phases may be smeared out by vibrations [8.149].
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not be observed. This happens when the lower barriers are too small and there

are no local crystal vibrations below the corresponding saddle points.

A simple modeling procedure in which the main JT features of the APES are

presented by two generalized parameters [8.348] allows one to make some

estimations of Tc. Using the experimental Tc values for two phase transitions

in BaTiO3, T1¼ 393K and T2¼ 278K, the authors estimated the two para-

meters of the model and then, using the values of these parameters, they

evaluated the third value T3¼ 201K, while the experimental one is

T3¼ 183K. This result shows that the parameters involved and approximation

made are at least not unreasonable.

Further qualitative estimates based on the strong dependence of the vibro-

nic parameters on the interatomic distances are possible [8.149]. They explain

the changes in ferroelectric properties along the series of titanates of Ca, Sr,

and Ba in which the Ti—O distance R increases from left to right: CaTiO3 is

not ferroelectric, SrTiO3 is a virtual ferroelectric (it becomes ferroelectric at

very low temperatures, under pressure, or with appropriate impurities), while

BaTiO3 is ferroelectric at room temperature. A similar effect can be seen along

the series of perovskites BaMO3 with M¼Ti, Zr, and Hf, in which the active

orbital of the metal (which produces the vibronic contribution) changes from

3d to 4d and to 5d, respectively, and the atomic radius of themetal increases. In

effect this is similar to a decrease of the metal–oxygen distance, which

decreases the Curie temperature and hence makes the ferroelectric properties

deteriorate from left to right in this series.

The next step in the vibronic theory was reached inmore recent times when it

was shown that the instability of the high-symmetry configuration produced

by the vibronic coupling to excited electronic states is the only possible source

of instability of any polyatomic system (Section 4.1) [8.196, 8.322, 8.349]. In

other words, if the configuration of the system is unstable, it is due to, and only

to, the corresponding vibronic coupling. The proof of this statement is dis-

cussed in Section 4.1. As shown there, the local PJT instability occurs due to

the nonzero overlap between the 3dp orbital of the Ti ion and an appropriate

combination of the 2pp orbitals of the oxygen atoms produced by the Ti off-

center displacement. It creates additional covalent bonding (Eq. (4.31)), which

is the main effect, and a much smaller contribution of the polarization of the

oxygen atoms produced by the displacement of the Ti ion (Eq. (4.29)). For

BaTiO3 the polarization is an order of magnitude smaller than the covalency

contribution (see Table 4.1).

Even more important is the fact that both types of vibronic contribution to

the lattice instability, new covalency (4.31) and atomic polarization (4.29), are

due to local interactions. It follows that all the long-range interactions in the
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lattice are included in the nonvibronic part K0 of Eq. (4.17). Together with the

conclusion of K0> 0 and Kv< 0 we come to the statement that lattice instabil-

ity is triggered by, and only by, local (mainly covalent) interactions. No

distortion of the lattice and hence no displacive phase transitions can occur

as a result of just the long-range attractive forces without the local PJTE

instability that leads to sufficient additional covalent bonding. This local

aspect of the lattice instability explains also the origin of the order–disorder

nature of the so-called ‘‘displacive’’ phase transition [8.350].

However, the cooperativity is still very important because it determines the

value of K0 or Mo2
0 (cf. Eq. (8.45)), where o0 is the optical primary (bare)

phonon frequency, which may be much lower than that of the local t1u
vibration, thus facilitating the instability condition (8.39) or (8.46). But o2

0

cannot become negative without the vibronic coupling. There may be a situa-

tion when for a single center theK0 value is too large and condition (8.39) does

not hold, while for a larger number of ordered cells it does hold [8.350]. If

condition (8.46) holds for the crystal as a whole, it explains the origin of the

lowest fully ordered rhombohedral phase, but then the partially and fully

disordered phases cannot be explained as due to the averaging over near-

neighbor minima (the energy barrier of the crystal as a whole is too high).

The intermediate condition when the instability holds for clusters with a

limited number of ordered cells was assumed for BaTiO3 to explain the

observed entropy changes at the phase transition [8.351, 8.352]. Figure 8.37

illustrates the formation of the orthorhombic phase from the JT T1u distor-

tions which are ordered in clusters [8.351].

The qualitative aspect of the above description of the origin of ferroelec-

tricity and phase transition in BaTiO3-type crystals was given already in the

first publication on this subject in 1966 [8.317] when it was in complete contra-

diction to the dominating (at that time) theories of displacive phase transi-

tions. Remarkably, in 1968 the predictions of the PJTE theory were

qualitatively confirmed by X-ray diffuse scattering [8.351] (the authors

[8.351] claim that they did not know the works [8.317] and [8.324] published,

respectively, two years and one year before their paper). Nowadays many

results from experimental works performed by different methods in total

undoubtedly confirm all the main predictions of the PJT vibronic theory:

some of these works [8.351–8.361] are listed in Table 8.14. Further develop-

ments, improvements, and extensions of the theory of ferroelectric phase

transitions based on the CPJTE were given in a variety of more rigorous

theoretical investigations and numerical calculations (in addition to the refer-

ences above see, e.g., [8.362–8.369] and references therein).
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[0 1 0] CHAIN
Ti or Nb Atoms

in position 1

AVERAGE
STRUCTURE

polarization

ORTHORHOMBIC PHASE

CHAINS EXIST ONLY ALONG [0 1 0]

1

2

[0 1 0] CHAIN
Ti or Nb Atoms

in position 2

[010]

[0 0 1]

[1 0 0]

1
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Fig. 8.37. An illustration of the formation of the orthorombic phase in
BaTiO3- or KNbO3-like perovskite crystals. Two fragments (clusters) of the
crystal with theC2 axis of polarization (orthorhombic phase) and the ordered
off-center displacements of the Ti or Nb ions toward the JT near-
neighbouring minima along [0�10] and [0�10], respectively, are shown. The
averaged structure, or local fast transitions between the two distorted
configurations, make the crystal structure disordered along the direction
[0�10] perpendicular to C2. [351]
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8.4 The JTE in high-temperature superconductivity

and colossal magnetoresistance

The origin of observable properties of solid-state systems cannot be revealed

without involving their basic features, in particular, the electron–phonon

coupling. At first sight this statement looks trivial. Indeed, the interaction

between the electrons and phonons was taken into account beginning with

Table 8.14. Experimental evidence of the local origin of distortions and order–

disorder nature of phase transitions in ‘‘displacive’’ ferroelectrics (from

[8.350])

Authors, year Method, system Main result

Comes, Lambert, and
Guinier [8.351], 1968

X-ray diffuse scattering,
BaTiO3

Qualitative confirmation
of all the main predictions
of the vibronic theory for
BaTiO3

Quittet et al. [8.353], 1973 Raman spectra, BaTiO3,
KNbO3

Polar distortions in the
cubic paraphase

Burns and Dacol [8.354],
1981

Optical refractive index,
BaTiO3

Nonvanishing component
hP2i in the cubic phase

Gervais [8.355], 1984 Infrared reflectivity,
BaTiO3

Qualitatively the same

Ehses et al. [8.356], 1981 X-ray, BaTiO3 Strong order–disorder
component in the cubic
phase

Ito et al. [8.357], 1985 X-ray, BaTiO3 [111] Displacement of Ti in
the paraphase at up to
180K above Tc

Muller et al. [8.358], 1986 ESR with probing ions,
BaTiO3, KNbO3

[111] Displacements in the
rhombohedral phase and
reorientations in the
orthorhombic phase,
10�10 s< < 10�9 s

Hanske-Petitpierre et al.
[8.359], 1991

XAFS, KNbxTa1�xO3 [111] Displacements in all
the three phases for any
x> 0.08; mean-square
displacements much
smaller due to dynamics

Dougherty et al. [8.360],
1992

Femtosecond resolution
of light scattering,
BaTiO3, KNbO3

No relaxational modes
which might exclude the
local distortion model

Sicron at al. [8.361], 1994 XAFS, PbTiO3 Ti and Pb ions are
displaced in the paraphase
up to 200K above Tc
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the very onset of the solid-state theory. In application to metals this electron–

phonon coupling was literally understood as a rather weak interaction of the

band electrons with an averaged ‘‘bath of phonons,’’ and the electric resistance

was presented as due to the scattering of the conduction electrons on these

phonons. Applied to superconductivity (SC) in the Bardeen–Cooper–Schrieffer

(BCS) theory, this approach explained well the experimental data on low-

temperature SC as originating from the cooperative interaction of Cooper

pairs of electrons formed by such electron–phonon coupling [8.370].

From the modern point of view, after the discovery of high-temperature SC

(HTSC) the BCS theory may be considered as approximately correct in narrow

limits of its application, but not sufficiently accurate beyond these limits. The

inaccuracy is due to the neglect of the JTE, meaning ignoring the details of the

electron–phonon interaction, in particular, the nonadiabatic influence of

the electronic states on the lattice structure and low-symmetry phonons and the

back influence of the modified lattice and phonons on the electronic states.

Indeed, as shown above in Section 8.2.5, the PJT interaction between the close-

in-energy occupied and unoccupied band states that is induced by low-

symmetry phonons in combinationwith the JT coupling between such degenerate

and almost degenerate states at the Fermi level under certain conditions distorts

the reference lattice configuration bymeans of a rebounding process (Section 4.1).

This leads also to significant changes in the electronic energy spectrum.

As shown in Section 8.2.5, the band JTE, as in all the other cases of the JTE,

is essentially dependent on the magnitude of the JT electron–phonon coupling

constant. For metals with broad bands and almost completely delocalized

electronic states the JT electron–phonon coupling constant is small and the

JTE implications can be ignored. This explains the success of the BCS theory

(which does not take into account the JTE) for broad-band metals and low

temperatures. Moving to crystals with narrower bands and more localized

electronic states, we come to stronger JT electron–phonon coupling with

implication of the JTE, which involves essentially low-symmetry phonons.

The narrower the conduction band (up to a certain limit), the stronger the

electron–phonon coupling, leading to a stronger JTE. For narrower bands the

JT electron–phonon coupling constant and the JTE again become small;

narrow bands limit also the mobility of the carriers. This window in conduc-

tion bandwidth that facilitates the band JTE may be expected to be most

important in HTSC. A direct exploration of this issue, to the best of our

knowledge, has not yet been performed.

In general, the JTE and PJTE are most important when there are degenerate

and/or relatively close-in-energy electronic states, which are sufficiently

strongly mixed by corresponding phonons. Transition metal (and other
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similar) compounds with open shells and/or low-lying excited states, and with

sufficiently narrow (but not very narrow) bands in the crystal state are among

the primary targets of strong band JTE and PJTE. If we assume that HTSC is

strongly related to electron–phonon coupling, then it should be found among

the properties most influenced by the JTE. In view of the basic features of the

JTE and experience with their applications, it would be a puzzling surprise to

find out that the JTE is not significant in this phenomenon. On the contrary,

the known attempts to apply the JT approach to SC, especially to HTSC, seem

to be very promising. Earlier attempts to consider the JTE implications in

traditional SC can be found in [8.371, 8.372].

To the best of our knowledge, so far there is no comprehensive theory of

HTSC to explain all its features from a unique point of view. However, there

are many publications devoted to important particular aspects of the problem,

and inmanyof them the JTEplays the leading role. First we refer to the authors

of the discovery of HTSC [8.373], whose leading idea in search of novel super-

conductors with high transition temperatures was the JT polaron. The authors

refer to the work [8.374], which provides a better understanding of the condi-

tions for much stronger electron–phonon coupling than in the BCS theory.

Considering a linear chain of JT centers, it was shown [8.374] that the behavior

of the conducting electron depends on the balance between the JT stabilization

energy EJT on each center, which tends to localize the electron, and the

delocalizing intercenter tunneling that forms the band width t. If EJT  t, the

JT distortions only slightly influence the conductivity. In the opposite case

EJT> t the electron becomes coupled with the JT distortion, and they move

together along the system as a JT polaron with an increased effective mass.

The relation of this result to superconductivity lies in the fact that the JT

stabilization energy may reach several thousand cm�1, which is two orders of

magnitude larger than that produced by the non-JT (‘‘classical’’) electron–

phonon coupling with the bath of phonons in broad-band nonpolar systems.

On the other hand, the effective electron–electron attraction (Fröhlich pairing)

that leads to the formation of Cooper pairs can be obtained by extracting the

JT modes of the electron–phonon coupling in the second-order perturbation

theory [8.375]. Therefore the strong electron–phonon coupling in the JT

polaron can be considered as an important factor in HTSC. This stimulated

further exploration of JT polarons and excitons [8.376–8.380].

However, the electron–phonon coupling is not the only factor that influ-

ences the superconductivity, and it does not determine the SC transition

temperature directly. The path from local JT distortions to formation of

polarons via lattice dynamics, to formation of Cooper pairs, their density,

stability, and mobility, temperature dependence, to perfect diamagnetism, to
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structural phase transition, and finally to SC, is very long and thorny, and

therefore a comprehensive JT theory of this important phenomenon has not

yet been accomplished. There are hundreds of publications on this subject, and

there is no way (and necessity) to cite them all here. The references

[8.371–8.421] are a part of them reflecting the up-to-date picture. Below is a

brief outline of the content of several works as examples of the JTE in super-

conductivity, which, however, does not pretend to be the best choice of such

works; neither do they fully embrace the topic as a whole (publications on this

subject continue to appear regularly).

The next step after the formation of JT polarons, outlined above, is the

interaction between them resulting in Cooper pairs, the carriers in both low-

and high-temperature SC (see, e.g., [8.422] for a review of experimental data on

this question). In the overwhelming majority of the papers the authors con-

sider cuprates with a perovskite structure of the type La2�xSrxCuO4 and

YBa2Cu3O7 with Cu ions in tetragonally distorted octahedra of oxygens.

The octahedra are strongly elongated, so the picture is as if the Cu ions occupy

the centers of squares in CuO2 layers that are parallel in the crystal and

separated by layers of the other ions.

The one-electron states at the Fermi level "F include the atomic Cu2þ states

with the wavefunctions dz2 ðd#Þ and dx2�y2 ðd"Þ hybridized with oxygen

p functions, which in the regular octahedron form the degenerate E term. The

distorted octahedron emerges as a result of the JT E� e problem on each

center (Section 3.2) and their cooperative ordering in the crystal (Section 8.2).

Assuming that in spite of the energy gap between these states in the elongated

octahedron they still may coincide in some regions of the Brillouin zone, the

authors [8.381] calculated the aforementioned second-order (Fröhlich) pairing

interaction energy of the electrons in these two states via the JT distortions.

Since the d# state is coupled to the Q# distortion coordinate, while the d" state

distorts the system in the Q" direction, and the change of the Cu—O distance

in these two coordinations has opposite signs, the pairing interaction emerges

with a negative sign relative to the classical Cooper pairing that ignores the

JTE. However, for non-cubic symmetry this results in an attractive pairing

interaction and the pairs have a spin of zero. Numerical calculations of the

pairing energy and the superconducting gap parameter for some simplified

conditions show that pairs are of short range and relatively stable against

lattice distortions [8.381] (see also [8.382]).

The results of attempts to calculate the pairing energy of two hole carriers that

form two JT polarons, taking into account their multimode nature in the crystal

(Section 5.3), are given in [8.383]. In addition to the JTE in the octahedral CuO6

site of the La2CuO4 lattice that leads to strong Q# elongation and formation of
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the CuO2 layers, the authors [8.383] take into account the PJTE in the square-

planar CuO4 clusters in which the two electronic states 1A1g(d#) and
1B1g(d") mix

under Q"ðb1gÞ displacements. Figure 8.38 illustrates the distorted rhombic

centers and their antiferrodistortive arrangement due to their interaction. The

additional hole formed by doping changes the overall electronic distribution

with the result that the CuO6 and CuO4 clusters relax to new interatomic

positions which can be taken into account by two additional constants of

coupling to the totally symmetric displacements, a1g and a01g, respectively. The

vibronic problem thus becomes ð1A1g þ 1B1gÞ � ða1g þ a01g þ b1gÞ.
The interaction with the continuum of the three active modes in the crystal

was taken into account as described in the multimode problem in Sections 3.5

and 5.5 [8.423]. Using the results described in Section 5.5 and presenting the

pairing energy as Epairing¼Eint� 2E0, where Eint is the energy of two interact-

ing multimode JT polarons and E0 is the energy of a single polaron in the

crystal, the authors [8.383] got the following expression:

Epairing ¼� 1

2

X
G;G0

FGFG0
X
j;i 6¼j

o�2
ij ðG; G0Þ � 1

8

�2

FB1g

�X
i

�X
j;G

FGo�2
ij ðB1g; GÞ

��1

� 2½F1go�2
ij ðB1g; B1gÞ��1

	
ð8:52Þ

Fig. 8.38. b1g-Type distortions around the copper centers with localized
carriers in the conducting CuO2 plane shown by a dashed line; a, b, and c
indicate three versions of possible localization of the second carrier [8.383].
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Here, in addition to the three vibronic coupling constants FG for

G; G0 ¼ a1g; a
0
1g; b1g (it is assumed that they are approximately the same in

the electronic A1g and B1g states, as confirmed by numerical calculations, see

below) and the energy gap � between A1g and B1g states, the crystalline

multimode average frequencies o�2
ij of the type (5.86) are employed, but for

two interacting centers instead of one in Eq. (5.86) (for one center o�2
11 is the

inverse force constant):

o�2
ij ðG; G0Þ ¼

X
�

a�ði; GÞa�ði; G0Þo�2
� (8:53)

where a�(i, G) is the Van Vleck coefficient in the expansion (3.100) of the local

symmetrized coordinates over the crystalline coordinates q� (Section 3.5),

QG ¼
X
�

a�ðGÞq� (8:54)

and o� are the phonon frequencies.

Equation (8.52) is obtained as an expansion with respect to 1
8
ð�=FB1g

Þ2 (note
the mass-weighted units for which F 2o�2 is energy). It is seen that the pairing

energy increases with increasing PJT coupling constant FB1g
.

Estimating the a� coefficients in the approximation of a monatomic lattice

[8.424], using the Debye model of lattice vibrations, and performing numerical

calculations of the electronic structure and vibronic coupling constants, the

authors [8.383] estimated the pairing energy (calculations for clusters in the

La2�xSrxCuO4 system were carried out in the semiempirical extended Hückel

approximation with self-consistency for charges and electronic configuration).

For the second hole in the positions a and c with respect to the first one in

Fig. 8.38, Epairing��102 cm�1, while for the second hole in the position b

Epairing� 10�2 cm�1 (meaning weak repulsion).

These estimates were used afterwards in a more elaborate model of the JTE

in cuprate HTSC [8.384]. This model is based on the assumption that the

oxidation of the parent-phase antiferromagnetic (CuO2)
2� units in

La2�xSrxCuO4 creates � holes ðCuO2Þ�ð2��Þ which, involving the PJTE of the

type ðA1g þ B1gÞ � b1g, stabilize large PJT polarons containing n¼ 5–7 Cu

centers. Since the hole produced by the dopant may spread over more than

one center, the difference in occupation numbers of the mixing orbitals a1g and

b1g influences directly the vibronic coupling on each center (Eq. (2.27)). Using

orbital vibronic constants (Section 2.3) one can express the total vibronic

coupling constant for each center FB1g
as proportional to its corresponding

orbital occupancy, F 0
B1g

	 FB1g
=n: With this estimate and using equations of

the type (8.52)–(8.54) the authors [8.384] calculated the energy En of an
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n-center PJT polaron presented as a sum of the contributions of individual

centers E0 and their interaction Eint (cf. the one-center one-mode expression

(4.62); some indices are omitted):

En ¼ E0 þ Eint 	 n � 1

2

X
G¼A1g;B1g

FG

n

� �2
o�2

11 ðGÞ �
1

8
n2

�

FB1g

� �2
1

o�2
11 ðB1gÞ

2
4

3
5

þ nðn� 1Þ � 1

2

X
G¼A1g;B1g

FG

n

� �2
o�2

��ðGÞ �
1

8
n2

�

FB1g

� �2
1

o�2
��ðB1gÞ

2
4

3
5

(8:55)

whereo�2
ij ðGÞ ¼ o�2

��ðGÞ is taken the same for all the pairs of centers � and � in

the polaron and �=F 2
B1g

o�2
11 ðB1gÞ is assumed to be small. It is seen that an

increase of the polaron size (the number of centers n in the polaron) reduces the

first terms in the two brackets of Eq. (8.55), and increases the smaller second

terms. Therefore the inequality En – E1< 0 determines the lower limit n¼ nmin

for the polaron size. On the other hand, the PJTE criterion (4.6) limits the

upper size of such a polaron since the vibronic constant F 0
B1g

¼ FB1g
=n should

satisfy the condition F 2
B1g

=n2o�2
11 ðB1gÞ > �. Using numerical estimates for

La2CuO4 from [8.383], the authors [8.384] found that the two inequalities

above are satisfied for 6.7> n> 5.6. This correlates well with the experimen-

tally measured mean size of n¼ 5.3 copper centers per carrier [8.425] (see also

[8.426, 8.427]). Figure 8.39 illustrates such an antiferrodistortive ordered PJT

polaron with n¼ 6. The estimations yield Tp 	 850 K for the critical tempera-

ture of its stability [8.384].

The effective mass of this polaron is relatively large, raising the question of

its mobility. However, the assumption in [8.384] is that in the conductivity

under consideration the polaron is not moving as a whole, but performing

some ‘‘crawling’’ motions by means of successive small steps of tunneling

between different Cu—O bond lengths. At the polaron border the Cu—O

bond is longer than the next one in the non-polaron neighborhood, and there is

a barrier to inclusion of the next cell into the cooperative distortion. But by

distorting one next bond in the front of the polaron in the direction of motion

and relieving a similar distorted bond in the back of the polaron, the latter

moves without changing all the other distorted bonds inside the polaron. This

means that the PJT large polaron can move in piece-wise tunnelings of a

fraction of itself in which its effective mass is much smaller than when the JT

polaron is moving as a whole. Calculations of the bond tunneling using this

scheme [8.384] yield for the mobility of the carriers a value of 1–10 cm2/V s,
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which is in accordwith experimental data. This explains also the linear increase

of resistance with temperature at T>Tp.

Finally the most important problem of inter-polaron interaction at higher

concentrations resulting in Cooper pairing and superconductivity was also

considered in this paper in detail [8.384]. There is an attractive force between

the polarons due to their cooperative interaction tending to form a unique

antiferrodistortive ordered lattice (and in this way gaining elastic energy) and a

repulsive force at the border between the polarons emerging from the overall

shortening of the Cu—O bonds (a1g distortion) due to the hole formation. It

was shown that these two counteracting tendencies can be satisfied simulta-

neously at a certain concentration and temperature Td � Tc by formation of

polaronic stripes. They consist of pairs of polarons ordered alternately along

the [100] and [010] axes and forming zigzag chains parallel to a h110i axis of a
CuO2 plane with parent-phase stripes between the polaronic stripes (Fig. 8.40).

These stripes form an ideal superstructure for superconductivity. Indeed,

with the two polarons in the unit cell the superconductive current consists of

pairs of charge carriers which below Td move freely along the stripes: the

creation of an ideal superstructure with renormalized charge carriers together

with the PJT vibronic coupling eliminates any possibility of scattering (in

conventional superconductors simple Cooper pairing eliminates the scattering

Fig. 8.39. A large six-copper polaron formed by b1g distortions in the CuO2

layer. Filled circles represent the six copper atoms that share a hole; open
circles correspond to regular Cu atoms. (Reprinted with permission from
[8.384]. Copyright 1997 Elsevier Science Publishers.)
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from existing lattice imperfections). The formation of stripes is supported

experimentally (see [8.428] and references therein). For JT induced stripes

formation see also [8.385].

The operation of PJT in-plane distortions as a driving force in the HTSC of

single-layered SC of the type La2�xSrxCuO4 was recently confirmed in neutron-

spectroscopic measurements [8.386]: in La1.81Ho0.04 Sr0.15CuO4 there is an

oxygen 16O! 18O isotope shift of the pseudo-gap-formation temperature

�T �
O 	 10 K, whereas no shift was observed in 63Cu! 65Cu substitution,

�T �
Cu 	 0 K. This shows explicitly that the in-plane distortion due to the

oxygen (not Cu) displacements are responsible for the pseudo-gap formation

in these systems. In the two-layered superconductor HoBa2Cu4O8�T �
O 	 50 K

and �T �
Cu 	 25 K, meaning that the other JT modes are also involved in the

HTSC in this crystal (see also [8.429] for comparison). The case of isotope effects

in superconductivity being due to nonadiabacity is considered in [8.387].

The local structural distortions in HTSC cuprates are assumed to be accom-

panied by dynamic charge-density waves (or fluxes), which were shown

[8.388] to be associated with the E� e JT problem in the electronic subsystem.

The authors relate this effect to the Berry-phase problem in the solid state

(Section 5.7). In combination with the Cu—O breathing and other modes this

Fig. 8.40. The stripe formation from five-copper polarons resulting in a
superstructure in the CuO2 plane produced by the phase transition below
Td. Near-neighbor polarons are shadowed differently to make them visibly
distinguishable. (Reprinted with permission from [8.384]. Copyright 1997
Elsevier Science Publishers.)
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leads to some relations of the charge-density waves with stripe formation and

the superconducting gap.

An important phenomenon that accompanies the HTSC is the tetragonal-

to-orthorhombic (T!O) phase transition. As shown in Sections 8.2 and 8.3,

structural phase transitions in crystals are of vibronic nature. The vibronic

origin of the T–O transition was subjected to several investigations

[8.389–8.393]. In their majority these works attribute the phase transition to

the PJTE on the two HOMO–LUMO states (or bands) emerging from the

Cu2þ atomic d" and d# states that mix under b1g distortions, processing this

basic idea by different approaches. As shown in Sections 8.2 and 8.3, the

temperature of phase transition depends on the PJT energy gap and coupling

constants, as well as on the cooperative interaction. Since the occupation of

these Fermi-level orbitals depends on the holes formed by doping, the latter

influences the phase transition essentially. In particular, it was shown [8.390]

that the reentrant O!T phase transition observed at lower temperatures

in La–Ba–Cu–O superconductors can be explained in this way (see also

Section 8.2.3). Indeed, the hole decreases the population of the JT-active

energy levels that produce the PJTE, and at a large enough doping concentra-

tion may quench the T!O phase transition at lower temperature, resulting in

a reentrant O!T structural phase transition [8.390]. Such a reentrant O!T

transition was indeed observed experimentally in La1.90Ba0.10Cu2O4 [8.430].

In almost all the above references there are attempts to link the T!O

structural phase transition to the superconductivity, as well as to find similar-

ities between superconductivity and ferroelectricity (Section 8.3), in particular,

involving the two-band theory in a way similar to the vibronic theory of

ferroelectricity [8.391–8.394]. While there are some interesting relations

between HTSC and T!O transition, no direct correlation between them

has been revealed so far, since they take place at different temperatures. This

is of no surprise because, although both these phenomena are triggered locally

by the same electronic structure and PJT vibronic coupling, the cooperative

interactions between the local distortions that lead to HTSC and T!O

transitions are different. The phase transition from a symmetric superconduct-

ing order parameter to a broken-symmetry one in thin mesoscopic super-

conductors has been shown to follow a PJT-like mechanism [8.393]. For

more discussion of JT topics in superconductivity see in [8.394].

An alternative approach to the HTSC problem is suggested [8.395, 8.396], in

which instead of BCS electron pairing, or JT polaron pairing, two-electron

bonding–antibonding geminals with lattice Bloch sums are introduced. Their

RT (and other vibronic) coupling to the corresponding phonons is explored,

and it is shown that under cyclic boundary conditions of the finite crystal it
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produces electron–hole pairs with vibronic zero pseudo-angularmomentum as

possible HTSC carriers (instead of the free-electron zero space momentum in

the Cooper pairing).

There is a series of works devoted to detailed theoretical and experimental

investigation of JT-driven local structural peculiarities in HTSC crystals and

their possible relation to the superconductivity [8.397–8.402]. In LaCoO3,

using neutron-scattering measurements, it was shown that the spin state

changes with temperature, increasing the occupancy of the intermediate spin

state that is JT active in eg coupling. In La1�xSrxCoO3 the lattice dynamics

changes with doping in accordance with local JT distortion of the intermediate

spin state [8.397, 8.398]. For DFT calculations of JT distortions in CuO6

clusters of La–Ba–Cu–O superconductors see in [8.400]. Using XAFS experi-

ments on La2�xSrxCuO4 it was shown [8.401] that the apical oxygens near

the Sr atom have a double-well potential formed by two coexisting spin-

differentiated (singlet and triplet) JT distortions of Sr octahedra. Depending

on the hole orbital residence, the octahedron is either longer or shorter than

that of the undoped crystal.

Electronic structure and orbital vibronic coupling (Section 2.3) were analyzed

for the cluster Cu4O12H8 in copper oxides [8.402]. Combined structural and

spectroscopic investigation of La1þxSr1�xGa1�xCuxO4 andK2NiF4-type perovs-

kites [8.403] revealed a series of JT features possibly related to superconductivity.

In alkali-metal-doped fullerides of the type AxC60 (A¼K, Rb, Cs), some

of which show relatively high-temperature SC (Tc� 30–40K in A3C60), the

excess electrons in C60
n� occupy the degenerate t1u orbitals. As mentioned in

Section 7.5.3, the ground state of C60
3� is nondegenerate, so at first sight only the

PJTE is operative. The resulting distortions are determined by the interplay of

vibronic coupling and interelectron repulsion. To attribute the superconduc-

tivity of A3C60 to the JT effect on the t1u states, the JT distortions as a function

of the t1u occupancy and some other parameter relationswere estimated [8.404].

A more elaborate consideration [8.405, 8.406] shows that in this system the

electron correlation effects are most essential, producing (in combination with

the vibronic coupling) disproportionation of the electronic occupancy of the

LUMO band structure (Section 7.5.3). The latter splits into three similar

subbands with local occupations of the three t1u orbitals equal to 2, 1, and 0,

respectively (instead of the (1, 1, 1) occupation that results in a nondegenerate

state); it takes place because in the former case each two-electron repulsion is

12/15 times smaller than in the latter. This disproportionation results in

nonzero JTE, producing local distortions on each site, inhomogeneous charge

distribution among the carbon atoms, and low-frequency reorientation modes,

with corresponding consequences for the superconductivity.
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The joint effect of correlation and vibronic interactionwas also considered in

[8.407] to explain the insulator properties of A4C60, which are in contrast with

the superconductor A3C60. By calculating the structure of the lowest unoccu-

pied band including all essential interactions the authors showed that there

is a JT-induced transition from a Mott–Hubbard to a band insulator state.

In another investigation of the role of the JTE in the superconductivity of

the systems AxC60 [8.408] calculations were carried out in which the interac-

tion between the electrons and the JT phonons is taken into account simulta-

neously ‘‘on an equal footing,’’ in fact without their adiabatic separation. Since

the electronic bandwidthW in these systems is of the same order as the phonon

frequencies, the Eliashberg theory [8.375] does not work well, meaning that

lower values of Tc of superconductivity should be expected. In the authors’

calculations [8.408] the electron–phonon interaction is not separated from the

Coulomb interaction, so the Tc is not expected to be lower than in the

Eliashberg theory. It is shown that the JT phonons induce a local intramole-

cular pairing, while the requirement of coherence throughout the solid yields a

very strong doping dependence of Tc (see also [8.409]).

ForMgB2, in which anomalous two-gap superconductivity was observed, the

E� e JTE produced by the coupling of two degenerate p	 orbitals of the two-

dimensional graphite-type B layer to the doubly degenerate e2g vibrations was

considered in the pseudospin model [8.410], and it was shown that the hopping

motions of the holes in the p	 states, constrained by the accompanying phonons,

result in a nontrivial superconducting state with multiple order parameters.

Papers [8.411] are devoted to the origin of superconductivity in a series of

planar polyacenes (naphthalene, anthracene, tetracene, pentacene, etc.), in

which the superconductivity is assumed to take place in their anion or cation

state, and in B,N-substituted acenes. The authors involve the orbital vibronic

coupling theory (Section 2.3), calculate numerically the orbital and total

electron–phonon coupling constants, and estimate the expected Tc using

modified Eliashberg formulas. For more on earlier and further contributions

to the JTE in problems related to superconductivity see in [8.412–8.421].

The colossalmagnetoresistance of a series ofmanganite perovskites of the type

ABO3 (see [8.431–8.435]) is yet another recent discovery which is explained by

involving the JTE. There are quite a few publications that use the JTE theory

to reveal the origin and some detailed structural, electronic, and spectroscopic

properties of such materials (see [8.436–8.472] and references therein).

The colossal magnetoresistance was observed first [8.431, 8.432] as a strong

variation of the electrical resistance with the magnetic-field intensity (see, e.g.,

Fig. 8.41 for illustration of this effect in La0.75Ca0.25MnO3 [8.459]). In the

materials with the general formulaR1�xAxMnO3,whereR is a rare-earth element
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(La, Nd) and A is a divalent alkali-metal atom (Ca, Sr), at x¼ 0 we get a perfect

perovskite which is a paramagnetic insulator.With x> 0 a variety of temperature

and x-dependent phases with different structural, magnetic, transport, and

charge-ordering properties occur. At x� 0.2 the ground state becomes a ferro-

magnetic metal, and at x� 0.5 it transforms into an antiferromagnetic insulator

accompanied by charge ordering. In the range 0.2< x< 0.5 there is a tempera-

ture-dependent ferromagnet–paramagnet transition at Tc(x)	 200–500K. The

very large magnetoresistance near this phase transition at T	Tc(x) (Fig. 8.41) is

not surprising since ferromagnetic transitions are very sensitive to applied mag-

netic fields, which facilitate the ordered spin-parallel orientations along the field.

In general, such a transition may be simultaneously a metal–insulator transition.

However, in the manganites with colossal magnetoresistance it is difficult to

understandwhy the paramagnetic phase is insulating. Indeed, theMn3þ ion in the

octahedral environmentof sixoxygenatomshasahigh-spind4 configurationwith

three electrons having parallel spins in the t2g states and 1� x electrons in the eg
state. The latter electronsmaymove along the crystal subject to double-exchange

limitations [8.460] (Section7.6.2). In the low-temperature ferromagnetic phase the

spins are ordered and don’t scatter conduction electrons, whereas in the high-

temperature paramagnetic phase the spins are disordered and scatter electrons,

thus increasing the resistance. However, this increase is small to negligible [8.460,

8.461] and cannot explain the origin of the insulating behavior of the system.

The direct explanation of the crystal resistance is based on the JTE

[8.436–8.438] (see also [8.439]). In the manganese eg state a strong E� e JT

coupling takes place, trapping the conducting electron in the tetragonally

distorted octahedral cluster MnO6 and producing a small-radius polaron.

This self-trapping competes with the delocalizing tendency of band formation,

which, in turn, depends on superexchange and double-exchange conditions.
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Fig. 8.41. The resistivity of La0.75Ca0.25MnO3 (in mO cm) as a function of the
magnetic-field intensity (in Tesla) near the temperature of the
ferromagnet–paramagnet phase transition. (Reprinted with permission
from [8.459]. Copyright 1995 American Physical Society.)
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The delocalization can be characterized by an effective parameter teff, e.g., the

kinetic energy of the band electron in the absence of the JTE. Then the ratio

l¼EJT/teff, where EJT is the JT stabilization energy, may serve as an indicator

of possible conductivity. Calculations [8.437, 8.462–8.464] show that l
depends essentially on the material, doping, magnetic field, and temperature.

In the high-temperature state with 0.2< x< 0.5, teff is sufficiently small, while

EJT is large, so l is large and the eg electron is localized in one of the minima of

theMn site. With the decrease of the temperature to Tc(x), teff increases due to

the growing ferromagnetic order. This decreases l, turning off the localization
and facilitating the occurrence of metallic behavior. Obviously the magnetic

field acts in the same direction. This very brief qualitative description of the

role of the JTE in the magnetoresistance phenomenon has a variety of import-

ant details that were studied in a series of papers [8.436–8.472].

First we notice a series of works on La1�xSrxMnO3 [8.451], La7/8Sr1/8MnO3

[8.467], L0.5A0.5MnO3 with L¼ Pr, Pr1�yYy, Sm, and A¼Ca1�xSrx, Sr, and

fixed ratioMn(III)/Mn(IV)¼ 1 [8.453], and with L¼La, Pr, Nd, Y, Eu, Sm, and

A¼Ca, Sr [8.468], LaMnO3, CaMnO3, and YCrO3 [8.455], LaMn1�xGaxO3

[8.452, 8.456, 8.466], RMnO3 with R¼La, Pr, Nd [8.452], RNiO3 with

R¼ lanthanide [8.454], and Fe-doped La1�xCaxMnO3 [8.457], in which a variety

of properties like phase formation and phase transition, orbital ordering, chemi-

cal bonding, exchange interaction, magnetic ordering, etc., are investigated. They

are all directly related to the magnetoresistance, including interplay among

charge, orbital, and magnetic ordering in La1�xSrxMnO3 [8.451], JT distortions

and thermal conductivity [8.451], phase competition in perovskites [8.453], orbital

order–disorder transition [8.452], vibronic superexchange interaction in

Mn(III)—O—Mn(III) groups [8.466], spin-glass-to-ferromagnet transition

[8.456], transition from Curie–Weiss to Pauli paramagnetism in RNiO3 [8.454],

pressure-induced transition to band antiferromagnetism [8.455], JT distortions

observed by means of theMössbauer effect [8.457]. All these papers are based on

a bundle of experimental work that uses a variety of techniques, and the inter-

pretation of the results is based essentially on the JTE involved as an inevitable

basic element of the Mn site. Obviously, the JTE interacts strongly with other

effects, first of all with double exchange and superexchange.

Local lattice distortions in La1.4Sr1.6Mn2O7 [8.448], La1� xSrxMnO3 [8.449],

LaMnO3þ� and La0.96 Sr0.04MnO3þ� [8.450] were studied by means of neutron

scattering. The JT distortions were shown to be locally present even when they

are not seen in the crystallographic structure of La1�xSrxMnO3, and they are

observed also in the metallic phase up to x¼ 0.35. On the other hand excess

oxygen reduces the magnitude of the JT distortions in contrast to divalent

cation doping [8.450].
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Direct ab initio numerical calculations of [MnO6]
9� (I) and [MnO6]

8� (II)

complexes embedded in the corresponding sites of the lattice of

La2�2xSr1þ2xMn2O7 at x¼ 0.40 confirm the existence of JT distortions in

these clusters related to the E� e and E� (b1þ b2) problems in I and II,

respectively [8.444(a)]. Two types of (Mn2O11)
15� were also explored recently

in the same manner [8.444(b)].

Double exchange in combination with the cooperative JTE is applied to

doped manganites A1�xBxMnO3 using a two-band model [8.445–8.447]. For

x¼ 0 the strong intraatomicHund coupling and the double exchange produces

antiferromagnetic ordering along the cubic axes, which is further stabilized

by the CJTE. This makes the LaMnO3 crystal a band insulator with two-

dimensional ferromagnetic layers. The onset of themetallic behavior at x0 0:16

at low temperatures is treated by a percolation approach. For x> 0.5 the canted

antiferromagneic A-phase occurs, for which the magnetoconductivity was con-

sidered in detail. As a result, the authors (as they state briefly in the conclusion)

determined the electronic spectrumand calculated both the conductivity and the

magnetoconductivity (in the ground state), which correlate with the number of

carriers. Defects are described in terms of random JT centers and the magnetor-

esistivity is expressed in terms ofmagnetization. In the transition to the A-phase

the JT cooperative ordering plays a leading role.

An interesting feature of stripe formation in manganites of La1�xCaxMnO3

type with x ¼ 1
2
and x ¼ 2

3
(somewhat similar to the stripes in cuprates,

Fig. 8.39) was explained as due to a special cooperativity of the JT-distortions

[8.442, 8.443, 8.469]. Calculations [8.469] show that at x¼ 1
2
the interfe-

rence of the totally symmetric and JT-distorted centers results in a super-

structure in which a tricenter interaction stabilizes the nearest neighbor

Mn3þ–Mn4þ–Mn3þ ions forming the structural unit of the stripe. A somewhat

different (‘‘topological’’) approach to stripe formation is suggested in [8.442,

8.443]. In this approach the explicit wavefunctions of the eg electron are

involved to calculate the lowest-energy one-dimensional zigzag path in an

antiferromagnetic environment of the core t2g spins, which is subject to Berry-

phase limitations (Section 5.7). The so-called ‘‘winding number’’ W is intro-

duced, and it is shown that for the observed ‘‘bi-stripe’’ structure the required

integer WBS is equal to the ratio of the numbers of Mn4þ and Mn3þ ions:

WBS ¼
NðMn4þÞ
NðMn3þÞ ¼

x

1� x
(8:56)

This means that nontrivial charge and orbital arrangements should take place

at x ¼ 1
2
; 2
3
; 3
4
, etc.
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An alternative approach to the problem of doped manganites ‘‘beyond the

conventional double-exchange model’’ is suggested in [8.470], in which elec-

tronic charge-transfer states, charge disproportionation in MnO6 octahedra,

and PJT coupling are involved.

JT distortions in LaTiO3 at the antiferromagnetic transition were observed

using a variety of experimental techniques [8.458].

Magnetoelasticity and magnetic-field-induced structural phase transitions

in low-doped La1�xSr(Ba)xMnO3 are explained by the CJTE involving an

excited triplet state located relatively close to the ground state of Mn3þ

[8.471]. This orbital doublet–triplet model also explains well the observed

first-order phase transition under uniaxial and hydrostatic pressure [8.472].
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8.88. C.A. Bates and P. Steggles, J. Phys. C 8, 2283 (1975).
8.89. J. J. Krebs and G.H. Stauss, Phys. Rev. B 15, 17 (1977); G.H. Stauss and

J. J. Krebs, Phys. Rev. B 22, 2050 (1980).
8.90. J. J. Krebs and G.H. Stauss, Phys. Rev. B 20, 795 (1979).
8.91. A. S. Abhvani, C.A. Bates, P. Burj, P. J. King, P.R. Pooler, V.W. Rampton,

and P.C. Wiscombe, J. Phys. C 16, 6573 (1983).

References 583



8.92. B. Goldberg, S. A. Payne, and D. S. McClure, J. Chem. Phys. 81, 1523 (1984);
S.A. Payne, A. B. Goldberg, and D. S. McClure, J. Chem. Phys. 81, 1529
(1984); J.M. Berg, R.-L. Chien, and D. S. McClure, J. Chem. Phys. 87, 7
(1987); J.M. Berg and D. S. McClure, J. Chem. Phys. 90, 3915 (1989).

8.93. P. Garcia-Fernandez, J. A. Aramburu, M. T. Barriuso, and M. Moreno,
Phys. Rev. B 69, 17 410 (2004).

8.94. V. Lefevre, A. Monnier, M. Schnieper, D. Lov, andM. Bill,Z. Physik. Chem.
200, 265 (1997).

8.95. S.K. Misra, X. Li, and C. Wang, J. Phys.: Condens. Matter 3, 847 (1991);
S.K. Misra and C. Wang, Magn. Reson. Rev. 14, 157 (1990).

8.96. J.M. Garcia-Lastra, J. A. Aramburu, M.T. Barriuso, and M. Moreno,
Chem. Phys. Lett. 385, 286 (2004).

8.97. (a) J. A. Aramburu, M.T. Barriuso, P. Garcia Fernandez, and M. Moreno,
Adv. Quant. Chem. 44, 445 (2003); (b) J. L. Pascual, B. Savoini, and
R.Gonzalez, Phys. Rev. B 70, 045109 (2004).

8.98. P. L.W. Tregenna-Piggott, Adv. Quant. Chem. 44, 461 (2003).
8.99. M. Atanasov, U. Kesper, B. L. Ramakrishna, and D. Reinen, J. Solid. State

Chem. 105, 1 (1993).
8.100. T.K. Kundu and P. T. Manoharan, Mol. Phys. 97, 709 (1999).
8.101. V.A. Ulanov, M.M. Zaripov, and E. P. Zheglov, Phys. Solid State 44, 1471

(2002).
8.102. S.K. Hoffmann, J. Goslar, W. Hilczer, R. Kaszynski, and

M.A. Augustyniak-Yablokow, Solid State Commun. 117, 333 (2001).
8.103. R. Valiente, L.M. Lezama, F. Rodrigues, andM.Moreno,Mater. Sci. Forum

239–241, 729 (1997).
8.104. R. Valiente, F. Rodrigues, M. Moreno, and L.M. Lezama, in Vibronic

Interactions: Jahn–Teller Effect in Crystals and Molecules, Eds.
M.D. Kaplan and G.O. Zimmerman, NATO Science Series II, Vol. 39,
Dordrecht, Kluwer, 2001, p. 221.

8.105. M. Zaripov, V.A. Ulanov, and M.L. Falin, Sov. Phys. Solid State 29, 1264
(1987).

8.106. H. Bill, D. Lovy, and H. Hagemann, Solid. State Commun. 70, 511 (1989).
8.107. A. Monnier, A. Gerber, and H. Bill, J. Chem. Phys. 94, 5891 (1991).
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8.220. H. Hock, G. Schröder, and H. Thomas, Z. Phys. B 30, 403 (1978).
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Appendix. Tables of characters of irreducible
representations of most usable symmetry point

groups and direct products of some representations

The Cartesian coordinates x, y, and z and some of their combinations, as well as
rotations around the axes Rx, Ry, and Rz, which belong to the corresponding repre-
sentation are also indicated; for degenerate representations the corresponding
degenerate combinations are shown in parenthesis.

Table A1. Point groups Cs, C2, and Ci

Ci E I

C2 E C2z

Cs E �z

Ag Rx, Ry, Rz, A z, Rz, x
2, y2, z2 A0 x, y, RZ, 1 1

x2, y2, z2, xy z2, xy

xy, xz, yz

Au x, y, z B x, y, Rx, Ry, A00 z, Rx, Ry, 1 �1

xz, yz

Table A2. Point groups C2h and C2v

C2h E C2 �h I

C2v E C2 �v � 0
v

Ag Rz, x
2, y2, z2, xy A1 z, x2, y2, z2 1 1 1 1

Bg Rx, Ry, xz, yz B2 y, Rx, yz 1 �1 �1 1

Au z A2 Rz, xy 1 1 �1 �1

Bu x, y B1 x, Ry, xz 1 �1 1 �1
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Table A3. Point groups C3v and D3

C3v E 2C3 3�u

D3 E 2C3 3C2

A1 z, x2þ y2, z2 A1 x2þ y2, z2 1 1 1

A2 Rz A2 z, Rz 1 1 �1

E (x, y), (Rx, Ry), E (x, y), (Rx, Ry) 2 �1 0

(x2� y2, xy)

(xz, yz)

Table A4. Point group D3d

D3d E 2C3 3C2 I 2S6 3�d

A1g x2þ y2, z2 1 1 1 1 1 1

A1u 1 1 1 �1 �1 �1

A2g Rz 1 1 �1 1 1 �1

A2u z 1 1 �1 �1 �1 1

Eg (Rx, Ry) 2 �1 0 2 �1 0

Eu (x, y) 2 �1 0 �2 1 0

Table A5. Point groups C6v and D3h

C3v E C2 2C3 2C6 3�v 3�0
v

D3h E �h 2C3 2S3 3C2 3�v

A1 z, x2þ y2, z2 A0
1 x2þ y2, z2 1 1 1 1 1 1

A2 Rz A0
2 Rz 1 1 1 1 1 1

B2 A00
2 1 �1 1 �1 1 �1

B1 A00
2 z 1 �1 1 �1 �1 1

E2 (x2� y2, xy) E0 (x, y), (x2� y2, xy) 2 2 �1 �1 0 0

E1 (x, y), (R�, Ry),
(xz, yz)

E 00 (Rx, Ry), (xz, yz) 2 �2 �1 1 0 0
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Table A7. Point groups C4v and D2d

C4v E C2 2C4 2�v 2� 0
v

D2d E C2 2S4 2C0
2 2�d

A1 z, x2þ y2, z2 A1 x2þ y2, z2 1 1 1 1 1

A2 Rz A2 Rz 1 1 1 �1 �1

B1 x2� y2 B1 x2� y2 1 1 �1 1 �1

B2 xy B2 z, xy 1 1 �1 �1 1

E (x, y), (Rx, Ry), (xz, yz) E (x, y), (Rx, Ry), (xz, yz) 2 �2 0 0 0

Table A6. Point group D2h

D2h E C2z C2y C2x I �z �y �x

Ag x2, y2, z2 1 1 1 1 1 1 1 1

Au xyz 1 1 1 1 �1 �1 �1 �1

B1g Rz, xy 1 1 �1 �1 1 1 �1 �1

B1u z 1 1 �1 �1 �1 �1 1 1

B2g Ry, xz 1 �1 1 �1 1 �1 1 �1

B2u y 1 �1 1 �1 �1 1 �1 1

B3g Rx, yz 1 �1 �1 1 1 �1 �1 1

B3u x 1 �1 �1 1 �1 1 1 �1

Table A8. Point group D4h

D4h E 2C4 C2 2C0
2 2C00

2 I 2S4 �Z 2�v 2�d

A1g x2þ y2, z2 1 1 1 1 1 1 1 1 1 1

A1u 1 1 1 1 1 �1 �1 �1 �1 �1

A2g Rz 1 1 1 �1 �1 1 1 1 �1 �1

A2u z 1 1 1 �1 �1 �1 �1 �1 1 1

B1g x2� y2 1 �1 1 1 �1 1 �1 1 1 �1

B1u 1 �1 1 1 �1 �1 1 �1 �1 1

B2g xy 1 �1 1 �1 1 1 �1 1 �1 1

B2u 1 �1 1 �1 1 �1 1 �1 1 �1

Eg (Rx, Ry), (xz, yz) 2 0 �2 0 0 2 0 �2 0 0

Eu (x, y) 2 0 �2 0 0 �2 0 2 0 0
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Table A9. Point group C1v (j is the angle of rotation around the axis of

symmetry of infinite order)

C1v E 2C1(j) � � � 1�v

A1��þ z, x2þ y2, z2 1 1 � � � 1

A2��� Rz 1 1 � � � �1

E1¼� (x, y), (Rx, Ry), (xz, yz) 2 2 cos (j) � � � 0

E2¼� (x2� y2, xy) 2 2 cos (2j) � � � 0

E3¼� 2 2 cos (3j) � � � 0

� � � � � � � � � � � � � � �

Table A10. Tetrahedral point group Td

Td E 8C3 3C2 6S4 6�d

A1 x2þ y2þ z 1 1 1 1 1

A2 1 1 1 �1 �1

E (2z2� x2� y2, x2� y2) 2 �1 2 0 0

T1 (Rx, Ry, Rz) 3 0 �1 1 �1

T2 (x, y, z), (xy, xz, yz) 3 0 �1 �1 1

Table A11. Octahedral point group Oh

Oh E 8C3 3C2 ð¼ C2
4Þ 6C4 6C2 I 8S6 3�h 6S4 6�d

A1g x2þ y2þ z2 1 1 1 1 1 1 1 1 1 1

A1u 1 1 1 1 1 �1 �1 �1 �1 �1

A2g 1 1 1 �1 �1 1 1 1 �1 �1

A2u 1 1 1 �1 �1 �1 �1 �1 1 1

Eg (2z2� x2� y2, x2� y2) 2 �1 2 0 0 2 �1 2 0 0

Eu 2 �1 2 0 0 �2 1 �2 0 0

T1g (Rx, Ry, Rz) 3 0 �1 1 �1 3 0 �1 1 �1

T1u (x, y, z) 3 0 �1 1 �1 �3 0 1 �1 1

T2g (xy, xz, yz) 3 0 �1 �1 1 3 0 �1 �1 1

T2u 3 0 �1 �1 1 �3 0 1 1 �1
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Table A12. Icosahedral group Ih

Ih E 12C5 12C2
5 20C3 15C2 I 12S10 12S3

10 20S6 15�

Ag x2þ y2þ z2 1 1 1 1 1 1 1 1 1 1
Au 1 1 1 1 1 �1 �1 �1 �1 �1
T1g (Rx, Ry, Rz) 3 (1þ ˛5)/2 (1� ˛5)/2 0 �1 3 (1� ˛5)/2 (1þ ˛5)/2 0 �1

T1u (x, y, z) 3 (1þ ˛5)/2 (1� ˛5)/2 0 �1 �3 �(1� ˛5)/2 �(1þ ˛5)/2 0 1

T2g 3 (1� ˛5)/2 (1þ ˛5)/2 0 �1 3 (1þ ˛5)/2 (1� ˛5)/2 0 �1

T2u 3 (1� ˛5)/2 (1þ ˛5)/2 0 �1 �3 �(1þ ˛5)/2 �(1� ˛5)/2 0 1

Gg 4 �1 �1 1 0 4 �1 �1 1 0
Gu 4 �1 �1 1 0 �4 1 1 �1 0
Hg (2z

2� x2� y2, x2� y2, xy, xz, yz) 5 0 0 �1 1 5 0 0 �1 1
Hu 5 0 0 �1 1 �5 0 0 1 �1



Table A13. Point group O0 (octahedral double group)

Mulliken
notations

Bethe
notations

E Q 4C3 4C2
3 3C2

4 3C4 3C3
4 6C2

4C2
3Q 4C3Q 3C2

4Q 3C3
4Q 3C4Q 6C2Q

A0
1 �1 1 1 1 1 1 1 1 1

A0
2 �2 1 1 1 1 1 �1 �1 �1

E0 �3 2 2 �1 �1 2 0 0 0

T 0
1 �4 3 3 0 0 �1 1 1 �1

T 0
2 �5 3 3 0 0 �1 �1 �1 �1

E 0
2 �6 2 �2 1 �1 0 ˛2 �˛2 0

E 0
3 �7 2 �2 1 �1 0 �˛2 ˛2 0

G0 �8 4 �4 �1 1 0 0 0 0

Table A14. Direct products of irreducible representations of simple groups

�i��j (I), simple with double groups �i��� (II), and double with double

groups ����� (III) presented as a sum of �i

I. �i��j

�1��i¼�i, �2��2¼�1

�2��3¼�3, �2��4¼�5

�2��5¼�4, �3��3¼�1þ�2þ�3

�3��4¼�4þ�5, �3��5¼�4þ�5

�4��4¼�1þ�3þ�4þ�5

�4��5¼�2þ�3þ�4þ�5

�5��5¼�1þ�3þ�4þ�5

II. �i���

�1��6¼�2��7¼�6, �2��6¼�1��7 ¼�7

�3��6¼�3��7¼�8, �3��8¼�6þ�7þ�8

�4��6¼�5��7¼�6þ�8

�5��6¼�4��7¼�7þ�8

�4��8¼�5��8¼�6þ�7þ 2�8

III. �����

�6��6¼�7��7¼�1þ�4

�6��7¼�2þ�5

�6��8¼�7��8¼�3þ�4þ�5

�8��8¼�1þ�2þ�3þ 2�4þ 2�5

Appendix 603





Subject index

The Section number, given where appropriate, is shown in italic; Table numbers are indicated in italic and
preceded by a letterT. Specific polyatomic systems and classes of compounds are listed in the Formula index.

accidental degeneracy – 203
acoustic paramagnetic resonance – 344
activation by coordination – 367, 371
adiabatic approximation – 12, 12

crude (Born–Oppenheimer) – 14
full – 15
non-adiabacity operator – 15

adiabatic potential energy surface (APES) –
14, 47

curvature – 32
in chemical reactivity – 367, 369, 370
in JT problems – 45–95
in specific molecular systems – 71–75
‘‘Mexican hat’’ – 2, 54, 393
multicenter – 104
‘‘tricorn’’ – 56, 393
trough – 54, 75, 143, 176
warping – 54, 77, 176

amplification rule, see Jahn–Teller distortions,
amplification rule

anharmonicity – 31
proper – 33
vibronic – 33

antiferrodistortive
interaction – 506
ordering – 510
phase transition, see structural phase transition,

antiferrodistortive

band JTE – 539, 543
Bardeen–Cooper–Schrieffer (BCS) – 159, 567
Berry phase problem – 191, 248, 248
Berry pseudorotation – 357
bioctahedral systems – 95, 95
birefringence – 305, 312
Born–Oppenheimer approximation – see adiabatic

approximation, crude
broken symmetry – 7, 158, 507,

539, 550

canonical transformation – 268
centrifugal energy – 172, 269
charge ordering, see ordering, orbital
chemical
activation – 367, 369, 371
hardness (softness) – 426
reaction mechanism – 414, 431
reactivity – 367, 373

cis-effect – 373
Clebsch–Gordan coefficients – 25, 229, 306
cluster model – 95, 222, 226
coexistence of
JT distortions, see JT distortions, coexistence
localized and delocalized states – 457

coherent states – 211
conical intersection – 16, 54, 60, 248, 248, 251
continuous symmetry measure – 444
cooperative JTE, see JTE, cooperative
cooperative PJTE, see PJTE, cooperative
coordinates
JT active, see JT active modes
normal – 17, T22
symmetrized – 18–23, T22

Coriolis interaction – 300, 398
Cotton–Mouton effect – 312, 316
Coupled state (impurity þ phonon) – 219
crossover of ground vibronic states in
E� e problem – 191
T� t2 problem – 193
T� (eþ t2) problem – 196
H� h problem – 195

crossover in electronic states, see spin-crossover

depolarization of light – 309
diabatic approximation – 16
dipolar instability – 44, 147, 292, 365
dipole-active mode – 146
dipole moment – 304
distortion isomers – 495
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double exchange – 458
Dushinsky effect, see frequency effect

electron paramagnetic resonance (EPR)/electron
spin resonance (ESR) – 318

effective mode – 215
electronic equation – 12, 13
electronic transition – 263, 291
energy spin, see pseudospin
epikernel principle – 40, 361
exchange-coupled clusters – 452
excitation profile – 312

ferrodistortive
interaction – 506, 523
ordering – 506
phase transition, see phase tramsition,

ferrodistortive
ferroelectric phase transition – 551, 555
ferroelectricity, vibronic theory – 551
flexional behaviour – 496
force constant – 31, 31
frequency effect – 279

g-factor – 318, 319

Ham effect, see vibronic reduction factor
Hamiltonian
vibronic – 13
spin-Hamiltonian – 318

hardness principle – 426
harmonic approximation – 18
Herzberg–Teller effect – 274
helicoidal ordering, see ordering, helicoidal
hindered rotations, see JT distortions, hindered

rotations
hybrid states – 219
hyperpolarizability (hyper-Rayleigh light

scattering) – 312, 318

icosahedral system – 73, 431
ideal vibronic system – 46
incommensurate phase – 525, 531, 533
independent ordering approximation – 268
infrared spectrum, see vibronic infrared

absorption – 291
intensity-borrowing effect – 274
interaction mode – 93
inversion splitting, see tunnelling splitting
intervalence transition – 452
isostationary functions – 64
isotope effect (in superconductivity) – 574

Jahn–Teller (JT)
-active modes – 35, 40, T41, 43
exciton – 568
Hamiltonian, see vibronic Hamiltonian
stabilization energy – 50, 53, 139 etc.
symmetry breaking – 7, 158, 507, 539, 551
theorem – 34–43, 35
theorem, reformulation – 154–159, 155

Jahn–Teller (JT) distortion – 2, 361
antiferrodistortive – 510
amplification rule – 356
coexistence – 51, 70
combined – 138
dipolar – 146, 151, 292, 365
ferrodistortive – 510
free rotation – 57, 171, 357
hindered rotation – 58, 175, 184, 357
lifetime – 354
lone-pair effect – 361, 367, 440
polaron – 213, 222, 224, 568, 572
pseudorotation – 172, 175, 184, 355, 357
pulse motion (pulsating deformations) – 58, 184,

323, 357
tunneling, see tunneling splitting

Jahn–Teller effect (JTE)
band – 7, 539, 544
cooperative – 4, 504, 508
dynamic – 3, 163, 324
in enantiomer formation – 550
in metastable states – 291
in nonbonded systems – 156
product – 135, 135
pseudo, see pseudo JTE (PJTE)
‘‘second order’’ – 111
static limit – 163, 324

Jahn–Teller problems – 45, 45–95
(A1þB1)� b1 – 167, 201
(A1þA2þB2)� (a1þ b1) – 444
(A1gþB1g)� (a1gþ a01gþ b1g) – 573
(B2gþB2u)� (agþ au) – 289
(A1gþEg)� eg – 122, 201
(AþE)� (e1þ e2) – 122, 124
(A1gþT1u)� t1u – 122, 128, 404
(A1gþT1u)� (t1uþ egþ t2g) – 122, 129,

270, 529
(A1gþT1u)� (t1uþ t2gþ t2u) – 530
(A1gþT1u)� (a1gþ egþ t1uþ t2u) – 270
(sþ p)� t1u – 212
E� b1 – 45, 49, 505
E� (b1þ b2) – 45, 46, 122, 122, 223, 431
E� e – 2, 52, 52, 163, 169, 202 etc.
E� (aþ e) – 52, 59
E� (e1þ e2) – 205, 216
E� (e1þ e2þ � � �) – 218, 220, 225
T� e – 62, 64, 166
T� t2 – 62, 65, 166, 200, 252
T� (eþ t2) – 62, 62, T67, 167, 176, 205, 252
T� d – 62, 68, 273
(T1þT2)� e – 122, 131
(T1þT2)� (eþ t2) – 460
(A1þEþT2)� (eþ t2) – 459
T� (t2

(1)þ t2
(2)þ � � �) – 219, 224

�8� e – 167, 200
�8� t2 – 167, 207
�8� (eþ t2) – 62, 207, 271
(�6þ�8)� (eþ t2) – 271
(�8þ�

0

8þ�
0 0

8)� a1 – 490
�8� (t2

(1)þ t2
(2)þ � � �) – 219

T� h – 73, 73
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T� (h1þ h2þ � � � þ h8) – 216
pn� h – 73, 73, 77, 79, 212
G� g – 73, 80
G� h – 73, T82
G� (gþ h) – 73, 80
H� (gþ h) – 73, 84
H� (gþ haþ hb) – 86
H� (haþ hb) – 89
{T1�T2}� e – 135, 136
{T1�T2}� t2 – 135, 138
{T1�T2}� (eþ t2) – 135, 136, 141
{T1�T2}� (e1� e2) – 135, 149
{T1�H}� 2h – 141
{T1�H}� (gþ 2h) – 141
four-center – 102
ideal – 46
multi-center – 94, 95
multimode – 46, 56, 90, 91, 212, 277, 297
two-center – 100

Kerr effect – 312
electrooptical – 315

Kramers degeneracy – 36, 151, 203, etc.

Lanczos method – 202
Landé formula – 321
light absorption, emission

band form–function – 263, 264
band shape – 263, 266, 271
band-shape moments – 263, 274
coefficient – 263
depolarization – 309
infrared – 292, 297
polarization – 289
zero-phonon line – 265, 278, 279, 280, 285

lifetime of JT distortions, see JT distortions, lifetime
local (pseudolocal) resonances – 279
localization–delocalization coexistence – 457
lone-pair effect – 130
low-spin–high-spin transitions – 198

macroscopic deformation of crystals – 513
magnetic

anisotropy – 323
exchange coupling – 452
hyperfine structure – 318
relaxation – 325, 330

magnetostriction – 519
magnetoresistance – 82, 577
mean field approximation – 510
method of

coherent states – 211
coordinate relaxation – 209
Green’s functions – 210, 218, 560
moments – 263, 274
para-Bose operators – 211
pseudospin – 509
Öpik and Pryce – 3, 63, 73
unitary (canonical) transformations – 210, 268

‘‘Mexican hat,’’ see APES, ‘‘Mexican hat’’
microwave absorption – 340, 342

mixed-valence systems – 452
molecular shape – 354
moments of distribution, see method of moments
multilevel pseudo Jahn–Teller effect, see pseudo

Jahn–Teller effect, multilevel
multimode problem, see JT problem, multimode
multi-particle methods – 210
mutual influence of ligands – 373

nonadiabatic coupling – 6, 114
nonradiative transition, see radiationless transitions
normal coordinates – 17, T22
nuclear gamma-resonance (NGR) – 340, 340
numerical methods – 198

optical activity – 317
optical band shape – 263, 263
orbital vibronic constants, see vibronic constants,

orbital
ordering
antiferrodistortive – 522, T526, 541, 546
ferridistortive – 525
ferrodistortive – 506, 526, T526, 541
helicoidal – 525, 527, 530
orbital – 512, 535
partial – 531, 562, T562
triminima – 519

Peierls distortion – 539, 539
Peierls–Frohlich theorem – 544
phase transitions, see structural phase

transitions
plasticity effect – 439, 495
Poisson’s ratio – 519
polarization of light – 309
polaron, see JT polaron
pseudo Jahn–Teller effect (PJTE) – 4, 110, 110, 122,

155, 391, 508, etc.
cooperative – 551, 551
covalence origin – 120
multilevel – 110, 114
proof of uniqueness – 110, 114
stabilization of excited state – 118
strong – 112
weak – 112, 167

pseudorotation, see JT distortions, pseudorotation
pseudospin, see method of pseudospin
pulse motions (pulsating deformations), see JT

distortions, pulse motions

quadrupole splitting – 339
quadratic vibronic constant, see vibronic constant,

quadratic
quasiclassical approximation, see semiclassical

approximation
quasilinear systems – 388

radiationless transition – 288, 289
Raman spectrum – 305
nonresonance – 305
resonance – 312
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random strain – 324, 325
reactionmechanism, see chemical reactionmechanism
reactivity, see chemical reactivity
reduction factor, see vibronic reduction factor
reference configuration – 17, 46
relaxation
in EPR – 325, 330, 336
in NGR – 340

relativistic implication
relativity rule (concerning themeans of observation)

– 354, 355
Renner–Teller (RT) effect (RTE) – 37, 150, 151,

168, 267
resonance states (pseudolocal states in crystals) – 279
rotational – 221
tunneling – 224

rotational fine structure – 301
rotational states – 299
rovibronic coupling – 303, 398

semiclassical approximation – 56, 68, 264
solid-state conformers – 500
spin-crossover – 198, 539
spin-Hamiltonian – 318
spin–orbital
interaction – 125
splitting – 125, 208, 286
splitting reduction – 287

structural phase transitions – 504, 504, 507, 551, etc.
antiferrodistortive – T526, 533
antiferroelectric – 551, 555
displacive – 564
ferrodistortive – T526, 531
ferroelectric – 551, 556
first order – 539, 549
helicoidal – 510, 525, 527
incommensurate – 510, 525
liquid–gas – 549
liquid–solid – 551
order–disorder – 561
Peierls – 544
reentrant – 519
reorientation – 519
second order – 548

structural–magnetic phase transitions – 525, 535
superconductivity – 160, 566, 566
superstructure – 527
symmetric-top molecules
symmetrized displacements – 18–23, T22
symmetry breaking – 7, 158, 539, 551
symmetry group representations – Appendix

tensor convolution – 26
topological phase problem – 248, 249
‘‘tricorn’’, see APES, tricorn
trans-effect – 373
trough on APES, see APES, trough
tunneling phenomena – 4, 179, 179, 184
tunneling splitting – 179, 179, 278, 286,

322, T483

unitary transformation method – 210, 268
ultrasound attenuation – 340, 343

Van Vleck coefficients – 93, 278, 571
vibronic

amplification, see JT distortions,
amplification rule

anharmonicity, see anharmonicity, vibronic
coupling – 1, 12, 17, 162, 162, 169, 169,

225, etc.
coupling constants – 17, 24

dimensionless – 162
linear – 24
orbital – 27, 27, 371, 435, 437
quadratic – 25, 27, 53, 68, 76, 86, etc.

interaction, operator – 17
molecular orbital – 29
reduction, see vibronic reduction factor
spectrum

infrared – 291, 291
optical, see light absorption, emission
Raman – 305
rotational – 299

states – 14, 163, 168, 171, etc.
stereochemistry, see molecular shape

vibronic reduction factor – 4, 227, 227
first order – 228
in ESR spectra – 319, 321
in spin–orbital splitting – 286, 287
off-diagonal – 228, 238
second order – 229, 240
theorem – 57, 228
temperature dependent – 314

warping of APES, see APES trough, warping
Wigner–Eckart theorem – 24

Yang–Mills equations – 16

Zeeman effect – 169, 320, 322
zero-phonon line, see light absorption,

zero-phonon line
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Formula index

Classes of compounds are arranged alphabetically at the beginning of this list. Chemical formulas of specific
JT systems are arranged along the Periodic Table of elements by their assumed JT atoms or (conventionally)
JT centers, and are listed for each element by the increasing number of such atoms in the formula and
increasing environment. Section numbers, given where appropriate, are indicated in italic; Table numbers are
indicated in italic and preceded by a letter T.

acenes – 433, 577
ABA – T379, 545
ABC – T379
AB3 – 402
AX3, X¼F, Cl, Br, I, – 404
ABX3, X¼Cl�, Br�, I�, – 527
annulenes – 434
cubanes – 433
fullerenes – 435
hemoproteins – 446
manganites – 81
MX3, M¼ transition metal – 402
MF3, MH3, M¼N, P, As, Sb, Bi, – 404
MH3, M¼ Sc, Ti, V, Fe, Cr, Mo, W, Mn, Cu, Ag,

Au – 403
MX3Y – T375
MX4 – 363, T375, 375, 410

in cat[MX4], cat¼ p-xylylene
bis(triphenylphosphonium)2þ, M¼Co, Ni, Cu;
X¼NCS�, Br� – 444, T445

MX5 – 358
MX5Y – T375, 375
MX6 – 363, 366, T375, 375
MX6

M¼Sc3�, Ti2�, V�, Cr, and Mnþ – 441
M¼Cu, Mn; X¼O, N – T497

MP, M¼Mn, Fe, Co, Ni, Cu, P¼ porphin – 447
MP—O2 – 448
MP—CO – 448
MP—NO – 448

MMX, M¼metal, X¼ halogen – 548
[M3O(RCOO)6]L3 – 453
metalloporphyrins – 446
perovskites – 553, T558
polyenes – 391
polyoxometalates – 460

zircons – 511, 511
RX, R¼ rare earth, X¼N, P, As, Sb – 519
RXO4, R¼ rare-earth element, X¼V, As,

P – 511, 511
XH4, X¼C, Si, Ge, Sn, Pb – 414
X3 – 57, 298, 393, 393
X4 – 410, 410

H

H3 – 393
Hþ

3 – 393
Hþ

4 – 410
H2O

þ – 377
H3O – 405
H3O

þ – 405

Li

Li in C60 – 435
Liþ

in KCl – 493
KTaO3 – 493

Li3 – 62, 393, T394, T395, 399
Li3

þ – 394

B

BH2 – 377, T379, 383
BO2 – 378, T379
B2H2 – 388
B2H

þ
2 – 388

tris(boramethyl)amine – 62
Bþ
4 – 412

C

CH2 – T379
CHþ

2 – T379
NCO – 378, T379
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HCN – 153, 382
HCNþ – 380
DCN – 153, 382
NCN – T379
CO – 30
CO2 – 2, 377
HCO – 377, 380
H2CO – 391, 430
CH4 – 413
CHþ

4 – 380
CD4 – 413
CH3O – 406, T406–T407
CH3O

� – 408
MgCH3 – 408
CaCH3 – 408
CH3S – 408
CCIþ4 – 413
XCH3, X¼O, S, Mg, Ca, Zn, Cd – T409
OCH4 – 414
CD3O – 408, T409
CD3O

� – 408
CF3O – 408
CF3S – 408
XCF3, X¼O, S – T409
C2H

þ
2 – 388

C2D
þ
2 – 388

CCH – 380
CCN – T379
HCCO – 388
HCCS – 388
C3 – 378, T379
C3H3 – 410
C3H

�
3 – T395, 408, 410

C3H
þ
4 – 388, T389

H3C3N
þ
3 – 425

C4H
þ
4 – 415, 420

C4H8 – 422
C4H

þ
8 – 420

C5H5 – 426
C5H

þ
5 – 427

C5D5 – 427
C5H4D – 427
C5HD4 – 427
C5H4F

þ – 428
C5H10 – 428
C6H6 – 422
C6H

þ
6 – 422, T424, 425

C6H
�
6 – 425

C6D
þ
6 – 423, T424

C6F6 – 426
C6F

þ
6 – 425, T427

sym-C6F3H
þ
3 – 425

sym-C6F3D
þ
3 – 425

sym-C6Cl3H
þ
3 – 425

C6FnH
�
m – 426

C5H4CH
þ
3 – 428

C3(CH2)3 – T395, 410
C7H7 – 431
C7D7 – 431
C8H

þ
8 – 431

(CH)8 – 433

C4(CH2)4 – 422
C3(C3H5)3 – 410
Ti8C12 – 435
C60 – 82
Cþ

60 – 254, 435

C2þ
60 – 254

C�
60 – 4–30, 5–80, T216

C3�
60 – 435, 576

Cn�
60 – 212, 361, 435

Cn�
60 – 74, 212

Li : C60 – 435
A3C60 – 435, 576
A4C60 – 435, 577
AxC60, A¼K, Rb, Cs – 576
C60-tetraphenyl-phosphoniumiodide – 435
[Aþ(C6H5)4]2 (C

�
60)(B

�) – 435
C3�

70 – 437
(CH)x – 548
TTF–TCNQ, TTF¼ [(C3S2)HCH3]2,

TCNQ¼ (CN)2C(C6H6)C(CN)2)] –
548

anthracene, tetracene, penthacene,
hexacene – 433, 577

[18]annulene, [30]annulene – 434
azepine – 433
benzenoanthracene – 434
bicyclo[2.2.2]oct-2-ene – 431
coronene, corannulene – 434
cubane – 433
diamond, N-V centers – 492
1,5-diazocine – 433
diphenylhexatriene (DPH) – 434
fullerenes – 435
naphtalene – 433
oxepin – 433
phenanthrene – 433
polycyanodienes – 433
tetraphenylporphyrin – 450
1,3,5,7-tetrazocine – 433
syn-tricyclooctadiene – 433
triphenylene – 434
triptycene, 9-fluorotriptycene – 434

N

N in diamond (N-V center) – 492
NH2 – 377, T379, 384
NHþ

2 – T379
NH3 – 18, T18, T122, 405
NO2 – 291, 377, 380
NCO – 378, T379
HNOþ – T379, 380
HNF – T379
HONþ – 380
HCN – 382
HCNþ – 380
DCN – 382
NCN – T379
NO3 – 404, 405
N2 – 30
N3H

2þ
3 – 408

B3N3H6 – 425
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O

O� in (OF6)
7� of O� :

CaF2 – 492
OHþ

2 – 377, T379
SO2 – 380
O3 – 380
Oþ

3 – 380

Na

Na3 – 62, 393, T394, T395
Naþ3 – 394

Mg

MgCH3 – 408, T409
MgB2 – 577

Al

AlH2 – 377, T379
Al3 – 402
Al3H – 405
Al3O – 404
Al3O

� – 404

Si

SiHþ
2 – T379, 414

SiHþ
4 – 414

Si3C – 406
Si3C

þ – 406
Si3C

� – 406
Si3O – 406
Si3O

þ – 406
Si3O

� – 406
(SH)8 – 433

P

P (black) – 547
PH2 – T379
PF5 – 358, 438
PF�

6 – 149
P4, P

þ
4 – 410

P�
4 – 412

P2�
4 – 412

S

SH2 – 380
SHþ

2 – T379
SO3 – 404
SOþ

3 – 405
CH3S – T409, 408
SF4 – 359
SF6 – 363

Cl

CIF�
6 – 440

Cl2O – 380
Cl2O

þ – 380

K

KCl
R0 band – 279
F center – 492

K3 – 393, T394, T395
Kþ

3 – 394

Ca

CaCH3 – 408, T409

Sc

Sc2þ in
CaF2 – T481, T484
SrF2 – T481, T484
BaF2 – T484
SrCl2 – T484
ZnS – T484

[ScH6]
3� – 441

Cs2NaScCl6 – 440

Ti

Ti2þ in
CdS – T483
CdSe – T483
CdTe – T483
CaO – T484

Ti3þ in
CsAl(SO4)2 � 12H2O – 442
cesium gallium alum – 491
cesium aluminum alum – 491
Be3Al2(SiO3)6 – 491
AgCl – T482
AgBr – T482
Al2O3 – T482, T484

Ti4þ in BaTiO3 – 493
TiH3 – 403
[TiF6]

2� – 150
[TiO6]

8� – 120, T122, 144–149, 367, 553
[Ti(H2O)6]

3þ – 442
in CsTi(SO4)2 � 12H2O – 442
in cesium gallium alum – 322

ATiO3, A¼Ca, Sr, Ba – 556, T558
BaMO3, M¼Ti, Zr, Hf – 551, 556, T558, 559
BaTiO3 – 149, 551, 553, T558, T562, T566
SrTiO3 – T558, 560
PbTiO3 – T566
LaTiO3 – 581
Ti8C12 – 437

V

V2þ in
ZnSe – 489
ZnS – 489
KMgF3 – 287

V3þ in
MgO – T484
CaO – T484
Al2O3 – T485

V4þ in Al2O3 – T484
VH3 – 403
VH�

6 – 441
VF3 – T395, 403
VF4 – 415
VO4

3� – 512
RVO4 – 510
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VCl4 – 415
[V(H2O)6]

3þ in [Rb(H2O)6][V(H2O)6](SO4)2 – 442
[V(H2O)6]

3þ – 442
V(CO)6 – 441

Cr

Cr2þ in
MgO – 345, 489
CaO – 489
SrO – 489
KMgF3 – 344, 489
SrF2 – 489
CaF2 – 489
CdF2 – 489
ZnSe – T482, 489
ZnS – T482, 489
ZnTe – T482
CdTe – T482
GaAs – T482, T485
AgCl – T482
AgBr – T482

Cr3þ in
[CrF6]

3� – 489
Cs2NaScCl6 – 489
CdIn2S4 – 490
GaAs – T485

Cr4þ in
[CrO4]

4� – 488
Al2O3 – T485

Cr5þ in
Sr2(VO4)Cl – 491
Al2O3 – T484

Cr : Si – 320
CrH3 – 403
CrH6 – 441
CrF3 – 403
[CrF6]

3� – 18, 440
[CrF6]

4� – 443
[CrO6]

10� – 489
[CrCl6]

3� – 440
in Cs2NaScCl6 – 440

[Cr(H2O)6]
2þ – 439, 442

[Cr(D2O)6]
2þ in (ND4)2Cr(OD2)6(SO4)2 – 442

YCrO3 – 579
A2CrCl4, A¼Cs, Pb, NH4, K – 538
(NH4)3[CrF6] – 440

Mn

Mn2þ in
ZnS – T482, 491
ZnSe – T482

Mn3þ in
yttrium–iron garnet – 342
Be3Al2(SiO3)6 – 491
Al2O3 – T482

Mn : Si – 321
MnH3 – 404
[MnH6]

þ – 441
MnF3 – T395, 403
KMnF3 – 403
LaMnO3 – 579

CaMnO3 – 579
A1� xBxMnO3 – 580
R1� xAxMnO3, R¼La, Nd;

A¼Ca, Sr – 577
L0.5A0.5MnO3

L¼Pr, Pr1� yYy, Sm;
A¼Ca1�xSrx, Sr – 579

L¼La, Pr, Nd, Y, Eu, Sm;
A¼Ca, Sr – 579

La1�xSrxMnO3 – 579
La1�xCaxMnO3 – 580
La7/8Sr1/8MnO3 – 579
La0.75Ca0.25MnO3 – 577
La1�xSr(Ba)xMnO3 – 581
LaMn1�xGaxO3 – 579
RMnO3, R¼La, Pr, Nd – 579
RNiO3, R¼ lanthanide – 579
LaMnO3þ� – 579
La0.96Sr0.04MnO3þ� – 579
MnO4

� – 18
AMnF4, A¼Cs, Pb, NH4, K – 538
[MnF6]

4� – 443
[MnO6]

9�, [MnO6]
8� in La2�2xSr1þ2xMn2O7 – 579

[Mn(H2O)6]
3þ – 442

[Mn(H2O)6]
2þ – 439

MP, P¼ porphin, M¼Mn, Fe, Co, Ni, Cu,
Zn – 447

MnPc, Pc¼phthalocyanine – 447
Mn(trop)3 – T497
Mn(acac)3 – T497
Mn(Et2dtc)3 – T497
La1.4Sr1.6Mn2O7 – 579
[Mn2O11]

15� – 580
Mn3O4 – T526

Fe

Feþ in MgO – 322
Fe2þ in

CdTe – 487, T488
ZnS – 487, T488
ZnTe – 488, T488
ZnSe – 488, T488
GaAs – 488, T488
InP – 488, T488
GaP – 488, T488
MgO – 288, T482, T485
CaO – 321, T485
AgCl – T482
AgBr – T482
KMgF3 – T482, T485
CdCl2 – T482
CdBr2 – T482
CdF2 – T482
Al2O3 – T485

Fe6þ in [FeO4]
2� of K2XO4, X¼ S, Se, Cr – 488

FeF3 – 403
[FeCl4]

2� – 340
Fe(CO)4 – 359, 362
Fe(CO)2(

13C18O)2 – 359
FeCr2O4 – 340
H[Fe(5-Clthsa)2], thsa¼ thiosemicarbazon – 539
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[Fe(phen)2(NCX)2]
þ, X¼S, Se – 539

Fe(II)-phthalocyanine – 447
Fe-porphyrin – 447
Fe2As – 546
[Fe3S4]

0 – 458
[Fe3O(CF3COO)6](H2O)3 – 453
Fe3O12 – 460
Fe3O16 – 460
[Fe(II)Fe2(III)(CH3COO)6L3] – 456
Na2[Fe(CN)5(NO)]2H2O – 444
[Fe4S4]

3þ – 458

Co

Co2þ in
[CoF6]

4� of Co2þ : KZnF3 – 490
SrLaGa3O7 – 491
CdF2 – T482

CoX4 in cat[MX4], cat¼ p-xylylene
bis(triphenylphosphonium)2þ,
X¼NCS� – T445

Co(CO)4 – 362
LaCoO3 – 576
La1�xSrxCoO3 – 576
Co2Sb – 546
Co-porphin – 447

Ni

Niþ in
NaF – T481
MgO – T483
CsCaF3 – 487
CaF2 of [NiF8Ca12]

17þ – 487, 494
Ni2þ in

CaF2 – T482
CdF2 – T482
NixZn1�xCr2O4 – 487
Cu1�xNixCr2O4 – 487

Ni3þ in
NiO6 of LaSrNiO4�� and LaSrAl1�xNixO4�� –
487

CaO – T481
MgO – T483
Al2O3 – 344, T482

Ni� : Ge – 321
NiF3 – 62
K2NiF4 – 576
Ni(NMTP)4[BF4]2, NMTP¼N-methyl-2-

thiooxopyrrolidine – 443, T445
NiX4 in cat[MX4], cat¼ p-xylylene

bis(triphenylphosphonium)2þ,
X¼NCS� – T445

NiCr2O4 – T526
Ni6 – 443
Ni-porphin – 447

Cu

Cuþ in
NaF – 484

Cu2þ in
MgO – 320, T481
SrO – 493

CaO – 308, 333, T481, T482, T483
AgCl – T481
CuN6 – 480
CuO6 – 480
CaF2 – 485
SrF2 – 440, 485
SrCl2 – 485
Sr1�xBaxF2 – 485
CaxSr1�xF2 – 485
K2C2O4 �H2O – 485
K2MgF4 – 486
CuxZn1� xCr2O4 – 486
Cu1� xNixCr2O4 – 486
[Cu{(NH3)2sar}](NO3)4H2O – 486
[Cu(H2O)6]

2þ of
Cu2þ : Cs2Zn(SO4)2 � 6H2O – 486
Cs2Zn1� xCux(ZnF6) � 6H2O – 504

(CH3NH3)2CdCl4 – 486
(CH3NH3)2CuCl4 – 486
(C3H7NH3)2CdCl4 – 486
ZnSiF6 � 6H2O – T481
Zn(BrO3)2 � 6H2O – T481
La2Mg3(NO3)12 � 24H2O – T481
Bi2Mg3(NO3)12 � 24H2O – T481
Cu3La2(NO3)12 � 24H2O – T481
Zn(pyNO)6(BF4)2 – T481
(NH4)2Cu(H2O)6(SO4)2 – T481
LiKSO4 – T481
LiNH4SO4 – T481
ethylene-glycol – 440

CuO2 in
La2CuO4 – 569
La2�xSrxCuO4 – 571

Cu(NH3)2X2, X¼Cl, Br – 498
CuF3 – 402
KCuF3 – 536
CsCuCl3 – 527
RbCuCl3 – 526
Cu(acac)2 – T497
CuFe2O4 – T526
K2CuF4 – 440, 535
CuX4 in cat[MX4], cat¼ p-xylylene

bis(triphenylphosphonium)2þ, X¼NCS�,
Br� – T445

CuX4Y2 – 367
[CuCl4]

2� – 416
Cs2CuCl4 – 416
[CuCl5]

3� – T122, 358, 437
KAlCuF6 – 440
Ba2CuF6 – 440
CuN6 in Cu(mtz)6(BF4)2, mtz¼

1-methyltetrazole – 504
[Co(NH3)6][CuCl5] – 437
[Cu(NO2)6]

4� – 533
A2BCu(NO2)6 – 532, 534
K2BaCu(NO2)6 – T497
K2PbCu(NO2)6 – T497, T526, 532
Cs2PbCu(NO2)6 – 440, T497
Rb2PbCu(NO2)6 – T526
Tl2PbCu(NO2)6 – T526
Cu(en)3SO4 – T497
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[Cu(en)3]
2þ – 446

[Cu(en)2H2O]SO4 – 444
[Cu(bpy)3]

2þ – 501
cis-CuN4O2 in [Cu(bpy)2(ONO)]NO3,

bpy¼ bipyridine – 501, T503
[Cu(phen)2Br][Y], Y¼Br� �H2O, ClO�

4 ,
NO�

3 �H2O, PF�
6 , and BPH�

4 – 445
[C14H19N2]Cu(hfacac)3 – T497
[Cu(H2O)6](BrO3)2 – 438, 440
[Cu(H2O)6]SiF6 – T497
Cu(ClO4)2 � 6H2O – T497
(NH4)2Cu(SO4)2 � 6H2O – T497
[Cu(H2O)6]

2þ – 438, 440, 504
Cu(OMPA)3(ClO4)2 – T497
Cu(IPCP)3(ClO4)2 – T497
Cu(phen)3(ClO4)2 – T497
Cu(l-pn)3Br2 � 2H2O – T497
[Cu(ONC5H5)6](ClO4)2 – 440, 536
[Cu(ONC5H6)6]

2þ in
Cu(ONC5H6)6X2, X¼BF4

�, ClO4
� – 536

Cu(ONC5H6)6(NO3)2 – 537
CuO6 polyhedra – 496, T497
in La2CuO4 – 571

CuN6 polyhedra – 496, T497
CuCl6 polyhedra in
CsCuCl3 – 527
RbCuCl3 – 527
(CH3)4NCuCl3 – 527
(CH3)2CHNH3CuCl3 – 526
CsCdCl3 – T481
(3-chloroanilinium)8[CuCl6]Cl4 – 440

La2CuO4 – T526, 566, 569
La2�xSrxCuO4 – 566, 568, 573
La1.90Ba0.10Cu2O4 – 575
La1þxSr1�xGa1�xCuxO4 – 576
La1.81Ho0.04Sr0.15CuO4 – 574
HoBa2Cu4O8 – 574
YBa2Cu3O7 – 569
Ba2Zn1�xCuxWO6 – T526
bis(1,3,5-trihydroxycyclohexane)copper(II)

tosylate – 503
Cu3 – T395, 399
[Cu3O2L3]

3þ, L¼N-permethylated(1R,
2R-cyclohexanediamine) – 456

[Cu3O2(NH3)6]
3þ – 457

CdCu3(OH)6(NO3)2 �H2O – T497
Cu4O12H8 – 438, 443, 576
Cu4OL4X6, X¼Cl, Br, L¼Cl, Br, pyridine, OPR3,

ONR3 – 102, 443
Cu4(NO3)2(OH)6 – T497
Ca(Cu, Zn)4(OH)6(SO4)2 � 3H2O – T497
Cu6(Si6O19) � 6H2O – T497
[CuF8]

6� – 440
ascorbate oxidase – 457
ceruloplasmin – 457
H2O-lactase – 457
Cu-porphin – 447

Zn

ZnCH3 – 408, T409
[Zn(H2O)6]

3þ – 440

[ZnCl5]
3� – 439

cis-ZnN4O2 in [Zn(bpy)2(ONO)]NO3,
bpy¼bipyridine – 503, T503

[Co(NH3)6][ZnCl5] – 439
Zn-porphin – 447

Ga

Gaþ in KBr – 492
Ga in AIVBVI – 492
GaAs – 492
InAs/GaAs, quantum dots – 495

Ge

GeTe – 555

As

As – 547
Asþ4 – 410
InAs/GaAs, quantum dots – 495

Se

SeF2�
6 – 440

SeCl2�6 – 441

SeBr2�6 – 441

Br

BrF�
6 – 441

Sr

SrCl2, F center – 276

Y

Y2þ in
CaF2 – T481
SrCl2 – T484

Zr

BaMO3, M¼Ti, Zr, Hf – 551, 556, T558, T562,
T566

BaZrO3 – 558
ZrSiS – 546

Nb

NbF4 – 416
KNbO3 – 562, T562, T566
KNbxTa1�xO3 – T566
[(Z6-benzene)Nb(CO)3]

þ – 445

Mo

MoH3 – 403
MoCl5 – 439
cis-Mo2(m2-O2CCH3)2(m2-DXyIF

2,6)2,
DXyIF

2,6¼N,N0-di-(2,6-xylylformamidine) –
446

Mo-porphin – 447

Ru

RuF6 – 441
[Ru(H2O)6]

3þ – 442
[(NH3)5Ru(pyz)Ru(NH3)5]

5þ,
pyz¼pyrazine – 460
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Rh

Rh2þ in
[RhCl6]

4� and RhCl6Na12Cl8Na6Cl6 of Rh2þ :
NaCl – 491

AgBr – T481
MgO – T483

Pd

Pd� in Si – 321

Ag

Ag2þ in
MgO – T483
CaO – T483
SrO – T483
LiCl – T526
NaCl – T481
KCl – T481
NaF – 484
CaF2 – 487
SrF2 – 487
CaxSr1� xF2 – 487
Sr1� xBaxF2 – 487

Ag3 – 383, T386, T395, 401
Agþ3 – 383, T386, 401
Ag�3 – 383, T386, 401

Cd

CdCH3 – 408, T409
CdCO3 – 7–49
[Cd(H2O)6]

3þ – 440
CdSe, quantum dots – 495
CdxSe1�xSx, quantum dots – 495
CdSe/Zn/Se, quantum dots – 495
CdS/HgS/CdS quantum dot – 495

In

In in AIVBVI – 492
[InCl6]

5� – 364, 441
in InCl – 366

InCl – 441, 529
InAs/GaAs, quantum dots – 495

Sn

Sn6(m5-O)4(m3-OH)4 – 446
Sn-porphin – 447

Sb

SbSI – 546
[SbBr6]

3� – 364
Sb4, Sb

þ
4 – 411

Te

Te in AIVBVI – 8–10
TeF3�

6 – 441
TeCl2�6 – 364, 441
TeI2�6 – 441

I

IF�
6 – 441

I3 – 383, T386

Iþ3 – 383, T386
I�3 – 383, T386

Xe

XeF6 – 363, 441

La

La2þ in
CaF2 – T481, T484
SrF2 – T484

Pr

Pr4þ in PrO2 – 491
PrAlO3 – 519

Sm

Sm2þ in
CaF2 – 289, T482
SrF2 – 289, T482

Eu

Eu2þ in
CaF2 – 289, T482
SrF2 – 289, T482

Tb

RXO4, R¼Tm, Dy, Tb;
X¼V, As, P – 511, 511

TbVO4 – 512, 517, T526
TbAsO4 – 518, T526
TbPO4 – 518, T526
TbxY1�xVO4 – 519

Dy

RXO4, R¼Tm, Dy, Tb;
X¼V, As, P – 511, 511

DyVO4 – 512, 517, T526
DyAsO4 – 518, T526
DySb – 519, T526
DyxTb1� xVO4 – 519
KDy(MoO4)2 – T526
CsDy(MoO4)2 – T526
RbDy(MoO4)2 – T526

Ho

Rb2NaHoF6 – T526
La1.81Ho0.04Sr0.15CuO4 – 574

Tm

RXO4, R¼Tm, Dy, Tb;
X¼V, As, P – 511, 511

TmPO4 – 519
TmVO4 – 512, T526
TmAsO4 – 518, T526
TmCd – 519
Rb2NaTmF6 – T526

Hf

BaMO3, M¼Ti, Zr, Hf – 551, 556,
T558
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Ta

TaF4 – 416

W

WH3 – 403
WF6 – 149
[W6Cl14]

� – 443
[W10O32]

4� – 460

Re

[Re6S8Cl6]
3� – 443

in (nBu4N)3[Re6S8Cl6] – 443
[ReO4]

2� in KCl – 492

Ir

IrF6 – 441

Pt

Pt� in Si – 322
Pt3þ in
Al2O3 – T481
MgO – T483

PtXYZV – 373

Au

AuH3 – 403
AuF3 – 403
AuCl3 – 403, 441
[AuCl4]

� – 443
AuCln – 442
Au(CH3)3 – 410
[Au(PH3)3]

þ – 446
AuL3, L¼phosphine – 446

Au3 – 402

Hg

[Hg(H2O)6]
3þ – 440

Tl

Tl in CsI – 491

Pb

Pb in CsCl – 491
PbFCl – 546
Pb3 – 402
Pbþ3 – 402
Pb6 – 443
Pbþ6 – 443
Pb�6 – 443
PbS, quantum dots – 495

Bi

BiOCl – 546
[BiCl6]

3� – 441

Po

[PoF6]
2� – 442

At

AtF�
6 – 442

U

UO2 – 550

Pu

Pu4 – 413
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