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Preface

DNA sequencing is a fast-moving science with technologies and platforms being
updated at breathtaking speed. The hallmark of next generation sequencing (NGS)
has been a massive increase in throughput and a decrease in price compared with
previous technologies. The first next-generation DNA sequencing machine was
introduced to the market by 454 Life Sciences (Basel, Switzerland) in 2005. The
technology is based on a large-scale parallel pyrosequencing system, which relies
on fixing nebulized and adapter-ligated DNA fragments to small DNA-capture
beads in a water-in-oil emulsion. The Illumina’s (CA, USA) Genome Analyzer
was released in 2007 and marked a true revolution for genome sequencing in
which short reads became significant to genomic applications. The technology is
based on reversible dye terminators. DNA molecules are first attached to primers
on a slide and amplified so that local clonal colonies are formed. Life Technol-
ogies’ (CA, USA) SOLiDTM technology employs sequencing by ligation. In this
technology, a pool of all possible oligonucleotides of a fixed length is labeled
according to the sequenced position. Oligonucleotides are annealed and ligated;
the preferential ligation by DNA ligase for matching sequences results in a signal
that is informative of the nucleotide at that position.

So-called ‘third-generation’ technologies directly sequence individual DNA
molecules rather than relying on any amplification prior to sequencing. The
recently released PacBio system can produce 35–45 Mb of data per cell with an
average read length of 1,500 bp. The Ion Torrent Personal Genome Machine
(PGM) is another third-generation platform that uses standard sequencing chem-
istry, but with a novel, semiconductor-based detection system. This technology
already claims read lengths of approximately 200 bp with high accuracy, and the
latest PGM 318 chip can produce 1.0 Gb of data in a 2-h run. When the impli-
cations of NGS technology became apparent, several assemblers were designed to
deal with the new problems, i.e., assembly of short NGS reads in order to
reconstruct the main longer sequences. Assembly process can be done either
having a reference genome available (mapping) or without having a reference
genome available (de Novo assembly). De Novo assembly algorithms, discussed in
more detail in this book, can be classified into three main categories: greedy
algorithms, Overlap-Layout-Consensus (OLC) methods, and De Bruijn graph
approaches. The Euler assembler was the first to employ de Bruijn graphs for
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whole genome shotgun (WGS) assembly, and proved capable of assembling
bacterial genomes. Velvet and ALLPATHS improved assembly in terms of speed,
contig and scaffold length, and avoidance of misassembly. ABySS followed the
innovations with de Bruijn methods, but also introduced a distributed represen-
tation of the graph, allowing message passing interface parallelization. The
CABOGand variant MSR-CA pipelines are updates of the Celera overlap-based
assembler designed for a combination of read types, which showed some success
with short-read data for genomes in the 100 Mb range. The String Graph
Assembler (SGA) is the first to make assembly of mammalian-sized genomes
practical using the string graph approach. This observation on the current tradeoff
between accuracy and continuity suggests avenues for future improvements in
assembly. There is room for other improvements at the scaffolding stage, where, as
has happened at the assembly stage, we witness a move from naïve and greedy
algorithms to more subtle graph-based techniques.

In this book, we briefly introduce the history of first, second, and third gener-
ation sequencing technologies and also describe drawbacks of the old techniques
which now are not suitable due to their cost and the need for automation which
could not be achieved in those methods. In Sect. 2 major NGS methods—namely
Roche/454 FLX, Illumina/Solexa Genome Analyzer, and Applied Biosystems
SOLiD System, etc.—are described in detail. Also, after bringing the latest and
most predominant technologies in NGS, nanopore DNA sequencing and Pacific
single molecule real time (SMRT) DNA sequencing, which does not need an
amplification step, are described. Latest subsections of this section are devoted to
information about sequencing costs, file formats of the output, a comparison of
methods, and their drawbacks, and finally application of NGS technologies. The
second two sections, i.e. Sects. 3 and 4, provide an overview of the algorithmic
view of the assembly problem. Our main focus in these two sections will be on de
Novo assembly algorithms of NGS reads. In Sect. 3, we generally define the
assembly problem and mention the challenges involved in the assembly process,
including errors propagated from sequencing process beside computational chal-
lenges. Appropriate use of paired-end read data, which helps to overcome the
challenges regarding short length of reads, and also preprocessing that helps to
eliminate some other issues regarding inaccurate data, is the next topic discussed
in this section. Using all these techniques to reduce problems, there will still be
errors in assembly, and relevant assembly algorithms are needed to be validated in
a standard way: These are the final topics which will be discussed in Sect. 3.
Finally, in Sect. 4, an exact view of the assembly algorithm is given as to how the
problem can be mapped to a graph and how different kind of graphs are treated in
finding the solution, which is the final assembled genome. Concerning each of the
assembly approaches, several example algorithms are then described in detail and,
finally, a comparison of these methods is provided in Sect. 4.
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Chapter 1
Next-Generation Sequencing
Methodologies

1.1 Introduction

1.1.1 A Brief History of the Discovery of DNA Structure
and Function

Although many people believe that the American biologist James Watson and
English physicist Francis Crick were the first to discover DNA in the 1950s, DNA
was actually discovered by the Swiss chemist Friedrich Miescher in the late 1860s
during his attempts to isolate the protein components of leukocytes. But when he
isolated a substance that was unlike proteins resistant to proteolysis and also had
different chemical properties of proteins, including a much higher phosphorous
content, he realized that he had discovered a new substance [1]. He called this new
substance ‘‘nuclein.’’

Miescher’s finding was not considered particularly important until the twentieth
century, when the chemical nature of nuclein was studied by the Russian bio-
chemist Phoebus Levene. He was the first to discover: (1) the order of three major
components of a single nucleotide (phosphate-sugar-base) (Fig. 1.1); (2) the
carbohydrate component of RNA (ribose) and DNA (deoxyribose); and (3) the
way RNA and DNA molecules are put together. In 1919 Levene proposed that
nucleic acids were composed of a series of nucleotides and that each nucleotide
was in turn composed of just one of four nitrogen-containing bases—a sugar
molecule and a phosphate group.

Studies conducted to discover the DNA structure were continued by Erwin
Chargaff, an Austrian biochemist, to uncover additional details about the structure
of DNA. He reached two major conclusions [3]: First, he stated that the nucleotide
composition of DNA varies among species, and second, he concluded that the
amount of the base adenine (A) is usually similar to the amount of thymine (T);
this is also true about the amount of guanine (G) and cytosine (C). The latter is
known as Chargaff’s rule (Fig. 1.2).

A. Masoudi-Nejad et al., Next Generation Sequencing and Sequence Assembly,
SpringerBriefs in Systems Biology, DOI: 10.1007/978-1-4614-7726-6_1,
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Chargaff’s finding that A = T and C = G, along with some vital crystallog-
raphy results obtained by the English researchers Rosalind Franklin and Maurice
Wilkins, established a strong basis for the discovery of a three-dimensional,
double-helical model for the structure of DNA proposed by Watson and Crick
(Fig. 1.3).

Each chain of a double-helix DNA molecule is made up of the phosphodiester
links between nucleotides. Two strands of a DNA molecule have different direc-
tionality. The two different ends of a single strand are called 30 and 50 and the
direction of DNA synthesis is 50[30; this means that the free 30 hydroxyl (OH)
group from the growing strand of DNA attacks the phosphate on the next base to
be added (Fig. 1.4). Pyrophosphate is released and the new base forms a phos-
phodiester bond with the growing strand of DNA. The free 30 hydroxyl group is
then free to attack the next base to be added. This reaction is catalyzed by DNA
polymerases.

Fig. 1.1 Three components of each nucleotide: the nitrogenous base that can basically belong to
two categories (single ring: pyrimidines, or two-linked rings: purines), a pentose sugar (ribose in
RNA and deoxyribose in DNA), and a phosphate group [2]

Fig. 1.2 Chargaff’s rule: the
total amount of purines is
equal to the total amount of
pyrimidines [2]

2 1 Next-Generation Sequencing Methodologies



1.2 Advent of Sequencing Technologies

Knowing about the order (sequence) of nucleotides in DNA, the molecule in which
the genetic information of all organisms is stored, has revolutionized biology and
resulted in our better understanding of life’s secrets (BBSRC Review of Next-
Generation Sequencing—final version).

The first two DNA sequencing techniques, which are known as first-generation
DNA sequencers, historically were developed by Fredrick Sanger (1977, Uni-
versity of Cambridge) and Allan Maxam and Walter Gilbert (1976–1977, Harvard
University), independently. Sanger’s method, which earned him a Nobel Prize in
Chemistry in 1980, became popular, and in fact was the sole method for DNA
sequencing for three decades, as a result of its lesser technical complexity and
lesser amount of toxic chemicals used, compared to the Maxam–Gilbert method,

Fig. 1.3 Double-helical structure of DNA. The chains of sugar-phosphate groups are linked
together by complementary bases [2]

Fig. 1.4 DNA synthesis
direction. The 50 end of the
new nucleotide is linked to
the 30-OH of the last
nucleotide of the growing
chain by DNA polymerase
action. During this reaction,
a pyrophosphate group is
released [http://
www.prism.gatech.edu/
*gh19/b1510/dnarep.htm]
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which was based on the chemical modification of DNA and subsequent cleavage at
specific bases. In the Sanger sequencing method, which is also known as ‘‘chain
termination’’ or the ‘‘dideoxy method,’’ modified nucleotides (fluorescently
labeled dideoxynucleotides) are used in the reaction in addition to normal nucle-
otides; this method was gradually improved and became automated (the first
automatic sequencing machine, AB370, was introduced in 1987 by Applied
Biosystems), and therefore has been the method of choice for large-scale
sequencing projects, e.g., whole-genome sequencing for various species, for about
30 years [4].

1.2.1 First-Generation DNA Sequencers

1.2.1.1 Sanger Sequencing Technology

In classical Sanger sequencing technology, which is sequencing by the synthesis
method, the sequencing reaction is performed in the presence of the single-
stranded DNA template, DNA primers, DNA polymerase, four normal DNA
nucleotides, and four fluorescently labeled modified nucleotides (ddATP, ddCTP,
ddGTP and ddTTP).

The DNA template is initially divided into four separate sequencing reactions
containing primers, polymerase and normal nucleotides. In each reaction in the
presence of a small amount of one of four modified nucleotides (which lack the 3’-
OH group required for the extension), which randomly incorporates into the
growing strands, terminates DNA elongation and results in DNA fragments with
various lengths. The obtained DNA fragments are then separated by size through
high resolution polyacrylamide gel electrophoresis (capillary electrophoresis) with
each of four reactions run in one of four individual lanes (lanes A, C, G and T).
DNA bands that correspond to DNA fragments with differing lengths are then
visualized, using UV light or X-ray autoradiography, and the order of nucleotides
can be determined according to the relative positions of DNA bands among four
different lanes (Fig. 1.5).

1.2.1.2 Maxam-Gilbert Chemical Degradation DNA Sequencing
Technique

The Maxam-Gilbert technique relies on the cleaving of nucleotides by chemicals
and is most efficient with small nucleotide polymers (Fig. 1.6). Chemical treat-
ment generates breaks at a small proportion of one or two of the four nucleotide
bases in each of four reactions (G, A ? G, C, C ? T). Due to the advancements in
chain termination methodology, the Maxam-Gilbert method has become redun-
dant. It became obsolete due to its less ergonomical feasibility, and it is also
considered unsafe because of the extensive use of toxic chemicals.
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As a result of using less toxic chemicals and lower amounts of radioactivity
than the Maxam and Gilbert method, and because of its comparative ease, the
Sanger method was soon automated and was the method used in the first gener-
ation of DNA sequencers.

1.3 Some Drawbacks of the Sanger Technique

1.3.1 Short Size Fragments

The Sanger method can only be performed for DNA fragments with a fairly short
length, i.e., 100–1,000 base pairs. This is due to the limitation in the power of
discrimination between fragment sizes during capillary electrophoresis, which
restricts the size of the DNA that can be reliably sequenced to *1,000 base pairs
(for larger DNA fragments, longer gels are required). Larger sequences—for
example, an entire chromosome—must first be fragmented into smaller pieces and
amplified to obtain a large number of copies for each individual fragment. After
performing sequencing reaction, these fragments must be reassembled to produce
the original sequence.

(a) (b)
ddGTP ddATP ddCTP

G A C T

TCGAAGACGTATC

Largest

Smallest

ddTTP

Fig. 1.5 Sanger sequencing procedure. a Four distinct reactions are taking place in the presence
of all required materials for DNA synthesis. Besides in each separate reaction, a distinct type of
fluorescently labeled dideoxy nucleotides is added which after completion DNA synthesis cycles,
results in the DNA strands each of which terminated in specific dideoxy nucleotide present on
that reaction. b After reaction completion, the content of four separate reactions is electropho-
resed using high-resolution polyacrylamide gel (www.Wikipedia.org)
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1.3.2 Needs for Amplification and Fragment Assembly Steps

The procedure mentioned for fragmentation and amplification can be conducted by
two distinct approaches: map-based sequencing (also known as back-to-back or
hierarchical sequencing) and shotgun sequencing.

The map-based method is accomplished by using a large number of bacterial
artificial chromosomes (BAC) ([20,000), each of which contains a large DNA
fragment (approximately 100 kb), which collectively provide an overlapping

Fig. 1.6 Maxam-Gilbert chemical degradation sequencing technique. a Double-stranded DNA is
labeled at 50 ends. b Single-stranded DNA fragment is produced. c DNA fragments are distributed
in four parallel test tubes. Each test tube is subjected to a specific base degrading chemical. The
content of each tube will be electrophoresed in the next step for fragment size separation
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series that can be physically mapped on the chromosome. After each BAC clone is
amplified in a bacterial culture, it is cut into small fragments of 2–3 kb. After
subcloning these fragments into a plasmid vector and amplifying them in bacterial
cultures, DNA is extracted for sequencing. High coverage or over-sampling of
each fragment (about eight-fold) is required to assemble the individual fragments
into contigs, which are the contiguous assembled fragments. Contigs are then

Fig. 1.7 Mate-paired library construction. Large DNA fragments are circularized using internal
adapters. In the next step using endonucleases, a fragment is resulted which contains the
sequences from two ends of the original sequence
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merged to form larger ones, which are called supercontigs. Besides, gap-filling and
filtering must be performed to generate a single contig, which is a sequence of
nucleotides with a high level of accuracy and quality [5]. The assembly algorithms
and difficulties associated with the assembling process will be thoroughly dealt
with in chaps. 3 and 4.

In shotgun sequencing, several small fragments that result from randomly
broken up DNA are cloned into plasmids, and after isolation of each amplified
DNA fragment, the sequencing process is carried out. The assembly of these
fragments would be more difficult than the BAC-based method since no infor-
mation is available about the relative position of these fragments on the chro-
mosome in advance.

To overcome this problem, a new method, called ‘‘mate-pair’’ or ‘‘paired-
end’’ technology, has been developed (Fig. 1.7). The two terms are almost equal;
in fact, in the mate-pair technology, the distance between the two ends of the DNA
fragment can be very far.

In this technology, total genomic DNA is sheared into overlapping specific size
fragments (approximately 1,500 bp); then, using a ‘‘cap adaptor’’ and, following
that, an ‘‘internal adaptor,’’ the resulting fragments are circularized. In each of
these circularized fragments, the two ends of original linear fragments have now
been located beside each other. In the next step, using the activity of a nuclease
enzyme, two breaks are made on the circularized fragments so that two linear
DNA fragments with a distinct size result: one fragment includes the two ends
(hence its name—‘‘paired-end’’) of the original linear fragment (about 200 bp;
100 bp of each end), and the other includes the area between the two ends in the
original linear fragment (Fig. 1.8). The resulting paired-end library can then be
sequenced, and the data that results allows scaffolding of the contigs, thereby
minimizing difficulties due to lack of information about the possible location of
each fragment.

Fig. 1.8 Using paired-end
reads, repeats can be
unambiguously aligned in
complex genomes
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1.3.3 Problems with Parallelization

Automated sequencing can be performed for only 96 or 384 samples per run, and
this is considered to be a limitation for parallel analyses and, consequently, massive
sequencing projects such as whole genome sequencing will be too time-consuming.

1.3.4 Cost

After three decades of gradual reductions in cost, the Sanger sequencing method
costs about $0.50 per kilo base, which still too high to be practical for many
important research projects [6]. Since one of the final goals of sequencing tech-
niques is to obtain the genome sequence for all individuals to fully understand
genome variation, genetic susceptibility to disease and the pharmacogenomics of
drug response, considerable reduction in sequencing methods is required. The
National Human Genome Research Institute (NHGRI) reflected this need in 2004,
and the J. Craig Venter Science Foundation announced a U.S. $500,000 prize to the
group or individual who ‘‘significantly advances automated DNA sequencing…’’.

1.3.5 Need for Complete Automation

There are difficulties in the complete automation of sample preparation. Sanger
sequencing can be performed only when high concentrations of DNA are available
and, as previously mentioned, the generation of large populations of DNA frag-
ments are carried out through bacterial cloning steps, which are tedious and time-
consuming and cannot be done automatically.

References

1. Dahm, R. (2008). Discovering DNA: Friedrich Miescher and the early years of nucleic acid
research. Human Genetics, 122(6), 565–581.

2. Pray, L. (2008). Discovery of DNA structure and function: Watson and Crick. Nature
Education, 1(1) http://www.nature.com/scitable/topicpage/discovery-of-dna-structure-and-
function-watson-397.

3. Chargaff, E. (1950). Chemical specificity of nucleic acids and mechanism of their enzymatic
degradation. Cellular and Molecular Life Sciences, 6(6), 201–209.

4. Nowrousian, M. (2010). Next-generation sequencing techniques for eukaryotic microorgan-
isms: Sequencing-based solutions to biological problems. Eukaryotic Cell, 9(9), 1300–1310.

5. Mardis, E. R. (2008). Next-generation DNA sequencing methods. Annual Review of Genomics
and Human Genetics, 9, 387–402.

6. Shendure, J., et al. (2004). Advanced sequencing technologies: Methods and goals. Nature
Reviews Genetics, 5(5), 335–344.

1.3 Some Drawbacks of the Sanger Technique 9

http://www.nature.com/scitable/topicpage/discovery-of-dna-structure-and-function-watson-397
http://www.nature.com/scitable/topicpage/discovery-of-dna-structure-and-function-watson-397


Chapter 2
Emergence of Next-Generation
Sequencing

Although in the past few years the genome of several species, as well as humans,
were sequenced using the automated Sanger method, the above-mentioned limi-
tations of this method indicated a need to develop new and improved sequencing
technologies to sequence the large number of human genomes and to find answers
to biological problems of interest that could not be addressed before [1, 2]. For
example, advances in sequencing technology would help in the development in
fields such as:

1. Comparative genomics, which involves comparing the genome of distinct
organisms to learn about their molecular programs.

2. Biomedical research, through which so many problems concerning the genetic
basis of susceptibility to diseases, multi-factorial diseases, and cancer therapy
can be investigated. The detection of different genomic and epigenomics
alterations, such as single nucleotide mutations, small insertions and deletions,
chromosomal rearrangements, copy number variations, and DNA methylation
can be facilitated using advanced sequencing technologies [3].

3. Personal genome projects (individual genome sequencing) that impact human
health, by becoming one of the major components of personalized health care
by providing accurate diagnosis, prognosis and guidance for treatments [3, 4].

Subsequently, several research centers initiated the designing of new
sequencing technologies not needing gels, which would allow sequencing large
numbers of samples in parallel [5]. These technologies are known as Next-gen-
eration DNA sequencing (NGS) methods in which the bacterial cloning steps have
been removed (in comparison with the Sanger method). Three major NGS methods
that are routinely used in many laboratories today include:

1. The Roche/454 FLX (http://www.454.com)
2. The Illumina/Solexa Genome Analyzer (http://www.illumina.com)
3. The Applied Biosystems SOLiDTM System (http://marketing.appliedbio-

systems.com)

A. Masoudi-Nejad et al., Next Generation Sequencing and Sequence Assembly,
SpringerBriefs in Systems Biology, DOI: 10.1007/978-1-4614-7726-6_2,
� The Author(s) 2013
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Another three massively parallel technologies that have been introduced more
recently include the Polonator (Dover/Harvard), the HeliScope Single Molecule
Sequencer technology (Helicos; Cambridge, MA, USA) [6, 7], and the Ion Semi-
conductor (Torrent Ion Sequencing). The single molecule real time (SMRT) [Pacific
Biosciences] and Nanopore Sequencing [8] are another two newly introduced
technologies that are based on the sequencing of single molecules. The biochemical
reaction principles of each of the above-mentioned methods will be described later.

De novo sequencing versus resequencing
There are two major types of sequencing projects in terms of application. In de

novo sequencing, the genome of an organism is sequenced for the first time. In
resequencing projects, the whole genome of an organism—or parts of it—is
sequenced while the reference sequenced genome for the species of that organism
is already available.

Sequencing depth (coverage) versus sequencing breadth
Maximum sequencing efficiency is achieved as a consequence of both depth

(coverage) and uniform read distribution (breadth). Sequencing depth or coverage
concerns the average number of times each base in the genome is sequenced. For
example, to sequence a 3 Gb human genome with 10x coverage, 30 Gb of
sequenced data is needed. Sequencing breadth refers to the percentage of the
genome that is covered by sequenced reads.

2.1 454 Pyrosequencing

454 Life Science (Branford, CT, USA) was the first next-generation sequencing
technology that was commercially available (in 2005) (later acquired by Roche)
[7] and was also the first NGS technology to sequence a complete human genome,
that of Dr. James D. Watson [9]. This technique was first successfully validated by
sequencing of the entire 580,069 bp of the Mycoplasma genitalia genome at 96 %
coverage and 99.96 % accuracy in a single run. This method is based on using an
alternative sequencing technique called ‘‘pyrosequencing,’’ which was first intro-
duced by PålNyrén and Mostafa Ronaghi at Stockholm’s Royal Institute of
Technology in 1996. The maximum length of sequenced reads by the 454 System
was 450 bp at first and has now been increased to about 700 bp. (Note that most of
the road’s length presented here for discussed platforms is subjected to rapid
changes and are appropriate just for comparison between different platforms.) In
pyrosequencing, which uses the ‘‘sequencing by synthesis’’ concept (it differs from
the Sanger sequencing method in that it depends on the detection of pyrophosphate
release on nucleotide incorporation rather than chain termination with dideoxy-
nucleotides) [10], the incorporation of each of four nucleotides which are added in
a certain order in each step results in the release of pyrophosphate, which in the
presence of adenosine 50 phosphosulfate can be converted to ATP by enzyme ATP
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sulfurylase. This ATP in turn acts as a substrate for a chemiluminescent enzyme,
luciferase, which converts luciferine to oxyluciferine and visible light that can be
detected by a charged coupled device (CCD) camera for further analyses. The
amount of generated light is proportional to the number of incorporating nucleo-
tides. Since dATP can act directly as a substrate for Luciferase and subsequently
generate light without necessarily needing for incorporation of dATP, in order to
prevent any bias, dATPaS, which can precisely incorporate DNA strand while not
a substrate for luciferase enzyme, is used instead of dATP. In each step, unin-
corporated nucleotides are degraded, using an enzyme called apyrase to exclude
the possibility of incorporation of nucleotides remaining from the previous steps.
The process can be continued with another step of nucleotides additions [11].

In the 454 approaches, genomic DNA is first fragmented into smaller pieces and
short adaptors are then ligated to blunt ends (30 and 50 ends) of the single-stranded
fragments (Fig. 2.1a). These adaptors flanked fragments are then mixed with small
28-lm streptavidin-coated beads whose surfaces have been covered with short
sequences complementary to one of the ligated adaptors. Fragments are then
hybridized to their corresponding beads in such a way that each bead carries a
unique fragment. Fragment amplification must be performed for intensifying the
light signal that is required for precise detection of added bases by CCD camera
[5]. Amplification of DNA fragments are performed through emulsion PCR in
which all required reagents are provided in droplets of water in oil mixture which
acts as a micro-reactor for every single bead; consequently, it guarantees that every
bead is covered by single-type strands at the end of the amplification step. After
breaking the emulsions, the beads whose surfaces have been now covered with
about one million copies of each amplified fragment are first pre-incubated with
the DNA polymerase enzyme and then loaded onto a PicoTiterPlate device so that
each single bead is deposited in a well with the dimensions that can contain only
one bead [6]. The wells are then filled with smaller beads (1-lm) that carry
immobilized enzymes required for pyrosequencing (sulfurylase and leuciferase)
and also help beads to deposit in the wells gravitationally [12]. PicoTiterPlates are
centrifuged to ensure that the enzymes are in close contact with the DNA beads
[13]. The loaded plates are placed in a 454 FLX instrument in which sequencing
reagents (dNTPs and buffers) are delivered to the wells of the plate. The
pyrosequencing technique is initiated with the sequential addition of four nucle-
otides, as previously explained (Fig. 2.1b).

When a nucleotide is added to the growing chain, a signal is recorded by a CCD
camera as a result of the generation of light. As mentioned, the signal strength is
proportional to the number of nucleotides, and in the case of homopolymers (the
stretches of only one nucleotide type), the signal intensity is higher than that of a
single nucleotide. However, signal strength can be precisely detected only for less
than 10 consecutive nucleotides; after that, the signal declines rapidly [7]. As a
result of this drawback, the insertion and deletion error rates are the most fre-
quently observed errors in this method. The substitution error rate of this method
(10-3– 10-4) is higher than the rates for the traditional Sanger method. However,
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the background error rate of the Sanger method that arises from in vitro amplifi-
cation steps that introduce the error in the sample before performing sequencing, is
higher [12].

Fig. 2.1 A schematic representation of 454 pyrosequencing technology. a Construction of
adaptor flanked DNA fragment, DNA amplification on the beads’ surface and formation of
‘‘clone beads.’’ b Deposition of beads into ‘‘picotiter plate’’ wells. In the pyrosequencing method,
incorporation of each nucleotide is determined by the detection of light generated by the activity
of luciferase enzyme in the presence of ATP and luciferine [5]
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2.2 Illumina (Solexa) Genome Analyzer

The Genome Analyzer first introduced by Solexa in 2006 (San Diego, CA, USA)
and then further developed by Illumina. At first the resulting reads were very short
(36 bp or less) compared to Sanger methods. Since then, many technical
improvements have been introduced to this method, resulting in increased read
length to up to 100 bp [12]. Since millions of reads can be generated in parallel
(simultaneously), reassembling of these reads using efficient algorithms results in
useful outputs.

In this method, a DNA library can be constructed by any method that generates
adaptor-flanked fragments up to several hundred base pairs in length (Fig. 2.2a)
[6]. Template amplification is performed with a method called ‘‘bridge PCR,’’ in
which both forward and reverse primers that are complementary to the adaptors’
sequences are attached to a solid surface called ‘‘flow cell,’’ containing eight
independent channels that allow performing PCR amplification on its surface. The
name ‘‘bridge PCR’’ refers to the fact that during the annealing step, the extension
product from one bound primer forms a bridge to the other bound primer and its
complementary strand is synthesized. Since each initial single fragment has been
tethered to a distinct channel on the surface, the amplified fragments form clusters,
each of which contains approximately one million copies of the initial fragment
that would be sufficient for sequencing reaction (Fig. 2.2b). Moreover, each cluster
contains both forward as well as reverse strands of the original sequences, but to
have homogenous populations of strands in each cluster, which can be sequenced
precisely without the interference of the complementary strand, one of the strands
must be removed before initiating the sequencing process [12]. The sequencer
adopts the technology of sequencing by synthesis. In this method, four reversible
blocked nucleotides (30-OH is chemically blocked), which then transiently block
the extension of nucleotides, are added to the reaction. Following the incorporation
of each nucleotide, the imaging step is carried out. After the acquisition of images
in each cycle, the 30-OH blocking group is chemically removed and another cycle
can subsequently be initiated. The steps of adding nucleotides and other PCR
reagents and capturing image can be continued for a specific number of times and
ultimately generate 100 bp reads.

The first Illumina sequencer, GA, as already described, was introduced in 2006.
The performance of GA was improved from 1G/run to 85G/run in the GAIIX
series, which was released in 2009. In early 2010, Illumina launched HiSeq 2000,
which adopts the same sequencing strategy with GA. Its initial output was 200G
per run, and improved to 600G per run currently, which could be finished in
8 days. In 2011, MiSeq, a bench-top Illumina sequencer, was introduced; it shared
most technologies with HiSeq. MiSeq is especially convenient for amplicon and
bacterial sample sequencing [14].
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Fig. 2.2 Illumina (solexa) sequencing by synthesis technology. a Clonal amplification of adaptor
flanked fragments is performed by bridge PCR and then single-stranded DNA is produced for
sequencing step. b Base detection is conducted by the addition of four labeled reversible blocked
nucleotides, primers and a DNA polymerase enzyme. After each nucleotide incorporation, the
image of emitted fluorescence is captured and then the 30 blocked nucleotide and the fluorescent
dye are removed to permit initiating another cycle of nucleotide detection [7]
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2.3 Applied Biosystems SOLiD Sequencing

The SOLiD system, which became commercially available in late 2007, was
developed by J.S. and colleagues in collaboration with McKernan and colleagues
at Agencourt Personal Genomics, later acquired by Applied Biosystems and now
part of Life Technologies (Carlsbad, CA, USA). In this method, the library of
adaptor-flanked DNA fragments is constructed similarly to the previously men-
tioned NGS methods. Clonal amplification is performed, as mentioned earlier, for
the 454 pyrosequencing platform through emulsion PCR using small magnetic
beads (1-lm in diameter) to which DNA fragments can be bound, so that each
bead carries an individual fragment. After amplification of DNA fragments, ‘‘bead
clones’’ that have now been covered by nucleic acid species, are selectively iso-
lated and are tethered to a solid surface—a ‘‘flow cell,’’ via 30 modification of
DNA strands. This flow cell is basically a microscope slide that can be serially
exposed to liquids. A universal primer, which is complementary to the common
adaptor in each fragment, is annealed to the DNA fragment. In the SOLiD method,
unlike other NGS technologies, which base detection of DNA fragments, is per-
formed through polymerase reaction; this is achieved by sequencing by ligation. A
library of fluorescently labeled octamers (four distinct fluorescent dyes) is con-
structed with the following composition: each octamer has a specific dinucleotide
(out of 16 possible combinations), which in different versions of ABI-SOLiD
sequencing chemistry is different (for example, in ABI SOLid v.2.0 positions 1 and
2 and in the original version, bases 4 and 5 are utilized). The rest of the bases have
completely random (degenerate) composition. Each octamer also holds one of four
fluorescent dyes—most often at position 6, which correlates with the composition
of dinucleotide in that octamer. The sequencing process can be conducted as
follows:

(1) A universal primer with ‘‘n’’ nucleotides anneals to each DNA fragment, and
then a mixture of octamers with specific dinucleotide composition is added
and one whose specific dinucleotide is matched with a template then can be
hybridized, which will be followed by the process of ligation in the presence
of enzyme ligase.

(2) In this step, an image is taken (the specific fluor is detected, which corresponds
to the specific dinucleotide composition; in fact, each fluorescent dye is in
correlation with four dinucleotide combinations—see Fig. 2.4). The unex-
tended fragments are capped in the presence of the same mixture of
nonfluorescent dinucleotides.

(3) In the next step, the last three bases of octamer (i.e., the bases 6, 7 and 8) along
with the fluorescent dye are chemically removed, so five bases of octamer are
left behind and the above steps are repeated for base 6 and 7. This step is
typically repeated 10 times [12] and at the end, the fluorescent colors, cor-
responding to 10 dinucleotides (1/2, 6/7, 11/12, 16/17, 21/22, 26/27, 31/32, 36/
37, 41/42 and 46/47) is determined.
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(4) In the next step, the initial primer and all ligated portions are melted and
discarded, and another round of primer annealing, ‘‘primer reset,’’ is started
with a primer with ‘‘n-1’’ nucleotides via repeating steps 1–3, and this time the
position of nucleotides 0/1, 5/6, 10/11, 15/16, 20/21, 25/26, 30/31, 35/36, 40/
41 and 45/46 is detected. After five primer reset cycles, approximately 50
contiguous nucleotides have been generated. In each of which nucleotides
have been detected by two separate dinucleotides (Fig. 2.3a).

Since there are 16 possible combinations of dinucleotides (42) and only four
fluorescent dyes (Fig. 2.3b), nucleotide identity detection would not be possible
only from data color obtained from the incorporation of dinucleotides. The dinu-
cleotide composition of the first dinucleotide, i.e., nucleotides 0/1, is readily
deduced from its fluorescent signal because the first base of newly synthesized
strand corresponds to the last base of the universal primer, whose composition is
obvious and will help decode the composition of other dinucleotides from their
corresponding fluorescent signals [12]. An alternative procedure to primer reset
after the first round discussed above is to use octamers with different positions of
dinucleotides. For example, in the second round, different positions of octamer
mixture (e.g., bases 4 and 5) can be correlated with the identity offluorescent dye [8].

2.4 Ion Semiconductor (Ion Torrent Sequencing)

Ion Torrent sequencing technology uses simple sequencing chemistry in which no
enzymatic reaction, no fluorescence, no optic, and no light are used to determine
the sequence of a DNA fragment (Life technologies). This technology, which is
one of the least expensive methods, has been introduced to research and clinical
laboratories as a personal genomic machine. The biochemical basis of this system
is very simple and involves the release of hydrogen ion following the incorporation
of a nucleotide into a strand of DNA by DNA polymerase (Fig. 2.4a). To carry out
this biochemical process in a highly parallel way, Ion Torrent uses a high-density
array of micro-machined wells that is provided on the Ion Torrent proprietary
microchips. There is an Ion-sensitive field effect transistor (ISFET) below the
wells that detects the change in pH as a result of hydrogen release. This change is

b Fig. 2.3 Schematic representation of the steps involved in AB-SOLiD sequencing. a After initial
primer (n-nucleotides) annealing, seven cycles of oligonucleotide hybridization and ligation,
imaging and cutting the 50 three nucleotides along with fluorescent dye is performed. Then the
initial primer and extended strand are removed, which is followed by annealing a new primer
with n-1 nucleotides (primer reset). Following that, all the above-mentioned steps are repeated.
Repeating primer resets four times results in 35-base generation. b Dinucleotide encoding by four
fluorescent dyes and decoding of each base using two dinucleotides. Alignment of the color-space
reads of the particular sequence with color-space reads of the reference genome will result in SNP
identification [1, 7]
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recorded as a potential change (DV) by an ion sensor layer that indicates the
nucleotide incorporation event [15] (Fig. 2.4b).

Calling the bases by this method goes like this: Following the addition of a
certain base to a DNA template (‘‘A,’’ for example), if it is incorporated in to the
DNA strand, a hydrogen ion will be released and consequently the charge of that
ion will change the pH of the solution that can be detected by the ion sensor
(Fig. 2.4c). The chip will be flooded by introducing one nucleotide after another. If
no incorporation occurs following the addition of a nucleotide, no voltage change is

Fig. 2.4 Schematic work flow of Ion Torrent sequencing technology. a Release of a hydrogen
ion as a byproduct following the incorporation of a nucleotide. b High-density array of micro-
machined wells. A different DNA template is held in each well. Beneath the wells is an ion-
sensitive layer and beneath that a proprietary Ion sensor. c Following the incorporation of the
added nucleotide and release of hydrogen ion, change of the pH (chemical signal) is translated
into digital information. d In the case of no incorporation, no voltage change is recorded. e If
there are two identical bases on the DNA strand, the voltage will be double (taken from Life
TechnologiesTM)

20 2 Emergence of Next-Generation Sequencing



recorded, and as a result no base will be called. In the case of the presence of two
consecutive identical bases on the DNA strand, the voltage will be doubled, and as a
result, two identical bases will be recorded. The size of DNA fragments that can be
sequenced by this method was first 100 bp and now has been improved to 400 bp.

2.5 Polonator Technology

Polony sequencing technology was first introduced by Dr. George Church’s group
at the Harvard Medical School. Unlike other sequencing technologies, it has open-
source software and free downloadable protocols. The polony sequencing method
is begun by paired-end-tag library construction (Fig. 2.5). The Target DNA
sequence is randomly sheared, and then the fragments—about 1 kb in size—are
selected. After making the ends of these fragments blunt and A-tailing, in which an
A is added to the 30 ends of fragments, the fragments are circularized, using 30 bp-
synthesized oligonucleotides (T30) with two outward facing recognition sites for a
type II restriction enzyme (Mme1); then amplification will occur, using rolling
circle replication. In the next step, the amplified circularized DNA is subjected to
MmeI, which cuts at a distance of 17–18 bp after detecting the recognition site,
and this results in the generation of a fragment of about 70 bp from which 30 bp
belongs to T30 and the rest belongs to two 17–18 bp flanking regions or tags. The
resulting fragments then end repaired and two emulsion-PCR primers will be
attached to their 30 and 50 ends, resulting in the production of a 135 bp fragment
that is then subjected to amplification. These 135 bp fragments construct a paired-
insert library. Emulsion PCR is then performed on these fragments, using strep-
tavidin-coated beads that have a complementary oligonucleotide of forward primer
in each 135 bp fragment. Following that, the resulting emulsion droplets are
broken. As a result of inequality in the distribution of the templates on the surface
of the beads, the emulsion PCR yields empty, clonal and non-clonal beads [8], and
an enrichment procedure must consequently be conducted to produce a dense
population of clonal beads. The beads are then immobilized on the surface of the
flow-cell for sequencing.

The following steps are carried out during polonator sequencing: after inserting
the flow cell in the polonator instrument, each flow cell is subjected to a stream of
a mixture of anchored primers where they can be hybridized to the 3 or 5 ends of
the two 18 bp flanking oligonucleotides (a total of four possible positions are
available).

Following that, a completely degenerate mixture of fluorescently labeled nona-
mers (in each of which the identity of one position corresponds to the identity of the
fluorescent dye that is bound to it: 50 Cy5-NNNNNNNNT, 50 Cy3-NNNNNNNNA,
50TexasRed-NNNNNNNNC, 50 6FAM-NNNNNNNNG) and T4 DNA ligase flow
into the cell. A fluorescent signal is generated when ligation selectively occurs
between the anchored primer and corresponding nonamer. In the following step, the
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Fig. 2.5 Steps for Polony sequencing method. a Paired genomic tag construction using universal
linker (T30) for circularizing DNA fragment and MmeI for making a cut 17–18 bp outside T30.
b Ligation of two emulsion PCR primers at the ends of the resulted fragment. c In the next step,
emulsion PCR is performed, resulting in empty, clonal and non-clonal beads. d The enrichment
step, which involves bringing together the clonal beads. e Conducting sequencing using
continuous cycles of occurring ligation process between anchored primers and fully degenerate
fluorescently labeled nonamers in each of which the identity of only one base is known and a
fluorescent label has been attached to each nonamer according to that base
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imaging step is conducted, and after that the primer-nonamer complex and ligase are
removed and then another cycle of sequencing can be begun with a new mixture of
nonamers in which the query position is one base shifted further into the 17–18 bp
tags (50Cy5-NNNNNNNTN, 50Cy3-NNNNNNNAN, 50TexasRed-NNNNNNNCN,
50 6FAM- NNNNNNNGN) and new primers. Using DNA ligase, the query position
can be precisely determined when the distance between it and the ligation site is 7
bases in 50 to 30 direction and 6 bases in 30 to 50 direction. As a result, totally 26 bp
from two 17–18 bp tags (13 bp from each) can be sequenced with a 4–5 bp gap
within each tag.

2.6 Heliscope (Single Molecule Sequencing)

Heliscope, which was one of the first techniques for sequencing a single DNA
molecule, was introduced by Braslavsky et al. in 2003 and licensed by Helicos
biosciences in 2007. Using this method, large research projects can be conducted
in less time, and fewer errors and lower expenses since there is no need for DNA
sample amplification [16]. This method, which is carried out on single DNA
molecules, is conducted on an instrument called the Heliscope sequencer and uses
the sequencing by synthesis technique. The DNA sample is first sheared into small
pieces (100–200 bp) and then becomes adaptor-flanked. This adaptor is usually a
poly-A tail, and adaptor-flanked fragments can consequently be tethered to a
surface of flow cells on which poly-T oligonucleotides have been bound (Fig. 2.6).
After the attachment of fragments, a mixture of a single-labeled nucleotide and
polymerase are streamed into the surface and the polymerase will add nucleotide
wherever it is complementary to the first positions of the attached fragments. Then
the image is taken from all bound fragments that contain incorporated labeled
nucleotides. The next cycle of nucleotide incorporation can be performed when the
label attached to incorporated nucleotides is cleaved off (this is somewhat similar
to the Illumina technology, in which reversible blocked nucleotides were utilized).
Nucleotide incorporation can be continued up to 25–45 bases.

2.7 Latest Developments in Next-Generation Sequencing
Methods

Since introducing the Helicos system, many attempts have been made to generate
efficient sequencing technologies relying on single molecules, excluding the need
for an amplification step. The two most promising such technologies are
nanopore DNA sequencing and Pacific single molecule real time (SMRT) DNA
sequencing.
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Fig. 2.6 Schematic of Helicos sequencing method. After shearing a single DNA molecule into
small pieces and poly-A tailing (shown in orange), these fragments are bound to the surface of
the flow cell using poly-T already attached to the surface (shown in dark blue). Once polymerase
and labeled single base flow into the surface, nucleotide incorporation occurs wherever
complementarities exist between the added base and the first position of attached DNA
fragments. Unincorporated bases are washed from the flow cell. Then a camera scans the entire
surface to realize on which fragments the new bases have been added. In the next step, the
labeling dye and the inhibitor attached to incorporated bases are cleaved off and consequently
another cycle of introducing new labeled nucleotide and polymerase can be begun [1]
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2.7.1 Nanopore Sequencing

A few nanopore sequencing methods have been introduced; in all of them, the
sequence of a DNA fragment can be identified based on the translocation of a
single-stranded DNA molecule through a thin membrane. One of the main features
of nanopore techniques is the ability to thread extremely long DNA molecules.
Moreover, solid state sub-5 nm pores can be parallelized in the form of a very
condensed array [17]. Two nanopore sequencing techniques are described here:

The technique that was introduced by Oxford Nanopore Technologies seems to
be able to achieve the US National Institutes of Health’s goal of decreasing the
cost for sequencing of the entire human genome to $1,000 in the near future. In
this sequencing platform, there is no need for any DNA fragment shearing,
amplification step, fluorescently labeled nucleotides and optical instrumentation
for detecting fluorescent labels. This technology has its origin in threading a
single-stranded DNA molecule through a nanoscale protein pore (staphylococcal
a-haemolysin) created in a membrane under an applied potential (Fig. 2.7).
Passing a DNA strand through the pore results in fluctuation of the ionic current.
The translocation of each base through the pore causes a decrease in current
intensification which is specific for each kind of base. In fact, while each of the
four bases passes through the pore, a different amount of current can translocate,
and this is the key feature in base identification. However, there is difficulty in the
base registration step as a result of the high speed with which DNA strand passage
takes place, which in turn results in the current resolution that is essential for the
precise detection of bases. This problem may be overcome by recent works that
reduce the speed of DNA translocation through the pore [18].

In another nanopore sequencing technique proposed by McNally, the target DNA
is first subjected to a biochemical preparation step in which each base of the
sequence is converted into a form that can easily be read using a solid state nanopore.
In fact, each of the four bases (A, C, G, and T) in the target DNA is converted to a
predefined sequence of oligonucleotides, which is hybridized with a molecular
beacon that carries a specific fluorophore (McNally). Molecular beacons are oli-
gonucleotide probes that can report the presence of specific nucleic acids in
homogenous solutions. Molecular beacons are hairpin- shaped molecules with an
internally quenched fluorophore whose fluorescence is restored when they bind to a
target nucleic acid [19]. For a two-color readout (i.e., two types of fluorophores), the
four sequences are combinations of two predefined unique sequences, bit ‘‘0’’ and bit
‘‘1,’’ such that an A would be ‘‘1 1,’’, a G would be ‘‘1 0,’’ a T would be ‘‘0 1’’ and
finally a C would be ‘‘0 0’’ (Fig. 2.8a). Two types of molecular beacons, carrying
two types of fluorophores, hybridize specifically to the ‘‘0’’ and ‘‘1’’ sequences. The
converted DNA and hybridized molecular beacons are electrophoretically passed
through a solid-state pore where the beacons are sequentially removed. Each time a
beacon is removed, a new fluorophore is lighted, which results into a burst of photons
recorded at the location of the pore (Fig. 2.8b). This method allows wide field
imaging and spatially fixed pores that make possible the simultaneous detection of
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several pores using a special camera, Electron multiplying charged coupled device
(EM-CCD) [17].

2.7.2 Single Molecule Real Time DNA Sequencing

This technique was introduced by Pacific Biosciences in 2009. It is based on the
observation of the performance of polymerase during DNA synthesis. On this

Fig. 2.7 Schematic representation of nanopore sequencing system. (1) The upper protein is used
to make the DNA molecule single stranded. (2) The second protein forms a nanopore in a
membrane. It also contains an adaptor molecule. (3) Each base obstructs the flow to a different
degree. (4) The adaptor is basically used to reduce the speed of passing DNA through the pore,
which is necessary for the exact identification of the DNA strand base composition (picture from
MIT’s Technology Review)
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Fig. 2.8 Another version of nanopore sequencing methods introduced by McNally. a The
biochemical preparation step involving conversion of each base of the sequence into an
oligonucleotide that can be hybridized with a molecular beacon. b The threading of the beacon
hybridized oligonucleotides through a nanopore makes it possible to detect optical signals. The
signals are projected onto a wide field imaging screen that is very useful in the simultaneous
detection of several pores using an EM-CCD camera [17]
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platform, SMRT cells are used, with each cell having thousands of zero-mode
waveguides (ZMWs), which are holes in a surface that acts as a nanoscale
chamber. In each ZMW (which is tens of nanometers in diameter), a single
molecule of DNA polymerase is attached to the bottom surface (Fig. 2.9a).

The accuracy and the speed of performance of the polymerase depend on high
concentrations of nucleotides, and since the nucleotides are fluorescently labeled,
this will lead to the background noise that creates difficulties in nucleotide
incorporation detection. To overcome this problem, the detection volume in SMRT
has been reduced to 20 zeptoliters (10-21 liters). This considerable reduction of
detection volume can reduce the effect of background noise. One of the main
differences between SMRT and previously described methods is the site of
attachment of the fluorescent label. In other systems, the fluorescent label is
attached to the base in nucleotides and consequently the labels remain attached
after nucleotide incorporation, which leads to an increase in background noise.
Moreover, incorporation of multiple bases will also lead to the creation of a steric
hindrance as a result of the physical bulk of several dye molecules, which in turn
leads to the limitation of enzyme activity. In SMRT technology, the fluorescent
label is attached to the phosphate chain, and as a result of nucleotide incorporation
the pentaphosphate-label couple will be removed from the nucleotides and will
diffuse out of the reaction volume (Fig. 2.9b) [20], (Pacific Biosciences, 2009.
Single Molecule Real Time (SMRTTM) DNA Sequencing) [1]).

Fig. 2.9 a The zero-mode waveguide (ZMW) design with an attached polymerase at its bottom.
b Each incorporated phospholinked nucleotide will reside on the enzyme’s active site for a few
milliseconds, which is enough time for a fluorescent signal to be recorded. The released labled
pentaphosphates will diffuse quickly [1]
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2.8 Comparison of Available Next-Generation Sequencing
Techniques

Already available next-generation sequencing methods are distinguished from
each other based on various characteristics including maximum read length,
number of reads in each run (degree of parallelization), run time, and many others.
Table 2.1 compares the performances of various next-generation sequencing
instruments [9]. Note that most of the information provided here is subject to rapid
changes and it is suitable just for general comparison between techniques.

2.9 DNA Sequencing Costs

For many years, the National Human Genome Research Institute (NHGRI) has
tracked the costs associated with DNA sequencing performed at the sequencing
centers funded by the Institute. This information serves as an important benchmark
for assessing improvements in DNA sequencing technologies and for establishing
the DNA sequencing capacity of the NHGRI Genome Sequencing Program. The
cost-accounting data presented by NHGRI is on the basis of (1) ‘‘Cost per meg-
abase’’ (Mb: 1 million base) of DNA sequence (Fig. 2.10a); and (2) ‘‘Cost per
genome’’ (human-size genome) (Fig. 2.10b). In each represented graph, a com-
parison has been made between the cost data and Moore’s Law, which describes a
long-term trend in the computer hardware industry that involves the doubling of
‘‘compute power’’ every 2 years. Technology improvements that ‘‘keep up’’ with
Moore’s Law are widely regarded to be doing exceedingly well, making it useful
for comparison (National Human Genome Research Institute.genome.gov). The
reduction of the cost of DNA sequencing per megabase and per genome from 2001
until 2012 is also represented in Table 2.2.

2.10 Sequencing Status

The number of completed sequenced genomes and the number of genome
sequencing projects that are in progress are reported daily by Genome online
database (GOLD). Table 2.3 shows the sequencing status until March 29, 2013.

2.8 Comparison of Available Next-Generation Sequencing Techniques 29



T
ab

le
2.

1
C

om
pa

ri
so

n
of

av
ai

la
bl

e
ne

xt
-g

en
er

at
io

n
se

qu
en

ci
ng

m
et

ho
ds

’
ch

ar
ac

te
ri

st
ic

s

In
st

ru
m

en
t

R
ea

d
le

ng
th

(n
uc

le
ot

id
es

)
N

o.
of

re
ad

sa
O

ut
pu

t
(G

b)
a

N
o.

of
sa

m
pl

es
a,

b
R

un
ti

m
e

A
dv

an
ta

ge
s

D
is

ad
va

nt
ag

es

R
oc

he
45

4
G

S
F

L
X

+
70

0c
1

9
10

6
0.

7
19

2d
23

h
L

on
g

re
ad

s,
sh

or
t

ru
n

ti
m

e
H

om
op

ol
ym

er
er

ro
rs

,
ex

pe
ns

iv
e

ll
lu

m
in

a
H

iS
eq

20
00

10
0e

3
9

10
9

60
0

38
4

11
da

ys
f

H
ig

h
yi

el
d

N
o.

of
in

de
x

ta
gs

li
m

it
in

g
L

if
e

te
ch

no
lo

gi
es

S
O

L
iD

55
00

xl
75

g
15

9
10

9
18

0
1,

15
2

14
da

ys
f

In
he

re
nt

er
ro

r
co

rr
ec

ti
on

S
ho

rt
re

ad
s9

R
oc

he
45

4
G

S
ju

ni
or

40
0c

1
9

10
5

0.
03

5
13

2
9

h
L

on
g

re
ad

s
H

om
op

ol
ym

er
er

ro
rs

,
ex

pe
ns

iv
e

Il
lu

m
in

a
M

iS
eq

15
0

5
9

10
6

15
96

27
h

S
ho

rt
ru

n
ti

m
e,

ea
se

of
us

e
E

xp
en

si
ve

pe
r

ba
se

Io
n

to
rr

en
t

P
G

M
io

n
31

6
ch

ip
[

10
0h

1
9

10
6

0.
1

16
2

h
S

ho
rt

ru
n

ti
m

e,
lo

w
re

ag
en

t
co

st
N

ot
w

el
l

ev
al

ua
te

d
H

el
ic

os
bi

os
ci

en
ce

s
H

el
iS

co
pe

35
h

1
9

10
9

35
4,

80
0

8
da

ys
S

M
S

,
se

qu
en

ce
s

R
N

A
S

ho
rt

re
ad

s,
hi

gh
er

ro
r

ra
te

P
ac

ifi
c

bi
os

ci
en

ce
s

P
ac

B
io

R
S

[
1,

00
0h

1
9

10
5

0.
1

1
90

m
in

S
M

S
,

lo
ng

re
ad

s,
sh

or
t

ru
n

ti
m

e
H

ig
h

er
ro

r
ra

te
,

lo
w

yi
el

d
a

N
um

be
rs

ca
lc

ul
at

ed
fo

r
tw

o
fl

ow
ce

ll
s

on
H

iS
eq

20
00

an
d

S
O

L
iD

55
00

xl
b

C
al

cu
la

te
d

as
no

.
of

in
de

x
ta

gs
(p

ro
vi

de
d

by
th

e
se

qu
en

ci
ng

co
m

pa
ny

)
x

no
.

of
di

vi
si

on
s

on
so

li
d

su
pp

or
t

c
A

ve
ra

ge
fo

r
si

ng
le

-e
nd

se
qu

en
ci

ng
,

pa
ir

ed
-e

nd
re

ad
s

ar
e

sh
or

te
r

d
N

o.
of

re
ad

s
de

cr
ea

se
s

w
he

n
th

e
P

ic
oT

it
er

P
la

te
is

di
vi

de
d

e
36

nu
cl

eo
ti

de
s

fo
r

m
at

e-
pa

ir
re

ad
s

f
R

un
ti

m
e

de
pe

nd
s

on
th

e
re

ad
le

ng
th

,
an

d
on

w
he

th
er

on
e

or
tw

o
fl

ow
ce

ll
s

ar
e

us
ed

g
S

ec
on

d
re

ad
in

pa
ir

ed
-e

nd
se

qu
en

ci
ng

is
li

m
it

ed
to

35
nu

cl
eo

ti
de

s,
an

d
m

at
e-

pa
ir

re
ad

s
to

60
nu

cl
eo

ti
de

s
h

A
ve

ra
ge

S
M

S
=

si
ng

le
m

ol
ec

ul
e

se
qu

en
ci

ng

30 2 Emergence of Next-Generation Sequencing



2.11 Shortcoming of NGS Techniques: Short-Reads
and Reads Accuracy Issues

The common problem with all current NGS technologies is the short length of reads
(sequenced fragments) and higher error rate than those of the traditional Sanger
sequencing method. The short-reads that are produced in these methods are espe-
cially problematic when large DNA fragments, e.g., a whole genome, is to be
sequenced [1]. This drawback is an issue especially in sequencing new genomes

Fig. 2.10 Reduction in the cost of sequencing between 2001 and 2012. a The graph of the cost
per megabase of DNA and b The graph of the cost per human-size genome. Also in each graph is
hypothetical data reflecting Moore’s Law (National Human Genome Research Institute.genome.
gov)
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(with no prior knowledge of the relative position of fragments) and in sequencing
highly rearranged genome segments such as one might discover in cancer genomes
or in regions of structural variation. However, as mentioned before, using a paired-
end sequencing approach would be beneficial to the utility of short-reads for
sequencing de novo sequence assembly and for sequencing rearranged genomic
segments [21]. Besides the paired-end sequencing technique, several new assembly
algorithms began to be designed recently in order to overcome this problem [13].
The quality of each base is also lower than that of the Sanger chemistry reads. This
problem was solved for the Sanger sequencing method through the validated base
quality score originating from Phred programs. The quality scores compress a
variety of types of information about the quality of base calls into a readily usable
probability-of-error value. To deliver accurate results, many analysis tools and all
assemblers require quality score input. To date, the quality scores offered by new

Table 2.2 Reduction in the cost of sequencing per megabase and per genome between 2001 and
2012

Date Cost per Mb Cost per genome Date Cost per Mb Cost per genome

Sep-01 $5,292.39 $95,263,072 Jul-07 $495.96 $8,927,342
Mar-02 $3,898.64 $70,175,437 Oct-07 $397.09 $7,147,571
Sep-02 $3,413.80 $61,448,422 Jan-08 $102.13 $3,063,820
Mar-03 $2,986.20 $53,751,684 Apr-08 $15.03 $1,352,982
Oct-03 $2,230.98 $40,157,554 Jul-08 $8.36 $752,080
Jan-04 $1,598.91 $28,780,376 Oct-08 $3.81 $342,502
Apr-04 $1,135.70 $20,442,576 Jan-09 $2.59 $232,735
Jul-04 $1,107.46 $19,934,346 Apr-09 $1.72 $154,714
Oct-04 $1,028.85 $18,519,312 Jul-09 $1.20 $108,065
Jan-05 $974.16 $17,534,970 Oct-09 $0.78 $70,333
Apr-05 $897.76 $16,159,699 Jan-10 $0.52 $46,774
Jul-05 $898.90 $16,180,224 Apr-10 $0.35 $31,512
Oct-05 $766.73 $13,801,124 Jul-10 $0.35 $31,125
Jan-06 $699.20 $12,585,659 Oct-10 $0.32 $29,092
Apr-06 651.81 $11,732,535 Jan-11 $0.23 $20,963
Jul-06 $636.41 $11,455,315 Apr-11 $0.19 $16,712
Oct-06 $581.92 $10,474,556 Jul-11 $0.12 $10,497
Jan-07 $522.71 $9,408,739 Oct-11 $0.09 $7,743
Apr-07 $502.61 $9,047,003 Jan-12 $0.09 $7,666

Table 2.3 Reported number
of completed and in-progress
genome sequencing projects

Complete In progress

Archea 268 70
Bacteria 6,998 80,771
Eukarya 1,230 1,399
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sequencing technology companies are not good substitutes for Phred scores. The
accurate quality score is a key issue in various areas, such as sensitive and specific
polymorphism detection, enabling accurate statistical modeling of the significance
of read alignments and providing a quantitative basis for comparison of sequencing
results from different technologies [22].

The template preparation process in all NGS methods involves ‘‘shearing the
genomic DNA into small fragments’’ or ‘‘creating paired-end libraries.’’ The
common feature that is observed in all NGS methods is that the resulting DNA
templates are bound to the solid surface with specific distances from each other
that allow millions of sequencing reaction to be performed in parallel [1].

2.12 NGS File Formats

Besides a few archives available for next-gen sequence data like NCBI’s Sequence
Read Archive or SRA (http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi), ENA-
Reads at EBI (http://www.ebi.ac.uk/embl/Documentation/ENA-Reads.html), and
the DNA Data Bank of Japan (http://www.ddbj.nig.ac.jp/sub/trace_sra-e.html),
there is other next-gen sequence data created and hosted by many authors and
researchers [23].

Common next-generation sequencing file types among different data analysis
and visualization tools are listed in Table 2.4 [23].

FASTQ format is the most common format for raw reads, as is BAM for
aligned reads. FASTQ files are only kept before the alignment is done and the
BAM file is generated.

2.13 NGS Applications

NGS application areas are defined in Table 2.5 (below) in terms of the particular
source of nucleic acids selected for sequencing as well as the analysis strategy
chosen to interpret the sequence information. A brief description of this applica-
tion will be presented later. (Please see references for more details.)

RNA-Seq and small RNA sequencing
RNA-Seq, which was introduced as a new way for gene expression analysis,

refers to sequencing the complex mixture of transcripts that were initially con-
verted to cDNA using reverse transcription. RNA-Seq has resulted in the pro-
duction of new data; for instance, finding novel spliced junctions, antisense
regulation mode of action, or intragenic expression are among the many appli-
cations of RNA-Seq [24]. The term ‘‘small RNA’’ refers to microRNA and other
non-coding RNAs. Sequencing of small RNA allows for accurate detection and
quantification of rare small RNA sequences. Differential expression of known
microRNAs, as well as finding novel microRNA targets, is also possible using
NGS methods.
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ChiP-Seq technique and RIP-Seq
In ChIp-Seq (Chromatin immunoprecipitation), which is used to direct mapping

of DNA binding site to a reference genome, Microarray has been replaced by NGS
techniques [5]. Protein-bound DNA is captured through interaction of an antibody
targeting protein. DNA is then treated with DNase to digest parts of DNA that are
not bound to protein. In the next step, protein-bound DNA is separated from
protein-part, sequenced and matched to the reference genome. RNA binding
protein immunoprecipitation sequencing (RIP-Seq) is an analogue to ChiP-Seq,
which is used to identify RNA molecules that are bound to a nuclear or cyto-
plasmic protein.

Methylation analysis
DNA methylation, which is the major form of epigenetic modification, influ-

ences cytosines in promoter sequences that are enriched in CGs (hence referred to
as CpG islands) and converts it to 5 methyl cytosine. This modification is known to
influence gene expression and it has been understood that specific patterns of
methylation are implicated in cancer development. Decoding the genome wide
methylation profile plays an important role in finding the correlation between DNA
methylation and other epigenetic modifications, and NGS methods have helped in
deciphering the methylation profile of the genome [25].

SNP calling/discovery
The discovery of SNPs, including single nucleotide mutation, insertion, and

deletion in NGS data, is straightforward, using various methods and software tools.
SNP discovery has helped population genetic studies due to the generation of
relatively inexpensive, high-depth sequencing data through NGS methods.

Structural variation analysis
SNPs have long been thought to be the most common class of genetic variations

and have been widely used in linkage and genome-wide association studies.
However, structural variation analysis, which is typically concerned with identi-
fication of large-scale amplifications, deletions, translocations, or inversions, is
now believed to be widespread in the human genome. NGS has been widely used
in structural variation analysis [26].

Metagenomics
One of the early applications of NGS was to determine how all organisms live

together in a certain ecosystem, such as in a deep mine or in the ocean. This field is
called Meta-genomics; in it, all biological communities of an ecosystem are
sequenced en masse to obtain information about all the organisms of that eco-
system. This approach enables the study of communities that could not be easily
cultured and thereby provides an unbiased view of the composition and state of the
community [27].
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2.14 Summary

Recent high-throughput sequencing technologies have their origins in the results of
the studies of Sanger’s and Gilbert’s groups, which introduced two distinct pro-
cedures for identifying the order of nucleotides in a DNA fragment in the late
1970s. Among these methods, Sanger’s, which is also known as ‘‘chain termina-
tion’’ or the ‘‘dideoxy’’ method, became commercialized and has been in use for
over 30 years. The massive sequencing projects, such as the Human Genome
Project, were also based on Sanger’s chemistry. The maximum length of the DNA
fragment that can be sequenced by Sanger sequencing technology with high
fidelity (1–2 % error rate) is about 1000 bp and as a result of using this technique,
shearing the larger pieces of DNA is required. Assembling the sequenced reads is
faced with difficulties originated from missing fragments, repeats and intrinsic
sequencing errors. Moreover, the cost of the Sanger method is now about $0.5 per
1 kb, which is still too high to sequence a whole human genome for each person
($10,000–$100,000) that can revolutionize the future medicine. The NIH goal that
was announced in 2004 was to develop new sequencing technologies that will be
able to sequence individual human genomes at a lower cost ($1,000) and, of
course, in just a few days.

Since then, many research groups have been working on developing new
sequencing systems. First Roche/454 FLX introduced its platform, which was based
on a pyrosequencing procedure that was commercially available in 2004. In early
2007, the Illumina (Solexa) Genome Analyzer released its platform, which became
highly popular and was based on the bridge PCR. That same year, Applied
Biosystems introduced the SOLiD sequencing system, which, in contrast to the two
previously mentioned methods, basically works through ligation. All three of these
techniques rely on an amplification step before sequencing, which is a costly and
time-consuming steps. Ion semiconductor is another NGS method which works on
the basis of pH fluctuation. In polonator sequencing technology, sequencing is
performed using degenerate nonamers. In 2008, the Helicose sequencing platform,
which requires no amplification step and therefore a single DNA molecule that can
directly be sequenced became available. Helicose became a prototype for other
groups to design new sequencing systems without any amplification step. Nanopore
and single molecule real time (SMRT) are the two most promising platforms that
are becoming commercialized. With these new sequencing technologies, which
have revolutionized the field of genomics, it seems that the $1,000 genome goal will
be feasible in the near future. These high-throughput sequencing methods have
introduced new fields in biology, which include personal genomics, analysis of
RNA transcript, ChIP-seq (Chromatin Immunoprecipitation sequencing), ChIP-
chip (Chromatin Immunoprecipitation coupled to DNA microarray) and many
others.
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Chapter 3
The Assembly of Sequencing Data

Genome science has progressed greatly in recent years and its potential applica-
tions caused scientists to believe that biology will be the foremost science of the
twenty-first century. The outcome of genome research projects has a major impact
on the life sciences. Being able to gain genome sequences can be helpful for other
analyses, such as the detection of single nucleotide polymorphisms (SNPs) and
comparative genomic research. There are many potential applications for genome
research, including molecular medicine, risk assessment, bioarchaeology, anthro-
pology, evolution and human migration, DNA forensics, and agriculture, livestock
breeding, and bioprocessing. These applications will not be successfully processed
until we are able to sequence genomes within a reasonable amount of time and
cost. Personalized medicine is a promising area that is defined as being based on
having individual genomes at hand; it is also a big potential market if we look at
sequence assembly from this perspective.

With this vast area of applications, there are still only thousands of bacterial
genomes, plus a few dozen higher organisms’ genomes that are sequenced, and the
remainder are still not sequenced. With next-generation sequencing techniques, we
can have a genome sequenced in a short time, but even the most advanced
sequencing techniques can sequence about 5000 nucleotides. This is while even
the smallest viral genomes are made up of several thousand bases (in simple viral
genomes) and more complicated genomes are much more larger—for example,
about 109 base pairs in mammals. Therefore, computational methods are needed to
assemble the small sequences needed to form the initial genome. Assembly
algorithms are developed to address this problem.

All this shows that there is great potential for using high-quality sequence
assembly methods, while the domain knowledge and existing algorithms are not
advanced enough to produce good results in the expected amount of time. In this
chapter, we’ll look at the definition of assembly problems, assembly issues,
methods for de novo assembly, and, finally, the methods for evaluating assembly
algorithms.

A. Masoudi-Nejad et al., Next Generation Sequencing and Sequence Assembly,
SpringerBriefs in Systems Biology, DOI: 10.1007/978-1-4614-7726-6_3,
� The Author(s) 2013
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3.1 What is De Novo Genome Sequence Assembly?

De novo sequence assembly refers to a computational method for merging the
fragments of DNA sequences—obtained from sequencing methods such as those
discussed in Chap. 1 of this book—to form longer DNA sequences, and hopefully
to reconstruct the primitive genome. In fact, sequencing is done in a way that
sequenced streams have some overlaps and therefore can be merged due to their
overlaps in order to form larger fragments and finally—and hopefully—the whole
genome, when its aim is whole genome assembly.

Assembly can also be performed in a map-based fashion. If the goal of assembly
algorithms is to form a new, previously unknown sequence, it is called a de novo
assembly algorithm. If there is an existing backbone sequence, and the assembly
algorithm just builds a sequence that is similar, not identical, to the backbone
sequence, then the algorithm is a mapping. Figure 3.1 [1] graphically demonstrates
the differences between sequencing and assembly methods. Section (d) of this
figure shows resequencing, i.e., sequencing a known genome, and its assembly, in
which the reference genome is available and therefore the assembly task is reduced
to genome alignment. In contrast, in the other sections (a–c), the reference genome
is not available and the assembly algorithm has to computationally find overlaps
between reads and try to assemble them correctly; this is called de novo assembly.

The mapping of resequenced reads to a reference genome is a computationally
easier problem than de novo assembly. Several tools are available for mapping
reads to the genome, including tools for the mapping of short-reads. MAQ [2],
SOAP [3], and SHRiMP [4] are a few examples that use seeding techniques, in
addition to a precomputed hash table, for the fast matching of reads to the main

Fig. 3.1 [1] Sequencing methods. Schematic drawing of the four different sequencing
procedures. a Whole-genome shotgun, where the genome is randomly split into smaller parts
and sequenced. b Hierarchical shotgun, where a BAC clone map (tilling map) covering the
genome is first created, after which the BACs are sequenced. c EST sequencing, where mRNA is
extracted from tissue and then sequenced. d Massively parallel sequencing where short-sequence
fragments are aligned to a reference genome
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genome. The mapping is not yet an easy task because of sequencing errors. For
example, the ability to detect indels, which occur frequently in 454 sequences, is
very limited in the available programs, and most of these tools need subsequent
alignment runs in order to be able to detect indels [1]. But still, methods that are
capable of using hybrid data inputs, such as paired-end reads to resolve breaks, and
also microarray-based genomic selection and multiplex exon capture that helps
gain sequences from special locations on the genome sequences, can be nicely
used besides mapping algorithms. In this survey, we focus on de novo assembly
algorithms.

According to what was described in the Sequencing Methodology Section,
sequencing methods can just sequences DNA fragments of length from tens to
several thousand bases, depending on the method used. This is while the shortest
genomes—related to virus genomes—are at least several thousand base pairs, and
for advanced creatures, like plants and animals, it is more than hundreds of mil-
lions of base pairs. (The human genome is about 2.9 billion base pairs.) It is easy to
understand how difficult the assembly task will be with short-reads gained from
next- generation sequencing methods, especially when working with high-
throughput next-generation sequencing data, which give in hand, short and erro-
neous reads.

In order to help the assembly task, the sequencing step is usually done with high
coverage. As described in Chap. 1, coverage is the number of reads representing a
given nucleotide in the reconstructed sequence. For example, sequencing a DNA
with 1,000 base pairs so that 4 fragments of 500-length base pairs are gained, is
done with 2X coverage. As can be seen in Fig. 3.2, this redundancy led to
sequence overlaps that help the process of assembling DNA fragments. In fact,
overlapping regions are the key to finding which fragments should be merged
together.

3.2 Challenges of Genome Assembly

It can be understood by comparing the genome size, the sequencing fragment’s
size, and the large number of reads generated by the sequencing method, that
assembly is not a simple task. The first challenge of assembling these sequences is

Fig. 3.2 Redundancy in the sequencing phase causes overlaps in the resulting sequence read
ends. Each sequence can have overlaps with several other sequences. [http://www.cbcb.umd.edu/
research/assembly_primer.shtml]
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the existence of too many reads and, therefore, overlaps, which are not necessarily
correct overlaps. A small overlap size increases the probability of wrong overlaps.
Overlap size is limited to the size of reads as well as the coverage. Table 3.1 [5]
shows the mean number of perfect matches of a k-mer in the specified genome,
excluding the correct match. This number shows the expected ratio of false
overlaps to true ones between reads, which overlap in exactly k bases. The sample
size is 106 in each case. In fact, this result shows that with smaller reads there is a
higher probability of wrongly aligned overlaps [5].

Reads overlapping with more than one other read will form a branch in the
resulting assembly. Various ways of choosing between these branches will be
further discussed in the algorithm section. One of the methods for dealing with
these branches is by using paired-end reads, such as what is done in [6].

There are a few other problems that make assembly even more difficult. One of
the major problems is sequencing errors—for example, base pair misreads in the
output. Due to sequencing errors, the sequencer’s output is in the form of
sequences of base calls plus a quality value (QV) for each base call. The use of
these quality values can add extra information for the assembly task, but it needs
more processing effort and memory; therefore, only some of the assembly algo-
rithms make use of QVs. These low-quality regions of reads are clipped in some of
the methods, such as in [7].

Even with preprocessing reads for limiting errors, some errors may still remain
in the sequences. Sometimes read errors in read set can be corrected by aligning
reads and comparing them (for example, in [8]); however, it is not easy to detect
errors from polymorphism variants, and sometimes polymorphism mismatches are
also included in computing the error rate in reads [9].

As mentioned in the previous section, in order to assist the assembly task, high
coverage data is produced. This coverage is not uniform on the whole sequence
and this variability of coverage will lead to a complexity in the assembly task
itself. Variability of coverage makes it impossible to use statistical tests and
coverage-based analysis to detect repeats [10].

Table 3.1 The mean number of false placements of k-mers on the genome [5]

K Escherichia coli Saccharomyces cerevisiae Arabidopsis thaliana Homo sapiens

200 0.063 0.26 0.053 0.18
160 0.068 0.31 0.064 0.49
120 0.074 0.39 0.086 1.7
80 0.082 0.49 0.15 7.2
60 0.088 0.58 0.27 18
50 0.091 0.63 0.39 32
40 0.095 0.69 0.65 78
30 0.11 0.77 1.5 330
20 0.15 1.0 5.7 2,100
10 18 63.8 880 40,000
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Another problem in assembling DNA sequences brings us back to the fact that
some portions of the genome may remain unsequenced. In this situation—with
even perfect assemblers—it is just not possible to handle the situation. As briefly
mentioned in Chap. 1, another situation that is very problematic in the assembly of
eukaryotic genomes is the presence of (nearly) identical sequences—called
‘‘repeats’’—in the genome. The existence of repeats makes it difficult to merge the
reads in the correct way (Fig. 3.3). If repeat size is less than read size, one can see
that there may be many similar reads—from within repeat areas of the genome—
that refer to different locations in the main genome.

The problem of repeats can be resolved by high coverage of sequences, but
existing errors in sequence data don’t allow the repeat discovery task to be very
easy. To resolve the repeats that are longer than reads, paired-ends are needed
(paired-end [mate-pair] technologies are described in Chap. 1). This is a more
complicated task than resolving repeats shorter than read sizes using single reads.
Inexact repeats can be separated by the high-stringency alignment of reads and
finding read correlations using different base call patterns in them [11]. The task of
resolving repeats will be explained later for each assembly algorithm in Chap. 4.
All these, in addition to the size of genomes and large number of reads, make
assembly a complicated problem requiring an efficient solution and data structure
design and computationally high-performance platforms. Intelligent heuristics and
tricks play an important role in overcoming these difficulties.

It is important to note that assembling is not applied only to genomic data, and, for
example, assembling transcriptomics data (such as expressed sequence tags—
‘‘ESTs’’), which gives a view of the biological state of a cell, is something that is also
very important in practice. However, the challenges in various kinds of data are
different. The discontinuity of transcriptomics data results in less contiguity than
genomic data. Since repeats mainly exist in intron regions of the genome, repeat is
not a major issue in assembling transcriptomics data. But since transcription from a
single part of the genome can be done in different patterns (i.e., from different start
and end positions), this adds an additional complexity to the assembly of transcri-
ptomics data. Algorithmic approaches are needed to handle other situations referring
to ESTs—for example, different rate of expression (highly expressed genes),
alternative splicing, and paralogous genes. These problems are even more serious
with the contamination of the CDNA library by genomic data [12].

Fig. 3.3 Problem of repeats in genome assembly. a If read length is less than repeat length, the
reads from repeats are identical to the assembly program. b Mis-assembled genome due to a
repeat. [http://www.cbcb.umd.edu/research/assembly_primer.shtml]
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3.3 Use of Paired-End Reads in the Assembly

Sequence assembly algorithms use overlaps between reads in order to merge them
again. Next- generation sequencing techniques generate short-reads, which is very
problematic in repeat areas. To solve this problem, assembly methods usually use
mate-pair or paired-end libraries (as discussed earlier).

Mate-pair (or paired-end reads) are DNA fragments with both ends sequenced.
In other words, they can be thought of as two reads with a specific distance
between them. As explained, the sequence reads from NGS methods are short.
When reads are shorter than the length of repeated areas of the genome, we usually
cannot resolve repeat areas in the assembly phase (Fig. 3.3). A mate-pair fragment
can be longer than NGS reads, since there is a gap or un-sequenced part between
two sequenced parts, and therefore these fragments can be used to resolve repeats.
Various protocols are usually used to generate mate-pairs and paired-end reads. As
previously mentioned, the difference between the two applications is in their
length and generating technology; mate-pairs are about 2–5 KB, while paired-end
reads are much shorter, rarely more than 500 bp. There are various methods for
constructing paired-end and mate-pair libraries. In (IlluminaMatePair,1 Illumi-
naPairedEnd2), the construction method of Illumina technology is briefly descri-
bed. Long-insert paired-end libraries are useful for de novo sequencing and
genome finishing (which will be explained later in this section). Combining data
generated from the mate-pair library sequencing with that of short-insert paired-
end reads provides a powerful combination of read lengths for maximal genomic
sequencing coverage across the genome.3

3.4 Data Preprocessing Methods and Sequence Read
Correction Methods

Usually when data is not clean, i.e., not ready to be used by the main algorithm, a
preprocessing step is needed to prepare it. Some assembly algorithms may also
include the error handling process in the assembly, which leads to computational
and memory overhead [13].

As mentioned in Sect. 1.2, the output of sequencing is not error-free, and each
sequencing platform has its own issues and errors in the final read library. There
are also other problems with data; for example, the existence of similar reads from
within repeats, which are not from the same part of the genome, may mislead the
assembly algorithm. Therefore a preprocessing step is defined in the assembly

1 IlluminaMatePair: http://www.illumina.com/technology/mate_pair_sequencing_assay.ilmn
2 IlluminaPairedEnd: http://www.illumina.com/technology/paired_end_sequencing_assay.ilmn
3 http://www.illumina.com/technology/mate_pair_sequencing_assay.ilmn

46 3 The Assembly of Sequencing Data

http://dx.doi.org/10.1007/978-1-4614-7726-6_1
http://www.illumina.com/technology/mate_pair_sequencing_assay.ilmn
http://www.illumina.com/technology/paired_end_sequencing_assay.ilmn
http://www.illumina.com/technology/mate_pair_sequencing_assay.ilmn


algorithm. Some algorithms use quality score values in order to filter the input
data. In this case, it is important to know what variant of quality score data is
encoded [14]. It is good to know that it may not be necessarily to do this correction
and preprocessing in some algorithms, for example score-based trimming and
filtering had not led to a better result in Velvet [12].

Some of the assembly algorithms, like SSAKE [15], are designed for error-free
reads and SHARCGS [16] is designed to work on reads with a low error rate
(below 0.05 %).Therefore these methods need a preprocessing of the reads prior to
assembly in order to filter erroneous reads.

In some algorithms, a trimming is done on sequence reads in order to cut the
erroneous parts of each read before they can be used as an input for the assembly
algorithm. In some other preprocessing methods, a portion of reads (i.e., the reads
themselves), which are likely to lead to a misleading in the assembly algorithm,
are removed from the read set. The read screening phase in [6] is performed for
this purpose. ‘‘Solid reads’’ (i.e., error-free and non-repetitive reads) are identified
using this read screening process. Figure 3.4 shows a statistical analysis of read
size in [6]. In this analysis:

• If a k-mer occurs once, it is likely to be a sequencing error.
• If a k-mer occurs too many times, it is likely to be a repeat.

The area between the two determined spots in the diagram shows the interval in
which solid reads exist. The solid reads are chosen as starting points for read
extensions in this algorithm. In fact, regions with high depth are considered to be
repeats and they are so identified in order to be used properly in the assembly

Fig. 3.4 Statistical analysis for filtering erroneous reads [6]
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algorithm. The early use of repeated regions will likely mislead the assembly, and
it is better to postpone their use in the final steps of assembly. This is in fact the
strategy used by PE-ASSEMBLER. Another way to resolve repeated reads is to
compare them with known repeats in the genome, in the case where we have a
reference genome. There are tools that are specially designed for the task of repeat
masking, such as RepeatMasker [17], which uses curated repeat databases to
identify and mask the repeats. Besides these filtering methods for curating repeats,
there are some methods that try to correct reads of executing the main assembly
algorithm beforehand.

Reference [18] uses a preprocessing phase to correct reads prior to assembly.
This correction is done to turn many reads into error-free ones. The correction is
done using an algorithm that is a modified version of Spectral Alignment described
in Pevzner et al. [19] and Chaisson and Pevzner [20]. In this preprocessing method,
first a set of all sufficiently frequent reads, called 1-tuples, are selected and their
spectrum is computed. Then for each read r, a string r* is computed, which is the
sequence with a minimized distance (for example, the Hamming distance) from r,
such that all 1-tuples belonging to r* are in the spectrum. SOLiDAccuracy
Enhancement Tool (SAET, http://solidsoftwaretools.com/gf/project/saet/) and
preprocessing phases in methods like [5] and [21] use the same approach for error-
correction. Alignment is also used for error-correction. The alignment approach,
which is more suitable for Sanger sequencing reads, uses multiple sequence
alignment of the reads in order to find similar reads and detect and correct errors in
them. This approach is computationally expensive since it necessitates the aligning
of millions of reads. MisEd [22] and the preprocessing step in ARACHNE [8] use
the alignment approach for error-correction of reads.

As mentioned above, there are some tools, like SAET, that were specially
developed for preprocessing the reads and correcting the sequencing reads. These
tools are designed to perform error-correction on the output of sequencing plat-
forms based on the characteristics of the platform. Most of the tools make use of
only a single sequencing platform, but it is also possible to combine the output of
several platforms in order to better perform this error-correction. The method used
by Salmela [23] is an example of sequencing error-correction based on the com-
bining of data sources, which combines SOLiD color space reads with other forms
of data in order to gain a high-quality read set to be used in de novo assembly
algorithms. This method is developed by improving the SHREC [24] tool, which
allows us to utilize both base space (such as the Roche/454 Life Sciences and the
SOLEXA/Illumina sequencing platform) and color space (such as the SOLiD
sequencing platform, which is based on color coding of the reads) to perform a
better error-correction on equal length reads. SHREC builds a generalized suffix
trie from reads and then tries to correct them at the trie intermediate levels. Nodes
in this trie are weighted by the number of leaves in their own rooted subtrie. By a
statistical analysis on node weights, SHREC identifies possible erroneous reads
and corrects them using nodes having reads with suffixes similar to subtries rooted
at the erroneous node. In [23] the statistical model’s applicability is verified for
variable length reads. By a combination of base space and color space, it builds a
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generalized suffix trie and performs error-correction for detecting and possibly
correcting insertions, deletions, and substitutions.

As mentioned in Sect. 1.2, ESTs are another type of data that can be the input of
an assembly algorithm. When assembling ESTs, a clustering phase is usually
performed in order to cluster ESTs from the same gene together. This can lead to
an over-clustering in EST data, a condition in which ESTs from various genes are
wrongly clustered into one cluster. This happens in the cloning procedure when
two originally separate sequences are mistakenly put into the same read; it is called
‘‘chimerism.’’ Also, it is possible to cluster paralogous genes together since they
are highly similar. These problems can be solved by the use of suitable clustering
algorithms, like single transitive single linkage clustering [25], or methods such as
double linkage of geneDistiller [26]. Another problem in EST libraries, that of the
existence of highly expressed genes, can also be addressed in the preprocessing
phase. The removal of known housekeeping genes, adding annotated gene
sequences as a template for ESTs, and seeded clustering, are among the solutions
to this problem [1].

Even with these strategies, deep clusters (i.e., clusters with a high number of
ESTs) may remain in the cluster set and should be treated in a suitable way, similar
to what is done in ‘‘containment clustering’’ of TGICL [27] and in geneDistiller
[26] by an alignment/consensus strategy [1].

The tools and methods in this section were designed for handling errors in
sequencing result. This is a preparing-step for the assembly task. This is another
kind of error in the assembly process that we have to be careful about. While errors
in this section were about sequencing errors and the input of assembly algorithms,
the other type returns to errors existing in assembling sequences, i.e., the output of
an assembly algorithm. This kind of error is handled in finishing and genome-
completion steps, which is a costly task and is discussed in the next section.

3.5 Assembly Errors

The outputs of assembly algorithms, i.e., assembled genome sequences, are the
fundamentals of genome research. But genome sequencing and assembly methods
are not yet exact enough to give in hand complete and errorless gap-free genome
sequences. Some of the problems return to the incompleteness of the sequence
reads to be assembled, and others to the inefficiency of assembly algorithms to find
the right assembly correctly. As a result, there are only a few genomes, including
some mammals (for example, humans, mice and dogs) that are considered to be
complete and error-free, i.e., having approximately one error in 104 bases, and no
gap [28]. The task of genome completing is a very costly one, even though it is
necessary to remove errors and fill the gaps to make these assembled sequences
usable in many of areas of genome research. But what are the errors in an
assembled genome and how they can affect the usability of genome sequences?
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Any mistake in assembly, such as insertion or deletion, substitution of correct
bases with incorrect ones, or any translocation or other imperfections, is consid-
ered to be an error and can mislead further analysis of this data [29, 30, 31]. In
some usages, such as finding protein-coding regions, insertions and deletions can
mislead the result completely by transforming codon frames. Even in non-coding
regions, sequencing errors may mislead the analyses from finding conserved and
functional parts of the genome [32]. This shows the importance of the gap-filling
and error-correction phase in assembly. Also, when a genome sequence is finished,
it is necessary to have a method for evaluating the quality of the assembly.

Many genome assembly algorithms and tools have been developed to be used in
various sequencing platform libraries. Examples of these methods are Celera
Assembler [33], PCAP [34], and ARACHNE [8]. By introducing next-generation
sequencing methods, new algorithmic issues arose due to the short length and high
error rate of the output reads; therefore new tools, like Velvet [35], ALLPATHS
[5] or MAQ [2], were developed to deal with this situation. Now the question is
how one can evaluate these methods or compare them with each other. Besides
differences in the input type of data (sequencing platform, sequencing error han-
dling, etc.), is there any way to compare their quality—or, in other words, to
estimate the assembly errors? This is the topic of the next section.

3.6 Evaluation of Assembly Methods

In order to evaluate the output of an assembly algorithm, we need to have some
criteria. In [36], two categories of features are used to evaluate assemblies: features
based on correctness scores, and features based on size statistics. In fact, these can
be seen as main categories used for evaluating assemblies. Correctness scores are
features that show how well an assembly is matched to the correct genome. In
other words, this group shows the accuracy of the final assembly; this kind of
features needs a reference genome. The other criteria—size statistics—are defined
based on the high contiguity goal of assemblers. One of the main metrics in this
category, which is used to evaluate many assembly methods, is N50, which is the
number of longest contigs, whose length exceeds 50 % of the total length of
contigs. This means that if we order contigs by their length and select the first n
contigs until their size goes beyond 50 % of the total length, that n will be equal to
N50. Another form of N50 that is more commonly used is N50 contig size, which
is the scaffold or contig length, such that 50 % of the assembled sequences lie in
scaffolds of this size or larger [37]. N50 can quantify the assembler’s ability to
make large contigs and is not able to capture other aspects of its quality.

In fact, there is a trade-off between accuracy and contiguity measures [38].
Maximizing one of them will lead to minimizing the other. For example, lowering
the thresholds for allowing more small-sequence blocks to merge will result in
more incorrectly assembled parts [32]. The Feature-response curve (FRC), a
metric introduced by Narzissi and Mishara [39], captures the quality and contig
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size trade-off. This is similar to receiver-operating characteristic (ROC) curves for
comparing the performance of statistical inference methods. FRC demonstrates
how well an assembler is able to exploit the relationship between incorrectly
assembled contigs (false positives, contributing with features) against gaps in the
assembly (false positives, contributing to a fraction of genome-coverage or
‘‘response’’), with all parameters (like read-length, sequencing error, or depth) kept
constant [39]. FRC does not need any reference sequence for evaluation, and
therefore can be used for de novo assembly algorithms, but it has still some
shortcomings, like considering some types of assembly errors with uniform
weighting.

N50 is a global measure for attaining assembly quality, while it fails to give
information about fine scale accuracy measures—for example, if bases are deleted,
inserted or substituted incorrectly in the assembly. A problem with accuracy
measurement at this level is that it needs the main genome in order to have the
assembly compared with it (for example, by alignment and comparison of
assembled and reference genomes), and there is still a need for an accurate
measure that can be determined independently of the whole-genome itself. Some
methods, like [32], use statistical analysis of closely related species in order to
quantify error rates in assembled genomes. This comparative genomics approach
makes the validation process independent of the existence of a genome itself, and
uses closely related species in alignment steps. In such a method, there is a need
for statistical analysis in order to be able to separate incorrect indel errors from
true evolutionary ones. Finally, another factor that may be taken into consideration
in comparing assembly methods is the computational time and memory used. But
these are not criteria for evaluating the assembly itself, and we can ignore com-
putational time in favor of gaining more accurate assemblies. There are some
recommendations in the literature like that which is given in [12], which can be
taken into consideration when choosing an assembly algorithm.

3.7 Summary

The process of sequencing and assembly can be summarized as shown in Fig. 3.5.
In the first step, after the genome sequence is selected and fragmented (and pos-
sibly amplified, based on the sequencing method), it is given to a sequencer.
Sequencers will produce raw data for assembly. This raw data is in a special
format, for example, in color space or base space. Base calling is the process that
generates reads from this base, which is called raw data. Each base has a quality
value in this step, which rises up due to sequencing errors. Other techniques may
be used to correct or filter some reads in the raw data. This error detection and
curation were explained in Sect. 3.4, in data preprocessing, and sequence read
correction methods. The sequence reads, which may be in the form of simple or
paired-end reads, may be used in direct mapping when the genome sequence is
known to us. If the genome sequence is not previously known, de novo assembly
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algorithms will be used instead for assembling the reads. This process includes
overlap finding (which is useful in greedy algorithms or for forming a graph from
reads), contig formation, and then the final step of assembly, which may be guided
manually in order to close gaps and finish the assembly. Following the assembly,
annotations may be done with the aid of existing databases.

In the next section of this book, we’ll have a review of the main approaches
used in assembly algorithms, and then we’ll explain a number of them in detail in
order to better clarify how each approach works.
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Chapter 4
De Novo Assembly Algorithms

In an ideal case, an assembly algorithm should merge overlapped reads to one long
continuous sequence, called contig, which is a chromosome in the primitive
genome. But due to sequencing errors and the existence of unsequenced parts,
contigs gained from the assembly algorithm are not complete enough to form
chromosomes. Even with high coverage, there is still a non-zero probability for the
existence of unsequenced parts and sequencing errors. The ability of the assembler
to form contigs is also affected by repeated regions in the genome. As shown in
Fig. 3.3 in the previous chapter, two parts of different repeat areas are mapped to
one in the assembler because of the weakness of repeat detection in the assembler.
Figure 4.1 shows how a typical assembly algorithm works in overlap detection and
contig generation phases.

As previously explained, paired-end read libraries are other available data for
assemblers. This data can be useful to extend contigs and also resolve repeat areas.
The task of ordering and orienting contigs along a chromosome using paired-reads
is called scaffolding (Fig. 4.2). If one end of a paired-read is assembled in a contig
and the other end in a second contig, it can be inferred that these contigs are
adjacent in the final assembly.

It is important to note that paired-read data is not accurate and may contain
inconsistencies. In the initial genome assembly project for Drosophila melano-
gaster [1], 10–20 % of paired-read information was said to be false. For this
reason, methods use a way in order to increase the confidence of used information,
like that which is done in SOAPdenove [2], which accepts a defined order and
distance between contigs if there are at least three paired-reads proofing them, or
ABySS [3], which uses at least five read-pairs for this.

Most assembly algorithms contain a scaffolding phase, but there are also stand-
alone scaffolding tools such as Bambus [4].

Scaffolding can also make use of whole genome mapping data. Optical mapping
[5] is a good example of this. An approximation of locations of restriction enzyme
cuts along the genome can be determined by optical mapping. This information can
be used to find the location of contigs in the genome. SOMA [6] is a program that is
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designed to generate an in silico restriction map of contigs and use the mapping of
generated maps against genome-wide optical maps for scaffolding.

Even after scaffolding, there are rare conditions that lead to chromosome sets of
the main genome. There are still gaps in the assembled data, which is the target
of the next step of the assembling task, called the ‘‘finishing’’ (or ‘‘gap closure’’ or
‘‘gap-filling’’) step. In this step, additional laboratory experiments and manual
curation are performed to validate the correctness of the final assembly, which
leads to a more exact reconstruction of the original genome.

Merging reads to form contigs. 

The end of each fragment (drawn in green) are sequenced

Original DNA broken into a collection of fragments
 

(c)

(b)

(a)

Fig. 4.1 Typical steps in an assembly process. a Breaking of original DNA into small sequences
that are suitable to be read by sequencers. b Sequencing ends of fragments depending on the goal
of sequencing (i.e., we want a paired-end library or simple reads). c Merging reads to form
contigs. [http://www.cbcb.umd.edu/research/assembly_primer.shtml]

Fig. 4.2 A scaffold of 3 contigs (the thick arrows) held together by mate-pairs. Thin lines
connect the paired-ends. [http://www.cbcb.umd.edu/research/assembly_primer.shtml]
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Many of the assembly algorithms use pre-processing methods for improving the
accuracy of the algorithm. Methods for correcting reads or discarding ambiguous
reads, and filtering reads with low coverage or low quality, are some examples.
In the next section we’ll see some of these examples in existing assembly
algorithms.

4.1 Mapping Assembly to a Graph Problem

A graph is an abstract representation of a set of objects, called ‘‘vertices’’ or
‘‘nodes’’ of a graph. There can be connection between every two objects in a
graph. A link between two graph nodes is called an edge; it can be directed (so
they define an order between connecting nodes), or undirected. The edges repre-
sent the connection between relative nodes.

In modelling the assembly as a graph, reads are usually modelled as graph
nodes, and edges connect nodes with overlap in the graph.

A path is a simple graph—a graph with no parallel edges (two or more edges
between the same two vertices) or loops—whose vertices can be arranged in a
linear sequence in such a way that two vertices are adjacent if they are consecutive
in the sequence, and are nonadjacent if they are not [7]. Likewise, a cycle is a path
in which the first and last vertices of the path are the same, i.e., the nodes in a cycle
are arranged in a cyclic sequence. A simple path is a path that does not intersect
itself.

4.1.1 The Overlap Graph Approach

The sequence assembly problem can be modelled as a graph problem by making an
overlap graph of reads. In the overlap graph, reads are presented as nodes, and the
existing overlap between two reads is presented as an edge between corresponding
nodes. A modified version of the Smith-Waterman [8] dynamic programming
algorithm is usually used to find overlapping reads in almost all assemblers [9].

In an overlap graph, assembling the reads into the genome is equivalent to finding
a Hamiltonian path, which is a path that visits every node of the graph exactly once.
Unfortunately, finding a Hamiltonian path is an NP-complete problem, and cannot
be done in polynomial time. Figure 4.3 shows an overlap graph of a set of reads.

4.1.2 De Bruijn Graph Approach

In 1989 Pevzner [10] proposed a new approach for assembling reads from
Sequencing by Hybridization (SBH). Using SBH, a DNA string is reconstructed
based on its l-letter substrings. In fact, in hybridization experiments it is determined
whether a given query I-mer appears in a target string or not [11]. Therefore,
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SBH reads are short l-tuples. The first approaches to assembling SBH reads were
based on overlap-layout-consensus, which will be explained in the next section, and
using an overlap graph [12, 13]. Pevzner [10] introduced a method based on the
Eulerian path approach for assembling SBH reads. In 2001 Pevzner et al. used this
approach to solve assembly problems. In the new approach, reads are cut into
smaller but regular pieces, called l-mers, and a de Bruijn graph is made from those
l-mers. Using this approach, the complicated step of finding all overlaps between
reads to form an overlap graph is no longer needed, and instead the NP-complete
Hamiltonian path is converted to find a Eulerian path in a de Bruijn graph. There are
polynomial time algorithms for finding Eulerian path problems. However, in
practice, several Eulerian paths can exist in de Bruijn graphs, and finding the
shortest Eulerian superpath is still NP-hard [14]; algorithms use heuristic methods
to compute this super path by applying some modifications to the Eulerian graph.
Another advantage of reducing the fragment assembly to a de Bruijn graph is a
simplification in resolving repeats; as a simple example, Figure 4.4 [15] compares
repeats in an overlap and de Bruijn graph.

A k-dimensional de Bruijn graph is a directed graph whose nodes are all
possible length-k sequences of m symbols. It is clear that each k-dimensional de
Bruijn graph of m symbols has mk vertices. A de Bruijn graph is a representation
based on all k-mers (length k words), which makes it suitable for high-coverage
very short-read data.

An edge in de Bruijn graphs connects two vertices (k-mers), if one vertices
postfix of length k-1 is equal to the prefix of the other one with the same length.
The edge is directed, and the direction is from the k-mer, including the postfix to
the k-mer including the prefix.

Having a dataset of reads, one can make a de Bruijn graph of it. For example, if
we have an input set (AAGACTC, ACTCCGACTG, ACTGGGAC, GGACTTT),
the list of all 3-mers is (AAG, AGA, GAC, ACT, CTC, TCC, CCG, CGA, CGA,
CTG, TGG, GGG, GGA, CTT, TTT). To create a de Bruijn graph, it is enough to
put the directed edges in the graph according to the input set. The de Bruijn graph
for this set is shown in Fig. 4.5.

Fig. 4.3 Overlap graph of
reads. Each read is a node in
this graph and an overlap
between two reads is
presented as an edge in the
graph
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In de Bruijn graph approach assembly algorithms, the graph of input reads are
created and then paths in this graph are used to detect contigs. Finding Eularian
paths is the key to find contigs in this step. Optionally, the algorithm may use other
data—such as paired-end data—in order to make longer contigs and complete the
assembly process. The need for predefined k value, and also errors in reads that
lead to a complex graph structure, are of issues in de Bruijn graph-based assembly
algorithms.

In the next section, main categories of de novo assembly algorithms are
introduced and details of applying graph algorithms into an assembly problem are
given in some selected existing algorithms. The idea behind each of these methods
is explained in the following subsections. Examples of existing algorithms for each
category are also given in each section.

4.2 Classification of De Novo Assembly Algorithms

Existing de novo sequence assembly algorithms can be categorized in three bran-
ches: greedy algorithms, overlap layout consensus (OLC) algorithms that use an
overlap graph, and de Burijn graph algorithms that use a de Bruijn (k-mer) graph.
Greedy methods use greedy read extension in order to assemble sequences. In the
following subsections, each of these methods is described in more detail and, some
examples are presented for each. These selected examples show how a general

Fig. 4.4 a DNA sequence
with a triple repeat R; b The
layout graph; c Construction
of the de Bruijn graph by
gluing repeats; d The de
Bruijn graph

Fig. 4.5 The de Bruijn graph
of an input set (AAGACTC,
ACTCCGACTG,
ACTGGGAC, GGACTTT)
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strategy can be customized to address specific issues in assembly. There are many
other assembly algorithms and tools that are not explained here. In Sect. 4.3 of this
chapter, there is a list of existing assembly tools for each algorithmic class as well
as a comparison of those tools based on the study in [16].

4.2.1 Greedy Algorithms

The shotgun sequence assembly problem was first formalized by finding the
shortest common superstring of the set of all reads [17]. Since this algorithm was
computationally NP-complete, greedy approaches were introduced to solve the
problem. The greedy approach uses a greedy idea—that is, to merge two reads
with maximum overlap score at the time (Fig. 4.6). Reads and overlaps are con-
sidered to be nodes of graph and edges between them respectively in a graph. Now
the problem is reduced to finding a Hamiltonian path in the graph.

Greedy algorithms for sequence assembly can be written in the following steps:

(1) Calculate pairwise alignments of all fragments.
(2) Choose two fragments with the largest overlap.
(3) Merge chosen fragments.
(4) Repeat steps 2 and 3 until only one fragment is left.

The main problem of this approach is the same as all greedy algorithms, i.e.,
getting stuck in local maxima. A local maxima can occur if the current contig takes
on reads that would help further contigs grow even larger.

Examples of algorithms using a greedy approach are PE-Assembler [18],
SSAKE [19], SHARCGS [20], and VCAKE [21]. In the following subsections,

Fig. 4.6 The main steps in greedy algorithms for genome assembly
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SSSAKE, SHARCGS, and PE-Assembler algorithms are briefly explained (in
more detail).

4.2.1.1 SSAKE

SSAKE—Short Sequence Assembly by progressive K-mer search and 30 read
Extension—is the first short-read assembler. It is designed for doing the sequence
assembly task using unpaired short-reads of uniform length. This algorithm does
not use a graph explicitly but its general idea is the same as that of greedy
algorithms. SSAKE exists as a program for sequence assembly tasks, which is
extended to also make use of paired-end reads and imperfectly matching reads.
Instead of using a graph structure, SSAKE stores reads in a lookup table indexed
by their prefixes. SSAKE program cycles through sequence data stored in a hash
table, and progressively searches through a prefix tree for the longest possible
k-mer between any two sequences.

The algorithm iteratively searches for reads that overlap one contig end and
chooses candidates that have prefix-to-suffix overlaps whose length is above a
threshold. At this point, the program merges two reads with the longest overlap. In
the case where there are multiple reads with equally long overlaps, SSAKE
chooses reads with end-to-end confirmation in other reads (this favors error-free
reads). If there are branches in the merging task, the algorithm terminates. Finally,
when there are no reads satisfying the threshold, the program decreases the
threshold until a second one is reached (that can be used in previous order). The
process is repeated until no more reads exist. SSAKE is available as software at
(http://www.bcgsc.ca/bioinfo/software/ssake).

4.2.1.2 SHARCGS

SHARCGS algorithms can be summarized in three steps:, filtering to remove
errors, assembly to generate contigs, and, finally, a contig merging step. The
SHARCGS algorithm is designed to operate in uniform-length, high-coverage,
unpaired short-reads. This algorithm adds pre- and post-processing functionality to
the basic SSAKE algorithm. SSAKE is vulnerable to the existence of read errors,
and SHARCGS avoids this by using a preprocessing step. Many of the assemblers
use this idea and add pre- and post-processing functionality in their assembly
process. It helps the assembler to limit the range of errors and ambiguities in input
and also omits some errors from the output.

In the preprocessing step, SHARCGS filters erroneous reads by requiring a
minimum number of full-length exact matches in other reads. The idea behind this
filtering is that reads that have only a few matches in other reads are more likely to
be erroneous because the read set is gained from a high-coverage sequencing step.
Another criterion considered in the filtering step is the existence of overlapping
partners that can be a property of a correct read. A minimum overlap size for
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considering other reads as overlapping partners is a parameter in the filtering step
and is chosen to be at least half of the read length. An optional filtering step is also
applied in preprocessing, which is checking whether the combined QVs of
matching reads exceed a minimum threshold. Combining QVs is done using the
method in Phrap [22]. Finally, one copy of each read is kept in the read set used in
the core algorithm. The SHARCGS’s core algorithm is shown in Fig. 4.7.

The core SHARCGS algorithm is based on using a prefix-tree look-up for
contig extension. A contig is extended as long as there are reads with a prefix of
minimal length, which overlap its end perfectly. In extending a contig, the algo-
rithm may face some ambiguities which stop it. For example, if two contigs are
extended (they have a different first part), but because of ending the last parts in
repeated areas, two contigs merge at the end. In this case, the elongation of contigs
is terminated. Also in cases where there are two possible ways to extend a given
contig, and there is no way to resolve ambiguity, the algorithm stops. After contig

Fig. 4.7 (from [20]). Description of the core assembly algorithm. a Pseudocode overview of the
steps during assembly of a single contig. The parameter omin controls the stringency of the
algorithm, and r denotes the read length. b Illustration of the elongation step. ContigC is to be
elongated to the right. Read R is a candidate for elongation found in the dataset of reads, because
its prefix (gray) matches the end of C perfectly. The suffix of read R (white) is the potential
extension E for contigC. The length of the check region M is the sum of read length r, and the
length of the extension E. Substrings of M and its reverse complement are used to search for
matching read prefixes in the dataset. Only if all of these reads match M exactly is C extended by
E
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extension at the 3’ end is terminated, it computes its reverse complement and tries
elongation at the other way in a similar manner. The elongation process is pre-
sented in Fig. 4.7b. In order to reduce the effect of ambiguities, SHARCGS first
tries to search for possible ambiguities.

SHARCGS filters the raw read set three times, each at a different stringency
setting, to generate three filtered sets. Very stringent levels lead to short contigs
because too many positions in the target sequence are filtered due to errors, and low
stringency levels produce long contigs. Finally it assembles each set separately by
iterative contig extension. In the post-processing, the three contig sets are merged
using sequence alignment. SHARCGS is available at http://sharcgs.molgen.mpg.de/
.

4.2.1.3 PE-Assembler

PE-Assembler is another greedy assembler for assembling short reads. Instead of
using de Bruijn graph approaches (like most of recent assemblers), the PE-
Assembler uses the simple greedy approach similar to SSAKE, VCAKE and
SHARCGS. It also uses paired-end reads for resolving ambiguity. This method is
capable of handling large datasets and producing highly contiguous and accurate
assemblies compared to existing methods before it within a reasonable amount of
time [18]. The PE-Assembler can be found as a software package at http://
www.comp.nus.edu.sg/*bioinfo/peasm/.

There is a simple idea behind the design of PE-Assembler: to use paired-end
data for contig extension. The algorithm reduces ambiguities in the read extension
phase using paired-end reads. For resolving ambiguities in the case where there are
two possible reads to extract the current contig, the algorithm uses the one where
its other end matches the extension’s other end. This method is shown in Fig. 4.8.

PE-Assembler consists of five main steps: (1) read screening; (2) seed-building;
(3) contig extension; (4) scaffolding; and (5) gap-filling. The steps are described in
the following subsections.

Read screening A read screening step is defined to identify ‘‘solid’’ reads. Solid
reads are reads from an actual genome (i.e., error-free and non-repetitive reads

or
c

t

Fig. 4.8 Resolving ambiguities in read extension using paired-reads in PE-Assembler [18]
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from a genome sequencing step). In this step, filtering the input for omitting
erroneous reads is done by statistical analysis (Fig. 3.4). The idea behind the
analysis is:

• If a k-mer occurs once, it is likely to be a sequencing error.
• If a k-mer occurs too many times, it is likely to be a repeat.

The area between two determined spots in the diagram shows the interval at
which solid reads exist. The solid reads are starting points for extension. This read
screening method is the same as what was introduced in [15].

Seed-building A seed is a contiguous region that is the result of read extension
and whose length is at least MaxSpan. Starting from some ‘‘solid’’ reads, PE-
Assembler extends the read from both 5’ and 3’ ends. If there are multiple feasible
extensions, mates are used to resolve ambiguity. In Fig. 4.9, g has support while a
does not have support. Hence, g is correct.

Since this process does not handle ambiguities that are due to sequencing errors,
an extra step is needed. In this case, every candidate is extended base up to a
distance of ReadLength, and wrong paths (generated from erroneous reads) will be
terminated prematurely and therefore detected. A path that is extended in a single
strand and is not branched is considered to be a correct path. An example of this is
shown in Fig. 4.10.

Fig. 4.9 Resolving multiple feasible extensions while seed-building, using paired-end reads [18]

ACGTCA
AC

CCGT

TC X

GC X

TCGAT

GC X

ReadLength

Fig. 4.10 Resolving
ambiguities due to a
sequencing error in PE-
Assembler [18]
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Finally, seeds are verified by checking if at least one paired-end read overlaps
with the 30 and 50 end of it. Unverified seeds are ignored in the rest of the assembly
process.

Contig extension Contig extension is performed to extend verified seeds to form
longer contigs. Seeds are extended using paired-end reads in this step—in contrast
to previous steps, in which single reads were used for extension. It is feasible since
seeds are longer than maxSpan. After no paired-end reads were available for the
extension, the algorithm looks for possible reads again. Meanwhile, repeats and
errors are handled as in previous steps.

Scaffolding problem Having a set of contigs of some genome X and a set of
DNA-PETs of some genome X as input, the aim of this step is to find the correct
ordering and orientation of the contigs. Figure 4.11 shows an example of the
scaffolding process using paired-read data. Paired-end reads that are mapped to
repeats are discarded in this step since they may lead to incorrect mappings. After
finding proper ordering between contigs, the contig graph is built (Fig. 4.12).

Gap-filling After the scaffolding step, there are still gaps remaining in the
assembled sequences. These gaps are usually within repeat areas, since reads
within this area were discarded in earlier steps. Using paired-end data, gaps can be
filled in the similar extension manner, but this time using both 30 and 50 ends in
order to be consistent with both contigs around the gap (Fig. 4.13).

Fig. 4.11 Ordering contigs in scaffolding step in a PE-Assembler [18]

Fig. 4.12 Building a contig graph from ordered contigs. Paired-end reads within the repeat
area—shown in green—are ignored in this step [18]
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PE-Assembler authors discuss the issue of parallelization in the algorithm, and
claim that almost all the algorithm steps can be improved by parallelization. Read
screening, which is largely disk- bound and its parallelization does not improve
runtime, and the actual scaffolding step, which is not time consuming, are carried
on a single thread.

4.2.2 Overlap Layout Consensus (OLC) Algorithms

Overlap layout consensus methods are based on graph theory. In this method, an
overlap graph is built from reads and the assembly problem is reduced to finding a
Hamiltonian path—a path that contains each node exactly once—in the graph.
ARACHNE [23], Celera [1] and its revised version for short-reads [24], CAP3
[25], and Newbler [26] are assemblers that use this method as their core idea.

An OLC algorithm starts by finding overlaps between reads (or graph nodes). In
fact, it must check possible overlaps between any two reads in the input read set.
The layout step will simplify the overlap graph by removing redundant informa-
tion and will put these reads together using identified overlaps. The final step is
finding a consensus for the existing layout (Fig. 4.14). The overlap step is com-
putationally very expensive and therefore this approach is more suitable for whole-
genome shotgun sequencing reads gained from Sanger technology. Also, the
Hamiltonian path problem is an NP-complete problem in itself, needing heuristic
solutions.

Fig. 4.13 Gap-filling step in a PE-Assembler [18]

Fig. 4.14 Overlap graph for a bacterial genome. The thick edges in the picture on the left (a
Hamiltonian cycle) correspond to the correct layout of the reads along the genome (figure on the
right). The remaining edges represent false overlaps induced by repeats (exemplified by the red
lines in the figure on the right). [http://www.cbcb.umd.edu/research/assembly_primer.shtml]
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4.2.2.1 Celera and CABOG

The Celera [1] algorithm was introduced for the whole-genome assembly of
Drosophila. A challenge that Celera tries to overcome is handling repetitive parts
in the genome that may mislead the assembly. For this purpose it uses mate-pair
information data to resolve problems in repeated areas of the genome. Celera used
the OLC method and was mainly developed to use the Sanger shotgun sequencing
data; it was later revised to use NGS data. The revised algorithm is called CABOG
(Celera Assembler with the Best Overlap Graph) [24]. The Celera algorithm is
designed as a pipeline, as shown in Fig. 4.15.

The first step of this pipeline is the screener, which selects high-quality data. In
this step, input fragments are compared to a repeat database to see if they match a
known repetitive element in the genome. In the case of a match, the read is omitted
in further steps of the pipeline. In the special case of Drosophila, the algorithms
use an existing repeat library. In the next step, the overlapper, a BLAST-like
algorithm searches for overlaps—in order to assemble reads in the OLC manner—
and chooses sequences with less than a 6 % difference for merging. In the Uni-
tigger step, unitigs are formed. Unitigs are made from the assembly of fragments
whose arrangement is uncontested by overlaps from other fragments. Unitigs that

Fig. 4.15 In Celera’s
assembly pipeline, sequences
flow from one stage to the
next. Each stage performs
work on its input stream,
producing a stream of outputs
reflecting its transformational
function [1]
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present unique DNA are called U-unitigs; they are extended, using repeat
sequences, where their tips are matched to one. These are repeat boundaries. Some
repetitive overlaps between unitigs are identified and removed, using these repeat
boundaries. Finally, in the scaffolding step, pairs of mates or BAC ends are used to
confirm the linking of U-unitigs and forming of scaffolds. The output of this step is
corrected using mate-pair data—a repeat resolution module—and the final con-
sensus is created during an iterative process.

The CABOG assembler uses the idea that different types of input data—like
reads from Sanger and pyrosequencing platforms—can be used together for the
assembly. Because of differences in accuracy, coverage, average read length, and
also the availability of paired-end protocols, it is not straightforward to use an
arbitrary assembly algorithm for hybrid data, and this may lead to a poor per-
formance of the algorithm [24].

CABOG reuses the Celera Assembler scaffold (modified to recover trimmed
base calls) and consensus modules (modified to specify alternate consensus
sequences in polymorphic regions). It also uses a base call correction method
introduced in ARACHNE [23]. In this step, it filters out some erroneous reads.
Then it selects the ‘‘best’’ overlaps that survive this filter, and it also applies a filter
for a minimum length of the alignment. An overlap graph is generated from these
best overlaps (overlaps from reads with containment overlaps are disregarded).
This graph is called Best Overlap Graph (BOG), in which there exists at most one
directed edge per node representing the corresponding read end’s best overlap
(Fig. 4.16).

BOG is implemented using as multiple linked lists in an array of reads, an
efficient data structure,resulting in an extreme data reduction of the sets of over-
laps. Cycles in BOG are eliminated by deletion of arbitrary edges, and then
maximal simple paths in this graph are used to build unitigs with a greedy
algorithm.

Now a graph is built from these unitigs using some paired end constraint. Some
heuristics are used in this part of the algorithm in order to deal with genomic
repeats and noise. The rest of the algorithm, i.e. contig generation and scaffold and
consensus steps, is again a reuse of Celera Assembler pipeline without special
modifications. Reads rejected previously due to constraint violations, may be used
in the scaffold module. Mate constraints also can be used here to match individual
reads into their correct contigs. Some of other OLC based algorithms like Edena
[27], Newbler [26], and shorty software [28] are briefly introduced in [29].

4.2.3 De Bruijn Graph-Based Algorithms

The Euler assembler [15] was the first algorithm that used the de Bruijn approach
for solving sequence assembly problems. Velvet [30], Euler-USR [31], AllPaths
[32], Abyss [3], and IDBA [33] are some other assembly algorithms that use this
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approach. In this section we describe the Velvet [30], Euler-USR [31], and All-
Paths [32] algorithms.

4.2.3.1 AllPaths

ALLPATHS is an algorithm for short-read sequence assembly. This algorithm was
published both on simulated [32] and real data, ALLPATHS2 [34]. ALLPATHS
applies error-corrections based on the method used in [15] on reads. Each read is
kept, edited or discarded in this phase, in which reads with high frequency and
high quality are considered to be trusted reads for next steps. It then stores reads in
a compact, searchable data structure. This structure is used in order to avoid the
process of overlap finding. Instead, reads are searched in this data structure for
finding matches and merge reads. The algorithm generates a unipath graph from
reads and then localizes read sequences before assembly. A unipath (Fig. 4.17) is a
maximal unbranched sequence that is retrieved for a given minimum overlap k in
the given genome. Each k-mer can exist in one unipath generated from the reads.
Localization is a way of using pairs to isolate small regions of the genome and to

Fig. 4.16 Two representations of a best overlap graph. In a, the layout resembles a multiple
sequence alignment. In b each read is represented by two nodes joined by an undirected edge.
Arrows represent best overlaps, where best means covering the most sequence. There are mutual
best overlaps between successive pairs of reads A through D. Due to erroneous bases at one end
(wavy line), read E has a non-mutual best overlap to B. Paths span undirected and directed edges
alternately. Path EBA converges on path ABCD. CABOG scores read E lower than the others
since only three reads are on paths from it. Starting with any one of the high-scoring reads,
CABOG would build initial unitig ABCD, then E. Using saved information about each path
intersection, CABOG would discount the intersection at B because the path from E spanned only
one read before B. It would break ABCD only if there were also a change in read arrival rate at B,
which is not the case here. Although linear-time directed-path following finds the longest possible
unitig in this constructed case, it is not guaranteed to do so whenpaths span multiple intersections
[24]
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assemble them independently. In fact, the unipath graph is the best possible
assembly of the genome from reads of length k in theory given infinite coverage by
perfect reads [32].

Next, AllPaths assigns numbers to k-mers in the reads and stores them in a
searchable database. Unipaths are constructed by a walking process on the reads in
the database until a branch is reached, For read pairs, the assembly process is more
complicated. It tries to find a path from one end of the read pair to the other end by
filling the gap with high-coverage reads. Assemblies of genomic regions are
formed around seeds (ideally, long unipaths with low copy numbers). For each
unipath, closest unipaths to its left and right side are computed, and if the distance
between the two are less than 4 kb, the middle unipath is removed. After all such
unipaths are removed, the remaining ones form the seed unipaths.

In the next step, neighborhoods around seeds are assembled. A neighborhood is
defined as one seed plus 10 kb on each side of it. In this step a collection of low-
copy number unipaths are defined, using iterative linking (Fig. 4.18a), and then
two sets of read clouds are constructed: primary, which include only reads whose
true genomic locations are near seed (in detail it contains those reads incident upon
one of the neighborhood unipaths), plus their partners. Some of them reach into
gaps (Fig. 4.18b), and secondary, which contain all short-fragment read- pairs—
about 0.5 kb—near the seed. Because too many closures may exist in this step, a
short-fragment pair merger is used to progressively merge the secondary read
cloud pairs.

After that, all closures of all merged short-fragment pairs are computed, and all
paths are generated. Local assemblies are merged together by iteratively joining

Fig. 4.17 A unipath is a
maximal unbranched
sequence generated from
consequence reads [32]

Fig. 4.18 [32] Localization. a Lines represent unipaths, and curves represent paired-read links
between them; from seed, iteratively linked to low-copy-number unipaths within a 10-kb radius
of it. b Reads aligning to these unipaths have partners (red) that dangle in repetitive gaps between
them
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closures, and finally global assembly is built, using all of these local assemblies.
To remove detritus, eliminate ambiguity, and pull apart regions where repeats are
assembled on top of each other, a final editing step is performed on the final graph.

4.2.3.2 Velvet

Velvet is an algorithm for de novo assembly, which is suitable for short-read
assembly (25–50 bp). Applying Velvet to very short reads and paired-ends
information only can produce contigs of significant length, up to 50-kb N50 long
in simulations of prokaryotic data and 3-kb N50 on simulated mammalian BACs
[30]. Velvet algorithms can be described in the following steps:

Constructing a k-mer hash table In order to store k-mers, Velvet uses a hash
table approach. A hash table is a data structure that maps values as keys (for
example a k-mer) to their associated values (an ID of a read containing that
k-mer). A hash function is used to transform the key into the value index in the
hash table.

For a predefined value of k, usually k = 21 for 25-bp reads, the hash table
stores the ID of the first read containing that k-mer and also the position of the
k-mer in that read. Each k-mer is recorded simultaneously to its reverse com-
plement. A second database is also created, which shows, for each read which of
its original k-mers are overlapped by subsequent reads.

Building a de Bruijn graph Just like what was explained for general de Bruijn
graph approaches, nodes are k-mers, and an edge exists between two nodes if the
(k-1) suffix of a node equals the (k-1) prefix of a node, add a directional edge
between them. In Velvet’s simplified graph, nodes are called ‘‘block.’’ Each block
is a representation of some overlapping reads (k-mers having k overlapping
nucleotides). The block contains the last nucleotides of related reads and an edge
exists between two blocks if the last read of the first block overlaps k-1 bases with
the first read of the second block. Figure 4.19 shows an example of block structure
used in Velvet that clearly explains the use of the database design.

Simplification of the graph After the graph is constructed, some simplification is
applied to it in order to remove fragmentations in the graph structure (fragmen-
tation is the source memory usage). The simplification uses a simple idea:
whenever a node A has only one outgoing arc that points to another node B that
has only one ingoing arc, the two nodes are merged (Fig. 4.20).

Error-correction There are some error-correction steps in Velvet that are
applied to the graph in this step:

(1) Error-removal: errors can be due to the sequencing process. It is important to
distinguish between errors and polymorphism. In Velvet, this can be done
using the expected coverage of genuine sequences. All low coverage
sequences are considered to be errors in this step, and others are considered to
be polymorphisms.
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(2) Removing tips: tips exist due to errors at the edges of reads. A tip is a path that
is disconnected at one end and therefore more likely to be an error. In the tip-
removing step, all tips shorter than 2 k are removed.

Removing bubbles with the Tour Bus Algorithm Two paths are considered
redundant if they begin and end at the same nodes (forming a ‘‘bubble’’) and
contain similar sequences. Such bubbles can be created by errors or biological
variants, such as SNPs or cloning artifacts prior to sequencing. Erroneous bubbles
are removed by an algorithm called ‘‘Tour Bus,’’ an example of which, as used in
Velvet, is shown in Fig. 4.21.

In this step, the graph is preprocessed and ready for the final process, finding the
Eulerian path. A Eulerian path in the graph is onr that visits every edge at least
once. The final Eulerian path that is found in the graph is considered to be the
assembly result.

As described earlier, short-read assembly is problematic with the repeated
structure of the genome being sequenced. The Velvet algorithm proposes a module
called ‘‘Breadcrumb’’ to make use of pair-end reads information to resolve repeat
areas and better merging of contigs.

Fig. 4.20 Merging two
nodes having just one
outgoing and one incoming
edge in order [30]

Fig. 4.19 Example of block
representation in Velvet [30]
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4.2.3.3 Euler-Usr

The EULER-USR algorithm is based on the notion of repeat graphs. A repeat
graph of a genome (or reads) is a simplified version of the de Burijn graph with
small bulges and whirls removed (Fig. 4.22e, f). The key point in this algorithm is
based on this observation, that a repeat graph of a whole genome can be
approximated from a repeat graph generated from reads. Reads may be corrected
by mapping them to repeat graphs of the genome, if the graph is known. The idea
of EULER-USR is to construct repeat graph from accurate reads, and then map the
entire read set (with inaccurate prefixes) to this graph by threading.

EULER-USR consists of three main steps that are explained in this section:

(1) Detecting the set of accurate reads and trying to improve their accuracy using
high-frequency k-mers.

(2) Constructing the repeat graph on error-corrected prefixes using k-mers.
(3) Simplifying the repeat graph after transforming mate-pairs into mate-reads.

Fig. 4.21 Example of Tour
Bus error correction.
a Original graph. b The
search starts from A and
spreads toward the right. The
progression of the top path
(through B0 and C0) is stopped
because D was previously
visited. The nucleotide
sequences corresponding to
the alternate paths B0C0 and
BC are extracted from the
graph, aligned, and
compared. c The two paths
are judged to be similar, so
the longer one, B0C0, is
merged into the shorter one,
BC. The merger is directed
by the alignment of the
consensus sequences,
indicated in red lines in B.
Note that node X, which was
connected to node B0, is now
connected to node B. The
search progresses, and the
bottom path (through C0 and
D0) arrives second in E. Once
again, the corresponding
paths, C0D0 and CD are
compared. d CD and C0D0 are
judged to be similar enough,
and the longer path is merged
into the shorter one [30]
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In the error-correction phase, the algorithm tries to detect the longest read prefix
of Illumina reads that may be error corrected, and to discard the reads that cannot
be corrected. This phase is done using the Spectral alignment (SA) algorithm in
[15]. In this approach, the error-free read is a read where all of its k-mers are solid.
A solid k-mer is a k-mer with a minimum threshold of appearance in the k-mers
from the read set. Then a greedy approach is used to find the minimum number of
mutations that make every k-mer in a read solid. This operation is continued until
there are no mutations found, or the k-mers are made solid, and this phase of the
algorithm outputs the solid prefixes of reads.

The de Burijn graph is now made from error-corrected reads, but it is not error-
free. For example, there are still some errors or SNPs in the reads that create short
undirected cycles called ‘‘bulges’’ in the graph. In addition, reads may contain
errors at their endpoints, which result in erroneous sources or sinks. There may
also be some chimerical reads that may connect two unrelated contigs. Trans-
forming a de Burijn graph to a repeat graph necessitates resolving all of these
errors [35].

The next step is the simplification of a repeat graph by transforming mate-pairs
to mate-reads. This transformation is practical if a single path can be found from
readstart to readend. The gap- filling module defined in this step is a modification of
the EULER-DB method [15]. The idea behind this step is that if several paths
between readstart and readend are found, the path with the maximum support of

Fig. 4.22 From de Bruijn graphs to repeat graphs. The de Bruijn graph of a sequence contains a
vertex for every k-mer in the sequence, and an edge (u, v) for every pair of consecutive
(overlapping) k-mers in the sequence (a). The condensed de Bruijn graph replaces all paths
containing nonbranching vertices by a single edge labeled by the sequence that generated the path
(b). When the condensed de Bruijn graph is constructed on a genome, it contains some small
bulges and whirls representing repeats with slightly varying repeat copies (c). In the repeat graph,
the bulges and whirls are removed (e). The de Bruijn graph of reads contains additional spurious
bulges and whirls caused by sequencing errors in reads (d). The goal of the Eulerian assembly is
to construct the repeat graph of reads (f) that approximates the repeat graph of the genome [31]
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mate-pairs is selected, but only if the support is above a predefined minimum
threshold.

Finally, error-prone reads are assembled. At this phase, first reads are corrected
using a repeat graph. Since repeat graphs are made of prefixes, each read can be
corrected by processing all sub-paths continuing that read in the repeat graph. This
process is referred to as ‘‘threading’’ in the repeat graph. Threading is done in five
steps: (1) detecting accurate reads on the repeat graph and generating extremely
accurate reads; (2) constructing the repeat graph on error-corrected k-mers, which
generates the set of k-mer contigs; (3) threading entire reads through the repeat
graph to extend the effective read length and generating threaded reads; (4) con-
structing the repeat graph on threaded reads and generating l-mer contigs (l [ k);
and (5) simplifying the repeat graph by transforming mate-pairs to mate-reads. In
this final assembly, repeats of length l and shorter are resolved.

4.3 Comparison of Algorithms

As mentioned in Sect. 3.6, in order to evaluate assembly algorithms, it is not easy
to compare assembly programs. There are no unique evaluation criteria (for
example, a quantitative comparable measure) that specifies the quality of assembly
output as a whole and can be compared for different assemblers and, as discussed
in Sect. 3.6, there is a trade-off between already introduced measures (for example,
between accuracy and contiguity measures). Different assemblers may be good at
different existing criteria, and this makes the comparison difficult. There are
several assemblers for various input data, and each of them uses various param-
eters or additional information that makes it nontrivial to compare them.

This section gives a general comparison of existing assembly tools used in the
work done in [16]. In this paper, a new category of assembly algorithms is intro-
duced, called ‘‘Branch and Bound’’ (B&B). This category is defined based on the
method used in the SUTTA [36] assembler. In SUTTA, assembly is viewed as an
optimization problem. SUTTA generates a set of all possible ‘‘consistent layouts’’
as feasible solutions and tries to use branching and the bound technique to prune the
search space.

Assemblers compared in this review are long-read assemblers including
ARACHNE [23], CABOG [24], Euler [15], Minimus [37], PCAP [38], Phrap [22],
SUTTA [36], and TIGR [39], as well as short-read assemblers including ABySS
[3], Edena [27], Euler-SR [35], SOAPdenovo [2], SSAKE [19], SUTTA [36],
Taipan [40], and Velvet [30]. Table 4.1 [16] shows the set of assembly tools, their
input read types, algorithms, and given references. In this table, SBH is equivalent
to the de Bruijn graph approach, and seed and extend falls into the greedy category
due to what has been explained in this book. This category is separated in the
references because of the use of prefix-tree data structure in their greedy approach.

In [16], benchmark data is also used to compare the number of contigs, number
of big contigs (C10 kbp), max and mean contigs, N50, and the big contig coverage
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percentage is compared on these tools, on single-reads and also with the help of
paired-end reads. This kind of study, which is done using the same conditions on
specific benchmark data, can be used to evaluate assembly quality measures and
compare them on different algorithms. Still, it cannot be said that the result would
be the same on a different input dataset.

The benchmark dataset used in this study (presented in Table 4.2) is selected by
considering criteria such as reproducibility, accessibility in the public domain, etc.
Also, this is considered for the data to include all possible genome structures—for
example, variation in read length, coverage and error rate.

The first three sets are bacterial genome Sanger reads: Brucella suis [62],
Wolbachia sp. [63] and Staphylococcus epidermidis RP62A [64]; all are available
at the NCBI Trace Archive and CBCB website (www.cbcb.umd.edu/research/
benchmark.shtml). The Human Y chromosome on the p11.2 region is also selected

Table 4.1 List of sequence assemblers [16]

Name Read type Algorithm Reference

SUTTA Long & short B&B (Narzisi and Mishra 2010, [41])
ARACHNE Long OLC (Batzoglou et al. 2002, [42])
CABOG Long & short OLC (Miller et al. 2008, [43])
Celera Long OLC (Myers et al. 2000, [44])
Edena Short OLC (Hernandez et al. 2008, [45])
Minimus (AMOS) Long OLC (Sommer et al. 2007, [46])
Newbler Long OLC 454/Roche
CAP3 Long Greedy (Huang and Madan 1999, [47])
PCAP Long Greedy (Huang et al. 2003, [48])
Phrap Long Greedy (Green 1996, [49])
Phusion Long Greedy (Mullikin and Ning 2003, [50])
TIGR Long Greedy (Sutton et al. 1995, [51])
ABySS Short SBH (Simpson et al. 2009, [52])
ALLPATHS Short SBH (Butler et al. 2008/2011, [20, 53])
Euler Long SBH (Pevsner et al. 2001, [54])
Euler-SR Short SBH (Chaisson and Pevzner 2008, [32])
Ray Long & short SBH (Boisvert et al. 2010, [31])
SOAPdenovo Short SBH (Li et al. 2010, [55])
Velvet Long & short SBH (Zerbino and Birney 2008/2009, [15, 56])
PE-Assembler Short Seed-and-extend (Ariyaratne and Sung 2011, [35])
QSRA Short Seed-and-extend (Bryant et al. 2009, [57])
SHARCGS Short Seed-and-extend (Dohm et al. 2007, [58])
SHORTY Short Seed-and-extend (Hossain et al. 2009, [2])
SSAKE Short Seed-and-extend (Warren et al. 2007, [59])
Taipan Short Seed-and-extend (Schmidt et al. 2009, [60])
VCAKE Short Seed-and-extend (Jeck et al. 2007, [61])

Reads are defined as ‘‘long’’ if produced by Sanger technology and ‘‘short’’ if produced by
lllumina technology. Note that Velvet was designed for micro-reads (e.g. lllumina) but long reads
can be given in input as additional data to resolve repeats in a greedy fashion. doi:10.1371/
journal.pone,0019175.t001
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because it has a pathologically complex genome patterning structure (repeats,
duplications, indels, head-to-head copies, etc.). For this part of chromosome Y,
shotgun data is simulated. Also, two mate-pair libraries of size ðl ¼ 2500; r ¼
166Þ and ðl ¼ 10000;r ¼ 1300Þ are generated for 90 % of the reads (45 % from
the first and 45 % from the second library, so other reads have no mate). An error
rate of 1 % is implemented in each read.

Short-read data used in this study are datasets from the Staphylococcus aureus
strain MW2 [65] (freely available at the Edena assembler website:
www.genomic.ch/edena.php), Helicobacter acinonychis strain Sheeba genome
[66], presented in SHARCGS [20], available at sharcgs.molgen.mpg.de, and,
finally, 20.8 million paired-end 36 bpIllumina reads from a 200 bp insert Esche-
richia coli strain K12 MG1655 [67] library (NCBI Short Read Archive, accession
number SRX000429).

Tables 4.3, 4.4 gives the assembly results from various tools for long- and
short-reads respectively, without mate-pair data. In the reference, other compari-
sons exist for mate-pair data as well. As mentioned in Sect. 3.6, a new metric for
comparison, named the ‘‘Feature-Response Curve’’ (FRC), is introduced in the
reference which captures the quality and contig size trade-off. FRC curves are
shown in the reference to give more information about assembly tools other than
the common criteria comparisons presented here. As an example of using FRC
curves, we can see that Phrap performs better (high coverage and N50) in
Table 4.3, while its mis-assemblies within long contigs are not captured by
measures like N50. In fact, this tool is not able to handle large-range genome
structures.

Figure 4.23 shows FRC curves for the assemblers compared in Table 4.3 for
S. epidermidis and Chromosome Y (P11.2 region) genomes with no mate-pair
data. In this figure, the x-axis is the minimum number ; of error/features allowed
in the contigs, and the y-axis is the approximate genome coverage achieved by
all the contigs, such that the sum of their features is �;. Overlapping regions
of contigs are double-counted in the coverage given in the figure. This kind of

Table 4.2 Benchmark data [16]

Genome Length
(bp)

Num. of
reads

Avg. read length
(bp)

Std.
(bp)

Coverage

Brucella suus 3,315,173 36,276 895.8 44.1 9.8
Wolbachia sp. 1,267,782 26,817 981.9 50.6 20.7
Staphylococcus

epidermidis
2,616,530 60,761 900.2 46.2 19.9

Chromosome Y* 3,000,000 37,530 800 88 10
Staphylococcus aureus 2,820,462 3,857,879 35 0 47.8
Helicobacter acinonychis 1,553,927 12,288,791 36 0 2S4.6
Escherichia coli 4,639,675 20,816,448 36 0 161.5

First and second columns report the genome name and length; columns 3 to 6 report the statistics
of the shotgun projects: number of reads, average and standard deviation of the read length and
genome coverage (*region [35,000,001–38,000,000]), doi: 10.1371/journal.pone.0019175.t002
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comparison shows that SUTTA performs better than all other methods. According
to the authors [16], FRC is suffering from not capturing some types of assembly
errors, such as one of the most ones—mis-joints—and just considers several error
types with a uniform weighing. Table 4.4 presents results from short-read
assemblers.

More details on the comparison with available mate-pairs and discussions on
FRC curves is presented in the References section.

Table 4.3 Long-read comparison without mate-pairs [16]

Genome Assembler #
contigs

# big contigs
(C 10kbp)

Max
(kbp)

Mean big
contigs
(kbp)

N50
(kbp)

Big contigs
coverage (%)

Brucella Euler 280 118 82 22 19 78.4
Suls Minimus 203 101 89 30 32 93.1

PCAP 88 62 198 53 80 100.7
PHRAP 54 23 434 126 199 103.2
SUTTA 73 53 268 62 79 99.2
TIGR 108 67 182 48 57 98.8

Staphylococcus Euler 192 75 78 29 32 85.6
epidermidis Minimus 425 86 119 10 19 80.7

PCAP 109 36 179 72 114 100.1
PHRAP 86 22 357 123 183 103.9
SUTTA 65 31 249 83 116 99.3
TIGR 94 38 230 68 100 99.8

Walbachia sp. Euler 604 0 6 0 1 0
Minimus 1545 37 16 13 2 40.7
PCAP 1241 41 64 23 3 77.2
PHRAP 2253 55 64 22 1.8 98.5
SUTTA 1089 39 87 26 6 80.8
TIGR 1080 46 46 20 5 73.6

Human Euler 60 27 403 107 266 96.7
Chromosome Y Minimus 850 104 48 18 11 63.1

PCAP 140 38 239 77 112 98.2
PHRAP 4 4 1869 764 1869 101 9
SUTTA 15 10 1020 301 712 100.5
TIGR 1103 108 51 10 8 63.7

Long reads assembly comparison Without mate-pair information (clone sizes and forward-reverse
constraints). First and second columns report the genome and assembler name; columns 3–7
report the contig size statistics, specially: number of contigs, nimber of contigs with size C 10
kbp,max contig size, and N50 size (N50 is the largest number L such that the combined length of
all contigs of length C L is at least 50 % of the total length of all contigs). Finally column B
reports the coverage acheived by the large contigs (C 10 kbp). Coverage is computed by double-
counting overlapping regions of the contigs, when aligned to the genome. doi: 10.1371/
journal.pone.0019175.t003
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Table 4.4 Short-read comparison without mate-pairs [16]

Genome Assembler #
Correct

# Mis-
assembled

N50
[kbp]

Mean
[kbp]

Max
(kbp)

Coverage
(%)

S. aureus ABySS 928 6 7.8 2.9 32.7 98
(strain MW2) Edena (strict) 1124 0 5.9 2 4 25.7 98

Edena
(nonstrict)

740 16 9.0 3.7 51.8 97

EULER-SR 669 33 10.1 4.0 37.9 99
SOAPdenovo 867 25 81 3.1 30.8 97
SSAKE 2073 378 2.0 1.1 9.7 99
SUTTA 998 11 6.0 2.6 22.8 97
Taipan 692 16 11.1 3.9 44.6 98
Velvet 945 5 7.4 2.8 32.7 97

H. acininychis ABySS 270 8 13.9 5.4 54.7 98
(strain

Sheeba)
Edena (strict) 336 0 10.1 4.5 36.9 98

Edena
(nonstrict)

302 1 13.2 4.9 35.0 97

EULER-SR 730 21 4.3 2 1 18.8 98
SQAPdenovo 479 21 7.3 3.3 29.8 98
SSAKE 675 156 3.2 1.8 14. 6 99
SUTTA 313 9 9.6 4.5 41.3 98
Taipan 271 0 13.3 5.6 48.6 98
Velvet 278 2 12.8 5.4 49.5 98

Short reads assembly comparison without mate-pair information. First and second columns report
the genome and assembler name; columns 3–7 report the contig size statistics, specifically
number of contigs, number of contigs witti size C10 kbp, max contig size, mean contig size, and
N50 size (N50 is the largest number L such that the combined length of all contigs of length C L
is at least 50 % of the total length of all contigs). Finally column 8 reports the coverage achieved
by all the contigs. doi:10.1371journal.pone.001917S.t005

Fig. 4.23 (Left) Feature-Response curve comparison for S. epidermidis with no mate-pair
information; (right) Feature-Response curve comparison for Chromosome Y (3 Mbp of p11.2
region) with no mate-pair information [16]
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4.4 Summary

In this section, the main approaches for solving the assembly algorithm were
presented, and for each approach several algorithms were explained. There are three
main categories for assembly algorithms: greedy algorithms; overlap-layout-
consensus algorithms, which are based on overlap graphs and Hamiltonian path-
finding; and de Bruijn graph algorithms, which are based on de Bruijn graphs and
Eulerian path-finding in assembly graphs. De Bruijn graph methods show more
strength in short-reads and resolving repeats, while overlap graph methods are more
suitable for Sanger shotgun data. While it seems that greedy methods were appli-
cable just on long sequences, some tricks used in new algorithms, like the
PE-Assembler which because of using paired-end reads, could apply the greedy idea
efficiently for short reads. The quality of an assembly algorithm is given according
to the accuracy and contiguity of the result, and since there is a trade-off between
assembly quality measures, it is not a trivial task to compare assembly algorithms.

In addition, the result of any assembly algorithm depends on the dataset used,
and each algorithm may perform better in special circumstances. For a new
dataset, we cannot choose a better algorithm by just comparing previous results on
another dataset. There is also another problem, that of the use of parameters, which
have to be predefined by the user, in some algorithms (like parameter k in de
Bruijn graph-based methods), which makes the comparison more difficult. The
final assembly result is definitely dependent on the parameter chosen for the
assembly task. There are some metrics available for comparing assembly algo-
rithms, but the availability of a good metric that is not dependent on the reference
genome is still missing from the literature.
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