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Department of Chemistry and Biochemistry, University of Maryland, MD, USA
and Center for Biological Investigations, CSIC, Madrid, Spain



ISBN: 978-0-85404-257-9

A catalogue record for this book is available from the British Library

r Royal Society of Chemistry 2008

All rights reserved

Apart from fair dealing for the purposes of research for non-commercial purposes or for
private study, criticism or review, as permitted under the Copyright, Designs and Patents
Act 1988 and the Copyright and Related Rights Regulations 2003, this publication may not
be reproduced, stored or transmitted, in any form or by any means, without the prior
permission in writing of The Royal Society of Chemistry or the copyright owner, or in the
case of reproduction in accordance with the terms of licences issued by the Copyright
Licensing Agency in the UK, or in accordance with the terms of the licences issued by the
appropriate Reproduction Rights Organization outside the UK. Enquiries concerning
reproduction outside the terms stated here should be sent to The Royal Society of
Chemistry at the address printed on this page.

Published by The Royal Society of Chemistry,
Thomas Graham House, Science Park, Milton Road,
Cambridge CB4 0WF, UK

Registered Charity Number 207890

For further information see our website at www.rsc.org



Preface

Protein folding, the process by which newly synthesized proteins fold into the
specific three-dimensional structures defining their biologically active states, is an
old scientific problem that can be dated back at least seven decades, namely to the
experiments of Anson andMirsky in the 1930s. It is also multifaceted, changing its
definition according to the background and emphasis of the particular researcher.
For the cell biologist-biochemist the in vivo protein folding problem consists of
identifying, isolating and characterizing all components of the cellular machinery
in charge of facilitating and catalyzing protein folding inside the cell. From a
bioinformatics viewpoint, the folding problem could be seen as devising methods
to predict with high accuracy the native three-dimensional structure of proteins
from the amino acid sequence alone. Physics-inclined scientists phrase the folding
problem as understanding the processes and mechanisms that control the self-
organization of disordered protein molecules to form unique, exquisitely detailed
structures, while avoiding their irreversible assembly into high-order aggregates.
The scope of this book belongs to the last of these viewpoints.
To introduce the book it is useful to take a historical perspective, which

illustrates how the prevailing views about the mechanisms of protein folding
have closely followed the idiosyncrasies in the catalog of available proteins and
experimental approaches. In the early days and for a long time after, folding
was circumscribed to equilibrium denaturation experiments on a small group of
complex proteins, such as hemoglobin, because they were readily available. A
theoretical framework to interpret experiments was not available, and there
was significant discussion as to whether simple models based on elementary
chemical reactions could be applied to protein folding (incidentally a similar
discussion has regained center stage in recent years). The development of
techniques that exploited thiol chemistry to trap intermediary folding species in
proteins containing disulfide bonds, together with folding coupled to prolyl-
bond isomerization, opened the era of kinetic experiments. This led to the
characterization of folding as a convoluted process involving multiple path-
ways, misfolded intermediates, and heterogeneous unfolded states. However,
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the question was whether such heterogeneity was intrinsic to the folding re-
action or induced by the trapping reactions, which involved the formation or
breakage of covalent bonds. Later on, the combination of molecular biology
and stopped-flow kinetic methods with millisecond resolution changed the
landscape dramatically. Many single domain proteins with neither disulfide
bonds nor cis prolines were studied, showing what appeared to be very simple
behavior. In the absence of chemical trapping, folding of small proteins looked
like a two-state process. Two-state implied the existence of a high free energy
barrier separating the folded and unfolded states, which seemed to agree with
the still slow (seconds to milliseconds) folding kinetics observed in these pro-
teins. In a two-state regime the only mechanistic information accessible to
experiment relies on mapping out the properties of the top of the folding barrier
(i.e. the folding ‘‘transition-state’’) from the effects that small free energy per-
turbations have on folding and unfolding rates. Combining this idea with
structure-oriented site directed mutagenesis resulted in the protein engineering
approach to protein folding, which was independently initiated in the labs of
Goldenberg, Fersht, and Matthews, and then fully developed by the Fersht
group. The approach quickly caught on among protein biochemists, who ap-
plied it to many two-state proteins. Theoreticians immediately saw this ava-
lanche of new experimental results as an opportunity to test results from theory
and computer simulations, leading to the first de facto connection between the
worlds of experiment and theory in protein folding. At the same time research
in protein misfolding and aggregation was starting to reach the status of
quantitative science. This state of affairs has been portrayed in detail by several
books that appeared in the 1990s and 2000, including ‘‘Protein Folding’’ edited
by Creighton, ‘‘The Mechanisms of Protein Folding’’ edited by Pain, and
‘‘Protein Folding Mechanisms’’ edited by Richards, Eisenberg, and Kim.
However, in the last 10 years there have been important developments in the

area of protein folding and aggregation that have not yet been discussed in a
book of these characteristics. These advances have emerged from a close
partnership between statistical theory, novel approaches that dramatically in-
crease the temporal, structural and ensemble resolution of folding experiments,
and the maturity of computer simulations, which are now capable of producing
results directly comparable to experiments. Once again, these advances are
changing our general perception of protein folding to one that emphasizes the
stochastic nature of the process and the subtle energetic balance that eventually
determines whether a protein folds, the mechanisms by which it does, and its
propensity to aggregate. The aim of this book is to provide an account of these
major advances as seen by some of the main contributors. The book is intended
for graduate students and postdoctoral researchers actively involved in protein
folding research, other scientists interested in the recent progress of the field,
and instructors revamping the protein folding section of their biochemistry and
biophysics courses. Chapters 1 and 2 focus on the a-helix, one of the basic
structural elements found in proteins. The main attraction in investigating a-
helix formation is that one encounters many of the features of protein folding
but in their simplest version. These two chapters will introduce the reader to
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conformational ensembles, partially cooperative unfolding processes, the con-
nection between protein energetics and stereochemistry, detailed kinetic mod-
eling, and simple examples of the application of statistical approaches to the
analysis of experimental data. Chapter 3 explains the statistical theory that,
even if just judged by the number of times it is cited throughout the book,
provides the conceptual backbone for most of the subsequent experimental and
computational developments. Chapters 4 through 7 discuss experimental ap-
proaches for the investigation of folding mechanisms. This selection is not in-
tended to be comprehensive, but to include techniques that either probe or
exploit the stochastic nature of protein folding: classical hydrogen-exchange
techniques (Chapter 4), novel ensemble-based methods to estimate folding free
energy surfaces from differential scanning calorimetry (Chapter 5), fast-folding
kinetic experiments and their most important findings (Chapter 6), and the
application of single molecule spectroscopy to protein folding (Chapter 7).
Chapters 8 and 9 deal with the impressive recent developments in computa-
tional approaches; starting from atomistic simulations of complete folding
(Chapter 8) and continuing with applications to de novo protein design
(Chapter 9). Finally, Chapters 10 and 11 are devoted to the experimental and
computational investigation of the other side of the problem, that of protein
misfolding and aggregation.
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CHAPTER 1

The a-Helix as the Simplest
Protein Model: Helix–Coil
Theory, Stability, and Design

ANDREW JAMES DOIG

Faculty of Life Sciences, The University of Manchester, Jackson’s Mill,
PO Box 88, Sackville Street, Manchester M60 1QD, UK

1.1 Introduction

Proteins are built of regular local folds of the polypeptide chain called secondary
structure. a-Helices are present in nearly all globular proteins, with E30% of
residues found in a-helices.1 It is such ubiquity and its structural simplicity that
makes the a-helix an ideal candidate for detailed quantitative studies of the
complex energetic factors involved in protein folding and stability. Here, we
discuss structural features of the helix and their contributions to helix stability
from studies in peptides. Some earlier reviews in this field are references 2–10.

1.2 Structure of the a-Helix

A helix combines a linear translation with an orthogonal circular rotation. In
the a-helix the linear translation is a rise of 5.4 Å per turn of the helix and a
circular rotation is 3.6 residues per turn. Side chains spaced i,i+3, i,i+4, and
i,i+7 are therefore close in space and interactions between them can affect
helix stability. Spacings of i,i+2, i,i+5, and i,i+6 place the side chain pairs
on opposite faces of the helix avoiding any interaction. The helix is primarily
stabilized by i,i+4 hydrogen bonds between backbone amide groups.
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The conformation of a polypeptide can be described by the backbone
dihedral angles f and c. Most f,c combinations are sterically excluded,
leaving only the broad b region and narrower a region. The residues at the N-
terminus of the a-helix are called N0-N-cap-N1-N2-N3-N4 etc., where the
N-cap is the residue with non-helical f, c angles immediately preceding the N-
terminus of an a-helix and N1 is the first residue with helical f, c angles.11

The C-terminal residues are similarly called C4-C3-C2-C1-C-cap-C0 etc. The
N1, N2, N3, C1, C2, and C3 residues are unique because their amide groups
participate in i,i+4 backbone–backbone hydrogen bonds using either only
their CO (at the N-terminus) or NH (at the C-terminus) groups. The need for
these groups to form hydrogen bonds has powerful effects on helix structure
and stability.12

1.2.1 Capping Motifs

The amide NH groups at the helix N-terminus are satisfied predominantly by
side-chain H-bond acceptors. In contrast, carbonyl CO groups at the C-
terminus are satisfied primarily by backbone NH groups from the sequence
following the helix.12 The presence of such interactions would therefore sta-
bilize helices. These interactions can be identified as specific patterns found at
or near the ends of helices and are generally termed capping motifs.11,13–17

A common pattern of capping at the helix N-terminus is the capping box.
Here, the side chain of the N-cap forms a hydrogen bond with the backbone of
N3 and, reciprocally, the side chain of N3 forms a hydrogen bond with the
backbone of the N-cap.18 The definition of the capping box was expanded
by Seale et al.19 to include an associated hydrophobic interaction between
residues N0 and N4 and is also known as a ‘‘hydrophobic staple’’.20 A variant
of the capping box motif is termed the ‘‘big’’ box with an observed hydrophobic
interaction between non-polar side-chain groups in residues N4 and N00 (not
N0).19 The Pro-box motif involves three hydrophobic residues and a Pro residue
at the N-cap.21

The two primary capping motifs found at helix C-termini are the Schellman
and the aL motifs.22–24 The Schellman motif is defined by a doubly hydrogen-
bonded pattern between backbone partners, consisting of hydrogen bonds
between the amide NH at C00 and the carbonyl CO at C3 and between the amide
NH at C0 and the carbonyl CO at C2, respectively. The associated hydrophobic
interaction is between C3 and C00. In a Schellman motif, polar residues are
highly favoured at the C1 position and the C0 residue is typically glycine. If C00

is polar, the alternative aL motif is observed, defined by a hydrogen bond be-
tween the amide NH at C0 and the carbonyl CO at C3. As in the Schellman
motif, the C0 residue is typically glycine, which adopts a positive value of f.
However, the hydrophobic interaction in an aL is heterogeneous, occurring
between C3 and any of several residues external to the helix (C30, C40, or C50).23

A notable difference between the N- and C-terminal motifs is that at the N-
terminus, helix geometry favors side-chain-to-backbone hydrogen bonding and
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selects for compatible polar residues.25,26 Accordingly, the N-terminus pro-
motes selectivity in all polar positions, especially N-cap and N3 in the capping
box. In contrast, at the C-terminus, side-chain-to-backbone hydrogen bonding
is disfavored. Backbone hydrogen bonds are satisfied instead by post-helical
backbone groups. The C-terminus need only select for C 0 residues that can
adopt positive values of the backbone dihedral angle f, most notably Gly.23

1.2.2 Metal Binding

One way to stabilize helix conformations, especially in short peptides, is to
introduce an artificial nucleation site composed of a few residues fixed in a helical
conformation. For example, the calcium-binding loop from EF-hand proteins
saturated with a lanthanide ion promotes a rigid short helical conformation at its
C-terminus region.27 This system has been used to measure enthalpic terms
contributing to helical preferences of the amino acids.28–30 In the presence of Cd
ions, a synthetic peptide containing Cys-His ligands i,i+ 4 apart at the C-
terminal region increased helicity (that is the average probability of finding di-
hedral angle pairs in values typical of a-helix) from 54% to 90%. The helicity of
a similar peptide containing His-His ligands increased by up to 90% as a result
of Cu and Zn binding.31 The addition of a cis-Ru(III) ion to a 6-mer peptide, Ac-
AHAAAHA-NH2, changed the peptide conformation from random coil to 37%
helix.32 An 11-residue peptide was converted from random coil to 80% helix
content by the addition of Cd ions, although the ligands used were not natural
amino acids but aminodiacetic acids.33 As(III) stabilizes helices when bound to
Cys side chains spaced i,i+ 4 by –0.7 to –1.0 kcalmol–1.34 19-Membered
metallocyclic rings induce helix formation by covalently linking helical turns.35

1.2.3 The 310-Helix

310-Helices are stabilized by i,i+3 hydrogen bonds, instead of the i,i+4 found
in a-helices, making the cylinder of the 310-helix narrower than a and their
hydrogen bonds non-linear. 3–4% of residues in crystal structures are in 310-
helices.1,36 Most 310-helices are short, only 3 or 4 residues long, compared to a
mean of 10 residues in a-helices,1 and are commonly found as N- or C-terminal
extensions to an a-helix:1,37,38 strong amino acid preferences have been observed
for different locations within the interior36 and N- and C-caps25 of 310-helices in
crystal structures. The 310-helix is being recognized as of increasing importance
in isolated peptides and even as a possible intermediate in a-helix formation.39,40

1.2.4 The p-Helix

In contrast to the widely occurring a- and 310-helices, the p-helix is extremely
rare. The p-helix is unfavorable for three reasons: its dihedral angles are

3The a-Helix as the Simplest Protein Model



energetically unfavorable relative to the a-helix,41,42 its three-dimensional
structure has a 1 Å hole down the center that is too narrow for access by a
water molecule resulting in the loss of van der Waals interactions, and a
higher number of residues (four) must be correctly oriented before the first
i,i+5 hydrogen bond is formed, making helix initiation more entropically
unfavorable than for a- or 310-helices.

43 p-Helices are known in both peptide
and proteins, however.44–48

1.3 Design of Peptide Helices

The earliest work on peptide helices was on long homopolymers of Glu or Lys
which show coil-to-helix transitions on changing the pH from charged to
neutral.49 The neutral polypeptides are metastable and prone to aggregation,
ultimately to b-sheet amyloid.50 In 1971 Brown and Klee51 reported that the
C-peptide of ribonuclease A, which contains the first 13 residues of the protein
and which forms a helix in the protein, had high helical content at 0 1C. Work
on the C-peptide showed that the replacement of interior helical residues with
Ala was stabilizing, indicating that a major reason why this helix was folded in
isolation was the presence of three successive alanines from positions 4–6. This
led to the successful design of isolated, monomeric helical peptides in aqueous
solution, first containing several salt bridges and a high alanine content, based
on (EAAAK)n

52,53 and then a simple sequence with a high alanine content
solubilized by several lysines.54 These ‘‘AK peptides’’ are based on the se-
quence (AAKAA)n, where n is typically 2–5. The Lys side chains are spaced
i,i+5 so they are on opposite faces of the helix, giving no charge repulsion.
Hundreds of AK peptides have been studied, giving most of the available
results on helix stability in peptides. The alanines in the (EAAAK)n-type
peptides may be removed entirely; E4K4 peptides, with sequences based on
(EEEEKKKK)n or EAK patterns, are also helical, stabilized by large numbers
of salt bridges.5,55–57

1.3.1 Host–Guest Studies

Extensive work from the Scheraga group has obtained helix–coil parameters
using a host–guest method. Long random co-polymers were synthesized
of a water soluble, non-ionic guest (poly[N5-(3-hydroxypropyl)-L-glutamine]
(PHPG) or poly[N5-(4-hydroxybutyl)-L-glutamine] (PHBG)), together
with a low (10–50%) content of the guest residue. Using the s and s Zimm–
Bragg helix–coil parameters (see below) for the host homopolymer, it
was possible to calculate those for the guest using helix–coil theory as a
function of temperature. The results obtained from the host–guest work
are in disagreement with most of the results from short peptides of fixed
sequence.
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1.3.2 Helix Lengths

Helix formation in peptides is cooperative, with a nucleation penalty. Helix
stability therefore tends to increase with length, in homopolymers at least. As
the length of a homopolymer increases, the mean fraction helix will level off
below 100%, as long helices tend to break in two. In heteropolymers, observed
lengths are highly sequence dependent. As helices are at best marginally stable
in monomeric peptides in aqueous solution, they are readily terminated by the
introduction of a strong capping residue or a residue with a low intrinsic helical
preference.
The length distribution of helices in proteins is very different from homo- and

heteropolymers.1 Most protein helices are short, with 5 to 14 residues most
abundant. There is a general trend for a decrease in frequency as the length
increases beyond 13 residues. Helix lengths longer than 25 are rare. There is
also a preference to have close to an integral number of turns so that their
N- and C-caps are on the same side of the helix.58

1.3.3 The Helix Dipole

The secondary amide group in a protein backbone is polarized with the oxygen
negatively charged and hydrogen positively charged. In a helix, the amides are
all oriented in the same direction with the positive hydrogens pointing to the N-
terminus and negative oxygens pointing to the C-terminus. This can be re-
garded as giving a partial positive charge at the helix N-terminus and a partial
negative charge at the helix C-terminus.59–61 In general, therefore, negatively
charged groups are stabilizing at the N-terminus and positively charged at the
C-terminus. An alternative interpretation of these results is that favored side
chains are those that can make hydrogen bonds to the free amide NH groups at
N1, N2, and N3 or free CO groups at C1, C2, and C3.62 Charged groups can
form stronger hydrogen bonds than neutral groups, thus providing an alter-
native rationalization of the pH titration results. These hypotheses are not
mutually exclusive, as a charged side chain can also function as a hydrogen
bond acceptor or donor. Measurements of the amino acid preferences for the
N-cap, N1, N2, and N3 positions in the helix allow a comparison to be made of
the relative importance of helix dipole and hydrogen bonding interactions,63–66

suggesting that both charge and hydrogen-bonding interactions are important.

1.3.4 Acetylation and Amidation

A simple, yet effective, way to increase the helicity of a peptide is to acetylate its
N-terminus.15,67 Acetylation removes the positive charge that is present at the
helix terminus at low or neutral pH; this charge would interact unfavorably
with the positive helix dipole and free N-terminal NH groups. The extra CO
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group from the acetyl group can form an additional hydrogen bond to the NH
group, putting the acetyl at the N-cap position. This has a strong stabilizing
effect by approximately 1.0 kcalmol–1 compared to alanine.63,68,69

Amidation of the peptide C-terminus is structurally analogous to N-terminal
acetylation: the helix is extended by one hydrogen bond and an unfavorable
charge–charge repulsion with the helix dipole is removed. The energetic benefit
of amidation is rather smaller, however, with the amide group being no better
than Ala and in the middle if the C-cap residues are ranked in order of sta-
bilization effect.63 As most helical peptides studied to date are both acetylated
and amidated, and acetylation is more stabilizing than amidation, the distri-
bution of helicity along the peptide is generally skewed so that residues near the
N-terminus are more helical than those near the C-terminus.

1.3.5 Solubility

Peptide aggregation can be assayed rigorously by sedimentation equilibrium,
which determines the oligomeric state of a molecule in solution. This is difficult,
however, with the short peptides often used as their molecular weights are at
the lower limit for this technique. A simpler method is to check a spectroscopic
signal that depends on peptide structure, most obviously circular dichroism
(CD), as a function of concentration. If the signal depends linearly on peptide
concentration across a large range, including that used to study the peptide
structure, it is safe to assume that the peptide is monomeric. An oligomer that
does not change state, such as a coiled-coil, across the concentration range
cannot be excluded, however. Light scattering can detect aggregation. A
monomeric peptide should have a flat baseline in a UV spectrum outside the
range of any chromophores in the peptide. Stock solutions of a peptide with a
single tyrosine isolated from the helix region by Gly should have A300/
A275o0.02 and A250oA275o0.2.70

Consideration of solubility is essential when designing helical peptides.
Solubility can be achieved most easily by including polar side chains spaced
i,i+5 in the sequence where they cannot interact. Lys, Arg and Gln are used
most often for this purpose. Gln may be preferred if unwanted interactions with
charged Lys or Arg may be a problem, but some AQ peptides lack sufficient
solubility and AQ peptides are less helical.
The spacing of side chains in the helix is best visualized with a helical wheel,

to ensure that the designed helix does not have a non-polar face that may lead
to dimerization. The following webpage provides a useful resource for this:
http://cit.itc.virginia.edu/Bcmg/Demo/wheel/wheelApp.html

1.3.6 Concentration Determination

An accurate measurement of helix content depends on an accurate spectro-
scopic measurement and, equally importantly, peptide concentration. This is
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usually achieved by including a Tyr side chain at one end of the peptide.
The extinction coefficient of Tyr at 275 nm is 1450M–1 cm–1.71 If Trp is pre-
sent, measurements at 281 nm can be used where the extinction coefficient of
Trp is 5690M�1 cm�1 and Tyr 1250M�1 cm–1.72 Though the inclusion of
aromatic residues is required for concentration determination, this can
have the unwanted side effect of perturbing a CD spectrum, leading to an
inaccurate determination of helix content. A simple solution to this problem is
to separate the terminal Tyr from the rest of the sequence by one or more
Gly residues.73 If the aromatic residues must be included within the
helical region, the CD spectrum should be corrected to remove this
perturbation.74

1.3.7 Helix Templates

A major penalty to helix formation is the loss of entropy arising from the re-
quirement to fix three consecutive residues to form the first hydrogen bond of
the helix. Following this nucleation, propagation is much more favored as only
a single residue need be restricted to form each additional hydrogen bond. A
way to avoid this barrier is to synthesize a template molecule that facilitates
helix initiation, by fixing hydrogen bond acceptors or donors in the correct
orientation for a peptide to bond in a helical geometry. The ideal template
nucleates a helix with an identical geometry to a real helix. Kemp’s group
applied this strategy and synthesized a proline-like template that nucleated
helices when a peptide chain was covalently attached to a carboxyl group.75–79

Bartlett et al. reported on a hexahydroindol-4-one template80 that induces
helicity in an appended hexameric peptide. Several other templates were less
successful and could only induce helicity in organic solvents.81–83 Their syn-
theses are often lengthy and difficult, partly due to the challenging requirement
of orienting several dipoles to act as hydrogen bond acceptors or donors.

1.4 Helix–Coil Theory

Peptides that form helices in solution do not show a simple two-state equi-
librium between a fully formed helix and a fully unfolded structure. Instead
they form a complex mixture of all helix, all coil, or, most frequently, a dis-
tribution of helices of different lengths with increased probability at the center
of the peptide (helix fraying). In order to interpret experiments on helical
peptides and make theoretical predictions on helices it is therefore essential to
use a helix–coil theory that deals with this distribution of helices. Recent re-
views of helix–coil theory are references 84–86.
The simplest way to analyse the helix–coil equilibrium, still occasionally seen,

is the two-state model where the equilibrium is assumed to be between a 100%
helix conformation and 100% coil. This is incorrect and its use gives serious
errors.
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1.4.1 Zimm–Bragg Model

The two major types of helix–coil model are i) those which count hydrogen
bonds, principally Zimm–Bragg (ZB),87 and ii) those that consider residue
conformations, principally Lifson–Roig (LR).88 In the ZB theory the units
being considered are peptide groups and they are classified on the basis of
whether their NH groups participate in hydrogen bonds within the helix. The
ZB coding is shown in Figure 1.1. A unit is given a code of 1 (e.g. peptide unit 5
in Figure 1.1) if its NH group forms a hydrogen bond and 0 otherwise. The first
hydrogen-bonded unit proceeding from the N-terminus has a statistical weight
of ss, successive hydrogen-bonded units have weights of s and non-hydrogen
bonded units have weights of 1. The s-value is a propagation parameter and s is
an initiation parameter. The difficulty of nucleating a helix is captured in the
ZB model by having s smaller than s. The statistical weight of a homo-
polymeric helix of N hydrogen bonds is ssN–1. The cost of initiation, s, is thus
paid only once for each helix, while extending the helix simply multiplies its
weight by one additional s-value for each extra hydrogen bond.

1.4.2 Lifson–Roig Model

In the LR model each residue is assigned a conformation of helix (h) or coil
(c), depending on whether it has helical f, c angles. Every conformation of a
peptide of N residues can be written as a string of N c’s or h’s, giving 2N

conformations in total. Residues are assigned statistical weights depending on
their conformations and the conformations of surrounding residues. A residue
in an h conformation with an h on either side has a weight of w. This can be
thought of as an equilibrium constant between the helix interior and the coil.
Coil residues are used as a reference and have a weight of 1. In order to form
an i,i+4 hydrogen bond in a helix, three successive residues need to be fixed
in a helical conformation. M consecutive helical residues will therefore have
M–2 hydrogen bonds. The two residues at the helix termini (i.e. those in the
centre of chh or hhc conformations) are assigned weights of v (Figure 1.1).
The ratio of w to v gives approximately the effect of hydrogen bonding (1.7 :
0.036 for Ala69 or –RT ln (1.7/0.036)¼ –2.1 kcalmol–1). A helical homo-
polymer segment of M residues has a weight of v2wM–2 and a population in

Figure 1.1 Zimm–Bragg and Lifson–Roig codes and weights for the a-helix.

8 Chapter 1



the equilibrium of v2wM–2 divided by the sum of the weights of every con-
formation (i.e. the partition function). In this way the population of every
conformation is calculated and all properties of the helix–coil equilibrium
evaluated. The LR model is easier to handle conceptually for heteropolymers
since the parameters are assigned to individual residues. The substitution of
one amino acid at a certain position thus changes the w- and v-values at that
position. In the ZB model the initiation parameter s is associated with several
residues and s with a peptide group, rather than a residue. It is therefore easier
to use the LR model when making substitutions. Indeed, most recent work
has been based on this model. A further difference is that the ZB model as-
signs weights of zero to all conformations that contain a chc or chhc sequence.
This excludes a very large number of conformations that contain a residue
with helical f, c angles but with no hydrogen bond. In LR theory, these
are all considered. The ZB and LR weights are related by the following
formulae:85 s¼w/(1+ v); s¼ v2/(1+ v)4.
The complete helix–coil equilibrium is handled by determining the statistical

weight for every possible conformation that contains a helix plus a reference
weight of 1 for the coil conformation. Each conformation considered in the
helix–coil equilibrium is given a statistical weight. This indicates the stability
of that conformation, with the higher the weight, the more probable the
conformation. Weights are defined relative to the all-coil conformation,
which is given a weight of 1. The statistical weight of a conformation can thus
be regarded as an equilibrium constant relative to the coil; a weight 41 in-
dicates the conformation is more stable than coil,o1 means less stable and¼ 1
means equally stable. The population of each conformation is given by the
statistical weight of that conformation divided by the sum of the statistical
weights for every conformation (the partition function). Thus the greater the
statistical weight, the more stable the conformation. The key to using helix–
coil theory is the partition function. All the properties of a system at equi-
librium are contained within the partition function, which makes it very
valuable. Partition functions are extremely powerful concepts in statistical
thermodynamics since they allow calculation of all properties of an equi-
librium ensemble. Any property of the equilibrium can be extracted from the
partition function by applying the appropriate mathematical function. In this
case the properties could be the mean number of hydrogen bonds, the mean
helix length, the probability that each residue is within a helix, etc. In par-
ticular, the mean number of residues with a weight x is given by @ lnZ

@ ln x. Circular
dichroism is commonly used to give the mean helix content of a helical
peptide, namely the fraction of residues that have a weight of w. LR-based
models can thus be related to experimental data by equating the measured
mean helix content to @ lnZ

@ lnw

�
N, where N is the number of residues in the

peptide. Statistical weights can be regarded as equilibrium constants for the
equilibrium between coil and the structure (as the reference coil weight is
defined as 1). They can therefore be converted to free energies as -RT
ln (weight). The Lifson–Roig formalism has also been adapted to describe
310- and p-helices.43,89,90
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1.4.2.1 The Unfolded State and Polyproline II Helix

The treatment of peptide conformations is based on Flory’s isolated-pair hypo-
thesis.91 This states that while f and c for a residue are strongly inter-
dependent, giving preferred areas in a Ramachandran plot, f, c pair is
independent of the f, c angles of its neighbors. Pappu et al. found that non-
helical poly(Ala) chains mostly populated extended or fully helical conform-
ations as many partly helical conformations are sterically disallowed. Such
effects are not included in helix–coil theories. Helix–coil theories assign the
same weight (1) to every coil residue; steric exclusion means that these should
vary and be lower than 1 in many cases.
The polyproline II helix may well be an important conformation for unfolded

proteins. Many recent papers have addressed this issue. Examples are refer-
ences.92–94 In particular, denatured alanine rich peptides may form a poly-
proline II helix.95–101 It may therefore be valid to consider residues in helical
peptides to be in three possible states (helix, coil, or polyproline II), rather than
two (helix or coil). No current helix–coil model takes this into account. A scale
of amino acid preferences for the polyproline II helix has been published.102

1.4.2.2 Single Sequence Approximation

Since helix nucleation is difficult, conformations with multiple helical segments
are expected to be rare in short peptides. In the one-, or single-, helical sequence
approximation, peptide conformations containing more than one helical segment
are assumed not to be populated and are excluded from the partition function
(i.e. assigned statistical weights of zero). As peptide length increases, the ap-
proximation is no longer valid since multiple helical segments can be long enough
to overcome the initiation penalty. The single sequence approximation will also
break down when a sequence with a high preference for a helix terminus is within
the middle of the chain. Conformations with two or more helices may also often
include helix–helix tertiary interactions that are ignored in all helix–coil models.

1.4.2.3 N- and C-caps

N-Capping has been added to LR theory be assigning a weight of n to the
central residue in a cch triplet, as the N-cap is the non-helical residue prece-
ding the start of a helical segment. Similarly, the C-cap is the first residue
in a non-helical conformation (c) at the C-terminus of a helix. C-Cap weights
(c-values) are assigned to central residues in hcc triplets.6,68,103

1.4.2.4 Capping Boxes

The N-terminal capping 18 includes a side-chain–backbone hydrogen bond
from N3 to the N-cap (i,i� 3). This is included in the LR model by assigning a
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weight of w*r to the chhh conformation, where r is the weight for the Ser
backbone to Glu side-chain bond.6

1.4.2.5 Side-chain Interactions

As helices have 3.6 residues per turn, side chains spaced i,i+3 or i,i+4 are
close in space. Side-chain interactions are thus possible when four or five
consecutive residues are in a helix. They are included in the LR-based model by
giving a weight of w*q to hhhh quartets and w*p to hhhhh quintets. The side-
chain interaction is between the first and last side chains in these groups; the w
weight is maintained to preserve the equivalence between the number of
residues with a w weighting and the number of backbone helix hydrogen
bonds.104

1.4.2.6 N1, N2, and N3 Preferences

The helix N-terminus shows significantly different residue frequencies for the N-
cap, N1, N2, N3, and helix interior positions.11,26,105,106 A complete theory for
the helix should therefore include distinct preferences for the N1, N2, and N3
positions. In the original LRmodel, the N1 and C1 residues are both assigned the
same weight, v. Shalongo and Stellwagen107 separated these as vN and vC.
Andersen and Tong103 did the same and derived complete scales for these para-
meters from fitting experimental data, though some values were tentative. The
helix initiation penalty is vN*vC and so vN- and vC-values are all small (E0.04).
We added weights for the N1, N2, and N3 (n1, n2, and n3) positions as

follows:108 The n1-value is assigned to a helical residue immediately following a
coil residue. The penalty for helix initiation is now n1.v, instead of v2, as v
remains the C1 weight. An N2 helical residue is assigned a weight of n2.w,
instead of w. The weight w is maintained in order to keep the useful definition
of the number of residues with a w weighting being equal to the number of
residues with an i,i+4 main chain–main chain hydrogen bond. The n2-value is
an adjustment to the weight of an N2 residue that takes into account the
structures that can be adopted by side chains uniquely at this position. Simi-
larly, an N3 residue is now assigned the weight n3.w, instead of w.

1.4.2.7 Helix Dipole

Helix dipole effects were added to the LR model by Scholtz et al.,109

though they used the one sequence approximation so that only one or no di-
poles in total are present. In LR models helix dipole effects are subsumed within
other energies. For example, N-cap, N1, N2, and N3 energies will include a
contribution from the helix dipole interaction so the energy of interaction of
charged groups at this position with the dipole should not be counted in
addition.
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1.4.3 AGADIR

AGADIR is an LR-based helix–coil model developed by Serrano, Muñoz,
and co-workers. The original model110 included parameters for helix pro-
pensities excluding backbone hydrogen bonds (attributed to conformational
entropy), backbone hydrogen bond enthalpy, side-chain interactions and a
term for coil weights at the end of helical sequences (i.e. caps). The single
sequence approximation was used. The original partition function assumed
that many helical conformations did not exist, as all conformations in which
the residue of interest is not part of a helix were excluded.104,110 These were
corrected in a later version, AGADIRms, which considers all possible con-
formations.111 If AGADIR and LR models are both applied to the same
data, to determine a side-chain interaction energy, for example, the results
are similar, showing that the models are now not significantly different.111,112

The treatment of the helix–coil equilibrium differs in a number of respects
from the ZB and LR models and these have been discussed in detail by
Muñoz and Serrano.111 The minimal helix length in AGADIR is four residues
in an h conformation, rather than three. The effect of this assumption is to
exclude all helices which contain a single hydrogen bond; only helices with
two or more hydrogen bonds are allowed. In practice, this probably makes
little difference as chhhc conformations are usually unfavorable and hence
have low populations. Early versions of AGADIR considered that residues
following an acetyl at the N-terminus or preceding an amide at the C-
terminus were always in a c conformation; this was changed to allow these to
be helical.113

The latest version of AGADIR, AGADIR1s-2,113 includes terms for
electrostatics,113 the helix dipole,113,114 pH dependence,114 temperature,114

ionic strength,113 N1, N2, and N3 preferences,115 and capping motifs such as
the capping box, hydrophobic staple, Schellman motif, and Pro-
capping motif.113 The free energy of a helical segment, DGhelical-segment, is
given by DGhelical-segment¼DGInt+DGHbond+DGSD+DGdipole+DGnonH+
DGelectrost, which are terms for the energy required to fix a residue in
helical angles (with separate terms for N1, N2, N3, and N4), backbone
hydrogen bonding, side-chain interactions excluding those between charged
groups, capping and helix dipole interactions, respectively. Electrostatic
interactions are calculated with Coulomb’s equation. Helix dipole interactions
were all electrostatic interactions between the helix dipole or free N- and C-
termini and groups in the helix. Interactions of the helix dipole with charged
groups located outside the helical segment were also included. pH dependence
calculations considered a different parameter set for charged and uncharged
side chains and their pKa values. The single sequence approximation (see
above) is used again, unlike in AGADIRms. AGADIR is at present the only
model that can give a prediction of helix content for any peptide sequence, thus
making it very useful. It can also predict NMR chemical shifts and coupling
constants.
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1.4.4 Lomize–Mosberg Model

Lomize and Mosberg developed a model for calculating the stability of helices in
solution.116 Interestingly, they extended it to consider helices in micelles or a
uniform non-polar droplet to model a protein core environment. Helix stability
in water is calculated as the sum of main chain interactions, which is the free
energy change for transferring Ala from coil to helix, the difference in energy
when replacing an Ala with another residue, hydrogen bonding and electrostatic
interactions between polar side chains and hydrophobic side-chain interactions.
An entropic nucleation penalty of two residues per helix is included. Different
energies are included for N-cap, N1-N3, C1-C3, C-cap, hydrophobic staples,
Schellman motifs, and polar side-chain interactions. Hydrophobic interactions
were calculated from decreases in non-polar surface area when they are brought
in contact. Helix stability in micelles or non-polar droplets is found by calculating
the stability in water then adding a transfer energy to the non-polar environment.

1.5 Forces Affecting a-Helix Stability

1.5.1 Helix Interior

Different approaches have been used in order to determine the helical pro-
pensity or preference of individual amino acids. Scheraga and co-workers used
a host–guest strategy (see above) to derive values for the helical preference of
various amino acid residues. The host–guest system uses long random co-
polymers of a water soluble, non-ionic guest (poly[N5-(3-hydroxypropyl)-L-
glutamine] (PHPG) or poly[N5-(4-hydroxybutyl)-L-glutamine] (PHBG)),
together with a low (10–50%) content of the guest residue. The Zimm–Bragg
model s and s values of the host homopolymer are used to compute those for
the guest.117 This work has been criticized as the host side chains can interact
with each other.118 The introduction of a guest residue thus removes host–host
interactions and replaces them with PHBG–guest or PHPG–guest side-chain
interactions that may obscure the intrinsic helix propensities.
Rohl et al.69 used many alanine-based peptides with the general sequences

Ac-(AAKAA)mY-NH2 (or with Q instead of K) to measure interior helix
propensities. Substitutions in the helix interior and subsequent measures of
helicity using CD spectroscopy in both water and 40% (v/v) trifluoroethanol
(TFE) allowed the calculation of both the Lifson–Roig w parameter and the
stabilization energy for all 20 amino acids. Kallenbach and co-workers used
synthetic peptides of the form succinyl-YSEEEEKAKKAXAEEAEKKKK-
NH2, where substitutions at X allowed determination of helix stabilizing
energies for common amino acids.56 Stellwagen and co-workers made substi-
tutions in position 9 of Ac-Y(EAAAK)3A-NH2.

53

In 1998 Pace and Scholtz119 gathered information frommany different sources
and derived a scale for the propensity of each amino acid in the helix interior.
This is summarized in Table 1.1. The values are in D(DG) relative to alanine
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because it is generally (though not universally) agreed that this amino acid has
the highest helical propensity. (The s values from the Zimm–Bragg model, as
derived by the Scheraga group,117 do not agree with other scales, alanine having
the highest helix propensity and all other residues having lower values (a positive
D(DG) value relative to Ala)). Proline and glycine have the lowest helical pro-
pensity. The most controversial of these differences over the years has been that
of alanine. Host–guest analysis showing alanine to be effectively helix-neutral
has been supported by data from some other groups, notably the templated
helices of Kemp and co-workers.75 The use of template-nucleated helices has
been criticized by Rohl et al.,120 who argued that the low apparent helix pro-
pensity of alanine is a consequence of properties of the template–helix junction.
Kemp and co-workers121 used templates to investigate the helix-forming ten-
dency of polyalanine. Below six residues Ala had a low helix propensity, but
when the limit of six was exceeded an increase was found. This suggested that
there is a length-dependent term in the helicity of polyalanine. Alternatively, any
destabilizing effect of the template is less significant in longer helices.

1.5.2 Caps

Some capping preferences were measured in proteins using barnase13 and T4
lysozyme,14 giving slightly varying results. The Kallenbach group122 substituted

Table 1.1 Summary of other experi-
mental helix propensities
(relative to alanine).

Amino acid

Helix propensity
D(DG)(kcalmol–1)
(taken from reference 119)

Ala 0.00
Arg1 0.21
Leu 0.21
Met 0.24
Lys1 0.26
Gln 0.39
Glu 0.40
Ile 0.41
Trp 0.49
Ser 0.50
Tyr 0.53
Phe 0.54
Val 0.61
His 0.61
Asn 0.65
Thr 0.66
Cys 0.68
Asp 0.69
Gly 1.00
Pro 3.16
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several amino acids at the N-cap position in peptide models in the presence of a
capping box. They found that Ser and Arg are the most stabilizing residues,
whilst Gly and Ala are less stabilizing. The results are in agreement with the
results of Forood et al.,16 who found that the trend in a-helix inducing ability at
the N-cap is Asp4Asn 4 Ser4Glu4Gln4Ala. A more comprehensive
work to determine the preferences for all 20 amino acids at the N-cap position
used peptides with a sequence of NH2-XAKAAAAKAAAAKAAGY-
CONH2.

15,63,68 N-capping free energies ranged from Asn (best) to Gln (worst)
(Table 1.2).
We have used a similar approach using peptide models to probe the pref-

erences at N164, N2,65 and N366 using peptides with sequences of CH3CO-
XAAAAQAAAAQAAGY-CONH2, CH3CO-AXAAAAKAAAAKAAGY-
CONH2, and CH3CO-AAXAAAAKAAAAKAGY-CONH2, respectively. The
results have given N1, N2, and N3 preferences for most amino acids for these
positions (Table 1.2) and these agree well with preferences seen in protein
structures, with the exception of Pro at N1. Petukhov et al. similarly obtained
N1, N2, and N3 preferences for non-polar and uncharged polar residues by
applying AGADIR to experimental helical peptide data, and found similar
results.115,123 The complete sequences of peptides used can be seen in the table
footnote. At N1, N2, and N3, Asp and Glu as well as Ala are preferred, pre-
sumably because negative side chains interact favorably with the helix dipole or
NH groups, while Ala has the strongest interior helix preference.
Although it is also unique in terms of the presence of unsatisfied backbone

hydrogen bonds, the C-terminal region is less explored experimentally. The
C-terminus of the a-helix tends to fray more than the N-terminus, making
C-terminal measurements less accurate. Zhou et al.124 found that Asn is the
most favored residue at the C-cap followed by Gln 4 Ser BAla4 Gly BThr.
Forood et al.16 tested a limited number of amino acids at the C-terminus (C1)
finding a rank order of Arg 4 Lys 4 Ala. Doig and Baldwin63 determined the
C-capping preferences for all 20 amino acids in a-helical peptides. The thermo-
dynamic propensities of some amino acids at C0, C-cap, C1, C2, and C3 are also
included in Table 1.2.125,126

1.5.3 Phosphorylation

Phosphoserine is destabilizing compared to serine at interior helix posi-
tions.127,128 We investigated the effect of placing phosphoserine at the N-cap,
N1, N2, N3, and interior position in alanine-based a-helical peptides, studying
both the –1 and –2 phosphoserine charge states.129 Phosphoserine stabilizes at
the N-terminal positions by as much as 2.3 kcalmol–1, while it destabilizes in
the helix interior by 1.2 kcalmol–1, relative to serine. The rank order of free
energies relative to serine at each position is N24N34N14N-cap 4 in-
terior. Moreover, –2 phosphoserine is the most preferred residue known at each
of these N-terminal positions. Experimental pKa values for the –1 to –2
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phosphoserine transition are in the order N2oN-CapoN1oN3ointerior.
Phosphoserine can form highly stabilizing salt bridges to Arg 128 or Lys.130

1.5.4 Non-covalent Side-chain Interactions

Many studies have been performed on the stabilizing effects of interactions
between amino acid side chains in a-helices. These studies have identified a
number of types of interaction that stabilize the helix, including salt
bridges,52,55,57,109,131–135 hydrogen bonds,109,135–137 hydrophobic inter-
actions,104,138–140 basic–aromatic interactions,74,141 and polar/non-polar inter-
actions.142 The stabilizing energies of many pairs in these categories have been
measured, though some have only been analysed qualitatively. As described
earlier, residue side chains spaced i,i+ 3 and i,i+ 4 are on the same face of the
a-helix, though it is the i,i+4 spacing that receives most attention in the lit-
erature, as this is stronger. A summary of stabilizing energies for side-chain
interactions is given in Table 1.3. We give only those that have been measured
in helical peptides with the side-chain interaction energies determined by ap-
plying helix–coil theory. Almost all are attractive, with the sole exception of the
Lys–Lys repulsion.

1.5.4.1 Cooperativity

After individual side-chain interactions, the next most complex step is to study
triplets, with residues A, B, and C, where B forms bonds to both residues A and
C. The free energy of the triplet is often not the sum of the AB and BC bond
energies. The first evaluation of the strength of an engineered complex salt-
bridge in a peptide was reported by Mayne et al.143 after studying a stabilizing
multiple salt-bridge involving Glu3, Asp4, and Arg7 in an 11-mer a-helix. A
triplet of charged Arg-Glu-Arg residues spaced i,i+ 4, i+ 8 or i,i+ 3, i+ 6
also stabilizes a-helical peptides by �1.5 kcalmol–1 and �1.0 kcalmol–1, re-
spectively, which is more than the additive contribution of two single salt-
bridges.144 A similar stabilizing effect in an Arg-Phe-Met triplet in i,i+ 4, i+ 8
spacing was observed.145 Here, the triplet energy was 0.75 kcalmol–1 greater
than the sum of the Arg-Phe and Phe-Met energies. This was attributed to both
interactions favoring the same conformation of the shared central Phe. Other
non-salt-bridge triplets in isolated helical peptides have also been reported, for
example Glu-Phe-Arg146 and Glu-Phe-Glu,147 although they do not show sig-
nificant effects on peptide stability. In a Glu-Lys-Glu triplet, the second po-
tential salt-bridge provide no additional stabilization over a single interaction,
as the central Lys is only able to form one bond at a time. These simple ex-
amples show that side-chain interactions can be highly non-additive when
residues have the potential to form more than one bond simultaneously, and
show the difficulty of predicting helix stability for typical protein sequences
with multiple interactions.
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Table 1.3 Summary of side-chain interaction energies from literature.

Interaction DDG (kcalmol�1) Reference

Ile – Lys (i,i+4) –0.22 142
Val – Lys (i,i+4) –0.25 142
Ile – Arg (i,i+4) –0.22 142
Phe – Met (i,i+4) –0.8 104
Met – Phe (i,i+4) –0.5 104
Gln – Asn (i,i+4) –0.5 137
Asn – Gln (i,i+4) –0.1 137
Phe – Lys (i,i+4) –0.14 74
Lys – Phe (i,i+4) –0.10 74
Phe – Arg (i,i+4) –0.18 74
Phe – Orn (i,i+4) –0.4 141
Arg – Phe (i,i+4) –0.1 74
Tyr – Lys (i,i+4) –0.22 74
Glu – Phe (i,i+4) –0.5 147
Asp – Lys (i,i+3) –0.12 167
Asp – Lys (i,i+4) –0.24 167
Asp – His (i,i+3) 4–0.63 173
Asp – His (i,i+4) 4–0.63 173
Asp – Arg (i,i+3) –0.8 174
Glu – His (i,i+3) –0.23 167
Glu – His (i,i+4) –0.10 167
Glu – Lys (i,i+3) –0.38 109
Glu – Lys (i,i+4) –0.44 109
Phe – His (i,i+4) –1.27 135
Phe – Met (i,i+4) –0.7 140
His – Asp (i,i+3) –0.53 135
His – Asp (i,i+4) –2.38 175
His – Glu (i,i+3) –0.45 167
His – Glu (i,i+4) –0.54 167
Lys – Asp (i,i+3) –0.4 167
Lys – Asp (i,i+4) –0.58 167
Lys – Glu (i,i+3) –0.38 167
Lys – Glu (i,i+4) –0.46 167
Lys – Lys (i,i+4) +0.17 133
Leu – Tyr (i,i+3) –0.44 107
Leu – Tyr (i,i+4) –0.65 107
Met – Phe (i,i+4) –0.37 140
Gln – Asp (i,i+4) –0.97 136
Gln – Glu (i,i+4) –0.31 109
Trp – Arg (i,i+4) –0.4 147
Trp – His (i,i+4) –0.8 112
Tyr – Leu (i,i+3) –0.02 107
Tyr – Leu (i,i+4) –0.44 107
Tyr – Val (i,i+3) –0.13 107
Tyr – Val (i,i+4) –0.31 107
Arg (i,i+4) Glu (i,i+4) Arg –1.5 176
Arg (i,i+3) Glu (i,i+3) Arg –1.0 176
Arg (i,i+3) Glu (i,i+4) Arg –0.3 176
Arg (i,i+4) Glu (i,i+3) Arg –0.1 176
Phosphoserine – Arg (i,i+4) –0.45 128
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1.5.5 Covalent Side-chain Interactions

Lactam (amide) bonds formed between NH3
1 and CO2

– side chains can sta-
bilize a helix, acting in a similar way to disulfide bridges in a protein by con-
straining the side chains to be close, reducing the entropy of non-helical
states.148 Lactam bridges between Lys-Asp, Lys-Glu and Glu-Orn spaced
i,i+ 4 have been introduced into analogues of human growth hormone re-
leasing factor149 and proved to be stabilizing. The same Lys-Asp i,i+ 4 lactam
was stabilizing in other helical peptide systems,150–153 while Lys-Glu i,i+ 4
lactam bridges were less effective.151 Two overlapping Lys-Asp lactams were
even more effective.154 The effect of the ring size formed by the lactam was
investigated by replacing Lys with ornithine or (S)-diaminopropionic acid. A
ring size of 21 or 22 atoms was most stabilizing (a Lys-Asp i,i+ 4 lactam is 20
atoms).149 Lactams between side chains spaced i,i+ 7155,156or i,i+ 3,156,157

spanning two or one turns of the helix, have also been reported. Disulfide
bonds spaced i,i+ 7 have been introduced into alanine-based peptides, using
(D)- and (L)-2-amino-6-mercaptohexanoic acid derivatives.158

Helix formation can be reversibly photoregulated. Two cysteine residues are
cross-linked by an azobenzene derivative which can be photoisomerized from
trans to cis, causing a large increase or decrease in the helix content of the
peptide, depending on its spacing.159–161

1.5.6 Capping Motifs

Although the N-terminal capping box sequence stabilizes helices by inhibiting
N-terminal fraying, it does not necessarily promote elongation unless accom-
panied by favorable hydrophobic interactions as in a ‘‘hydrophobic staple’’
motif.162,163 The nature of the capping box stabilizing effect thus not only arises
from reciprocal hydrogen bonds between compatible residues, but also from
local interactions between side chains, helix macrodipole-charged residue
interactions, and solvation.164 Despite statistical analyses revealing that
Schellman motifs are observed more frequently than expected at the helix C-
terminus, this motif populates only transiently in aqueous solution, but it is
formed in 30% TFE.165 This might be due to the C-terminus being very frayed
and so the increase of helical content contributed from this motif is small. The
aL motif seems to be more stable than the alternative Schellman motif.163

1.5.7 Ionic Strength

Electrostatic interactions between charged side chains and the helix macro-
dipole can stabilize the helix.61,70,166 The interactions are alleviated by the
screening effects of water, ions, and nearby protein atoms. The energetics of the
interaction between fully charged ion pairs can be diminished by added salt and
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completely screened at 2.5M NaCl.134,167 Interactions of charged residues with
the helix macrodipole are less affected by salt than those between charged side
chains.167,168

1.5.8 Temperature

Thermal unfolding experiments show that the helix unfolds with increasing
temperature.169–171 There is no sign of cold denaturation, as seen with proteins.
Enthalpy and entropy changes for the helix–coil transition are difficult to de-
termine as the helix–coil transition is very broad, precluding accurate de-
termination of high- and low-temperature baselines by calorimetry.169

Nevertheless, isothermal titration calorimetric studies of a series of peptides
that form helices when binding a nucleating La31 find DH for helix formation
to be –1.0 kcalmol–1,27,29 in good agreement with the earlier work. This system
has been used to measure the enthalpic preferences of all the amino acids.30
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CHAPTER 2

Kinetics and Mechanisms
of a-Helix Formation

URMI DOSHI

Department of Chemistry and Biochemistry, and Center for Biomolecular
Structure and Organization, University of Maryland, College Park,
MD 20742, USA

2.1 Introduction

How an amino acid sequence guides the formation of a unique three-dimen-
sional structure defines the most intriguing problem of protein folding. Con-
comitant development of secondary and tertiary structure makes it difficult to
determine the mechanisms and the timescales of individual events. Hence, it is
simpler from both conceptual and experimental points of view to investigate
these events in isolation; that is outside the context of the protein. Under-
standing the factors governing the formation and stabilization of secondary
structural elements, which is simpler, allows us to determine the dynamic
processes underlying protein folding. Among secondary structures, helical
motifs, in particular, are adopted not only by biological macromolecules such
as nucleic acids and proteins but also by non-biological synthetic polymers.
Due to this fundamental nature of helices, their formation has been a subject of
inter-disciplinary interest with a long-standing history.
Since the early 1950s several statistical mechanical theories were developed

to explain the helix–coil transition observed in very long homopolypeptides.1

Although these theories differed in their approach to evaluating the partition
function they had the same basic form, i.e. describing helix formation as a
nucleation–elongation process. Nucleation involves the formation of the first
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turn of the helix in which the dihedral angles of four consecutive residues need to
be fixed in helical states. The nucleation step is difficult as the loss in con-
formational entropy is more compared to the gain in enthalpy on formation of
backbone interactions (the only backbone interactions originally considered
were the hydrogen bonds between the ith carbonyl oxygen and the i+4th amide
hydrogen in the case of a-helix). Fixing an additional residue results in the
growth of the existing helix, which is much easier than helix initiation and can
occur on either end. The equilibrium constants for nucleation and elongation are
described by the parameters of the widely accepted Zimm–Bragg and Lifson–
Roig theoretical treatments.2,3 Using host–guest methods the nucleation and
elongation parameters, which are the measures of the intrinsic preference for
helical conformation, were determined experimentally for individual amino
acids.4 These extensive studies prompted further investigation of the various
factors that govern a-helix stability and modification of the helix–coil theory to
incorporate the effects applicable to heteropolymers.5 Thorough thermo-
dynamic characterization for the past fifty years has resulted in the accumulation
of the various energetic contributions arising from the backbone as well as the
side chains, viz. interactions of the charged groups with the helix macro-dipole,
electrostatic and hydrophobic interactions between side chains and interactions
responsible for stabilizing the N- and the C-caps of the helices.6,7 Compilation of
this knowledge into a database, when implemented in an algorithm (AGADIR)
based on the nucleation–elongation model, has permitted successful prediction
of the helical content of peptides from their amino acid sequences.8–11 This
notable ability to predict helical behavior of peptides at a given temperature, pH
and solvent composition serves as a gauge of our understanding of the ther-
modynamics of a-helix formation. More details on helical structure, stability,
and design are covered in Chapter 1 by Doig and in the references therein.
a-Helix formation represents a classic prototype of conformational transition

in polymers. Usually such processes are fast, ranging from nanoseconds to
milliseconds, thus making their measurements difficult. The common experi-
mental approach to measure the dynamics of such fast events is to induce a shift
in the equilibrium by a rapid perturbation and to monitor the ensuing relaxation
to the new equilibrium. Analyses of the resulting kinetics are not straight-
forward due to the complexity involved in the measurements and in providing a
theoretical description to explain them quantitatively. The i,i+4 hydrogen
bonding pattern in an a-helix implies that the conformation of each residue is
affected by at most i,i+4 (and/or i,i� 4) nearest neighbors. This renders quasi-
one-dimensionality to the a-helix. Unlike proteins where different parts of the
chain that are far apart in sequence are brought together, the a-helix is primarily
stabilized by local interactions. Hence, one would expect formation of an a-helix
to be faster than folding of a protein. But the one-dimensional networking in the
a-helix may also be responsible for dampening its rate of formation when
compared to proteins that are expected to have myriads of folding paths.
If the helix–coil transition were a first-order phase transition as implied by its

name, a single relaxation between all-coil and all-helix states should be expected
as observed in the two-state behavior of many small, single-domain proteins.
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In fact, several microstates having more than one helix segment of varying
lengths are also populated, indicating that a-helix formation is far from being an
all-or-none transition. These microstates, in principle, may inter-convert with
each other leading to a distribution of relaxation times. Nonetheless, these re-
laxation times may be clustered together into one or several separate timescales
manifesting into single- or multi-phasic kinetics respectively. This continuum of
relaxation times could not be easily determined theoretically or related to the
global relaxation observed experimentally forty years back when the earliest
studies on helix–coil kinetics were carried out. Due to the limited computational
power of the time, finding the solution of several linear differential equations
was considered very cumbersome. Hence, attempts were made to describe the
problem in terms of more accessible quantities such as the mean relaxation times
that could be obtained from experiments. This required treating the helix–coil
transformation as a chemical relaxation process with a single relaxation time
that could be obtained from the slope of the relaxation curve at time t¼ 0.12,13

The seminal theoretical treatment by Schwarz12 gave the relation between the
fundamental parameters of the helix–coil theory, i.e. the Zimm–Bragg nucle-
ation parameter s and elongation parameter s, the rate constant for helix
propagation kf and the mean relaxation time t*. t*¼ 1/(4s+ (s – 1)2kf), where
s, the elongation parameter, represents the degree of transition. At the transi-
tion mid-point sB1 and t* is maximum and equal to (4skf)

�1. From the earlier
experimental findings14,15 t* was reported to be B1 microsecond and kf was
estimated to be on the order of B108 s�1. However, the analysis of these ex-
periments was complicated, and the applicability of their results to protein
folding was debatable due to the use of very long homopolypeptides that re-
sembled protein helices neither in length nor in sequence. Hence, as compared
to its thermodynamics, the kinetic aspects of the helix–coil transition remained
mostly uncharacterized for decades.
It is only in the last decade that helix–coil kinetics has received renewed

interest mainly due to developments in ultra-fast kinetic techniques and
availability of short alanine-based peptides exhibiting considerable helical
content in solution.16,17 This new generation of kinetic studies suggested that
folding of the a-helix is a fast event occurring on the sub-microsecond time-
scale.17–20 Increased temporal resolution in relaxation experiments using more
complex protein-like sequences revealed rich kinetic behavior.21 The apparent
relaxation times were found to depend on the magnitude of perturbation, i.e.
size of the T-jump, and also on the specific regions of the peptides.22 It was
shown that nucleation–elongation theory, which is well established in de-
scribing the thermodynamic behavior of helix–coil transition (see Chapter 1 by
Doig), is equally adequate in explaining the observed kinetics.23 Besides,
limitations in understanding the mechanistic details of a-helix formation by
dynamic atomistic simulations were alleviated by the tremendous improvement
in computational power, force field and sampling methods24–31 (see Chapter 8
by Pande for more on computer simulations of protein folding). Consequently,
direct comparison between experiment and theory became possible. More re-
cently, in an effort to characterize helix–coil kinetics on a quantitative basis,
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several issues such as the dependence of relaxation times on chain length, se-
quence, and stability have been explored.32–34

This chapter builds on these recent experimental and theoretical develop-
ments to discuss what we have learned about helix–coil kinetics so far, and how
this understanding is related and can be applied to the protein folding problem.

2.2 Experimental Techniques Employed to Study

Helix–Coil Kinetics

Much of the recent progress in studying helix–coil kinetics can be attributed to
the advances in modern laser techniques that led to improved T-jump instru-
mentation. In a general laser-induced T-jump setup, water (D2O) containing
the peptide is heated by a near-infrared nanosecond pulse in a frequency
overlapping with the first vibrational overtone of water (D2O). Water is then
excited and relaxes back to the ground state in a non-radiative process that
takes place in picoseconds, resulting in dead times limited by the duration of the
pump laser pulse (most typically a few nanoseconds). The near infrared pulse is
either generated by Raman-shifting the fundamental mode of a Nd:YAG laser
or by coupling the Nd:YAG laser with a frequency difference mixing module or
optical parametric oscillator. Faster T-jumps have also been produced by ex-
citation of certain dyes with visible lasers, which then transfer the heat to the
surrounding water molecules.17,18,21 The near-infrared pulses are ideal because
peptides and proteins do not absorb in the 1.5–2 mm range. Laser-induced
T-jump techniques have also been instrumental for the development of fast-
folding experiments (see Chapter 6 by Gruebele). The change in temperature is
calibrated by monitoring the changes in the infrared absorption of water with
temperature or the changes in fluorescence emission of a dye with known
temperature-dependent quantum yield.
The subsequent relaxation of the peptide is followed by different time-

resolved optical spectroscopic techniques such as:

1) Fluorescence. Helical content is indicated by the changes in or the
quenching of fluorescence of a probe that interacts with the peptide
backbone or side chain in an a-helical conformation.18,19

2) Infrared (IR) spectroscopy. The vibrational spectra of peptides are sen-
sitive to their three-dimensional structures. The amide I band in the IR
spectra arises predominantly from the stretching vibrations of the C¼O
bond of the peptide backbone. From the modifications in the amide I IR
absorbance and frequency shifts any changes in the secondary structure
can be determined. Infrared spectroscopy when coupled with isotope
editing (13C) techniques provides an opportunity to obtain site-specific
information. When backbone carbonyls are labeled with 13C, the amide
I band of 13C residues is shifted by B40 cm�1 from the amide I band of
12C residues.22,35,36
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3) Ultraviolet resonance Raman spectroscopy (UVRS). When the sample is
excited at a wavelength coinciding with a particular electronic absorption
band (UV) and if the probing laser frequency resonates with the electronic
excited state, certain amide vibrational modes are enhanced selectively in
the Raman spectrum without any interference from water. The variation
in the intensities at frequencies at which the enhanced modes are observed
and the downshifts in frequencies provide a direct reporter of secondary
structure. In addition, UVRS can also examine the exposure of aromatic
residues to solvent.20,37

4) Circular Dichroism (CD). CD measures the difference in the absorption of
the right- and left-circularly polarized light. In the far-UV spectral region
the peptide bond chromophore gives rise to a characteristic signal for each
secondary structure. CD spectroscopy is widely used to determine the
equilibrium a-helical content and can be coupled with rapid mixing
methods such as stopped flow in which helix formation is initiated by
dilution of peptides from a high denaturant concentration.38 It is, how-
ever, not suitable for faster kinetic experiments (i.e. microsecond and sub-
microsecond timescale).

5) Vibrational Circular Dichroism (VCD). VCD in the amide I region probes
for the changes in secondary structure by combining the features of both
CD and IR. It results in variations in the band shapes as well as frequency
shifts and potentially picosecond time-resolution. This provides an op-
portunity to monitor the relaxation occurring in the selective isotopically
labeled regions of peptides.39,40

6) 15N NMR relaxation experiments are also used to study conformational
processes in peptides. Motions resulting from the global folding/unfolding
contribute to the transverse relaxation rate that arises predominantly
from the chemical exchange process.41 Also NMR techniques are limited
to processes slower than 100 microseconds.

The kinetic experiments in a-helical peptides are thus typical perturbation
experiments (see Chapter 6 by Gruebele), in which the sample is usually subjected
to a sudden increase in temperature such that the equilibrium shifts to the one at
higher temperature. At the higher temperature the peptide relaxes to a new
conformational ensemble corresponding to a decreased number and/or length of
helical segments. The relaxation time to the new equilibrium is obtained from fits
to the experimental time-dependent spectroscopic signal decay (Figure 2.1).
Helix–coil kinetics is expected to exhibit bi-exponential behavior due to the

separation in timescales between nucleation and elongation (see below). In
phenomenological fitting of a signal decay, such bi-exponential behavior can
only be resolved when the fast and the slow phases are well separated in time.
However, due to the heterogeneous nucleation and elongation rates based on
the peptide sequence the two phases could overlap giving rise to an apparent
stretched exponential relaxation. At some instances the fast phase, which could
occur in a few nanoseconds, may not be resolved due to technical limitations
resulting in an apparently mono-exponential behavior. Furthermore,
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sometimes in relaxation kinetics probed by IR spectroscopy or fluorescence the
potential fast phase appears accompanied with an ‘‘instantaneous’’ component.
This component is thought to result from the temperature-induced shift of the
equilibrium IR spectra to higher frequency arising from the changes in solv-
ation of the peptide at high temperatures (or the temperature-induced decrease
in fluorescence quantum yield) without any contribution from the actual helix
unfolding process.17,22 Interpretation of kinetic data based on such phenom-
enological fits can lead to uncertainty in determining the mechanisms of a-helix
formation. For example, single exponential relaxations are widely considered a
signature for a two-state process (see Chapter 6 by Gruebele for more on

Figure 2.1 Simulated decays of spectroscopic signal showing different behaviors ob-
served in kinetic experiments of a-helical peptides. Depending on the
amino acid sequence of the peptide and the temporal resolution of the
instrument, the spectroscopic signal decay following a T-jump can be
fitted to a mono-exponential (top-left panel), bi-exponential (top-right
panel), or sometimes even multi-exponential function (not shown). Recent
kinetic experiments have reported relaxation fitted to a stretched ex-
ponential function (bottom left): A.exp(-t/t)b, where b is the measure of
deviation from single exponential behavior, A is the amplitude and
t¼ time. For clarity the fits to the mono-, bi-, and stretched exponential
relaxation traces are shown in logarithmic scale (dashed dotted line: single
exponential; solid line: double exponential; dotted line: stretched ex-
ponential) in the bottom-right panel.

33Kinetics and Mechanisms of a-Helix Formation



kinetic decay curves), which leads to an unrealistic description of the process of
a-helix formation. Hence, to better understand the origin of the observed re-
laxation, it is essential to model the kinetics using a theoretical backbone.

2.3 Theoretical Approaches to Explore

Helix–Coil Kinetics

Simple analytical models developed essentially using the conceptual framework
of nucleation–elongation theory have been used to explore the dynamics of
a-helix formation. These models are helpful in examining the general physical
features of helix–coil kinetics such as the dependence of relaxation rates on
peptide length, temperature and stability. The equilibrium properties of the
helix–coil transition are expressed only as a function of nucleation and
elongation parameters, s and s, which are assumed to be sequence independent
(see Chapter 1 by Doig for a description of the thermodynamic features of
helix/coil nucleation-elongation theory). Parameters for these models are either
carefully guessed or obtained from free-energy surfaces generated from equi-
librium simulations on short alanine peptides. To simplify the calculations,
usually certain simplifying assumptions are made such as allowing helix
elongation only from a single nucleus at a given time, and considering a single
value of helix propensity for all amino acids. Kinetics is modeled by numerical
integration of differential equations or, alternatively, as diffusive dynamics over
multiple square potential energy barriers for formation of hydrogen bonds (i.e.
for each helix propagation step).42,43 Another approach utilizes a mean field
approximation to evaluate mean first passage times.44 This approach is more
suitable for modeling longer peptides as it allows nucleation at multiple sites
and bi-directional helix propagation.
Due to their fast formation rates (i.e. sub-microsecond) and short lengths,

a-helices are suitable candidates for computer simulations using both minim-
alist and detailed atomistic models. While coarse-grained models are less in-
tensive computationally, all-atom molecular dynamic simulations provide a
detailed picture of solvent and side-chain dynamics. Improvement in compu-
tational power has permitted extended simulations in explicit solvent reaching
up to microseconds and at temperatures comparable to experimentally relevant
ones. Although use of replica exchange methods allows for exhaustive sampling
of conformational space, it is now possible to obtain complete convergence to
equilibrium between fully folded and coiled ensembles even in atomistic
simulations with the help of distributed computing27,30 (see Chapter 8 by
Pande). These advances in simulation permit longer (and multiple) trajectories
and thereby statistics for the direct comparison of helix-folding timescales with
those obtained from experiment. However, one must be careful while em-
ploying force fields to simulate a-helix formation, as the overall mechanism
may be skewed due to the different heliophilic character of commonly
used force fields (i.e. force fields that selectively (de)stabilize helical
conformations).45
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Although simple analytical models capture the underlying physics of a-helix
formation and all-atom molecular dynamic simulations provide detailed
mechanistic information, there is a gap between these theoretical approaches
and experimental observations. In order to directly analyze experimental data it
is necessary to simulate the spectroscopic signals and take into account the
complexity of the amino acid sequence of the peptide used in the study. In the
absence of such treatment the free-energy surfaces resulting from analytical
models or computer simulations have no straightforward connection with
empirical observations.

2.4 General Observations in Helix–Coil Kinetics

Based on previous equilibrium experiments, most of the recent T-jump studies
employ short alanine-based peptides (B15–25 residues) with only a few lysine
or arginine substitutions at i,i+5 positions (see Chapter 1 by Doig). For some
cases the relaxation observed after temperature perturbation was described
with a single exponential having a rate constant of B1/200 nanosecond�1,19,20

whereas in others the relaxation followed a biphasic trace with the fast and the
slow phases having respective lifetimes of B20 and B140–220 nanoseconds.17

This timescale was six orders of magnitude faster than that reported from
stopped flow experiments.38 In order to explain this discrepancy it was argued
that T-jump experiments probe only the local perturbations (i.e. local winding
and unwinding of helices) that are much faster than the global folding/
unfolding event that would then occur in B100 milliseconds detected by
stopped flow experiments. However, this argument is disputable because in T-
jump experiments the equilibrium amplitudes are reached within a few
microseconds at most, indicating that there are no events occurring slower than
microsecond timescale.
The relaxation for the Fs-MABA peptide (having the sequence (A)5-

(AAARA)3A-NH2 with a fluorophore MABA (4-methylaminobenzoic acid)
attached at the N-terminus) was much faster than that obtained by Williams
et al.17 using IR spectroscopy for the same Fs peptide (having the same se-
quence Suc-(A)5-(AAARA)3A-NH2 succinylated at the N-terminus) but with-
out the N-terminal probe.18 The changes in the fluorescent intensity of MABA
measured the N-terminal helical content and corresponded to the relaxation
occurring at the N-terminus of the peptide. Hence a much faster relaxation
corresponding to the local helix unfolding was observed compared to the one in
the IR study, which is expected to measure the average change in the helical
content of the peptide. The relaxation time for the Fs-MABA peptide provided
the first direct experimental estimate for helix propagation/depropagation rate
(B1/20 nanosecond�1).
One of the strengths of molecular simulations is that they can give an idea of

the timescales for the elementary processes of helix initiation and propagation.
Although earlier computer simulations were run for 200 picoseconds without
reaching equilibrium, the elementary process of each residue transitioning from
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helical to coil states and vice-versa was assumed to be at equilibrium. From
residence times in helical and coil states averaged over all the residues and the
entire period of simulation it was concluded that propagation and initiation
take place at the picosecond timescale.25,26 Later on, Brooks and co-workers
performed equilibrium simulations of short ends-protected polyalanine
peptides. Using umbrella sampling free-energy surfaces were calculated as a
function of dihedral angles and i,i+4 hydrogen bonds for a single propaga-
tion step (i.e. formation of a hydrogen bond) either at the N- or the C-terminus
at 27 1C.46 From the free-energy barriers of B3 kcalmol�1 for each hydro-
gen-bond formation, helix propagation times were estimated to be B100
picoseconds. The mean folding times were on the same order (B20–70 nano-
seconds) as those found by T-jump experiments. Similarly simulations on Ala5
and A2-G-A2 peptides blocked at both ends by Hummer et al. showed that
formation of the first helical turn, i.e. helix nucleation, takes place within 0.1–1
nanoseconds.29,47 Analysis of experimental relaxation kinetics of Ac-
WAAAH1-(AAAR1A)3A-NH2 peptide (Ac: acetylated at the N-terminus)
using a statistical mechanical model also suggested nucleation to occur in
nanoseconds.19

Helix–coil theory predicts that for peptides with intermediate degrees of
helicity this is concentrated in the central region with ends frayed.1 In other
words, the probability of forming helices in the middle of the peptide is greater
than that at the termini (see Chapter 1 by Doig). In support of this prediction
recent studies have shown that relaxation rates seem to vary for different re-
gions of the peptide. Peptides having the same sequence (Ac-YGSPEAAA
(KAAAA)(KAAAA)-D-Arg-NH2) were

13C labeled at the carbonyls of alanine
residues placed at different locations in the molecule: N-terminal, middle, or
C-terminus.22 The 13C-targeted relaxation of the C-terminus-labeled peptide
was found to be faster than those of the N-terminus- or the middle-labeled
peptides. Unexpectedly, the N-terminus-labeled peptide showed less extent of
fraying with apparent relaxation times very close to the middle-labeled pep-
tides. Moreover, the time courses for all three peptides were fitted to stretched
exponential functions. Another intriguing and counter-intuitive observation
was made for middle-labeled peptides in which the relaxation time decreased
when the temperature before the T-jump to the same final temperature was
lowered. A T-jump of B14K resulted in a relaxation B1.5 times faster than a
4K jump to the same final temperature. It was revealed for the first time that
even simple short a-helical peptides could exhibit such complex behaviors.
Analytical models have predicted the dependence of folding times on the

lengths and the stability of peptides. Using a sequential kinetic model Brooks
found that for short peptides having lengths up to B16-residues helix folding
and unfolding times increased linearly with chain length. For lengths greater
than 16, helix folding times did not change much whereas the unfolding times
decreased dramatically.25,26,42 Buchete and Straub found that mean first pas-
sage times estimated with an analytical model based on a mean field approxi-
mation showed an initial sharp increase followed by a much slower one with
increasing chain length.44
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The length dependence of relaxation times was then investigated empirically
by Gai and co-workers using peptides with varying numbers of a repeating unit
(Ac-YGSPEAAA(KAAAA)n-D-Arg-NH2, where n¼ 2 to 5 repeating units).32

They showed that the relaxation times at low temperature decreased mono-
tonically up to four repeating units. For greater numbers of repeating units a
linear but rather flatter increase of relaxation times was observed. However,
relaxations at higher temperatures exhibited a linear and monotonic depen-
dence on chain length. Further, as the stability of the peptide was increased (i.e.
using stronger N-caps (SPE instead of AKA) as those found in protein helices)
the relaxation became faster.33 On similar lines Gooding et al. explored the
effects of a single amino acid substitution on the folding dynamics of the
peptide Ac-(AAXAA)4-GY-NH2, where X represents R, K, E, or Q.34 In
contrast to the results of Gai and co-workers, the relaxation became slower for
peptides with higher stability.
Summarizing, how fast is the helix/coil relaxation to the new equilibrium

after a T-jump seems to depend on: a) peptide length, sequence, and stability; b)
initial and final temperatures involved in the T-jump; c) solvent conditions such
as pH, ionic strength, and viscosity; and d) the specific site probed within the
molecule. These results exemplify how complex is the process of helix for-
mation. Clearly, to fully understand the details of this essential process requires
being able to account for all of these observations in a quantitative manner. In
doing so one must be careful while comparing the results of different experi-
ments that were carried out under various experimental conditions because the
apparently discrepant observations may be misleading. Detailed kinetic ana-
lysis of these experiments emerges as an essential step before any conclusions
regarding the characteristics and mechanisms of helix formation are drawn.

2.5 Kinetic Theory of the Helix–Coil Transition

It is well established that classical nucleation-elongation theory is valid in in-
terpreting thermodynamic experiments on helix–coil transition (see Chapter 1
by Doig). The question is whether this theory is also suitable for explaining the
observed experimental findings in the most recent kinetic studies that were
summarized in Section 2.4. Indeed some of the results have been successfully
interpreted with models that are based on a simple kinetic formulation of the
nucleation-elongation theory of a-helix formation23 (see Section 2.7).
Following a simple statistical mechanical treatment any basic unit, whether it

be a residue or a peptide bond, can be assumed to be in one of two states: helical
or coil. The state of each basic unit is defined according to the conformation of
the pair of dihedral angles flanking the unit. When the dihedral angles of a
single residue are fixed in a-helical conformation there is loss in conformational
entropy. The loss in conformational entropy increases linearly upon in-
corporation of sn successive residues into the helical conformation (sn B4–5
depicts the size of the nucleus). This unfavorable and rate-limiting process is the
nucleation of a nascent helix, and gives rise to a free-energy barrier that is
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entropic in nature. As the helical segment extends from the nucleus, stabilizing
interactions are formed that slightly over-compensate (in an a-helix-forming
peptide) the entropy loss. The size of the nucleus is determined by the geometry
of the helix: in an a-helix sn pairs of dihedral angles must be fixed before
hydrogen bonds between the carbonyl oxygen of ith residue and amide
hydrogen of i+4th residue are formed. However, each subsequent hydrogen
bond is realized by fixing only one more pair of dihedral angles. This process
leads to the elongation of the nucleated helix.
Apart from the i,i+4 hydrogen bonds, the favorable interactions that are

responsible for holding the helix together are van der Waals, dipole–dipole
backbone interactions; i,i+3 and i,i+4 side-chain interactions; and the sta-
bilizing effects arising from the N and C caps and the interactions of charge
residues with the helix macrodipole (see Chapter 1 by Doig). With binary states
allowed for each residue (or peptide bond) there can be 2N possible combin-
ations or species for a peptide of length N. These combinations can be dras-
tically reduced B100 times for a peptide with N¼ 20 by assuming that at most
only two non-overlapping stretches of a-helix conformation can coexist at any
given time (i.e. the double-sequence approximation). This approximation
allows helix breaking in the middle of a larger helical segment as well as mer-
ging of two smaller helical segments. 2N combinations can be reduced B5000
times (for N¼ 20) if a single-sequence approximation is taken, which allows
only a single stretch of helix at any given time. However, in contrast to the
double-sequence, the single-sequence approximation has profound mechanistic
implications because in this case helix breaking can take place only from the
ends of an existing helical segment.
The kinetic connectivity is simple since species inter-convert by rotation of

single peptide bonds. At a given time, for example, a species with four helical
peptide bonds such as . . . . cccchhhhccc . . . . can be directly converted to
species having five helical peptide bonds such as . . . . cccchhhhhcc . . . .
or . . . . cchchhhhccc . . . . by a single flip but not to species . . . .
cccchhhhhhc . . . . or . . . . chhchhhhccc . . . . that require double flips. The
rate matrix can then be built from the on and off rates for each possible con-
version. The idea behind the single- or double-sequence approximations is to
reduce the complexity involved in solving the master equation and also to
obtain the simplest possible model capable of explaining the experimental re-
sults. T-jumps can then be simulated by using the probability distribution of all
species at the temperature before the jump as the initial condition. The kinetic
decay is simulated either by solving the eigenvectors and eigenvalues of the rate
matrix, or by numerical integration of the several thousand differential equa-
tions (e.g. for a peptide with N¼ 20 and with double-sequence approximation it
involves solving as many as 52 596 differential equations).
In the kinetic zipper model18 a residue was defined as helical only if it forms

an i,i+4 hydrogen bond, which meant that all conformations having helical
segments of length less than four residues were ignored. This is equivalent to the
Zimm–Bragg equilibrium treatment of the helix–coil transition (see Chapter 1
by Doig). Besides, the same free-energy cost was assumed in fixing the dihedral
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angles for each individual amino acid. Although a reasonable approximation
for modeling homopolypeptides, it is not adequate for peptides with hetero-
geneous sequence. A statistical mechanical model used earlier to analyze the
kinetics of Ac-WAAAH1-(AAAR1A)3A-NH2 peptide incorporated two dif-
ferent values for the entropy cost in fixing the dihedral angles, one for Ala and
Arg and another for Trp and His.19 In addition to the stabilizing effects of
backbone hydrogen bonds, energetic contributions from favorable and un-
favorable side-chain interactions were also included in the model.
However, the use of more complex sequences such as Ac-YGSPEAAA

(KAAAA)2-D-Arg-NH2 in recent experiments demanded inclusion of add-
itional parameters that describe more completely the thermodynamics of
a-helix formation. This improvement was achievable by using the full set of
sequence dependent parameters directly from AGADIR.5,8,9 The AGADIR
algorithm is parameterized with free-energy values for helical propensities of
individual amino acids as well as for all possible backbone and side-chain
interactions between any pair of amino acids known to date to affect the sta-
bilization of a-helices. These values are obtained directly from empirical ana-
lyses and statistical distribution of the protein structure database5,8–10 (see
Chapter 1 by Doig). A detailed kinetic model that combines the empirical
‘‘force field’’ of AGADIR with the statistical mechanical description mentioned
above has recently been developed.23 Unlike earlier kinetic models, this model
explicitly includes the species with short helical segments (with fewer than sn
helical residues), an approximation that allows breaking helices in the middle
and a more realistic treatment of the molecular coil state (i.e. the ensemble of
conformations with no significant a-helix content). For the conversion of each
peptide bond from coil to helical state a transition state is assumed which is
entropically destabilized without any specific enthalpic interactions. This was
done for simplicity. The pre-exponential factor for the microscopic transition
between helix and coil (see Chapter 6 by Gruebele) is an adjustable model
parameter that defines the rate of the elementary event in helix formation, and
perhaps even in protein folding, i.e. rotation of single peptide bonds. While
there are no direct experimental estimates of this rate so far, the value of the
pre-exponential factor obtained from modeling kinetic experiments gives us
implicit information about the rates of elementary processes, and can be used to
compare with those obtained from molecular dynamic simulations.

2.6 Free-Energy Landscape for a-Helix Formation

Using the nucleation-elongation model combined with the AGADIR ‘‘force
field’’, single dimensional free-energy surfaces can be calculated as a function of
order parameters. For a-helix formation the most natural order parameter is
the number of helical units. Figure 2.2 shows the free-energy profiles at different
temperatures calculated for a peptide of length N¼ 21 using a double-sequence
approximation and projected onto the number of helical peptide bonds (H ).
The free-energy profile produces a small barrier (B2RT) separating two broad
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basins corresponding to two ensembles – one with coil conformations and very
short helices (with lengths Bosn residues) and another one with long helices
(with lengths csn).
One of the predictions of helix–coil theory is that elongation-shortening of

already existing helices is more favorable than helix initiation at new sites.1 This
means that the free-energy profiles at higher temperatures will show the helical
ensemble shifted towards lower numbers of helical peptide bonds as a result of
the changes in the distribution of helical lengths upon temperature-induced
destabilization. From a kinetic standpoint the formation of shorter helices from
longer ones is a much faster process than the nucleation-limited formation of
new helices from coil conformations. Hence according to this nucleation-
elongation mechanism one should expect to see two processes separated in time
in a T-jump relaxation experiment – the barrier crossing event i.e. equilibration
between coil and helical ensembles and re-equilibration between helices of
varying lengths within the helical well. It is also important to notice that the
difference in timescale of the two macroscopic phases is directly connected to
the relative magnitude of the nucleation barrier, thus providing an experi-
mental procedure to estimate it.
Recently, Sorin and Pande45 carried out extensive all-atom MD simulations

using world-distributed computing to predict a free-energy landscape projected
onto two order parameters for a 21-residue helical peptide (see Chapter 8 for
details on their simulation methodology). The free-energy landscape so ob-
tained exhibited two broad and shallow basins corresponding to two macro-
states – helical and coil state. A small free-energy barrier separates the helical

Figure 2.2 One-dimensional free-energy profiles. Free-energy surface calculated as a
function of a single order parameter, i.e. number of helical peptide bonds,
is shown in the left panel. The one-dimensional free-energy profile exhibits
two minima corresponding to helical and coil ensembles that are separated
by a small barrier. The slow phase corresponds to the equilibration be-
tween the helical and coil distribution whereas the fast phase arises from
the local winding and unwinding processes in the helical ensemble. The
right panel shows free-energy profiles at low (dotted-dashed line) and high
(solid line) temperatures. The gray lines show the corresponding prob-
ability distribution. At high temperature not only does the increase in the
coil distribution accompany the decrease in the helical one but the maxi-
mum of the helical peak also shifts towards the left indicating a redistri-
bution of helical lengths.
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and the coil basins, each containing a diverse population of microstates with
different helical content and radii of gyration. The similarity in the basic fea-
tures of the one-dimensional free-energy profile predicted from the nucleation-
elongation model and the two-dimensional free-energy landscape produced
from atomistic simulations supports the validity of the nucleation-elongation
mechanism for a-helix formation.

2.7 Mechanisms of a-Helix Formation

Some kinetic helix–coil experiments on short peptides showing single ex-
ponential relaxations have been interpreted with a two-state model.17 This
assumption, however, ignores the complexity of helix formation and implies the
existence of a much larger free-energy barrier (c2RT) than the estimates dis-
cussed in the previous section. Molecular dynamic (MD) simulations of ala-
nine-based peptides have suggested that helix formation corresponds to a
diffusive search in the coil region of the phase space that leads to a barrierless
transition into the helical state.28,47 This conformation diffusion search model
predicts non-exponential kinetics and dependence of the relaxation time on the
T-jump width (i.e. DT ). Since the relaxation kinetics observed by Huang et al.22

for 13C-labeled peptides were reported as non-exponential and showed T-jump
width dependence it was concluded that helix formation kinetics is determined
by downhill diffusion in the absence of a barrier. At first sight, this explanation
could appear not to be in consensus with the nucleation–elongation model,
which predicts a free-energy barrier. However, these views are not that differ-
ent. Rather than diffusion occurring in the coil basin the fast phase in the
nucleation–elongation model arises due to diffusion in a helical basin that needs
to re-equilibrate to a new ensemble distribution after the perturbation. Since
the free-energy barrier to helix formation is only B2RT the slow phase is not
merely the crossing of the barrier but it also includes the diffusive motions in
the helical basin. In support of this argument, Sorin and Pande pointed out that
helix–coil kinetics resulting from atomistic simulations is better represented as a
conformation diffusion process rather than a barrier-limited one.45

In contrast to nucleation-elongation or downhill diffusion mechanisms, Duan
and co-workers reported three-phase kinetics for Ac-YG(AAKAA)2AAKA-NH2

peptide from all-atom MD simulations.48 In the first phase helix initiation along
with hydrophobic collapse takes place in less than 0.1 nanosecond. In a second
nanosecond phase helix propagation occurs to develop a folding intermediate
with very short helices comprising two independent turns, which in turn unfolds
to form a transition state having a helix–turn motif. The breaking of the
hydrophobic interactions in the helix–turn–helix motif is suggested to be the rate-
limiting step rather than helix initiation. AnMD study on the Fs peptide reported
the folding process to occur in two phases with the helix–turn–helix motif as the
dominant population at 300K instead of the full helix state.49 The common
feature in these simulations was the implicit generalized Born (GB) continuum
solvent model. It was demonstrated by Nymeyer and Garcia that the implicit GB
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solvent model predicts a helical bundle as the native state for the Fs peptide rather
than the full helix state obtained from the explicit solvent treatment.50 In a
comprehensive all-atomMD study in explicit solvent using distributed computing
the performance of several variants of the AMBER force field were compared in
a quantitative manner.45 The AMBER-94 variant, the force field used earlier by
Hummer and co-workers47 (kinetics modeled as barrierless one-dimensional
diffusion), was assessed to overstabilize the helical conformations. Hence it is not
surprising that simulation using this force field showed downhill folding towards
a helix conformation. This indicates that results from atomistic simulations
could heavily depend on the choice of solvent model as well as the nature of the
force field.
Molecular interpretations proposed from computer simulations provide only

a qualitative picture of helix formation. These models can be validated if they
can reproduce the complex kinetic behavior seen in experiments (see Chapter 8
by Pande on how to quantitatively compare extensive simulations and ex-
periment). To this end, the relaxation kinetic experiments on 13C-labeled
peptides probed by IR spectroscopy22 were analyzed with a detailed kinetic
model based on the nucleation-elongation description23 (Section 2.5). This
exercise should also provide a stringent test of nucleation-elongation mech-
anism in a-helix-formation.
In order to directly compare the results of the model with the equilibrium and

kinetic experiments performed with any spectroscopic techniques, it is essential
to model the signal decay as a function of time. In this case, the Fourier
transformed IR signal was calculated theoretically from the weighted average
of the amide I basis spectra of both labeled and unlabeled peptide bond
chromophores and from the time-dependent probability distribution arising
from the detailed kinetic model (Section 2.5). All the spectral features of the
equilibrium Fourier transformed amide I spectra, viz. shifts in frequency of the
13C-labeled peptide bonds and the decrease in the amide I band intensities with
increase in temperature, were successfully reproduced. The model predicted a
biphasic relaxation for each of the peptides labeled at the N-terminus, middle
region or C-terminus. Furthermore, the fast phase of the C-terminus-labeled
peptide had relatively larger amplitude and faster relaxation rate as compared
to the N-terminus- or middle-labeled peptides, resulting in the same kind of
kinetics observed experimentally. Inspection of the theoretical results indicated
that it was the intricate balance between sequence effects (i.e. the different
energetics arising from changes in amino-acid sequence) and the phenomenon
of end fraying that gave rise to changes in the relative amplitudes of the fast and
slow phases. These changes in relative amplitudes appeared as varying relax-
ation rates for different regions of the peptides when the decays were fitted to a
stretched exponential.
In agreement with the experiments of Huang et al.22 the model also reproduced

the observation of faster apparent relaxation kinetics as the magnitude of per-
turbation becomes larger. At first this result appeared counter-intuitive, as one
would expect longer relaxation times as the difference between the initial and
final temperatures (DT ) becomes greater. However, this dilemma was elegantly
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resolved by the nucleation-elongation model (right panel of Figure 2.3). The
mechanistic explanation is simple: as the magnitude of the T-jump increases, a
larger amount of redistribution of helical lengths occurs with a fast diffusive rate
that does not involve crossing a free-energy barrier.
The detailed nucleation-elongation kinetic model clearly demonstrated that

all the complexities observed in a-helix formation are consequences of the in-
herent characteristics of the classical helix–coil transition on heterogeneous
amino-acid sequences.

2.8 Reaction Coordinates for a-Helix Formation

The energy landscape theory suggests that folding kinetics can be determined
from low-dimensional free-energy projections onto a few appropriate order

Figure 2.3 Simulation of a T-jump experiment. Left panel shows the calculated
probability of forming helices as a function of temperature for a 21-
residue peptide. This compares with the experimental temperature de-
naturation profile for a-helical peptides. The circle and triangle show the
location of two different initial conditions before the T-jump and
the square denotes the final temperature. The inset shows the difference in
the distribution of probabilities between the initial and final temperatures
as a function of the number of helical peptide bonds. For a shorter T-
jump (line with triangle) the flux of molecules from the helical to the coil
basin is reflected in the negative peak in the helical region and a positive
peak of equal amplitude in the coil region. For a larger jump (line with
circles), an increase in the positive coil peak intensity is not compensated
for by an equal increase in the helical negative peak. Instead a positive
shoulder appears in the helical region. The magnitude of the positive
shoulder reflects the amount of redistribution in helical lengths that takes
place after the T-jump and hence the amplitude of the fast phase. The
right panel shows the predictions of the detailed model for the two
T-jumps. A fast phase with relatively larger amplitude and shorter re-
laxation time is seen for a larger T-jump. The gray dotted lines are the
relaxation traces predicted by the diffusive model.
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parameters (the energy landscape, see Chapter 3 by Wolynes) and from the
stochastic motions on such energy landscape.51 These motions can be described
to a first approximation as diffusion on a potential of mean force corresponding
to an equilibrium population. Since protein folding is essentially a multi-
dimensional problem involving innumerable degrees of freedom the question is
whether it is possible to describe all the dynamic processes with a simple pro-
jection of the free energy. If yes, then how can we determine those few order
parameters that are sufficient to characterize the folding kinetics? As seen from
the above sections we now have a better understanding of the mechanistic
details of a-helix formation. Hence it is possible to investigate whether diffusion
on a low-dimension free-energy surface can capture all the complex kinetic
behavior explored theoretically and experimentally for a-helix formation.
One-dimensional potentials of mean force for helix-formation can be

straightforwardly calculated based on nucleation-elongation theory and
using the number of helical peptide bonds H as order parameter (Section 2.6,
Figure 2.2). The idea was then to simulate the kinetic decays for the 13C-labeled
peptides of Huang et al. (see Section 2.4) as diffusion on such a one-dimensional
free energy profile and compare the results with those from the detailed kinetic
treatment that reproduces the experimental observations. One-dimensional
diffusion was computed using the analytic treatment of Szabo, Schulten, and
Schulten.52 This treatment had been used earlier in calculating the folding rates
of proteins from statistical mechanical models as well as the rate of loop for-
mation from the distribution of chain end-to-end distances.53,54 The obvious
advantage of the diffusive calculation is that it drastically simplifies the calcu-
lation (e.g. for a peptide with lengthN¼ 20 the number of differential equations
reduces from B50 000 to a mere N�N¼ 400). The diffusion coefficient was
assumed to be independent of temperature as well as the reaction coordinate.
Interestingly, the predictions of the diffusive calculation were in close agree-

ment with the calculations of the detailed model (Figure 2.3, right panel). Re-
laxation kinetics was bi-exponential with the ratios of fast and slow amplitudes
remarkably matching those calculated from the detailed model. All the complex
kinetic behavior, i.e. dependence of relaxation times on the initial and final
temperatures and different regions of the peptide, that was observed in the ex-
periments and captured by the detailed model was also reproduced by the dif-
fusive model.55 This study showed that the number of helical peptide bonds was
a valid reaction coordinate for a-helix formation, and constitutes one of the first
direct empirical tests of the performance of simplified free-energy projections.

2.9 The Nature of the Diffusion Coefficient

for a-Helix Formation

The rate of a-helix formation depends on the height of the nucleation barrier,
the effective diffusion coefficient, which reflects the timescales of the dynamic
motions, and the distance in reaction coordinate space between the coil and
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helical minima of the surface (i.e. the difference in number of helical peptide
bonds). Hence, once a quantitative analysis of helix formation kinetics is
available, together with a one-dimensional diffusion model that performs
similarly to the detailed model, it is possible to examine the nature and time-
scale of the motions involved in determining the diffusion coefficient for helix
formation. From the diffusive calculation of the 13C-labeled peptides the dif-
fusion coefficient was found to correspond to a timescale ofB2 nanoseconds.55

This was in very good agreement with the timescale of B4 nanoseconds for the
elementary peptide bond rotation obtained from the detailed kinetic nucle-
ation-elongation model.23 For both the models the temperature dependence of
the pre-exponential factor and the diffusion coefficient were derived from the
temperature dependence of viscosity of water. Therefore, there is a very close
connection between the peptide bond rotation rate and the effective diffusion
coefficient for helix formation, supporting the idea that the number of helical
peptide bonds is an appropriate reaction coordinate for helix formation.
Since the peptide bond rotation rate involves crossing an energetic micro-

barrier (which is estimated to be B4–6 kcalmol�1 from the kinetic analysis of
Ac-WAAAH1-(AAAR1A)3A-NH2 peptide using a statistical mechanical
model19) arising from steric clashes as well as from solvent friction, the
agreement between peptide bond rotation rate and one-dimensional diffusion
coefficient emphasizes that diffusion coefficients in peptide conformational
dynamics are likely to include activated terms (see Chapter 6 by Gruebele).
Eaton and co-workers have suggested that these high energetic barriers to the
elementary steps in a-helix formation result in motions against the solvent that
are well separated from the barrier-crossing motions.56,57 As a result, the
overall barrier crossing during helix formation is less enslaved to the sur-
rounding solvent, resulting in a fractional dependence of the kinetic relaxation
rate on solvent viscosity, as has been observed experimentally.56,57

2.10 Implications for Protein Folding

The success of the diffusive calculations for a-helix formation, which is argu-
ably the simplest protein-folding related process, gives support to the idea that
protein folding kinetics can also be determined from simple free-energy pro-
jections. However, in contrast to a-helix formation free-energy projections for
protein folding may require more than one order parameter (see Chapter 6 by
Gruebele). Besides, in contrast to the results in a-helices, the effective diffusion
coefficient for protein folding may also be dependent on the reaction co-
ordinate. Protein folding accompanies a large increase in chain compactness
and a significant degree of coupling between different parts of the chain as
compared to a-helix formation. As protein folding progresses, formation of
native interactions becomes more difficult because it may require breaking of
existing interactions (both non-native and native). This may result in diffusion
coefficients that decrease as the protein becomes more compact along the re-
action coordinate.
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As opposed to a-helix formation, we still lack a complete understanding of
the various energetic factors needed to precisely model the free-energy surfaces
for proteins and to obtain absolute barrier heights. Efforts have recently been
made to estimate barrier heights from probability density extracted directly
from the analysis of equilibrium data (differential scanning calorimetry ther-
mogram)58 (see Chapter 5 by Ibarra-Molero and Sanchez-Ruiz) as well as from
using protein-length-scaling properties of thermodynamic parameters.59 For
many single-domain proteins the free-energy barriers are estimated to be large
(B5–10RT ) resulting from incomplete cancellation of interaction enthalpy and
chain entropy (see Chapter 3 byWolynes). In such cases the diffusion coefficient
strictly corresponds to the dynamics on the top of the folding barrier.
However, when the free-energy barriers are low (close to RT as seen in the

case of the a-helix) the effective diffusion coefficient reflects dynamic motions
along the whole reaction coordinate. This also applies to fast-folding proteins
that have marginal barriers and where the timescales of the barrier-crossing
event approach those of diffusive motions in the unfolded and folded well. On
the other hand, diffusion coefficients of proteins with negligible barriers provide
direct estimates of the folding speed limit. Fast folding kinetics are then close to
probing the intrinsic dynamics in protein folding.60 A detailed discussion on
fast folding can be found in Chapter 6 by Gruebele.
Studies on the formation of secondary structures in isolated peptides con-

tinue to provide important clues and to empirically validate simple approaches
for analyzing protein-folding experiments. Recently a one-dimensional free-
energy approach, similar to the one that has proved successful in simplifying
the analysis of complex kinetic experiments on a-helical peptides (see
Section 2.7), has been applied to proteins. Due to the lack of a precise force field
and knowledge of entropic factors in protein folding, one-dimensional free-
energy profiles for proteins were generated using a mean field approach and
formulating simple mathematical functions that model the evolution of sta-
bilization energy (i.e. enthalpy) and conformational entropy as folding pro-
gresses.61 Such simple free-energy surfaces predict the overall thermodynamic
properties (i.e. conformational ensembles and presence/absence of barriers),
and diffusive kinetics on these surfaces allows calculation of folding rates.
Moreover, this one-dimensional free-energy model has been successfully ap-
plied in the analysis of temperature dependence of relaxation rates of fast-
folding proteins.62 Ongoing efforts will allow this one-dimensional free-energy
surface model to be used as a direct analytical tool for new equilibrium and
kinetic experiments on protein folding as in the case of a-helix formation.
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CHAPTER 3

The Protein Folding Energy
Landscape: A Primer

PETER G. WOLYNES

Department of Chemistry and Biochemistry, University of California, San
Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0332, USA

3.1 Energy Landscape: Metaphor and Math

Protein folding unites the complexity of the huge phase space of even the
smallest protein molecule with the combinatorial complexity of the evolution of
that molecule through the ages. Surprisingly these difficulties largely cancel.
The kinetics of natural protein folding is easier to predict in many ways than
the kinetics of typical small molecule chemical reactions. These predictions can
be made using the framework provided by the energy landscape theory of
folding, an approach with its roots in the statistical mechanics of glasses
and phase transitions.1–4 This theory shows that while polymers made with
randomly chosen sequences of amino acids should exhibit the very complex
multi-exponential kinetics associated with glasses, natural proteins must have
evolved to avoid this kinetic complexity. Instead folding proceeds fairly directly
to the native structure being opposed only by chain entropy. While the land-
scapes for polymers with a randomly chosen order of amino acids are rugged,
the energy landscapes of natural proteins have been smoothed to resemble a
funnel.5

The mathematical basis for the ideas exposed in the opening paragraph,
energy landscape theory, is a branch of statistical mechanics that focuses on the
statistics of the energy landscapes for finite size systems. This article reviews the
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primary elements of this energy landscape theory, and how one can use the
framework to understand folding kinetics in the laboratory.

3.2 Random Sequences – Prehistoric Proteins

(Possibly), but Not Most Modern Proteins

We expect a random heteropolymer to associate with itself in a complex
manner. A completely random heteropolymer would be either a random coil
rarely making three-dimensional contacts or would collape to form some ad-
ventitious contacts that are stabilizing in a free-energy sense. (We use the term
‘‘free energy’’ here to emphasize that the degrees of freedom of the solvent
water are averaged over.) These adventitious contacts would largely be
hydrophobic, but other ‘‘solvophilic’’ interventions are also possible. If suf-
ficient stabilizing contacts can be made (perhaps by the molecule having a
higher average hydrophobicity) the protein molecule will collapse but would
remain fluid. While collapsed, the molecule would exist in many states: entropy
still favors the protein making use of contacts in a variety of ways. Such a
protein would resemble, at the nanoscale, something like what at a macroscopic
scale we would call a gel. We know that gels generally have complex kinetics
(cooking relies on manipulating these gel characteristics for the protein solu-
tions of food). Individual gossamer biomolecules resembling nanoscopic gels
may well exist. In fact, it is possible that some sequences which are thought to
be disordered on the basis of sequence analysis are these kinds of gossamer
molecules, possessing transient and fragile structures. Such transient organ-
ization is not, however, characteristic of how the workhorse globular proteins,
enzymes, receptors, etc., with which we are familiar, act. Most working proteins
are more compact and are fairly rigid. If still more stabilizing contacts were to
be made in a gel-like self-interacting biopolymer, without careful placement,
the timescales of rearrangement would continue to lengthen. The resulting
more strongly cross-linked molecule would exhibit the characteristics of arti-
ficial rubbers or polymer glasses. For a nanoscale glass, a small number of
possible conformations can take advantage of the numerous adventitious
contacts to form low energy structures. The resulting candidate low-energy
configurations will be structurally quite distinct. By converting between these
species a compact collapsed random heteropolymer will therefore exhibit the
complex kinetics displayed by glasses. The kinetics will have highly multi-
exponential decays that change rapidly with temperature.

3.3 The Statistical Energy Landscape

Purely random heteropolymers have been hard to study in the laboratory. This
difficulty arises because strongly interacting random heteropolymers will not be
soluble and will ‘‘crash’’ out of solution. On the other hand, the sketch of the
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behavior of random heteropolymers presented above is well established by
simulation. Simulations of simple lattice models of protein folding have con-
firmed the basic ideas of energy landscape theory. While not doing justice to the
stereochemistry intrinsic to polypeptides, in these lattice or ‘‘minimalist’’
models, a heteropolymer is captured in its essence, as merely a necklace of
beads.6–10 Nevertheless intellectual analysis of lattice polymers is much simpler
than for real polymers because each bead is positioned on a specific location of
a crystal lattice. Much as chess is simpler to analyse than real warfare, lattice
proteins are easier to study than more realistic models. The discreteness of
possibilities allows specific counting of states when necessary. The types of
beads have differing interactions and thus can model the heterogeneity of real
protein chains. Generally a random lattice heteropolymer will be ‘‘frustrated.’’
This term was introduced in the field of spin glasses, a kind of alloy in which
magnetic spins interact in conflicting ways, so the system does not know how to
order.11 For most randomly chosen sequences the conflict necessarily arises
because it is impossible to simultaneously satisfy the desire of each residue to be
surrounded by its most stabilizing partners. The covalent connections of the
chain cannot be broken. These unbreakable connections generally prevent lo-
cally optimal arrangements of the three-dimensional partners. Finding the
lowest-energy state of a random heteropolymer resembles the situation en-
countered by many married couples in American culture. The partners in each
couple can get along quite well with each other. But family gatherings involving
many couples can be rather painful because of the incompatibility of the
spouses of various siblings. The spouses were generally not chosen for their
compatibility with the rest of the family.
In thinking about the physical consequences of heteropolymeric frustration

using a variety of models and approximations, many years ago Joe Bryngelson
and I came to the conclusion that the energy landscape of a random hetero-
polymer would resemble the extreme case of a rugged energy landscape, the
random energy model introduced by Derrida to model spin glasses.12 Owing to
the many conflicting intersections, each protein conformation would have a
seemingly unpredictably varying random energy. In fact, the actual non-pair-
wise additive nature of the solvent-averaged forces exaggerates this trend
towards uncorrelated randomness. While an extreme caricature of the nature of
a random heteropolymeric energy landscape, the random energy model
nevertheless does capture the universal aspects of the low-energy state of the
heteropolymer’s landscape. The lack of correlation in the model makes the
analysis of the model rather straightforward. The random energy model is
characterized by the total number of configurations, W, which is related to the
configurational entropy through the equation

O ¼ eSo=kB ð3:1Þ

The only other parameter characterizing this most rugged energy landscape is
the mean square fluctuation in energy states (DE2). This quantity scales with the
protein’s length if the protein is compact.
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The probability distribution of the energy of any individual state should be
Gaussian because it is the sum of many potentially conflicting terms,

PðEÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pDE2

p e�E2=2DE2 ð3:2Þ

Since each state’s energy is statistically independent in this model, the distri-
bution of configurations at equilibrium is given by a Boltzmann factor further
weighting this Gaussian

P ¼ 1

Ze
� E=kBT

�E2=2DE2

e ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pDE2

p e�ðE�EÞ2=2DE2 ð3:3Þ

The resulting Boltzmann-weighted population is itself a shifted Gaussian about
the averaged thermal energy

E ¼ �DE2

2kBT
ð3:4Þ

According to this result as the system cools, ever deeper states in the landscape,
farther out in the Gaussian distribution, should be sampled. But, eventually, a
problem must arise. The thermally sampled states rapidly drop in number. The
entropy drops with temperature as does the energy. The entropy corresponding
to the most probable thermal energy can be evaluated by taking the logarithm of
the number of configurations with the thermal averaged energy.

S ¼ kB logOPðEÞ ¼ So �
DE2

2kBT2
ð3:5Þ

This result quantitatively captures the fall of configurational entropy upon
cooling. How far can this drop in entropy go? We see that, finally, a problem will
occur at the temperature, T0, given by

To ¼

ffiffiffiffiffiffiffiffiffi
DE2

2So

s
ð3:6Þ

At this temperature the entropy would vanish on such a random landscape. The
formula would appear to give negative entropy below T0! This possibility
contradicts the Third Law of Thermodynamics. This catastrophe will actually
be avoided by the system undergoing a thermodynamic transition at T0, be-
coming trapped in at most a few states. The vanishing of the entropy shows
that the real histogram of states begins to show its ‘‘graininess’’ at this tem-
perature. Only a few states (a number polynomial in the length of the chain) are
to be found in the tail of the distribution. The actual energy distribution can
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resemble a Gaussian until we sample its very-low-energy states. For a significant
fraction of the sequences, in fact, only thermally occupied states might be found
below T0. Since a single state would be thermodynamically occupied, it seems
the molecule would have self-organized, merely by obeying statistical mech-
anics. One might therefore think that the random energy model phase transition
is perhaps itself a model of the folding cooperative transition. For a time some
authors held this view.13,14 The situation is, however, not this simple, when we
examine laboratory kinetics or, more importantly, when we think about mo-
lecular evolution! The problem with the random energy model for the kinetics
becomes clear when we recognize that the thermodynamic transition of the
random energy model describes the phenomenology of the liquid glass transi-
tion quite well.15 The apparent vanishing of configurational entropy is a generic
phenomenon in supercooled liquids, known as the Kauzmann paradox.16 La-
boratory experiments show this impending entropy crisis is correlated with the
ever-slowing dynamics of a viscous liquid when strongly cooled.
We can also see the kinetic consequences of the entropy crisis. We can the-

oretically impose a set of rules that describe the connections between the
configurational states of the heteropolymers allowed by elementary chain
motions.17–19 The slow dynamics of the random energy landscape comes about
because it is globally unpredictable which specific configurations will be stable
enough to act as traps. As the temperature is lowered, the system will only
explore lower energy states, but these configurations have very few structural
elements in common. The different low-energy structures are compromises –
they satisfy the frustrating conflicts as best as can be done but in very different
ways. Thus if at one moment the protein is found in a satisfactorily low-energy
state, there is no way that the molecule can tell that there isn’t a slightly deeper
still more stable state which it would rather be in, but which is rather far off in
the landscape. Through undirected Brownian motion the molecule will keep
trying to find lower energy states, largely unsuccessfully, but eventually the still
lower state may be found. Search on the rugged energy landscape resembles a
blindfolded golfer on a golf course: diffusion on a rugged landscape is just like
diffusion on an absolutely flat but high-dimensional-energy landscape with a
single deep minimum.
The kinetics of a globally random energy landscape is complex in detail. But

the rates can be described in a statistically simple way when the density of states
is high enough. Models using several connection rules for describing which
states can go to which others have been studied.18,19 When the polymer is in a
particularly low energy state, to escape from it the molecule must jump to other
states which are more typical in their energy. Consequently, the activation
barrier for trap escape increases just as the average energy E goes down with
temperature. This increasing barrier upon cooling leads to a typically super-
Arrhenius temperature dependence for the rate of diffusing in configuration
space. The average rate is given by the equation

R ¼ Ro e
�DE2=2ðkBTÞ2 ð3:7Þ
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The super-Arrhenius decrease of the rate will plateau once the bottom of the
landscape is reached but, at the transition temperature, the rate reflects the time
to search through all the states

R ¼ Re e
�So=kB ð3:8Þ

In globally connected models where even distant configurations are con-
nected (by unfolding!) when only a few states are thermally accessible, the time
it takes to escape from whatever minimum the molecule is in currently becomes
typically of the same order as the time needed to explore all of the configuration
space if the landscape were flat. (This is really a worst-case analysis. For a
correlated landscape the rate depends on the number of basins, not the number
of configurations, but it is still exponentially small.20,21) While a typical random
heteropolymer may be able to thermodynamically occupy a small part of its
configuration space at a low enough temperature, it will be very difficult to
reach this part of phase space kinetically at those temperatures by means of
Brownian motion.
As we have just said, the random energy model is a caricature. Clearly

most energy landscapes are correlated. Polymer configurations which look
similar have fairly similar values of the energy. This degree of correlation is
actually not obviously relevant for polymers where even changing a
single dihedral angle can bring together very distant and large parts of the
sequence that were not in contact before. This topological constraint can
break structural correlations, making the problem worse. Simply correlated
energy landscapes in which pairs of energy levels are correlated lead
to a search that is somewhat easier because the basins of attraction are lar-
ger.20,21 The search problem still remains difficult at the transition tempera-
ture having a rate scaling exponentially with N. The locality of interaction
that correlates the landscape22,23 can lower the search time to scale ex-
ponentially with a fractional power of N instead of having a rate scaling
exponentially with N.
A second problem emerges with assuming that a random energy land-

scape applies to real protein when we consider the evolution of random
heteropolymers. Suppose a protein had, despite the typical kinetic difficulties,
efficiently evolved to fold and function but still possessed a random, rugged
landscape. The statistics of related, local landscapes shows this to be a poss-
ibility, but also that such a route to foldability is not probable.24

Such landscapes can be called ‘‘buffed’’ since their specific irregularities have
been removed (by evolution!). On a buffed landscape there are traps but they
can easily be escaped from or bypassed. However, a mutation in such a
protein would give a protein with new ground state structure. The new
structure would be unlikely to function as the old one did. By calculating
their probability of occurrence, Plotkin and Wolynes have suggested that
such ‘‘buffed’’ energy landscapes while possible will be eliminated by
evolution.
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3.4 The Energy Landscape of Long Evolved Proteins

Rather than using the buffing strategy to evolve sophisticated folding pathways
that avoid the typical traps for frustrated systems, nature has taken a different
route. There is much evidence that natural proteins simply are not as highly
frustrated as typical random heteropolymers would be. Proteins do not fold by
gradual loss of entropy until you run out of states, as they would in the random
energy model. The crystal structures of folded proteins that show native
structures do not exhibit obvious energetic conflicts in the way pairwise inter-
actions are satisfied. Major compromises of the rules of structural chemistry are
generally absent. Evolved protein structures are not so highly frustrated as the
ground states of random sequences structures should be. Instead, examining
structures reveals many local themes of consistency and symmetry between a
given sequence and the structure it adopts. One specific way of achieving
consistency was highlighted early in the work of Go.25 Go postulated there was
a self-consistency principle that ensured compatibility between those local
secondary structure forces local in sequences giving rise to helices and sheets
and the higher order forces acting between distant residues that gave rise to the
particular packings.26

Bryngelson and Wolynes generalized this consistency idea to allow more
general sorts of self-consistency (not just between secondary and tertiary
structure1). They christened the more general idea the ‘‘minimal frustration
principle’’ and gave the principle a quantitative formula. They argued the
mechanism of consistency need not involve secondary structure specifically.
Instead different tertiary interactions by themselves should also be consistent
with each other if they are sufficiently numerous. Structural biologists can tell
you there are many consistent aspects of the distance in sequence contacts
found in natural proteins. The core of a protein is largely hydrophobic. Fur-
thermore, if hydrophilic residues are found in the core, they are usually com-
pensated in some kind of salt bridge. Assuming tertiary structure consistency
alone is, as we shall see, usually sufficient to predict the folding route although
secondary structure biases must also play a role. Saven and Wolynes suggest
local signals give about one third of the bias in any event.27 We need a
mathematical definition of consistency in order to understand the kinetics and
evolution of proteins quantitatively. To quantify the notion of consistency, one
must introduce the idea of a ‘‘stratified’’ statistical energy landscape.2

In contrast to a glass or a random heteropolymer the energy landscape of a
minimally frustrated system must be stratified. That is, the landscape can be
naturally divided into layers with common energetic properties. Within each
layer the states have a specified degree of similarity to the ground state. There
are many choices for this similarity measure. The similarity measure might be
chosen to quantify how many dihedral angles are in the correct configuration.
Alternatively, one can stratify the landscape vs. quantifying how many pair
contacts are correctly made, that is, how many are the same as in the native
structure. The stratification of the landscape of a minimally frustrated system
implies that the energy decreases the deeper the layer is. The energy decreases
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faster as the global minimum is approached than would be expected for a
random heteropolymer. Quantitatively, the average slope of the landscape
towards the native structure is larger than the energetic slope found ap-
proaching any typical local minimum on a random landscape.
Knowing the depth of the layer where a configuration is located in the

landscape does not perfectly predict the energy of a configuration. Non-native
contacts will make a random contribution. The latter random energy will
be distributed in a way that can be predicted from the random energy model.
Even with non-native (partially) frustrating interactions the extra slope of the
landscape towards the native structure leads to an energy landscape resembling
a still rough, multi-dimensional funnel. For a real protein, this folding funnel
will be pockmarked with many overlapping mini-funnels reflecting small traps
that can be rapidly escaped from. It is not necessary for evolution to have
completely eliminated landscape ruggedness for the protein to fold. Clearly
when mutations disrupt the folding of the naturally evolved protein some
features of the random landscape may still be present but in addition there
will be enough of a stabilizing slope to guide the protein to a properly folded
native structure. The entropy and the ruggedness energy parameter characterize
the landscape of a random heteropolymer. In addition, a landscape for a
foldable protein must be characterized by a third parameter, the size of the
stability or, better, the ‘‘specificity’’ gap measuring the difference in energy of
the global minimum from the typical random states. Owing to this extra sta-
bility, the similarity between the ground state and any other state can be used as
a collective coordinate to describe the protein folding reaction. This is shown in
Figure 3.1. Even when some energetic ruggedness remains, knowing the simi-
larity to the native structure of a given candidate configuration gives us an
approximation to its specific energy.
Bryngelson and Wolynes showed that kinetics on a stratified energy land-

scape can be treated in a simple way. First one groups together all those states
in a single layer. They will have a common value of the collective folding co-
ordinate. The average flow of probability between different strata in the folding
funnel is then determined not just by the energy but by the gradient of a total
free energy as a function of the collective coordinate measuring the depth of the
layer. The total free energy includes now an average over all the states of a
structure. Each stratum can be approximately described by a separate random
energy model appropriate to the non-native interactions that can be formed at
this level. The free energy profile as a function of the collective coordinates can
be estimated by using the random energy model results to average over the
states in a layer. The resulting free energy profile is

FðnÞ ¼ EðnÞ � DE2ðnÞ
2kBT

� TS0ðnÞ ð3:9Þ

where n measures the depth of the layer, i.e. similarity to the native structure.
The configurational entropy at any level of the funnel depends on the tem-
perature much as the entropy for the completely random heteropolymer. The
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configurational entropy decrease is offset by the average energy gradient of the
funnel. By trading off entropy for energy, the Brownian motion of the system
will cause it to descend to the global minimum if the temperature is low enough.
If there were no energy gradient or if the energy gradient remained near zero
until a final stabilizing crash nearly at the folded structure (as some have re-
cently argued!28), this free energy function would have a high entropic barrier
giving again very slow search rates. Instead the free energy gradient provided
by the funnel offsets much of this huge entropy barrier. This leads to the
possibility of very rapid folding. Indeed, the overall free energy gradient may
become nearly downhill below the folding temperature.
Only a small residual activation barrier typically remains due to the in-

complete cancellation of entropy and energy through the folding process. In
fact such a barrier may be absent in some natural cases29 or may be removable
by protein engineering.30 While the mean flow of probability may be downward
towards the global minimum below TF, the average flow of an ensemble of
proteins may again be rather slow because of trapping in the mini-funnels
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Figure 3.1 The stratified energy landscape of a foldable protein is shown in two ways.
On the left are plotted the average energy of a structure at a given stratum
(value of Q, the fraction of native contacts) and the entropy of that stra-
tum. On the right is a corresponding ‘‘funnel’’ diagram. Depth in the
funnel corresponds to energy (and for this ideal model is identified with Q,
after scaling). The width of the funnel diagram represents again the con-
figurational entropy of that stratum. The numbers labeling the different
sampled structures represent their probability to complete folding before
unfolding, as computed in a native-contacts-only model. Clearly inter-
mediate depths correspond to intermediate values of probability of fold
completion. Entropy favors the set of states near the funnel’s top, the
stabilization free energy (F) of individual structures favors the bottom.
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whose local coordinates are orthogonal to the folding coordinate. These
trapping events act as a source of friction on the folding motions. These
trapping events involve disentangling motions like those expected in the gel-
like random heteropolymer. The Bryngelson–Wolynes (BW) theory shows that
the escape from these transient traps determines the effective mobility or dif-
fusion constant of the collective reaction coordinate for folding if it takes place
through collapsed structures. Accounting for this diffusive process, energy
landscape theory yields a folding time which reflects the mobility effects which
get worse at low temperature and the thermodynamic effects which generally
favor organization at low temperatures.

tF ¼ DðTÞ�1eDF
6¼=KBT ð3:10Þ

The diffusion constant here has a temperature dependence like Equation (3.7).
If there were no friction the thermodynamic effects alone would give rise to a
folding time versus temperature resembling a rectifier’s response to a current31

(see Figure 3.2). At high temperature there will be a big entropy barrier slowing
folding but folding becomes nearly downhill in a thermodynamic sense and
very fast at low temperature. On the other hand, the frictional slowing due to
trapping prevents the rate from actually becoming very fast at the low
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Figure 3.2 On the left is plotted the logarithm of the folding time versus 1/T. At high
T, TF becomes essentially the time to search all the states. This entropy
barrier is more effectively canceled by the funnel’s energy bias at lower
temperature, speeding folding. There may be some residual energy barriers
from water expulsion, etc., at low T for real proteins. The behavior in this
case is indicated by the dotted curve assuming no glassy trapping. Off-
lattice models with only attraction become downhill folders at low T.
There will be a bigger barrier at low T if the landscape is rugged, i.e., if
non-native contacts lead to trapping. Off-lattice models based on most
currently used empirical, sequence-dependent energy functions show this
behavior. The low temperature slowing shows these potentials are to some
extent frustrated with natural sequences. This increase of the folding time
reflects glassy dynamics among the compact state. Panel b shows the same
plot for a lattice 27-mer with a modest level of frustration meant to give a
TF/TG ratio of 1.6 as calculated by Socci, Onuchic, and Wolynes.

58 Chapter 3



temperatures even when it is thermodynamically favorable. Folding slows
again because of trapping. This characteristic non-monotonic behavior, ob-
tained analytically by BW, has also been seen in many simulations. Socci,
Onuchic, and Wolynes showed the validity of the Bryngelson–Wolynes picture
for a protein folding funnel reaction coordinate for one of the simplified lattice
models.32 The parabolic temperature dependence they found was characteristic
of a partially rough folding funnel. In order to fold much faster than the glassy
limit, the temperature at which the energy gradient can overcome the entropy
gradient must exceed the glass transition temperature. That is, the folding
temperature must be greater than the glass transition temperature of a random
heteropolymer of the same composition. The landscapes of frustrated and
funneled polymers are sketched in Figure 3.3. Because of the statistical mech-
anical analysis of the energy landscape, we do not need to argue about what is
meant by ‘‘consistency,’’ ‘‘harmony,’’ etc. The quantitative form of the minimal
frustration principle can simply be stated ‘‘TF exceeds TG.’’ By evaluating these
temperatures for realistic energy functions the hypothesis of minimal

Highly frustrated
Random sequence

For fast reliable folding must have TF > TG  

Minimally frustrated
“Natural protein”

Below TF At TG

∆ES

TF ∝ ∆ES /(Sc / kB) TG = δE  /  Sc / kB

δE

Figure 3.3 The left panel shows the landscape of a minimally frustrated protein
(entropy is the radial coordinate, energy the depth). At TF only states with
a great deal of structural similarity to the lowest energy are occupied
(shown as a single cloud). The right panel shows the landscape of a
random heteropolymer. At TG a small number of discrete traps (shown as
multiple distinct clouds of states) are occupied. Minimal frustration is
characterized by TF being bigger than the TG of the compact but non-
native ensemble of structures. The folding transition temperature TF de-
pends on the specificity gap DE, and the configurational entropy. The
glass transition temperature TG depends on the root mean square fluc-
tuation of non-native collapsed structural energies dE and (with a dif-
ferent power!) the configurational entropy. TG represents the temperature
at which a few misfolded and structurally distinct states would dominate
the Boltzmann weighted population. Escape from these traps (sometimes
called ‘‘topomers’’) would limit the rate.
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frustration can be directly verified or refuted. One can also try to infer these
temperatures from measurements of residual structure and dynamics of col-
lapsed, but denatured, protein, which was done more than ten years ago.33 The
estimated ratio of temperatures was TF/TG¼ 1.6. Chan has recently argued the
ratio is still larger.34

This mathematical form of the ‘‘principle of minimal frustration’’ can be used
to find energy functions suitable for protein structure prediction35–37 and to
design proteins that fold in the laboratory.38 There is now widespread agree-
ment that minimizing frustration by considering sequences and energy func-
tions which yield TF over TG ratios bigger than 1 defines what is special about
proteins as opposed to random heteropolymers.39–41

Because of the minimum frustration principle, the main degrees of freedom
that are needed to characterize partially folded ensembles of natural proteins
should measure locally whether the native structure is formed or not. Most
partially folded molecules that have some fraction of their native interactions
formed will have only a few non-native interactions formed, only enough to
induce a weakly cross-linked gel – not a quenched glass. This weak cross linking
slows folding, but only by a small amount. If the denatured state is strongly
collapsed the friction effect increases. This is seen in the so-called ‘‘salt-induced
detour.’’42 Even when non-native trapping effects are highlighted, the native
contacts still must fight entropy to complete the organization of the molecule.
Nevertheless, because of minimal frustration this fight can go on both locally
and, more importantly, quasi-independently throughout the molecule. On a
minimally frustrated funnel-like landscape there are numerous possible folding
routes. These routes are not equally likely; those routes that gain free energy of
stabilization quickly while at the same time paying a low entropy cost will
dominate. Many of the dominant folding patterns will pass through a common
region of configurational space. This small region of phase space represents a
bottleneck for the folding process. This region of configuration space is called
the Transition State Ensemble (TSE). The free energy of the TSE relative to the
denatured ensemble determines the rate of folding via these routes.43

Sometimes multiple bottlenecks will occur in sequence, with low free energy
‘‘intermediate’’ ensembles in between. These ensembles can be kinetically
blocked from completing their folding or unfolding because the entropy/
stabilization trade-off is not uniform. Such ensembles may sometimes be
detected as kinetic intermediates.
The minimal frustration principle and the funnel concept, therefore, suggest

that the main features of folding kinetics can be predicted by knowing the
stabilization energies of elements of the native structure and the entropic costs
of bringing together parts of the scaffold. If these two scales suffice to determine
the dominant folding route the problem simplifies because these ingredients are
functions of the contact map of the native protein – alone. The minimal frus-
tration principle thus has a consequence that the ‘‘topology’’ of a protein
structure largely determines the mechanism of folding to that structure. Dif-
ferent natural sequences with the same endpoint structure will have similar
mechanisms or a small set of mechanisms under different conditions. This
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seems to be true experimentally.44 This pattern is borne out, as we shall see,
when it comes to predicting the structural details of folding mechanisms.

3.5 Minimal Frustration, Capillarity,

and Protein Topology

When we analyse folding mechanisms we must recognize that the energy
landscape analysis so far tells us globally what makes a protein a protein and
not just a random heteropolymer – the relative lack of energetic frustration
(precisely TF 4 TG). To describe the mechanisms of protein folding we must
appreciate that these globally consistent, only minimally frustrated interactions
still must act in real three-dimensional space: they must act locally. Because of
the local character of the interactions, usually, only some key parts of the
protein need to be assembled before the rest will inevitably fall into place. This
is the essence of the capillarity picture of protein – a local version of the energy
landscape theory which in its original form concentrated on global collective
coordinates.
Even with a local picture of the interactions much of the landscape paradigm

can be followed. One can still write the free energy in terms of a collective
coordinate for the protein as it folds, the number of residues folded, Nf.
The expression for the profile contains a linear ‘‘bulk’’ term and an interfacial

term scaling like N2/3.

FðNf Þ ¼ ðff � fuÞNf þ gN ð3:11Þ

The bulk term that scales with N reflects the free-energy difference per particle,
Df, between folded (ff) and unfolded (fu) protein; the small value of Df¼ ff� fu
under folding conditions reflects the near cancellation of the entropy of un-
folded state and the stabilizing energy of the native structure that is so familiar.
In an early paper the ‘‘interface’’ term g was taken by Bryngelson and Wolynes
to be largely energetic and independent of the stability.45 Putting in the typical
stabilization of proteins under physiological conditions (10kBT), BW in-
correctly concluded that the order of B100 residues would need to be ordered
at the folding transition state, a number comparable to a protein domain size.
The error of their analysis was rather basic and apparent to those skilled in
thermodynamics of small systems and can be traced back to Kelvin’s work on
the evaporation of small drops. The bulk transition temperature at which Df
vanishes does not coincide with the transition temperature of the cluster TF

unlike what Bryngelson and Wolynes thought. The freezing temperature is
depressed by the surface contribution, as was known to Lord Kelvin. We know
that the initial and final full free energies must balance in folding – not their
hypothetical bulk values of the free energies per particle! This was pointed out
in the folding context by Finkelstein and Badretdinov.46,47 Taking account of
this fact to rewrite Equation (3.1) one can show explicitly the free energy profile
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referenced near the folding temperature

Fidð ~Nf Þ ¼ ð�~gþ DHðT � TF Þ=TF Þ ~Nf þ ~g ~N2=3
f ð3:12Þ

where we have written g¼ gN2/3 and scaled Nf by the chain lengthN. At TF, this
is a crudely universal form for the ‘‘ideal’’ free-energy profile since there is only
one parameter present. (This is a special case of the general rule that at TF only
one basic energy scale should enter a completely unfrustrated model!) The
temperature dependence of the stability depends on the enthalpy of unfolding
DH. The normalized folded fraction Nf ¼ Nf/N now can serve as a collective
coordinate for the folding process as in other theories of the funnel based on the
fraction of native contacts. The specific numeric coefficients used assume that
the protein is nearly spherical, so the curvature of the front is equally limited by
all dimensions of the protein (see Figure 3.1). The coefficients would be quite
different for helical bundles or other nearly one-dimensional structures such as
modular repeat proteins.
As emphasized before,48 at TF the free-energy profile obtained by the

‘‘spherical cow model’’ above is quite universal. Also it indicates that there is a
rather broad barrier for folding (Figure 3.4) where we superimpose the
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Figure 3.4 The folding free energy profile of UIA calculated via a specific topology-
based variational method and the ideal ‘‘spherical cow’’ capillarity model.
The overall shape but not the bumps and wiggles (‘‘fine structure’’) are
quite well described by capillarity.
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capillarity prediction on a detailed calculation for a specific topology. The
maximum occurs at Nf ¼ 8/27 N. The barrier can be ascribed to the interface
term and is given by DF¼ 4/27 gN2/3. See Figure 3.4. This same barrier scaling
was obtained by Finkelstein and Badretdinov,47 who used a more elaborate
treatment of the interface contributions and a more careful treatment of the
protein shape.
How broad is the region that corresponds with the transition state ensemble?

Structures within kBT of the barrier top should be included. Denoting the
breadth of the free-energy profile as dNTST, defined as the range over which

F(N) changes by kBT, we find d ~NTST ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=ðd2F=d2 ~N2Þ

q
. At TF, the number

of residues displaced in moving over the transition region is thus approximately

dNTST ffi 2:
ffiffiffi
2

p
=3N2=3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=g

p
.

The result indicates the barrier becomes broader with increasing chain
length, thus justifying a collective diffusive treatment of the chain motions for
larger proteins. An elementary move of the chain in folding must typically
displace a loop whose length will scale like N1/3. Because of the different N
scaling crossing the broad variable will take many elementary moves and will be
expected to at least be at the border of diffusive behavior for proteins of the size
of 100 resident domains.
Real proteins may well have an intricate interface between the ‘‘folded’’ and

‘‘unfolded’’ regions. Thermal fluctuations, variations in protein connectedness
and topology, and heterogeneity of native contacts roughen the interface be-
tween the parts of the protein considered folded or not. A metastable compact
liquid or even liquid crystalline state49 of proteins is possible. Conceivably a
topologically correct structure lacking side-chain ordering may also exist as has
been theoretically suggested. Such intermediately ordered phases will partially
wet the interface between completely folded and unfolded states. Wetting re-
duces the interface energy g. The resulting thermodynamic activation barrier
may thus be smaller than anticipated. The absolute magnitude of the barrier for
folding will be hard to predict.
Despite the difficulty of predicting the absolute magnitude of the folding ter-

rain, the location of the interface should follow with only a small error from the
locality of the interactions. The structure of the transition state ensemble depends
on how strong local contacts can be made given the topology of the final native
structure. Theory thus can answer: Where exactly will the nucleation front reach
the critical size to allow folding to continue downhill? Experimentally, this can
also be answered by protein engineering and kinetic j value analysis.50,51

Unlike the pathway paradigm, energy landscape theory leads to a quasi-
thermodynamic theory for folding based on a few reaction coordinates. This
picture works because many, many elementary barrier-crossing steps describing
the individual dihedral angle isomerization of the chain must come to a steady
state before the bottleneck region for folding is reached. Only a globally de-
termined bottleneck ensemble remains to limit the speed of assembly. Due to
this quasi-equilibrium, on an overall funnel-like surface, changes in protein
stability are directly reflected in the observed kinetics.49–52 In small-molecule
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chemistry, such extra-thermodynamic relations only hold for small perturb-
ations. For folding, the collective nature of the reaction coordinate smoothes
out the relationship between kinetics and thermodynamics and thus allows one
to apply to much bigger changes in stability than in keT.
If the landscape of evolved proteins were very rugged, intermediates would

possess many specific non-native interactions. These intermediates would be
found in the tail of the Gaussian distribution expected for a glass. Changing
any of the contacts in these unpredictably structured intermediates would
stabilize or destabilize minima at random and qualitatively change the folding
mechanism, making kinetic predictions impossible.
It is only because of the funnel-like nature of the folding landscape that it is

possible to develop a structural interpretation of the j values. Such an inter-
pretation was already clear in the pioneering experiments of Fersht.53 Simu-
lations show that the structural interpretation of j values does indeed break
down for frustrated rough landscapes.54 Simulations show that on highly
frustrated surfaces, mutations do indeed stabilize idiosyncratically specific traps
on a very rugged landscape.55,56 Empirically, it seems, perfect funnel models
based on the native structure of the protein do a quite adequate job at pre-
dicting the location of the key residues in the transition state for folding and the
location of the capillary interface between folded and unfolded regions. Thus,
one must conclude that ruggedness is a small effect and that proteins do obey
the principle of minimal frustration.

3.6 Delightful Prediction of Many of the Devilish

Details of Folding

The energy landscape theory provides an organized strategy for picking apart
folding kinetics. Uncovering the details of folding requires today a strong
collaboration between theory and experiment.57 The first step of the strategy,
according to the minimal frustration principle, is to analyse perfect funnel
models. The dynamics of unfrustrated models depends on topology alone,
which encodes the balance of changes in entropy and stabilization energy re-
flecting the average value of native interactions. Since many native contacts
must form, the heterogeneity of the energies of such contacts is, to a crude
approximation, averaged over. If an evolved protein is minimally frustrated the
non-native interactions will certainly be present but these non-native inter-
actions will act non-specifically – they may act to encourage collapse, thereby
lowering the entropy barrier.58 But there is a limit to their help: increasing the
strength of non-native contacts leads to trapping, i.e. it increases the friction on
the motion of funnel reaction coordinate.
Such non-specific effects of landscape ruggedness can be changed by adding

denaturants, which again act nonspecifically. Even with non-native interactions
present, so long as they are weak most structural features of transition state and
intermediate ensembles can be predicted from the native structure alone. This
strategy works quite well, but apparently is not perfect.
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A wide range of studies has established that the dominant structures of
transition state ensembles and of the partially folded ensembles corresponding
to intermediates are in fact determined by perfect funnel landscape models
much like the spherical cow capillarity model. A perfect funnel landscape
depends on the detailed protein topology since the overall entropy and sta-
bilization energies balance so closely.59–64 Folding mechanism is not nearly as
robust to mutation as the final structure is to sequence changes but the en-
tropy/energy imbalances intrinsic to any given protein topology often can
provide all the information needed to determine the number of intermediates
and which regions of the protein transition state ensembles are natively
ordered. This realization has powered an explosion of studies using energy
functions based on perfect funnels. These models do a good job of predicting
the presence and structures of partially folded intermediates when they are
observed.65 The predictions of j values from the simple off-lattice models
generally agree well in gestalt with experiment.66,67 At the same time achieving
precision predictions of j values and of absolute barrier heights requires the
model to contain non-additive forces that arise from solvation and side-chain
placement.68 Even with non-additivity the landscape is a funnel, although a
somewhat narrower one. Variational techniques of polymer statistical mech-
anics that directly balance chain-entropy and contact stabilization are a useful
complement to simulations. The predicted folding intermediates and transition
states for U1A67–70 are shown in Figure 3.4. The overall profile corresponds
well with the capillarity form (‘‘spherical cow model’’) but the fine structure
wiggles on the profile reflect details of the protein contact map.
Recently several seeming exceptions to the simple funnel picture have

actually served to confirm our confidence in the energy landscape paradigm.
An often cited possible exception to the landscape picture has been the folding
of cytochrome c.71 This protein exhibits discernible fine structure in unfolding,
as has been explored by Englander’s group using H/D exchange.72 The
nature of the folding subunits is currently predicted, however, in detail by a
perfect funnel model in simulations.73 The quasi-independence of the different
‘‘foldons’’ arises because the heme separates many parts of the chain.
The mutual contacts between foldons and the heme provide the first
key elements of the folding nucleation process. The cooperation between
different parts of the polypeptide chain usually needed in proteins without
co-factors is less important than these first interactions with the heme for
cytochrome.
The mysterious kinetics of the ROP dimer has also challenged the native

funnel paradigm.74,75 ROP dimer folding exhibits a very strong disconnect
between stability and folding speed, which do not track each other. Engineered
mutations in this dimer speed up both wings of the kinetic chevron and un-
folding. How can this be reconciled with a quasi-equilibrium theory dominated
by native-like interactions? In fact non-native interactions appear necessary.
Simulations suggest this violation of the expected funnel behavior comes about
because the symmetry of the dimer allows two near-degenerate topologically
distinct structures to compete in some mutants.76
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Interestingly, although all the engineered mutants bound their target RNA
in vitro they do not all function in vivo. The higher concentrations of RNA in
the test tube allow binding to pull the equilibrium over to the competent
binding structure. The in vivo studies suggest such frustrated mutants, if they
had not come about naturally, would likely lose out in natural selection. This
explanation of the strange case of ROP time limits is not iron-clad. Other ex-
planations are possible. Nevertheless it seems likely the ROP system may well
be the felicitous ‘‘exception that proves the rule’’ – proteins need not have
simple funnel landscapes – if they actually do not function.
Many biological functions probably invite frustration: multiple states of a

protein are needed for switches (allostery) or to accommodate multiple sub-
strate conformations along the mechanistic pathway of an enzyme
transformation. Violations of the minimal frustration principle will often
signal such functional constraints. Folding of proteins with complex functions
may thus bring new challenges to energy landscape theory. Perhaps it is
good to end by emphasizing that it is through challenging paradigms that
scientific progress is made. Energy landscape theories of folding can flexibly
accommodate many phenomenological observations but deviations may tell
us much more about how the molecules of life evolved than has been
anticipated.
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CHAPTER 4

Hydrogen Exchange
Experiments: Detection and
Characterization of Protein
Folding Intermediates

YAWEN BAI

Laboratory of Biochemistry, National Cancer Institute, NIH, Building 37,
Room 6114E, Bethesda, MD 20892, USA

4.1 Introduction

Protein folding is the last step in the central dogma of molecular biology, which
involves the transfer of genetic information from protein sequences to protein
structures. The accepted rule for protein folding has been the thermodynamic
principle established in the 1960s by Anfinsen and coworkers.1 It states that the
native structure of a protein is at the most stable thermodynamic state and is
determined by the amino acid sequence of the polypeptide chain in the given
physiological environment. Since then, protein folding studies have focused on
the understanding of the process of folding, including the characterization of
intermediate steps and seeking the physical rules that control them. The finding
that partially unfolded intermediates could be the precursors for the formation
of amyloid fibers2 also makes protein folding studies important to the under-
standing of the causes of various amyloid diseases (see Chapter 10 by Serrano
for more details in protein aggregation). Since the thermodynamic principle of
protein folding suggests that one should, in principle, be able to predict protein
structures by minimizing the energy of the conformation of a polypeptide
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chain, prediction of protein structures has been another important issue in the
field of protein folding and has been spurred by the increased power of com-
puters and the Genome Project. The Genome project has accumulated a huge
number of DNA and protein sequences. However, in order to understand
the functional information encoded in these sequences, one needs to know
the structures of these proteins. Thus, it is highly desirable to understand the
relationship between protein sequences and protein structures so that one
can predict protein structures by computational methods based on protein
sequences alone.
This chapter describes the experimental methods for studying folding inter-

mediates by taking advantage of the hydrogen exchange reaction between
protein amide groups and water molecules of the surrounding solvent. To
structurally characterize the process of protein folding at the residue level, two
major experimental methods have been developed: amide hydrogen exchange
(HX) and protein engineering.3,4 Between the two methods, amide hydrogen
exchange plays a dominant role in detecting and characterizing partially un-
folded intermediates, whereas protein engineering is targeted at obtaining
structural information of the transition state. Direct hydrogen exchange
measurements have revealed the structures and stability of partially unfolded
states under acidic conditions.5,6 The hydrogen exchange pulse-labeling method
has been used to determine the structures and stability of folding intermediates
that populate transiently during folding.7,8 The native-state hydrogen exchange
method is capable of detecting folding intermediates that exist as infinitesimally
populated high-energy states under native conditions,9 leading to the de-
termination of their high-resolution structures.10 A number of excellent reviews
on various aspects of these studies have been published.11–18 This chapter
illustrates the basic principle underlying HX methods for detecting and char-
acterizing the structures of partially unfolded intermediates. Typical examples
are provided for each method.

4.2 Intrinsic Exchange Rates for Unfolded

Polypeptides

Amide protons in polypeptides are chemically labile and can exchange with
hydrogen isotopes in solvent water such as:

4N�HþD2O !4N�HþDOH ð4:1Þ

Because of the extreme pKa values of main chain amides, the exchange of their
hydrogen atoms with solvent is relatively slow and catalyzed only by the
strongest of aqueous acids and bases (hydronium and hydroxide ion). Thus,
the exchange rate is pH-dependent. Figure 4.1 illustrates the exchange rate
constants as a function of pD (pD¼ pHread+0.4)19 for amide protons in un-
structured poly D/L alanine. Here pHread is the reading value from the pH
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meter. At pD 7.0 and 20 1C, the exchange rate constant of an amide proton in
an unfolded peptide, kint, is affected mainly by the side chains of its two nearest
amino acid residue neighbors. Both inductive20 and steric blocking effects21 are
apparent. These effects have been characterized for all 20 amino acids using
dipeptides as models.22 Accordingly, kint can now be predicted among a broad
range of pHs and temperatures.22,23 An online program for calculating kint
is available (http://www.fccc.edu/research/labs/roder/sphere/). For unfolded
polypeptides, the predicted kint is normally within a factor of 2 of the measured
kex.

22,24

4.3 Linderstrøm–Lang Model for Amide Hydrogen

Exchange in Folded Proteins

In folded proteins, many amide protons are protected from exchange with
water molecules due to hydrogen bonding and burial within the native struc-
ture. Therefore, the experimentally measured exchange rate constant of a given
protein amide proton (kex) relative to that of a reference molecule, like an
unstructured peptide (i.e. the protection factor: PF¼ kint/kex) provides infor-
mation on the native structure and stability. Linderstrøm-Lang and his co-
workers assumed a 2-state situation and that amide hydrogens can exchange

Figure 4.1 Amide hydrogen exchange in the unfolded state. (A) Chemical structure of
a peptide. The exchange rate of an amide hydrogen is dominantly affected
by the two nearest neighbor side chains. (B) Intrinsic exchange rate
constant as a function of pD* (pD*¼ pHread+0.4) at 20 1C for amide
protons in PDLA.
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with solvent hydrogens only when they are transiently exposed to solvent in
some kind of closed-to-open reaction, as indicated in Equation (4.2).25

kop kint

NH(closed)  NH(open)  exchanged; Kop = kop /kcl

kcl

ð4:2Þ

Here, kop is the kinetic opening-rate constant; kcl is the kinetic closing-rate
constant. Under steady-state conditions, the exchange rate, kex, of the above
scheme is given by Equation (4.3).

kex ¼ kopkint=ðkop þ kcl þ kintÞ ð4:3Þ

For conditions in which the native structure is stable (kop{kcl), this equation
can be simplified under two extreme cases. (i) The closing reaction is much
faster than the intrinsic exchange rate constants ðkclckintÞ. In this case, termed
EX2 regime, the exchange rate of any hydrogen (kex) is determined by its
chemical exchange rate in the open form multiplied by the equilibrium opening
constant, Kop.

kex ¼ Kop � kint ð4:4Þ

This leads to an empirical expression for the free energy change in the
dominant opening reaction, as represented by the equation:

DGHX ¼�RT ln Kop ¼�RT lnðkex=kintÞ ¼ �RT lnð1=PFÞ ð4:5Þ

In this equation, R is the gas constant and T is the temperature. As seen above,
kint/kex is defined as the protection factor (PF). The free energy defined in
Equation (4.5) represents a combination of opening transitions from both
structural unfolding and local fluctuations. (ii) The closing reaction is much
slower than the intrinsic exchange rate constant (kcl{kint). In this case, termed
EX1 regime, the exchange rate is approximately equal to the opening-rate
constant (kop). For amide protons that can only exchange through global un-
folding, the kop will correspond to the global unfolding-rate constant of the
protein. A more general pre-steady-state solution for reaction scheme (2)
without any assumptions about the relative magnitudes of kop, kcl, and kint was
also solved.26,17

4.4 Characterization of Acid Denatured States

by Hydrogen Exchange

Some proteins become partially unfolded under mild denaturing conditions
such as low pH and high concentration of salt. In some cases, it has been found
that such intermediates are similar to those identified in kinetic folding
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experiments by the pulse-labeled H/D exchange method (see below). The
structural features of the partially unfolded intermediates under acidic con-
ditions can be characterized directly by measuring the hydrogen exchange rates
of amide protons and comparing them with those of an idealized unfolded
state, predicted based on short unstructured peptide models. The obtained
protection factors can be used to determine which region of the protein has a
folded-like environment in the partially unfolded intermediates. Amide protons
with PF41 are in folded-like environments; whereas amide protons with
PF B1 are unfolded.
In these hydrogen exchange experiments, the exchange process is allowed to

proceed at low pH, and is quenched subsequently at different time points by
changing the pH to a value at which proteins fold to the stable native state
quickly. The extent of exchange for each amide proton as a function of ex-
change time is determined by measuring the peak intensities of the amide
protons using two-dimensional NMR methods. A quench procedure is used
because partially unfolded intermediates usually do not have well-dispersed
chemical shifts in the two-dimensional NMR spectra and are less stable, leading
to fast exchange of amide protons. A direct measurement of the exchange rates
from the intermediates using NMR is usually not possible. More recently, it has
been shown that DMSO quenches the hydrogen exchange process even in
unfolded polypeptide chains. Furthermore, the problem of poor chemical shift
dispersion for unstructured proteins in proton NMR can be greatly alleviated
using two-dimensional amide 1H and 15N correlation spectroscopy. Typical
examples for the application of this method are discussed below.

4.4.1 Apomyoglobin (AMb)

AMb is an a-helical protein with 158 amino acids. It has eight a-helices named
from A to H. At near neutral pH, all helices are folded except helix F. An
equilibrium partially unfolded intermediate is found at pH 4.2.5 Exchange rates
of amide protons in this AMb intermediate have been determined at pD 4.2.5

The exchange was allowed to proceed in D2O and was quenched by the addi-
tion of heme while adjusting to higher pH (B8), leading to a reconstitution of
stable holo-myoglobin. A high pH solution was used for the reconstitution of
the holo-protein since heme tends to aggregate at low pH. AMb is not very
stable even under native conditions and tends to aggregate at the high protein
concentrations that are needed for NMR measurement. The measured pro-
tection factors indicate that helices A, G, and H are folded in this intermediate
whereas the remaining helices are unfolded. The structural features of
this intermediate are very similar to those observed in the kinetic pulsed-H/D
labeling experiment (see below). Recently, this experiment has been reexamined
using DMSO to quench the exchange reaction at low pH using 15N-labeled
proteins. The results are similar to the earlier experiments but include addi-
tional amide proton exchange rates.
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4.4.2 Cytochrome c (cyt c)

Cyt c is a protein with a 104 amino acid sequence and a covalently linked heme.
It is primarily a-helical: N-terminal helix, C-terminal helix, and the helix in-
cluding residues from 60 to 70. Oxidized cyt c (Fe31) at low pH in the presence
of high concentration of salt forms a partially unfolded structure, with a
molten-globule-like property.6 To determine the structure of the intermediate,
hydrogen exchange was performed at pD 2 and 1.5M NaCl at 4 1C.6 The
samples are quenched at pD 5.5 at different time points of exchange with the
addition of reducing agent (50mM ascorbate). Under these conditions, cyt c
refolds completely within seconds. Ascorbate was included in the quench buffer
because cyt c is substantially more stable in the reduced form (Fe21) and thus
the exchange for most amide protons is slower. Proton NMR spectra were
recorded at 30 1C by taking the 1H COSY spectra in the magnitude mode. The
most slowly exchanging amide protons in this intermediate state were found in
the three major helical segments of cyt c.

4.4.3 Ribonuclease H (RNase H)

RNase H has 155 amino acids. The structure of RNase H consists of several
a-helices (A to E) and four b-strands (1 to 4). The hydrogen exchange experi-
ment was performed at pD 1.26 with 50mM KCl and 4 1C.27 The exchange was
quenched at different exchange times by diluting the sample to native conditions
(pD 5.5), under which the protein can fold rapidly to the native state. Amide
protons in helices A, D, E and strand 2 show varying degrees of protection in the
acid state, while amide protons in other regions of the structure show an almost
complete lack of protection (PFB1). This experiment was performed using 15N-
labeled protein samples with the collection of a series of 1H–15N HSQC spectra.

4.5 Pulsed-Amide H/D Exchange Method

Amide hydrogen exchange can also be used to characterize the structure and
measure the stability of folding intermediates in a pulsed-H/D exchange
experiment as illustrated in Figure 4.2.8,7 In a typical experiment, the protein is
initially unfolded in D2O in concentrated chemical denaturant or at low pH.
Amide NH groups then exchange to ND. Refolding from the fully deuterated
form is initiated by millisecond dilution into a folding buffer in H2O under
the same conditions where folding experiments are normally performed, for
example, at pH 5.0–7.0 and 5–20 1C (see Chapter 6 by Gruebele for sub-
millisecond folding methods). Formation of early-folding intermediates under
these conditions is commonly faster than the exchange rate constants. After
some folding time tf, a brief H-labeling pulse (tp) is applied by mixing with a
high pH buffer (i.e. fast exchange conditions), for example at pH 10 and 20 1C.
The exchange time will be B0.3ms under such conditions. Amide deuterons
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that are not protected in the populating intermediates will exchange to NH but
those in already-formed structures are protected remaining as ND. In practice,
multiple time points are taken for either tf or tp. tf may be in the range from
milliseconds to several seconds. tp may be in the range from 5 to 100ms. A third
step involves mixing to low pH to terminate the labeling. Within seconds the
protein folds into its native state, which practically freezes the existing H–D
labeling profile. In this experiment protein samples are highly concentrated.
The exchange can be monitored by either 2D NMR or mass spectrometry.7,8,28

The NMR experiments provide site-specific information. The quenched sample
can also be analysed with the use of mass spectrometry. Although it has low
resolution, mass spectrometry has the advantage of rendering the statistical
distribution of exchanged protons, which is useful to identify folding processes
involving a few parallel folding pathways.28 A resolution at the level of peptide
fragments can also be obtained by mass spectrometry coupled with controlled
proteolysis.29 Another advantage of using mass spectrometry is that large
proteins (420 kD) can be studied.30

For a simple case in which the folding intermediate forms in submillisecond
timescales and folds to the native state in the timescale of seconds, the fraction of
the proton labeled in a pulse-labeling experiment is described by Equation (4.6):

Hlabel ¼ ½1� expð�PF� kint � tpÞ� � expðkf � tfÞ ð4:6Þ

Figure 4.2 Illustration of the pulse-labeling procedure for detecting early-folding
intermediates. Grey and black balls represent D and H respectively. tf is
the time for folding. tp is the time for the high pH pulse.
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Hlabel can be measured at a series of different folding times from the start of
folding (ms) to its completion (s). The folding kinetics of the protein therefore
can be monitored at multiple structural sites. Since kint is different for different
amide protons at a given pH, Hlabel is also different for different amide protons
for a given pulse length tp. As a consequence, the Hlabel alone is not always
sufficient to determine which amide proton is protected in the intermediate.
This problem is normally solved by changing the pH of the pulse while fixing tf
and tp to measure the protection factor (PF) for each amide proton.31,32

Figure 4.3 illustrates the results from such an experiment.
A simplified version of the pulse-labeling method is the hydrogen exchange-

competition method,33 in which the high pH pulse is omitted. Folding and
exchange occur concurrently. Although it is limited to the cases where the
folding rate constant, kf, is close to the intrinsic exchange rate constant (kint), it
is very useful to test whether a stable submillisecond intermediate exists owing
to its simplicity. The proton occupancy (Hocc) as a function of kint, kf, and tf is
described by Equation (4.7).

Hocc ¼ ½PF� kint=ðPF� kint þ kf Þ� � ½1� expð� kf � tfÞ� ð4:7Þ

Typical examples that have been characterized by the pulse-labeling method
include cyt c, AMb, lysozyme, and ribonuclease H.

Figure 4.3 Illustration of the results for an early-folding intermediate populated in the
submillisecond timescale from a pulse-labeling experiment. The para-
meters used are: tf¼ 10ms, tp¼ 50ms, kint¼ 100ms at pH 6.0. It also as-
sumes that the conversion from the intermediate to the native state is much
longer than tp at the pH of the pulse. X-axis is the pH value of the pulse.
The solid line represents an amide proton that is fully unfolded. The short
and long dashed lines represent the amide protons that have protection
factors of 10 and 100 respectively.
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4.5.1 Cytochrome c

Cyt c is the first protein that was studied by the pulse-labeling experiment.8 In
this experiment, the protein is unfolded in a D2O-denaturant solution. All
exchangeable NH sites become deuterated. Refolding, initiated by rapid di-
lution of the denaturant, is allowed to proceed for variable time periods before
the partially refolded protein is exposed to a 50-ms H2O labeling pulse. Under
conditions chosen for the pulse (pH 9.3, 10 1C, 40–60ms), the free-peptide H-
exchange time constant is about 1ms, so that amide sites in still unstructured
parts of the protein become fully protonated. On the other hand, the proton
label is excluded from sites where exchange is retarded more than 50-fold by
prior formation of (H-bonded) structure. The labeling pulse is terminated by a
rapid change to slow-exchange conditions and refolding is allowed to proceed
to completion. To quantify the individual proton occupancies, the intensities
of well-resolved NH–Ha cross peaks were measured using 2D J-correlated
(COSY) spectra.
The degree of protection acquired in the early phase is greatest for amide

protons of the N-terminal and C-terminal helices; their amide proton occu-
pancy drops to about 40% in 30ms. At the same time, other protons located
throughout the intervening polypeptide segment remain almost completely
accessible for H-labeling; these include sites in two helical segments other than
the N- and C-terminal helices, as well as some protons involved in tertiary
hydrogen bonds. These results indicate that an intermediate involving the
formation of the N- and C-terminal helices is formed in the early stage of
the folding process of this protein. The amide proton protection pattern is more
complicated at later times, largely due to the intermolecular interactions.

4.5.2 Apomyoglobin

Pulse-labeling experiments were performed at 5 1C in a rapid-mixing device.34

Fully protonated AMb was unfolded in 6M urea and 10mM acetate, pH 6.1,
at 5 1C. Refolding was initiated by rapid dilution (1:7.5) into acetate buffer
(10mM, pH* 6.1, in D2O) for variable time periods before being pulse-labeled
(pD 10.2 in D2O); the final pH was 10.2. Labeling was quenched after 20ms
by dilution into buffer pH 1.9 in D2O to pH* 5.6. This solution was injected
into a reservoir that contained a 1:1 molar excess of bovine hemin to apo-
protein. Reconstituted protein was concentrated into a small volume, equili-
brated with CO and reduced with sodium dithionite. Double quantum and
NOESY spectra were collected for each sample on a 600-AMX Bruker
spectrometer.
The amide protons of residues from A, G, and H helices are fully protected

within 6.1ms after exposure to refolding conditions. Some of the amide protons
in the B-helix also exhibit complete protection within 6.1ms while others be-
come fully protected within 1 second after initiation of refolding. Protons in
other regions of the protein are protected later.
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4.5.3 RNase H

15N-labeled RNase H was dissolved at 2mgml�1 in deuterated buffer con-
taining 20mM potassium acetate, pD 5.5, 50mM KCl, and 7M deuterated
urea, and allowed to unfold and exchange for at least 1 h.35 Pulse-labeling
hydrogen exchange was carried out in a Biologic SFM4/Q quench flow in-
strument. Refolding was initiated by 1:10 dilution into protonated refolding
buffer (20mM potassium acetate, pH 5.5, 50mM potassium chloride). A
43.5ms labeling pulse was applied by a two-fold dilution into pulse buffer
(200mM trisHCl for final pH 9.0 and 9.5, 200mM glycine for pH 10 and 10.5).
A second two-fold of dilution into quench buffer (300mM potassium acetate)
was used to adjust the pH to 5.5. The sample was then concentrated and the
buffer was exchanged to 3mM d3-sodium acetate in H2O, pH 5.5. The final
sample was lyophilized and stored at –70 1C until the day of the NMR ex-
periment. The lyophilized samples were resuspended at 10–20mgml�1 in D2O,
followed by the addition of d3-sodium acetate, pD 5.5. 1H–15N HSQC spectra
were recorded at 25 1C on a Bruker DMX 600 MHz spectrometer.
The pulse-labeling hydrogen exchange experiment shows that amide proton

probes in helices A and D and in strand 4 are well protected (low proton occu-
pancy), and hence well structured within the 14ms of refolding. Helix E also shows
slight protection in this time period. Probes located in the remaining beta-strands
are unprotected at the earliest time point, and become protected with an average
rate constant of 1 s�1. Thus this kinetic intermediate resembles the acid state.

4.5.4 Hen Egg White Lysozyme (HEWL)

HEWL has 129 amino acids and two sub-domains. One sub-domain contains
a-helical structures (a-domain) and the other one has b-structure (b-domain).
The pulse-labeling experiment was done at 20 1C using a biologic QFM5 rapid
mixing quench flow apparatus.36 Lysozyme (20mgml�1) was initially dissolved
in 6M GdmCl deuterochloride in D2O and pH 6.0, leading to complete de-
naturation and substitution of all exchangeable hydrogen atoms by deuterium.
Refolding was initiated by 10-fold dilution of this solution into 20mM sodium
acetate pH 5.5 in H2O. At the resulting pH of 5.2 the half-life for amide ex-
change is about 1.6 s so that negligible labeling occurred during this phase.
After variable refolding times (3.5ms to 2000ms) the solution was diluted again
with a volume of 5 times that of the initial protein solution of 0.2M sodium
borate, pH 10.0. This step initiated labeling at a pH of 9.5. After 8.4ms the
labeling was terminated by further dilution, with a volume again 5 times that of
the initial volume of protein solution, of 0.5M acetic acid in H2O. The final pH
was about 4.0, at which exchange of the 49 amides studied from the native
structure is very slow. Protein samples were concentrated and the buffer ex-
changed for 40mM deuterated sodium acetate, pH 3.8 in D2O by ultrafiltration
at 4 1C. A phase-sensitive COSY spectrum of each sample was recorded on a
500MHz GE/Nicolet spectrometer at 35 1C. The intensities of the CaH–NH
cross-peaks were measured.
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The labeling curves are different for different protons. In addition, for a given
amide proton, the exchange curve is not monophasic. Each curve was modeled
well by a sum of two exponentials. The rates of the fast phase show no clear
pattern but those of the slower phase fall quantitatively into two groups dif-
fering in their average time constant by a factor of 4. The more rapidly pro-
tected group comprises amide protons in the four a-helical segments, the 310

helix close to the C-terminus of the protein, and three amides, Try 63, Cys 64,
and Ile 78, that lie in the loop region in the native enzyme. With the exception
of the loop region, these structural elements all occur in one of the two
lobes of the native conformation (i.e. a-domain). In contrast, amides
that become protected more slowly are located, with the single exception Asn
27, in the b-domain, which comprises a short-stranded and a longer triple-
stranded beta-sheet, a 310 helix, and a long loop. These results could be in-
terpreted as arising from a non-sequential assembly process that involves two
parallel alternative pathways. Thus, most of the molecules would fold through
the fast track involving the earlier formation of the a-helical domain. A smaller
fraction of molecules are side-tracked onto the slower pathway involving the
earlier formation of the b-domain. This parallel folding behavior was sub-
sequently confirmed by a pulse-labeling experiment monitored by mass
spectrometry.

4.6 Native-State Hydrogen Exchange Method

As seen above, hydrogen exchange pulse labeling is a kinetic method for
characterizing folding intermediates. A native-state hydrogen exchange method
was also developed to detect the equilibrium intermediates based on the ex-
change behavior of amide protons at low concentrations of chemical de-
naturant. Depending on the free-energy landscape of folding, amide protons
can exchange through different processes. Figure 4.4 illustrates the three pro-
cesses of exchange that occur for a putative three-state system. Amide protons
that are not strongly protected or deeply buried in the native protein can ex-
change through local structural fluctuations that result in breaking one or two
hydrogen bonds without significantly exposing solvent-accessible surface
area.37–39 If the protein has a partially unfolded state that is more stable in
native conditions than the unfolded state, then the amide protons in the un-
folded region of the intermediate can exchange from such partially unfolded
states. Of course, all amide protons can also exchange from the fully unfolded
state. The measured exchange rate constant is the sum of the exchange rate
constants of the three processes, weighted by the unfolding equilibrium con-
stants of the intermediate and the unfolded state under EX2 conditions:

kex ¼ kloc þKNI � kint þKNU � kint ð4:8Þ

i.e. the exchange reactions from the intermediate and the unfolded state are
modulated by the (partial) unfolding equilibrium constants. Here, kloc
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represents the exchange process from the native structure. KNI and KNU

are the equilibrium unfolding constants. In a native-state hydrogen exchange
experiment, the hydrogen exchange rates are measured at different concen-
trations of denaturant. The denaturant is used to perturb the equilibrium
constants and help to reveal the different exchange behavior for amide protons
in different regions of the protein. When the values of DGHX for different amide
protons are plotted against the concentration of chemical denaturant, different
patterns can be observed. The idea is that exchange arising from partial un-
folding (e.g. folding intermediates) will result in DGHX values smaller than the
global DGNU, and also in weaker chemical denaturant dependence. This is so
because partial unfolding involves smaller changes in accessible surface. Ac-
cordingly, different structural segments that unfold cooperatively as structural
units will converge to particular DGHX values, which will then join the global
DGNU process at the concentration of chemical denaturant at which their
sensitivity to denaturant crosses the global one. Figure 4.5 illustrates the
hydrogen exchange pattern for a protein with a folding intermediate. Based on
the exchange pattern, one can deduce the structure, stability, and relative ex-
posed surface area of the intermediates from a native-state hydrogen exchange
experiment.9

Figure 4.4 Three basic processes for hydrogen exchange.
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4.6.1 Cytochrome c

The native-state hydrogen exchange on cyt c was performed at pD 7 and 30 1C.9

The exchange was rapidly initiated by changing the protein sample in H2O to
D2O using a spin column. The exchange process was allowed for a given period
of time and then quenched for NMR measurements. The quench was done by
lowering the pH and adding ascorbate to reduce the sample, in similar fashion
to the quenching experiment for characterizing the acid state. Four groups of
amide protons were identified. The first group involves the amide protons in the
N- and C-terminal helices. The second group involves the amide protons in
the 60s helix and the 30s loop. The third group involves the amide protons in
the loop from residues 36 to 60. The last group involves the amide proton from
70 to 85. This leads to the three partially unfolded intermediates. The first one
has the N- and C-terminal helices folded. The second intermediate has the N-
and C-terminal helices, the 60s helix, and the loop involving residues from 30s
to 40s folded. The third intermediate involves the folding of all parts of the
structure except the Omega loop from residue 71 to 85.

Figure 4.5 Illustration of native-state hydrogen exchange results for a protein with a
partially unfolded intermediate (GdmCl¼ guanidinium chloride).
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4.6.2 RNase H

Hydrogen exchange rates were measured for 53 amide protons dispersed
throughout RNase H in D2O at 12 different guanidinium chloride concen-
trations in the range 0–1.3M.40 Exchange of NH to ND was measured by re-
cording two-dimensional 1H–15N HSQC spectra as a function of time, ranging
from hours to months. The hydrogen exchange data suggested that RNAse H
unfolds in three distinct regions defining two partially unfolded forms. The
most stable region of the protein encompasses helices A and D. Amide protons
in these helices exchanged with an average unfolding free energy of
10.0 kcalmol�1. The second region encompasses helix B and strand 4 of the
beta-sheet. The third region includes helices C and E, and strands 1, 2, 3, and 5.

4.6.3 Rd-apocytochrome b562

Rd-apocyt b562 is a redesigned four-helix bundle protein based on apo-
cytochrome c.41 The native-state hydrogen exchange experiment was
performed at pH 5.0 and 25 1C in GdmCl solution starting with deuterated
proteins. Two partially unfolded forms have been found. One partially un-
folded intermediate has the N-terminal helix unfolded. The other intermediate
has the N-terminal helix and the C-terminal part of the C-terminal helix
unfolded.

References

1. C. B. Anfinsen, Science, 1973, 181, 223.
2. D. Canet, A. M. Last, D. B. Archer, C. Reddield, C. V. Robinson and

C. M. Dobson, Nat. Struct. Biol., 2002, 9, 308.
3. C. R. Matthews and M. R. Hurle, Bioessays, 1987, 6, 254.
4. A. Matouschek, J. T. Kellis Jr, L. Serrano and A. R. Fersht, Nature, 1989,

340, 122.
5. F. M. Hughson, P. E. Wright and R. L. Baldwin, Science, 1990, 249, 1544.
6. M. F. Jeng and S. W. Englander, J. Mol. Biol., 1991, 221, 1045.
7. J. B. Udgaonkar and R. L. Baldwin, Nature, 1988, 335, 694.
8. H. Roder, G. A. Elove and S. W. Englander, Nature, 1988, 335, 700.
9. Y. Bai, T. R. Sosnick, L.Mayne and S.W. Englander, Science, 1995, 269, 192.

10. H. Q. Feng, Z. Zhou and Y. Bai, Proc. Natl. Acad. Sci. USA, 2005, 102, 5026.
11. R. L. Baldwin, Curr. Opin. Struct. Biol., 1993, 3, 84.
12. S. W. Englander and L. Mayne, Annu. Rev. Biophys. Biomol. Struct., 1992,

21, 243.
13. R. Li and C. Woodward, Protein Sci., 1999, 8, 1571.
14. C. E. Dempsey, Prog. Nucl. Mag. Reson. Spectrosc., 2001, 39, 135.
15. J. Rumbley, L. Hoang, L. Mayne and S. W. Englander, Proc. Natl. Acad.

Sci. USA, 2001, 98, 105.

83Hydrogen Exchange Experiments



16. S. W. Englander, Annu. Rev. Biophys. Biomol. Struct., 2000, 29, 213.
17. M. M. G. Krishna, L. Hoang, Y. Lin and S. W. Englander, Methods, 2004,

34, 51.
18. D. Wildes and S. Marqusee, Methods Enzymol., 2004, 380, 328.
19. P. F. Glasoe and F. A. Long, J. Phys. Chem., 1960, 64, 188.
20. R. S. Molday, S. W. Englander and R. G. Kallen, Biochemistry, 1972, 11, 150.
21. Y. Bai and S. W. Englander, Proteins, 1994, 18, 262.
22. Y. Bai, J. S. Milne, L. Mayne and S. W. Englander, Proteins, 1993, 17, 75.
23. G. P. Connelly, Y. Bai, M. F. Jeng and S.W. Englander, Proteins, 1993, 17, 87.
24. B. M. Huyghues-Despointes, J. M. Scholtz and C. N. Pace, Nat. Struct.

Biol., 1999, 6, 910.
25. A. Hvidt and S. O. Nielsen, Adv. Protein Chem., 1966, 21, 287.
26. H. Qian and S. I. Chan, J. Mol. Biol., 1999, 286, 607.
27. J. Debora and S. Marqusee, Biochemistry, 1996, 35, 11951.
28. A. Miranker, C. V. Robinson, S. E. Radford, R. T. Aplin and C. M.

Dobson, Science, 1993, 262, 896.
29. Z. Zhang and D. L. Smith, Protein Sci., 1993, 2, 522.
30. H. Pan, A. S. Raza and D. L. Smith, J. Mol. Biol., 2004, 336, 1251.
31. J. B. Udgaonkar and R. L. Baldwin, Proc. Natl. Acad. Sci. USA, 1990, 87,

8197.
32. G. A. Elove and H. Roder, ACS Symp. Ser., 1991, 470, 50.
33. F. X. Schmid and R. L. Baldwin, J. Mol. Biol., 1979, 135, 199.
34. P. A. Jennings and P. E. Wright, Science, 1993, 262, 892.
35. T. M. Raschke and S. Marqusee, Nat. Struct. Biol., 1997, 4, 298.
36. S. E. Radford, C. M. Dobson and P. A. Evans, Nature, 1992, 358, 302.
37. S. L. Mayo and R. L. Baldwin, Science, 1993, 262, 873.
38. H. Qian, S. L. Mayo and A. Morton, Biochemistry, 1994, 33, 8167.
39. Y. Bai, J. S. Milne, L. Mayne and S. W. Englander, Proteins, 1994, 20, 4.
40. A. K. Chamberlain, T. M. Handel and S. Marqusee, Nat. Struct. Biol.,

1996, 3, 782.
41. R. A. Chu, W. H. Pei, J. Takei and Y. Bai, Biochemistry, 2002, 41, 7998.

84 Chapter 4



CHAPTER 5

Statistical Differential Scanning
Calorimetry: Probing Protein
Folding–Unfolding Ensembles

BEATRIZ IBARRA-MOLERO AND JOSE MANUEL
SANCHEZ-RUIZ

Facultad de Ciencias, Departamento de Quimica Fisica. Universidad de
Granada, 18071-Granada, Spain

5.1 Differential Scanning Calorimetry (DSC) as a Tool

for the Complete Energetic Description of Protein

Folding/Unfolding Thermal Equilibria

Differential scanning calorimetry experiments lead to the determination of the
heat capacity of a solution (a protein solution, in the case of interest here) as a
function of temperature. The thermodynamic quantity known as ‘‘heat capa-
city’’ provides a measure of the system’s capacity to store energy. That is, if the
heat capacity value is large, the system will be able to store a significant amount
of energy upon temperature increase. This means, in molecular terms, that
some efficient energy-storage mechanism must be operative in the system. For
instance, liquid water has a high heat capacity due to an efficient energy-storage
mechanism that, in very simplistic terms, could be described as ‘‘breaking of
hydrogen bonds.’’ In a protein solution, the unfolding process provides an
energy-storage mechanism, since the energy of the unfolded protein is (under
most circumstances) higher than that for the native protein. Thus, in the
temperature range in which protein unfolding occurs, the heat capacity value is
high and unfolding processes are revealed by positive ‘‘peaks’’ in DSC
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thermograms (plots of heat capacity versus temperature; see Figure 5.1 for an
illustrative example).
Scanning calorimeters used for diluted protein solutions (i.e. in the sub-

millimolar range) are differential instruments: what they actually measure is the
heat capacity difference between the protein solution and the pure solvent
(buffer). Therefore, some mathematical manipulations are required to get the
so-called absolute heat capacity of the protein. This and other relevant issues of
the standard DSC data acquisition and analysis of protein unfolding reactions
(baseline corrections, reversibility-related issues, model fitting, etc.) have been
discussed in detail elsewhere.1–13 Here, we focus on the main distinctive feature
of the DSC approach to the study of protein folding/unfolding, that is, the fact
that, unlike other techniques, differential scanning calorimetry has the potential
to provide a complete energetic description of protein folding/unfolding equili-
bria. This important result was demonstrated by Ernesto Freire and Rodney
Biltonen many years ago14 by showing that undistorted DSC thermograms are

Figure 5.1 Theoretical excess heat capacity versus temperature profiles computed on
the basis of the two-state model (Equations (5.5)–(5.11)). In all cases, the
unfolding equilibrium constant is unity at 60 1C. The unfolding enthalpy
values (kJmol�1) at that temperature are: a) 438, b) 292, c) 146, and d) 73.
For the sake of illustration and simplicity, we assume constant (tem-
perature-independent) unfolding heat capacity in the calculation. The
values used (kJK�1mol�1) are: a) 8.7, b) 5.8, c) 2.9, and d) 1.45. The
unfolding enthalpy and heat capacity values are of the order expected for
proteins of 150 (a), 100 (b), 50 (c), and 25 (d) residues, according to the
correlations reported by Robertson and Murphy.15
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essentially equivalent to the relevant protein partition function. This con-
nection between DSC data and partition function is the basis of many of
the most informative procedures of DSC data analysis. These include not only
the fitting procedures used to ascertain the number and energetic features of the
protein macrostates significantly populated during the thermally induced un-
folding processes, but also the recently developed approaches to the de-
termination of thermodynamic barrier heights in protein folding.
In this chapter, we will try to introduce the reader to the concept and uses of

partition functions in the simplest and most intuitive manner. Subsequently, we
will explain some of the partition-function-based approaches to DSC-data
analysis and interpretation. In doing so, however, we will find ourselves dis-
cussing central issues, such as the size of barriers in protein folding, the exist-
ence of downhill folding, and the adequacy of the two-state model for small
fast-folding proteins, and, finally, the implications of the essentially kinetic
character of protein stability in biological conditions.

5.2 Partition Functions of Folding/Unfolding Processes

In the simplest possible way, a partition function can be regarded as a sum of
statistical weights (more ‘‘sophisticated’’ interpretations can be found in text-
books on statistical thermodynamics, but these will not be required here).
Consider, for instance, that a certain number of different ‘‘situations’’ (‘‘states’’,
‘‘number of bound ligands’’, etc.) are possible for a given protein. We shall
label these different situations with numbers: 0, 1, 2. . . For each situation, a
statistical weight is defined in such a way that it is proportional (not necessarily
equal) to the probability of finding the protein in that situation at equilibrium
(defined as the situation in which probabilities do not change with time). The
probability for a given situation (Pi) is actually calculated as the corresponding
statistical weight (wi) divided by the sum of the statistical weights for all situ-
ations (w0+w1+w2+ � � �):

Pi ¼
wi

w0 þ w1 þ w2 þ � � � ¼
wiP
i

wi
ð5:1Þ

and the sum of the statistical weights is known as the partition function (Q):

Q ¼ w0 þ w1 þ w2 þ � � � ¼
X
i

wi ð5:2Þ

It is customary to assign a given situation the status of reference, thus re-
sulting in a statistical weight of unity (e.g. w0¼ 1). Then, we have P0¼ 1/Q,
P1¼w1/Q, P2¼w2/Q. . ., or, in general,

Pi ¼
wi

Q
ð5:3Þ
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It is now straightforward to write expressions for any quantity that can be
expressed as an average over all the ‘‘situations’’ available to the protein. Thus,
if the value of a given property (X) is X0 for situation ‘‘0’’, X1 for situation ‘‘1’’,
and so forth, its average value is:

Xh i ¼ X0P0 þ X1P1 þ X2P2 þ � � � ¼
X
i

XiPi ¼
1

Q

X
i

Xiwi ð5:4Þ

It must be noted that not all experimental quantities can be expressed as an
average over the different possible situations. Although the enthalpy (Denergy,
for the cases of interest here) can be thus expressed, quantities such as entropy
and heat capacity cannot. In particular, expressions for the heat capacity are
obtained as temperature derivatives of the average enthalpy.
The above formalism can be illustrated with the well-known two-state model

for protein thermal unfolding. The model assumes that the protein can exist in
two different macrostates, native and unfolded (the meaning of these macro-
states and the apparent and ‘‘hidden’’ implications of the model will be dis-
cussed below). Here ‘‘situation 0’’ is the native state and ‘‘situation 1’’ is the
unfolded state. We take the native state as reference and assign to it a statistical
weight of unity (w0¼ 1). The statistical weight of the unfolded state must then
be the unfolded to native concentration ratio, which equals the unfolding
equilibrium constant: w1¼ [U]/[N ]¼K. Therefore, the partition function for
this case is,

Q ¼ w0 þ w1 ¼ 1þ K ¼ 1þ exp �DG=RT
� �

ð5:5Þ

where we have used the well-known thermodynamic relation between equi-
librium constants and free energy changes (DG¼ –RT lnK ) and DG is the free
energy of the unfolded state with respect to the native state (the reference
situation). This DG obviously has both enthalpic and entropic components:

DG ¼DH � TDS ð5:6Þ

In the cases of interest here, enthalpy can be interpreted essentially as energy,
and entropy is related to the number of different ways (‘‘number of micro-
states’’) compatible with a given situation (‘‘macrostate’’). Several reviews and
scientific publications on the structural interpretations of these energetic para-
meters are available,8,15–18 and the reader is referred to them for details.
The probabilities that a protein molecule is found in the native and unfolded

states are now given by Equation (5.3),

P0 ¼
1

Q
¼ 1

1þ K
¼ 1

1þ exp �DG=RT
� � ð5:7Þ
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P1 ¼
K

Q
¼ K

1þ K
¼

exp �DG=RT
� �

1þ exp �DG=RT
� � ð5:8Þ

These probabilities are temperature dependent, since the unfolding equi-
librium constant changes with temperature as given by the van ’t Hoff equation:
qlnK/qT¼DH/RT2 (see any elementary textbook on chemical thermodynamics).
The expression for the average enthalpy can be easily written from

Equation (5.4),

Hh i ¼ H0P0 þH1P1 ¼ DH � P1 ¼ DH
K

1þ K
ð5:9Þ

where we have used the native state as reference and, therefore H0¼ 0 and
H1¼DH (the unfolding enthalpy change). Straightforward derivation of
Equation (5.9) and use of the van’t Hoff equation leads to an expression for the
protein heat capacity,

CEX
P ¼ @ Hh i

@T
¼ DCP

K

1þ K
þ DH2

RT2

K

ð1þ KÞ2
ð5:10Þ

where DCP is the unfolding heat capacity change (the heat capacity of the
unfolded state with respect to that of the native state) and the protein heat
capacity is labeled with a superscript ‘‘EX’’ (for excess), meaning again that it is
measured with respect to the reference state (i.e. CP

EX¼CP –CP(native)).
Using Equations (5.7) and (5.8), Equation (5.10) can be written as,

CEX
P ¼ DCP � P1 þ

DH2

RT2
P0 � P1 ð5:11Þ

The first term in the right-hand side of Equation (5.11) is simply the average
heat capacity of the native and unfolded states and, in the parlance of the field,
it is usually known as the ‘‘chemical baseline.’’ The chemical baseline reflects
the change in heat capacity due to the increase in the population of the un-
folded state. The second term in the right-hand side of Equation (5.11) is sig-
nificant when both the native and unfolded sates are significantly populated (the
term contains the product P0 �P1¼P0 � (1 –P0) whose maximum value is
reached when P0¼P1¼ 0.5). This second term reflects an additional energy-
storage capability in the system that is associated to the temperature-induced
shift in the folding/unfolding equilibrium (i.e. in the temperature range of the
unfolding transition, the system – protein solution – may store energy in in-
creasing amounts of unfolded protein). Clearly, the second term corresponds to
a ‘‘peak’’ in the DSC thermogram (see Figure 5.1 for illustrative examples).
The above analysis summarizes the treatment of the two-state model in the

partition-function based formalism. The reader is referred to published
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work7,19–21 for further discussion on other issues related with the two-state
model, such as the calculation and interpretation of the protein stability curve
(plot of unfolding free energy versus temperature) and the existence of cold
denaturation. We proceed now to apply the formalism to a more general multi-
state denaturation process. Assuming that the protein can exist in n number of
states (macrostates) at equilibrium:

I0 $ I1 $ I2 $ � � � $ In�1 $ In ð5:12Þ

where I0 and In are the native and ‘‘most-unfolded’’ states and I1 to In�1 could
be viewed as states of intermediate degree of unfolding (‘‘intermediate equi-
librium states’’).
We take the native state as reference (statistical weight unity: w0¼ 1) and

consequently the statistical weights (wi) for all other states are given by the
value of the corresponding I02Ii equilibrium constant:

wi ¼
Ii½ �
I0½ � ¼ Ki ¼ exp �DGi=RT

� �
ð5:13Þ

where DGi is the free energy of the state Ii with respect to that of the native state
(related to the corresponding changes in enthalpy and entropy by DGi¼DHi –
TDSi). From Equations (5.2), (5.3), (5.4), and (5.13), the partition function, the
probability of state occupation, and the average enthalpy are:

Q ¼1þ
Xn
i¼1

Ki ¼ 1þ
Xn
i¼1

exp �DGi=RT

� �

¼1þ
Xn
i¼1

expðDSi=RÞ � expð�DHi=RTÞ
ð5:14Þ

Pi ¼
Ki

Q
¼

exp �DGi=RT

� �
Q

¼ 1

Q
expðDSi=RÞ expð�DHi=RTÞ

ð5:15Þ

Hh i ¼
Xn
i¼1

DHi � Pi ¼
1

Q

Xn
i¼1

DHi � exp �DGi=RT

� �
ð5:16Þ

Straightforward differentiation of Equation (5.14) (and use of the van ’t Hoff
equation qlnKi/qT¼DHi/RT

2) leads to the following relation between the
average enthalpy and temperature derivative of the partition function,

@ lnQ

@T
¼ Hh i

RT2
ð5:17Þ
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and differentiation in Equation (5.16), together with Equation (5.17), produces
the following expression for the excess heat capacity,

CEX
P ¼ @ Hh i

@T
¼
Xn
i¼1

DCP;i � Pi þ
H2
� �

� Hh i2

RT2
ð5:18Þ

where DCP,i is the heat capacity of state Ii with respect to the reference state (the
native state: I0), andoH24 is the average value of the squared enthalpy (given
by Equation (5.4) with Xi¼ (DHi)

2). The first term in the right-hand side of
Equation (5.18) is the average heat capacity of all protein states (the ‘‘chemical
baseline’’) and the second term represents the contribution from the tempera-
ture-induced shift in states populations (compare Equations (5.18) and (5.11)).
However, the most interesting result from the analysis of the multi-state
equilibrium is related to the fact that the average enthalpy is proportional to a
temperature derivative of the partition function (Equation (5.17)) whereas the
excess heat capacity equals a temperature derivative of the average enthalpy
(first equality in Equations (5.10) and (5.18)).
From these results, it follows that the partition function is given by a double

integral of the heat capacity:

lnQ ¼
Z
Y

1

RT2

Z
Y

CEX
P � dT

2
4

3
5 � dT ð5:19Þ

where integration starts at a temperature, Y, low enough to ensure that the
probability of occupation of the native state is essentially unity (P0¼ 1).
Equation (5.19) shows that the experimental DSC thermograms are equivalent
to the partition function and, therefore, provides a complete description of the
process. This point was first noted, about 30 years ago, by Ernesto Freire and
Rodney Biltonen,14 who showed how the number of significantly populated
states in the multi-state equilibrium (Equation (5.12)) and their energetic para-
meters can be obtained from the partition function using a simple ‘‘peeling-off’’
procedure. Nowadays, with the popularization of computers, a non-linear
least-squares fit of Equation (5.18) to the experimental heat capacity data is the
preferred approach.
The multi-state equilibrium discussed above (Equation (5.12)) assumes that

the protein can exist in a given number of distinct and well-defined states (i.e.,
protein macrostates). However, protein folding/unfolding is not a chemical
reaction in the sense that it does not involve breaking and forming of one or a
few strong covalent bonds, but the reorganization of myriads of weak non-
covalent interactions. For certain kinds of analyses, therefore, it is preferable to
view protein folding/unfolding as a continuous process that involves an
ensemble of protein microstates. This is a more general approach in which the
existence of well-defined macrostates (such as ‘‘native’’ and ‘‘unfolded’’) is
not imposed a priori (as in the chemical model described by Equation (5.12)).
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For this purpose, we consider enthalpy as a continuous variable and thus the
partition function is written as an integral over enthalpy (instead of as a sum
over discrete states):22

Q ¼
Z

rðHÞ � expð�H=RTÞ � dH ð5:20Þ

where we have written H (instead of DH), since in Equation (5.20) we have not
specified the reference state. r(H) in Equation (5.20) plays a role analogous to
exp(DSi/R) in Equation (5.14). Indeed, r(H)dH gives the number of protein
microstates in the infinitesimal enthalpy interval {H, H+dH}. In the statistical
thermodynamics field, r(H) is termed the ‘‘density of states’’ (see Goodstein23

for several illustrative applications). Note that, in this formulation of the
partition function, the enthalpy scale and the density of states are taken to be
independent of temperature. That is, microstates are assigned constant energy
(enthalpy) value.
Other properties such as entropy and heat capacity arise from the charac-

teristic probability distribution of the ensemble of microstates. In particular,
the heat capacity defines the temperature dependence of the average enthalpy.
The probability of finding the protein in a microstate of enthalpy H at a given
temperature is obtained with an expression analogous to Equation (5.15):

PðHÞ ¼ 1

Q
rðHÞ expð�H=RTÞ ð5:21Þ

Note that, since H is now a continuous variable, P(H) is actually a prob-
ability density, so that P(H) � dH gives the probability of finding enthalpy
values within the infinitesimal range {H, H+dH}. The average value of a
quantity X (provided that it can be expressed as an average over protein
microstates) is now,

Xh i ¼
Z

XPðHÞ � dH ð5:22Þ

and the excess heat capacity,

CEX
P ¼

H2
� �

� Hh i2

RT2
ð5:23Þ

which is identical to Equation (5.18), except for the first term on the right-hand
side of Equation (5.18) that is absent here. The reason obviously is that in an
ensemble-based description heat capacities are properties of the complete en-
semble and are not individually assigned to microstates. Equation (5.17), which
connects the partition function with the calorimetric data, is still valid in the
continuous case.
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The formalism embodied in Equations (5.20)–(5.23) is simply the continuous
analogue of the Freire–Biltonen approach (Equations (5.14)–(5.16) and (5.18))
and provides the basis of recent developments addressed at determining folding/
unfolding barriers from calorimetric data (see further below).

5.3 The Two-state Equilibrium Model:

A Historical Perspective

The two-state model is the most popular mechanism currently used to describe
protein denaturation processes. It is also the simplest one as only native and
unfolded (reversibly denatured) states are assumed to be significantly popu-
lated. According to the two-state model, denaturation is an all-or-none reaction
in which the protein is in either the fully native (N or I0 in the terminology of
the preceding section) or the fully unfolded state (U or I1), strictly corres-
ponding to an infinite degree of cooperativity between protein interactions:

N , U ð5:24Þ

The interpretation of protein conformational transitions via a two-state
picture is deeply rooted in the current protein-folding literature. One of the
reasons is that its simplicity allows for a complete thermodynamic characteri-
zation of the process in a very easy and convenientmanner (provided, of course,
that the model holds). However, the extensive use of this approximation in
protein folding and stability studies is such that, quite often, it is taken for
granted without strong experimental evidence.
The validity of the two-state scenario to describe reversible protein denatur-

ation processes was hotly debated among early investigators in the protein-
folding field. At the time, the amount of experimental data and its quality was
obviously limited, giving rise to different views of the folding process. The two-
state approximation for protein folding/unfolding was already used in the 1930s
by Anson and Mirsky,24 but different theoretical and experimental results pub-
lished in the 1960s appeared to support a less-cooperative, multi-state, or gradual
mechanism.25–28 For example, by comparing experimental and theoretical values
for the steepness of urea-induced unfolding curves for a number of small globular
proteins Tanford concluded in 1964 that the existence of stable intermediate
forms between native and unfolded states must be a general phenomenon.28 A
similar argument was proposed later on by Poland and Scheraga.25 They used
different approaches (theoretical arguments, model calculations and experi-
mental data for several proteins) to propose a mechanism of gradual unfolding,
rather that an all-or-none, two-state type of denaturation. Furthermore, based
on theoretical simulations, Poland and Scheraga pointed out that a small finite
degree of cooperativity between interactions can result in rather sharp transi-
tions, as sharp as those that were being observed experimentally for many
proteins.
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In the present authors’ view, a critical explanation of the meaning and im-
plications of the two-state model, which is still useful today, can be found in a
review paper published by Lumry, Biltonen, and Brandts in 1966.29 In this
work the native and unfolded states of the two-state model (and its extension to
the multi-state equilibria as in Equation (5.12)) are considered macrostates
corresponding to ensembles of protein microscopic states. These microstates
could be formally defined in terms of given sets of protein/solvent conform-
ations). It is also clear from the Lumry–Biltonen–Brandts analysis that the
existence of well-defined macrostates implies a very low population for
microstates of intermediate degree of unfolding. They illustrated the idea by
using energy (Denthalpy) as a measure of the degree of unfolding and plotting
probability of microstate occupation versus energy (see Figure 5.2).
It is very important to note now that probability is related to free energy

through a Boltzmann exponential [probability p exp(–G/RT )]. Therefore, a
lower probability for microstates of intermediate degree of unfolding means a
higher free energy. In other words, the existence of well-defined macrostates
implies significant free-energy barriers (i.e., significantly higher than the ther-
mal energy RT ), as is shown in the illustrative examples of Figure 5.2. More-
over, it is important to keep in mind that protein folding is not a chemical
reaction. While in an organic chemistry reaction typically one strong covalent
bond is broken and formed, protein folding involves reorganizations of thou-
sands of weak, non-covalent interactions (hydrogen bonding, van der Waals
interactions, hydrophobic effect, etc.). We may expect an organic chemistry
reaction to occur through very-well-defined intermediate states separated by
high-energy barriers (since breaking a covalent chemical bond may require
energies on the order of hundreds of kJmol�1). For protein folding, there is no
physical reason for the barriers to be high (since covalent bonds are not
formed/broken). Indeed, kinetic studies and theoretical analyses suggest that
folding barriers for many natural proteins are small30–32 (see Chapter 3 by
Wolynes and Chapter 6 by Gruebele for more details on the magnitude of free-
energy barriers to protein folding). Furthermore, computer-designed proteins
have been found to fold faster than their natural counterparts, although no
selection for folding efficiency was included in the design33 and theoretical
analyses of polymer models34 indicate that it may be harder for proteins to
achieve cooperativity (a large free-energy barrier and clear two-state behavior)
than a stable folded structure.
All of the above suggests that the observation of significant folding barriers

for natural proteins is not intrinsic to the folding process itself, but rather the
result of natural selection (see Chapter 3 by Wolynes). Thus, as we discuss
below, a significant barrier may be advantageous in order to guarantee kinetic
stability of the native state when confronted with the destabilizing effect of
irreversible alterations (such as those involved in misfolding diseases).35 In any
case, energy barriers must be necessarily rather small for single domain proteins
that fold fast (otherwise it is not clear how they can fold so fast). Interestingly,
if the thermodynamic barrier is of the order of the thermal energy (a few
kJmol�1) microstates of all degrees of unfolding may become populated during

94 Chapter 5



Figure 5.2 Interpretation of protein macrostates as ensembles of microstates. An
enthalpy (Denergy) scale is used as a measure of the degree of unfolding
and plots of probability and free-energy versus enthalpy are given in the
upper and lower panels, respectively (calculated from Landau free-energy
functionals, as explained in the text). The line labeled a in the upper panel
corresponds to a two-macrostate situation, since microstates of inter-
mediate degree of unfolding are not significantly populated; this implies a
higher free energy for those microstates and, therefore, a thermodynamic
barrier between the two macrostates, as is shown by line labeled a in the
lower panel. A barrierless free-energy profile (line labeled b in the lower
panel) produces a single macrostate (line labeled b in the upper panel).
The thin lines labeled c and d correspond to barrier heights on the order of
the thermal energy (marginal barriers): twice the thermal energy (c) and
half the thermal energy (d). These profiles show clear deviations from the
two-macrostates scenario and, in fact, the results for a barrier smaller than
the thermal energy are almost identical to the strict barrierless case.
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denaturation at equilibrium. For a sufficiently small barrier, the free energy
versus degree of unfolding profile would essentially show a single minimum that
would shift upon changing temperature and the folding–unfolding process
would be continuous and involve a single macrostate (see Figure 5.2). Note also
that, in a free-energy surface with only one minimum, the folding–unfolding
relaxation is always downhill (since no barrier needs to be overcome in reaching
the surface minimum). Experimental evidence for the existence of this global
downhill regime in some cases has been recently reported22,36–39 (see Chapter 6
by Gruebele).

5.4 Folding Free-energy Barriers from Equilibrium

DSC Experiments

It is clear from the discussion in the preceding section that significant deviations
from two-state behavior may perhaps occur often with small proteins, not due
to the existence of additional significantly populated macrostates (‘‘inter-
mediate’’ states), but to a low thermodynamic folding/unfolding barrier. This
situation may have gone unnoticed in many cases, since methods of analysis
based on ‘‘chemical-like models’’ (Equations (5.12) and (5.24)) do not take such
possibility into account. In addition, small proteins usually give rise to very
broad unfolding transitions, with poorly defined low- and high-temperature
heat capacity levels. Under these circumstances, good fits of the two-state
model can always be achieved, provided that some ‘‘flexibility’’ in native
and unfolded baseline tracing is allowed (see below for further discussion on
this issue).
However, it has been recently shown22 that the continuous formulation of the

partition function formalism (Equations (5.20)–(5.23)) allows the analysis of
DSC data to be posed in terms of a one-dimensional folding/unfolding free-
energy surface, in the same spirit of the energy landscape approach to protein
folding (see Chapter 3 by Wolynes). In this case, the presence of a large barrier
separating the folded and unfolded minima on the surface is not implicitly
assumed (as in the ‘‘traditional’’ two-state model), but rather estimated from
the shape and broadness of the DSC thermogram.
Essentially, what is needed for this kind of analysis is a procedure to describe

processes that, depending on conditions, behave as first-order (two clearly
defined macrostates ‘‘separated’’ by a high barrier) or continuous (low or non-
existing barrier and, therefore, a single macrostate). Fortunately, this problem
also arises in a well-known branch of thermodynamics: the theory of critical
transitions. For instance, the gas and liquid phases of a given substance
can coexist at equilibrium (as two distinct phases) for temperatures and pres-
sures in the liquid–vapor equilibrium line. As temperature and pressure
are increased along that line, liquid and gas become similar and eventually
merge into a single phase at the critical point (for a pictorial illustration, see
Sengers and Sengers40). In the classical Landau theory of critical transitions

96 Chapter 5



(see Chapter 10 in Callen41) this is phenomenologically described with a free-
energy functional expressed as a series expansion in powers of an ‘‘order para-
meter’’ (the thermodynamic quantity that exhibits large fluctuations near
critical conditions) and truncating the expansion at the quartic level. The
truncated expansion produces a free energy functional with one or two free-
energy minima depending on the sign of the coefficient of the quadratic term.
A Landau free energy functional can be implemented in DSC data analysis

by writing the probability density for enthalpy microstate occupation (Equa-
tion (5.21)) at a given characteristic temperature (T0) in terms of the enthalpy
dependence of the free energy,

PðHÞ ¼ C � expð�G0ðHÞ=RT0Þ ð5:25Þ

and expressing the free energy as,

G0ðHÞ ¼ �2b
H

a

� �2

þ bj j H

a

� �4

ð5:26Þ

which is actually the Landau functional with the coefficients of the H2 and H4

expressed in terms of two parameters, a and b. These parameters have a clear
and intuitive meaning (see Muñoz and Sanchez-Ruiz22 for details).
For b40, G0(H ) has a maximum at H¼ 0 and two minima at H¼� a.

Therefore, for b40, there are two macrostates with minima separated by an
enthalpy of 2a. In this case, b corresponds to the height of the free-energy
barrier separating the two minima at the characteristic temperature. For br0,
the free-energy profile shows only a minimum and there is only one macrostate.
In this case, a and b are just convenient parameters that describe the shape of
the free-energy functional. Therefore, it is just the sign of the parameter b that
determines the observation of either two macrostates or a single macrostate at
the characteristic temperature T0. Of course, positive but very small values of b
(of the same scale of the thermal energy, RT ) are essentially equivalent to the
single-macrostate, barrierless case. A final modification is introduced in the
free-energy functional to take into account the asymmetry expected in a fold-
ing–unfolding process. Such modification is explained in some detail in Muñoz
and Sanchez-Ruiz22 and illustrated by the free energy and probability density
profiles displayed in Figure 5.2.
The important point, however, is that the above approach permits the cal-

culation of heat capacity versus temperature profiles for different values of the
thermodynamic folding/unfolding barrier (b). Thus, the probability density at
any temperature can be easily calculated from the one at the characteristic
temperature (Equations (5.25) and (5.26)).The averages oH24 and oH4 are
then obtained from Equation (5.22) and the heat capacity value from Equation
(5.23) (see ref. 22 for further details). A practical implication of this exercise is
that it becomes possible to set a non-linear least-squares procedure to fit ex-
perimental DSC data in which the height of the folding barrier is an experi-
mentally obtainable parameter. Such procedure does not impose the existence
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of two well-defined macrostates but, instead, the two-macrostate or single-
macrostate character of the thermal unfolding process is the outcome of the
analysis. In fact, in the first application of this variable-barrier phenomeno-
logical model,22 a significant barrier was determined for the two-state protein
E. coli thioredoxin. On the other hand, essentially no barrier was found for the
small, fast-folding protein BBL, which had been previously characterized as a
downhill folder36 (see Chapter 6 by Gruebele for more on downhill folding).
An important point to note is that, a priori, the barrier heights determined

from the variable-barrier model do not necessarily have a kinetic meaning.
That is, within the context of the model, the role of the barrier is to reduce the
population of intermediate microstates. A kinetic meaning for this ‘‘thermo-
dynamic’’ barrier would imply that the folding/unfolding process can be de-
scribed to some acceptable extent by a single reaction coordinate and the
enthalpy scale used in the variable-barrier analysis is an acceptable approxi-
mation to that reaction coordinate. However, a very recent analysis39 including
15 proteins demonstrates an excellent correlation between the barrier heights
derived from the variable-barrier analysis of the DSC transitions and the ex-
perimental folding rates. This result suggests the surprising and unexpected
possibility of estimating folding kinetic barriers from equilibrium DSC data.

5.5 The van ’t Hoff to Calorimetric Enthalpy

Ratio Revisited

One of the main motivations for the original development of differential
scanning calorimetry as a tool to study protein solutions was the need for re-
liable tests of the validity of the two-state model.42 The reason is that finding
‘‘hard’’ evidence for two-state behavior is not as straightforward as it might
seem at first. For a two-state denaturation, agreement between the experi-
mental transition profiles obtained using different physical probes (fluor-
escence, far-UV CD, near UV-CD, etc.) is expected. However, while a clear
disagreement between such profiles effectively rules out two-state behavior, the
agreement does not constitute definitive evidence in its support, since there is
always the possibility that an additional transition profile (based on a yet un-
tested physical probe) could differ.
On the other hand, DSC leads to a straightforward two-state test based upon

the fact that the unfolding enthalpy is determined in two different ways
from the DSC experiment. The unfolding enthalpy can be directly calculated
from the area under the heat capacity peak, resulting in the so-called calori-
metric enthalpy. In addition, it can be obtained from the shape (width) of the
transition, since the unfolding enthalpy determines the temperature dependence
of the unfolding equilibrium constant. A high value for the unfolding enthalpy
implies that the unfolding equilibrium constant shows a high-temperature-
dependence. In other words, the transition from the native state (B100% na-
tive) to the unfolded state (B100% unfolded) occurs in a narrow temperature
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range. Conversely, when the unfolding enthalpy value is low, the unfolding
equilibrium constant changes less abruptly with temperature and the DSC
transition is wide (see Figure 5.1). The unfolding enthalpy value calculated
from the shape of the DSC transition is known as the van ’t Hoff enthalpy (after
the van ’t Hoff equation that gives the temperature dependence of any equi-
librium constant). The calculation of the calorimetric enthalpy is essentially
model-independent, while the calculation of the van ’t Hoff enthalpy relies
on the two-state model. Therefore, the agreement between the two values
constitutes evidence for two-state behavior. Nowadays, this test is usually
carried out on the basis of the non-linear, least-squares fitting of a pseudo-two-
state equation, analogous to Equation (5.10) also including a native heat
capacity baseline.
The calorimetric criterion based in the comparison between the calorimetric

and van ’t Hoff enthalpies has been successfully used in many studies to as-
certain the validity of the two-state model. However, an important point of its
application is often overlooked. Small proteins have necessarily low values of
the denaturation enthalpy and, therefore, give rise to very broad DSC transi-
tions in which the native and unfolded baselines (the approximately linear pre-
and post-transition heat capacity levels) are not clearly apparent. In these cases,
good fits to the experimental data with calorimetric enthalpy equal or close to
the van ’t Hoff enthalpy can almost certainly be obtained, provided that the
native and unfolded baselines are adequately ‘‘chosen’’ by the person who
analyses the data or by the fitting program.43,44 Obviously, these fits are not
proof of two-state behavior without evaluation of the baselines involved in the
fitting. In particular, crossing of the native and unfolded baselines at a tem-
perature in the middle of the transition is clearly unphysical (it would imply
that the unfolding heat capacity change becomes negative at that temperature).
Recently, such crossings have been detected in several experimental cases and
interpreted indeed as evidence of deviation from two-state behavior.36,38,45,46

The above consideration is particularly relevant in light of the recent de-
velopments indicating that deviations from two-state behavior may often occur
for small proteins due to marginal (or even non-existent) folding/unfolding
thermodynamic barriers. In fact, it is not clear that the van ’t Hoff to calori-
metric enthalpy ratio can detect such situations, at least without evaluation of
the fitted baselines. The point is illustrated in Figure 5.3, which shows several
DSC profiles calculated on the basis of the continuous formulation of the
Freire–Biltonen partition function formalism (Equations (5.20)–(5.23)) and the
Landau free-energy functional (Equation (5.26)). Marginal values (smaller than
the thermal energy) have been used for the barrier height (b), which produce a
clear deviation from two-state behavior due to significant population of
microstates of intermediate degree of unfolding. We also show the best fits of a
pseudo-two-state equilibrium that includes van ’t Hoff and calorimetric en-
thalpy values as independent fitting parameters. The result is that the van ’t
Hoff to calorimetric enthalpy ratios derived from the fittings are close to unity.
However, the crossing of the fitted baselines in these cases (see Figure 5.3)
provides a clear clue of the non-physical character of such two-state fits.

99Statistical Differential Scanning Calorimetry



Overlooking the fitted baselines would mislead us into assigning two-state
character to processes which are closer to global downhill folding.47

5.6 Protein Kinetic Stability: Free-energy Barriers

for Irreversible Denaturation from Scan-rate

Dependent DSC

The possibility of determining folding kinetic barriers from equilibrium DSC
experiments, as described in Section 5.4, may certainly come as a surprise to the

Figure 5.3 Profiles of excess heat capacity versus temperature (left) calculated from
Landau free energy functionals, as explained in the text. The corres-
ponding profiles of probability of microstate occupation versus enthalpy
at the characteristic temperature are also shown (left). In all cases, a
barrier significantly smaller than the thermal energy has been used in the
calculation so that two distinct macrostates are not observed. However, it
is possible to achieve good fits of a pseudo-two-state model (continuous
lines in the heat capacity plots) with van ’t Hoff to calorimetric enthalpy
ratios reasonably close to unity. Such fits, however, involve fitting native
and unfolded baselines (straight lines in the heat capacity plots) that cross
at a temperature in the middle of the transition range. This would imply
that the unfolding heat capacity depends strongly on temperature and
changes sign in the transition temperature range, a physically unrealistic
result.
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biochemist. Nevertheless, kinetic barriers for irreversible protein denaturation
have been studied for many years (see Plaza del Pino et al.35 and references
quoted therein) on the basis of the scan-rate effect of DSC transitions, an
approach that reveals the possible kinetic-control character of the denaturation
process. As in the preceding sections, some of the general features of this
approach can be explained with a partition-function-based analysis.
Assuming a multi-state equilibrium, such as that depicted in Equation (5.12),

and that the most unfolded state can undergo an irreversible alteration
(aggregation, chemical modification of amino acids, etc.35,48) that leads to a
‘‘final’’ state that is unable to fold back the native state,

In ! F ð5:27Þ

and that the conversion is determined by a simple first-order rate constant,

d½F �
dt

¼ k½In� ð5:28Þ

which, for the sake of simplicity and illustration, we take to be temperature-
independent. It is straightforward to write the above rate equation as,

d½F �
dT

¼ k

a
� Ct � ½F �ð Þ � Pn ð5:29Þ

where Ct is the total protein concentration (including the Ii states in equilibrium
(Equation (5.12)) and the final, irreversibly denatured state), Pn is the prob-
ability of occupation of state In (as given by (1/Q) � exp(–DGn/RT ); see Equa-
tion (5.15)), and we have used the fact that in a DSC experiment temperature
increases with time according to a constant scan rate (a¼ dT/dt).
Separation of variables in Equation (5.29) followed by integration from a low

temperature (T0) at which essentially all the protein is in the native state (P0D 1
and [F ]D 0) leads to,

ln
Ct � ½F �

Ct
¼ � k

a

ZT
T0

PndT ð5:30Þ

with [F ] equal to the concentration of final state at the temperature used as the
upper integration limit. We now use as that limit the temperature (T1/2) at
which, for a given scan rate, half of the protein has denatured irreversibly (that
is, for T¼T1/2, [F ]¼Ct/2) and solve for the integral in Equation (5.30) to
obtain,

ZT1=2

T0

PndT ¼ a � t ð5:31Þ

where t [¼ (ln2)/k] is the half-life time for the irreversible denaturation step
(Equation (5.27)). Equation (5.31) implies that for a sufficiently fast irreversible
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alteration step (very short half-life time) the integral on the right-hand
side must necessarily be a very small number, which means a very low
population of state In throughout the temperature range in which irrever-
sible denaturation takes place. In other words, if the In - F step is suffi-
ciently fast, irreversible denaturation occurs through a very small amount of
state In, which in turn never gets significantly populated. It can be easily shown
along the same lines that, if the irreversible alteration step is fast enough,
irreversible denaturation will take place in a temperature range in which
all Ii states (except the native state, I0) are not significantly populated.
The result is a denaturation process that can be phenomenologically described
as the kinetic conversion from the native protein to the final, irreversible
denatured state:

I0 ! F ð5:32Þ

This is a situation usually referred to as the two-state irreversible model,7,49 since
only states I0 and F are significantly populated.
The two-state irreversible model is found as a limiting case in different

theoretical analyses of protein denaturation that include irreversibility in a
realistic manner.6,7,35,49 More importantly, the in vitro irreversible thermal
denaturation of many proteins (in particular, large complex protein
systems) has been found to conform to this very simple model (see Plaza
del Pino et al.35 and references quoted therein). It is clear that, in these
cases, the partition function cannot be obtained from the DSC data, since
the states I1 though In of the multi-state equilibrium (Equation (5.12)) never
get significantly populated. For two-state irreversible denaturation (Equation
(5.32)) the kinetic distortion introduced by the irreversible step eliminates
all thermodynamic information about the equilibrium thermal unfolding
mechanism.
From a general viewpoint, however, the compliance of many protein ther-

mal denaturation processes with a two-state irreversible model indicates that
protein stability (in vitro, as well as in vivo) is often of kinetic origin and de-
termined by a free-energy barrier that can be characterized by the scan-rate
dependence in DSC experiments. In other words, thermodynamic stability (a
positive value for the unfolding free energy at physiological temperature) does
not guarantee that the protein will remain in the native (biologically func-
tional) state during the biologically relevant time period, since irreversible
protein alterations (even if they occur from lowly populated unfolded or
partially unfolded states) may deplete the native state in a time-dependent
manner.35 It appears likely then that many proteins, particularly complex
protein systems, must have been naturally selected to have significant kinetic
stability.35,50

The interest of understanding protein kinetic stability is emphasized by
the fact that some emerging molecular approaches to the inhibition of amy-
loidogenesis focus on the increased kinetic stability of the protein native
state,51–53 as is in fact suggested by the simple Lumry–Eyring models of

102 Chapter 5



irreversible denaturation.35 Furthermore, kinetic stability may be of consider-
able biotechnological importance. Researchers interested in fundamental
aspects of protein folding may generally choose ‘‘model’’ proteins and
solvent conditions in such a way that equilibrium folding–unfolding is
observed. However, the proteins and/or solvent conditions employed in tech-
nological applications often involve irreversible denaturation and kinetic
control of the stability. In fact, enhancing protein stability for biotechno-
logical applications may in many cases mean enhancing protein kinetic
stability. Scan-rate dependent DSC studies and the subsequent data analy-
ses based on suitable kinetic models6,7,35,49 certainly provide a convenient
approach to the characterization of protein kinetic stability and the associated
free-energy barrier.
Finally, it is worth noting that we have discussed here two different appli-

cations of the statistical analysis of differential scanning calorimetry that are
complementary to one another. The variable-barrier analysis of equilibrium
DSC data discussed in Section 5.4 is targeted to the determination of marginal
folding/unfolding barriers in small, fast-folding proteins. On the other hand,
scan-rate dependent DSC studies of irreversible protein denaturation processes
provide information about the much larger barriers that determine kinetic
stability in more complex protein systems.
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CHAPTER 6

Fast Protein Folding

MARTIN GRUEBELE

Department of Chemistry, Department of Physics, and Center of Biophysics
and Computational Biology, University of Illinois, Urbana, IL 61801, USA

6.1 Introduction

Globular proteins have evolved so that a large number of backbone and side-
chain coordinates arrange themselves quite accurately and reasonably quickly
to fold the protein. In 1968, this prompted Cyrus Levinthal to sum up the
problem: ‘‘A pathway of folding means that there exist a well-defined sequence
of events which follow one another . . . If the final folded state turned out to
be the one of lowest configurational energy, it would be a consequence of
biological evolution not of physical chemistry.’’1 We now know that proteins
need not necessarily fold through a unique pathway, but the spirit of the
statement remains true: a small set of important coordinates can be navigated
efficiently by the folding polypeptide chain. There is a well-defined set of events
sampled by protein ensembles during folding, although each individual mole-
cule may not sample from the set in the same sequential manner.
Levinthal’s remark about evolution is timely in folding kinetics, not just in

folding thermodynamics. With the recent discovery of globular proteins that
fold on a microsecond time scale,2 or even at the (size-dependent) E0.5–5 ms
‘speed limit’ set by backbone diffusion and chain length,3 the question arises:
Why do most natural proteins fold so slowly, on a timescale of milliseconds to
seconds, when engineered proteins of the same size fold near the speed limit?4

Before we answer this question, it is worth considering how proteins can fold so
fast that the question must be posed. Counting only an average of three co-
ordinates per residue (two for the backbone, one per side chain), even a 30-residue
mini-protein requires 90 coordinates. Diffusive movement on an unbiased
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very-high-dimensional coordinate hypersurface would indeed occupy a lot of time
to find the small region in coordinate hyperspace where the protein is compact
and well structured, unless the surface has some very special properties. These
properties are summarized by the principles of consistency and minimal frus-
tration,5,6 giving the energy landscape a funnel-like shape when energy is plotted
as a function of configurational entropy (Chapter 3 by Wolynes provides a de-
tailed description of the energy landscape approach to protein folding). Such a
shape means that the number of collective coordinates needed to describe events
during folding is greatly reduced from all the microscopic coordinates (such as
torsion angles). The number of collective folding coordinates is not necessarily 1,
as implied by the many one-dimensional free-energy surfaces in the folding lit-
erature, but at least it is manageably small.7 Search on a low-dimensional free-
energy surface can be successful in a short period of time.
The need for low-dimensional, as opposed to one-dimensional, free-energy

surfaces to describe the folding of biological macromolecules makes them fairly
unique. Chemical reactions of small organic molecules are usually well de-
scribed by a single reaction coordinate (for example a linear combination of
torsion and sp2 to sp3 hybridization during isomerization around a double
bond). Many-particle systems undergoing phase transitions (for example water
freezing) are rigorously described by a single order parameter.8 Proteins are in
neither limit, lying somewhere between a small molecule reaction and a phase
transition. This added complexity is the reason folding theory is only now
reaching the maturity that chemical bond theories and phase transition models
attained decades earlier. Nonetheless, surprisingly simple models can describe
the dynamics and thermodynamics of proteins.9–12

Of course, a low-dimensional surface still allows multiple pathways. Figure 6.1
shows an example, fitted for a protein that folds near the speed limit. The ideas
of multiple pathways in principle, and of a single dominant pathway in practice,
are not incompatible: Let us assume thermodynamic control of the folding re-
action, to get a back-of-the-envelope answer. The average population ratio on
two pathways with average free energies DG1 and DG2 then becomes

P1=P2 ¼ e�ðDG1�DG2Þ=RT ð6:1Þ

Even if the energy landscape predicts several pathways within a few RT of one
another in free energy, if one lies just 3 RT below the others, it will dominate the
folding kinetics with 95% of the flux. Nonetheless, the existence of other low-
lying pathways confers evolutionary robustness, and occasionally heterogeneous
folding dynamics can be observed even in slower folders.4,13

The landscape picture postulates the existence of a class of proteins useful for
the direct study of heterogeneous folding dynamics: downhill folders.6 In downhill
folders, the primary free-energy barrier has been removed either by natural select-
ion or by protein engineering, leaving fluctuations below 2–3 RT in the free
energy. Thus protein populations can be large anywhere along the reaction co-
ordinate, and normally ‘hidden’ features of the free-energy surface can be studied.4
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The existence of downhill-folding metastable intermediates,14 natural pro-
teins,15 and engineered proteins16 implies that energy barriers are not required
for folding. Yet natural proteins often have significant (43 RT ) barriers – at
least most of those studied to date. Barriers may result from insufficient evo-
lutionary pressure for fast folding, they may have evolved as a side effect of
functional constraints, or they may have specifically evolved to reduce partial
unfolding and hence aggregation and/or enzymatic protein degradation. Thus
very fast folders have opened the door to new biological questions.4

The rest of this chapter considers experiments, theory, and simulations of fast
(sub-millisecond) protein folding, and what we have learned about the physics
and evolution of folding through this work.

6.2 Fast Folding: Why and How?

There are several fundamental and practical reasons for studying fast folding,
some of them already alluded to earlier:

� The speed limit is correlated with protein size,3 so many fast folders are
also small, making them particularly amenable for theoretical analysis. The
average rate has been correlated with contact order (measuring average
loop size between contacts),17 with chain length,18 or with both.19 Equally

Figure 6.1 Multiple pathway scenarios. A Under optimal conditions, a direct path-
way between D and N is preferred (solid arrow). However, a D-I-N
pathway awaits only a few kT higher in free energy. If the sequence or
solvent conditions are changed, adjusting the relative free energy of the
pathways, both pathways may show up in the kinetics, or even just the
second pathway alone (dotted arrow). B 2-D folding surface fitted to
experimental data for the folding of l6–85.

108 Dynamics simulations on this
surface show a combination of exponential (activated) and non-
exponential (diffusive) kinetics characteristic of the transition from
activated to downhill folding.
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interesting is the origin of the spread around the average, caused by ‘‘en-
ergetic frustration’’ of the protein (since contact order, particularly for
mutants of the same protein, has already factored out ‘‘topological effects’’
caused by the sequence arrangement).20 It has also been suggested that a
more useful parameter than the spread is the downward deviation from the
speed limit as a function of protein size.21

� Fast folders are amenable to atomistic simulation.22 Simulations run at
elevated temperatures have been compared with experimental unfolding
rates, and distributed computing has made possible the direct comparison
with experimental refolding rates,23 with computing capacity now allowing
simulations in explicit solvent. Thanks to a new generation of computers
and distributed computing, molecular dynamics simulations can directly
reveal heterogeneous folding dynamics and compute free-energy basins and
their barriers along many reaction coordinates, and fast-folding data pro-
vide the necessary information to calibrate such simulations (see Chapter 8
by Pande for details on atomic simulations of fast-folding proteins).

� Fast folding can test important predictions of energy landscape theory that
go beyond previous models of folding, such as the existence of downhill
folders.6 Even simple Go models,15 in which energetic frustration has been
removed from the picture, can be directly applied to fast folders, which
presumably lack major energetic frustration and fold with a rate mainly
limited by their fold topology.

� Fast folders provide the reference against which other proteins with the
same fold topology can be judged. The activation barrier of a slow-folding
variant of a fast folder cannot have fundamental physico-chemical causes,
but must be a consequence of sequence selection by evolution (or lack
thereof ).4

� Fast folders are useful for single-molecule dynamics studies in particular.
They spend a larger fraction of their time in intermediate conformations
along the reaction coordinate(s), and less time in the native or unfolded
wells. Thus more data about folding-unfolding transitions can be gathered
(see Chapter 7 by Schuler on single-molecule studies of protein folding).24,25

� Fast folders are often uniquely stable, and the principles obtained from
their folding kinetics and thermodynamics could be used to design unique
stable protein structures to which new functions can be added.4

The know-how of fast folding experiments has developed rapidly since the mid
1990s, so an arsenal of techniques is now available to obtain resolution in the
nanosecond-to-millisecond range.

� Equilibrium techniques based on line shape analysis have been applied to
fast folding: in an NMR spectrum with two peaks assigned to the same
proton in the folded and unfolded states, slow interconversion kinetics
broadens these peaks, while fast kinetics eventually merges these peaks and
finally yields a single narrow peak. This technique works roughly in the
50 ms to 1 ms range, depending on the magnetic field strength used.2
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� Equilibrium techniques based on single molecule fluorescence are getting
more powerful and will soon provide the longer data samples needed to
quantify rare dynamical events in the transition region of the free energy25

(complemented by natural or engineered proteins that spend a larger
fraction of their time undergoing interesting dynamics, and by new mod-
eling approaches26).

� Temperature relaxation methods based on lasers span the full nanosecond-
to-millisecond region, and even conventional heating systems are ap-
proaching microsecond time resolution.27

� Pressure relaxation methods have achieved microsecond resolution, so now
the full P-T diagram can be explored, particularly useful for comparison
with molecular dynamics simulation, where temperature and density are
the most easily studied thermodynamic variables.28,29

� Optically induced relaxation techniques are beginning to find applications,
from pH jumps to breakage/isomerization of constraining linkers. Such
methods have been mainly tested on small peptides,30 but should be easily
generalized to proteins.

� Ultrafast mixing techniques have provided microsecond resolution for
years, and are now pushing the sub-microsecond envelope.31,32

� Last, but not least, computer ‘‘experiments’’ have come of age. Free-energy
surfaces can be sampled as a function of several coordinates,22 replica
exchange methods yield accurate equilibrium information,33 and multi-
microsecond trajectories of fully solvated small proteins are now possible,
by studying either very large numbers of short trajectories obtained by
distributed computing,23 or single very long trajectories.34 The experi-
mental and simulation timescales have finally met on the microsecond
timescale (see Chapter 8 by Pande).22,23

In the following sections, we consider briefly the dynamics of polypeptide
chains as they apply to fast folding, and then discuss sub-millisecond protein
folding’s brief history, the instrumentation, and several case studies where
modeling and experiment have gone hand in hand. Finally, downhill folding is
reviewed, as the ultimate limit of fast folding, and its implications for the
biological function of proteins are discussed.

6.3 Fast Dynamics of Polypeptide Chains

Proteins cannot fold any faster than their individual components (helices,
sheets, loops) can form and dock against one another. Thus the dynamics of
polypeptide chains forming loops contacts, secondary structure, and collapsing
provides an upper limit for the folding rate of any given protein. The details
of secondary structure formation are discussed elsewhere in this volume
(see Chapter 1 by Doig and Chapter 2 by Doshi); the present discussion
emphasizes those aspects directly connected to folding of mini-proteins and
larger structures.
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How fast a protein actually folds depends on both the initial and target
native structure. Residual structure of the unfolded polypeptide chain can have
a profound effect on folding rates. In fact, it has been proposed recently that
there is a direct relationship between the height of the folding barrier and the
degree of structure in the unfolded state.35 A number of experiments and
simulations have probed this residual structure, and found it to be significant
even under conditions thought of as highly denaturing (pH 2, 5M guanidine
hydrochloride solutions and the like). For example, Ca chemical shifts and
residual dipolar couplings have shown that apomyoglobin forms residual heli-
cal structure in 7 out of 8 helices even in the acid-unfolded state.36 High con-
centrations of denaturant at high temperature yield short-range structure
localized in the b-sheet (or polyproline II) basin of the Ramachandran plot.37

Partially aligning protein molecules yields residual NMR couplings that dem-
onstrate non-coil structure.38 The number of such examples has increased
rapidly in the last decade.
Smooth shifts of unfolded state structural content as a function of solvent

conditions account for quasi-linear baselines frequently observed during tem-
perature, pressure or denaturant titrations of proteins.39 Even slow-folding
(now meaning41ms!) proteins with a significant activation barrier can rapidly
rearrange unfolded structure after a jump in solvent conditions, increasing the
compactness and raising secondary structure content in the unfolded basin
before the main barrier is crossed (Figure 6.2). Acquisition of such structure is
just as important as structure acquired after crossing the barrier. This is es-
pecially true for proteins with late transition states, where the difficult question
is how all that structure manages to form before the barrier is crossed.40 Large
and rapid increases in unfolded state structure, observed for some proteins
when conditions are switched to favor the native state, can be seen as an early
type of partial downhill folding, discussed in detail later.

6.3.1 Loop Formation

In Kramers’ analytical theory for activated condensed phase reactions, the rate
of barrier crossing along a single collective reaction coordinate is given by41

kforward ¼ nwe�DGw=RT ð6:2Þ

Without a barrier, reaction occurs at the attempt frequency, or prefactor, nw.
Kramers’ model provides formulas for the prefactor based on well-defined
assumptions about the free-energy surface. Using the diffusion coefficient for a
Zimm chain (a freely jointed chain of N beads of mass m connected by links of
length b subject to viscosity Z),42 and assuming a harmonic well and activation
barrier with characteristic frequencies owell and oTS, the prefactor becomes

nwZimm ¼ 4owelloTSm

3p2Zb
ffiffiffiffiffiffiffiffiffiffi
6pN

p ð6:3Þ
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The characteristic frequencies are the inverses of the isomerization times for the
links of the Zimm chain. In real proteins, this is the timescale for rotation about
the Ramachandran angles or for individual residue basin hopping, which itself
is controlled by a ‘‘micro-barrier.’’ Such chemical barriers have been investi-
gated by methods ranging from full quantum mechanics in the gas phase to
implicit solvent or solvated molecular dynamics simulations.43 For conjugated
systems, that timescale is E10–100 ps. We will use the lower value to obtain
more conservative (higher) estimates for folding barriers. Assuming the bulk
viscosity of 0.001 Pa s holds for the microscopic chain motion, m E100Da,
b E 4 Å, and N¼ 100 for a 50-residue chain connecting two regions of sec-
ondary structure, we obtain nw E (100 ns)�1.
This is indeed close to the timescales measured experimentally and computed

from more sophisticated models for chain contacts for this length scale.44,45

Three types of experiments have been conducted: quenching of tryptophan
triplet states by cysteines,46 energy transfer between two labels connected to the
polypeptide chain,47 and electron transfer-induced loop formation in pro-
teins.48 The fastest loop formers are glycines (ca. 5–10 ns for a 5-residue loop),
while trans-prolines greatly increase the activation barrier for loop formation.
For chains of length 100, the time rises to 100 ns, in agreement with Equation
(6.3). The electron transfer experiments carried out in the environment of a
whole protein also yield a slightly longer timescale, 250 ns for a 15-residue loop.

Figure 6.2 Structure can form in three ways during folding: downhill under con-
ditions strongly favoring the native state (e.g. within the U well on the left
side); climbing up the barrier (in all three examples), and en route from the
barrier to the native state (particularly in the middle example). If a protein
is suddenly switched from destabilizing (right) to stabilizing (left) con-
ditions, the local minimum in the ‘‘U’’ well can move substantially
towards the native state. The resulting additional structure formed
downhill is no less important for folding than that structure formed
climbing to or dropping from the activation barrier.
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Likewise, experiments on interior (as opposed to end-to-end) loop formation
also show a slower reaction rate.49

It is worth noting that Equation (6.3) does not imply that there are no
barriers associated with chain contact formation: the 10 ps isomerization time
clearly involves a micro-barrier for torsion about the Ramachandran angles,
and the 100 ns attempt frequency arises from an effective entropic barrier in the
Zimm model. However, these micro-barriers are not the ones crossed by mo-
tion along the collective folding coordinate (we stick to one collective co-
ordinate for simplicity here). Instead, the micro-barriers reduce the diffusion
constant along the collective reaction coordinate, and make the diffusion
constant coordinate-dependent (e.g. owell and oTS need not be identical in
Equation (6.3)). The activation energy along the collective folding coordinate is
included explicitly in Equation (6.2), whereas the micro-barriers are included in
the temperature-dependent prefactor. Hence the term micro-barrier is used here
for local coordinates of which there are many (e.g. amide torsions), and ‘‘ac-
tivation barrier’’ is reserved for the barrier encountered by collective folding
coordinates, of which there are only a few (e.g. helix content coordinates and
docking coordinates, as postulated by the diffusion-collision model, to give just
one example).50 Partitioning between prefactor and activation free energy thus
requires a rigorously defined reaction coordinate.51

Interestingly, the main difficulty in comparing computed and experimental
folding barriers lies not in any ambiguity of the coordinates, but in their
compatibility. For example, an infrared spectroscopy measurement provides an
order parameter based on an amide I band absorption signal averaged over all
peptide bonds in the molecule.52 This order parameter may not be a rigorous
reaction coordinate according to the dynamical definition of saddle-point
crossings.53 Most likely, principal component analysis of a larger number of
spectroscopic probes would reveal that the IR signal is not one of the principal
components, and that more than one principal component is needed; none-
theless the IR order parameter is well defined. Likewise, counting i to i+4
hydrogen bonds in a well-defined angular range precisely defines a computable
helical hydrogen bonding order parameter for a molecular dynamics simu-
lation. Here too, principal component analysis54 may reveal that other comput-
able order parameters are needed to describe the reaction, and that the
H-bond connectivity coordinate is not a rigorous reaction coordinate.55

Nonetheless, the experimental (IR) and computed (H-bond count) order para-
meters are closely related for a helix bundle protein, and provide similar
description of secondary structure formation. Thus one expects similar barriers
for both. An important goal for fast-folding experiments and theory in the next
several years is to make this approximate agreement completely quantitative by
comparing multiple order parameters and extracting consistent approximations
to reaction coordinate(s). Examples of such experiment-modeling compatibility
already exist: the radius of gyration Rg can be measured accurately by
experiment, and computed accurately by molecular dynamics simulation. Other
order parameters come close: FRET experiments make some assumptions
about orientational averaging, but can be fairly directly compared to model
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calculations. Yet other computable order parameters cannot be measured
currently with sub-ms time resolution: the fraction of native contacts Q is an
example. And, vice versa, some experimental measures of folding have so far
defied accurate ab-initio theoretical analysis: CD spectra of proteins are an
example (with the exception of tryptophan couplets56).
Equation (6.3) should also not be taken to imply that the actual speed limit for

folding of a 100-residue protein will be 100ns. Rather, 100ns is still a lower limit:
several tertiary contact formation events are required to define the topology of a
folded chain (on the order of 5–10 contacts for 100 residues depending on how
complex the fold is). Even folding without an enthalpic barrier (i.e. a perfectly
funneled landscape) therefore involves several diffusive searches, which manifest
themselves as an entropic barrier along the reaction coordinate. Indeed, experi-
mentally measured barriers tend to be more entropic under conditions optimized
for folding, as seen for example inWW domain.40 Ultimately, such effects will give
rise to small barriers along any set of order parameters, no matter how closely they
correspond to true reaction coordinates. If nothing else, the impossibility of per-
fect packing and avoiding all non-native contact energies with an alphabet of only
20 amino acids will make sure that at least micro-barriers exist. This observation
can also be cast in terms of internal friction of a protein (sometimes accounted for
by exponents d o 1 in the Z�d prefactor or by expressions of the type
(ZProtein+ZSolvent)

�1 replacing the bulk viscosity dependence in Equation (6.3)).57

Different N-dependences for the prefactor have been suggested. Based on
homopolymer models, an N�1 scaling is possible.3 Exponential scaling with
contact order has also been suggested, since native topology should play an
important role when folding occurs downhill to the native state.21 Currently, the
experimental data pool for peptides and fast-folding proteins is not sufficiently
large and does not have sufficiently good size coverage to favor one of these
models (or other powers of N such as in Equation (3)) decisively. Several the-
oretical models exist for the length dependence of contact formation.58,59 They
differ from Equation (6.3) in important details, such as the exponent d of the Z�d

viscosity dependence and in their N-dependence. These models posit a turnover
in the rate below a certain N (which can be as low as 1 in some models), caused
by the persistence length of the polypeptide chain. Experiments indicate that no
complete turnover occurs even for small (o10-residue) chains.46,47,60

6.3.2 Protein Collapse

Protein collapse is idealized by the transition from an extended to a compact
random coil. In that limit, Equation (6.3) can also be employed, and yields a
similar lower limit on collapse. Recent experiments have shown that collapse
can occur on the 0.1ms timescale,61 and thermodynamic studies of ‘‘intermedi-
ates’’ can be interpreted via barrierless collapse instead of two-state folding,39

but the absence of barriers is not obligatory in coil–coil transitions. Rapid-flow
mixing experiments on cytochrome c show that collapse occurs on a 45-ms
timescale,62 corresponding to a 6 RT barrier even with the relatively large

114 Chapter 6



(0.1 ms)�1 prefactor deduced from Equation (6.3).63 Direct comparison of ubi-
quitin secondary structure formation (via circular dichroism) with collapse (via
small-angle X-ray scattering measurement of the radius of gyration) demon-
strates that secondary structure formation can be much faster than collapse, as
proposed by the classic ‘‘framework models.’’64 For collapse, as for folding,
there is no universal ‘‘no barrier’’ or ‘‘barrier’’ mechanism.

6.3.3 Secondary Structure Formation

Formation of helical secondary structures, another important event during
folding, is discussed in great detail elsewhere in this book (see Chapter 2 by
Doshi). Here we note only that measured helix propagation times of about 1 ns,
and initiation times of 10 ns, are in league with the time required for the for-
mation of small loops.65,66 Beta sheet peptides have proved somewhat slower,
but still quite fast. The original observation of beta hairpin formation kinetics
yielded a few ms for a hairpin from GB-1.67 The more stable trpzip 2 peptide can
form native-like structure in several hundred nanoseconds, the fastest timescale
observed for hairpin folding thus far.68 Even somewhat more complex beta-
strand structures can approach this limit.69,70

6.3.4 Timescales

Thus loop formation, collapse, and secondary structure formation have ul-
timate timescales that are quite comparable, in the 5–100 ns range (corres-
ponding to a 3 RT energy range). From a structural point of view, this is an
important reason why protein folding has proved so difficult to study: sec-
ondary and tertiary structure formation timescales are comparable, and cannot
be separated easily. In this, proteins differ from RNA, where counter ion
concentration can be used to examine secondary and tertiary structure sepa-
rately. On the other hand, having the energy and timescales for secondary
structure comparable allows for a richer interplay between the two, and hence a
greater variety of structures. The greater variety could have contributed to
evolutionary selection of proteins over RNA as the main carrier of phenotype.

6.4 Microsecond Protein Folding

When is protein folding fast? Here is what theory and experiment have to say.

6.4.1 History

In 1995, it was proposed that some proteins might fold without a significant
activation barrier along the collective reaction coordinate.6 This was labeled the
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‘‘type 0’’ scenario in contrast with the ‘‘type 1’’ scenario of two-state folding
over an activation free-energy barrier. The free-energy surface of such a protein
cannot be completely smooth: simulations and landscape theory show that free
energy surfaces projected along one dimension fluctuate on the order of 1–2 RT
along the order parameter in regions other than the highest barrier.71–73 Models
based on energy landscape theory can be used to compute what fraction of
these barriers is ‘‘longitudinal’’ (i.e. contributes to the reaction coordinate), and
what fraction is ‘‘transverse’’ (i.e. should be incorporated in the prefactor,
together with other frictional effects).55,74,75 However, without a complete set of
order parameters to describe the reaction, this partitioning must remain
somewhat ambiguous.76

Experiments on peptides are in agreement with such fluctuations of the free
energy. According to Equation (6.2) and the approximate Zimm chain para-
meters, this corresponds to a folding time of no faster than 1 ms for a small
(o100-residue) protein. This number is also supported by the notion of a
‘‘speed limit’’ for folding, first derived from chain contact formation in un-
folded cytochrome c.77 On the other hand, proteins folding in about 1 ms or
longer should have a fairly robust activation barrier of E7 RT or more.
The activation barrier range from 1–7 RT is where experiment and modeling

finally meet. The first molecular dynamics simulation of a mini-protein that
could be called ‘‘sub-millisecond’’ from the computational point of view (where
longer is better) was reported in 2002: an implicit solvent simulation to 0.7ms.78

Experiments on mini-proteins that could be called microsecond folders (here
shorter is better), with folding times below 10 ms, were also reported during the
last few years.3 Full atom simulations are also reducing the need for extra-
polation, beginning with studies at elevated temperature where the dynamics is
faster, and progressing towards physiological temperature.
The history of sub-millisecond protein folding experiments is brief, and begins

with a laser photolysis study of cytochrome c by Roder, Eaton, and co-workers
in 1993.79 Relaxation methods (where a sudden switch in conditions, such as
removal of a bound CO from the heme group of cytochrome c) are one way of
studying such fast kinetics. Equilibrium exchange studies are another. In 1995,
Oas and co-workers reported the E200ms equilibrium between the unfolded
and folded states of a fragment of lambda repressor by poising the protein at the
middle of the denaturation transition using urea, and monitoring broadening of
the two histidine resonances from the folded and unfolded proteins.2 Shortly
thereafter, nanosecond unzipping,80 helix–coil equilibria of short helices,66 sub-
millisecond, and microsecond events during protein refolding were reported.81,82

In the late 1990s and beyond, additional techniques such as continuous
flow mixers,31,83 sub-millisecond pressure jumps,28 pH jumps,84 and photo-
chemical triggering of restraining groups (e.g. disulfides or azo compounds)30,85

were added to the arsenal. Since then, there has been a rapid growth of
sub-millisecond folding data, on systems ranging in size from 12-mer hairpins to
multi-domain proteins with over 400 residues.
On the computational side stands the landmark study by Duan and Kollman,

who followed the mini-protein VHP-36 for one microsecond, observing the
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formation of a compact globular state (although not the native state).34 In 2000,
Caflisch and co-workers obtained ms trajectories at multiple temperatures,
opening the door to thermodynamic sampling of fast folders.86 Since then,
simulations have steadily been pushing towards the millisecond timescale, both
for single trajectories and for replica-exchange sampling to provide accurate
thermodynamic information from simulations. Explicit solvent simulations in
the tens of ms range are now the state-of-the-art (see Chapter 8 by Pande).

6.4.2 Sub-millisecond Instrumentation

A plethora of instrumentation has been applied to sub-ms folding studies, some
of it newly designed, and some of it adaptations of pre-existing techniques to
this new field. Broadly speaking, current fast kinetics experiments can be
subdivided into equilibrium and relaxation techniques. In addition, the sub-
division into bulk and single-molecule experiments is becoming more relevant,
as single molecule experiments are just now beginning to provide sub-ms
dynamical information (see Chapter 7 by Schuler). Figure 6.3 summarizes the
timescales accessed by the various techniques currently in use.
The equivalence of relaxation and equilibrium techniques relies in principle

on Onsager’s fluctuation–dissipation theorem for linear response processes.8

Figure 6.3 Timescales of sub-ms folding techniques currently reached or likely to be
reached in the near future. Bimolecular photolysis is limited by diffusion,
temperature jumps by water vibrational relaxation, lineshape analysis by
motional narrowing and continuous flow by channel dimension. Photon
correlation measurements are limited by chromophore lifetime; the dotted
line indicates the ultimate limit, although current generation experiments
have 450 ms time resolution. All timescales indicated refer to kinetic time
resolution, not probe technique resolution (e.g. fluorescence lifetime
can be measured to E50 ps by correlated photon counting, to ps by up-
conversion techniques).
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According to this theorem, for a small enough perturbation, the relaxation
following a jump in external conditions from a set {ci} to a set {cf} has the same
time dependence as the time correlation function at the condition {cf}. Under
certain circumstances, such as two-state exponential relaxation over a sub-
stantial barrier, the requirement for a small perturbation can even be lifted. For
fast-folding experiments in particular, where barriers are small and the initial
and final population distributions may overlap, this criterion cannot be relaxed.
This should be kept in mind when comparing different types of experiments,
especially experiments with different probes. While two-state folding guaran-
tees probe and jump-size independence, downhill or multi-state kinetics can be
identified by probe and jump-size dependence.
The most common bulk equilibrium technique applied to fast folding is

proton NMR lineshape analysis.2 Interconversion between unfolded and folded
protein acts as an additional relaxation mechanism, broadening NMR peaks.
Thus lineshape analysis does not require a fast initiation step, but rather is used
under equilibrium conditions. The advantage of this technique is simplicity of
the experiment. The main disadvantage is that the protein has to be biased near
the middle of its unfolding transition (K¼ kf/kuE 0.1–10), so peaks corres-
ponding to both the unfolded and folded states can be observed. The reaction
cannot therefore be studied under native conditions. Rates can be directly
measured over a o100 ms to 450ms range by proton NMR. The most
extensively studied protein by this technique remains lambda repressor frag-
ment.2,87–93 Transverse relaxation dispersion experiments on 15N isotopically
labeled proteins, which were pioneered by the Palmer and Lewis groups, allow
measuring relaxations involving very small population shifts (e.g. o1%), but
are still limited to processes slower than 100 ms.94 This approach has been
recently applied to a small downhill folding protein.95

The most common relaxation techniques currently in use are either mixing-
or laser-based. We begin the discussion with continuous flow mixing. Unlike
stopped-flow, which is limited to timescales near 1ms in current generation
designs, continuous flow mixers have reachedo50 ms time resolution in folding
experiments.83,96 In one mixing approach, two solutions are mixed in a tur-
bulent region (e.g. two capillaries merging at a small ball). The mixed jet then
flows through a capillary at constant speed. Thus the distance along the ca-
pillary can be mapped into time, and a detector sliding along the capillary can
be used to detect kinetics. The disadvantage is that reliable time resolution into
the ns region is still lacking, and that continuous flow requires large amounts of
sample in current-generation setups. The great advantage of this technique is its
versatility as far as the type of perturbation is concerned: denaturant, tempera-
ture, pH, and concentration jumps are all easily feasible.32

The most common laser-relaxation technique is the temperature jump, either
by resistive heating97 or induced by a laser pulse.98 The latter method has been
most widely adapted, as it is capable of reaching the 10 ns timescale where the
elementary processes discussed earlier occur. In the laser temperature-jump
technique, the solvent is heated by a pulsed near-infrared laser source.99

Relaxation of vibrational energy during T-jumps in aqueous solvents is
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complete in under 10 ps,100 and vibrational relaxation of high frequency modes
(4200 cm�1) of proteins is equally fast or faster. Thus T-jumps can reach the
picosecond timescale, and in fact peptides have been studied on that time-
scale.80 The upper end of the time window is set by thermal diffusion, as the
sample recools. For typical sample thicknesses in the 0.1–1mm range, this sets
an upper limit in the millisecond range. T-jumps can be used to study refolding
(from cold denatured states)81,82 and unfolding (to heat denatured states);66,101

this difference becomes particularly important when the protein is not a two
state folder (when kobserveda kfold+ kunfold). The disadvantage is that T-jumps
address only one of many interesting thermodynamic variables. The great ad-
vantage of T-jumps is their generality: all proteins with a hydrophobic core
cold- and heat-denature.
Laser-induced electron transfer processes have also been extensively used to

study folding processes.102 This approach makes use of the fact that different
oxidation states of redox proteins have different folding equilibrium constants.
A protein can thus be poised unfolded in one redox state, and then rapidly fold
when the redox state is switched, or vice versa. Initial experiments were con-
ducted in the millisecond timescale, but current-generation studies are capable
of microsecond resolution and have studied even fast loop contact formation
processes.48 The main disadvantage is that the technique is limited to redox
proteins, usually including prosthetic groups. The advantage is that irreversible
switching is possible, so processes can be studied over many timescales.
A number of additional bulk relaxation techniques have been applied to ms

events. Piezo-induced pressure jumps up to 200 bar and as fast as 50 ms have
been applied to study folding of a cold shock protein.28 A pressure jump
capable of switching up to 2500 atm in o2 ms has recently been developed
for protein folding applications.103 Laser photolysis was the first technique
applied to fast-folding experiments (CO dissociation from the heme group of
cytochrome c).104 Laser photolysis (e.g. by cleavage of disulfide bridges, or
isomerization of azobenzene linkers)30,85 has seen rapidly growing application
to folding studies of simple model systems. Developments in cleavable amino
acids will further extend this technique to larger proteins. An optical proton
switch (o-nitrobenzaldehyde) has been used to study pH jumps as a function of
pH,84 isolating contributions from different side chains based on their pKa

values. All of these relaxation and equilibrium fluctuation techniques together
sample the full range of thermodynamic parameters.

6.4.3 Spectroscopic Signatures Used in Fast Folding

Bulk relaxation studies have been coupled to a large number of probes.27 This is
particularly important for fast-folding kinetics, as different probes provide in-
formation about different reaction pathways and can ultimately be combined to
yield a complete picture of the important reaction coordinates for fast-folding
proteins. Infrared, circular dichroism,105 and Raman spectroscopies31,106 probe
secondary structure. The amide I band in particular (1600–1700 cm�1) has been
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studied extensively for changes in signatures corresponding to formation or loss
of a-helix, b-sheet, and coil structure. Current experiments utilize either scan-
ning high-resolution lasers,107 or dispersed femtosecond IR pulses108 to follow
the time evolution of the protein infrared spectrum. Step-scan FTIR has not
been utilized, although it is capable of ms time resolution.109 Thanks to iso-
topically labeled or modified amino acids, IR spectroscopy can also yield
localized information.110 Very recently, two-dimensional IR techniques have
been applied to protein folding. These measurements allow multiple amide
chromophores to be orientationally correlated, and enhance the resolution of
the IR experiment, an important factor for the rather broad amide bands.111,112

Fluorescence spectroscopy has been applied to probe several different aspects
of folding. Tryptophan fluorescence wavelength provides information on
solvent exposure (a 325–345 nm fluorescence maximum corresponds to total or
partial burial, a 350–360 nm maximum to complete solvent exposure), while
tryptophan intensity and lifetime (usually in the 2–6 ns range) provide informa-
tion about electron- or proton-transfer quenching, which is short range (1–3 Å)
and usually stronger in the folded protein.113–116 Fluorescence quenching or
wavelength shift upon resonant energy transfer between dye labels (Förster
resonant energy transfer, or FRET) has also been extensively used.96,117 Elec-
tron paramagnetic resonance of cysteine mutants with spin labels also provides
accurate distance information.118 Other techniques include ultraviolet ab-
sorption spectroscopy,60 photoacoustic spectroscopy84 (to monitor volume
changes during folding/unfolding), and small angle X-ray scattering (applied by
slowing down sub-ms events through the use of highly viscous solvents).119

Amide exchange, an NMR technique generally used in the ms regime, is de-
scribed in detail elsewhere in this volume (see Chapter 4 by Bai).
In contrast to equilibrium or relaxation bulk studies stand single molecule

experiments. During the last few years, single molecule experiments have begun
to make important contributions to fast protein folding. The advantage com-
pared to bulk studies is obvious: individual proteins may differ significantly in
their behavior from the ensemble average, and these differences provide im-
portant clues about the structure of the free-energy surface. Although higher
moments of distributions can be measured in principle by bulk experiments,
and multi-step experiments can be used to dissect heterogeneous populations,
this is most easily done by studying single molecules or very small ensembles of
molecules.
Single molecule fast-folding studies can be force-resolved or time/position-

resolved (see Chapter 7 by Schuler).25 The latter are currently of main interest
in the context of fast-folding kinetics.24,120,121 In these experiments, a protein
molecule is generally labeled with a donor and acceptor dye, and allowed to
enter the detection region by diffusion. The emitted photons are sorted by
color, arrival time spacing, or by their time delay from the pulsed excitation
laser. This provides distance distribution or lifetime histograms correlated with
the state of the single protein molecule. Recent studies have revealed that un-
folded states under native-like conditions contribute large baselines,24 and
multiple-correlation studies have revealed separate ensembles during
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folding.122 Studies where the protein is confined and immobilized are also
promising.123

The main difficulty with single molecule experiments thus far has been the
limited sampling. A typical single molecule can be observed for milliseconds, too
little time for slow-folding proteins; only a few molecules per second or so are
observed in diffusion limited experiments based on confocal microscopy; in
addition, relatively few photons are extracted in this short time span, even when
extrinsic dye labels of much higher longevity and quantum yield than natural
labels such as tryptophan are used. Two developments are changing this. The
first is the discovery of microsecond folders, which allow a single molecule
observation to span multiple folding–unfolding events. Just as importantly,
microsecond folders spend a larger fraction of time in the interesting region of
the free-energy surface where the transition between states occurs. Assuming
conservatively that the transition time is on the order of nw E (100 ns)�1 in
Equation (6.2), and the folding time is 10ms, a fast folder will spend at least 1%
of its time in the dynamically most interesting region of the free energy surface,
as opposed to sitting almost exclusively in the folded or unfolded well. The
second development is highly automated data collection with pulsed lasers,
which can provide lifetime and photon spacing information for large numbers of
molecules, allowing a meaningful statistical analysis.122,124 This is important
when only a few percent of the observed photons correspond to the transition of
the protein through the region where heterogeneous kinetics can be observed.
Current single molecule studies are generally carried out as equilibrium

measurements. However, as the sampling problem is resolved, relaxation
studies will also become possible. In the next section, comparison between fast-
folding results, theory, and model calculations will be made. For a discussion of
the developments in computer instrumentation that have accessed the sub-ms
regime from the low end in silico, the reader is referred to Chapter 8 by Pande.

6.4.4 Case Studies

Equation (6.1) makes fast-folding experiments extraordinarily diverse, yet it
also provides a unifying interpretation. Fast-folding proteins have been found
to collapse to compact globules over small barriers,63,82 or essentially down-
hill;61,125 to fold with detectable pre-barrier intermediates,126 with post-barrier
intermediates,127 on-barrier intermediates,128 two-state-like,129 or with a diffu-
sive downhill component;16 to show dispersion of different thermodynamic
probes,15 or not;108 to fold/unfold via multiple pathways,129 or mainly a single
pathway;130 to form secondary structure first,131 or after collapse.132

All of these observations taken together indicate a free-energy surface for the
fastest folders whose roughness is on a par with the principal activation free
energy. Altering such a landscape by mutation or environment will most effec-
tively shift populations to different local minima, and also shift the most im-
portant dynamical interconversion processes (Figure 6.4).133 This roughness
presumably exists equally for slower folders or multi-domain folders,72 but the
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unique advantage of fast folders is that it can be studied directly, unobscured by
large barriers. From a physico-chemical point of view, small free-energy fluc-
tuations of engineered proteins are the ultimate rate-limiting factor to be in-
corporated either in the prefactor (transverse roughness) or activation energy
(longitudinal roughness). From a biological point of view, they provide the
reference against which to judge the larger folding barriers of most natural
proteins, and their possible evolutionary origins.4 This subsection considers a
number of fast folders, organized by what has been learned from them. For
additional information, the reader is referred to several recent reviews.3,4

For many single domain proteins, collapse to a compact globule without a
desolvated core is an important early step towards the folded state. A wide range
of timescales exists for this process, from tens of nanoseconds to milliseconds
and beyond. The collapse process thus extends from nearly barrier-free pro-
cesses to highly activated processes. For example, the collapse time for the 40-
residue mini-protein BBL at pH 3, where it cannot fold to the native state, has
been measured at 60 ns, and it increases above 308K.61 The temperature trend is
in agreement with a hydrophobic driving force for the collapse process and,
indeed, BBL has a small hydrophobic core. The timescale is in agreement with
barrier-free collapse, estimated at E50 ns from the Zimm model in Equation
(6.3). Electron transfer-induced fast-folding experiments on a zinc-substituted
cytochrome c yield a loop contact formation time of 250ns within the context of
the protein.48 This is slightly slower than the BBL result even when scaled for
chain length. In contrast, the ABGH core of apomyoglobin (153 residues)
collapses and forms some tertiary structure inE10ms at room temperature from
the cold denatured state in the absence of denaturant, although it still slightly
slows down at higher temperature.82 Based on Equation (6.3) this process,
although fast, still corresponds to a barrier of about 4–5 RT. Local minima of

Figure 6.4 Low barrier (left) and high barrier (right) free-energy surfaces under strong
(solid line) and weak (dotted line) native bias. The locations of the highest
activation barrier and of populated minima are much more sensitive to
environmental conditions if the overall barrier is small (left) than if the
overall barrier is large (right). Nonetheless, the free-energy surface of the
slow folder also has roughness on the kT energy scale, and such ‘‘high-
energy’’ intermediates have been observed.171
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apomyoglobin stabilized by varying solvent conditions also show relaxations on
this timescale.
The collapse time for cytochrome c, measured under denaturing conditions

in 1.5M guanidine hydrochloride buffer, is 40 ms at room temperature.77 In the
absence of denaturant, the intact protein collapses in E60 ms, whereas a 1–65
fragment collapses in 25 ms, and much faster at higher temperature.62 Electron
paramagnetic resonance studies of cytochrome c mutants with spin label-
derivatized cysteines also yield timescales between 20 and 60 ms.118 The speedup
with temperature and the 500-fold slower timescale (in contrast to BBL) are
compatible with a substantial activation barrier of 6 RT or more. Of course,
cytochrome c differs from simple small proteins in that very specific contacts to
a bulky heme group have to be made. Other proteins collapse even more slowly,
so collapse is clearly not sequence-optimized in all natural proteins. It is cur-
rently not known whether systematic removal of hydrophobic residues can turn
a rapid collapse into a slow one, although this is strongly suggested by the data,
as some proteins or protein domains of topological complexity comparable to
slowly collapsing proteins are known to collapse rather rapidly. Another effect
needs to be potentially accounted for when assigning barrier heights using an
equation like Equation (6.2): the possibility of anomalous diffusion. Stretched
kinetics have been invoked in a variety of folding scenarios,14,30,134 including
end-to-end recombination of peptide chains whose disulfide bridges were
photolyzed.135 In one case, the recombination dynamics spanned timescales
from ps to ms, and could not be described by a rate constant.85 This suggests a
very rough free-energy surface, where both fast and slow mechanisms co-exist
depending on the region of configuration space accessed by the chain.136

The size of the unfolded and native states of proteins that rapidly form
compact states are also subject to significant variation with environment. Single
molecule experiments, where the unfolded state can be examined separately
from the folded state under native conditions, show that the unfolded state
becomes very compact at low temperature.24 This high degree of structure is
reached via migration of the unfolded free-energy minimum along the reaction
coordinate, not by a barrier crossing. This is important because it shows that
acquisition of structure during folding does not have to be coupled with an
increase in free energy up to a barrier. The native state can be similarly sensi-
tive: fast pH jump experiments on native cytochrome c at pH 7 show that
protonation of its histidines reduces the molar volume by �82mlmole�1, a
rather large amount.84

Although many small proteins fold as two-state folders, several fast folders
form metastable intermediates. Apomyoglobin was already mentioned above;
its compact globular state forms about 100 000 times faster than the native
fold,82,137 even though the heme-binding CDEF domain (whose folding is rate
limiting) is topologically no more complex than the ABGH core. The main
difference between the two is that the ABGH core contains highly packed
hydrophobic residues, whereas the CDEF core relies on a heme group to
provide its packing. Here is a case where hydrophobicity and packing must
cooperate to allow fast folding and, indeed, enlarging hydrophobic side chains
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in the CDEF core increases the overall folding rate of apomyoglobin.138 As
another example, the structure of the intermediate of the small protein barstar
formed from the cold denatured state was analysed by site-directed mutagenesis
(Phi-value analysis).81 Phi-value analysis identifies residues that are structured
in the intermediate by determining whether replacing them has a substantial
effect on the rate of intermediate formation. Similarly to apomyoglobin, barstar
forms a compact intermediate within 200 ms, yet the native state forms much
later, within 300ms. An even smaller protein, engrailed homeodomain, still
shows biphasic kinetics, which have been analysed in terms of a compact
intermediate state;126 the overall fast-folding rate of about 20 ms now limits the
barrier to o5 RT even with the conservative speed limit of Equation (6.3). The
intermediate ensemble observed in this case has been stabilized by a point
mutation,139 also indicative of a folding barrier comparable to the free energy
roughness: in such cases it should be particularly easy to stabilize different free
energy local minima by small perturbations. In that interpretation of fast
biphasic kinetics, the phases arise from a marginal barrier, which allows both
barrier-crossing and diffusive (downhill) populations to be monitored.16 Mul-
tiple minima lead to multiple timescales, even when the barriers separating them
are too shallow to qualify as well-separated ‘‘thermodynamic intermediates.’’
Even a simple hairpin peptide, trpzip 2, has shown thermodynamic and kinetic
evidence of small free-energy minima; the sub-ms rates observed under some
conditions indicate that the overall activation barrier is r3 RT.68,73,140

Apomyoglobin and barstar are cases where a fast-folding intermediate occurs
before the rate-limiting step. Evidence has equally been uncovered for inter-
mediates following the rate-limiting step. Proton exchange NMR experiments
hint that cytochrome b562 forms some of its helices en route to the transition
state, but others after the barrier has been passed.127 In yet other cases, the
location of intermediates has been controversial. For example, a re-analysis of
ubiquitin folding showed that fluorescence monitors single-phase kinetics,
contrary to earlier reports.141,142 A further analysis showed that other probes,
such as SAXS and CD, differ after all in their timescale from fluorescence, in a
way that can be explained by an early intermediate.64 The solvent conditions in
that experiment were significantly different from room temperature aqueous
buffer studies, but this serves only to make the point of Figure 6.4: that free
energy local minima can be found anywhere along the reaction coordinate, and
that the sensitivity of experiments to various local minima depends on sequence
and environment, most sensitively so for fast folders. These local minima
vary in depth, and when the depth exceeds 3RT, we begin to call them
‘‘intermediates.’’
However, even in large proteins these intermediates need not be separated

from the unfolded state by large barriers: both the C- and N-terminal domains
of phosphoglycerate kinase, a hinged two-domain protein of 415 residues, form
compact states with secondary structure within tens of ms after folding is ini-
tiated from the cold denatured state.14

Fast folders have been used to analyse the thermodynamic and kinetic
equivalence of cold and heat denatured states of proteins.87 A study of the
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b-hairpin MrH3a in 8% hexafluoropropanol yields a much faster refolding rate
to the native state from the cold denatured state than from the heat denatured
state, assuming two separate two state equilibria of the form CN and NH.143

In contrast, analysis of a ‘‘slow’’ (100 ms) folding variant of the 80-residue
l-repressor fragment shows that the folding rates from the cold and heat de-
natured states are equivalent, if the solvent viscosity is taken into account.144

Indeed, in P-T phase diagrams the two states can interconvert without going
through a folding transition. The difference between these two cases lies in the
presence or absence of a hydrophobic core. MrH3a does not have one, and
residual hairpin structure controls the dynamics; this structure differs sub-
stantially between the cold and heat denatured states. l6�85 has a large
hydrophobic core, which drives folding from both the heat and cold denatured
states, mitigating the effect of loops on the folding kinetics.
A comparison of fast-folding kinetics with structural information from

molecular dynamics simulations has revealed different mechanisms by which
fast folders reach the native state, even when they are apparently two-state (see
Chapter 8 by Pande for a more detailed discussion). A mutant of the mini-
protein BBA5, a zinc finger-like structure (b-turn-a), originally designed by
Imperiali and co-workers,145 had its folding rate constants and equilibrium
constant directly compared with 700 ms of distributed computing implicit
solvent molecular dynamics trajectories.78 The molecule is only weakly co-
operative, with a room temperature folding rate of about 8 ms. Several of the
short simulations folded to native structures, by a variety of paths that included
helix or turn formation as the first step. Although there is some bias towards a
helix-first mechanism, the bias is not strong, and BBA5 exemplifies folding on a
funnel-like energy surface down several paths. Good agreement was obtained
between computed and measured kinetics and thermodynamics. Similar
experiments and calculations were also carried out for the 20-residue mini-
protein tryptophan cage, and for the 35 residue villin headpiece (a three-helix
bundle).146–149 In both cases experimental and computed rates also agreed
within uncertainty, and the VHP mechanism allows different helix-pairing
combinations. More recently, VHP and BBA5 have also been simulated in
explicit solvent (TIP3P water), in one case up to 0.5ms total.23 The explicit
solvent simulations largely support the earlier results obtained in implicit
solvent. At least for small systems without large hydrophobic cores and
very small (if any) folding barriers, computational simulation with current-
generation force fields thus agrees closely with experiment. Also for small
systems, where desolvation of extensive hydrophobic surfaces is not required to
reach the native state, implicit solvent models perform well. The next gener-
ation of studies tackling mini-proteins with larger hydrophobic cores (e.g. the
lambda repressor fragment) will show how well this translates when hydro-
phobic surface desolvation plays a key role.
Beta sheet-only proteins, often thought of as slower folders, have also been

successfully engineered towards folding rates 4(10 ms)�1. With a folding time
of 40 ms (depending on mutant and truncation at the termini), the FBP28 WW
domain, a triple-stranded b-sheet based on the FBP wild type, is already a fast
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folder. Inserting its hairpin 1 or similar short hairpins into the hPin1 WW
domain structure produces very fast folders, some with folding time constants
below 10 ms.70 Smaller peptides fold even faster: the first hairpin studied in
detail folds in a few ms, trpzip 2 in under 1 ms under some conditions.67,68

Nonetheless, b-sheet structures have not reached the speed of comparably sized
helical mini-proteins and peptides. This indicates that turn formation alone,
which should occur in 100 ns or less for optimized turns,150 is not the factor
controlling kinetics. Of course turns can be rate limiting in some cases: Turn 1
of hPin WW domain is formed during the rate-limiting step of folding,40 and its
removal speeds up folding as mentioned above. This turn is an unusually long
six-residue sequence, evolved to support the binding function of the hPin WW
domain. Thus evolution for function and ease of folding seem to be at odds in
this case. Molecular dynamics simulations have contributed much to inter-
preting fast-folding experiments on b-sheets (see Chapter 8 by Pande). Both
1-D and 2-D free-energy surfaces generated for hairpins as well as larger triple-
stranded sheets reveal local minima in the free-energy surface, which can be
deepened or removed by mutation.151,152 Although the simulations may not
produce quantitative agreement (i.e. the details of local minima may differ from
experiment), they underscore the role that free-energy roughness plays during
folding.
Some of the earliest direct comparisons of computation and experiment are

between unfolding rates of fast folders and fully solvated molecular dynamics
simulations.153 The fastest-folding example is the engrailed homeodomain, a
three-helix bundle with a topology similar to VHP.154 As computing power has
increased, the extrapolated experimental unfolding rate (about 50 ns at 75 1C)
and the computed unfolding time to a transition ensemble from which large
structural changes occur are in good agreement.126 One result from these
studies (in contradiction to the general scheme in Figure 6.4) is that the tran-
sition state structure of engrailed homeodomain seems almost temperature
independent even though the barrier must be relatively small for this micro-
second folder. It is possible that the molecule has a late transition state, even at
low temperatures favoring the native state, and that this transition state cannot
become much more native-like when the temperature is raised. Possible anti-
Hammond effects have also been discussed in other folding contexts.133

Larger proteins and multi-domain proteins are also capable of fast dynamics –
up to a point. Based on Equation (6.3), on homopolymer collapse models, or on
the inverse correlation between folding rate and contact order or chain length,
larger proteins ultimately fold more slowly. However, the size of a single domain
has an upper limit near 200� 50 residues in most proteins. Beyond that, proteins
usually form multiple domains connected by tethers or hinges. In the case of
PGK, the individual domains collapse to a compact state independently on the
sub-ms timescale, as shown by temperature jump studies of the whole protein
and of protein fragments.134 If this holds true in general, there will be an upper
limit to the complexity of fold topologies (the most complex structure possible
with E200 residues), yielding an upper limit on the folding time of optimized
sequences (naturally, unoptimized sequences can be arbitrarily slower). A protein
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near this upper limit may have been discovered already: the large protein
cyclophilin a folds on the sub-ms timescale,155 whereas proteins of a similar size
fold in E1 second on average.

6.5 Downhill Folding

Downhill folding is the most extreme manifestation of fast folding. If a protein
has no barriers 43 RT along the folding coordinate(s), barrier top populations
become measurable even in experiments whose typical signal-to-noise ratio
does not exceed 100 : 1. In essence, a kinetics experiment gains direct access to
quantities such as nw and obarrier in Equations (6.2) and (6.3) by directly ob-
serving excited protein states. The kinetics measurement thus becomes a dy-
namics measurement. At the same time the folding rate approaches the speed
limit for diffusion along the collective reaction coordinate(s). As discussed
earlier, for a small protein the speed limit should be five times slower than the
diffusive prefactor of (100 ns)�1 of Section 6.3 because several diffusive events
are required to define the fold topology. This number is very close to the 1-ms
limit originally estimated by Hagen and Eaton.77 The current status of downhill
folding has been reviewed in references 3, 4, 156, and 157; here follows a brief
presentation of the salient points.
Two general downhill scenarios have been proposed. The original scenario

emerged from statistical mechanical analysis of the landscape model, as sum-
marized by Bryngelson et al. in 1995.6 In this scenario, proteins make a
downhill to two-state transition when they are stressed by mutation or by an
environment unfavorable for the native state. Figure 6.5 shows how a protein
under optimal conditions is a downhill folder, and then becomes a two-state
folder when the native state free energy is raised. At even higher stress, downhill
unfolding results. Kinetics with an exponential–non-exponential–exponential
transition as a function of temperature provided the first support for this
scenario,14 which is now also supported by data for folding to the native
state.16,21,108,125 As discussed by Hagen,158 and shown experimentally,125,129

pure downhill folding is not necessarily non-exponential. The proof of kinetic
downhill folding in the Bryngelson scenario relies on a transition from ex-
ponential folding (two-state) to non-exponential folding (low barrier), and back
towards exponential folding (pure downhill with simple diffusion process) with
strongly correlated kinetic amplitudes and phases along the way.14,21,125,159

As a final note, experiments, simulations, and theory find that downhill folders
in the Bryngelson scenario have sigmoidal denaturation transitions when stress
is applied because they revert to two-state folding.108,159 This rules out the usual
approaches for identifying such proteins as two-state folders by titration
experiments.
The second scenario is also shown in Figure 6.5, and is founded on the

observation by Muñoz and co-workers that some proteins with broad thermo-
dynamic folding–unfolding transitions cannot be characterized by a single
transition temperature when multiple probes are used.15,160 In this type of
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downhill folding, a barrier does not appear when stress is applied to the protein.
Instead, the free-energy minimum gradually shifts towards the unfolded state
when stress is applied, taking the protein population with it in a ‘‘one-state’’
manner. The folding is downhill under all conditions. It is worth noting that
such one-state scenarios can demonstrably produce sigmoidal denaturation
curves, albeit with large baselines.160,161 Baselines are often observed in pro-
teins labeled as two-state, fitted, subtracted from the data, and then ignored.
This time-honored approach is clearly not viable when investigating potential
downhill folders. Baselines must be explained along with the rest of the data.
Experimental observations of the two downhill scenarios differ in one

important aspect: mini-proteins with small hydrophobic cores (e.g. BBL15) may

Figure 6.5 Two downhill folding scenarios. Bottom left and arrow across, adapted
from Sabelko et al.:14 stress induces a downhill to two-state transition. DH

is the heat denatured state, to which downhill unfolding occurs at a very
high temperature T5. As the temperature is decreased to T4, an activation
barrier forms because the free energy in the transition region increases
together with the unfolded free energy. At the optimal folding temperature
T3, the free energy has tilted towards the native state, and downhill folding
now occurs. The whole process reverses at the lower T, eventually popu-
lating the cold denatured state DC at T1. Bottom right and down arrow,
based on Muñoz:160 stress induces a shift of the free-energy minimum, but
a single minimum remains throughout. The free-energy minimum shifts
smoothly from the heat denatured state to the native state. The cold
denaturation side has not yet been observed.

128 Chapter 6



be able to follow the ‘‘one-state’’ scenario, while fast-folding proteins with
larger hydrophobic cores (e.g. phosphoglycerate kinase14 or lambda repressor
fragment16) may have to switch from ‘‘one-state’’ to ‘‘two-state’’ under stress.
Large hydrophobic surfaces need to be desolvated before burial in the core, and
this makes the process more prone to having a barrier under stress. Recent
experiments and models studying volume changes in the transition state upon
hydrophobic–hydrophilic substitution support the idea that desolvation is a
major contribution to the folding barrier of larger proteins.162,163

So far, no large natural protein folds downhill to the native state. For ex-
ample, BBL is a substrate-moving domain from a larger protein,15 and the
fragment from DNA-binding l-repressor had to be engineered to increase its
folding rate by at least another factor of 20 to fold downhill.16,125 BBL clearly
shows the multiple thermodynamic melts characteristic of a single-well down-
hill folder, while l-repressor has shown titrations characteristic of the downhill-
to-two-state transition. However, recently a version of l-repressor has been
engineered that shows large deviations at the melting midpoint, approaching
the single-well scenario also.125 Thus it appears that both natural and engi-
neered small proteins can fold in a single well even at temperatures approaching
their melting temperatures. Among large proteins, cyclophilin a may be a
candidate for a large natural downhill folder, but only if lnkfolding scales linearly
or faster with sequence length or contact order.21

In summary, the experimental evidence for downhill folding stems from:
observations of probe dependence and large baselines in thermodynamic
titration curves;15,35,95,156,160,164 observation of probe-dependent kinetics with
specific transitions between exponential and non-exponential kinetics as the
native state is stabilized;14,16,108,125 dependence of these kinetic transitions only
on overall folding rate, not on specific mutants or solvent conditions;21,125,157

different viscosity dependence of the diffusive phase compared to the activated
(two-state) phase;68 and molecular dynamics simulations revealing free-energy
surfaces with barriers o2 RT.16,71,73

Several reasons connected with protein evolution have been proposed for the
scarcity of wild-type proteins as downhill folders:4 Even if they are much more
stable than the unfolded state, barrierless native states may be more prone to
aggregation because they can partially unfold with ease. Folding kinetics can be
compromised by evolution for protein function, which often favors solvated
binding pockets, flexibility-enhancing glycines, long functional loops,165

or prosthetic groups, to the detriment of hydrophobic stabilization. And, lastly,
evolutionary pressure for fast folding has its limits because cytoplasmic crowd-
ing, ribosomal expression, and chaperoning influence cellular folding processes.
Nonetheless, downhill folding, if universal for all fold topologies, provides a
baseline against which to judge such evolutionary pressures. The difference be-
tween the wild-type protein folding rate and the downhill rate is accounted for by
evolutionary pressures from aggregation, function, and protein environment.
Conversely, evolution could also select for downhill folding of proteins in

several ways:15 Proteins with a mechanical function, such as spring-like
extension during substrate transport, benefit from a single well that avoids
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unproductive trapping of the module in the extended or contracted local
minimum. Downhill folding can also play a role in folding–binding inter-
actions, for instance when unbinding of one substrate induces a downhill
conformational switch that rapidly prepares the protein for uptake of another
substrate.156 It could turn out that many natural downhill folders exist because
of evolutionary pressure for function. Such proteins may have been overlooked
because they do not produce nice sigmoidal denaturation curves, like natively
disordered proteins for instance.
There has been a lively discussion in the literature as to whether downhill

folders of either type (one-/two-state or purely one-state) could be explained by
folding intermediates.159,164,166,167 Basically, models involving a succession of
low-barrier intermediates and/or traps can be invoked to explain multi-probe
thermodynamics and kinetics instead of downhill folding. Countering this,
downhill models have added logarithmic oscillations to explain residual struc-
ture in non-exponential kinetics.14,168 It is worth pointing out that no protein is
likely to fold downhill monotonically on a completely smooth free-energy
surface: a 20-amino-acid code cannot optimize all native interactions and
eliminate all non-native ones, leaving residual roughness on the free-energy
surface. Experiment, modeling and theory have pegged this roughness at 1–3
RT.16,20,68,71,72,169 The key is this: folding does not occur at zero temperature, so
folding should be considered downhill when thermal excitations RT are com-
parable to the residual folding barriers, leading to a breakdown of transition
state theory. The current generation of experiments and simulations certainly
demonstrates downhill or near-downhill folding on the 1–3 RT scale. In light of
Equation (6.3), the many fast folders observed at any size between 12 and 500
residues21,70,129,147,148,155,170 will always beg the question of the ‘‘reverse-
Levinthal paradox:’’ how come many proteins fold so slowly?

6.6 Outlook

Fast-folding experiments are testing some of the most critical predictions of
energy landscape theory: the sensitivity of the folding mechanism to protein
sequence and environment caused by roughness of the free-energy surface (i.e.
Equation (6.1)), and the existence of nearly barrier-free folding, limited only by
residual roughness of the free-energy surface on the order of 1–3 RT (Equation
(6.3)). Full atom simulation in conjunction with experiment is providing a rich
picture of folding, not limited to a fixed sequence of structures, but revealing
multiple free-energy minima whose populations are exponentially sensitive to
free energy. For this reason, truly parallel folding paths are rare, but a number
of low-energy paths exist to confer robustness in the context of sequence
evolution. The number of such paths is limited by the need to avoid too high a
density of states of partially folded states, which would unduly stabilize non-
native globules. Proteins that sample long-lived intermediates are skirting one
edge of the compromise between too few and too many low-energy folding
paths; proteins that fold two-state but, very slowly, the other edge.
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Comparison of experiment with theory and computational modeling points
to many important issues that must be resolved before fast folding is fully
understood: Multi-probe and single molecule experiments must become routine
to probe free-energy surface complexity. Observed and theoretical collective
coordinates must be related quantitatively, and optimal folding coordinates
must be deduced from such a consistent set; only then can folding barriers be
defined precisely, distinguishing them quantitatively from ‘‘micro-barriers’’
caused by single bond isomerization or local solvent rearrangement. This
problem is analogous to the old conundrum of transition state theory
when some degrees of freedom are averaged out: should we write
k ¼ kT=h s e�Ew=kT , or k ¼ kT=h e�ðEw�kT lnsÞ=kT ¼ kT=h e�Gw=kT ? Does the
steric factor s belong in the prefactor, or in the exponent? If we include all
the microscopic coordinates, it belongs in the exponent. If we include only
collective reaction coordinates, it belongs in the prefactor. Protein folding is
fairly efficient and can be described using a small number of coordinates, so the
latter picture will bring us closer to truly understanding the folding process.
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CHAPTER 7

Single Molecule Spectroscopy in
Protein Folding: From
Ensembles to Single Molecules

BENJAMIN SCHULER

Biochemisches Institut, Universität Zürich, Winterthurerstr. 190, 8057
Zürich, Switzerland

7.1 Introduction

We are used to depicting chemical reactions and biochemical processes in terms
of individual molecules. We do so on various levels of complexity, ranging from
simple textbook cartoons to the atomic detail of molecular dynamics simulations
(see Chapter 8 by Pande). But, remarkably, the vast majority of our knowledge
about these systems has been derived from experiments on large ensembles
of molecules, which yield only average values of observable properties. The
sequence of molecular events describing the underlying reactions is typically
inferred from testing a model by systematic variation of parameters. For kinetic
ensemble studies, the reactions need to be synchronized, which is often difficult.
The concept of observing single molecules is particularly appealing for processes
with a large degree of conformational and dynamic heterogeneity, protein
folding being a case in point.
Only recently has it become feasible to investigate the folding of single

protein molecules. These techniques offer a fundamental advantage beyond our
mere fascination for the direct observation of molecular processes: they can
resolve and quantify the properties of individual molecules or subpopulations
inaccessible in ensemble experiments. Fluorescence spectroscopy is a particu-
larly appealing technique, owing to its extreme sensitivity and versatility. With
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Förster resonance energy transfer (FRET), we can investigate intramolecular
distance distributions and conformational dynamics of single proteins. In
combination with fluctuation methods such as fluorescence correlation spec-
troscopy (FCS), it should be possible to obtain a detailed picture of the dy-
namic processes of protein folding only limited by the timescales of fluorescence
photophysics (i.e. down to the sub-nanosecond range). In the following, some
of the history and the basic underlying concepts of single molecule detection
and analysis will be presented, illustrated with examples from single molecule
protein folding or conceptually related experiments.

7.2 History and Principles of Single Molecule

Detection

Remarkably, the very first single molecules detected appear to have been
proteins. In 1970, step-like changes in ion conductance were observed for ar-
tificial lipid films containing small numbers of gramicidin A molecules.1 Since
then, the recording of such signals from single channels has matured to a
method that now dominates the investigation of ion channels.2 Due to this long
tradition, the single channel field provides a wealth of examples and analysis
methods for the stochastic chemical kinetics observed in single molecules.
A very different type of methods allowed the first observation of single atoms

and molecules on surfaces in the early 1980s: scanning tunnelling microscopy
and atomic force microscopy3 (AFM), where a very fine tip is used to probe the
surface of a sample with atomic resolution. The simplicity of the instru-
mentation quickly made AFM a standard method, and soon it allowed the
imaging of samples in solution,4 including proteins. In 1997, the mechanical
unfolding of individual domains of titin molecules was reported, with both
AFM5 and laser tweezers.6,7 The investigation of proteins under mechanical
force has made accessible completely new aspects of protein folding and
stability that can clearly not be studied in ensemble experiments.8–11 This
approach is of particular interest for proteins involved in mechanical functions,
but the mechanical stability of other proteins is also of fundamental interest.
The optical detection of single molecules dates back to the 1970s, when it

became possible to measure fluorescence from single atoms in dilute atomic
beams, i.e. in the gas phase, where the background problem is minimal.
Observing single molecules in the condensed phase is much more difficult,
because Rayleigh and Raman scattering produce a huge background, not to
mention contaminants, making great demands on the purity of the matrix.
Moreover, an atom in vacuum is a chemically very stable system, even in its
excited state, whereas fluorescent molecules in the condensed phase survive
only a limited number of excitation–emission cycles before they are irreversibly
destroyed – a process termed photobleaching. Single molecule detection in a
solid or liquid matrix therefore requires additional measures. First of all, an
optical method must be used that provides as strong a signal from an individual
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molecule as possible relative to the background from the large number of
matrix molecules. The most popular option is fluorescence, where a dye mole-
cule resonantly interacts with the excitation light. Due to the Stokes shift, the
emitted light can be selected spectrally, typically with interference filters. To aid
the signal from an individual molecule to be observed against the background
signal from matrix molecules, it is helpful to reduce the size of the detection
volume as much as possible, because the background level is proportional to
the number of matrix molecules in the observed volume. Such spatial selection
can be achieved, for instance, by very tightly focusing a laser beam into the
sample, combined with confocal detection (Figure 7.1), or by total internal
reflection fluorescence (TIRF) microscopy.
The first detection of individual chromophores in solid matrices was achieved

at liquid helium temperature with modulated absorption spectroscopy in
1989.12 Soon after, fluorescence spectroscopy was shown to yield a superior
signal-to-noise ratio.13 Within a couple of years, successful fluorescence ex-
periments at room temperature followed,14–18 leading to an explosion of the
field, and opening the way for single molecule detection of suitably labeled
biomolecules.19 The introduction of FCS with a confocal detection scheme20

and single molecule sensitivity was an important step for single molecule studies
in solution. The demonstration of FRET in individual, labeled DNA mole-
cules21 in 1996 triggered a revival of the ‘‘spectroscopic ruler,’’22,23 enabling
distance measurements in single biomolecules. The strongly distance-dependent
radiationless energy transfer between an acceptor and a donor chromophore24

had been used to study protein folding and dynamics for decades25 and, indeed,
the first experiments applying single molecule FRET to protein folding fol-
lowed soon.26–29 Especially the ability of the method to separate subpopula-
tions, e.g. folded and unfolded protein molecules (Figure 7.1), and its potential
to investigate intramolecular dynamics has made it into a central component of
the growing field of single molecule protein folding.
Instead of reviewing the progress in the field chronologically and com-

prehensively, which has been done elsewhere,10,30–34 I will present some of the
main ideas of single molecule experiments and analysis to illustrate how they
can be used to study protein folding, and conclude with a perspective of
what we might expect from this new approach in the future. As the focus of
this article is on conceptual issues, the practical aspects of single molecule
experiments will also not be treated in detail. They can be found in a number of
recent reviews.31,35–39

7.3 Kinetics: From Ensembles to Single Molecules

Assuming an infinitely large homogeneous system (a good approximation for
a standard protein-folding experiment in a test tubei) consisting of a set of
n subpopulations (‘‘states’’) separated by sufficiently large free energy barriers, the

i100ml of a 1mM sample still contain 6 � 1013 molecules.
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Figure 7.1 Schematic of a confocal single molecule experiment on freely diffusing
molecules (right side). In this example, the signal is first separated by
polarization and then by wavelength into two detection channels each,
corresponding to emission from donor and acceptor chromophores. The
left side shows an example of data from an experiment on CspTm mole-
cules (labeled with Alexa 488 and Alexa 594 fluorophores) freely diffusing
in a solution containing 1.5M guanidinium chloride, conditions close to
the unfolding midpoint. One second of a fluorescence intensity measure-
ment (total acquisition time is 60min) is shown on the lower left, with
large bursts of photons originating from individual molecules diffusing
through the confocal volume. From each of the bursts (discriminated
from background by a combination of thresholds), a transfer efficiency E
and a fluorescence lifetime t (for both donor and acceptor, the donor
lifetime is shown in the figure) can be calculated and plotted in a two-
dimensional density graph (middle, left side). Subpopulations can be
selected based on this graph (dashed box) to calculate subpopulation-
specific properties, such as fluorescence lifetimes or correlation functions.
A one-dimensional histogram of transfer efficiencies is depicted on top.
The plots show populations with transfer efficiencies of EE 0.9 for folded
and EE 0.45 for unfolded molecules. This separation of subpopulations
allows changes in transfer efficiencies and other properties to be analysed
individually for each state. The third peak at a transfer efficiency close to
zero (shaded) is due to molecules without an acceptor chromophore. The
measurement was done with a MicroTime 200 time-resolved fluorescence
microscope (PicoQuant) with an excitation wavelength of 470 nm.
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concentrations of molecules assigned to these states will evolve in time according to
a set of coupled, first order, ordinary differential equations: the reaction rate
equations. The overall reaction is thus treated as a continuous, deterministic
process. The time course of the reaction will be described by a sum of n–1 ex-
ponential terms. Their individual time constants, however, will be complex alge-
braic expressions of all the rate constants in the mechanism and therefore have, in
general, no simple physical significance.
But, in fact, the system is neither continuous nor deterministic. It is discrete,

because molecules come in whole numbers, and molecular populations only
change by integer amounts. Moreover, the system is stochastic, because the
transitions of individual molecules from one state to another are ultimately ini-
tiated by thermally driven diffusive fluctuations and molecular collisions in the
system. If we observe the signal from a sufficiently small number of mole-
cules, these fluctuations about the average behavior become large enough to be
measured, and can be used to extract dynamic information about the system, an
insight conceived in the context of light scattering experiments40–43 and membrane
channel recordings,44 and now used routinely, for instance in FCS20,43,45 (cf.
Section 7.4). Suppose, for example, we observe N¼ 1000 protein molecules under
conditions corresponding to the unfolding midpoint. The probability of an in-
dividual molecule being folded is p¼ 0.5, so the variation in the number of folded
molecules is given by the standard deviation of the binomial distribution as [Np
(1 – p)]1/2 E16. The number of protein molecules that are folded at equilibrium is
therefore not constant, but is 500� 16, where the standard deviation reflects the
random fluctuations in the number of folded molecules from instant to instant.
The smaller the number of molecules we observe, the larger the relative

fluctuations of the signal will be. Ultimately, if only a single molecule is ob-
served, we expect step-like transitions between the states the molecule can
populate. In the simplest example of a two-state folding reaction

U$
kf

ku
N ð7:1Þ

where equilibration within each state is fast relative to the transition rates be-
tween the states, the molecule will reside in either the folded (N) or the unfolded
state (U) for extended periods of time, with intermittent rapid jumps between
them. The average dwell times in N and U are given by the inverse rate co-
efficients of the unfolding reaction ku and the folding reaction kf, respectively.
Such simple stochastic chemical kinetics have been observed for single immo-
bilized molecules of the small cold shock protein CspTm (Figure 7.2), a two-
state folder also by all criteria accessible in ensemble experiments.46–48

7.3.1 Rate Constants and Probabilities

If we consider the temporal behavior of an individual molecule with transitions
between a folded and an unfolded state, the term ‘‘fraction of molecules folded
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at equilibrium’’ must be replaced by the ‘‘fraction of time for which the mole-
cule is folded,’’ a quantity that can be measured accurately from a single protein
molecule only with observation times much longer than the effective relaxation
time t of the two-state system, i.e. the inverse sum of the folding and unfolding
rate constants kf and ku.

t ¼ kf þ ku
� ��1 ð7:2Þ

While observation times in single molecule fluorescence experiments are still
very much limited by the photostability of current organic chromophores,
paradigmatic examples of analogous behavior are available from single channel
recordings, where the ion current across an individual channel can sometimes
be measured for hours, allowing a thorough kinetic and thermodynamic
analysis of the channel opening and closing mechanism from an individual
molecule.
In thinking about the folding kinetics of a single molecule, the question is:

given the protein molecule is, say, unfolded at time t, what is the unfolded state
lifetime tu of the molecule? More generally, we would like to know the

Figure 7.2 Example of data from an experiment on fluorescently labeled, vesicle-
encapsulated CspTm molecules immobilized on a surface.91 The experi-
ment was performed at 2.0M guanidinium chloride, the denaturation
midpoint of CspTm. Under these conditions, the protein would be ex-
pected to remain in the folded and unfolded states for extended periods of
time, with rapid, intermittent jumps across the barrier between the two
corresponding free-energy minima. The top panel shows the fluorescence
intensity trajectories recorded from the donor and acceptor chromophores
of an individual protein. The anticorrelated changes in their emission
intensities result in clear jumps of the transfer efficiency (bottom panel),
reflecting the expected behavior of a two-state protein.
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probability density function (pdf ) of the times the protein molecule stays folded
or unfolded. To this end, we first define U(t) as the probability that the mole-
cule remains unfolded throughout the time from 0 to t. If we now assume that,
for an unfolded molecule, the probability P of folding during a shortii time
interval Dt is just proportional to the length of this time interval, we get the
conditional probability

P tþ Dtjunfolded at tð Þ ¼ aDt ð7:3Þ

where a is a constant, independent of time. This latter assumption means that
the probability of folding is independent of what has happened prior to t. This
is a fundamental characteristic of this type of random process (a Markov
process). As the molecule can either fold or not fold during Dt, and the
probabilities of these two alternatives must add up to 1, we also know that
the probability of remaining unfolded during Dt is 1 – aDt. We can thus express
the probability that the molecule remains unfolded during the entire interval
from 0 to t+Dt as

U tþ Dtð Þ ¼ U tð Þ 1� aDtð Þ ð7:4Þ

taking into account the Markov assumption. After slightly reorganizing the
equation, we get in the limit Dt- 0

lim
Dt!0

U tþ Dtð Þ �U tð Þ
Dt

¼ dU tð Þ
dt

¼ �aU tð Þ ð7:5Þ

by the definition of the derivative. As U(0)¼ 1, we obtain as a solution

U tð Þ ¼ e�at ð7:6Þ

Here, and from the corresponding probability density function of the unfolded
state lifetime

p tð Þ ¼ a e�at ð7:7Þ

we recognize immediately that our constant a is the inverse time constant tu,
and thus the rate constant kf. It is this connection with the single molecule
world that illustrates why exponential decays are so abundant in macroscopic
chemical kinetics.
Another illustrative way of getting to the exponential distribution2 pictures

the unfolded protein as randomly diffusing within its unfolded state free-energy
minimum, driven by the thermal energy of the system. If this motion takes place
on a timescale much faster than the inverse folding rate (the separation of
timescales, a prerequisite for a two-state process), we can interpret each thermal

ii Dtmust be small relative to 1/a, so we can neglect processes such as multiple transitions during Dt.
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kick as a binomial trial with some probability, p, of successfully crossing the
barrier to the folded state. The chance of success must therefore be very small in
each step, so a large number of trials, N, will be necessary on average before the
protein folds. Briefly, in this case the binomial distribution approaches the
Poisson distribution, which gives the probability of not folding in time t es-
sentially as e�at. This is the reason for the close connection between Poisson
statistics and exponential probability density functions, both highly abundant
in single molecule statistics. If, as in the above example, the distribution of time
intervals between events is exponential, then the mean number of events during
a given time interval will follow a Poisson distribution. Another remarkable
property of the exponential distribution is that it is the only random function
with no memory.
The lack of memory that is assumed in the above derivations is an interesting

issue in protein dynamics. It has been suggested from single molecule experi-
ments on enzymatic reactions49 that there may be a ‘‘molecular memory’’ on
unexpectedly long timescales, rendering successive enzymatic turnovers
dependent on each other. A similar phenomenon is conceivable in protein
folding, if there are additional dynamics coupled to folding that approach the
timescales of the folding and unfolding rate coefficients. This may be expected
for slow processes such as peptidyl-prolyl cis-trans isomerization. Whereas fast
transitions in agreement with a simple two-state process were observed for
individual CspTm molecules (Figure 7.2), slow dynamics have been postulated
based on single molecule FRET experiments on immobilized adenylate kinase50

and ribonuclease H51 (cf. Section 7.4).

7.4 Correlation Analysis

One of the most powerful methods to investigate such ‘‘molecular memory’’
effects is correlation analysis. Currently, the most common approach for in-
vestigating the relaxation kinetics of a reaction is to perturb the entire en-
semble, e.g. by a rapid change in denaturant concentration in a stopped-flow
instrument or by a laser-induced temperature jump, and then to observe the
system return to equilibrium under the new set of conditions. According to the
fluctuation-dissipation theorem,52 the rates of relaxation of a system to equi-
librium after a small macroscopic perturbation, and the time correlation of
spontaneous fluctuations of the undisturbed system at equilibrium, are de-
scribed by the same rate coefficients. Correlation spectroscopy can therefore
provide kinetic information about chemical reactions or molecular dynamics
even at equilibrium.
If we think of the system under investigation, e.g. our folding protein molecule,

as possessing some sort of internal coherence, this coherence is lost, or dissipated,
through the interaction with the randomly fluctuating solvent molecules. For
instance, if we observe a small volume of a solution, the concentrations of
reactants fluctuate about their equilibrium mean values as a result of random
variations both in the number of molecules formed or eliminated by the chemical
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reaction and in the number of molecules which enter or leave the observation
region by diffusion. Hence, both the rate coefficients for diffusion and the re-
action may be determined from observations of the rates of decay of spontaneous
concentration fluctuations without disturbing the equilibrium of the reaction
system, i.e. in an entirely non-invasive fashion.
The central quantity for analysing such fluctuations and their loss of co-

herence are correlation functions.53 The autocorrelation function of the
property A, for instance, is defined asiii

A tð ÞA tþ tð Þh i ¼ lim
T!N

1

T

ZT
0

A tð ÞA tþ tð Þ dt ð7:8Þ

(In any experimental measurement the averaging is of course done over finite
time.) Cross-correlation functions between different properties or signals, e.g.
fluorescence emission from a donor and an acceptor chromophore undergoing
FRET, can be defined analogously. The autocorrelation function of a non-
conserved, non-periodic property decays from its initial value hA2i to the final
value hAi2 with a time constant characteristic of the fluctuation of A, where A(t)
and A(t+ t) are expected to become totally uncorrelated at long times (Figure
7.3A). In many cases, the autocorrelation function decays like a single ex-
ponential with a characteristic relaxation time or correlation time of the property,
but often it takes a more complicated functional form. The most common ex-
ample is a fluorescence correlation experiment where fluorescently labeled mole-
cules diffuse through a confocal volume with a three-dimensional Gaussian
shape. The simplest setup (Figure 7.1) involves focusing a laser beam into the

Figure 7.3 (A) A general, unnormalized correlation function (see text). (B) Donor
intensity autocorrelation function from Hanbury Brown and Twiss ex-
periments on CspTm labeled with a donor and acceptor dye, showing the
rapid global unfolded chain dynamics in the tens of nanoseconds range.85

The fast component in the range of a few nanoseconds is caused by
photon antibunching.110

iii Strictly speaking, this definition is only true for an ergodic system, where the averaging is
independent of the starting time t.
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sample with a high numerical aperture objective, thus forming a diffraction-
limited focal volume. The fluorescence of molecules in this region of the sample is
collected through the same objective, out-of-focus light is removed with a pinhole
in the image plane of the microscope, and the signal is then typically detected with
avalanche photodiodes. The resulting intensity autocorrelation function nor-
malized by the mean intensity squared is

G tð Þ ¼ 1þ 1

Nh i 1þ t
tD

� ��1

1þ t
o2 tD

� ��1=2

1þ K e�t=tr
� �

ð7:9Þ

where hNi is the average number of molecules in the observed volume, tD is the
characteristic time it takes a molecule to diffuse through the observation vol-
ume, o is the aspect ratio of the volume, and K is the equilibrium constant of a
reaction with a relaxation time tr resulting in fluctuations of the emission in-
tensity. In this case there are thus two mechanisms contributing to the observed
intensity fluctuations: diffusion of molecules in and out of the confocal volume,
and fluctuations in the concentrations of molecular species caused by the re-
action, which could, for example, be a protein folding reaction (Equation (7.2)).
From Equation (7.9), it is obvious that the observation of reaction dynamics is
limited to timescales smaller than the diffusion timescale, because the diffusive
terms will decay to zero for t ctD.
Correlation analysis can be performed on molecules freely diffusing in so-

lution, as in a typical FCS experiment, but it can equally be applied to the signal
recorded from single immobilized molecules. Both approaches have been used
for the investigation of protein folding.54 For example, Chattopadhyay et al.55

investigated conformational fluctuations in unfolded intestinal fatty acid
binding protein doubly labeled with the fluorophore TMR, such that intra-
molecular self-quenching of the dyes can lead to fluctuations in the fluorescence
emission rate. The corresponding signal autocorrelation exhibits a component
with a relaxation time of 1.6 ms and amplitude that changes in response to
denaturant concentration in parallel with the population of the unfolded state,
suggesting that it corresponds to the unfolded state dynamics of the protein.
The authors suggest additional intramolecular interactions or increased chain
stiffness as a reason for these dynamics to be significantly slower than expected
from experiments on unstructured peptides56–58 (see Chapter 6 by Gruebele for
more details on fast dynamics in proteins). With similar methods, Neuweiler
et al.59 investigated Trp-cage folding via the quenching of the fluorophore
MR121 by tryptophan. Their results are in good agreement with the ms-folding
kinetics observed in laser-induced temperature jump experiments60 and re-
vealed an additional kinetic component on the 100 ns timescale. The inter-
pretation was complicated by complex formation between Trp and the dye, but
it illustrates the potential of correlation spectroscopy for sub-microsecond
dynamics, which have turned out to be particularly useful for clarifying the
diffusive behavior of unfolded polypeptide chains (see Section 7.5) and its
implications for the protein folding reaction (see Chapter 6 by Gruebele).
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7.5 FRET Efficiency Distributions and Distance

Dynamics

In FCS experiments, the sample concentration is optimized for the best signal-
to-noise ratio of the autocorrelation function. As the rate of photon emission
increases with hNi (the mean number of molecules in the observation volume)
the photon statistics will be better, and the statistical noise will be smaller for
larger hNi. On the other hand, the amplitude of the correlation function is
inversely proportional to hNi (cf. Equation (7.9)), and the signal itself is thus
larger for small concentrations. It turns out that the optimal signal-to-noise
ratio is achieved in a concentration regime where on average 10 or more
molecules reside in the observation region.61 In practice, this usually corres-
ponds to concentrations in the nanomolar range. Increasing the sample con-
centration further will eventually lead to complete averaging of uncorrelated
fluctuations, and the single molecule aspect of the experiment will be lost. In the
other extreme, for a single molecule experiment in its pure form, it will be
necessary to dilute the solution such that hNi { 1. In confocal experiments on
freely diffusing molecules, this will result in bursts of photons originating from
single molecules diffusing through the confocal volume, separated by intervals
with background signal (Figure 7.1). The fluorescence signal from each mole-
cule can thus be identified individually using suitable threshold criteria.

7.5.1 Single Molecule FRET Experiments

In single molecule FRET experiments (Figure 7.1), the distance dependence
of the transfer efficiency E is related to the donor and acceptor fluorescence
according to

E ¼ nA

nA þ nD
¼ 1

1þ r=R0ð Þ6
ð7:10Þ

which can be used to obtain distance information from individual molecules.
Here, nA and nD are the number of donor and acceptor photons in an individual
burst (corrected for fluorescence quantum yields, detection efficiencies, cross-
talk between the detection channels, and direct excitation of the acceptor62), r is
the inter-dye distance, and R0 is the Förster radius of the donor/acceptor pair,
which is calculated as

R6
0 ¼

9000 ðln 10Þ k2QDJ

128 p5n4NA
ð7:11Þ

where J is the overlap integral between the donor emission and the acceptor
absorption spectra, QD is the donor’s fluorescence quantum yield, k2 is a factor
depending on the relative orientation of the chromophores’ transition dipoles,
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n is the refractive index of the medium between the dyes, and NA is Avogadro’s
number.24,63

Performing a single molecule FRET experiment on protein folding requires
several steps (for details, see ref. 62). First, protein samples have to be prepared
for labeling, either by chemical synthesis or by recombinant expression in
combination with site-directed mutagenesis. After identifying a suitable dye
pair with the Förster radius in the right range, the fluorophores need to be
attached to the protein as specifically as possible to avoid chemical hetero-
geneity.64 The equilibrium and kinetic properties of the labeled protein should
then be measured in ensemble FRET experiments and compared directly to
unlabeled protein to ensure that the folding mechanism is not altered. It is
helpful to prepare control molecules, such as polyproline peptides29,65,66 or
double-stranded DNA,67 with the same chromophores as the protein. After
customizing the instrument for the sample, data can be taken directly either on
freely diffusing molecules or on immobilized molecules, if observation times
greater than a few milliseconds are desired. Finally, the data need to be pro-
cessed62 to correct for background contributions and other effects, to identify
fluorescence bursts in diffusion experiments, to calculate transfer efficiencies,
fluorescence lifetimes, and fluorescence intensity correlation functions.
In single molecule FRET experiments on chymotrypsin inhibitor 2 (CI2) it was

first demonstrated that this approach is able to separate the signal from folded
and unfolded subpopulations by histogramming the transfer efficiencies calcu-
lated from a large number of fluorescence bursts.27 Such FRET efficiency
histograms (Figure 7.1) have become a common way of analysing this type of
experiment, allowing the subpopulations to be investigated individually and thus
avoiding the signal averaging between folded and unfolded molecules typical of
ensemble experiments. This has led to the discovery of the equilibrium collapse of
the unfolded state even in two-state folders such as the small cold shock protein
CspTm29 and many other small proteins.27,68–75 It may be tempting to convert
the efficiency histograms directly into distance distributions26–28,76 and further
into potentials of mean force. However, this is rarely justified, and requires
detailed knowledge about the timescales of the dynamic processes involved.

7.5.2 Timescales and Distance Distributions

The relative magnitude of the timescales of at least four different processes will
have an influence on the position and the width of the FRET efficiency
histogram: (a) the rotational correlation time of the chromophores, (b) the
fluorescence lifetime of the donor, (c) the intramolecular dynamics of the chain
connecting the fluorophores, and (d) the observation timescale.
The rotational correlation time of the chromophores influences the value of

the orientation factor k2 (Equation (7.11)): if dye reorientation is sufficiently
fast such that the relative orientation of the donor and acceptor dipoles average
out while the donor is in the excited state, k2 can be assumed to equal 2/3. If, in
the other extreme, the donor fluorescence decay is much faster than dye
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reorientation, a static distribution of relative dye orientations can be assumed.
Intermediate cases are difficult to treat analytically,63 and simulations become
the method of choice. k2¼ 2/3 is often a good approximation, because the
rotational correlation times of typical dyes are in the range of a few hundred
picoseconds, while their fluorescence lifetimes are in the nanosecond range
(although they may be shortened significantly by the transfer process).
The characteristic times of the fluorescence decay and of inter-dye distance

changes are often less clearly separated. If they are in a similar range, the dis-
tribution of transfer rates resulting from the distance distribution will give rise to
highly non-exponential fluorescence decays, which in favorable cases can even
be used to obtain information about the shape of the distance distribution.77

Finally, the relative magnitudes of the inter-dye distance distribution and the
observation timescale (more accurately, the inter-photon times78) will affect the
width of the measured transfer efficiency distributions. As shown by Gopich
and Szabo,78,79 the observation time must be approximately an order of
magnitude smaller than the relaxation time of the donor–acceptor distance to
obtain physically meaningful distance distributions or corresponding potentials
of mean force. Otherwise, only the mean value of the transfer efficiency of the
respective subpopulation can be used to extract information about the distance
distribution, and an independent model for the shape of the distance distri-
bution is needed. In practice, this means that distance distributions can be
determined from free diffusion experiments on proteins if the underlying dy-
namics are on a timescale greater than about 1 ms, assuming photon count
rates of B105 s�1 typically achieved during fluorescence bursts.78 A noticeable
influence of dynamics on the width, however, is already expected for fluctu-
ations in the 10 to 100 ms timescale,78 which has been used to set bounds on the
pre-exponential factor for protein folding.29 Recently, methods to obtain re-
action dynamics from the shape of transfer efficiency histograms have been
developed,80 but to date no experimental applications have been reported.
The quantitative influence of these different timescales is illustrated by a

recent analysis of the transfer efficiencies obtained in single molecule experi-
ments on polyproline peptides of different lengths labeled with a FRET pair66

in combination with Langevin molecular dynamics simulations used to find the
shape of the end-to-end distance distribution P(r) of these stiff peptides. The
three physically plausible limits for the possible averaging regimes and the re-
sulting mean transfer efficiencies hEi are:

1. If the rotational correlation time tc of the chromophores is small relative
to the fluorescence lifetime tf of the donor (i.e. k

2¼ 2/3), and the dynamics
of the peptide chain (with relaxation time tp) are slow relative to tf,

Eh i ¼
Z lc

a

EðrÞPðrÞdr with EðrÞ ¼ ð1þ ðr=R0Þ6Þ�1 ð7:12Þ

where P(r) is the normalized inter-dye distance distribution, a is the distance
of closest approach of the dyes, and lc is the contour length of the peptide.
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2. If tc { tf and tp { tf,
iv

Eh i ¼
R lc
a
ðR0=rÞ6PðrÞdr

1þ
R lc
a
ðR0=rÞ6PðrÞdr

ð7:13Þ

3. If tc c tf and tp c tf,

Eh i ¼
Z 4

0

Z lc

a

Eðr; k2ÞPðrÞpðk2Þdr dk2 with Eðr; k2Þ ¼ 1þ 2

3k2
ðr=R0Þ6

� ��1

ð7:14Þ

The theoretical isotropic probability density p(k2) for the case in which
all orientations of the donor and acceptor transition dipoles are equally
probable63,81 is

pðk2Þ ¼
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with k2 ¼ cos yT � 3 cos yD cos yAð Þ2, where yT is the angle between the donor
and acceptor transition dipoles, and yD and yA are the angles between the
transition moments and the line connecting the centers of the donor and ac-
ceptor, respectively.
It is important to recognize that even for a molecule with a single fixed dis-

tance or very rapid conformational averaging, the resulting FRET efficiency
histogram is relatively broad. A fundamental source of broadening is shot noise,
the variation in count rates about fixed means due to the discrete nature of the
signals (only small numbers of photons is observed from an individual mole-
cule!), but in practice broader histograms than expected from shot noise alone
are usually observed. The origin of this excess width is currently unclear,29,72 but
there are factors apart from slow distance fluctuations that could potentially
contribute, such as fluctuating fluorescence quantum efficiencies, or confocal
volumes for donor and acceptor channels that are either of different size or
misaligned. Consequently, without a suitable reference it is difficult to interpret
a width in excess of shot noise in terms of slow conformational dynamics.
The separation of the signals from various subpopulations, such as the ther-

modynamic states in two-state protein folding reactions, can be used to measure
a variety of parameters82 that are difficult to determine otherwise. In a confocal
experiment with pulsed excitation and four detection channels (Figure 7.1), for
example, the emission wavelength range (i.e. whether it is a donor or an acceptor
photon), the polarization, and the time of emission relative to the excitation

ivNote that the averaging has to be done over the transfer rate kt, i.e. Eh i ¼ 1=ð1þ k0=
R lc
a

kt rð ÞP rð ÞdrÞ, where kt rð Þ ¼ k0 R0=rð Þ6, and k0 is the fluorescence decay rate of the donor in the
absence of the acceptor.
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pulse become available for every detected photon. Consequently, we can de-
termine for each burst of photons from a single molecule the transfer efficiency
(Equation (7.10)), the donor and acceptor fluorescence lifetimes, the fluor-
escence anisotropy, and a number of auxiliary parameters that aid the inter-
pretation of the results. In a second step, the bursts from subpopulations can be
grouped, e.g. to obtain fluorescence decays of an individual subpopulation,
devoid of signal contributions from other molecules. Whereas, for example, the
fluorescence lifetime from an individual burst can only be estimated with rela-
tively large uncertainty, the combination of all photons from a subpopulation
can result in decays that are suitable for more detailed analyses.
Hoffmann et al.,83 for instance, investigated variants of the small two-state

protein CspTm with the dye labels positioned such that different segments of
the chain could be probed. A combined analysis of FRET efficiency histograms
and subpopulation-specific fluorescence lifetimes (Figure 7.1) gave good
agreement with intramolecular distance distributions of a Gaussian chain for
all variants, even at low denaturant concentrations, where the chain is compact.
This indicates that any residual structure can affect only short segments and is
probably highly dynamic. Kinetic synchrotron radiation circular dichroism
experiments in fact provided evidence for the presence of some b-structure in
the compact unfolded state,83 and kinetic ensemble FRET experiments probing
a short segment that forms a b-strand in the folded state indicate the local
formation of extended structure in the compact unfolded state of a closely
related cold shock protein, CspBc.84 However, there are also examples for
deviations from Gaussian chain behavior. Laurence et al.68 used subpopula-
tion-specific fluorescence lifetime analysis to investigate structural distributions
upon collapse of CI2 and ACBP and inferred the presence of transient residual
structure in the unfolded state.

7.5.3 Dynamics from Transfer Efficiency Fluctuations

A versatile way of probing distance dynamics over a broad range of time-
scales is to monitor the resulting fluctuations of the transfer rate between
donor and acceptor.28 In combination with the separation of subpopulations,
the full potential of such correlation analyses (cf. Section 7.4) can be used to
selectively measure intramolecular dynamics on timescales from nanoseconds85

to seconds and longer.70

An example for the investigation of very rapid dynamics with such methods
has recently been reported by Nettels et al.,85 who analysed the single molecule
photon statistics of the fluctuations in intensity of donor and acceptor fluoro-
phores that result from distance fluctuations in the unfolded subpopulation of
the small two-state protein CspTm. The basic idea of their experiment is the
following: if, for example, a donor photon is emitted at time t¼ 0, the chain
ends are likely to be far apart at that instant, corresponding to a low rate of
energy transfer. A very short time later, the ends will still be far apart, and the
likelihood of emitting another donor photon will still be high. However, at
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times much greater than the reconfiguration time of the chain, the molecule will
have lost the ‘‘memory’’ of its initial configuration, and the probability of
donor emission will be determined by the average transfer efficiency. Thus
the autocorrelation of the emission intensity is expected to decay approximately
on the timescale of chain reconfiguration (Figure 7.3B). With information
on the unfolded state dimensions available from previous experiments,83 and
using a model that describes chain dynamics as a diffusive process on a one-
dimensional free energy surface,85–87 the very rapid reconfiguration time could
be extracted. This time decreases from about 60 ns to 20 ns between 0 and 6M
guanidinium chloride, after correcting for solvent viscosity. The addition of
denaturant thus not only expands the chain, but the reduced transient intra-
molecular interactions decrease the contribution of internal friction to chain
diffusion. Correlation spectroscopy indicates that at times less than B100 ms
there are no additional long-range dynamics in unfolded CspTm.88 Moreover,
since the dye-labeled protein folds in B10ms in the absence of denaturant with
an exponential time course,29 the requirement that the unfolded state dynamics
be fast compared to the folding times indicates that there are no slower un-
folded state dynamics in this protein.
An example for dynamics from correlation analysis of FRET experiments on

longer timescales is the work of Kuzmenkina et al.,51 who investigated surface-
immobilized RNase H from microseconds to minutes. In this case, a com-
ponent of the correlation function on the 20 ms timescale was assigned to
polypeptide reconfiguration; the actual folding reaction was observed on a 100 s
timescale. Additionally, step-like transfer efficiency changes with a wide range
of amplitudes were detected even between efficiency values assigned to the
unfolded state. A similar behavior had previously been reported for adenylate
kinase A.50 Cross-correlation analysis of the experiments on RNase H yielded a
relaxation time of about 2 s, which was interpreted as slow conformational
transitions with correspondingly large barriers in the unfolded state. While a
clear structural interpretation of these observations is not yet available, they
illustrate that unfolded state dynamics may occur over a wide range of
timescales.

7.6 Pleasure, Pain, and Promise of Single Molecule

Experiments

As illustrated above, single molecule analyses can reveal the underlying dis-
tributions of distances, timescales, or forces averaged out in ensemble meas-
urements, and will thus contribute substantially to our understanding of
dynamically heterogeneous systems such as proteins. Even though the method
is relatively new, integrated commercial instrumentation is already available,89

which allows these methods to be applied even in laboratories that do not
develop their own instrumentation. However, due to the complexity of sample
preparation, instrumentation, and data analysis, we are also faced with the risk
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of jumping to conclusions or introducing a subjective bias by selecting indi-
vidual molecules that agree with our expectations while ignoring others. It will
therefore remain crucial to complement single molecule experiments with en-
semble data for validation and, possibly even more importantly, to include
control molecules to separate effects originating from photophysics and other
complications from the molecular property under study.
Single molecule methods should be able to advance our understanding

of many of the elementary properties of the energy surfaces of protein
folding that have been put forward by theory (see Chapter 3 by Wolynes), but
have been difficult to test experimentally. Some of the topics currently being
pursued intensively include the structure and dynamics of the collapsed
unfolded state as observed under conditions favoring the native structure,29,90

and a mechanistic analysis of folding reactions from trajectories of individual
protein molecules,50,91–93 including their potential kinetic and thermodyna-
mic heterogeneity. An ultimate goal will be to time-resolve the transitions
between folded and unfolded states (as opposed to the mere redistribution of
populations observed in the classical chemical kinetics of protein folding).
In this context, particular promise lies in the analysis of the different scenarios
of ‘‘downhill folding’’ (see Chapter 6 by Gruebele). As originally proposed by
Bryngelson et al.,94 downhill folding or unfolding becomes accessible in kinetic
experiments when the bias for the folded or the unfolded state, respec-
tively, becomes sufficiently large.95,96 By significantly populating all struc-
tures along the reaction coordinate, this could allow the observation of the
actual folding process in single protein molecules and the distribution of
microscopic pathways taken by a folding protein. In the other scenario, only
one thermodynamic state exists under a whole range of conditions, resulting
in a gradual shifting of a single free-energy minimum from unfolded to folded
structures.97,98 Single molecule methods should be extremely helpful in quan-
tifying the structural distributions involved in such ‘‘one-state’’ folding, even
though this will require improvements in photon emission rates and collection
efficiencies to cope with the microsecond folding times of these molecules.
It might be problematic to identify barrierless folding if the barrier exists at
high denaturant concentration and disappears as the protein is stabilized by
decreasing the denaturant concentration.73,98

Key goals in method development will be to overcome the current limitations
of the available techniques. In single molecule fluorescence, the photophysics
and the photochemistry of the fluorophores are probably the most limiting
factor. Even very stable dyes survive only a certain number of excitation cycles,
seriously limiting the number of photons that can be observed from a single
molecule. Intermittent excitation can be used to extend the acquisition time,51

but only at the expense of time resolution. The photon emission rate and thus
the time resolution of the experiment are ultimately limited by the fluorescence
lifetime of the chromophores, typically in the nanosecond range. Assuming an
optimistic photon collection efficiency of 10%, and one excitation every 10 ns
under optical saturation, this yields maximum average count rates in the
10MHz range. In practice, however, the rates are significantly lower
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(B100 kHz), mostly due to the population of long-lived dark states. The field
would thus gain enormously from fluorophores without populated triplet or
radical dark states, higher emission rates, and greater photostability. At the
same time, instrumentation development will continue to be crucial for pushing
the limits of single molecule spectroscopy.
Finally, one of the great expectations for single molecule protein folding is its

developing convergence with biophysical theory, especially molecular dynamics
simulations, which have already been very instructive for the analysis of
mechanical unfolding experiments99,100 and single molecule FRET66,101 (see
Chapter 8 by Pande). Moreover, theory will continue to play a crucial role for
data analysis (e.g. the optimal use of photon statistics for the extraction of
dynamic parameters79,80,102–104), for the quantitative treatment of FRET results
even when the timescales of the underlying processes overlap,66,78 for the ex-
traction of equilibrium parameters from non-equilibrium experiments,105,106

and for a variety of other fundamental aspects.107–109 This multifaceted com-
bination of methods certainly contributes to both the challenge and the fas-
cination in single molecule studies. And maybe individual molecules are indeed
more prone to give away the secrets of protein folding than large crowds.
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CHAPTER 8

Computer Simulations
of Protein Folding

VIJAY S. PANDE , ERIC J. SORIN , CHRISTOPHER D.
SNOW AND YOUNG MIN RHEE

Department of Chemistry and Biophysics Program, Stanford University,
Stanford, CA 94305, USA

8.1 Introduction: Goals and Challenges of Simulating

Protein Folding

Computer simulation holds great promise to significantly complement experi-
ment as a tool for biological and biophysical characterization. Simulations offer
the promise of atomic spatial detail with femtosecond temporal resolution.
However, the application of computational methodology has been greatly
limited due to fundamental computational challenges: put simply, for much of
what one would want to examine, atomistic simulations would require decades
to millennia to complete. Below, we detail current methods to tackle these
challenges as well as recent applications of this methodology.

8.1.1 Simulating Protein Folding

Proteins play a fundamental role in biology. With their ability to perform
numerous biological functions, including acting as catalysts, antibodies, and
molecular signals, proteins today realize many of the goals to which modern
nanotechnology aspires. However, before proteins can carry out these remark-
able molecular functions, they must perform another amazing feat – they must
assemble themselves. This process of protein self-assembly into a particular
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shape, or ‘‘fold’’, is called protein folding. Due to the importance of the folded
state in the biological activity of proteins, recent interest in misfolding
related diseases1 (see Chapter 10 by Esteras-Chopo et al.), and a fascination
with how this process occurs,2–4 there has been much work to unravel the
mechanism of protein folding5 (see Chapter 3 by Wolynes).
While there are several questions relating to the ‘‘protein folding problem’’,

including structure prediction6,7 and protein design (see Chapter 9 by Lehmann
and co-workers), here we will concentrate on another aspect of folding: how do
proteins fold into their final folded structure? Experimentally characterizing the
detailed nature of the protein folding mechanism is considerably more difficult
than characterizing the static structure. We therefore turn to the combination
of experiment and atomistic models (that can readily yield the desired spatial
and temporal detail), but we must in turn ask ‘‘how quantitatively predictive
are these simulations?’’ The true test is statistical significance. The very act of
statistically comparing with experiment is critical, and leads to either model
validation or an indication that further model refinement is necessary.
There are two approaches one can take in molecular simulation. One direc-

tion is to perform coarse-grained simulations using simplified, or ‘‘minimalist’’,
models. These models typically either make simplifying assumptions (such as
Go models, which use simplified Hamiltonians8), or employ coarse-grained
representations (such as using alpha-carbon only models to represent the
protein9) or potentially both. While these methods are often first considered
due to their computational efficiency, perhaps an even greater benefit of simpli-
fied models is their ability to potentially yield insight into general properties
involved in protein folding. However, with any model there are limitations and
the cost for such potential insight into general properties of folding is the
limitation of restricted applicability to any particular protein system.
Alternatively, one can examine more detailed models. These models typically

have full atomic detail, often for both the protein and solvent alike. Detailed
models have the obvious benefit of potentially greater fidelity to experiment.
However, this comes at two great costs. First, the computational demands for
performing the simulation become enormous. Second, the added degrees of
freedom lead to an explosion of extra detail and simulation-generated data; the
act of gleaning insight from this sea of data is no simple task and is often
underestimated, especially in light of the more straightforward (although still
often difficult) task of simply performing the simulations. We emphasize that
the relevant question is not whether a given method is ‘‘correct’’ in some
absolute sense (as all models have limitations), but whether the model is predic-
tive to some degree of accuracy.
Why are detailed models worth this enormous effort in both simulation and

analysis? First, quantitative comparison between theory and experiment is critical
for validating simulation as well as lending interpretation to experimental results.
While it is generally held that experiments will not be able to yield the detail and
precision available in simulations (and that simulations may likely be the only
way one can fully understand the folding mechanism10), without quantitative
validation of simulations there is no way to know whether the simulation model

162 Chapter 8



or methodology are sufficiently accurate to yield a faithful reproduction of
reality. Indeed, without a quantitative comparison to experiment, there is no way
to decisively arbitrate the relative predictive merits of one model over another.
Second, detailed models potentially have a greater predictive power. In

principle, a detailed model should allow one to start purely from the protein
sequence and, by simulating the physical dynamics of protein folding, yield
everything that one can measure experimentally, including folding and un-
folding rates, free energies, and the detailed geometry of the folded state. In
practice, the ability of detailed models to achieve these lofty goals rests both on
the ability to carry out the computationally demanding kinetics simulations as
well as the ability of current models (force fields) to yield sufficiently accurate
representations of inter-atomic interactions.

8.1.2 What are the Challenges for Atomistic Simulation?

First, one must consider the source of the great computational demands of
molecular simulation at atomic detail. To simulate dynamics, typically one
numerically integrates Newton’s equations for all of the atoms in the system.
By choosing models with atomic degrees of freedom, one must simulate the
dynamics at the timescales of atomic motion (femtoseconds). Indeed, if the
timestep involved in numerical integration is pushed too high (without con-
straining degrees of freedom), the numerical integration becomes unstable. This
leads to the trivial problem that if one wants to reach the millisecond timescale
by taking femtosecond steps, many (1012) steps must be taken. While modern
molecular dynamics codes are extremely well optimized and perform typically
millions of steps per CPU day, this clearly falls short of what is needed (see
Figure 8.1).
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Figure 8.1 Relevant timescales for protein folding. While detailed simulations must
start with femtosecond timesteps, the timescales one would like to reach are
much longer, requiring billions (microseconds) to trillions (milliseconds) of
iterations. Typical fast, modern CPUs can do approximately a million ite-
rations in a day, posing a major challenge for detailed simulation.
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However, even if one could reach the relevant timescales, the next question is
whether our models would be sufficiently accurate. In particular, would we
reach the folded state, would the folded state be stable (with free energy of
stability comparable to experiment), and would we reach the folded state with a
rate comparable to experiment? Indeed, if one could quantitatively predict
protein folding rates, free energies of stability, and structure of the relevant
states at equilibrium, one would be able to predict essentially everything that
can be measured experimentally. While rates and free energies themselves can
only indirectly detail the nature of how proteins fold, clearly the ability to
quantitatively predict all experimental observables is a necessary prerequisite
for any successful theory or simulation of protein folding.
However, a quantitative prediction of all experimental observables is ne-

cessary but not sufficient. If a simulation could only reproduce experiments, the
simulation would not yield any new insight, which is the goal of simulations in
the first place. This leads to a third important challenge for simulation: gaining
new insight. Indeed, as one adds detail to simulations, the burden of analysis
becomes greater and greater. Atomistic simulations can easily generate giga-
bytes of data to be processed, but the volume of data does not reduce the in-
herent complexity of the physical process. A vast number of degrees of freedom
from time-resolved protein and water coordinates can obscure any simple,
direct analysis of the folding mechanism.
Additionally, analysis of such simulations may reflect the seemingly arbi-

trary state definitions used by the one performing the analysis, and great
care must therefore be taken in defining the relevant states prior to data
analysis. This, of course, often presents the most notable issue in interpre-
ting simulation data, due to the sheer difficulty in collecting adequate data
to define the states, and microstates, that the model would predict. As detailed
below, this issue is most often overcome by employing simplified models.
These models are generally built around the known or desired states prior
to simulation, but suffer the obvious lack of predicting metastable, mis-
folded, or intermediate states that may be observable when using atomistic
simulation models.

8.2 Protein Folding Models: from Atomistic to

Simplified Representations

8.2.1 Atomic Force Fields

Atomistic models for protein folding typically utilize a classical force field,
which attempts to reproduce the physical interaction between the atoms in the
protein and solvent. The energy of the system is defined as the sum of inter-
atomic potentials, which consist of several terms:

E ¼ ELJ þ ECoulomb þ Ebonded ð8:1Þ
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The van der Waals interaction between atoms is most commonly modeled by a
Lennard–Jones energy (ELJ)

ELJ ¼ Sijeij½ðsij=rijÞ12 � ðsij=rijÞ6� ð8:2Þ

where sij is related to the size of the atoms i and j and eij is related to the
strength of their interaction. While van der Waals attraction is relatively weak,
the LJ potential also serves an important role in providing hard core repulsion
between atoms. The bonded interactions modeled in Ebonded handle the specific
stereochemistry of the molecule – in particular, the nature of the covalent bonds
and steric constraints in the angles and dihedral angles of the molecule. These
interactions are clearly local, but they play a very important role in determining
the conformational space of the molecule; changes to the backbone dihedral
potentials in such a model can lead to greatly diverging simulation results.11

ECoulomb corresponds to the familiar Coulomb’s law:

ECoulomb ¼ Sijqiqj=rij ð8:3Þ

where qi is the charge on atom i and rij is the distance between atoms i and j. To
best parameterize atomic force fields, such as accounting for quantum mech-
anical effects between nearby atoms, some force fields also include scaling
coefficients for the pairwise ELJ and ECoulomb terms between atoms separated
by three covalent bonds (so-called ‘‘1-4 scaling’’), and it has recently been dem-
onstrated that modifying these scaling terms can significantly alter simulation
results.11

It is perhaps most natural to handle the pairwise interactions explicitly as in
Equation (8.1). However, this leads to simulation codes whose performance
scales as N2, where N is the number of atoms being simulated. Clearly, this is
very computationally demanding. To reduce this demand, the calculation can
ideally be made to scale linearly with N. For inherently short range inter-
actions, it is natural to do this with cutoffs and long range corrections, i.e. to set
the potential to zero smoothly once the distance is beyond some cutoff, such as
12 Å. Such cutoff procedures have been shown to lead to qualitatively incorrect
results for Coulomb interactions12 and reaction field or Ewald-based methods
have been suggested as alternatives that can obtain significantly better results.13

Clearly there are many parameters in the above formulas. Indeed, these
numbers grow further when one considers the fact that the chemical environ-
ment of atoms causes even the same type of chemical element (e.g. carbon) to
act very differently. For example, carbon in a hydrocarbon chain will behave
fundamentally differently from carbon in an aromatic ring. In order to handle
such purely quantum mechanical effects in a classical model, one creates
multiple atom types (corresponding to the different relevant environments) for
each physical atomic element. In this example, one would define different
carbon atom types. Thus, while there are only a handful of relevant physical
atoms involved (primarily carbon, hydrogen, oxygen, and nitrogen), there can
be tens to hundreds of different atom types.
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Although this is clearly the natural way to handle the role of chemical
environment in a classical model, this leads to an explosion of para-
meters needed in the model, leading to a modelling challenge in the deter-
mination of these parameters. Several groups have risen to this challenge
and have developed parameterizations for the force field functionals similar
to the form above. Typically, these parameterizations are divided into terms
for proteins (such as AMBER,14 CHARMM,15 and OPLS16) and for the
solvent (such as TIP or SPC models). Additionally, these force fields are
typically parameterized using a specific water model, and may also be asso-
ciated with specific molecular dynamics packages. One should thus be
careful in combining protein and solvent models and also not confuse
atomic force fields with the molecular dynamics software for which they were
derived.

8.2.2 Implicit Solvation Models

With the parameterization described above for the physical forces between
atoms, one can simulate all relevant interactions: protein–protein, protein–
solvent, and solvent–solvent. However, in typical simulations with solvent
represented explicitly (i.e. directly simulating the solvent atom by atom), the
number of solvent atoms is much larger than the number of protein atoms and
thus the majority of the computational time (e.g. 90%) goes into simulating the
solvent. Clearly the solvent plays an important role since the hydrophobic and
dielectric properties of water are essential to protein stability.17,18 However, an
alternative to explicit simulation of water is to include these properties impli-
citly by using a continuum model of solvent properties.
Typically, these models account for hydrophobicity in terms of some free-

energy price for solvent exposed area on the protein. These surface area (SA)
based methods vary somewhat in terms of how the surface area is calculated as
well as the energetic dependence on this exposed surface area. We stress that
one should not a priori expect that a simpler (and perhaps less accurate) cal-
culation of the surface area yields worse results than a more geometrically
accurate SA calculation. Indeed, since SA is itself an approximation, what is
important for the fidelity of the model is not the geometric accuracy of the
surface area but rather whether the SA term faithfully reproduces the physical
effect as judged by comparison to experiment.
The dielectric contribution of water to the free energy is in some ways a more

difficult contribution for which to account. The canonical method follows the
Poisson–Boltzmann (PB) equation. To demonstrate the philosophy of imple-
menting PB calculations, consider a protein immersed in solvent where the
protein and solvent are modeled as dielectric media with dielectric constants of
ein and eout respectively (thus making the dielectric a function of spatial posi-
tion, e(x, y, z)). Also, consider that the protein will likely have charges with a
spatial density rprotein(x, y, z) and that there will be counter-ions in the solvent
with a charge density rcountert(x, y, z). In this case, we can describe the resulting
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electrostatic potential and charge density as

r½eðx; y; zÞrf� ¼ �4prðx; y; zÞ
¼ �4p½rproteinðx; y; zÞ þ rcountertðx; y; zÞ� ð8:4Þ

where the total charge density r(x, y, z) is comprised of both the protein and
counter-ion charges. If one assumes that the counter-ion density is driven
thermodynamically to its free energy minimum, we can make the ‘‘mean field’’-
like approximation that

rcountertðx; y; zÞ ¼ SIniqi exp½�qifðx; y; zÞ=kT� ð8:5Þ

where ni is the bulk number density of counter-ion species i and qi is its charge.
Thus, this method handles counter-ions implicitly as well as aqueous solvent.
Including this term leads to the so-called non-linear Poisson–Boltzmann
equation. If the Boltzmann term is Taylor expanded for small f(x, y, z)/kT (i.e.
high temperature, low counter-ion concentration, or low potential strength),
one gets the so-called linearized Poisson–Boltzmann equation.
In general, the Poisson–Boltzmann equation is considered by many to be the

‘‘gold standard’’ for implicit solvation calculations. It can be used for both
energy and force calculation19 and is thus suitable for molecular dynamics.
However, PB calculation is also typically very computationally demanding and
there has been much effort to develop more computationally tractable, empi-
rical approximations to the PB equation. For example, Still and co-workers
developed an empirical approximation to PB.20 Based on a generalization of
the Born equation for the potential of atoms, Still’s Generalized Born (GB)
model (and its subsequent variants from Still’s group and other groups) have
been shown to be both computationally tractable and quantitatively accurate
for some problems, including the solvation free energy of small molecules20 and
protein folding kinetics.21

8.2.3 Minimalist Models

To further simplify the model, the protein force field can be generated from the
experimental structure. Using the information of the native conformation,
attractive parts of the LJ potentials for all non-native contact pairs can be
reduced or turned off altogether. Such a potential may lead to minimized
frustration for folding (i.e. smoothing the energy landscape by removing small
energetic barriers and metastable microstates, as shown in Figure 8.2), enabling
much faster folding simulations. In many cases, the model is built by con-
sidering each amino acid residue as one particle (coarse-graining) to maximize
the simplification. Using explicit or implicit solvent models mentioned in the
above paragraphs is technically possible, though such an approach will lose
the benefit of using the minimalist model itself. Therefore, solvent effects are
usually considered using Langevin dynamics (random forces imparted on each
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simulated body to represent solvent viscosity) or can be incorporated explicitly
in the pairwise protein non-bonded interaction potential.22

8.2.4 How Accurate are the Models?

Any question of accuracy must consider the desired experimental observable.
One natural quantity to examine is the solvation free energy of small molecules,
such as amino acid side chains.23 With recent advances in high-precision free-
energy methods,23,24 one can directly compare the models to experiment within
experimental error.
For explicit solvent models,24 the solvation free energies of small molecule

analogs to amino acid side chains show a systematic shift (towards being less
soluble). This would lead to an artificial stabilization of proteins (since the
unfolded state would be less stable) and could have a significant impact on
predicted protein–protein and protein–ligand free energies. These results sug-
gest natural force-field improvements; recent work in this direction removes
this systematic shift, leading to models with zero mean error with solvation free
energy experiments and a surprisingly low RMSD (B0.4 kcalmol�1).24

How accurate are implicit solvent models? While the GB models are some-
what empirical, they have been shown to agree reasonably well with PB
calculations. More importantly, GB models have been able to accurately pre-
dict experimental results, such as the solvation free energy of small mole-
cules.20,25 In the end, experiment must of course be the final arbiter of any

Figure 8.2 Example free-energy surface for a simple two-state folder and related
surfaces derived by adding external forces or simplifications to the
simulation model, demonstrating the variation in necessary simulation
timescales for sampling of various models. Some sampling methods, such
as REMD and umbrella sampling, make use of several landscapes by
adding biasing potentials or including a large range of temperatures, while
minimalist models remove landscape frustration and/or the presence of a
non-native free-energy basin.
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theoretical method. Moreover, while PB is on a much firmer mathematical
footing (i.e. one can derive it directly from the Poisson equation), one must
consider that PB itself is empirical in nature in some respects. The concept of a
dielectric is macroscopic; it is an approximation to apply this macroscopic
concept to the microscopic world of small molecules and proteins (hundreds to
thousands of atoms). However, the success of PB as a predictive tool demon-
strates the validity (or, at the very least, predictive power) of such methods and
approximations.

8.3 Sampling: Methods to Tackle the Long Timescales

Involved in Folding

Simulating the mechanism of protein folding is a great computational challenge
due to the long timescales involved. Below, we briefly summarize some methods
that have been used to address this challenge. As in any computational method,
each has its own limitations and it is natural to consider the regime of appli-
cability of each method (Figure 8.2).

8.3.1 Tightly Coupled Molecular Dynamics (TCMD)

To simulate molecular dynamics (MD) one typically integrates Newton’s equa-
tions numerically for the atoms in the system with femtosecond timesteps to
include the fast timescales of atomic motion. Thus, to reach the millisecond
timescale, many (1012) steps must be taken. While modern molecular dynamics
codes are extremely well optimized and perform typically 106 steps per CPU day,
this clearly falls short of what is needed. Using multiple CPUs in a tightly coupled
fashion to speed a single trajectory is appealing, but is an inefficient use of CPU
power (i.e. one does not get a 100� speed increase with 100 CPUs) and thus has
not been widely used to get beyond the nanosecond timescale, with the notable
exception of Duan and Kollman’s single 1 ms trajectory of the villin headpiece.26

8.3.2 Replica Exchange Molecular Dynamics (REMD)

Replica Exchange Molecular Dynamics27–31 has become a powerful technique
to explore the free-energy landscapes of proteins, with speed increases32 of
roughly 10� over traditional MD. Moreover, REMD efficiently parallelizes
with only slightly coupled networking required. However, REMD achieves its
speed increase by using a non-physical form of kinetics (in temperature replica
space). This method yields a Boltzmann-weighted ensemble after sufficient
convergence,32 but the trajectories cannot themselves be used to predict any
direct kinetic properties, although aspects related to the kinetics (such as pos-
sibly kinetically relevant intermediates) can be inferred from the resulting free-
energy landscapes.29
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8.3.3 High-temperature Unfolding

While folding times are very long from a simulation point of view, unfolding
(especially under high denaturation conditions) can be very fast – on the
nanosecond timescale.33–35 Under extreme denaturing conditions (e.g. B400K
temperature), one would expect the folded state to become only metastable,
with a low barrier to unfolding. Daggett and Levitt33 first took advantage of
this scenario, and Daggett’s group has subsequently pioneered this method to
examine a variety of proteins and compare their results to experiment, espe-
cially with a comparison of f values calculated at high-temperature folding vs.
experimental measurements.10,36 One note of caution is that the transition state
character is dependent on temperature. For example, the Gruebele lab has
found temperature-sensitive f-values.37 Of particular significance of the impact
of this approach has been the ability to closely connect simulation predictions
to experiment. However, applying extreme temperatures to models developed
under ambient/biological temperatures (i.e. 300� 10K) must be done with
caution: it has recently been shown that even force fields that appear to be
extremely accurate for the system studied fail to reproduce experimentally
observed temperature-dependent trends at high and low temperatures.11 While
it is possible to study protein unfolding under conditions that approximate
experiment, simulations to date trade authentic recapitulation of the experi-
mental kinetics in favor of computational tractability.

8.3.4 Low-viscosity Simulation Coupled with

Implicit Solvation Models

This is another common means to try to tackle long timescales.38–41 In regular
simulations with an implicit solvent model, one typically uses the Langevin
equation for dynamics and employs a damping term consistent with water-like
viscosity. However, water is relatively viscous and such simulations can be very
costly. Instead, many groups have proposed the use of viscosities only 1/100 to
1/1000 that of water (or even no viscosity at all). While lowering the viscosity
greatly speeds the kinetics,38 the effect of such non-physical modeling in-
herently assumes a potential risk of altering not only the rate but also the
nature of the overall kinetics of the system.42 Assuming simulation con-
vergence, the correct thermodynamics should be obtained, but it must also be
understood that the thermodynamics will be based on the model, and therefore
may also miss microstates that are coupled with properties of the solvent (such
as, in this case, viscosity).

8.3.5 Coarse-grained and Minimalist Models

These kinds of models have played a large role in recent simulations of protein
folding.6,22,43 The idea is to largely trade chemical complexity for computational
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tractability. Coarse-grained models allow one to directly address a range of
hypotheses relating to general properties of folding. However, in their genera-
lity, by construction they may lack the ability to access more detailed questions
of folding (depending on the nature of the question of interest). Whereas
detailed models cannot, in general, be used to collect ensemble statistics for large
biomolecular systems, this is not true for minimalist models, and a recent study
used such a model to make a direct connection between individual folding
pathways and the bulk observed folding mechanism for a system consisting of
B5000 atoms.44

8.3.6 Path Sampling

Given an initial trajectory between the unfolded and folded regions, which can
be generated via high-temperature unfolding or similar means, this method
generates an ensemble of different pathways that join the unfolded and folded
regions. For example, Bolhuis and co-workers determined the formation order
of hydrogen bonds and the hydrophobic core in a b-hairpin.45 Using the
fluctuation-dissipation theorem,46 it is possible to calculate folding rates from
these ensembles. More recently, a new method called transition interface
sampling47 introduced an alternate method to calculate transition rates. Since
path-sampling methods are very computationally demanding, it is interesting to
consider whether one can construct an algorithm that can more efficiently
utilize simulation data (e.g. folding trajectories) in order to predict folding rates
and mechanisms.

8.3.7 Graph-based Methods

Graph-based methods sample configuration space and connect nearby points
with weights according to their transition probabilities. From these graphs, it is
possible to calculate such properties as most probable path, pfold values48 as
well as to analyse the order in which secondary structures form.49 However, the
graph representation of protein-folding pathways does not solve the sampling
problem, but recasts it, and sampling any continuous, high-dimensional space
is still a difficult challenge. Previous graph-based methods have sampled
configuration space uniformly (i.e. choosing conformations at random) or
used sampling methods biased towards the native state. Clearly, as the protein
size increases, it becomes very difficult to sample the biologically important
conformations with random sampling.

8.3.8 Markovian State Model Methods50–53

These methods have recently shown promise to allow for an atomically detailed
model with quantitative prediction of kinetics. They can take advantage of the
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benefits of many of the methods above, such as in the generation of initial
nodes, as well as build upon the methods of path sampling and graph-based
methods to use short paths to predict complex kinetics.

8.4 Validation of Simulation Methodology: Protein

Folding Kinetics

To study protein folding kinetics – and especially compare theory to experi-
ment – it is natural to ask which quantities should be compared. The most
experimentally accessible quantitative observables of two-state proteins are the
folding and unfolding rates from which one can obtain the thermodynamic
stability. Thus, it is important to validate any simulation method through
quantitative comparison to experiment with proper statistics. As rates and free
energies are the natural quantitative experimental measurements, relative or
absolute prediction of these quantities is necessary for a direct connection to
experiment and a true assessment of theoretical methodology.

8.4.1 Low-viscosity Simulations

We now consider rate predictions made using atomistic potentials based on
various approximations of the physics of inter-atomic interactions (including
especially solvent-mediated interactions). Caflisch and co-workers have pio-
neered long atomistic folding simulations using simple, computationally effi-
cient implicit solvent models. By using low (or no) viscosity in their simulations,
they accelerate the timescales involved in folding and are able to observe
multiple folding transitions in single trajectories. Though not guaranteeing
ensemble level convergence, such reversible folding transitions are strong evi-
dence that sampling is sufficient for useful thermodynamic analysis.
For example, two secondary structural motifs were studied by Caflisch et al.:

the a-helical Y(MEARA)6 peptide,54 and Beta3s, a three-stranded antiparallel
b-sheet.55 Surprisingly, the helical peptide, which was shown to contain more
helical content (and thus helical stability) than the (AAQAA)3 peptide, folded
much more slowly at 300K, with a mean folding time of B80 ns. For Beta3s, a
mean folding time of 31.8 ns was predicted at 360K, and a following study pre-
dicted a folding time of 39ns at 330K,56 both significantly faster than the B5ms
timescale reported by De Alba et al. at lower temperatures.57 Increased sampling
of Beta3s in four additional simulations of length 2.7ms or greater extended the
predicted folding time using this model to B85ns at 330K. Additional simu-
lations were also conducted to study the folding of the Beta3s mutant with the two
sets of turn GS residues replaced with PG pairs,38 with the mutant folding three
times faster than Beta3s. These inverse folding times thus remain rather high.
Dynamics at low viscosity helps tackle an important challenge of molecular

simulations. It is therefore natural to examine the strengths and weaknesses of
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this method. A non-linear relationship between folding time and viscosity was
reported by Zagrovic et al. for the folding kinetics of a 20-residue tryptophan-
cage mini-protein in the GB/SA implicit solvent model of Still et al.20 under a
range of solvent viscosities.42 Figure 8.3 plots the observed relationship be-
tween inverse rate (t¼ 1/k) and viscosity (1/g) relative to the case for water-like
viscosity (i.e. gwater¼ 91 ps�1).58 In the figure it is apparent that linear scaling of
the folding time with solvent viscosity holds for viscosities as low asB1/10 that
of water. However, below this point the folding time scales as tB g1/5. While
applying such scaling rules to the rate predictions of Caflisch and co-workers
described above (in low viscosity) would clearly bring their values closer to
experimentally established rates for these systems, the precise effect of low
viscosity for each of these systems remains unclear.

8.4.2 Estimating Rates with a Two-state Approximation

Including water-like viscosity significantly increases the required sampling time,
yet allows absolute folding kinetics to be measured directly. To this end, Pande
and co-workers have applied distributed computing to sample trajectory space
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Figure 8.3 Viscosity dependence of the folding time of the Tryptophan Cage molecule
in implicit solvent. The folding times and associated errors were calculated
using the maximum-likelihood approach. Folding times and viscosities are
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spectively. The error bars given are error propagated on the basis of the
Cramer–Rao errors for the individual folding times.
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stochastically and extract rates from an ensemble dynamics (ED) perspective.21

Two-state behavior is the central concept upon which rates are extracted via
ED; dwell times in free energy minima of the conformational space are sig-
nificantly longer than transition times (i.e. barrier crossing is much faster than
the waiting period). The probability of crossing a barrier separating states A
and B by time t is thus given by

PðtÞ ¼ 1� e�kt ð8:6Þ

where k is the folding rate. In the limit of t{1=k, this simplifies to P(t)E kt and
the folding rate (according to the Poisson distribution) is given by

k ¼ Nfolded

t �Ntotal
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nfolded

p

t �Ntotal
ð8:7Þ

For example, if 10 000 simulations are run for 20 ns each and 15 of them
cross a given barrier, we obtain a predicted rate of k¼ 0.075(�0.019) ms�1,
corresponding to a folding time of 13.3(�3.4) ms. In this way, we can use many
short trajectories to investigate the folding behavior of polymers that fold on
the microsecond timescale: as we’ve shown previously, using M processors to
simulate folding results in an M-times speedup of barrier crossing events.59

When t4 1/k, as is the case for helix formation and other fast processes,
ensemble convergence to absolute equilibrium can be established, and the
complete kinetics and thermodynamics can be extracted simultaneously.60

In several recent studies, Pande and co-workers have utilized implicit solvent
models while maintaining water-like viscosity via a Langevin or stochastic
dynamics integrator with an inverse relaxation time g. In the first study,61 they
introduced a method of ‘‘coupled ensemble dynamics’’ as a means to simulate
the ensemble folding of the C-terminal b-hairpin of Protein G (1GB1) using the
GB/SA continuum solvent model of Still et al.20 and the OPLS united atom
force field16 with water-like viscosity. A total sampling time of B38 ms was
obtained, with a calculated inverse folding rate of 4.7(�1.7) ms, in good
agreement with the experimentally determined value of 6 ms.62

Other hairpin structures have been studied by the Pande group more
recently, both in an effort to gain insight into hairpin folding dynamics and
for a more thorough comparison to experimental measurements. They reported
folding and unfolding rates for three Trp zipper b-hairpins63 using the
methodology described above, including TZ1 (PDBID 1LE0), TZ2 (PDBID
1LE1), and TZ3 (PDBID 1LE0 with G6 replaced by D-proline). The relative
inverse folding rates are in good agreement with experimental fluorescence and
IR measurements provided by experimental collaborators. Unfolding rates
were also predicted with relatively strong agreement.
Beyond these investigations of simple hairpin subunits, several small proteins

were studied using an implicit solvent methodology. The first, a 20-residue mini-
protein known as the Trp cage, was shown to have an experimental folding time
of B4ms. From simulations (totaling B100ms) the folding rate was estimated
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based on a cutoff parameter in alpha carbon RMSD space: kfold (3.0 Å)¼
(1.5ms)�1, kfold (2.8 Å)¼ (3.1ms)�1, kfold (2.7 Å)¼ (5.5ms)�1, kfold (2.6 Å)¼
(6.9ms)�1, and kfold (2.5 Å)¼ (8.7ms)�1. While the predicted folding time roughly
agreed with the experimental value, the calculations illustrated the dependence of
rates upon definition of the native state, as was described above (to minimize this
dependence cutoffs must be chosen along an optimal reaction coordinate). Post
analysis of ensemble folding data is not necessarily trivial unless many folding
events are present and a stable native ensemble is easily distinguished from decoys
with similar topology. Similar rate predictions were made for two mutants of the
23-residue BBA5 mini-protein and compared to temperature jump measurements
made in the Gruebele laboratory.64 A single mutation replaced F8 with W, which
acts as the fluorescent probe, while the double mutant also included a replacement
of V3 with Y. The agreement between simulation predictions and experimental
measurements was excellent for the double mutant at 6ms and 7.5(�3.5)ms
respectively. The agreement was less striking in the case of the single mutant,
where experiment offered an upper limit of 10ms and simulation predicted 16ms,
with a range of 7 to 43ms based on the alpha carbon RMSD cutoff used (still a
notably accurate prediction).
One of the most notable simulation studies to date was the tour-de-force 1-ms

trajectory of the villin headpiece conducted by Duan and Kollman.26 Following
the methods described above, Pande and co-workers have simulated the en-
semble folding of this 36-residue three-helix bundle (PDBID 1VII) using the
GB/SA continuum solvent and the OPLS united atom force field in water-like
viscosity.65 With over 300 ms of simulation time, the folding time was predicted
to be 5 ms (1.5–14 ms using alpha carbon RMSD cutoffs of 2.7–3 Å, as described
above), which was compared to the 11-ms folding time derived from NMR
lineshape analysis. A follow-up study by Eaton and co-workers tested the
prediction using temperature-jump fluorescence and found the folding time to
be 4.3(�0.6) ms, thereby validating the rate prediction.
To study the formation of more complex protein structure, Pande and

co-workers reported unbiased folding simulations of the 23-residue mini-
protein BBA5 in explicit solvent.66 Ten thousand independent MD simulations
of the denatured conformation of BBA5 solvated in TIP3P water resulted in an
aggregate simulation time of over 100 ms. This sampling yielded 13 complete
folding events which, when corrected for the anomalous diffusion constant of
the TIP3P model, results in an estimated folding time of 7.5(�4.2) ms. This is in
excellent agreement with the experimental folding time of 7.5(�3.5) ms reported
by Gruebele and co-workers.64

Folding of the villin headpiece was first attempted by Duan and Kollman in
1998.26 Using TIP3P explicit solvent, their single 1-ms simulation did not show
complete folding, which is not surprising given the B5-ms folding time for that
protein. Pande and co-workers have recently reported folding of this protein
using the TIP3P water model and the AMBER-GS force field at 300K,67,68

thus increasing the maximum sequence size of proteins for which simulated
folding has been observed with MD. With a total sampling time of nearly 1ms,
a folding time of 10(�1.7) ms was predicted using a particle mesh Ewald
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treatment of long range electrostatics. Identical simulations using a reaction
field treatment yielded 9.9(�1.5) ms. These values are somewhat slower than the
4.3(�0.6) experimental folding time, which might be due to the slow equili-
bration previously observed for helix formation under the AMBER-GS
potential.60

What are the limitations of this two-state method? The direct observation of
folding kinetics presents difficulties, especially for larger proteins or those
without single exponential behavior. For example, folding ensembles generated
from a single unfolded model attempt to populate the unfolded ensemble and
observe folding. However, the timescale involved for the initial equilibration
and the timescale necessary for chain diffusion across the folding barrier scale
dramatically with chain length.69 These factors make it increasingly difficult to
observe both equilibration and folding for large proteins. In addition, Paci et al.
have shown that folding events in extremely short trajectories can proceed from
high-energy initial conformations.41 Deviations from two-state behavior can
also make interpretation of ensemble kinetics difficult,70 and, given the short
timescale of current folding simulations (10–1000 ns), any obligate intermediate
with an appreciable dwell time (1–100 ns) may represent a sufficient deviation.
In a downhill folding scenario, the principal limitation of the ensemble dy-
namics approach is the potentially lengthy and temperature-dependent time-
scale for protein conformational diffusion.71 Fortunately, these challenges may
not be intractable: the timescale for downhill equilibration to a relaxed un-
folded ensemble may require long simulations,72 but should be much faster
than folding. Also, the detection of intermediates and multiple pathways can be
accomplished by the comparison of folding and unfolding ensembles. Finally,
these concerns may also be addressed with new Markovian State Model
methods,51–53,73 described in more detail below.
Regardless of the relatively strong agreement between ensemble simulations

in implicit solvent and experimental rate measurements, several factors must be
considered in interpreting such simulation results. Lacking a discrete repre-
sentation of water, these studies ignore the potential role that aqueous solvent
might play in the folding process. Furthermore, the compact nature of the
relaxed unfolded state ensembles observed using the GB/SA solvent model may
pose problems for the folding of larger proteins, such as trapping in compact
unfolded conformations.

8.4.3 Markovian State Models (MSMs)

The two-state methods described and applied above work well if there are no
intermediate states accumulating on timescales comparable to the trajectory
length or longer (e.g. greater than 20–100 ns) and if the chains are relatively
short (e.g. less than 50 residues). However, as one examines the folding of larger
and more complex proteins, the two-state approximation will surely eventually
break down and reaching even just the relaxation time for a given chain will
become a challenge. Also, even if the folding is two state, the simple diffusion of
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the polymer chain (which scales like the number of residues squared or cubed)
will start to require very long trajectories. In anticipation of these problems, we
have proposed a new method: Markovian state models.51–53,73

Markovian state models transform simulation data gathered from MD tra-
jectories into a kinetic model that includes transition time data. As opposed to
traditional transition path sampling analysis,45,47,74 this method would in-
corporate all of the simulated data into the results, therefore potentially yielding
an increase in efficiency. Our MSM model assumes first-order Markovian
transitions between states: simply put, we assume that the next state visited
during dynamics will depend solely on the current state and not on previous
states visited. Moreover, from an MSM, one can easily calculate any kinetic
quantity which can be related to some structural property, such as pfold

75 for all
configurations sampled and the mean first passage time (MFPT) from the un-
folded state to the folded state. This method also provides a compact repre-
sentation of the pathways in the system, useful for understanding the
mechanisms involved in folding. MSM methods improve on the current graph-
based techniques by sampling points using molecular dynamics (MD), thereby
greatly increasing the probability that the configurations that are included are
kinetically relevant. In addition, the simulation time between points inherently
captures transition times, making the direct calculation of folding rates possible.
Early results from MSM methods appear to be promising. Results on a b

hairpin51 and the villin headpiece and protein A68 find quantitative agreement
with experimental folding times, allowing for a quantitative prediction of
timescales considerably longer than the individual trajectories used to construct
the MSM. Moreover, these methods do not assume two-state behavior and
thus can serve as a test of the two-state approximation; the agreement with two-
state behavior in these methods supports employing the two-state method in
simple proteins, although it is likely that the two-state approximation will
break down for larger, more complex proteins or proteins that have unusual
kinetics, such as putative downhill folders.

8.4.4 Other Approaches

While the studies described above offer insight into the most elementary events
in protein folding, a number of studies have recently been published on the
formation and/or denaturation of larger protein structures. Daggett and co-
workers have reported unfolding rate predictions using explicit solvent models
with direct experimental comparisons. The 61-residue engrailed homeodomain
(En-HD) forms a three-helix bundle similar to the villin headpiece and is known
to undergo thermal denaturation at 373K with a half-life predicted by long
extrapolation of experimental kinetic data at lower temperatures of 4.5 to 25 ns.
Mayor et al. simulated the thermally induced unfolding of En-HD using the
F3C water model76 in ENCAD77 at this temperature with an unfolding rate on
the tens of nanoseconds timescale.10,78 The time needed to reach the putative
transition state at 75 and 100 1C, 60 ns and 2 ns respectively, was roughly
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consistent with the extrapolated experimental unfolding rates (precise rates
cannot be extracted from a single unfolding event due to the stochastic nature
of protein dynamics).
Bolhuis simulated the folding of the C-terminal b-hairpin of protein G using

the transition interface sampling method described above to extract transition
kinetics.45 At 300K, with an equilibrium constant of B1, the predicted folding
time of 5 ms using the TIP3P explicit solvent is in good agreement with the
experimental rate of 6 ms62 as well as the rate predicted by Zagrovic et al. using
an implicit solvent.61 The observed agreement suggests that path sampling will
be useful in future simulation studies to elucidate the kinetics and mechanisms
inherent to protein folding, and it will be interesting to see such methods ap-
plied to larger, more complex systems.
Peptides and mini-proteins allow for complete and accurate sampling of

folding and unfolding events via simulation at biologically relevant tempera-
tures. Pande and co-workers recently studied the helix-coil transition in two
21-residue a-helical sequences and demonstrated complete equilibrium ensem-
ble sampling for multiple variants of the AMBER force field,11 as shown in
Figure 8.4, thus allowing quantitative assessment of the potentials studied.
Observing that the previously published AMBER variants resulted in poor
equilibrium helix-coil character in comparison to experimental measurements,

Figure 8.4 Time evolution and convergence of Fs peptide folding ensembles under the
AMBER-94, AMBER-GS, AMBER-99, and AMBER-99f potentials.
The plots include, from top to bottom, the mean a-helix content, mean
contiguous helical length, and mean number of helical segments per con-
formation according to classical LR counting theory. Native ensembles
that converge with corresponding gray folding ensembles are shown in
black. Signal noise in the longer time regime is due to fewer simulations
reaching that timescale (additional data at long times have been removed
for visual clarity).
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they tested a new variant denoted AMBER-99f and showed that it more ad-
equately captured the helix-coil dynamics. Based on a multi-state Markovian-
based analysis, a primary relaxation time of 151 ns was reported using the more
accurate AMBER variant, which agreed well with the 160(�50) ns measured
experimentally by Williams et al.79

Minimalist models have also continued to garner attention recently. It is
usually not feasible to obtain direct kinetics information from Go-like models
due to difficulty in interpreting the timestep in Go model simulations in terms
of a physically measurable quantity. However, it was recently reported that Go
model simulations can still be useful in predicting folding timescales of various
proteins if the time and temperature are scaled properly to experimental
measurements.80 One caveat in this approach will be the necessity of a rather
large training set to obtain calibration data for such scaling. However, con-
sidering the tractability for simulation of large systems using minimalist
models, it will be interesting to see whether such an approach can be generally
applied for other systems.

8.5 Predicting Protein Folding Pathways

8.5.1 Kinetics Simulations

The folding pathway is arguably the most interesting prediction associated with
folding simulations. As our ability to observe long-timescale transitions
improves, it becomes increasingly important to clearly communicate the
observed mechanism. Qualitative descriptions of the folding pathway can only
be loosely interpreted in comparison to experiment. First, as mentioned above,
results derived from folding simulations can be sensitive to data analysis. For
example, Swope and co-workers produced several folding mechanisms for the
hairpin from protein G by varying their hydrogen bond definition.52,73 Second,
there are potential semantic issues; a researcher might frame their discussion of
b-hairpin folding in terms of zippering, secondary versus tertiary contacts, or
diffusion-collision versus nucleation-condensation.
The order of ‘‘events’’ is a natural description of a mechanism, but an

optimal description of mechanism should account for heterogeneity as well as
the interplay between secondary and tertiary contacts. An excellent and recent
example comes from protein A. Fersht and co-workers have qualitatively
compared several published simulation predictions of the protein A folding
pathway to experiment.81,82 None of the published atomistic simulations were
completely consistent with experiment, emphasizing the need for improved
simulation predictions of the folding pathway, and improved quantitative
means for comparing pathway predictions.
The collaborative effort between the Fersht experimental laboratory and the

Daggett simulation laboratory has shed light on an entire family of unfolding
mechanisms. The homeodomains, small three-helix proteins, exhibit a spectrum
of folding processes, from concurrent secondary and tertiary structure
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formation (nucleation-condensation mechanism) to sequential secondary and
tertiary formation (framework mechanism).83 They present putative transition
state conformations (two each at 373 and 498K for En-HD; seven at 498K for
c-Myb; and two at 498K for hTRF1) from high-temperature unfolding for En-
HD, c-Myb, and hTRF1, and estimate bT values (0.83, 0.83, 0.8 respectively)
that roughly agree with the experimental bT values (0.83, 0.79, 0.90). Excluding
the mutation of two charged residues, correlation coefficients of 0.79 and 0.74
for En-HD and c-Myb were obtained between the S and F values. Gianni et al.
report that folding of En-HD resembles the diffusion–collision mechanism
more than c-Myb and hTRF1 because the helices are nearly fully formed in the
transition state. They do state that movements from diffusion-collision to
nucleation-condensation are not detected simply by the helical content of the
folding transition states but through analysis of whether the secondary and
tertiary structures are formed simultaneously.83 Given this strategy we feel it is
particularly important to generate a statistically meaningful number of transi-
tions to judge the relative timing of events between related molecules.
Through the two-state approximation and distributed computing, the

Pande laboratory has examined the folding of several small, two-state proteins.
The mechanism found varied with the protein studied. It remains to be seen
if a more comprehensive mechanistic survey of many small, two-state pro-
teins will reveal underlying mechanistic similarities or model dependencies.
In several cases, distributed computing allowed direct comparison of the per-
formances of different force fields. For example, simulations of the C-terminal
b hairpin of protein G35,61 found that the initial states of folding were
the hydrophobic collapse of the small hydrophobic core, followed by formation
of hydrogen bonds.
Simulations of a small zinc finger fold (BBA5) found a different mecha-

nism:64 the secondary structure formed first and then independently collided to
form the folded state, analogous to what one would expect from a diffusion-
collision model; this is perhaps not surprising in hindsight, considering that
BBA584 is a de novo designed protein and its independent elements may be more
stable than in typical proteins. Finally, simulations of the villin headpiece found
a different mechanism, in which formation of the rough topology was found
early, following by the locking in of the side chains.65

It is interesting and important to consider the role of force-field variation in
the determination of the folding mechanism. Moreover, beyond the force field
used to describe protein-protein interactions, one may also expect variations
due to the water model chosen, and differences between minimalist models and
more detailed, full atomic models. A natural way to quantitatively examine
these differences in mechanism is through a correlation of pfold values.85 As the
pfold value gives a quantitative measure of the location of a given conform-
ation along the folding pathway (pfold near 0 means that the conformation is
kinetically close to the unfolded state and pfold close to 1 means it is kinetically
close to the folded state), a correlation of pfold values between two different
models (force fields, solvent models, etc.) yield a quantitative comparison be-
tween the kinetic mechanisms that would be predicted.
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Upon comparing several different types of explicit water models, implicit
water models, and minimalist models (all-atom and Ca Go models), Rhee and
Pande85 found that different explicit models yielded quantitatively similar
folding mechanisms. Comparing explicit solvent to implicit solvent models
found some greater variation, consistent with other types of comparisons be-
tween explicit and implicit solvent.86,87 When comparing to minimalist models,
little correlation was found, indicating that for the protein studied (BBA5),
minimalist models could not recapitulate the dynamics described by more de-
tailed models and, moreover, minimalist models did not agree with each other
(there was a large discrepancy between all-atom and Ca Go models). While it
still remains to be seen if these results will hold for larger, more complex
proteins (indeed, BBA5 is a small, human-designed protein and thus may be
unusual), these results suggest that there may indeed be differences, as well as
laying out a quantitative method for making such comparisons in the future.

8.5.2 Thermodynamics Simulations

The success of thermodynamic methods in the prediction of the relevant folding
pathways rests on sampling the entire available phase space. This is because the
dominant pathways can be correctly identified only when the relative importance
of various intermediates is known. Two major bottlenecks naturally emerge for a
correct sampling of the vast phase space: the high dimensionality of protein
configuration space and the kinetic trapping during simulations. The following
will revisit well-known methods that try to overcome these difficulties.
In the original landscape approach as pioneered by Brooks and co-workers,6

the free-energy landscape or potential of mean force (PMF) is generated from
the equilibrium population distribution. Because it is excessively time consuming
to reach equilibrium for high-dimensional protein molecules with conventional
molecular dynamics, simulations are performed with umbrella sampling. An
additional potential (usually a quadratic or ‘‘umbrella’’ potential) is added to the
original Hamiltonian of the system to bias the sampling. By adjusting the bias,
the size of the available conformational space can be reduced to expedite the
equilibration within the biased Hamiltonian. A series of biased simulations are
recombined afterwards to remove the bias in a mathematically strict way using
the weighted histogram analysis method.88 The population distribution P(q)
then can be converted to the free energy with F(q)¼�ln P(q). With this
approach, Brooks and co-workers have obtained the free-energy landscape
and folding dynamics of an a-helical protein (Protein A89), an ab mixed protein
(GB190,91), and a mostly b protein (src-SH392) with numerous successful
comparisons to experiment. We refer the reader to an excellent review.6

Umbrella sampling studies produce informative free-energy landscapes but
assume that degrees of freedom orthogonal to the surface equilibrate quickly.
The molecular dynamics time needed for significant chain movement could
significantly exceed the length of typical umbrella sampling simulations (which
are each typically on the nanosecond timescale). However, in spite of this
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caveat, umbrella sampling approaches have been very successful. One expla-
nation for this success lies in the choice of initial conditions: umbrella sampling
simulations employ initial coordinates provided by high-temperature unfolding
trajectories. This is a recurring theme: without lengthy simulations, the initial
conformations are crucially important, and it appears that unfolding produces
reasonable initial models.
Even though umbrella sampling can expedite the sampling by simulating

multiple trajectories at the same time, kinetic trapping or slow orthogonal de-
grees of freedom may still dominate within each umbrella potential. A number
of techniques have been developed to overcome this kinetic trapping. Mitsutake
et al. have provided an excellent review of these generalized ensemble methods.93

We will focus on replica exchange molecular dynamics (REMD), which has
been widely used in protein-folding simulations. In this approach, a number of
simulations (‘‘replicas’’) are performed in parallel at different temperatures.
After a certain time, conformations are exchanged with a Metropolis prob-
ability. This criterion ensures that the sampling follows the canonical Boltzmann
distribution at each temperature. Kinetic trapping at lower temperatures is
avoided by exchanging conformations with higher-temperature replicas. This
method is easier to apply than other generalized ensemble methods because it
does not require a priori knowledge of the population distribution.
After Sugita and Okamoto demonstrated its effectiveness with a gas-phase

simulation of the pentapeptide Met-enkephalin,27 Sanbonmatsu and Garcia
obtained the free-energy surface of the same system using explicit water.28 With
16 parallel replicas they observed enhanced sampling (at least B5�) compared
to conventional constant temperature molecular dynamics. Because the method
is quite simple and because it is trivially parallelized in low-cost cluster en-
vironments, it gained wide application rapidly. Berne and co-workers applied
this method to obtain a free-energy landscape for b-hairpin folding in explicit
water using 64 replicas with over 4000 atoms.94 With the equilibrium ensemble
and the free-energy landscape in hand, they reported that the b-hairpin
population and the hydrogen-bond probability were in agreement with ex-
periments, and proposed that the b strand hydrogen bonds and hydrophobic
core form together during the folding pathway.
If care is taken to fully reach equilibrium,32 REMD becomes powerful for

elucidating the folding landscape. For example, Garcia and Onuchic applied
the method to a relatively large system, protein A.29 With 82 replicas for more
than 16 000 atoms with temperatures ranging from 277 to 548K, and with
B13 ns molecular dynamics simulations for each replica, they reported con-
vergence to the equilibrium distribution with quantitative determination of the
free-energy barrier of folding.

8.6 Conclusions

In the end, an understanding of complex biophysical phenomena will require
computer simulation at some level. Most likely, experimental methods will
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never yield the level of detail that can be reached even today with computer
simulations. However, the great challenge for simulations is to prove their
validity. Thus, it is naturally the combination of powerful simulations with
quantitative experimental validation that will elucidate the nature of how
proteins fold.
How well do protein folding kinetics simulations currently compare with

experiment? While prediction of relative rates (e.g. demonstrating a correlation
between experimental and predicted rates) is valuable, prediction of the abso-
lute rate without free parameters is a more stringent test. Though calculation of
absolute rates is computationally demanding, we expect such absolute com-
parisons to become more common (for increasingly complex proteins) with the
advent of new methods and increasing computer power. Finally, we stress that
a quantitative prediction of rates is not sufficient to guarantee the validity of a
model. The ability of fairly different models to quantitatively predict folding
rates strongly suggests that more experimental data are needed to further
validate simulation. Additionally, several coarse-grained calculations have been
employed to study folding and unfolding rates.80,95,96

It is also interesting to look to what’s on the near horizon. New advances in
computational methods have already enabled single trajectories to reach the
microsecond timescale routinely, without using a supercomputer, either by
using multi-core PCs97 or streaming processors, such as Graphics Processing
Units (GPUs) or the Cell Processor in PS3s.98 With microsecond length trajec-
tories, fast-folding proteins can now be examined directly, with thousands of
trajectories over multiple microsecond timescales directly enabling a full statis-
tical comparison of kinetics between simulation and experiment.97 Moreover,
recent advances in force fields should allow for a significant increase in
accuracy, especially with new advances in polarizable force fields.99,100 The
combination of the more advanced computational methods, with modern
polarizable force fields, and the sampling power of Markovian state models
should yield a potent combination to accurately predict folding properties on
the microsecond to millisecond timescale for small, single-domain proteins
in the very near future, and likely beyond to the second timescale in the
next decade.
The ability to quantitatively predict rates, free energies, and structure from

simulations based on physical force fields reflects significant progress made over
the last five years. It also draws attention to a new challenge. Even the pre-
diction of experimental observables, such as rates, within experimental un-
certainty does not prove that the simulations will yield correct insight into the
mechanism of folding. Indeed, recent work suggests that computational models
can both agree with experiment, but disagree with each other.66 Also, observing
that a particular residue appears to participate in a non-native contact does not
necessarily imply that mutating this position will accelerate folding; for
example, Zagrovic and Pande65 found non-native interactions in their simula-
tions, but did not predict that removing this would necessarily alter the rate
(indeed, the simulations performed could not predict a rate change in this case
and thus this result is not necessarily in disagreement with the experiment).101
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However, these sorts of comparisons greatly underscore the need for direct,
quantitative comparison between experiment and theory over a broad range of
observables as this is the only way to unambiguously test simulation predic-
tions. We must therefore push the link between simulation and experiment
further by connecting the two with new observables, multiple techniques, and
increasingly strict quantitative comparison and validation of simulation
methods. Without more detailed experiments, we may not be able to sufficiently
test current simulation methodology and the trustworthiness of refined simu-
lations may remain unclear. Nonetheless, the ability to predict rates, free
energies, and structure of small proteins is a significant advance for simulation,
likely heralding even more significant advances over the next five years.
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CHAPTER 9

Protein Design: Tailoring
Sequence, Structure, and Folding
Properties

ANDREAS LEHMANN , CHRISTOPHER J. LANCI ,
THOMAS J. PETTY II , SEUNG-GU KANG
AND JEFFERY G. SAVEN

Makineni Theoretical Laboratories, Department of Chemistry, University of
Pennsylvania, Philadelphia, PA 19104, USA

9.1 Introduction

Protein design algorithms identify protein sequences consistent with a par-
ticular fold, and often simultaneously quantify the many subtle, non-covalent
interactions that govern protein folding, stability and function. Efforts in
protein design stand to advance our knowledge of protein folding and function
and also can identify new proteins with applications to biotechnology, cata-
lysis, and materials research. Here, recent developments in protein design are
discussed with a focus on features common to many of the computational
design methods. A sampling of studies is presented in which computationally
designed proteins have been experimentally realized, exemplifying what may be
learned and accomplished with protein design.
Advances in protein design inform our understanding of the molecular basis

of life processes and provide tools for new applications in biotechnology.
Proteins are molecular workhorses, and they play central roles in cellular
functions such as cytoskeleton assembly, transport, signaling, bioenergetics,
metabolism and gene regulation. Structural proteins (e.g. actin, microtubules,
collagen) are vital for maintaining the morphological properties of organelles,
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cells, and tissues. Enzymes catalyze reactions selectively and efficiently, and
protein-based hormones and receptors are critical for inter- and intracellular
communication. Thus proteins exhibit a multitude of functions, and this versa-
tility can potentially be leveraged. Polypeptide synthesis and protein over-
expression are often straightforward, facilitating the realization of natural and
non-natural sequences. Designed proteins obtained using such methods pro-
vide systems for critically testing our present understanding of the molecular
features most relevant to protein folding, stability, and function. In addition,
novel proteins can provide new biotechnological applications, such as selective
catalysts and sensors.
Protein folding enables function to be encoded in sequence. Most polymers

can take on a large number of conformations in dilute solution. Folding,
however, implies that a protein has a well-defined three-dimensional structure
under physiological conditions, a structure that is usually requisite for the
protein’s function. Anfinsen1 showed that ribonuclease could be denatured and
refolded without loss of enzymatic activity. This led to the general acceptance
of the ‘‘thermodynamic hypothesis,’’ which states that ‘‘the three-dimensional
structure of a native protein in its normal physiological milieu . . . is the one
in which the Gibbs free energy of the whole system is lowest; that is, that the
native conformation is determined by the totality of inter-atomic interactions
and hence by the amino acid sequence, in a given environment.’’1 While there
are certainly exceptions to this rule, the three-dimensional structures of most
proteins are encoded in their amino acid sequences. Due to the complexity
of proteins and the many possible compact structures to which they can fold,
protein structure prediction from amino acid sequence remains one of the
fundamental open problems of molecular science, but much progress has been
made in recent years.2 In addition, protein folding dynamics remains an active
area of research. Such studies are motivated in part by Levinthal’s paradox:3

how is it that proteins having exponentially large numbers of conformations are
able to fold on timescales of minutes or less? There has been much recent
development of mechanisms and models that quantitatively describe folding
kinetics,4–9 including the energy landscape theory of protein folding10–20 (see
Chapter 3 by Wolynes for a detailed account of the energy landscape approach
to protein folding).
Proteins are involved in an increasing number of industrial applications such

as chemical production, pharmaceuticals and fine chemicals, pulp and paper,
food, textiles, and energy.21–23 Exploiting the structural and functional features
of proteins stands also to give rise to new biomaterials. Peptides may respond
structurally and functionally to environmental changes in pH, temperature,
pressure, salt concentration, UV or visible light exposure. Such ‘‘smart-
material’’ peptides may be used as building blocks for filaments and fibrils,
scaffolds, hydrogels, and surfactants.24 These protein and peptide-based sys-
tems have applications in tissue and surface engineering, as drug or cell carriers,
for patterning of targeted cell growth, as miniaturized solar cells or in optical
and electronic devices.25–31 Commercial biocatalysts have been obtained from
natural enzymes or via the directed mutagenesis of such enzymes.22 Advances in
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genomics, directed evolution, and bioinformatics21 have led to the development
of recombinant enzymes and biomolecular pathways.32–36 For example, a
recently developed industrial process uses a re-engineered and extended E. coli
pathway to convert D-glucose into the polymer precursor 1,3-propanediol
within a single organism;36 such efforts illustrate the ‘‘green chemistry’’37

possible with biomolecular systems. Protein design efforts have also led to the
discovery of new sensors and enzymes.38–42 Therapeutic proteins may affect
intercellular communication and the physiology of the human immune system,
and there remains enormous potential for the development of therapeutic
agents for autoimmune diseases, cancer, infections, and inflammatory dis-
eases.43–45 Thus, the ability to reliably design structure and function into
proteins stands to inform our basic understanding of biomolecular function
and can lead to a wide variety of biotechnological and biomedical applications.
Although realizing a particular protein sequence may be straightforward

(problems with protein synthesis or expression notwithstanding), protein
design is non-trivial. Proteins are large macromolecules that range in length
from tens to tens of thousands of amino acid residues. The number of possible
sequences is exponentially large. For a protein with 100 variable residues, there
are 20100 possible sequences. In addition, many amino acids have multi-
ple possible side-chain conformations, further increasing the complexity of the
search for sequences consistent with a desired structure. Non-covalent inter-
actions such as van der Waals forces, hydrogen bonding, salt bridges, and
solvation effects stabilize the protein structure. Many of these interactions are
coupled and interdependent in protein structures, and their parameterization in
the form of a molecular energy function is necessarily approximate. As a result,
accurate determination of the stabilities of proteins using molecular simulations
is often impractical and remains computationally intensive.46,47 The difficulties
of protein structure prediction suggest that the mapping from sequence to
structure is subtle.2,48 Ultimately, the best assessment of the quality of a parti-
cular protein design effort is to create and study the resulting sequences. This
validation of design is typically more experimentally intensive than structure
prediction, where thousands of structures already in the protein structural
database may serve as test cases.

9.2 Empirical Approaches to Protein Design

9.2.1 Hierarchical Protein Design

Early work in protein design, also referred to as the inverse folding problem,49

applied knowledge gleaned from biochemical experiments and structural
databases to the construction of small proteins. Often a hierarchical approach
was used, where sequences likely to form particular substructures or secondary
structures were assembled with a particular tertiary structure in mind.50,51

Principles guiding the design process included the trend to have largely
hydrophobic amino acids within the interior of the folded protein,52,53 and the
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propensities of individual amino acids to appear in particular secondary
structures such as a-helices or b-sheets.54–56 Early design efforts often focused
on a-helical proteins and did not necessarily use all 20 amino acids.57–61 Elec-
trostatic interactions were found to play a smaller role in determining topology
than the relative positioning of interior hydrophobic residues.62 Via such
qualitative protein design, it was found that two proteins having 50% or
greater sequence identity could have different folds.63,64

Helical proteins have been targets of many design efforts. Designed, a-helical
peptides have been constructed to solubilize membrane proteins65 and to retard
the HIV-1 infection of human T cells.66 Rational, structure-informed de novo
design based on a-helical bundles has been used to design proteins that bind
metal ions such as zinc,67–70 iron,71,72 copper,73 cadmium,74 mercury,75 and
calcium,68 as well as proteins that bind metal-containing cofactors such as
heme.76–78 The B1 domain of Streptococcal IgG-binding protein G was also
used as a template for designing a zinc binding protein.79 A four-helix peptide
(maquette) was shown to efficiently incorporate an iron-sulfur cluster as a
tetramer and exhibit properties typical of natural ferredoxins.80 While success-
fully realizing some of the targeted functionality and structure, often these
designed proteins did not have well-defined tertiary structures. These proteins
exhibited more mobility in the interior than native proteins, and in many cases
had the features of a molten-globule-like state.50,51,81 The approaches used
often consider the secondary structure propensities of the amino acids and the
appropriate patterning of hydrophobic residues for a particular tertiary
structure. These methods do not typically consider, however, the comple-
mentarity of steric and other inter-atomic interactions (e.g. hydrogen bonding)
observed in the structures of natural proteins. As a result, such designed pro-
teins may be compact and have a large degree of the appropriate secondary
structure but may not form well-defined tertiary structures.

9.2.2 Combinatorial Methods

Generating and screening combinatorial protein libraries for variants with new
or improved function or stability has become an established method for protein
engineering.82 Diverse, partially random libraries are experimentally obtained
by using degenerate oligonucleotides during gene assembly,83 by performing
the polymerase chain reaction under mutagenic conditions,84 or by using DNA
shuffling.85,86 In directed evolution protocols, these methods are used as part of
an iterative mutation-selection-enrichment cycle. The use of such protocols has
been spurred by the development of high-throughput assays and the availability
of various library platforms for expressing and displaying proteins. Phage
display libraries are popular tools in directed evolution,87 but bacterial,88

yeast,89 and ribosomal90 display systems are also widely used.
Combinatorial libraries have been used to examine protein folding and

stability.91–94 Proper patterning of hydrophobicity was found to be a key deter-
minant of whether variants of l repressor are compatible with the wild-type
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fold,91 and multiple substitutions in the helix-turn-helix region of l repressor
are largely additive with regard to their impact on folded state stability of the
protein.92 Combinatorial libraries have been constructed to investigate the
utility of binary patterning of hydrophobic and hydrophilic amino acids in a
manner consistent with predetermined secondary and tertiary structures. Such
efforts have identified native-like protein structures that fold into well-ordered
four-helix bundles and beta proteins.95–102

9.2.3 Directed Evolution

Directed evolution and related methods have identified proteins with a variety
of functionally important properties. Partial randomization of sequence fol-
lowed by selection is a powerful, evolutionarily inspired, tool for introducing
new function into proteins. Through directed evolution, protein function can
be engineered if a suitable selection assay is available. Applications include the
ability to maintain binding affinity when removing segments non-essential for a
protein,103 improve binding affinity,104 evolve RNA polymerase from DNA
polymerase,105 endow an antibody with catalytic activity,106–109 and accelerate
the maturation of a red fluorescent protein.110 Retroviruses have been reengi-
neered to greatly enhance their spreading efficiency through human fibro-
sarcoma cells for possible use in gene therapy.111 New biosynthetic pathways
have been engineered in E. coli for the production of non-native carotenoids,33

and a new genetic circuit has been evolved.112 These studies show that directed
evolution methods have a broad reach into exploring and tailoring the func-
tions of proteins. Complex functional properties may be engineered without
requiring a detailed molecular understanding as to how these are achieved. The
development of a selection method yielding proteins with the desired properties
is one of the key features of such methods. The particular selection strategy
usually is dependent on the desired function. Affinity columns with immobi-
lized ligands are useful for selecting tight binding proteins. For more subtle and
complex functions, such as catalysis, more sophisticated selections must be used
and often are tied to cell (or phage) viability. In addition, the targeted functions
must be accessible via evolution methods where usually only a few mutations
are accumulated per generation.

9.2.4 Intrinsic Limitations

Despite some of the striking successes of hierarchical protein design, combi-
natorial, and directed evolution methods, these techniques are not without
shortcomings. Optimizing the many interactions within a particular folded state
structure can be difficult by inspection alone and, as mentioned, many designed
proteins do not have well-defined tertiary or oligomeric structures50 While
combinatorial methods can address large numbers of sequences –103 to 106 for
high-throughput screening and 1012 for display methods – these numbers are far
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smaller than the number of possible sequences. Thus, such approaches may miss
proteins with the desired properties and structures. Directed evolution methods
often require a well-folded protein as a starting point for evolving new structures
and functions,82,113 and as a result these methods are usually limited to the
redesign of natural proteins. DNA shuffling protocols often require high degrees
of sequence homology (60%) for appreciable rates of recombination.114 Several
approaches have been developed to overcome this limitation,115,116 but func-
tional hybrids often become more sparse.
It is of interest to explore sequence and structure more extensively and to

arrive at proteins having novel structures that differ from natural proteins. The
development of methods that allow simultaneous consideration of the myriad
of interactions and levels of structure present in proteins quantitatively permit
detailed predictions about structure, stability, and sequence variability that
may be rigorously tested. Such studies can further our physical chemical
understanding of the stability, folding, functions, and dynamics of proteins.

9.3 Computational Approaches to Structured-based

Design

Computational protein design involves the search for sequences compatible with
a given fold with the aid of computer modeling methods to address and quantify
protein structure and amino acid variability. The template fold is often repre-
sented in atomistic detail and, as opposed to more qualitative design methods,
inter-atomic interactions involving variable residues are explicitly quantified and
evaluated. Computational design involves simultaneous consideration of mul-
tiple interacting residues. A complete enumeration of all possible sequences,
however, is only possible when only a few residues are varied. As a result,
powerful methods for sampling or characterizing sequences consistent with a
particular fold must be employed when large numbers of residues are varied.
Such methods may be used to design particular sequences or to guide the
construction of combinatorial libraries and directed evolution experiments.
Although there are different approaches to computational protein design,

most make use of similar methods for specifying the properties of the target
protein and for quantifying the physical and chemical interactions that stabilize
structure and confer functionality. A target polypeptide backbone structure
serves as a template to guide the selection of sequences. At each variable
position, residue degrees of freedom include the allowed amino acids and their
side-chain conformations, which are usually treated as a discrete set of rotamer
states. The interactions between all residues are quantified through energy or
scoring functions, which often contain terms representing such effects as
hydrogen bonding, van der Waals interactions, electrostatic interactions, and
solvation. Energy functions are often used to arrive at foldability criteria, which
take unfolded states into account and quantify the degree to which a particular
sequence is likely to fold into the target structure. There have been several
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studies that examine protein design and variability through the use of sequence-
alignment methods,117,118 but herein we focus on the design of structure and
sequence based upon the physico-chemical properties of the amino acids.

9.3.1 Backbone Structure and Sequence Constraints

A backbone structure specifies the coordinates of the main chain atoms, the
bonded series of carbon, nitrogen, and oxygen atoms associated with each
amino acid residue in a protein. This structure serves as the target for com-
putational protein design. The backbone coordinates may be obtained from a
known structure119 or from modeling novel structures.120–123 Naturally oc-
curring protein structures are often used, as many such structures support a
wide variety of biological functions, e.g. the TIM barrel superfamily.124 This
specification of the template structure partially defines the design problem,
reduces the number of degrees of freedom, and avoids some of the difficulties of
structure prediction. The fixed-backbone approximation has been successfully
used in computational protein design, but flexibility of the main chain may be
included to accommodate backbone readjustments that result from changes in
sequence.125,126 While flexible-backbone protein design is more computation-
ally intensive than fixed-backbone design, recent studies have shown that such
methods can yield well-structured proteins.121,127

9.3.2 Residue Degrees of Freedom

Since the backbone structure is largely predetermined, the degrees of freedom in
protein design mainly involve the distinguishable states of the amino acid resi-
dues. These residue degrees of freedom include both the allowed amino acids at
each variable position as well as the side-chain conformations of these amino
acids. The naturally occurring 20 amino acids are most often used, but this
number may be reduced, as in the patterning of residue properties,95,128 or
expanded with the inclusion of non-natural amino acids. Most amino acids may
assume multiple, distinguishable side-chain conformations (rotamers).129–131

Libraries of allowed rotamer states reduce the complexity of the side-chain states
to a discrete set of side-chain conformations. Such rotamer states have been
statistically deduced from protein structure databases, and usually are consistent
with bond and torsional angles corresponding to local energy minima.131

Depending on the size and topology of an amino acid, the number of possible
rotamers can range from one (glycine and alanine) to as many as 80–100 (or
more) for larger side chains. Rotamer libraries have been developed that are
backbone-independent or are sensitive to the local backbone and secondary
structure.129,132–143 Atomistic representations of side chains and their con-
formations enable the design of well-packed protein interiors. Rotamer libraries
may also be developed for non-biological amino acids by identifying local tor-
sional minima using a molecular mechanics force field.144,145
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In order to make the design of larger proteins more tractable, approaches
have been introduced that reduce the residue degrees of freedom. Such methods
include reducing the number of allowed amino acids, often in a patterned or site-
specific manner,95,128 or simplifying the representation of the amino acid side
chains. Studies with limited numbers of amino acids can suggest the minimal set
of amino acids necessary for certain structures. For example, a 108-residue,
four-helix bundle structure has been constructed using only 7 of the 20 possible
amino acids.146 Similarly, only five amino acids have been used to recon-
struct large portions of an SH3 domain structure.147 Simplified models of side
chains have been successfully used in the design of proteins, using an energy
landscape approach.148

9.3.3 Energy Function

Quantification of intra- and intermolecular interactions is critical to compu-
tational protein design. The energy functions used in protein design are often
similar to those used in molecular modeling and simulation,149 such as the
atom-based molecular mechanics force fields Amber,150 CHARMm,151 and
Gromos.152 Energy functions like these may comprise contributions arising
from deformation of bond lengths, bond angles, and dihedral angles, as well as
non-bonding interactions arising from van der Waals, electrostatic, and
hydrogen bonding interactions (see Chapter 8 by Pande for more on force fields
in protein folding simulations). In protein design, the non-bonding interaction
terms often dominate, since the approximation of discrete rotamer states and
the rigid backbone largely fixes bond lengths and bond angles. So as not to
overestimate the repulsive energies of van der Waals interactions, which may
often be readily alleviated by slight backbone adjustments, the van der Waals
radii are often uniformly diminished using ad hoc scaling factors.153,154

In addition to atom-based physico-chemical energy functions, effective en-
ergies quantifying the structural propensities of the amino acids can be included
using scoring functions. Statistical analysis of protein structure databases re-
veals that the relative frequencies of amino acids may depend on the local
structural environment, and experimental studies have quantified the degree to
which different amino acids destabilize secondary structures.55,56,149,155–157

Such experimental or database studies can yield effective scoring functions. The
individual terms in the energy function may be weighted in order to combine
molecular mechanics potentials and empirical scoring functions. This weighting
may be subtle, and is often accomplished by comparison with known sequences
and structures,158 or with training sets of randomized sequences.159

9.3.4 Solvation

Solvation and hydrophobic effects play critical roles in protein folding.160

Hydrophobic residues tend to be sequestered in the interior of the protein,
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while hydrophilic residues are found more frequently on the exterior. In protein
design, evaluating free energies of solvation through explicit modeling of
solvent is computationally prohibitive. Solvation effects, and indirectly the
hydrophobic effect, are often approximated using energies expressed in terms of
the solvent accessible area of each atom. The corresponding free energy cost per
unit area exposed is often parameterized using a structural protein database, or
known free energies of transfer between water and either a vacuum or organic
phase.161–164 Although much simpler than the explicit modeling of solvent,
calculating such surface areas may still be computationally expensive,165 par-
ticularly since these areas are sequence dependent. As an alternative method, a
statistical potential may be introduced that quantifies the propensities of the
amino acids to reside in buried and exposed local environments.166

9.3.5 Foldability Criteria and Negative Design

A designed protein should fold into a unique three-dimensional structure de-
fined as the ‘‘native’’ state. Non-target conformations of the protein should not
be appreciably populated. In order to achieve this, the conformational energy
landscape should have ‘‘funnel’’ shape, with the folded state at the free-energy
minimum11–13,167 (see Chapter 3 by Wolynes). Including information about
stabilization with respect to misfolded structures is often referred to as ‘‘negative
design’’.60 In order to achieve structural specificity, the target structure should
correspond to an energetic ground state that has an energy gap separating the
target from other competing structures.13,168,169

Many approaches to computational protein design focus on energy mini-
mization (through variation of sequence) as the foldability criterion. However,
the notion that decreasing energy is correlated with improved foldability can be
problematic, particularly for models involving reduced representations of the
amino acids.170 The absence of explicit negative design may result in proteins
that populate multiple topologies.171 For simple models of proteins, other
foldability criteria that more accurately approximate the free energy of folding
and/or address unfolded structures explicitly may be used. Such criteria can act
as objective functions in sequence design169,172–174 Such quantities include D/G,
where D is the energy gap between the target structure and the average energy
of other competing, unfolded structures and G2 is the variance of the energy
averaged over this same ensemble of unfolded structures.169,172–175

For atomistic representations of proteins, however, energy minimization
appears to be a viable strategy. This is not unreasonable, given that most design
algorithms yield structures that are sterically and energetically self-consistent,
in keeping with what is observed in natural structures. For proteins comprising
a single chain, such tightly packed sequences are specific to the target backbone
structure, and it is unlikely that the same interior packing could be observed in
alternative backbone conformations. Viewed in another way, the use of explicit
side-chain conformations in protein design increases the effective number of
monomer types by associating a set of rotamers with each amino acid, and
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tailoring a sequence for a particular tertiary structure becomes more straight-
forward with the expanded monomer set.13,176,177 Elements of negative design
may also already be involved in the design process in an indirect manner, via the
use of effective energies of the residues in unfolded structures (i.e. reference
energies),120,178 by imposition of composition constraints on the numbers of
each amino acid,179,180 or by application of hydrophobic and hydrophilic
patterning.128 Explicit negative design can become crucial in cases where de-
generate or low-energy competing structures are likely to compete with the
target structure, such as may be the case in low-resolution protein models
(coarse-grained or simplified representations of amino acids)148 or in cases
involving protein–protein interfaces, which may have smooth energy land-
scapes supporting multiple possible orientations of the associating proteins.181

Implementations of negative design have yielded well-folded proteins.
Qualitative use of negative design based on the patterning of hydrophobic and
hydrophilic amino acids enabled the conversion of a designed amyloid-forming
protein into a monomeric b-sheet protein.102 In the redesign of a three-helix
bundle topology, an ensemble of denatured structures from folding simulations
was used as a set of competing unfolded structures.148 Optimal sequences were
selected using a modified D/Gscore, and one such sequence appeared native-like
upon experimental characterization. Explicit negative design has also been
implemented in an algorithm for designing coiled-coil interfaces,181 where
sequence specificity was selected by comparing energies of the target structure
with non-target, misfolded, homodimeric and heterodimeric states.

9.3.6 Search and Characterization of Sequence Ensembles

Protein design involves identifying viable sequences subject to imposed con-
straints on structure, sequence, and function. Various algorithms can be util-
ized for the identification of sequences consistent with the target structure and
target protein properties. These approaches may be grouped into two cat-
egories: directed or search-based methods that seek to identify sequences op-
timizing a particular scoring or energy function; and probabilistic approaches
that seek to characterize the properties of the ensemble sequences likely to fold
to the desired structure.
In an optimization approach, the goal is identification of a high-scoring

(low-energy) sequence for the target using energy or other scoring functions.
Since exhaustive enumeration of sequences and rotamer positioning are only
tractable for cases involving just a few variable residues, approaches such as
genetic algorithms,125 simulated annealing,158,182 and Monte Carlo methods183

are used. Alternatively, elimination and pruning methods identify global
optima by successively removing residue states that cannot be a part of the
optimal solution.153,184–186

A statistical approach estimates the site-specific probabilities of the amino
acids among sequences consistent with the targeted structure and other desired
properties.166,174 Such a probabilistic approach is motivated by several
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considerations. Nature often provides multiple sequences that fold to the same
structure, so there are usually multiple possible solutions in protein design.
Probabilistic information regarding the likelihoods of the amino acids is a
natural input into combinatorial studies of proteins. Many aspects involved
in design, such as parameterized energy functions, discrete side-chain
conformations, fixing backbone atoms, and effective solvation energies, involve
approximations. The sequences identified by optimization-based approaches
are likely to be sensitive to the details of the energy function used and to the
nature of these approximations, whereas statistical features may be more
robust. Site-specific amino acid probabilities can highlight the allowed mu-
tations at each location, and provide a broad characterization of the ensemble
of sequences. Such methods are implemented in two complementary
approaches: maximization of an effective entropy to determine the most likely
set of site-specific amino acid probabilities,120,166 and sampling of sequences
using Monte Carlo methods.183,187 These probabilities may then be used to
determine specific protein sequences or to specify the composition in a com-
binatorial library. This approach has been termed a statistical, computationally
assisted design strategy (SCADS).120,188

9.4 Recent Successes in Protein Design

De novo designed proteins have appeared within recent years that make use of
advances in computational design methods. We discuss only a few here, but
other noteworthy design achievements include biocatalysts,42,189,190 sensors,191

and protein–protein interactions.192 Several recent reviews have also appeared
that detail further exploration of this field.126,127,169,176,177,193–195

Verification of a designed protein sequence is best accomplished by experi-
mental realization and characterization. Empirical structure determination
efforts, via X-ray crystallography or NMR structure determination, provide
demanding but time-intensive assessments of design. Often stringent bio-
physical and functional assays are used. The examples discussed here involve
the computational design of proteins that have been characterized experi-
mentally, affirming the theoretical methodology employed.

9.4.1 Tailored Mutations for Ultrafast Folding

Computational protein design has been used to probe folding kinetics and to
engineer ultrafast (microsecond) folding mutants of small proteins (see Chapter 6
by Gruebele for thorough discussion on fast folding). Protein engineering via
mutation is a common tool for investigating folding dynamics.7,8,196 Small,
ultrafast-folding proteins are of interest because they lend themselves to compa-
rison with atomistic molecular dynamics simulations197 (see Chapter 8 by Pande)
and with theories of protein folding13,15,198 (see Chapter 3 by Wolynes). Addi-
tionally, such fast-folding proteins are ideal for examining how the folded state
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structure may influence folding rate.196,199–201 Designed proteins with well-
packed hydrophobic interiors are among the fastest-folding proteins, with
folding times of 1–30ms.202–204

Zhu et al. 205 explored the use of computationally designed mutations for
kinetics studies using a 47-residue three-helix bundle albumen-binding protein,
which has a folding time of tf¼ 6 ms, where tf¼ 1/kf and kf results from a two-
state analysis of temperature jump folding studies. SCADS was used both to
identify frustrated sites, sites where other amino acids are more favorable than
the wild type, and to suggest mutations at these positions that are structurally
consistent with the native protein. The stability and folding kinetics of four
suggested single mutants and one double mutant were then analysed using
laser-induced T-jump infrared techniques (see Chapter 6 by Gruebele). One
designed mutant had a folding time of tf¼ 1 ms, placing it among the fastest
folding proteins known to date. A linear correlation was observed in which the
maximal folding rate decreased with the overall hydrophobicity of the protein,
suggesting that tailored hydrophobic interactions can leverage the rapid rate of
hydrophobic collapse206 and lead to ultrafast-folding proteins.
Monte Carlo sampling methods were used in a probabilistic context to design

an ultrafast-folding mutant of the 20-residue Trp-cage protein.207 These cal-
culations identified a P12W mutation, termed the Trp2-cage due to the second
tryptophan. The Trp2-cage mutant was more stable and folded more rapidly
compared to the wild-type structure: the folding time obtained from a kinetic
two-state analysis is tf¼ 0.94 ms, compared to 4.1 ms for the wild type.207,208

These findings make the Trp2-cage mutant one of the fastest-folding proteins
characterized to date, and an ideal model system for further computational and
experimental kinetic studies.

9.4.2 Designing Structure and Sequence

Protein design can suggest not only variants of naturally occurring proteins but
also lead to de novo designed proteins as well, where structure, sequence, and
even function are elements of the design process. A small protein based on a
zinc finger topology has been successfully computationally designed.153 Novel
sequences that fold into desired target structures have been identified by cycling
between sequence design and backbone optimization.158,179,209–211 A compu-
tationally designed 97-residue a/b protein, Top7, based upon a topology not
found in isolation, has recently been realized.121,212 This design was achieved
using backbone templates assembled from structural fragments with sub-
sequent design of sequence.158 These findings suggest that additional protein
folds not yet found in nature may be physically possible (Figure 9.1).
Probabilistic methods have also been successful in large-scale protein design.

SCADS has been applied to the de novo design of DFsc, a 114-residue four-
helix bundle containing a di-iron center.120 The backbone template was based
on the crystal structure of a previously designed dimeric helix protein DF1.213

The topology of DF1 was re-engineered by altering the interhelical turns in an
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Figure 9.1 Examples of computationally designed proteins. The column labeled
‘‘Residues’’ indicates the number of designed, variable residues over the
total length of the protein. The asterisks indicate homo-oligomeric pro-
tein complexes, and the number of variable residues and total length of
each subunit are indicated. WSK-3 and the four-helix bundle with a non-
biological co-factor are tetramers; Dps is a dodecamer.
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effort to arrive at a stable and monomeric (single-chain) protein. Residue
identities and conformations were fixed at 26 positions to confer metal binding,
provide access to the active site, and initiate helix formation. SCADS was used
to identify the remaining 88 residues. The structure of the final sequence has
been characterized using CD and NMR spectroscopy. DFsc is well structured
and may be catalytically active.120

Computational methods have also been extended to the design of b-sheet
metalloproteins.123 The rubredoxin protein family consists of simple iron sulfur
beta proteins having a redox active Fe(II)/Fe(III) ion in a tetra-cysteine binding
site.213 A novel backbone was obtained by simplifying the metal binding site of
rubredoxin to a pair of pseudo-equivalent b-hairpins. The two-stranded sheet
was extended into a three-stranded structure, resulting in a dimer that was
connected with a tryptophan zipper hairpin.214 The resulting structure con-
tained only 40 residues, compared to the 54 in rubredoxin, and consisted of an
entirely different overall topology. Some residues were fixed prior to compu-
tational design including the Trpzip linker, the four metal binding cysteines,
two glycine residues that adopt an aL conformation, and an isoleucine to shield
the active site from solvent. The remaining residues were chosen based on the
highest probabilities from SCADS calculations, resulting in the protein RM1.
Experimental studies confirmed that the metal ions bound in the proper
geometry with the expected stoichiometry, and that RM1 is monomeric and
properly folded with the expected b-sheet structure, both with and without
metal ions. RM1 could be reversibly reduced and oxidized over 16 cycles under
aerobic conditions, suggesting a protein that is significantly more robust elec-
trochemically than previously designed metalloproteins.71,215

9.4.3 Facilitating the Study of Membrane Proteins

Integral membrane proteins comprise roughly 30% of the human proteome,
including many important drug targets. There is much interest in functional
and structural studies of such proteins. Transmembrane proteins have large
numbers of hydrophobic amino acids on their exteriors, which often serve to
anchor the protein in a lipid bilayer. As a result, these proteins are problematic
since they are aggregation prone and do not usually express at high levels. It is
thus difficult to characterize their biophysical properties and to generate high-
quality crystals for structure determination. One approach to overcome these
problems is the creation of soluble variants of membrane proteins that main-
tain structure and functionally related properties. As an example of such an
approach, the hydrophobic transmembrane domain of the potassium channel
KcsA was redesigned to yield a water-soluble variant of the protein.188 The
backbone template used in this study was the high-resolution structure of
KcsA.216,217 Thirty-five surface residues were targeted for mutation based on
solvent accessibility. The calculations were constrained by fixing the solvation
energy to match that of a water-soluble protein with similar size.166 One re-
sulting protein, WSK-3, shared many properties with the parent KcsA. WSK-3
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showed the correct helical structure, formed predominantly tetramers, and
bound both agitoxin2 and small molecule channel blockers.188,218 This work
exemplifies the solubilization of a membrane protein by computational
sequence redesign, a method that may be extended to other membrane proteins,
possibly even those with unknown structure through the use of homology
modeling.

9.4.4 Proteins with Non-biological Components

Nature often overcomes the physico-chemical limitations of the natural amino
acids through the incorporation of co-factors, which can provide structural and
electronic properties required for light harvesting or catalytic activity that may
not be accessible using only the amino acids. Co-factors take the form of metal
ions, organometallic compounds, and organic molecules. The ability to design
proteins that can selectively bind non-biological co-factors can lead to novel pro-
teins with functionalities not seen in nature. Instead of redesigning a natural
protein, Cochran et al. created a novel protein scaffold.122 Such design of
structure ‘‘from scratch’’ is necessary when the co-factor molecules differ sub-
stantially from those seen in nature. The targeted complex comprised a homo-
tetrameric helical bundle that contained a pair of synthetic iron porphyrin co-
factors. Subject to constraints on residues involved in metal coordination, the
identities of the remaining unconstrained positions were determined using
SCADS. CD spectroscopy, size-exclusion chromatography, and analytical
ultracentrifugation revealed that the 34-residue peptide goes from a partially
disordered monomer to an a-helical tetramer upon co-factor binding.122 Im-
portantly, the spectra of the Soret band indicate that the complex selectively
binds the target co-factor, and not other iron-containing porphyrins. The
strategy has been extended to design a 108-residue single chain protein that binds
two non-biological porphyrin-based co-factors.233 The success of this study in-
dicates that computational design methods can lead to the discovery of protein
systems that selectively form complexes with large non-biological components.

9.4.5 Symmetric Structures

Since many large protein systems are polymeric with well-defined quaternary
structures, it is of interest to develop computational methods for the design
of such protein assemblies. For homo-oligomers or crystalline systems, the
system’s symmetry facilitates design calculations. Fu et al.219 developed a
symmetry assumption that greatly reduced the complexity of the calculations
for symmetric complexes of identical chains. This assumption allows for calcu-
lation of the site-specific probabilities using only a single variable chain, rather
than an entire multi-subunit complex.
Swift et al. recently applied this methodology to redesign a ferritin-like

protein, Dps (DNA binding protein from starved cell). Dps is a dodecamer of
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four-helix bundle proteins that is important for iron storage and preventing
DNA damage.220 The goal of the study was to explore the degree to which the
hydrophobicity of the interior protein cavity could be modified through mu-
tation, yielding a system having potential application to the encapsulation of
hydrophobic molecules. The mutation sites were identified among the exposed
hydrophilic residues on the surface of the interior cavity. Using the calculated
site-specific amino acid probabilities, three different variants were designed
having three, seven, and ten hydrophobic mutations residues per subunit. The
stability with respect to chemical denaturation was found to decrease with the
increasing number of hydrophobic mutations. All of the mutants, however,
exhibited high melting temperatures (Tm¼ 74–90 1C). Despite the large number
of hydrophobic mutations, the rate of iron oxidation and mineralization of the
variant with seven mutations was comparable to that of wild-type Dps.220

The results confirm that the ferritin family of proteins is a robust scaffold for
engineering nanoscale molecular containers.

9.4.6 Computational Methods for Directed Evolution

Computational design methods may be used to guide the combinatorial design
of proteins.176,177,194,221,222 In addition, such methods can aid the design of
directed evolution methods, which have been successfully applied to engineer
and optimize enzymes and other proteins.223 Due to the random nature of
mutagenesis and recombination techniques, only a small fraction of the pos-
sible mutations are typically explored in most experiments, and many of the
mutants will be unstable, poorly folded, or not functional. Often the structures
of the proteins under study are known, however, and this information can be
leveraged to improve the efficiency of such experiments. Computational algo-
rithms have been developed in an effort to optimize mutant libraries by tar-
geting mutagenesis to specific residues and designing recombination strategies.
Computational methods have been applied to assist in vitro recombination

experiments at the DNA level. Maranas and co-workers224 developed a com-
putational framework, eCodonOpt, to remove the inherent bias in combi-
natorial libraries by optimizing codon usage for DNA shuffling. DNA shuffling
leads to crossover positions that tend to be biased toward regions having
high sequence similarity with the parent strand. This bias can lead to libraries
with little sequence diversity. Optimizing codon usage of the parental DNA,
through the use of eCodonOpt, increases the average number of crossovers per
recombination.
Optimization of crossover points can also lead to more successful recombi-

nation approaches. In protein evolution natural recombination is often thought
to occur at regions of well-defined substructures or domains. This concept has
been harnessed by the computer algorithm SCHEMA.225 SCHEMA calculates
the interactions between residues and determines how many stabilizing inter-
actions will be broken during recombination. A resulting profile for each
residue is generated, and crossovers corresponding to minima involving regions
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where the largest number of stabilizing interactions is preserved. The
SCHEMA algorithm has been tested using earlier recombination experi-
ments,225 and nearly all of the crossovers that improved stability or function
occurred near minima in the schema profiles.
The computational method SIRCH has been developed to evaluate the

functionality of protein hybrids generated by recombination.226 SIRCH
identifies residue–residue clashes in a given library. Based on the number and
severity of the clashes, the hybrids can be classified according to their functional
potential. The results of SIRCH have been compared to functional crossover
positions identified in the recombination of human and E. Coli glycinamide
ribonucleotide (GAR) transformylases.115,227–230 The experimentally deter-
mined positions were consistent with the computational results, and SIRCH
was able to distinguish crossover directionality (i.e. an A-B versus a B-A
crossover).

9.5 Outlook

The design of a novel protein may appear to be a daunting process, given the
many degrees of freedom and myriads of subtle interactions that guide folding.
Computational methods have been successful, however, in overcoming these
hurdles by leveraging some of the fundamental rules governing protein folding
and by addressing many coupled degrees of (sequence) freedom simul-
taneously. Through the use of computational design methods it is now feasible
to sample, search, and characterize sequences for a variety of target proteins.
Several challenges still remain. It will be of interest to quantify sought-after
properties in a manner consistent with protein design algorithms. Such proper-
ties include solubility, cellular toxicity, or lack thereof, high-affinity ligand
binding, selective protein–protein association, and specificity in enzyme cata-
lysis. With continued efforts in protein design, a greater understanding of these
properties will become available as well as an improved understanding of
protein folding and assembly.
Although the field of computational design is still under development, it has

already proven successful in generating new proteins with a diverse range of
structures and functions. Computational design methods may also be extended
to proteins containing unnatural amino acids and non-biological folding sys-
tems or ‘‘foldamers.’’231,232 Aided by computational methods, novel molecular
‘‘machinery’’ comprising proteins (or other polymers) may potentially be de-
signed that can carry out desired functions with the same specificity and se-
lectivity of natural proteins.

Acknowledgements

The authors gratefully acknowledge support from the US Department of
Energy (DE-FG02-04ER46156), the University of Pennsylvania’s Nano/Bio

204 Chapter 9



Interface Center through the National Science Foundation (NSF) NSEC
DMR-0425780. Support is also acknowledged from the National Institutes of
Health (GM61267, GM71628), and Laboratory for Research on the Structure
of Matter through NSF MRSEC DMR05-20020. The figures were rendered
using PyMol (DeLano Scientific LLC).

References

1. C. B. Anfinsen, Science, 1973, 181, 223–230.
2. J. J. Vincent, C. H. Tai, B. K. Sathyanarayana and B. Lee, Proteins, 2005,

61(7), 67–83.
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CHAPTER 10

Protein Misfolding and
b-Amyloid Formation

ALEXANDRA ESTERAS-CHOPO, MARIA TERESA
PASTOR AND LUIS SERRANO

European Molecular Biology Laboratory, Meyerhofstrasse 1, D-69117
Heidelberg, Germany

10.1 Introduction

One of the most basic biological processes is the folding of a linear sequence of
amino acids into the three-dimensional structure of a functional protein. As
there are 20 different types of amino acids and due to the wide range of protein
sizes, the number of possible random amino acid sequences exceeds the esti-
mates of the total number of atoms of the universe. Therefore, natural proteins
are a very select group of molecules, with very special characteristics that dif-
ferentiate them from the random amino acid sequences. Two of their most
important features are their ability to fold in unique structures and their ability
to generate a wide range of functions. Protein functions include the control and
regulation of essentially every chemical process which our lives depend on, as
well as the provision of key components to virtually all the structural frame-
works within our bodies. Although the code that governs protein folding re-
mains a mystery, we do know that primary sequence is subject to evolutionary
pressure to maintain functionality, and by extension to fold into a stable
structure. In the last few years, this structure–function dogma has been ex-
panded by the discovery of functional unstructured proteins and of un-
structured regions in many functional proteins, both linked to very important
cellular processes.1 Many of these intrinsically unfolded proteins or regions
undergo transitions to more structured states upon binding to their target.
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However, under certain circumstances, some of the members of this limited
group can fail in their correct folding process, leading to a functional deficit
that can have serious consequences at the organism level. More recently, an
emerging class of late-onset, slow-progressing diseases appears to result from a
gain (rather than a deficit) of function associated with an abnormally folded
form of the protein. These diseases, which are characterized by ordered, fibrillar
aggregates of protein known as amyloid fibrils, include common neurodegen-
erative pathologies such as Alzheimer’s (AD) and Parkinson’s disease (PD) as
well as many rare systemic diseases such as familial amyloid polyneuropathy
(Table 10.1). Interestingly, some intrinsically disordered proteins, like the Ab

Table 10.1 A summary of the main human amyloidoses, the organs affected,
the proteins or peptides involved, and the localization of the de-
posits associated with every disease.

Clinical syndrome Organ affected Plaque components Cellular localization

Alzheimer’s disease Brain: cerebral
cortex,
hippocampus

Amyloid b peptide Extracellular

Tau protein Tangles in neuronal
cytoplasm

Parkinson’s disease Brain: substantia
nigra,
hypothalamus

a-Synuclein Neuronal cytoplasm

Polyglutamine ex-
pansion disease
(e.g. Huntington’s
disease)

Brain: striatum,
cerebral cortex

Long glutamine
stretches within
certain proteins
e.g. Huntington

Neuronal nuclei and
cytoplasm

Spongiform
encephalopathy

Brain: cortex, tha-
lamus, brain
stem, cerebellum

Prion protein Extra- and
intracellular

Type II diabetes Pancreas,
insulinomas

Islet amyloid
polypeptide

Extracellular

Familial amyloidotic
polyneuropathy 1

Systemic; per-
ipheral nerves,
heart, vitreous

Mutant transthyr-
etin and frag-
ments thereof

Extracellular

Senile systemic
amyloidosis

Systemic; cardiac Wild-type trans-
thyretin and
fragments
thereof

Extracellular

Haemodialysis-
related amyloidosis

Systemic; joints,
bones, liver,
tongue, lungs

b2-microglobulin Extracellular

Finnish hereditary
amyloidosis

Systemic; ocular Fragments of
mutant gelsolin

Extracellular

Hereditary systemic
amyloidosis

Systemic: renal
and visceral
disease;
organomegaly

Mutant lysozyme Extracellular
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peptide, islet amyloid polypeptide (IAPP), tau and a-synuclein, can also enter
this misfolding pathway and form ordered amyloid fibrils.
Despite active research in the last few years, there are still many open

questions regarding amyloid fibril formation such as the factors that determine
amyloid formation by normally soluble proteins, the mechanism of toxicity
associated with these diseases, and the structure of the mature amyloid fibrils
and intermediate species appearing in this process. Efforts from different areas
of life and medical sciences are being directed at creating an integrated picture
of the different processes associated with these diseases with the final aim of
identifying potential therapeutical strategies. Here we discuss the molecular
aspects of protein misfolding and amyloid formation with an emphasis on the
experimental approaches (see Chapter 11 by Dima and co-workers for an ac-
count of results obtained with computational methods). In the first section we
describe the general principles underlying protein aggregation into b-amyloids.
The second section focuses on some of our own findings obtained with a
minimalist approach consisting in studying the in vitro aggregation of very
small peptides as model systems for amyloid formation.

10.2 General Principles of Amyloid Formation

10.2.1 Historical Perspective

The understanding of amyloid fibril formation has advanced as better tech-
nology has become available. Amyloid deposits were detected for the first time
and named by Rudolph Virchow in 1854 by iodine staining of brain sections
with an abnormal macroscopic appearance.2 Initially, light microscopy and
histopathological dyes such as Thioflavin T (ThT) and Congo red (CR) were
used in their characterization. The phenomenon of positive birefringence of the
amyloid deposits upon Congo red binding introduced the possibility of an
ordered submicroscopic structure. In 1959, electron microscopy studies of
different amyloid tissues demonstrated that all of them exhibit a compar-
able fibrillar structure in fixed tissue sections.3 The association of a fibrillar
structure with the tinctorial properties exhibited by amyloid deposits pro-
vided the basis for amyloid fibril isolation. The first isolated amyloid fibrils
showed morphology and properties similar to the ones observed in tissues.4,5

This finding, together with the improvement of the extraction methods and
introduction of techniques to solve the proteins forming the fibrils, opened
the era of biochemical studies. Sequencing of the proteins isolated from dif-
ferent amyloid deposits demonstrated that each of the clinical syndromes is
associated with a different protein (Table 10.1). The discovery that amyloid
fibrils formed in vitro from synthetic or recombinant polypeptides and proteins
are similar to the ones formed in vivo by natural amyloids unlocked the pos-
sibilities of carrying out biophysical characterization of the process
and tackling the challenge of unraveling the structure and organization of
amyloid fibrils.2
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10.2.2 Molecular Basis of Amyloidosis: Protein Misfolding

10.2.2.1 In vitro Studies

In the early 1970s, the discovery that lysosomal extracts are sufficient to convert
amyloidogenic proteins into amyloid fibrils introduced the assumption that
proteolytic processing was the amyloidogenic determinant.6,7 However, based
on many evidences from independent investigations, it is now widely accepted
that protein misfolding is the molecular basis of all the amyloid related dis-
orders.8–10 Conformational changes of the natively folded or unfolded protein
have been demonstrated to precede the formation of amyloid structures.
Nevertheless, proteolysis still plays an important role in the generation of ab-
errant protein fragments highly prone to amyloid formation. For example, the
amyloid precursor protein (APP) does not undergo fibril formation while its
proteolysis product, the Ab peptide, is the major component of the extracellular
amyloid plaques associated with AD.11

Under certain conditions, all the amyloidogenic proteins can adopt an
amyloid prone state that favors the intermolecular interactions leading to the
formation of oligomeric species. A natively folded polypeptide chain loses or is
unable to attain its closely packed three-dimensional structure, populating non-
correctly folded states in equilibrium with each other (Figure 10.1).9 It has been
proposed that natively unfolded proteins associated with amyloid diseases (Ab,
tau, a-synuclein, IAPP) can adopt a metastable, partially structured conform-
ation that is stabilized by oligomerization.10 In these amyloid prone states, the
protein can nucleate initial oligomeric assemblies where the content of secondary
b structure is generally increased. These ‘‘seeds’’ or ‘‘nuclei’’ provide a sort of
template where other misfolded or partially folded molecules are recruited,
thereby increasing the size of the assemblies that finally give rise to the fibrils.13

10.2.2.2 Protein Misfolding in the Cell

To put the misfolding and conformational hypothesis in a cellular context some
other cellular events associated with the life of a protein have to be taken into
account (Figure 10.1). In eukaryotic cells, the vast majority of proteins fold
either in the cytosol or in the endoplasmic reticulum. These environments are
much more complex compared to the one associated with most experiments
conducted in vitro. For example, the cytosol is so densely packed with all the
molecular components that are needed for survival and replication that the
macromolecular concentration can exceed 350mgml�1.14 This high degree of
molecular crowding means that incompletely or improperly folded molecules
will probably aggregate with each other or associate improperly with other
cellular components. To avoid this problem, a series of auxiliary systems have
evolved to assist proteins to fold efficiently.15 These species involve ‘‘folding
catalysts’’ that accelerate slow steps in protein folding, such as the formation of
disulfide bonds or the isomerization of Xaa-proline peptide bonds, and ‘‘mo-
lecular chaperones’’ that act to avoid the consequences of protein misfolding
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and aggregation. In addition, there is also a series of quality control mechanisms
to check whether proteins are correctly folded. Most of these take place in the
endoplasmic reticulum, the major folding compartment of eukaryotic cells.16

Protein molecules that do not meet the quality requirements are targeted for
destruction. The best-characterized degradation mechanisms are part of the
‘‘unfolded protein response,’’ which involves ubiquitination of proteins destined
for disposal, followed by their destruction in the cytosol by the proteasome.17

10.2.2.3 Conditions Promoting Amyloid Formation
in vivo and in vitro

In the cellular environment, the onset of aggregation may be triggered by any
factor that results in a rise of the concentration of the amyloidogenic precursor,

Figure 10.1 Schematic representation of protein (mis)folding in the cell. Thick arrows
represent physiological processes leading to normal protein function.
CH: chaperones and folding catalysts. Thin arrows correspond to the
events involved in amyloid formation. Grey thin arrows indicate steps of
the amyloid process that are not yet well established as the identity of the
amyloidogenic precursor species, the cytotoxic species, or the species that
can be targeted for degradation. Dashed arrows indicate non-favored
processes. For the sake of simplicity, formation of disordered aggregates
has not been included. Adapted from Ref. 12.
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thereby shifting the equilibrium between correctly and partially folded mole-
cules (Figure 10.1). Protein mutations, environmental changes, and chemical
modifications have been reported to favor amyloid formation in several
pathological proteins.
Mutations could modulate the extent of amyloid formation by reducing the

conformational stability of the protein, or by specifically increasing the amyloid
propensity of the polypeptide sequence. For example, two mutations in lyso-
zyme associated with hereditary systemic amyloidosis18 seem to facilitate
amyloid formation by reducing the stability of the globular protein, as revealed
by a series of in vitro studies.19 Mutations in the Ab peptide associated with AD
phenotypes have been demonstrated to accelerate amyloid formation in vitro.20

Other mutations in the APP increase the Ab peptide production roughly two-
fold, as has been shown in transfected cells, transgenic mice, and in the affected
individuals themselves.21 The total amount of peptide would increase, along with
the population comprising partially folded molecules. Also, inherently amylo-
idogenic proteins at normal concentration can lead to amyloid deposits after
very prolonged periods of time. This is the case of transthyretin (TTR) in senile
systemic amyloidosis. This disease occurs with increasing frequency after the age
of 70 years, becoming almost universal above the age of 90 years.22

Interaction with cellular components may also favor amyloid formation. Many
proteins have been reported to be associated with amyloid deposits found in AD
and some other central nervous system (CNS) and systemic disorders. In vivo and
in vitro studies have shown that many of these elements can regulate Ab amyloid
formation (reviewed in reference 23). There is some evidence that implicates
proteoglycans in the pathophysiology of amyloid, probably through the pro-
motion and stabilization of fibrils.24 Some lines of evidence propose that Ab
production takes place in the late endosomal/lysosomal system.25 The pH of these
compartments (late endosome 5-5.5,lysosome 4.5) fits very well with the obser-
vation that Ab amyloidogenesis is favored at acidic pH.26 Metal ions also seem to
be related with an acceleration of fibril formation in vivo. The Ab peptide has been
shown to bind to Cu21, Fe21, and Zn21. Metal binding induces a b-sheet-like
conformational change in Ab, resulting in enhanced fibril formation.11

Another factor that can favor amyloid formation is covalent post-translational
modifications of proteins. Amyloid formation by two intrinsically disordered
proteins, tau and a-synuclein, seems to be promoted by phosphorylation. An-
alysis of the deposits formed by both proteins has shown that they contain
mainly the hyperphosphorylated form.27

Amyloid formation could be also favored by conditions that increase the
accumulation of misfolded intermediates, such as impairment of the quality
control machinery. It has been demonstrated that inactivating mutations of any
of the components of the quality control or harsh environmental conditions
such as heat shock, oxidative stress, or chemical modification may impair the
activity of the clearing machinery and/or increase the number of misfolded or
unfolded proteins, overwhelming the capacity of molecular chaperones and the
proteasome.17 Changes in the activity levels of this quality control associated
with ageing could be also associated with the TTR deposits mentioned above.
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Experimental conditions can be designed to force the self-assembly of dif-
ferent non-pathogenic proteins in vitro.28 This can happen under conditions
which are partially destabilizing (acidic pH values, high temperature, lack of
ligands, or moderate concentrations of salts or co-solvents such as tri-
fluoroethanol) where the tertiary interactions are destabilized, whereas the
secondary contacts are still favored. Nevertheless, many of these conditions are
quite unlikely to occur in vivo.

10.2.2.4 The Mechanisms of Amyloid Formation

Amyloids are considered the final state of a nucleated polymerization process
that correlates macroscopically with the formation of insoluble fibrillar struc-
tures. The process of amyloid fibril formation is characterized by three different
phases (Figure 10.2A):

a) Slow nucleation phase or lag phase. During this time, the conformational
transition of the soluble precursor is supposed to take place to generate
the amyloid prone species (see Chapter 11 by Dima et al. for more details
on nucleation and related conformational changes).

Figure 10.2 A) The three main phases of the process of amyloid formation and B) the
different species associated: schematic representation and electron
micrographs.
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b) Growth phase, in which the nucleus grows to form larger polymers. This
step does not occur until the amyloid prone species is at concentrations
above a certain level (i.e. the critical concentration). Addition of exo-
genous nuclei or seeds can accelerate the normally slow nucleation step.
Furthermore, increasing protein concentration can reduce as well the time
span before amyloid formation commences.

c) A steady-state phase, in which the ordered fibril and the monomer appear
to be in dynamic equilibrium.13

The study of amyloid fibril formation from different amyloid proteins
and peptides has revealed the presence of intermediate species along the
pathway. Electron microscopy (EM), sedimentation, and atomic force micro-
scopy (AFM) have been used for the characterization of these intermediate
species.29 Figure 10.2B shows schematic representations and EM micrographs
of the different species associated with every phase of the nucleation depen-
dent process. The first stage can be depicted as ‘‘seeds’’ or nuclei and these
are usually described as being spherical or globular in appearance.30 These
globular particles associate over time to form protofibrils. Protofibrils were
identified to appear transiently during Ab peptide fibrillogenesis31,32 and
seem to be precursors of full-length fibrils. These precursors generally have a
curved appearance and are shorter than the mature fibrils. Interest in the
structure of these early species has grown in recent years, since they appear to
be directly involved in the mechanism of toxicity (see below). These proto-
fibrils evolve to form protofilaments that pack together forming the final
mature amyloid fibrils. All these species can co-exist in solution, and only at the
plateau phase is the equilibrium of the mature fibrillar form and monomeric
forms reached. It is important to remark that protein self-association into
b-sheets can lead to products of different quaternary structure. Amyloid
formation refers to the formation of ordered fibrillar material with b-sheet
structure. Protein aggregation refers to non-ordered b-sheet assemblies with
amorphous morphology. Both processes can co-occur in amyloid-related
diseases since nuclei could also be considered as amorphous aggregates but they
are not necessarily linked. Recent studies have aimed at revealing the sequence
determinants directing a protein sequence towards the amyloid or the
amorphous aggregation pathway.33–35

10.2.3 The Structural Architecture of Amyloid Fibrils

Amyloid fibrils from in vivo deposits or even fibrils that have been assembled
in vitro are difficult to study using conventional structural techniques. Methods
such as single crystal X-ray crystallography and solution nuclear magnetic
resonance (NMR) cannot be used on fibrils since they are insoluble and
non-crystalline. Hence, high-resolution structures of amyloid fibrils still remain
an open challenge. The strategy used in the field has been the combination of
low- to moderate-resolution data from different techniques to build models of
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the structure of mature fibrils. All mature amyloid fibrils exhibit a similar
hierarchical organization that can be dissected into different levels.

10.2.3.1 Supramolecular Structure

Simple EM micrographs of mature amyloid fibrils reveal the presence of
fibrillar subunits denominated protofilaments, which pack up to constitute the
fibril. More sophisticated techniques such as image reconstruction of cross-
sectional EM images36,37 or a combination of cryo-electron microscopy with
single particle averaging methods38–40 have been used to study in greater detail
the protofibrillar structure of a wide range of ex vivo and synthetic fibrils. In all
the models proposed a variable number of protofilaments twist around each
other. However, the number and the arrangement (e.g. left or right winding) of
the protofilaments might differ even within the same sample.

10.2.3.2 The Protofilament Core

X-Ray fibre diffraction has been used to examine the internal structure of
amyloid fibrils. It has been shown that all amyloid fibrils possess a character-
istic cross-b structure (Figure 10.3). The b-sheets are hydrogen bonded along
the length of the fibrils, and the b-strands run perpendicularly to the long axis
of the fibril. Whether these are in parallel or anti-parallel arrangement is still
under debate. However, the detailed analysis of X-ray diffraction patterns
for different ex vivo and synthetic fibril preparations has allowed the proposal
of a model for the organization of the protofilament core.41,42 In this model
the protofilaments are composed of four b-sheets (the number of b-sheets
might change depending on the amyloid protein) running parallel to the axis of
the protofilament, whereas their component b-strands are almost orthogonal to
the axis.
Another intriguing question regarding amyloid structure is how peptides and

proteins of very different lengths ranging from six to hundreds of amino acids
can self-assemble into similar amyloid structures. Several models propose that
the whole amino acid sequence refolds into a parallel b-helix to form the core of
the amyloid structure (Figure 10.4A).43–46 Adjacent strands of the helix are
connected by H-bonds as in a normal b-sheet, while any part of the sequence
incompatible with the architecture can be accommodated as loops between the
core forming b-strands.47,48

Other models propose that only a segment of the protein, the so-called
amyloid domain, forms an amyloid core that is surrounded by the rest of the
protein (Figure 10.4B). The folding state of the globular appendages is un-
known and might differ depending on the amyloid protein. These models are
based on the hypothesis that amyloid formation is the result of a ‘‘gain of
interaction’’ (GOI) due to the formation of a new intermolecular bond, which is
contributed by a region of the protein.49 Observations of 3D domain swapping
led Eisenberg and co-workers to propose a particular case of this GOI model
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Figure 10.3 Schematic representation of the cross-b motif. The arrangement of the
b-strands and b-sheets can differ depending on the amyloid sequence.
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called the ‘‘zipper model’’.50 In this model a specific region of a protein binds to
the same region in another molecule, forming the b-sheet spine of the amyloid,
while the rest of the molecule decorates the periphery.51,52

Recent work by the Eisenberg group has resulted in the first crystal structure
of an amyloid fibril, in this case formed by a heptapeptide (GNNQQNY) and a
related hexapeptide (NNQQNY) from the yeast prion protein Sup35.53 The
structure shows a b-sandwich formed by parallel b-sheets with anti-parallel
arrangement. The face-to-face interface between the b-sheets is described as a
dry interface, where the side chains are interdigitated with their counterparts in
the mating b-sheet. According to the ‘‘zipper model’’ this structure should
represent the organization of the b-sheet spine of the amyloid fibrils. This study
has been expanded with the structure of more amyloid forming fragments that
also show steric zippers but with variations depending on the sequence.54 These
works represent a major step towards the determination of a high-resolution
structure of amyloid fibrils.

10.2.4 Amyloid Induced Toxicity

Nowadays, there is strong evidence indicating that amyloid formation is the
cause or at least a central event in the pathogenesis of amyloidoses, not a
consequence of the disease.27 During the past two decades, several animal
models such as the nematode Caenorhabditis elegans,55 the fruit fly Drosophila

Figure 10.4 Models of the primordial structure of amyloid fibrils. A) b-helix struc-
ture. B) Schematic representation of the ‘‘zipper spine’’ model proposed
by Eisenberg and co-workers. Adapted from reference 52.
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melanogaster,56,57 and the mouseMus musculus57–59 have been used to study the
expression of the wild type and mutant versions of the principal amyloidogenic
proteins. These animal models recapitulate some of the symptoms associated
with those diseases such as neuron death, movement disorders, and learning
impairment. Genetic evidence also linked mutations in some genes with familial
forms of these diseases.27 In fact, point mutations of amyloidogenic proteins
associated with early onset of AD have been shown to accelerate amyloid
formation in vitro.20

10.2.4.1 Pathogenic Species

The common presence of amyloid fibril deposits associated with all amyloid-
related pathologies initially suggested that mature amyloid fibrils were the
species responsible for cellular impairment and cell death. However, studies with
post-mortem material have shown that accumulation of amyloid fibrils in neu-
rons does not always correlate with cell degeneration and clinical symptoms.60,61

Based on this and some other related results, mature fibrils are currently
regarded as inert end products of the amyloid fibril formation reaction.62

However, given that the process of amyloid formation is associated with
amyloid disorders, the toxic agents must occur at a certain stage of this process.
Hence, one or several of the fibrillation intermediates could be the species
responsible for amyloid toxicity. This emerging idea is supported by several
observations. For example, incubation of cell cultures with different inter-
mediates of the fibrillation pathway resulted in different rates of cell death. 63–65

Microinjection of oligomers of the Ab peptide disrupted cognitive function in
mice.66 Furthermore, additional support has arrived from non-pathogenic
proteins that are able to form amyloid like fibrils in vitro. Small prefibrillar
aggregates formed during their self-assembly were shown to be toxic in cell
cultures. These cytotoxic species showed common structural features suggesting
that toxicity could be inherent to these prefibrillar aggregates, thus implying a
common pathogenic mechanism for all amyloidoses.63,67

10.2.4.2 Proposed Mechanisms of Amyloid Toxicity

Many authors believe that the shared structural features of amyloid aggregates,
both at the level of protofibrils and mature fibrils, could be reflected into
common toxicity mechanisms. Although considerable efforts are currently direc-
ted towards deciphering the cytotoxic amyloid induced pathway, it remains still
unknown.
As previously mentioned, there is significant evidence suggesting that ordered

intermediates on the pathway to fibril formation are responsible for cell dys-
function and death.63,65,66,68–70 One hypothesis about the mechanism of
amyloid-induced toxicity proposes that the pathogenecity of these species
would arise from a gain of function of the misfolded protein. In this mecha-
nism, the toxic intermediates can interact with cellular components such as the
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proteasome,71 chaperones,72 or the plasma membrane. In fact, the current main
view in the field points to the plasma membrane as the primary target of
amyloid toxicity.64,73,74 Several mechanisms have been proposed to explain
how the toxic species might be causing membrane perturbation. The ‘‘channel
hypothesis’’ postulates that protofibrils would form non-specific membrane
pores resulting in unbalance of the cellular ion content.75 Recently, several
authors have proposed that membrane perturbation could also take place
through an independent pore formation mechanism, such as change in mem-
brane fluidity73,76,77 or in membrane conductance.74 Another related pathway
is based on the finding that interactions of Ab oligomers with Cu1 or Fe21

generates H2O2.
78 Lipid and protein peroxidation induced by this process could

impair the normal function of membrane proteins such as ATPases, or glucose
and glutamate transporters.79 All these different toxic pathways could be acting
synergistically. By disturbing both ion homeostasis and energy metabolism,
relatively low levels of membrane-associated oxidative stress can render neu-
rons vulnerable to cytotoxicity and apoptosis.
In addition to mechanisms related to the gain of function, amyloid patho-

genesis could be caused as well by the loss of function of the soluble protein or
even by fibril accumulation. It has been described that fibril accumulation can
produce chronic inflammatory responses,80 as well as damage to organs by
interfering with the proper flow of nutrients to the cells or by sheer weight.22 All
these hypotheses, and many others not described here, might simply be different
consequences of the formation of toxic amyloid species. Furthermore, the
dominant mechanism or mechanisms may depend on the cellular type or tissue
affected.

10.2.5 Experimental Techniques to Study Amyloid Formation

To be considered amyloid, any proteinaceous fibrillar material must fulfill the
following characteristics:

a) Fibrils show straight unbranched fibrillar morphology as detected by EM,
widths of B7–12 nm and indeterminate length

b) Fibrils show a cross-b X-ray diffraction pattern
c) Fibrils bind dyes, such as CR and ThT
d) Protein solutions display a polymeric b-sheet CD signature.

None of these features alone is sufficient to unambiguously determine the
amyloid nature of the aggregates. A combination of techniques is advisable to
increase the accuracy of the classification. The identification and characteri-
zation of amyloid material is usually performed by microscopy (EM and AFM)
and spectroscopic techniques. All these techniques provide low-resolution data
about amyloid formation, but are generally easy and inexpensive. The choice of
the appropriate technique depends on several factors, such as protein avail-
ability, solubility, concentration requirements, access to instrumentation, and
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expertise. These are the most commonly used techniques in biochemistry
laboratories:
Electron Microscopy: EM, which has a resolution of approximately 2 nm, is

typically used for the identification and morphological characterization of the
nuclei, filament, and fibrils that appear during amyloid fibril growth. Negative
staining techniques do not require long sample preparation.81 However, the
sample is in a dry state that might affect fibril morphology.
Atomic Force Microscopy: AFM is a method of imaging surfaces with

nanometre resolution. It requires even less sample preparation than EM and
can be used in a continuous mode. In situ AFM of Ab (1–42) fibrillation has
allowed us to follow the time course of fibril formation in buffered solutions.82

This study also shows how different surfaces (hydrophilic mica or hydrophobic
graphite) can affect the behavior of Ab in different environments, a factor that
must be taken into account during evaluation of the results.
Circular Dichroism: CD spectroscopy measures the difference in absorbance

of right- and left-circularly polarized light as a function of the wavelength.
Far-UV CD spectroscopy (180–250 nm) provides a very convenient method to
monitor secondary structure in solution. Its application to the study of amyloid
formation relies on the common conformational transition of amyloid proteins
from their native structures to a polymeric b-sheet (Figure 10.5A). Increasing
b-sheet content is associated with fibrillar morphology, relative insolubility,
and protease resistance. The polymeric b-sheet signature is characterized by a
minimum between 215 and 220 nm and a maximum between 195 and 202 nm
(Figure 10.5A). Near-UV CD (250–320 nm) detects primarily the presence of
tertiary interactions involving aromatic residues. It can be used to obtain

(nm) (nm)

Figure 10.5 Spectroscopic techniques to study amyloid fibril formation. A) Con-
formational transition followed by far-UV CD of the amyloidogenic se-
quence STVIIE from random coil (t¼ 0) to the polymeric b-sheet spectra
(t¼ 1 week). B) Enhancement of the ThT fluorescent emission spectra
upon binding to mature STVIIE fibrils.
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information about changes in the folding state of the globular domain of
proteins upon fibril formation.
CD has many advantages to monitor b-sheet self-association as it is fast and

allows recovery of the sample, which can afterwards be analysed by other
techniques. However, some of the experimental conditions normally used to
induce amyloid formation in vitro such as high salt concentrations or organic
solvents, e.g. DMSO, can prevent CD measurements. High scattering from
already formed fibrils and fibril deposition during the acquisition time are other
factors that can make CD measurements of amyloid formation difficult.
Dye binding techniques: CR and ThT are two dyes widely used to diagnose the

amyloid nature in protein deposits ex vivo. Their use has also been extended to
monitor the formation of amyloid structures in solution. CR binding to the cross-
b structure of the amyloid fibril induces a change in the UV absorption spectrum
of the dye. Upon binding to amyloid fibrils, there is an increase of CR absorbance
around 540nm.83 The binding of ThT to amyloid fibrils leads to a strong
enhancement of the ThT fluorescence emission at 485nm following excitation at
440nm (Figure 10.5B).84 As dye binding depends on the amount of amyloid
fibrils, both assays can also be used to quantify amyloid formation in vitro.
Nevertheless, it has to be taken into consideration that the magnitude of the

effect varies as a function of fibril morphology, and even non-fibrillar aggre-
gates can show dye binding.85 Therefore, they cannot be considered as a de-
finitive proof of amyloid nature, but rather as a quantitative measure of this
process once the amyloid nature had been proven by some other technique.

10.2.6 Cytotoxicity Studies

To study amyloid-induced toxicity, a simple and easy system that is able to
reproduce the pathological effects observed in patients would be desirable.
Although animal models of amyloid disease are very useful tools to study
amyloid diseases, obtaining these model systems is complicated and time
consuming. An alternative is the use of cellular systems such as primary neuron
cultures to study neurodegenerative disorders.75 However, obtaining and
maintaining these cultures is also cumbersome. To avoid these problems, PC12
cells have become a widely used alternative system to study amyloid toxicity
since they are easily handled. The PC12 pheochromocytoma line is a clonal line
derived from a rat adrenal medullary tumor. In the presence of nerve growth
factor (NGF), PC12 cells cease to multiply and differentiate into sympathetic-
like neurons that allow their use as a useful model system to study amyloid-
induced toxicity. Conclusions obtained from animal models and neuron
cultures correlate well with the results obtained from PC12 assays, like, for
example, the non-pathogenic role of mature fibrils or the toxicity of oligomeric
species.66,75,86 These results support the use of PC12 cell cultures as a suitable
model system to study amyloid-induced toxicity.
The degree of amyloid-induced toxicity is usually quantified using the MTT

assay (Figure 10.6A). This is a commercial kit based on the cleavage of yellow
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MTT (3-[4,5,dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) by meta-
bolically active cells to yield a dark blue formazan product that can be spec-
trophotometrically measured (wavelength between 550 and 600 nm). Since only
living cells can cleave the MTT product, the absorbance measurement is cor-
related to the percentage of cell survival (Figure 6B).

10.3 Experimental Studies on Amyloid Model Systems

10.3.1 Diversity and Commonalities in the Amyloid

Protein Family

Up to now, there are more than 20 different proteins or peptides that have been
associated with human amyloidosis. In the last few years the amyloid field has
widened with the discovery of non-pathogenic proteins28,87,88 and designed
peptides and proteins81,89,90 that can form amyloid fibrils in vitro. Such in vitro
fibrils are morphologically and structurally undistinguishable from those
formed in vivo. Therefore, the group of peptides and proteins able to form
amyloid fibrils in vitro and/or in vivo is very heterogeneous, not sharing any
apparent fold or sequence patterns. In their non-fibrillar form, amyloidogenic
proteins display a wide range of native folds. For example, transthyretin is a
homotetramer with high b-sheet structure, and only one helix per monomer.91

In contrast, the native form of lysozyme is predominantly a-helix with a small
amount of b-structure.92 Many amyloidogenic polypeptides consist primarily
of random-coil structures in their native, soluble states. These include the Ab
peptide,32 IAPP,93 a-synuclein,94 and tau.95

Figure 10.6 A) Schematic representation of MTT test used to quantify the toxicity
induced by amyloid related species. B) Example of cytotoxicity of
monomers, oligomers, and mature fibrils by the hexapeptide sequence
KVQIIN, derived from the tau protein (tau stretch). Monomers and
mature fibrils do not affect cell viability, while oligomers reduce the
percentage of MTT reduction and therefore the rate of cell survival.
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X-Ray fiber diffraction data indicate, however, that all amyloid fibrils share a
cross-b structure, regardless of the sequence or native fold of the soluble pre-
cursor.42 Also, for many amyloidogenic proteins it has been demonstrated that
amyloid formation involves a loss of native structure and an increase of b-sheet
population. These results provide strong support for the increasingly adopted
view in the field that the ability to form amyloid fibrils is a general property of
the polypeptide backbone, and that there might be certain general principles
governing protein fibrillization.28,96 According with this hypothesis, the pro-
pensity to form amyloid structures is related to some physico-chemical proper-
ties of the polypeptide chain such as charge, hydrophobicity, and secondary
structure propensity, together with a consideration of the distribution of
hydrophobic and polar residues81,97,98 (see Chapter 11 by Dima et al. for more
on this issue).

10.3.2 Protein Amyloidogenic Regions

It is well established in the field that a protein has to be partially or fully un-
folded to form amyloid fibrils.9,10,99 However, most natively unfolded proteins
do not undergo fibril formation in vivo,100 indicating that unfolding is neces-
sary, but not sufficient to promote protein polymerization. Hence, there must
be some sequence motifs that are more prone to self-assembly into amyloid
material than others. Very strong evidence in favor of this idea has been pro-
vided by recent work in our lab.34,81,101,102

Recent investigations also indicate that the amyloidogenic capability of a
protein seems to be concentrated in particular protein regions and, more speci-
fically, in small sequence fragments therein.51,103–107 It has been shown, for
example, that a hexamer of human IAPP (residues 22–27, NFGAIL) and even a
pentamer (residues 23–27, FGAIL) are already sufficient for amyloid formation
and cytotoxicity.104 Recent studies on protein self-assembly indicate that only
six residues of the molecule need to be ordered to give rise to an ordered fila-
ment and point mutations at the hexapeptide region prevent protein aggre-
gation.107 In the case of the Alzheimer peptide (Ab 1–40), the sequence
KLVFFA (residues 16–21) has been identified as the shortest sequence able to
form fibrils in vitro, but is not toxic in cell culture.105 The comparison of two
homologous proteins that differ in amyloidogenic properties has served to
identify short divergent sequence fragments that once swapped into the non-
amyloidogenic protein can trigger amyloid formation.51,106

10.3.2.1 Experimental Mapping of Protein
Amyloidogenic Regions

As a protein must be at least partially unfolded to undergo amyloid fibril
formation,10,99 the regions of a protein more prone to unfolding or with higher
flexibility are the most suitable to interact intermolecularly. Protein engineering
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experiments also indicate that there is a good correlation between the solvent
exposed regions of a protein and those shown to be critical in the rate-
determining steps of protein self-association.108 Such exposed and/or highly
flexible regions of a protein can be identified by limited proteolysis.109,110

Once they have been isolated and purified, the ability of these fragments to
form fibrils can be tested using the standard set of experimental techniques
(see above).
NMR studies on amyloid precursor states can also be conducted to identify

the key amyloidogenic regions of a protein.111 Analysis of peptides consisting
of these regions can further confirm their amyloidogenic properties.103 Minimal
amyloid sequences can be searched within these fragments by spotting
overlapping peptides on a membrane and by assaying their binding capabilities
to the full-length protein.112

10.3.2.2 Development of Peptide Model Systems
of Amyloid Formation

The research carried out in our group during the past years has mainly
focused on establishing the sequence and structural bases of amyloid for-
mation. Since amyloid deposits formed by natural proteins are difficult to
study using standard biophysical techniques, our strategy has consisted in
devising peptide and protein model systems that possess suitable physical
properties such as reversibility, good solubility, etc. to allow biophysical
characterization, and that are small enough to permit a detailed analysis of
the aggregation process.81,113 If amyloid formation is actually driven by
short fragments of a misfolded protein, small model peptides should be more
suitable than proteins to investigate those elements in sequences that favor
amyloid formation. Furthermore, whereas a mutation would alter just the
self-assembly properties of a small peptide, it might lead to protein destabi-
lization, complicating the extraction of pure sequence propensities to form
amyloid fibrils.
Initially, we reported the computer-aided design of a hexapeptide-based

model system for amyloidogenesis.81 Its simplicity served to highlight that fibril
formation is due to a very delicate balance between specific side-chain and
electrostatic interactions within a sequence and to propose a structural model
of the fibril that is consistent with the organization of the protofilament core of
naturally amyloidogenic proteins (see Section 6.2). This result validates its use
to study amyloid fibril formation and structure.
The small size of this model peptide system has been exploited to determine

how exact sequence details modulate, or completely disrupt, the apparent
generality of amyloid fibril formation in proteins.34 This question has been
addressed by systematically replacing the residues of a de novo designed
amyloid peptide with all natural amino acids. Previously, only alanine114 and
proline107 scannings had been carried out in amyloid fragments found experi-
mentally to determine the role of each residue.
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From this saturation mutagenesis experiment, a sequence pattern to identify
amyloidogenic stretches in proteins was extracted.

Acidic pH fPg-fPKRHWg-½VLSCWFNQE�-½ILTYWFNE�-½FIY�-fPKRHg
Neutral pH fPg-fPKRHWg-½VLSCWFNQ�-½ILTYWFN�-½FIY�-fPKRHg

PROSITE syntax (http://www.expasy.org/prosite/). ‘‘[ ]’’residues allowed at the
position; ‘‘{ }’’ residues forbidden at the position; ‘‘-’’ separates each pattern
element.
The positional scanning mutagenesis revealed that there is a position de-

pendence in the sensitivity of amyloid fibril formation to mutation, and also
that mutationally very tolerant (edges) and restrictive (core) positions can be
found within an amyloid sequence.34 This amyloidogenic pattern has been
successfully tested experimentally and also by in silico sequence scanning of
amyloid proteins and protein databases. Analysis of protein databases has
shown that highly amyloidogenic sequences matching the pattern are less fre-
quent in proteins than innocuous amino acid combinations. Furthermore,
when present, such amyloidogenic sequences are surrounded by amino acids
that disrupt their aggregating capability (amyloid breakers).
As a final test, a set of amyloid peptides and proteins that form amyloid

fibrils in vitro and/or in vivo and whose amyloid regions have been investigated
experimentally were scanned with our amyloid pattern. The results suggest that
the pattern is able to detect hexapeptide stretches that overlap with the amyloid
regions found experimentally. For example, for the Ab (1–42) peptide, the
region that agrees with the pattern consists of residues 16–21 (16KLVFFA21).
Interestingly, this region overlaps with the minimal sequence shown to be es-
sential for Ab polymerization, residues 16–20.105

10.3.2.3 Testing the Amyloid Stretch Hypothesis

The results mentioned above suggest that even a short amino acid stretch
bearing a highly amyloidogenic motif could provide the driving force needed to
trigger the self-assembly process of a protein. This is referred to as the amyloid
stretch hypothesis. Previously, it has been shown that insertion of long amyloid
domains (30–80 amino acids) from naturally occurring amyloid proteins can
trigger amyloid formation of some non-amyloidogenic proteins both
in vitro115,116 and in vivo.117 Other studies have used shorter amyloidogenic
fragments (10-mer and 7-mer) from the N-terminus region of the yeast prion
Sup35 with the same aim.118,119 But since the target protein was already amylo-
idogenic118 and/or they did not reach clear conclusions,119 none of these studies
provided compelling evidences in favor of the amyloid stretch hypothesis.
Our strategy to demonstrate the amyloid stretch hypothesis was the con-

version of a non-amyloidogenic protein into an amyloid-prone molecule by
inserting just a 6-residue amyloidogenic stretch.101 We chose the a-spectrin SH3
domain (a-SH3) as a target non-amyloidogenic protein. This protein has been
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shown not to be amyloidogenic under any conditions tested in our labora-
tory.113 As amyloidogenic sequences, we selected a de novo designed peptide,
STVIIE, highly amyloidogenic in vitro.81 To validate the amyloid pattern within
the context of a protein, we designed point mutants of this sequence at different
position categories (core and edges). We also introduced an amyloidogenic 6-
residue fragment of the Ab amyloid peptide identified with the amyloid pattern,

16KLVFFA21.
34 Sequences were inserted at different positions of the protein.

The N-terminus of the SH3 domain is natively disordered while the C-terminus
is structured into a b-strand.120 This difference provides a convenient frame-
work to assess the influence of the structural environment of the sequence on its
amyloidogenic capabilities.
The initial conformation of the variants carrying the amyloidogenic

insertions was investigated using far- and near-UV spectroscopy. In nearly all
the cases they showed CD signatures similar to the ones of the WT SH3
domain. Hence, we could conclude that the insertions do not affect the folding
of the domain. In order to prove that the amyloid insertions do not affect the
stability of the globular domain, we estimated the stability of the a-SH3 vari-
ants using thermally induced unfolding monitored by CD.
Next, we carried out fibrillation assays to test the amyloidogenic properties

of the amyloid SH3 variants. Samples were set up at two different protein
concentrations and checked for amyloid formation by CD and EM at different
time points. Modified versions of the a-SH3 carrying these short amyloidogenic
sequences in the N-terminus are as stable as the WT protein, but they fibrillate
under conditions where the original domain still remains soluble. Thus, the
amyloidogenic behavior shown by these proteins is not due to an extra de-
stabilization of the protein, but rather to the amyloidogenic properties of the
inserted sequence. The amyloidogenicity shown by the variants bearing the
insertion at the N-terminus compares to the amyloidogenic behavior exhibited
by the peptides.34 The N-terminus variant carrying the highly amyloidogenic
sequence STVIIE (STVIIE-SH3, 1-SH) forms abundant amyloid material after
three months (Figure 10.7). Mutation Glu6Thr at position #6 of the more
tolerant edges (STVIIT-SH3, 2-SH) keeps the amyloidogenic feature of the 1-
SH variant while mutation Ile5Lys at the most restrictive position of the core
completely abolishes amyloid fibril formation (STVIKT-SH, 3-SH). These re-
sults suggest that the amyloidogenic properties of proteins containing 6-residue
stretches that match the amyloid pattern can be modified by designing mu-
tations according to the amino acid tolerance at each position provided by the
pattern. Our results also show that the hexapeptide sequence derived from the
Ab peptide, 16KLVFFA21, is also able to trigger amyloid formation by a
completely unrelated domain (KLVFFA-SH3, Ab-SH).
Despite being slightly destabilized the C-terminal variants do not form any

kind of amyloid material under the same conditions in which the N-terminal
ones do. As we have mentioned before the N-terminus of a-SH3 is disordered,
while the C-terminus is structured into a b-strand. Therefore, the amyloid tail
should be more exposed in mutants with the insertion at the N-terminus, and
thus more accessible to intermolecular interactions such as those involved in
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amyloid fibril formation.120 The result highlights that the structural environ-
ment of the amyloidogenic stretch plays a fundamental role in whether or not
an amyloid-prone sequence can productively trigger the amyloid self-assembly
process. In order to be amyloidogenic a protein must carry an appropriate
amyloid stretch (sequence determinant) that must be or become locally unfolded
to initiate the process of amyloid formation (structural determinant).

10.3.2.4 Studying Amyloid Cytotoxicity with Short Peptides

Due to the complexity of the events involved in the pathogenicity of amyloid
formation, simplified models to study the molecular bases of this process are
desirable. Peptide model systems have been very helpful to provide outstanding
knowledge about the underlying factors in amyloid formation.121 Therefore,
short peptides capable of polymerizing into fibrils with properties similar to
those of natural amyloid proteins could be a successful alternative.81,89 Based
on that, we scanned all the human amyloidogenic proteins described so far with
the amyloidogenic pattern described by our group.34 Peptide fibrillation assays
showed that the amyloid stretches identified are able to form amyloid-like
fibrils. We found that the fibrils formed by these hexapeptides are not

Figure 10.7 Amyloid formation by the different N-terminus a-SH3 variants. All the
proteins were incubated under similar conditions (pH 2.6, cB300 mM,
t¼ 3 months and room temperature). 2-SH was assayed only at the
lowest concentration (cB100 mM) because of solubility problems. Taken
from reference 101. r The National Academy of Sciences of the USA.
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pathogenic in PC12 cell culture while prefibrillar ordered aggregates of amyloid
stretches were toxic.
Interestingly, all of the toxic oligomers formed by sequence-unrelated

hexapeptides displayed identical morphology by EM. These toxic oligomers
correspond to the same intermediate species of the amyloid formation pathway,
namely protofibrils. These results suggest that sequence does not play a general
role in the toxicity mechanism, which seems to depend exclusively on aggregate
structure. This finding was further confirmed by the observation that D- and
L-versions of the same sequence exhibit similar toxicities. Furthermore, the
same toxic species were identified as responsible for the toxic effects of both the
full-length Ab1�42 and the Ab hexapeptide stretch identified by the amyloid
pattern. We also took advantage of these model peptides to explore the
mechanism by which these prefibrillar aggregates impair cell function and
trigger cell death. Analysis of fluorescently labeled peptides showed attachment
of the prefibrillar structures to the cell membrane, indicating that the plasma
membrane is the primary target of amyloid induced toxicity. Also, we showed
that cell death induced by toxic prefibrillar aggregates is mediated by apoptosis.
Based on these findings, we concluded that self-assembly of putative amyloid
fragments into prefibrillar aggregates impairs cell functions and triggers cell
death in the same way full-length proteins do.122

The demonstration that short amyloid sequences can trigger amyloid for-
mation in a soluble domain and that they can be used as a successful model
system to study amyloid cytotoxicity may have significant impact in facilitating
the development of anti-amyloid therapeutics. Amyloid-prone protein regions
identified with the pattern can be synthesized and used to screen for molecules
that not only block amyloid formation but also amyloid-induced cytotoxicity.123
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11.1 Introduction

Increasing numbers of diseases including Alzheimer’s disease,1 transmissible
prion disorders,2 and type II diabetes are linked to amyloid fibrils.3 The
mechanism of amyloid fibril formation starting from the monomer is still
poorly understood. During the cascade of events in the transition from
monomers to mature fibrils a number of key intermediates, namely soluble
oligomers and protofilaments, are populated. It is suspected that the con-
formations of the peptides in this aggregated state differ substantially from
the isolated monomer, which implies that the monomer undergoes large
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inter-peptide interaction-driven structural transformations.4 The need to
understand the assembly kinetics of fibril formation has become urgent because
of the realization that soluble oligomers of amyloidogenic peptides may be
even more neurotoxic than the end product, namely the amyloid fibrils.5 In
order to fully understand the routes to fibril formation one has to characterize
the major species in the assembly pathways. The characterization of the ener-
getics and dynamics of oligomers (dimers, trimers, etc.) is difficult using
experiments alone because they undergo large conformational fluctuations. In
this context, carefully planned molecular dynamics simulation studies,6–9

computations using coarse-grained models,10 and bioinformatic analysis11,12

have given considerable insights into the early events in the route to fibril
formation. Here we describe progress along this route using examples taken
largely from our own work.
In this chapter, we focus on the following aspects of protein aggregation

using Ab-peptides and prion proteins as examples.

� What are the plausible scenarios in the transition from monomers to
amyloid fibril formation?

� What features of the amyloidogenic peptides control the growth kinetics of
fibrils? Although the assembly mechanism is complex the overall growth
kinetics is determined largely by the charge states and hydrophobicity of
the monomers.

� Can sequence and structural analysis be used to predict specific patterns
that are likely to be aggregation prone? By exploiting the sequence profiles
and structures of the cellular form of prions, PrPC, we uncover the regions
that are likely to trigger the large conformational changes in the transition
from PrPC to the scrapie form, PrPSc.

� Is there an organizational principle in oligomer and fibril formation?
The formation of morphologically similar aggregates by a variety of
proteins that are unrelated in sequence or structure suggests that certain
general principles may govern fibrillization. However, the vastness of
sequence space and the heterogeneity of environmentally dependent
interactions make deciphering the principles of aggregation difficult.
Nevertheless, we will argue that oligomers and higher-order structures
form in such a way that the number of intra- and inter-molecular hydro-
phobic interactions are maximized and electrostatic repulsions are mini-
mized. The latter implies that the motifs that minimize the number of salt
bridges are preferred.

For the issues raised above we formulate tentative ideas using phenomeno-
logical arguments and atom molecular dynamics (MD) simulations. Using a
number of experimental observations and results from computer simulations
certain general principles of amyloid formation seem to be emerging. There are
a number of unresolved issues that remain despite significant progress. A few of
these are outlined at the end of the paper.
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11.2 Scenarios for Peptide Association

11.2.1 General Ideas

The molecular details of the cascade of events that lead to the formation of
amyloid fibrils remain unknown because the species along the aggregation
pathways are highly dynamic and metastable. Indeed, AFM images of proto-
fibrils show that they undergo shape fluctuations, which implies a hetero-
geneous population of species. A number of experimental studies suggest that
fibril formation exhibits all the characteristics of a nucleation growth process. It
is suspected that the formation of a critical nucleus is the rate-determining step
in the fibril formation.13 Once the critical nucleus, whose very nature might
depend on sequence as well as external conditions, forms the fibril the elonga-
tion process is essentially downhill in free energy. The nucleation characteristics
manifest themselves in the appearance of a lag phase in the fibril formation. The
lag phase disappears if a seed or a preformed nucleus is present in the saturated
peptide solution. The seeded growth of fibrils has also been observed in simple
lattice and off-lattice models of protofibril formation. These are the general
features observed in experiments, but a more detailed account can be found in
Chapter 10 by Esteras-Chopo, Pastor, and Serrano. From this perspective an
overall scenario for explaining aggregation kinetics is in place. However, the
molecular and mechanistic details of the process, including the dependence of
the growth kinetics on the specifics of the sequence, are not fully understood.
Here we present two extreme scenarios14 that describe the needed con-

formational changes in monomers that lead to a population of species that can
nucleate and grow. The two potential scenarios, which follow from the energy
landscape perspective of aggregation (see Chapter 3 by Wolynes for a descrip-
tion of the energy landscape perspective in protein folding), differ greatly in the
description of the dynamics of the monomers. It was advocated early on that
fibrillization requires partial unfolding of the native state15 or partial folding of
the unfolded state (see Scenario I in Figure 11.1). Both events, which are likely
to involve crossing free energy barriers, lead to the transient population of the
assembly-competent structures N*. The better appreciated possibility is Scen-
ario I in which environmental fluctuations (pH shifts for example) produce
spontaneously theN* conformation. For example, extensive experiments16 have
shown that the N* state in transthyretin (TTR), which has a higher free energy
than the native state N, formed upon unraveling of the strands C and D at the
edge of the structure. This process exposes an aggregation-prone strand B. One
can also envision a scenario in which N* has a lower free energy than N thus
making the folded (functional) state metastable. It is likely that amyloidogenic
proteins, in which nearly complete transformation of their structure takes place
upon fibrillization, may follow the second scenario. In both cases fibrillization
kinetics result from the ability to populate the N* species. In either scenario
(TTR aggregation that follows Scenario I or PrPSc formation that follows
Scenario II) growth kinetics are initially determined by the ‘‘unfolding’’ barriers
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separating N* from either N or U. The energy-landscape perspective for ag-
gregation (Figure 11.1) suggests that the free energy of stability may not be a
good indicator of fibril growth kinetics. Rather, growth kinetics should correlate
with unfolding barriers.
In Scenario I, the amyloidogenic state N* is formed by denaturation stress or

other environmental fluctuations. The production of N* in Scenario II
can occur by two distinct routes. If N is metastable, as is apparently the case
for PrPc,17 then conformational fluctuations can lead to N*. Alternatively,
formation of N* can also be triggered by intermolecular interactions. In the
latter case N* can form only when the protein concentration exceeds a
threshold value. As noted below, there is evidence for both scenarios in the
routes to fibril states.
In order to understand the kinetics of fibrillization it is necessary to charac-

terize the early events and pathways that lead to the formation of the critical
nucleus. In terms of the energy landscape, the structures of N*, the ensemble of

Figure 11.1 Schematic diagram of the two plausible scenarios of fibrillization based
on free energy landscape perspective. According to Scenario I, the as-
sembly competent state N* is metastable with respect to the monomeric
native state N and is formed due to partial unfolding. In Scenario IIN* is
formed upon structural conversion either of the native state N (as in
prions) or directly from the unfolded stateU (as in Ab-amyloid peptides).
In both cases proteins (or peptides) in N* states must coalesce into larger
oligomers capable of growth into fibrils.
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transition state structures, and the conformations of the critical nuclei must be
known to fully describe the assembly kinetics. Teplow and co-workers, who
have followed the growth of fibrils for eighteen peptides including Ab1�40 and
Ab1�42,

18 showed that the formation of amyloids is preceded by the transient
population of the intermediate oligomeric state with high a-helical content.
This is remarkable given that both the monomers and fibrils have little or no
a-helical content. Therefore, the transient formation of a-helical structure
represents an on-pathway intermediate state. Somewhat surprisingly, we found
using multiple long MD simulations that in the oligomerization of Ab16�22

peptides6 the oligomer assembles into an anti-parallel b-structure upon inter-
peptide interactions. Even in the oligomerization of these small peptides from
the Ab family the assembly was preceded by the formation of an on-pathway
a-helical intermediate. Based on our findings and the work by Teplow and
co-workers we postulated that the formation of oligomers rich in a-helical
structure may be a universal mechanism for Ab peptides.
Formation of the on-pathway a-helical intermediate may be rationalized

using the following arguments. The initial events involve the formation of ‘‘non-
specific’’ oligomers driven by hydrophobic interactions that reduces the effective
available volume to each Ab peptide. In confined spaces peptides tend to adopt
an a-helical structure. Further structural changes are determined by the re-
quirement of maximizing the number of favorable hydrophobic and electrostatic
interactions. Provided that Ab oligomers contain large numbers of peptides, this
can be achieved if Ab peptides adopt extended b-like conformations.
There is some similarity between the aggregation mechanism postulated for

Ab peptides and the nucleated conformational conversion (NCC) model en-
visioned for the conversion of Sup35 to [PSI1] in Saccharomyces cerevisiae.19

By studying the assembly kinetics of Sup35, Serio et al.20 proposed the NCC
model, which combines parts of the templated assembly and nucleation-growth
mechanisms. The hallmark of the NCC model20 is the formation of a critical-
sized mobile oligomer, in which Sup35 adopts a conformation that may be
distinct from its monomeric random coil or the one it adopts in the aggregated
state. The formation of a critical nucleus to which other Sup35 can assem-
ble involves a conformational change to states that it adopts in the self-
propagating [PSI1]. The a-helical intermediate seen in Ab peptides may
well correspond to the mobile oligomer that has the ‘‘wrong’’ conformation to
induce further assembly.

11.2.2 The Assembly of Ab16�22 Oligomers

11.2.2.1 The Ab16�22 Monomer is a Random Coil

The small size of Ab16�22 peptides, which adopt an anti-parallel b-sheet
structure in the fibril state, is ideal for exploring in detail the mechanism of
oligomer formation. Using fairly long and multiple trajectories,6 the assembly
pathways for 3Ab16�22- (Ab16�22)3 were probed using all-atom simulations in
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explicit water. The simulations of Ab16�22 and the corresponding mutants
allowed us to draw a number of conclusions that may be of general validity.
The simulations of the Ab16�22 monomer at room temperature and at neu-

tral pH showed that it is predominantly a random coil. The finite size of the
system gives rise to large conformational fluctuations that lead to the popu-
lation of strand-like structures. There is a very low (B3%) probability of
a-helical conformations. The study of this simple system shows that the
b-sheet conformation adopted by the monomer must be due to interactions
with other peptides.

11.2.2.2 Oligomerization of Three Ab16�22 Peptides Requires
a Transient Monomeric a-Helical Intermediate

Upon interaction with other peptides substantial changes in the conformations
of the individual monomers occur. The size of the monomer increases by about
50%. More surprisingly, we found that as the inter-peptide interactions increase
there is a dramatic increase in the percentage of a-helical content during inter-
mediate times. At longer times the monomer undergoes an a-b transition. Due
to the small size of the oligomer (n¼ 3) there are substantial conformational
fluctuations even after the three strands are roughly in anti-parallel registry.
Nevertheless, the simulations showed that the size of the nucleus for Ab16�22

cannot be large because even with n¼ 3 there are signatures of stable oligomers.
Indeed, explicit simulations for t4 300ns show that one can obtain nearly
perfectly aligned Ab16�22 trimers in which the strands are in anti-parallel regis-
try.67 In these simulations uiðtÞ ujðtÞ

� �
where ui(t) is the unit vector connecting

the N- and C-termini of peptide i and fluctuates around values close to �1.
The dominant pathway for 3 Ab16�22- (Ab16�22)3 from the simulations

showed that in the intermediate stages the monomer transiently populates an
a-helix (see Figure 11.8 from reference 6). It should be emphasized that in the
assembly process (especially in the early stages in the oligomerization) there are
multiple routes. As a result, kinetic trapping can result in structures that are not
conducive to forming the most stable anti-parallel structures. Such kinetically
controlled structures have been explicitly probed in dimer formation of small
fragments of Ab peptides. These studies and other simulations illustrate the
complexity in dissecting the assembly of even small amyloidogenic peptides into
ordered structures.

11.2.2.3 Role of Side-chain Interactions

The gross features of the fibril structures of a number of proteins and peptides
whose monomer sequences and structures are unrelated are similar. This
observation might suggest that the interactions that stabilize the oligomers and
fibrils must be ‘‘universal’’ involving perhaps only backbone hydrogen bonds.
It might appear that side chains, and hence sequence differences, might play a
secondary role. Such a conclusion is further supported by repeated obser-
vations21 that any protein or peptide can be made to form cross-b structures
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under appropriate conditions. However, experiments22 and simulations7,23 show
that side-chain interactions are crucial in directing oligomer formation. Trimers
of Ab16�22 are stabilized primarily by favorable inter-peptide hydrophobic
interactions between residues in the central hydrophobic cluster (LVFFA) and
secondarily by inter-peptide salt-bridge formation between K and E.
The importance of side chains can be demonstrated by examining the effect

of mutations on the trimer formation in Ab16�22 peptides. We showed using
simulations that the mutant GLVFFAK, which eliminates the formation of
intermolecular salt bridge, entirely destabilizes the trimer. Similarly replace-
ment of L, F, F by S also destabilizes the trimer. These simulations show that
the sequence plays a key role in the tendency of peptides to form amyloid fibrils.
Although no general role has emerged it seems that sequences with enhanced
correlation between charges12 or a preponderance of contiguous (43) hydro-
phobic residues might be amenable to amyloid formation on finite timescales.

11.2.3 Dimerization of Ab10�35 Peptides

11.2.3.1 Generation of Putative Dimer Structures

In contrast to Ab16�22 fibrils the longer peptide Ab10�35 adopts a parallel
b-sheet conformation in the amyloid state. It is now suspected the monomer in
the fibril state is stabilized by an intra-molecular salt bridge between Asp23 and
Lys28. In order for this salt bridge to form there has to be a bend in the
monomeric structures involving the residues VGSN. The importance of a stable
turn, which was experimentally determined in the NMR structures, was
emphasized in MD simulations as well.
In a recent study,8 we used a number of computational methods to probe

dimer formation. We first generated a putative set of dimer conformations that
is based on shape complementarity. The work on Ab16�22 showed that both
inter-peptide hydrophobic interactions and the creation of favorable electro-
static contacts are required to produce marginally stable oligomers.
In order to dissect their relative importance we generated two homodimer
decoy sets by maximizing the number of contacts between the monomer
interfaces. The first 2000 dimer structures of each set were selected by mini-
mizing the interaction energy between the monomers. In order to distinguish
between desolvation and electrostatic interactions we used two distinct energy
functions. The j-dimer (Figure 11.2(a)) minimizes the desolvation energies of
the dimer at the interface whereas the e-dimer (Figure 11.2(b)) corresponds to
structures that have the highest inter-peptide electrostatic interactions. The
structure of the j-dimer is dominated by contacts between hydrophobic seg-
ments of the monomers. The hydrophobic core, LVFFA(17–21), and the
hydrophobic C-termini of both monomers are buried at the dimer interface.
The contacts at the interface of the j-dimer are conserved over the lowest
energy dimer structures. The e-dimer interface is characterized by electrostatic
inter-monomeric interactions, among which the salt bridge Glu11(A)–Lys28(B)
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Figure 11.2 The putative dimer structures corresponding to the j-dimer (a) and
e-dimer (b), respectively. The side chains at the dimer interface are de-
picted explicitly. The positively and negatively charged, polar, and
hydrophobic residues are colored in blue, red, purple, and green, re-
spectively. The Ca atoms of the monomers A (left) and B (right) are
colored in cyan and yellow, respectively.
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has the largest contribution. Contrary to the j-dimer, the contacts observed at
the e-dimer interface are not conserved across the set of the low-energy dimers
due to the increased specificity and strength of the electrostatic interaction.

11.2.3.2 Interior of Ab Oligomers is Dry

Insights into the assembly mechanism of the j-dimer and e-dimer can be obtained
from the Potential of Mean Force (PMF). The PMF for the dimerization process
was obtained along the center of mass of the two monomers as Figure 11.3
indicates. For each free-energy profile, one can distinguish three distinct intervals.
In the outer interval, the PMF value is nearly constant, from 6.5 Å–7.0 Å to
maximum separation, which in our case is 9.0 Å. At a distance of 6.5 Å for the
e-dimer and 7.0 Å for the j-dimer, the first solvation shells of the monomers come
into contact, and for both dimers the energetics of desolvation of the associating
monomers is unfavorable. In the second interval for the e-dimer, the value of the

Figure 11.3 The Potential of Mean Force (PMF) is plotted for two different relative
orientations of the monomeric peptide within the dimer. The PMF is
computed as a function of the surface separation, d¼ x – xcont, along the
distance between the centers of mass (DCOMs) of the two monomers,
where x and xcont are the DCOMs of the two monomers when they are at
an arbitrary separation and in contact, respectively. The black curve
corresponds to the free energy surface computed using the e-dimer as the
starting structure. The gray curve is similarly computed using the
j-dimer as the starting structure. The difference between the two surfaces
suggests that hydrophobic interactions may be more essential to stabi-
lization of the dimer structure than electrostatic interactions.
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PMF continues to increase up to 1.2 kcalmol�1 at a 3.0 Å separation; for the
j-dimer, the potential energy reaches a value of 0.8 kcalmol�1 at 5.5 Å, and after
that the desolvation is favorable, ending in an unstable local minimum at 3.0 Å.
For the third interval, from 3.0 Å to 0.0 Å, there is only one solvation shell
between the monomers. The water molecules are most strongly ordered near the
monomers through electrostatic interactions and hydrogen bonds. As a result,
the PMF for the e-dimer increases sharply between 3.0 Å and 1.3 Å up to
2.4kcalmol�1. At contact, the van der Waals attraction predominates, making
the overall dimerization process energetically favorable. For the j-dimer, the
solvation shell between the hydrophobic regions of the monomers is only weakly
bound to the solute. After a small increase in the PMF, corresponding to the van
der Waals attraction, the desolvation is entirely favorable.
If the approach along the center of mass of the monomers approximately

represents a minimum energy path, then the expulsion of water in the j-dimer
must be an early event in the assembly. Explicit simulations for Ab16�22

oligomers6 also show that desolvation occurs early. As a result, the interior of
Ab oligomers is dry.

11.2.3.3 Hydrophobic Interactions Between Monomers Are
the Driving Force in the Association of Ab10�35 Peptides
into Dimers

Comparing the j-dimer and e-dimer models for monomer association, we find
that the former appears to lead to more energetically favorable dimerization
than the latter. It appears to be more efficient to remove the entropically un-
favorable structured water between the opposing hydrophobic regions of the
two monomers than to stabilize the monomer solely through electrostatic
interactions. This is in good agreement with the experimental and MD simu-
lations observation that the mutation E22Q – where a charged glutamic acid
residue is replaced by a polar glutamine residue – increases the propensity for
amyloid formation.24,25 Molecular dynamics simulations of this increased
amyloidogenic activity for the E22Q mutant peptide led to the conclusion
that the water–peptide interaction is less favorable for the mutant peptide.26

Following a more detailed analysis of the structure and dynamics of the WT
and E22Q Ab10�35, it has been suggested that a change in the charge state of the
peptide, due to the E22Q mutation, leads to an increase of the hydrophobicity
of the peptide that could be responsible for the increased activity.27

The time evolution of the j-dimer structure was analysed and it was observed
that the monomers remain in contact during the simulation. It was shown that the
hydrophobic interaction between the monomers of the j-dimer acts as a stabi-
lizing force of the dimer. The ‘‘extended core’’ region 15–30 of both monomers in
the j-dimer makes the principal contribution to the hydrophobic interaction
energy. The j-dimer undergoes internal structural reorganization in the terminal
regions of the monomeric peptides. Our simulations indicate that there is
substantial reorganization of the peptide monomers in the N- and C-terminus
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regions, as expected for a dimer weakly and relatively non-specifically stabilized
by hydrophobic contacts at the dimer interface. Importantly, the structure of the
central hydrophobic cluster LVFFA region assumes a conformation similar to
that observed for the monomeric peptide in both experiment28 and simulation.29

Our simulations suggest that the preservation of the structure of the LVFFA
central hydrophobic cluster plays an important role in the stabilization of the
j-dimer structure.
The finding that the j-dimer may constitute the ensemble of stable Ab10�35

dimer has important implications for fibril formation. The initial event in the
dimerization involves, in all likelihood, contacts between the central hydro-
phobic clusters. In this process, expulsion of water molecules in the interface
might be a key event just as in the oligomerization of Ab16�22 fragments.6 Since
this process involves cooperative rearrangement of ordered water molecules,
it is limited by an effective free-energy barrier. Based on our results, we
conjecture that events prior to the nucleation process themselves might involve
crossing free-energy barriers which depend on the peptide–peptide and
peptide–water interactions (Figure 11.1).

11.2.4 Initial Stages in the PrP
C
Conformational Transition

11.2.4.1 Experimental Observations and Theoretical
Considerations

Prion proteins are extracellular globular proteins that are attached to the plasma
membrane by a glycosylphosphatidylinositol (GPI) anchor. They have been
linked to various transmissible spongiform encephalopathies (TSEs) including
bovine spongiform encephalopathy, scrapie disease in sheep, and Creutzfeldt–
Jakob disease in humans. The causative agent in these diseases is believed to be
the aggregated form (PrPSc) of the cellular prion protein (PrPC).30 The transition
to the scrapie form involves a large conformational change from the mainly
a-helical PrPC to the PrPSc state that is rich in b-sheet. According to the
‘‘protein-only’’ hypothesis2 PrPSc serves as a template in inducing conforma-
tional transitions in PrPC that can subsequently be added to PrPSc. The ‘‘pro-
tein-only’’ hypothesis implies that the conformational change leading to the
PrPSc formation from the normal cellular form PrPC may be spontaneous or
might involve interactions with unidentified protein X.31 Prion proteins, en-
coded by a single gene, consist of about 250 residues of which the first 22 form a
signal sequence. This segment is followed by unstructured, but likely helical,
Cu21 binding octarepeats rich in glycine.2 The NMR30,32,33 and X-ray34 struc-
ture of PrPC in various species (human, mouse, syrian hamster, bovine, and
sheep) shows that the ordered C-terminal part is composed of a short anti-
parallel b-sheet that contains 8% of the residues in the (90–231) fragment and
three helices representing 48% of the secondary structure (Figure 11.4). Fourier
transform infrared spectroscopy measurements35,36 indicate that PrPSc (90–231)
has 47% b-sheet and 24% a-helical content.
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11.2.4.2 Protein Regions Involved in the Conformational
Transition

We have suggested using structural, bioinformatic, and molecular dynamics
simulations that formation of PrPSc follows Scenario II (see Figure 11.1). This
implies that, either spontaneously or in the presence of a seed of PrPSc, the
metastable cellular form, PrPC, undergoes a transition to the PrPC* state that is
capable of further aggregating or adding to an already present PrPSc particle.
Experiments37 and scenarios of protein aggregation14 suggest the proposal that
the conformational transition involving the formation of PrPC* is energetically
driven (i.e. PrPC* is more stable than PrPC). The transition from the metastable
PrPC-PrPC*, which involves crossing a substantial free-energy barrier on the
order of 20 kcalmol�1,17,38 results in a state that can nucleate and polymerize to
the protease resistant form.
We also identified the putative regions that are involved in the PrPC-PrPC*

transition. Comparison of a number of structural characteristics (such as
solvent accessible area, distribution of (F,C) angles, mismatches in hydrogen
bonds, nature of residues in local and non-local contacts, distribution of
regular densities of amino acids, clustering of hydrophobic and hydrophilic
residues in helices) between PrPC structures and a databank of ‘‘normal’’

Figure 11.4 Cartoon representation of the structure of human PrPC (PDB entry
1QLX). The three helices in the 90–231 ordered region of PrPC are
shown in dark gray, while the short b-sheet is in light gray. The two
cysteine residues (179 and 214) involved in the disulfide bond that con-
nect H2 with H3 are indicated in bond representation. The C-term end of
H2 and the N-term end of H3, which we believe to be implicated in the
initial stages of the a-b transition, are represented in light gray. The
figure was produced with packages VMD66 and PovRay (http://
www.povray.org/).
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proteins shows that the most unusual features are found in helix 2 (residues
172–194) followed by helix 1 (residues 144–153).11 In particular, the C-terminal
residues in H2 are frustrated in their helical state. Application of the recently
introduced notion of discordance, namely incompatibility of the predicted and
observed secondary structures, also points to the frustration of H2 not only
in the wild type but also in mutants of human PrPC. This suggests that the
instability of PrPC proteins may play a role in their being susceptible to
the profound conformational change.
We showed11 that, in addition to the previously proposed role for the

segment (90–120) and possibly H1, the C-terminus of H2 and possibly the
N-terminus of H3 may play a role in the a- b transition. Sequence alignments
show that helices in avian prion proteins (chicken, duck, crane) are better
accommodated in a helical state, which might explain the absence of PrPSc

formation over finite timescales in these species. From the analysis it is clear
that the conformational fluctuations in the C-terminal end of helix 2 (H2) and
in parts of helix 3 (H3) are involved in the transition to PrPC*. Because the
stability of PrPC arises from the structures in the C-terminal end, the transition
to PrPC* requires global unfolding of PrPC,39 which explains the origin of the
high free-energy barrier separating PrPC and PrPC*.11 NMR experiments37,40

showed that conformational fluctuations that originate in the C-terminal part
of H2 are essential in the formation of PrPC*. Structural and mutational studies
have also shown that the relatively short helix 1 (H1) is stable over a range
of pH values and solvent conditions, and hence is unlikely to undergo confor-
mational change in the transition to PrPC*.41–43

The required conformational fluctuations in PrPC needed to populate PrPC*

suggest that the earliest event involves extensive unfolding of the monomeric
PrPC. We used results from a database search of sequence patterns in helices of
PrPC and extensive all-atom molecular dynamics (MD) simulations of helical
fragments from the mouse prion protein (mPrPC) to shed light on the nature of
instabilities that drive the PrPC-PrPC* transition.44 PreviouslyMD simulations
have been used to probe other structural aspects of prion proteins including
structures of protofibrils.45 The 10-residue H1, with an unusual sequence pattern
(highly charged and presenting the largest percentage of salt bridges in any
a-helix in the PDB, see below), remains helical for the duration of the simulation
(E0.09ms). The double mutant (D147A, R151A), which eliminates one of the
three salt bridges in H1, is less stable than the wild type. MultipleMD trajectories
of peptides encompassing H2 and H3 (together with their connecting loop) with
intact disulfide bond (Cys179–Cys214) showed that residues in the second half of
H2 clustered around positions 187–188 have large conformational flexibility and
non-zero preference for b-strand or coil-like structures. Instability in H2
propagates to H3 especially from position 214 onwards. Based on these results,
we mapped the plausible structures of the aggregation prone PrPC*. Despite
the limitations (short simulation time and the expected variations of results
with different force fields) of all-atom simulations, different computational
approaches yield qualitatively similar results, namely the initial conformational
transition must involve at least partial unfolding of parts of H2 and H3.
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11.2.4.3 Structural Insights from Bioinformatic Analysis

The Pattern of Charges in H1 is Rare. The distribution of R(+,�) for the
2103 helices from the DSMP shows that no other natural sequence has as many
(+,�) pairs at positions (i,i+4) as H1 from PrPC. The search of the entire
PDBselect database for the H1 charge pattern shows that in only 56 (4.6%)
sequences this pattern occurs at least once, with the total number of patterns
being 63. If we restrict the search to be the exact pattern of H1, i.e. I¼�,
i+3¼�, i+4¼+, i+7¼+ and i+8¼� the number of sequences is a
mere 23 (or 1.9%). Ziegler et al.43 arrived at a similar conclusion based on an
H1 pattern search in the PDB. The 23 rare sequence fragments are either a-
helical (83%) or in a random coil state (17%). Analysis of the yeast genome
shows that 828 (or 9.2%) of sequences have the general pattern of H1 with only
253 (2.8%) having the exact pattern. In the Escherichia coli genome the
numbers are 158 (3.7%) for the general charge pattern and 51 (1.2%) for the
exact match. These results suggest that the sequence of H1 in PrPC is unusual
not only in its high charge content, but also in the positioning of charges along
the sequence. More importantly, for the 23 proteins with known 3D structures,
the exact charge pattern results overwhelmingly in a-helices. Even more
interestingly, analysis of the 19 sequences with mostly a-helical structure
reveals that the majority (88%) of (+,�) pairs of residues found at positions
(i,i+4) form salt bridges. These results indicate that the unusual stability of the
short helix H1 is possibly associated with its ability to form the highly
stabilizing salt bridges involving (i,i+4) residues.

Pattern of Hydrophobicity in H2 is Rare. There are very few sequences that
share the pattern of hydrophobicity of H2. In PDBAstral4046 (proteins in the
PDB having at most 40% sequence similarity) there are only 12 (0.2%) such
sequences. In the E. coli genome the number is 46 (1%), while in the yeast
genome it is 122 (1.4%). Inspection of the structures of the 12 proteins from
PDBAstral40 shows that the sequence is never entirely helical! For example,
in only 13% of these proteins the last five residues are found in a helix.
A characteristic pattern seen in H2 from mammalian prion proteins is TTTT
(positions 190–193). In the PDBAstral40 this pattern occurs in only 18 proteins,
including the prion sequence. In an overwhelming number of these cases (15 of
the 18 proteins) the TTTT pattern is found in a strand and/or loop
conformation (irrespective of the identity of the flanking amino acids). These
results add further support to our proposal11 that the second half of H2 would
be better accommodated in non-helical conformations.

‘‘Frustrated’’ Secondary Structural Elements May be Harbingers of a Tendency

to Polymerize. The ease of aggregation and the morphology of the aggregates
depend not only on the protein concentration, but also on other external
conditions such as temperature, pH, and salt concentration. Although most
proteins can aggregate under suitable conditions, the observation that several
disease-causing proteins form amyloid fibrils under physiologically relevant
conditions raises the question: Is aggregation or the need to avoid

254 Chapter 11



unproductive pathways encoded in the primary sequence itself? It is clear that
sequences that contain a patch of hydrophobic residues are prone to form
aggregates.47 However, it is known that contiguous patches (three or more
hydrophobic residues) occur with low probability in globular proteins.48

For example, sequences with five hydrophobic residues (LVFFA in Ab
peptide) in a row are not well represented. Similarly, it is unusual to find
hydrophobic residues concentrated in a specific region of helices such as is
found in helix 2 in PrPC.11

It is natural to wonder if secondary structure elements bear signatures that
could reveal amyloidogenic tendencies. Two studies have proposed that the
extent of ‘‘frustration’’ in the secondary structure elements (SSE) may be
harbingers of amyloid fibril formation.11,49 Because reliable secondary structure
prediction requires knowing the context-dependent propensities and multiple-
sequence alignments (such as used in PHD, Profile network from Heidelberg50),
it is more likely that assessing the extent of frustration in the SSE rather than
analysis of sequence patterns is a better predictor of fibril formation. Frustra-
tion in SSE is defined as the incompatibility of the predicted (from PHD, for
example) secondary structure and the experimentally determined structure.49

For example, if a secondary structure is predicted to be in a b-strand with high
confidence and if that segment is found (by NMR or X-ray crystallography) to
be in a helix, then the structure is frustrated (or discordant or mismatched).
The a/b discordance, which can be correlated with amyloid formation, can be
assessed using the score Sa=b ¼ ½1=L�SL

i¼1ðRi � 5Þ, where Ri is the reliability
score predicted by PHD at position i of the query sequence, 5 is the mean score,
and L is the sequence length. The bounds on Sa/b are 0rSa/br 4 with maximal
frustration corresponding to Sa/b¼ 4. Similarly, the measure Sb/a gives the
extent of frustration of a stretch that is predicted to be helical and is found
experimentally to be a strand. Using Sa/b and other structural characteristics,
one can make predictions of the plausible regions that are most susceptible to
large conformational fluctuations.

PrPC and Dpl. Using the above concept of SSE frustration the 23 residue
sequence (QNNFVHDCVNITIKQHTVTTTTK) in mouse PrPC, with a score
of 1.83, was assessed to be frustrated or discordant.11 Other measures of
quantifying the structure also showed that the maximal frustration is localized
in the second half (C-terminal of H2).11 The validity of this prediction finds
support in the analysis of mutants of the PRNP gene associated with inherited
TSEs (familial CJD and FFI). According to SWISS-PROT51 seven disease-
causing point mutations (D178N, V180I, T183A, H187R, T188R, T188K,
T188A) are localized in H2. We have used the sequence numbering for the
mPrPC. A naive use of propensities to form helices, à la Chou-Fasman,52 would
suggest that with the exception of D178N all other point mutations should lead
to better helix formation. However, the Sa/b scores for the mutants are 1.94,
1.80, 1.30, 1.80, 1.54, 1.94, and 1.94 for D178N, V180I, T183A, H187R, T188K,
T188R, and T188A respectively. Thus, in all these mutants H2 is frustrated
making it susceptible to the conformational fluctuations that have to occur prior
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to fibrillization. The differences in Sa/b, which can be correlated with local
stability, suggest that stability alone might not be a good indicator of the
kinetics of amyloid formation.

The gene coding for the Doppel protein (Dpl), termed Prnd,53 is a paralog
of the prion protein gene, Prnp, to which it has about 25% identity. Normally,
Dpl is not expressed in the central nervous system, but it is up-regulated in
mice with knockout Prnp gene. In such cases, over-expression of Dpl causes
ataxia with Purkinje cell degeneration,53 which in turn can be cured by the
introduction of one copy of wild-type PrP mouse gene.54 NMR studies of the
three-dimensional (3D) structure of mouse Dpl55 showed that it is structurally
similar to the structure of PrPC (Figure 11.5). However, PrPC and Dpl produce
diseases of the central nervous system using very different mechanisms:
PrPC causes disease only after conversion to the PrPSc form, while simple over-
expression of Dpl, with no necessity to form the scrapie form, causes ataxia.

Figure 11.5 Cartoon representation of the structure of human Doppel protein (Dpl)
(PDB entry 1LG4). The three helices in the 24–152 ordered region of Dpl
are represented in dark gray. The four cysteine residues (94, 108, 140, and
145) involved in the two disulfide bonds that connect H2 with H3 and the
loops preceding them are indicated in bond representation and colored in
light gray. The figure was produced with packages VMD66 and PovRay
(http://www.povray.org/).
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The markedly different disease mechanisms of PrP and Dpl would suggest, in
light of the findings for PrPC, that the mouse Dpl (PDB code 1i17) would not
be frustrated. Indeed, prediction of secondary structure by PHD50 on mouse
Dpl correlates well with the experimentally derived structure. The only differ-
ence between the predicted and the derived structure in Dpl is found in the first
b-strand region, which is predicted to be helical by PHD. But the corresponding
Sb/a¼�3.0 indicating that this a-helix prediction is unreliable as this sequence
has low complexity. Also, the analysis of 1i17 with the WHAT CHECK
program56 reveals that, on average, there are only eight unsatisfied buried
hydrogen-bond donors/acceptors representing 7.4% of all residues in mouse
Dpl. This is comparable with the average value of 6% found in normal
proteins, but it is quite a lot smaller than the 14% value seen in mPrP (PDB
code 1ag2). This analysis rationalizes the lack of observation of scrapie
formation in Dpl.

11.2.4.4 Conformational Fluctuations from Molecular
Dynamics Simulations

Helix 1 in mPrP is Stable. In order to dissect the stability of PrPC fragments
that were identified using bioinformatic analysis, we used MD simulations of H1,
H2, and H3 from the PrPC state. With the exception of residues 150–152, the
propensities of the interior residues for a-helical or b-strand conformations
show that the helical structure is overwhelmingly preferred. The distribution of
distances between residues at positions (i,i+4) averaged over the five trajectories
shows that, with the exception of residues in the second half of H1, the helical
structure is preserved. Snapshots of typical conformations at various moments
along one of the trajectories show that even the C-terminal end of H1, which
becomes disordered afterB12ns, returns to the helical conformation towards the
end of the run. Small fluctuations in a short helix are unusual because it is known
that isolated helices are at best marginally stable.57,58

In order to check if the predicted stability of H1 depends on the force field
we generated two trajectories for a total of 40 ns using the CHARMM27
parameter set with the package NAMD. The backbone RMSD with respect
to the PDB structure stabilizes around 2.5–3.0 Å after B10 ns. The RMSD
for the backbone of the 144–149 fragment of the chain remains close to 0.5 Å
for the duration of the run, which is in very good agreement with the pre-
vious set of simulations. The difference between these two sets of simulations is
only in the fraying of the C-terminus residues. These results, which are con-
sistent with the MOIL simulations, also show that the fraction of helix content
in H1 is high.

Mutations of Residues in the Second Salt Bridge (D147–R151) Enhance

Conformational Fluctuations. The pattern searches suggest that the three
(i,i+4) salt bridges ((Asp144,Arg148), (Asp147,Arg151), and (Arg148,Glu152))
in H1 should stabilize the isolated H1. To probe the importance of the second salt
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bridge (Asp147,Arg151), we simulated the double mutant H1[D147A,R151A].
Replacing D and R by A should not compromise the local helical propen-
sity because Ala is the best helix-former among the amino acids.59 Consequently,
any loss of stability in the structure can be attributed largely to the loss of the
salt bridge. From relatively long MD simulations for H1[D147A,R151A], we
find that the double mutant has increased conformational flexibility compared
to the wild-type chain. Most residues, except position 145, have non-zero
b-strand propensity.

The larger conformational fluctuations result in extended states with only the
first turn of the helix still present. Based on these findings, we conclude that
H1[D147A,R151A] populates two basins of attraction: one that is predomi-
nantly a-helical with a radius of gyration B6 Å, and the other being mostly RC
with a radius of gyration of B7.7 Å. Time evolution of distances between
(i,i+4) residues (data not shown) shows that the conformational change starts
towards the C-terminus part of the sequence and proceeds in a highly co-
operative manner. Our findings are in agreement with recent experiments,43

which showed that the peptide huPrP(140–158)D147A is destabilized compared
to wt-huPrP(140–158). The decreased stability of the mutant could result in the
efficient conversion of PrPC (90–231) to the protease resistant form.

By classifying the structures generated in the MD simulations as helical,6 we
find that the helical fraction, fH, of the mutant is 0.55 while fH for the WT is
0.64. The value of fH is 0.63 using the CHARMM parameters. We should
emphasize that the absolute values of fH might be overestimated and could
depend upon the force field. However, meaningful conclusions can be drawn
using the relative values. Using the fH values we can estimate the free energy of
stability using DF ¼ �RT lnð½ðfHÞ=ð1� fHÞ�Þ. For the WT DFWTB�0.37kcal
mol�1, whereas for H1[D147A,R151A] DFMB�0.13 kcalmol�1. If fH from the
CHARMM parameter set is used then DFWTB�0.34 kcalmol�1. The relative
difference DDF¼DFWT�DFMDB�0.24 kcalmol�1, which arises from the
salt-bridge formation in WT. Interestingly, this estimate for free-energy gain due
to salt bridge formation is in the range of the values reported in the literature.60

Second Half of H2 is Susceptible to Conformational Fluctuations. The
trajectories, obtained using the NAMD package for a total of 185 ns, showed
a drastic reduction in the amount of helical structure accompanied by an
increase in b-strand content. The conformational transition starts in the second
half of H2 and propagates towards its N-terminal, while H3 unwinds
concomitantly at its two ends. The propensities of residues for a-helical or
b-strand conformations show that only positions 178 and 179 (H2) and residues
205 to 212 (H3) maintain their native a-helical structure. The extent of the
conformational transition is also reflected in the behavior of the backbone
RMSD from the PDB structure (1ag2), which increases monotonically from
3 Å to 6 Å in about 5 ns and reaches 11 Å in the next 70 ns.

The conformational transitions are correlated with an increase in the angle
between the axes of the two halves of H2 that changes from 201 to 901 (in the
first 10 ns) followed by rapid oscillations between these values for the remainder
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of the trajectory. The transition is initiated in the second half of H2 where the
distances between (i,i+4) positions increase from 5 to 14 Å in about 10ns. At
longer timescales (tB60ns) the distances between (i,i+4) residues in the first half
of H2 also increase from 5 to 13 Å. These motions in H2 are correlated with
fluctuations in H3, where the distances between the first four (i,i+4) pairs of
residues in H3 and between positions 212 and 218 (with the exception of Cys214)
increase from 5 to 13 Å in about 10ns. Almost complete loss of helical structure
occurs towards the end of the trajectory (Figure 11.6). Thus, the conclusions based
on bioinformatic analysis are consistent with the results of MD simulations.

Figure 11.6 Schematic representation of PrPC-PrPC* transition, where the con-
formation of PrPC is taken from the PDB file 1ag2 (light gray). The
conformations of PrPC* contain H1 from 1ag2 while the residues en-
compassing H2+H3 are shown in a conformation (dark gray) reached
towards the end of our MD simulations using the NAMD package (b) or
the simulations using the MOIL package (c). The schematic PrPC*

structures are representatives from ensembles of fluctuating conform-
ations. In the representative PrPC* structure obtained using NAMD
simulations the H1 region, together with the adjacent loops and the
b-strands, and residues (205–212) from H3 retain their original con-
formations and are therefore depicted with the same color as in PrPC.

In the MOIL representative PrPC* structure the H1 region, together with
the adjacent loops and the b-strands, and residues (175–179), (184–188),
(193,194) from H2 and residues (203–218) from H3 retain their original
conformations and are therefore depicted with the same color as in PrPC.
The figures are rotated such that the orientation of H1 is the same in all
of them. The figures were produced with packages VMD66 and PovRay
(http://www.povray.org/).
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Proposed Structures for PrPC*. Our simulations44 and recent experiments42,43

strongly suggest that H1 is unlikely to change conformation in the PrPC-
PrPC* transition. The most drastic change occurs in the second half of H2 and
parts of H3. Based on the assumption that alterations in the conformation of
H2+H3 do not significantly affect the rest of the protein, we have constructed
a plausible ensemble of structures for PrPC* (Figure 11.6(b) and (c)). In PrPC*

(90–231) obtained from the NAMD trajectories (Figure 11.6(b)) the helical
content is B20% (a lower bound), and in PrPC* (90–231) reached during the
MOIL simulations (Figure 11.6(c)) the helical content is B30% compared to
48% in mPrPC (90–231).

The overall characteristics of these structures are consistent with those
proposed by James and co-workers.37 It remains to be seen if formation of
PrPC*, with fluctuating regions in H2+H3, is required for oligomerization of
PrPC i.e., if PrPC* is an on-pathway monomeric intermediate on the route to
fibrillization. We should emphasize that the conformation of the prion protein
in PrPSc need not coincide with PrPC*.

Comparison of PrPC* Structure with the Human Prion Protein Dimer. In an
important paper Knaus et al.61 announced a 2 Å crystal structure of the dimeric
form of the human prion protein (residues 90–231). The structure (Figure 11.7)
suggests that dimerization occurs by domain-swap mechanisms in which H3
from one monomer packs against H2 from another. In fact, Eisenberg and co-
workers have suggested that the domain-swapping mechanism may be a general
route of amyloid fibril formation.62 The electron density map seems to suggest
structural fluctuations in the residues 189–198, which coincides with the
maximally frustrated region predicted theoretically. The dimer interface is
stabilized by residues that are in H2 in the monomeric NMR structures. The
header of the PDB file of the monomeric structure of human PrPC indicates
that H2 ends at residue 194 and H3 begins at 200. The domain-swapped dimer
structure shows that residues 190–198 exist largely in a b-strand conformation.
The a- b transition minimizes frustration. An implication of the dimer
structure is that oligomerization occurs by domain swapping, which in PrPC

also might implicate the disulfide bond between Cys residues at 179 and 214.
The role of the S–S bond in the PrPSc formation remains controversial. In our
full-atom MD simulations of reduced mouse PrPC (data not published), we
found structures that closely resemble the monomeric structure in this dimer.
For example, H1 remains mostly intact, while H2 breaks into two smaller
helices, one running from its normal N-term end to position 187 and the other
being formed by the C-term end residues of the original H2 and residues from
the loop connecting it to H3. These findings suggest that the dimer structure is a
likely route to unfolding and self-assembly of monomeric PrPC.

Sequence pattern matches and long multiple molecular dynamics simulations
of helix 1 in mPrPC using two force fields show that the stability of H1 is due to
the formation of stabilizing internal salt bridges. In view of the high propensity
of a-helix observed in the isolated H1 in conjunction with supporting
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experimental results41–43 it is clear that alterations in the conformation of H1
are unlikely in the PrPC-PrPC* transition.

The predicted tendency for the second half of H2 to be involved in the
formation of PrPC* is also consistent with the observation that a number of
mutations at 187 and 188 (H187R, T188R, T188K, and T188A) are associated
with various prion diseases. Based on our findings we proposed that regions
186–190 and 214–226 must play a central role in the initial stages that involve
the PrPC-PrPC* transition. The large conformational change is likely to be
accompanied by stretching and rotation of the two halves of H2 and by the

Figure 11.7 Cartoon representation of the X-ray crystal structure of the human PrPC

dimer (PDB entry 1I4M). For each chain, A and B, the three helices in
the 90–231 ordered region of PrPC are colored in dark gray, while the
short b-sheet is in light gray. The two cysteine residues (179 and 214)
involved in the disulfide bond that connect H2 with H3 are indicated in
bond representation. The C-term end of H2 and the N-term end of H3,
which we believe to be implicated in the initial stages of the a-b
transition, are colored in light gray. We notice that, in contrast to the
monomeric PrPC structure from Figure 11.4, here this region is no longer
entirely helical, but contains a short stretch of b-strand structure and a
shorter helix as well. The figure was produced with packages VMD66 and
PovRay (http://www.povray.org/).
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unwinding of the N-terminal end of H3. The formation of the domain-swapped
structure in the dimer structure of human PrPC61 might be facilitated by these
large-scale motions.

11.3 Conclusions

The development of methods to envisage the structure of amyloid fibrils has
enabled us to obtain molecular insights into the assembly process itself.
Computational and experimental studies are beginning to provide detailed
information, at the residue level, about the regions in a given protein that
harbor amyloidogenic tendencies. We have harnessed these developments to
propose tentative ideas on the molecular basis of protein aggregation. These
principles (or, more precisely, rules of thumb) may be useful in the interpret-
ation and design of new experiments.
Examination of the stable structures of oligomers and fibrils obtained using

experimental restraints and simulations show that these must be stable con-
formations that maximize the inter-peptide interactions and minimize electro-
static repulsions. Broadly, this is the only amyloid self-organization principle
(ASOP) that seems to be obeyed. From the ASOP it follows that the formation
of amyloid fibrils should indeed be a generic property of almost all proteins and
peptides under suitable conditions. If this were the case then it is remarkable
that during normal function aggregation is avoided most of the time. The lack of
preponderant protein aggregation may well be due to the efficiency of cleaning
mechanisms operating in the cell. This may explain the lack of aggregation of
PrPC* under most circumstances. We conjecture that because of efficient degra-
dation processes only mild sequence constraints are needed to prevent oligomer
formation during the typical life cycle of newly synthesized proteins.
From a biophysical perspective there are a number of open problems. Are

there common pathways involved in the self-assembly of fibrils? Because of the
paucity of the structural description of the intermediates involved in an
aggregation process a definitive answer cannot be currently provided. The
energy landscape perspective, summarized briefly in Figure 11.1 (see also
Chapter 3 by Woylnes), suggests that multiple scenarios for assembly must
exist. Although the generic nucleation and growth governs fibril formation, the
details can vary considerably. The microscopic basis for the formation of dis-
tinct strains in mammalian prions and in yeast prions remains a mystery. Are
these merely associated with the heterogeneous seeds or are there unidentified
mechanisms that lead to their growth? What factors may determine the vari-
ations in the fibrillization kinetics for the wild type and the mutants? A ten-
tative proposal is that the kinetics of polymerization is determined by the rate
of production of N* (Figure 11.1),63 which in turn is controlled by barriers
separating N and N*.11,64 In this scenario the stability of N plays a secondary
role. The generality of this observation has not yet been established. Finally,
how can one design better therapeutic agents based on enhanced knowledge of
the assembly mechanism? Even in the case of sickle cell disease viable therapies
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began to emerge only long after the biophysical aspects of gelation were
understood.65
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