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To Erika



Preface to Second Edition

Given the fact that the first edition of this book is almost sold out, the editor
has asked for a second edition. I readily accepted this opportunity, because –
as many users and I myself had found out in the meantime – there were quite
a lot of typing and other errors in the first edition which had to be eliminated.
But more important, I saw the chance to extend the book by a new chapter
on light–matter interaction, which complements the canon of the book with
respect to both the physics of this interaction and the theoretical methods
used for its description. Moreover, during the four years since the first edition
the whole field has developed as can be seen in the list of references which
now contains about 30 new titles.

Part of the contents of this book has been presented during a guest lecture
at the National Mechnikov University in Odessa in the spring term of 2007.
I would like to acknowledge the hospitality of the Department of Theoretical
Physics and its head, Prof. V.M. Adamyan, and the contacts with the students
who attended this one as their first lecture in English. Finally, I appreciate
the support by and easy cooperation with the publisher.

Regensburg, Ulrich Rössler

June 2009



Preface to First Edition

The history of my involvement in this book project starts more than 30 years
ago. During the years 1969–1972, my thesis advisor, Otfried Madelung, wrote
a series of three textbooks on Solid State Theory, entitled Festkörpertheorie

I–III, which appeared in the Springer paperback series Heidelberger Taschen-

bücher. My fellow graduate students and friends Manfred Lietz, Rolf Sandrock,
Joachim Treusch, and I, were the first to proof-read these books. Better still,
we were given the unique opportunity to provide input based on insights
gained during our studies. In 1978, when Festkörpertheorie I–III were partly
rewritten and translated into English, Otfried Madelung again asked his for-
mer disciples, then already established in university positions, for comments
and contributions based on their respective research and teaching experience
in this field. The result, entitled Introduction to Solid-State Theory, became a
widely used textbook, published in several further editions over the following
years.

Like most textbooks on Solid-State Theory currently used in university
physics courses all over the world, Introduction to Solid-State Theory has
meanwhile become somewhat outdated. Solid State Physics has evolved sig-
nificantly and many topics, which 30 years ago were still the subject of active
research or even beyond its leading edge, have now become part of our stan-
dard knowledge. The idea of accounting for this development in a textbook
has been lingering in the collective mind of the Solid State Physics commu-
nity for quite a while, but it took an initiative by Springer to concretize the
project. When Springer editors asked Otfried Madelung to rework on Intro-

duction to Solid-State Theory accordingly, he convinced them that it would
make more sense to write a completely new book, proposing me as a potential
author. This is how I got involved.

Due to the formative influence of Otfried Madelung and his approach to
science, my research in Solid State Theory has from the very beginning been
oriented towards experimental work, often directly stimulated by concrete
experimental results. This tendency was solidified during a year as postdoc-
toral researcher with Manuel Cardona at Brown University in Providence,
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RI, USA. Quite commonly, my research projects were initiated by discussions
with researchers renowned for their experimental work and have frequently
been conducted in fruitful cooperations. It is to this continuous contact with
the physics reality that I owe the down-to-earth approach which characterizes
my research and teaching and which should also be noticeable in this book.

At the University of Regensburg, where I became professor in 1972, Solid
State Physics has been a strong research field, both in experiment and theory.
Over the years the topics evolved from magnetism, phase transitions, lattice
dynamics, and electronic structure of bulk material to the upcoming fields of
high-Tc superconductors, correlated electron systems, surface physics, quan-
tum wells, nano-structures, and composite materials. Quite naturally, Solid
State Theory has been a standard part of the physics curriculum in Regens-
burg. It started as a one-semester course with four weekly lectures in the
fourth year of the German diploma curriculum (corresponding to the first
year of the graduate education in the Anglo-American system). Soon it was
supplemented by a second course on special topics, with the purpose of guid-
ing the students into active research fields. For more than 30 years, I taught
these courses on a regular basis, taking turns with my colleagues Joachim
Keller, Uwe Krey, Ulrich Schröder, and Dieter Strauch. The exchange of teach-
ing concepts and problems with these colleagues, and also our joint research
projects considerably enriched my lectures. During the last decade I benefit-
ted much from the expertise of my senior coworker Michael Suhrke. Further,
important input came from discussions with many colleagues from all over
the world during conferences, visits, and sabbaticals in different places. My
lecture notes for these courses, accumulated and continuously modified over
the years, constitute the backbone of this book.

Clearly, the book follows a well-defined tradition. Target readers are those
students in physics or material science who are interested in understanding the
theoretical approach to Solid State Physics, while maintaining contact to the
experimental facts. The contents are essentially comparable to those of other
textbooks on the same subject, but emphasis is put on new aspects of the field
that have resulted from more recent research. Extensive references to related
literature in the form of textbooks, topical series, data collections, and selected
original papers are provided to establish the connection with the sources of this
subject and with active research fields. Each chapter contains a selection of
problems and solutions, which are meant to help the reader gain practice with
the concepts and the physics explained in the text. Since the number of pages
is restricted, this book cannot claim completeness. Nevertheless, wherever
possible, reference is given to those important topics that could be covered
here only briefly or not at all. In short, this book is intended as an introduction
to Solid State Theory, given from the perspective of more than 30 years of
learning, teaching, and research in this field.

It is a pleasure to thank all those who contributed in one way or the other to
this project. I have already mentioned some friends and colleagues and would
like to extend my acknowledgments to the students who attended my courses
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and enriched them by their constructive feedback. This applies especially to
my diploma and Ph.D. students, who contributed ideas during many hours of
discussion about their research projects. A highly visible contribution to this
book came from Ingeburg Zirkl who prepared all the figures. A critical reading
of parts of the manuscript by my friends and colleagues Joachim Keller and
Dieter Strauch, and by my son Thomas has led to considerable improvements
of the contents and the text. Finally, I express my gratitude to Springer, in
particular to Dr. Claus Ascheron and Dr. Angela Lahee, not only for their
expert help and advice but also for their patience in waiting for the final
version of this book.

Regensburg, Ulrich Rössler

April 2004
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TN Néel temperature
TR0

n
Translation operator

T1, T2 Longitudinal, transverse relaxation time

unτ (t) Ion displacement from equilibrium position
U Exchange interaction, correlation energy

(Hubbard)
U(k, t) Bloch vector
Uα({Rn}) Adiabatic potential

vq Fourier transform of (Coulomb) potential
vF Fermi velocity
vL, vT Longitudinal, transverse sound velocity
V, Vc Crystal or normalization volume
VWSC Volume of Wigner–Seitz cell
Veff(r) Effective single particle potential
Vxc(r) Exchange-correlation potential
Vext External perturbation
Vs(q) Matrix element of electron–phonon

interaction

Z, ZG Partition function of canonical and
grand-canonical ensemble

α Thermal expansion coefficient

α†
k, αk; β†

k, βk Creation, annihilation operators
of anti-ferromagnetic magnons

αF Froehlich couling constant
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1

Introduction

The advent of quantum mechanics in the early twentieth century has fun-
damentally improved our understanding of the physics of matter in general
and of the solid state in particular. Consisting of a very large number of
atoms, solids exhibit a rich variety of material properties, whose understand-
ing represents a challenge to the curious scientist. These properties are at the
same time a rich source for technical applications. Consequently, in the course
of the last century our increasing knowledge about the relationship between
the chemical composition and the structure of solids on one side and their
particular properties – according to which we identify metals, semiconduc-
tors, superconductors, and magnetic materials – on the other side, has led to
the invention of an enormous variety of solid state devices. Whole industries
have been created based on products that make use of solid state properties.
Transistors, sensors, solid state lasers, light-emitting diodes (LED), super-
conducting quantum interference devices (SQUID), dynamic and magnetic
random access memories (DRAM and MRAM) have become essential parts
of electronic appliances such as computers, mobile phones, compact disc (CD)
and digital video disc (DVD) players, which have revolutionized our daily life
and continue to do so. The impressive development in the technology of data
storage and handling, symbolized by Moore’s law, demonstrates an unprece-
dented technological progress, which, though driven by the market, would be
unthinkable without the ingenious investigations of generations of physicists.

In the past decades, solid state research has uncovered interconnections
between the structural, elastic, electronic, magnetic, and optical properties of
solids and led to unpredicted fundamental discoveries like heavy fermions, the
quantum Hall effects, high-Tc superconductors, the giant magnetoresistance
effect, and solid state lasers. The progress in material growth and manipula-
tion, which enables the tailoring of solid state properties by properly choosing
the chemicals and the structure, together with the invention of pioneering
experimental techniques, has paved the road to the world of low-dimensional
systems and nanostructures with new physical and technological perspectives.
Quantum dots, single electron transistors, and Carbon nanotubes are the
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2 1 Introduction

buzzwords in this research field, which has attracted the attention of many
solid state physicists. Most recently, the electron spin has moved into the
focus of interest with the perspective of applications in spintronics and quan-
tum computation. Accompanying and enabling these developments, powerful
theoretical concepts, complemented by numerical tools and computational
physics, have been developed for qualitative and quantitative modeling of the
solid state and its properties.

Thus, solid state physics presents itself as a dynamic and rich research
field whose results and progress are well documented not only in the physics
journals but also in series publications and data collections devoted to this
subject [1]. Recently even an Encyclopedic Dictionary of Condensed Matter
Physics appeared on the market [2]. A thorough understanding of the theo-
retical foundations of the field and how the properties of solids derive from
the chemical composition and structure in a quantum mechanical description
are an indispensable part of a university physics curriculum.

1.1 Aims and Outline

As stated in the preface, this book follows the tradition of a series of textbooks
on Solid State Theory that have served generations of graduate students in
physics [3–14]; but there are also a number of more recently published books
in the field [15–28]. Courses on Solid State Theory, which are found in physics
curricula all over the world, are based on theoretical concepts developed in
quantum mechanics and statistical physics, but they also require some basic
knowledge about solid state phenomena from an introductory course in Solid
State Physics for which [12, 29–31] are standard references.

The aim of this book is to provide the methods required to describe a
many-particle system with about 1023 atoms per cm3 and its material specific
properties. This can only be done in an approximate way and for special quan-
tum mechanical states of the system. We focus here on the ground state, which
defines the structure of the solid, and on low-lying excited states, which deter-
mine the response of the solid to a small external perturbation. This response
characterizes material properties like dielectric or magnetic susceptibility and
electrical conductivity, whose meaning is already known from more elemen-
tary courses. They establish the connection between theoretical description
and the real world, explored by experiments and relevant for applications.
Therefore, in the individual chapters, the relation to material properties, be
it elastic, electronic, optical, or magnetic, will be emphasized in view also of
recent results in the field.

The aims of the book become more transparent when one looks at the out-
line. In this introduction (Chap. 1), we survey the different forms of condensed
matter, which can be distinguished from each other by their pair-distribution
function or its Fourier transform, the structure factor. The crystalline solids,
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which are the focus of this book, represent a specific form of condensed mat-
ter with a pronounced structure due to a characteristic long-range order. At
the beginning of Chap. 2, the Hamiltonian of a solid composed of ions (nuclei
and closed electron shells) and valence electrons will be introduced. These
two kinds of constituents, with masses differing by orders of magnitude, can
be treated separately as independent subsystems after applying the adiabatic
or Born–Oppenheimer approximation. Before doing so, the linear response
theory is introduced as the basic concept to describe the material properties
of a solid. In Chap. 3, the dynamics of the ions, the heavy constituents of
a solid, will be described as theory of lattice vibrations. This will first be
done in a classical approach using the model of massive spheres connected
by springs; but in a second step, we turn to the quantum-mechanical concept
of phonons as elementary excitations of the lattice. Acoustic phonons will be
discussed in the context of heat capacity, elastic properties, and sound prop-
agation; optical phonons will be related to optical properties of solids in the
far-infrared spectral range. Examples of phonon dispersion curves for quite
different solids will be presented to illustrate the influence of structure and
chemical composition. The next chapters (Chaps. 4–7) are devoted to electrons
and their properties. The basic concept of the Fermi surface and the funda-
mentals of the many-particle theory, like Fock representation, Hartree–Fock
approximation, dielectric screening, and electronic correlation, for free elec-
trons in the jellium model (Chap. 4) will be introduced. The influence of the
periodic lattice structure on the electron states will be treated in the single-
particle approximation justified by the density–functional theory (Chap. 5).
In this chapter, we also present methods for calculating the band structure,
which are important to understand the material specific aspects of energy
bands, and discuss the properties of two-dimensional electron systems. As a
particular outcome of electron–electron interaction, the Heisenberg Hamilto-
nian will be the starting point in Chap. 6 to discuss spin waves as excitations
out of a ground state with ferromagnetic or anti-ferromagnetic ordering. This
Hamiltonian will also be used to demonstrate the molecular field approxima-
tion and the ferromagnetic phase transition. Finally, the theory of itinerant
electron magnetism will be presented in this chapter. Electron–electron inter-
action is the focus also in Chap. 7 which is devoted to correlated electrons. For
the treatment of some aspects in this field, we take advantage of using Green
functions, which have to be introduced for this purpose. They will be used to
deal with the Hubbard model, leading to the Mott–Hubbard metal-insulator
transition. We discuss the phenomenological concept of Fermi liquids and its
modification for one-dimensional electron systems. Finally, heavy fermions
and the fractional quantum Hall states, both dominated by correlation, are
also introduced. In Chap. 8, we go beyond the adiabatic approximation and
study the electron–phonon interaction as a prototype of coupling between
fermions and bosons. It is relevant in scattering processes, which are essential
for the electric conductivity, for relaxation and lifetime effects of free carriers,
but can also mediate an attractive electron–electron interaction that gives rise
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to the formation of Cooper pairs, a basic concept of superconductivity. While
the ideal crystalline order of the ions has been assumed in all these chapters,
Chap. 9 will be devoted to disorder caused by impurities and other devia-
tions from lattice periodicity, and their consequences for electron states and
electric conductivity. This chapter includes an excursion to weak and strong
localization and the disorder-induced metal-insulator transition. The interac-
tion between light and matter will be the subject of Chap. 10. Besides the
quantum mechanical description of the optical properties of semiconductors
and insulators we present the concepts of polaritons and of semiconductor
Bloch equations.

1.2 The Structure of Solids

Atoms or groups of atoms, when brought into close contact, stick together
because of chemical binding. The resulting stable spatial configuration is gov-
erned by electrostatics (due to the charged ions) and quantum mechanics
(for the electrons). Under given thermodynamic conditions, it represents the
state of condensed matter with the lowest total energy, the ground state. For
molecules consisting of a small number of atoms, the variety in structure and
functionality results from the many possible combinations of different atoms
from the periodic table. A larger number of identical atoms (or identical groups
of a small number of atoms) can form a cluster [32–34] or macromolecule with
identical building blocks (e.g., polymer chains). With an increasing number of
atoms, this eventually results in macroscopic structures whose physical prop-
erties are determined by the chemical nature of the constituents and their
configuration in space. These macroscopic structures are understood in a more
restricted sense as condensed matter, which comprises matter in the liquid or
solid phase.

Crystalline structures result from a space-filling periodic repetition of the
same building blocks (an atom and its nearest and next-nearest neighbors).
These configurations are characterized by a long-range order, which causes
sharp Bragg1 peaks in diffraction experiments. These Bragg peaks are used
to identify crystalline solids (or solids in the crystalline state) by their crystal
classes. Crystalline solids will be the primary subject of this book. Some ele-
mentary concepts for describing their structure shall be polished up by solving
Problem 1.1.

Before discussing crystalline structures in more detail, we should mention
other forms of condensed matter, namely quasi-crystals [35–37], amorphous

solids [38, 39], liquid crystals [40], and soft matter [41–46]. Quasi-crystals
exhibit long-range order, but they are not simple periodic structures. Instead,
they result from superimposed incommensurate periodicities and are self-
similar. Examples are the one-dimensional Fibonacci chain (Problem 1.2)

1 Sir William Henry Bragg 1862–1942, Sir William Lawrence Bragg 1890–1971,
shared the Nobel prize in physics 1915.
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and the Penrose tilings. The latter allows a local fivefold symmetry, which
is prohibited in crystalline solids. In contrast, this long-range order is missing
completely in amorphous solids which are characterized by disorder in the
spatial configuration (structural disorder). The X-ray diffraction patterns of
quasi-crystals show sharp peaks owing to the long-range order, while those of
amorphous solids are diffuse. Liquid crystals have long-range order but not
in all spatial directions. The building blocks – usually large rod-like or cyclic
molecules – are arranged such that a long-range order exists with respect to
the orientation of these molecules in at least one direction, whereas in other
directions, a liquid structure prevails. Because of their order–disorder phase
transitions at room temperature which can be triggered by applied voltages,
liquid crystals have seen widespread use in displays and large scale television
screens. Finally, we refer to soft matter, a class of materials that comprises
foams, polymer melts, biological membranes, and colloid systems. Their par-
ticular material properties result from structuring on a mesoscopic scale on
which normal liquids and solids are homogeneous.

Let us return to the periodic structures. Their systematic description can
be found at the beginning of most Solid State Physics books and shall be
repeated here only briefly (see Problem 1.1). An infinite periodic structure
can be characterized by a point lattice, which in three dimensions is defined
by the set of lattice vectors

Rn = n1a1 + n2a2 + n3a3 (1.1)

with linearly independent vectors ai, (i = 1, 2, 3), the primitive lattice vec-
tors, and integers ni, (i = 1, 2, 3) combined to n = (n1, n2, n3). Point lattices
in one and two dimensions are defined analogously. While in one dimension
there is only one point lattice, there are 5 in two (Problem 1.3) and 14 in
three dimensions [29].

The point lattice is used to define the crystal unit cell or its particu-
lar choice, the Wigner–Seitz2 cell, which by repetition fills the whole space.
Clearly, the lattice structure is mapped onto itself under a translation by a
lattice vector. Mathematically, these operations form the translation group

of the point lattice (see Appendix). Lattice translations commute with the
system Hamiltonian and allow one to characterize the quantum states of the
solid by a wave vector k. It corresponds to the linear momentum. However,
as the crystalline solid is only invariant under the discrete lattice (and not
under infinitesimal) translations, the meaning of this momentum is modified
as will be explained below. Therefore, it is called crystal momentum.

A crystal structure is obtained by assigning an atom or a group of atoms
to each lattice point. The former case corresponds to the Bravais3 lattices.
For the latter case, called lattice with basis, the position of the atoms can be

2 Eugene Paul Wigner 1902–1995, Nobel prize in physics 1963; Frederick Seitz
1911–2008.

3 Auguste Bravais 1811–1863.
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described by
Rnτ = Rn + τ (1.2)

where τ denotes the position of an atom of the basis relative to the lattice
point.

For each point lattice, a reciprocal lattice is defined by the vectors

Gm = m1b1 + m2b2 + m3b3 (1.3)

with integers mj , (j = 1, 2, 3), m = (m1, m2, m3), and primitive reciprocal
translations bj defined by

ai · bj = 2πδij . (1.4)

The Wigner–Seitz cell of the reciprocal lattice is the Brillouin4 zone. Thus,
within the Brillouin zone, there are no two wave vectors which differ by a recip-
rocal lattice vector, and k is unique. These k vectors – or the corresponding
crystal momentum – characterize the eigenstates of the crystal Hamiltonian,
which at the same time are eigenstates of the translation operator (Problem
1.4). Their wavefunctions, which according to Bloch’s theorem are modulated
plane waves, yield equal probabilities in each Wigner–Seitz cell. Therefore,
they represent extended states.

Among the different Bravais lattices, the face-centered cubic (fcc) and
the body-centered cubic (bcc) are most frequently realized in normal, noble,
and transition metals. One can easily check (see Problem 1.1) that these two
lattices are reciprocal to each other. Their Brillouin zones, which will be used
in later chapters, are shown in Figs. 1.1 and 1.2. Owing to the point lattice,
the shape of the Brillouin zone exhibits a high symmetry under operations
such as rotations, reflections, and inversions, which form the point group (see
Appendix). Different points and lines of high symmetry in the Brillouin zone,
denoted by letters, e.g., Γ, ∆, Λ, X, W, H , are invariant under subgroups of

Λ

ΣΓ
N

∆

P

H

kz

ky
kx

Fig. 1.1. Brillouin zone of the body-centered cubic (bcc) lattice

4 Léon Brillouin 1889–1969.
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Λ

Σ

Γ ∆

kz

ky
kx

L

X
WK

Fig. 1.2. Brillouin zone of the face-centered cubic (fcc) lattice

the point group, consisting of all operations under which k is not changed,
the group of the wave vector. For the Γ point, the center of the Brillouin
zone (k = 0), this group is identical with the point group of the crystal.
The energies of quantized lattice vibrations, of electrons or spin waves will be
drawn in later chapters as a function of the crystal momentum along these
lines.

The fcc lattice is the point lattice of the diamond and zinc blende struc-

tures, in which the technologically most important semiconductors such as
Si, Ge, and GaAs crystallize: both are lattices with a basis of two atoms (at
τ = ±a(1, 1, 1)/8, where a is the cubic lattice constant), which are identical
(from the fourth group of the periodic table) for diamond, but different (e.g.,
from the third and the fifth group in A3B5 compounds) for zinc blende. Also,
the rocksalt structure, in which most alkali halides crystallize, derives from
the fcc lattice, but with the two different ions placed at τ = ±a(1, 1, 1)/4. As
demonstrated in Problem 1.5, these crystal structures lead to quite different
space filling and coordination numbers, which signalize distinct types of chem-
ical binding. More complex crystal structures with a basis of many atoms are
realized, for instance, in molecular crystals and high-Tc superconductors.

The crystal structure is invariant under the operations of the space group,
which is composed of translations and operations of the point group. Crys-
tal eigenstates can be classified by exploiting these symmetries within the
concepts of group theory [47–50]. A short introduction will be given in the
Appendix A.1.

But even within the simple crystal structures, a variety of solids can
be realized in mixed crystals when the positions Rnτ (1.2) are randomly
occupied, e.g., by different kinds of atoms with the same number of valence
electrons but from different rows of the periodic table. In this case, the
periodicity of the point lattice still exists, but there is disorder in the occu-
pation of the sites (compositional disorder). It is to be noted that already the
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occupation of the lattice positions by different isotopes of the same element
represents a case of compositional disorder. Compositional disorder is to be
distinguished from that of amorphous material, where atoms (or groups of
atoms) of the same kind are placed without long-range order to create a solid
with structural disorder. Disorder will become important in Chap. 9 with the
discussion of localized states whose wave functions yield a probability which
decays exponentially away from its maximum.

More recently, periodic structures have become an issue in connection with
photonic crystals [51–54]. Just as the lattice periodicity influences the elec-
trons by Bragg reflections and causes the electronic band structure (Chap. 5),
a periodic arrangement of dielectric matter or a periodicity in the refractive
index gives rise to a photonic band structure. This modification of the dis-
persion relation of electromagnetic waves results in a wavelength dependent
reflectivity which is not only observed in man-made structures, but can also
be the reason for color phenomena in the natural world [55].

Any real solid has a finite size. Its surface is the border that separates the
interior of the solid from the investigator. All experimental knowledge about
a solid is based on information inter-penetrating this border and should be
checked with respect to possible artifacts caused by the surface. On the other
hand, the surfaces of solids – their structure, dynamics, and functionality –
comprise an important part of solid state physics with a high potential for
applications [56–60]. The surfaces of crystalline solids have a two-dimensional
periodic structure and can be understood as a solid with reduced dimension-
ality. They are defined by those terminating layers of the solid whose atoms
experience a surrounding that differs from that of the bulk atoms. Usually,
these are the outermost two or three layers. With the changing surround-
ing and chemical binding, the surface atoms can take positions different from
those of the bulk material given by (1.2): The lattice spacing or even the
lateral periodicity can change. These changes are called relaxation and recon-
struction, respectively. Some experimental techniques are more sensitive to
surface effects than others and some are especially designed to study the
surface of solids. Besides surface sensitive optical methods and particle scat-
tering processes, scanning tunneling microscopy (STM), invented by Binnig
and Rohrer5 [61], has become a diversified tool in surface physics within a
short period of time. These methods allow one not only to investigate the
surface of solids but also to manipulate individual atoms on the surface. The
eye-catching pictures of company logos constructed by arranging individual
atoms or molecules on a clean surface or of a quantum corral have gained some
publicity [58, 62]. In the world of nanophysics [63], STM and its variants (like
atomic force microscopy) play an important role.

5 Gerd Binnig *1947, Heinrich Rohrer *1933, shared the Nobel prize in physics
1986.



1.3 Pair-Distribution Function and Structure Factor 9

1.3 Pair-Distribution Function and Structure Factor

In order to characterize the structure of a system that consists of a very large
number of constituents, it is not necessary to know the position of each indi-
vidual particle. Instead, one can use a quantity which describes the probability
of finding pairs of particles with given relative positions: the pair-distribution
function. As we will see, this suffices to distinguish between a gas, a liquid or
amorphous solid, or a crystalline solid.

Let us consider a system of N particles in a volume V (in the context of
this chapter, it will be the atoms or ions of a solid, but it could also be the
electrons in a plasma or the galaxies in the universe) at positions ri, with
i = 1, ...N . The particle density is given by

n(r) =
N∑

i=1

δ(r − ri). (1.5)

The correlations of positions or of the density are quantified by the density–

density correlation function

Cnn(r, r′) =
〈
n(r + r′)n(r′)

〉
, (1.6)

where 〈...〉 denotes the thermal average or quantum-mechanical expectation
value, depending on the situation. By integration of (1.6) and normalizing we
obtain the function

p(r) =
1

N

〈∫
d3r′

∑

ij

δ(r + r′ − ri)δ(r
′ − rj)

〉

=
1

N

〈∑

ij

δ(r + ri − rj)
〉

= Nδ(r) +
1

N

〈∑

ij

i�=j

δ(r + ri − rj)
〉
, (1.7)

where the last term contains the information about the distribution of pairs
i �= j with relative position ri − rj . Replacing the δ-function by its Fourier
transform (see Appendix A.2) leads to

p(r) =
1

V

∑

q

eiq·r 1

N

〈
∑

i,j

eiq·(ri−rj)

〉
. (1.8)

For q = 0, the double sum over the sites gives N2 irrespective of the configu-
ration. One separates this term to introduce the static structure factor [64]

S(q) =
1

N

〈
∑

i,j

eiq·(ri−rj)

〉
− Nδq,0. (1.9)



10 1 Introduction

We may also write

Nδq,0 + S(q) =
1

N

∑

i

⎛

⎝1 +
〈∑

j �=i

eiq·(ri−rj)
〉
⎞

⎠

= 1 +
N

V

∫

V

d3r′g(r′)eiq·r′

, (1.10)

where g(r) is the pair-distribution function [16, 64]. The last equation can be
solved for g(r) and yields

g(r) = 1 +
1

N

∑

q

eiq·r
(
S(q) − 1

)
, (1.11)

The pair-distribution function gives the probability of finding a particle at r

if there is a particle at r = 0. In general g(r = 0) = 0 because of strong short-
range repulsive forces, which prevent two particles from occupying the same
position. For a crystalline solid with atoms at the fixed positions Rnτ , i.e.,
without thermal motion, g(r) has sharp peaks for r = ri − rj = Rnτ . This
feature is a consequence of the long-range order or density–density correlation
in the crystal lattice. When this order is relaxed, the peaks will become diffuse.
This happens because of thermal motion and is described by the Debye–Waller
factor (see Sect. 3.7), but is the case also for amorphous solids or liquids due
to structural disorder. If long-range and short-range order is absent, as in a
gas, g(r) is constant for |r| > d, where d is a characteristic parameter of the
particles, e.g., the hard-core diameter.

Let us have a look also at the static structure factor written as

S(q) =

∫
d3r p(r)e−iq·r

=
1

N

〈∑

i,j

∫
d3r δ(r + ri − rj)e

−iq·r
〉

=
1

N

〈∑

i,j

eiq·(ri−rj)
〉

=
1

N

〈∑

i

eiq·ri

∑

j

e−iq·rj

〉
. (1.12)

For a crystalline solid with the ions at rest, one has ri − rj = Rnτ with Rnτ

from (1.2) giving

S(q) =
1

N

〈∑

τ

eiq·τ
∑

n

eiq·Rn

〉
. (1.13)

Because of the periodic structure, the phases of the last sum cancel each other
except for q = G, where G is a vector of the reciprocal lattice, and we have∑

n exp (iq · Rn) = N
∑

G δq,G. Thus, the structure factor

S(q) =
∑

G

δq,G

∑

τ

eiq·τ (1.14)
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is characterized by sharp peaks at the reciprocal lattice vectors G. They spec-
ify sets of parallel crystal planes: Their orientation is given by the direction
of G and their spacing by 2π/|G|. The static structure factor determines the
cross section for X-ray scattering, which is the standard method to identify
the crystal structure of a solid (Problem 1.6).

The structure factor can also be expressed in terms of the Fourier trans-
form (see Appendix) of the density

nq =
1

V

∫
d3r n(r)e−iq·r =

1

V

∑

j

e−iq·rj , (1.15)

which, for q �= 0, describes the deviations from the average particle density
nq=0 = n = N/V called density fluctuations. In terms of the corresponding
number fluctuations Nq = nqV , the static structure factor can be written as

S(q) =
1

N
〈NqN−q〉. (1.16)

For describing correlations between time-dependent positions of particles,
e.g., due to thermal motion of the ions, one uses the dynamic structure factor

S(q, ω) =
1

2π

∫
e−iωt

〈
∑

i,j

eiq·ri(t)e−iq·rj(0)

〉
dt, (1.17)

which, in terms of number fluctuations, can also be written as

S(q, ω) =
1

2π

∫
e−iωt〈Nq(t)N−q(0)〉dt. (1.18)

As we shall see later, thermal motion reduces the intensity of the Bragg peaks
and leads, if it gets sufficiently strong, to their complete suppression as an
indication of loss of structural correlation. This is the transition to the liquid
phase.

The functions, S(q) and g(r), containing the full information about the
3-dimensional structure, are difficult to plot due to their dependence on
vectors. For practical reasons, this information is reduced to the radial distri-
bution function g(r), which determines the number of particles in a spherical
shell of radius r and thickness dr: ng(r)4πr2dr. Plots of the radial distri-
bution function and the corresponding structure factor are shown in Fig. 1.3
for a gas, a liquid or an amorphous solid, and a crystalline solid. For a gas
with random positions of the atoms, there is equal probability in the radial
distribution for r > d, where d is the minimum distance between pairs of par-
ticles due to repulsive forces (e.g., the diameter of hard spheres). In contrast,
the crystalline solid with long-range order due to the periodic arrangement is
characterized by a radial distribution that exhibits peaks corresponding to the
coordination shells of nearest, next-nearest etc. neighbors. Amorphous solids
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1 gas

amorphous

crystal

solid
1

S(q)g(r)

qr

d

Fig. 1.3. The radial pair-distribution function (left) and static structure factor
(right) of a gas, an amorphous solid, and a crystalline solid

(and liquids) still have short-range order and the nearest coordination shells
are visible, while others are washed out with increasing r because of missing
long-range order. The structure factor exhibits the same features as can be
understood from (1.11). The more pronounced structures in these functions
indicate the strength of correlation in the density or relative positions.

In this section, we have used the pair-distribution function and the struc-
ture factor to characterize and distinguish different forms of condensed matter
with respect to correlations in their ion configuration. The concept of analyz-
ing the pair-distribution function of a particle system is, however, quite general
and will be applied in Chaps. 4 and 7 to identify and quantify correlation in
electron systems.

Problems

1.1 The following concepts are frequently used in solid state physics: point
(Bravais) lattice, lattice vector, reciprocal lattice, Wigner–Seitz cell, Bril-
louin zone. What is the meaning of these quantities? Give explicit descrip-
tions (by formulas or drawings) for a two-dimensional square lattice, a
simple cubic (sc), a face-centered cubic (fcc), and a body-centered cubic
(bcc) lattice.

1.2 Consider the one-dimensional model system constructed from two build-
ing blocks of different lengths, S (for short) and L (for long), starting from
the configuration LS by the following rule: replace S by L and L by LS.
Construct the chain by repeated application of the rule to obtain what is
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called a Fibonacci chain. Realize, that it is not periodic and that it has
the same configuration when L = S′ is taken as the short and LS = L′ as
the long building block! This property is called self-similarity or fractality.
Although not being periodic, the structure has long-range order as can be
seen by taking the Fourier transform.

1.3 Find the five different possible point lattices in two dimensions.
1.4 Explain the meaning of Bloch’s theorem. On which symmetry is it based,

and to which constant of motion is it related?
1.5 Give the coordination numbers and calculate the relative spatial filling in a

simple cubic, a face centered cubic, a body centered cubic, and a diamond
lattice, by considering non-overlapping spheres of maximal diameter at
each lattice point for fixed lattice constant of the elementary cube.

1.6 The structure of solids can be investigated by diffraction experiments with
photons, electrons or neutrons. The cross section for elastic scattering is
determined by the scattering amplitude

F (k, k′) =

∫
n(r)ei(k−k′)·rd3r, (1.19)

where n(r) is the mass density and k(k′) is the wave vector of the incident
(scattered) wave. Make use of the periodic mass density in a crystalline
solid to find the values k−k′ for which the scattering amplitude does not
vanish. Give a geometrical interpretation of the result with respect to the
meaning of the direction and length of reciprocal lattice vectors.
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The Solid as a Many-Particle Problem

As mentioned in Sect. 1.1, we understand the solid as being composed of ions
(nuclei and closed electron shells) and valence electrons. A more rigorous
approach would start from nuclei and electrons, but a simple consideration of
the spatial extension of electrons in different shells of the isolated atoms shows
immediately that this is not necessary. The wave functions of electrons in inner
shells (the core electrons) with binding energies of hundreds or thousands of
eV extend over a distance much smaller than the lattice spacing in a solid, as
visualized in Fig. 2.1. In fact, when the atoms are assembled into the configu-
ration of a crystal lattice (or likewise of a molecule, cluster, liquid. . .) it will
be the outermost, weakly bound valence electrons which first experience the
presence of their nearest neighbors. They will rearrange from their states in
the isolated atoms into those which establish the chemical binding. Together
with the electrostatic energy of the ion configuration, this defines the stable
structure. Some textbooks on Solid State Theory start with a detailed descrip-
tion of this structure of crystalline solids (e.g., [4, 7, 9, 11]) which is only briefly
repeated here. Instead, we follow the approach of [5, 14, 21] with a presenta-
tion of the basic Hamiltonian, which defines the solid as a quantum-mechanical
many-body problem.

The effectiveness of chemical binding depends on the overlap of the elec-
tronic wave functions at neighboring lattice sites and on their coordination
number. Thus, metals prefer a close-packed structure, namely the body-
centered cubic (bcc) and face-centered cubic (fcc) lattices, with delocalized
electrons acting as glue between the positively charged ions (metallic bind-

ing), while in (binary) ionic crystals, electrons are transferred from the cation
to the anion to complete their outer shells (ionic or heteropolar binding) and
form lattices dominated by electrostatic interaction (like the rocksalt struc-
ture). Rare gases with closed shell configurations as well as larger molecules
form crystalline solids due to the weak van der Waals1 forces and are stable
only at low temperatures. Elements of the fourth group of the periodic table

1 Johannes Diderik van der Waals 1837–1923, Noble prize in physics 1910.

U. Rössler, Solid State Theory,
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valence electrons

core electrons

r

V(r), Ψ(r)

Fig. 2.1. Schematic view of a solid: periodic potential (dashed line) and wave func-
tions of core and valence electrons (solid lines) drawn at their respective energy
levels

share each of their four valence electrons with the four nearest neighbors in
directed covalent bonds (covalent or homopolar binding), which results in the
diamond structure. A mixture of covalent and ionic binding, whereby the con-
tribution of the latter increases with the polarity of the material, is typical
for the zinc blende structure realized in A3B5, A2B6, and A1B7 compounds.
A dominant covalent binding is typical for semiconductors.

In most cases, the distinction between valence and closed shell electrons
is justified by the large energy separation, which can be detected by photo–
electron spectroscopy (PES [65, 66]). With reference to the heavier elements
(including transition-metals and rare-earths) and their compounds, for which
d states are in the same energy range as the s like valence electrons, one
should keep in mind, however, that even complete d shells can participate in
the chemical binding and influence the electronic structure. In Chap. 5, we
shall come back to this case but will rely here on a clear separation between
closed-shell ions and valence electrons.

2.1 The Hamiltonian of the Solid

These introductory considerations about the composition of a solid out of
valence electrons and ions justify writing the Hamiltonian as

H0 = Hion + Hel + Hel−ion. (2.1)

The first term depends only on the coordinates of the ions and reads

Hion =

NI∑

i=1

P 2
i

2Mi
+

1

2

NI∑

i,j=1
i�=j

V (Ri − Rj) (2.2)

where P i, Ri, and Mi denote the momentum, position, and mass of the ith
ion, respectively, and NI is the number of ions in the crystal volume Vc.
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V (Ri−Rj) can be a quite general ion–ion interaction potential, but for point-
like ions with charge Qi = sign(Qi)Zie and positive integer Zi, it will be the
Coulomb interaction

V (Ri − Rj) =
QiQj

4πε0|Ri − Rj |
. (2.3)

Here, ε0 is the vacuum dielectric constant. The assumption of point-like ions
is justified for closed shells with tightly bound electrons. This situation is
visualized in Fig. 2.1.

The electron part of H0 is given by

Hel =

Ne∑

l=1

p2
l

2m
+

1

2

Ne∑

k,l=1
k �=l

e2

4πε0|rl − rk|
(2.4)

where pl and rl are the momentum and position of the lth electron, m is the
free electron mass, and Ne is the number of electrons in the crystal volume.
The charge neutrality of the solid requires that

NI∑

i=1

Qi − eNe = 0 . (2.5)

The interaction between electrons and ions is described by

Hel−ion =

Ne∑

l=1

NI∑

i=1

v(rl − Ri) ≃
Ne∑

l=1

NI∑

i=1

Qie

4πε0|rl − Ri|
(2.6)

where the last expression is the approximation for point-like ions.
It is conceivable that the physical properties of the system described by

H0 do not depend on NI,e as long as these numbers are sufficiently large.
These properties will be considered in the thermodynamic limit NI,e → ∞,
with the corresponding densities NI,e/Vc kept constant. This situation, valid
for macroscopic solids, is to be distinguished from that of mesoscopic systems

for which clusters are a representative example. The number of their surface
ions is comparable with that of the bulk ions with the consequence that their
properties depend on the shape defined by the surface. The physics of clusters
has become a research field in its own right [32–34]. Nevertheless, it is inter-
esting to note that the properties of macroscopic solids can be thought of as
evolving with increasing size from those of clusters as the ratio of the number
of surface ions divided by the number of bulk ions goes to zero.

So far the spin of electrons or ions did not appear because neither the
kinetic energy nor the Coulomb interaction depends on spin. The expression
for the kinetic energy is that of the non-relativistic formulation. In principle,
one could have started, e.g., for the electrons, from the relativistic Dirac oper-
ator (which is in fact used in band structure theory and becomes relevant for
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solids composed of atoms with large Zi, see Chap. 5). However, in most cases,
it is sufficient to consider just the spin-orbit coupling in the electron part of
the Hamiltonian

Hso =
h̄

4m2c2

∑

l

(∇lVeff(rl) × pl) · σl (2.7)

where Veff(rl) is the effective single-particle potential, which will be introduced
in Chap. 5, and σl is the vector of the Pauli spin matrices of the lth electron.
A similar term can be added to the ion part of the Hamiltonian, in order
to account for the nuclear spins, if their influence is addressed. But even
without spin–orbit coupling, the spin becomes important in the presence of
a magnetic field, when the Zeeman term causes removal of spin degeneracy,
and, because of the fermion character of the electrons, by considering the
Pauli principle, when dealing with the many-particle aspect of the problem
(see Chap. 4). Moreover, spin alignment and spin excitation are essential for
magnetic properties (see Chap. 6).

As mentioned already in Sect. 1.2, we consider a solid primarily for the case
of the crystalline periodic order of the ions. Only in Chap. 9, we shall remove
this restriction by allowing structural disorder and its effect on the electronic
eigenstates and transport. The perfect crystalline configuration – which, in
order to simplify the notation, is assumed here to be a Bravais lattice – is
characterized by ion positions Ri forming a point lattice (see Sect. 1.2)

R0
n = n1a1 + n2a2 + n3a3 (2.8)

where the upper index 0 indicates that these vectors now mark the equilibrium
positions, while the actual position of an ion is given by

Rn = R0
n + un (2.9)

with a displacement un accounting for the motion of the ion about its equilib-
rium position. These displacements will be assumed to be small in comparison
with the lattice constant to motivate a separation of the ion–ion potential
according to

V (Rn − Rm) = V (R0
n − R0

m + un − um)

= V (R0
n − R0

m) + δV (Rn − Rm), (2.10)

where V (R0
n − R0

m) is determined by the equilibrium configuration and δV
can be explicitly expressed as a Taylor series in the displacements. In the same
way we may proceed with the electron–ion potential

v(rl − Rn) = v(rl − R0
n) + δv(rl − Rn). (2.11)
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The Hamiltonian of the solid may now be written as

H0 =
∑

n

P 2
n

2Mn

+
1

2

∑

n,m

n �=m

δV (Rn − Rm)

+

Ne∑

l=1

p2
l

2m
+

1

2

Ne∑

k,l=1

k �=l

e2

4πε0|rl − rk|
+
∑

n,l

v(rl − R0
n)

+
1

2

∑

n,m
n�=m

V (R0
n − R0

m) +
∑

n,l

δv(rl − Rn). (2.12)

The first line of (2.12), depending only on the positions and momenta of the
heavy constituents of the solid, will be the subject of Chap. 3, the lattice
dynamics. In the quantum mechanical version, it is characterized by phonons,
the quanta of lattice vibrations, which determine the elastic properties, the
specific heat, and the optical properties in the far-infrared spectral range.

The second line, describing the electrons in a static periodic lattice poten-
tial and their mutual interaction, will be the starting point of Chaps. 4–7. In
Chap. 4, we will present the properties of the homogeneous electron gas (for
which the periodic potential will be smeared out into a homogeneous positive
charge background defining the jellium model) and learn how to treat the
electron–electron interaction. In Chap. 5, the single-particle concepts of band
structure, which allow one to distinguish metals from insulators will be intro-
duced. Also, spin dynamics and magnetic properties (Chap. 6) and correlated
electron systems (Chap. 7) will be treated, essentially by starting from the
second line of (2.12).

The third line of (2.12) contains two contributions. The first one is the
electrostatic interaction energy of the ions in their equilibrium configuration,
representing a constant energy which becomes important in total energy cal-
culations. For a binary cubic lattice, with a basis consisting of two point-like
ions with opposite charge ±Ze (e.g., the zinc blende and rocksalt structure),
this term can be expressed using

1

2

∑

j �=i

sign(Qi)sign(Qj)
(Ze)2

4πε0|Ri − Rj |
=

1

2

(Ze)2

4πε0R
αM, (2.13)

where |Ri − Rj | = Rpij, with the nearest neighbor distance R, and

αM =
∑

j �=i

sign(Qi)sign(Qj)
1

pij
(2.14)

is the Madelung2 constant. It is independent of the reference lattice point
i [29]. The second contribution depends on the actual positions of the ions

2 Erwin Madelung 1881–1972.
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and electrons and couples the dynamics of both subsystems, thus giving rise to
electron–phonon interaction (Chap. 8). It is important for electron transport
properties, relaxation phenomena, and superconductivity.

The structuring of H0 as given in (2.12) is by purpose quite suggestive:
Without the third line, the electron and ion subsystems are separated and
can be considered as independent. We will discuss in the next section the
conditions under which such an approximation is justified.

2.2 Separating the Motion of Electrons and Ions

In order to describe a solid and its properties, we have to solve the quantum
mechanical problem:

H0Ψ̃ = ih̄ ˙̃Ψ with Ψ̃ = Ψ̃ ({rl}, {Rn(t)}) . (2.15)

Here, {rl}, {Rn(t)} denote the configurations of the electrons and ions of
the system, of which the latter is considered time-dependent because of the
thermal motion of the ions.

Employing thermodynamic concepts, electrons and ions can be considered
as two systems which are in contact as mediated by the last term of (2.12).
Let us assume that the thermal equilibrium of the whole system, i.e., electrons
and ions have the same temperature and the same average thermal energy per
degree of freedom. This can be quantified by the mean values of the kinetic
energy and we may write

〈
p2

l

2m

〉
=

〈
P 2

n

2M

〉
. (2.16)

Because of the mass ratio m/M ≃ 10−4, this equation indicates that the
electrons move much faster than the ions. Thus, the electrons will experience
any actual configuration of the ions (caused by thermal fluctuation) as a
stationary potential to which they adjust instantaneously by adopting the
state of lowest energy. This fact can be used to formulate the conditions for
separating the motions of ions and electrons.

Consider the stationary Schrödinger3 equation of the electrons moving in
the electrostatic potential, defined by the actual configuration of the ions,

(Hel + Hel−ion)Ψα = Eel,αΨα (2.17)

as being solved. The eigensolutions Ψα({rl}, {Rn}) and energy eigenvalues
Eel,α({Rn}) are characterized by a complete set of quantum numbers α and
depend parametrically on the ion configuration {Rn}. For a given configura-
tion, the Ψα form a complete set and can be used to expand the solution of
the time-dependent problem (2.15) in the form

3 Erwin Schrödinger 1887–1961, shared in 1933 the Nobel prize in physics with
P.A.M. Dirac.
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Ψ̃ ({rl}, {Rn(t)}) =
∑

α

Φα({Rn}, t)Ψα({rl}, {Rn}) (2.18)

with the expansion coefficients Φα depending on the ion configuration and
on t. Then the full problem (2.15) reads

H0Ψ̃ =
∑

α

[
(Hel + Hel−ion)Ψα︸ ︷︷ ︸

=Eel,αΨα

Φα + HionΨαΦα

]
= ih̄

∑

α

ΨαΦ̇α. (2.19)

Using the completeness of the Ψα, we eliminate the electron coordinates
by multiplying from left with Ψ∗

β and integrating over all rl to obtain

Eel,βΦβ +
∑

α

∫
. . .

∫
Ψ∗

βHionΨαd3{rl}Φα = ih̄Φ̇β . (2.20)

The operator Hion contains the momentum operators P n which act on the ion
coordinates of both Ψα and Φα. Thus the integration over electron coordinates
in the second term of (2.20) can be performed by writing (as operator equation
applied to Φα)
∫

. . .

∫
Ψ∗

βHionΨαd3{rl} =
∑

n

1

2M

(
2(P n)βα · P n + (P 2

n)βα

)
, (2.21)

where the matrix elements (for κ = 1, 2)

(P κ
n)βα =

∫
. . .

∫
Ψ∗

β({rl}, {Rn})P κ
nΨα({rl}, {Rn})d3{rl} (2.22)

couple between different electron states Ψα, Ψβ. When writing the momentum
in atomic units (Bohr radius aB = 4πε0h̄

2/me2 and Rydberg energy 1 Ry =
me4/(4πε0)

22h̄2), P n = P ′
nh̄/aB, this coupling, expressed in terms of

P 2

2M
=

m

M
P ′2 Ry,

is seen to carry a factor m/M ≪ 1, thus representing a small term. If this cou-
pling is neglected, one arrives at the Born–Oppenheimer4approximation. It is
sometimes also called adiabatic approximation because the electrons follow the
(slow) motion of the ions adiabatically, i.e., without changing their eigenstate.
Within this approximation, the motion of the electrons is separated from that
of the ions, and we may write for these two systems, the equations

(Hion + Eel,α)Φα = ih̄Φ̇α (2.23)

with

Hion + Eel,α =
∑

n

P 2
n

2M
+ Eel,α({Rn}) +

1

2

∑

n,m
n �=m

V (Rn − Rm) (2.24)

4 Max Born 1882–1970, Nobel prize in physics 1954; J. Robert Oppenheimer 1904–
1967.
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and (see (2.17))

(Hel + Hel−ion)Ψα = Eel,αΨα. (2.25)

Equation (2.23) is the time-dependent Schrödinger equation for the ions which
move in the adiabatic potential

Uα({Rn}) = Eel,α({Rn}) +
1

2

∑

n,m

n �=m

V (Rn − Rm) (2.26)

defined by the ion configuration and the energy of the eigenstate α of the elec-
tron system. This problem will be studied in more detail in Chap. 3. Equation
(2.25) is the stationary eigenvalue problem of the electron system for a given
ion configuration. We will discuss its solution in Chaps. 4–7 with the sim-
plification of always replacing {Rn} by the equilibrium configuration {R0

n}.
It should be mentioned that the Born–Oppenheimer approximation does not
apply only to solids but also to molecules.

2.3 Thermal Expectation Values

One of the important aims of a theory is to explain experimental results and
possibly arrive at a quantitative description of measurements. Experiments
yield information about physical observables, which in quantum formulation
are Hermitian operators Â = Â†. Thus, our theory has to aim at the descrip-
tion of the expectation values 〈Â〉 of such operators. For solids, which are
macroscopic thermodynamic systems, they have to be understood as thermal
expectation values. Therefore, a brief repetition of the related concepts of
statistical mechanics is required.

Simple quantum mechanical systems (e.g., an atom, an oscillator) can be
prepared in a state |i〉 and the expectation (or mean) value is given by

〈Â〉 = 〈i|Â|i〉. (2.27)

The state |i〉 can be an eigenstate or a mixture of eigenstates and thus, in
repeated measurements, the measured values will be sharp (an eigenvalue
of Â) or fluctuate around the mean value, respectively. A solid, consisting
of many particles, is not a simple system and cannot be prepared in a well
defined quantum state. Instead, being a thermodynamic system, the solid can
be prepared in a state characterized by a set of thermodynamic variables
like temperature T , particle number N , volume V . These thermodynamic
quantities specify the state of the solid as a statistical ensemble of quantum
mechanical micro-states {|i〉, i = 1, . . . I; T, N, . . . fixed}, and the experimen-
tal values for the observable Â are described by the thermal expectation value
(or ensemble mean value)

〈Â〉 =
1

I

I∑

i=1

〈i|Â|i〉. (2.28)
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Making use of a complete orthonormal set of states |n〉 and of the property that
factors under the trace operation Tr(. . . ) =

∑
n〈n| . . . |n〉 can be interchanged,

we may formulate the expectation or thermal mean value as

〈Â〉 =
∑

n

〈n|
(

1

I

I∑

i=1

|i〉〈i|
)

Â|n〉 (2.29)

or in short

〈Â〉 = Tr
(
ρ̂Â
)

, (2.30)

where

ρ̂ =
1

I

I∑

i=1

|i〉〈i| (2.31)

is the statistical operator.
Let us repeat the important properties of the statistical operator:

1. It is Hermitian: ρ̂ = ρ̂†

2. It is positive semi-definite: 〈ψ|ρ̂|ψ〉 = 1
I

∑
i |〈ψ|i〉|2 ≥ 0, for arbitrary |ψ〉

3. It is normalized: Trρ̂ = 1
I

∑
n,i〈n|i〉〈i|n〉 = 1

I

∑
i〈i| (

∑
n |n〉〈n|) |i〉 = 1 in

any representation.

These properties qualify ρ̂ as the operator of probability distributions. It
satisfies the eigenvalue equation

ρ̂|n〉 = pn|n〉 (2.32)

with the eigenvalue

pn = 〈n|ρ̂|n〉 =
1

I

∑

i

|〈i|n〉|2, (2.33)

which quantifies the probability of finding the state |n〉 in the ensemble of
micro-states {|i〉 . . . .}.

In thermal equilibrium, one has

˙̂ρ =
1

ih̄
[Ĥ, ρ̂] = 0, (2.34)

where Ĥ is the Hamiltonian of the system in which the states |i〉 are realized
(in our case that of the solid). In the representation of eigenstates of Ĥ, the
statistical operator, which commutes with Ĥ , is diagonal (Problem 2.1).

The following statistical ensembles are of importance in solid state physics
and will be used throughout the book:
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1. The canonical ensemble with fixed temperature T and particle number N
(β = 1/kBT where kB is the Boltzmann5 constant):

ρ̂ =
1

Z
e−βĤ (2.35)

with the canonical partition function Z = Tr(e−βĤ). In the energy
representation ρ̂ becomes pn = Z−1 exp (−βEn) .

2. The grand-canonical ensemble with fixed temperature T and variable
particle number N :

ρ̂G =
1

ZG
e−β(Ĥ−µN̂) (2.36)

with the grand-canonical partition function ZG = Tr{e−β(Ĥ−µN̂)}, where
N̂ is the particle number operator and μ the chemical potential. In the
energy representation, ρ̂G becomes pn = Z−1

G exp (−β(En − μNn)), where
Nn is the particle number in the state |n〉.
In the next section, the thermal expectation values of observables will be

evaluated, especially for thermal equilibrium formulated in terms of eigen-
states of the Hamiltonian H0 (see (2.12)). A particular situation is obtained
for very low temperatures, at which the thermal expectation value becomes
the ground state expectation value (Problem 2.2). When considering the num-
ber operator as observable for a system in thermal equilibrium, one obtains
the well-known distribution functions of the Fermi–Dirac6 or Bose–Einstein7

statistics (depending on the system), and of their high-temperature limit, the
Maxwell distribution (Problem 2.3).

2.4 Theory of Linear Response

Any experiment constitutes a perturbation of the system under investigation:
By scattering light or particles, we obtain information on the structure of the
solid or of its characteristic excitations; by applying an electric or magnetic
field, we study the transport or magnetic properties; by probing with light, we
detect the optical properties. If we do this to characterize the material, these
perturbations have to be weak and must not change the system properties.
This defines the regime of linear response.

The system (in our case the solid) plus the external perturbation applied
to investigate its properties, is described by the Hamiltonian

H = H0 + Vext. (2.37)

5 Ludwig Boltzmann 1844–1906.
6 Enrico Fermi 1901–1954, Nobel prize in physics 1938; Paul Adrien Maurice Dirac

1902–1984, Nobel prize in physics 1933.
7 Satyendra Nath Bose 1894–1974; Albert Einstein 1879–1955, Nobel prize in

physics 1922.
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Table 2.1. Examples of observables used in the response formalism

Â, B̂ Vext F Response function

Electric current density −j · A Electric field Electric conductivity

Dielectric polarization −P · E Electric field Dielectric function

Magnetic polarization −m · H Magnetic field Magnetic susceptibility

Heat current density −v · ∇T Temp. gradient Heat conductivity

H0 is the Hamiltonian (2.12) of the unperturbed solid and the perturbation,
(assumed for simplicity as being independent of space variables) can be written
as.

Vext(t) = −B̂F (t). (2.38)

Here, B̂ is an observable and F (t), a (in general, time-dependent) scalar func-
tion. We may distinguish between dynamic (time-dependent) and static (time-
independent) perturbations. Consider the measurement of an observable Â.
The measured values can be described by

〈Â〉t = Tr
(
ρ̂Â
)

=

∫
dt′R(t, t′)F (t′) . (2.39)

They are ruled by a linear response function R(t, t′), which is expected to
depend on Â and B̂. It will turn out to be a correlation function of these
observables as shown later in this section. But before doing this, let us look
at the examples of experimental situations listed in Table 2.1 together with
their translation into the response formalism.

To determine the electric conductivity as a material property of a solid one
has to design a measurement of the electric current density j by exposing the
sample to an electric field, which can be formulated as the time-derivative of
the vector potential A. The perturbation results from the minimal coupling
according to which the particle momenta in H0 are replaced by p+eA which,
to lowest order in A, leads to Vext(t) = −j · A(t) with the electric current
density j = −e

∑
l pl/m. Thus the electric conductivity is a current–current

(or velocity–velocity) correlation function. Due to the vector character of j

and A, the response function is a second rank tensor. Likewise, the dielec-
tric function, characterizing the optical and dielectric properties, follows from
measuring the dielectric polarization by probing with an electric field as per-
turbation. The dielectric function will turn out to be a correlation function
between polarizations (or electric dipole moments). A similar situation leads
to the magnetic susceptibility. A heat current is caused by a temperature
gradient; its measurement provides the heat conductivity.

In generalizing (2.39) to also include dependence on space variables, we
may write

〈Â(r)〉t =

∫
dt′
∫

d3r′ R(r, t; r′, t′)F (r′, t′). (2.40)
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For homogeneous systems, the response function depends only on r − r′ and,
therefore, a spatially harmonic external perturbation of the form F (r′, t′) =
Fq(t′) exp (iq · r′) leads to the same spatial dependence of the observable,
which in brief means

〈Âq〉t =

∫
dt′R(q; t, t′)Fq(t′) (2.41)

with R(q; t, t′) being the Fourier transform of R(r − r′; t, t′).
Let us return to the task of finding an expression for the thermal expec-

tation value of Â, which is linear in the perturbing field F (t) for the system
described by the Hamiltonian H of (2.37). In view of (2.39), the dependence
on the field enters through the statistical operator, which contains the system
Hamiltonian including the external perturbation. Without this perturbation,
the system is in equilibrium, and the statistical operator satisfies the equation
of motion (in the following the -̂sign, indicating operators, is dropped)

[H0, ρ0] = ih̄ρ̇0 = 0. (2.42)

If the perturbation is switched on, the system is driven out of the thermal
equilibrium described by ρ0, and the statistical operator will become time-
dependent:

ρ0 → ρ(t) = ρ0 + ∆ρ(t). (2.43)

In order to find the deviation ∆ρ(t) from equilibrium, caused by the pertur-
bation, we have to solve the equation of motion for ρ(t):

[H, ρ(t)] = ih̄ρ̇(t). (2.44)

Looking for the first order perturbation correction to the equilibrium distri-
bution, we rewrite this equation as

[H0 + Vext, ρ0 + ∆ρ(t)] = [H0, ρ0] + [H0, ∆ρ(t)]

+[Vext, ρ0] + [Vext, ∆ρ(t)] = ih̄ρ̇(t) (2.45)

and keep only those terms, which are of first order in the perturbation (i.e., we
neglect [Vext, ∆ρ]) to write

[Vext, ρ0] ≃ ih̄

{
∂

∂t
ρ(t) − 1

ih̄
[H0, ∆ρ(t)]

}
. (2.46)

By multiplying from left and right with the proper exponentials we change
from the Schrödinger into the interaction picture (indicated by an overbar),
which for the deviation from the equilibrium distribution reads

∆ρ̄(t) = e
i
h̄
H0t

∆ρ(t)e−
i
h̄
H0t. (2.47)

Note, that the time dependence of ∆ρ(t) on the rhs (in the Schrödinger pic-
ture) is that of the external field, while that on the lhs also includes the time
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evolution due to H0. In the interaction picture, the equation of motion for the
first order correction ∆ρ̄ to the equilibrium distribution reads

ih̄
∂

∂t
∆ρ̄(t) = e

i
h̄
H0t[Vext(t), ρ0]e

− i
h̄
H0t. (2.48)

It is an inhomogeneous linear differential equation indicating a linear relation
between ∆ρ̄(t) and the external perturbation Vext. By direct integration one
finds

∆ρ̄(t) =
1

ih̄

∫ t

−∞

e
i
h̄
H0t′ [Vext(t

′), ρ0]e
− i

h̄
H0t′dt′, (2.49)

and in the Schrödinger picture

∆ρ(t) =
1

ih̄

∫ t

−∞

e−
i
h̄
H0(t−t′)[Vext(t

′), ρ0]e
i
h̄
H0(t−t′)dt′, (2.50)

which is explicitly a linear expression in the external perturbation.
Let us now calculate the thermal expectation value of the observable A

(the index t indicates the possible time dependence)

〈A〉t = Tr
(
(ρ0 + ∆ρ(t))A

)
= Tr(ρ0A) + Tr

(
∆ρ(t)A

)
. (2.51)

The first term is the thermal expectation value of A of the unperturbed system
(i.e., in equilibrium), which may be written A0. The second term, depending
on the perturbation (2.38), can be transformed in several steps by exploiting
the meaning of the trace operation:

〈A〉t = A0 +
i

h̄

∫ t

−∞

Tr
(
e−

i
h̄
H0(t−t′)[BF (t′), ρ0]e

i
h̄
H0(t−t′)A

)
dt′

= A0 +
i

h̄

∫ t

−∞

Tr
(
A(t − t′) {BF (t′)ρ0 − ρ0BF (t′)}

)
dt′

= A0 +
i

h̄

∫ t

−∞

Tr
(
ρ0 {A(t − t′)B − BA(t − t′)}

)
F (t′)dt′. (2.52)

In the first step, we applied a cyclic permutation of operators under the trace
operation, in the second step we introduced the interaction picture for the
observable A written as A(t− t′), and in the last step, we extracted the scalar
factor F (t′) (note, that it is not an operator) and performed a cyclic permuta-
tion in the second term. We may now write B = B(0) because, for vanishing
time argument, the Schrödinger picture coincides with the interaction picture.
Moreover, the upper limit of the integral can be shifted to infinity when the
integrand is multiplied by the unit step function θ(t − t′). Thus we find

〈A〉t = A0 +
i

h̄

∫ ∞

−∞

θ(t − t′)〈[A(t − t′), B(0)]〉0F (t′)dt′ (2.53)
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which has the form of (2.39). The expectation value 〈. . . 〉0 under the integral
is to be taken with the statistical operator ρ0 in the equilibrium. The usual
writing is by taking the Fourier transform

∆A(ω) =

∫ +∞

−∞

eiωt (〈A〉t − A0) dt

=
i

h̄

∫ ∫ +∞

−∞

dtdt′eiω(t−t′)θ(t − t′)〈[A(t − t′), B(0)]〉0eiωt′F (t′).

Finally, by changing the two time integrations with the substitution t− t′ = τ
we have

∆A(ω) =
i

h̄

∫ +∞

−∞

dτeiωτθ(τ)〈[A(τ), B(0)]〉0
∫ +∞

−∞

dt′eiωt′F (t′) (2.54)

and
∆A(ω) = χAB(ω)F (ω). (2.55)

This is the linear response of the system when measuring the observable
Â (now using the -̂sign again) by applying a (time-dependent) perturbation
−B̂F (ω). It is expressed as the Fourier transform of the difference between
the thermal expectation value of Â and its equilibrium value and written as
a product of the perturbing field and a response function or susceptibility

χAB(ω) =
i

h̄

∫ +∞

−∞

dτeiωτθ(τ)〈[Â(τ), B̂(0)]〉0. (2.56)

The response function is completely defined by the unperturbed system (in
our case the solid in thermal equilibrium) and describes a material property
of the solid. It is a correlation function between the measured observable Â
and the observable B̂ appearing in the perturbation. As will be seen later,
the observables Â and B̂ are Hermitian adjoints of each other. The time
dependent integrand with the step function warrants the causality between
perturbation and response. This characteristic structure will we identified later
(Sect. 7.1) as that of a retarded Green function. Having anticipated a periodic
time dependence of the perturbation with the frequency ω, we obtain the
response depending on ω (dynamical response). The special case of ω = 0
refers to the static response.

2.5 Kubo’s Formulas: Response Functions

The general concept of linear response has been developed in an earlier paper
by Ryogo Kubo[67] and can be found in some text books (e.g., [9, 13, 18]). In
this section, we restrict ourselves to the response functions of importance in
solid state physics, some of which have already been mentioned in Table 2.1.

1. Dielectric Susceptibility: When exposing a piece of matter to an electric
field, the matter will be polarized, i.e., it responds by shifting positive and
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negative charges against each other or by aligning existing electric dipoles
which, without the field, are randomly oriented. The polarization or electric
dipole density P = ME/V (here V is the volume) is given by the relation

P = χE · E, (2.57)

which has the form of (2.55). The dielectric susceptibility χE is a symmetric
second rank tensor. Its principal values depend on the crystal structure of the
solid as will be seen later. This tensor property allows the two vectors P and
E to have different directions and to describe birefringence. This is the case
in solids with axial anisotropy, while in cubic crystals the principal values of
χE are equal to each other.

In order to formulate the dielectric susceptibility as a correlation function
as in (2.56), we have to identify the two observables Â and B̂. The perturbation
is the potential energy of the electric dipole moment ME in the applied
electric field E(t)

Vext(t) = −ME · E(t) = −
∑

j

ME
j Ej(t). (2.58)

We find the observable B̂ to be one of the components of the electric dipole
moment and the scalar field F (t) to be the corresponding component of the
applied electric field. The observable to be measured for investigating the
dielectric susceptibility (or one of its tensor components) is a component of
the electric dipole density, say Pi, and we may write (2.53) in the form

〈Pi〉t − Pi0 =
∑

j

i

h̄V

∫ +∞

−∞

θ(t − t′)〈[ME
i (t − t′), ME

j (0)]〉0Ej(t
′)dt′ (2.59)

and obtain after Fourier transformation, the response function

χE
ij(ω) =

i

h̄V

∫ +∞

−∞

eiωτθ(τ)〈[ME
i (τ), ME

j (0)]〉0dτ. (2.60)

This is the Kubo formula for the dielectric susceptibility, which is a correla-
tion function of components of the electric dipole moment. The contribution
of the crystal lattice to the dielectric susceptibility will be described in more
detail in Sect. 3.5. We mention in passing that systems with Pi0 �= 0 are called
ferroelectric; their configuration of electrons and ions allows for a spontaneous
dielectric polarization.

2. Magnetic Susceptibility: Magnetic properties of matter can be characterized
by the response of the system to an applied magnetic field B. The measured
quantity will be the magnetization M = m/V , which in complete analogy to
the dielectric case is the magnetic dipole density. Making use of this analogy,
we may write the perturbation Vext(t) = −m · B(t) and identify the observ-
able Â with a component of the magnetization and the observable B̂ with a
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component of the magnetic dipole moment to write the Kubo formula for the
magnetic susceptibility

χM
ij (ω) =

i

h̄V

∫ +∞

−∞

eiωτθ(τ)〈[mi(τ), mj(0)]〉0dτ. (2.61)

It is a correlation function between the components of the magnetic dipole
moment.

In Chap. 6, we shall express the magnetic dipole moment in terms of the
electron spin operators Sl as

m = gμB

∑

l

Sl, (2.62)

with the Landé8 g factor and the Bohr9 magneton μB. For this case, the
magnetic susceptibility

χM
ij (ω) =

i

h̄V
g2μ2

B

∑

ll′

∫ +∞

−∞

eiωτθ(τ)〈[Sl,i(τ), Sl′,j(0)]〉0dτ. (2.63)

turns out to be a correlation function between the components of the electron
spin operator or in short, a spin–spin correlation function.

3. Dielectric Function: The dielectric function (or frequency dependent dielec-
tric constant) is known from electrodynamics; it connects the displacement
field with the electric field according to

D(q, ω) = ε0ε(q, ω)E(q, ω). (2.64)

The space and time dependence of the quantities are specified by the wave
vector q and the frequency ω, respectively. Depending on the experimental
situation, one distinguishes between the response to a longitudinal or trans-
verse perturbation. Let us consider here, the case of probing the dielectric
system with an external test charge, which exerts a longitudinal electric field.
This scenario is typical for a scattering experiment. It is intuitively clear that
the charges of the dielectric will rearrange in the presence of the test charge,
and this rearrangement is quantified by an induced charge density enind. The
fields are determined by their respective charges via Poisson’s equation. For
the displacement field, these are the external charges enext(q, ω) (the Fourier
transform of the external charge density enext(r, t))

iq · D(q, ω) = enext(q, ω) (2.65)

and for the electric field, in addition the induced charges (due to polarization
in the presence of the external charge) enind(q, ω)

8 Alfred Landé 1888–1975.
9 Niels Bohr 1885–1962, Nobel prize in physics 1922.
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iq · E(q, ω) =
e

ε0

(
next(q, ω) + nind(q, ω)

)
. (2.66)

It is straightforward to eliminate the fields from (2.64) to (2.66) and to write

ntot(q, ω) = nind(q, ω) + next(q, ω) =
next(q, ω)

ε(q, ω)
. (2.67)

The last relation is the standard expression for the dielectric screening of a
test charge in dielectric matter. In general, for time-dependent processes, it
depends on ω, and describes dynamical screening.

We may read this relation also from the viewpoint of linear response:
The system responds to the external or test charge by building up the total
charge density entot(q, ω) with the inverse dielectric function as the response
function. In order to cast it into the form of (2.56), we identify the observable
Â as the charge density operator

en̂(r) = e
∑

q

n̂qeiq·r (2.68)

or its Fourier transform, the operator of density fluctuations n̂q. The time
dependent induced density fluctuations are given by

nind(q, t) = 〈n̂q〉t − n0. (2.69)

The perturbation is caused by the charge density of the external (or test)
charge

enext(r, t) = e
∑

q′

next(q
′, t)eiq′·r (2.70)

with the interaction energy

Vext(t) =
−e2

4πε0

∫ ∫
d3rd3r′ n̂(r)next(r

′, t)

|r − r′|

=
−e2

4πε0

∑

qq′

n̂qnext(q
′, t)

∫ ∫
d3rd3r′ e

i(q·r+q′·r′)

|r − r′| . (2.71)

The double integral can be expressed in terms of the Fourier transform, and
one obtains

Vext(t) = −
∑

q

vqN̂−qNext(q, t), (2.72)

where vq = e2/V ε0q
2 is the Fourier transform of the Coulomb potential (see

Appendix), N̂−q = V n̂−q and Next(q, t) = V next(q, t). By identifying N̂−q as

the observable B̂ and next(q, t) as the scalar time dependent field F (t) of the
general response formalism, we may now write
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nind(q, ω) = vq

i

h̄

∫ +∞

−∞

eiωτθ(τ)〈[N̂q(τ), N̂−q(0)]〉0next(q, ω)dτ. (2.73)

In comparison with (2.67), we find as the Kubo formula for the inverse dielec-

tric function

1

ε(q, ω)
= 1 + vq

i

h̄

∫ +∞

−∞

eiωτθ(τ)〈[N̂q(τ), N̂−q(0)]〉0dτ. (2.74)

It is a correlation function of the number (or density) fluctuations and will be
discussed in more detail in Chap. 4 as energy–loss function.

As further examples, one may consider the tensor components of the elec-
tric conductivity σµν(ω) (Problem 2.4) or the thermal conductivity mentioned
in Table 2.1. The response concept can be generalized beyond the linear regime
by considering higher order terms in the external perturbation (Problem 2.5).
The corresponding response functions describe the nonlinear properties of the
material, which become important, for instance, in the response of a solid
to intense laser light (nonlinear optics) or strong electric fields (nonlinear
transport) [68].

2.6 Properties of Response Functions

Because response functions will be used throughout the book, some of their
properties have to be compiled at the beginning [64, 69, 70]. Response func-
tions χAB(ω) of the general form (2.56) are complex valued functions for
real frequencies. If they are considered in the complex frequency plane with
z = ω+iδ, they represent analytic functions in the upper half-plane. The ana-
lyticity is a consequence of the causal connection between the perturbation
and its effect on the system as expressed by the unit step function under the
integral. Due to this property, Cauchy’s theorem holds, which reads

χAB(z) =
1

2πi

∮
χAB(z′)

z′ − z
dz′, (2.75)

where the contour integral is along the real axis and closes along the great
semicircle in the upper half-plane. Assuming that χAB(z′) vanishes sufficiently
rapidly at infinity, the semicircle does not contribute to the integral, and we
have

χAB(z) =
1

2πi

∫ +∞

−∞

χAB(ω′)

ω′ − z
dω′. (2.76)

This relation can be evaluated for real z with

lim
Γ→0

1

ω′ − ω − iΓ
= P

(
1

ω′ − ω

)
+ iπδ(ω′ − ω), (2.77)

where P denotes the principal part. Using (2.77) in (2.76) and rearranging
terms gives
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χAB(ω) =
1

iπ
P
∫ +∞

−∞

χAB(ω′)

ω′ − ω
dω′. (2.78)

By separating this relation into real and imaginary part,

χAB(ω) = ReχAB(ω) + iImχAB(ω), (2.79)

one finds the dispersion or Kramers–Kronig10 relations

Re χAB(ω) =
1

π
P
∫ +∞

−∞

Im χAB(ω′)

ω′ − ω
dω′ (2.80)

Im χAB(ω) = − 1

π
P
∫ +∞

−∞

Re χAB(ω′)

ω′ − ω
dω′ (2.81)

which are a consequence of causality. The real and imaginary parts of the
susceptibility are also called the dissipative and absorptive parts, respectively.

The meaning of these relations can be illustrated by considering the imag-
inary part of a susceptibility of the form Imχ(ω′) ∼ (δ(ω0 − ω′)− δ(ω0 + ω′))
(as will be shown in Chap. 3, this describes the absorption (and emission) of
a harmonic oscillator with eigenfrequency ω0). For this case, the real part of
χ(ω) takes the form 1/(ω2

0 − ω2), characteristic for the anomalous dispersion
of an oscillator (Problem 2.6).

According to the structure of (2.56), the susceptibility is the Fourier trans-
form of an object of the more general form

GAB(τ) = − i

h̄
θ(τ)〈[Â(τ), B̂(0)]±〉 (2.82)

which is a retarded Green11 function. Depending on whether Â, B̂ are fermion
or boson operators, one has to take the anti-commutator [Â, B̂]+ = ÂB̂ + B̂Â
or the commutator [Â, B̂]− = ÂB̂ − B̂Â, respectively. Note, that a response
function χAB is always written in terms of the commutator. The thermal
expectation value is evaluated for the system Hamiltonian (in case of a
response function it is the one without external perturbation).

The retarded Green function GAB(τ) can be decomposed into the corre-
lation functions C>

AB(τ) = 〈Â(τ)B̂(0)〉 and C<
AB(τ) = 〈B̂(0)Â(τ)〉

GAB(τ) = − i

h̄
θ(τ)

(
C>

AB(τ) ± C<
AB(τ)

)
. (2.83)

Its Laplace transform, to which the Fourier transform reduces because of the
step function in GAB(τ),

10 Hendrik Anton Kramers 1894–1952; Ralph de Laer Kronig 1904–1995.
11 George Green 1793–1841.
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GAB(z) =

∫ ∞

0

eizτGAB(τ)dτ

= − i

h̄

∫ ∞

0

dτeizτ

∫ +∞

−∞

dω

2π
e−iωτ

(
C>

AB(ω) ± C<
AB(ω)

)
(2.84)

can be expressed in terms of the Fourier transforms C>
AB(ω) and C<

AB(ω) of
the correlation functions. After performing the time integration, one finds the
spectral representation of the Green function

GAB(z) =
1

π

∫ +∞

−∞

ρAB(ω′)

ω′ − z
dω′ (2.85)

with the spectral function

ρAB(ω) = − 1

2h̄

(
C>

AB(ω) ± C<
AB(ω)

)
. (2.86)

The upper(lower) sign refers to expressions formed with fermion(boson) oper-
ators. The spectral representation (2.85) can be used to express ρAB(ω) in
terms of the Green function

ρAB(ω) =
1

2i
lim
Γ→0

(
GAB(ω + iΓ) − GAB(ω − iΓ)

)
(2.87)

which, under the conditions given below, is real valued.
Some properties of the spectral function ρAB(ω) can be obtained by

writing the time-dependent correlation functions in the energy or spectral
representation (using eigenstates |n〉, |m〉 of the system Hamiltonian H)

C>
AB(τ) = 〈e i

h̄
Hτ Âe−

i
h̄

Hτ B̂〉
=
∑

nm

pnAnmBmne
i
h̄

(En−Em)τ . (2.88)

Here pn is the statistical factor, En, Em are the eigenvalues of H and
Anm, Bmn the matrix elements of Â and B̂. The Fourier transform of C>

AB(τ)
is given by

C>
AB(ω) =

∑

nm

pnAnmBmn2πδ(h̄ω + En − Em). (2.89)

Similarly we find

C<
AB(ω) =

∑

nm

pmBmnAnm2πδ(h̄ω + En − Em). (2.90)

The following relations hold for the correlation functions:

C>
AB(ω) = C<

BA(−ω) (2.91)

C<
AB(ω) = e−βh̄ωC>

AB(ω). (2.92)
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The first of these relations is obtained by interchanging n and m under the
sum in (2.89) and (2.90). The second is found by using the ratio pm/pn =
exp (−βh̄ω) of the statistical factors. (This relation holds not only for the
canonical ensemble, but also for the grand-canonical ensemble if the operators
Â and B̂ do not change the particle numbers.) Because of (2.91), the spectral
function has the property

ρAB(−ω) = ± ρBA(ω), (2.93)

which in connection with (2.85), implies GAB(−z) = ∓ GBA(z), where again,
the upper(lower) sign refers to the quantity defined for fermion(boson) oper-
ators. For B̂ = Â†, and using (2.89), (2.90), and (2.92) we may write ρBA(ω)
in the form

ρAA† = −π

h̄

(
1 ± e−βh̄ω

)∑

m,n

pnAnmAmnδ(h̄ω + En − Em), (2.94)

to see with Amn = A∗
nm that it is real, and with (2.87) that ρAA†(ω) =

Im{GAA†(ω)}. In the special case of Hermitian operators, B̂ = Â, one
has Im{GAA(−ω)} = −Im{GAA(ω)}. Using (2.92), the correlation function
C>

AB(ω) can be expressed also as

C>
AB(ω) = −2h̄

ρAB(ω)

1 ± e−βh̄ω
(2.95)

and its Fourier transform is

〈A(τ)B(0)〉 = − h̄

π

∫ +∞

−∞

e−iωτ ρAB(ω)

1 ± e−βh̄ω
dω. (2.96)

Let us finally specialize to the case of GAB being a response function with
B̂ = Â† and consider the case τ = 0. Then with ρAA†(ω) = −Im χÂÂ†(ω) the
last relation takes the form

〈ÂÂ†〉 =
h̄

π

∫ +∞

−∞

ImχÂÂ†(ω)

1 − e−βh̄ω
dω, (2.97)

which connects the imaginary (or dissipative) part of the response function
with a quantity that describes the fluctuations in the observable Â and is
therefore known as the dissipation–fluctuation theorem.

Due to the hermiticity of the operators Â and B̂ and the appearance
of their commutator in the response function, its imaginary part fulfills the
relations

Im χAB(−τ) = −Im χBA(τ) (2.98)

Im χAB(−ω) = −Im χBA(ω) (2.99)

and with
χ∗

AB(ω) = χAB(−ω), (2.100)

the response ∆A(ω) in (2.55) is real as required for an observable.
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Problems

2.1 Formulate the matrix representation of the statistical operator with the
eigenstates of the system Hamiltonian and show that it is diagonal.

2.2 Show that the thermal expectation value of an observable reduces for
T = 0K to the expectation value of this observable in the ground state of
the system.

2.3 Calculate the thermal expectation value of the particle number opera-
tor for a system of (free) fermions in thermal equilibrium to find the
Fermi–Dirac distribution. Do the same for a system of bosons to obtain
the Bose–Einstein distribution. Consider the high temperature limit.

2.4 In order to derive the Kubo formula for the electric conductivity σµν(ω),

identify the observables Â and B̂ in (2.56). Keep in mind which quan-
tity is measured in transport experiments, and how the coupling between
electrons and the electromagnetic field is described.

2.5 Develop the concept of nonlinear response by considering (as in pertur-
bation theory) corrections to the equilibrium distribution ∆ρ = ∆ρ1 +
∆ρ2 + . . . of increasing order in the external perturbation. Find the struc-
ture of the lowest order nonlinear response function for the observable Â
due to the perturbation Vext (2.38).

2.6 Let the imaginary part of a response function be of the form ImχAB(ω) =
χ0

(
δ(ω0−ω)−δ(ω0 +ω)

)
. Calculate the real part of the response function

using (2.80).
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Lattice Dynamics: Phonons

The motion of the heavy constituents of the solid and the solid state properties,
which are essentially determined by this motion, are the subject of this chap-
ter. Lattice dynamics is a standard topic in textbooks on Solid State Physics,
but there is also a variety of monographs on this subject, e.g., [71–83], of
which the one by Born and Huang [71], entitled “Dynamical Theory of Crys-
tal Lattices” is the pioneering textbook in this field. The progress in Lattice
Dynamics, especially the strong mutual influence between experimental and
theoretical investigations, is well documented in the three volumes “Phonons:
Theory and Experiment,” edited by Brüesch [77–79].

In simplest terms, the dynamics of a lattice can be described by employing
a classical model with massive spheres (representing the atoms or ions) con-
nected by springs (representing the chemical bonds) in a periodic array (see
Fig. 3.1).

For a more rigorous description, the starting point is the adiabatic approx-
imation of Sect. 2.2, according to which the motion of the ions is governed by
the time-dependent Schrödinger equation (see 2.23)

(Hion + Eel,α)Φα = ih̄Φ̇α, (3.1)

where (see 2.24)

Hion + Eel,α =
∑

n

P 2
n

2M
+ Eel,α({Rn}) +

1

2

∑

n,m

n �=m

V (Rn − Rm) . (3.2)

The last two terms on the rhs represent the adiabatic potential energy
Uα({Rn}) of the ion configuration {Rn}, with the electron system being
in the state described by the wave function Ψα({rl}, {Rn}) as introduced
in Sect. 2.2. Thus, the motion of the ions, described by the wave function
Φα({Rn}), is not only determined by the potential energy of the ion configu-
ration but also by the energy of the electrons Eel,α({Rn}) in this configuration.
Instead of considering the dependence of this motion on α, let us assume,

U. Rössler, Solid State Theory,
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Fig. 3.1. Classical model for lattice dynamics: spheres and springs

un(t)
M

Rn
Rn

0

Fig. 3.2. Equilibrium position and displacement of an ion

for simplicity, the electron system to be in its ground state (see Chaps. 4
and 5) and drop the index α. Hence, in this chapter, we are dealing with the
Hamiltonian

H = Hion + Eel =
∑

nτ

P 2
nτ

2Mτ

+ U ({Rnτ}) (3.3)

to describe the dynamics of the crystal lattice, which, in general, can be a
lattice with basis as indicated by the vector index τ .

In a crystalline solid, the ion configuration is characterized by the actual
positions of the atoms

Rnτ (t) = R0
nτ + unτ (t), (3.4)

with equilibrium positions R0
nτ at the points of a lattice with basis (see

Sect. 1.2) and time-dependent displacements unτ (t) around these positions
(see Fig. 3.2). The vector indices n = (n1, n2, n3) for the lattice cell and τ

for the atoms of the basis have been introduced in Sect. 1.2. The aim of lat-
tice dynamics is to set up and solve equations of motion for the displacement
vectors unτ (t).
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3.1 Harmonic Approximation

It is reasonable and required for the Born–Oppenheimer approximation to
start with displacements |unτ (t)| which are small compared to the lat-
tice spacings |aj |, i.e., the springs are only slightly distorted and the ions
remain close to their equilibrium positions. (The other extreme, when |unτ (t)|
becomes comparable with |aj |, would lead to a destruction of the lattice, e.g.,
in the case of melting, which is not the subject here.) Under this condition
the adiabatic potential can be expanded in a power series with respect to the
components of unτ (t) around the equilibrium positions. Let us adopt here a
frequently used notation [84]

unτ i =: u

⎛

⎝
n

τ

i

⎞

⎠
← lattice cell
← atom of basis
← vector component

(3.5)

to write the expansion

U({Rnτ }) = U({R0
nτ}) +

∑

nτ i

Φ

⎛

⎝
n

τ

i

⎞

⎠u

⎛

⎝
n

τ

i

⎞

⎠

+
1

2

∑

nτi

mτ ′j

Φ

⎛

⎝
n m

τ τ ′

i j

⎞

⎠ u

⎛

⎝
n

τ

i

⎞

⎠u

⎛

⎝
m

τ ′

j

⎞

⎠+ O(u3), (3.6)

with

Φ

⎛

⎝
n

τ

i

⎞

⎠ =
∂U

∂unτ i

∣∣∣∣
{R0

nτ }

and Φ

⎛

⎝
n m

τ τ ′

i j

⎞

⎠ =
∂2U

∂unτ i∂umτ ′j

∣∣∣∣
{R0

nτ}

. (3.7)

For the equilibrium configuration, the potential energy U({Rnτ}) is at its
minimum and all first derivatives vanish; those of second order become the
leading terms and are the only ones if higher order terms are neglected because
of their smallness. This defines the harmonic approximation with the Hamil-
tonian

H =
∑

nτ

P 2
nτ

2Mτ

+
1

2

∑

nτi
mτ ′j

Φ

⎛

⎝
n m

τ τ ′

i j

⎞

⎠ u

⎛

⎝
n

τ

i

⎞

⎠u

⎛

⎝
m

τ ′

j

⎞

⎠ (3.8)

formulated in terms of the displacements unτ and their conjugate momenta
P nτ . It corresponds to that of a set of coupled harmonic oscillators for which
the canonical equations of motion

Ṗnτ i = − ∂H

∂unτ i
, u̇nτ i =

∂H

∂Pnτ i
=

Pnτ i

Mτ

(3.9)
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or Newton’s equations of motion

Mτ ü

⎛

⎝
n

τ

i

⎞

⎠ = −
∑

mτ ′j

Φ

⎛

⎝
n m

τ τ ′

i j

⎞

⎠u

⎛

⎝
m

τ ′

j

⎞

⎠ (3.10)

are easily obtained. These equations generalize the simple pendulum model, a
mass attached to a spring, to a network like that of Fig. 3.1: The rhs of (3.10)
represents the force exerted onto the mass Mτ at Rnτ in direction i if the
masses at Rmτ ′ are moved in directions j. The Φ are the force constants sym-
bolized in Fig. 3.1 by the springs, but their microscopic meaning derives from
the adiabatic potential by means of (3.7). Simple examples are the subject of
Problem 3.1 (the linear chain with two different atoms in the unit cell) and
Problem 3.2 (the two-dimensional square lattice).

Supplement: Reducing the number of force constants

The number of force constants, which is the squared number of degrees of freedom,
can drastically be reduced in the following way (see also Problem 3.2):

1. According to Newton’s third axiom (action = reaction), we can write

Φ

⎛

⎝
n m

τ τ ′

i j

⎞

⎠ = Φ

⎛

⎝
m n

τ ′ τ

j i

⎞

⎠ . (3.11)

2. If the displacements umτ ′ are the same for all mτ ′, the solid experiences a
translation by u, which (in the absence of external forces) does not change the
potential energy. Formally, this means

∑

mτ ′j

Φ

⎛

⎝
n m

τ τ ′

i j

⎞

⎠ uj = 0 for arbitrary uj , j = 1, 2, 3 (3.12)

or
∑

mτ ′

Φ

⎛

⎝
n m

τ τ ′

i j

⎞

⎠ = 0 for i, j = 1, 2, 3. (3.13)

3. Due to the invariance of the lattice under discrete translations or by replacing
R0

n → R0
n + R0

n′ , we have

Φ

⎛

⎝
n m

τ τ ′

i j

⎞

⎠ = Φ

⎛

⎝
n + n′ m + n′

τ τ ′

i j

⎞

⎠ = Φ

⎛

⎝
n − m 0

τ τ ′

i j

⎞

⎠ , (3.14)

where the last equation follows for the choice n′ = −m.
4. Making use of the symmetry of the lattice under operations of the point

group (rotations, mirror reflections, inversion), the number of independent force
constants is further reduced depending on the actual lattice structure.

5. Finally, the forces reduce with increasing distance between the masses and usu-
ally only those between nearest and next nearest neighbors need to be considered
(see Problems 3.1 and 3.2).
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The equations of motion (3.10), being a homogeneous set of coupled linear
differential equations, can be solved by the standard procedure assuming

unτ i(t) =
1√
Mτ

ū

⎛

⎝
n

τ

i

⎞

⎠ e−iωt, (3.15)

where, by convention, a factor with the square-root of the mass is extracted. It
yields a homogeneous system of coupled linear equations for the displacements

ω2ū

⎛

⎝
n

τ

i

⎞

⎠ =
∑

mτ ′j

1√
MτM ′

τ

Φ

⎛

⎝
n m

τ τ ′

i j

⎞

⎠ ū

⎛

⎝
m

τ ′

j

⎞

⎠ . (3.16)

We make use of the Bloch theorem (see Problem 1.4), according to which the
displacements on different lattice sites differ only by phase factors

ū

⎛

⎝
n + m

τ

i

⎞

⎠ = ū

⎛

⎝
n

τ

i

⎞

⎠ eiq·R0
m = ū

⎛

⎝
0
τ

i

⎞

⎠ eiq·(R0
m+R0

n), (3.17)

and apply the periodic boundary conditions (Problem 3.3), which restrict the
components of the wave vector to the discrete values

qi =
2π

Niai
νi, νi = 0, . . . , Ni − 1, i = 1, 2, 3. (3.18)

Here N = N1N2N3 ≫ 1 is the number of unit cells in the periodicity (or
crystal) volume V . Thus, (3.10) can be written in the compact form

ω2ūτi(q) =
∑

τ ′j

Dτ i,τ ′j(q)ūτ ′j(q), (3.19)

with the dynamical matrix

Dτ i,τ ′j(q) =
∑

m

1√
MτMτ ′

Φ

⎛

⎝
n − m 0

τ τ ′

i j

⎞

⎠ eiq·(R0
m−R0

n). (3.20)

It does not depend on the index n and on the sign of q (as can be seen by
rearranging the sum over m), thus Dτ i,τ ′j(q) = Dτ i,τ ′j(−q). The number of
solutions of (3.19) is the same as the number 3rN of degrees of freedom of
the system, where r is the number of atoms in the basis and N the number
of lattice cells (equal to the number of different q in the first Brillouin zone).
For each q, the secular problem

∥∥Dτ i,τ ′j(q) − ω2δττ ′δij

∥∥ = 0 (3.21)
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yields 3r eigenfrequencies ωs(q) = ωs(−q), s = 1, . . . , 3r, with corresponding
normalized eigenvectors es

τ (q). It is important to note that the solutions of
(3.19) describe collective modes or excitations , for which all ions of the lattice
move with the same time dependence but phase shifted with respect to each
other according to Bloch’s theorem. For the collective mode sq, the motion
of the individual ion (or mass) at Rnτ is described by the displacement

us
nτ (q, t) ∼ 1√

Mτ

es
τ (q) ei(q·R0

n−ωs(q)t). (3.22)

As usual, the eigenmodes form a complete set of solutions that can be used as
the basis for representing an arbitrary motion of the lattice or of the individual
ion.

Essential aspects of lattice dynamics in the harmonic approximation, such
as the dependence of the frequencies on the force constants and masses, the
distinction between acoustic and optical branches (see Sects. 3.4 and 3.5),
and the anisotropy of the dispersion curves, can be studied already in sim-
plified models as those of Problems 3.1 and 3.2. Moreover, even the reduced
dimension assumed in these problems is not hypothetical but corresponds to
physical reality: Take the atoms at the surfaces of solids, they move differently
from those in the bulk and give rise to investigate surface phonons [85–87].
They represent a (quasi) two-dimensional dynamical system with phonon
amplitudes that decay over a few lattice constants away from the surface.

3.2 Normal Coordinates

Having found the eigensolutions of the Hamiltonian (3.8) in the previous
section, we now aim at formulating this Hamiltonian in terms of these eigen-
solutions or normal coordinates. We expect that in this representation the
Hamiltonian will be that of a set of uncoupled harmonic oscillators, each
corresponding to a collective mode.

The displacement of an ion (or atom) can be expressed in terms of the
complete set of eigensolutions (3.22)

unτ i(t) =
1√

NMτ

∑

sq

fs(q) e−iωs(q)tes
τ i(q) eiq·R0

n , (3.23)

with expansion coefficients fs(q). The normal coordinate for the collective
lattice mode sq is defined by

Qs(q, t) = fs(q) e−iωs(q)t. (3.24)

The following scheme demonstrates the intended transformation from a sys-
tem with coupled localized motions of the individual masses (or ions) around
their equilibrium position to the uncoupled delocalized collective motions with
all ions moving in phase:
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coupled motion
localized

⇒ uncoupled collective motion
delocalized

unτ i(t) → Qs(q, t)
Dτ i,τ ′j(q) → diagonal form withω2

s(q)
H(unτ , P nτ ) → H (Qs(q), Ps(q)) .

Starting from the original Hamiltonian H(unτ , P nτ ) (3.8) and making use of
(3.23) and

Pnτ i = Mτ u̇nτ i =

√
Mτ

N

∑

sq

Q̇s(q, t)es
τ i(q) eiq·R0

n , (3.25)

we find the Lagrangian corresponding to H (Qs(q), Ps(q)), which can be
written as

L =
1

2N

(∑

nτ i

∑

sq

s′q′

Q̇s(q)Q̇s′(q′) ei(q+q′)·R0
nes

τ i(q)es′

τ i(q
′)

−
∑

nτi
τ ′j

∑

sq

s′q′

Dτ i,τ ′j(q
′)Qs(q)Qs′(q′)es

τ i(q)es′

τ ′j(q
′) ei(q+q′)·R0

n

)
,

(3.26)

where, in the second term, the force constants are expressed by the dynamical
matrix (3.20). The sum over the lattice points n can be performed with

1

N

∑

n

ei(q+q′)·R0
n =

∑

G

δq′,−q+G, (3.27)

where G is a vector of the reciprocal lattice. On the rhs, only the term with
G = 0 contributes, because q and q′ are vectors in the first Brillouin zone.
The displacements unτ are real and, therefore,

es
τ i(−q)Qs(−q, t) = es∗

τ i(q)Q∗
s(q, t). (3.28)

As this relation holds for arbitrary Qs and all es
τ i, we have

es
τ i(−q) = es∗

τ i(q) and Qs(−q, t) = Q∗
s(q, t), (3.29)

and can write the Lagrangian as

L =
1

2

∑

τ i

∑

ss′

q

{
Q̇s(q)Q̇∗

s′(q)es
τ i(q)es′∗

τ i (q)

−Qs(q)Q∗
s′(q)es

τ i

∑

τ ′j

Dτ i,τ ′j(−q)es′∗
τ ′j(q)

}
. (3.30)

The sum in the last term on the rhs of (3.30) simplifies, because es′∗
τ ′ (q) =

es′

τ ′(−q) is an eigenvector of the dynamical matrix (see (3.19)). The
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Hamiltonian (3.8) corresponding to L, formulated in terms of the normal
coordinates Qs(q, t) and their conjugate momenta

Ps(q, t) =
∂L

∂Q̇s(q, t)
= Q̇∗

s(q, t) (3.31)

takes the form

H (Qs(q), Ps(q)) =
1

2

∑

sq

{
P ∗

s (q)Ps(q) + ω2
s(q)Q∗

s(q)Qs(q)
}

. (3.32)

As expected, it describes 3rN uncoupled harmonic oscillators, each of which
corresponds to a collective mode or elementary excitation of the lattice (char-
acterized by s and q). For the individual mode, the equation of motion follows
from (3.32)

Ṗ ∗
s (q, t) = − ∂H

∂Q∗
s(q, t)

or Q̈s(q, t) = −ω2
s(q)Qs(q, t), (3.33)

and is easily identified as that of a harmonic oscillator.
Note, that the decoupling of the ion motions is possible only in the har-

monic approximation. If in the expansion of the adiabatic potential (3.6)
higher order terms in the displacements are taken into account, one arrives
at nonlinear lattice dynamics, which has to be invoked to describe thermal
lattice expansion or the temperature dependence of the frequencies ωs(q) [84].
We come back to these properties in Sect. 3.7.

3.3 Phonons and Occupation Number Representation

The lattice dynamics, so far formulated in terms of classical mechanics,
can be cast into the language of quantum mechanics by using Q∗

s(q) =
Qs(−q), P ∗

s (q) = Ps(−q), and converting the conjugate variables Qs(q) and
Ps(q) of the system into operators Q̂s(q) and P̂s(q), for which we postulate
the commutation relations

[Q̂s(q), P̂s′(q′)] = ih̄δss′δqq′ (3.34)

[Q̂s(q), Q̂s′(q′)] = [P̂s(q), P̂s′ (q′)] = 0. (3.35)

Instead of using Q̂s(q), and P̂s(q) it is more convenient to introduce for
each mode s, q creation and annihilation operators known from the harmonic
oscillator of elementary quantum mechanics

a†
s(q) =

(
2h̄ωs(q)

)−1/2(
ωs(q)Q̂s(−q) − iP̂s(q)

)
(3.36)

as(q) =
(
2h̄ωs(q)

)−1/2(
ωs(q)Q̂s(q) + iP̂s(−q)

)
. (3.37)
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They obey the commutation relations (Problem 3.4)

[as(q), a†
s′(q

′)] = δss′δqq′ , [as(q), as′(q′)] = [a†
s(q), a†

s′(q
′)] = 0. (3.38)

With the inverted relations of (3.36) and (3.37),

Qs(q) =

(
h̄

2ωs(q)

)1/2 (
a†

s(−q) + as(q)
)

(3.39)

Ps(q) = i

(
h̄ωs(q)

2

)1/2 (
a†

s(q) − as(−q)
)
, (3.40)

and with ωs(q) = ωs(−q), the Hamiltonian of uncoupled harmonic oscillators
(3.32) can be written as

Ĥ =
∑

sq

h̄ωs(q)

(
a†

s(q)as(q) +
1

2

)
. (3.41)

Here, h̄ωs(q) is the energy quantum of the collective lattice mode. This exci-
tation out of the ground state is called phonon and h̄ωs(q) is the phonon
energy.

Let us contemplate briefly on how we arrived at this Hamiltonian: We
started from a classical formulation of the field of lattice displacements
in terms of the normal coordinates, imposed the quantization conditions
(3.34, 3.35), introduced the creation and annihilation operators (3.36) and
(3.37), and achieved a representation in terms of phonons as the quanta of
the moving lattice. This procedure is an example of the general concept of
field quantization [10].

As a reminder of quantum mechanics, we briefly present the properties
of annihilation and creation operators for a harmonic oscillator: If |Ψ〉 is an
eigenstate of Ĥ (3.41) with energy E, then a†

s(q)|Ψ〉 (or as(q)|Ψ〉) is also an
eigenstate but with energy E + h̄ωs(q) (or E − h̄ωs(q)), i.e., with the energy
increased (decreased) by one quantum. In other words, applying a†

s(q) (or
as(q)) to an eigenstate of Ĥ creates a new eigenstate with one phonon added
(removed). As the spectrum of the harmonic oscillator is positive definite,
there must be a state |Ψ0〉 with the lowest non-negative energy, such that
as(q)|Ψ0〉 = 0, indicating that there is no phonon in this state. |Ψ0〉 = |{0}〉
is, therefore, called the ground state of the lattice or phonon vacuum. Its
energy

E0 =
1

2

∑

sq

h̄ωs(q) (3.42)

is that of the zero point motion of the ions about their equilibrium positions,
due to the uncertainty principle. The notation {0} is a short writing for entries
0 for all quantum numbers s, q : |{0}〉 = |0 . . . .0, all s, q〉. Excited states can
be generated from the phonon vacuum by applying creation operators that
turn the zeros into numbers ns(q) according to the number of a†

s(q) applied
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to |{0}〉. Because of the commutation relations (3.38) (typical for boson oper-
ators), the result is independent of the order of the applied operators. Thus,
the eigenstates of Ĥ have the form |{ns(q)}, all s, q〉 indicating the number
of phonons present in the state: this is the occupation number representation.
In general, we can write these states as

|{ns(q)}〉 =
∏

sq

1√
ns(q)!

(
a†

s(q)
)ns(q) |{0}〉, (3.43)

with a factor introduced for normalization. Their energy eigenvalues are

E({ns(q)}) = E0 +
∑

sq

ns(q)h̄ωs(q). (3.44)

By comparing with the Hamiltonian (3.41), ns(q) is identified as the eigen-
value of the occupation number operator n̂s(q) = a†

s(q)as(q).
In general, a solid cannot be prepared in a certain eigenstate of the Hamil-

tonian (3.41), but it can be prepared in a thermodynamic state defined by the
temperature. The energy of this state will be given by the thermal expectation
value

〈Ĥ〉 =
∑

sq

h̄ωs(q)

(
〈n̂s(q)〉 +

1

2

)
, (3.45)

which, up to the energy of the zero point motion, is the thermal expectation
value of the occupation number operator n̂α = a†

αaα, α = s, q. As outlined in
Sect. 2.3, it is given by

〈n̂α〉 =
1

ZG
Tr
(
n̂α e−β(Ĥ−µN̂)

)
, (3.46)

with β = 1/kBT, N̂ =
∑

α n̂α, the grand-canonical partition function ZG,
and the chemical potential μ, which for massless particles (as for phonons) is
zero. We may write Ĥ = E0 +

∑
α′ n̂α′ h̄ωα′ and obtain in occupation number

representation

〈n̂α〉 =
e−βE0

ZG

∞∑

N=0

∑

{nα′}N

nα e−β
∑

α′ nα′ h̄ωα′ . (3.47)

Here {nα′}N stands for sets of occupation numbers nα′ with
∑

α′ nα′ = N .
Instead of summing over N and sets of occupation numbers with total occu-
pancy N , we can sum over all sets of occupation numbers without restriction.
Moreover, the sum over the occupation number nα for the mode α may be
separated as a factor to yield

〈n̂α〉 =
e−βE0

ZG

∞∑

nα=0

nα e−β
∑

α nαh̄ωα

∑

{n
α′}

α′ �=α

e−β
∑

α′ �=α nα′ h̄ωα′ . (3.48)
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Given the grand-canonical partition function

ZG = e−βE0

∑

{nα′}

e−β
∑

α′ nα′ h̄ωα′ , (3.49)

this reduces to

〈n̂α〉 =

∑
n n e−βnh̄ωα

∑
n e−βnh̄ωα

=

∑
n nxn

∑
n xn

, (3.50)

where x = e−βh̄ωα , which can be evaluated with

〈n̂α〉 =
x(1 + 2x + 3x2 + . . .)

1 + x + x2 + . . .
=

x(1 − x)

(1 − x)2
=

x

1 − x
. (3.51)

The final result for the thermal expectation value 〈n̂s(q)〉 of the number of
phonons with s, q written as

ns(q, T ) =
1

eβh̄ωs(q) − 1
(3.52)

is the Bose–Einstein distribution function. Here, the dependence of the phonon
occupancy on the temperature (remember: β = 1/kBT ) is explicitly consid-
ered in the notation. More complex thermal expectation values of phonon
operators like those of Problem 3.5 can be calculated and will be needed
later.

A quantity frequently used to characterize a phonon spectrum and to
interpret experimental data is the density of states (or phonon density of
states, to distinguish from the electron density of states that will be introduced
in Chaps. 4 and 5), defined by

D(ω) =
∑

sq

δ(ω − ωs(q)). (3.53)

It counts the number of phonon modes (or states) at a frequency ω by summing
over all branches in the first Brillouin zone. Instead of summing over the
discrete q values (see (3.18)), we may assign to each of them the volume
(2π)3/V in q space (see Problem 3.3), to write D(ω) as an integral over the
Brillouin zone (here V is the crystal volume)

D(ω) =
V

(2π)3

∑

s

∫

BZ

δ(ω − ωs(q)) d3q. (3.54)

The three-dimensional integration over the δ function reduces to a two-
dimensional integral over surfaces Sq in q space, for which ω = ωs(q) and
we may write

D(ω) =
V

(2π)3

∑

s

∫

Sq

dSq

|∇qωs(q)| . (3.55)
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The integrand increases with the flatness of the dispersion curve and we expect
singular behavior if |∇qωs(q)| = 0, which defines a van Hove singularity [88]
and the corresponding q as critical point (for a classification of the critical
points see [21, 89]). An example of D(ω) is shown in Fig. 3.13 for GaAs. It is
clearly seen that the critical points cause pronounced structures in the density
of states. Especially the rather flat dispersion curves of the optical phonons
result in characteristic peaks.

3.4 Acoustic Phonons

Common to the phonon dispersions of all solids is the group of lowest branches
with frequencies starting from the center of the Brillouin zone, with linear
dependence on the wave vector (see the solutions of Problems 3.1 and 3.2).
This particular property being connected with sound propagation, as will be
discussed later in this section, has led to the term acoustic phonons. The other
important aspect of these phonons with the smallest quanta of energy is that
they dominate the low-temperature specific heat of the crystal lattice. If the
solid is heated, starting from the ground state at T = 0 K, the macroscopic
change of the temperature is connected microscopically with the creation,
first of all, of acoustic phonons. This addition of energy in a quantized form
is responsible for a peculiar behavior of the specific heat at low temperatures
to which we turn our attention at the beginning of this section.

The specific heat is the change of the thermal energy E(T ) with the tem-
perature T . The thermal energy of the crystal lattice, connected with the
thermal motion of the ions (or atoms), can be calculated as the thermal
expectation value of the Hamiltonian Ĥ (3.41)

E(T ) = E0 +
∑

sq

ns(q, T )h̄ωs(q). (3.56)

Let us first consider the classical limit of this general expression, which
is valid for sufficiently large temperatures h̄ωs(q) ≪ kBT , i.e., for a phonon
energy much smaller than the average thermal energy per degree-of-freedom.
In this case, the phonon occupation simplifies according to

ns(q, T ) =
(
eβh̄ωs(q) − 1

)−1

≃ kBT

h̄ωs(q)
. (3.57)

As we can also neglect the ground state energy E0 (as compared to kBT ), the
thermal energy of the lattice is given by

E(T ) ≃
∑

sq

kBT = 3rNkBT. (3.58)

Taking the derivative with respect to T (at constant volume)
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cV =
dE(T )

dT

∣∣∣∣
V =const

= 3rNkB, (3.59)

we find the classical result of the Dulong–Petit law, according to which at high
temperatures each degree of freedom contributes kB to the specific heat.

When approaching the low temperature regime, the phonon energy h̄ωs(q)
is not much smaller than kBT , and its discreteness has to be taken into account
in evaluating the thermal energy. This can be done within what is known as
the Debye1 model. It is based on the assumption that at low temperatures only
acoustic phonons are excited and that their dispersion is isotropic and follows
ωs(q) = vq with the same sound velocity v for all three acoustic branches.
Under these assumptions the sum over q in (3.56) can be evaluated as an
integral

E(T ) = E0 +
V

(2π)3

∑

s

∫
h̄ωs(q)

eβh̄ωs(q) − 1
d3q. (3.60)

The limitation of the sum over q to values within the first Brillouin zone has
to be considered in the integral over q by a cut-off radius qD, thus the Brillouin
zone is replaced by a sphere of the same size, containing N states

N =
V

(2π)3
4π

∫ qD

0

q2 dq, (3.61)

which yields qD = (6π2N/V )1/3. This cut-off in q space can be converted into
a cut-off frequency, the Debye frequency

ωD = v

(
6π2 N

V

)1/3

. (3.62)

The energy quantum h̄ωD is frequently expressed as a temperature ΘD =
h̄ωD/kB, the Debye temperature. A collection of Debye temperatures is given
in Table 3.1. Note that ωD and ΘD are proportional to the sound velocity v.
For C(diamond), it is with 10,000–20,000 m s−1 (depending on the acoustic
branch and the direction of propagation), the highest known for solids, while
for Ne, which can be solidified only at low temperatures, it is significantly
smaller. Within the solids consisting of group-IV elements (C, Si, Ge, all in
the diamond structure) the Debye temperature decreases with increasing mass

Table 3.1. Debye temperatures in K of some solids

C Si Ge Al Cu Ne

ΘD 1,860 625 360 394 315 63

1 Peter Joseph Debye 1884–1966, Nobel prize in chemistry 1936
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of the ions. The fcc metals Al and Cu, in spite of their different ion masses,
have quite similar Debye temperatures.

Substituting q = ω/v, the thermal energy of the lattice (3.60) can be
written as

E(T ) = E0 +
3V

2π2v3

∫ ωD

0

h̄ω3

eβh̄ω − 1
dω, (3.63)

where we may identify D(ω) = V ω2/2π2v3 with the density of states for each
branch of the Debye model. It is a smooth function and does not exhibit crit-
ical points, because of the assumed linear dispersion and the neglect of Bragg
reflection at Brillouin zone boundaries. By introducing the dimensionless
variable x = βh̄ω (xD = βh̄ωD), one has

E(T ) = E0 + 3NkBT
3

x3
D

∫ xD

0

x3

ex − 1
dx. (3.64)

The integral belongs to a class of similar expressions with different powers of
x (see Appendix A.3). For T → 0 (and xD → ∞) it approaches π4/15, giving
for the thermal energy

E(T ) → E0 + 3NkBT
π4

5

(
T

ΘD

)3

. (3.65)

Thus, in the low-temperature limit the specific heat exhibits a characteristic
T 3 dependence

cV (T ) =
dE(T )

dT

∣∣∣∣
V =const

= 3NkB
4π4

5

(
T

ΘD

)3

(3.66)

which is known as the Debye law.
The observed vanishing of the lattice specific heat at low temperatures had

puzzled physicists for quite some time. In 1905, Einstein came up with a first
explanation based on the assumption of dispersionless oscillators, as in the
derivation of the law for black-body radiation by Max Planck2 in 1900, but
did not yield the experimental T 3-law. Therefore, the correct derivation of this
law within the Debye model in 1912 was the breakthrough in demonstrating
the quantum nature of lattice vibrations. In Chap. 4, the specific heat of free
electrons in metals will be discussed, which adds a contribution depending
linearly on T at low temperature.

Another effect of the thermal motion of the lattice can be detected in scat-
tering experiments as a reduction of the scattering amplitude. It is described
by the Debye–Waller factor (see Sect. 3.7), which is calculated in Problem 3.6.

Let us now turn to the elastic properties of solids by studying acoustic
phonons in the long-wavelength limit q → 0, for which all atoms in a unit cell

2 Max Karl Ernst Ludwig Planck 1858–1947, Noble prize in physics 1918
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a

λ/2

u(r,t)

r

Fig. 3.3. Transverse ion displacements of an acoustic mode in the long-wavelength
limit

move with the same phase. In this case, the equation of motion (3.10) can be
written in the form

Mü

(
n

i

)
= −

∑

mj

Φ

(
n m

i j

)
u

(
m

j

)
, (3.67)

where M =
∑

τ Mτ . If the lattice moves in an acoustic mode, the displace-
ments at nearby lattice points differ only little from each other, thus, making
up a wave like distortion with a wavelength λ much larger than the lattice
constant a. The situation is depicted in Fig. 3.3 for a transverse mode of the
linear chain.

The limit q → 0, called the continuum limit, allows us to consider instead of
the displacements of the discrete ions, a continuous displacement field u(r, t)
with the aim to derive the equation of motion. In view of this continuous
displacement field, let us write

u

(
n

i

)
= ui(R

0
n, t) (3.68)

and expand the displacement uj(R
0
m, t) at a nearby lattice point R0

m around
R0

n

uj(R
0
m, t) = uj(R

0
n, t) +

∑

k

∂uj

∂rk

∣∣∣∣
R0

n

R0
mk

+
1

2

∑

kl

∂2uj

∂rk∂rl

∣∣∣∣
R0

n

R0
mkR0

ml + . . . (3.69)

with derivatives of the continuous function uj(r, t), with respect to the com-
ponents of r. When being used in the equation of motion (3.67), the first and
second term of this expansion do not contribute because of the properties of
the force constants discussed in Sect. 3.1, and we find

Mü

(
n

i

)
= −1

2

∑

jkl

∑

m

Φ

(
n m

i j

)
R0

mkR0
ml

∂2uj

∂rk∂rl

∣∣∣∣
R0

n

+ . . . (3.70)

still expressed in terms of the discrete lattice points. The continuum limit
is now completed by replacing the discrete masses M with the mass density
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per unit (or Wigner–Seitz) cell, ρM = M/Vcell and the displacements at the
discrete lattice points by the continuous displacement field ui(r, t):

ρM üi =
∑

jkl

cijkl
∂2uj

∂rk∂rl
. (3.71)

Here, the coefficients

cijkl = − 1

2Vcell

∑

m

Φ

(
n m

i j

)
R0

mkR0
ml (3.72)

are the elastic or stiffness constants.
Equation (3.71), which is the wave equation for the elastic continuum,

can be simplified by making the reasonable assumption that the force con-
stants derived from the adiabatic potential U({Rn}) are due to central forces
between the ions, thus,

Φ

(
n m

i j

)
= g(|Rm − Rn|)R0

miR
0
mj (3.73)

and

cijkl = − 1

Vcell

∑

m

g(|Rm − Rn|)R0
miR

0
mjR

0
mkR0

ml. (3.74)

In this form, i.e., due to the assumed central forces, the components of the
elasticity tensor are invariant under exchange of any two of the indices, and
the rhs of (3.71) can be rewritten as

∑

jkl

cijkl
∂2uj

∂rk∂rl
=
∑

j

∑

kl

cikjl
∂ǫjl

∂rk
, (3.75)

where we have introduced the components of the strain tensor

ǫjl =
1

2

(
∂uj

∂rl
+

∂ul

∂rj

)
. (3.76)

The long-wave length limit or continuum approximation, considered here,
implies that the strain tensor field is locally homogeneous on a length-scale,
limited by the wave length λ of the acoustic phonon mode. This homogeneous
strain is related to a homogeneous stress, σik, by Hooke’s3 law

σik =
∑

jl

cikjlǫjl, (3.77)

which belongs to the family of linear-response relations (see Chap. 1), with
the fourth rank tensor of elastic constants as the response function. As the

3 Robert Hooke 1635–1703
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stress and strain tensors are symmetric, one has cikjl = ckijl = ciklj = ckilj

and the number of independent elastic constants cikjl is reduced to 21. If the
strain is understood as the response of the elastic continuum to an applied
stress, the inverted relation to (3.77) reads

ǫij =
∑

kl

sijklσkl, (3.78)

with the elastic moduli or compliance constants sijkl. With Hooke’s law, the
wave equation for the elastic continuum takes the final form

ρM üi =
∑

k

∂

∂rk
σik. (3.79)

By definition, the strain and stress tensors are symmetric, e.g.,

ǫ =

⎛

⎝
ǫ11 ǫ12 ǫ13
ǫ12 ǫ22 ǫ23
ǫ13 ǫ23 ǫ33

⎞

⎠ , (3.80)

thus having in general six independent components, which frequently are cast
into a vector or Voigt4 notation according to the scheme

ik 11 22 33 23 13 12 matrix notation
I 1 2 3 4 5 6 Voigt notation

in which Hooke’s law (3.77) takes the form

σI =

6∑

J=1

cIJ ǫJ . (3.81)

The number of independent elastic constants is further decreased by crys-
tal symmetry (as was the case for the force constants) and can be looked up in
the literature [90, 91]. For cubic crystal structures, there are only three inde-
pendent elastic constants, which in Voigt notation are c11 = c22 = c33, c23 =
c13 = c12, and c44 = c55 = c66 (Problem 3.7). For this case, the wave equa-
tion (10.6) can be turned into eigenvalue equations for the components of the
normalized eigenvector e, using

u(r, t) ∼ e ei(q·r−ωt). (3.82)

For the first component, it reads

ω2ρMe1 =
(
c11q

2
1 + c44(q

2
2 + q2

3)
)
e1 + (c12 + c44)q1(q2e2 + q3e3) (3.83)

and similar equations for the other components are obtained by cyclic per-
mutation of the indices. The eigenfrequencies depend on the direction of

4 Woldemar Voigt 1850–1919
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propagation and the surfaces of constant frequency are not spherical but
warped. As a consequence, the group velocity is anisotropic and phonon wave
packets propagate preferentially in the direction of zero curvature, giving rise
to caustics. This phonon focusing is connected with the energy flux and can
be measured by propagating heat pulses [74, 92, 93].

A further simplification is possible by assuming, instead of cubic symmetry,
an isotropic solid (conceivable in the continuum limit), for which c11 = c12 +
2c44 and

ω2ρMe = (c12 + c44)q(q · e) + c44q
2e. (3.84)

The solutions of this equation can clearly be distinguished as longitudinal
waves, with e‖q and ρMω2

L = (c12 + 2c44)q
2, and transverse waves, with

e ⊥ q and ρMω2
T = c44q

2. The corresponding sound velocities v = ω/q are

longitudinal sound velocity : vL =

√
c12 + 2c44

ρM

transverse sound velocity : vT =

√
c44

ρM
< vL. (3.85)

Measuring the sound velocities in solids provides information about the elastic
properties and allows one to determine the elastic constants (see Problem 3.7).
In general, the velocities for longitudinal sound propagation (and the corre-
sponding frequencies) are larger than those for transverse sound propagation
in the same direction. Within the simple mechanical model this can be under-
stood by the stronger distortions of the springs, if the masses are displaced
parallel (and not perpendicular) to the propagation direction. This fact can
also be expressed in terms of the compliance constants (or elastic moduli) sIJ .
The isotropic solid is characterized by only two independent moduli, s11 and
s12, which are used to define [94]

Young’s modulus E = 1/s11 (3.86)

rigidity modulus G = 1/
(
2(s11 − s12)

)
(3.87)

bulk modulus B0 = 1/
(
3(s11 + 2s12)

)
(3.88)

Poisson’s ratio ν = −s12/s11 (3.89)

corresponding to longitudinal (E) and transverse (G) distortions and volume
changes (B0). The rigidity modulus also is called shear modulus. The bulk
modulus is the inverse of the volume compressibility. The elastic properties
of isotropic homogeneous systems can be characterized by two parameters,
the Lamé constants, which can be expressed by Poisson’s ratio and Young’s
modulus according to

λ =
νE

(1 + ν)(1 − 2ν)
(3.90)

μ =
E

2(1 + ν)
. (3.91)
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3.5 Optical Phonons

Phonon dispersions of solids with a crystal structure, containing more than one
atom in the unit cell exhibit, besides the acoustic phonons, additional branches
starting with finite frequencies at q = 0 in the center of the Brillouin zone.
An example has been dealt with in Problem 3.1. We know from its solution,
that in this phonon mode the atoms of the unit cell move π out of phase
with each other as demonstrated in Fig. 3.4. Some of these phonons are dipole
active, i.e., they can be excited optically by infra-red light, thus, determining
the response of the solid to the external electric field of an electromagnetic
wave in this spectral range. They are, therefore, called optical phonons. Their
properties will be the subject of this section.

Let us consider the situation for a crystal unit cell with two ions carrying
charges ητ , where τ = ± is the index for the basis, as depicted in Fig. 3.4. The
electric dipole moment of the solid (here denoted as M ) can be expressed as

M =
∑

n,τ

ητ

(
R0

nτ + unτ

)
. (3.92)

For the static lattice in equilibrium, M 0 =
∑

n,τ ητR0
nτ defines the sponta-

neous electric dipole moment. Solids with M0 �= 0 are called ferroelectric. We
consider here the case M0 = 0, which results for the considered binary solid
with two ions with opposite charge in the unit cell. An electric field drives the
two charged ions into opposite directions, thus, inducing a dipole moment. In
a time-dependent electric field E(t), this system can be resonantly excited at
the frequency of the optical phonon. In the language of the response formal-
ism, the system Hamiltonian (3.41) has to be extended by the time-dependent
perturbation (see (2.58))

Vext(t) = −M · E(t). (3.93)

It causes a (dielectric) polarization with components

Pi =
Mi

V
=
∑

j

χijEj , i, j = 1, 2, 3 (3.94)

with the dielectric susceptibility χ as a response function, which is a symmetric
second rank tensor. The vector components Pi and Mj can be identified with

+ _

R0
n+ Rn

0 _

un+ un_

E(t)

Fig. 3.4. Characteristic ion displacements in a unit cell for an optical phonon
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the observables Â and B̂, respectively, of the response formalism outlined in
Chap. 2. After Fourier transformation, we write

〈Pi〉ω =
∑

j

i

h̄V

∫ +∞

−∞

eiωtθ(t)〈[M̂i(t), M̂j(0)]〉0 dt Ej(ω) (3.95)

=
∑

j

χij(ω)Ej(ω), (3.96)

with the dipole operator given by

M̂(t) =
∑

nτ

ητ ûnτ (t) =
∑

sq

∑

nτ

ητ√
NMτ

es
τ (q) eiq·R0

nQs(q, t). (3.97)

The normal coordinate Qs(q, t) can be expressed in terms of phonon operators
to write

M̂i(t) =
∑

sq

M s
i (q)

(
a†

s(−q, t) + as(q, t)
)
, (3.98)

with the component

M s
i (q) =

∑

nτ

ητ

(
h̄

2NMτωs(q)

)1/2

es
τi(q) eiq·R0

n (3.99)

of the dipole moment connected with a phonon in the mode s, q. The dipole
correlation function 〈[M̂i(t), M̂j(0)]〉0 can be evaluated using Problem 3.5,
together with ns(q, T ) = ns(−q, T ) to write

〈[a†
s(−q, t), as′(q′, 0)]〉0 = −δss′δ−qq′ eiωs(−q)t (3.100)

and yields, with ωs(q) = ωs(−q),

〈[M̂i(t), M̂j(0)]〉0 =
∑

sq

M s
i (q)M s

j (−q)
{
−eiωs(q)t + e−iωs(q)t

}
. (3.101)

Let us now consider the limit of long wavelengths λ ≫ a (where |q| = 2π/λ
and a is the lattice constant), which holds for far-infrared light, to simplify
Mi(q) with the dipole approximation

eiq·R0
n = 1 + iq · R0

n + . . . ≃ 1 (3.102)

and distinguish between longitudinal (s = L) and transverse phonons (s = T)
with the properties

ML‖eL
τ (q)‖q and MT‖eT

τ (q) ⊥ q, respectively. (3.103)

In the first case and for an electromagnetic wave propagating in the direction
of q, one has ML ·E = 0, i.e., the transverse light cannot excite a longitudinal



3.5 Optical Phonons 57

phonon mode. In the second case, there is a contribution to 〈P 〉ω and thus,
to the susceptibility. In the long-wavelength limit, with

MT
i (q → 0) =

(
h̄

2ωT(0)

)1/2∑

τ

ητ

√
N

Mτ
eT

τi(0) =: MT
i , (3.104)

one finds for the dielectric susceptibility

χij(ω) = lim
Γ→0

iMT
i MT∗

j

h̄V

∫ ∞

0

{
ei(ωT(0)+ω+iΓ)t − e−i(ωT(0)−ω−iΓ)t

}
dt.

(3.105)

Here, the exponential with the parameter Γ has been introduced for the adia-
batic switching on of the perturbation Vext of (3.93), and the lower integration
limit is a consequence of the step function in (3.95). After integration, one has

χij(ω) = lim
Γ→0

MT
i MT∗

j

h̄V

{
1

ωT(0) + ω + iΓ
+

1

ωT(0) − ω − iΓ

}
. (3.106)

The susceptibility exhibits a characteristic pole structure in the complex ω-
plane, with poles at ω = ±ωT(0)− iΓ (see Fig. 3.5a) and frequencies ωT(0) =
ωT in the infra-red spectral range.

For solids with a cubic lattice, χij(ω) simplifies to a scalar χij(ω) =
χ(ω)δij , which determines the complex frequency-dependent dielectric func-
tion

ε(ω) = ε∞ +
1

ε0
χ(ω) = ε1(ω) + iε2(ω), (3.107)

where ε0 is the vacuum dielectric constant, while ε∞ accounts for the dielectric
background, which is caused by contributions of oscillators in the electronic

Imω Imε(ω)

Reω

-ω
T
(0) ω

T
(0) -ω

T
(0)

ω
T
(0) ω

(a) (b)

Fig. 3.5. (a) Complex ω plane with poles of the dielectric function; (b) Real part
of the dielectric function without (solid) and with (dashed) damping vs. frequency
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system of the solid (see Chaps. 4 and 5), with resonances at much higher
frequencies than those of the optical phonons. Therefore, it is called high-

frequency dielectric constant. The imaginary part of the dielectric function is
related to the absorption coefficient (see Chap. 10) and takes the form

ε2(ω) = Im
χ(ω)

ε0

= lim
Γ→0

|MT|2
h̄V ε0

{
Γ

(ωT − ω)
2

+ Γ2
− Γ

(ωT + ω)
2

+ Γ2

}
. (3.108)

Each term in the last bracket is a Lorentzian, which for Γ → 0 becomes a δ
function peaked at ω = −ωT and ω = ωT (see Fig. 3.5b), corresponding to
emission and absorption respectively of an optical phonon at q = 0. Note,
that this final result with the δ functions would also result by applying (2.77)
directly to (3.106) for i = j. Combining both terms, the real and imaginary
part of the dielectric function can be written as

ε1(ω) = ε∞ + lim
Γ→0

|MT|2
h̄V ε0

2ωT(ω2
T − ω2)

(ω2
T − ω2)2 + ω2Γ2

, (3.109)

ε2(ω) = lim
Γ→0

|MT|2
h̄V ε0

2ωTωΓ

(ω2
T − ω2)2 + ω2Γ2

. (3.110)

We note in passing that ε1(ω) and ε2(ω) are connected with each other by
the Kramers–Kronig relations (see Sect. 2.6).

The parameter Γ is introduced as a mathematical trick to regularize the
integral in (3.105). But in a more general view, it can be understood as also
being caused by interactions not explicitly included in the present model. By
taking into account electron–phonon interaction (see Chap. 7) or anharmonic
effects due to higher order terms in the expansion (3.6) it would be finite, thus,
indicating a finite phonon lifetime or a damping of the phonon oscillator. In
fact, an optical phonon can decay into two acoustic phonons. Microscopically,
such processes mean dissipation of energy from the optical phonon to other
degrees of freedom.

We go into a more detailed discussion of the optical properties by looking
at ε1(ω) and the reflection coefficient R(ω), which are plotted in Fig. 3.6. For
ω = 0 (and Γ = 0), the real part of the dielectric function can be written as
ε(0) = ε∞+S/ω2

T, known as the static dielectric constant, while for frequencies
ω >> ωT (or ω → ∞ in (3.109)) it approaches the high frequency value
ε∞. In-between, it passes through the resonance at ωT and is negative up
to a frequency identified with that of the longitudinal phonon ωL at which
ε1(ωL) = 0. Without damping, this relation yields

ω2
L = ω2

T +
S

ε∞
> ω2

T. (3.111)
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ε1(ω) 
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∝

Fig. 3.6. Real part of the dielectric function (upper part) and reflection coefficient
(lower part) without (solid) and with (dashed) damping vs. frequency

By including Γ, one obtains the dashed curve for ε1(ω) in Fig. 3.6, which is
characteristic for a damped oscillator with frequency ωT.

The reflection coefficient is defined by the complex index of refraction
N = n1 + in2 (all quantities depending on ω):

R(ω) =

∣∣∣∣
1 − N(ω)

1 + N(ω)

∣∣∣∣ =

(
(1 − n1(ω))2 + n2

2(ω)

(1 + n1(ω))2 + n2
2(ω)

)1/2

. (3.112)

Without damping, using ε1 = n2
1−n2

2, and ε2 = 2n1n2, we find in the interval
ωT < ω < ωL that ε1 is negative while ε2 vanishes, which leads to n1 = 0 and
n2 �= 0 and consequently to R(ω) = 1. In other words, the solid cannot prop-
agate light in this frequency range, i.e., all light is perfectly reflected from the
surface. It is called Reststrahlen band because the reflected light is dominated
by these frequencies. Taking into account damping gives the more realistic
(dashed) curve shown in Fig. 3.6. It is in accordance with experimental spec-
tra, which can be picked up from textbooks like [89] or from data collections
like [94].

From (3.111), we have S = ε∞(ω2
L −ω2

T) and can express the (real part of
the) dielectric function (see (3.109) for Γ = 0) as

ε(ω) = ε∞
ω2

L − ω2

ω2
T − ω2

(3.113)

in terms of the characteristic optical phonon frequencies and the material
constant ε∞. For ω = 0, this expression reduces to
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ε(0)

ε∞
=

ω2
L

ω2
T

(3.114)

known as the Lyddane–Sachs–Teller5 relation. Making use of this relation, we
also may write S = ω2

T (ε(0) − ε∞) in terms of the macroscopic quantities
ωT, ε(0), and ε∞. On the other hand, S = 2ωT |MT|2/h̄V ε0 is determined by
the microscopic parameters of the system (see (3.104)), the charge η± = ±η
and the masses M± of the ions. In the long-wavelength limit of the optical
mode the latter move against each other with eigenvectors eT

± = ±
√

(M∓/M),
where M = M+ + M−. This allows us to express

η =

(
μV ε0

N
(ε(0) − ε∞)

)1/2

ωT (3.115)

in terms of the macroscopic material parameters (here the reduced mass μ =
(1/M+ + 1/M−)−1 appears because of the relative motion of the two ions
in the unit cell, see Problem 3.1). As this expression for η contains also the
transverse phonon frequency ωT , it is called the transverse charge [89]. It is
related to the strength of the phonon oscillator and can be determined from
the measured spectrum by a line-shape fit.

In crystalline solids with more complex unit cells than the one with two
oppositely charged ions assumed here, there are several triples of optical
phonon branches with different longitudinal-transverse splittings, giving rise
to different transverse effective charges [95].

3.6 Examples: Phonon Dispersion Curves

Phonon dispersion curves, showing the phonon frequencies ωs(q) for different
branches s, are usually plotted versus q along different high symmetry direc-
tions in the Brillouin zone. For the examples to be discussed in this section,
which all have fcc or bcc point lattices, we refer to the Brillouin zones depicted
in Figs. 1.1 and 1.2. Phonon dispersion curves are obtained either experimen-
tally from inelastic scattering preferentially with neutrons (for a more recent
introduction and examples see [96, 97]) and also with photons and atoms, or
from model calculations of different sophistication. Both kinds of investigation
have influenced and stimulated each other and are well documented [77–79],
thus, at present the phonon dispersion curves of solids are well known. For
collections of phonon dispersion curves, together with a compilation of the
original references, we refer to [76, 81, 94]. A selection will be presented
and discussed in this section to provide the knowledge how to read phonon
dispersion curves and understand their principal material specific features.

5 Russell Hancock Lyddane 1913–2001, Robert Green Sachs 1916–1990, Edward
Teller 1908–2003
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In all the examples presented below, experimental data are shown together
with calculated dispersion curves. In order to judge the quality of the theo-
retical data, it is necessary to briefly characterize the different models used.
Historically (and this has been in the first place a matter of available computer
power), a variety of phenomenological models has been developed. Depending
on their complexity, these models are characterized by a number of param-
eters, which have to be determined by fits to the experimental data. We
have already learned about the simplest of these phenomenological models
with massive spheres (representing rigid ions) and springs (representing the
interionic forces due to chemical binding) in Sects. 3.1 and 3.2 (including Prob-
lems 3.1 and 3.2). For given masses of the ions, this rigid-ion model contains
the force constants as adjustable parameters (their number depending on the
symmetry of the lattice and the considered number of neighbors coupled by
springs, see Problem 3.2). As demonstrated by comparing measured with fit-
ted dispersion curves for Al in Fig. 3.7 and for Fe in Fig. 3.8, this model works
well for metals.

However, this rigid-ion model does not account for a polarization con-
nected with a motion of the ions in ionic crystals. For these systems, so-called
shell models of different complexity have been developed. By decomposing
the ion into the nucleus with the closed shells of core electrons and the shell
of valence electrons, responsible for the chemical binding, it becomes possi-
ble to introduce additional parameters or force constants representing springs
between each two movable parts of the model. Especially, a spring between
the closed-shell ion and the shell of valence electrons can be used to account
for the polarization of the atom. With this increased number of parameters,
shell models are quite flexible and have been successfully applied to ionic crys-
tals with heteropolar binding like KI (Fig. 3.9). KI crystallizes in the rocksalt
structure with two ions in the Wigner–Seitz cell and, therefore, its phonon
dispersion curves have acoustic (TA, LA) and optical branches (TO, LO).
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Fig. 3.7. Phonon dispersion curves for Al (fcc structure). Symbols are experimental
data from inelastic neutron scattering, dispersion curves calculated with the rigid
ion model using three force constants fitted to elastic constants (after [77])
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Fig. 3.8. Phonon dispersion curves for α−Fe (bcc structure). Symbols are experi-
mental data from inelastic neutron scattering, dispersion curves calculated with the
rigid ion model using force constants for up to five nearest neighbors (after [81])
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Fig. 3.9. Phonon dispersion curves for KI (rocksalt structure). Symbols (open for L,
full for T modes) are experimental data from inelastic neutron scattering, dispersion
curves calculated with an 11-parameter shell model (after [76])

In solids with dominating covalent binding, like those made of the group-IV
elements, which crystallize in the diamond structure (two interpenetrating fcc
lattices with four nearest neighbors to each atom), the valence electron density
exhibits a strong maximum halfway between each pair of nearest neighbors
(see Chap. 5). This bond charge is characteristic for covalent binding. It turns
out to be important not only for the stability of the diamond structure but
also for the lattice dynamics. Because the rigid-ion models as well as the shell
models fall short of describing the bond charge and its motion, a bond charge

model has been invented, which introduces springs between neighboring bond
charges. This model has been used to calculate the phonon dispersion curves
of Si in Fig. 3.10.

Of particular nature are solid rare gases, which, due to the weak van der
Waals forces, exist only at low temperatures. Their characteristic phonon fre-
quencies are much smaller than those of other solids, therefore, already very



3.6 Examples: Phonon Dispersion Curves 63

Χ Γ∆ Κ Σ ΛΓ L

15

10

5

0

Si

υ
 [

T
H

z]

L
L

L

T
T

T2

T2

Fig. 3.10. Phonon dispersion curves for Si (diamond structure). Symbols (open
for L, full for T modes) are experimental data from inelastic neutron scattering,
dispersion curves calculated with the bond-charge model (after [76])
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Fig. 3.11. Phonon dispersion curves for solid 4He in the bcc structure. Symbols
(open for L and full for T modes) are experimental data from inelastic neutron scat-
tering, dispersion curves calculated with the self-consistent harmonic approximation
(after [76])

little thermal energy creates lattice displacements that require the consider-
ation of anharmonic corrections. This is done in the self-consistent harmonic

approximation (SCHA) used in Figs. 3.11 and 3.12 (see also Problem 3.8).
These different models, although successful in many cases, turned out to

be in conflict with experimental data of increasing accuracy. Discrepancies
were found in particular for phonon eigenvectors, which have been mea-
sured besides the frequencies [98]. At the same time, theoretical concepts and
computer power became available for microscopic lattice dynamics based on
ab-initio methods [99, 100]. These methods aim at the self-consistent solution
of the time-dependent Schrödinger equation for the motion of the ions in the
adiabatic potential (3.1)

(∑

n

P 2
n

2M
+ U({Rn})

)
Φ = ih̄Φ̇ (3.116)
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Fig. 3.12. Phonon dispersion curves for solid 4He under hydrostatic pressure in the
fcc structure. For symbols (experiment) and lines (model calculations) see caption
of Fig. 3.11 (after [76])
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Fig. 3.13. Phonon dispersion curves and density of states (DOS) for GaAs (zinc
blende structure). Symbols are experimental data from inelastic neutron scattering,
dispersion curves are ab-initio results from DFPT (after [101])

and of the time-independent Schrödinger equation for the electrons in the
equilibrium configuration of the ions

(∑

l

p2
l

2m
+

1

8πε0

∑

k,l
k �=l

e2

|rk − rl|
+
∑

n,l

v(rl − Rn)
)
Ψ0 = EelΨ0 . (3.117)

This becomes possible within the density–functional theory (DFT), which
will be introduced in Chap. 5, as an extension to the density–functional per-
turbation theory (DFPT) [98–100]. As an example of such calculations we
show phonon dispersion curves of GaAs in Fig. 3.13, together with the phonon
density of states.

When looking at the phonon dispersion curves, one finds different units
for the phonon frequencies ν, wave numbers ν̄, or energies h̄ω, following from
the relations E = h̄ω = hν = hcν̄. The scales are typically THz or 1012 s−1
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for ν, 100 cm−1 for ν̄, and a few meV for h̄ω. In order to convert these units
for comparison of the different dispersion curves, the following scheme can be
used (e.g., 1 THz = 1012 s−1 ≡ 4.136meV):

THz 100 cm−1 10meV

THz 1 0.3336 0.4136

100 cm−1 2.9979 1 1.2398

10meV 2.4181 0.8066 1

Let us first discuss the phonon dispersion curves of solids with Bravais
lattices (with only one atom per unit cell) shown for Al (Fig. 3.7), Fe (Fig. 3.8)
and solid 4He (Figs. 3.11 and 3.12).

The dispersion is depicted for the directions [100], [111], and [110] in the
Brillouin zone which correspond, respectively, to the lines ∆, Λ, and Σ (see
Figs. 1.1 and 1.2). In each case, one has only acoustic branches, one longitu-
dinal (L) and two transverse ones (T or T1, T2). The transverse branches are
degenerate for the [100] and [111] directions, whose group of the wave vector
contains fourfold and threefold rotations, respectively, but split into two sep-
arate branches for the [110] direction (which is invariant only under twofold
rotation). By comparison of bcc 4He and Fe on one side and those of fcc 4He
and Al we recognize a remarkable correlation between lattice structure and
topology of the phonon dispersion curves. This is most striking for the disper-
sion along the Λ line (or [111] direction), for which the longitudinal branch
from Γ to H of bcc 4He and Fe exhibits a pronounced dip, while it increases
monotonously from Γ to L for the fcc solids. For a given crystal structure,
the difference in the material and its specific chemical binding determines the
force constants and therefore, the phonon frequencies. Thus, the phonon spec-
trum of the metals Al and Fe spreads over a much larger interval than those
of both modifications of solid 4He. But already the comparison of bcc 4He
and fcc 4He (obtained by applying hydrostatic pressure) shows an increase of
the phonon frequencies as the strength of the chemical binding (here van der
Waals forces) is increased by compression.

The next group of examples consists of solids, all based on the fcc point lat-
tice but with different basis: diamond structure for Si (Fig. 3.10), zinc blende
structure for GaAs (Fig. 3.13), and rocksalt structure for KI (Fig. 3.9). With
two atoms per unit cell, these solids have phonon dispersion curves exhibiting
three optical branches with similarities as well as pronounced differences inside
the acoustic branches. For the acoustic branches, with dispersion curves sim-
ilar to those of Al and fcc He4, we mention only the differences in the slopes.
They are largest for Si, which, similar to C(diamond), is a rather rigid mate-
rial due to the covalent bonds, and its Debye temperature is about 50% larger
than that of Al. Note the degeneracy of the transverse phonons in KI along
the Σ axis. It is a consequence of the higher symmetry of the rocksalt lattice
compared to that of the zinc blende lattice. The optical branches of Si differ
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from those of GaAs and KI by convergence toward a degeneracy with the
acoustic branches, e.g., at the X point, while these two groups of branches
do not interpenetrate for GaAs and are even well separated by a gap for KI.
This behavior can be understood from the solution for Problem 3.1, the linear
chain with two atoms in the unit cell: If the two atoms in the unit cell have
different masses, the dispersion curves show a gap at the boundary of the
Brillouin zone (as for GaAs and KI); this gap closes, if the masses are equal
(as for Si). Even the difference between these gaps of GaAs and KI can be
explained within this model, it increases with increasing mass difference. The
other striking difference is the splitting of the optical phonon branches at the Γ
point for GaAs and KI – the longitudinal–transverse (or LT) splitting – while
these branches are threefold degenerate in Si. The splitting is a consequence
of the macroscopic polarization inherent with a longitudinal optical mode in
a binary compound solid (such as GaAs and KI) that gives rise to a stronger
restoring force than for the transverse mode, i.e., ωL > ωT, as discussed in
Sect. 3.5, and is connected with the Reststrahlen band. The rather flat optical
phonon branches lead to a pronounced peak in the density of states (DOS),
shown for GaAs in Fig. 3.13. Nevertheless, the phonon dispersion curves for Si
and GaAs resemble each other much more than those of GaAs and KI. This is
due to the similarity of the diamond and zinc blende structure and the small
mass difference between Ga and As. On the other hand, the characteristic fre-
quencies are higher in Si than in GaAs, which can be ascribed to a weakening
of the covalent binding in GaAs (which becomes partially ionic) and to the
larger masses of Ga and As as compared to the mass of Si.

With these aspects of selected phonon curves in mind, it is not difficult to
make an excursion to other materials maintaining the same crystal structure
but replacing the atoms. As an example, we may consider AlAs and GaP, both
in the zinc blende structure. Compared to GaAs, we expect a more pronounced
separation of acoustic and optical branches in the phonon spectrum of both
materials, because the mass difference of the two atoms in the unit cell, taken
from different rows of the periodic table, has increased. Moreover, due to the
lighter masses of Al and P, compared to those of Ga and As, respectively,
the characteristic phonon frequencies are higher than those of GaAs. These
features are found in the phonon dispersion curves of AlAs and GaP (see [94]).

The lattice dynamics presented in this chapter is designed for the extended
solid without regarding its surface. Surface atoms experience a different struc-
tural surrounding and forces, which differ from those acting on the bulk
atoms. Consequently, they have their own dynamics, which, in a simplified
two-dimensional model, has been treated already in Problem 3.2. For a more
detailed description we refer to [85–87]. A simple example is the phonons of
a Cu(100) surface as shown in Fig. 3.14. Calculations of surface phonons are
usually performed for slab configurations where the outermost atomic layers
experience the modified environment of the surface, while the central layers
reproduce the bulk situation. The results are plotted for wave vectors in the
first BZ of the 2D periodic surface structure. The shaded area in Fig. 3.14
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Fig. 3.14. Projected bulk phonons and surface phonons for a Cu(100) surface.
Experimental data (circles) are from HREELS (after [102])

results from the bulk modes that have the same component of the wave vec-
tor in the surface along Γ − X , while the solid lines represent the collective
modes of the surface layers, whose frequency is below the continuum of the
projected bulk phonon frequencies. The surface phonons have been measured
by high resolution electron energy loss spectroscopy (HREELS).

A more complex spectrum results for the clean GaAs(110) surface shown
in Fig. 3.15. This surface represents a rectangular 2D lattice, whose BZ is
depicted in the inset. Results from DFPT calculations [103] show again the
projected bulk phonon spectrum (shaded area), but in addition solid lines from
surface phonons, which partially overlap with the bulk continuum. Experi-
mental data are from inelastic scattering with He atoms and from HREELS.
Adsorbate layers modify the surface phonon spectrum.

Modern epitaxial material growth has created new solids with artificial
periodicity by periodically changing the kind of atoms supplied during the
growth process [104, 105]. These new materials are called superlattices. Their
period is larger than that of the underlying crystal structure and thus, the Bril-
louin zone and the phonon branches for the growth direction are backfolded. If
the masses of the atoms in the different layers differ strongly from each other,
the optical phonons of one layer may fall into a frequency range outside of the
optical phonon branch of the other layer. This means that these optical modes
cannot propagate along the growth direction but only along their respective
layers. They are called confined phonon modes (see Sect. 9.3 in [89]).

As already mentioned in Sect. 1.2, solids are, in general, compositionally
disordered due to the natural abundance of isotopes for each element. As a
consequence, not all oscillators in the model of Fig. 3.1 have the same res-
onance frequency. This becomes relevant especially for the optical phonons
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Fig. 3.15. Projected bulk phonons and surface phonons for a clean GaAs(110)
surface. Experimental data are from inelastic He scattering (triangles) and HREELS
(squares) (after [103])

and results in an inhomogenously broadened infrared absorption line. This
broadening can be (and has been) overcome by growing isotopically clean crys-
tals [106]. The mass difference of isotopes also has been exploited in growing
isotope superlattices, e.g., of 70Ge and 74Ge and to investigate their phonon
spectra by inelastic light scattering [107].

3.7 The Crystal Lattice at Finite Temperature

The experimental phonon energies presented in the last section were all
obtained from inelastic scattering. Besides the most frequently employed and
versatile neutron scattering, inelastic scattering with photons and atoms is
also in use [96, 97]. A quantitative analysis has to ask for the scattering inten-
sity including its dependence on the temperature. The key quantity is the
differential cross section. It describes the probability that an incoming parti-
cle (neutron, photon, light atom) with momentum h̄k is scattered by a solid
(or its surface) into an outgoing particle with momentum h̄k′. In the scat-
tering process, the energy h̄ω (the difference of the kinetic energies of the
particle before and after the encounter with the solid) and the momentum
h̄q = h̄(k − k′) are exchanged with the solid. Under the assumption of weak
scattering efficiency, which justifies the Born approximation, an excitation
with just this energy and momentum is created (or destroyed) in the solid.
For this situation, the scattering cross section can be written as [4, 83, 96, 97]

d2σ

dωdΩ
= AqS(q, ω), (3.118)



3.7 The Crystal Lattice at Finite Temperature 69

where Ω refers to the direction of the scattered particle relative to the direc-
tion of the incoming particle, Aq accounts for the details of the interaction
mechanism giving rise to the scattering, and S(q, ω) is the dynamic struc-
ture factor (see Sect. 1.3). It is the Fourier transform of the density–density
correlation function

S(q, ω) =
1

2π

∫
d3r

∫
d3r′ eiq·(r−r′)

∫
e−iωt〈n(r, t)n(r′, 0)〉dt. (3.119)

Its static counterpart has been introduced already in Sect. 1.3. The time
dependence of the density

n(r, t) =
∑

n

δ(r − Rn(t)), Rn(t) = R0
n + un(t) (3.120)

has its origin in the time-dependent positions of the ions, which can be
expressed by the departures from their equilibrium positions R0

n (here we
assume a Bravais lattice). Thus, the dynamical structure factor can be
written as

S(q, ω) =
1

2π

∫
dt e−iωt

∑

nn′

〈
e−iq·(R0

n+un(t))eiq·(R0
n′+un′ (0))

〉
. (3.121)

When evaluating the thermal expectation value under the integral, the dis-
placements un have to be understood as quantum-mechanical operators (in
actual calculations they will be expressed by phonon operators), while the
equilibrium positions are parameters. Therefore, we can write

〈
. . .
〉

= e−iq·(R0
n−R0

n′ )
〈
e−iq·un(t)eiq·un′(0)

〉

= e−iq·(R0
n−R0

n′ )
〈
e−iq·(un(t)−un′ (0))e[q·un(t),q·un′(0)]/2

〉
, (3.122)

where the last expression was obtained by using the operator relation

eÂeB̂ = eÂ+B̂e[Â,B̂]/2. (3.123)

If the lattice sum of the prefactor with the difference R0
n − R0

n′ could be
performed irrespective of the second factor, it would give a δq,G, indicating
the Bragg peaks, which correspond to the set of parallel lattice planes defined
by the reciprocal lattice vector G (see Problem 1.6). In fact, the second factor
simplifies for elastic scattering, which corresponds to the limit t → ∞, where
all correlations are lost. Thus, the commutator in the exponential vanishes
and we may write

lim
t→∞

〈
e−iq·un(0)eiq·un′(t)

〉
=
∣∣〈e−iq·un

〉∣∣2 = e−2W . (3.124)

This is the Debye–Waller factor, with W = 〈(q·u)2〉/2. It is independent of the
lattice site (because of the translational symmetry) and describes the reduc-
tion of the intensity of the Bragg peaks due to the thermal motion of the ions.
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For a more detailed evaluation of 〈. . . 〉 (3.122), we first restrict to the
longitudinal modes by writing q · un = un and express the displacement by
phonon operators (see (3.23) together with (3.39))

un(t) =
∑

q

1√
2NMω(q)

(
a(q) ei(q·R0

n−ω(qt)) + a†(−q) e−i(q·R0
n−ω(q)t)

)
.

(3.125)

We find that the commutator

[un′(t), un(0)] =
1

2NM

∑

q

1

ω(q)

([
aq, a†

q

]
eiαn′n(t) +

[
a†

q, aq

]
e−iαn′n(t)

)

=
i

NM

∑

q

1

ω(q)
sin (αn′n(t)) , (3.126)

with αn′n(t) = ω(q)t + q · (R0
n′ − R0

n), is a scalar and the exponential with
this argument becomes a factor in front of the thermal expectation value of
the first exponential. For a harmonic oscillator, it can be shown [4] that

〈
eiq(un′(t)−un(0))

〉
= exp

(
−q2

2

〈(
un′(t) − un(0)

)2〉
)

. (3.127)

We evaluate the argument of the exponential with the substitution (3.125)
and obtain

(
un′(t) − un(0)

)2
=

1

NM

∑

q

1

ω(q)
(1 − cosαn′n(t))

(
2a†

qaq + 1
)

(3.128)

up to terms containing two creation or two annihilation operators (which
would vanish when taking the thermal expectation value). Thus, the thermal
expectation value in (3.122) can be expressed as

〈
. . .
〉

= exp
{
− q2

2NM

∑

q′

1

ω(q′)

(
2n(q′, T ) + 1

)}
exp

{ q2

2NM

∑

q′

1

ω(q′)

×
((

2n(q′, T ) + 1
)
cosαn′n(t) + i sinαn′n(t)

)}

where n(q, T ) is the phonon occupation function. The first exponential, which
is time-independent, can be identified as the Debye–Waller factor (see Prob-
lem 3.6), while the second exponential can be expanded with the leading
terms

≃ 1 +
q2

2NM

∑

q′

1

ω(q′)

((
2n(q′, T ) + 1

)
cosαn′n(t) + i sinαn′n(t)

)

= 1 +
q2

2NM

∑

q′

1

ω(q′)

{(
n(q′, T ) + 1

)
eiα

n′n
(t) + n(q′, T ) e−iα

n′n
(t)
}
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and we obtain, after time-integration and performing the lattice sums for the
structure factor,

S(q, ω) = δ(ω) e−2W
∑

G

δq,G

+
∑

q′

q2

2NMω(q′)

{(
n(q′, T ) + 1

)
δ
(
ω − ω(q′)

)
δq,q′+G

+ n(q′, T )δ
(
ω + ω(q′)

)
δq,q′−G

}
. (3.129)

The first term is the elastic peak that corresponds to the static structure of the
lattice. It is modified by the thermal motion as quantified by the Debye–Waller
factor. The second and third term, are the lowest order inelastic contributions
describing absorption and emission, respectively, of a single phonon, with their
particular energy and momentum conservation. Note that phonon emission is
possible only if phonons are thermally excited, i.e., if n(q, T ) �= 0. More-
phonon processes would follow from the higher order terms in the expansion
of the exponential.

One of the most prominent effects that heat causes in matter is ther-
mal expansion. It is quantified by the linear thermal expansion coefficient at
constant pressure P

α =
1

l

(
∂l

∂T

)

P

. (3.130)

Here, l is the linear extension of a piece of matter. With the substitution
∆V/V = 3∆l/l, this can also be written as

α =
1

3V

(
∂V

∂T

)

P

=
1

3V

(
− (∂P/∂T )V

(∂P/∂V )T

)
=

1

3B

(
∂P

∂T

)

V

, (3.131)

with the bulk modulus

B0 = −V (∂P/∂V )T . (3.132)

The thermal expansion can be expressed in terms of phonons by consider-
ing the latter as a gas and using the statistical expression for the free energy
F = U − TS, from which the pressure is obtained by

P = −
(

∂F

∂V

)

T

= − ∂

∂V
(U − TS) . (3.133)

Using S(T ), obtained by integrating the differential equation

(
∂U

∂T

)

V

= T

(
∂S

∂T

)

V

, (3.134)
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one can write (3.133) in the form

P (T, V ) = − ∂

∂V

(
U(T, V ) − T

∫ T

0

1

T ′

∂U(T ′, V )

∂T ′
dT ′

)
. (3.135)

The inner energy U of the phonon gas is given by

U = Tr(ρ0H) =
∑

s,q

h̄ωs(q)

(
ns(q, T ) +

1

2

)
, (3.136)

with the Hamiltonian H from (3.41), and we find

P (T, V ) = − ∂

∂V

∑

s,q

1

2
h̄ωs(q) +

∑

s,q

ns(q, T )

(
− ∂

∂V
h̄ωs(q)

)
. (3.137)

Taking the derivative with respect to the temperature we arrive at

α =
1

3B0

∑

s,q

(
− ∂

∂V
h̄ωs(q)

)
∂

∂T
ns(q, T ). (3.138)

This expression allows one to recognize two mechanisms responsible for the
thermal expansion in terms of the phonons: One is the change of the thermal
occupation with the temperature, the other is the change of the phonon energy
with the volume. The latter is specified by the mode Grüneisen parameter

γsq = − V

ωs(q)

∂ωs(q)

∂V
= −∂(lnωs(q))

∂ ln V
. (3.139)

In order to characterize the temperature dependence of the whole spectrum
with a single parameter, the Grüneisen parameter

γ(T ) =
1

cV

∑

s,q

γsq

h̄ωs(q)

V

∂

∂T
ns(q, T ) (3.140)

is introduced. It is the average of the mode Grüneisen parameter weighted with
the contribution of each mode to the lattice specific heat

cV =
∑

s,q

h̄ωs(q)

V

∂

∂T
ns(q, T ). (3.141)

The quantities α, B0, γ, and cV are connected with each other by the Grüneisen

relation

3B0(T )α(T ) = γ(T )cV (T ). (3.142)

For reasons of technical applications material research has been conducted
very early on solids that do not show thermal expansion, at least in some rel-
evant temperature range. The prominent first outcome has been the alloy
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Fe0.65Ni0.35 (called INVAR) found by Guillaume.6 A more recently investi-
gated material to show this property is YbGaGe [108]. Although this effect is
not yet understood microscopically, there are indications that it is related to
the electronic properties of these materials.

Problems

3.1 Consider a linear chain with two different masses (M1, M2) per unit cell
(lattice constant a) connected by springs (spring constant f) as shown in
Fig. 3.16.
Give the possible different force constants of the model and verify the
symmetry properties of the matrix of force constants presented in Sect. 3.1!
Formulate the dynamical matrix and solve the eigenvalue problem! Discuss
the dispersion ωs(q) close to the center and the boundary of the Brillouin
zone and visualize the corresponding motion of the masses! What happens
for M1 = M2 = M?

3.2 In a two-dimensional square lattice, let elastic forces (described by har-
monic force constants Φ1, Φ2) act between the nearest and next nearest
neighbors (see Fig. 3.17).
Calculate the frequencies of the lattice vibrations ω(q) for wave vectors q

along the symmetry lines Γ−X, Γ−M , and X −M in the Brillouin zone!
Discuss the eigenvectors (normal coordinates) and visualize the vibrations!

3.3 Explain the concept of periodic (or Born–von Kármán) boundary condi-
tions! What are they good for? Show explicitly the relation between the

r0
a

M M1 2

n n+1

Fig. 3.16. Linear chain model with two different masses per unit cell

M

Χ
Γ

a

2Φ

1
Φ

Fig. 3.17. Model for a quadratic lattice (left) and corresponding Brillouin zone with
symmetry points (right)

6 Charles–Edouard Guillaume 1861–1938, Noble prize in physics 1920
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crystal volume and the possible values of the wave vector q and give their
number! How can a sum over all q be converted into an integral?

3.4 Verify the commutation relations (3.38) for the phonon creation and anni-
hilation operators a†

s(q) and as′(q′) by making use of those introduced for
the normal coordinates and their conjugate momenta.

3.5 Show the validity of the following thermal expectation values:

〈as(q, t)a†
s′(q

′, 0)〉 = δss′δqq′ (ns(q, T ) + 1) e−iωs(q)t

〈a†
s(q, t)as′(q′, 0)〉 = δss′δqq′ns(q, T )e+iωs(q)t

〈as(q, t)as′(q′, 0)〉 = 0 !

3.6 The thermal motion of the lattice reduces the scattering amplitude (see
Problem 1.6) of the rigid lattice by the Debye–Waller factor exp(−2W )
with W = 〈(q · u(0))2〉/2. Here, u(0) is the ion displacement in the unit
cell which is taken as the origin. Show, that 〈(q ·u(t))2〉 does not depend
on t! Calculate W by making use of the thermal expectation values given
in Problem 3.5! Discuss the temperature dependence of W in the high and
low temperature limits! Use the Debye model for the latter case!

3.7 (a) Show that due to spatial symmetry the number of independent elastic
constants for a cubic crystal is reduced to 3 (make use of the transfor-
mation properties of a tensor!) (b) Solve for this case the equation of
motion (3.71) for the elastic continuum with ui(r, t) = ui exp i(q · r − ωt)
for q along Γ − X and Γ − K! How do the sound velocities depend on
the elastic constants? Take (measured or calculated) phonon dispersion
curves (e.g., those of GaAs, Fig. 3.13) and determine the nonvanishing
elastic constants via the sound velocities! To compare with values from
the literature see [94]!

3.8 Calculate the correction to the frequency of an oscillator in its ground
state due to a cubic anharmonicity. It arises by expanding the adiabatic
potential beyond the harmonic terms. This corresponds to an oscillator
problem with the Hamiltonian

H = h̄ω0 a†a + ∆(a† + a)3.

Treat the anharmonicity by bringing the third order terms in the phonon
operators first into normal order and reduce them by replacing the num-
ber operator whenever possible by the thermal expectation value n(T ).
The self-consistent harmonic phonon approximation consists in consider-
ing the anharmonic correction in Brillouin–Wigner perturbation theory.
Find the lowest eigenvalue and discuss its dependence on T to understand
the meaning of a soft mode.



4

The Free Electron Gas

The structure of a solid, its composition of atoms, as well as the electronic,
optical, and lattice properties are essentially determined by the electrons.
However, not all electrons of the atoms constituting the solid are involved in
the same way. At the beginning of Chap. 2 we have distinguished between the
core electrons and the valence electrons. The former are tightly bound to the
nuclei and extend over a distance (much) smaller than the lattice constant,
while the wave functions of the latter overlap with those of the neighboring
atoms, thus giving rise to the chemical binding. Therefore, we describe the
solid as being composed of ions (nuclei plus closed shell electrons) in equi-
librium positions at R0

n and valence electrons, which are responsible for the
stability of the solid and its electronic properties. They are ruled by the Hamil-
tonian (see discussion of (2.12))

H =

N∑

l=1

p2
l

2m
+

1

2

N∑

k,l=1

k �=l

e2

4πε0|rk − rl|

+
∑

n,l

v(rl − R0
n) +

1

2

∑

mn

V (R0
n − R0

m), (4.1)

where N denotes the number of electrons. The first and second term describe
the kinetic energy of the electrons and the electron–electron interaction,
respectively. The third term, the interaction between valence electrons and
ions, and the fourth term, the ion–ion interaction, depend on the equilibrium
positions R0

n of the ions (for simplicity a Bravais lattice is assumed) and are
responsible for the structural aspects. The structure of the solid is defined by
the configuration {R0

n, all n} with the lowest eigenvalue of H. This operator
comprises all terms of the Hamiltonian of the solid (2.12), if the ions are fixed
at their equilibrium positions. It has to be augmented by spin-dependent terms
if related effects (e.g., spin-orbit coupling, Zeeman effect) shall be considered
(see Sects. 4.2, 4.3, and Chap. 5).

U. Rössler, Solid State Theory,
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Instead of this complex problem, for which only approximate solutions
can be found with numerical methods, we want to consider in this chapter the
much simpler problem of the homogeneous electron gas. It is characterized by
neglecting the structural aspects and by replacing the configuration of point-
like positive ions by a homogeneous positive background charge to ensure
charge neutrality of the system (Problem 4.1). This so-called jellium model

(remember the difference between jelly and confiture) represents a many-body
system of free charged fermions, which – replacing the Coulomb interaction
by a more general two-particle interaction – applies also to physical systems
beyond solid state physics. Thus, the treatment of the homogeneous electron
gas, the calculation of its ground state energy per particle (which in different
approximations can be done even analytically) becomes an introduction to
the concepts of many-body theory, which have their bearings also in nuclear
or astrophysics.

4.1 Free Electrons Without Interaction

In order to have a simple first look at the homogeneous electron gas, we
want to neglect for the moment the interaction between the electrons (the
second term in (4.1)) and the interaction with the positive background charge
(corresponding to the third term in (4.1)) together with the fourth term, the
electrostatic interaction energy of the ion configuration. This simplification
is reasonable because in the jellium model these terms compensate exactly if
one also considers the electrons as being smeared out just as the positive ions
(see Problem 4.1). Thus instead of the Hamiltonian H of (4.1) we consider

HN =
N∑

l=1

Hl, where Hl =
p2

l

2m
, (4.2)

with the Schroedinger equation

HN Ψ({rl}) = E Ψ({rl}), (4.3)

where Ψ depends on the configuration {rl} = {r1, . . . rN} of the N electrons.
With HN being a sum of single-particle operators, this N -particle problem
can be separated by assuming Ψ({rl}) to be a product of single-particle wave
functions

Ψ({rl}) =

N∏

l=1

Ψl(rl). (4.4)

We employ Ritz’ variational principle

δ

{
〈Ψ|HN |Ψ〉 −

∑

l

ǫl(〈ψl|ψl〉 − 1)

}
= 0 (4.5)
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to minimize the expectation value of HN under the constraint of normal-
ized single-particle wave functions ψl(rl). The contraint is weighted with
the Lagrangian parameter ǫl. Using (4.2) and (4.4) we formulate (4.5) as
variational derivative with respect to ψ∗

l′

δ

δψ∗
l′

{
∑

l

(〈ψl|Hl − ǫl|ψl〉 + ǫl)

}
= 0 (4.6)

to obtain the single-particle problem

Hlψl(rl) = ǫlψl(rl) , (4.7)

which is the same for all electrons. Note, that the Lagrangian parameter ǫl

takes the role of the single-particle energy. The total energy of the N -electron
system can be represented as the sum of the energies ǫl

E =
N∑

l=1

ǫl (4.8)

of the occupied single-particle states.
The single-particle problem (4.7) with Hl from (4.2) is that of a free

particle and has the solution

ψk(r) =
1√
V

eik·r (4.9)

with the eigenvalues

ǫ(k) =
h̄2k2

2m
. (4.10)

The single-particle wave function is normalized to the fictitious (or crystal)
volume V , which encloses the considered N electrons (particle in the box). Let
V be a cuboid with side lengths Li, i = 1, 2, 3 and assume periodic boundary

conditions (see problem 3.3), according to which ψk(r) is periodic with the
Li. These conditions restrict the components of k to the discrete values (see
(3.18))

ki =
2π

Li
ni, ni integer, i = 1, 2, 3 (4.11)

as shown in Fig. 4.1. The periodic boundary conditions are a trick to obtain
discrete states, which can be counted. It should be clear, however, that the
relevant physical quantity, on which all observables of the system depend, is
the single-particle density n = N/V (and not the particle number N). It is
kept constant for V → ∞.

The wave vector k (or else the triple n1, n2, n3 of (4.11)) characterizes the
single-particle state except for the spin degree of freedom. Each of the (quasi-
discrete) k takes a volume (2π)3/V . The state with lowest energy at T = 0K
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2π
L

2π
L

k

ky

xk
F

Fig. 4.1. (kx, ky) plane with discrete k values due to the periodic boundary con-
ditions. In the ground state at T = 0 K all points up to the radius kF, defining the
Fermi sphere, are occupied

for N electrons in the volume V , the ground state, is obtained by occupying
the single-particle states with lowest possible energy with the constraint of
Pauli’s principle1 which allows two electrons with opposite spin at each k.
This is known as the ideal Fermi gas or Sommerfeld 2 model [109]. To evaluate
the ground state energy we first make use of the energy dispersion (4.10),
which is isotropic in k, to find the number of states in a spherical shell with
radius k and thickness dk:

D(k)dk =
2V

(2π)3
4πk2dk . (4.12)

The factor 2 is due to the spin degeneracy. The ground state is defined by
filling concentric spherical shells around k = 0 with increasing radius k until
the stock of N electrons is exhausted:

N =

kF∫

0

D(k)dk =
V

π2

kF∫

0

k2dk =
V

3π2
k3
F . (4.13)

Here kF denotes the radius of the sphere in k space, the Fermi sphere, within
which at T = 0 K all states are occupied (Fig. 4.1). This radius is determined
by the density n = N/V of the homogeneous electron gas:

kF = (3π2n)1/3, radius of the Fermi sphere . (4.14)

1 Wolfgang Pauli 1900–1958, Nobel prize in physics 1945
2 Arnold Sommerfeld 1868–1951
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Particles with kF have the energy

EF =
h̄2k2

F

2m
, Fermi energy (4.15)

which separates the occupied states from the empty ones. The ground state
energy of the system containing N electrons follows to be

E0 =

kF∫

0

h̄2k2

2m
D(k)dk =

3

5
NEF (4.16)

which, when divided by N , gives the average energy per particle in the ground
state

ǫ0 =
E0

N
=

3

5
EF . (4.17)

With (4.15) and (4.14), one obtains the relation between ǫ0 and the particle
density n

ǫ0 =
3

5

h̄2

2m
(3π2n)2/3 . (4.18)

Frequently, a dimensionless density parameter rs is used. In the proper
unit of length (Bohr’s radius aB = 4πε0h̄

2/me2) it defines for a given density
the radius of the Wigner–Seitz sphere whose volume can be allocated to each
particle, V/N = 1/n = 4π(rsaB)3/3. One finds easily

kF =

(
9π

4

)1/3
1

rsaB
(4.19)

and (in the unit 1 Ry = me4/2(4πε0h̄)2 of energy)

ǫ0 =
3

5

(
9π

4

)2/3
1

r2
s

Ry =
2.2099

r2
s

Ry. (4.20)

Corresponding to this relation, the mean energy per particle increases with
increasing density to the extent by which states with larger k are occupied
under the constraint of Pauli’s principle. Characteristic quantities related
to kF or EF are the Fermi velocity vF = h̄kF/m, the Fermi wave length
λF = 2π/kF, and the Fermi temperature TF = EF/kB, where kB is the
Boltzmann constant.

Supplement: Parameters of fermion systems

The concepts developed so far allow one to distinguish fermion systems by their
different particle densities n (or rs) and the derived quantities. They are given for a
selection of solid state fermion systems in Table 4.1. Potassium (K) has one valence
electron and crystallizes in the body centered cubic lattice with two atoms and thus
two electrons in the elementary cube. Copper (Cu), also with one valence electron
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Table 4.1. Parameters (n in cm−3, kF in Å−1, vF in 108 cm s−1, EF in eV, TF in
104 K) for different fermion systems realized in solids

System n rs kF vF EF TF

K 1.43 · 1022 4.83 0.75 0.87 2.14 2.48

Cu 8.53 · 1022 2.66 1.36 1.57 7.05 8.18

n-GaAs 1017 1.29 0.014 0.25 0.75·10−3 0.0009

n-GaAs 1020 0.129 0.143 2.5 0.078 0.09

per atom, forms a face centered cubic lattice with four atoms and consequently
four electrons in the elementary cube. Given the lattice constants aK = 5.31 Å and
aCu = 3.61 Å one easily obtains the electron density n and the other system param-
eters depending on n. The values given in Table 4.1 for K and Cu are characteristic
for normal and noble metals, respectively. For comparison we also quote numbers
for n-GaAs with two different doping concentrations.

In evaluating the electron density of the metals, we have only considered the
valence electrons outside of closed shells. Similarly, in doped semiconductors we
count only the extra electrons provided by electron donating impurity atoms (e.g.,
Si substituting Ga in GaAs) to determine n. The properties of these extra electrons
deviate, however, from those of free electrons in vacuum. Their energy–momentum
relation is modified by the periodic crystal potential and becomes a band structure
(see Chap. 5), in which these extra electrons occupy states at the bottom of the
conduction band with a dispersion similar to free particles but with an effective
mass m∗ different from the free electron mass m; their charge is screened with
the (relative) dielectric constant ε. Correspondingly, the system Hamiltonian would
contain these modified electron parameters in the kinetic energy and in the electron–
electron interaction. Therefore, the atomic units are redefined as effective units a∗

B =
(εm/m∗)aB and 1 Ry∗ = (m∗/mε2)Ry. In these units, one obtains for the two doping
concentrations in n-GaAs with m∗/m = 0.066 and ε = 12.9 the corresponding
parameter values given in Table 4.1 . In spite of their much lower particle density
the doped semiconductors appear as interacting fermion systems with much higher
density (smaller rs) than the metals. This is due to the much larger effective Bohr
radius, which is the length scale for the interaction.

Fermion systems with quite different densities are realized in neutron stars and

systems of atoms confined in electromagnetic traps. Neutron stars have a radius of

about 10 km and evolve from the gravitational collapse of small stars with about the

mass of the sun. They can be described as an ideal Fermi gas with the extremely

high density of 1038 cm−3! The other extreme of very low densities is obtained by

cooling ensembles of fermionic atoms confined in electromagnetic traps to extremely

low temperatures (TF < 1μ K), at which they represent degenerate Fermi systems

(see Physics Today, October 2003, p. 18).

Knowing the single-particle energy-momentum relation ǫ(k) of (4.10), one
can derive the spectral distribution of the electrons using (4.12):

D(E)dE = D(k)
dk

dE
dE =

mV

π2h̄2

√
2m

h̄2

√
EdE . (4.21)
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The number of states with energy E, the electron density of states, given by

D(E) =
V

2π2

(
2m

h̄2

)3/2 √
E (4.22)

is the well-known square root relation shown in Fig. 4.2. Alternatively, one can
calculate the density of states also from D(E) = 2

∑
k δ(E − ǫ(k)) (see for

comparison the phonon density of states (3.53)), by collecting in k space all
single-particle energies with ǫ(k) = E. The factor 2 takes into account the
spin degeneracy.

At T = 0K, all states with energy smaller than EF are occupied and the
ground state energy E0 for N particles is obtained by integrating ED(E) up
to the Fermi energy EF. More generally, to include finite temperatures the
ground state energy follows from

E0(T ) =

∞∫

0

ED(E)f(E, μ, T )dE (4.23)

D(E) 3D

E

E  = µ(T=0) Fµ(T>0)

E

D(E) 2D

T=0

T>0

µ(T)=EF

Fig. 4.2. Density of states of free electrons in three (upper part) and two (lower part)
dimensions. At T = 0K all states with E ≤ EF are occupied. For finite temperatures
the occupation around the Fermi energy is smeared out and is determined by the
chemical potential μ(T )
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with the Fermi–Dirac distribution function

f(E, μ, T ) =
1

e(E−µ)/kBT + 1
. (4.24)

Here the chemical potential μ is fixed (similar to kF in (4.13)) by the particle
density n = N/V :

N

V
=

∞∫

0

D(E)f(E, μ, T )dE . (4.25)

Due to the interplay between density of states and distribution function the
chemical potential depends in general on T (Problem 4.2). However, for a
two-dimensional electron system with constant density of states (as depicted
in the lower part of Fig. 4.2) this is not the case (provided the Fermi energy is
sufficiently high up in the band). At T = 0 K, f(E, μ, T ) degenerates to a step
function with a step at EF and one identifies μ(T → 0) → EF (see Fig. 4.2).
But for finite T in general, quantities such as the ground state energy or the
particle density, which require to integrate some power function in E with
the Fermi–Dirac distribution function, can be expressed in terms of Fermi
integrals (see Appendix).

Taking the T dependent chemical potential from Problem 4.2 (which
applies for T → 0), the thermal energy density of free electrons at fixed
volume is found (Sommerfeld expansion, see Appendix)

ǫ(T ) = ǫ0 +
π2

6
(kBT )2D(EF) + . . . (4.26)

with ǫ0 from (4.20). Its derivative with respect to T is the electron contribu-
tion to the specific heat (at constant V )

cV(T ) =

(
∂ǫ(T )

∂T

)

V

=
π2

3
k2
BTD(EF) =

π2

2

kBT

EF
nkB . (4.27)

This linear dependence on T is characteristic for metals and can be detected
experimentally at low temperatures. Taking into account the simultaneously
present lattice contribution also(see Chap. 3), we write cV(T ) = γT + A T 3,
and find in a plot of cV(T )/T versus T 2 the Sommerfeld coefficient γ (see
Fig. 4.3).

Sommerfeld parameters obtained from experimental data of the specific
heat (γexp) can be compared with those from the Sommerfeld model (γS)
calculated with the respective particle density (see Table 4.2). The compari-
son can be quantified by realizing that according to (4.27) the specific heat
is proportional to the density of states at the Fermi energy and thus to the
particle mass. Thus the ratio of the Sommerfeld parameters corresponds to
the ratio of the fermion mass obtained from the measured specific heat (mcV

)
to the free electron mass m. In Table 4.2 we find good agreement between the
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Fig. 4.3. Measured values of cV/T for Au, Ag, Cu vs. temperature. The
extrapolated value for T = 0K gives the Sommerfeld coefficient γexp

Table 4.2. Sommerfeld coefficients from the free electron model (γS) and from
experiment (γexp) (in mJMol K−2) and the corresponding mass ratio [29]

System γS γexp mcV/m

Na 1.38 1.094 1.26
K 2.08 1.668 1.25
Al 1.35 0.912 1.48
Cu 0.695 0.505 1.38
Ag 0.646 0.645 1.00
Au 0.729 0.642 1.14
Fe 4.98 0.498 10.0
Ni 7.02 0.459 15.3

Sommerfeld model and the experimental data, i.e., mcV
/m ≃ 1, for the alkali

and noble metals, whose valence shells contain s and p electrons. However,
even dramatic deviations, mcV

/m ≫ 1, are observed for transition metals and
rare earth compounds. As an example, the mass ratio of about 15 for Ni is
given in Table 4.2. It can be ascribed to the influence of the periodic potential
(Chap. 5) and understood as a single-particle or band structure effect. How-
ever, mass ratios of the order of 103 found for the rare earth compounds are
in addition due to electron–electron interaction or electronic correlation (see
Sect. 7.5). The latter materials are called heavy fermion systems [110].

In this section, we have assumed a three-dimensional electron system in
deriving e.g., the density of states in (4.12) and (4.22) and the parameters of
the Fermi sphere. But electron systems of lower dimension (d =2, 1, and 0)
can also be realized at semiconductor hetero-interfaces, by using modern
device technologies to produce quantum wires or dots, or in molecular systems
like carbon nanotubes [21, 111–114]. These low-dimensional electron systems
exhibit characteristic phenomena which can be understood in parts from the
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dimension-specific density of states (see e.g., Fig. 4.2 for the two-dimensional
case and Problem 4.3).

4.2 Free Electrons in a Magnetic Field

The orbital motion of electrons and their energy spectrum change in a homo-
geneous magnetic field. At the same time, the magnetic field acts on the
electron spin. Both effects result in some of the magnetic properties of the
electron system. For their description the single-particle Hamiltonian Hl in
(4.2) is to be replaced by

H =
1

2m
(p + eA)2 +

eh̄

2m
σ · B . (4.28)

Here we denote the magnetic induction B = μ0H, connected with the external
homogeneous field by the vacuum permeability μ0, as magnetic field. If its
direction is along z, B = (0, 0, B), it can be described in the Landau gauge3

by the vector potential A = (0, Bx, 0). In a classical description, the first term
in (4.28) leads to the circular motion as a consequence of the Lorentz force.
It represents a harmonic oscillator with the cyclotron frequency ωc = eB/m,
which in the quantum mechanical treatment gives the characteristic oscillator
spectrum. The second term, containing the vector σ of the Pauli spin matrices,
is the Zeeman4 term responsible for the removal of the spin degeneracy by the
magnetic field.

Let us calculate first the eigenvalues of H by considering the commutation
relations for the components of the vector operator π = p + eA:

[πx, πy] = e(pxAy − Aypx) = −ih̄eB, [πz, πx] = [πy, πz] = 0 . (4.29)

They can be written in the compact form of a vector relation

π × π = −ieh̄B . (4.30)

Because of the translational invariance of H in the z-direction (parallel to the
magnetic field) we have [pz, H ] = 0 , and the linear momentum pz = h̄kz is a
constant of motion. The Hamiltonian

H =
1

2m
(π2

x + π2
y) +

h̄2k2
z

2m
+ μBσzB (4.31)

(with the Bohr magneton μB = eh̄/2m) can now be rewritten by making use
of oscillator operators a, a† according to

3 Lev Davidovich Landau 1908–1968, Nobel prize in physics 1962
4 Pieter Zeeman 1865–1943, Nobel prize in physics 1902
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πx =
h̄√
2l

(a† + a), πy = − ih̄√
2l

(a† − a), (4.32)

where a and a† fulfill the commutation relation

[a, a†] = aa† − a†a = 1 (4.33)

and l =
√

(h̄/eB) is the magnetic length. Thus H takes the form

H = h̄ωc(a
†a +

1

2
) +

h̄2k2
z

2m
+ μBσzB . (4.34)

Its eigenvalues are given by:

ǫ(n, kz,±) = h̄ωc

(
n +

1

2

)
+

h̄2k2
z

2m
± g

2
μBB . (4.35)

In comparison with the magnetic field-free case (4.10), these single-particle
energies differ by replacing h̄2(k2

x + k2
y)/2m → h̄ωc(n + 1/2) and adding the

Zeeman term. The first term describes the equidistant energy levels of the
cyclotron oscillator (Landau levels), the second the free motion parallel to
the magnetic field, and the third the Zeeman spin-splitting with the g factor,
which for the free electron is (very close to) two. The spectrum is visualized
in Fig. 4.4 .

Experimentally, this spectrum can be detected by absorption of electro-
magnetic waves propagating parallel to the magnetic field, i.e., with an electric
field vector in the (x, y) plane. From the resonant absorption at ω = ωc

(cyclotron resonance) with

5
4 3

2

1

0

B=B0

kzB B

ε 5 4

3

2

1

0

0

n=

n=

Fig. 4.4. Dependence of the single-particle energies ǫ(n, kz) on the magnetic field
at kz = 0 (left) and on kz at the magnetic field B0 (right). The Zeeman splitting is
not shown
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h̄ωc = ǫ(n + 1, kz,±) − ǫ(n, kz,±) =
h̄eB

2m
(4.36)

and the electron-spin resonance (also known as spin–flip or paramagnetic

resonance) at ω = ωesr with

h̄ωesr = ǫ(n, kz, +) − ǫ(n, kz,−) = gμBB (4.37)

the system parameters m and g can be determined. This possibility is impor-
tant because for electron systems in solids these parameter values differ from
those of free electrons in vacuum due to the influence of the periodic potential
and become material specific (see Sect. 4.1 and Chap. 5). Thus, cyclotron and
electron spin resonance allow to determine the material specific effective mass
m∗ and g factor g∗ of free charge carriers in a solid.

The drastic change of the free electron energy spectrum by the magnetic
field results in a change of the density of states and of the electronic wave
functions. While in the magnetic field-free case the eigenfunctions are plane
waves with the wave vector k determined by the periodic boundary conditions,
now we have oscillator functions with the quantum number n in the plane
perpendicular to the magnetic field. A closer inspection shows that the Landau
levels are highly degenerate with a degeneracy depending on the magnetic
field. It can be obtained by starting from the Hamiltonian H (4.28) with the
Landau gauge in the form

H =
1

2m

(
p2

x + (py + eBx)2 + p2
z

)
+ μBσzB , (4.38)

satisfying the commutation relations [H, py] = [H, pz] = 0 . Thus, besides kz ,
ky is also a good quantum number. Making use of this fact we write

H =
p2

x

2m
+

1

2
mω2

c (x − x0)
2 +

h̄2k2
z

2m
+ μBσzB . (4.39)

Here x0 = h̄ky/mωc = l2ky is the so-called center coordinate of the classical
cyclotron orbit. It becomes quantized by applying periodic boundary con-
ditions in y (as in Sect. 4.1) with ky = 2πny/Ly . Assuming in x direction
a width Lx of the solid, the natural condition 0 < x0 < Lx for the center
coordinate leads to

0 < ny <
LxLy

2πl2
=

LxLy

2πh̄
eB. (4.40)

This defines the degree of degeneracy, which is the maximum number of states
(counted by ny) in a Landau level at fixed kz for a given spin in a system with
area LxLy perpendicular to the magnetic field B. As BLxLy is the flux Φ of
the magnetic induction threading the system area, the degeneracy can also be
written as

LxLy

2πh̄
eB =

Φ

Φ0
(4.41)

where Φ0 = h/e is the elementary flux quantum.
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For a two-dimensional system with N electrons in the plane perpendicular
to the magnetic field, the ratio ν = NΦ0/Φ gives the number of filled Landau
levels (note that in this case there is no dispersion with kz) and is called filling

factor. Its inverse gives the number of elementary flux quanta per electron. As
we shall see in Sects. 5.7 and 7.6, the integer (fractional) filling factor marks
the characteristic features in the magneto-transport data connected with the
integer (fractional) quantum Hall effect.

For three-dimensional systems one has to consider also the dispersion par-
allel to the magnetic field. By applying periodic boundary conditions to make
kz countable, the number of states at kz is 2LzΦ/2πV Φ0 = eB/2π2h̄ and
leads to the energy dependent density of states

D(E, B) =
eBV

2π2h̄

dkz

dE
. (4.42)

Solving (4.35) for kz as a function of the single-particle energy (here denoted
by E) this can be expressed as

D(E, B) =
∑

n,σ=±1

eBV

2π2h̄

(
2m

h̄2

)1/2
1

2

{
E − h̄ωc(n +

1

2
+

σ

2
)

}− 1
2

(4.43)

or, using the cyclotron frequency ωc, as

D(E, B) =
V
√

h̄ωc

8π2

(
2m

h̄2

)3/2 ∑

n,σ=±

{
E

h̄ωc
−
(

n +
1

2
+

σ

2

)}− 1
2

. (4.44)

The sum includes only contributions with positive radicands. For 3D elec-
trons, the density of states D(E, B) (4.44) is a superposition of inverse square
root functions resulting from the free particle motion parallel to the magnetic
field (see the solution of Problem 4.3 for the one-dimensional case). The sin-
gularities of the inverse square-root functions mark the discrete energies of the
Landau levels. They move with changing B and also their strength (related to
the degeneracy) changes with B. This density of states differs strongly from
the case for B = 0 (see Fig. 4.2) and gives rise to the characteristic properties
of the free electron system in a magnetic field. They will be discussed in the
following paragraph.

The Fermi energy (at T = 0 K) is given in analogy to (4.13) by the relation

N =

∫ EF(B)

0

D(E, B)dE

=
1

4π2

(
2m

h̄2 h̄ωc

)3/2∑

n,σ

{
EF(B)

h̄ωc
−
(

n +
1

2
+

σ

2

)}1/2

, (4.45)
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E  (B)/ hωcF1 2

Fig. 4.5. (a) Density of states of free electrons with (solid line) and without (dashed
line) magnetic field; (b) Ratio of electron numbers for occupying all states with and
without magnetic field up to EF(B)

which, however, cannot be solved for EF(B). Therefore, we first compare with
the case without magnetic field

N0 =

∫ EF

0

D(E)dE =
1

3π2

(
2m

h̄2 EF

)3/2

(4.46)

by writing

N

N0
=

3

4

(
h̄ωc

EF

)3/2∑

n,σ

{
EF(B)

h̄ωc
−
(

n +
1

2
+

σ

2

)}1/2

. (4.47)

Let us now fill the densities of states D(E, B) and D(E) up to the same energy
EF(B) and look for the ratio N/N0 (see Fig. 4.5) : For 0 < EF(B)/h̄ωc < 1
we start with N/N0 > 1 but N/N0 decreases monotonously with increasing
EF(B), finally falling below 1 (Fig. 4.5b). In the interval 1 < EF(B)/h̄ωc < 2
the ratio N/N0 first increases strongly, reaches a maximum value > 1 and then
for EF(B) → 2h̄ωc falls again below the value 1. This behavior is repeated
with increasing values of EF(B) and we find an oscillating function with a
characteristic period in the dependence on 1/B given by

∆1/B = eh̄/mEF(B) . (4.48)

This oscillation is a consequence of the quantization into Landau levels. The
Fermi energy EF(B) for the given number of electrons N = N0 is found by the
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Fig. 4.6. Energies of Landau levels and Fermi energy versus magnetic field (spin-
splitting is not shown)

lowering (raising) of EF(B) relative to EF(0) in intervals in which, according
to Fig. 4.5b, N/N0 > 1 (N/N0 < 1). The result is shown in Fig. 4.6 with
EF(B) oscillating around EF(0) with the period ∆1/B . This behavior of the
Fermi energy, resulting from the Landau quantization, leads to a characteristic
oscillating dependence of solid state properties on the magnetic field, the
quantum oscillations. By measuring this period the magnetic field dependent
Fermi energy EF(B) and thus the particle density can be determined. With
increasing magnetic field the oscillations become weaker (and smoothen out
at finite temperature). Therefore, they can be detected only at sufficiently
high magnetic fields and low temperatures given by h̄ωc > kBT . For h̄ωc >
EF(B), when only states in the lowest Landau level are occupied, we reach
the so-called magnetic quantum limit (Problem 4.4).

Let us draw attention to the magnetization as the basic material property
in this context. Starting point for describing the magnetization is the Gibbs
free energy F = μN + Ω, with the chemical potential μ, the particle number
N , and the grand-canonical potential (β = 1/kBT )

Ω = − 1

β
lnZG = − 1

β

∑

α

ln(1 + e−β(ǫα−µ)) . (4.49)

The sum is over the single-particle states with ǫα = ǫ(n, kz, σ) (see (4.35)).
For its evaluation, we refer to the literature [115, 116]. The magnetization,
which for the isotropic system of free electrons has only one nonvanishing
component parallel to the external magnetic field, is obtained from the free
energy F according to

Mz = − 1

V

(
dF

dB

)

T,µ

(4.50)
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and reads (with x = EF/μBB and y = πkBT/μBB)

Mz =
3

2

N

V

μ2
B

EF
B

[
1 − 1

3
+ y(x)1/2

∞∑

n=1

(−1)n

√
n

cos(nπ)
sin(π/4 − nπx)

sinh(nπy)

]
.

(4.51)

Here we have replaced the chemical potential μ(B, T ) by its value at T = 0K,
briefly written as EF.

In the context of linear response, the magnetization, expressed in the
form Mz = χMB/μ0, is determined by a response function, the magnetic

susceptibility χM which (up to the vacuum permittivity μ0) is the derivative

χM = μ0

(
∂Mz

∂B

)

T

(4.52)

of Mz from (4.51). χM is an experimentally accessible function of B and T .
The individual terms in (4.51) have the following physical meaning:

• Pauli spin paramagnetism: The first term, showing an increase with
increasing magnetic field, is a paramagnetic contribution. It can be traced
back to the spin-splitting due to the Zeeman term. Suppressing the Lan-
dau quantization, we obtain the picture of Fig. 4.7: The energy levels and
therefore the density of states D↑↓(E) of electrons with different spin are
shifted against each other by the Zeeman energy μBB. Filling the states
with D↑↓(E) up to EF, there are more electrons with spin down than
with spin up. Assuming EF ≫ μBB one finds the resulting magnetization
(Problem 4.5)

Mpara
z =

3

2

N

V

μ2
B

EF
B . (4.53)

µ  B
B

E

D (E) D (E)

E
F

Fig. 4.7. Density of states for spin-up and spin-down electrons (Landau quantiza-
tion is suppressed). The dashed lines show the situation for B = 0
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As can be seen from Fig. 4.7, Mpara
z depends on the density of states (or

the electron mass) and on the g factor at the Fermi energy. In solids, we
expect material specific deviations of the experimental values for the Pauli
susceptibility

χspin =
dMpara

z

dB
=

2

3
D(EF)μ2

B , (4.54)

from the free electron value indicating the already mentioned modifications
of these parameters due to the periodic potential and the electron–electron
interaction. In fact such deviations are particularly strong, e.g., for heavy
fermion systems, as was the case for the specific heat.

• Landau–Peierls5 diamagnetism: The second term is negative, acting against
the external magnetic field according to the Lenz rule applied to the
cyclotron motion of the electrons. The magnetic moment connected with
this motion has a direction opposite to the external magnetic field and
results in a diamagnetic contribution. For free electrons in a periodic poten-
tial, which can be described as particles with an effective mass m∗, the
diamagnetic contribution is to be multiplied by a factor (m∗/m)2:

Mdia
z = −1

2

N

V

μ2
BB

EF

(
m∗

m

)2

(4.55)

For mass ratios m∗/m ≃ 1 (see Table 4.2), we expect comparable values of
the para- and dia-magnetic contributions. But there are also systems with
m∗/m ≫ 1 due to orbital contributions of d and f electrons, for which the
diamagnetic term dominates.

• deHaas–van Alphen6 effect: The third term describes the already men-
tioned oscillating contribution, periodic in 1/B with a period determined
by the Fermi energy, which is characteristic for Landau quantization. In
fact, this behavior of the magnetic susceptibility is found in metals and
known as deHaas–van Alphen effect. It can be used to determine the Fermi
energy or, more precisely, the parameters of the Fermi surface, which
for solids can deviate from the spherical form (see Sect. 5.7). The sum
in the oscillating contribution converges rapidly due to the denominator
and usually it suffices to consider only the first term with n = 1:

χosc(B) ≃ −μ0
3

2

N

V

π2kBT

B2

(
m∗

m
x

)1/2

cos(π
m∗

m
)
cos(π

4 − m∗π
m x)

sinh(m∗π
m y)

. (4.56)

Here we have considered again possible deviations of the effective mass
from the free electron mass. An example of de Haas–vanAlphen oscillations
measured for Cu is shown in Fig. 4.8.

5 Sir Rudolf Ernst Peierls 1907–1995
6 Wander Johannes de Haas 1878–1960, P.M. van Alphen 1906–1967



92 4 The Free Electron Gas

M

B

Fig. 4.8. Oscillating part of the magnetization (de Haas–van Alphen oscillations)
for Cu (after [117])

B,kz

∇ ε(k)kk
.

k

Fig. 4.9. Fermi sphere and extremal cross section perpendicular to the magnetic
field to illustrate the cyclotron motion in k space

It should be noted that the Landau quantization also shows up in other
magnetic field dependent electronic properties of solids. One important exam-
ple represent the Shubnikov7–deHaas oscillations in the magneto conductiv-
ity, which for two-dimensional electron systems at high magnetic fields and
low temperature evolve into the quantum Hall effect (see Sect. 5.6).

All these quantum oscillations can be understood in a semi-classical
description. It starts from the classical equation of motion of an electron
under the Lorentz force

ṗ = e(v × B) , (4.57)

leading to the cyclotron motion. In semi-classical terms, we use p = h̄k and
the group velocity v = ∇kǫ(k)/h̄ to obtain the corresponding equation of
motion in k space

dk

dt
=

e

h̄2

(
∇kǫ(k) × B

)
. (4.58)

While in real space the electrons perform the classical cyclotron motion, their
momentum (or wave vector) moves along the contour defined by cutting the
Fermi sphere with a plane perpendicular to the magnetic field (see Fig. 4.9),

7 Lev Vasiljevich Shubnikov 1901–1937
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which is the circle with radius kF. The period of this motion is obtained after
separation of variables as

Θ =
h̄2

e

1

B

∮

ǫ(k)=EF

dk

|∇kǫ(k)⊥|
, (4.59)

where the denominator is the modulus of the gradient of ǫ(k) in the direction
perpendicular to B. The contour integral equals the area of the extremal cross
section of the Fermi sphere. As will be shown in Chap. 5, the relation between
the period of these quantum oscillations (in 1/B) and extremal cross sections
perpendicular to the magnetic field applies to Fermi surfaces of nonspherical
shape as well and is used for their exploration.

4.3 Occupation Number Representation for Electrons

In Sect. 4.1, we have introduced the many-particle wave function of the N elec-
tron system in the form of (4.4) as a product of single particle wave functions
and considered the Pauli principle in the construction of the Fermi sphere
only by avoiding double occupancies. However, the important property of a
many-fermion wave function, which has to be antisymmetric with respect to
interchanging two particles, is not fulfilled by this form. Therefore, we replace
it now by an antisymmetrised product. For N = 2 the two-particle wave
function is

Ψ(x1, x2) =
1√
2

(ψα1
(x1)ψα2

(x2) − ψα1
(x2)ψα2

(x1)) (4.60)

with ψαi
(xj) being ortho-normalized single-particle wave functions for states

characterized by a complete set of quantum numbers αi (for free electrons
αi = kiσi) and xj denotes space and spin variables. The corresponding gene-
ralization for N electrons is the Slater8 determinant (with i short for αi)

ΨSlater({xj , j = 1 . . .N}) =
1√
N !

∣∣∣∣∣∣∣∣

ψ1(x1) ψ1(x2) · · · ψ1(xN )
ψ2(x1) ψ2(x2) · · · ψ2(xN )
. . . . . . . . . . . . . . . . . . . . . . . . . .
ψN (x1) ψN (x2) · · · ψN (xN )

∣∣∣∣∣∣∣∣
. (4.61)

By construction, it is antisymmetric under the exchange of two rows or
columns and thus equals zero if two rows, i.e., the corresponding α, are
identical. Thus double occupancy is avoided. Calculations with the Slater
determinant are very clumsy and a more elegant formulation, the occupation

number or Fock9 representation, is used instead.

8 John Clarke Slater 1900–1976
9 Vladimir Fock 1898–1974
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The N -electron state can be represented in the form similar to the one
used for phonons in Sect. 3.3

|Ψ〉 = |{nα, allα}〉 , (4.62)

but here the occupancy nα of the single-particle state with quantum numbers
α is restricted to 0 or 1 to account for the Pauli principle. The total number
of electrons in the state |Ψ〉 is given by N =

∑
α nα. N -particle states can be

obtained in a systematic way from the fermion vacuum

|0〉 = |{nα = 0, all α}〉 (4.63)

by successively applying N fermion creation operators

|Ψ〉 = c†α1
c†α2

. . . c†αN
|0〉 . (4.64)

In contrast to the case of the creation operators for phonons introduced in
Sect. 3.3, now the order in which the operators are applied becomes important.
The anti-symmetry of the N particle state is guaranteed by the anti-commu-
tation relations for fermion creation and annihilation operators

{c†α, cα′} = c†αcα′ + cα′c†α = δαα′ (4.65)

{cα, cα′} = {c†α, c†α′} = 0 . (4.66)

Let us first look at the 2-electron state which can be generated by applying
two creation operators to the fermion vacuum: according to the commutation
relation we have

|Ψ〉 = c†α1
c†α2

|0〉 but c†α2
c†α1

|0〉 = −|Ψ〉 . (4.67)

The adopted order of the applied fermion operators (with α1 �= α2) determines
the result obtained when applying cα1

or cα2
. One finds

cα1
|Ψ〉 = cα1

c†α1
c†α2

|0〉 = (1 − c†α1
cα1

)c†α2
|0〉 = c†α2

|0〉, (4.68)

but cα2
|Ψ〉 = −c†α1

|0〉 , because in the first step cα2
has to be interchanged

with c†α1
which results in a sign change. This example for N = 2 demon-

strates the influence of the order in which the fermion operators are applied
to the vacuum state to create |Ψ〉. In general, for an N -electron state
|Ψ〉 = c†α1

. . . c†αN
|0〉 = |{nα, allα; N =

∑
α nα}〉 we have

cαi
|Ψ〉 = (−1)νinαi

| . . . , nαi
− 1, . . .〉 , νi =

i−1∑

k=1

nαk
(4.69)

c†αi
|Ψ〉 = (−1)νi(1 − nαi

)| . . . , nαi
+ 1, . . .〉 , (4.70)

where the dots indicate unchanged entries. Note that the sum of the occu-
pation numbers in the first equation is N − 1, because one fermion of |Ψ〉 is
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annihilated, while for the second equation it is N + 1 due to the addition of
one particle to |Ψ〉.

The meaning of occupation number representation can be also illustrated
by applying c†αi

cαi
to the N -particle state |Ψ〉. We find

c†αi
cαi

|Ψ〉 = (−1)νinαi
c†αi

| . . . nαi
− 1 . . .〉 (4.71)

= (−1)2νinαi
(1 − (nαi

− 1))| . . . nαi
. . .〉 (4.72)

=

{
|Ψ〉 nαi

= 1
0 nαi

= 0

}
(4.73)

or in short
c†αi

cαi
|Ψ〉 = nαi

|Ψ〉 . (4.74)

Thus the eigenvalue of c†αi
cαi

is the occupation number nαi
of the single-

particle state with quantum numbers αi in |Ψ〉 and

N̂ =
∑

α

c†αcα =
∑

α

n̂α (4.75)

is the number operator with the eigenvalue equation N̂ |Ψ〉 = N |Ψ〉.
The occupation number or Fock representation allows one to formulate

the system Hamiltonian in terms of creation and annihilation operators. We
give here only the rules for how the one-(Â1) and two-particle (Â2) terms of
the Hamiltonian (or any other operator) have to be rewritten and refer for
details to the Appendix (A.6):

Â1 →
∑

ij

〈ψαi
|Â1|ψαj

〉c†αi
cαj

(4.76)

Â2 →
∑

ijkl

〈ψ(1)
αi

ψ(2)
αj

|Â2|ψ(1)
αl

ψ(2)
αk

〉c†αi
c†αj

cαk
cαl

. (4.77)

These expressions have an obvious meaning: The one-particle operator
(depending on the coordinates of only one particle) replaces a particle with
quantum numbers αj by a particle with αi, the two-particle or interaction
operator removes first a particle in the state αl and then another one in
the state αk and adds particles in the states αj and αi. The weight of the
operators are matrix elements of the original operators taken with the single-
particle wave functions ψα of an orthonormal set. The upper index (1) and
(2) in the matrix element of the two-particle operator indicates the pairs of
wave functions which have the same coordinates when integrating in position
representation.

This concept is now applied to the system of free electrons for which

{c†kσ, ck′σ′} = δkk′δσσ′ (4.78)
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and

N̂ =
∑

kσ

n̂kσ , n̂kσ = c†kσckσ , ψkσ(x) =
1√
V

eik·rχσ(s) , (4.79)

where χσ(s) is a Pauli spinor and s denotes the spin variable. The Hamilto-
nian for the jellium model of free electrons (with the jellium term H+ from
Problem 4.1)

Hjell =
∑

l

p2
l

2m
+

1

8πε0

∑

k,l
k �=l

e2

|rk − rl|
+ H+ , (4.80)

can be rewritten (by making use of (4.76) and (4.77)) with

∑

l

p2
l

2m
→
∑

kσ

h̄2k
2

2m
c†kσckσ (4.81)

and

∑

k,l
k �=l

e2

4πε0|rk − rl|
→ 〈ψk1σ1

ψk2σ2
| e2

4πε0|r1 − r2|
|ψk′

1σ′
1
ψk′

2σ′
2
〉 (4.82)

= δσ1σ′
1
δσ2σ′

2

∑

k

vkδk1,k′
1
+kδk2,k′

2
−k (4.83)

where vk = e2/ε0V k2 is the Fourier transform of the Coulomb potential (see
Appendix). With the replacements σ1 = σ′

1 = σ, σ2 = σ′
2 = σ′ and k′

1 → p,
k′

2 → q we find

Hjell =
∑

kσ

h̄2k2

2m
c†kσckσ +

1

2

∑

p,q,k

σσ′

vkc†p+kσc†q−kσ′cqσ′cpσ + H+ . (4.84)

The interaction term becomes divergent for k → 0. However, this diver-
gence is exactly compensated by the jellium term for which we obtained as
solution of Problem 4.1 H+ = − 1

2v0N2 while 1
2

∑
p,qσσ′ v0c†pσc†qσ′cqσ′cpσ =

1
2v0

∑
pσ n̂pσ

∑
qσ′ n̂qσ′ = 1

2v0N2. Thus we arrive at the Hamiltonian for free
electrons in the jellium model

Hjell =
∑

kσ

h̄2k2

2m
c†kσckσ +

1

2

∑

p,q,k �=0

σσ′

vkc†p+kσc†q−kσ′cqσ′cpσ . (4.85)

Its first term accounts for the single-particle energy of free noninteracting
electrons, while the second term describes the electron–electron interaction.
The interaction term is visualized in Fig. 4.10 as a Feynman diagram with the
solid lines representing incoming and outgoing electrons with their respective
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Fig. 4.10. Feynman diagram of the electron–electron interaction. The solid lines
represent propagating electrons, the dashed line the Coulomb potential

wave vector and spin and the dashed line symbolizes the Coulomb interaction.
This Hamiltonian does not only apply to electron systems in vacuum, but
also to those realized in matter (see Table 4.1), however,by replacing the free
electron mass by an effective mass and screening the Coulomb interaction
with the dielectric constant of the matter. Moreover it applies also to electron
systems in energy bands, however, with a matrix element between full Bloch
states (see Chaps. 5 to 7). In the following sections we develop the concepts
for approximate solutions of the ground state problem for the jellium model.

4.4 Hartree–Fock Approximation

In Sect. 4.1, we have characterized the ground state of the noninteracting
electron system (at T = 0 K) as the filled Fermi sphere. The corresponding
N -particle wave function, that takes into account the Pauli principle, is a
Slater determinant composed of the wave functions of occupied single-particle
states, i.e., plane waves with |k| ≤ kF but it can also be obtained by applying
creation operators to the fermion vacuum to fill the Fermi sphere. Let us
denote this ground state by |Ψ0〉. We may now calculate the expectation value
of Hjell from (4.85) with |Ψ0〉 giving the ground state energy in Hartree10–Fock

(HF) approximation

EHF
0 = 〈Ψ0|Hjell|Ψ0〉 =

∑

kσ

〈Ψ0|
h̄2k2

2m
c†kσckσ|Ψ0〉

+
1

2

∑

k�=0

q,p,σσ′

〈Ψ0|vkc†p+kσc†q−kσ′cqσ′cpσ|Ψ0〉. (4.86)

The first term reproduces the ground state energy 3
5NEF of the noninteracting

electron gas obtained in the Sommerfeld model (Sect. 4.1). The second term
is the first order correction due to the Coulomb interaction, which is treated

10 Douglas Rayner Hartree 1897–1958
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Fig. 4.11. Illustration of the direct and exchange terms in the Fermi sphere

here as a perturbation. Before we discuss the quality of this approximation,
this correction has to be calculated. Two contributions, depicted in Fig. 4.11
can be distinguished:
1. Proceeding from right to left the two annihilation operators remove the
electrons with pσ and qσ′ from the filled Fermi sphere (|Ψ0〉) and the two cre-
ation operators add electrons at p + kσ and q −kσ′, respectively. In order to
obtain the filled Fermi sphere (or 〈Ψ0|) k has to be zero. However, this term is
excluded from the sum over k in the interaction term as a result of the jellium
model and hence does not modify the ground state energy of the Sommer-
feld model. It should be mentioned, however, that this so-called direct term

describes the electrostatic interaction energy for a system with charge den-
sity n (see Problem 4.1), which becomes important for inhomogenous electron
systems (see Chaps. 5 and 6) and defines the Hartree approximation.
2. As before, the two annihilation operators remove two electrons from the
Fermi sphere, while the two creation operators put them back but now with
interchanged wave vectors. This exchange within the Fermi sphere is possible
only for electrons having the same spin (σ = σ′) and whose wave vectors
differ by k = q − p (see Fig. 4.11). This exchange term results from the Pauli
principle and does not have a classical analogue (in contrast with the direct
term). The Hartree–Fock approximation is also understood to have considered
the exchange contribution.

The exchange term is evaluated under the constraints of the exchange
process (k = q − p, σ = σ′) giving

EHF
0 = EH

0 +
∑

σ,q,p
q �=p

e2

2ε0V |q − p|2 〈Ψ0|c†qσc†pσcqσcpσ|Ψ0〉 (4.87)

with EH
0 being the ground state energy in the Hartree approximation. Because

of p �= q the operators, c†pσ and cqσ can be interchanged with a sign change
and the four-operator expression becomes a product of number operators or
their respective eigenvalues, the occupation factors nqσ, npσ. Thus one finds
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EHF
0 = EH

0 −
∑

σ,q,p
q �=p

e2

2ε0V |q − p|2 nqσnpσ. (4.88)

Taking EH
0 from (4.16) and after summing over σ and considering the

occupation factors, gives

EHF
0 =

3

5
NEF −

∑

q,p,q �=p

|q|,|p|≤kF

e2

ε0V |q − p|2 . (4.89)

The evaluation of the sums is explicitly carried out in the Appendix (A.5). It
gives

Eexch = − 3

16π2ε0
Ne2kF . (4.90)

and leads to the important result of this calculation, the ground state energy
of the electron gas in HF approximation

EHF
0 =

3

5
N

h̄2k2
F

2m
− 3

16π2ε0
Ne2kF . (4.91)

Due to the negative contribution of the exchange interaction it is lower than
the result of the Sommerfeld model. In the formulation with the dimensionless
density parameter rs defined in Sect. 4.1 it reads

EHF
0 = N

{
3

5

(
9π

4

)2/3
1

r2
s

− 3

4π

(
9π

4

)1/3
2

rs

}
Ry. (4.92)

As mean value energy per electron the result is written in the form

ǫHF
0 =

1

N
EHF

0 =

{
2.2099

r2
s

− 0.916

rs

}
Ry. (4.93)

It is expressed in terms of inverse powers of the density parameter rs, which
for the same electron density n can have quite different values depending on
the material (see Table 4.1) in which it is realized (Problem 4.6).

In order to go beyond the HF approximation (which is a first order per-
turbation calculation) one may consider the second order correction becausse
of the Coulomb interaction. This is formulated in Problem 4.7. As it will turn
out, this term is logarithmically divergent. Thus higher order perturbation
calculation seems not to be the proper way to treat Coulomb interaction and
special many-body techniques are required to improve the result. But we can
take from (4.93) the message that the HF approximation works well in the
high density limit (rs ≪ 1).

At this point, two considerations about the HF approximation can be
made. The first one aims at an approximate formulation of Hjell (4.85) as an
effective single-particle operator
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Hjell ≃
∑

kσ

ǫHF
kσ c†kσckσ (4.94)

with single-particle energies ǫHF
kσ , which besides the kinetic energy of free par-

ticles contain a contribution from the Coulomb interaction according to the
HF approximation. A systematic way to calculate ǫHF

kσ is the formulation of
the equation of motion for the time-dependent fermion operator

d

dt
c†kσ =

1

ih̄

[
Hjell, c

†
kσ

]
. (4.95)

The commutator of ckσ with the interaction term generates terms consisting
of three fermion operators. Here the HF approximation means to replace these
terms by the product of an expectation value of the number operator and the
remaining fermion operator. This classifies the HF approximation as a mean

field approximation, see Sect. 6.5. The result takes the form

d

dt
c†kσ =

1

ih̄
ǫHF
kσ c†kσ (4.96)

with the single-particle energy

ǫHF
kσ =

h̄2k2

2m
− e2

ε0V

∑

q �=k

|q|≤kF

1

|q − k|2 . (4.97)

The evaluation of the sum over q in the Fermi sphere can be performed as an
integral in polar coordinates with ϑ being the angle between q and k

∑

q �k
|q|≤kF

1

|q − k|2 =
V

(2π)3
2π

∫ kF

0

dq q2

∫ +1

−1

d cosϑ

q2 + k2 − 2kq cosϑ

=
V

(2π)2

∫ kF

0

dq
q

2k
ln

(q − k)2

(q + k)2
. (4.98)

The last integral can be found in an integral table. Finally, we obtain for the
single-particle energy in HF approximation

ǫHF
kσ =

h̄2k2

2m
− e2kF

4π2ε0

(
1 +

k2
F − k2

2kkF
ln
∣∣∣
kF + k

kF − k

∣∣∣
)

. (4.99)

A plot of ǫHF
kσ is shown in Fig. 4.12 for a particular choice of the electron density

n in reduced units together with the free electron dispersion.
As for the ground state energy, we find for the single-particle energies in the

HF approximation a lowering with respect to the free particle energy. Taking
the sum over these single particle energies in the Fermi sphere leads back to
the result of (4.93). Replacing the Hamiltonian of the jellium model (4.85) as
indicated in (4.94) corresponds to describing the interacting free electrons as
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Fig. 4.12. Single-particle HF energy (solid line) for rs = 4 in comparison with free
particle energy (dashed line), after [12]

noninteracting quasi-particles, whose single-particle energies incorporate part
of the Coulomb interaction. This quasi-particle concept is frequently used in
many-body theory.

The second consideration concerns the charge density connected with
the exchange interaction. For this purpose, we may rewrite the exchange
correction with the Fourier transform of the Coulomb interaction as

−
∑

q �=k

|q|≤kF

e2

ε0V

1

|q − k|2 = − e2

4πε0

∑

q �=k

|q|≤kF

1

V

∫
ei(q−k)·r

r
d3r

= −
∫

eρHF
k (r)

4πε0r
d3r. (4.100)

The last expression corresponds to the potential energy of an electron at r = 0
in a charge density ρHF

k (r) (the HF or exchange charge density) resulting from
all electrons in the Fermi sphere having the same spin:

ρHF
k (r) =

e

V

∑

q �=k

|q|≤kF

ei(q−k)·r =
e

V
e−ik·r

∑

q �=k

|q|≤kF

eiq·r. (4.101)

By performing the sum over q as integral over the Fermi sphere in polar
coordinates one obtains

ρHF
k (r) =

2e

(2π)2
e−ik·r

r3
(sin (kFr) − kFr cos (kFr)) . (4.102)

The mean value of ρHF
k (r) over the Fermi sphere gives the averaged HF charge

density
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Fig. 4.13. Pair–distribution function g(r) = 1−ρHF(r)/en showing the depression
in the vicinity of r = 0 known as Fermi or exchange hole

ρHF(r) =
2

N

∑

k

|k|≤kF

ρHF
k (r)

=
9N

2V

e

(kFr)6
(sin(kFr) − kFr cos(kFr))

2
. (4.103)

The limits

ρHF(r → ∞) = 0 and ρHF(r → 0) =
1

2
en (4.104)

indicate the modification of the constant charge density −en of the nonin-
teracting electron gas due to the exchange correction. In the vicinity of an
electron with given spin, the charge density is reduced by 50% corresponding
to the interaction with all electrons having the same spin. With increasing
r, the density approaches the value of the noninteracting electron system.
This result can be expressed in terms of the pair–distribution function (see
Sect. 1.3)

g(r) = 1 − ρHF(r)/en (4.105)

for free electrons in the HF approximation, which is depicted in Fig. 4.13.
It shows a depression around r = 0 which is the Fermi or exchange hole

and visualizes the correlation due to the exchange interaction or the Pauli
principle.

4.5 The Dielectric Function

The dielectric function is the response of the system (here the homogeneous
electron system) to a perturbation by an electromagnetic field. It is conve-
nient to consider this perturbation as having the characteristic space and
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time dependence given by exp(i(q · r − ωt)) typical for a Fourier component
with q and ω. One can distinguish this perturbation caused by a moving
charge (as in a particle scattering process) from that of an electromagnetic
wave. The latter case, leading to the transverse dielectric function has been
the subject of Sect. 3.5. Here we consider the former case: The moving charge
is connected with a longitudinal field (directed parallel to the momentum of
the moving particle) and the response is the longitudinal dielectric function

ε(q, ω). For ω = 0 this case includes also the response of the electron sys-
tem to a static charge placed into the electron system: The electrons will
arrange around this static charge due to Coulomb attraction (if the static
charge is positive) or repulsion (if it is negative), thus increasing or reducing
the otherwise homogeneous density. This effect is known as static screening.

In Sect. 2.5, the inverse dielectric function has been introduced already in
an exact formulation for an arbitrary system as density–density correlation
function between density and number fluctuations. Here we want to derive the
inverse dielectric function for the homogeneous electron gas. Starting point is
the electron system described by Hjell and the external perturbation by Vext

H = Hjell + Vext . (4.106)

Having in mind the results of Sect. 2.5, it is advantageous to use the for-
mulation of Hjell in terms of number fluctuations N̂k =

∑
pσ c†p+kσcpσ (see

Problem 4.8)

Hjell =
∑

kσ

h̄2k2

2m
c†kσckσ +

1

2

∑

k�=0

vk

(
N̂ †

kN̂k − N
)

(4.107)

and write the perturbation as

Vext = −vqNexte
iq·r−iωt = −vqN̂−qNexte

−iωt (4.108)

where we have replaced exp(iq · r) by N̂−q.
The response of the homogeneous electron system to a perturbation by an

external charge will be a deviation from the homogeneous density in terms
of number (or density) fluctuations. For Vext as given in (4.108) the induced
number fluctuations are described by

N(r, t) = 〈N̂q〉eiq·r−iωt . (4.109)

In the context of Poisson’s equation, the external test charge eNext and
the induced charge (density) fluctuation eN(r, t) play the role of free and
polarization charges, respectively, or in other words: eNext/V is the source of
the dielectric displacement field D while both eNext and eN(r, t) determine
the electric field E, both fields being connected by the dielectric function:
D(q, ω) = ε0ε(q, ω)E(q, ω). Thus, as in Sect. 2.5 we may write
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iq · E(q, ω) =
e

V ε0

(
Next + 〈N̂q〉

)
(4.110)

iq · D(q, ω) =
e

V
Next (4.111)

and obtain from these equations the relation

1

ε(q, ω)
= 1 +

〈N̂q〉
Next

. (4.112)

From (4.108) and (4.109) we identify N̂−q and N̂q as the operators B̂ and Â,
respectively, of the response formalism, to write the exact expression for the
inverse longitudinal dielectric constant as (see (2.80))

1

ε(q, ω)
= 1 + lim

Γ→0
vq

i

h̄

∫ ∞

0

dτeiωτ−Γτ 〈[N̂q(τ), N̂−q(0)]〉0 (4.113)

where the damping factor regularizes the integral.
The thermal expectation value under the integral is to be evaluated with

the eigenstates of the Hamiltonian Hjell of the unperturbed system. As these
are not known, this can be done only approximately. For T = 0K the thermal
expectation value reduces to the expectation value of the ground state |Ψ0〉
(see Problem 2.2) and we may write

〈Ψ0|[N̂q(τ), N̂−q(0)]|Ψ0〉 =
∑

m

{
〈Ψ0|N̂q(τ)|Ψm〉〈Ψm|N̂−q(0)|Ψ0〉

− 〈Ψ0|N̂−q(0)|Ψm〉〈Ψm|N̂q(τ)|Ψ0〉
}

. (4.114)

The matrix elements can be evaluated by making use of

N̂q(τ) = e
i
h̄
Hjellτ N̂qe−

i
h̄
Hjellτ and N̂−q = N̂ †

q (4.115)

to yield h̄ωm0 = Em − E0

〈Ψ0|[N̂q(τ), N̂−q(0)]|Ψ0〉 =
∑

m

|〈Ψ0|N̂q|Ψm〉|2
{
e−iωm0τ − eiωm0τ

}
. (4.116)

Thus we obtain the exact expression for the longitudinal dielectric function
at T = 0 K

1

ε(q, ω)
= 1 + lim

Γ→0

vq

h̄

∑

m

|〈Ψ0|N̂q|Ψm〉|2
{

1

ωm0 + ω + iΓ

+
1

ωm0 − ω − iΓ

}
. (4.117)

Formally, this result is the same as for χ(ω) derived in Sect. 3.5 for a trans-
verse perturbation, where however the matrix elements are those of the dipole
operator while here they are those of the operator of number fluctuations.



4.5 The Dielectric Function 105

The inverse dielectric function has poles at ω = ±ωm0 − iΓ in the
lower complex ω-plane (see Fig. 3.5), thus measurements of 1/ε(q, ω) pro-
vide information about the exact excitation energies h̄ωm0 = Em − E0. Such
experiments are performed as inelastic scattering of charged particles (elec-
trons), in which energy and momentum is transferred to the electron system.
This experimental technique is known as energy–loss spectroscopy.

Let us evaluate the inverse dielectric function at T = 0K in HF approx-
imation. This is done by calculating the matrix elements of the number
fluctuations between the HF ground state (which is the filled Fermi sphere)
and excited states, which are obtained by removing an electron from the
Fermi sphere and placing it into a state outside (see Fig. 4.14). In other words,
the excited states are the Fermi sphere plus an electron–hole excitation. The
matrix elements can be evaluated and yield N̂q =

∑
kσ c†k+qσckσ

〈Ψkqσ|N̂q′ |Ψ0〉 =

{
δqq′ |k| ≤ kF, |k + q| > kF

0 otherwise
(4.118)

and one finds (with h̄Γ = δ)

1

εHF(q, ω)
= 1 + lim

δ→0
vq

∑

|k|≤kF,σ

|k+q|>kF

{
1

h̄ω + ǫk+q − ǫk + iδ

− 1

h̄ω − ǫk+q + ǫk + iδ

}
. (4.119)

Here the energies ǫk ought to be the HF single particle energies, but can be
replaced by h̄2k2/2m which is a good approximation for rs ≪ 1. The restricted
sum can be considered by using the Fermi distribution function fk and if in
addition we replace in the first term k + q → −k the rhs of (4.119) reads

= 1 + lim
δ→0

vq

∑

k,σ

{
f−k−q(1 − f−k)

h̄ω + ǫ−k − ǫ−k−q + iδ
− fk(1 − fk+q)

h̄ω − ǫk+q + ǫk + iδ

}
. (4.120)

k
F

k,σ

k+q,σ

Fig. 4.14. Schematic view of an excited state: Fermi sphere plus electron–hole pair
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Finally with f−k = fk, ǫk = ǫ−k, and fkfk+q = 0 (one of the states is not
occupied) one obtains

1

εHF(q, ω)
= 1 + vqπ0(q, ω) (4.121)

where

π0(q, ω) = lim
δ→0

∑

k,σ

fk − fk+q

h̄ω − ǫk+q + ǫk + iδ
. (4.122)

is the polarization function of the free noninteracting electron system.
A standard approximation for the inverse longitudinal dielectric function

beyond HF is the so-called random phase approximation or RPA. Although its
derivation in the original literature (where also the name is justified) is quite
involved (see [5]) it can be obtained simply by replacing the bare Coulomb
interaction vq by the screened one vq/ε(q, ω). This gives rise to the following
formulation:

1

ε(q, ω)
= 1 +

vq

ε(q, ω)
π0(q, ω)

= 1 + vqπ0(q, ω)
(
1 + vqπ0(q, ω)(1 + vqπ0(q, ω)(. . .))

)

= 1 + vqπ0(q, ω) +
(
vqπ0(q, ω)

)2
+ . . .

=
1

1 − vqπ0(q, ω)
. (4.123)

The structure of this expression, reminding of the Born series known from scat-
tering theory, is typical for results obtained for interacting particles and can
be cast into a graphic representation in terms of Feynman diagrams [4, 5, 64].
Here we give only the formula for the dielectric function in RPA, also known
as the Lindhard function,

εRPA(q, ω) = 1 − vqπ0(q, ω)

= 1 − vq lim
δ→0

∑

k,σ

fk − fk+q

h̄ω − ǫk+q + ǫk + iδ
. (4.124)

It should be mentioned, that this result which goes beyond the HF approxima-
tion, is not obtained by a more accurate description of the eigenstates rather
than by the physical argument of screening applied to the electron–electron
interaction in the system. The same result can be obtained in an alterna-
tive way known as the self-consistent field approximation. The idea here is to
consider the induced number density fluctuations together with the external
charge as the perturbation of the system but evaluate the response with the
HF ground state. This calculation is the subject of Problem 4.9.
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4.6 Discussion of the Dielectric Function

Starting from (4.117), the exact expression for the inverse longitudinal dielec-
tric function at T = 0K can be separated with

lim
δ→0

1

x ± iδ
= P

(
1

x

)
∓ iπδ(x) (4.125)

into its real and imaginary part:

Re
1

ε(q, ω)
= 1 + vq

∑

m

|〈Ψ0|N̂q|Ψm〉|2 2h̄ωm0

(h̄ω)2 − (h̄ωm0)2
(4.126)

Im
1

ε(q, ω)
= −πvq

∑

m

|〈Ψ0|N̂q|Ψm〉|2 {δ(h̄ω − h̄ωm0) − δ(h̄ω + h̄ωm0)} .

(4.127)

In Sect. 1.3 we have introduced the dynamic structure factor

S(q, ω) =
1

2π

∫ ∞

−∞

e−iωt〈N̂q(t)N̂−q(0)〉dt (4.128)

which for T = 0K (after resolving the Heisenberg picture for N̂q(t), introduc-
ing a complete set of exact eigenstates, and performing the integration over t)
takes the form

S(q, ω) =
∑

m

|〈Ψ0|N̂q|Ψm〉|2δ(ω − ωm0). (4.129)

Thus it is possible to express the imaginary part of the dielectric function as

Im
1

ε(q, ω)
= −π

h̄
vq

(
S(q, ω) − S(q,−ω)

)
. (4.130)

Moreover, the differential cross section for inelastic scattering is related with
the dynamic structure factor:

d2σ

dΩdω
=

k′

k

( m

2πh̄

)2

|vq|2S(q, ω). (4.131)

This relation tells us how to extract information about the excitations in the
interacting electron system from inelastic scattering experiments: The cross-
section will be enhanced if the experimental settings, q and ω, correspond
to the energy and momentum of an excitation in the electron system. The
structure factor or likewise the dielectric function can be expressed in terms
of the characteristic excitation energies of the system. Due to this relation
Im(1/ε(q, ω) is known also as the energy–loss function.

In order to discuss this in more detail, we look at the dielectric function
in RPA εRPA(q, ω) = ε1(q, ω) + iε2(q, ω) with



108 4 The Free Electron Gas

ε1(q, ω) = 1 + vq

∑

kσ

fk+q − fk

h̄ω − ǫk+q + ǫk

(4.132)

ε2(q, ω) = πvq

∑

kσ

(fk − fk+q) δ(h̄ω − ǫk+q + ǫk) . (4.133)

The energy–loss function can be written in terms of ε1(q, ω) and ε2(q, ω) as

Im
1

ε(q, ω)
= − ε2(q, ω)

(ε1(q, ω))
2

+ (ε2(q, ω))
2 . (4.134)

The numerator ε2(q, ω) gives nonvanishing contributions only for

h̄ω = ǫk+q − ǫk =
h̄2

2m
(2k + q) · q (4.135)

which in view of the particle–hole excitations out of the Fermi sphere is possi-
ble at h̄ω = 0 for all q with 0 ≤ |q| ≤ 2kF and for h̄ω > 0 for the same range
of |q| but shifted to higher values. This excitation spectrum is known as the
particle–hole continuum (see Fig. 4.15).

Significant contributions to the energy-loss function are also expected if
the denominator in (4.134) vanishes, i.e., for ε1(q, ω) = ε2(q, ω) = 0. Let us
consider the case h̄ω ≫ ǫk+q − ǫk for which ε2(q, ω) = 0 and (after replacing
k + q in the first term of ε1(q, ω) by k)

ε1(q, ω) = 1 + vq

∑

kσ

{
fk

h̄ω − ǫk + ǫk−q

− fk

h̄ω − ǫk+q + ǫk

}

= 1 + vq

∑

kσ

fk

2ǫk − ǫk+q − ǫk−q

(h̄ω − ǫk + ǫk−q)(h̄ω − ǫk+q + ǫk)
. (4.136)

Using ǫk = h̄2k2/2m, the numerator can be rewritten as −h̄2q2/m, and sim-
plifying the denominator for h̄ω ≫ ǫk+q − ǫk, one obtains for sufficiently
small |q|

plasmon

particle - hole
continuum

ω(q)

q/2kF1

Fig. 4.15. The spectrum of excitations derived from the energy–loss function: RPA
spectrum
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ε1(q, ω) ≃ 1 − vq

h̄2q2

m

1

(h̄ω)2

∑

k

fk = 1 − Ne2

ε0V mω2
(4.137)

or for q → 0

ǫ1(q, ω) ≃ 1 −
ω2

p

ω2
, ω2

p =
e2

ε0m

N

V
. (4.138)

Apparently, the energy–loss function has a singularity at the plasma frequency

ωp. As the typical result of RPA it represents a collective excitation, the plas-

mon, in which all particles of the electron system participate. Moreover, it
obeys a sum rule, which can be expressed in terms of ωp (Problem 4.10).

We note that (4.138) does not contain h̄. This indicates the possibility of
an interpretation in terms of classical physics. In fact, the classical equation of
motion of a single electron in an electric field E, determined by the dielectric
polarization E = −P /ε0 = ner/ε0 of the electron system with density n =
N/V , reads

mr̈ = −e2

ε0

N

V
r or r̈ = −ω2

pr . (4.139)

In the long wavelength limit each electron of the system experiences a restoring
force characterized by the plasma frequency when (in the collision with a fast
charged particle) the system is displaced against the jellium background. For
finite q, one obtains from ε1(q, ω) = 0

ω2
p(q) = ω2

p

(
1 +

3

10

q2h̄2k2
F

mω2
p

+ . . .

)
, (4.140)

where the second and higher order terms indicate quantum mechanical
corrections to the classical result.

The typical RPA spectrum, consisting of the particle–hole continuum and
the plasmon mode, as depicted schematically in Fig. 4.15, can be translated
for small momentum transfer into the real and imaginary part of the dielec-
tric function as shown in Fig. 4.16: ε2(q, ω) is determined by the particle–hole
continuum giving contributions only at low frequencies, while ε1(q, ω), show-
ing a more complex frequency dependence, starts at ω = 0 with the value
defined by the Thomas–Fermi screening parameter kFT (see Problem 4.11),
changes sign around the upper cut-off frequency of the particle–hole excita-
tions, passes through zero at the plasma frequency, and approaches 1 for high
frequencies. These characteristic features are also found in the experimental
data, e.g., [5, 89].

In metals with electron densities of the order of 1023 cm−3 (see Table 4.1),
the plasmon energy h̄ωp is about 1Ry and determines the response in an
energy-loss experiment in this energy range. In contrast, doped semiconduc-
tors represent diluted metallic systems with much lower plasmon energies,
which can be tuned by the concentration of the dopands in the range of
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Fig. 4.16. The frequency dependent real and imaginary part of the dielectric
function as obtained for the RPA spectrum

optical phonons at q = 0. The response of the system (measured by inelas-
tic light scattering [118]) is then characterized by coupled plasmon–phonon

modes with frequencies determined by the zeros of the dielectric function in
the long-wavelength limit

ε(ω) = ε∞

(
1 −

ω2
p

ω2
+

ω2
L − ω2

T

ω2
T − ω2

)
, (4.141)

which is the sum of the plasmon and phonon contributions (see Sect. 3.5).
Note that the plasmon contribution is modified by the dielectric constant ε∞
of the semiconductor accomodating the diluted plasma, while the electron
mass becomes the effective mass m∗. The biquadratic equation ε(ω) = 0
has two solutions, which in dependence on the carrier concentration show an
anticrossing behavior typical for the coupling between the two modes, which
is also experimentally verified.

4.7 Electronic Correlation

The mean energy per electron in the ground state at T = 0K

ǫ0 =
1

N
E0 = ǫHF

0 + ǫc (4.142)

can be separated into the HF energy and the correlation energy. The former
is determined by the filling of the Fermi sphere and considering the exchange
interaction (as a consequence of the Pauli principle). The latter takes into
account the electron–electron interaction beyond the HF approximation and
will lead to a modified picture of the pair–distribution function of Fig. 4.12,
in which the exchange hole is replaced by the correlation hole.
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It is helpful to start with the expectation value (per electron) of the
electron–electron interaction in (4.107) for the exact ground state |Ψ0〉

ǫxc =
1

2N

∑

q �=0

vq〈Ψ0|(N †
qNq − N)|Ψ0〉, (4.143)

where the index xc refers to exchange and correlation. It can be reformulated
by making use of the expression for the dynamic structure factor

S(q, ω) =
1

2π

∫ +∞

−∞

e−iωt〈Ψ0|(N̂q(t)N̂−q(0)|Ψ0〉dt (4.144)

which can be written also as

S(q, ω) =
∑

m

|〈Ψ0|N̂q|Ψm〉|2 1

2π

∫ +∞

−∞

e−i(ω−ωm0)tdt . (4.145)

The integral is the δ function and thus

∫ ∞

0

S(q, ω)dω =
∑

m

|〈Ψ0|N̂q|Ψm〉|2

= 〈Ψ0|N̂qN̂−q|Ψ0〉 = NS(q) . (4.146)

Here S(q) is the static structure factor which now enters the (still exact)
expression for ǫxc:

ǫxc =
1

2

∑

q �=0

vq(S(q) − 1). (4.147)

Due to the isotropy of the free electron system we have S(q) = S(q) and we
may write after integration over the angles

ǫxc = − e2kF

2π2ε0

(
− 1

2kF

∫ ∞

0

(S(q) − 1)dq

)
. (4.148)

By introducing the dimensionless function

γ(kF) = − 1

2kF

∫ ∞

0

(S(q) − 1)dq (4.149)

and expressing kF by the density parameter rs we find (in Ry)

ǫxc(rs) = − 4

πrs

(
9π

4

)1/3

γ(rs) . (4.150)

The static structure factor S(q) is shown in Fig. 4.17 for different values of rs.
It should be kept in mind here that the expectation value of the kinetic

energy (to be taken for the exact ground state) depends on the interaction.
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Fig. 4.17. The static structure factor S(q) for different values of the density
parameter rs (after [119])

This is accounted for within the following consideration known as the ground

state theorem: Let the system Hamiltonian be given by

H(g) = Hkin + gHint (4.151)

where g = e2 is the strength of the (electron–electron) interaction. The
eigenstates of H(g), including the ground state |Ψ0(g)〉, depend on g and

Eint(g) = 〈Ψ0(g)|gHint|Ψ0(g)〉 (4.152)

is the exact contribution of the interaction to the ground state energy E0(g).
Then, according to the theorem

E0(g) = E0(0) +

∫ g

0

1

g′
Eint(g

′)dg′ . (4.153)

To prove this theorem one has simply to write

dE0(g)

dg
= 〈Ψ0(g)|dH(g)

dg
|Ψ0(g)〉 +

(
d

dg
〈Ψ0(g)|

)
H(g)|Ψ0(g)〉

+〈Ψ0(g)|H(g)

(
d

dg
|Ψ0(g)〉

)

=
1

g
Eint(g) + E0(g)

d

dg
〈Ψ0(g)|Ψ0(g)〉. (4.154)

The last term vanishes, because |Ψ0(g)〉 is normalized, and the resulting dif-
ferential equation can be integrated directly to yield the statement of the
theorem.
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For the homogeneous electron gas we can immediately write

ǫ0 =
3

5
EF − kF

2π2ε0

∫ e2

0

γ(g′)dg′ . (4.155)

Thus, in terms of the density parameter rs, the exact ground state energy per
electron reads (in Ry)

ǫ0(rs) =
2.2099

r2
s

− 4

πrs

(
9π

4

)1/3 ∫ 1

0

γ(λrs)dλ. (4.156)

If γ or S(q) or Im1/ε(q, ω) is given, the ground state energy per electron ǫ0(rs)
is also known. The first term is the contribution of the kinetic energy in the
Sommerfeld (or noninteracting electron) model, the second term describes the
exchange and correlation energy (including also modifications of the kinetic
energy due to the electron–electron interaction), and the exact correlation
energy per electron can be written as

ǫc(rs) =
0.916

rs
− 4

πrs

(
9π

4

)1/3 ∫ 1

0

γ(λrs)dλ. (4.157)

By definition ǫc(rs) vanishes in the HF approximation.
Calculations of the correlation energy have been carried out in different

approximations for ε(q, ω) (or S(q) or γ), whose accuracy depends on the
density (or rs) [64, 119]. Typically one uses

ε(q, ω) = 1 − vqπ0(q, ω)

1 + vqG(q)π0(q, ω)
(4.158)

with different forms of G(q). One particularly simple form is G(q) = 0, for
which the dielectric function takes the RPA form of (4.125). But also in
general, considering correlation means some kind of screening the Coulomb
interaction. Results are visualized by plotting the pair–distribution function
(see Problem 4.12) which for the homogeneous electron system reads

g(r) = 1 +
3

2rk3
F

∫ ∞

0

q sin(qr) (S(q) − 1) dq . (4.159)

As can be seen in Fig. 4.18, the HF result, with g(r → 0) = 1/2, is recovered
for dense electron systems (rs ≪ 1) while in the low-density case (large rs)
g(r → 0) → 0 and the exchange or Fermi hole evolves into a correlation hole

because the electrons try to avoid each other (irrespective of their spin). We
will see in the next chapter how these concepts of exchange and correlation
can be considered in describing the electronic states of the inhomogeneous
electron systems found in solids.

Let us also briefly discuss the low density limit rs ≫ 1, for which the
electron–electron interaction is expected to dominate the kinetic energy. The
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Fig. 4.18. The pair–distribution function g(r) for different values of the density
parameter rs (after [119]). The symbols refer to Monte–Carlo simulations of [120]

ultimate limit, when the kinetic energy can be completely neglected, leads to
a problem of classical electrostatics: the ground state is defined by the config-
uration of point charges with the lowest potential energy. This configuration
is a crystalline one: the Wigner crystal. Its electrostatic energy shall be evalu-
ated here in the jellium model, in which each electron is assigned the volume
of the Seitz sphere with radius r0 = rsaB. The potential energy of an electron
in the center and the sphere filled with the compensating positive charge of
the jellium background is

ǫWC
− = −

∫ r0

0

e2

4πε0r
nd3r = − 3

rs
Ry. (4.160)

The potential energy of the positive jellium background in the Seitz sphere,
ǫ+, is to be calculated from the electrostatic potential of the homogeneously
charged sphere

V (r) =
e2

r2
s a

3
B

(
−r2

2

)
+ C (4.161)

where C = 3e2/2rsaB has to be chosen to establish charge neutrality, thus

V (r) =
1

rs

(
3 −

( r2

rsaB

)2
)

Ry (4.162)

and

ǫ+ =
1

2

∫ r0

0

V (r)nd3r =
6

5rs
Ry. (4.163)
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The electrostatic energy per electron in the Wigner crystal amounts to

ǫWC = ǫWC
− + ǫ+ = −1.8

rs
Ry. (4.164)

This expression corresponds to the sum of exchange and correlation energy.
With the latter being given by ǫx = −0.916/rs Ry, the correlation energy per
electron in the Wigner crystal turns out to be

ǫc(rs ≫ 1) = −0.88

rs
. (4.165)

We may finally compare with the electrostatic energy of the smeared (instead
of the point-like) electron in the Seitz sphere: it is given by

ǫjell− = −2ǫ+ = −2.4

rs
Ry (4.166)

which is larger than ǫWC
− . Thus, the Wigner crystal is the predicted ground

state of the strongly diluted homogeneous electron system. The experimental
verification of the Wigner crystal represents a tremendous challenge because
the realization of a diluted homogeneous electron system turns out to be very
difficult.

Problems

4.1 Calculate the interaction energy of a homogeneous electron gas (density
n = N/V ) with a homogeneous jellium background of positive charges
with the same density and the electrostatic potential energy of this
background. Hint: Make use of the Fourier transform of the Coulomb
interaction.

4.2 According to (4.25) the chemical potential μ(T ) is determined by the
particle density n. For the three-dimensional electron gas, calculate the
temperature dependence of μ for low temperatures (kBT ≪ EF) up to
the order (kBT/EF)2!

4.3 Calculate the density of states for a system of electrons, which can move
freely in a plane (two-dimensional electron gas) or along a straight line
(1-dimensional electron gas). Give an expression for the density of states
of bound electrons (zero-dimensional electron gas). Plot and discuss these
results.

4.4 Typical electron densities are n ≃ 1023 cm−3 for metals and n ≃
1014 cm−3 for doped semiconductors (see Table 4.1) Consider the mag-
netic quantum limit, when all electrons are in the lowest Landau level,
and derive for this case a relation between the magnetic field and n. For
which of the two systems is it possible to reach the magnetic quantum
limit in a laboratory?
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4.5 The Pauli spin-paramagnetism is determined by the spin-splitting of
the electronic energy spectrum due to the Zeeman term (see Fig. 4.7).
Express this contribution to the magnetization by the number of non-
compensated electron spins and compare the result with (4.53).

4.6 Discuss the quality of the HF approximation starting from ǫHF
0 (4.93)

for metals and semiconductors (see parameters given in Table 4.1). In
terms of the density parameter rs, which system is of higher density?

4.7 In order to go beyond the HF approximation (which is a first order per-
turbation calculation) one may consider the second order perturbation
correction E2 due to the Coulomb interaction. (a) Make use of the Fermi
sphere to find excited states which yield a contribution to E2. (b) Dis-
tinguish between direct and exchange contributions to E2 and show that
the direct term can be formulated as

Edir
2 = −4m

∑

kqp

v2
k

np(1 − np+k)nq(1 − nq+k)

h̄2k · (k + q + p)
(4.167)

where np is the occupation number. (c) Show by expanding np+k for
small k that

∑
p np(1 − np+k) ∼ k and use this result to find that (for

small k) Edir
2 is logarithmically divergent. Interpret this result!

4.8 Field operators are defined by

Ψ(r) =
∑

α

cαΨα(r), Ψ†(r) =
∑

α

c†αψ∗
α(r) (4.168)

with fermion operators cα, c†α and a complete orthonormal set of single
particle wave functions ψα(r) (for free electrons ψk(r)=exp(ik · r)/

√
V ).

(a) Discuss the meaning of Ψ(r) and Ψ†(r). (b) Derive the commutation
relations for Ψ(r) and Ψ†(r). (c) The density operator is given by n̂(r) =
Ψ†(r)Ψ(r). Give for free electrons the Fourier components n̂q defined by
n̂(r) =

∑
q eiq·rn̂q. What is the meaning of n̂q for q = 0 and q �= 0?

d) Express the Coulomb interaction in terms of the number fluctuation
operators N̂q = V n̂q.

4.9 Calculate the thermal expectation value of the number fluctuation
operator 〈N̂q〉 by starting from the exact expression

〈N̂q〉 = lim
Γ→0

vq

1

ih̄

∫ ∞

0

eiωτ−Γτ 〈[N̂q(τ), N̂−q(0)]〉0Nextdτ (4.169)

by replacing the bare external charge eNext by e(Next + 〈N̂q〉RPA) with

the induced number fluctuation 〈N̂q〉RPA in RPA and evaluating the
expectation value of the commutator not in the exact ground state of
the interacting system but in the ground state of the system without
interaction. This is the self-consistent field approximation.
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4.10 Prove the sum rule
∫ ∞

0

Im

[
1

ǫ(q, ω)

]
ωdω = −π

2
ω2

p (4.170)

where ωp is the plasma frequency. Hint: Calculate the ground state
expectation value of [[Hjell, n̂q], n̂−q] by making use of the commutation

relations of ck and c†k and by introducing a complete set of eigenstates
of Hjell.

4.11 Evaluate the real part of the dielectric constant (4.132) for the static
case (ω = 0) in the long-wavelength limit |q| → 0 (Thomas–Fermi
approximation). It will depend on the parameter kFT defined by

k2
FT =

3Ne2

2ε0V EF
. (4.171)

Consider the screened Coulomb potential vq/ε1(q, 0): How does the
Fourier transform of this potential look like and what is the obvious
meaning of k−1

FT?
4.12 The ground state density–density correlation function is defined as

p(r) =
1

N

∫
〈Ψ0|n̂(r + r′)n̂(r′)|Ψ0〉dr′. (4.172)

The Fourier transform of p(r) is S(k) =
∫

eik·rp(r)d3r. It can be
obtained from the dynamic form factor S(k, ω) with

S(k) =
1

N

∫
S(k, ω)dω. (4.173)

Use the relation between S(k, ω) and Im (1/ǫ(q, ω)) to calculate p(r) in
HF approximation.



5

Electrons in a Periodic Potential

In Chap. 4, the crystal structure of the solid has been suppressed by smear-
ing out the periodic configuration of ions in the jellium model, because the
many-body aspects of the electron–electron interaction stood in the focus of
interest. Now, our attention will be, in addition, at the effect of the periodic
potential formed by the ions in the configuration {R0

n,τ} of a crystal lattice.
Therefore, we reverse the introduction of the jellium term in Sect. 4.3 with
the replacement

H+ ⇒
∑

n,τ ,l

v(rl − R0
n,τ ) +

1

2

∑

n,n′

τ,τ ′

V (R0
nτ − R0

n′τ ′) =
∑

l

V (rl). (5.1)

Note the simplified notation of the single-particle potential V (rl), which does
not explicitly refer to the ion positions. It is invariant under lattice transla-
tions and is the same for all electrons. The Hamiltonian for a system of N
electrons in the crystal volume

HN =

N∑

l=1

(
p2

l

2m
+ V (rl)

)
+

1

2

N∑

k,l=1
k �=l

v(rl − rk), (5.2)

with the Coulomb potential

v(rl − rk) =
e2

κ|rl − rk|
, κ = 4πε0 (5.3)

defines the starting point for this chapter.
The complexity of the eigenvalue problem of HN comes from the simul-

taneous presence of the periodic lattice potential and the electron–electron
interaction. As we have already seen in Chap. 4, the latter prevents a rigorous
solution of the eigenvalue problem and some approximate treatment has to
be applied. In some textbooks, e.g., [6, 7, 13, 121], the potential energy terms
of HN , namely

∑
l V (rl) and the electron–electron interaction, are replaced

U. Rössler, Solid State Theory,
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by an effective single-particle potential:

HN ⇒
∑

l

(
p2

l

2m
+ Veff(rl)

)
(5.4)

which incorporates the many-body aspect in an approximate way. Other text-
books, e.g., [8, 9, 122], provide arguments, on how this replacement can be jus-
tified and we shall follow this line in Sect. 5.1. Given such a potential, electrons
can be understood as independent particles and in a wave picture, are expected
to undergo Bragg reflections due to the periodic potential (as in the case of
elastic or electromagnetic waves). The consequence is that the energy spec-
trum becomes a band structure with energy intervals for which propagation
of electrons is possible. They are separated by gaps, where this is not the case.

In this approximation, the Hamiltonian is a sum of identical single-particle
terms and can be separated with a product Ansatz into one and the same
single-particle Schroedinger equation for all electrons:

(
− h̄2

2m
∆ + Veff(r)

)
ψα(r) = Eαψα(r). (5.5)

Here, α denotes a complete set of single-particle quantum numbers, which, as
will be outlined in Sect. 5.2, are the band index n and the crystal momentum
or wave vector k in the first Brillouin zone. Spin–orbit coupling and a spin
index can be added if required. The energy eigenvalues Eα = En(k) form the
energy band structure of electrons. The foremost task is the justification of this
approach and the definition of the effective single-particle potential Veff(r).

5.1 Density Functional Theory

The many-particle problem is defined by the Hamiltonian HN in (5.2). The
eigenvalue equation HNΨN = EΨN , is the same as (2.17) or (2.25) with the
electron–ion interaction considered for the crystalline equilibrium configura-
tion of the ions. But it corresponds also to that of the jellium model treated in
Chap. 4 with the exception, now that the crystal structure of the ions is consid-
ered. Thus, we may use the concepts developed for the homogeneous electron
gas. The simplest approach would be to apply the Hartree approximation with
the product Ansatz

ΨN(r1 . . . rN ) =

N∏

α=1

ψα(rα). (5.6)

The single-particle wave functions ψα have to be determined from the condi-
tion that the expectation value of HN takes a minimum under the constraint
of their normalization. This leads to Ritz’ variational problem (see Sect. 4.1)

δ
{
〈ΨN |HN |ΨN〉 −

∑

α

Eα

(
〈ψα|ψα〉 − 1

)}
= 0 (5.7)
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where the normalization condition enters with the Lagrangian parameters Eα.
The expression in the curly brackets is a functional of the single-particle wave
functions ψα, thus the variation is to be performed as the functional derivative
with respect to ψα or ψ∗

α. If this is done with

〈ΨN |HN |ΨN 〉 =
N∑

α=1

∫
d3rψ∗

α(r)

(
p2

2m
+ V (r)

)
ψα(r)

+
1

2

N∑

α,β=1
α �=β

∫ ∫
d3rd3r′ψ∗

α(r)ψ∗
β(r′)v(r − r′)ψα(r)ψβ(r′)

(5.8)

one obtains the Euler–Lagrange equations of the variational problem (note
that the variational derivative gives two contributions from the double sum
of the interaction term)

(
− h̄2

2m
∆ + V (r) +

∫
d3r′

e2
∑

β �=α |ψβ(r′)|2

κ|r − r′|

)
ψα(r) = Eαψα(r). (5.9)

They have the form of (5.5) with an effective potential composed of the poten-
tial V (r) due to the periodic ion configuration and a contribution from the
electron–electron interaction, which can be identified as the Hartree poten-
tial: it describes the direct Coulomb interaction of the electron in the state α
with the charge distribution of all the other electrons. Remember, that in the
jellium model the Hartree contribution exactly compensates the jellium term,
to which V (r) simplifies in this case.

Three aspects are to be mentioned here: the Hartree potential for ψα

VH,α(r) =

∫
d3r′ e2

κ|r − r′|
∑

β �=α

occ

|ψβ(r′)|2 (5.10)

depends on all the other occupied single-particle states with β �= α with the
consequence that (5.9) can be solved only if the solutions (the eigenfunc-
tions) are known. How such a self-consistent solution can be achieved, will be
explained at the end of this section. Moreover, the Hartree potential depends
also on the state α, and one has to deal with equations containing different
potentials. Finally, as we know from Sect. 4.3, the product Ansatz does not
prevent double occupation of single-particle states, thus being in contrast with
the Pauli principle. Nevertheless, the Hartree approximation indicates in some
way, how to arrive at the effective single-particle potential we are looking for,
without reaching it.

In the next step, we assume ΨN in the form of a Slater determinant
as in (4.61) constructed from single-particle wave functions ψα(x), where x
comprises space and spin variables and α is a complete set of quantum num-
bers including spin, but proceed as before. By carrying out the variation
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(Problem 5.1) we arrive at the Hartree equations (5.9) augmented by an
additional term

Vx,α(r)ψα(r) = −
∫

d3r′v(r − r′)
∑

β �=α,‖
occ

ψ∗
β(r′)ψα(r′)ψβ(r). (5.11)

This exchange term results from the fact that the expansion of the Slater deter-
minant contains products of single-particle wave functions with interchanged
particle coordinates, which do not exist in the simple product Ansatz of the
Hartree approximation. Here, Vx,α(r) is not a simple potential acting as a fac-
tor on ψα(r) but a nonlocal integral operator, because ψα(r′) appears under
the integral. The ‖-sign in the sum under the integral indicates the restric-
tion to contributions from states β �= α with parallel spins and results from
the summation over the spin variables. We may include the contributions for
α = β in the Hartree and the exchange terms, which cancel each other, to
obtain the Hartree–Fock equations

(
− h̄2

2m
∆ + V (r) +

∫
d3r′n(r′)v(r − r′)

−
∫

d3r′nx
α(r, r′)v(r − r′)

)
ψα(r) = Eαψα(r). (5.12)

Here we have introduced the density

n(r) =
∑

β,occ

|ψβ(r)|2 (5.13)

and the Hartree–Fock (HF) or exchange density

nx
α(r, r′) =

∑

β,‖
occ

ψ∗
β(r′)ψα(r′)ψ∗

α(r)ψβ(r)

ψ∗
α(r)ψα(r)

. (5.14)

For free electrons with ψα(r) = eik·r/
√

Vc (here we denote the crystal volume
by Vc) (5.14) leads back to the results in Sect. 4.4 (Problem 5.2).

As the Hartree potential (5.10), also the exchange potential is state-
dependent and the HF equations have to be solved self-consistently. However,
by replacing the state-dependent HF density by its average over all occupied
states

nx
α(r, r′) ⇒ n̄HF(r, r′) =

1

N

N∑

α=1

nx
α(r, r′), (5.15)

we obtain an effective single-particle potential

V HF
eff (r) = V (r) +

∫
d3r′ e

2
(
n(r′) − n̄HF(r, r′)

)

κ|r − r′| . (5.16)
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which is the same for all electrons. Besides the electrostatic interaction with
the periodic ion configuration, it contains the electron–electron interaction in
approximate form. It should be noted, however, that although deriving from
the Ansatz with the Slater determinant, it is not exactly the HF approximation
because the averaging of the exchange density in (5.15) represents a non-
systematic step.

The question arises if one could go systematically beyond HF and con-
sider in Veff(r) correlation contributions besides exchange also as discussed in
Chap. 4. The answer to this question comes from the density functional theory

(DFT) [9, 122–126], which since its formulation in the sixties has developed
into the most frequently used concept in calculating the electronic structure of
atoms, molecules, and solids and earned in 1998 the Nobel prize in Chemistry
shared by Kohn and Pople. Here we outline the three essential steps of DFT:

1. The Hohenberg–Kohn1 theorem [127]
2. The Kohn–Sham equations [128]
3. The local density approximation (LDA)

The basic idea of the Hohenberg–Kohn theorem is that the ground state
energy of the N electron system for a given external potential (here that of the
periodic configuration of the ions V (r)) is a unique functional of the single-
particle density n(r). This idea is conceivable: when adding the electrons to
the external potential, they will arrange in a unique way to establish the state
with lowest energy. This state will be characterized by a many-particle wave
function Ψ0({rl}) and a single-particle density (the spin degree of freedom is
suppressed here)

n(r) =

∫
. . .

∫
d3r2 . . . d3rN |Ψ0(r, r2 . . . rN)|2, N =

∫
d3r n(r). (5.17)

The statement of the theorem is:

Let n(r) be the (inhomogeneous) single particle density for the ground state
of a system of interacting electrons in an external potential V (r) and let the
density n′(r) have the same relation to the external potential V ′(r). Then it
follows from n(r) = n′(r) that V (r) = V ′(r) up to a constant.

The proof of the theorem is indirect:

Assume two systems with external potentials V (r) �= V ′(r), which differ by
more than just a constant, but have identical densities n(r) = n′(r) in the
ground state. Then one has the ground state energies

E′
0 = 〈Ψ′

0|T + V ′ + U |Ψ′
0〉, E0 = 〈Ψ0|T + V + U |Ψ0〉 (5.18)

where T and U denote the kinetic energy and the electron–electron interaction,
respectively, and |Ψ0〉 and |Ψ′

0〉 the ground states of the system with external
potential V (r) and V ′(r), respectively. As |Ψ0〉 is not the ground state of
the system with the external potential V ′ (and |Ψ′

0〉 not that of the system

1 Walther Kohn *1923, shared the Nobel prize in chemistry 1998 with J. Pople.
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with V ), we may formulate the following relations

E′
0 < 〈Ψ0|T + V ′ + U |Ψ0〉 = E0 + 〈Ψ0|V ′ − V |Ψ0〉 (5.19)

and
E0 < 〈Ψ′

0|T + V + U |Ψ′
0〉 = E′

0 + 〈Ψ′
0|V − V ′|Ψ′

0〉. (5.20)

Due to the assumption of identical densities, the last terms in both relations
are identical (except for the sign) and by taking the sum of these expressions
we find the contradictory relation E0 + E′

0 < E0 + E′
0. Thus, the assumption

must be incorrect, while the statement of the theorem is correct. (We note
that this proof applies, if the ground state is not degenerate. A more general
proof was given by Levy [124].)

The Hohenberg–Kohn theorem can be formulated also by saying that for
the given external potential V (r) the exact ground state energy E0 is a unique
functional of the exact ground state density n(r):

E0 = 〈Ψ0|T + V + U |Ψ0〉 = EV [n(r)] . (5.21)

It tells us, that in order to find the ground state energy of the N -particle
problem with HN , it is not required to find the exact many-particle wave
function Ψ0 (which is a function of the coordinates of N electrons), it suffices
to find the exact single-particle density n(r) (which depends only on the
coordinates of one particle). Note, that the same statement as for the ground
state energy E0 can be made for the expectation value of any observable in
this state (and this includes also the response functions). One has to keep in
mind, however, that the theorem is restricted to the system ground state.

Now, the problem to be solved is to find E0 as minimum of the energy
functional

EV [n(r)] = T [n(r)] +

∫
V (r)n(r)d3r

+
e2

2

∫ ∫
n(r)n(r′)

κ|r − r′| d3rd3r′ + Exc[n(r)], (5.22)

where the first and last terms describe the exact functionals of the kinetic and
exchange–correlation energy, respectively, of the interacting electron system,
while the second and third term are the electrostatic energy of the electron
density en(r) in the external potential V (r) and the Hartree energy for this
charge density. In mathematical language (5.23) represents, for a given exter-
nal potential, a mapping of the densities onto the energies of which we have
to find the minimum. T [n] and Exc[n] are not exactly known and will be
considered in an approximate way, as outlined in the following.

The variational problem can be treated by assuming the representation of
the density by a complete set of single-particle wave functions
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n(r) =

N∑

α=1

|ψα(r)|2, 〈ψα|ψα〉 = 1, N =

∫
n(r)d3r. (5.23)

Taking the functional derivatives with respect to the ψ∗
α (which corresponds

to the variation with respect to the density n(r)) and assuming T [n] as for
non-interacting electrons

T [n(r)] ≃ T0[n(r)] =
∑

α

∫
ψ∗

α(r)

(
− h̄2

2m
∆

)
ψα(r)d3r (5.24)

one arrives at a set of Schroedinger equations for the single-particle
functions ψα

(
− h̄2

2m
∆ + V (r) +

∫
e2n(r′)

κ|r − r′|d
3r′ + Vxc(r)

)
ψα(r) = Eαψα(r), (5.25)

the Kohn–Sham equations. They have the form of (5.5), but are integro–
differential equations due to the fact that, because of

Vxc(r)ψα(r) =
δ

δn
Exc[n]

δn

δψ∗
α

, (5.26)

Vxc(r) is a nonlocal integral operator and we may write similar to (5.11)

Vxc(r)ψα(r) =

∫
d3r′Σxc(r, r′; Eα)ψα(r′). (5.27)

Here, Σxc(r, r′; Eα) is the exchange–correlation self-energy or mass operator.
In the last step, the Kohn–Sham equations can be reduced to the form of

(5.5) by applying the local density approximation (LDA) with the replacement

Exc[n(r)] ⇒ ELDA
xc [n(r)] =

∫
n(r)ǫxc

(
n(r)

)
d3r, (5.28)

where ǫxc(n) is the xc energy per electron of a homogeneous system with
density n. For each r of the inhomogeneous system (with external potential
V (r) �= const) the xc energy of the jellium model (Chap. 4) is taken with
the local density n = n(r). This allows one to write the xc term as a local
single-particle potential

V LDA
xc (r) =

d

dn

(
nǫxc(n)

)
n=n(r)

(5.29)

with ǫxc(n) = ǫxc(rs) from (4.150). Thus, we have found the effective single-
particle potential to be used in (5.5)

V LDA
eff (r) = V (r) +

∫
n(r′)v(r − r′)d3r′ + V LDA

xc (r). (5.30)
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The considerations of this section apply to any interacting fermion system
and external potential. The DFT-LDA has been and is currently applied to
atoms, molecules, and condensed matter. With the available computer power
it has become the dominant tool for solving quantum many-body problems.
The input with respect to the exchange–correlation energy comes from the
homogeneous electron gas (which accounts also for the replacement made in
(5.24)), which we have studied in detail in Chap. 4.

The DFT concepts have been refined to include spatial inhomogeneity
of the density in the xc energy (in the generalized gradient approximation),
spin polarization (in the spin or SDFT), and time dependent perturbations
(in the DFT perturbation theory, mentioned in Chap.3) [100, 123]. Also, the
restriction to the system ground state has been overcome by taking care of
the discontinuity of the correlation energy in its dependence on the quasi-
particle energy across the Fermi energy (quasi-particle corrections in the GW
approximation) for which we refer also to Chap. 7 [123, 129, 130]. But even
without the latter, the eigenvalues Eα of the Kohn–Sham equations with the
single particle potential (5.30) are usually taken as single particle energies not
only for states occupied in the ground state, but also for unoccupied states.
This identification is widely supported by the agreement between experimen-
tal mapping of the energy bands from photoelectron spectroscopy (PES) and
results from DFT calculations [131]. It should be noted, however, that this
agreement is not found for optical properties in semiconductors and insulators
due to the band gap problem: as it turns out, the separation between conduc-
tion and valence band states, as obtained from DFT-LDA calculations is too
small [130]. This discrepancy can be resolved systematically by considering
different xc energies for conduction and valence band states, as is done in the
already mentioned GW approximation.

As we have seen in this section, the Hartree, the Hartree–Fock, and the
effective LDA potential (5.30) depend on the solutions of the correspond-
ing Schroedinger equations. For this type of problem an iterative procedure
applies: for the given external potential one has to choose a single-particle
density n0(r) to start with, calculate the Hartree and LDA contributions and
solve the Schroedinger equation. The occupied states of this solution define a
density n1(r), which in general will be different from n0(r) and is taken to cre-
ate a modified Hartree and LDA potential. With these modified potentials (or
a mixture with the potential of the previous step) the Schroedinger equation
is solved again and the procedure is repeated until the calculated densities (or
energy eigenvalues) for two successive iteration steps are reproduced within
desired limits of accuracy. At this level, the obtained single-particle energies,
wave functions and the potential to which they contribute via the occupied
states are self-consistent.
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5.2 Bloch Electrons and Band Structure

In the previous section we have reduced the many-body problem of the
electrons in a solid to the single-particle problem

Hψα = Eαψα , H = − h̄2

2m
∆ + Veff(r) (5.31)

with the periodic effective potential

Veff(r + R0
n) = Veff(r). (5.32)

The periodicity of the potential means invariance of the Hamiltonian under
lattice translations

[H, TR0
n
] = 0 , with TR0

n
= e−

i
h̄

p·R0
n (5.33)

and the momentum operator p. The properties

TR0
n
ψα(r) = ψα(r − R0

n) and |TR0
n
ψα(r)|2 = |ψα(r)|2 (5.34)

of the translation operator allow one to write

TR0
n
ψk(r) = e−ik·R0

nψk(r) (5.35)

where the phase factor, the eigenvalue of the translation operator, is charac-
terized by the wave vector k (note that h̄k is the eigenvalue of the momentum
operator p). Due to the property (5.35) the eigenfunctions of (5.31) can be
split into an exponential and a lattice periodic function

ψk(r) = eik·ruk(r) , uk(r + R0
n) = uk(r). (5.36)

This form, a modulated plane wave, is characteristic of electrons in a peri-
odic lattice: the Bloch2 function. It is schematically depicted in Fig. 5.1. The

r

ψ ( )r
k

Fig. 5.1. Schematic view of a Bloch function (solid line) and its plane wave part
(dashed line), the dots mark the lattice points

2 Felix Bloch 1905–1983, Nobel prize in Physics 1952.
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characterization of the Bloch function by the wave vector is unique within
the 1st Brillouin zone, because the phase factor in (5.35) is the same for all k

differing by a reciprocal lattice vector.
For a given k, the eigenvalue equation (5.31) has in general an infinite

set of independent solutions, which are distinguished by an energy quantum
number, the band index n. Thus the solutions of (5.31) are classified by the
complete set of quantum numbers α = (n, k) (a spin quantum number can be
added where required)

(
− h̄2

2m
∆ + Veff(r)

)
ψnk(r) = En(k)ψnk(r) (5.37)

and the energy eigenvalues En(k) for all n and k from the 1st Brillouin zone
define the energy band structure of electrons in a periodic potential. By apply-
ing periodic boundary conditions, one can easily verify, that there are as many
different k in the Brillouin zone as there are unit cells in the crystal volume.
Thus, each energy band can accommodate one electron of either spin per
Wigner–Seitz cell (Problem 5.3).

Supplement: Symmetry of En(k):

Besides the translation symmetry En(k) = En(k+G) considered already by restrict-
ing k to the first Brillouin zone, there are other symmetries of the problem according
to which the band structure repeats within the Brillouin zone.

1. Due to time reversal invariance the Hamiltonian is hermitian, H = H†, i.e., it is
real and we may write the complex conjugate equation to (5.37)

Hψ∗
nk = En(k)ψ∗

nk . (5.38)

The complex conjugate Bloch function ψ∗
nk , written in the form of (5.36), is

characterized by a phase factor with −k and belongs to the solutions of (5.37)
in the form

Hψn−k = En(−k)ψn−k . (5.39)

Both these equations are eigenvalue equations for the same operator and yield
the same spectrum. If we consider the electron spin (whose direction changes
under time inversion) as additional quantum number, we may write

{En↑(k) , all n} = {En↓(−k) , all n} , (5.40)

where the curly brackets denote the whole set of eigenvalues. This degeneracy,
following from time reversal symmetry, is known as Kramers degeneracy.

2. We mentioned already in Chap. 1 the symmetry of the periodic lattice under the
operations S of the point group, which now means invariance of the Hamiltonian
of (5.37)

[H, S] = 0 , or SHS−1 = H. (5.41)

Application of the point group operation S to the wave function ψ(r) changes r

into S−1r and we may write
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Sψnk(r) = ψnk(S−1
r) = eik·(S−1r)unk(S−1

r) (5.42)

which because of k · (S−1r) = Sk · r means that the Bloch function (5.42) is one
with wave vector Sk and we conclude, as for the time reversal symmetry, that

{En(Sk) , all n} = {En(k) , all n} . (5.43)

Thus, the energy band structure reflects completely the point group symmetry
of the crystal structure. This property of the band structure can be exploited
in performing sums over k, which can be restricted to the so-called irreducible
wedge of the Brillouin zone.

3. Consider a combination of 1 and 2: if time reversal invariance combines with the
point group symmetry, we have for operations S with Sk = −k that

{En↑(k) , all n} = {En↓(k) , all n} . (5.44)

In contrast to (5.40), this situation with the up and down spin states of a given
k having the same energy, is called spin degeneracy.

Let us have a look back to the beginning of this chapter with the N
electron Hamiltonian (5.2) as starting point. Within the DFT concepts we
have reduced this many-particle problem to a single-particle one (of course
with the restrictions already mentioned). Nevertheless, we can formulate HN

in an approximate way (compare with (4.94))

HN ≃
∑

nk

En(k)c†nkcnk (5.45)

by making use of the band structure and by introducing fermion creation and
annihilation operators c†nk and cnk with

{c†nk, cn′k′} = c†nkcn′k′ + cn′k′c†nk = δnn′δkk′ . (5.46)

In this approximate formulation, the electron–electron interaction is incor-
porated in the single-particle properties and we may address these Bloch
electrons as the quasi-particles of the density functional theory.

5.3 Almost Free Electrons and Pseudo-Potentials

Starting with this section we present concepts of band structure calculations
which are outlined in many textbooks of Solid State Theory [11, 121, 132–134].
The task is to solve the Schroedinger equation (5.37)

(
− h̄2

2m
∆ + Veff(r)

)
ψnk(r) = En(k)ψnk(r) (5.47)

for Bloch electrons with

ψnk(r) = eik·runk(r). (5.48)

The simplest possible concept is to make use of the periodicity of unk(r)
and expand it in the complete set of normalized plane waves with reciprocal
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lattice vectors G

ψnk(r) =
∑

G

Cnk(G)
1√
Vc

ei(k+G)·r. (5.49)

The problem of solving (5.47) consists in finding the expansion coefficients
Cnk(G). For this purpose we use the expansion (5.49) in (5.47), multiply
from left with a normalized plane wave with k + G′, and integrate over the
crystal volume Vc. This leads to a set of coupled homogeneous linear equations

∑

G

{( h̄2

2m
(k + G)2 − E

)
δGG′ + V (G − G′)

}
Cnk(G) = 0. (5.50)

The first term results from the operator of kinetic energy and the orthogonal-
ity of the plane waves, the second is the Fourier component of the effective
potential

V (G − G′) =
1

Vc

∫
Veff(r)ei(G−G′)·rd3r. (5.51)

The energy eigenvalues are obtained from the secular problem

∥∥∥∥
( h̄2

2m
(k + G)2 − E

)
δGG′ + V (G − G′)

∥∥∥∥ = 0. (5.52)

The efficiency of this concept depends essentially on the convergence of the
plane wave expansion (5.49) or on the strength of the periodic potential in
terms of its Fourier coefficients. When looking at Fig. 5.1 it is conceivable
that a strong modulation of the Bloch function (caused by a strong potential)
requires more terms in the plane wave expansion than a Bloch function with
a weak modulation. In general, one can say that the plane wave expansion is
expected to work well if in the secular problem (5.52) the kinetic energy terms
(the diagonal terms of the matrix) dominate over the (non-diagonal) potential
terms. This is the case for almost free electrons, for which the periodic poten-
tial acts as a weak perturbation. In fact (5.52) represents an expression of first
order perturbation theory applied to the free electron states and leads to a
Brillouin–Wigner perturbation expansion. The anticipation of a weak periodic
potential and the occupation of the lowest bands deriving from a free electron
parabola with the valence electrons, is consistent with the idea put forward
at the beginning of this book that the constituents of the solid are ions and
valence electrons. But we have not yet shown how this concept is considered
in the effective potential.

Intuitively, the potential of an ion seen by a valence electron is that of a
screened uncompensated charge outside of the closed shell radius but approx-
imately zero (due to charge compensation) inside of this shell. This leads to
the model of an empty core potential

Vec(r) =

{
0 r < Rc

− Ze2

4πε0r e−kFTr r > Rc
(5.53)
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ecV  (r) v  (q)ec

r q 

Rc

Fig. 5.2. Empty core pseudo-potential and its Fourier transform (the arrows
indicate the length of reciprocal lattice vectors)

where Z is the ion charge, Rc the core radius, and kFT the inverse
Thomas–Fermi screening length (see Problem 4.11). This potential is depicted
in Fig. 5.2 together with its Fourier transform

vec(q) = − Ze2

ε0(q2 + k2
FT)

cos qRc =
vion(q)

ε(q)
, (5.54)

which can be expressed as the ion potential vion(q) = −Ze2/4πε0q
2 divided

by the dielectric constant ε(q) in the Thomas–Fermi approximation. Charac-
teristic values of the parameters Z, Rc, and kFT, yield values for the Fourier
coefficients of the periodic potential of a few tenths of the Rydberg energy,
which can in fact be considered as a perturbation on the scale of the free
electron energies (which are of the order of 1Ry).

The empty core potential is a prototype pseudo-potential adapted to the
anticipated construction of the solid out of ions and valence electrons [134,
139]. If we had started from nuclei and all electrons, then the effective single-
particle potential would have the characteristic form depicted in Fig. 2.1 with
strong attractive parts close to the nuclei. Such a potential would have strong
Fourier coefficients up to large reciprocal lattice vectors, which are required
to obtain a converging representation, especially of the most strongly bound
electrons in the inner shell. But as already discussed, these electrons are not
relevant for solid state properties and we are interested here only in the valence
electrons. In view of the all-electron problem, the valence electrons are in
states which are orthogonal to those in closed shells and we can understand the
problem of calculating the band structure as that of looking for eigensolutions
of the all-electron Hamiltonian in that part of the Hilbert space, which is
orthogonal to the core states. This view opens the principle access to pseudo-
potentials.

Let us expand for this purpose the Bloch function ψnk(r) = 〈r|nk〉 in
terms of plane waves 〈r|k + G〉 which by construction are made orthogonal
to the core states

|nk〉 = (1 − P)|nk〉PW, |nk〉PW =
∑

G

Cnk(G)|k + G〉, (5.55)
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where
P =

∑

ν∈core

|νk〉〈νk| (5.56)

is the projection operated onto the core Bloch states (see (5.67)). Mak-
ing use of this expansion in the eigenvalue problem with the single-particle
Hamiltonian but with all electrons considered in the periodic potential Vall,
one finds

Hall|nk〉 =

(
p2

2m
+ Vall −

∑

ν∈core

Eν |νk〉〈νk|
)
|nk〉PW

= E

(
1 −

∑

ν∈core

|νk〉〈νk|
)
|nk〉PW. (5.57)

An eigenvalue equation for this expansion is obtained by rearranging (5.57)
in the form

(
p2

2m
+ Vall +

∑

ν∈core

(E − Eν)|νk〉〈νk|
)
|nk〉PW = E|nk〉PW (5.58)

with the nonlocal pseudo-potential operator

Vpsp = Vall +
∑

ν∈core

(E − Eν)|νk〉〈νk|. (5.59)

By construction, the solutions of (5.58) are orthogonal to the core electron
states and yield the electron states of valence and conduction bands. When
taking the expectation value of the nonlocal operator with |nk〉PW one finds
(note, that we calculate valence electron states with E > Eν)

∑

ν∈core

(E − Eν)|〈νk|nk〉PW|2 > 0, (5.60)

i.e., the additional potential cancels (partially) the attractive potential of the
nuclei and converts the all electron potential into a weak pseudo-potential. In
this sense, the effective potential in (5.47) is to be understood as a pseudo-
potential and we can safely assume, that the plane wave expansion converges
with reasonable effort.

Initially, the Fourier coefficients of the pseudo-potentials have been used as
empirical parameters [134, 139] which were determined by fitting a calculated
band structure to experimental data, such as Fermi surface parameters or
energy gaps. In the course of time, the pseudo-potential concepts have been
developed and it is now possible to perform ab initio band calculations which
make use of so-called norm conserving and soft pseudo-potentials, which are
free of adjustable parameters [140, 141].

Instead of treating the full problem of solving (5.52), we may look for
situations where the free electron picture, with the parabolic dispersion of the
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Fig. 5.3. Free electron energy bands in one dimension: extended and repeated zone
scheme

energy, is only slightly perturbed by the periodic potential. Figure 5.3 shows
the free-electron band structure for a one-dimensional system without periodic
potential but with the periodicity taken into account by introducing Brillouin
zone boundaries. Due to the translation symmetry, the energy dispersion is
periodic in k with periods 2π/a, i.e., the free-electron parabola may start at
each value 2nπ/a with integer n. In order to avoid the redundancy in this
repeated zone scheme, it is sufficient to consider the dispersion only in the
first Brillouin zone (reduced zone scheme). This picture of the reduced zone
scheme can be obtained also from the parabola starting at 0, by shifting those
parts, which are outside the first Brillouin zone, by multiples of 2π/a to bring
them back to this zone. This concept is not restricted to the free electron
dispersion in 1D but applies as well to any realistic band structure not only
of electrons (see e.g., the situation in Problem 3.1 for the linear chain, when
the two masses become equal).

Coming back to the secular problem (5.52) we recognize in Fig. 5.3 degen-
eracies of the free-electron energy dispersion at the Brillouin zone boundaries
and in its center, e.g., the parabolas starting at 0 and at 2π/a cross at k = π/a.
Writing the secular problem for the corresponding states one obtains

∥∥∥∥∥∥

E(k) − E V (G)

V (G) E(k − G) − E

∥∥∥∥∥∥
= 0 , G =

2π

a
, (5.61)



134 5 Electrons in a Periodic Potential

where E(k) is the kinetic energy of free electrons, with the zeros

E±(k) =
1

2

(
E(k) + E (k − G)

)

±
{

1

4
(E(k) − E (k − G))

2
+ |V (G)|2

}1/2

. (5.62)

For k = π/a one has E(k) = E(k − G) = h̄2/2m
(
π/a

)2
and

E±

(π

a

)
=

h̄2

2m

(π

a

)2

±
∣∣∣∣V
(

2π

a

)∣∣∣∣ . (5.63)

The effect of the periodic potential is to remove the degeneracy of the free
electron states (here at the boundary of the Brillouin zone) and to create
an energy gap or band gap in the otherwise continuous spectrum. The gap is
determined by a Fourier coefficient of the potential for the reciprocal lattice
vector connecting the degenerate plane waves. The dispersion of the lowest
energy bands E±(k) around k = π/a is shown in Fig. 5.4 together with the
corresponding free electron dispersion (thin dashed lines).

In general, the reciprocal lattice vectors of degenerate plane waves fulfill
the Bragg condition (Problem 5.4), thus the plane waves being reflected at the
crystal planes is characterized by the reciprocal lattice vector form standing
waves. This becomes evident by looking at the eigenfunctions. In our simple
example with the energies of (5.63), they take the form

ψ+ π
a
(x) ∼ i sin

πx

a
and ψ−π

a
(x) ∼ cos

πx

a
(5.64)

and their modulus shows minima (maxima) at the lattice points, which leads
to the raising (lowering) of the energy due to the periodic potential in com-
parison with the free electron case. (Note that the potential is attractive for
electrons in the vicinity of the ion positions.) The energy gaps and the hori-
zontal slope of energy bands (preferentially) at the boundary of the Brillouin

E

π/2a π/ak

Fig. 5.4. Opening of a gap at the Brillouin zone boundary due to a periodic potential
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Fig. 5.5. Brillouin zones of the two-dimensional square lattice and Fermi contours

zone, which corresponds to a vanishing group velocity, are the most prominent
features of the energy band structure.

Let us now proceed to the situation of a 2D square lattice and look at the
Fermi contours as depicted in Fig. 5.5. In the left part, we recognize the recip-
rocal lattice points and the construction lines for the Brillouin zones: the solid
lines mark the central square of the first Brillouin zone (first BZ); the dashed
lines, augmenting the first BZ to a square of double size, mark the second
Brillouin zone. The four triangles outside of the first BZ can be rearranged
by translations with reciprocal lattice vectors to form a square reproducing
the 1st BZ as indicated in the right upper part of Fig. 5.5. The third BZ is
obtained from the dash-dotted smaller triangles which again can be rearranged
to a square of the size of the first BZ around the M point (see lower right part
of Fig. 5.5). The free-electron dispersion in the extended zone scheme (Fig. 5.5,
left) is a paraboloid with its minimum at the Γ point or k = (0, 0). In the
presence of a 2D periodic potential, (causing the square lattice with lattice
constant a) this continuous energy dispersion will be deformed in the vicin-
ity of the Brillouin zone boundaries in connection with the opening of gaps
(Problem 5.5).

Instead of looking at the band dispersion, we want to discuss here the con-
sequences of the Fermi circle shown in the left part of Fig. 5.5 for an assumed
electron density, i.e., the area inside this circle defines the occupied states of
the free-electron dispersion at T = 0 K. When constructing the Brillouin zones
the Fermi circle, breaks into pieces which by rearrangement of the extended
to the reduced zone scheme, give the grey areas indicating occupied states in
different bands. The first BZ or the lowest energy band is completely occupied,
the second and third band (plotted for a BZ around the point M) are only par-
tially filled and the grey areas are only faintly reminiscent of deriving from a
circle. In the presence of a weak periodic potential, these contours, which sep-
arate the empty from the occupied states, are distorted when the gaps open
at the BZ boundaries. These Fermi contours (which in 3D become Fermi
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Fig. 5.6. Free electron energy bands in an fcc lattice

surfaces) can experimentally be detected by analyzing the quantum oscil-
lations of the magnetic susceptibility (deHaas–vanAlphen effect) or of the
magneto-resistivity (Shubnikov–deHaas effect). These methods are of central
importance in band structure investigations of metals.

Modern semiconductor technology has led to man-made two-dimensional
electron systems (see Sect. 5.6) with a periodic potential (lateral surface super-
lattices). The band structure of these systems and their Fermi contours have
been analyzed with the band theory of almost free electrons in two dimensions
[135].

Let us look at the 3D case. The free electron dispersion in a fcc lattice
shown in Fig. 8.6 (Problem 5.6) will serve as the basis to understand in the
following some of the electronic properties of a noble metal (Ag), a normal
(trivalent) metal (Al), and a semiconductor (Si). The free electron parabola,
starting at the Γ point is backfolded to account for Bragg reflection at the BZ
boundaries. These backfolded branches can be understood also in the repeated
zone scheme as deriving from parabolas starting at reciprocal lattice vectors
G. Some of these branches are degenerate. The characteristic energy scale
(and the length of the axes) changes with the lattice constant, but is typically
of the order of the Rydberg energy. A weak potential with Fourier coefficients
of a few tenths of the Rydberg energy slightly changes this picture by lifting
degeneracies (seen here e.g., along the line Γ − K − X) and opening gaps as
depicted in Fig. 5.7 for Al. The density of states for these energy bands, shown
in Fig. 5.8, exhibits the similarity with the square root dependence (dashed
line) found for free electrons, while the energy gaps are responsible for the
deviations seen in the solid curve.

Imagine the filling of these states with electrons: in the free electron pic-
ture we have the Fermi sphere in k space, which is mapped onto the band
structure in the reduced zone scheme, where each band can accommodate two
electrons per atom in the unit cell (see Problem 5.3). For a monovalent metal
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(like Ag), this leads to a half filled lowest band and the Fermi energy cuts the
band structure in a region away from zone boundaries where the free elec-
tron dispersion is almost unchanged by the periodic potential. In this case,
the Fermi surface more or less maintains its spherical shape as for free elec-
trons. Nevertheless, depending on the lattice constant, the Fermi contour can
come sufficiently close to the BZ boundaries which (for an fcc lattice around
the L points) are closest to the Γ point and one finds the situation shown in
Fig. 5.9. It exhibits the Fermi surface of Ag (representative of the noble met-
als) in the repeated zone scheme. The Fermi sphere is distorted here by the
formation of necks close to the L points as a consequence of gap formation. In
deHaas–vanAlphen measurements for different orientations of the magnetic
field, the extremal cross sections of the Fermi surface perpendicular to the
magnetic field (indicated as N for neck, B for belly, and DB for dumb–bell in
Fig. 5.9) are detected by the periods of their corresponding oscillations (see
discussion at the end of Sect. 4.2).
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Fig. 5.9. Extended zone scheme with Fermi surfaces and extremal cross sections
(see text) of Ag after [136]
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Fig. 5.10. Fermi surfaces of Al in the second and third Brillouin zone after [137]

For the trivalent metal Al the Fermi energy is indicated in Fig. 5.7. All
states of the lowest band (or the first BZ) are filled, while the states in the
second and third band are only partially filled. The Fermi contours, derived
from the Fermi sphere of the free electrons for these bands, are depicted
in Fig. 5.10. They will be slightly changed (essentially by rounding off the
sharp edges) by gap formation due to the periodic potential. Looking at these
strange surfaces, one can imagine that their analysis from deHaas–vanAlphen
oscillations, which correspond to extremal cross sections of the Fermi surface
perpendicular to the applied magnetic field (see Sect. 4.2), can be quite an
involved task.

The last example to be presented in the context of Fig. 8.6 is the band
structure of Si. It crystallizes in the diamond structure with two atoms with
each four electrons per unit cell. The structure factor of diamond differs from
that of the simple fcc lattice and as a consequence, the non-vanishing Fourier
components of the periodic potential and the gap structure are different
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(Problem 5.7). This is clearly seen by comparing the band structure of Si
(Fig. 5.11) with that of Al (Fig. 5.7) which both derive from the free electron
dispersion of the fcc lattice (Fig. 8.6). The eight valence electrons per unit
cell in Si, fill the four lowest energy bands in Fig. 5.11 (the valence bands),
which are separated from the empty conduction bands by an energy gap, which
extends throughout the BZ.

This particular situation of the energy band structure with a gap sep-
arating the occupied from the unoccupied states, i.e., the Fermi energy is
somewhere in the gap, characterizes the system as a semiconductor or insu-

lator depending on the size of the gap compared to the thermal energy kBT .
At room temperature, and for gap energies around 1 eV (typical for semicon-
ductors like Si) free carriers can be thermally excited and become available
for electrical transport, while these solids would be insulating at low tem-
peratures. This band structure is responsible also for a characteristic optical
property of semiconductors: at low temperature, light can be absorbed only
for hν > Egap by creating electron–hole pairs (see Chap. 10).

5.4 LCAO and Tight-Binding Approximation

An alternative approach to solve (5.47) starts from the isolated atom, for
which we may formulate the Schroedinger equation

(
− h̄2

2m
∆ + v(r)

)
φν(r) = Eνφν(r) (5.65)

with an effective single-particle potential v(r) of the isolated atom. When
arranging the atoms to a solid we can imagine the effective single-particle
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potential of the solid emerging from a superposition of the atomic potentials

Veff(r) =
∑

n

v(r − R0
n), (5.66)

while the overlapping atomic orbitals form Bloch functions

ψνk(r) =
1√
N

∑

n

eik·R0
nφν(r − R0

n), (5.67)

which can be used as a complete set for the expansion

ψnk(r) =
∑

ν

Cnνψνk(r). (5.68)

It is a linear combination of atomic orbitals (LCAO). In contrast to the plane
wave expansion used in Sect. 5.3, which exploited the periodicity and weakness
of the effective potential, is the LCAO expansion intimately related to the
atomic orbitals of valence electrons, which are distorted in the crystalline
environment.

We make use of the expansion (5.68) in (5.47) to determine the expansion
coefficients Cnν . The lhs of (5.47) can be written

H ψnk(r)

=
∑

ν

Cnν
1√
N

∑

n

eik·R0
n

(
− h̄2

2m
∆ +

∑

n′

v(r − R0
n′)
)
φν(r − R0

n)

=
∑

ν

Cnν
1√
N

∑

n

eik·R0
n

(
Eν +

∑

n′ �=n

v(r − R0
n′)
)
φν(r − R0

n). (5.69)

To arrive at the last line, the solution of (5.65) has been used for the lattice
site R0

n. By multiplying from the left with ψ∗
ν′k and integrating over the

crystal volume, one obtains a set of homogeneous coupled linear equations
for the Cnν . In contrast to the plane wave expansion the basis set used here,
the atomic orbitals φν(r − R0

n), are not orthogonal when centered around
different lattice sites. Thus, one has to calculate (making use of the lattice
periodicity)

1

N

∑

n′n

eik·(R0
n−R0

n′ )

∫
φ∗

ν′ (r − R0
n′)φν(r − R0

n)d3r

=
1

N

∑

m

∑

n

eik·R0
n

∫
φ∗

ν′(r)φν(r − R0
n)d3r

= δνν′ +
∑

n�=0

eik·R0
nSν′ν(R0

n) =: Sν′ν(k) (5.70)
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with the two-center overlap integral

Sν′ν(R0
n) =

∫
φ∗

ν′ (r)φν(r − R0
n)d3r. (5.71)

These integrals depend on the relative position of the centers and on the
spatial orientation of the atomic orbitals. Their value decreases with increasing
separation of the centers, because the orbitals are localized around the lattice
sites.

The terms containing the atomic potentials depend in general on three
centers

1

N

∑

m

∑

n

eik·(R0
n−R0

m)
∑

n′ �=n

∫
φ∗

ν′(r − R0
m)v(r − R0

n′)φν(r − R0
n)d3r.

(5.72)

Because the atomic orbitals and the atomic potential decrease rapidly away
from their respective centers, these integrals will be small if the three centers
are different from each other. A reasonable approximation is to consider only
terms where two of the three centers coincide. They can be written

Kν′ν =
∑

n

∫
φ∗

ν′(r)v(r − R0
n)φν (r)d3r (5.73)

for m = n �= n′ and

Jν′ν(k) =
∑

n

eik·R0
n

∫
φ∗

ν′ (r − R0
n)v(r − R0

n)φν(r)d3r (5.74)

for m �= n = n′. As for the two-center overlap integral these expressions
are obtained by making use of the periodicity of the lattice. The term Kν′ν ,
which does not depend on the wave vector k, describes the effect of the off-
center atomic potentials on the orbitals at the origin. This crystal field term

accounts for the lowering of the rotational symmetry of the isolated atom
(according to which atomic orbitals can be classified by angular momentum
quantum numbers) in the crystalline environment. It can lead to a removal
of degeneracy of atomic orbitals which is known as crystal field splitting

(Problem 5.8).
The term Jν′ν(k) is similar to the overlap integral Sν′ν(k) except for the

additional potential under the integral. It contributes together with Sν′ν(k)
to the formation of energy bands. The eigenvalue problem can now be written

∑

ν

Cnν

(
Hν′ν(k) − ESν′ν(k)

)
= 0 (5.75)

with the Hamiltonian matrix

Hν′ν(k) = EνSν′ν(k) + Kν′ν + Jν′ν(k) (5.76)
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and the eigenvalues are obtained from the secular equation

‖Hν′ν(k) − ESν′ν(k)‖ = 0. (5.77)

This secular problem deviates from the standard form because of the over-
lapping atomic orbitals. It can be shown, that due to the properties of the
overlap matrix, one can find a unitary transformation to reduce (5.77) to the
standard form (Problem 5.9). Frequently, the problem is further simplified by
considering in the sum over the lattice sites n only nearest neighbors (which
is justified for sufficiently tightly bound atomic orbitals). This tight-binding

approximation will be used in the following examples.

Supplement: Energy bands in tight-binding approximation:

Let us assume in all these examples the simplified form of the secular problem (5.77)
with Sν′ν(k) ≃ δν′ν (see Problem 5.9).

1. The simplest example is the energy band in a cubic lattice that derives from an
atomic s orbital. For this case ν = ν′ = s and the energy band is immediately
given by Es(k) = Hss(k) ≃ Es+Jss(k). Note that the s orbital is not degenerate
(except for spin) and the crystal field causes only a shift which can be absorbed
in the zero of the energy scale. Let us evaluate Jss(k) by summing up the nearest
neighbors in a fcc lattice, which under normal conditions is the crystal structure
of normal and noble metals. The 12 nearest neighbors are

R0
n : a

2
(±1,±1, 0), (±1, 0,±1), (0,±1,±1)
(±1,∓1, 0), (±1, 0,∓1), (0,±1,∓1).

(5.78)

Due to the spherical symmetry of the s orbital, the matrix element Jss(R
0
n) does

not depend on the individual lattice vector but only on the nearest neighbor
distance a/

√
2 and one finds

Es(k) = Es + 12Jss

( a√
2

)
f(k) (5.79)

with

f(k) =
1

3

(
cos

kxa

2
cos

kya

2
+ cos

kya

2
cos

kza

2
+ cos

kza

2
cos

kxa

2

)
. (5.80)

The function f(k) is characteristic of the crystal structure (Problem 5.10), while
the overlap of the atomic orbital together with the strength of the atomic poten-
tial, determines the value of the matrix element Jss. The energy band (for
obvious reasons called s band) is depicted in Fig. 5.12 for the lines Γ − X and
Γ − L. The width of the band is determined by the matrix element Jss(a/

√
2),

which for a → ∞ decreases to zero and the band shrinks to the discrete level
at Es of the isolated atom. This band exhibits a clear similarity with the low-
est band of the free electron dispersion in Fig. 8.6, if we take into account that
a periodic potential gives rise to gaps around the points X and L, leading to
Fig. 5.7. This similarity indicates the strong influence of the crystal structure
on the energy bands.
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Fig. 5.13. Polar diagrams of atomic orbitals at nearest neighbors for a fcc transi-
tion metal (left) and schematic of energy bands along Γ − X resulting from s − d
hybridization (right)

2. Transition metal atoms differ from those of normal (and noble) metals by the
successive filling of d electron states, which are energetically close to the s level
of the valence shell. In a solid, when bands are formed due to the wave function
overlap, these bands deriving from s and d states fall into the same energy range
and intersect each other. This situation can well be described in the tight-binding
approximation. We choose ν, ν′ = s, d to account for the configuration of the 3d
transition metals (e.g., Fe:4s23d6). For simplicity we assume here, besides the
s orbital (shown as polar plot in Fig. 5.13, left part, placed at the origin) only
the d orbital with the spatial dependence 3z2 − r2 (in Fig. 5.13 at the nearest
neighbor site) and consider the dispersion along k = (0, 0, k).
With the simplifying assumption Sν′ν = δν′ν the secular problem (5.77) takes
the form

∥∥∥∥
Hss(k) − E Hsd(k)

Hsd(k) Hdd(k) − E

∥∥∥∥ = 0 (5.81)

with the solutions
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E±(k) =
1

2

(
Hss(k) + Hdd(k)

)
±
{1

4

(
Hss(k) − Hdd(k)

)2
+ |Hsd(k)|2

}1/2
.

(5.82)

Here Hss(k) (and similarly Hdd(k) and Hsd(k)) takes the form

Hss(k) = Es + 4Jss

(
1 + 2 cos

ka

2

)
. (5.83)

Without the s−d coupling one gets two similar bands deriving from the s and d
orbitals. Their width depends on the corresponding two-center overlap integral
Jνν , ν = s, d. In Fig. 5.13 we have depicted in the left part the polar diagrams
of two orbitals on neighboring lattice sites. If s orbitals are considered on both
sites one obtains a significantly larger overlap than from d orbitals (which are
stronger localized to the atomic site). Consequently, the s band is much broader
than the d band as depicted by the dashed lines in the right part of Fig. 5.13.
The overlap between s and d orbitals (described by Hsd(k)) leads to a coupling
and an anti-crossing of these bands as shown by the solid lines in Fig. 5.13. It
is known as s − d hybridization and is typical for transition metals. A similar
situation can be found for rare earths due to hybridization with f orbitals.
The energy bands for some of the 3d transition metals, as obtained from a
realistic band structure calculation, are shown for k‖(001) in Fig. 5.14. Note the
crystal field splitting of the d bands, which at the Γ point leads to a twofold
(Γ12) and a threefold (Γ25′ ) state (see Problem 5.8). The group theoretical
notation refers to the irreducible representations of the point group. The crystal
structure changes with the filling of the d shell, it is body-centered cubic for V
and Fe but face-centered cubic for Co and Cu. With the filling of the d shell
the corresponding bands get narrower and shift to lower energy until for Cu
(Fig. 5.15) they are all below the Fermi energy. In Fig. 5.15 one easily identifies
the broad band deriving from the s-orbitals, which is reminiscent of the free
electron band of Fig. 8.6. But one also recognizes the small distortions of this
band close to the L point at the Fermi energy, which leads to the necks of the
almost spherical Fermi surface (see Fig. 5.9).

3. Hybridization can take place not only due to overlap of atomic orbitals at
different lattice sites but also due to linear combinations of different orbitals
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at the same lattice site. It leads to directed orbitals, which are important in
covalent binding. Let us consider the secular problem (5.77) with the orbitals
ν, ν′ = s, px, py, pz but use instead their linear combinations

φ111 =
1

2

(
φs + φpx + φpy + φpz

)

φ1−1−1 =
1

2

(
φs + φpx − φpy − φpz

)

φ−11−1 =
1

2

(
φs − φpx + φpy − φpz

)

φ−1−11 =
1

2

(
φs − φpx − φpy + φpz

)
. (5.84)

A polar diagram of the orbital φ111 and how it is composed of the s and p orbitals
is depicted in the left part of Fig. 5.16. Just by accounting for the signs of the
latter, it is clear that the resulting orbital has a pronounced positive lobe in the
(111) direction, which is the direction towards one of the four nearest neighbors
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in the diamond structure. Likewise, the other orbitals point to the direction of
the other nearest neighbors. These directed orbitals, called sp3 hybrid orbitals,
are favorable for establishing a network with tetrahedral coordination based on
covalent bonds as realized in the diamond structure.
In the same way sp2 hybrid orbitals can be used to establish planar networks
based on covalent bonds as in graphite. In this case the pz orbitals sticking out
of the plane form π bonding and anti-bonding orbitals, which lead to a peculiar
band structure with vanishing gap (Problem 5.11). The band structure of this
planar network of carbon atoms (graphene) is the basis also for the electronic
structure of carbon nanotubes, which result from rolling up the carbon sheets
into cylinders.
For the diamond structure, which we pursue here, there are two atoms in the
Wigner–Seitz cell with each four directed sp3 hybrid orbitals, which can be
superimposed, as depicted in the right part of Fig. 5.16, such that the positive
lobes overlap in the nearest neighbor direction or with the opposite signs to
form bonding and anti-bonding orbitals, respectively,

φ±
ν (r) =

1

N±

{
φ+ν

(
r +

τ

2

)
± φ−ν

(
r − τ

2

)}
. (5.85)

Here ±τ/2 are the positions of the two atoms in the Wigner–Seitz cell and ±ν
refers to the directions of the positive lobes of the sp3 hybrid orbitals, which
change sign between the nearest neighbor sites. In order to calculate the band
structure, Bloch functions have to be composed of these bonding and anti-
bonding orbitals and in general, an 8 × 8 secular problem has to be solved.
The bonding orbitals yield the valence bands, the anti-bonding orbitals the
conduction bands. Both groups are separated by an energy gap and we obtain
the characteristic band structure of a semiconductor.
As an example, the valence bands of Ge calculated by diagonalising the 4 × 4
matrix for the four bonding orbitals with nearest and next nearest neighbor
interaction are shown in Fig. 5.17. These bands exhibit a strong similarity with
those of Fig. 5.11 obtained from a pseudo-potential calculation. It is interesting
also to look at the spatial electron distribution

ΧΓ

–8

–6

–4

–2

Γ

0

–12

–14

–10

KL

L2

L1

L3’
Γ25’

Γ1

Χ4

Χ1

e
n
e
rg

y 
 [
e
V

]

Fig. 5.17. Valence band dispersion (Ge) from an LCAO calculation with nearest
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Fig. 5.18. Contour plots of the valence electron charge density of Si showing the
bond charge: experiment (left), theory (right) after [145]

ρ(r) = −e
∑

n,k,occ.

|ψnk(r)|2 (5.86)

determined by all occupied (valence band) states. A calculated contour plot
is shown in Fig. 5.18 for Si together with experimental data obtained from
X-ray scattering. The dominant feature is the accumulation of charge between
the neighboring lattice sites. It is the bond charge characteristic of covalent
binding.

The density of states and the energy band dispersion can be determined
experimentally using light–matter interaction (see Chap. 10). Photo-electron
spectroscopy (PES) is used to analyse the energy distribution of photo-emitted
electrons and yields approximately the density of states from which the excita-
tion takes place, while angular resolved photo-electron spectroscopy (ARPES),
which analyses the geometry of the photo-emission process, in addition, allows
to map out the energy bands.

5.5 Effective-Mass Approximation

Semiconductors differ from metals by the fact that the Fermi energy is in the
gap between valence and conduction bands, which is a region with vanishing
density of states. At low temperature, there are no free carriers, which could
react on a weak perturbation by an applied electric field. At elevated temper-
atures, the Fermi distribution function is smeared out and thermal population
of the lowest conduction band states takes place together with depopulation of
the topmost valence band states. The empty valence band states correspond
to missing electrons or holes which can be understood as particles with pos-
itive charge. In doped semiconductors, the Fermi energy is shifted from the
middle of the gap to the impurity levels, which can be close to the conduction
band minimum (n doping) or to the valence band maximum (p doping) and
the thermal population/depopulation takes place between the impurity states
and the nearby band edge. The number of the thermally excited carriers will be
small compared with the number of valence electrons and only states close to
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the conduction band minimum or valence band maximum become occupied
with electrons and holes, respectively. These carriers can follow an applied
electric field and carry an electric current. Similarly, optical excitation with
photon energies exceeding the gap energy creates electron–hole pairs by lift-
ing electrons from the valence band (leaving holes behind) to the conduction
band (see Chap. 10). Thus, the near band edge states determine some of the
characteristic properties of semiconductors and deserve special attention. In
fact, most of the technological applications with semiconductors (transistors,
sensors, lasers) are based on these states.

The lowest minimum of the conduction bands is found in Si along the axis
from Γ to X (see Fig. 5.11), in Ge at the L point, but it is at the Γ point
for most of the compound semiconductors A3B5 (A2B6) in the zinc blende
structure, with one fcc lattice occupied by atoms from the third (second) and
the other by atoms from the fifth (sixth) column of the periodic table. For all
these tetrahedrally coordinated semiconductors, the valence band maximum
is at the Γ point. Si and Ge with valence band maximum and conduction
band minimum at different points of the Brillouin zone are called indirect gap

semiconductors, while those with the band extrema at the same point of the
BZ (here the Γ point) are called direct gap semiconductors.

The method to describe the dispersion of energy bands around a given
point k0 in the BZ has been developed in the early days of semiconductor
physics [146, 147]. It is an expansion around this point, which in principle
can be extended throughout the Brillouin zone but is used mainly under the
condition |k − k0| ≪ 2π/a. Let us assume the Schroedinger equation (5.37)
to be solved for k0

Hψnk0
(r) = En(k0)ψnk0

(r). (5.87)

The periodic parts unk0
(r) (with fixed k0 and all n) of the Bloch functions

form a complete set of lattice periodic functions. With the Bloch functions at
k written as

ψnk(r) = ei(k−k0)·reik0·runk(r) (5.88)

the Schroedinger equation reads

(
− h̄2

2m
∆ + Veff(r) +

h̄2(k − k0)
2

2m

+
h̄

m
(k − k0) · p

)
eik0·runk(r) = En(k)eik0·runk(r). (5.89)

Now we make use of the complete set in the expansion

unk(r) =
∑

n′

cnn′(k − k0)un′k0
(r), (5.90)

and insert in (5.89) to find
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∑

n′

cnn′(k − k0)
{
En′(k0) +

h̄2(k − k0)
2

2m
− E

+
h̄

m
(k − k0) · p

}
eik0·run′k0

(r) = 0. (5.91)

Here the eigenvalue equation at k0 was applied and the energy En(k) we are
looking for is now called E. The last term in the curly brackets containing the
momentum operator and the difference in k vectors can be treated as a per-
turbation and that is why this concept is called k ·p perturbation theory. The
expansion coefficients can be found from the set of coupled linear equations

∑

n′

cnn′(k − k0)
{(

En′(k0) +
h̄2(k − k0)

2

2m
− E

)
δnn′

+
h̄

m
(k − k0) · pnn′(k0)

}
= 0 (5.92)

which are obtained from (5.91) by multiplying ψ∗
nk0

(r) from the left and inte-
grating over the crystal volume. Here the matrix elements of the momentum
operator

pnn′(k0) =

∫
u∗

nk0
(r)p un′k0

(r)d3r (5.93)

establish a coupling between the different bands. Solving the secular problem

∥∥∥
(
En(k0) +

h̄2(k − k0)
2

2m
− E

)
δnn′ +

h̄

m
(k − k0) · pnn′(k0)

∥∥∥ = 0 (5.94)

yields the dispersion relations En(k) around k0 for given En(k0) and pnn′(k0).
Formally, (5.94) is the matrix of a first order perturbation calculation for
degenerate states. The off-diagonal coupling by the momentum matrix ele-
ments can be eliminated to any desired order, by matrix perturbation theory
as will be outlined below.

From Sect. 5.4 we identify the states at the conduction band minimum at
k0 = 0 as s anti-bonding states, while those of the valence band maximum are
p bonding states. As seen in Fig. 5.17, the dispersion around the valence band
maximum is more complex than that around the conduction band miminum.
Let us start, therefore, with describing the states at the conduction band
edge.

Conduction band edge at k0 = 0:

We choose the band index n = c for the lowest conduction band with the Bloch
function uc0(r) = 〈r|S〉 deriving from the s anti-bonding orbital. This state
is coupled with the p bonding (or valence band) and with the p anti-bonding
(or higher conduction band) states (n′). Denoting these states |X〉, |Y 〉, |Z〉
and |X ′〉, |Y ′〉, |Z ′〉, respectively, we have the momentum matrix elements
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P =
h̄

m
〈S|px|X〉 =

h̄

m
〈S|py|Y 〉 =

h̄

m
〈S|pz|Z〉 (5.95)

and similar ones for the primed states. These matrix elements are equal due
to the symmetry of the diamond or zinc blende structure according to which
the cubic axes are equivalent. By eliminating to lowest order the coupling of
the s like state at the conduction band minimum to the p like states n′ �= c,
one arrives at the second order perturbation expression

Ec(k) = Ec(0) +
h̄2k2

2m
+

h̄2

m2

∑

n′ �=c

∣∣〈S|k · p|n′〉
∣∣2

Ec(0) − En′(0)
(5.96)

and by making use of (5.95) one arrives with

∑

n′=X,Y,Z

∣∣〈S|k · p|n′〉
∣∣2 =

∣∣〈S|px|X〉
∣∣2(k2

x + k2
y + k2

z

)
(5.97)

at the approximate parabolic dispersion around the conduction band mini-
mum

Ec(k) = Ec(0) +
h̄2k2

2m

(
1 +

2

m

∑

n′(p)

∣∣〈S|px|Xn′〉
∣∣2

Ec(0) − En′(0)

)
. (5.98)

The summation here is over all p like states. This dispersion tells us, that
the electrons occupying these states behave like free electrons but with an
effective mass m∗ given by

m

m∗
= 1 +

2

m

∑

n′(p)

∣∣〈S|px|Xn′〉
∣∣2

Ec(0) − En′(0)
. (5.99)

Depending on the energy denominators, only a few terms need to be considered
in the sum. For narrow gap semiconductors the contribution of the topmost
valence band dominates, while in general the coupling to the p anti-bonding
states needs to be considered. Characteristic values are m∗/m = 0.067 for
GaAs with a band gap Egap = Ec(0) − Ev(0) = 1.52 eV and m∗/m = 0.0135
for InSb with Egap = 0.25 eV. By applying a magnetic field, a fan chart of
Landau levels evolves out of this parabolic dispersion with typical spacings
of h̄ω∗

c = eB/m∗ and the detection of the cyclotron resonance frequency (see
Sect. 4.2) provides the information about the effective mass. We note in pass-
ing that higher order terms in the dispersion relation account for the flattening
and anisotropy of the energy band away from the Γ point [148] as can be seen
in e.g., Fig. 5.12. This nonparabolicity and warping would translate into an
energy dependence and anisotropy of the effective mass.

Conduction band edge of Si at k0 = (0, 0, k0):

As mentioned already, Si is an indirect gap semiconductor, the minimum of
the conduction band is along the ∆ axis close to the point X (see Fig. 5.11).
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The lowest conduction band derives from the sp3 anti-bonding states with
a k dependent hybridization. Let us denote them by |S̃〉. Along the ∆ axis,
the threefold valence band maximum splits into a rather flat twofold band
connected with the states |X〉 and |Y 〉 and a band, which evolves from a
mixing of |Z〉 with the s bonding state, is denoted here as |Z̃〉. Instead of
(5.95) we now have for the momentum matrix elements

PX =
h̄

m
〈S̃|px|X〉 =

h̄

m
〈S̃|py|Y 〉 �= h̄

m
〈S̃|pz|Z̃〉 = PZ , (5.100)

and the perturbation series reads with k′ = k − k0

Ec(k
′) = Ec(k0) +

h̄2k′2

2m
+

h̄2

m2

∑

n′ �=c

∣∣〈S̃|k′ · p|n′〉
∣∣2

Ec(k0) − En′(k0)
. (5.101)

The inequality in (5.100), caused by the reduced symmetry of the group of
the wave vector k0, leads to the anisotropic dispersion relation (with k′ =
(kx, ky, kz − k0))

Ec(k
′) = Ec(k0) +

h̄2

2

(
k2

x + k2
y

m∗
⊥

+
k

′2
z

m∗
‖

)
(5.102)

with m∗
‖ and m∗

⊥ being the masses parallel and perpendicular to the ∆ axis. For

Si, the conduction band minimum is at k0 = 0.85 in units of 2π/a. Due to the
cubic symmetry there are minima also along the other equivalent directions
in the Brillouin zone, thus the conduction band of Si has six minima, which
(thermally or by doping) become equally populated. In the presence of a
magnetic field, fan charts of Landau levels evolve from these minima, which
depend on the orientation of the magnetic field with respect to the inverse
mass ellipsoid and so does the cyclotron mass (Problem 5.12).

Valence band maximum at k0 = 0:

The valence band maximum of semiconductors with diamond or zinc blende
structure derives from the p bonding orbitals and is (without spin) threefold
degenerate. The energy dispersion is obtained from the 3 × 3 determinant
(ν, ν′ = X, Y, Z)

∥∥∥
(
Ev(0) +

h̄2k2

2m
− E

)
δνν′ +

h̄2

m2

∑

n�=ν,ν′

〈ν|k · p|n〉〈n|k · p|ν′〉
Eν(0) − En(0)

∥∥∥ = 0. (5.103)

Symmetry arguments, for which we refer to the literature [146], allow to write
the terms bilinear in the components of the wave vector as a 3 × 3 matrix
(known as the Shockley3 matrix [147])

3 William B. Shockley 1910–1989, received the Noble prize in physics 1956 jointly
with J. Bardeen and W.H. Brattain.



152 5 Electrons in a Periodic Potential

M =

⎛

⎝
Lk2

x + M(k2
y + k2

z) Nkxky Nkxkz

Nkxky Lk2
y + M(k2

x + k2
z) Nkykz

Nkxkz Nkykz Lk2
z + M(k2

x + k2
y)

⎞

⎠

(5.104)

with

L, M, N ∼
∑

n�=ν,ν′

〈ν|pα|n〉〈n|pβ |ν′〉
Eν(0) − En(0)

, (5.105)

where different intermediate levels contribute to L, M, and N . The secular
problem ‖M−Eδν,ν′‖ = 0 is easily solved for special directions of k. For the
∆ axis or k = (0, 0, k) one finds

Ev1(k) = Lk2 and Ev2(k) = Mk2, (5.106)

where the second solution is twofold, which by comparison with Fig. 5.17 can
be identified with the upper branch of the valence band. For the Λ axis with
k = (k, k, k)/

√
3 the solutions are

Ev1(k) =
L + 2M − 2N

3
k2 and Ev2(k) =

L + 2M + N

3
k2. (5.107)

Again, the second solution is twofold and can be identified with the upper
branch for this direction. A characteristic feature is the different curvatures of
the bands for the two solutions: the twofold band with the small curvature, cor-
responding to a large mass, is the heavy hole band, while the non-degenerate
band with the larger curvature is the light hole band. The other feature is
that these curvatures depend on the direction of k and the surfaces of con-
stant energy are warped. We note in passing that for all the other directions
the secular problem has three different solutions. These degeneracies and the
anisotropy of the valence bands are the same as those of the acoustic phonon
branches discussed in Sect. 3.4. This is a consequence of the group of the wave
vector, which contains at least threefold rotations only for the ∆ and Λ axes.

In general, energy bands can be calculated numerically by diagonalizing
(5.94) for a finite set of states, provided, the separation of their energy levels
at k0 and the momentum matrix elements are known. For near band-edge
states in direct gap semiconductors around the Γ point, a multi-band k · p

model is frequently in use, which comprises five bands or (including spin) 14
states [148–150].

5.6 Subbands in Semiconductor Quantum Structures

While in the previous sections of this chapter, we have looked at the elec-
tron states in three-dimensional solids, we shall now consider systems with
reduced dimensionality, which are in the focus of interest since the develop-
ment of the planar semiconductor technology of Si based field effect transistors
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(MOSFET or metal oxide Si field effect transistor)[151–153]. Here, we would
like to describe a semiconductor heterostructure, which can be obtained by
epitaxial growth of one semiconductor (say AlAs) onto another one (GaAs).
Both systems have the same crystal structure (zinc blende) and almost the
same lattice constant, i.e., across the interface it is only the chemical nature
of the atoms that changes. Let the growth direction be along z and the inter-
face at z = 0 extend in the x − y plane. The electronic structure of this
system is determined by the bulk band structure of the two materials with
their respective energy gaps and effective masses. In particular, the band
edges (the minima of the conduction band and the maxima of the valence
band) are shifted against each other and the interface appears as a step-like
potential for carriers at these edges. Correspondingly, a double heterostructure
AlAs/GaAs/AlAs would represent a confining square well potential which for
electrons can be described by the conduction band profile

Ec(z) =

⎧
⎨

⎩

0 z < 0
−V0 0 < z < L
0 z > L

(5.108)

where the minimum of the energy band in AlAs is the zero point of the
energy scale and V0 is the conduction band offset between AlAs and GaAs.
As it is only a few 100meV, the confined states, being close to the conduction
band minimum, can be described in the effective-mass approximation with
the Hamiltonian

HEMA = − h̄2

2m∗
∆ + Ec(z). (5.109)

The eigenfunctions of this Hamiltonian

φn(k‖r) = eik‖·rζn(z) (5.110)

and the eigenvalues

En(k‖) = En +
h̄2k2

‖

2m∗
(5.111)

indicate the quantization with energies En due to the confinement potential
in growth direction and the free motion parallel to the interface: electrons
occupying these states would be free carriers in two dimensions. The quantum
number n denotes the subbands evolving from the conduction band of the
three-dimensional band structure.

In both, the single heterostructure and in the quantum well, free carriers
can be introduced by doping the AlAs barrier with Si. The Si atoms create
additional states close to the conduction band minimum (donor states) with
a small binding energy. Due to the negative band offset, the donor electrons
cross the interface and reside in the GaAs layer, while leaving a positively
charged center behind in AlAs. This charge separation gives rise to an electro-
static potential, which is superimposed on the band edge profile. For a single
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Fig. 5.19. Semiconductor heterostructure (left) and conduction band profile across
the interface with subband levels and Fermi energy (right)

heterostructure this leads to the picture shown in Fig. 5.19 with an almost tri-
angular potential at the interface, which now confines the carriers. The energy
spectrum is similar to (5.111) but the subband energies are obtained here from
a self-consistent solution of the one-dimensional Schroedinger equation

(
− h̄2

2m∗
∂2

z + V (z)

)
ζn(z) = Enζn(z) (5.112)

with the potential V (z) = V0Θ(−z) + VH(z) + Vxc(z) and Poisson’s equation

∂2
zVH(z) =

e

εε0
̺(z). (5.113)

Here, VH(z) is the Hartree potential, determined by the charge distribution
̺(z) of ionized donors in the barrier (AlAs) and of the electrons occupy-
ing subband states. We recognize (5.112) as the one-dimensional analogue to
the Schroedinger equation (5.5) for the three-dimensional case with an effec-
tive single-particle potential, which contains also an exchange–correlation part
Vxc(z). We note in passing that a more accurate description would take into
account the change of the effective mass across the interface. The effective
mass determines also the density of states, which (without nonparabolicity
effects) is a constant (see Problem 4.3 and Fig. 5.20, left part). The num-
ber of subbands with occupied states depend on the areal density, which
can be controlled by the external gate voltage. The situation, when only
states in the lowest subband are occupied, is called the electric quantum limit.
A more detailed description shows, that the spin-degeneracy of the subbands
is removed due to a spin–orbit coupling caused by the asymmetric confine-
ment potential at the interface [153] (Problem 5.13). It can be tuned by an
external gate voltage and is important in manipulating the spin dynamics in
these structures (Rashba effect).

The effective-mass Hamiltonian (5.109) is obtained from the conduction
band dispersion (5.98) by replacing k2 → −∆, which leads to the operator of
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Fig. 5.20. Subband dispersion and density of states for the lowest two subbands
(left) and fan chart of Landau levels evolving from the lowest subband (right), spin
splitting is suppressed

kinetic energy for carriers close to the conduction band minimum. The corre-
sponding description of confined holes is more complex because of the valence
band degeneracy and would lead (without spin) to three coupled Schroedinger
equations, which for k‖ = 0, decouple and yield subband states for heavy
and light holes. Quantitative subband calculations including spin and non-
parabolicity effects are performed within the multiband envelope function
approximation, which is based on the k · p theory [152–154]. Due to the con-
finement potential, the energy gap, i.e., the energy difference between the
lowest electron and the highest hole subband state, is changed as compared
with the bulk material. The possible choices of well and barrier material with
their respective electron and hole masses and of the width L of the quantum
well allow one to design materials with defined gap energies. This band gap

engineering is exploited in optical devices (see Chap. 10).
In heterostructures, the spatial separation between the free carriers in the

confining potential and the ionized donors in the barriers (usually enlarged
by growing a spacer layer at the interface) leads to improved mobilities of the
carriers at low temperatures (when scattering with ionized impurities is dom-
inating, see Chap. 9). Under these conditions, characteristic transport lengths
become comparable or even larger than the lateral system size and phenom-
ena of mesoscopic physics can be investigated [155–160]. Magnetotransport
experiments in these systems have led to the discovery of the quantum Hall
effects and composite fermions (see Chap. 7).

A magnetic field applied perpendicular to the plane of the two-dimensional
electron system leads to a complete discretization of the energy spectrum.
The subbands split into highly degenerate Landau levels (see Sect. 4.2) and
the filling factor, i.e., the number of occupied Landau levels changes with the
magnetic field. The ultimate case, when at sufficiently high magnetic field
all electrons can be accommodated in the lowest Landau level of the lowest
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Fig. 5.21. Longitudinal and Hall resistance vs. magnetic field of a Si-MOSFET
showing the quantum Hall effect after [161]

subband, is known as the magnetic quantum limit (see Problem 4.4). Upon
reducing the magnetic field starting from this limit, a point will be reached
when all states in the lowest Landau level are occupied, which corresponds
to filling factor ν = 2 (due to spin degeneracy). With further reduction of
the magnetic field, the Fermi energy moves into the next higher Landau level.
Thus, by sweeping the magnetic field, the Fermi energy will jump at field
values corresponding to (even) integer filling factors (Fig. 5.20, right). When at
sufficiently high magnetic fields (and low temperatures) the Zeeman splitting
can be resolved, these jumps take place at all (even and odd) integer filling
factors.

In a MOSFET or a gated heterostructure, it is possible to change the
carrier density by varying the gate voltage. Thus, for a fixed magnetic field,
the Fermi energy can be shifted through the Landau levels by changing the
filling factor. At integer filling factors and sufficiently low temperature, mag-
netotransport data show striking deviations from the classical behavior of the
Drude model (Fig. 5.21): the longitudinal resistance (or conductance) vanishes
(as typical for an insulator) and the Hall resistance (or conductance) exhibits
plateaus, which to extremely high accuracy are inverse integer multiples of
e2/h [161]. This is known as the integer quantum Hall effect, discovered by
von Klitzing4 in 1980. The high accuracy of the plateau values gave rise to a
new definition of the resistance, normally defined by precision measurements
in a quantum Hall experiment of h/e2, which corresponds to the Klitzing con-
stant RK−90 = 25812, 807 Ω introduced by the Meter Convention in 1990. An
introduction to the theory of the integer Quantum Hall effect is [162].

4 Klaus von Klitzing *1943, Noble prize in physics 1985.
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In 1983, Tsui and Störmer5 discovered signatures of the quantum Hall
effect at very low temperatures and high magnetic fields at the fractional filling
ν = 1/3. The confirmation of this signature complemented by the discovery
of a whole family of so-called fractional quantum Hall states (see Sect. 7.6) in
the following years has stimulated much experimental and theoretical work on
electron systems under such extreme conditions. The fractional quantum Hall
effect is now understood to be dominated by electron–electron interaction (see
Chap. 7) while the integer quantum Hall effect is essentially a single-particle
effect caused by disorder (see Chap. 9).

Problems

5.1 Derive the Hartree–Fock equations as Euler–Lagrange equations of the
variational problem (5.7) with the Slater determinant as ground state
wave function. Note that the single-particle wave functions depend on
space and spin coordinates.

5.2 Show that the exchange potential

Vx(r) = −e2

∫
n̄HF(r, r′)

|r − r′| d3r′ (5.114)

with the averaged nonlocal HF or exchange density (5.15) reduces for
free electrons to the so-called Slater exchange potential

Vx,Slater(r) = −3e2

2π
kF(n(r)). (5.115)

Compare it with the exchange potential in the LDA

V LDA
x (r) =

d

dn

(
nǫx(n)

)
n=n(r)

, (5.116)

where ǫx(n) is the exchange energy per electron for the jellium model
with density n.

5.3 Verify that each energy band can accommodate one electron of either
spin per unit cell. Remember the corresponding statement concerning
phonon modes.

5.4 A point at the Brillouin zone boundary can be characterized by wave
vectors k and k′ drawn from different reciprocal lattice vectors. Give the
relation between k and k′ and verify that the condition of degeneracy of
the corresponding free electron states, i.e., of having the same energy, is
consistent with the condition for Bragg reflection.

5 Daniel C. Tsui *1939, Horst L. Störmer *1949, shared the Noble prize in Physics
1998 with R.B. Laughlin.
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5.5 Calculate and plot the free electron energy dispersion for the square
lattice along the lines Γ → M, M → X , and X → Γ for the lowest
three bands (the reciprocal lattice vectors can be used as band index).
Indicate the position of the Fermi energy, if each atom in the unit cell
contributes one, two, or three electrons. Calculate the dispersion for the
two lowest bands in the presence of a periodic potential and discuss the
modification of the Fermi circle with radius kF = π/a by this potential.

5.6 Calculate the free electron energy bands of a fcc lattice as shown in
Fig. 8.6. Find out the degeneracies of these bands.

5.7 Compare the band structures of Al, Si, and GaAs in the context of the
almost free electron or pseudo-potential approximation. What is com-
mon (different) in the free electron picture and which of the Fourier
coefficients of the periodic potential are responsible for opening of
gaps? Which details of the band structure can be understood from this
comparison?

5.8 The atomic d states are fivefold degenerate (without spin). Calculate the
crystal field splitting of these states in a cubic lattice. Is there a difference
between the sc, bcc, and fcc crystal structures?

5.9 Show that the secular problem (5.77) can be reduced to the standard
form ∥∥∥H̃ν′ν(k) − Eνδν′ν(k)

∥∥∥ = 0 (5.117)

by making use of the properties of the overlap matrix Sν′ν(k). Give the
explicit expression of H̃ν′ν(k) in terms of Hν′ν(k) and Sν′ν(k).

5.10 Calculate the dispersion of an energy band deriving from an s orbital in
a sc and bcc lattice for the lines Γ − X and Γ − L. Compare with each
other and with the result for the fcc lattice. How does the width of the
energy band depend on the nearest neighbor configuration?

5.11 Graphene is a single sheet of carbon atoms arranged in a (two-
dimensional) hexagonal lattice with primitive lattice vectors in the (x, y)
plane

a1 = d

(√
3

2
,
3

2

)
, a2 = d

(
−
√

3

2
,
3

2

)
(5.118)

and two carbon atoms in each cell at τ 1 = (0, d) and τ 1 = (0, 2d)
with the nearest neighbor distance d. The s, px, and py orbitals can
be combined to sp2 hybrid orbitals directed towards the nearest neigh-
bors, while the pz orbitals stick out of the lattice plane and form πz

bonding and anti-bonding orbitals. Formulate and solve the eigenvalue
problem for graphene using LCAO for the πz orbitals in the tight-binding
approximation and discuss the resulting energy bands.

5.12 Find the expression for the cyclotron mass of a spheroidal energy surface

E(k) =
1

mt

(
k2

x + k2
y

)
+

1

ml
k2

z = const. (5.119)
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in dependence on the orientation of the magnetic field in the xz plane.
Make use of the Peierls substitution and use a vector potential with
Ax = Az = 0. Set up and solve the equations of motion in the xz plane.

5.13 Solve the eigenvalue problem of free two-dimensional electrons in the xy
plane in the presence of a spin-orbit coupling

HSO = α(k ×∇V ) · σ (5.120)

due to the confinement potential V in z direction, i.e., ∇V ‖(001).
Calculate and visualize the expectation values of the spin operator σ

in dependence on the direction of k. Identify the Kramers pairs.
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Spin Waves: Magnons

The electron spin, which does not explicitly appear in the N -particle
Hamiltonian of the solid (except for the spin-orbit coupling and Zeeman
terms), will be in the focus of this chapter. In Chaps. 4 and 5 we have addressed
already the relevance of spin in connection with magnetic properties, which
shall be studied now in more detail. The issue here will be to consider the inter-
acting electron system with dominating exchange interaction, which leads to
a spin-ordered ground state, and to describe elementary excitations out of
this ground state: spin waves or (in quantized form) magnons. In several
aspects, spin dynamics is similar to lattice dynamics (see Chap. 3) with the
masses coupled by springs, now being replaced with spins (or their magnetic
moments) coupled with exchange interaction. Depending on the complexity
of the crystal structures on which these spin systems are realized, their spin
or magnetic order can be ferromagnetic, anti-ferromagnetic, ferrimagnetic, or
anti-ferrimagnetic [163]. Most standard textbooks on Solid State Theory con-
tain a chapter on spin waves or magnons and magnetic properties, but there
are also special review articles [164, 165] and monographs [116, 166–172] on
these topics. In solids with disorder, e.g. due to alloying, the magnetic order
takes the form of spin glasses [16]. Theoretical concepts developed for spin
glasses have turned out to be useful also for neural networks [173]. A variant
of magnetic order in disordered solids are diluted magnetic semiconductors of
which A3B5 with Mn ions randomly replacing the A3 atoms show ferromag-
netic order (see [174–176]). The latter materials have gained much interest
in connection with spintronics [177, 178], a concept of electronics using the
electron spin rather than its charge. Magnetic order exists as a ground state
property only below some critical temperature at which a phase transition
takes place. It can be described using the molecular or mean field approxima-
tion. For spin excitations at the surface of magnetic solids (surface magnons)
we refer to [179, 180].

U. Rössler, Solid State Theory,

DOI 10.1007/978-3-540-92762-4 6, c© Springer-Verlag Berlin Heidelberg 2009
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6.1 Preliminaries

In Chap. 4 we have seen how magnetic properties of free electrons can be
understood in terms of the single-particle picture and the Pauli principle. The
Zeeman term causes a shift of the density of states of up and down spin elec-
trons against each other (see Fig. 4.7). Occupying these states according to the
Fermi–Dirac distribution function, leads to a magnetic moment determined
by the excess of majority spins: this is the Pauli spin paramagnetism. On the
other hand, for the case without external magnetic field, we have found a
lowering of the single-particle and ground state energies due to the exchange
term in the HF approximation, which becomes effective for electrons with
parallel spins. This effect is expected to get stronger with an increase of the
number N↑,↓ of aligned spins, i.e. with a spin polarization N↑ − N↓ of the
system accompanied by a magnetization M = gμB(N↑−N↓). Eventually, one
may ask for a condition under which a state with all spins aligned could be
the system ground state.

In this consideration, we have completely neglected the influence of the
periodic potential. Let us look, therefore, for a moment at the band structure
of ferromagnetic Fe in Fig. 6.1 as an example. We note the characteristic fea-
tures resulting from s-d hybridization discussed in Sect. 5.4, but find that for
the ferromagnetic state the energy bands of up and down spin electrons differ
from each other, ǫnk↑ �= ǫnk↓, as is typical for Bloch electrons with incomplete
d shells. A closer inspection shows that the bands of spin-up and spin-down
electrons are very similar but shifted against each other, as can be seen in
the density of states (Fig. 6.2) by comparing the position of the pronounced
structures, caused by van Hove singularities, for majority and minority spins.
This reminds us of the free electron case with external magnetic field, but
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Fig. 6.1. Energy bands of ferromagnetic Fe after [181]
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Fig. 6.2. Density of states (solid lines) and integrated density of states (dotted lines)
for the energy bands of ferromagnetic Fe of Fig. 6.1 (after [181])

here, the shift is determined by the spin–polarization that exists even without
an external magnetic field, i.e. there is a spontaneous magnetization below a
critical temperature. Energy bands as those of Fig. 6.1 result from an exten-
sion of the DFT-LDA to the SDFT-LSDA (spin–density functional theory in
the local spin–density approximation) [123, 182].

Turning back to the free electron system of Chap. 4, we recollect the expres-
sion for the ground state energy in HF approximation (without magnetic field)
with each state with |k| ≤ kF occupied by a pair of ↑, ↓ spins (see (4.91))

EHF
0↑↓ =

3

5
N

h̄2

2m︸ ︷︷ ︸
a

k2
F − 3

16π2ε0
Ne2

︸ ︷︷ ︸
b

kF. (6.1)

Remember the origin of the second term; it is the exchange part of the
Coulomb interaction which results from parallel spins. Instead of occupying
each state in the Fermi sphere with a pair of ↑, ↓ electrons one could align
all spins to gain exchange energy, but this can be done only at the cost of
increasing the kinetic energy because the size of the Fermi sphere has to be
doubled, i.e. by now occupying all states with |k| ≤ 21/3kF (see Fig. 6.3).
The HF ground state energy for this ferromagnetic order (the completely
spin-polarized free electron gas) is

EHF
0↑↑ = 22/3ak2

F − 21/3bkF (6.2)
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2  k
1/3

F

k
F

Fig. 6.3. Fermi spheres for a spin-unpolarized and a completely spin-polarized
electron system

with a and b from (6.1). In order to have EHF
0↑↑ < EHF

0↑↓, kF has to fulfill the
condition

kF <
21/3 − 1

22/3 − 1

b

a
= 0.44

b

a
=

1.1

π
a−1
B (6.3)

with the Bohr radius aB or, with kF = (9π/4)1/31/rsaB, this yields for the
density parameter

rs >

(
9π

4

)1/3
π

1.1
= 5.45. (6.4)

According to this estimate the ferromagnetic ground state should be favored
in diluted electron systems with rs > 5.45, which is still in the region of
electron densities in metals (2 < rs < 6). However, this estimate should not
be taken for a proof of the existence of a ferromagnetic ground state as it does
not include the effects of correlation or of the periodic potential.

For a more rigorous treatment, we start from the N -electron Hamiltonian
(5.2) that includes the periodic potential. It can be written with the help of
(4.76) and (4.77) in terms of fermion operators as

H =
∑

α

ǫαc†αcα +
1

2

∑

αβα′β′

Vαββ′α′c†αc†βcα′cβ′ , (6.5)

where α, β, α′, and β′ are complete sets of single-particle quantum num-
bers, which here are those of Bloch states, e.g. α = nkσ and ǫα are the
corresponding single-particle energy values. The potential matrix elements

Vαββ′α′ =

∫
dx

∫
dx′ψ†

α(x)ψ†
β(x′)

e2

4πε0|r − r′|ψβ′(x)ψα′ (x′) (6.6)

can be expressed in terms of the single-electron wave functions ψα(x)
(Problem 6.1), where x stands for space and spin coordinates. Summing up
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the spin coordinates results in getting the same spin quantum numbers for
the states α, β′ and for the states β, α′. In the following, we shall separate the
Hamiltonian (6.5) according to H = Hsp + Hint into its single-particle and
interaction parts.

Magnetism is known, from the introductory courses on solid state physics
[29–31], to arise in materials with incomplete d or f shells. The corresponding
electrons form narrow bands (see e.g. Fig. 6.1), for which the free electron
picture hardly applies. We take this situation into account by switching to
the LCAO (or tight-binding) approximation introduced in Sect. 5.4. In this
picture, contrary to Fig. 6.3, the electron spin is not attached to delocalized
electrons, and magnetism results from the magnetic moments of the total spin
carried by local atomic d or f orbitals.

Let us consider electrons in an energy band deriving from one such orbital.
The Bloch function can be expressed (as in Sect. 5.5) by

ψkσ(r) =
1√
N

∑

R

eik·Rφσ(r − R), (6.7)

where we have dropped the band index to simplify notation while the index
σ refers to the spin eigenstate. It is advantageous here to adopt the Wannier1

representation with localized orbitals, which are orthogonal for different lattice
sites, although they may still overlap (Problem 6.2). This allows one to switch
with

ckσ =
1√
N

∑

R

eik·RcRσ (6.8)

to fermion operators and write the single-particle term in the form

Hsp =
∑

kσ

ǫkc†kσckσ

=
∑

RR′σ

1

N

∑

k

ǫkeik·(R−R′)

︸ ︷︷ ︸
tRR′

c†R′σcRσ =
∑

RR′σ

tRR′c†R′σcRσ. (6.9)

The dispersion of the energy band ǫk (assumed to be independent of σ) is now
expressed in terms of the hopping or transfer matrix elements tRR′ , R �= R′

which is a two-center integral of the type given in (5.74), while the term
with R = R′ gives the atomic energy level from which the band derives (see
Problem 6.2) .

Likewise the electron–electron interaction takes the form (Problem 6.3)

Hint =
1

2

∑

R1R2σ

R′
1

R′
2

σ′

VR1R2R′
1
R′

2
c†R1σc†R2σ′cR′

2
σ′cR′

1
σ (6.10)

1 Gregory Hugh Wannier 1911–1983.
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with the interaction matrix element being now the four-center integral

VR1R2R′
1R′

2
=

∫
d3r

∫
d3r′φ∗(r − R1)φ

∗(r′ − R2)

× e2

4πε0|r − r′|φ(r − R′
1)φ(r′ − R′

2). (6.11)

Note, that the Wannier (or atomic) orbitals and the single particle energies
are assumed to be independent of the spin quantum number σ. This means
to neglect all spin-dependent effects deriving from spin–orbit coupling and
from the electrons in all other occupied bands of the solid, while here all spin
related effects derive from the interaction term.

6.2 The Heisenberg Hamiltonian

The extreme case of strongly localized orbitals would lead to vanishing hop-
ping matrix elements and to a single-particle part of the Hamiltonian, just
counting the occupation of the sites multiplied by the atomic level energy.
Contrary to the free-electron case (see Fig. 6.3), in a flat band there is no
increase in the kinetic energy when all spins are aligned, which is the favorite
configuration with respect to the exchange interaction. But this ferromagnetic
configuration, with each site being occupied by a single electron with given
spin (Fig. 6.4), minimizes the Coulomb repulsion also, because each two elec-
trons are separated in space as much as possible in the given crystal structure.
Thus, this configuration can be considered as the ground state.

We have to keep in mind here that the assumption of strongly localized
atomic orbitals does not apply to metallic ferromagnets such as the transition
metals, which form d bands with a width of the order of one eV, (see Figs. 5.14
and 6.1) due to the overlap between nearest neighbors in a close-packed crystal
structure (bcc or fcc). This overlap is, however, essentially reduced in transi-
tion metal compounds like MnAs, EuS, EuS with a larger spacing between the
metallic ions in a lattice with basis. They appear as ferromagnetic insulators
and are the materials, to which the model of Fig. 6.4 applies.

With respect to elementary excitations, this ferromagnetic ground state
plays the same role as the filled Fermi sphere for the free electrons. As in
Chap. 4, when considering the HF approximation the interaction term in
application to this ground state, we can distinguish between a direct and an

R –d R R+d

Fig. 6.4. Ferromagnetic configuration of spins on a linear chain
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exchange term. The direct process requires R1 = R′
1 = R and R2 = R′

2 = R′

and can be expressed as

Hd =
1

2

∑

RR′

VRR′RR′

∑

σσ′

c†Rσc†R′σ′cR′σ′cRσ. (6.12)

When applied to the ferromagnetic ground state, it removes two electrons at
sites R and R′ with spins σ and σ′, respectively, and puts them back where
they are taken from. It is clear that this requires R �= R′, because at each
lattice site, there is only one electron that can be removed, and the operator
part can be transformed to yield

∑

σ

c†RσcRσ

∑

σ′

c†R′σ′cR′σ′ = 1. (6.13)

Thus, we find that Hd is the energy of the electrostatic interaction between the
charge densities located around R and R′, i.e. of the electronic configuration
associated with the spin configuration of Fig. 6.4.

The exchange term is obtained with R1 = R′
2 = R and R2 = R′

1 = R′

and reads

Hx =
1

2

∑

RR′

VRR′R′R

∑

σσ′

c†Rσc†R′σ′cRσ′cR′σ. (6.14)

The operator part can be transformed (again with R �= R′):

∑

σσ′

c†Rσc†R′σ′cRσ′cR′σ = − c†R↑cR↑c
†
R′↑cR′↑ − c†R↓cR↓c

†
R′↓cR′↓

− c†R↑cR↓c
†
R′↓cR′↑ − c†R↓cR↑c

†
R′↑cR′↓. (6.15)

The different combinations of creation and annihilation operators at a given
site have the following meaning with respect to the site R (here we drop the
site index):

c†↑c↑, c†↓c↓ : count the ↑, ↓ electrons

c†↑c↑ − c†↓c↓ : counts the difference between ↑ and ↓ electrons

c†↑c↓, c
†
↓c↑ : cause spin flips.

Taking into account the commutation relation

[c†↑c↓, c
†
↓c↑] = c†↑c↑ − c†↓c↓ (6.16)

we recognize that the operators c†↑c↓, c
†
↓c↑, and c†↑c↑−c†↓c↓ at each site R fulfill

the commutation rules of the su(2) algebra known from the angular momenta
(Problem 6.4):

[Si, Sj ] = iεijkSk, i, j, k = x, y, z cycl. perm. (6.17)
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with the Levi–Civita symbol εijk, and we may identify

S+ = Sx + iSy = c†↑c↓, S− = Sx − iSy = c†↓c↑, Sz =
1

2
(c†↑c↑ − c†↓c↓). (6.18)

Thus, it is possible to replace the annihilation and creation operators by spin
vector operators SR = (Sx

R, Sy
R, Sz

R) at each lattice site. This is achieved by

adding and subtracting (c†R↑cR↑c
†
R′↓cR′↓ + c†R↓cR↓c

†
R′↑cR′↑)/2 on the rhs of

(6.15) to obtain for the operator part of the exchange term

∑

σσ′

c†Rσc†R′σ′cRσ′cR′σ = −
(
S+

RS−
R′ + S−

RS+
R′

)
− 2Sz

RSz
R′

− 1

2

∑

σσ′

c†RσcRσc†R′σ′cR′σ′ . (6.19)

The first two terms on the rhs can be written in the form

S+
RS−

R′ + S−
RS+

R′ + 2Sz
RSz

R′ = 2SR · SR′ (6.20)

while the last term can be combined with the direct term, and we find for the
interaction part, Hint of the Hamiltonian, the form

Hint = −
∑

RR′

R�=R′

JRR′SR · SR′ (6.21)

which is the Heisenberg2 Hamiltonian with the exchange integral

JRR′ =

∫
d3r

∫
d3r′ e

2φ∗(r − R)φ(r − R′)φ∗(r′ − R′)φ(r′ − R)

4πε0|r − r′| . (6.22)

It can be shown that JRR′ > 0. We add the Zeeman term and replace the
site index R by a number index i (which can be understood as replacing the
3-dimensional Bravais lattice with a linear chain but is meant also as short
notation for Ri) to write the spin or Heisenberg Hamiltonian in the form

Hspin = −
∑

i,j
i�=j

JijSi · Sj − gμBHext

∑

i

Sz
i . (6.23)

This Hamiltonian is the canonical starting point in the theory of magnetism
[183]. In spite of its simplicity, it bears fundamental properties, one of which
is related to symmetry. Without external magnetic field, (6.23) is spheri-
cally symmetric, however, its ground state, the ferromagnetic configuration,
has only axial symmetry. This situation is known as spontaneous symmetry

breaking: Due to interaction between the spins and in order to gain energy,

2 Werner Heisenberg 1901–1976, Nobel prize in physics 1932.
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the system prefers a configuration with lower symmetry than that of the
Hamiltonian. The further task of this chapter will be to describe elementary
excitations out of this ground state.

There exist several model Hamiltonians related to the Heisenberg
Hamiltonian, which have been under investigation in the context of magnetic
properties [171]:

1. the anisotropic Heisenberg model

Hspin = −
∑

i,j

i�=j

(
Jij(S

x
i Sx

j + Sy
i Sy

j ) + J̄ijS
z
i Sz

j

)
, Jij �= J̄ij , (6.24)

2. the Ising model (with Jij = 0)

HIsing = −
∑

i,j
i�=j

J̄ijS
z
i Sz

j , (6.25)

3. and the XY model (J̄ij = 0)

HXY = −
∑

i,j
i�=j

Jij(S
x
i Sx

j + Sy
i Sy

j ). (6.26)

The Ising and the XY models are used in statistical mechanics because of
their simplicity compared to the Heisenberg model, while still representing
reasonable approximations for real spin systems. As it turns out, however, the
low-dimensional spin models (except the two-dimensional Ising model) fall
short of describing the ferromagnetic phase transition (see Sect. 6.5). Instead
the XY model produces a transition between two disordered phases of differ-
ent topology. This Kosterlitz–Thouless transition is caused by the appearance
of spin vortices (see [171]).

In all these models, the exchange integrals appear as parameters. The
microscopic mechanism, although it is always the exchange interaction, can
be quite different depending on the lattice structure of the solid. The eas-
iest case is that of the transition metals, where the exchange takes place
directly between the d orbitals on nearest neighbor lattice sites of a close-
packed structure like bcc and fcc. Therefore, it is called direct exchange to
distinguish it from indirect or super-exchange in compounds of elements with
incomplete d shells, as e.g. the ferromagnetic insulators MnAs, EuO, and
EuS. In these solids forming lattices with basis, the orbitals which carry a
magnetic moment, are separated by the non-magnetic ions and the exchange
coupling has to be mediated by the orbitals of the intervening ions. A similar
situation is found in metallic ferromagnetic compounds, where the exchange
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coupling between distant magnetic ions is mediated by the free electrons.
This is the Rudermann–Kittel exchange, which exists together with the direct
exchange interaction and is frequently the dominating mechanism. Depending
on the mechanism and the lattice configuration, the exchange constant can
be positive (as anticipated so far), which leads to the ferromagnetic order,
but also negative. In the latter case, neighboring spins align anti-parallel and
exhibit the anti-ferromagnetic ordering. More complex crystal structures with
sublattices accomodating different spin carrying orbitals, i.e. the spin operator
S depends on the sublattice, lead to the ferrimagnetic or anti-ferrimagnetic

order.

6.3 Spin Waves in Ferromagnets

In this Section, we want to describe low-energy excitations out of the ferro-
magnetic ground state. Let us assume for the moment the classical picture
of spins in Fig. 6.4 as localized magnetic dipoles. They are coupled from site
to site by the scalar product of their respective spin vectors, weighted by the
exchange integral. If one of the spins is tilted against the preferential direc-
tion thus raising the energy, the neighboring spins tend to follow this tilt.
If this spin is released from its tilted orientation the whole system will start
to perform a collective motion just as the linear chain of masses connected
by springs in Chap. 3: The masses now become the magnetic moments of the
spins and the role of the springs is taken by the exchange coupling. This col-
lective excitation of the localized interacting spins are the spin waves or, in
quantized form, the magnons.

In order to quantify this consideration, we start from the Heisenberg model
in tight-binding approximation, for which the exchange coupling is taken into
account only between nearest neighbors (n.n.i, j), thus the Hamiltonian (6.23)
simplifies to

Hspin = −J
∑

n.n.i,j

Si · Sj − gμBHext

∑

i

Sz
i . (6.27)

and contains only one exchange integral. The nature of the spin, being an
angular momentum, can be exploited by making use of the corresponding
representation with

S±
i |SM〉i = {S(S + 1) − M(M ± 1)}1/2|SM ± 1〉i, (6.28)

where |SM〉i is an eigenstate of the spin operators S2
i and Sz

i for the site i. It is
convenient here to write the Hamiltonian with raising and lowering operators
S±

i (see (6.18))

Hspin = −J
∑

n.n.i,j

{
1

2
(S+

i S−
j + S−

i S+
j ) + Sz

i Sz
j

}
− gμBHext

∑

i

Sz
i . (6.29)
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Let us first calculate the expectation value of Hspin without external magnetic
field (Hext = 0) in the ferromagnetic ground state, formulated as |Ψ0〉 =∏

i |SS〉i:

E0 = 〈Ψ0|Hspin|Ψ0〉
= −J

∑

n.n.i,j

〈SS|Sz
i |SS〉i〈SS|Sz

j |SS〉j = −JνS2N, (6.30)

where ν is the number of nearest neighbors and N the number of sites in
the chain. Note, that the ferromagnetic ground state in angular momentum
representation is composed of angular momentum eigenstates with maximum
z component. Application of the raising operator to |SS〉 gives zero, while
application of the z components of the spin operators to the ground state
yields ∑

j

Sz
j |Ψ0〉 =

∑

j

Sz
j

∏

i

|SS〉i = NS|Ψ0〉. (6.31)

As we see from (6.30), the ground state energy is negative if the exchange
integral J , whose sign depends on the configuration of nearest neighbors and
the atomic orbital, is positive. The stability of the ground state increases with
J , with the number of nearest neighbors ν, and with the total spin S. The
latter changes with the number of electrons in an incomplete shell and takes
a maximum value for half-filling of the shell according to Hund’s rule3.

Before studying the collective excitations of the spin lattice it is quite
instructive to have a look at the dynamics of the individual spin operator Sj .
It is straightforward to derive the equation of motion with the Heisenberg
Hamiltonian (6.23) (Problem 6.5)

dSj

dt
=

i

h̄
[Hspin, Sj ] = − 1

h̄
(Hj × Sj) , (6.32)

where Hj =
∑

i JijSi + gμBHext is an effective magnetic field acting on the
spin Sj at the same site. The equation of motion (6.32) is that of an angu-
lar momentum, whose dynamics is determined by a torque, or of a magnetic
dipole moving in a magnetic field. This ubiquitous equation of motion, origi-
nally formulated in the context of magnetic resonance phenomena, is known
as Bloch equation [184].

In order to solve (6.32) we choose as before Hext = (0, 0, Hext), which
gives for the transverse spin components the equations of motion

h̄
dSx

j

dt
= −

∑

n.n.i

Jij

(
Sy

i Sz
j − Sz

i Sy
j

)
+ gμBHextS

y
j

h̄
dSy

j

dt
= −

∑

n.n.i

Jij

(
Sz

i Sx
j − Sx

i Sz
j

)
− gμBHextS

x
j . (6.33)

3 Friedrich Hund 1896–1997.
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Close to the ferromagnetic ground state, i.e. at low temperature, we may use
the replacement Sz

j → 〈Sz
j 〉 ≃ S (while 〈Sx

j 〉, 〈Sy
j 〉 ≪ S) to simplify these

equations:

h̄
dSx

j

dt
= −S

∑

n.n.i

Jij

(
Sy

i − Sy
j

)
+ gμBHextS

y
j

h̄
dSy

j

dt
= −S

∑

n.n.i

Jij

(
Sx

j − Sx
i

)
− gμBHextS

x
j . (6.34)

They are combined with S±
j = Sx

j ± iSy
j in the equation

h̄
dS±

j

dt
= ∓i

(
S
∑

n.n.i

Jij(S
±
j − S±

i ) + gμBHextS
±
j

)
. (6.35)

The coupled motion of neighboring spins can be decoupled by exploiting the
periodicity of the chain (or solid) with the Bloch representation

S±
k =

1√
N

∑

j

e−ik·Rj S±
j . (6.36)

With these normal coordinates (see Chap. 3, where the same concept was
applied in lattice dynamics) we arrive at

h̄

i

dS±
k

dt
=

⎛

⎝S
∑

n.n.i,j

Jij

(
1 − e−ik·(Ri−Rj)

)
+ gμBHext

⎞

⎠S±
j . (6.37)

The exchange integrals Jij to the ν nearest neighbors with d = Ri − Rj are
all the same in a cubic lattice and we may write instead the expression in
brackets as

h̄ωk = 2JνS(1 − γk) + gμBHext, with γk =
1

ν

∑

d

eik·d. (6.38)

Thus, we come to the important result, that the whole spin configuration of the
lattice (but also the individual localized spin) performs an oscillatory motion
with the frequency ωk, if small deviations from the ferromagnetic ground state
are considered. This collective mode, the spin wave characterized by the wave
vector k (depicted in Fig. 6.5), corresponds to a coherent precession of the

λ

Fig. 6.5. Schematic of a ferromagnetic spin wave on a linear chain
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individual spins around the direction of the ferromagnetic orientation. It is
completely analogous to the lattice modes in Chap. 3. Its quantized form is
called magnon as it is related to magnetic properties of the solid.

For methodical reasons, it is worth presenting as an alternative to the
Bloch equation, which essentially is a classical concept, a formulation based
on the occupation number representation and adapted to the quantized form
of elementary excitations. In the previous formulation of excitations out of
the ferromagnetic ground state, the emphasis was on the transverse compo-
nents of the local spins to quantify the precession of the spin vectors around
the z direction. The alternative is to quantify the deviation of Sz

j from its
maximum value S. This is achieved with a transformation that replaces the
ladder operators S±

j by boson operators a†
j , aj with [ai, a

†
j ] = δij according to

S+
j =

√
2S

{
1 − 1

2S
a†

jaj

}1/2

aj , S−
j =

√
2Sa†

j

{
1 − 1

2S
a†

jaj

}1/2

(6.39)

without changing the commutation relations among the three angular momen-
tum operators S+

j , S−
j , Sz

j . It is the Holstein4–Primakoff 5 transformation [185].

The z component of the spin operator follows (with f(a†
jaj)= {1 − a†

jaj/

2S}1/2) from

[S+
j , S−

j ] = 2S
(
f(a†

jaj)aja
†
jf(a†

jaj) − a†
jf

2(a†
jaj)aj

)

= 2(S − a†
jaj) (6.40)

such that
Sz

j = S − a†
jaj (6.41)

describes the deviation from the maximum value S by the number opera-
tor a†

jaj which will turn out to be that of quantized excitations out of the
ferromagnetic ground state.

Let us assume again excitations of low energy which can be quantified by
〈a†

jaj〉 ≪ S and allow us to expand the operator function f(a†
jaj). Then

S+
j =

√
2S
{
1 − 1

4S
a†

jaj + . . .
}

aj ≃
√

2Saj , and S+
j ≃

√
2Sa†

j , (6.42)

and we have a one-to-one correspondence between the ladder operators S±
j

and the boson operators aj and a†
j . The factor f(a†

jaj) is required here only to
obtain (6.41). Under the condition of low-energy excitations the Heisenberg
Hamiltonian can now be written

Hspin ≃ −J
∑

n.n.i,j

{
S
(
aia

†
j + a†

iaj

)
+ S2 − S

(
aia

†
i + a†

jaj

)}

≃ −E0 + JS
∑

n.n.i,j

{
a†

iai + a†
jaj − aia

†
j − a†

iaj

}
(6.43)

4 Theodor D. Holstein, 1915–1985.
5 Henry Primakoff, 1914–1983.
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where higher order terms in the occupation number operator (corresponding to
magnon–magnon coupling analogous to lattice dynamics beyond the harmonic
approximation) have been omitted and E0 is the ground state energy (see
(6.30)). The last two terms represent a coupling between nearest neighbor
lattice sites which can be removed by transforming to normal coordinates (or
switching from the Wannier to the Bloch representation) with

aj =
1√
N

∑

k

e−ik·Rj bk, a†
j =

1√
N

∑

k

eik·Rj b†k. (6.44)

The individual contributions to (6.43) can be expressed in the new boson
operators for the collective excitation as

∑

n.n.ij

a†
jaj = ν

∑

kk′

1

N

∑

j

e−i(k−k′)·Rj

︸ ︷︷ ︸
δkk′

b†k′bk = ν
∑

k

b†kbk

∑

n.n.ij

a†
iaj =

∑

kk′

1

N

∑

n.n.ij

eik·Rie−ik′·Rj b†kbk′

=
∑

kk′

1

N

∑

j

ei(k−k′)·Rj

∑

d

eik·db†kbk′ = ν
∑

k

γkb†kbk (6.45)

and the Hamiltonian takes the approximate form

Hspin ≃ E0 + 2JνS
∑

k

(1 − γk)b†kbk = E0 +
∑

k

h̄ωkb†kbk. (6.46)

It is the Hamiltonian for spin waves in ferromagnets. The meaning of the boson
operators b†k and bk can be read from the relation

∑

j

Sz
j = NS −

∑

k

b†kbk, (6.47)

where the first term NS gives the maximum value of the z components of all
spin operators in the ferromagnetic ground state and the second term counts
the number of quantized collective excitations, the magnons.

Because we have assumed exchange interaction only between nearest
neighbors, the magnon dispersion ωk, depending on the configuration of the
magnetic ions, can be expressed in terms of cosine functions as is typical
for the tight-binding approximation (see Sect. 5.4). The width of the magnon
band, determined by the number of nearest neighbors and the exchange con-
stant, is in the range of a few to some tens meV, which is about the same as
for phonons. For |k| ≪ 2π/a we may expand

1 − γk ≃ 1 − (1 − 1

2ν

∑

d

|k · d|2) ∼ k2 (6.48)
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and find a quadratic dependence on the wave vector around the minimum at
k = 0. This quadratic dispersion has been measured by inelastic neutron scat-
tering, e.g. in the 3d transition metals [186, 187], but will be shown only when
we discuss itinerant magnetism in Sect. 6.6. For a more recent introduction
into the concepts of neutron scattering in solids with examples of magnetic
excitations see [96, 97].

Similar to phonons, magnons also can be thermally excited and contribute
to the specific heat. This contribution can be calculated from the thermal
expectation value of (6.46)

E(T ) = E0 +
∑

k

h̄ωk〈b†kbk〉

= E0 +
V

(2π)3

∫
h̄ωk

1

eβh̄ωk − 1
d3k. (6.49)

As we are interested in the low-temperature behavior of the specific heat,
which is determined by the quantum nature of the excitations, the dispersion
can be approximated as h̄ωk = αk2, where for a simple cubic lattice with
lattice constant a one has α = 2JSa2. With this isotropic quadratic dispersion
the integral can be evaluated in polar coordinates and reads after substituting
x = βαk2

E(T ) = E0 +
α

2π2

(
kBT

α

)5/2 ∫ xmax

0

x3/2 1

ex − 1
dx. (6.50)

We may compare here with E(T ) of (3.64), obtained for the acoustic phonons
in the Debye model. For low-temperatures the upper limit of the integral can
be shifted to infinity and we obtain one of the Bose integrals (see Appendix),
which can be expressed here as Γ(5/2)ζ(5/2; 1). Finally, we find for the
magnon contribution to the thermal energy

E(T ) = E0 +
0.45

π2α3/2
(kBT )

5/2
(6.51)

and for the specific heat

cV (T ) =
dE(T )

dT

∣∣∣
V =const.

= 0.113 kB

(
kBT

α

)3/2

. (6.52)

This T 3/2 dependence is characteristic of the magnon contribution to the
specific heat and makes it distinct from the contributions of the acoustic
phonons (∼T 3) or free electrons (∼T ).

6.4 Spin Waves in Anti-Ferromagnets

In the last section, we have assumed a ferromagnetic ground state, which
required a positive exchange integral between nearest neighbors. An anti-
ferromagnetic order, with the spins on neighboring lattice sites being oriented
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Fig. 6.6. Linear chain with anti-ferromagnetic order, the Wigner–Seitz cell contains
two ions with opposite spin

×

×

×

×

×

×

×

Mn lattice 1

Mn lattice 2

F

Fig. 6.7. Structure of the anti-ferromagnetic insulator MnF2

anti-parallel to each other, would mean an enlarged unit cell with a basis
consisting of (at least) two atoms with a negative exchange integral between
nearest neighbors, as depicted in Fig. 6.6. As a real three-dimensional system
we show in Fig. 6.7, the crystal structure of the anti-ferromagnetic insulator
MnF2. The configuration of the fluorine ions around the Mn ions on the
corners of the cube is different from that around the Mn ion in the center,
thus the structure is that of two interpenetrating simple cubic lattices each
with a basis of one Mn and two F ions.

The Hamiltonian for this system (without external magnetic field) can be
written

Hspin = Ja

∑

n.n.i,j

S1i · S2j

= Ja

∑

n.n.ij

(
1

2

(
S+

1iS
−
2j + S−

1iS
+
2j

)
+ Sz

1iS
z
2j

)
. (6.53)

Here S1i, S2j are the spin vector operators on the two sublattices and the
negative sign of the exchange integral is absorbed in the positive constant
Ja. In order to derive a spin wave Hamiltonian similar to (6.46) we employ
the Holstein–Primakoff transformation, introduced in the previous section, to
replace in a first step, the spin operators on each sublattice by boson operators

S+
1i ≃

√
2Sa1i, S−

1i ≃
√

2Sa†
1i, Sz

1i = +S − a†
1ia1i (sublattice 1)

S+
2i ≃

√
2Sa2i, S−

2i ≃
√

2Sa†
2i, Sz

2i = −S + a†
2ia2i (sublattice 2)

(6.54)

and find the approximate Heisenberg Hamiltonian for low-energy excitations
out of the anti-ferromagnetic state, i.e. for 〈a†

1ia1i〉, 〈a†
2ia2i〉 ≪ S,
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Hspin ≃ Ja

∑

n.n.ij

{
−S2 + S

(
a†
1ia1i + a†

2ia2i + a1ia2j + a†
1ia

†
2j

)}
. (6.55)

The first term ∼ −S2 on the right hand side gives the energy of the anti-
ferromagnetic configuration Ea = −2JaνNS2. It will be shown later that this
configuration does not represent the ground state. The remaining terms can
be formulated again in the Bloch representation for each sublattice and we
obtain

Hspin ≃ Ea + 2JaνS
∑

k

{
b†1kb1k + b†2kb2k + γk

(
b†1kb†2k + b1kb2k

)}
. (6.56)

The first terms under the sum, count the elementary excitations on each sub-
lattice, while the last term describes the coupling between the sublattices
which still has to be removed. This is achieved by the Bogoliubov6 transfor-

mation

αk = ukb1k − vkb†2k, α†
k = ukb†1k − vkb2k

βk = ukb2k − vkb†1k, β†
k = ukb†2k − vkb1k, (6.57)

where the coefficients uk and vk are real. Also the new operators obey the
boson commutation rules (Problem 6.6)

[αk, α†
k′ ] = [βk, β†

k′ ] = δkk′ , [αk, βk′ ] = [α†
k, β†

k′ ] = [αk, β†
k′ ] = 0. (6.58)

which leads to the constraint u2
k − v2

k = 1. Note, that the boson operators for
different sublattices commute with each other.

The Bogoliubov transformation is an important concept to exactly elim-
inate a bilinear coupling between two boson systems, of those represented
by the spin wave operators on the two sublattices. It can also be applied
to phonon–photon or exciton–photon coupling (leading to polaritons, see
Chap. 10) or to plasmon–phonon coupling (to yield the coupled plasmon–
phonon modes (see Sect. 4.6)). A further example is the magnon–phonon
coupling to be treated in Problem 6.7. An analogous transformation for bilin-
ear fermion coupling, the Bogoliubov–Valatin transformation is used in the
theory of superconductivity [19].

This transformation is applied here in its inverted form according to which

b1k = ukαk + vkβ†
k, b2k = ukβk + vkα†

k (6.59)

and corresponding expressions for Hermitian adjoint operators, to find (Prob-
lem 6.8)

Hspin = Ea + 2JaνS
∑

k

{
− 1 +

(
u2

k + v2
k + 2ukvk

)(
α†

kαk + β†
kβk + 1

)

+
(
2ukvk + γk(u2

k + v2
k)
)(

α†
kβ†

k + αkβk

)}
. (6.60)

6 Nikolai Nikolaevich Bogoliubov 1909–1992.
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The last term on the rhs , which is bilinear in the α and β operators, vanishes
for

2ukvk + γk(u2
k + v2

k) = 0, (6.61)

which together with u2
k − v2

k = 1 leads to

u2
k + v2

k + 2γkukvk =
√

1 − γ2
k (6.62)

and

u2
k =

1

2

(
1√

1 − γ2
k

+ 1

)
, v2

k =
1

2

(
1√

1 − γ2
k

− 1

)
. (6.63)

Thus, we arrive at the Hamiltonian for anti-ferromagnetic spin waves

Hspin = −2JaνNS(S + 1) +
∑

k

h̄ωk

(
α†

kαk + β†
kβk + 1

)
. (6.64)

This Hamiltonian differs from that of the ferromagnetic magnons (6.46) by

containing number operators of two elementary excitations (α†
kαk and β†

kβk)
with the same energy and in addition, a zero point contribution.

The magnon energy is h̄ωk = 2JaνS(1− γ2
k)1/2 with γk as defined before.

In contrast with the dispersion of the ferromagnetic magnons, we have now
for k ≪ π/a with 1 − γ2

k ∼ k2 a linear dependence of the magnon frequency
with k. An example for this linear dispersion measured by inelastic neutron
scattering in MnF2 is shown in Fig. 6.8. Note that the dispersion does not
exactly follow the linear dependence ∼ k, but exhibits a small gap at k = 0.
It is due to an anisotropy field, which removes the degeneracy of the two
different magnons and will be the subject of Problem 6.9.

100

50

0
0 0.5 1.0

k
h

ω
  
 [

°K
]

<001>  direction

<100>  direction

k/kmax

Fig. 6.8. Magnon dispersion in MnF2 measured by inelastic neutron scattering for
two different directions in k space after [188]. Note the small gap at k = 0 due to a
small anisotropy field (see Problem 6.9)
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The energy of the ground state (the magnon vacuum, here denoted by
|Ψ0〉)

E0 = 〈Ψ0|Hspin|Ψ0〉 = −2JaνNS2 − 2JaνS
∑

k

(
1 −

√
1 − γ2

k

)
(6.65)

is composed of the energy of the perfect anti-ferromagnetic configuration
(first term) and the zero-point contribution, which is negative because of
1−

√
1 − γ2

k > 0 (second term). This indicates that the ground state deviates
from the exact anti-ferromagnetic order as can be seen more clearly by looking
at the departure from the maximum value of the z component of the spin,
NS − 〈Ψ0|

∑
j Sz

j |Ψ0〉, in the sublattices (which would vanish for the perfect
spin alignment). We find for the sublattice 1 (and similar for the sublattice 2)
with

∑

j

Sz
j = NS −

∑

k

b†1kb1k

= NS −
∑

k

(
ukα†

k + vkβk

)(
ukαk + vkβ†

k

)

= NS −
∑

k

(
u2

kα†
kαk + v2

kβkβ†
k + ukvk

(
α†

kβ†
k + αkβk

))
(6.66)

and by making use of the commutation rules for the β operators after taking
the expectation value with |Ψ0〉

NS − 〈Ψ0|
∑

j

Sz
j |Ψ0〉 =

∑

k

v2
k =

1

2

∑

k

(
(1 − γ2

k)−1/2 − 1
)
�= 0. (6.67)

Thus, in the ground state, the magnon vacuum, the spins in the individual
sublattices are not perfectly aligned but slightly disordered.

6.5 Molecular Field Approximation

The theory of spin waves outlined in Sects. 6.3 and 6.4 has provided some
insight into the low-energy excitations, which means a departure from the
state with ferromagnetic or anti-ferromagnetic order. It is known, that mag-
netic order exists only below a critical temperature at which a phase transition
takes place. For ferromagnets, this critical temperature is the Curie 7 temper-

ature TC at which a transition to the paramagnetic phase takes place. The
transition temperature for anti-ferromagnets is the Néel8 temperature TN.

7 Pierre Curie 1859–1906, shared the Noble prize in physics 1903 with his wife
Marie Curie.

8 Louis Néel 1904–2000, Noble prize in physics 1970.
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The quantity to be studied here is the magnetization M(T ) and its tem-
perature dependence up to and beyond TC. Assuming its orientation (which
can be defined by a weak external magnetic field) in z direction we may write
M(T ) = (0, 0, M(T )) with

M(T ) = gμB

〈
∑

j

Sz
j

〉
, (6.68)

i.e., the magnetization is determined by the thermal expectation value of the z
components of the localized spin operators. For temperatures below the Curie
temperature TC, it describes the spontaneous magnetization which in terms
of ferromagnetic spin waves reads

M(T ) = gμB

(
NS −

∑

k

〈b†kbk〉
)

. (6.69)

The first term M(0) = gμBNS is the saturation magnetization and the sec-
ond term accounts for the departure from M(0) by thermal excitation of
magnons which follows a temperature dependence given by T 3/2 (Problem
6.10). When approaching TC the magnetization vanishes, which in the lan-

guage of magnons would require 〈b†kbk〉 to approach NS in contrast with the

condition 〈b†kbk〉 ≪ NS for the spin–wave theory, or else, this theory is valid
only for T ≪ TC.

Let us look, therefore, again at the Heisenberg Hamiltonian with an exter-
nal magnetic field (to fix the orientation of the spontaneous magnetization)
written in the form

Hspin = −
∑

j

{
J
∑

n.n.i�=j

Si + gμBHext

}
· Sj . (6.70)

It suggests to interpret the content of the curly bracket as an effective magnetic
field acting on the spin Sj . This interpretation requires that the spin operator
Si is replaced by its thermal expectation value 〈Si〉.

To be more explicit, by splitting the spin operator Si = 〈Si〉 + δSi into
its thermal expectation (or mean) value and deviations from it, called spin
fluctuations, the spin–spin interaction can be rewritten

Si · Sj = 〈Si〉 · 〈Sj〉 + 〈Si〉 · δSj + δSi · 〈Sj〉 + δSi · δSj . (6.71)

Neglecting the last term quadratic in the fluctuations, which are assumed to
be small, the Heisenberg Hamiltonian can be cast into the form

Hspin = −
∑

j

{
2J

∑

n.n.i�=j

〈Si〉 + gμBHext

}
· Sj +

∑

n.n.i�=j

J〈Si〉 · 〈Sj〉,

(6.72)
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where the last term is a constant. The first term contains besides the Zeeman
term the molecular field, defined by

2J
∑

n.n.i�=j

〈Si〉 = gμBHM (6.73)

and the spin Hamiltonian becomes

Hspin ≃ −gμB

∑

j

{HM + Hext} · Sj +
∑

n.n.i�=j

J 〈Si〉 · 〈Sj〉. (6.74)

The molecular field HM (originally introduced by P. Weiss9) accounts for the
interaction of the spin Sj with all the other spins Si, i �= j replaced by 〈Si〉,
but can be quantified, only when the thermal expectation values of all theses
spins are known. Note that this seemingly simple concept is quite general as
it can be applied to any system of interacting particles as e.g. in the Hartree–
Fock approximation introduced in Sect. 4.4. In this more general context, the
molecular field is also called mean field and the approximation denoted mean

field approximation.
According to the translational symmetry of the system, the individual

localized spins contribute equally to the magnetization. Therefore, it can be
written

NM(T ) = gμB

∑

j

〈Sj〉 = gμBN〈Sj〉 (6.75)

and the molecular field can be expressed as

HM =
2J

NgμB

∑

n.n.i�=j

〈Si〉 = λM , λ =
νJ

g2μ2
B

. (6.76)

It is determined by the magnetization M(T ) of the system and a constant
∼νJ , the Weiss constant, which is stronger the larger the exchange integral
J and the number ν of nearest neighbors in the lattice.

Now, we focus on the temperature dependence of the magnetization. Let
the external magnetic field and the magnetization point in the z direction to
define an effective field Heff = Hext + λM . Then the spin Hamiltonian takes
the form (up to a constant)

Hspin = −gμB

∑

i

Sz
i Heff (6.77)

and the magnetization is to be calculated as thermal expectation value

M(T ) = gμBTr
( 1

Z
e−βHspinSz

i

)
with β = 1/kBT. (6.78)

9 Pierre Ernest Weiss 1865–1940.
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The trace can be evaluated with the eigenstates of (6.77) which are

∏

i

|SMS〉i, MS = −S,−S + 1, . . . S − 1, S. (6.79)

The eigenvalues of Sz
i are independent of the site

Sz
i |SMS〉i = MS|SMS〉i (6.80)

and we can write

M(T ) =
∑

i

1

Z

+S∑

MS=−S

2μBMSegµBβMSHeff (6.81)

which gives

M(T ) = gμBSBS(gμBβSHeff), (6.82)

with the Brillouin function (with y = gμBβSHeff)

BS(y) =
2S + 1

2S
coth

(
2S + 1

2S
y

)
− 1

2S
coth

y

2S
. (6.83)

In the limit of low temperatures, y → ∞, the Brillouin function BS(y) → 1
and we find

T → 0 : M(T ) → M(0) = gμBS (6.84)

i.e., the magnetization correctly approaches the saturation value.
Actually, according to (6.82) M is a function of the variable x = Heff/T

in which it shows the saturation behavior depicted in Fig. 6.9. Because of its
definition, the effective field is itself a function of the magnetization. Thus,
(6.82) represents an implicit equation for M(T ). It can be solved by consider-
ing besides (6.82) the second expression of M(x) obtained from the effective
field for the case of vanishing external field

M(T)
M(0)

1

x

T=Tc T/T <1c

Fig. 6.9. Saturation behavior of the spontaneous magnetization and graphical
solution for M(T ) with the phase transition for a ferromagnet (after [12])
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M(x) =
T

λ
x. (6.85)

For sufficiently low temperature, the graph of (6.85), which is a straight line
(see Fig. 6.9), cuts the saturation curve (6.82) always at a finite value of M(T ).
With increasing temperature, this crossing point moves to the left until at
the critical temperature, the graph of (6.85) becomes the tangent of (6.82)
at M(T ) = 0. This signifies the transition from the ferromagnetic to the
paramagnetic phase.

The critical temperature can be obtained from the derivative of the magne-
tization with respect to x, which is found from the high temperature expansion
(y ≪ 1) of the Brillouin function

BS(y) =
S + 1

S

y

3
− (2S + 1)4 − 1

(2S)4
y3

45
+ . . . (6.86)

according to which the leading terms of the magnetization in the absence of
the external magnetic field (Hext → 0) are

M(T ) = TC
M(T )

T
− A

M(T )3

T 3
, (6.87)

where we have identified the Curie temperature with

TC =
JνS(S + 1)

3kB
(6.88)

and A is another constant determined by the system parameters. After divid-
ing by M(T ) (6.87) becomes a quadratic equation which gives the qualitative
relation

M(T → TC) ∼ (TC − T )1/2, T < TC. (6.89)

Thus, the mean field theory allows us to describe the expected vanishing of
the magnetization, when approaching the critical temperature from below,
and it gives also the temperature dependence with the critical exponent 1/2.
This behavior is typical for a second order phase transition, which is charac-
terized here by the magnetization M(T ) as order parameter. The usual plot
of M(T )/M(0) versus T/TC (Fig. 6.10) is universal for a second order phase
transition and does not depend on the ferromagnetic material. Thus, the data
points for Ni and Fe fall onto the same curve, which is well described by the
Brillouin function with S = 1/2. The validity of the mean-field approach has
been confirmed also by ab-initio calculations with the dynamical mean-field
theory.[189]

Above the critical temperature the magnetization in the presence of an
external magnetic field is

M(T > TC) = g2μ2
BNS(S + 1)

1

3kBT
(Hext + λM)

=
C

T
Hext +

TC

T
M(T ) (6.90)
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Fig. 6.10. Dependence of the reduced saturation magnetization on the reduced
temperature. Symbols are experimental data for Ni and Fe, solid lines are calculated
from the Brillouin function with different values for the total spin S (after [30])

Table 6.1. Curie temperatures (TC in K) and saturation magnetization (M(0)
in Gauss) for some ferromagnets and Néel temperatures (TN in K) for some anti-
ferromagnets

Ferromagnets TC M(0) Anti-Ferromagnets TN

Fe 1043 1752 MnO 122
Co 1388 1446 FeO 198
Ni 627 510 CoO 291
EuO 77 1910 NiO 600
EuS 16.5 1184 MnF2 67.34
MnAs 318 870 CoF2 37.7

and it follows the Curie–Weiss law

M(T > TC) =
C

T − TC
Hext, T > TC. (6.91)

Similar considerations lead to the phase transition between the anti-
ferromagnetic and paramagnetic phases characterized by the Néel temperature
as critical temperature. In Table 6.1 some systems with magnetic order are
given together with their critical temperatures and (for the ferromagnetic
systems) their saturation magnetization at T = 0 K. As an example of a fer-
rimagnet we refer to Fe3O4 (magnetite) with TC = 858K and M(T = 0) =
510G. All data are taken from [164]. For further reading about phase transi-
tions and critical exponents we refer to [190–192].
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6.6 Itinerant Electron Magnetism

While in the previous sections we have assumed a dominating exchange inter-
action and strongly localized electrons, we want to study now the opposite
situation of Bloch or itinerant electrons with weak exchange interaction. The
appropriate Hamiltonian for this case is [166, 171]

H =
∑

kσ

ǫkc†kσckσ +
1

2
U
∑

kk′q

σσ′

c†k+qσc†k′−qσ′ck′σ′ckσ. (6.92)

It describes electrons in a band ǫk with an interaction independent of k, which
can be understood as a screened Coulomb interaction e2/V ε0(k

2 + k2
FT) with

neglect of the dependence on k, i.e. it corresponds to the replacements

vk =
e2

ε0V k2
→ e2

ε0V (k2 + k2
FT)

→ e2

ε0V k2
FT

= U. (6.93)

We apply the Hartree–Fock approximation by considering only contributions
of the interaction with k′ = k + q and σ = σ′, which allow us to write the
interaction as

Hint = −1

2
U
∑

k1k2σ

c†k1σck1σc†k2σck2σ = −1

2
U
∑

k1k2σ

nk1σnk2σ. (6.94)

This can be formulated also with the numbers Nσ =
∑

k nkσ of spin-up (σ = +)
and spin-down (σ = −) electrons as

Hint = −U

2

(
1

2
(N+ − N−)2 +

1

2
N2

)
, (6.95)

where N = N+ + N− is the total number of electrons. The HF Hamiltonian,
known also as the Stoner10 model then reads

HHF =
∑

k,σ

(
ǫk − σ

∆

2

)
c†kσckσ +

U

4

(
(N+ − N−)2 − N2

)
. (6.96)

The energy spectrum εkσ = εk − σ∆/2 is depicted in Fig. 6.11, where for
simplicity, a parabolic dispersion as for free electrons is assumed. The up and
down spin electrons differ in their energies by ∆ = U(N+ − N−). The num-
ber difference between both kinds of electrons determines the magnetization
thus indicating the relation with magnetism. We recognize that the exchange
interaction leads to a similar result as the Zeeman term in the discussion of
the Pauli spin paramagnetism in Sect. 4.2. However, the k independent shift
of the spin-up and spin-down band applies to any dispersion relation ǫk as
e.g. in Fig. 6.1.

10 Edmund Clifton Stoner 1889–1973
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Fig. 6.11. Schematic dispersion for spin-split energy bands

The Stoner model is the starting point for investigating the dependence
of the total energy on the degree of spin polarization ζ = (N+ − N−)/N .
This will lead us to a refinement of the estimate given at the beginning of
this Chapter with respect to the existence of ferromagnetic order in a system
of itinerant electrons. The ground state energy in HF approximation follows
from (6.96) as

EHF
0 =

∑

k

(
fk+

(
ǫk − U

2
(N+ − N−)

)
+ fk−

(
ǫk +

U

2
(N+ − N−)

))

+
U

4

(
(N+ − N−)2 − n2

)
(6.97)

with the Fermi distribution function fk±. The sums over the band energies
are carried out by assuming the free electron dispersion ǫk = h̄2k2/2m and
T = 0 to give ∑

k

fk±ǫk =
3

5
N±EF(N±). (6.98)

Using the corresponding results from Sect. 4.4 but with EF(N±) = 22/3EF(N),
because of single occupancy of the states in k space with spin aligned electrons,
the total energy in HF approximation is

EHF
0 (N+, N−) =

3

5

(
N+EF(N+) + N−EF(N−)

)

−U

4

(
(N+ − N−)2 + N2

)
. (6.99)

We are interested in the dependence on the degree of spin polarization ζ =
(N+ − N−)/N , and replace N± according to

N± =
1

2
N(1 ± ζ), (6.100)

which gives for the mean energy per particle
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ǫHF(N, ζ) =
EHF

0 (N+) + EHF
0 (N−)

N

=
3

5

EF

2

(
(1 + ζ)5/3 + (1 − ζ)5/3

)
− UN

4

(
ζ2 − 1

)
. (6.101)

A minimum of ǫHF(N, ζ) at finite ζ would indicate the existence of a stable
ferromagnetic state. This condition leads to the relation

UN

EF
ζ = (1 + ζ)2/3 − (1 − ζ)2/3, 0 ≤ ζ ≤ 1. (6.102)

The rhs is a monotonous function, starting for ζ = 0 at zero with a slope of
4/3 and reaching for ζ = 1 the value 22/3 with infinite slope. With respect to
(6.102) three situations are possible:

(a) UN/EF < 4/3, the relation has no solution for finite ζ, which leads to a
stable paramagnetic state,

(b) 4/3 < UN/EF < 22/3, there exists a solution for 0 < ζ < 1 representing
a stable ferromagnetic state, with partial spin polarization,

(c) 22/3 < UN/EF , there is always a solution with ζ = 1 representing a
ferromagnet with perfect alignment of all spins.

The ratio N/EF is proportional to the density of states at the Fermi energy
D(EF), thus the existence of ferromagnetism in a system of itinerant electrons
is ruled by the competition between D(EF) (which is determined by the dis-
persion) and the strength of the exchange energy U . If, for the given U , the
width of the energy band increases, i.e. D(EF) decreases, the criterion (c)
or even (b) will be missed and ferromagnetism will not be realized. Thus,
the Stoner model provides with the criterion (a), the Stoner condition, a clear
answer with respect to the existence of ferromagnetism for itinerant electrons.

Besides the existence of magnetic order the other basic property of a spin
system is the excitation spectrum out of the ground state. In Chap. 4 it was
the dielectric function which has led us to the excitation spectrum of the free
interacting electrons consisting of single-particle (or electron–hole) and col-
lective excitations (the plasmons). For the latter, it was necessary to employ
the random phase approximation. We remember that the inverse dielectric
function is a density–density correlation function. Here, we want to put the
emphasis on spin-flip excitations. The corresponding response function is the
magnetic or spin susceptibility, which is a correlation function between com-
ponents of the magnetic dipole density. The observable of interest here is the
magnetization related to spins Sl of electrons at rl

M(r) =
m(r)

V
= gμB

∑

l

Slδ(r − rl) (6.103)

as introduced already in Sect. 2.5. This quantity can be addressed by a mag-
netic field with the interaction term Vext(t) = −m ·B(t). Spin flips are caused
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by the ladder operators S±, which for a spin-1/2 system are expressed in terms
auf Pauli spin matrices as

S+ = (σx + iσy)/2 =

(
0 1
0 0

)
, S− = (σx − iσy)/2 =

(
0 0
1 0

)
. (6.104)

In the following we assume Bz = 0 and choose the appropriate decomposition
of the external perturbation

Vext(t) = −(m+B−e−iωt + m−B+eiωt) (6.105)

which describes the interaction with a rotating magnetic field in the xy plane.
The observable we are interested in here is M+ = m+/V . It is related to the
susceptibility responsible for spin-flip processes

χM
+−(q, ω) =

i

h̄

∫ +∞

−∞

eiωτΘ(τ)〈[M+(q, τ), M−(−q, 0)]〉0dτ. (6.106)

This correlation function, which has the same structure as (2.61), can be eval-
uated in the occupation number representation. In terms of fermion operators
for the Bloch electrons we have

M+(q) = gμB

∑

k

c†k+q↑ck↓, M−(−q) = gμB

∑

k

c†k−q↓ck↑, (6.107)

which are spin-density fluctuations (multiplied by gμB). We evaluate the
expectation value under the integral for T = 0 with the eigenstates of the
HF Hamiltonian (6.96) analogous to the calculation of the inverse dielectric
function in Sect. 4.5 but consider the spin splitting of the HF single-particle
energies ǫk± = ǫk∓∆/2 and obtain as the HF result for the spin susceptibility
(Problem 6.11)

χ0
+−(q, ω) = lim

δ→0
g2μ2

B

∑

k

fk↓ − fk+q↑

h̄ω + ǫk+q↑ − ǫk↓ + iδ
. (6.108)

It resembles the polarization function π0(q, ω) in the HF result for the inverse
dielectric function (see (4.122)). Its poles (in the lower half of the complex
energy plane) mark the particle–hole excitations with spin flip, the Stoner

continuum depicted in Fig. 6.12. For q = 0, excitations are possible only for
h̄ω = ∆, because the two bands are shifted against each other by the exchange
energy (see Fig. 6.11). With increasing q, spin-flip excitations become possible
for a continuum with increasing width. In Fig. 6.12, two situations are shown.
If ∆ is smaller than EF the continuum reaches down to vanishing excitation
energies, for which spin-flip excitations are possible in the interval k+

F − k−
F <

q < k+
F +k−

F as can be checked also with Fig. 6.11. This situation is called weak

ferromagnetic case. In the strong ferromagnetic case, EF < ∆, single-particle
excitations with spin flip are possible only for finite excitation energy.
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Fig. 6.12. Spectra of single-particle (Stoner continuum) and collective excitations
with spin-flip for a weak (left) and a strong (right) ferromagnet

These results can be compared with those of the dielectric function for the
free electron system in Sect. 4.5. There we have obtained the single-particle or
electron–hole excitations (without spin flip) in the HF approximation. As we
know from the discussion of the dielectric function, this approximation does
not yield the collective charge-density excitations (or plasmons) for which we
had to go beyond HF to the RPA. It consisted in replacing the free polarization
function π0(q, ω) by π0(q, ω)/(1−vqπ0(q, ω)). The corresponding replacement
is possible here by identifying π0(q, ω) with χ̃+−(q, ω) = χ0

+−(q, ω)/g2μ2
B

and vq with the exchange interaction U . Thus the RPA result for the spin
susceptibility is easily obtained as

χM
+−(q, ω) = g2μ2

B

χ̃0
+−(q, ω)

1 − Uχ̃0
+−(q, ω)

. (6.109)

Besides the poles of single-particle excitations of χ0
+−(q, ω), the RPA suscep-

tibility has an additional pole due to the vanishing denominator,

1 − Uχ̃0
+−(q, ω) = 0, (6.110)

giving the collective excitations of the spin system, the magnons.
In order to find the magnon dispersion, we have, in a first step, to evaluate

χ̃0
+−(q, ω) under the conditions of collective excitations outside of the Stoner

continuum, which we expect to occur for h̄ω ≪ ∆ and at small q. Then we
have, using the solution of Problem 6.11

χ̃0
+−(q, ω) =

V

6π2

1

h̄ω − ∆ + ǫq

(
k+
F

3
+

k+
F

5

5m

(
h̄2q

h̄ω − ∆ + ǫq

)2
)

− V

6π2

1

h̄ω − ∆ − ǫq

(
k+
F

3
+

k+
F

5

5m

(
h̄2q

h̄ω − ∆ − ǫq

)2
)

(6.111)
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with ǫq = h̄2q2/2m. We substitute this result in (6.110) and find

1 − UV

6π2

{
k−
F

3

h̄ω − ∆ + ǫq
− k+

F

3

h̄ω − ∆ − ǫq

+
h̄4q2

5m2

(
k+
F

5

(h̄ω − ∆ + ǫq)3
− k−

F

5

(h̄ω − ∆ − ǫq)3

)}
= 0. (6.112)

Being interested in the leading order term in q, we expand the denominators
of the first two terms in the bracket with ∆ ≪ h̄ω ± ǫq but neglect the small
terms in the dominators of the last terms, which are already proportional to
q2. Making use of the relation

1

∆

(
k+
F

3 − k−
F

3
)

=
6π2

UV
(6.113)

the condition for the magnon pole simplifies and can be solved for the magnon
energy

h̄ωq ≃ h̄2q2

2m

{
k+
F

3
+ k−

F

3

k+
F

3 − k−
F

3 − 2h̄2

5m∆

k+
F

5 − k−
F

5

k+
F

3 − k−
F

3

}
. (6.114)

With k±
F

3
= k3

F(1 ± ζ) and ∆ = UNζ this reduces to

h̄ωq ≃ h̄2q2

2mζ

{
1 − 2EF

5UN

(1 + ζ)5/3 − (1 − ζ)5/3

ζ

}
. (6.115)

We find the characteristic q2 dependence giving a dispersion of the ferro-
magnetic magnons (see Sect. 6.3) separated from the Stoner continuum as
indicated in Fig. 6.12. The magnon dispersion of Fe, measured with inelastic
neutron scattering, is shown in Fig. 6.13. It follows more or less that this q2

law is almost independent of the direction of propagation. With increasing q
the magnon dispersion becomes degenerate with the Stoner continuum and
decays into single-particle excitations with spin-flip. This situation resembles
that of the collective charge density excitations (plasmons, see Sect. 4.6) when
they become degenerate with the particle-hole continuum of the free electron
gas and decay into particle–hole excitations.

The curvature of the magnon dispersion depends on the relation between
density of states (or Fermi energy over N) and interaction strength U . For,
complete spin polarization ζ = 1, (6.115) simplifies to

h̄ωq(ζ = 1) =
h̄2q2

2m

{
1 − 2EF

5UN
25/3

}
(6.116)

while for small spin polarization ζ ≪ 1 we have

h̄ωq(ζ ≪ 1) =
h̄2q2

2mζ

{
1 − 4EF

3UN

}
. (6.117)
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Fig. 6.13. Magnon dispersion of ferromagnetic Fe from inelastic neutron scattering
after [186]. The dashed line represents the quadratic dispersion

In this limit ωq is positive if

UN

EF
>

4

3
. (6.118)

Thus, we arrive at the consistent result that collective spin excitations are
possible if according to the Stoner condition ferromagnetism and finite spin
polarization exist.

Problems

6.1 Derive the expression for the matrix element of the electron–electron
interaction Vαββ′α′ in the general case! Make use of the Fourier expansion
of products of the periodic parts of the Bloch functions. Simplify to the
single-band case and use only the leading term of this Fourier expansion.

6.2 Make use of the orthogonality and normalization of the Bloch functions
ψnkσ(r) to show that

φnσ(r − R) =
1√
N

∑

k

e−ik·Rψnkσ(r) (6.119)
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are normalized and that they are orthogonal when centered around differ-
ent sites R (Wannier representation)! Derive the commutation relations

of cnRσ, c†n′R′σ′ from those of the Bloch states!
6.3 Express the interaction matrix element of Problem 6.1 in the Wannier

representation with localized atomic orbitals for the single-band case to
obtain (6.10)!

6.4 Show that the set of operators c†↑c↓, c
†
↓c↑, and c†↑c↑ − c†↓c↓ fulfills the

same commutation relations as the components of the spin-1/2 operators.
Make use of the fermion commutation rules for c†σ, cσ!

6.5 Derive the equation of motion (6.32) for the spin operator Sj determined
by the Heisenberg Hamiltonian (6.23)!

6.6 Given are the commutation rules for the boson operators b†ik, bik, i = 1, 2
for the magnons in the two sublattices of an anti-ferromagnet. Verify the
commutation relations (6.58) for the Boson operators αk, βk obtained by
the Bogoliubov transformation (6.57)!

6.7 The Hamiltonian of a solid, in which the simultaneous presence of
phonons and magnons shall be studied, can be written as

Hp−m =
∑

k

{
h̄ωp

ka†
kak + h̄ωm

k b†kbk + ck

(
akb†k + a†

kbk

)}
, (6.120)

where ωp
k(ωm

k ) is the phonon(magnon) dispersion and a, a†(b, b†) are
the boson operators for phonons(magnons). The coupling between both
elementary excitations is described by the bilinear term with the cou-
pling constant ck. Make use of the following variant of the Bogoliubov
transformation to eliminate the coupling (with real Θk):

ak = αk cosΘk + βk sin Θk, bk = βk cosΘk − αk sin Θk (6.121)

and express Θk (or a function of Θk) by the coupling constant and the
frequencies ωp

k(ωm
k )! Discuss the solution, especially for ωp

k = ωm
k , and

give the eigenfrequencies of the new collective magnon–phonon modes
and how their boson operators are composed of the original phonon and
magnon operators!

6.8 Replace in (6.56) the spin wave operators for the sublattices with the
help of the Bogoliubov transformation to get the Hamiltonian (6.60)!

6.9 In order to remove the degeneracy of the anti-ferromagnetic magnons,
introduce a weak anisotropy field Ha in the Hamiltonian (6.53) acting
with opposite sign on the two sublattices, and an external magnetic field.
How does this change the dispersion relation for the anti-ferromagnetic
magnons? Discuss the frequency in the long wavelength limit k → 0 and
sketch the result to show the effect of the anisotropy field!

6.10 Calculate the temperature dependence of M(T ) − M(0) for T ≪ TC in
the spin–wave approximation and verify Bloch’s T 3/2 law!
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6.11 Derive the expression (6.108) of the spin susceptibility in HF approxi-
mation χ0

+−(q, ω) at T = 0 ! The calculation is strictly analogous to that
performed in Sect. 4.5 to obtain the HF result for the inverse dielectric
function. Evaluate the formula by assuming a single-particle dispersion
of the form ǫkσ = h̄2k2/2m − σ∆/2 with ∆ = U(N+ − N−)! Make use
of the fact that ∆ is the dominating quantity, i.e. ∆ ≫ h̄ω, h̄2q2/2m!



7

Correlated Electrons

In Sect. 4.7, we have studied in some detail the correlation effects for the homo-
geneous free electron system and figured out their dependence on the electron
density. Correlation has been considered in the effective single-particle poten-
tial for crystal electrons within the density-functional theory (DFT), which
has led to the independent particle description of the electronic band struc-
ture in Chap. 5. In Chap. 6, we have stressed the importance of the exchange
interaction and of the electron spin for magnetic properties. The aim of this
chapter is to introduce concepts of treating correlation effects for electrons
in a crystalline surrounding beyond the independent particle picture in a
more general sense. One aspect will be to describe model systems, which
allow to demonstrate correlation effects [122, 193–196]. The motivation comes
from the observation that some group of solids, namely those with the Fermi
energy within narrow bands deriving from d or f electrons, exhibit properties
which cannot be understood within the single-particle band structure. Among
those are besides the magnetic properties (Chap. 6), the insulating behavior
of some transition metal oxides, and the heavy fermion effects in compounds
of lanthanides and actinides. Another aspect is the quasi-particle concept in
the context of the Fermi liquid theory and the deviations from Fermi liq-
uid behavior in systems with reduced dimension [197–201]. Finally, we would
like to address also correlation in two-dimensional electron systems in high
magnetic fields, known as the fractional quantum Hall regime [202–204].

As in Chap. 6, we start from the N electron Hamiltonian (see (6.5))

H =
∑

α

ǫαc†αcα +
1

2

∑

αβα′β′

Vαββ′α′c†αc†βcα′cβ′ , (7.1)

where α, β, α′, and β′ are complete sets of single-particle quantum numbers,
α = nkσ, and ǫα the corresponding energy values. The matrix elements of the
electron–electron interaction

Vαββ′α′ =

∫
dx

∫
dx′ψ†

α(x)ψ†
β(x′)

e2

4πε0|x − x′|ψβ′(x)ψα′ (x′) (7.2)
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can be expressed in terms of the wave functions ψα(x), where x stands for
space and spin coordinates. We shall separate the Hamiltonian (7.1) according
to H = Hsp + Hint into the single-particle and the interaction part. In the
context of this chapter, the latter accounts for electrons in partially filled
bands only, while the interaction of all other electrons is considered as before
in the effective single-particle potential leading to the energy values ǫα.

7.1 Retarded Green Function for Electrons

In this section, we introduce the concept of the Green function for electrons,
which is advantageous in describing electronic properties of the interacting
electrons [64, 205, 206]. In general, a retarded Green function is an object
defined by (compare with (2.82))

Gret
AB(t, t′) = − i

h̄
θ(t − t′)〈[Â(t), B̂(t′)]±〉, (7.3)

where 〈. . . 〉 denotes the thermal expectation value as defined in Sect. 2.32.3
and

[Â(t), B̂(t′)]± = Â(t)B̂(t′) ± B̂(t′)Â(t). (7.4)

The +(−) sign applies if the operators Â(t) and B̂(t′) are fermion(boson)
operators. In Sect. 2.6, we have already identified the response function, which
is a correlation function for observables, as a special type of retarded Green
function. In the context of this chapter, the choice of the operators,

Â(t) = cα(t) and B̂(t′) = c†α(t′), (7.5)

will be a creation and an annihilation operator of an electron in a single-
particle state with quantum numbers α. Thus, the Green function (we use as
before {. . . , . . . } for the anti-commutator [. . . , . . . ]+)

G(α; t, t′) = − i

h̄
θ(t − t′)〈{cα(t), c†α(t′)}〉 (7.6)

is the probability amplitude to find the particle created at time t′ in the state
α at a later time t > t′ still in the same state. It describes the propagation of
an electron in the state α from t′ to t and is, therefore, called a propagator.

In order to calculate the Green function (7.6), we formulate the equation
of motion by taking the derivative with respect to the time argument t. It can
be written as

ih̄
∂G(α; t, t′)

∂t
=

∂θ(t − t′)

∂t
〈{cα(t), c†α(t′)}〉

− i

h̄
θ(t − t′)

〈{
ih̄

∂cα(t)

∂t
, c†α(t′)

}〉
. (7.7)
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With
∂θ(t − t′)

∂t
= δ(t − t′) , {cα(t), c†α(t)} = 1, (7.8)

and the equation of motion for cα(t)

ih̄
∂cα(t)

∂t
= [cα(t),H] (7.9)

(here [. . . , . . . ] denotes the commutator [. . . , . . . ]−) this can be cast into the
form

ih̄
∂G(α; t, t′)

∂t
= δ(t − t′) − i

h̄
θ(t − t′)〈{[cα(t),H], c†α(t′)}〉. (7.10)

The second term on the rhs has again the form (7.3) of a retarded Green
function, but it has a more complex form. As it will turn out, it contains in
general more than two fermion operators due to the electron–electron inter-
action. One could also formulate, for this higher order Green function, an
equation of motion with a similar structure but with an even more complex
Green function, and so forth. This is a generic hierarchy problem typical for
interacting systems. Concepts of many-particle physics focus on finding for
this problem approximate solutions, essentially by truncating the hierarchy
at some level.

To become acquainted with the concept of Green functions, let us first look
for the simplest solution of (7.10) which can be given for the noninteracting
electrons, i.e., by considering the Hamiltonian

Hsp =
∑

α′

ǫα′c†α′cα′ . (7.11)

Evaluation of the commutator yields

[cα(t),Hsp] = e
i
h̄
Hspt

∑

α′

ǫα′ [cα, c†α′cα′ ]e−
i
h̄
Hspt = ǫαcα(t). (7.12)

Here, we have used the fact that the time argument of all operators is the same
and determined by Hsp and that the commutation relation for the fermion

operators yields [cα, c†α′cα′ ] = cα′δα,α′ . The equation of motion for the Green
function G(0)(α; t, t′) of the noninteracting electron

(
ih̄

∂

∂t
− ǫα

)
G(0)(α; t, t′) = δ(t − t′) (7.13)

can be easily integrated to obtain

G(0)(α; t, t′) = − i

h̄
θ(t − t′)e−

i
h̄

ǫα(t−t′). (7.14)

After carrying out the Fourier transformation (note the time dependence
t − t′ = τ)
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G(0)(α, ω) =

∫ +∞

−∞

e
i
h̄

(h̄ω+iδ)τG(0)(α, τ)dτ, (7.15)

we find the characteristic form of the Green function (with E = h̄ω)

G(0)(α, E) = lim
δ→0

1

E − ǫα + iδ
, (7.16)

where the small δ has been introduced to yield, in the back transform again,
the retarded Green function. It has a pole in the lower complex energy (or
frequency) plane close to the real axis at the single-particle energy ǫα. (Com-
pare with the response function for the optical phonons in Sect. 3.5 or with
the inverse dielectric function in Sect. 4.5 which exhibit similar structures.)
Making use of the relation

lim
δ→0

1

E − ǫα + iδ
= P

(
1

E − ǫα

)
− iπδ(E − ǫα), (7.17)

one finds the density of states

D(E) =
1

π
Tr
(
ImG(0)(α, E)

)
=
∑

α

δ(E − ǫα). (7.18)

Let us include now the electron–electron interaction for the special case of
electrons in a partially filled energy band. For this case, the band index can
be dropped, and α is specified by the wave vector k and the spin σ of the
electron (see Problem 6.1). The commutator of ckσ with the interaction term

Hint =
1

2

∑

kk′q

σσ′

V (k, k′, q)c†k+qσc†k′−qσ′ck′σ′ckσ (7.19)

can be calculated as Problem 7.1 and yields

[ckσ,Hint] =
∑

k′qσ′

V (k′, k + q, q)c†k′+qσ′ck′σ′ck+qσ. (7.20)

The equation of motion for the Green function is now

(
ih̄

∂

∂t
− ǫkσ

)
G(kσ; t, t′) = δ(t − t′) +

∑

k′q
σ

V (k′, k + q, q)Γ(kσ, k′σ′; t, t′)

(7.21)

where

Γ(kσ, k′σ′; t, t′) = − i

h̄
θ(t − t′)〈{c†k′+qσ′(t)ck′σ′(t)ck+qσ(t), c†kσ(t′)}〉

(7.22)
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is a higher order Green function. It is convenient to introduce, by means of

∑

k′q

σ′

V (k′, k + q, q)Γ(kσ, k′σ′; t, t′) =

∫
Σ(kσ; t, t′′)G(kσ; t′′, t′)dt′′, (7.23)

the single-particle self-energy Σ(kσ; t, t′′). If the Hamiltonian does not depend
on t, we can exploit the homogeneity of the time, because the Green functions
depend only on the time difference and perform the Fourier transformation
to obtain

G(α, E) = lim
δ→0

1

E − ǫα − Σ(α, E) + iδ
. (7.24)

This is the same structure as for the Green function without interaction, but
now in addition to the single-particle energy there is a self-energy correction,
which in general depends on E and changes the pole structure. Thus, (7.24)
indicates the structure of the Green function. However, the problem of includ-
ing the electron–electron interaction is still to be accomplished by calculating
the self-energy and to find the poles of the Green function. For the concepts,
how this can be done in a systematic way, we refer to the literature [64].

The Green function of the noninteracting particle (7.16) is related to that
of the full Green function (7.24) by the Dyson1 equation

G = G(0) + G(0)Σ G, (7.25)

known from scattering theory. It can be obtained also by taking the Fourier
transform of (7.21) together with (7.23) (Problem 7.2).

We may look for approximate calculations of the self-energy and do this
for T = 0, for which the thermal expectation value reduces to the expectation
value in the system ground state (see Problem 2.2). The Green function (7.22)
can be approximated with the following replacements

c†k′+qσ′(t)ck′σ′(t)ck+qσ(t) → 〈c†k′+qσ′ (t)ck′σ′(t)〉ck+qσ(t)

−〈c†k′+qσ′(t)ck+qσ(t)〉ck′σ′(t), (7.26)

which is a factorization of the three-fermion term into an expectation value
and a single-fermion term. The former yields the occupation number nk′σ′ if
q = 0 and nk+qσ provided k′ = k, and σ′ = σ, while the latter combines
with the rest of (7.22) to the Green function G(α; t, t′). The corresponding
expressions for the self-energy, which do not depend on the time arguments,
are

ΣH(kσ) =
∑

k′σ′

V (k, k′,0)nk′σ′ , (7.27)

1 Freeman John Dyson *1923.
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Fig. 7.1. Graphs of the Hartree and Hartree–Fock self-energies

which is the Hartree self-energy, and

ΣHF(kσ) = −
∑

k′q

V (k, k′, q)nk′+qσ, (7.28)

which is the Hartree–Fock self-energy. There is a quite intuitive graphical
representation of these self-energies (Fig. 7.1): Both graphs are obtained from
the interaction graph (see Fig. 4.10) by connecting incoming and outgoing
fermion lines, which is possible in just two distinct ways, leading to the Hartree
and Hartree–Fock self-energy.

For free electrons, the potential matrix element simplifies according to
Vkk′q → vq, where vq is the Fourier transform of the bare Coulomb poten-
tial and we may compare with the results obtained in the jellium model of
Chap. 4. In this case, the Hartree self-energy vanishes, because the contribu-
tion for q = 0 is exempt from the summation in the interaction term due to
compensation with the jellium term and the Hartree–Fock self-energy becomes
the one calculated in Sect. 4.4.

Let us finally reformulate the denominator of the Green function for inter-
acting particles close to the chemical potential with E ≃ μ. Making use of the
expansion

Σ(α, E) ≃ Σ(α, μ) +
∂Σ

∂E

∣∣∣
E=µ

(E − μ), (7.29)

the denominator of the retarded Green function (7.24) takes the form

E − ǫα − Σ(α, E) ≃ (E − μ)

(
1 − ∂Σ

∂E

∣∣∣
E=µ

)
−
(
ǫα − μ + Σ(α, μ)

)
(7.30)

and the Green function can be written as

G(α, E) =
Z(α)

E − μ − ǫ̃α − iγα
. (7.31)

Here, we introduce

Z−1(α) = 1 − ∂Σ

∂E

∣∣∣
E=µ

(7.32)

ǫ̃α = Z(α) (ǫα − μ + ReΣ(α, μ)) (7.33)

γα ≃ Z(α)ImΣ(α, ǫ̃α). (7.34)
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Due to the interaction, the pole of the Green function is now at the energy
ǫ̃α + iγα and has the spectral weight Z(α), which equals 1 if the self-energy
does not depend on the energy, as is the case for the Hartree and Hartree–
Fock approximation. The pole is in the lower (upper) half plane of complex
energies depending on the sign of E − μ and corresponds to a quasi-particle
(quasi-hole). We shall come back to this result in Sect. 7.3. Here, we note only
that the Fourier back transformation leads to a time-dependent propagator
of the form (see [122], Sect. 10)

G(α; t − t′) = − i

h̄
Z(α)θ(t − t′)e−(iǫ̃α+γα)(t−t′)/h̄ . (7.35)

The imaginary part of the self-energy indicates a finite lifetime of the quasi-
particle or quasi-hole due to particle–particle interaction. A closer inspection
shows a decrease of the lifetime with increasing distance from the chemical
potential μ (see Sect. 7.3).

7.2 The Hubbard Model

After having gained some insight into the Green function concept and the
calculation of self-energies, we turn now to a special model, for which the corre-
lation effects can be evaluated in closed form. This model has been designed to
explain the observation that transition metal oxides, which according to their
electronic configuration should be metals due to partially filled single-particle
energy bands, turn out to be insulators. Take as an example CoO, which crys-
tallizes in the rocksalt structure: the configuration of the valence electrons,
Co 4s23d7 and O 2s22p4, tells us that there is an odd number of electrons
for each lattice point (of the fcc lattice), which in the independent particle
picture leads to half-filling of the topmost band and means metallic behavior.
This topmost band is a narrow d band (see Sect. 5.4), which is even narrower
here than for Co (Fig. 5.14), because due to the larger spacing between neigh-
boring Co atoms in CoO the overlap of the d orbitals is smaller. Under this
condition the electronic correlation leads to a significant modification of the
electronic structure, which – as we shall see – allows one to understand the
experimental fact that CoO is not a metal but an insulator [169].

Let us consider electrons in an energy band deriving from one atomic (d or
f) orbital. The corresponding Bloch function can be expressed (see (6.7)) by

ψkσ(r) =
1√
N

∑

R

eik·Rφσ(r − R), (7.36)

where we have dropped the band index and kept only the spin index. We may
switch with

ckσ =
1√
N

∑

R

eik·RcRσ (7.37)
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overlap

to a formulation with fermion operators (see Problem 6.2) and write for the
single-particle term as in Sect. 6.1

Hsp =
∑

kσ

ǫkc†kσckσ

=
∑

RR′σ

1

N

∑

k

ǫkeik·(R−R′)

︸ ︷︷ ︸
tRR′

c†R′σcRσ =
∑

RR′σ

tRR′c†R′σcRσ. (7.38)

The dispersion of the energy band ǫk is now expressed in terms of the hopping
or transfer matrix elements tRR′ , R �= R′, while the term with R = R′ gives
the atomic energy level from which the band derives. For small overlap of the
atomic orbitals, as is the case here and illustrated in Fig. 7.2, the tight-binding
approximation applies and we may write

∑

kσ

ǫkc†kσckσ ≃ ǫ0
∑

Rσ

c†RσcRσ + t
∑

Rdσ

c†R+dσcRσ (7.39)

with the atomic level energy ǫ0 and the hopping or transfer matrix element
between nearest neighbors R − R′ = d (both assumed not to depend on σ)

t =

∫
φ∗(r)v(r)φ(r − d)d3r. (7.40)

Likewise, the electron–electron interaction takes the form

H1 =
∑

R1R2σ

R′
1

R′
2

σ′

VR1R2R′
1R′

2
c†R1σc†

R′
1σ′cR′

2σ′cR2σ (7.41)

with the interaction matrix element now being the four-center integral:

VR1R2R′
1
R′

2
=

1

2

∫
d3r

∫
d3r′φ∗(r − R1)φ

∗(r′ − R′
1)

× e2

4πε0|r − r′|φ(r′ − R′
2)φ(r − R2). (7.42)
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With the same arguments as used in Sect. 5.4, it is conceivable that the
dominating contributions come from two-center terms with R1 = R2 = R

and R′
1 = R′

2 = R′, which give the approximate form

Hint ≃
∑

RR′

σσ′

VRR′c†Rσc†R′σ′cR′σ′cRσ =
∑

RR′

σσ′

VRR′nRσnR′σ′ . (7.43)

The last expression results by identifying the number operator nRσ = c†RσcRσ

and applying the anticommutation rules for (Rσ) �= (R′σ′). If only the term
with R = R′ is considered, which describes double occupancy of the site
R with electrons of opposite spins, we arrive at the single-band Hubbard 2

Hamiltonian [207, 208]

H = ǫ0
∑

Rσ

c†RσcRσ + t
∑

Rdσ

c†R+dσcRσ + U
∑

R

nR↑nR↓. (7.44)

Here U = VRR, called the Hubbard–U, weighs the strength of the correlation
in case of two electrons at the same site. This Hamiltonian contains two com-
peting mechanisms: the hopping term is responsible for band formation and
delocalization, while the correlation term, with its energy increase for double
occupancy of sites with electrons of opposite spin, favors a ground state with
localized magnetic moments of uncompensated spins at each site.

In the following, we replace R by the site index i and consider the Hubbard
Hamiltonian (7.44) in the form

H = H0 + H1 =
∑

ijσ

tijc
†
iσcjσ +

1

2
U
∑

iσ

niσni−σ, (7.45)

where tij is the hopping matrix element between two sites (which need not be
the nearest neighbors). In order to calculate the spectrum of H, we calculate
the Green function describing the propagation of an electron with spin σ from
site j at time t′ to site i at time t

G(ijσ; t, t′) = − i

h̄
θ(t − t′)〈{ciσ(t), c†jσ(t′)}〉. (7.46)

This is done by solving the equation of motion

ih̄
∂

∂t
G(ijσ; t, t′) = δ(t − t′)δij −

i

h̄
θ(t − t′)〈{[ciσ(t),H], c†jσ(t′)}〉. (7.47)

The commutator of ciσ with H can be evaluated with

[ciσ, c†jσ′cmσ′ ] = cmσδijδσσ′ (7.48)

and

2 John Hubbard 1931–1980.
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[ciσ, njσ′nj−σ′ ] = δijciσni−σ(δσσ′ + δσ−σ′ ) (7.49)

giving

[ciσ ,H] =
∑

m

timcmσ + Uni−σniσ. (7.50)

Thus, the equation of motion (7.47) reads

ih̄
∂

∂t
G(ijσ; t, t′) = δ(t − t′)δij +

∑

m

timG(mjσ; t, t′) + UΓ (iiijσ; t, t′) (7.51)

with a higher order Green function of the general form

Γ(ilmjσ; t, t′) = − i

h̄
θ(t − t′)〈{c†i−σ(t)cl−σ(t)cmσ(t), c†jσ(t′)}〉. (7.52)

Instead of truncating the hierarchy by factorizing the higher order Green
function in (7.51)(which would be the Hartree–Fock approximation to be
considered later), we continue by writing its equation of motion as

ih̄
∂

∂t
Γ(iiij; t, t′) = 〈ni−σ〉δijδ(t − t′)

− i

h̄
θ(t − t′)〈{[ni−σ(t)ciσ(t),H], c†jσ(t′)}〉 . (7.53)

The commutator with H gives the two contributions (Problem 7.3)

[ni−σciσ,H0] =
∑

m

tim

(
ni−σcmσ + c†i−σcm−σciσ − c†m−σci−σciσ

)
(7.54)

and
[ni−σciσ,H1] = Uni−σciσ (7.55)

which leads to

(
ih̄

∂

∂t
− U

)
Γ(iiijσ; t, t′) = 〈ni−σ〉δijδ(t − t′ +

∑

m

tim
(
Γ(iimjσ; t, t′)

+Γ(imijσ; t, t′) − Γ(miijσ; t, t′)
)
. (7.56)

This equation of motion simplifies for the case tim = ǫ0δim, i.e., for a band
without dispersion, known also as the atomic limit, to

(
ih̄

∂

∂t
− ǫ0 − U

)
Γ(iiijσ; t, t′) = 〈ni−σ〉δijδ(t − t′). (7.57)

After Fourier transformation, it yields the solution

Γ(iiijσ; E) =
〈n−σ〉

E − ǫ0 − U
δij , (7.58)
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Fig. 7.3. Density of states for the Hubbard model in the atomic limit and
comparison with the HF result

with 〈n−σ〉 = 〈ni−σ〉 independent of the site index i due to the translation
invariance of the system. For the same situation, (7.51) takes a form, which
after Fourier transformation leads to

G(iiσ; E) =
E − ǫ0 − U(1 − 〈n−σ〉)
(E − ǫ0)(E − ǫ0 − U)

(7.59)

and can be written in the form

G(iiσ; E) = lim
δ→0

(
1 − 〈n−σ〉
E − ǫ0 + iδ

+
〈n−σ〉

E − ǫ0 − U + iδ

)
. (7.60)

The surprising result is that G(iiσ; E) has two poles, one at E = ǫ0 − iδ
with the weight Z = 1 − 〈n−σ〉 and one at E = ǫ0 + U − iδ with the weight
Z = 〈n−σ〉 (Fig. 7.3). This pole structure is a consequence of the energy
dependence of the self-energy. The second term vanishes for 〈n−σ〉 → 0 and
the remaining first term reduces for U = 0 to the Green function of the
noninteracting electron

G(0)(iiσ; E) = lim
δ→0

1

E − ǫ0 + iδ
. (7.61)

The effect of considering the correlation U is the splitting of the single-particle
level into two spin independent quasi-particle levels (separated by U) whose
weights depend on the occupation. This is clearly seen also in the density of
states

Dσ(E) =
1

π
Tr
(
ImG(iiσ; E)

)

=
(
1 − 〈n−σ〉

)
δ(E − ǫ0) + 〈n−σ〉δ(E − ǫ0 − U) (7.62)

shown in Fig. 7.3. The new quality of the result can be emphasized also by
comparing with the Hartree–Fock approximation in (7.51), which means to
replace Γ(iiijσ) by 〈n−σ〉G(ijσ). The result for the case tim = ǫ0δim is



206 7 Correlated Electrons

GHF(iiσ; E) =
1

E − ǫ0 − U〈n−σ〉 + iδ
, (7.63)

which has a single pole only with weight Z = 1 at E = ǫ0 + U〈n−σ〉 as
indicated in Fig. 7.3.

Let us now consider the band formation by relaxing the approximation
tim ∼ δim. Then, (7.56) can be factorized with (for i �= m)

Γ(iimjσ) → 〈n−σ〉G(mjσ)

Γ(imijσ) → 〈c†i−σcm−σ〉G(ijσ)

Γ(miijσ) → 〈c†m−σci−σ〉G(ijσ),

where the last two terms compensate each other in (7.56) due to tim = tmi

and one obtains with τ = t − t′

(
ih̄

∂

∂τ
− ǫ0 − U

)
Γ(iiijσ; τ) = 〈n−σ〉

(
δijδ(τ) +

∑

m �=i

timG(mjσ; τ)
)
. (7.64)

The Fourier transform of this equation

Γ(iiijσ; E) =
〈n−σ〉

E − ǫ0 − U

(
δij +

∑

m �=i

timG(mjσ; E)
)

(7.65)

can be used to write, instead of (7.51), the equation

(E − ǫ0)G(ijσ; E) =
(
δij +

∑

m �=i

timG(mjσ; E)
)(

1 +
U〈n−σ〉

E − ǫ0 − U

)
. (7.66)

Finally, we transform into the Bloch representation, which for the one-
dimensional model with lattice constant a means

G(kσ; E) =
1

N

∑

ij

e−ik(i−j)aG(ijσ; E), (7.67)

to find

(E − ǫ0)G(kσ; E) =
(
1 − ǫkG(kσ; E)

) (
1 +

U〈n−σ〉
E − ǫ0 − U

)
(7.68)

with ǫk =
∑

n�=m tim exp (−ik(n − m)a). This can be solved to yield

G(kσ; E) =
1

E − ǫk − Σ(σ; E)
(7.69)

with the self-energy

Σ(σ; E) = U〈n−σ〉
E − ǫ0

E − ǫ0 − U(1 − 〈n−σ〉)
. (7.70)
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Fig. 7.4. Spectrum of the Hubbard model in dependence on the hopping matrix
element t to indicate the insulator–metal transition

Due to the energy dependence of the self-energy, the Green function (7.69)
has two separate poles with different spectral weights (as for the atomic limit
(Problem 7.4)) for each k. The spectrum, obtained by projecting the eigen-
values onto the energy axes, exhibits two bands whose widths are determined
by that of the single-particle energy dispersion ǫk (note that the self-energy
(7.70) does not depend on k). In tight-binding approximation, the dispersion
of the energy band becomes ǫk = ǫ0 + 2t coska with t being the hopping
matrix element between nearest neighbors.

In Fig. 7.4, the spectrum of the Hubbard model is depicted for fixed U in
dependence on t. Two bands evolve with increasing t from the two levels of
Fig. 7.3, the upper and lower Hubbard band: they are separated by a gap as
long as the band width 4t is smaller than U , but they overlap for 4t > U .
For a system with one electron per lattice site, a single band can be com-
pletely filled. Thus for 4t > U the overlapping Hubbard bands are partially
filled (the Fermi energy is in a region with finite density of states) and the
model describes a metal, while for 4t < U the Hubbard bands are separated
by a gap, the lower (upper) band being completely filled (empty), and the
model describes an insulator. This metal–insulator transition is the important
result of the Hubbard model. Systems showing this behavior are called Mott3–

Hubbard insulators. For the case of half-filling, the Hubbard Hamiltonian can
be transformed into a Hamiltonian of the Heisenberg type (Problem 7.5), that
allows one to describe the magnetic properties of these systems. However, the
Hubbard model is not correct for small values of U , because it always gives
the two separate eigenvalues for each k, while for small correlation we expect
the single band solution.

3 Sir Nevill Mott 1905–1996, Nobel prize in Physics 1977, together with Philip
W.Anderson and John H.Van Vleck.
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For more realistic descriptions, there exist extensions of the Hubbard
model which also include transfer to next nearest neighbors, more than one
band, and correlation terms including different sites. One of these extensions
is the subject of Problem 7.6. These models are used to investigate material
systems whose electronic properties are determined by correlation [209–213].
Among those are the high-Tc cuprate superconductors. Their crystal structure
contains layers with Cu and O atoms in a quadratic lattice. The overlapping
Cu 3d and O 2p orbitals form a narrow p-d hybrid band. Due to the other
constituents of the crystal structure, this band can be partially depopulated
(or filled with holes). Thus, by comparing photoemission data for different
filling, the spectral weight of the evolving Hubbard bands becomes evident.

The results of this section have uncovered a deficiency of the DFT-LDA
concept. Making use of an effective single-particle potential, which is the same
for all electrons, irrespective of their orbital, this approach does not account
for the correlation effect outlined in presenting the Hubbard model, i.e., it is
not capable of describing occupation-dependent energy bands. This deficiency
is not problematic for energy bands deriving from s or p orbitals, for which the
nearly free electron or pseudo-potential approach applies as well as the LCAO
method because the orbital character is diminished due to delocalization. In
contrast, for the localized d and f orbitals, this is not the case . In order
to overcome this deficiency, the LDA+U concept has been developed [195].
Its essential idea is to replace the LDA Coulomb energy UN/(N − 1)/2 for
d − d interaction, which is assumed to be part of the LDA energy functional
ELDA[n], by the Hubbard correlation by writing

E[n] = ELDA[n] − 1

2
UN(N − 1) +

1

2
U
∑

i�=j

ninj , (7.71)

where N =
∑

i ni is the number of electrons and ni the orbital occupancy.
The orbital energies

ǫi =
∂E[n]

∂ni
= ǫLDA

i + U

(
1

2
− ni

)
(7.72)

are changed according to their occupancy with respect to the LDA value.
A more recent extension of this concept is the dynamical mean-field theory

(DMFT) [210, 214].

7.3 Fermi Liquids

Classical liquids are known to exist due to particle–particle interaction, when
the average interaction energy cannot be neglected in comparison with the
average thermal energy kBT , and condensation, i.e., the phase transition from
the gaseous to the liquid phase, takes place. In this condensed phase, the ther-
mal motion is comparable with the mean particle separation. By reducing the
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temperature, the thermal motion can get so small that the interaction domi-
nates the kinetic energy. In this situation, the phase transition from the liquid
to the solid state, takes place. This systematic, which is based on classical
arguments, does not account, however, for quantum effects as has become
apparent for He due to its small mass. At sufficiently low temperatures, liq-
uid He does not condense into the solid state. Instead, when the thermal
deBroglie wavelength λT = (h̄2/2MkBT )1/2, a quantum mechanical length
scale, becomes comparable to the average particle separation (while at the
same time the energy of the zero-point motion is much larger than the inter-
action energy), it enters a state known as quantum liquid. This phase transition
is ruled by quantum statistics and leads to a Fermi liquid for 3He but to a
Bose liquid for 4He. As the interacting particles are neutral He atoms, these
two phases are jointly denoted as neutral quantum liquids.

Especially for 3He, Landau developed a theory of Fermi liquids [197], which
comprises the interplay between Fermi statistics and particle interaction. As
it turned out later on, this theory applies as well to interacting electrons in
metals and doped semiconductors, which can be classified as charged Fermi
liquids. We note in passing that Landau’s Fermi liquid theory is used also for
neutron stars. In this section, a brief outline is given of this theory, which is
closely connected with the concept of quasi-particles, and we refer for further
reading of the literature [64, 194, 197–199].

Fermion systems without interaction, as treated in Chap. 4 in the Sommer-
feld model or in Chap. 5 in the independent particle model of electronic band
structure, can be characterized by their ground state and low-energy or ele-
mentary excitations out of the ground state. The former is defined for T = 0K
by filled states up to the Fermi energy, the latter are particle–hole excitations
across the Fermi surface. Here, particle(hole) means an electron(missing elec-
tron) above(below) the Fermi energy. We have noticed already that the effect
of the interaction is to modify the single-particle energy ǫkσ by a self-energy,
which incorporates interaction effects (to an extent depending on the applied
approximation, see e.g., (7.27) and (7.28)) into the independent particle pic-
ture thus leading to the concept of quasi-particles, which we have addressed
already in Sects. 4.4, 5.2, and 7.1.

Looking at the quantum numbers, momentum p = h̄k and spin σ (the
band index is suppressed here), we have found a one-to-one relation between
an independent particle and the corresponding quasi-particle, although via
the self-energy, the quasi-particle energy ǫkσ[nkσ] becomes a functional of the
occupation numbers. Thereby, the spin is not changed and the quasi-particles
remain fermions. The self-energy quantifies virtual excitations of electron–hole
pairs, which represent charge or spin density waves. Consequently, a quasi-
particle is the bare particle of the noninteracting system dressed by a cloud
of virtually excited density waves. The lifetime of a quasi-particle, defined by
the imaginary part of its self-energy, is determined by the scattering processes
which take place under the constraints of energy and momentum conserva-
tion. At T = 0, this leads to an infinite lifetime for quasi-particles at the Fermi
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energy, because the available phase space for scattering shrinks to zero, while
the scattering rate increases quadratically with the energy separation from
the Fermi energy (or at finite T from the chemical potential) [122, 200]. Thus,
quasi-particles are well defined for low-energy excitations. This leads to the
concept of Fermi liquids: it is based on the assumption that the excitation
spectrum of the interacting Fermi system is similar to that of the noninter-
acting Fermi system and that the particles (or states) of the latter evolve
one-to-one into the quasi-particles (or states) of the former without changing
the quantum numbers when the interaction is adiabatically switched on. This
concept is supported by the observation that in a certain temperature range
some properties (specific heat, spin susceptibility) of many metals (like those
of 3He) correspond, in their temperature dependence, to those of the nonin-
teracting Fermi system, however, with changed kinematic properties such as
the particle mass.

Elementary excitations can be described as changing the occupation of
states around the chemical potential (or the Fermi energy) with respect to
the ground state occupation n0

kσ

δnkσ = nkσ − n0
kσ =

{
+1 |k| > kF

−1 |k| ≤ kF.
(7.73)

The total energy of the system is a functional of the occupation numbers nkσ

E = E[nkσ] but E �=
∑

kσ

ǫkσnkσ, (7.74)

because the quasi-particle energy ǫkσ = δE/δnkσ depends on the occupation
due to the self-energy and has in general a nonvanishing variational derivative

δǫkσ

δnk′σ′

=
δ2E

δnkσδnk′σ′

=: f(kσ; k′σ′) �= 0. (7.75)

We may express the total energy as a Taylor series with respect to the ele-
mentary excitations (i.e., the changes in the occupation numbers) about the
ground state energy E0

E[nkσ] = E0 +
∑

kσ

ǫkσ[n0
kσ]δnkσ

+
1

2

∑

kσ
k′σ′

f(kσ; k′σ′)δnkσδnk′σ′ + O(δn3). (7.76)

Denoting the quasi-particle energies for the ground state distribution ǫkσ[n0
kσ]

by ǫ0kσ, the quasi-particle energies can be expressed as

ǫkσ =
δE

δnkσ
≃ ǫ0kσ +

∑

k′σ′

f(kσ; k′σ′)δnk′σ′ . (7.77)
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The adequate thermodynamic potential for the grand-canonical ensemble
with varying occupation N =

∑
kσ nkσ is the free energy F = E − μN which

under elementary excitations with N −N0 =
∑

kσ δnkσ, where N0 is the total
occupation in the ground state, changes by

F − F0 = E − E0 − μ(N − N0)

=
∑

kσ

(
ǫ0kσ − μ

)
δnkσ +

1

2

∑

k′σ′

f(kσ; k′σ′)δnk′σ′δnkσ. (7.78)

Note that we consider a situation where the quasi-particle energies are close
to the chemical potential μ and that ǫ0kσ − μ �= 0 only for kσ with δnkσ �= 0;
thus, the first term is of the order (δnkσ)2. As for the noninteracting particles,
the free energy is stationary for the equilibrium distribution function

nkσ = [1 + exp (β(ǫkσ − μ))]
−1

, (7.79)

with the dispersion of the independent particles replaced by that of the
quasi-particles. It has the form of the Fermi–Dirac distribution function but
is an implicit equation for nkσ due to the functional dependence of the
quasi-particle energies ǫkσ on the occupation.

In contrast to a microscopic theory, which aims at a calculation of the
quasi-particle energies, the Fermi liquid theory replaces the interaction by
parameters and relies on the one-to-one correspondence between independent
(or bare) particles and quasi-particles including their statistics. This is out-
lined in the following by, assuming for better transparency, an isotropic Fermi
liquid and a spin degenerate dispersion. The Fermi velocity is defined by

vk,F =
1

h̄

∣∣∇kǫkσ|k=kF

∣∣ =:
h̄kF

m∗
, (7.80)

where m∗ denotes the effective mass of the quasi-particle at the Fermi energy.
Let us assume the quasi-particle dispersion ǫkσ to be a sufficiently smooth
function in the vicinity of the Fermi energy EF (or the chemical potential μ).
Then, we can write

ǫkσ − μ ≃
∣∣∇kǫkσ|k=kF

∣∣(k − kF) =
h̄2kF

m∗
(k − kF) (7.81)

as depicted in Fig. 7.5. The same relation holds for the independent particle,
however, with a mass m instead of m∗. This difference in the masses is due to
the fact that the quasi-particle consists of the bare particle and a cloud of den-
sity fluctuations around it, which moves along with the particle and reduces
its mobility, i.e., m∗ > m. One immediate consequence is the enhancement of
the density of states at the Fermi energy

D(EF) =
1

V

∑

kσ

δ(ǫkσ − EF) =
m∗kF

π2h̄2 , (7.82)
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Fig. 7.5. Quasi-particle dispersion (solid) and linear approximation around the
chemical potential (dashed)

which implies an enhancement of all quantities which are proportional to the
D(EF) as e.g., the particle contribution to the specific heat. The effect of
the interaction is considered here in the parameter m∗, which is accessible by
measuring the Sommerfeld coefficient (see Sect. 4.2).

Let us now take into account the interaction between quasi-particles repre-
sented by f(kσ; k′σ′). For the isotropic Fermi liquid and dominating exchange
interaction (as in Sect. 6.2), this can be written [64] as

f(kσ; k′σ′) = fs(k, k′) + σ · σ′fa(k, k′). (7.83)

Being close to the Fermi energy, we have |k|, |k′| ≃ kF and because of the
isotropy, the fλ(k, k′) depend only on the angle θ between k and k′. Therefore,
we may expand these functions in terms of Legendre polynomials (normalized
for practical reasons by the density of states D(EF))

fλ(k, k′) =
1

D(EF)

∞∑

l

Fλ
l Pl(cos θ). (7.84)

The coefficients Fλ
l are the phenomenological Fermi liquid parameters which

have to be determined by comparison with experimental data. As it turns out
[64, 122], the quasi-particle effective mass is given by

m∗ = m (1 + F s
1 /3) . (7.85)

Thus, F s
1 could be determined from the low-temperature behavior of the

specific heat (provided the system is isotropic). The Pauli spin susceptibility
is enhanced due to interactions and can be expressed as

χspin =
m∗

m(1 + F a
0 )

χ0
spin, (7.86)

with the spin susceptibility χ0
spin of free electrons. Its experimental value pro-

vides the parameter F a
0 , if the effective mass is already known from specific

heat data. Fermi liquid parameters are reported so far only for He [64,199, 215].
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Fig. 7.6. Particle (dashed) and quasi-particle (solid) distribution at T = 0K. The
discontinuity at kF represents the weight Z

Finally, we look at the momentum distribution nkσ, which can be obtained
from the Green function with the help of the dissipation–fluctuation theorem

nkσ = 〈c†kσckσ〉 = − 1

h̄π

∫ +∞

−∞

ImG(kσ; ǫ)

1 + e−βǫ
dǫ, (7.87)

with G(kσ; ǫ) from (7.31). The denominator simplifies for T = 0 K and the
integration can be extended to a contour in the upper complex plane. This
includes only the quasi-particle poles for k < kF (which are in the upper half
plane) but not those for k > kF (which are in the lower half plane) and results
in a jump of nk at k = kF, which equals the weight Z(kF) of the quasi-particle
pole (Fig. 7.6). The calculation of this jump is the subject of Problem 7.7.

As we have seen by these considerations, the Fermi surface introduced
in Chap. 4 for the noninteracting electrons exists also in the presence of
the electron–electron interaction, as can be seen from the discontinuity
in the momentum distribution (Fig. 7.6). It is the signature of existing
quasi-particles. However, when replacing the independent particles by quasi-
particles, the kinematic properties and consequently also physical quanti-
ties change as compared with the independent particle result. This can be
exploited to determine the parameters of the Fermi liquid theory.

The incorporation of particle interaction in the quasi-particle depends
essentially on the phase space available for interaction processes close to the
Fermi energy. While in three and two dimensions, this phase space is a sphere
or a circle, respectively, it shrinks to two points for a one-dimensional sys-
tem. The dimensionality effect can be demonstrated for the Lindhard function
(Problem 7.8). We shall see in the next section how this will dramatically alter
the situation when we consider one-dimensional electron systems.

7.4 Luttinger Liquids

The dimensionality and its influence on solid state properties have been men-
tioned already in several sections. Obviously the two-dimensional systems
are the surface of a solid (Sect. 3.6) and the interface between two different
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solids (a heterostructure). We have learnt about semiconductor heterostruc-
tures that they can accommodate a two-dimensional electron gas (Sect. 5.6).
In this section the one-dimensional electron systems will be the focus of inter-
est. There are several realizations, which have stimulated the investigation
of such systems. Among those are special molecular crystal structures such
as inorganic and organic linear chain compounds that allow band formation
by overlapping atomic orbitals in one spatial direction only [201]. Another
example is conducting polymers, for which energy bands arise from repeated
conjugated bonds along the strand [111, 112]. But one may start also from the
2D electron systems in heterostructures to prepare by etching, cleaved edge
overgrowth, or depletion via top gates a 1D channel (a quantum wire) along
which electrons can move freely [216–218]. The youngest child in this family is
carbon nanotubes, which can be understood as a graphite monolayer rolled up
to a cylinder with a diameter of a few nm [21, 113, 114]. All these systems have
been and are still under investigation due to their peculiar properties deter-
mined by the low dimensionality which do not fit into the framework of Fermi
liquid theory. The essential point here is the breakdown of the quasi-particle
concept [22, 122, 193, 219–222].

Free electrons in one dimension would be characterized by a quadratic
dispersion relation which cuts the Fermi energy at k = ±kF as depicted in
Fig. 7.7. Being interested in elementary excitations around the Fermi energy,
it is advantageous to linearize the dispersion relation as in the previous section
by writing (relative to the chemical potential)

ǫ0±,k ≃ h̄2kF

m
(±k − kF) = h̄vF (±k − kF) , (7.88)

with the Fermi velocity vF. This spectrum consists of two branches (linear
in k) that correspond to electrons traveling left and right along the extension
of the 1D system. We can immediately write down the corresponding single-
particle part of the Hamiltonian in terms of fermion operators ({ckα, c†k′α′} =
δα,α′δk,k′)

F
kk

F

ε°
k

E
F

–k

Fig. 7.7. Dispersion relation for a 1D fermion system with linear approximation
around the Fermi energy
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Hsp = h̄vF

∑

k,α=±

(αk − kF)
(
c†kαckα − 〈c†kαckα〉0

)
. (7.89)

Here, the ground state expectation value 〈c†kαckα〉0 of the number opera-
tor is subtracted to prevent a divergence of the ground state energy due to
occupation of states with negative energy.

In the following, we assume a system length L and apply periodic boundary
conditions with the consequence of discretizing k in multiples of 2π/L. Number
fluctuations would be described here by

nqα =
∑

kα

(
c†k+qαckα − δq,0〈c†kαckα〉0

)
, (7.90)

which according to their commutation rule

[nqα, n−q′α′ ] = αδα,α′δq,q′

qL

2π
(7.91)

are boson operators. Moreover, we have

[Hsp, nqα] = αh̄vFqnqα, (7.92)

indicating that the number fluctuations created by nqα are eigenstates of Hsp

with the eigenvalue αh̄vFq. This leads to an alternative formulation of Hsp

Hsp =
πh̄vF

L

⎛

⎝
∑

q �=0,α

nqαn−qα +
∑

α

n2
0α

⎞

⎠ , (7.93)

now in terms of boson operators. A closer inspection shows that the existence
of these two equivalent formulations of H0, (7.89) and (7.93) is characteristic
for the 1D case and the linearized dispersion relation.

Electron–electron interaction can take place within each branch of the
spectrum or between the two different branches. For small momentum transfer,
corresponding to forward scattering, this can be written in terms of boson
operators as

Hint =
1

2L

∑

q,α

vq (nqαn−qα, + nqαn−q−α) , (7.94)

where vq quantifies the strength of this scattering. The system Hamiltonian
H = Hsp + Hint is a bilinear expression in the boson operators and can be
diagonalized by a Bogoliubov transformation

ñqα = nqα cosh(φ(q)) + nq−α sinh(φ(q)), (7.95)

with the interaction parameter

e2φ(q) =

(
1 +

vq

πh̄vF

)−1/2

=: K(q). (7.96)
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Fig. 7.8. Particle–hole excitations in the 1D fermion system. Note the missing of
low-energy excitations for 0 < |k| < 2kF

The diagonal form of H reads

H =
π

L

∑

q �=0

vqñqαñ−qα +
π

2L

(
vNN2 + vJJ2

)
, (7.97)

where vq = h̄vF/K(q), vN = v2
0/h̄vF, and vJ = h̄vF, while, N = n0+ +

n0− and J = n0+ − n0− describe charge and current excitations respectively.
Ultimately, by introducing normalized boson operators

b†q =

√
2π

L|q| (θ(q)ñq+ + θ(−q)ñq−) , (7.98)

with the step function θ(q), the Hamiltonian takes the form

H =
∑

q �=0

h̄ωqb
†
qbq +

π

2L

(
vNN2 + vJJ2

)
(7.99)

with the dispersion h̄ω(q) = vq|q|. It is the model Hamiltonian for interacting
1D electrons named after Tomonaga4 [223] and Luttinger5 [224].

The remarkable property of this Hamiltonian is that it is expressed in terms
of collective excitations, which are the low-energy excitations of the system
similar to the vibrations of a string. This means that low-energy electron–hole
pair excitations are absent here, which indicates also the absence of quasi-
particles for interacting electrons in 1D. This finding can be confirmed by
looking at the excitation spectrum in Fig. 7.8. At low energies, excitations
are possible only between states close to the two Fermi points (see Fig. 7.7),
but there are no particle–hole excitations and, therefore, no quasi-particles for
0 < |k| < 2kF. This nonexistence of quasi-particles can be made explicit by

4 Sin-itiro Tomonaga 1906–1979.
5 Joaquin Luttinger 1923–1997.
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Fig. 7.9. Schematic view of charge and spin separation in a linear spin chain with
antiferromagnetic order: a charge excitation (hole) is created (upper part) and moves
away by hopping leaving a spin excitation behind (second and third line)

calculating the momentum distribution, which for the Tomonaga–Luttinger

model does not exhibit the quasi-particle discontinuity of the Fermi liquids at
kF (see Fig. 7.6) but instead an infinite slope.

Including the spin, the model Hamiltonian H would contain additional
terms corresponding to collective spin excitations. As they are additive, the
propagation of collective charge and spin excitations takes place with different
velocities. This separation of charge and spin is another characteristic feature
of a Luttinger liquid. It can be visualized for a spin chain with antiferromag-
netic order (Fig. 6.6), as described by a 1D Hubbard model with half-filling
and negative exchange coupling which is a lattice variant of the Luttinger
liquid. A charge excitation corresponds to removing an electron with its spin
(or to create a hole). This hole is surrounded by two parallel spins (upper part
of Fig. 7.9). Its motion (to the left, see lower parts of Fig. 7.9) is ruled by the
transfer matrix element and not connected with spin-flips thus, the moving
hole is always surrounded by a pair of up/down spins, while the parallel spins
remain at the site, where the hole was created.

7.5 Heavy Fermion Systems

Metallic systems with the Fermi energy in a range of the spectrum, where
strongly localized states deriving from f electrons hybridize with delocalized
states with s, p, or d character, show Fermi liquid behavior, however, with a
strong enhancement of the Sommerfeld coefficient γ in the specific heat and
also of the Pauli spin susceptibility χPauli (see Sect. 7.3). In an independent
particle description, both quantities are proportional to the density of states
at the Fermi energy, which for isotropic systems is proportional to the effec-
tive mass m∗ of the quasi-particles. Thus, the observed enhancement can be
understood as a dramatic increase of the effective mass and these materials
have been named, therefore, heavy fermion systems [110, 122, 225].
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Fig. 7.10. Low-temperature behavior of the specific heat for a heavy fermion system
(CeAl3) compared with a normal metal (LaAl3). The characteristic temperature T ∗

indicates the transition from heavy fermion to normal fermi liquid behavior (after
[122])

In general, heavy fermion systems are compounds with ions containing
partially filled 4f (lanthanides) of 5f shells (actinides). For further charac-
terization of their properties, one looks at the ratio R = π2k2

BχPauli/3μ2
effγ,

where μeff is the effective magnetic moment of the quasi-particles. For non-
interacting quasi-particles, R = 1, because the effective mass drops out. In
contrast, γ and χPauli are modified differently by quasi-particle interactions
which is reflected in R �= 1. The enhancement of γ and χPauli occurs only
in a small temperature range below a characteristic temperature T ∗ of a few
Kelvin. Above T ∗, it disappears and these systems behave like normal Fermi
liquids. This can be seen by comparing the temperature dependence of the spe-
cific heat of CeAl3 and LaAl3 (Fig. 7.10). The Ce compound differs from the
otherwise identical system with La by the partial occupation of the 4f shell.

The appropriate Hamiltonian for modeling the electronic properties of
heavy fermions is[122]

H =
∑

kσ

ǫkc†kσckσ +
∑

im

ǫfmf †
imfim +

U

2

∑

i,m �=m′

nf
imnf

im′

+
1√
N

∑

k,σ,i,m

Vkσm

(
c†kσfime−ik·Ri + ckσf †

imeik·Ri

)
. (7.100)

The first term describes the dispersive energy band ǫk of the delocalized
electrons with wave vector k and spin σ. The second term represents the single-
particle energies of the f electrons, localized at lattice sites Ri, where m =
1 . . . νf counts the orbital degeneracy, while the third term is
Hubbard’s on-site Coulomb interaction of these electrons (with number oper-

ator nf
im). The fourth term accounts for the hybridization of the f electrons

with the delocalized Bloch electrons. Equation (7.100) is a variant of the
Anderson6 Hamiltonian, which was originally formulated for only one site

6 Philip W. Anderson, *1923, Noble prize in Physics 1977 together with Sir Neville
Mott and John H. Van Vleck.
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occupied with an ion carrying f electrons (Anderson impurity model). This
Hamiltonian combines two aspects of electronic structure: The hybridization
(see Sect. 5.4) (which converts the localized f level into a band with finite
width) with the correlation of the Hubbard model (which prevents double
occupancy of f states at a given site).

Without the correlation term, the problem can be diagonalized as in
Sect. 5.4. The correlation can be taken into account by a proper modifica-
tion of the hybridization or hopping matrix element, which ensures that a
conduction band electron does not hop to an already singly occupied f state.
In fact, according to Fermi’s golden rule, the rate of hopping between the con-
duction band and an f state is proportional to this matrix element squared.
If it is renormalized by a factor 1 − nf , where nf is the occupancy of the f
state, the rate will be reduced as desired. For the hopping matrix element,
this means the replacement

Vkσm → rVkσm = Ṽkσm, (7.101)

where r2 = 1−nf . In principle, this modification has to be done site dependent
and with the number operator of the localized f electrons. By using r in the
following as a parameter, a mean-field approach has been adopted, by which
these site-dependent number operators are replaced by their mean value nf .
The relation between r and nf is to be included as a subsidiary condition with
the Lagrange parameter Λ in the Hamiltonian

HMF =
∑

kσ

ǫkc†kσckσ +
∑

im

ǫ̃fmf †
kmfkm

+
∑

k,σ,m

rVkσm

(
c†kσfkm + f †

kmckm

)
+ ΛN(r2 − 1). (7.102)

Here, the fermion operators of the f electrons are in the Bloch representation
and ǫ̃fm = ǫfm + Λ. This mean-field version of the Anderson Hamiltonian
depends on the two parameters r and Λ which have to be determined at the
end. It is advantageous to simplify the model by considering only a nondegen-
erate conduction band and an f orbital with degeneracy νf = 2 by dropping
the indices m and σ.

The diagonal form of the simplified mean-field operator

HMF =
∑

kl

El(k)b†klbkl + ΛN(r2 − 1) (7.103)

is obtained by replacing the fermion operators in (7.102) according to

f †
k =

∑

l

yklb
†
kl , c†k =

∑

l

xklb
†
kl, (7.104)

where the index l refers to the two branches of the hybridized bands. The
coefficients are determined by the normalization condition
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|ykl|2 + |xkl|2 = 1 (7.105)

and the coupled linear homogeneous equations

(
ǫ̃f − El(k)

)
ykl + Ṽkxkl = 0

Ṽ ∗
k ykl +

(
ǫk − El(k)

)
xkl = 0. (7.106)

These equations signalize a second order perturbation calculation with
respect to the hybridization and by eliminating e.g., xkml we have

(
ǫ̃f − El(k) +

ṼkṼ ∗
k

El(k) − ǫk

)
ykl = 0. (7.107)

The coefficient ykl is the probability amplitude for the quasi-particle in the
band l to be in the f state. From (7.107), one obtains the two quasi-particle
bands

E±(k) =
1

2
((ǫk + ǫ̃f) ± W (ǫk)) , with W (ǫk) =

(
(ǫk − ǫ̃f )2 + 4Ṽ 2

)
.

(7.108)

They are depicted in Fig. 7.11, where a linear dispersion is assumed for the
conduction band ǫk. The requirement that the lower branch crosses the chem-
ical potential for k = kF, E−(kF) = μ, allows one to determine from (7.107)
the renormalized energy of the f level

ǫ̃f = μ +
Ṽ 2

ǫkF
− μ

, (7.109)

which for weak hybridization is slightly above μ.

E

ε~f
µ

εf

k/kF0 1

Fig. 7.11. Quasi-particle dispersion for heavy fermion behavior. The linear disper-
sion of the conduction band hybridizes with the renormalized level at ǫ̃f of the f
state (after [122])
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The next task is to determine the two parameters r and Λ of the
model. One obvious condition is that the ground state expectation value of
the mean-field Hamiltonian takes a minimum with respect to the f state
occupation nf or the parameter r. This condition can be formulated as
∂/∂r〈Ψ0(r)|HMF|Ψ0(r)〉 = 0, which reduces because of the normalization of
the ground state, to 〈Ψ0|∂HMF/∂r|Ψ0〉 = 0 or with (7.102)

1

N

∑

k

Ṽk〈Ψ0|c†kfk + f †
kck|Ψ0〉 + 2Λr2 = 0. (7.110)

The second relation is nf = 1 − r2, reformulated as

1

N

∑

k

〈Ψ0|f †
kfk|Ψ0〉 + (r2 − 1) = 0. (7.111)

The first terms in these relations with the expectation values can be expressed
with the help of the expansions (7.104) and the possibility to create the ground

state |Ψ0〉 by applying b†kl for |k| ≤ kF to the fermion vacuum

1

N

∑

k

〈Ψ0|f †
kfk|Ψ0〉 =

νf

2
D(EF) (ǫkF

+ W (ǫkF
) − W (0)) = nf (7.112)

1

N

∑

k

Ṽ 〈Ψ0|c†kfk|Ψ0〉 = −νfD(EF)Ṽ 2 ln

(
ǫkF

− ǫ̃f + W (ǫkF
)

−ǫ̃f + W (0)

)
. (7.113)

This leads in the leading logarithmic approximation to

r2 = 1 − νfD(EF)

(
(ǫkF

− μ) − Ṽ 2

μ

)
(7.114)

and

Λ = νfD(EF)V 2 ln

(
(ǫkF

− μ)μ

Ṽ 2

)
. (7.115)

It is useful to define a characteristic temperature T ∗ by

kBT ∗ = μ exp

(
− Λ

νfD(EF)V 2

)
, (7.116)

which allows one to express the renormalized energy of the f level as

ǫ̃f = μ + kBT ∗ (7.117)

and by eliminating ǫkF
to write

nf = 1 − kBT ∗

νfD(EF)V 2
. (7.118)
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Inspection of Fig. 7.11 sheds some light on the physics: Without hybridization
the f level at ǫf would be occupied, nf = 1, and also the conduction band
states up to kF. With hybridization, the f level is shifted above μ, thereby the
occupation is reduced, and the conduction band is flattened out close to the
chemical potential. The latter is connected with an increase of the density of
states and a gain in energy, because the occupied conduction band states are
now at lower energy. This gain in total energy can be quantified by comparing

the ground state energies without (E
(0)
0 ) and with (E0) hybridization:

E0 − E
(0)
0 = −kBT ∗. (7.119)

Without giving further details of the calculation [122], one obtains for the
Sommerfeld coefficient in the specific heat

γ =
1

3
π2k2

B

nf

ǫ̃f − μ
(2J + 1) (7.120)

and for the spin susceptibility

χspin = (gJμB)2
nf

νf (ǫ̃f − μ)

2J + 1

3
. (7.121)

Both quantities show a strong increase with ǫ̃f being close to the chemical
potential μ. This explains the heavy fermion behavior.

7.6 Fractional Quantum Hall States

In this chapter, we have seen so far that the influence of electron correlation
increases with the localization of the electrons due to their orbital motion.
We found that systems with electrons at the Fermi energy in atomic d and
f orbitals are destined to exhibit effects of the electron–electron interaction.
There is quite a different system, where the localization is not a genuine prop-
erty of an atomic orbital, but where it is due the orbital motion enforced by
applying a magnetic field. Remember the two-dimensional electron systems
of Sect. 5.6 and the discussion of the quantum Hall effects. A magnetic field
applied perpendicular to the semiconductor hetero-interface forces the elec-
trons into cyclotron orbits whose radius decreases with increasing magnetic
field. This is the localization mechanism which eventually leads to a regime
where correlation effects become significant. It is the regime of the fractional
quantum Hall effect. This effect has been discovered only a few years after the
integer QHE.

In 1982 Tsui, Stoermer, and Gossard [226] reported the observation of a
QHE not at integer filling factors ν but at the fractional filling ν = 1/3 of the
lowest spin-split Landau level in a high-mobility GaAs/AlGaAs heterostruc-
ture. In the following years, with increasing perfections of the heterostructure
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Fig. 7.12. Low-temperature data of the longitudinal (ρxx) and Hall resistance
(ρxy) of a high-mobility two-dimensional electron system in a GaAs/AlGaAs het-
erostructure. N indicates the Landau level quantum number and ν the filling factor.
After [227]

samples, a whole family of fractional quantum Hall states was discovered
preferentially in the same material system (see Fig. 7.12) but also in semicon-
ductor heterostructures with other material combinations. The characteristic
features of the QHE, the plateaus of the Hall conductance, and the vanishing
of the longitudinal magneto-resistance (in the first observation just a dip at
ν = 1/3), appear systematically at filling factors

ν =
p

2p ± 1
(7.122)

with integer p. Remarkable is here the odd denominator and the convergence
of the two series of fractions for the ± sign from above and below toward the
even fractional filling with ν = 1/2, for which no plateau is detected and the
longitudinal magneto-resistance does not decrease to zero.

Shortly after the discovery of the effect (and before most of the other
fractions were discovered), Laughlin came up with the fundamental idea of an
incompressible quantum liquid caused by electron correlation and designed the
corresponding N electron wave function [228]. Tsui, Störmer, and Laughlin
received jointly in 1998 the Nobel prize in physics for their discovery, which
together with other contributions to the subject is well documented in several
monographs [202–204].
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In order to present Laughlin’s idea, we have to briefly go through the single-
particle description of two-dimensional electrons in a perpendicular magnetic
field.

Supplement: Two-dimensional electrons in a magnetic field

The system Hamiltonian (without Zeeman term)

H =
1

2m∗ (p + eA)2 (7.123)

can be written with the symmetric gauge of the vector potential A = B(y,−x, 0)/2
in the form

H =
1

2m∗
(
p2

x + p2
y

)
+

m∗

2

(
ω∗

c

2

)2 (
x2 + y2

)
− ω∗

c

2
Lz. (7.124)

The effective mass m∗ (and the cyclotron frequency ω∗
c = eB/m∗) accounts for

the fact that the electrons are in a subband deriving from the conduction band
of a semiconductor. The symmetric gauge restores the cylindrical symmetry of the
system according to which the z component of the angular momentum Lz commutes
with the system Hamiltonian, which immediately can be recognized as that of two
harmonic oscillators in the x, y planes, respectively. Accordingly, two sets of oscillator
operators with standard commutation rules are introduced

a†
x =

1√
2

(
x

l
− il

h̄
px

)
, ax =

1√
2

(
x

l
+

il

h̄
px

)

a†
y =

1√
2

(
y

l
− il

h̄
py

)
, ay =

1√
2

(
y

l
+

il

h̄
py

)
, (7.125)

where l =
√

(h̄/m∗ω∗
c ) =

√
(h̄/eB) is the magnetic length (see Sect. 4.2). The

single-particle Hamiltonian

H =
h̄ω∗

c

2

{(
a†

xax + a†
yay + 1

)
− i

(
aya†

x − axa†
y

)}
(7.126)

can be diagonalized by oscillator operators

a†
+ =

1√
2

(
a†

x + ia†
y

)
, a+ =

1√
2

(ax − iay)

a†
− =

1√
2

(
a†

x − ia†
y

)
, a− =

1√
2

(ax + iay) , (7.127)

which obey the commutation relations [a±, a†
±] = 1. They can be understood as

operators for right/left circular rotations around the direction of the magnetic field.
With these operators, one finds

H =
h̄ω∗

c

2

(
a†
+a+ + a†

−a− + 1
)

+
h̄ω∗

c

2

(
a†
+a+ − a†

−a−
)

(7.128)

= h̄ω∗
c

(
n̂+ +

1

2

)
(7.129)
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with eigenvalues

ǫn+n− = h̄ω∗
c

(
n+ +

1

2

)
. (7.130)

Note that the eigenvalues depend only on the quantum number n+ while n− counts
the level degeneracy. The eigenstates of H can be created by multiple application
of the raising operators onto the oscillator vacuum

|n+n−〉 =

√
1

n+!n−!

(
a†
+

)n+
(
a†
−

)n− |00〉. (7.131)

Instead of n±, it is advantageous to use the quantum numbers n = min(n+, n−)
and the angular momentum quantum number m = n+ −n−, which are related with
the Landau level quantum number nL = n + (m + |m|)/2. (Note: in Fig. 7.12 nL is
denoted N .)

In combining (7.125) and (7.127), it is suggestive to introduce the complex
dimensionless variable z = (x − iy)/l and the corresponding derivative ∂/∂z =
(∂/∂x + i∂/∂y)l/2 along with the conjugate definitions. This gives the following
convenient properties

∂

∂z
z − z

∂

∂z
= 1 ,

∂

∂z
z∗ − z∗ ∂

∂z
= 0 (7.132)

and similarly for the complex conjugates. The oscillator operators can now be written
as

a†
+ =

1

2

(
z∗ − 2

∂

∂z

)
, a+ =

1

2

(
z + 2

∂

∂z∗

)

a†
− =

1

2

(
z − 2

∂

∂z∗

)
, a− =

1

2

(
z∗ + 2

∂

∂z

)
(7.133)

which lead to the Hamiltonian in dimensionless coordinate representation

H =
1

2
h̄ω∗

c

(
−4

∂

∂z

∂

∂z∗ + zz∗
)
− 1

2
h̄ω∗

c

(
z

∂

∂z
− z∗ ∂

∂z∗

)
. (7.134)

The lowest energy eigenfunction can be obtained from the conditions a±|00〉 = 0,

which easily lead to the normalized wave function of the lowest Landau level.

Making use of the complex notation in the (x, y) plane, the normalized
wave function for the lowest Landau level (nL = 0) is given by

ϕ00(r) =
1√
2πl

exp

(
− r2

4l2

)
=

1√
2πl

e−|z|2/4. (7.135)

This wave function with angular momentum m = 0 is degenerate with finite
angular momentum wave functions

ϕ0m(z) =
1√

2π2mm!l
zme−|z|2/4, (7.136)

which have a maximum probability |ϕ0m(r)|2 on a circle with radius
√

2ml
and a spread of the order of the magnetic length l. Thus, a sample of circular
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shape with radius R can accommodate only states with m values fulfilling the
condition 2ml2 < R2. This allows one to count the degeneracy of the Landau
level. The maximum value of m is determined by the number of elementary
flux quanta threading the sample area. This is the same result as the one
obtained in Sect. 4.2 assuming the asymmetric Landau gauge.

Considering fractional quantum Hall states, Laughlin constructed a N -
electron wave function from the single-particle wave functions of the lowest
Landau level. Their general form, a linear combination of the ϕ0m, is ϕ(z) =
f(z) exp (−|z|2/4) with a polynomial f(z). The N -electron wave function,
expressed as a linear combination of Slater determinants composed of these
single-particle wave functions, has the general form

Ψ(z1, . . . , zN ) = f(z1, . . . , zN ) exp

(
−

N∑

i=1

|zi|2/4

)
. (7.137)

Here, f(z1, . . . , zN) is a polynomial in every variable zi and its individual
terms are products of zmi

i indicating that the electron i is in an angular
momentum eigenstate with mi. The symmetry of the problem requires that the
total angular momentum h̄M =

∑
i h̄mi is conserved and the wave function

Ψ(z1, . . . , zN ) should contain only terms with the same M . Thus, the polyno-
mial f has to be homogeneous. The antisymmetry of the Slater determinants
makes this polynomial also antisymmetric in the particle coordinates.

On top of these symmetry requirements, the N -particle wave function, in
order to describe a ground state, should by construction take into account
that the electrons try to avoid each other due to the repulsive Coulomb
interaction. This can be achieved by writing the polynomial as a product
of functions g(zi − zj) depending on the inter-particle separation. This form,
which accounts for two-particle correlations, is known as a Jastrow-type wave
function and was used before in atomic physics. Together with the general
symmetry considerations g(z) has to be an odd power polynomial. Moreover,
Ψ is an eigenfunction of the total angular momentum h̄M where M counts
the powers of the zi, which are all the same and M = N(N − 1)m/2. Thus,
one arrives at the N electron wave function

Ψm(z1, . . . , zN ) =
∏

i<j

(zi − zj)
m exp

(
−

N∑

i=1

|zi|2/4

)
. (7.138)

This is Laughlin’s wave function.
As we have seen, the maximum possible angular momentum of a single

particle state is determined by the degeneracy of the Landau level which is
the sample area divided by 2πl2 or the number Φ/Φ0 of flux quanta threading
the sample. On the other hand, the maximum power (or angular momentum
quantum number) of each z is given by m(N − 1) and we can equate (for
N ≫ 1)

mN =
Φ

Φ0
or m =

Φ

NΦ0
=

1

ν
. (7.139)
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The last relation connects the angular momentum with the filling factor ν.
For fractional filling ν = 1/m with odd m, the Laughlin wave function is an
antisymmetric many-body wave function, where each electron position is an
m-fold zero with respect to the dependence on all other electron positions. At
the same time, m is the number of flux quanta (or vortices) attached to each
electron.

An interpretation of this many-body wave function is possible by looking at

|Ψm(z1, . . . , zN)|2 = e−Φm(z1,...,zN ) (7.140)

where

Φm(z1, . . . , zN ) = −2m
∑

i<j

ln |zi − zj | +
1

2l2

N∑

i=1

|zi|2 (7.141)

is formally identical with the electrostatic energy of a charge-neutral two-
dimensional plasma, where the first term accounts for the electron–electron
interaction and the second for the interaction with the neutralizing back-
ground. The corresponding expression would be obtained by replacing 2m →
e2 and 1/2mπl2 by the particle density. Thus, |Ψm(z1, . . . , zN)|2 is the classical
probability distribution of N electrons in a plane with logarithmic interaction.

The quality of Laughlin’s wave function has been tested by projection
onto ground state wave functions, which for small N were calculated numeri-
cally by exact diagonalization. These projections were found to be very close
to 1. Another result, that characterizes Laughlin’s wave function is the radial
distribution function

gm(|z1 − z2|) =
N(N − 1)

ρ2
m

∫
. . .

∫ 〈
Ψm(z1, . . . , zN )

∣∣2d2z3 . . . d2zN .

(7.142)
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Fig. 7.13. Radial distribution function for the Laughlin state with m = 3 (solid
line) and the Wigner crystal state in the HF approximation (dashed line) for the
same density. Here, x is the inter-particle distance in units of

√
2ml (after [203])
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For m = 3 it is shown in Fig. 7.13 (solid line) together with the radial dis-
tribution function for the Wigner crystal (dashed line) calculated in the HF
approximation. It has been found that the energy of the Laughlin wave func-
tion is always lower than that of the Wigner crystal. The radial distribution
function indicates that in contrast with the Wigner crystal, the Laughlin
state does not exhibit a long-range order and can be identified as a liquid.
A more detailed investigation shows also that the excitation spectrum out of
the Laughlin state has an energy gap, classifying the fractional quantum Hall
states as incompressible quantum liquids. The excitation spectra uncover sev-
eral unexpected properties of these states, such as the hierarchy, the fractional
charge, and the composite fermion concept, for which the reader is referred
to the literature [202–204, 229, 230].

The geometry of a Hall effect measurement is always connected with the
finiteness of the sample with the edge of the sample representing a potential
barrier for the electrons. Consequently, the Landau levels, which are constant
except for fluctuations due to disorder (see Chap. 9), bend upwards towards
the edge of the sample where they cross the Fermi energy. Thus, along the
sample boundary, each Landau level represents a one-dimensional electron
system, the so-called edge channel. In a classical picture, the edge channels
correspond to skipping cyclotron orbits along the edge. The quantum Hall
effect can be understood as transmission between the different probes of the
Hall bar along these edge-channels [231, 232]. In the fractional QH regime,
the edge-channels are seen also as a realization of one-dimensional systems of
interacting electrons to which the Tomonaga–Luttinger model applies [204].

Problems

7.1 Calculate the commutators of ckσ and c†kσ with the interaction part Hint

of the Hamiltonian and verify (7.20).
7.2 Derive the Dyson equation (7.25) by making use of the Fourier transform

of (7.23) in the equation of motion for the Green function.
7.3 Evaluate the commutators of ni−σciσ with the single-particle and with

the interaction term of the Hubbard Hamiltonian (7.45) for the one-
dimensional case to verify (7.54) and (7.55).

7.4 Calculate the spectral weight Z = (1−∂Σ/∂E)−1 for the lower and upper
Hubbard band, especially for the center of the band at k = π/2a.

7.5 Consider the Hubbard Hamiltonian for the case of half-filling and weak
hopping or strong correlation. Show by applying perturbation theory in
second order and by introducing spin operators

Siz =
1

2

∑

σ

zσniσ , Siσ = c†iσci−σ (7.143)
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with z± = ±1, that the Hubbard Hamiltonian can be mapped onto an
operator of the Heisenberg type. Identify the sign of the exchange coupling
and the magnetic order of the ground state.

7.6 Set up the Hamiltonian for a system with localized electrons and on-site
correlation (e.g., d or f electrons) overlapping with delocalized electrons
deriving e.g., from atomic s states! This Hamiltonian is known in the
literature as the Anderson Hamiltonian.

7.7 Calculate the momentum distribution nk at T = 0 by evaluating (7.87)
in order to quantify the quasi-particle jump.

7.8 Evaluate the real part of Lindhard function (4.136) at T = 0 for the one-
dimensional and the three-dimensional electron systems and discuss the
behavior for q → kF at ω = 0. While for d = 1 the calculation can easily
be carried out for finite ω and be discussed for ω → 0 it is advantageous
to do the calculation for d = 3 from the beginning for ω = 0.
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Electron–Phonon Interaction

Based on the Born–Oppenheimer (or adiabatic) approximation (Chap. 2), the
dynamics of the heavy and light constituents of a solid, the ions and the
electrons, respectively, have been presented in the previous chapters as those
of independent systems. For the lattice dynamics (Chap. 3), the electrons were
considered only by their contribution to the binding forces which determine
the dynamical matrix. For the electron systems, their energy spectrum and
excitations (Chaps. 4–7), the position of the ions was kept fixed in the periodic
configuration of a lattice, while the chemical nature of the ions determined the
material specific properties. Releasing the Born–Oppenheimer approximation
enables the two subsystems to communicate with each other by exchanging
energy. This leads to a variety of effects, which are not restricted to solids but
are found in all types of condensed matter including macromolecular systems
in chemistry and biology.

The electrons experience the moving lattice as a perturbation of the peri-
odic potential, which can be understood as scattering between electrons and
phonons. Four scenarios will be considered here:

1. An excited electron gets rid of its excess energy by emitting phonons and
at the same time changes its momentum. This leads to a finite lifetime of
the carrier in its single-particle state.

2. An electron system in a solid driven by an external field (electric field,
temperature gradient) adopts a nonequilibrium state. When the field is
switched off, the electrons emit phonons and the system relaxes into an
equilibrium state. This process of electron–lattice relaxation is character-
ized by a transport relaxation time. (In the same way an excited spin
system can transfer its excess energy to the ion system and equilibrate
by spin–lattice relaxation.) In thermodynamic terminology, the lattice
is a heat bath serving as an energy sink or a reservoir. In exchanging
energy with this bath, the relaxation processes change the phase of the
individual electron wave function which makes these processes incoher-
ent. By discussing these phenomena, electrical transport will become a

U. Rössler, Solid State Theory,
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topic of this Section. Different physical scattering mechanisms, depend-
ing on the phonons involved, determine by their specific contributions the
temperature-dependence of the electric conductivity.

3. Recalling the effect of electron–electron interaction (Chap. 4), the electron–
phonon interaction also can lead to a new ground state of the system. Due
to its charge, an electron creates a polarization cloud in a polar lattice,
which moves around with the electron and changes its dynamic proper-
ties. Thus, electron–phonon interaction leads to a new quasi-particle, the
electron and its polarization cloud, called polaron because of the polar
electron–phonon coupling causing the interaction.

4. Electron–phonon interaction can result also in an attractive electron–
electron interaction if the phonon emitted by one electron is absorbed
by another one within their lifetimes (virtual phonon exchange). This
phonon-mediated electron–electron interaction favors the formation of
pairing of electrons, which is one of the basic mechanisms of supercon-

ductivity.

The different aspects of electron–phonon interaction are subjects of most
textbooks in Solid State Theory. For complementary reading, we refer here
to [10, 13, 14, 89, 95, 233, 234].

8.1 Preliminaries

Let us recall from Sect. 2.1 the separation of the Hamiltonian (2.1)

H0 = Hel + Hion + Hel−ion. (8.1)

The electron–ion interaction with the general form

Hel−ion =

Ne∑

l=1

∑

n,τ

v(rl − Rnτ ) (8.2)

has been considered in the electronic energy Eel({Rnτ}) as a contribution to
the adiabatic potential U({Rnτ }) defined in (2.26), which was the starting
point for the lattice dynamics in Chap. 3. This energy, obtained as the eigen-
value of the electron problem (2.25) in a static configuration of the ions, was
assumed later to be that of the equilibrium configuration {R0

nτ }. Here, we
have to take into account the moving lattice with time-dependent positions
Rnτ (t) = R0

nτ + unτ (t) and do this by expanding around the equilibrium
positions

Hel−ion =
∑

l,n,τ

v(rl − R0
nτ ) −

∑

l,n,τ

∇lv(rl − Rnτ )
∣∣
R0

nτ

· unτ + . . . . (8.3)

The first term has become part of the effective periodic single-particle poten-
tial of the band structure problem (Chap. 5). In the second term, linear in
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the displacements unτ , ∇l means the derivative with respect to the position
vector of the lth electron. This term will be considered in the following as the
linear electron–phonon coupling Hel−ph. The higher order terms, indicated
by dots, will be neglected. The linear approximation is sufficient for displace-
ments that are small compared to the lattice spacing, as will be assumed
throughout this chapter.

It is advantageous for the illustration and for the evaluation of the inter-
action to make use of the occupation number representation and write it in
terms of creation and annihilation operators. The lattice displacements can
be formulated as (see Chap. 3, (3.23, 3.24) together with (3.39))

unτ =
1√

NMτ

∑

s,q

Qs,qes
τ (q)eiq·R0

n

=
∑

s,q

√
h̄

2NMτωs(q)
es

τ (q)eiq·R0
n

(
a†

s(−q) + as(q)
)

(8.4)

with the boson operators a†
s(q) and as(q) of phonons with frequency ωs(q)

and eigenvectors es
τ (q). The time-dependence is not indicated here to simplify

notation.
The gradient of the potential is a single-particle term, which according to

(4.76) can be written in terms of fermion operators for Bloch states (Prob-
lem 8.1). We want to simplify here the electron–phonon interaction within a
single band, for which we adopt the effective mass approximation. For this
case, we may write, with the help of the Fourier transform of the potential,

∑

l

∇lv(rl − Rnτ )
∣∣
R0

nτ

= i
∑

q′,l

q′v(q′)eiq′·(rl−R0
nτ ) (8.5)

and use ∑

l

eiq′·rl =
∑

k

c†k+q′ck (8.6)

with the fermion operators c†k+q′ and ck for free electrons. Making use of (8.4)
together with (8.5), we can perform the lattice sum in the second term of (8.3)
with

∑

n

ei(q−q′)·R0
n = N

∑

G

δq−q′,G (8.7)

and write the linear electron–phonon interaction in the convenient operator
form

Hel−ph =
∑

s,k,q,G

Vs(q − G)
(
a†

s(−q) + as(q)
)
c†k+q−Gck (8.8)

with the coupling matrix element

Vs(q − G) = −i
∑

τ

√
Nh̄

2Mτωs(q)
(q − G) · es

τ (q)e−i(q−G)·τv(q − G), (8.9)
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Fig. 8.1. Graphical representation of the electron–phonon interaction: phonon
emission (left) and phonon absorption (right)
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Fig. 8.2. Kinematics of the electron–phonon interaction: normal process (left) and
Umklapp process (right), the thin solid lines mark the boundary of the first Brillouin
zone

which depends on the coupling mechanism as will be outlined below.
The operator part of Hel−ph tells us about the kinematics as determined

by the wave vectors. For this, we illustrate the interaction in graphical form
(Fig. 8.1) and the kinematics in k space (Fig. 8.2). The graphs contain the
fermion operators as straight lines and the boson operator as a wavy line.
Hel−ph contains only a single phonon operator: a phonon is created or anni-
hilated, and two electron operators: a creation and an annihilation operator.
In the interaction process, the electron is scattered between two Bloch states
while a phonon is emitted or absorbed (see Fig. 8.1). The total momentum
is conserved in the scattering (the sum of the wave vectors of the creation
operators equals that of the annihilation operators, up to a reciprocal lat-
tice vector). We note in passing that (8.8), although derived here for the
electron–phonon system, is the standard form of a fermion–boson interaction.
It applies as well to the coupling of electrons with photons or magnons and
also to similar problems in nuclear physics.

Two characteristic scenarios are shown in Fig. 8.2 to demonstrate the kine-
matics of electron–phonon interacion. If the wave vectors of the electron before
and after the scattering are within the 1st Brillouin zone and the momentum
transfer is small (k and k + q are almost parallel), the scattering does not
strongly change the direction of the moving electron. This is called the normal

process. If the same small momentum transfer shifts the wave vector across
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the Brillouin zone boundary, we have to bring it back by subtracting a recip-
rocal lattice vector, which almost inverts the direction of the moving electron
(k and k +q−G are almost antiparallel). This is called the Umklapp process.
It is intuitively clear that the Umklapp processes take a stronger influence on
the transport properties of electrons than the normal processes.

Formally, the energy balance of the scattering process will be considered by
treating the electron–phonon interaction as a time-dependent perturbation,
which leads to self-energy corrections changing the energy of the electrons and
giving them a finite lifetime. But, it can be made clear from the graphs: the
total energy is conserved and the energy of an emitted (absorbed) phonon
has to be provided (is carried away) by the electron. The different coupling
mechanisms, which depend on the lattice properties of the solid and exhibit
characteristic dependencies on q, will be presented in the following Section.

8.2 Coupling Mechanisms

In Chap. 3, we have demonstrated the physical properties of phonons in dif-
ferent branches. The long-wavelength acoustic phonons were recognized as
causing local lattice compression or dilation, while long-wavelength optical
phonons have been identified with electrical dipole vibrations. These pic-
tures are helpful in deriving the corresponding mechanisms of electron–phonon
coupling.

Deformation Potential Coupling (Acoustic Phonons):

The local homogeneous compression or dilation ∆(r) caused by acoustic
phonons in the long-wavelength limit can be described as a local relative
volume change (Fig. 8.3)

∆(r) =
∆V

V

∣∣∣
r
. (8.10)

It is experienced by an electron as a local change of the lattice constant which
shifts the single particle energy. If we consider a simple nondegenerate band

r

V

∆V

Fig. 8.3. Sketch of the homogeneous dilation caused by a longitudinal acoustic
phonon
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(deriving from atomic s states as e.g., the conduction band in a normal metal
or semiconductor), the electron–phonon interaction can be written as a local
potential seen by the electrons

Hel−ph = −
∑

l

D ∆(rl), (8.11)

where D is the deformation potential corresponding to the energy shift for a
relative volume change ∆V/V = 1. Deformation potentials are of the order
of a few eV (see the data collection of Landolt–Börnstein [1]). The relative
volume change caused by phonons, being much smaller than 1, is related with
the flux of the continuous lattice displacement field u(r) through the area
enclosing the volume V as depicted in Fig. 8.3. By Gauss’ theorem, we have

∆V =

∮
u · dA =

∫

V

∇ · u dV (8.12)

which for a homogeneous lattice distortion in the volume V (assumed to have
a small linear extension compared with the wavelength of the phonon) can
be written also as V ∇ · u(r). Note that ∇ · u(r) can be expressed as the
trace of the strain tensor field, Trǫ(r) (Problem 8.2). The displacement field
u(r) is obtained in the limit of long wavelengths from the expression for the
displacement unτ (3.23) by replacing R0

n → r and using the appropriate
expression for the eigenvector es

τ (q). As the electron–phonon interaction is
determined by ∇·u(r), only the longitudinal acoustic phonons with eLA

τ (q) =√
Mτ/Mq/q contribute, where M is the total mass of the ions in the Wigner–

Seitz cell. Thus, we can write

Hel−ph = −D
∑

l

∇l · u(rl) = −iD
∑

l,q

QLAq√
NM

q · q
q

eiq·rl (8.13)

and obtain with

QLAq =

√
h̄

2ωLA(q)

(
a†
LA(−q) + aLA(q)

)
(8.14)

and (8.6) the Hamiltonian for the deformation potential coupling

HD
el−ph =

∑

k,q

Vq

(
a†
LA(−q) + aLA(q)

)
c†k+qck. (8.15)

The coupling matrix element reads

Vq = −iD

√
h̄

2NMcLA
q1/2 (8.16)

where the use was made of the dispersion relation ωLA(q) = cLAq.
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Supplement: Deformation potential coupling of electrons in a p band

In deriving (8.15), we have assumed the electrons to be in a simple s band. For
energy bands originating from atomic orbitals with higher angular momentum, we
have to consider the orbital degeneracy, according to which the Hamiltonian for the
electron–phonon interaction becomes a matrix in the Bloch (or angular momentum)
representation. Here, we face the same problem as in the effective-mass approxima-
tion for the p type valence band in semiconductors (see Sect. 5.5), which resulted in
a 3× 3 matrix Hamiltonian with bilinear expressions in the components of the wave
vector as matrix elements and three-material specific parameters (L, M, N), which
define the curvature of the bands in different directions in k space. This matrix can
be expressed also in terms of angular momentum matrices for I = 1, which in the
basis |x〉, |y〉, |z〉 read

Ix =

⎛

⎝
0 0 0
0 0 −i
0 i 0

⎞

⎠, Iy =

⎛

⎝
0 0 i
0 0 0

−i 0 0

⎞

⎠, Iz =

⎛

⎝
0 −i 0
i 0 0
0 0 0

⎞

⎠. (8.17)

As it turns out, the k · p matrix M (5.104) can be decomposed according to

M = Ak2
1 + B

∑

α

(
I2

α − 1

3
I2

)
k2

α − 2N
∑

α<β

{Iα, Iβ}kαkβ, (8.18)

where in the first term k2 = k2
x + k2

y + k2
z and 1 is a 3 × 3 unit matrix (which is

proportional to I2
x + I2

y + I2
z ) and {Iα, Iβ} = (IαIβ + IβIα)/2, while the constants

are related by A = (L + 2M)/3 and B = −L + M .
The individual terms of M are invariant tensor products under the point group

and can be formulated on group theoretical grounds [235, 236]. The symmetry prop-
erties of the symmetric second-rank strain tensor with the components ǫαβ are the
same as those of the tensor formed by kαkβ . Therefore, in the same degeneracy space
(here the 3-fold space of the p states), the Hamiltonian of the deformation potential
coupling has the form

HD
el−ph = D1Trǫ + D2

∑

α

(
I2

α − 1

3
I2

)
ǫαα + 2D3

∑

α,β

{Iα, Iβ}ǫαβ . (8.19)

It consists of three invariant contributions connected with three deformation poten-

tials. D1 is recognized as the deformation potential of hydrostatic strain (as in

(8.11)), while D2 and D3 correspond to shear strain in (001) and (111) direc-

tion, respectively. This strain Hamiltonian, originally derived for homogeneous static

strain, is used here to describe the deformation potential coupling. The components

of the strain tensor field ǫαβ(r), which are symmetrized derivatives of the displace-

ment field (see (3.76)), can be expressed in terms of phonon operators as before and

one obtains the matrix Hamiltonian for the deformation potential coupling of elec-

trons in a p band. The complexity of this interaction Hamiltonian allows not only

for the coupling to be longitudinal but also to transverse phonons (Problem 8.3).

The same concept can be applied to energy bands with other orbital degeneracies

and to coupling between different bands.
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Polar Coupling with Optical Phonons or Fröhlich1 Coupling
[237, 238]:

In the long-wavelength limit, longitudinal optical phonons cause a macroscopic
polarization field

P (r) =
M(r)

V
(8.20)

with the electric dipole field M(r). A charge density ρ(r) placed in this
polarization field gives rise to the interaction energy

Eint = −
∫

P (r) · E(r)d3r (8.21)

with

E(r) = −∇r

∫
ρ(r′)

4πε0ε∞|r − r′|d
3r′, (8.22)

where ε∞ is the background (or high frequency) dielectric constant. By partial
integration, this can also be written as

Eint = −
∫

d3r
(
∇r · P (r)

) ∫
d3r′ ρ(r′)

4πε0ε∞|r − r′| (8.23)

with the charge distribution given by

ρ(r′) = − e

V

∑

l,q′

eiq′·(r′−rl) = − e

V

∑

q′

eiq′·r′ ∑

k

c†k−q′ck. (8.24)

The lattice displacement for longitudinal optical phonons in the long-
wavelength limit reads in operator form

uLO
nτ =

∑

q

√
h̄

2NMτωLO
eLO

τ (q)eiq·R0
n

(
a†
LO(−q) + aLO(q)

)
. (8.25)

Here we assume a crystal with two ions in the Wigner–Seitz cell with masses
M1, M2 and M = M1 + M2 for which the phonon eigenvectors are (see
Problem 3.1)

eLO
1 (q) =

√
M2

M

q

q
, eLO

2 (q) = −
√

M1

M

q

q
. (8.26)

The moving ions, carrying the dynamical effective charge η1 = −η2 = η
(introduced in Sect. 3.5), provide a macroscopic dipole moment

M =
∑

n,τ

ητ un,τ = η
∑

n,q

√
h̄

2NμωLO

q

q
eiq·R0

n

(
a†
LO(−q) + aLO(q)

)
(8.27)

1 Herbert Fröhlich, 1905 – 1991
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where μ is the reduced ion mass. The continuum limit M(r) is obtained by
replacing the discrete lattice vectors R0

n by the local position vector r. Thus,
we can write

∇ · P (r) = iη
N

V

∑

q

√
h̄

2NμωLO

q · q
q

eiq·r
(
a†
LO(−q) + aLO(q)

)
. (8.28)

The two volume integrals in (8.23) are performed by taking the Fourier
transform of 1/|r − r′| (see Appendix) to arrive at

1

V

∫
d3r

∫
d3r′eiq·reiq′·r′ 1

|r − r′| =
4π

q2
δq,−q′ . (8.29)

Finally, we take the dynamical effective charge from (3.115) and use the
Lyddane–Sachs–Teller relation (3.114) to replace the transverse optical phonon
frequency by the longitudinal one

η =

(
μV ε0

N

( 1

ε∞
− 1

ε(0)

))1/2

ε∞ωLO (8.30)

to write Eint as the electron–phonon interaction for the Fröhlich coupling

HF
el−ph =

∑

k,q

Vq

(
a†
LO(−q) + aLO(q)

)
c†k+qck (8.31)

with the interaction matrix element

Vq = i

{
e2h̄ωLO

2V ε0

(
1

ε∞
− 1

ε(0)

)}1/2
1

q
. (8.32)

The strength of the interaction is frequently quantified by the Fröhlich
coupling constant

αF =
e2

8πε0h̄ωLO

(
2m∗ωLO

h̄

)1/2(
1

ε∞
− 1

ε(0)

)
, (8.33)

with the effective electron mass m∗. It is defined in analogy with the fine
structure constant, which is the corresponding coupling constant for the
electron–photon interaction and shall find an obvious meaning when deal-
ing with the polaron in Sect. 8.4. Depending on the polarity, determined by
the difference between ε∞ and ε(0) of the solid, on the effective mass and
on the energy of the longitudinal optical phonon, αF takes values between
0.07 in GaAs, 0.39 in CdTe, and 6.6 for RbBr (compared with the fine struc-
ture constant of 1/137). For the weak coupling regime (αF < 1) the Fröhlich
interaction can be treated by perturbation theory (see Sect. 8.4), while special
concepts have been developed for the strong coupling regime (αF > 1)[239].
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Piezoelectric Coupling (Acoustic Phonons):

In crystals without inversion symmetry, a homogeneous strain causes a dielec-
tric polarization P , known as the piezoelectric effect. It is quantified by the
relation (double index summation understood)

Pi = eijkǫjk, (8.34)

where eijk is the piezoelectric and ǫjk the strain tensor. Due to symmetry
considerations, a third rank tensor has nonvanishing elements only for crystals
lacking inversion symmetry [74, 235]. For the particular case of zinc blende,
the piezoelectric tensor takes the form eijk = e14|εijk| with the Levi–Civita
symbol εijk and the piezoelectric constant e14 (written in Voigt notation, see
Sect. 3.4). The piezoelectric effect, originally related to static strain, applies
as well to the dynamical case of strain fields connected with acoustic phonons
and gives rise to the piezoelectric electron–phonon coupling. For this case,
the classical interaction energy is to be formulated with the polarization field
P (r) according to (8.34) with the strain field

ǫjk(r) =
i

2
(qkuj + qjuk) eiq·r (8.35)

connected with the displacement field u(r) = u exp(iq · r). For acoustic
phonons, u can be written as

u =

√
N

M

∑

s

Qsqes(q), withes(q) =
∑

τ

√
M

Mτ

es
τ (q). (8.36)

Taking the corresponding displacement field P (r), the piezoelectric electron–

phonon interaction can be derived in analogy with the Fröhlich coupling
(Problem 8.4). The result is

HP
el−ph =

∑

s,k,q

Vsq

(
a†

s(−q) + as(q)
)
c†k+qck (8.37)

with the coupling matrix element

Vsq = −2ee14

ε0ε∞

√
h̄N

2Mvs

1

q1/2

(
qxqyes

z(q) + c.p.

q2

)
, (8.38)

where vs is the sound velocity of the phonon branch s.

8.3 Scattering Processes: Lifetime, Relaxation

The electron–phonon interaction represents a link between the electron and
phonon systems, which in the previous chapters have been investigated sepa-
rately. In this Section, we consider it as a perturbation of the electron system
by evaluating the scattering processes depicted in Fig. 8.1: phonon emission
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and phonon absorption by a single electron. According to the time-dependence
of the phonon operators, the electron–phonon interaction is periodic in time
and Fermi’s Golden Rule applies. In general, the scattering rate between Bloch
electron states with energies ǫnk and ǫn′k′ under a perturbation H ′ is

rnk,n′k′ =
2π

h̄
|〈n′k′|H ′|nk〉|2 δ(ǫnk − ǫn′k′ − ∆ǫ), (8.39)

where ∆ǫ is the energy change in the case of inelastic scattering. Considering
scattering-out from the Bloch state with n, k to all other possible Bloch states
n′, k′, one finds the inverse single-particle or carrier lifetime

1

τnk

=
∑

n′,k′

rnk,n′k′ (1 − f(n′k′)) , (8.40)

where f(n′k′) is the distribution function. It vanishes if we consider a single
electron in an otherwise empty band. In the language of Green functions, this
lifetime is related with the imaginary part of a self-energy contribution h̄/τnk,
which represents a level broadening.

Taking now Hel−ph as the perturbation H ′, we have to evaluate the matrix
element with the electron and phonon states in the occupation number rep-
resentation. This can formally be done, but the result is written immediately
by inspection of the graphs for phonon absorption and emission processes (see
Fig. 8.1). In the one-band approximation adopted in Sect. 8.2, we can drop the
band index and know from momentum conservation that k′ = k + q for nor-
mal processes, to which we can restrict ourselves here. The matrix elements
of the phonon operators yield

〈ns(q) − 1|as(q)|ns(q)〉 =
√

ns(q) for phonon absorption (8.41)

〈ns(q) + 1|a†
s(q)|ns(q)〉 =

√
ns(q) + 1 for phonon emission (8.42)

with the phonon occupation numbers ns(q), and the inverse lifetime is
expressed by

1

τk

=
2π

h̄

∑

s,q

|Vsq|2 (1 − f(k + q))

×
(

ns(q) +
1

2
∓ 1

2

)
δ(ǫk − ǫk+q ∓ h̄ωs(q)). (8.43)

Here, the upper(lower) sign refers to phonon absorption(emission). Phonon
absorption is possible only if the occupation factor ns(q) differs from zero.
Energy conservation in the scattering process (depicted in Fig. 8.4) is expressed
by the δ-function. For conduction electrons in semiconductors with ǫk ≫
h̄ωs(q), the scattering with acoustic phonons is almost elastic, while scatter-
ing with optical phonons is connected with a substantial change in energy.
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Fig. 8.4. Scattering of conduction electrons in a semiconductor with acoustic and
optical phonons

The emission processes describe energy dissipation from the electrons to the
lattice, which serves as a heat sink. The rate of energy transfer between the
electron and phonon systems is given for this process by an expression similar
to (8.44) but with an additional factor h̄ωs(q)/ǫk under the sum. For high
energy transfer rates, the phonon system will be heated up and one has to
consider phenomena related with hot phonons.

The general result of (8.44) can be specified for the different mechanisms of
the electron–phonon interaction with their particular matrix elements, which
differ with respect to their dependence on the wave vector q of the emitted
or absorbed phonon:

|VLAq|2 ∼ q (deformation potential coupling) (8.44)

|VLOq|2 ∼ q−2 (Fröhlich coupling) (8.45)

|Vsq|2 ∼ q−1 (piezoelectric coupling). (8.46)

This has a consequence when evaluating the sum over q as an integral with
the thermal phonon and electron occupations. This is done by substitutions
(see Appendix) which lead to different dependencies of these scattering mech-
anisms, their contribution to electron lifetime and energy dissipation, on the
temperature.

The dynamical processes connected with electron–phonon scattering can
be studied for two different scenarios. The first applies to semiconductors and
insulators, where electrons in the conduction band can be created by optical
excitation from the valence band. These electrons thermalize due to carrier–
carrier interaction on a very short time scale and form a hot carrier system
(with a temperature higher than the lattice temperature), which relaxes due
to phonon emission (energy relaxation) and finally equilibrates with the lattice
before the electrons and holes recombine [240–242]. These processes can be
investigated in time-resolved spectroscopy [95, 243].
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The second scenario is that of transport, which applies as well to met-
als as to doped semiconductors. The ensemble of carriers, which in an
external electric field are accelerated, is described by a nonequilibrium distri-
bution function f(k, T ). The carriers dissipate their excess energy by emitting
phonons. A stationary situation is achieved if the rate of energy gain of the
carriers in the electric field equals the rate of energy dissipation by phonon
emission. In a homogeneous system, this situation is accounted for by the
Boltzmann equation (or Boltzmann’s stationarity condition) [64, 244–246]

− e

h̄
E · ∇kf(k, T ) =

(
∂f(k, T )

∂t

)

coll

, (8.47)

where the lhs accounts for the rate of energy gain by the carriers in the field E.
The rhs of this relation, the scattering or collision term, can be formulated in
terms of the single-particle scattering rates rk,k′ and occupation factors

(
∂f(k, T )

∂t

)

coll

=
∑

k′

{
(1 − f(k, T )) f(k′, T )rk,k′

−f(k, T ) (1 − f(k′, T )) rk′k

}
, (8.48)

where the first term under the sum on the rhs represents the scattering pro-
cesses into the state with k while the second term represents scattering-out
from this state. For isotropic scattering rates, rk,k′ = rk′,k, we find

(
∂f(k, T )

∂t

)

coll

=
∑

k′

rk,k′ (f(k′, T )− f(k, T )) . (8.49)

Instead of these microscopic expressions, the collision term is frequently
treated in the relaxation time approximation

(
∂f(k, T )

∂t

)

coll

= −f(k, T )− f0(k, T )

τtr(k)
, (8.50)

which describes the evolution of the nonequilibrium distribution f(k, T ) into
the equilibrium distribution f0(k, T ) in the characteristic transport relaxation

time τtr(k). Equations (8.47) and (8.50) can be solved by iteration

f(k, T ) = f0(k, T ) +
e

h̄
τtr(k)E · ∇kf(k, T )

= f0(k, T ) +
e

h̄
τtr(k)E · ∇kf0(k, T ) + . . . . (8.51)

For small deviations from the equilibrium distribution, it is sufficient to take
into account only the lowest order correction (linear in E), which defines the
regime of linear transport, while the higher order terms describe the nonlinear
transport [247].
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The physical observable to quantify the carrier transport, the electric
current density, can be expressed as

j = − e

V

∑

k

v(k)f(k, T ). (8.52)

Here, the carrier velocity v(k) is the group velocity of electrons in an energy
band ǫk

v(k) =
1

h̄
∇kǫk, (8.53)

which for a simple parabolic band equals h̄k/m∗ with the effective mass m∗.
Consider now one component of the current density with the nonequilibrium
distribution function from (8.51)

jα = − e

V

∑

k

vα(k)

⎧
⎨

⎩f0(k, T ) +
eτtr(k)

h̄

∑

β

∂f0(k, T )

∂kβ
Eβ

⎫
⎬

⎭ . (8.54)

The first term on the rhs vanishes because the system in equilibrium does not
carry a current. By writing the distribution function as f(ǫk, T ), the derivative
with respect to kβ in the second term becomes

∂f0(k, T )

∂kβ
=

∂f0(ǫ, T )

∂ǫ

∂ǫk

∂kβ
=

∂f0(ǫ, T )

∂ǫ
h̄vβ(k), (8.55)

and we find Ohm’s law in the form

jα =
∑

β

σαβEβ (8.56)

with the electric conductivity

σαβ = −e2

V

∑

k

τtr(k)
∂f0(ǫ, T )

∂ǫ
vα(k)vβ(k). (8.57)

This second rank tensor resembles the form derived in Chap. 2 within the
concepts of linear response (see Problem 2.4), and we may recognize the cor-
relation between the two components of the velocity. On the other hand, here
the appearance of the transport relaxation time is a new aspect. It accounts
for the dissipation of energy in collisions, which is essential for obtaining a
finite conductivity.

Comparing (8.49) and (8.50) we may identify

f(k, T ) − f0(k, T )

τtr(k)
=
∑

k′

rk,k′ (f(k, T ) − f(k′, T )) . (8.58)

and see that in general the transport relaxation time depends on the distribu-
tion function, which limits the validity of the relaxation time approximation.
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However, this is not the case for an isotropic dispersion ǫk = ǫk and elastic
scattering for which we may write

f(k) = f0(k) + k · EC(k) (8.59)

and similar for f(k′) with the electric field E and a scalar function C(k) =
C(k′). In polar coordinates with respect to the direction of E, one has

k · E = kE cosϑ and k · k′ = k2 cosϑ′, (8.60)

where ϑ′ is the angle between k and k′, and

k′ · E = kE(cosϑ cosϑ′ + sinϑ sin ϑ′ cosϕ′). (8.61)

As a consequence, the difference f(k) − f(k′) can be expressed as

f(k) − f(k′) = kEC(k)
(
cosϑ(1 − cosϑ′) − sin ϑ sin ϑ′ cosϕ′

)
(8.62)

where the second term on the rhs vanishes by integration over ϕ′ (note that
for isotropic scattering rk,k′ depends on k − k′) which gives with dΩ′ =
dϕ′ sinϑ′dϑ′

∫
dΩ′

(
f(k) − f(k′)

)
= kEC(k) cosϑ

∫
dΩ′(1 − cosϑ′) . (8.63)

With (8.59), we identify the factor in front of the integral on the rhs as
f(k) − f0(k) and obtain, using (8.39), for the relaxation rate

1

τtr(k)
=

1

4π2h̄

∫
|〈k|H ′|k′〉|2δ(ǫk − ǫk′)(1 − cosϑ′)d3k′ (8.64)

which is independent of the distribution function. The factor 1− cosϑ′ under
the integral tells us that collisions by which the propagation direction of the
charge carrier is reversed (ϑ′ ≃ π, back scattering) contribute much to the
relaxation rate, while the effect of forward scattering with ϑ′ ≪ π is only
small.

For further evaluation of σαβ (8.57), let us assume the electric field in
the z direction. Then, we have σzz as the only nonvanishing component of
the conductivity tensor. The sum over k can be performed in spherical polar
coordinates. By making use of the dispersion relation ǫk = h̄2k2/2m∗, we can
write with vz(k) = h̄kz/m∗ and kz = k cos θ

v2
z(k) =

2

m∗
ǫ cos2 θ (8.65)

and formulate the remaining integration over k as an energy integral

σzz = − e2

3m∗π2

(
2m∗

h̄2

)3/2 ∫
ǫ3/2τtr(ǫ)

∂f0(ǫ, T )

∂ǫ
dǫ . (8.66)



246 8 Electron–Phonon Interaction

The transport relaxation time is a power function of the carrier energy ǫ.
Integrals of this type can be evaluated by using the fact that ∂f0(ǫ, T )/∂ǫ is
a symmetric function with a pronounced maximum at ǫ = μ (see Appendix).

Depending on the temperature, two limiting cases shall be discussed here.
For a degenerate electron system with EF ≫ kBT , the derivative of the Fermi
distribution function can be written as ∂f0/∂ǫ ≃ −δ(ǫ − EF) thus giving

σzz =
e2nτ(EF)

m∗
(8.67)

with the degenerate carrier density

n =
1

3π2

(
2m∗

h̄2

)3/2

E
3/2
F . (8.68)

Formally, this result is identical with that obtained by the classical Drude the-
ory [12, 29, 31]. However, here, the quantum statistical nature of the degener-
ate electron system becomes relevant in the dependence on the Fermi energy
and the transport relaxation time can be traced back to the microscopic
scattering processes.

For the nondegenerate carrier system, kBT ≫ ǫ, the derivative of the
distribution function takes the form ∂f0/∂ǫ ≃ − exp (−ǫ/kBT )/kBT and we
may write

σzz =
e2n〈τ(ǫ)〉

m∗
(8.69)

with the nondegenerate carrier density

n =
1

2π2

(
2m∗

h̄2

)3/2 ∫
dǫ ǫ1/2e−ǫ/kBT (8.70)

and the averaged transport relaxation time

〈τ(ǫ)〉 =
2

3kBT

∫
dǫ ǫ3/2τ(ǫ)e−ǫ/kBT

∫
dǫ ǫ1/2e−ǫ/kBT

. (8.71)

The effects of the band structure (here the effective mass) and of the
scattering processes are comprised in the mobility

μ =
e〈τ〉
m∗

(8.72)

with the temperature-dependent transport relaxation time τ . Thus, the con-
ductivity is written in the form σ = enμ. The mobility is frequently measured
in magneto-transport experiments making use of the Hall effect and then
called Hall mobility. An example is shown in Fig. 8.5 for n-doped GaAs. The
measured values are compared with the calculated mobilities for different scat-
tering mechanisms (Problem 8.5). Besides scattering with phonons, which
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Fig. 8.5. Hall mobility versus temperature for n-doped GaAs, showing experimental
data together with the contributions from different scattering mechanisms, after [89]

limits the mobility at high temperatures, scattering also with impurities (see
Chap. 9) is considered. The latter dominates the mobility at low temperature,
when the phonons are frozen out. For degenerate electron systems, the relax-
ation time can be converted into a mean free path lmfp = vFτ , which is the
average distance between collisions covered by a carrier with Fermi velocity vF.

Note that the momentum selection rule represents a geometrical con-
straint depending on the system dimension. Thus, compared with the three-
dimensional case, electron–phonon interaction is modified in electron systems
with reduced dimensionality (e.g., for electrons confined at semiconductor het-
erostructures or in quantum wells or quantum wires). Moreover, by remote
doping, the ionized impurities can be separated from the mobile carriers to
suppress the scattering. This leads to an enormous increase of the mobil-
ity at low temperatures. Thus, carrier confinement takes influence on the
lifetime [242, 243, 248]. At the same time, the mean-free-path, the distance
between successive scattering events, can become comparable or larger than
the system dimension, as is typical for mesoscopic systems. In this case, the
carrier passes through the sample without being scattered and the transport
is called ballistic.

8.4 The Fröhlich Polaron

In contrast with the single-particle approximation in Chaps. 4 and 5, where
a free electron or a Bloch state was an eigenstate of the electron Hamilto-
nian, these states are now perturbed by the electron–phonon interaction. We
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encounter a similar situation as for interacting electrons: As the electron–
electron interaction gives rise to formation of quasi-particles consisting of the
bare particle and a cloud of virtual collective excitations, so does the electron–
phonon interaction. But now, instead of charge or spin density excitations, the
electron (or hole) will be dressed by a cloud of virtual phonons. This composite
particle is called polaron with particular reference to the lattice deformation
in a polar semiconductor or insulator by a charge carrier, which repels the ions
with the same charge but attracts those with the opposite charge thus gener-
ating a distortion typical for optical phonons. The interaction to be considered
in this case is the Fröhlich coupling.

We follow here [4, 14] and adopt the concept of lowest order perturbation
theory to calculate the change of the single-electron state |k〉 and its energy by
the coupling with longitudinal optical phonons. We consider the state |k, 0q〉
as the eigenstate of Hel + Hph characterizing an electron in the undistorted
harmonic lattice. Due to electron–phonon interaction, this state gets modified
by contributions from states with phonons. The lowest order correction is due
to one-phonon contributions

|k, 0q〉(1) = |k, 0q〉 +
∑

q

|k − q, 1q〉
〈k − q, 1q|Hel−ph|k, 0q〉

ǫk − ǫk−q − h̄ωLO
. (8.73)

The lattice distortion caused by the carrier can be quantified by the expec-
tation value of the phonon number operator which due to the first order
correction is

n̄ =
∑

q

|〈k − q, 1q|Hel−ph|k, 0q〉|2

(ǫk − ǫk−q − h̄ωLO)2
. (8.74)

This expression is still not specified to one of the coupling mechanisms and
yields different results for the sum over q according to the q dependence of the
interaction matrix element. For the Fröhlich interaction, we have h̄ωq → h̄ωLO

and may write with

ǫk − ǫk−q − h̄ωLO =
h̄2

2m∗

(
2k · q − q2 − q2

LO

)
, (8.75)

where q2
LO = 2m∗ωLO/h̄, the sum over q as an integral over the Brillouin zone

n̄ = |C|2
(

2m∗

h̄2

)2
V

2π3

∫
1

q2

1

(2k · q − q2 − q2
LO)

2 d3q, (8.76)

where |C|2 = e2h̄ωLO/2V ε0(1/ε∞ − 1/ε(0)). Let us consider the state with
k = 0, representing an electron at rest. Then the integral can be performed in
spherical polar coordinates over a sphere with radius qBZ equal to the volume
of the Brillouin zone

∫
. . . d3q = 4π

(
2m∗

h̄2

)2 ∫ qBZ

0

dq

(q2 + q2
LO)2

. (8.77)
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The indefinite integral gives

∫
dq

(q2 + q2
LO)2

=
1

2qLO

(
q

q2 + q2
LO

+
1

qLO
arctan

q

qLO

)
. (8.78)

For qLO ≪ qBZ, because the wave vector of an electron at the energy of
the LO phonon is much smaller than the Brillouin zone, the upper limit
can be extended to infinity and the integral simplifies to π/4q3

LO. Taking the
interaction constant C from (8.33), we find

n̄ =
αF

2
, (8.79)

i.e., in this lowest order perturbation, the composite particle polaron consists,
of the electron and a number of phonons which is determined by the coupling
constant. A similar calculation can be performed also for the other coupling
mechanisms (Problem 8.6). For polar semiconductors, this number is much
smaller than one, which a posteriori justifies the perturbation treatment. In
systems with much larger coupling constants, more elaborate concepts have
to be applied [239].

The first order perturbation correction to the free particle energy ǫk =
h̄2k2/2m∗ is given by

∆ǫ
(1)
k =

∑

q

|〈k − q, 1q|Hel−ph|k, 0q〉|2
(ǫk − ǫk−q − h̄ωLO)

. (8.80)

As before, the sum over q can be written as an integral to have

∆ǫ
(1)
k = |C|2 2m∗

h̄2

V

2π3

∫
1

q2

1

2k · q − q2 − q2
LO

d3q. (8.81)

Being interested now in the dispersion relation for the composite particle, we
expand the integrand for small k and find for the leading terms

1

2k · q − q2 − q2
LO

=
−1

q2 + q2
LO

(
1 +

2k · q
q2 + q2

LO

+

(
2k · q

q2 + q2
LO

)2

+ . . .

)
.

(8.82)

When integrating in spherical polar coordinates, the second term on the rhs

vanishes while the first and third terms can be evaluated with the integrals

∫
d q

q2 + q2
LO

=
1

qLO
arctan

q

qLO
and (8.83)

∫
q2d q

(q2 + q2
LO)

3 =
1

8q2
LO

(
q (q2 − q2

LO)

(q2 + q2
LO)2

+
1

qLO
arctan

q

qLO

)
. (8.84)
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Fig. 8.6. Dispersion of conduction band electron and Fröhlich polaron. In order
to show energy and mass renormalization a coupling constant of about 1 has been
assumed

By taking the limits from 0 to ∞ as before, these integrals reduce to π/2qLO

and π/16q3
LO, respectively, and give for the first order energy correction

∆ǫ
(1)
k = −αFh̄ωLO − αF

6

h̄2k2

2m∗
, (8.85)

which again is linear in the coupling constant. It is conceivable that higher
order perturbation theory would lead to terms with higher powers in the
coupling constant, i.e., the results obtained here are valid only for αF < 1.
The polaron energy dispersion can now be written as

ǫPk = −αFh̄ωLO +
h̄2k2

2m∗

(
1 − αF

6

)
. (8.86)

The result is shown in Fig. 8.6. There is an energy reduction independent of k

and a change of the particle mass, similar to our finding for the Hartree–Fock
quasi-particle in Chap. 4. The mass m∗/(1 − αF/6) ≃ m∗(1 + αF/6) is the
polaron mass. The intuitive physical picture of the polaron is that the carrier
has to move around together with the lattice polarization created due to its
charge. The coupling constant αF defines the energy renormalization in units
of h̄ωLO and the average number of virtual phonons in the polaron.

8.5 Effective Electron–Electron Interaction

In 1911, the Dutch physicist Kamerlingh Onnes2 discovered the surprising
behavior of Hg that below a critical temperature (Tc = 4.2K) the resistiv-
ity dropped suddenly to a value close to zero (see Fig. 8.7), i.e., below this
temperature the material can carry an electric current without a voltage drop
or dissipation of energy [249]. This behavior, called superconductivity, which
was found in the following for many other metals, has become and still is one

2 Heike Kamerlingh Onnes 1853–1926, Nobel prize in physics 1916
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Fig. 8.7. Schematic dependence of the resistivity on the temperature for a normal
metal (dashed) and a superconductor (solid)

of the most challenging problems in solid state physics. Superconductivity has
become a standard subject in textbooks on Solid State Physics, but is also
well documented in special monographs [250–254].

An indication that the lattices (or precisely the ions) are involved in the
mechanism causing superconductivity, was the discovery of the isotope effect,
i.e., a dependence of the critical temperature on the ion mass, according to
which the critical temperature depends for a given element on the ion mass
such that M1/2Tc = const. But, it took almost half a century before in 1957
a microscopic explanation of the phenomenon was given by Bardeen, Cooper,
and Schrieffer3 [255]. According to their theory, known as the BCS theory,
electron–phonon coupling can mediate an attractive electron–electron inter-
action which below Tc gives rise to a new correlated ground state with paired
electrons.

In the perspective of promising technical applications, efforts have been
made in finding materials with higher critical temperatures which, however,
until 1985 remained below 25K. In 1986, Bednorz and Müller4 discovered
a new class of superconducting materials, the doped ceramic cuprates, with
significantly higher critical temperatures [256]. Within this material class,
critical temperatures of up to about 120K, well above the temperature of
liquid nitrogen, were found in the following years. This discovery boosted
the research in the field of superconductivity towards both superconducting
devices and in theoretical concepts to describe the effect, which is still not
completely understood [257]. One of the most recent Nobel prizes in physics

3 John Bardeen, 1908–1991, Leon N. Cooper, *1930, J. Robert Schrieffer, *1931,
shared the Nobel prize in physics 1972

4 Johannes Georg Bednorz, *1950, Karl Alex Müller, *1927, shared the Nobel prize
in physics 1987
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Fig. 8.8. Graphical representation of the effective electron–electron interaction
mediated by virtual phonon exchange

has been awarded to Abrikosov, Ginzburg, and Leggett5 in recognition of their
contributions to this field. In the context of this chapter, the BCS theory -
although only the first concept to explain superconductivity - will be presented
as an important outcome of electron–phonon interaction.

The system of electrons and phonons, including their interaction, can be
described in simplest form by the Hamiltonian introduced in Sect. 8.1

H = Hel + Hph + Hel−ph

=
∑

k

ǫkc†kck +
∑

q

h̄ω(q)a†(q)a(q)

+
∑

k,q

Vqc†k+qck

(
a†(−q) + a(q)

)
. (8.87)

Here, we assume the electrons in a simple energy band with dispersion ǫk and
the phonons from a branch with dispersion ω(q). The matrix element of the
electron–phonon interaction depends only on the momentum transfer q and
obeys the relation Vq = V ∗

−q. Considering Hel−ph as a small perturbation, one
can try to eliminate this interaction at least to lowest order in the phonon
operators. As will be shown in the following, this leads to an effective electron–
electron interaction mediated by virtual exchange of phonons. Its pictorial
representation in Fig. 8.8, which can be understood as a composition of the
diagrams shown in Fig. 8.1, resembles the corresponding graph for the direct
Coulomb interaction (see Fig. 4.10).

The elimination of the terms linear in the phonon operators a†(−q), a(q)
can be achieved by a unitary transformation, the Schrieffer–Wolff transfor-

mation

H ′ = e−SHeS =

(
1 − S +

1

2
S2 . . .

)
H

(
1 + S +

1

2
S2 . . .

)

= H + [H, S] +
1

2
[[H, S], S] + . . . , (8.88)

5 Alexei A. Abrikosov, *1928, Vitaly L. Ginzburg, *1916, Anthony J. Leggett,
*1938, shared the Nobel Prize in physics 2003
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with a still to be determined operator S. This transformation represents a
systematic perturbation expansion. Applied to the Hamiltonian (8.87) the
leading terms of the series read

H′ = H0 + Hel−ph + [H0, S] + [Hel−ph, S] +
1

2
[[H0, S], S] + . . . , (8.89)

where H0 = Hel +Hph is the dominating term and all other terms, containing
different powers of Hel−ph or S, represent the perturbation. This expansion
can be exploited to eliminate Hel−ph (in principal to any order) by a proper
choice of the operator S. For the lowest order, let us assume the form

S =
∑

k,q

Vq

(
α a†(−q) + β a(q)

)
c†k+qck (8.90)

which is similar to Hel−ph but contains α, β as free parameters. The commu-
tator of S with H0 yields the two contributions

[Hel, S] =
∑

k,q

(ǫk+q − ǫk)Vq

(
α a†(−q) + β a(q)

)
c†k+qck (8.91)

and

[Hph, S] =
∑

k,q

h̄ω(q)Vq

(
α a†(−q) + β a(q)

)
c†k+qck, (8.92)

where use was made of ω(−q) = ω(q). We recognize that the second and third
terms of the perturbation expansion (8.89) are of first order in the electron–
phonon interaction, while the fourth and fifth terms are of second order. The
condition Hel−ph + [H0, S] = 0 for eliminating the first order terms can be
fulfilled with the choice

α = − (ǫk+q − ǫk − h̄ω(q))
−1

(8.93)

and

β = − (ǫk+q − ǫk + h̄ω(q))−1 (8.94)

and the transformed Hamiltonian takes the form

H′ = H0 + [Hel−ph, S] +
1

2
[[H0, S], S] + . . . . (8.95)

For this choice of S, the sum of the second and third term is [Hel−ph, S]/2
with

[Hel−ph, S] ≃
∑

k,k′,q

|Vq|2 (−α + β)c†k+qc†k′−qck′ck. (8.96)
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Note that the detailed evaluation (Problem 8.7) of the commutator yields an
additional term which is neglected here. Finally, we may write the transformed
Hamiltonian by considering all terms up to second order in the electron–
phonon coupling as

H′ = H0 +
∑

k,k′,q

|Vq|2 h̄ω(q)

(ǫk − ǫk+q)
2 − (h̄ω(q))2

c†k+qc†k′−qck′ck. (8.97)

The second term of this Hamiltonian describes an electron–electron interac-
tion caused by a virtual exchange of phonons as depicted by the diagram of
Fig. 8.8. It has the same structure as the graph for the Coulomb interaction,
but now the interaction line represents the phonon mechanism. It is attractive
for |ǫk − ǫk+q| < h̄ω(q) and favors the formation of bound electron pairs.

Starting from the filled Fermi sphere |Ψ0〉, which represents the electronic
ground state of a normal metal, we may ask if an electron pair formed at
the Fermi energy due to the effective electron–electron interaction would be
stable. Such a pair can be described by applying two creation operators with
k1, k2 from outside the Fermi sphere and superposition to a wave packet

|Ψ12〉 =
∑

k1,k2

′
F (k1, k2)c

†
k1

c†k2
|Ψ0〉, (8.98)

where
∑′

indicates that the sum is restricted to ki, i = 1, 2 in the spherical
shell with EF ≤ ǫki

≤ EF + h̄ω(q), i = 1, 2. The center of mass momentum,
K = k1 +k2, being a good quantum number, limits the states contributing to
the wave packet, as depicted in Fig. 8.9. This figure suggests that the condition
of forming a stable pair improves by increasing the number of contributing
states with attractive interaction. The most favorite situation corresponds to
K = k1 + k2 = 0, for which we can write

|Ψ12〉 =
∑

k

′
F (k)c†kc†−k|Ψ0〉. (8.99)

k
1

k
2

K

E
F

qE  +hωF

Fig. 8.9. Single particle states at the Fermi energy contributing to a pair state for
fixed center-of-mass momentum
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If, in addition, the attractive interaction is simplified by writing

|Vq|2 h̄ω(q)

(ǫk − ǫk′)
2 − (h̄ω(q))2

≃
{
−Veff

2 δk′,−k |ǫk − ǫk′ | ≤ h̄ωD

0 otherwise
, (8.100)

where the Debye frequency ωD introduced in Chap. 3 is taken as a represen-
tative cut-off frequency of the phonon spectrum, we obtain the Hamiltonian

Heff =
∑

k

ǫkc†kck − Veff

2

∑

k,q

′
c†k+qc†−k−qc−kck (8.101)

for electrons in the band with ǫk coupled with the phonon-mediated attractive
electron–electron interaction.

8.6 Cooper Pairs and the Gap

As mentioned before, this interaction can give rise to the formation of bound
electron pairs |Ψ12〉 at the Fermi surface, the Cooper pairs. The condition for
this to happen is given by

E12 = 〈Ψ12|Heff |Ψ12〉 < 2EF, (8.102)

which means an instability of the Fermi sphere against the formation of such
pairs. The expectation value of (8.101) for the pair state (8.99) turns out to
be (Problem 8.8)

E12 = 2
∑

k

′
ǫk|F (k)|2 − Veff

∑

k,q

′
F ∗(k + q)F (k) (8.103)

and is to be minimized with respect to F (k) under the normalization condition∑
k |F (k)|2 = 1. Thus, we write

∂

∂F ∗(k′)

{
E12 − λ

(
∑

k

′
|F (k)|2 − 1

)}
= 0 (8.104)

or alternatively, after taking the derivatives,

{2ǫk′ − λ}F (k′) = Veff

∑

k

′
F (k). (8.105)

By setting
∑′

k F (k) = C, we may express

F (k) =
VeffC

2ǫk − λ
or C =

∑

k

′ VeffC

2ǫk − λ
, (8.106)

where in the last equation C can be dropped.
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An expression for λ is obtained by multiplying (8.105) with F ∗(k′) and
taking the restricted sum over k′

∑

k′

′
{2ǫk′ − λ} |F (k′)|2 = Veff

∑

k,k′

′
F (k)F ∗(k′). (8.107)

By making use on the lhs of the normalization condition and replacing the
rhs k′ by k + q with the corresponding change of the summation, this can be
written as

2
∑

k′

′
ǫk′ |F (k′)|2 − Veff

∑

k,q

′
F ∗(k + q)F (k) = λ. (8.108)

Comparing with (8.103), we identify λ = E12 and find the relation

∑

k

′ Veff

2ǫk − E12
= 1 (8.109)

from which the energy E12 of the Cooper pair is to be calculated.
In (8.109), the sum over k can be formulated as an integral over the energy

1 = Veff

∫ EF+h̄ωD

EF

D(E)

2E − E12
dE, (8.110)

with the density of states D(E). Because the integral is to be taken over a
narrow interval at the Fermi energy (h̄ωD ≪ EF), we may extract the density
of states as a factor D(EF) and perform the integration to find

1 =
1

2
VeffD(EF)ln

2(EF + h̄ωD) − E12

2EF − E12
. (8.111)

After separating the logarithm to take the exponential, this can be solved for
E12 and yields

E12 = 2EF − 2h̄ωD
exp (−2/VeffD(EF))

1 − exp (−2/VeffD(EF))
. (8.112)

Under the condition of a weak attractive electron–electron interaction, quan-
tified by the relation 2/VeffD(EF) ≫ 1, (8.112) is simplified by writing

E12 ≃ 2EF − 2h̄ωD exp (−2/VeffD(EF)). (8.113)

This relation implies that the energy of the Cooper pair is smaller than the
energy of the two electrons (without interaction) taken from the Fermi surface.
The particular dependence on the interaction in the exponential function,
which cannot be represented in a power series, leads to stable bound pairs
even for very small Veff . The formation of Cooper pairs means, for the whole
electron system, that the Fermi sphere (or in general, the Fermi surface) is
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unstable and cannot represent the system ground state. As we shall see, this
leads to a new state of the electron system, the superconducting state.

After having confirmed the possibility of pair formation due to the effec-
tive electron–electron interaction, we now have to find the ground state of
the system. The pairs, consisting of electrons close to EF with wave vectors k

and −k and (as we shall assume here) up and down spin to form spin-singlet
pairs, are bosons. Their creation or annihilation changes the number of elec-
trons in the system. This can be accounted for by considering the so-called
BCS Hamiltonian

HBCS =

′∑

k

(ǫk − EF)
(
c†k↑ck↑ + c†−k↓c−k↓

)
− Veff

∑

k,k′

′
c†k′↑c

†
−k′↓c−k↓ck↑,

(8.114)

which is Heff − μN , with μ ≃ EF and N =
∑

k

(
c†k↑ck↑ + c†−k↓c−k↓

)
. As

the energy of the electrons does not differ much from the Fermi energy, it is
reasonable to introduce the notation E(k) = ǫk−EF. Subtracting this energy
difference summed over all k leads to

H̄ = −
∑

k

′
E(k)

(
1 − c†k↑ck↑ − c†−k↓c−k↓

)
− Veff

∑

k,k′

′
c†k′↑c

†
−k′↓c−k↓ck↑.

(8.115)
The operators appearing in this Hamiltonian have an obvious meaning

when applied to pair states of electrons. Using the occupation number rep-
resentation, |0k↑0−k↓〉 and |1k↑1−k↓〉 denote the states without and with an
electron pair, respectively. The following relations hold:

1.
(
1 − c†k↑ck↑ − c†−k↓c−k↓

)
|0k↑0−k↓〉 = |0k↑0−k↓〉

2.
(
1 − c†k↑ck↑ − c†−k↓c−k↓

)
|1k↑1−k↓〉 = −|1k↑1−k↓〉

3. c†k↑c
†
−k↓|1k↑1−k↓〉 = 0

4. c†k↑c
†
−k↓|0k↑0−k↓〉 = |1k↑1−k↓〉

5. ck↑c−k↓|1k↑1−k↓〉 = |0k↑0−k↓〉
6. ck↑c−k↓|0k↑0−k↓〉 = 0

For each k, they can be interpreted as those of spin operators which in the
Pauli representation read

1./2. : 1 − c†k↑ck↑ − c†−k↓c−k↓ =

(
1 0
0 −1

)

k

= σkz

3./4. : c†k↑c
†
−k↓ =

(
0 0
1 0

)

k

=
1

2
(σkx − iσky)

5./6. : ck↑c−k↓ =

(
0 1
0 0

)

k

=
1

2
(σkx + iσky) (8.116)
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and act on corresponding pseudo-spin states

|0k↑0−k↓〉 =

(
1
0

)

k

and |1k↑1−k↓〉 =

(
0
1

)

k

. (8.117)

In this notation, the Hamiltonian H̄ can be written as

H̄ = −
∑

k

′
E(k)σkz − Veff

4

∑

k,k′

′
(σk′xσkx + σk′yσky) (8.118)

and turns out to be of the same structure as the Heisenberg spin Hamiltonian
in Chap. 6. Therefore, the interaction (second term) can be treated in the
same way, i.e., by applying the mean-field approximation. This is done by
introducing the fictitious magnetic field (note that it depends on k and its
components represent energies) giving

Hk = E(k)ẑ +
Veff

2

∑

k′

′(
〈σk′x〉x̂ + 〈σk′y〉ŷ

)
, (8.119)

with Cartesian unit vectors x̂, ŷ, ẑ, and leads to the compact form

H̄ = −
∑

k

′
Hk · σk. (8.120)

In spite of its simple form, this mean-field Hamiltonian has a remarkable
spectrum, determined by the modulus of the fictitious field. The energetically
best arrangement requires all pseudo-spins 〈σk〉 to be aligned to the corre-
sponding field Hk. Let us discuss first the case without interaction (Veff = 0)

V  =0
eff

HkII

EF Ek

z

Fig. 8.10. Mean field (upper part) and eigenstates (lower part) in dependence on
the single-particle energy around EF without effective interaction
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V  ≠0
eff

HkII

∆

EF Ek

z

occupied empty

Fig. 8.11. Mean field (upper part) and eigenstates (lower part) in dependence on
the single-particle energy around EF with effective interaction. Note the opening of
a gap at EF

for which |Hk| depends linearly on the energy E(k), which is the energy dif-
ference of the single particle energy and the Fermi energy. This situation is
shown in Fig. 8.10 (upper part). The field points in the positive or negative
z direction depending on the sign of E(k). The corresponding eigenstates are
pseudo-spin up (down) or occupied (empty) pair states below (above) EF, i.e.,
for negative (positive) E(k) (see lower part of Fig. 8.10).

This picture changes for finite Veff (Fig. 8.11). Now, at EF or E(k) = 0
the fictitious field is finite, pointing somewhere in the xy plane. Its strength
depends on the expectation values of the pseudo-spin operators σk′x and σk′y.
But, away from the Fermi energy, this field is turned into the z direction and
approaches the linear dependence as for the noninteracting case (upper part
of Fig. 8.11). The corresponding eigenstates are pseudo-spin vectors aligned
to this field and turn around with Hk. Their projection onto the z direction
is shown in the lower part of Fig. 8.11.

In order to quantify the discussion, let us assume 〈σk′y〉 = 0, i.e., all
pseudo-spins together with the fictitious fields are in the xz plane, and intro-
duce the energy parameter ∆ = Veff

∑′
k′〈σk′x〉/2. The energy for exciting an

electron pair out of the correlated ground state is given by twice the modulus
of the field

|Hk| = {E(k)2 + ∆2}1/2, (8.121)

where ∆ is the gap energy at EF (see Fig. 8.11). Due to the alignment of
the pseudo-spin along the field Hk (Fig. 8.12), the ratios of their x and z
components are equal and can be expressed by the angle θk. As, in addition,
〈σk′x〉 = sin θk′ we may write
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Fig. 8.12. Alignment of pseudo-spin and fictitious field in the xz plane

tan θk =
Veff

∑′
k′ sin θk′

2E(k)
=

∆

E(k)
. (8.122)

This relation can be solved for ∆ by replacing

sin θk′ =
∆

(∆2 + E2(k′))
1/2

(8.123)

to obtain

∆ =
1

2
Veff

∑

k

′ ∆

(∆2 + E2(k))1/2
. (8.124)

The summation, limited to the range of the attractive interaction around the
Fermi surface, can again be performed as an integral, giving

1 =
VeffD(EF)

2

∫ +h̄ωD

−h̄ωD

dE

(∆2 + E2(k))
1/2

= VeffD(EF) sinh−1

(
h̄ωD

∆

)
. (8.125)

This is easily solved to yield, as the BCS solution, for the gap parameter

∆ =
h̄ωD

sinh(1/VeffD(EF))
≃ 2h̄ωDe−1/VeffD(EF), (8.126)

where the last expression is obtained for 1 ≫ VeffD(EF). According to this
formula, the gap energy (or the stability of the Cooper pairs) increases
with the cut-off phonon energy (or the Debye frequency) and the density
of single-particle states at the Fermi energy.

In order to find an expression for the critical temperature, we have to ask
for the temperature dependence of the gap, which enters through the thermal
expectation values of the pseudo-spins

〈σk〉T = Tr

(
1

Z
e−βH̄σk

)
= tanh

|Hk|
kBT

(8.127)
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and (using again Fig. 8.12) defines ∆(T ) by the relation

tan θk =
Veff

∑′
k′ sin θk′

2E(k)
tanh

|Hk′ |
kBT

=
∆(T )

E(k)
. (8.128)

Replacing sin θk′ = ∆(T )/{E2(k) + ∆2(T )}1/2 gives

Veff

2

∑

k

′
tanh

|Hk|
kBT

{E2(k) + ∆2(T )}−1/2 = 1. (8.129)

This equation can be solved for ∆(T ). For T = Tc the gap vanishes and
|Hk| = E(k), which simplifies the relation to

Veff

2

∑

k

′ 1

E(k)
tanh

E(k)

kBTc
= 1. (8.130)

Extending this result, which is valid for the adopted spin model related to
pair states, to include single particle excitations, Tc has to be replaced by
2Tc. The factor 2 accounts for the doubling of the entropy due to a doubling
of the possible excitations (see [4]). The sum over k is again performed as an
energy integral, giving the BCS result for the critical temperature

1

VeffD(EF)
=

∫ h̄ωD/2kBTc

0

tanh(x)

x
dx. (8.131)

For Tc ≪ ΘD, where ΘD is the Debye temperature, this can be evaluated to
yield

Tc = 1.14
ΘD

kB
e−1/VeffD(EF). (8.132)

This result immediately explains the isotope effect, because the Debye tem-
perature is inversely proportional to the square root of the ion mass. With the
help of (8.126), we may also write the direct relation between the gap energy
and the critical temperature

2∆ = 3.52kBTc. (8.133)

The validity of this relation is demonstrated in Table 8.1 for some representa-
tive metals.

The principal correctness of the mean-field approximation is shown in
Fig. 8.13 by plotting the reduced value of the gap ∆(T )/∆(0) as the order
parameter for different superconductors versus the reduced temperature T/Tc.
The experimental data for different materials define a universal curve which
is well described by the graph from BCS theory. Note the similarity with
Fig. 6.10.

Similar to the Fröhlich polaron, a Cooper pair is a composite particle.
However, the statistical properties of the polaron are those of the electron
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Table 8.1. Debye temperature ΘD, critical temperature Tc, and ratio 2∆(0)/kBTc

for different metals, from [31].

Metal ΘD[K] Tc[K] 2∆(0)/kBTc

An 235 0.9 3.2

Cd 164 0.56 3.2

Hg 70 4.16 4.6

Al 375 1.2 3.4

Sn 195 3.75 3.5

Pb 96 7.22 4.3
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∆
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∆
(0

)
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0

Fig. 8.13. Dependence of the reduced gap energy on the reduced temperature for
different superconductors (symbols) and the BCS result (solid line) (after [30])

because the phonon cloud does not change the spin, whereas the Cooper pair,
which is a particle with integer spin composed of two electrons, is a boson.
Due to their bosonic nature, a system of Cooper pairs can undergo Bose–

Einstein condensation to reach the superconducting state. Depending on the
total spin of the two electrons in a Cooper pair, one distinguishes singlet and
triplet superconductors.

Bose–Einstein condensation is possible not only for paired electrons in a
solid. By cooling atoms confined in electromagnetic traps, degenerate Fermi
gases can be realized (see Chap. 4), which consist of atoms. For these Fermi
systems, one has, recently, also studied the formation of molecules due to
inter-atomic forces. A system of such bosonic molecules can make a phase
transformation into the suprafluid state corresponding to the superconducting
state of the electrons [258, 259].
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Problems

8.1 Derive the expression for the electron–phonon interaction in a Bravais
lattice without making use of the single-band approximation. In this case
the operator form should be

(
a†

s(−q) + as(q)
)
c†nkcn′k′ . (8.134)

Derive an expression for the interaction matrix element, which leads to a
relation between k, k′ and q.

8.2 Express the divergence of the continuous lattice displacement field u(r)
by the components of the strain tensor field ǫ(r) and realize that only
longitudinal phonons contribute.

8.3 Show that charge carriers in an energy band deriving from p states can
interact via deformation potential coupling with both longitudinal and
transverse phonons.

8.4 Derive the expression for the piezoelectric electron–phonon coupling (8.37)
by performing the same steps as outlined for the polar optical electron–
phonon coupling. Which acoustic branches contribute to the coupling?

8.5 Given the scattering rates 1/τ of an electron with energy ǫ due to defor-
mation potential (∼T ǫ1/2) and piezoelectric coupling (∼T ǫ−1/2) for large
kBT compared with the phonon energies, calculate the temperature depen-
dence of the contributions of both scattering processes to the mobility of
electrons. Compare with Fig. 8.5.

8.6 Calculate the number of phonons n̄ in a composite particle due to defor-
mation potential coupling with acoustic phonons by using first order
perturbation theory. Note that the q dependence of this coupling differs
from that of the Fröhlich coupling and that the q integration changes.
Discuss the result in dependence on the material parameters. Estimate n̄
if the carrier would be an ion (e.g., a proton) moving in the lattice.

8.7 Evaluate the commutator between the operators Hel−ph and S. Discuss
the approximation made in writing the expression given in the text.

8.8 Calculate the ground state energy of the BCS Hamiltonian (8.120) relative
to the normal ground state. Note that only electrons close to EF are
relevant.
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Defects, Disorder, and Localization

The crystalline order of a solid, characterized by the configuration {R0
n} of all

atoms with their equilibrium positions at lattice points, has been anticipated
throughout this book so far. The essential consequence of the lattice period-
icity, deriving from this configuration, is that all states be it of phonons, of
electrons, or of magnons follow Bloch’s theorem with a modulus that repeats
with the lattice period, e.g.,

|ψnk(r + R0
n)| = |ψnk(r)| , for all R0

n. (9.1)

Because of this property, Bloch states are extended states. In this chapter, devi-
ations from the crystalline order and their consequences shall be considered for
the electrons (but they are essentially valid also for the collective excitations
of the solid). This is done first for individual point defects or impurities, which
have to be classified, and can lead to discrete bound states localized in the
vicinity of the defect. They are described by wave functions that decay (expo-
nentially) away from the defect. A more general deviation from the crystalline
structure is compositional or structural disorder, which will be experienced by
the electrons as a random potential. The energy spectrum of the electrons
can still exhibit bands with continuous density of states but with a modi-
fication of the electronic wave functions depending on their energy: Toward
the band edges, the electrons are more strongly influenced by the potential
fluctuations and get confined in deep local minima. Such localized states have
the characteristic form

ψ(r) ∼ e−|r|/λ, (9.2)

where λ is the localization length. Thus, disorder causes localization and
becomes responsible for dramatic changes in the transport properties. They
show up at low temperatures at which – as one of the prominent features – a
metal–insulator transition (MIT) can take place due to disorder. The experi-
mental investigations of the MIT and the conceptual theoretical work carried
out to understand this phenomenon belong to the outstanding achievements
made in solid state physics during the last decades.[275–279]

U. Rössler, Solid State Theory,

DOI 10.1007/978-3-540-92762-4 9, c© Springer-Verlag Berlin Heidelberg 2009
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Fig. 9.1. Representation of point defects in a binary solid (open and filled symbols
represent two different atomic species)

9.1 Point Defects

Deviations from the periodic structure can be classified according to their
dimension. Point defects represent zero-dimensional perturbations of the peri-
odic lattice structure. Different cases are depicted in Fig. 9.1 for a solid
containing two sublattices with atoms A and B, respectively. In a substi-
tutional impurity CA (or CB), an atom C differing from those of the host
material A (or B) replaces the host atom at a lattice site. An interstitial
impurity I means an atom (of the host material, but also different from it)
taking a position in some free space between the lattice points. A vacancy VA

(or VB) refers to an empty lattice point. A Frenkel1 defect, VA − IA, is the
combination of a vacancy with a nearby interstitial. It can be created by dis-
placing a host atom from its lattice site to the interstitial position. In binary
solids AB, especially in compound semiconductors, an anti-site defect AB is
possible with an atom A at the regular site of a B atom. This anti-site defect
is more likely, the closer A and B are in the periodic table.

In semiconductors, isolated impurities can change the electronic spectrum
by causing states in the fundamental energy gap from which, at elevated tem-
perature carriers are released into the nearby band edges. This is the concept
of doping which is of great importance in device applications. Therefore, the
theory of impurities within the effective-mass approximation originates from
the early days of semiconductor physics [260], but was refined and extended
following the progress of research [261–268].

For an isolated substitutional impurity in an otherwise crystalline solid,
we may write

1 Yakov Ilyich Frenkel 1894–1954
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H = − h̄2

2m
∆ + Veff(r) + U(r) (9.3)

with the periodic effective potential Veff(r) =
∑

n v(r − R0
n) introduced in

Sect. 5.1 and the impurity potential U(r) = vI(r) − v(r), where the lattice
site of the substitution is taken as the origin. Without U(r), the eigenvalue
problem of H leads to band structure En(k) and Bloch functions ψnk(r) which
represent the solution of the unperturbed problem. Including the impurity
potential, the eigenvalue problem

Hφ = Eφ (9.4)

can be solved by expanding φ(r) =
∑

nk fn(k)ψnk(r) as a wave packet of
Bloch waves. The variational principle for the expectation value of the energy
leads to the set of coupled linear equations

(
En(k) − E

)
fn(k) +

∑

n′,k′

〈nk|U |n′k′〉fn′(k′) = 0 (9.5)

for the expansion coefficients fn(k). Using the Fourier transform U(r) =∑
q Uq exp(iq ·r) and expanding the product of the periodic parts of the Bloch

functions in a Fourier series, u∗
nk(r)un′k′(r) =

∑
G Cnkn′k′(G) exp(−iG · r),

the matrix element of the impurity potential U(r) can be expressed as

〈nk|U |n′k′〉 =
∑

q

Uq

∑

G

Cnkn′k′(G)δq,k−k′+G. (9.6)

For G = 0, one has

Cnkn′k′(0) =

∫
u∗

nk(r)un′k′(r) ≃ δnn′d3r, (9.7)

(which is exact for k = k′) and writes

(
En(k) − E

)
fn(k) +

∑

k′

Uk−k′fn(k′)

+
∑

n′k′

∑

G �=0

Uk−k′+GCnkn′k′(G)fn′(k′) = 0. (9.8)

The last term in this equation, describing the interband coupling due to the
impurity potential, can be neglected if for G �= 0, the relation

|Uk−k′+G|
|Uk−k′ | Cnkn′k′(G) ≪ 1 (9.9)

holds, which leads to the one-band approximation. Taking the Fourier trans-
form with fn(k) =

∫
exp(−ik · r)fn(r)d3r/V and by writing

En(k → 1

i
∇) ≃ En(0) − h̄2

2m∗
∆, (9.10)
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we find the effective-mass equation for shallow impurities in a simple band
[260]

{
− h̄2

2m∗
∆ + U(r)

}
fn(r) = (E − En(0))fn(r). (9.11)

The condition (9.9) is fulfilled for |k−k′| ≪ |G| and applies if the expan-
sion coefficients fn(k) differ from zero only for small k in the vicinity of the
band edge. This is the case for charged impurities as, e.g., a substitutional
Si (or Ge) at a Ga site in GaAs, for which the impurity potential is essen-
tially a screened Coulomb potential with a short-range correction term Ucc

(central-cell correction) to account for the chemical nature of the impurity

U(r) = Ucc(r) − e2

4πε0εr
. (9.12)

This leads to a modified hydrogen problem with bound states below the band
minimum. The characteristic units of energy and length, the effective Rydberg
constant Ry∗ = (m∗/mε2)Ry, and the Bohr radius a∗B = (εm/m∗)aB, respec-
tively, scale according to the material parameters from the atomic values. For
GaAs, one has Ry∗ ≃ 10−3Ry ≃ 5 meV and a∗B ≃ 100 aB ≃ 10 nm. The bound
states for hydrogen-like impurities can be classified by the angular momentum
quantum numbers. Only the 1s state is essentially modified by the central-cell
correction. Figure 9.2 draws attention to these bound states at the band edge
in k and in real space. In k space, the 1s wave function is represented by its
Fourier transform f1s(k) which extends over a width of the inverse effective
Bohr radius around the band minimum. In real space, it is a wave function
f1s(r) extending over a distance of about the effective Bohr radius around
the impurity site. The real space localization of the state increases with the
strength of the impurity potential. Shallow acceptor states have a more com-
plex structure, which derives from the effective-mass Hamiltonian of p-like
valence bands [261].

In contrast to (hydrogen-like) shallow impurities, whose spectrum is dom-
inated by the long-range Coulomb interaction with only minor modifications

conduction band

f  (k)
1s

f  (r)
1s

< < < <
E1s

e
n
e
rg

y

rk

a*
B

1 a*
B

Fig. 9.2. Impurity states at a band edge in k space (left) and in real space (right)
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due to the central-cell correction (especially for the ground state), the situa-
tion is completely reversed for deep impurities. Here, the energy spectrum is
determined by the short-range central-cell potential, and the influence of the
long-range Coulomb potential (if present at all) is considered as a correction.
Consequently, the deep impurity states are strongly localized to the neighbor-
hood of the impurity site accompanied by lattice distortions. This situation
cannot be well described by a superposition of extended Bloch states. Here
it is more appropriate to use atomic orbitals or concepts of scattering theory
with a localized basis.

Starting from the eigenvalue problem of (9.3) with the impurity potential
U(r) now dominated by the central-cell correction, we use the Ansatz for the
wave function

ψ(r) =
∑

α,R

cα(R)φα(r − R) (9.13)

with atomic orbitals φα(r−R) localized at R. While in Sect. 5.4, when intro-
ducing the LCAO method, we have constructed Bloch functions out of the
atomic orbitals, we now remain in the localized representation. The variational
principle for the energy leads to the set of coupled linear equations

∑

α′,R′

(HαR,α′R′ − E SαR,α′R′)cα′(R′) = 0 (9.14)

for the expansion coefficients cα(R) and energy eigenvalues following from the
secular problem

‖HαR,α′R′ − E SαR,α′R′‖ = 0. (9.15)

Here HαR,α′R′ and SαR,α′R′ are the matrix elements of the Hamiltonian and
of the overlap between atomic orbitals (see Sect. 5.4), respectively.

Some aspects of deep impurities, in particular the chemical trends, can be
understood in this model as exemplified here for an isoelectronic impurity,
e.g., GaP:N (meaning that P in GaP is substituted by N) [261, 269]. In
the picture of atomic orbitals, the valence and conduction bands of intrin-
sic semiconductors with tetrahedral coordination are formed by the bonding
and anti-bonding states, respectively, of the s and p orbitals. This is sketched
for the host atoms in the left hand side of Fig. 9.3, where the shaded regions
indicate the continua of the energy bands. Replacing one host atom P by the
impurity N leads to different pairs of s and p bonding and anti-bonding states
localized at the impurity site (right hand side of Fig. 9.3): in particular, the
s-bonding state becomes a resonant impurity level deep in the valence band,
while the s-anti-bonding state of the Ga-N pair is lowered with respect to that
of the Ga-P pair of the host crystal, thus forming a deep trap in the energy
gap. Corresponding impurity states (not shown in the figure) are formed out
of the p orbitals.

Chemical trends can be discussed by simulating a continuous change of the
impurity (X) with a change of its atomic level energy EX. For the bonding
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Fig. 9.3. Schematic level diagram with valence and conduction band formed from
bonding and anti-bonding states of host atoms Ga and P (left) and of deep impurity
states formed with s states of a substitutional N impurity (right)

and anti-bonding states of the s orbitals of Ga and of the impurity X, one
may write the simplified secular problem

∣∣∣∣
EGa − E U

U EX − E

∣∣∣∣ = 0 (9.16)

with EGa(X) being the energy of the atomic s orbital of the Ga(X) atom, and
U the coupling between these orbitals. The eigenvalues of (9.16)

E± =
EGa + EX

2
± EGa − EX

2

{
1 +

4|U |2
(EGa − EX)2

}1/2

(9.17)

are depicted as a function of EGa − EX in Fig. 9.4. Depending on the sign of
EGa−EX, the anti-bonding or bonding states are shown: they evolve from the
valence or conduction band edge, respectively, and converge with increasing
|EGa − EX| toward the energy EGa of the atomic Ga-s orbital which acts as
a pinning level. The symmetry of these impurity states is A1 due to the s
orbital [269]. Similar considerations for the p orbitals lead to deep impurity
states with T2 symmetry.

The other concept to describe deep impurities is based on scattering theory
and employs the Green function of the impurity problem [270]

G(E) = lim
δ→0

1

E − H + iδ
. (9.18)

We make use of the separation of the system Hamiltonian H = H0+U into the
Hamiltonian H0 for the unperturbed periodic solid and the impurity potential
U(r), now understood as the difference of the self-consistent DFT-LDA single-
particle potentials with and without impurity (see Sect. 5.1)

U(r) = Veff [n(r), r] − V 0
eff [n(r), r]. (9.19)
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Fig. 9.4. Chemical shift of deep traps evolving from p-bonding and s-anti-bonding
states

The Green function G(E) of the full problem can be expanded in the Born
series

G(E) = G0(E) + G0(E)UG0(E) + . . . = (1 − G0(E)U)−1G0(E). (9.20)

The first factor in the last expression gives rise to additional poles of G(E)
caused by the impurity potential U . They exist besides those of the second
factor, the Green function G0(E) of the unperturbed band structure. For the
density of states

D(E) = − 2

π
Tr Im G(E) (9.21)

one finds with G(E) = G0(E) + (G(E) − G0(E))

D(E) = − 2
π Tr Im G0(E) − 2

π Tr Im (G(E) − G0(E))

= D0(E) + ∆D(E)
(9.22)

where D0(E) is the density of states of the unperturbed solid and ∆D(E)
its change due to the impurity both in the gap and in the continuum of the
valence and conduction bands.

In a representation with localized functions, e.g., Wannier functions

φn(r − R) =
1√
N

∑

k

eik·Rψnk(r) (9.23)

with
∫

φ∗
n(r − R)φn(r − R′)d3r = δnn′δR,R′ (9.24)
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the matrix elements (take for simplicity n = n′)

URR′ =

∫
φ∗

n(r − R)U(r)φn(r − R′)d3r (9.25)

are different from zero only for a small number of R, R′ out of a set of lattice
points {RI} around the impurity site. This defines a short range defect matrix

(URR′) =

(
U{RI} 0

0 0

)
(9.26)

for which the additional poles of G(E) in (9.20) can be calculated from
(Problem 9.1)

‖1 − G0(E)U‖ = ‖1 − G0,{RI}(E)U{RI}‖ = 0. (9.27)

Here G0,{RI}(E) is part of the matrix representation of the Green function
connected with the set {RI}.

A point defect of particular interest is the anti-site defect, which has
been studied intensively in GaAs and found to be responsible for realizing
semi-insulating material [271]. Anti-site defects exist also in other compound
semiconductors. The schematic level diagram of the AsGa anti-site defect is
shown in Fig. 9.5. Besides resonances, deriving from p-anti-bonding and bond-
ing states in the valence and conduction bands, there is a trap in the middle
of the gap connected with the s-anti-bonding states of A1 symmetry. Note
the degeneracy of the respective states, it is sixfold (with spin) for T2 deriving
from p-states and twofold for A1 deriving from s-states.

Transition metal atoms in semiconductors form deep impurity states as a
consequence of their tightly bound d electrons.[272] Their orbital multiplets
are split by the crystal field into states characterized by the point symmetry
(e.g., in zinc blende material A1, A2, E, T1 and T2, see Appendix).

VGa

T2
p

s

Ev

Ec

A1

AsGa As

Fig. 9.5. Level diagram of the AsGa anti-site defect (center) and its composition
out of the Ga vacancy (left) and p states of the As atom (right). Full (open) dots
indicate occupied (empty) states
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9.2 Disorder

Following the systematics of dimensionality in the deviations from the crys-
talline order, we mention briefly the dislocations as one-dimensional defects
and may address interfaces (or surfaces) as two-dimensional defects. A par-
ticular deviation from crystalline configurations is a disorder by composition
or structure, which can exist in all three spatial dimensions. Compositional
disorder results, e.g., by placing two or more different kinds of atoms statisti-
cally on the otherwise unperturbed lattice points. This is the case in so-called
mixed crystals or alloys, in which the long-range order is destroyed because
there is no correlation in the chemical nature of the ions occupying the lattice
points. Also statistical occupation of the lattice points with different isotopes
of one kind of atoms creates compositional disorder. We mentioned already
the broadening of phonon resonances due to isotope disorder in Chap. 3.
A more dramatic three-dimensional disorder is the structural disorder, typical
for amorphous solids, which do not exhibit any crystalline order.

Adopting a single-particle description in the sense of Chap. 5, we write the
electron Hamiltonian for a system with disorder as

H = − h̄2

2m
∆ +

∑

Rj

vj(r − Rj) (9.28)

with the ion configuration {Rj} and the effective single-particle potentials
vj(r − Rj) provided by the specific atom (or ion) at Rj . Disorder can
be accounted for by deviations from the crystalline ion configuration {R0

n}
and/or by varying the atomic species with the potential vj from site to site.

We may write the Hamiltonian H also in the form

H =
∑

j

ǫjc
†
jcj +

∑

j,l

tjlc
†
jcl (9.29)

by using fermion operators c†j , cj in the site representation. Here the single-
particle energies ǫj (the site energies) account for disorder in the occupation
of the sites Rj , while the transfer matrix elements tjl do it for the hopping
between sites Rj and Rl. The actual configuration of a disordered material
is not known but is not essential for the physical properties. Instead, disorder
is considered by means of probability distributions of the site energies ǫj

and/or of the transfer matrix elements tjl. For obvious reasons, the former is
called diagonal disorder, the latter off-diagonal disorder. Both are related to
probability distributions of the configurations P ({Rj}).

A simple case of diagonal disorder is that the single-particle energies
scatter around a mean value ǫ0, and we may write

H =
∑

j

ǫ0c
†
jcj +

∑

j,l

tjlc
†
jcl +

∑

j

(ǫj − ǫ0)c
†
jcj , (9.30)
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where the first two terms are the tight-binding Hamiltonian for a single band
(see Sect. 5.4), while the last term represents the diagonal disorder. We may
switch to the Bloch representation and write

H =
∑

k

ǫkc†kck +
∑

k,q

u(q)c†k+qck = H0 + Hdisorder (9.31)

which in a natural way splits into the unperturbed energy band and the per-
turbation due to disorder. The potential matrix element u(q) is the Fourier
transform of the impurity potential U(r − Rj) and can be separated accord-
ing to u(q) =

∑
j exp (iq · Rj)U(q) = ρ(q)U(q) into structure factor ρ(q) and

form factor U(q).
For a systematic treatment of the disorder, we study the single-particle

Green function (see Sect. 7.1)

G(k, k′, t − t′) = − i

h̄
θ(t − t′)〈{ck(t), c†k′(t

′)}〉. (9.32)

The equation of motion for G(k, k′, t − t′) is easily obtained with H from
(9.31) and reads

(
ih̄

∂

∂t
− ǫk

)
G(k, k′, t − t′) = δkk′δ(t − t′)

+
∑

k′′

u(k − k′′)
−i

h̄
θ(t − t′)〈{ck′′(t), c†k′(t

′)}〉
︸ ︷︷ ︸

G(k′′,k′,t−t′)

.

(9.33)

After Fourier transformation with respect to t − t′ with E+ = h̄ω + iδ, the
retarded Green function of the disorder problem is given by

G(k, k′; E+) =
1

E+ − ǫk

(
δkk′ +

∑

k′′

u(k − k′′)G(k′′, k′; E+)

)
. (9.34)

By identifying the first factor on the rhs as the unperturbed retarded Green
function G0(k, E+) for the Bloch band, this can be written in the form of the
Dyson equation

G(k, k′; E+) = G0(k, E+)

(
δkk′ +

∑

k′′

u(k − k′′)G(k′′, k′; E+)

)
.

(9.35)

By iteration, it leads to the Born series

G = G0 + G0uG0 + G0uG0uG0 + . . . (9.36)

and by introducing the t-matrix
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t = u (1 + G0u + G0uG0u + . . . ) = u
∞∑

n=0

(
G0u

)n
(9.37)

it takes the form

G(k, k′; E+) = G0(k; E+)
(
δk,k′ + t(k, k′; E+)G0(k

′; E+)
)
. (9.38)

We note that the full Green function depends on the configuration {Rj}
of the impurities, which in principle is not known. On the other hand, we
do not expect, that the physical properties of a sufficiently large sample are
determined by its specific impurity configuration. Since on macroscopic length
scales (large compared e.g. with the mean free path) different configurations
are realized, a statistical average can be taken which depends only on the
impurity concentration.

However, this argument does not apply, in the mesoscopic regime with
sample sizes comparable to the typical transport lengths. In this regime, the
observation of universal conductance fluctuations can be taken as a fingerprint
of the distinct impurity configuration realized in the sample [159, 160]. Here we
rely on the property of a macroscopic observable A, that it is self-averaging,
i.e., for the variance VarA = 〈(A − 〈A〉)2〉 it holds that

lim
V →∞

VarA

〈A〉2 = 0, (9.39)

where V is the volume of the system. An example can be treated as Prob-
lem 9.2.

The averaging over impurity configurations affects only the structure factor
and is written as

f(q) = 〈ρ(q)〉conf =
∑

{Rj}

P ({Rj})
N∑

j=1

eiq·Rj , (9.40)

where P ({Rj}) is the probability distribution for the configurations of N
impurities. The t-matrix consists of terms with different powers of the poten-
tial u(q). Thus, the configuration average has to be performed in all orders of
ρ(q), and we write for the nth order

f(q1, . . . , qn) = 〈ρ(q1) . . . ρ(qn)〉. (9.41)

There is no preference for the impurities to be on particular sites, and we can
simplify the double sum over configurations and sites by replacing

∑

{Rj}

N∑

j=1

· · · → c
∑

all sites

. . . (9.42)

with the impurity concentration c. When taking the sum over all sites and not
only over those occupied by an impurity, we have

∑
n exp (iq · Rn) = Nδq,0

and find
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f(q1, . . . , qn) = pn(c)δq1,0 . . . δqn,0 (9.43)

with a polynomial pn(c) of degree n in the impurity concentration. The lowest
order terms can explicitly be written

f(q1) =

〈
∑

n

eiq1·Rn

〉
= Nδq,0 (9.44)

f(q1, q2) =

〈
∑

n1,n2

ei(q1Rn1
+q2Rn2

)

〉

=

〈
∑

i=j

ei(q1+q2)·Ri +
∑

j

eiq1·Rj

∑

i�=j

eiq2·Ri

〉

= Nδq1+q2,0 + Nδq1,0(N − 1)δq2.0. (9.45)

Whenever a sum is to be taken over the wave vectors, it can be converted
into an integral with the consequence that the Kronecker symbol becomes a
δ function or

f(q1) = cδ(q1) and f(q1, q2) = cδ(q1 + q2) + c2δ(q1)δ(q2). (9.46)

The power of the impurity concentration in these expressions indicates the
number of impurities involved in a scattering process. Scattering with sin-
gle impurities is dominating, while scattering with two or more impurities
becomes less likely according to the corresponding power of c < 1.

Turning back to the Dyson equation, we now perform the configuration
average with the Green function by replacing

G(k, k′; E+) → G(k, k′; E+) = 〈G(k, k′; E+)〉conf (9.47)

and write (suppressing the energy argument E+ to simplify notation)

G(k, k′) = G(0)(k)
(
δk,k′ +

V

(2π)3

∫
Σ(k, k′′)G(k′′, k′)d3k′′

)
(9.48)

with the self-energy Σ(k, k′′) due to the disorder, which in general depends
on the energy.

9.3 Approximations for Impurity Scattering

The configuration averaged Green function, likewise the self-energy, can be
evaluated in different approximations, which can be classified by making use
of a diagrammatic representation [9, 206, 273]. This is achieved by replacing
the physical objects of our formulas by graphs:

G : > , G(0) : > , 〈ρ〉U : .
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The leading terms of the Dyson equation can be arranged according to their
number of interaction lines with the impurities and lead to the following
graphical representation of the averaged Green function G or the Dyson
equation:

G = > >

> >> > >>

> >=
k k k k

kk’kkk k’

k’k
+

+

+

+

+

+

+

+

+

> >

>>

> > > > > > > >

>>>>>>

> >

. (9.49)

We recognize a growing complexity of the individual diagrams. Some of them
can be reduced to simpler ones by cutting a free propagator line, while others
are irreducible in this sense. This is used in the graphical representation of
the self-energy, which contains only the irreducible diagrams

Σ(k, k′′; E+) =
>

+

+ ++

+ + +

+ + +

>

>>

>>

>>

>>>>>

>>

> >

> >

>>

(9.50)

With reference to the graphical form, we may characterize some standard
approximations [9, 206, 273].

1. Virtual Crystal Approximation (VCA): This simplest approximation
consists in taking into account the impurity interaction only in lowest
order. The self-energy becomes

ΣVCA(k, k′′) = = 〈ρ〉U = cU(0)δ(k − k′′) (9.51)

and does not depend on the energy. For this case, the Dyson equation
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G
VCA

(k, k′; E+) = G(0)(k; E+)
(
δk,k′ + cU(0)G

VCA
(k, k′; E+)

)
(9.52)

can be solved to give

G
VCA

(k, k′; E+) =
G(0)(k; E+)

1 − G(0)(k; E+)cU(0)
=

δk,k′

E+ − ǫk − cU(0)
(9.53)

and finally

G
VCA

(k, k′; E+) = G(0)(k, E+ − cU(0))δk,k′ . (9.54)

In the virtual crystal approximation, the single particle energies are simply
shifted by cU(0), which is the averaged perturbation by the impurities and
does not break the translational symmetry of the solid. This approximation
can be understood also as a replacement of the host atoms by virtual
atoms, each of them modified by an averaged impurity contribution.

2. Averaged t-matrix Approximation (ATA): In this approximation,
multiple scattering with a single impurity is considered in all orders as
expressed by the self-energy

ΣATA(k, k′′; E+) = +
>

++
>>

= cδk,k′′t(k, k′′; E+) (9.55)

with the t-matrix

t(k, k′′; E+) = U(k − k′′)

+
V

(2π)3

∫
U(k − k1)G

(0)(k; E+)U(k1 − k′′)d3k1 + . . . .

(9.56)

3. Born Approximation: Here only the leading terms of the ATA, the single
and double scattering with an impurity are considered, i.e., the self-energy
consists of two terms

ΣBA(k, k′′; E+) =
>

+ (9.57)

and the t-matrix takes the form

tBA(k, k; E+) = U(0) +
V

(2π)3

∫
|U(k − k1)|2G(0)(k1; E

+)d3k1. (9.58)

4. Self-Consistent Born Approximation (SCBA): The Born approxi-
mation can be improved by replacing in the second graph the unperturbed
propagator G(0)(k1; E

+), describing the free propagation of the elec-
tron between two scattering events, by the configuration averaged Green
function G(k1; E

+), or in graphical form
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ΣSCBA(k, k′′; E+) =
>

+ (9.59)

At the end of this section, we shall apply the SCBA to a system with
discrete energy levels in order to demonstrate the mechanism of level
broadening due to impurity scattering.

5. Coherent Potential Approximation (CPA): It combines the SCBA
with the ATA by taking into account all graphs of the latter but with the
replacement of the free Green function by the configuration averaged one
as in the former. Thus, the self-energy is represented by

ΣCPA(k, k′′; E+) = +
>

++

>>
(9.60)

In all these approximations, the self-energy turns out to be diagonal in
the wave vector, which allows one to solve the Dyson equation to obtain the
configuration averaged Green function

G(k, k′; E+) =
δk,k′

E+ − ǫk − Σ(k; E+)
(9.61)

with the complex self-energy

Σ(k; E+) = cU(0) + c
V

(2π)2

∫ |t(k − k1)|2
E+ − ǫk

d3k1. (9.62)

Its imaginary part

ImΣ(k; E+) = c
V

(2π)2

∫
|t(k − k1)|2δ(E+ − ǫk)d3k1 =

h̄

τk

(9.63)

can be expressed by the quasi-particle lifetime τk and quantifies the rate by
which the Bloch electron is scattered by disorder out off its state with wave
vector k. Note that the approximations 1–5 consider only scattering from
a single impurity, therefore, the self-energy is proportional to the impurity
concentration c. In the CPA, all diagrams with up to four interaction lines,
except those where these lines cross each other, are included. This point needs
further discussion in Sect. 9.5.

The modification of the electron energy by impurity scattering becomes
particularly evident for systems with a discrete level spectrum, such as the
Hubbard bands in the atomic limit (with energies at t0 and t0 + U , see
Sect. 7.2) and the Landau levels of a two-dimensional electron system (with
ǫn = h̄ωc(n + 1/2), see Sect. 5.6). Their density of states has the form

D(0)(E) =
∑

n

gnδ(E − ǫn) (9.64)

with the degeneracy factor gn. Let us assume the impurity potential to be
extremely short-ranged as described by
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U(r − Rj) = U0δ(r − Rj) (9.65)

with the Fourier transform U(q) = U0. In SCBA, the self-energy can be
calculated from

Σ(E+) = cU0 + c
∑

n

U2
0

E+ − ǫn − Σ(E+)
. (9.66)

Given that the separation of neighboring energy levels ǫn+1 − ǫn is much
larger than the imaginary part of the self-energy ImΣ(E+), which determines
the level broadening due to the impurity scattering, we may approximate the
self-energy for E close to the level energy ǫn by

Σ(E ∼ ǫn) = Σn(E) ≃ cU2
0

E − ǫn − Σn(E)
, (9.67)

which is a quadratic equation in Σn(E) and can be solved to give

ΣSCBA
n (E) =

E − ǫn

2
− i

2

(
Γ2

0 − (E − ǫn)2
)1/2

, (9.68)

where Γ2
0/4 = cU2

0 . From the corresponding Green function

G(E+) =
∑

n

1

E+ − ǫn − Σn(E)
(9.69)

we obtain the density of states DSCBA(E) = −ImG(E+)/π in the form

DSCBA(E) =
∑

n

{
2

πΓ2
0

(
Γ2

0 − (E − ǫn)2
)1/2

for |E − ǫn| < Γ0.

0 otherwise
(9.70)

The result is a broadening due to impurity scattering of the otherwise discrete
and highly degenerate levels (Fig. 9.6). The half-elliptic form of the density of
states is an artifact of the assumed short-range of the impurity potential. We
recognize also the increase of the broadening with the impurity concentration
and/or with the strength of the impurity potential. Impurity potentials of
some finite range would create states in the gaps between the neighboring
peaks thus leading to an overall finite density of states.

9.4 Electric Conductivity

In previous chapters, we have already studied several aspects of the electric
conductivity, especially in Chap. 8 we have seen that it is determined by a
transport relaxation time τtr(k) which accounts for scattering processes with
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Fig. 9.6. Density of states of Landau levels in a two-dimensional electron system
in the SCBA. The broadening increases with the impurity concentration c

phonons. Likewise, scattering with impurities contributes to the relaxation
of a non-equilibrium distribution (here written as f(k)) which using, Fermi’s
Golden Rule, can be formulated as [64]

f(k) − f0(k)

τtr(k)
=

2π

h̄

c

(2π)3

∫
|t(k− k′)|2δ(ǫk − ǫk′)

(
f(k)− f(k′)

)
d3k′ (9.71)

with the t-matrix t(k − k′) and the impurity concentration c. The δ-function
in the integral indicates that the impurity scattering is elastic. For an
isotropic dispersion, the same arguments hold here as for the electron–phonon
interaction with respect to forward and backward scattering (see Sect. 8.3).

Another and more principal approach to the electric conductivity is the
linear response introduced in Sect. 2.5 (see also Problem 2.4). Let us write the
Hamiltonian for the electrons in a system with impurities and in the presence
of an external field represented by the vector potential A(r, t)

H =

∫
d3r Ψ†(r)

{ 1

2m

(
p + eA(r, t)

)2

+
∑

Rj

vj(r − Rj)
}

Ψ(r). (9.72)

Here the notation with field operators Ψ†(r), Ψ(r), introduced in Problem
4.8, is used. Without the external field and using the expansion Ψ(r) =∑

k ψk(r)ck in terms of Bloch functions ψk(r), the Hamiltonian H becomes
identical with (9.31). Including the vector potential, it takes the form consid-
ered in the linear response theory

H = H0 + Hdisorder + Vext(t), (9.73)

and we may identify the external potential by comparing with (9.72) (taking
only the terms linear in A(r, t)) as

Vext(t) =
e

2m

∫
Ψ†(r)

{
p · A(r, t) + A(r, t) · p

}
Ψ(r)d3r (9.74)
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which for the transverse gauge ∇ · A = 0 and with p = −ih̄∇ can be written

Vext(t) =
ieh̄

2m

∫ {(
∇Ψ†

)
Ψ − Ψ†

(
∇Ψ

)}
· A(r, t)d3r. (9.75)

The observable connected with the electric conductivity is the current
density, which in terms of field operators can be written as

ĵ(r) = − e

2m
Ψ†(r)

(
p + eA

)
Ψ(r) + h.c.

=
ieh̄

2m

(
Ψ†(∇Ψ) − (∇Ψ†)Ψ

)

︸ ︷︷ ︸
ĵp(r)

− e2

m
Ψ†ΨA

︸ ︷︷ ︸
ĵd(r)

. (9.76)

The two contributions are called paramagnetic (ĵp(r)) and diamagnetic (ĵd(r))
current density. The diamagnetic current density is already linear in the
external field, while we identify the paramagnetic current density as the one
appearing in the external perturbation, which thus takes the form

Vext(t) = −
∫

ĵp(r) · A(r, t)d3r . (9.77)

The electric conductivity is the response to an external electric field that
derives from the electromagnetic potentials according to E = −∇φ− ∂A/∂t.
Let us assume harmonic external fields, e.g.,

A(r, t) = Aei(q·r−ωt) , (9.78)

then, with the gauge ∇·A = 0, we can separate the electric field into a longitu-
dinal (−∇φ) and a transverse (−∂A/∂t) contribution. The longitudinal field
has been the subject of Sects. 4.5 and 4.6 in deriving the energy-loss function
and studying screening in the random phase approximation (RPA). Here we
are dealing with the transverse response (q ⊥ A) with electric field compo-
nents Eα = iωAα. Using the Fourier expansion ĵ(r) =

∑
q′ ĵq′ exp (iq′ · r) of

the current density operator, we may write the thermal expectation value for
one of its Fourier components as

〈ĵα,q〉t = iω

∫
σαβ(q; t, t′)Aβe−iωt′dt′ (9.79)

with double index summation understood. Assuming homogeneity in the time
dependence, this becomes

jα,q(ω) = iωσαβ(q; ω)Aβ . (9.80)

For isotropic systems, the conductivity tensor simplifies to a scalar and the
indices α, β can be dropped. We may now identify the operators Â and B̂ used



9.4 Electric Conductivity 283

in Sect. 2.4, when introducing the concept of linear response, as ĵq = ĵp
q + ĵd

q

and ĵp
q , respectively, with

〈ĵd
q 〉 = − e2

m
〈nq〉A (9.81)

giving for the conductivity

σ(q; ω) = − i

ω

(
χ(q, ω) − e2

m
〈nq〉

)
(9.82)

with the susceptibility of the transverse response

χ(q, ω) =
i

h̄

∫ +∞

−∞

eiωτθ(τ)〈[ĵp
q (τ), ĵp

q (0)]〉0dτ (9.83)

The current density operator expressed in terms of fermion operators for
free particle states reads

ĵp
q = −e

∑

k

〈
k + q

∣∣∣
p̂

m

∣∣∣k
〉

c†k+qck (9.84)

which for q → 0 simplifies to ĵp = (eh̄/m)
∑

k kc†kck and yields for the
susceptibility

χ(0, ω) = i
e2

h̄

h̄2

m2

∫ ∞

0

eiωτ
∑

k,k′

kk′〈[c†k(τ)ck(τ), c†k′(0)ck′(0)]〉0dτ . (9.85)

In a more general single-particle basis, the current operator is

ĵp = −e
∑

i,f

〈
i
∣∣∣
p̂

m

∣∣∣f
〉

c†i cf (9.86)

and with c†i (τ) = c†i exp (iǫiτ/h̄) and the Fermi–Dirac distribution func-

tion 〈c†i ci〉 = f(ǫi) the current–current response can be cast into the form
(Problem 9.3)

χ(0, ω) = −e2
∑

i,f

|〈i|v̂|f〉|2 f(ǫi) − f(ǫf )

h̄ω + ǫi − ǫf + iδ
. (9.87)

When decomposing χ(0, ω) for δ → 0 into real and imaginary part, one finds
that the real part compensates the contribution ne2/m of the diamagnetic
current density in σ(0, ω) (9.82) [64, 274] and obtains the real conductivity

σ(0, ω) =
πe2

ω

∑

i,f

|〈i|v̂|f〉|2 (f(ǫi) − f(ǫf)) δ(h̄ω + ǫi − ǫf ) (9.88)
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known as the Kubo–Greenwood formula. For the metal–insulator transition to
be discussed in the next section, we need the dc conductivity σdc, which is the
static limit σ(0, ω → 0). As for ω → 0, only states close to the Fermi energy
contribute to the conductivity, we may finally write

σdc = πe2

∫ (
−df0(E)

dE

)∑

i,f

|〈i|v̂|f〉|2δ(E − ǫi)δ(E − ǫf )dE. (9.89)

For further discussion, we may cast the double sum under the integral
into the form Tr(v̂ImG(E+)v̂ImG(E+)) (Problem 9.4). This form, with the
two Green functions appearing, derives from the fact that the commutator in
(9.85) contains four fermion operators, each two of which would be required
for a single-particle Green function. In fact, it is possible to formulate the dc
conductivity in terms of a configuration averaged product of a retarded (G+)
and an advanced Green function (G−) [64, 274, 276]. Without going into the
details of the derivation, for which we refer to the literature, we quote here in
short notation the equation from which it derives. It is the Bethe2–Salpeter3

equation

〈G+G−〉 = 〈G+〉〈G−〉 + 〈G+〉〈G−〉V 〈G+G−〉 (9.90)

where V , the irreducible vertex operator, plays the same role for the two-
particle Green function as the self-energy does for the single-particle Green
function. 〈G+G−〉 describes the propagation of an electron–hole pair (G−

representing the hole) under the influence of impurity scattering, which not
only affects the electron or hole propagation separately but can cause also
a coupling of electron and hole propagation. The latter is considered in the
vertex operator.

Similar to the single-particle Green function, the two-particle propagator
can also be represented by diagrams.

A first group of simple diagrams contains the non-connected graphs for
electrons and holes and corresponds to the approximation V = 0

〈G+G−〉 ≃ 〈G+〉〈G−〉 (9.91)

with separate configuration average for the electron and hole propagator. A
second group of more complex diagrams (so called ladder diagrams) connects
the electron and hole propagator in the simplest way, e.g.,

G+ :

G− :

> >

>>

2 Hans Albrecht Bethe 1906–2005, Noble prize in physics 1967
3 Edwin Ernest Salpeter *1924
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Fig. 9.7. Sketch of an electron path (solid) and its time inverted path (dashed) in
an impurity configuration leading to quantum interference and weak localization

and accounts for coherent scattering of electron and hole at the same impurity.
Summing these two groups of diagrams leads to the Drude result of the dc
conductivity

σ = ne2τ/m = e2k2
Flmfp/3π2h̄ , (9.92)

where τ is the single particle life-time and lmfp the mean free path.
Finally we mention diagrams, which contain crossing interaction lines

between the electron and hole propagator, like

G+ :

G− :

which describe the coherent scattering at an impurity configuration taking
place for the hole in the reversed order with respect to that of the electron.
Considering these so called maximally crossing diagrams is known in the lit-
erature as cooperon approximation, as they represent an interaction between
electrons on their time-inverted paths along an impurity configuration in anal-
ogy to the electron–phonon mediated formation of Cooper pairs. The situation
is depicted in Fig. 9.7. The wave functions corresponding to the two time
inverted paths through the impurity configuration interfere positively with
each other and lead to a localization due to quantum interference. It is known
as weak localization and gives a dc conductivity that corresponds to the one
found by solving the Boltzmann equation including the effect of the back scat-
tering which is characteristic for the transport relaxation time [274]. Removal
of this interference by a magnetic field leads to a decrease of the resistance
and can be taken as a signature of weak localization.

9.5 Metal–Insulator Transition

Different sections of this chapter have provided several aspects of disorder,
and the influence it takes on the electron states. As we have seen in Sect. 9.1,
single impurities can lead to discrete energy levels in the band gap region
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Fig. 9.8. Schematic view of an electron wave function (thin solid line) in a random
potential (dashed line, left) and density of states (right) indicating extended and
localized states

of semiconductors. These (shallow or deep) bound impurity states are local-
ized, and their wave functions decay exponentially away from the center. But,
impurities can modify also the electronic states within a band as resonant
states. However, such modifications are expected to be small in regions of
high density of extended states. With increasing impurity concentration the
bound state wave functions start to overlap and lead to the formation of an
impurity band with a continuous density of states, which can eventually merge
with that of the nearby energy band. This situation is schematically depicted
in Fig. 9.8. Instead of a sharp band edge resulting from the periodic crystal
potential as shown in Fig. 9.2, the electrons close to the band edge experience a
random potential caused by the impurities. In this potential landscape, states
with low energy are localized with a finite localization length λ, while those
with sufficiently high energy are not confined and extend over the whole solid
as λ increases to infinity. This scenario implies that there must be a certain
critical energy ǫc which separates the extended from the localized states and
that it is likely to be in a region with small density of states or close to the
band edges.

Let us consider also a scenario, which does not start from an energy band
with a continuous density of states, but from a discrete spectrum as that
of Landau levels for two-dimensional electrons (see Sect. 5.6 and Fig. 9.6).
Without impurities, we have a homogeneous system which is invariant under
translations in the plane perpendicular to the magnetic field. Therefore, the
Landau levels are discrete but highly degenerate, and the electron wave func-
tions are delocalized. A random potential breaks the translational invariance
and lifts the degeneracy of the Landau levels leading to their broadening into
a narrow band. In Sect. 9.3, we have discussed the effect of short-range impu-
rities within SCBA with the result shown in Fig. 9.6. The states in the center
of the Landau band with the large density of states are still extended, while
those at the edges are localized due to the potential fluctuations, and we have
again the scenario sketched in Fig. 9.8.
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These conclusions, with respect to a clear separation between extended
and localized states, are not restricted to substitutional disorder caused by
impurities but are valid also for structural disorder as in amorphous solids.
In fact, amorphous solids, especially amorphous semiconductors, have been
the systems for which the concepts of a disorder induced metal–insulator
transition have been developed [39, 209, 211, 275, 276].

Consider now electron transport in a solid with disorder. As we have seen in
the previous section, the dc conductivity is determined by the states around
the Fermi energy and would be carried for T = 0 K alone by those at the
Fermi energy. It follows from the discussion of Fig. 9.8 that we can distinguish
between solids or experimental conditions for which the Fermi energy falls
into a region of extended states and those with EF in a region with localized
states. For the former, the dc conductivity σdc at T = 0K is finite, these are
the metals, while it vanishes for the latter, which are the insulators. Instead of
the dc conductivity, we may also use the relation σdc = enμ and distinguish
these systems by their mobility μ, which at T = 0 K is finite for extended
states but drops to zero when entering the region of localized states. This
defines the mobility edge that marks the critical energy ǫc for the transition
from a metal to an insulator.

In spite of this clear distinction between metals and insulators, the criterion
is hard to test in experiments, because of the difficulties to approach the
T = 0K limit and also due to the fact that experiments are always performed
with finite samples. Let us have a look, therefore, on less restrictive conditions.
In an insulator, with the Fermi energy below the mobility edge, already a
very low but finite temperature would allow the localized electrons to reach
by thermal excitation nearby unoccupied localized states. Thus step by step
these electrons carry a current by a hopping process (variable range hopping),
which leads to the characteristic dependence of the dc conductivity on the
inverse temperature of Mott’s T−1/4 law [39, 275].

The existence of a mobility edge in an electron system with disorder is cru-
cial for understanding the vanishing of the longitudinal magneto-resistivity of
two-dimensional electron systems for magnetic fields around integer filling fac-
tors (see Fig. 5.21). In the original QHE experiments [161], the carrier density
and thus the Fermi energy was changed by the external gate voltage while the
sample was exposed to a fixed magnetic field. Changing the carrier density
shifts the Fermi energy through the spectrum of Landau levels which due to
the disorder is broadened. If EF is close to the center of a Landau band, in
a region of extended states, the dc conductivity is finite, while away from
the center, and between the Landau levels it hits localized states and the dc
conductivity drops to zero. In a Quantum Hall experiment with fixed carrier
density (or Fermi energy), an increasing magnetic field increases the degen-
eracy and separation of the Landau levels, which shift one by one through
the Fermi energy. As a function of the magnetic field, EF(B) coincides with
extended or localized states connected with finite or zero dc conductivity, the
latter always connected with integer filling factors. Thus, one has a sequence
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of metal–insulator transitions within one electron system by sweeping either
the magnetic field for fixed carrier density or vice versa.

Actually Figs. 5.21 and 7.12 show resistivities, and we have to relate our
conclusions to this quantity by inverting the resistivity tensor

ρ =

(
ρxx ρxy

ρyx ρyy

)
(9.93)

giving

σ =
1

ρxxρyy − ρxyρyx

(
ρyy −ρyx

−ρxy ρxx

)
. (9.94)

This simplifies for rotational symmetry around the normal to the plane of
the two-dimensional electron system with ρxx = ρyy and for finite ρxy to
the relation ρxx ∼ σxx. Thus, vanishing longitudinal resistivity means also
vanishing longitudinal conductivity.

The question of the quantitative connection between disorder and the
quantum mechanical states around the metal–insulator transition found an
answer in some fundamental contributions, using scaling arguments to account
for the influence of the finite size of the sample [280, 281] and resulted in
understanding the MIT as a second order phase transition.

For a finite sample (e.g., a cube of typical length L), the relevant transport
quantity is not the conductivity (which is a material property independent of
the sample size and shape) but the conductance G(L), defined as the ratio of
the measured current through the sample and the applied voltage. In terms of
the fundamental conductance unit e2/h, we may define also the dimensionless
quantity

g(L) =
h

e2
G(L). (9.95)

If instead of the box of size L a larger box of size L′ > L is considered, the
scaling argument is applied to find g(L′). It is based on the assumption that
the ratio between the relative changes of g and of L

dg

g

L

dL
=

d ln g

d lnL
= β(g) (9.96)

is ruled by a universal function β(g) depending on the dimensionless conduc-
tance g but not separately on the parameters characterizing the sample such
as disorder, energy, or sample size L. Solving the differential equation for the
asymptotic limits yields

β(g) = 1 − gc

g
for large g (9.97)

β(g) = −egc/g for small g. (9.98)

Assuming a monotonous function β(g), these results can be connected by an
interpolation to obtain the qualitative result shown in Fig. 9.9 (Problem 9.5).
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Fig. 9.9. Universal function β(g) for the scaling behavior of the conductance g(L)
in a three-dimensional system. For β > 0 the conductance increases while for β < 0
it decreases with increasing system size L

For β(g) > 0, the conductance increases with increasing sample size, which
corresponds to metallic behavior, while for β(g) < 0 it goes to zero for L → ∞,
typical for the insulator. The critical value gc with β(gc) = 0 marks the metal–
insulator transition. This one-parameter scaling theory has been successful in
describing the critical behavior of the conductivity σdc when approaching the
transition from the metallic side (E > ǫc) and of the localization length λ,
when approaching it from the side of the insulator (E < ǫc). In accordance
with the properties of a second order phase transition [277], these quantities
follow power laws:

σdc ∼ (E − ǫc)
s , E > ǫc

λ ∼ (ǫc − E)−ν , E < ǫc . (9.99)

From scaling relations, the critical exponents s and ν are found to be equal.
A particular aspect of this theory, which more recently has attracted

renewed interest, is its dependence on the dimension d of the system [280].
As was argued by Thouless [281], it is the ratio of the level broadening due
to disorder Γ(L) and the level separation ∆E(L) due to confinement in a sys-
tem of size L which decides about the character of the quantum states at the
Fermi energy as being localized or extended. The former can be expressed as
Γ(L) = h/tD(L), where tD(L) is the time for the electron to pass through the
sample by diffusive motion. This time is determined by the diffusion constant
D according to tD(L) = L2/D, thus Γ(L) = hD/L2. For a particle in a box of

the size L, the level separation at EF is ∆E(L) =
(
n(EF)Ld

)−1
with the par-

ticle density n(EF) and the system dimension d. Using the Einstein relation
σ = e2Dn(EF), the ratio Γ(L)/∆E(L) can be expressed as

Γ(L)

∆E(L)
=

h

e2
σLd−2 (9.100)
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and we identify the dimensionless conductance g(L) = σLd−2, where the
conductivity σ characterizes the material property and does not depend on L.
Using this relation, the scaling argument (9.96) can be discussed with respect
to its dependence on the system dimension d (see Problem 9.5). As it turns out,
the universal function β(g) passes through zero only for a three-dimensional
system. For a two-dimensional system, it approaches zero asymptotically for
large g and is always negative for d = 1. This means that a disorder-driven
metal–insulator transition should be possible only for d > 2. Detailed investi-
gations of two-dimensional electron systems seem to disprove this conclusion
[278]. The critical discussion in the light of these data leads to the result,
that possibly disorder is not the only mechanism but that electron–electron
interaction may contribute, which is not included in the scaling theory.

Problems

9.1 Verify the eigenvalue equation (9.27) for the additional poles of the full
Green function G(E) (9.20) by making use of the block-diagonal form of
the short-range defect matrix.

9.2 To demonstrate self-averaging, consider the classical resistance R =∑N
i=1 ri of N resistances ri, i = 1 . . . N in a row. Make sure that the

average 〈r〉 exists and that 〈R〉 = N〈r〉. Calculate the relative variance of
R and show that it tends to zero with increasing N or system size!

9.3 Calculate the current–current response χ(0, ω) of (9.83) with the current
operator ĵp of (9.86) to obtain the conductivity σ(0, ω) (9.88).

9.4 Show that the double sum expression under the integral of σdc (9.89) can
be cast into the form Tr(v̂ImG(E+)v̂ImG(E+)).

9.5 Discuss the asymptotics of β(g) for g → ∞ (using σ independent of L)
and for g → 0 (assuming g(L) ∼ exp (−L/λ)) in dependence on the sys-
tem dimension d. Show that β(g) < 0 for all g and d ≤ 2 while it changes
sign for d > 2.
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Light–Matter Interaction

The investigation of condensed matter systems using light as a probe is a ver-
satile and powerfull concept, which provides various kinds of information not
only about the structure but also of the electronic and lattice excitations and
their dynamics. Besides linear optical processes, like absorption and emission
(including photoemission), light-scattering, two- (or three-)photon absorption,
photo-luminescence and high-excitation spectroscopy also belong to the meth-
ods to gain information about the single-particle and collective excitations of a
solid. In semiconductor samples with a proper design, coherent light emission
is possible and used in solid-state lasers. These methods, which allow studies
in the frequency or time domain, are all based on the interaction of light with
matter. In Sect. 3.5 we have already treated the optical excitation of lattice
vibrations as an example. In this chapter, we shall present a systematic the-
oretical description of light–matter interaction, which can be found in one or
the other representation in standard textbooks[7, 14, 89, 95, 282, 283].

10.1 Preliminaries

Let us start with the microscopic Maxwell equations1

∇ · E =
ρ

ε0
, ∇× E = −∂B

∂t

∇ · B = 0 , ∇× B = μ0j +
1

c2

∂E

∂t
. (10.1)

Here, E(r, t) and B(r, t) are the space and time dependent electric field and
magnetic induction, respectively. The latter can be replaced with B = μ0H

by the magnetic field H(r, t). ε0 and μ0 are the vacuum constants and
c = 1/

√
ε0μ0 is the vacuum velocity of light. In this microscopic formula-

tion, ρ(r, t) and j(r, t) are the charge and current densities, respectively, of

1 James Clark Maxwell 1831–1879.

U. Rössler, Solid State Theory,

DOI 10.1007/978-3-540-92762-4 10, c© Springer-Verlag Berlin Heidelberg 2009
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all charged particles in the system (nuclei and electrons). We could adopt
here the reasonable concept of the previous chapters, according to which we
understand the solid as composed of ions and valence electrons. In this case
ρ(r, t) and j(r, t) would be connected with the latter, while the electrons in
closed shells would belong to the ions, which essentially do not contribute to
the material properties of the solid. We come back to this point later in this
Chapter.

For what follows, instead of the fields E(r, t) and B(r, t), it is convenient
to introduce the potentials A(r, t) and φ(r, t), which are related to the fields
by

B = ∇× A , E = −∇φ − ∂A

∂t
. (10.2)

Replacing E and B in Maxwell’s equations by the potentials A and φ, we
may write (using ∇×∇×A = ∇(∇·A)−∆A) the inhomogeneous equations
in the form

∆A − 1

c2

∂2A

∂t2
−∇

(
∇ · A +

1

c2

∂φ

∂t

)
= −μ0j (10.3)

and

∆φ +
∂

∂t
(∇ · A) = − ρ

ε0
. (10.4)

The potentials are free to a gauge transformation with the scalar gauge field
χ(r, t)

A → A + ∇χ , φ → φ − ∂χ

∂t
, (10.5)

which leaves (10.2), i.e., the fields E and B, invariant.
Among the commonly used gauges, the transverse or Coulomb gauge, ∇ ·

A = 0, is the appropriate one for the interaction of light with matter in the
form of solids. With this choice, the third term on the lhs of (10.3) vanishes
while (10.4) becomes Poisson’s equation. Thus, we obtain the potential form
of Maxwell’s equations in the form of an inhomogeneous wave equation for
the vector potential

∆A − 1

c2

∂2A

∂t2
= −μ0j. (10.6)

The inhomogeneity is connected with the nuclei and electrons (or ions and
valence electrons) and vanishes outside the solid, where (10.6) describes the
free propagation of electro-magnetic waves in vacuum.

Consider now the solid interacting with the electro-magnetic field of the
light. In the most general case, it is described by the Schroedinger equation
with the Hamiltonian of the solid (2.1), including the electro-magnetic field.
After having dealt already with the excitation of optical phonons, which are
connected with the moving ions (see Chap. 3.), we would like to consider here
only the electrons as movable charged particles in a rigid periodic arrangement
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of nuclei or ions. Thus, we restrict in this chapter to the interaction of light
with the electrons of the solid and start accordingly with the Hamiltonian
(5.2) for the electrons. To include the electro-magnetic field, we have to take
into account its energy and to fulfill the requirement, that the time-dependent
Schroedinger equation

HNΨN = ih̄
∂ΨN

∂t
(10.7)

has to be invariant under the gauge transformation (10.5), together with a
simultaneous gauge transformation of the time-dependent N -electron wave
function ΨN (r1 . . .rN , t)

Ψ(r1 . . .rN , t) → exp
(
−i

e

h̄
{χ(r1, t) + · · · + χ(rN , t)}

)
Ψ(r1 . . . rN , t) .

(10.8)
This is achieved by the replacement

pl → pl + eA(rl, t) . (10.9)

For the rest of this chapter the following Hamiltonian will be the starting
point:

HN =
N∑

l=1

1

2m
(pl + eA(rl))

2 +
1

2

∑

k,l=1
k �=l

e2

4πε0|rk − rl|
+
∑

n,l

v(rl − R0
n)

+
1

2

∑

mn

V (R0
n − R0

m) +
ε0

2

∫
d3r

(
E2 + c2B2

)
. (10.10)

In the last term, describing the energy of the radiation field, E and B can be
replaced with (10.2) by the vector potential to yield

Hrad =
ε0

2

∫
d3r

{(
∂

∂t
A(r, t)

)2

+ c2 (∇× A(r, t))
2

}
. (10.11)

Having in mind linear response theory (Sect. 2.4), we may separate HN into
a Hamiltonian for the uncoupled solid and electro-magnetic field, H0 + Hrad,
and an interaction term Hel−rad for the light–matter coupling

HN = H0 + Hel−rad + Hrad , (10.12)

where H0 describes the unperturbed electron system of the solid, (5.2), and
(by making use of the transverse gauge)

Hel−rad =

N∑

l=1

(
e

m
A(rl, t) · pl +

e2

2m
(A(rl, t))

2

)
(10.13)
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is the time-dependent perturbation by the radiation field, which can be iden-
tified as the external potential of (2.37). Using j = −e

∑
l pl/m, the first term

can also be written as −j · A (see Sects. 2.4 and 9.4).

10.2 Single-Particle Approximation

In Chap. 5 we have invoked density-functional theory (DFT) to reduce the
many-body problem with H0 to a single-particle problem, by accounting for
the electron–electron interaction in an effective single-particle potential Veff(r)
(see (5.30)), which is the same for all electrons. This can now be used to write
the many-body Hamiltonian HN as a sum of single-particle terms. Leaving
aside the energy of the radiation field as a constant, the single-particle Hamil-
tonian of an electron interacting with the radiation field takes the form

H = − h̄2

2m
∆ + Veff(r) +

e

m
A · p +

e2

2m
A2. (10.14)

The eigenstates of the first term are the Bloch states of Chap. 5. The last two
terms represent a periodic time-dependent interaction of Bloch electrons with
the radiation field. For sufficiently weak amplitudes of the vector potential
they can be treated as perturbations of first and second order. Sometimes
the Ap -term is also expressed in the form −eE · r, where −er is the dipole
operator (Problem 10.1).

Let us first treat the term linear in A. For monochromatic light, its space
and time dependence is given by

A(r, t) = A0e ei(κ·r−ωt) + c.c. , (10.15)

with a scalar amplitude A0 and the unit vector e for transverse polarization,
e ⊥ κ. The frequency follows the linear dispersion relation ω = c|κ| of light
in vacuum.

Because of the periodic time-dependence of the perturbation, Fermi’s
Golden Rule applies and we can immediately write the rate for the transition
probability between Bloch states

Wnk,n′k′ =
2π

h̄
|〈nk|H ′|n′k′〉|2 δ (En(k) − En′(k′) − h̄ω) , (10.16)

where H ′ = eA0 exp(iκ · r)e · p/m is the perturbation without the time-
dependent exponential. Together with the time-dependent phase factors of the
stationary Bloch functions, it results in the δ-function, which expresses the
energy conservation: the energy quantum h̄ω of the radiation field equals
the energy difference between the Bloch states. Depending on the sign of this
difference, the transition between the Bloch states can be an absorption or
emission process.
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The transition matrix element can be transformed from an integral over
the crystal volume Vc

〈nk|H ′|n′k′〉 =

∫

Vc

ψ∗
nk(r)

( e

m
A0e

iκ·re · p
)

ψn′k′(r)d3r (10.17)

to an integral over a Wigner-Seitz cell by shifting r by lattice vectors Rn and
extracting the corresponding phase factors from the Bloch functions

〈nk|H ′|n′k′〉 =

∫

WSC

. . .
∑

n

ei(κ+k′−k)·Rnd3r . (10.18)

Here the dots stand for the integrand of the previous integral. The lattice sum
results in a Kronecker δk,k′+κ, which represents the momentum conservation
of the excitation process. The diameter of the Wigner–Seitz cell is about the
lattice constant of a few Å, which is much smaller than the wavelength of the
light corresponding to the typical excitation energy h̄ω of a few eV . Therefore,
the exponential with κ in the integral is almost constant over the cell and
we may safely replace it by 1. This is the dipole approximation. Finally, the
transition matrix element can be written (see also Problem 10.2)

〈nk|H ′|n′k′〉 =

∫

WSC

u∗
nk(r)

( e

m
A0e · p

)
un′k′(r)d3r δk,k′

=
e

m
A0〈nk|e · p|n′k〉δk,k′ . (10.19)

Thus, one obtains a finite transition probability

Wnk,n′k(ω) =
2π

h̄

e2A2
0

m2
|〈nk|e · p|n′k〉|2 δ (En(k) − En′(k) − h̄ω) (10.20)

only for direct transitions (or vertical transitions), in which the wave vector
of the Bloch state is not changed.

The absorption of light passing through a solid of thickness d determines
the damping of the light intensity according to

I(d) = I0e
−αd. (10.21)

On the other side, the absorption coefficient α(ω) is connected with the real
(n1) and imaginary (n2) parts of the complex index of refraction according to

α =
2n1n2

c
ω, (10.22)

where 2n1n2 = ε2 is the imaginary part of the complex dielectric function
ε(ω). Microscopically, α(ω) is determined here by the power loss or the rate
by which energy of the radiation field is converted into excitations between
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Bloch states[14, 89]. Thus,

α(ω) =
2h̄

ε0cωA2
0

W (ω) , where W (ω) =
∑

nn′k

Wnk,n′k(ω), (10.23)

and the imaginary part of the dielectric function is given by

ε2(ω) =
4πe2

ε0m2ω2

∑

nn′k

|〈nk|e · p|n′k〉|2 δ (En(k) − En′(k) − h̄ω) . (10.24)

The real part of ε1(ω) can be obtained using the Kramers–Kronig relation
(2.80) formulated for susceptibilities χ(ω). Considering the relation ε(ω) =
1 + χ(ω)/ε0, we have to use

ε1(ω) = 1 +
2

π

∫ ∞

0

ω′ε2(ω
′)

ω′2 − ω2
dω′, (10.25)

leading to

ε1(ω) = 1 +
4e2

ε0m

∑

nn′k

fnn′(k)

ωnn′(k)
2 − ω2

(10.26)

with the oscillator strength

fnn′(k) =
2 |〈nk|e · p|n′k〉|2

mh̄ωnn′(k)
(10.27)

for the transition between Bloch states with the energy difference h̄ωnn′(k) =
En(k) − En′(k).

In cubic solids, the dipole matrix elements do not depend on the polariza-
tion direction e and usually their dependence on the wave vector is not very
strong. Thus, we can write

〈nk|e · p|n′k〉 ≃ Pnn′ (10.28)

with Pnn′ independent of k and ε2(ω) becomes

ε2(ω) =
4π

ε0

( e

mω

)2∑

nn′

|Pnn′ |2 Dnn′(h̄ω) , (10.29)

with the combined density of states

Dnn′(h̄ω) =
∑

k

δ (En(k) − En′(k) − h̄ω) (10.30)
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Fig. 10.1. (a) Band structure of Ge with vertical transitions at critical points and
(b) comparison of measured and calculated ε2(ω), showing van Hove singularities
at these critical points (from Landolt-Börnstein [1])

of the pair of bands n, n′. As in Sect. 3.3, the k-sum over the Brillouin zone
can be converted into an integral

Dnn′(h̄ω) =
Vc

(2π)3

∫

BZ

δ (En(k) − En′(k) − h̄ω) d3k , (10.31)

which, due to the δ-function, reduces to an integral over the surface Sk, for
which the energy difference of the Bloch states equals h̄ω

Dnn′(h̄ω) =
Vc

(2π)3

∫

Sk

dSk

|∇k (En(k) − En(k))| . (10.32)

The points, at which |∇k (En(k) − En(k))| vanishes (critical points), give rise
to vanHove singularities in the combined density of states, by which they can
be identified.

As an example, we show in Fig. 10.1 the band structure of Ge in the funda-
mental band gap region with marked direct transitions at critical points and
the measured and calculated imaginary part of the dielectric function, ε2(ω).
In spite of discrepancies in the critical point energies, there is a clear corre-
spondence between the experimental and theoretical curves. It turns out, that
the optical spectra of semiconductors with tetrahedral coordination resemble
each other [89]. Their band structures have the same topology determined by
the common crystal structure but differ with respect to their critical point
energies E0, E

′
0, . . . . Investigations of the optical spectra have paved the road

to the quantitative understanding of semiconductor band structures.
Light–matter interaction stood at the beginning of quantum mechanics

with Einstein’s explanation of the photo-electric effect, which earned him the
Nobel prize in 1922. It is based on the assumption of a quantized radiation
field. Photoemission can take place if the photon energy suffices to excite an
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electron beyond the energy barrier at the surface of the solid so that it can
be detected outside the solid as free particle. Einstein found (in accordance
with experimental data for metals) the linear dependence of the maximum
kinetic energy of the emitted electrons on the photon energy, which is ruled
by the ratio h̄/e. Later, this effect has been exploited by Siegbahn2 to develop
the concept of photo-electron spectroscopy (PES). It is based on analyzing not
only the maximum energy but also the energy spectrum of the photo-emitted
electrons.

The minimum energy required to free an electron from a metal, is the
difference between the vacuum level and the Fermi energy, known as the work

function. In a semiconductor, with the Fermi energy somewhere in the gap,
this energy would not be sufficient for photoemission, because the highest
occupied state, in the intrinsic case, is the top of the valence band. Instead
it is the ionization energy that defines the threshold for photoemission. The
photoemissive yield is roughly proportional to the density of the initial states.
PES is applied at different photon energies: ultraviolet light (UPS: ultraviolet
PES) for the investigation of valence electron structures and X-rays (XPS)
for the study of the more tightly bound core electrons[65, 287]. Note, that
for the latter case one has to treat the core electrons in the same way as the
valence electrons.

The photo-emitted electrons can be also analyzed with respect to their
momentum parallel to the surface, which does not change when the electron
leaves the solid. This is done in angular resolved photoemission (ARPES)
experiments, which give information about the energy bands En(k), as shown
in Fig. 10.2 for Cu as an example. The experimental data points map out all
details of the energy bands, which we already know from Chap. 5.

Further variants of photo-electron spectroscopy are spin-polarized UPS
(SPUPS) and the inverse photoemission, in which an electron of known energy
is injected and the emitted photon is detected. The former method allows to
study the bands of minority and majority spins in ferromagnets (see Fig. 6.1),
and the latter yields information about the unoccupied states above the Fermi
energy.

10.3 Excitons

The basic assumption of the single-particle approximation in Sect. 10.2 is the
same effective single-particle potential Veff(r) for electrons in all bands. This
assumption is correct for the ground state of the solid, which, for a semicon-
ductor, is characterized by filled valence and empty conduction bands. But
for the excited state an electron in the valence band is missing, because it
is in the conduction band. Intuitively, this is the two-particle problem of an

2 Kai Manne Börje Siegbahn 1918–2007, Nobel prize in Physics 1981, together with
N. Bloembergen and A.L. Schawlow.
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Fig. 10.2. Calculated energy bands of Cu and data from angular resolved
photoemission, after [31]

electron–hole pair, if we consider the remaining N − 1 electrons in the valence
band as the hole and the missing contribution to the effective potential as
the attractive Coulomb interaction between the electron in the conduction
band and the hole in the valence band. In effective-mass approximation, the
Hamitonian for the electron-hole pair can be written

He−h = Eg +
pe

2me
+

ph

2mh
− e2

κ|re − rh|
. (10.33)

Note, that the kinetic energy of the hole increases in the downward bent
parabola for the valence band. If we only had the two bands (one valence
and one conduction band) in vacuum, then κ = 4πε0. However, the correct
description has to include all the other valence and conduction bands and the
possible excitations between these bands, i.e., the two-band model for electron
and hole is embedded in a dielectric with material constant ε and, therefore,
κ = 4πε0ε, i.e., the Coulomb interaction is screened. We would like to mention
here, that the electron–hole interaction is just the difference of the Hartree
potentials in the excited and ground states, but there should also be exchange
and correlation contributions, which we leave aside for the moment.

In relative and center-of-mass coordinates, using for pi = h̄ki, i = e, h,

ke = k +
me

M
Q , kh = k − mh

M
Q , (10.34)
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with the total mass M = me + mh, we can write the Hamiltonian for the
electron–hole pair as

He−h = Eg −
h̄2

2μ
∆ +

e2

κr
+

h̄2Q2

2M
, (10.35)

with r = |re−rh| and the reduced mass μ = (1/me+1/mh)−1. Except the last
term describing the free center-of-mass motion of the electron-hole pair, this
is the hydrogen model characterized by the Rydberg energy Rexc = RHμ/ǫ2

and the Bohr radius aexc = aHε/μ, where RH and aH are the corresponding
constants of the hydrogen atom. The eigenvalue problem with He−h for Q = 0

He−hφν(r) =

(
Eg −

h̄2

2μ
∆ +

e2

κr

)
φν(r) = Eνφν(r) (10.36)

gives a series of bound states (ν = n = 1, 2, 3 . . . ), the excitons, at En =
Eg − Rexc/n2. For typical semiconductor data ε = 10 and μ = 0.1, the bind-
ing energies of the excitons are much smaller than the typical band gap Eg,
and aexc extends over many unit cells. Thus the continuum approximation,
assuming effective masses and a homogeneous dielectric, is justified. This case
of weakly bound excitons is known as the Wannier–Mott exciton, which is sim-
ilar to the shallow impurities (see Sect. 9.1). Besides these bound states, for
energies larger than Eg, there is a continuum of electron–hole pair or band-to-
band excitations. For a simple two-band model, the single-particle and exciton
pictures are presented in Fig. 10.3. It shows in the left part a valence and a
conduction band with a hole at kh and an electron at ke, respectivly, while
the exciton picture in the right hand part contains the bound states with their
center-of-mass parabolas below the electron–hole continuum and the ground
state at Q = 0.

vb

cb
E

Eg

k

E

Egx

Q= ke–kh 

n=1

n=2Rexc

ke hk

> >
>

>
>

>

-

+

Fig. 10.3. Two-band model with electron-hole pair excitation (left) and exciton
spectrum with bound states and electron–hole continuum (right)
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Fig. 10.4. Measured absorption spectrum of GaAs close to the fundamental edge,
showing excitonic structure. The dashed curve is the calculated absorption in single-
particle approximation (from Landolt-Börnstein [1])

As a representative example, the optical absorption for GaAs close to the
fundamental gap is shown in Fig. 10.4. The bound states dominate the spec-
trum for h̄ω < Eg, with discrete narrow lines for n = 1, 2, 3 . . . . (The small
satellites are due to impurities.) The calculated absorption in single-particle
approximation drawn for energies h̄ω > Eg deviates from the experimen-
tal data, thus indicating that the electron–hole interaction also modifies the
continuum part of the spectrum.

In order to understand these exciton features in detail, we consider the
many-body picture [289]. The ground state of the semiconductor (or insulator)
is characterized by filled valence and empty conduction bands. Let us denote
it by |Ψ0〉 (the same symbol has been used for the filled Fermi sphere in
Chap. 4). The simplest excited state is an electron–hole pair

|Ψvkhcke
〉 = c†cke

cvkh
|Ψ0〉 , (10.37)

which is obtained by applying appropriate fermion operators to |Ψ0〉. We may
combine such pairs with same total momentum h̄Q, Q = ke − kh, which is a
good quantum number for excitations, to form an exciton state

|ΨνQ〉 =
∑

vkh,cke
ke−kh=Q

φνQ(k)|Ψvkhcke
〉 , (10.38)

where φνQ(k) is the Fourier transform of the exciton envelope, which describes
the relative motion of the electron–hole pair as a solution for (10.36). In this
picture, represented in the rhs of Fig. 10.3, optical transitions take place from
the ground state (with zero total momentum) to the exciton state with the
rate of transition probability
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W0→νQ =
2π

h̄

(
eA0

m

)2 ∣∣〈ΨνQ|
∑

l

eiκ·rle ·pl|Ψ0〉
∣∣2δ(EνQ−E0− h̄ω). (10.39)

The Ap -coupling is a sum over single-particle terms and its matrix element

〈ΨνQ|
∑

l

eiκ·rle · pl|Ψ0〉 = φνQ(k)〈cke|eiκ·re · p|vkh〉 (10.40)

can be expressed as matrix element between the Bloch states of the electron–
hole pair. In dipole approximation, replacing the exponential by 1, transitions
are possible only to the exciton states with Q = 0 (direct or vertical transi-
tions). Let us assume, as in Sect. 10.2, that the momentum matrix elements
are almost independent of k = ke = kh, to arrive at

W0→νQ =
2π

h̄

(
eA0

m

)2 ∣∣φν(0)e · P cv

∣∣2δ(Eν − E0 − h̄ω), (10.41)

where we have dropped the index Q = 0 and replaced
∑

k φν(k) = φν(re −
rh = 0). By comparing with the corresponding result from Sect. 10.2 for uncor-
related interband excitations, we can immediately express the real part of the
dielectric function in terms of exciton quantities:

ε1(ω) = 1 +
4e2

ε0m

∑

ν

fν0

ω2
0ν − ω2

(10.42)

with the exciton oscillator strength

fν0 =
2|φν(0)|2|〈c|e · p|v〉|2

m(Eν − E0)
. (10.43)

This result already contains, what we need to understand the experimental
spectrum of Fig. 10.4, without converting it into the expression for the absorp-
tion. The discrete bound states (for ν = n = 1, 2, . . . ) are seen as the sharp
lines at energies Eg−En, with intensities scaling according to |φn(0)|2 ∼ 1/n3,
if we adopt the wave functions of the hydrogen model (Problem 10.3). But
also in the continuum of band-to-band transitions, the transition probability
is modified by the factor |φν(0)|2, which is responsible for the enhancement
of the absorption intensity at the fundamental edge. With the solution of
Problem 10.3, it is possible to express the absorption coefficient for h̄ω > Eg as

α(ω) = α0(ω)C(ω), (10.44)

with the absorption coefficient α0(ω) of the uncorrelated electron–hole pair of
(10.23) and the Coulomb enhancement factor or Sommerfeld correction

C(ω) =
2π

√
x

1 − exp(−2π
√

x)
, with x =

Rexc

h̄ω − Eg
. (10.45)
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A more rigorous treatment of the electron–hole correlation is possible by
using the two-particle Green function G [64, 288], for which we may write

G = G0 + G0ΓG0. (10.46)

Here, G0 is the two-particle Green function of the uncorrelated electron–hole
pair and the kernel Γ satisfies the Bethe–Salpeter equation (BSE)

Γ = I + IG0Γ, (10.47)

with the irreducible electron–hole interaction to be specified later. After
multiplication from the right by G0, the BSE can formally be solved to give

ΓG0 = (1 − IG0)
−1

IG0 (10.48)

and to express G as

G = G0
1

1 − IG0
. (10.49)

Besides the poles of G0, the Green function G of the correlated electron–hole
pair contains additional poles for 1 − IG0 = 0, which we may also write as
G−1

0 − I = 0. For a free electron–hole pair in simple parabolic bands coupled
by the Coulomb interaction, this expression can be written in plane wave
representation as

∑

k′
e,k′

h

〈kekh|G−1
0 − I|k′

ek
′
h〉〈k′

ek
′
h|rerh〉 = 0 , (10.50)

where φk′
ek′

h
(re, rh) = 〈k′

ek
′
h|rerh〉 is the exciton wave function. This leads to

〈kekh|G−1
0 − I|k′

ek
′
h〉 =

(
Eg +

h̄2k2
e

2me
+

h̄2k2
h

2mh
− E

)
δkek′

e
δkhk′

h

− e2

ε0V |ke − k′
e|2

δke−k′
e,kh−k′

h
. (10.51)

After introducing relative and center-of-mass coordinates (see (10.34)), taking
the Fourier transform, and separating the center-of-mass motion we recover
the exciton effective-mass Hamiltonian of (10.36) with the bare Coulomb inter-
action. We identify the additional poles of the Green function G as the bound
states of the electron–hole pair, the excitons. If instead of the plain wave rep-
resentation the Bloch representation is used, one obtains for the inverse Green
function of the uncorrelated electron–hole pair the expression

〈ckevkh|G−1
0 |c′k′

ev
′k′

v〉 = (Ec(ke) + Ev(kh)

− E) δcc′δvv′δke,k′
e
δkh,k′

h
. (10.52)

It contains the full expressions of the energy bands but is diagonal in the band
indices and in the electron and hole wave vectors.
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Let us now turn to the irreducible electron-hole interaction I of the BSE
[288]. It is composed of graphs like those represented in Fig. 10.5. The left
one is the bare Coulomb interaction as in Fig. 4.10 but now for the electron-
hole pair. It propagates in the Bloch states cke, vkh and is scattered into the
pair c′k′

e, v
′k′

h by the Fourier component of the Coulomb interaction with
wave vector q = k′

e − ke = k′
h − kh. Note, that due to time-inversion the

propagation direction of the hole is opposite to that of the electron. The
bare Coulomb interaction is modified if intermediate excitation of electron–
hole pairs is considered. This is depicted in Fig. 10.6 and means to replace
the simple broken Coulomb line of the direct interaction graph by the dou-
ble broken line which contains the polarization diagrams. It represents the
screened Coulomb interaction (see Chap. 4), mentioned already in our intuitive
considerations.

The exchange diagram on the right of Fig. 10.5 also contributes to the
irreducible electron–hole interaction. It represents a scattering of the electron–
hole pair by the Fourier component of the bare Coulomb potential, with wave
vector Q = ke +kh = k′

e + k′
h. However, due to the topology of the exchange

diagram, a replacement of the bare Coulomb line by the screened one of
Fig. 10.6 would lead to diagrams, which could be separated into replicas of
the simple one by cutting with a horizontal line (if we forget the band indices
for the moment). Such diagrams are called reducible and are excluded. This
means that in the simple two-band exciton problem the exchange interaction
is not screened [288]. As will be outlined in the following supplement, this
argument does not apply if one considers the full band structure instead of
the two-band model.

Fig. 10.5. Diagrams for Coulomb and exchange interaction of an electron–hole pair

= + + . . . .<

<

Fig. 10.6. Diagrams showing the screening of the electron–hole interaction
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Supplement: Screened Coulomb and exchange interaction

Let us start with the screened Coulomb interaction

VCoul = −〈ckevkh|
e2

κ|r − r′| |c
′
k
′
ev

′
k
′
h〉

= −
∫

d3
r

∫
d3

r
′ψ∗

cke
(r)ψvkh

(r′)
e2

κ|r − r′|ψc′k′
e
(r)ψ∗

v′k′
h
(r′) , (10.53)

where κ = 4πε0ε and ε = ε∞ is the electronic part of the dielectric constant. Note,
that the hole Bloch functions are complex-conjugate because of time-inversion. The
products of the lattice periodic parts of the Bloch functions can be expanded in
Fourier series with coefficients

Ccc′(ke, k
′
e, G) =

1

Vcell

∫
u∗

cke
(r)uc′k′

e
(r)eiG·rd3

r (10.54)

Vvv′(kh, k′
h, G′) =

1

Vcell

∫
uvkh

(r′)u∗
v′k′

h
(r′)e−iG′·r′

d3
r
′ (10.55)

to write the Coulomb interaction as

VCoul = −
∑

G,G′

Ccc′(ke, k
′
e, G)Vvv′(kh, k′

h, G′)

×
∫

d3
r

∫
d3

r
′e−i(ke−k′

e−G)·rei(kh−k′
h−G′)·r′ e2

κ|r − r′| . (10.56)

The double integration can be performed after replacing the Coulomb potential by
its Fourier transform, giving

∫
d3

r

∫
d3

r
′ · · · =

e2

ε0εVc|ke − k′
e − G|2 δke−k′

e−G,kh−k′
h
+G′ . (10.57)

Let us consider the case with Q = 0, i.e., ke = kh = k. Then, for weakly bound (or
Wannier–Mott) excitons, one has |k−k′| ≪ 2π/a and the Fourier component of the
Coulomb potential with G = 0 dominates. The corresponding expansion coefficients
Ccc′(k, k′, 0) and Vvv′(k, k′, 0) reduce to δcc′ and δvv′ , respectively (see Sect. 9.1),
and we arrive at the leading term of the screened Coulomb interaction

VCoul = − e2

ε0εVc|k − k′|2 δcc′δvv′ , (10.58)

which is diagonal in the band indices. For a given band pair with Ec(k) and Ev(k) in
isotropic parabolic approximation, this leads back to the exciton problem of (10.49),
but now with the screened Coulomb interaction.

In order to treat the exchange interaction in the same way, we have to consider
the spin part of the Bloch functions explicitly. According to the diagram rules,
spin is conserved at each vertex. This has been tacidly taken into account when
evaluating the Coulomb term, for which electron or hole lines meet at each vertex
and summation over spin variables gives a factor unity. In the exchange diagram
(right hand side of Fig. 10.5), however, at each vertex an electron line meets a hole
line. As the hole wave function is a time-inverted electron Bloch function, its spin is
opposite to that of the electron and the total spin S of the electron–hole pair has to
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be zero. Thus only spin-singlet states, S = 0, experience the exchange interaction.
This consideration allows one to write the exchange term after summation over the
spin variables as

Vexch = 2δS,0

∫
d3

r

∫
d3

r
′ψ∗

cke
(r)ψv′k′

h
(r′)

e2

κ|r − r′|ψ
∗
vkh

(r)ψc′k′
e
(r′). (10.59)

We may again expand the product of the periodic parts of the Bloch functions
(here that of a hole and of an electron wave function) in a Fourier series now with
coefficients

Wcv(ke, kh, G) =
1

Vcell

∫
u∗

cke
(r)u∗

vkh
(r)eiG·rd3

r (10.60)

and proceed as before. Using Q = ke + kh = k′
e + k′

h, this gives

Vexch = 2δS,0

∑

G

Wcv(k, Q, G)W ∗
c′v′(k′, Q, G)

e2

ε0Vc|Q − G|2 . (10.61)

The center-of-mass wave vector Q is usually much smaller than a reciprocal lattice
vector G and can be neglected except for G = 0. For the term with G = 0, we
use the k · p expansion of the Bloch factors around k = 0, while for the terms with
G = 0 the zone center Bloch functions are taken as a good approximations to write
the leading contribution as

Vexch = 2δS,0

{
lim

Q→0

e2

ε0VcQ2

h̄2

m2

(P cv · Q)(P v′c′ · Q)

(Ec − Ev)(Ec′ − Ev′
)

+
∑

G �=0

e2

ε0VcG2
Wcv(0, 0, G)W ∗

c′v′(0, 0, G)
}

. (10.62)

This result does not depend on k (or k′), thus, after Fourier transformation,

this exchange interaction is a contact potential ∼δ(r) in the relative coordinate.

Moreover, in contrast to the Coulomb term, it is not diagonal in the band indices.

It describes the coupling between the band pair c, v forming the lowest energy gap

and the band pairs c′, v′ with larger energies. Therefore, the argument with the

reducibility of exchange diagrams, which was correct for the simple two-band model,

is not correct in the more general case, when the dielectric background represented

by the band pairs with higher energy is taken into account. It can be considered by a

matrix diagonalization procedure (partitioning) of the exchange interaction, which

results in a screening of the exchange interaction by the dielectric background. In

addition, the first term of (10.62), to be taken in the limit Q → 0, has the peculiar

property, that it depends on the orientation of the exciton wave vector Q with respect

to the dipole matrix element P cv and is, therefore, called nonanalytic exchange term.

It contributes only to longitudinal excitons with Q parallel to the transition dipole

P cv. This splitting between longitudinal and transverse excitons is analogous to that

of optical phonons (see Chap. 3). We shall come back to this aspect in the following

section. The second term in (10.62) is the analytic exchange term [290].

As outlined in this section, excitons are the electronic excitations with the
lowest energy (usually in the optical regime) in semiconductors and insula-
tors. For dipole-excitations with this energy, they represent the quanta of the
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polarization field as is the case for optical phonons in the far-infrared regime
(see Sect. 3.5). Their internal structure, a superposition of electron–hole pair
excitations (see (10.37) and (10.38)) suggests to consider them as bosons with

operators BνQ. Application of B†
νQ to the electronic ground state |Ψ0〉 cre-

ates an exciton according to B†
νQ|Ψ0〉 = |ΨνQ〉 and the Hamiltonian for the

electron system can be represented in this energy range as

Hel =
∑

ν,Q

EνQB†
νQBνQ, (10.63)

with the exciton energy EνQ. Note, however, that the bosonic character
of the exciton holds only in the approximation of low excitation densities
(Problem 10.4). With increasing excitation densities the internal structure of
the exciton, its composition of fermions, becomes relevant and is the origin
of high-excitation phenomena like biexcitons (or exciton molecules), poly-
excitons, electron–hole droplets, and formation of an electron–hole plasma.
Bose–Einstein condensation of excitons is another topic in this field [283].

10.4 Polaritons

Electro-magnetic waves propagate through an insulating solid with reduced
velocity of light, c′ = c/n1, according to the dispersion relation ω = c′|κ|.
In the frequency region of a dipole-active oscillator, c′ depends on ω due to
anomalous dispersion. In a microscopic formulation this is due to the coupling
of the propagating light with the oscillator, which, in the context of this
section, will be an exciton, but the same considerations also hold for optical
phonons. This coupling results in a new kind of excitation, the polariton or,
to be more specific, the exciton polariton. As an introduction to the polariton
concept, let us first follow the phenomenological approach.

Light propagation in insulating matter can be described using the macro-
scopic Maxwell equations

∇× E = −∂B

∂t
, ∇× H =

∂D

∂t
. (10.64)

The properties of insulating matter are considered in the dielectric function
ε(ω), which is determined by the dipole-active oscillators of the solid, here
the excitons. It connects the electric field E with the displacement vector D,
which is connected with the dielectric polarization P , according to

D = ε0εE = ε0E + P . (10.65)

The dielectric polarization P (ω) = χ(ω)E(ω) depends on the dielectric sus-
ceptibility χ(ω), with contributions of the possible dipole excitations in the
solid.
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The fields B and H can be eliminated by combining the two macroscopic
Maxwell equations (10.64). One obtains

∇× (∇× E) = − 1

ε0c2

∂2D

∂t2
. (10.66)

Assuming monochromatic light with the electric field given by

E(r, t) = E(ω)ei(κ·r−ωt) + c.c. (10.67)

one finds

κ × (κ × E) =
ω2

c2
εE . (10.68)

For transverse waves, E ⊥ κ, the lhs reduces to κ2 and we can eliminate the
common factor E. The resulting relation

ε(ω) =
c2

ω2
κ2 (10.69)

determines, for given ε(ω), the dispersion of the coupled light–matter modes,
the polaritons as shown in Fig. 10.4 as plots of ω vs. real (κ1), and imaginary
part (κ2) of the wave vector.

The frequency dependence of ε(ω) = 1 + χ(ω)/ε0 results from the oscil-
lators connected with dipole excitations of the solid (here, the excitons).
A simple model, assuming a single oscillator with eigenfrequency ω0 and oscil-
lator strength f0, would give χ(ω) = f0/(ω2

0 − ω2). At frequencies ω much
smaller than ω0, the propagation follows the linear relation for light in vac-
uum, but with a reduced velocity c′ = c/n< with n< =

√
1 + f0/ε0ω2

0. For
ω ≫ ω0, the dielectric susceptibility does not contribute and the propagation
takes place with c′ = c/n>, where n> = 1. If besides the oscillator at ω0, other
oscillators contribute to χ(ω) but at frequencies ω ≫ ω0, they can be consid-
ered by using ε(ω) = εb + χ(ω)/ε0, with a background dielectric constant εb,
which replaces 1 in the expressions for the refractive indices n< and n>.

For a longitudinal wave with E ‖ κ, the lhs of (10.68) vanishes and the
longitudinal frequency ωL follows from

ε(ωL) = εb +
f0

ε0(ω2
0 − ω2

L)
= 0 (10.70)

to be ω2
L = ω2

0 + f0/ε0εb, and we recover the Lyddane–Sachs–Teller relation
of Chap. 3

ω2
L

ω2
0

= 1 +
f0

ε0εbω2
0

. (10.71)

It can be used to express the dielectric function in terms of the frequencies
ω0 and ωL to arrive at the relation

κ2 = εb
ω2

c2

ω2
L − ω2

ω2
0 − ω2

, (10.72)
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Fig. 10.7. Polariton dispersion: solutions of (10.69) vs. real and imaginary part
of κ

which determines the polariton dispersion ω(κ). The difference between the
resonance frequency ω0 of the oscillator (which is a transverse excitation)
and the longitudinal frequency ωL defines the longitudinal-transverse splitting
(LT-splitting) of the excitonic resonance, mentioned already in the previous
Section. It follows from the Lyddane–Sachs–Teller relation (10.71) by using
ω0 + ωL ≈ 2ω0, and is given by

∆LT = ωL − ω0 =
f0

2ε0εbω0
. (10.73)

For ω < ω0 and ω > ωL we have κ2 > 0 and find two real solutions,
the lower and the upper polariton branch, LPB and UPB, respectively in
Fig. 10.7. For the frequency intervall ω0 < ω < ωL κ2 is negative and leads
to a damped solution. The polariton dispersion curves are shown in Fig. 10.7
in a plot of ω vs. the real and imaginary parts of κ = κ1 + iκ2. It should be
noted, that the expression for ∆LT considers the dielectric background by the
phenomenological constant εb. Its microscopic origin is the coupling of the
exciton with the excitations between band pairs with higher energy. With
the arguments given in Sect. 10.3 it is possible to relate the LT-splitting
with the oscillator strength of the exciton (Problem 10.5).

In Fig. 10.8, we show the polariton dispersion calculated with the exci-
ton parameters of CuCl for a small interval of the wave vector close to the
center of the Brillouin zone. (Note, that the Brillouin zone extends out to
k ≈ 108 cm−1.) The experimental data points are obtained from two-photon
absorption (TPA) and hyper-Raman scattering (HRS). In the former case,
two photons from different sources are simultaneously absorbed to excite the
exciton–polariton, while in the latter a virtually excited biexciton decays into
two polaritons, one of which is detected as a scattered photon outside the solid.
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Fig. 10.8. Calculated exciton–polariton dispersion of CuCl with experimental data
from two-photon absorption (TPA-data) and hyper-Raman scattering (HRS-data),
after [283]
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Fig. 10.9. Exciton–polariton dispersion of CuCl (left) and measured propaga-
tion velocity of polariton modes in CuCl together with values calculated from the
dispersion curve (right), after [283]

In contrast to simple absorption experiments with one photon, both methods
allow to map out the dispersion of the polaritons by exploiting different con-
figurations of the small wave vectors of incident and scattered photons. It is
also possible to detect the longitudinal polariton branch.

Fig. 10.9 shows, in the left hand part, the dispersion of the transverse
polariton branches on a larger k scale. On this scale, the dispersion of
the lower polariton branch (LPB), caused by the free center-of-mass term in
the exciton energy, becomes relevant. In the right hand part of the figure the
group velocity vg, calculated from the polariton dispersion, is compared with
experimental data obtained from time-of-flight measurements. Away from the
exciton resonance, the light pulses propagate through the sample with the
velocity of light in matter, the slope of the steep linear parts of the upper
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(UPS) and lower polariton branches (LPB). However, close to the resonance
the group velocity is reduced by orders of magnitude, because the travelling
pulse polarizes the matter by coupling with the exciton.

After this phenomenological survey of exciton–polaritons we turn now to
the rigorous formulation that makes use of the quantization of the electro-
magnetic field and treats light–matter interaction as exciton–photon coupling.
The quantization of the electro-magnetic field can be performed analogous to
the quantization of the displacement field in Chap. 3 (leading to phonons)
with the only difference, that in the Coulomb gauge the vector potential is
transverse (Problem 10.6). With the expansion

A(r, t) =
∑

λ,κ

(
h̄

2ε0ω(κ)V

)1/2

eλκ

(
aλκ(t) + a†

λκ(t)
)

eiκ·r (10.74)

in terms of Boson operators aλκ for photons, the quanta of the electro-
magnetic field, and transverse unit vectors eλκ with eλκ · κ = 0, the
Hamiltonian of the radiation field takes the expected form

Hrad =
∑

λ,κ

h̄ω(κ)

(
a†

λκaλκ +
1

2

)
(10.75)

with photon energies h̄ω(κ).
At the end of Sect. 10.3 (in the energy range of excitonic resonances) we

have formulated the Hamiltonian for the electron system in terms of exciton
operators BνQ. We want to extend this concept also to the light–matter inter-
action. The Ap-coupling of Hel−rad is linear in the vector potential, which can
be replaced by its quantized form (10.74), and it contains the electron momen-
tum operator pl. According to (4.76) it can be expressed in terms of Fermion
operators giving

HAp =
∑

nn′kk′

λ,κ

e

m

(
h̄

2ε0ω(κ)V

)1/2

〈n′k′|eiκ·rp · eλκ|nk〉

×
(
aλκ + a†

λ−κ

)
c†n′k′cnk, (10.76)

which has the same form as the electron–phonon coupling (8.8). However,
our concern is not the coupling to an individual electron–hole pair but to an
exciton, and we should express the electron part in terms of exciton operators.
If we simplify to an exciton formed with Bloch functions from the band pair
c, v and with the wave function φ(r) for the relative motion, then the coupling
to one of the photons can be written (Pcv = 〈c|e · p|v〉)

HAp =
∑

κ

e

m

(
h̄

2ε0ω(κ)V

)1/2

|φ(0)||Pcv|
(
aκ + a†

−κ

)(
Bκ + B†

−κ

)
, (10.77)
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which is linear in the Boson operators of both photons and excitons and we
may write the polariton Hamiltonian as

Hpol =
∑

κ

(
EκB†

κBκ + h̄ω(κ)
(
a†

κaκ +
1

2

)

+ Cκ

(
aκBκ + aκB†

−κ + a†
−κBκ + a†

−κB†
−κ

))
(10.78)

The coupling reminds of the situation found for anti-ferromagnetic magnons in
Sect. 6.4 and can be exactly eliminated by looking for solutions with polariton
operators

ακ = A1aκ + A2Bκ + A3a
†
−κ + A4B

†
−κ. (10.79)

For the detailed calculation we refer to the literature [10, 14] and to the orig-
inal paper by Hopfield [291]. The eigenfrequencies of the polaritons are those
found with the phenomenological approach and show the anti-crossing behav-
ior (Fig. 10.7), which is typical for hybridization (see Sect. 5.4). The lower
polariton branch away from the exciton resonance is photon-like and follows
the linear dispersion, but turns over into the exciton dispersion and becomes
exciton-like. The upper polariton branch starts at the longitudinal exciton
energy but approaches for higher energy the linear dispersion of photons. The
existence of polaritons, as coupled exciton–photon modes is clearly demon-
strated by the quoted experiments. Thus, photons propagate through the solid
as polaritons, which convert to photons when passing back into the vacuum.
This means, that absorption is not the conversion of a photon into an elec-
tronic excitation like the exciton but due to polariton scattering (e.g., with
phonons or impurities), by which energy is dissipated into other excitations
of the solid.

10.5 Light-Scattering

Light-scattering, or more precisely inelastic light scattering, has, since its dis-
covery 1928 by Raman,3 gained much importance as a spectroscopical method,
especially with the availability of lasers as intense light sources. A compre-
hensive overview of the method, its applications, and the theoretical concepts
is given in a series of books with the topic Light Scattering [118]. A schematic
view, typical for all scattering experiments, is shown in Fig. 10.10.

The incident monochromatic light (vector potential A0(r, t)), with photon
energy h̄ω0 and photon momentum h̄κ0, is scattered at a sample (here the
solid), and the cross section for the scattered light (vector potential A1(r, t)),
with photons of energy h̄ω1 and momentum h̄κ1, is measured. It depends on
the energy and momentum transfer

3 Chandrasekhara Venkata Raman 1888–1970, Nobel prize in Physics 1930.
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Fig. 10.10. Schematic view of the light-scattering experiment

h̄ω = h̄ω0 − h̄ω1 , h̄q = h̄κ0 − h̄κ1, (10.80)

which, under the assumption of weak light–matter interaction, i.e., validity
of the Born approximation, provides information about an elementary exci-
tation with dispersion ω(q) in the sample. The light–matter interaction can
be described by the Hamiltonian Hel−rad of (10.13), with the vector potential
A(r, t) = A0(r, t) + A1(r, t). The cross section depends on both the incident
and scattered radiation fields, therefore, we expect contributions linear in the
product A0A1 not only from the first term of Hel−rad (Ap -coupling) in second
order but also from the second term, which already contains this product, in
first order perturbation theory (A2-coupling).

Fermi’s Golden Rule applied to the A2-coupling

HA0A1
=

e2

m
A0A1e0 · e1e

i(ω0−ω1)t
N∑

l=1

ei(κ0−κ1)·rl + h.c. (10.81)

allows to write down immediately the transition probability

Wi→f =
2π

h̄

(
e2A0A1

m

)2

|e0 · e1|2
∣∣∣〈f |

∑

l

eiq·rl |i〉
∣∣∣
2

δ(Ef − Ei ± h̄ω) (10.82)

and the differential scattering cross section

d2σ

dΩdω
=

h̄

2π

(
ω1

ω0A0A1

)2∑

i,f

Wi→f

=

(
ω1

ω0

)2
e4

m2
|e0 · e1|2

∑

i,f

|〈f |N−q|i〉|2 δ(Ef − Ei ± h̄ω). (10.83)

As can be seen from this expression, the scattering due to the A2-coupling is
caused by number fluctuations N−q =

∑
l exp(iq · rl) (see Sect. 4.5) and can

be related with the dynamic structure factor

S(q, ω) =
∑

i,f

|〈f |N−q|i〉|2 δ(ωf − ωi ± ω)

=
1

2π

∫ +∞

−∞

e±iωt〈Nq(t)N−q(0)〉dt, (10.84)
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Fig. 10.11. Feynman diagram for the light-scattering process with the A2-coupling
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Fig. 10.12. Schematic picture of the scattering cross section and of the diagram
of the involved energy levels. The peak of the cross section at ∆ω = 0 is due to
the unscattered light, while the satellites are due to stokes (S) and anti-stokes (AS)
scattering

where Ei,f = h̄ωi,f , or expressed by the energy–loss function. Thus, light-
scattering, employing the A2-coupling is capable to investigate collective
modes of the solids like charge or spin density excitations. We note in passing
that for inelastic electron scattering the same expression holds if e2|e0 ·e1|/m
is replaced by the Coulomb interaction vq (see (4.131). The scattering process
can also be visualized in a Feynman diagram (Fig. 10.11). The vertex of the
diagram represents the number fluctuation.

A schematic view of the scattering cross section and the energy levels
involved in the scattering process is shown in Fig. 10.12. The central peak at
∆ω = ω − ωf + ωi = 0 is caused by the unscattered laser light, the peaks at
positive (negative) ∆ω, called Stokes (anti-Stokes) line, result from creation
(annihilation) of an elementary excitation in the solid.

The Ap -coupling

HAp =
e

m

∑

l

(
e0A0e

i(κ0·r−ω0t) + e1A1e
i(κ1·r−ω1t)

)
+ h.c. (10.85)

contributes in second order perturbation theory by terms linear in both vector
potentials of incident and scattered light. The cross section essentially has
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the same structure as the one for the A2-coupling but e0 · e1 is replaced by

e1 ·δ
↔
χfi ·e0 under the sum over initial and final states. Here, the components

of the Raman tensor δ
↔
χfi are given by

〈f |δχµν |i〉 ∼
∑

z

Mµ
1,fzM

ν
0,zi

Ez − Ei − h̄ω
+ (0 ↔ 1). (10.86)

In dipole approximation, the matrix elements

Mµ
1,fz = 〈f |

∑

l

e−iκ1·rlplµ|z〉 and Mν
0,zi = 〈z|

∑

l

eiκ0·rlplν |i〉 (10.87)

reduce to the momentum matrix elements 〈f |plµ|z〉 and 〈z|plν |i〉, respectively,
if the corresponding transitions are dipole allowed.

In the foregoing, the states |i〉, |z〉, |f〉 are to be understood as exact eigen-
states of the solid, which are not known, but can be described approximately
with the concepts developed in the earlier chapters. Let us assume the Hamil-
tonian of the solid in the form H = Hel+Hph+Hel−ph for electrons, phonons,
and electron–phonon interaction as in Chap. 8. The eigenstates |γ〉 of Hel+Hph

are products of electron and phonon states in occupation number represen-
tation, while the eigenstates of H can be considered as quasi-particle states
with energies Eα +iΓα, with finite lifetime due to the interaction Hel−ph. The
exact intermediate state |z〉 can be expressed by the perturbation expansion

|z〉 = |γ〉 +
∑

γ′

|γ′〉〈γ′|Hel−ph|γ〉
Eγ − Eγ′

+ . . . (10.88)

and one obtains contributions to 〈f |δχµν |i〉 of first order in Hel−ph

〈f |δχµν |i〉 ∼
∑

γ,γ′

Mµ
fγMγγ′Mν

γ′i

(h̄ω0 − Eγ′ − iΓγ′)(h̄ω1 − Eγ − iΓγ)
+ (0 ↔ 1) , (10.89)

where Mγγ′ = 〈γ|Hel−ph|γ′〉. A graphical picture of such a contribution is
shown in Fig. 10.13 together with the energy level scheme. The incoming pho-
ton creates via Ap -coupling an electron-hole pair or exciton (a), which emits
(or absorbs) a phonon (b) and recombines via Ap -coupling to the scattered
photon (c). Higher order processes with Hel−ph are possible.

The process described here in detail is used to investigate phonons in bulk
material, quantum wells, or at surfaces. If optical phonons are involved, it
is called Raman scattering, while Brillouin scattering is due to emission or
absorption of acoustic phonons. Instead of the electron–phonon interaction as
the origin of the inelastic light-scattering, one could have also considered the
coupling between the electron system and other collective excitations like plas-
mons, plasmon–phonon modes, or magnons to map out dispersion. The energy
denominators in the scattering cross section can be exploited to enhance the
scattering efficiency by using the possible resonances of incident or scattered
light with the electronic excitation (resonant light-scattering).
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Fig. 10.13. Feynman diagram and level diagram for the light-scattering process
with Ap and electron–phonon coupling

10.6 Coherent Interband Dynamics

The light–matter interaction has been treated in the previous sections of this
chapter either as a time-dependent perturbation of the electron system on a
long time scale by applying Fermi’s Golden Rule or by creating the instante-
neous formation of polaritons as coupled modes of electronic excitation and
electro-magnetic field. In this section, we focus on the dynamics of the inter-
band transitions by looking at the light–matter system as a system of driven
oscillators or two-level systems on the very short time scale after excitation,
for which the polarization is in phase with the radiation field. Experimentally,
the investigation of this coherent regime is possible with spectroscopy using
light pulses in the ps and fs range. The approach of this and the following sec-
tion, which, besides light–matter interaction also includes many-body aspects,
provides a very general view, because previous results of this chapter can be
recovered as special cases[95, 284, 285].

Let us start with the Hamiltonian

H = H0 + HAp + HCoul . (10.90)

We adopt a semiconductor in the form of a two-band model with valence and
conduction band (n = c, v) separated by a direct gap at k = 0 and formu-
late the single-particle part of the system Hamiltonian in second quantization:

H0 =
∑

n=c,v

k

En(k)c†nkcnk . (10.91)

The light–matter interaction is reduced to the Ap -coupling written as

HAp = −
∑

k,κ

(
dcv(k) · E(κ, t)c†ckcvk−κ + h.c.

)
, (10.92)

with the dipole matrix element dcv(k) = e〈ck|r|vk〉 for the transition between
the valence and conduction band states at k and the (real) electric field vector
E(κ, t) for a harmonic wave with wave vector κ (see Problem 10.1). While
the interaction between all electrons in the filled valence band is considered
in the energies En(k) of the Bloch states (in the vein of DFT discussed in
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Chap. 5), we have to explicitly consider the Coulomb interaction between the
carriers created by the primary excitation

HCoul =
1

2

∑

k,k′

q �=0

vq

{
c†ck+qc†ck′−qcck′cck + c†vk+qc†vk′−qcvk′cvk

+ 2c†ck+qc†vk′−qcvk′cck

}
. (10.93)

Further simplifications can be made with the dipole approximation, according
to which the spatial variation of the electric field can be ignored with κ = 0,
and by considering electron–hole pair transitions only close to the fundamen-
tal gap at k = 0, which all have the same dipole matrix element dcv. For an
isotropic semiconductor and linearly polarized light we may simplify dcv ·E(t)
to the scalar form dcvE(t) and write the light–matter coupling in the form

HAp = −
∑

k

E(t)
(
dcvc†ckcvk + d∗cvc

†
vkcck

)
. (10.94)

Let us first study the kinetics of optical interband transitions with-
out the Coulomb interaction. This leaves us with a single-particle problem,
which can be solved by looking at the equations of motion for the oper-
ators c†ckcck, c†vkcvk, c†ckcvk, and c†vkcck. In the Schroedinger picture these
are time-dependent operators, their thermal expectation values ρnn′(k, t) =

〈c†nk(t)cn′k(t)〉 are elements of the time-dependent density matrix

ρk(t) =

(
ρcc(k, t) ρcv(k, t)
ρvc(k, t) ρvv(k, t)

)
(10.95)

of a two-level system at k. We switch to the interaction picture with

Ō = e
i
h̄
H0tOe−

i
h̄
H0t (10.96)

and write down the equation of motion for the density matrix

d

dt
ρ̄k(t) = − i

h̄

[
H̄Ap(t), ρ̄k(t)

]
, (10.97)

which for its elements have the following form (here ǫnk = En(k)/h̄):

d

dt
ρ̄cv(k, t) =

i

h̄
dcvE(t)ei(ǫck−ǫvk)t (ρ̄vv(k, t) − ρ̄cc(k, t)) (10.98)

d

dt
ρ̄cc(k, t) =

i

h̄
E(t)

(
dcve

i(ǫck−ǫvk)tρ̄vc(k, t) − c.c.
)

(10.99)

d

dt
ρ̄vv(k, t) =

i

h̄
E(t)

(
d∗cve

−i(ǫck−ǫvk)tρ̄cv(k, t) − c.c.
)
. (10.100)
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The diagonal elements are identical in the Schroedinger and interaction pic-
tures, ρnn(k, t) = ρ̄nn(k, t), and their time derivatives are identical up to a
sign change, dρvv(k, t)/dt = −dρcc(k, t)/dt, as can be seen from (10.99) and
(10.100). These equations describe the interband kinetics of free carriers at k.
It will be shown later, that excitations at different k are coupled due to HCoul.

Let us briefly assume quasi-thermal equilibrium, i.e., initially created elec-
trons in the conduction band and holes in the valence band are thermalized
within their respective bands. Then, the diagonal elements of the density
matrix are Fermi–Dirac distribution functions fck and fvk, respectively. For
this case, the calculation of the optical polarization P (t) = Tr (ρ(t)d), where
d is the electric dipole operator, yields the optical susceptibility χ(ω) and the
expression for the dielectric function ε(ω) derived in Sect. 10.2 (Problem 10.7).

The more interesting case is the time scale, on which the interband excita-
tion follows the same time dependence as the driving electric field, the coherent

regime. Let us look with

E(t) =
E0

2

(
eiωt + e−iωt

)
, (10.101)

at the equation of motion (10.98) for the off-diagonal element of the density
matrix

ρ̄cv(k, t) = ei(ǫck−ǫvk)tρcv(k, t) , (10.102)

which takes the form
(

d

dt
+ i(ǫck − ǫvk)

)
ρcv(k, t) =

idcv

h̄
E(t) (ρvv(k, t) − ρcc(k, t)) . (10.103)

The condition of almost resonant excitation with the detuning νk = ǫck−ǫvk−
ω is considered in the so-called rotating wave approximation by dropping the
term with exp(iωt) in E(t), which leads to

(
d

dt
+ iνk

)
ρcv(k, t)eiωt = − iωR

2
(ρcc(k, t) − ρvv(k, t))

d

dt
ρcc(k, t) = − d

dt
ρvv(k, t) = − iωR

2

(
ρcv(k, t)eiωt − c.c.

)
, (10.104)

with the Rabi4 frequency ωR = dcvE0/h̄. This set of equations is known as
coherent optical Bloch equations with reference to the Bloch equations used in
magnetic resonance spectroscopy. In order to show this relation, the complex
elements of the density matrix can be used to define three real components of
a vector, the Bloch vector

U1(k, t) = ρcv(k, t)eiωt + c.c.

U2(k, t) = i
(
ρcv(k, t)eiωt − c.c.

)

U3(k, t) = ρcc(k, t) − ρvv(k, t) , (10.105)

4 Isaac Isidor Rabi 1898–1988, Nobel prize in Physics 1944.
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whose time-dependence is ruled by

d

dt
U1(k, t) = −νkU2(k, t)

d

dt
U2(k, t) = +νkU1(k, t) + ωRU3(k, t)

d

dt
U3(k, t) = −ωRU2(k, t) , (10.106)

which can also be written also in the compact form as

d

dt
U(k, t) = Ω × U(k, t), (10.107)

with Ω = −ωRe1 + νke3. An equation of this form has been derived already
in Sect. 6.3 for the dynamics of spins; its mechanical analogue is the equation
of motion for an angular momentum under the action of a torque.

Under resonant excitation, νk = 0, the Bloch equation describes the rota-
tion of the Bloch vector around the −e1-axis with the Rabi frequency ωR.
Let us start at t = 0 with a population inversion described by U(t = 0) =
(0, 0,−U3). After a half period, one has U(t = π/ωR) = (0, 0, U3), i.e., the ini-
tial population inversion has changed its sign. This is called Rabi flopping. At
the intermediate time, π/2ωR U3 is completely converted into the component
U2 of the Bloch vector, which is connected with the dielectric polarization
P (t). During the rotation caused by the coupling to the radiation field, the
Bloch vector changes periodically between the components U3 and U2, or
between population inversion and interband polarization, respectively.

The resonant condition cannot be fulfilled at the same time for inter-
band transitions at different k, and the detuning νk �= 0 becomes important.
Let us consider a group of electron–hole pairs at different k, but initially
with same Bloch vector U (1) = (0, 0, U3). A short light pulse of dura-
tion t1 = π/2ΩR (so-called π/2 pulse) turns these Bloch vectors into the
2-direction, U (2) = (0, U2, 0), and they start to precess around the 3-direction
according to their individual detunings, i.e., the Bloch vectors run out of
phase and spread in the U1 − U2 plane. This spreading can be reversed by
applying, after some time, T , a π pulse (duration t2 = π/ΩR), which kicks
the Bloch vectors into the directions U (3) = (U1,−U2, 0) such that after 2T
their further precession around the 3-direction brings them all back to the
same phase with U (4) = (0,−U2, 0). This Bloch vector, which again is the
same for all electron–hole pairs, can be detected as emitted light pulse, the
photon echo. The photon echo can be observed only, if the phase coherence of
each Bloch vector (or electron–hole excitation) with the exciting light is not
destroyed.

The coherent optical Bloch equations exhibit some principle features in
the dynamics of interband excitations, which, in reality, will be changed due
to the finite lifetime of the single-particle states and destroy phase coher-
ence. This can be considered by adding phenomenological damping terms to
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the Bloch equations

d

dt
U1(k, t) = −U1(k, t)

T2
− νkU2(k, t)

d

dt
U2(k, t) = −U2(k, t)

T2
+ νkU1(k, t) + ωRU3(k, t)

d

dt
U3(k, t) = −U3(k, t) + 1

T1
− ωRU2(k, t) . (10.108)

The two time constants can be distinguished by their geometrical relation to
the components of the Bloch vector: the longitudinal relaxation time T1 (for
U3) is related with the diagonal elements of the density matrix, while the
transverse relaxation time T2 (for the components U1 and U2) refers to its off-
diagonal elements. Their physical content discloses by looking at the meaning
of the components of the Bloch vector: U3 describes the population inversion
of the two-level system, which decays with T1, the population lifetime, while
U1,2, describing the phase-coherent polarization of the two-level system, decay
with the phase relaxation, dephasing or decoherence time T2. Dephasing takes
place not only by scattering processes with phonons, lattice defects, and other
electronic excitations, but also by electron–hole recombination. If, besides
the latter, which is the only process contributing to T1, no other processes
contribute to T2, then T2 = 2T1, because the number of electron–hole pairs is
proportional to P 2 ∼ exp(−2t/T2). Including all other processes leads to the
relation T2 ≤ 2T1.

10.7 Semiconductor Bloch Equations

In order to include the particle interaction HCoul it is convenient to intro-
duce the electron–hole picture by replacing the Fermion operators according
to cck → αk and cvk → β†

−k. With these modifications, making use of
En(k) = En(−k) and replacing under the sum k by −k, the terms of the
system Hamiltonian can be written as

H0 =
∑

k

(
Ec(k)α†

kαk + Ev(k)βkβ†
k

)
(10.109)

HCoul =
1

2

∑

k,k′;q �=0

vq

(
α†

k+qα†
k′−qαk′αk + βk−qβk′+qβ†

k′β
†
k

+ 2α†
k+qβk′+qβ†

k′αk

)
(10.110)

HAp = −E(t)
∑

k

(
dcvα

†
kβ†

−k + h.c.
)
. (10.111)
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Bringing the hole operator terms into normal order one finds with

∑

k,k′;q �=0

vqβk−qβk′+qβ†
k′β

†
k =

∑

k,k′,q �=0

vqβ†
k+qβ†

k′−qβk′βk

+ 2
∑

q �=0

∑

k

β†
kβk −

∑

k;q �=0

vq (10.112)

and single-particle energies Ee(k) = Ec(k) for electrons and Eh(k) =
−Ev(k) +

∑
q �=0 vq for holes

H0 + HCoul =
∑

k

(
Ee(k)α†

kαk + Eh(k)β†
kβk − 1

2

∑

q �=0

vq

)

+
1

2

∑

k,k′;q �=0

vq

(
α†

k+qα†
k′−qαk′αk + β†

k+qβ†
k′−qβk′βk

− 2α†
k+qβ†

k′−qβk′αk

)
. (10.113)

In the first part of this section, we have investigated the dynamics of
the two-level system with an electron in the conduction band and a hole in
the valence band by taking into account only the single-particle terms in the
equation-of-motion of the density matrix. Now, we also consider the contribu-
tion of the particle interactions H′

Coul represented by the four-operator terms
in (10.113). This is done in three steps. The first step is the calculation of the

commutators between H′
Coul and the operators α†

kαk, β†
kβk, and α†

kβ†
−k (Prob-

lem 10.8). In the second step, we replace the operator terms by their thermal

expectation values. The two-operator terms 〈α†
kαk〉 = fek and 〈β†

kβk〉 = fhk

have the obvious meaning of electron and hole populations at wave vector
k, while 〈α†

kβ†
−k〉 = P ∗

k is the macroscopic polarization due to the applied
external field. With the results of Problem 10.8, the equations of motion of
these quantities take the following form [284]:

∂

∂t
P ∗

k (t) = i

(
Ee(k) + Eh(k)

)

h̄
P ∗

k (t) + id∗cvE∗(t)
(
fek(t) + fhk(t) − 1

)

+ i
∑

k′;q �=0

vq

(
〈α†

k−qα†
k′+qαk′β†

−k〉 − 〈α†
kα†

k′+qαk′β†
−k−q〉

+ 〈α†
kβ†

−k−qβ†
k′+qβk′〉 − 〈α†

k+qβ†
k′−qβk′β†

−k〉
)
, (10.114)

∂

∂t
fek(t) = −2Im

(
dcvE(t)P ∗

k (t)
)

+ i
∑

k′;q �=0

vq

(
〈α†

kα†
k′−qαk−qαk′〉 − 〈α†

k+qα†
k′−qαkαk′〉

+ 〈α†
kα†

k−qβ†
k′−qβk′〉 − 〈α†

k+qαkβ†
k′−qβk′〉

)
, (10.115)
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∂

∂t
fhk(t) = −2Im

(
dcvE(t)P ∗

k (t)
)

+ i
∑

k′;q �=0

vq

(
〈β†

−kβ†
k′−qβ−k−qβk′〉 − 〈β†

−k+qβ†
k′−qβ−kβk′〉

+ 〈α†
k′+qα†

k′β
†
−kβ−k+q〉 − 〈α†

k′+qαk′β†
−k−qβ−k〉

)
. (10.116)

In the last step we factorize the expectation values of the four-operator terms
into expectation values of two-operator terms, following the concept of the
Hartree–Fock approximation (see Sect. 4.4). Only those products are consid-
ered whose factors are diagonal in the wave vector indices and thus, represent
macroscopic expectation values. Let us take as an example:

〈α†
k−qα†

k′−qαk′β†
−k〉 = −〈α†

k−qαk′α†
k′−qβ†

−k〉
+ 〈α†

k′−qαk′α†
k−qβ†

−k〉 (10.117)

The two terms can be factorized into products of macroscopic expectation
values appearing in the equations of motion to give

〈α†
k−qα†

k′−qαk′β†
−k〉 ≃ −δk−q,k′ 〈α†

k−qαk−q〉
︸ ︷︷ ︸

fek−q

〈α†
kβ†

−k〉︸ ︷︷ ︸
P∗

k

+ δq,0〈α†
k′αk′〉〈α†

kβ†
−k〉 , (10.118)

where the last term does not contribute under the sum over q because q = 0
is excluded. In the same way, one finds

〈α†
kα†

k′−qαk−qαk′〉 ≃
(
δk,k′ − δq,0

)
fek(t)fek′(t) , (10.119)

where the second term does not contribute under the sum over q �= 0. The
neglected terms represent collision terms, while the remaining ones give the
following set of equations

∂

∂t
Pk(t) = − i

(
ǫek + ǫhk

)
Pk(t)

− i
fek(t) + fhk(t) − 1

h̄

[
dcvE(t) +

∑

q �=0

vqPk−q(t)
]
(10.120)

∂

∂t
fek(t) = − 2

h̄
Im
{[

dcvE(t) +
∑

q �=0

vqPk−q(t)
]
P ∗

k (t)
}

(10.121)

=
∂

∂t
fhk(t) . (10.122)

Here h̄ǫik = En(k) + Σi(k), i = e, h are the renormalized single-particle
energies with the self-energy

Σi(k) = −
∑

q

v|k−q|fiq . (10.123)
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We introduce the generalized Rabi frequency

ωR,k(t) =
1

h̄

[
dcvE(t) +

∑

q �=k

v|k−q|Pq(t)
]
, (10.124)

which combines the applied field with the dipole field of the generated
electron–hole pairs, and arrive at the semiconductor Bloch equations:

∂

∂t
Pk(t) = −i (ǫek + ǫhk)Pk(t) − i (fek(t) + fhk(t) − 1)ωR,k(t) (10.125)

∂

∂t
fek(t) = −2Im (ωR,k(t)P ∗

k (t)) =
∂

∂t
fhk(t). (10.126)

For vq → 0, i.e., when switching off the Coulomb interaction, these equations
reduce to the optical Bloch equations.

In spite of their simple form, these equations describe the rather complex
dynamics of electron–hole pair excitations in that they include many-body
effects within the Hartree–Fock approximaton. This results in the renormal-
ization of the single-particle energies and of the Rabi frequency, but (with the
population inversion factor) takes into account also the filling of the phase
space by the occupation of the single-particle states due to the light–matter
interaction. The occupied states (electrons in the conduction band and holes
in the valence band) reduce the available phase space for further excitations
because of the Pauli principle. This phase space filling is known as the Pauli
blocking. The semiconductor Bloch equations and their extensions, includ-
ing collision terms, are prerequisite in modelling nonlinear susceptibilities to
describe data from time-resolved spectroscopy or in designing semiconductor
lasers. Damping terms with longitudinal and transverse relaxation times T1,2

can be added as in the optical Bloch equations and part of their microscopic
origin can be calculated by considering the collision terms.

Problems

10.1 Show with the help of p/m = −i/h̄[r, H0] that, in matrix representa-
tion with eigenstates of H0, the Ap -coupling term can be expressed
(for resonant excitation) as dcv · E with the dipole matrix element
dcv = −e〈c0|r|v0〉 between band edge Bloch functions.

10.2 Make use of the Wannier representation (see Problem 6.2) to show that
the momentum matrix element between Bloch functions is diagonal in
the wave vector.

10.3 Make use of the solution of the hydrogen problem to express |φν(0)|2 in
terms of a confluent hypergeometric function for positive and negative
energies. Find the dependence of this expression for the bound states
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in dependence on the quantum number n and calculate the absorption
coefficient for the electron–hole continuum.

10.4 Formulate the exciton operators Bν,Q, B†
ν,Q in terms of products of

fermion operators for electrons in the conduction and valence band. Cal-
culate the commutator between the exciton operators and define the
condition under which excitons can be considered as bosons.

10.5 Start with the phenomenological result of (10.42) close to an excitonic
resonance at Eν0 = h̄ων0 and express the LT-splitting of this exciton in
terms of its oscillator strength! Consider the first term of the exchange
interaction in (10.62) to calculate the LT-splitting as a perturbation cor-
rection to the (transverse) exciton energy Eν0 and verify by comparison
with the phenomenological result the expression for the exciton oscillator
strength given in (10.43).

10.6 Make use of the expansion

A(r, t) =
∑

λ,κ

(
h̄

2ε0ω(κ)V

)1/2

eλκ

(
aλκ(t) + a†

λκ(t)
)

eiκ·r (10.127)

of the vector potential in terms of Boson operators aλκ(t), where
eλκ, λ = 1, 2 are transverse unit vectors with eλκ · κ = 0, to show
that the Hamiltonian of the radiation field Hrad takes the form

Hrad =
∑

λ,κ

h̄ω(κ)

(
a†

λκaλκ +
1

2

)
. (10.128)

10.7 Make use of the equation of motion for the off-diagonal element of the
density matrix under quasi-equilibrium condition to calculate the dielec-
tric polarization P (t) = Tr(ρcv(k, t)dcv) and the dielectric susceptibility
χ(ω). Recover the result for the imaginary part of the dielectric function
ε2(ω) obtained in Sect. 10.2.

10.8 Calculate the commutators of H′
Coul with the operators α†

kαk, β†
kβk and

α†
kβ†

−k to verify (10.114 . . . 116).
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Appendices

A.1 Elements of Group Theory

Geometrical operations (translation, rotation, inversion), which leave a geo-
metrical object (here, the crystal lattice) invariant, are symmetry operations.
Mathematically, they form a group, the symmetry group of the crystal: for the
translations it is the translation group, for the rotations, inversion, and their
combinations it is the point group. The number g of elements in the group
is its order. The symmetry of a system implies the invariance of the system
Hamiltonian H (be it for phonons, electrons, or magnons) under unitary oper-
ations corresponding to the geometrical operations of the symmetry group.
These unitary operations form a group which is isomorphic to the symmetry
group. When applied to a set of eigenfunctions of H , this set is transformed
into another set of eigenfunctions, which can be represented as a linear com-
bination of the former ones. The eigenfunctions of a degenerate eigenvalue
transform among each other and form an invariant subspace in the Hilbert
space of H . In a chosen basis, these unitary operations can be formulated as
matrices which define another group isomorphic to the symmetry group. For
a proper choice of the basis, all matrices of the matrix representation have
block-diagonal form with the dimension of the block matrices indicating the
degeneracy of the invariant subspaces. These subspaces, spanned by the set
of degenerate eigenfunctions, can be classified by characteristic properties of
the corresponding block matrices using the character tables of the symmetry
group and the concept of irreducible representations [47–50].

The symmetry classification of eigenstates is the simplest for the transla-
tion group and finds its expression in Bloch’s theorem. A translation operator
TR applied to a Bloch function ψk(r) yields

TRψk(r) = ψk(r + R) = e−ik·Rψk(r) (A.1)

i.e., it multiplies the Bloch function by a phase factor depending on the
wave vector k and the translation R. Owing to the fact that translations
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commute with each other (the translation group is Abelian), there are only
one-dimensional representations, namely the phase factors.

The spherical symmetry of the Coulomb potential leads to the angular
momentum classification of the eigenstates of an atom. For the hydrogen
problem, we have the (2l + 1)-fold states with angular momentum l. They
transform under rotations with the corresponding (2l + 1) × (2l + 1) matri-
ces Dl(α, β, γ), which form a (2l + 1)-dimensional irreducible representation
of the full rotation group. The group elements depend continuously on the
parameters α, β, and γ which define the group element by the three Euler
angles.

In contrast with the full rotation group (which is infinite and continuous)
the point groups of crystal lattices are finite and discrete. For example, the
symmetry group of a cube, Oh, is the same as that of the sc, bcc, and fcc
lattices. It consists of 48 elements: the identity (E), three axes with four-
fold rotations (C4, C

2
4 ), four axes with threefold rotations (C3), six axes with

twofold rotations (C2), and all these operations combined with the inversion
(J). In general, the elements of the point group do not commute (the group
in non-Abelian). However, the point group falls into disjunct classes of conju-
gated elements, where group elements A and B are called conjugated to each
other if the relation A = XBX−1 holds for all X of the group. For the cubic
point group there are 10 classes:

E, 3C2
4 , 6C4, 8C3, 6C2, J, 3JC2

4 , 6JC4, 8JC3, 6JC2 (A.2)

where the numbers in front of the symbols for the symmetry operations give
the number of group elements belonging to the class.

Consider now the block matrices that transform the degenerate invariant
subspaces. They are d dimensional irreducible representations of the symme-
try group. Different irreducible representations with the same dimension d,
D(X), D′(X), are equivalent if there is a d dimensional matrix M with
‖M‖ �= 0 and D(X) = MD′(X)M−1 for all elements X of the group. Note,
that with respect to this operation with M , the coefficients of the characteris-
tic polynomial of D(X), especially the trace of D(X) or the character, do not
change. Thus, inequivalent irreducible representations can be distinguished
by looking at their characters. Similarly for the operation of conjugation:
all matrices of an irreducible representation belonging to a class have the
same character. This leads to the character table listing the characters of the
inequivalent irreducible representations for the different classes of conjugated
elements. These irreducible representations play the same role in classifying
the eigenstates of H with respect to the point group as the crystal momentum
k does for the translation group and the angular momentum l for the rota-
tion group. Their meaning is that of quantum numbers due to the underlying
symmetry. Already knowing the classes, it remains now to specify the number
of the inequivalent irreducible representations and their dimensions.

According to the theorems of the theory of finite groups, the number of
classes equals the number of irreducible representations, i.e., the character
table has the same number of rows and columns. Moreover, the sum over the
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squared dimensions of the irreducible representations (which is the sum of the
characters for the class containing the identity E, because it is represented by
d-dimensional unit matrices) must be equal to the order g of the group. As it
turns out, the order of the cubic symmetry group can be decomposed only in
one way into 10 squared integers:

48 = 2(12 + 12 + 22 + 32 + 32), (A.3)

i.e., the group has four one-dimensional, two two-dimensional, and four three-
dimensional irreducible representations. As the inversion J is an element of
the group, the eigenstates can be classified as having even or odd parity. This
is considered in the notation of the irreducible representations by a ± or g, u
(for gerade or ungerade). Another remarkable property of the character table
is that the rows and columns understood as vectors are orthogonal to each
other when properly weighted with the number of elements in a class. These
are the famous orthogonality relations of the characters.

Different notations are in use for the irreducible representations of the
cubic point group Oh (see the character table). The notation with the symbols
A, E, and T for one-, two-, and three-dimensional representations, respec-
tively, is applied to characterize localized (e.g., impurity) states of the given
point symmetry, while the notation with the symbol Γ refers to the Bloch
states at the center of the Brillouin zone with k = (0, 0, 0). (Note, that this
wave vector does not change under the symmetry operations and therefore,
the group of this wave vector is the point group of the crystal.) Of the two dif-
ferent notations with the symbol Γ the one with double indices is the older one
and indicates the removal of the level degeneracy for finite k. These symbols
are found e.g., in some figures of Chaps. 5 and 9.

Character table of the point group Oh

E 3C2
4 8C3 6C4 6C2 J 3JC2

4 8JC3 6JC4 6JC2

A1g Γ+
1 Γ+

1 1 1 1 1 1 1 1 1 1 1

A2g Γ+
2 Γ+

2 1 1 1 −1 −1 1 1 1 −1 −1

Eg Γ+
3 Γ+

12 2 2 −1 0 0 2 2 −1 0 0

T1g Γ+
4 Γ+

15 3 −1 0 1 −1 3 −1 0 1 −1

T2g Γ+
5 Γ+

25 3 −1 0 −1 1 3 −1 0 −1 1

A1u Γ−
1 Γ−

1 1 1 1 1 1 −1 −1 −1 −1 −1

A2u Γ−
2 Γ−

2 1 1 1 −1 −1 −1 −1 −1 1 1

Eu Γ−
3 Γ−

12 2 2 −1 0 0 −2 −2 1 0 0

T1u Γ−
4 Γ−

15 3 −1 0 1 −1 −3 1 0 −1 1

T2u Γ−
5 Γ−

25 3 −1 0 −1 1 −3 1 0 1 −1

It is quite instructive to specify objects (wave functions, operators) that
transform according to these irreducible representations. Using the fact, that
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the crystal point groups are subgroups of the full rotation group, this can be
done by formulating the spherical harmonics in Cartesian coordinates to find
the so-called cubic harmonics, which for l = 0, 1, 2, 3 are given by

l = 0 → 1 (Γ+
1 )

l = 1 → x, y, z (Γ−
4 )

l = 2 → z2 − 1

2
(x2 + y2), x2 − y2 (Γ+

3 ) ; yz, zx, xy (Γ+
5 )

l = 3 → xyz (Γ−
2 ) ; z(x2 − y2), x(y2 − z2), y(z2 − x2) (Γ−

5 ).

Thus, the fivefold degeneracy of the l = 2 spherical harmonics splits under
the reduced symmetry of the cubic point group into a twofold (Γ+

3 ) and a
threefold level (Γ+

5 ), which is the crystal field splitting discussed in Sect. 5.5
and Problem 5.8. Of the seven spherical harmonics with l = 3 only four appear
in this list, while the remaining three are cubic harmonics which transform as
Γ−

4 , i.e., the cubic crystal field causes a mixing of angular momentum states
with l = 1 and 3.

The point group Td of the zinc blende lattice is a subgroup of Oh and con-
tains the classes E, 3C2

4 , 8C3, 6JC4, and 6JC2. Consequently, the number
of irreducible representations is reduced to five. Considering only the corre-
sponding columns in the character table of Oh, we find identical rows for pairs
of representations which merge into one irreducible representation of Td. Thus,
the character table of Td is obtained from that of Oh. Note that Td does not
contain the inversion J and eigenstates cannot be classified by parity.

Character table of the point group Td

E 3C2
4 8C3 6JC4 6JC2

A1 Γ1 Γ1 1 1 1 1 1

A2 Γ2 Γ2 1 1 1 −1 −1

E Γ3 Γ12 2 2 −1 0 0

T1 Γ4 Γ15 3 −1 0 1 −1

T2 Γ5 Γ25 3 −1 0 −1 1

The crystal momentum k is a good quantum number. Thus, for finite
k the eigenstates have to be classified by the irreducible representations of
the group of the wave vector, consisting of all elements of the crystal point
group which do not change k. For k ‖ (1, 0, 0) or along the ∆-axis of the
Brillouin zone the cubic point group Oh reduces to C4v with eight elements in
five classes, and Td to C2v with four elements each in one class. Decomposing
8 = 1+1+1+1+22 gives the dimensions of the five irreducible representations
of C4v, while (obviously) C2v has four one-dimensional representations. The
notation of the irreducible representations reminds of the ∆-axis. The group of
the wave vector along (1,0,0) keeps x unchanged while y and z change. Thus, x
transforms as ∆1, while for C4v y and z transform into each other like ∆5 and
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the threefold states of symmetry Γ−
4 split into ∆1 + ∆5 (which is considered

the notation Γ−
15). This explains the splitting of the phonon dispersion curves

(Chap. 3) and of the energy bands (Chap. 5) away from the Γ point. For C2v,
y and z transform according to different irreducible representations ∆3, ∆4 but
due to time invariance these states are degenerate. Similar considerations hold
for the other directions in k space.

C4v E C2
4 2C4 2JC2

4 2JC2

∆1 1 1 1 1 1

∆2 1 1 1 −1 −1

∆3 1 1 −1 1 −1

∆4 1 1 −1 −1 1

∆5 2 −2 0 0 0

C2v E C2
4 JC2 JC′

2

∆1 1 1 1 1

∆2 1 −1 1 −1

∆3 1 1 −1 −1

∆4 1 −1 −1 1

A.2 Fourier Series and Fourier Transforms

Consider a function f(x) defined in the interval −L/2 ≤ x ≤ +L/2 or a
periodic function f(x+ L) = f(x). It can be represented by the Fourier series

f(x) =

+∞∑

n=−∞

Fkn
eiknx, with kn =

2nπ

L
, n integer. (A.4)

The Fourier coefficients are given by

Fkn
=

1

L

∫ +L/2

−L/2

f(x)e−iknxdx. (A.5)

If the length L is taken as the linear extension of a solid and f(x) as a wave
function describing some state of the solid, the periodicity of f(x) reflects the
reasonable assumption that the physical properties connected with this state
repeat with the period L or, what is equivalent, that they do not depend on L.
This is the concept of periodic boundary conditions.

The Fourier series expansion makes use of the fact that complex exponen-
tials are normalized and orthogonal, i.e.,

1

L

∫ +L/2

−L/2

e−ikmxeiknxdx = δmn, (A.6)

and that they form a complete set on the interval of length L:

1

L

∑

n

eikn(x−x′) = δ(x − x′). (A.7)
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In the limit L → ∞ the discrete kn become the k space variable and (A.5)
the Fourier transform

F (k) =
1

2π

∫ +∞

−∞

f(x)e−ikxdx. (A.8)

In generalizing to the three-dimensional case we may write

f(r) =
∑

k

Fkeik·r, (A.9)

where the components of the wave vector k can take the values ki =
2πni/Li, i = 1, 2, 3 with integer ni, i.e., the sum over k is to be under-
stood as the triple sum over all integer values of ni. The orthogonality and
normalization of the complex exponentials is expressed as

1

V

∫

V

ei(k−k′)·rd3r = δk,k′ (A.10)

and the completeness as

1

V

∑

k

eik(r−r′) = δ(r − r′), (A.11)

where V = L1L2L3 is the periodicity or crystal volume. The Fourier coeffi-
cients take the form

Fk =
1

V

∫

V

f(r)e−ik·rd3r. (A.12)

In this book, discreteness of the k resulting from the finite volume V is
frequently used. Nevertheless, we shall denote Fk as the Fourier transform
of f(r). On the other hand, the discrete sum over k can be evaluated as an
integral with the replacement

∑

k

⇒ V

(2π)3

∫
d3k, (A.13)

where (2π)3/V is the volume for each discrete k. Let us take f(r) = 1/|r| as
an example by showing that

1

r
=

1

V

∑

k

4π

k2
eik·r. (A.14)

This is done in the following steps. First, we carry out the summation over k

on the rhs as an integral in spherical polar coordinates

1

V

∑

k

4π

k2
eik·r =

V

(2π)3
4π

V

∫ 2π

0

dφ

∫ π

0

dθ sin θ

∫ ∞

0

dkeikr cos θ. (A.15)
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The integration over φ gives a factor 2π and the integration over θ can be
performed with the substitution cos θ = z

· · · =
1

π

∫ ∞

0

dk

∫ +1

−1

dzeikrz =
1

π

∫ ∞

0

dk
1

ikr

(
eikr − e−ikr

)
. (A.16)

With the substitution x = kr and by writing the complex exponentials as the
sin-function, we find

· · · =
2

π

1

r

∫ ∞

0

dx
sin x

x
. (A.17)

The last integral gives π/2 and we arrive at the lhs of (A.14).

A.3 Fermi and Bose Integrals

Frequently, physical quantities of fermion systems are expressed in terms of
integrals of the form

Iα(μ, T ) =

∫ ∞

0

Eαf(E, μ, T )dE, (A.18)

with the Fermi–Dirac distribution function

f(E, μ, T ) =
1

e(E−µ)/kBT + 1
. (A.19)

Examples are the particle density n and the ground state energy E0(T ) of free
electrons in Sect. 4.1 with α = 1/2 and α = 3/2, respectively. By substituting
x = E/kBT and η = μ/kBT the integral Iα(μ, T ) can be written

Iα(μ, T ) = (kBT )α+1Γ(α + 1)Fα(η), (A.20)

with the Gamma function or Euler integral

Γ(α) =

∫ ∞

0

tα−1e−tdT , Reα > 0 (A.21)

and the Fermi integral of index α [244, 245, 292]

Fα(η) =
1

Γ(α + 1)

∫ ∞

0

xα

ex−η + 1
dx. (A.22)

In a three-dimensional system, one has for the particle density (with
Γ(3/2) =

√
π/2)

n =

∫ ∞

0

D(E)f(E, μ, T )dE = 2

(
mkBT

2πh̄2

)3/2

F1/2

(
μ

kBT

)
, (A.23)
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because the density of states D(E) ∼ E1/2, while the ground state energy can
be written (with Γ(5/2) = 3

√
π/4)

E0(T ) =

∫ ∞

0

ED(E)f(E, μ, T )dE

= 3

(
m

2πh̄2

)3/2

(kBT )5/2F3/2

(
μ

kBT

)
. (A.24)

Sometimes also integrals of the form

J(μ, T ) =

∫ ∞

0

φ(E)
d

dE
f(E, μ, T ). (A.25)

appear [245], e.g., in the transport relaxation times for different scattering pro-
cesses in Sect. 8.3. For the derivative of the Fermi–Dirac distribution function
we may write with x = (E − μ)/kBT ,

df

dE
=

1

kBT

df

dx
= − 1

kBT
(ex + 1)−1 (e−x + 1

)−1
, (A.26)

which has a pronounced maximum at x = 0. Expand the function φ(E) (which
is assumed to be smooth) around x = 0 or E = μ

φ(E) = φ(μ + xkBT ) =

∞∑

n=0

(kBT )n

n
φ(n)(μ)xn, (A.27)

with φ(n)(μ) being the nth derivative, to obtain (with dE = kBTdx)

J(μ, T ) =

∞∑

n=0

(kBT )n

n
φ(n)(μ)

∫ ∞

−µ/kBT

xn df

dx
dx. (A.28)

For μ ≫ kBT , the lower limit of the integral tends to −∞ and one defines

Jn =

∫ ∞

−∞

xn−1 df

dx
dx. (A.29)

Because df/dx is an even function, all integrals Jn with even n vanish. For
odd n we obtain

J1 =

∫ ∞

−∞

f ′(x)dx = −1 (A.30)

J3 =

∫ ∞

−∞

x2f ′(x)dx = −2

∫ ∞

0

x2e−x

(1 + e−x)
2 dx

= −4

∞∑

k=0

(−1)k

(k + 1)2
= −π2

3
(A.31)
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(for the last see [293]). Thus, one obtains

J(μ, T ) = −φ(μ) − π2

6
(kBT )2φ′′(μ) + . . . . (A.32)

For μ = 0 the Fermi integral is given in closed form by [293]

∫ ∞

0

xν−1

ex + 1
dx =

(
1 − 21−ν

)
Γ(ν)ζ(ν), Reν > 0 (A.33)

and the corresponding Bose integral by

∫ ∞

0

xν−1

ex − 1
dx = Γ(ν)ζ(ν), Reν > 1 (A.34)

with the Γ-function and Riemann’s zeta-function

ζ(z) =

∞∑

n=1

1

nz
, Rez > 1. (A.35)

A.4 Sommerfeld Expansion

In connection with electronic properties, integrals of the form

I(T ) =

∫ +∞

−∞

g(E)f(E, μ, T )dE (A.36)

have to be evaluated frequently, where f(E, μ, T ) is the Fermi–Dirac distri-
bution function. Special cases are: the number of electrons in occupied states
(with g(E) = D(E), the density of states) and the total energy of these elec-
trons (with g(E) = ED(E)). In these cases, the evaluation of the integral is
possible if g(E) fulfills the following conditions: (1) it should not be singular
for E ≃ EF, (2) it should vanish for E → −∞, and (3) it should diverge for
E → +∞ not stronger than some power in E. These conditions allow to write
the integral (A.36) in the form of a series

I(T ) =

∫ µ

−∞

g(E)dE +

∞∑

n=1

αn(kBT )2ng(2n−1)(μ), (A.37)

where g(2n−1)(μ) is the (2n − 1)th derivative of g(E) taken at the chemical
potential μ. The coefficients αn are determined by Riemann’s zeta function

αn = 2

(
1 − 1

22n−1

)
ζ(2n), ζ(n) =

∞∑

p=1

1

pn
. (A.38)

This expansion, originally derived in [109], is known as the Sommerfeld

expansion.



334 A Appendices

The validity of (A.36) can be demonstrated as follows: Define a function
p(E) whose derivative is g(E) or

p(E) =

∫ E

−∞

g(x)dx ←→ g(E) =
dp(E)

dE
(A.39)

and write the integral (A.36) as

I(T ) =

∫ +∞

−∞

dp(E)

dE
f(E, μ, T )dE

= p(E)f(E, μ, T ) |+∞
−∞ −

∫ +∞

−∞

p(E)
df(E, μ, T )

dE
dE. (A.40)

Making use of the Taylor expansion of p(E) about μ

p(E) = p(μ) +

∞∑

n=1

(E − μ)n

n!
p(n)(μ) (A.41)

and of the fact that the derivative of the Fermi–Dirac distribution function
(with β = 1/kBT )

df(E, μ, T )

dE
= − βeβ(E−µ)

(
1 + eβ(E−µ)

)2 =
−β

4 cosh2 (β(E − μ)/2)
(A.42)

is an even function in E − μ, this can be written

I(T ) =

∫ µ

−∞

g(E)dE + β

∞∑

n=1

1

2n!
g(2n−1)(μ)I2n(T ), (A.43)

where

I2n(T ) =

∫ +∞

−∞

(E − μ)2n exp (β(E − μ))

(exp (β(E − μ)) + 1)
2 dE, x = β(E − μ)

= β−(2n−1)

∫ +∞

−∞

x2n ex

(ex + 1)2
dx

= −2β−(2n−1)

[
d

dλ

∫ ∞

0

x2n−1

exp (λx) + 1
dx

]

λ=1

, λx = u

= −2β−(2n−1)

[
d

dλ
λ−2n

∫ ∞

0

u2n−1

eu + 1
du

]

λ=1

= 4nβ−(2n−1)

∫ ∞

0

u2n−1

eu + 1
du

= 2

(
1 − 1

22n−1

)
(2n)!ζ(2n)β−(2n−1). (A.44)

Thus, we arrive at the expression (A.37).
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Usually g(E) is a power function and each derivative means a division
by μ. As a consequence, subsequent terms in the series decrease by a factor
(kBT/μ)2 and for kBT ≪ μ fast convergence is achieved. The coefficients of
the leading terms take the values

α1 = ζ(2) =
π2

6
and α2 =

7π4

360
. (A.45)

A.5 Calculation of the Exchange Energy

The sums over q and p can be performed as integrals over the Fermi sphere
after replacing |p − q| with the cosine relation

Eexch = −
∑

q,p,q �=p

|q|,|p|≤kF

e2

ε0V |q − p|2

= − e2

ε0V

V 2
c

(2π)6

∫ ∫

|p|,|q|≤kF

d3qd3p
1

p2 + q2 − 2pq cosϑ
, (A.46)

where ϑ is the angle between q and p. The square root of the integrand is
known as the generating function of Legendre’s polynomials, i.e.,

1

(1 + x2 − 2x cosϑ)1/2
=

∞∑

L=0

xLPL(cosϑ), x < 1. (A.47)

In the double integral we have to distinguish p < q (x = p/q) and p > q
(x = q/p), which gives two identical contributions, and we can write

Eexch = − e2

ε0(2π)6
2V

∫

|p|<kF

d3p

∫

q<p

2πq2dq
1

p2

∑

LL′

(
q

p

)L+L′

×
∫ π

0

d cosϑ PL(cosϑ)PL′(cosϑ). (A.48)

The integral over ϑ is performed by making use of the orthogonality of the
Legendre polynomials to obtain

Eexch = − e2V

πε0(2π)4

∫

|p|<kF

d3p
∑

L

2

2L + 1

∫ p

0

(
q

p

)2L+2

dq. (A.49)

The integral over q yields p/(2L + 3) and allows one to perform the integral
over p in spherical polar coordinates:

Eexch = − e2V

πε0(2π)4

∑

L

2

(2L + 1)(2L + 3)
4π

k4
F

4
. (A.50)
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Summing over L with the help of
∞∑

L=0

1

(2L + 1)(2L + 3)
=

1

2

∞∑

L=0

(
1

2L + 1
− 1

2L + 3

)
=

1

2
, (A.51)

we eventually find

Eexch = −
∑

q,p,q �=p

|q|,|p|≤kF

e2

ε0V |q − p|2 = − 3

16π2ε0
Ne2kF. (A.52)

A.6 Operators in Fock Representation

Using field operators (see Problem 4.8) a one-particle operator can be written

Â1 =

∫
Ψ†(r)Â1(r)Ψ(r)d3r. (A.53)

The expansion

Ψ(r) =
∑

i

cαi
ψαi

(r) (A.54)

with fermion operators cαi
and a complete set of single-particle wave functions

ψαi
(r) leads immediately to (4.76)

Â1 =
∑

i,j

c†αi
cαj

∫
ψ∗

αi
(r)Â1(r)ψαj

(r)d3r

︸ ︷︷ ︸
〈ψαi

|Â1|ψαj
〉

. (A.55)

If ψαj
(r) is an eigenfunction of Â1(r) with eigenvalue Aαj

, this reduces to

Â1 =
∑

j

Aαj
c†αj

cαj
. (A.56)

The two-particle operator written in fermion field operators

Â2 =

∫ ∫
Ψ†(r1)Ψ

†(r2)Â2(r1, r2)Ψ(r2)Ψ(r1)d
3r1d

3r2 (A.57)

takes, with the expansion (A.54), the form

Â2 =
∑

i,j,k,l

c†αi
c†αj

cαk
cαl

×
∫ ∫

ψ∗
αi

(r1)ψ
∗
αj

(r2)Â2(r1, r2)ψαk
(r2)ψαl

(r1)d
3r1d

3r2. (A.58)

By convention, the matrix element is written as 〈ψ(1)
αi ψ

(2)
αj |Â2|ψ(1)

αl ψ
(2)
αk 〉 and

one obtains (4.77)

Â2 =
∑

i,j,k,l

〈ψ(1)
αi

ψ(2)
αj

|Â2|ψ(1)
αl

ψ(2)
αk

〉c†αi
c†αj

cαk
cαl

. (A.59)
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Phys. 78, 809 (2006)
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Solutions

Solutions for Chap. 1

1.1:
Point lattice: Set of lattice vectors Rn =

∑d
i=1 niai , ni integer,

ai linear independent (d dimension of the system)

Reciprocal lattice: Gm =
∑d

j=1 mjbj , mj integer,

bj linear independent, and ai · bj = 2πδij

Wigner–Seitz cell: Contains all points which are closer to a given Rn

Than to any other Rn′ = Rn

(First) Brillouin zone: Wigner–Seitz cell of the reciprocal lattice

d = 2, square lattice: a1 = a(1, 0) , a2 = a(0, 1)
→ b1 = 2π/a(1, 0) , b2 = 2π/a(0, 1)

d = 3, simple cubic (sc), body centered cubic (bcc), face centered cubic (fcc)
sc: a1 = a(1, 0, 0) , a2 = a(0, 1, 0) , a3 = a(0, 0, 1)
→ b1 = 2π/a(1, 0, 0) , b2 = 2π/a(0, 1, 0) , b3 = 2π/a(0, 0, 1)

bcc: a1 = a/2(1, 1,−1) , a2 = a/2(1,−1, 1) , a3 = a/2(−1, 1, 1)
→ b1 = 2π/a(1, 1, 0) , b2 = 2π/a(1, 0, 1) , b3 = 2π/a(0, 1, 1)

fcc: a1 = a/2(0, 1, 1) , a2 = a/2(1, 0, 1) , a3 = a/2(1, 1, 0)
→ b1 = 2π/a(−1, 1, 1) , b2 = 2π/a(1,−1, 1) , b3 = 2π/a(1, 1,−1)

1.2: Create Fibonacci sequence by replacing LS → L and S → L [21]:

LS

LSL

LSLLS

LSLLSLSL

LSLLSLSLLSLLS

LSLLSLSLLSLLSLSLLSLSL not periodic
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Replacing LS → L′ and L → S′ in the last line gives the configuration of the second
but last line (self-similarity or fractality). For the Fourier transform see [35].

1.3: Given two vectors a1, a2, with |a1| = a1, |a2| = a2, and a1 · a2 = a1a2 cos α,
spanning a plane. The following five cases can be distinguished:

a1 = a2, α = π/2 square

α = π/3 triangular or hexagonal

α = π/2, π/3

a1 = a2, α = π/2 rectangular

α = π/2

1.4: TRn is the translation operator. It acts on a function according to

TRnφ(r) = φ(r + Rn)

and commutes with the system Hamiltonian, [TRn , H ] = 0. Therefore, there exist
simultaneous eigenfunctions of H and TRn with the property

TRnφk(r) = eik·Rnφk(r)

i.e. the wave eigenfunctions in different Wigner–Seitz cells differ only by a phase
factor with wave vector k from the first Brillouin zone.

1.5: Count nearest neighbors (n.n.) and spheres per cube:

sc 6 n.n., 1 sphere → 4π

3

(a

2

)3
/

a3 =
π

6
= 0.52,

bcc 8 n.n., 2 spheres → 2
4π

3

(√
3a

4

)3
/

a3 =

√
3π

8
= 0.68,

fcc 12 n.n., 4 spheres → 4
4π

3

(
a

2
√

2

)3
/

a3 =
π

3
√

2
= 0.74,

diamond 4 n.n., 8 spheres → 8
4π

3

(√
3a

8

)3
/

a3 =

√
3π

16
= 0.34.

1.6: A mass density n(r) = δ(r−ri) and using δ(r−ri) =
∑

q
exp (iq · (r − ri))/V

gives for the scattering amplitude

F (k, k′) = F (k − k
′) =

∑

i,q

eiq·ri
1

V

∫

V

ei(k−k′+q)·r =
∑

i,q

eiq·riδq,k−k′

and with ri → Rn + τ for a crystalline solid

F (q) =
∑

τ

eiq·τ ∑

n

eiq·Rn ,

where the last sum vanishes except for q = G and
∑

n
eiq·Rn = Nδq,G . Thus the

scattering amplitude, which equals the static structure factor (up to a factor N) has
peaks for the reciprocal lattice vectors.
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Consider the reciprocal lattice vector Ghkl = hb1 + kb2 + lb3 and the lattice
plane with Miller indices (hkl) spanned by a1/h′ − a2/k′ and a3/l′ − a2/k′ with
(hkl) = p(h′k′l′), p = integer. The normal to the lattice plane is given by

(
a1

h′ − a2

k′

)
×
(

a3

l′
− a2

k′

)
= − 1

h′k′ a1 × a2 − 1

k′l′
a2 × a3 − 1

h′l′
a3 × a1 .

Multiplication of this vector with −2πh′k′l′/a1 · (a2 × a3) gives Ghkl/p, thus Ghkl

is normal to the lattice planes (hkl). The distance of the considered plane from the
origin of the vectors a1, a2, a3 is

d′
hkl =

a1

h′
a1 · Ghkl

a1Ghkl
=

2π

Ghkl

h

h′ =
2π

Ghkl
p .

Thus, 2π/Ghkl is the distance between neighboring lattice planes.

Solutions for Chap. 2

2.1: The matrix representation of the commutator [Ĥ, ρ̂] = 0 reads

〈m|Ĥρ̂ − ρ̂Ĥ|n〉 =
∑

n′

(
Hmn′ρn′n − ρmn′Hn′n

)
= 0.

For eigenstates of Ĥ one has Hmn′ = Emδm,n′ and

(
Em − En

)
ρmn = 0,

which means for Em = En or m = n for nondegenerate states that ρmn = 0. The
same result is found by starting from the statistical operator of the canonical (or
grand canonical) ensemble.

2.2: Denote the ground state by |Ψ0〉 and show that
(
Trρ̂Â

)
T=0

= 〈Ψ0|Â|Ψ0〉. With

ρ̂ = exp (−βĤ)/Z write

Tr
(
ρ̂Â
)

=
1

Z

∑

m,n

〈Ψm|e−βĤ |Ψn〉〈Ψn|Â|Ψm〉 =
1

Z

∑

m

e−βEm〈Ψm|Â|Ψm〉.

With Z = e−βE0
∑

m

e−β(Em−E0) we can write

Tr
(
ρ̂Â
)

=

∑
m e−β(Em−E0)〈Ψm|Â|Ψm〉∑

m e−β(Em−E0)

−→
T → 0

〈Ψ0|Â|Ψ0〉

because with Em − E0 > 0 for all m = 0 all exponential factors vanish for T → 0
except the one for the ground state |Ψ0〉.
2.3: The thermal expectation value of the number operator is N̂ =

∑
α n̂α where

n̂α is the operator counting the particles in an eigenstate of Ĥ. The grand canonical
partition function can be written

ZG =
∞∑

N=0

∑

{nα}N

eβ
∑

α(µ−Eα)nα =
∏

α

∑

nα

eβ(µ−Eα)nα ,

where {nα}N denotes those sets of particle numbers nα whose sum is N . For
fermions: nα can be 0 or 1 and
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ZG =
∏

α

(
1 + eβ(µ−Eα)

)
,

while for bosons nα can be any nonnegative integer and

ZG =
∏

α

(
1 + eβ(µ−Eα) + . . .

)
=
∏

α

(
1 − eβ(µ−Eα)

)−1

.

Now make use of

〈N̂〉 =
1

β

∂ lnZG

∂μ
=

1

β

1

ZG

∂ZG

∂μ

to obtain for fermions 〈N̂〉 =
∑

α

〈n̂α〉 =
∑

α

1

exp (−β(μ − Eα)) + 1

and for bosons 〈N̂〉 =
∑

α

〈n̂α〉 =
∑

α

1

exp (−β(μ − Eα)) − 1
.

The function

f±
α =

1

exp (−β(μ − Eα)) ± 1

is the Fermi–Dirac distribution (upper sign) and the Bose–Einstein distribution
(lower sign). For large kBT ≫ μ we have exp βμ ≃ 1 and f±

α → exp (−βEα).

2.4: Ohm’s law can be written jλ = σλµEµ, thus the observable to be measured is
(a component of) the electrical current density

Â → ĵλ = e

N∑

l=1

v̂l,λ

with the velocity operator v̂l,λ = p̂l,λ/m. It can be written also as

ĵλ(r) =
e

2m

∑

l

(p̂l,λδ(r − rl) + δ(r − rl)p̂l,λ) .

The operator of the kinetic energy in the presence of an electro-magnetic field (here
represented by the vector potential A(r, t)) is for the lth electron

1

2m

(
p̂l − eA(rl, t)

)2
=

p2
l

2m
− e

2m

(
pl · A(rl, t) + A(rl, t) · pl

)
+ O(A2).

Neglecting the last term on the rhs, we identify the perturbation as

Vext(t) = −
∑

l

e

2m

(
pl · A(rl, t) + A(rl, t) · pl

)
or

= −
∫

d3r
e

2m

∑

l

(
plδ(r − rl) + δ(r − rl)pl

)

︸ ︷︷ ︸
ˆj(r)l

·A(r, t)

and the observable B̂ as another component of the electric current density. The
electric field component is given by

Eµ = −∂Aµ

∂t
= −iωAµ and we can write
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Vext(t) = − i

ω

∑

µ

∫
d3rĵµ(r)Eµ(r)eiωt

which in the long-wave length limit, when the dependence of the vector potential
on r can be neglected, gives

Vext(t) = − i

ω

∑

µ

∫
d3rjµ(r)Eµeiωt

and we obtain the electric conductivity

σλµ(ω) =
i

h̄ω

∫ ∞

−∞
dτ eiωtθ(τ )〈[jλ(τ ), jµ(0)]〉0

as a correlation function for the components of the current density.

2.5: With ∆ρ(t) = ∆ρ1(t) + ∆ρ2(t) + . . . , where the index refers to different orders
of Vext, we can write the equations:

1. [H0, ∆ρ1] + [Vext, ρ0] = ih̄ρ̇1 first order in Vext.

2. [H0, ∆ρ2] + [Vext, ρ1] = ih̄ρ̇2 second order Vext.

The solution of (1)

∆ρ1(t) =
1

ih̄

∫ t

−∞
dt′e−iH0(t−t′)/h̄[Vext(t

′), ρ0]e
iH0(t−t′)/h̄

is to be used in (2), which can be solved in the same way as (1), to yield

∆ρ2(t) =
1

ih̄

∫ t

−∞
dt′
∫ t′

−∞
dt′′e−iH0(t−t′)/h̄eiH0(t−t′′)/h̄[. . . , [. . . , . . . ]]eiH0(t−t′)/h̄

where the double commutator

[. . . , [. . . , . . . ]] =
[
Vext(t

′), e−iH0(t−t′′)/h̄[Vext(t
′′), ρ0]

]

indicates the structure of the second-order response function

〈∆A2〉t = . . .
[
B̂(τ ), [B̂(τ ′), Â(0)]

]
.

It is a two-time correlation function.

2.6: Evaluate the principal value integral

Reχ(ω) =
1

π
P
∫ +∞

−∞

χ0

ω′ − ω

(
δ(ω0 − ω′) − δ(ω0 + ω′)

)
dω′,

which yields

Reχ(ω) =
χ0

π

(
1

ω0 − ω
+

1

ω0 + ω

)
=

2χ0ω0

π

1

ω2
0 − ω2

.
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Solutions for Chap. 3

3.1: The potential energy of the linear chain (Fig. 3.16) is

U =
f

2

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑

n′

[
u

(
n′

1

)
− u

(
n′

2

)]2

︸ ︷︷ ︸
(1)

+

[
u

(
n′ + 1

1

)
− u

(
n′

2

)]2

︸ ︷︷ ︸
(2)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
,

here (1) is the contribution due to the relative displacements of M1 and M2 in the
unit cell n and (2) that due to the relative displacement between M1 in unit cell
n + 1 and M2 in unit cell n.
Distinguish the force constants

n = m, τ = τ ′ : φ

(
n n
1 1

)
= φ

(
n n
2 2

)
= 2f

for the restoring force acting on M1(M2) if the neighbor atoms are kept fixed,

n = m, τ = 1, τ ′ = 2 : φ

(
n n
1 2

)
= −f and

n = m + 1, τ = 1, τ ′ = 2 : φ

(
m + 1 m

1 2

)
= −f.

Due to actio = reactio we have

φ

(
n n
1 2

)
= φ

(
n n
2 1

)
and with (3.13)

for τ = 1 : φ

(
n n
1 1

)
+ φ

(
n n
1 2

)
+ φ

(
n n − 1
1 2

)
= 2f − f − f = 0

for τ = 2 : φ

(
n n
2 2

)
+ φ

(
n n
2 1

)
+ φ

(
n n + 1
2 1

)
= 2f − f − f = 0.

Translation invariance allows to shift the cell index.
Considering the equilibrium positions xn1 = na for M1 and nn2 = na + r0 for

M2 along the chain, we find the elements of the dynamical matrix

D11(q) =
1

M1
φ

(
n n
1 1

)
=

2f

M1
, D22(q) =

2f

M2

and

D12(q) =
1√

M1M2

∑

n

φ

(
n m
1 2

)
eiq(xn1−xn2).

For n = m, xn1 − xn2 = −r0 and for n = m + 1, xm+1,1 − xm,2 = a − r0, the force
constant equals −f and with a = 2r0, we have

D12(q) =
−2f√
M1M2

cos (qr0) = D21(q).
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The eigensolutions of

‖Dαβ(q) − ω2(q)δα,β‖ =

∥∥∥∥∥

2f
M1

− ω2 −2f√
M1M2

cos qr0

−2f√
M1M2

cos qr0
2f
M2

− ω2

∥∥∥∥∥ = 0

are (with M = M1 + M2)

ω2
±(q) =

f

M1M2

[
M ±

{
M2

1 + M2
2 + 2M1M2(1 − 2 sin2 qr0

}1/2
]
.

There are two solutions for each q. For q = 0, the squared frequencies are

ω2
+(0) =

2fM

M1M2
, and ω2

−(0) = 0

and for q ≃ 0 with 1 − 2 sin2 qr0 = cos qa ≃ 1 − q2a2/2 (for q ≪ π/a)

ω2(q) ≃ f

M1M2

[
M ±

{
M2 − M1M2q

2a2}1/2
]
≃ f

μ

[
1 ±

{
1 − μ

2M
q2a2

}]

with the reduced mass μ = M1M2/M and

ω2
+(q ≪ π

a
) ≃ 2f

μ
independent of q and

ω2
−(q)(q ≪ π

a
) ≃ f

2M
q2a2 → ω−(q ≪ π

a
) ≃

√
f

2M
aq.

For q = π/a and cos qa = −1 the solutions are

ω2
±

(π

a

) (
M ±

{
M2

1 + M2
2 − 2M1M2

}1/2
)

or

ω+

(π

a

)
=

√
2f

M2
, ω−

(π

a

)
=

√
2f

M1
.

A plot of the two branches is shown in Fig. 10.1: the lower branch with the linear
dependence around q ≃ 0 for the acoustic phonons and the flat upper branch for
the optical phonons are separated by a gap which results from the different masses
M1 = M2. For M1 = M2 = M the gap closes and we have a chain with period a
and the dispersion

ω(q) =

√
4f

M
sin qa

extends to π/a (thin dashed line in Fig. 10.1), which is the limit of the Brillouin
zone for the chain with lattice constant a.
Solving the eigenvector equations, we find
for q = 0 : ω−(0) = 0 e−(0) ∼

(√
M1,

√
M2

)
move with same phase

ω+(0) =
√

2f
µ

e+(0) ∼
(√

M2,−
√

M1

)
move with opposite phase

for q = π
a

: ω−(π
a
) =

√
2f
M1

e−(π
a
) ∼ (1, 0) M2 in rest

ω+(π
a
) =

√
2f
M2

e+(π
a
) ∼ (0, 1) M1 in rest.
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ω(q)

0 π/2a π/aq
Fig. A.1. Dispersion for the linear chain with two different masses per unit cell
(solid lines). The dashed curves show the result if the two masses are equal

7 2 6

3 0 1

8 4 5

x

y

Fig. A.2. Sketch of the two-dimensional quadratic lattice with numbers to address
the individual lattice point

3.2: For central forces the adiabatic potential depends on rm,n = |R0
m +um −R0

n −
un | and the force constants can be written

φ

(
m n

i j

)
=

∂2U
∂r2

m,n

R0
kiR

0
kj

|R0
k |2

with k = m − n.

Nearest neighbors to mass in the center (see Fig. 10.2) are

R
0
1 = aex , R

0
2 = aey , R

0
3 = −aex , R

0
4 = −aey
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with force constants

φ

(
1 0
x x

)
= φ

(
2 0
y y

)
= φ

(
3 0
x x

)
= φ

(
4 0
y y

)
= φ1 , φ

(
k 0
x y

)
= 00

next nearest neighbors are

R
0
5 = aex − ey , R

0
7 = −aex + aey

with force constants

φ

(
5 0
x x

)
= φ

(
5 0
y y

)
= φ

(
7 0
x x

)
= φ

(
7 0
y y

)
=

1

2
φ2,

φ

(
5 0
x y

)
= φ

(
5 0
y x

)
= φ

(
7 0
x y

)
= φ

(
7 0
y x

)
= −1

2
φ2

and

R
0
6 = aex + aey with φ

(
6 0
x x

)
= φ

(
6 0
y y

)
= φ

(
6 0
x y

)
=

1

2
φ2

and

R
0
8 = −aex − aey with φ

(
8 0
x x

)
= φ

(
8 0
y y

)
= φ

(
8 0
x y

)
=

1

2
φ2.

The force constant

φ

(
0 0
i j

)
follows from

∑

k

φ

(
k 0
i j

)
= 0

→ φ

(
0 0
i j

)
= −

8∑

k=1

φ

(
k 0
i j

)
= −2(φ1 + φ2)δi,j .

The elements of the dynamical matrix are

Dxx(q) =
1

M

∑

k

φ

(
k 0
x x

)
e−iq·R0

k

= − 2

M
(φ1(1 − cos qxa) + φ2(1 − cos qxa cos qya)) ,

Dyy(q) = − 2

M
(φ1(1 − cos qya) + φ2(1 − cos qxa cos qya)) ,

Dxy(q) = − 2

M
φ2 sin qxa sin qya.

The secular problem is
∥∥∥∥

Dxx(q) − ω2 Dxy(q)
Dxy(q) Dyy(q) − Mω2

∥∥∥∥ = 0.

For Γ − X : 0 ≤ qx ≤ π/a , qy = 0 , sin qya = 0 , cos qya = 1 we have two branches

ω2
1(qx) =

2

M
(φ1 + φ2)(1 − cos qxa) and ω2

2(qx) =
2

M
φ2(1 − cos qxa)

with ωqx ∼ qx for qx ≪ π/a but different slopes.
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For Γ − M : q = (a, q)/
√

2 , 0 ≤ q ≤
√

2π/a the secular problem yields

⎛

⎜⎜⎜⎝
Mω2 − 2φ1

(
1 − cos

qa√
2

)
− 2φ2

(
1 − cos2

qa√
2

)

︸ ︷︷ ︸
2a

⎞

⎟⎟⎟⎠

2

− 4 φ2
2 sin4 qa√

2︸ ︷︷ ︸
b2

= 0

with the solutions

Mω2 = 2a ± 2b : Mω2
1 = 2φ1

(
1 − cos

qa√
2

)
,

Mω2
2 = 2φ1

(
1 − cos

qa√
2

)
+ 2φ2

(
1 − cos

2qa√
2

)
.

Again we find two branches with ω(q) ∼ q for q ≪ π/a and different slopes.
For X − M : q = (π/a, q) , 0 ≤ q ≤ π/a the off-diagonal terms of the dynamical
matrix vanish and one has

ω2
1 =

2

M

(
2φ1 + φ2(1 + cos qa)

)
and ω2

2 =
2

M

(
φ1 + φ2 − (φ1 − φ2) cos qa

)
.

The two branches have always finite frequencies and connect those already obtained
for the X and M point.

For each of these directions one eigenvector is longitudinal (‖q) and one trans-
verse (⊥ q).

3.3: Periodic boundaries account for the fact that the physics of a solid repeats
over macroscopic distances, i.e., the Bloch phase factor equals one for a translation
RN = N1a1 + N2a2 + N3a3 over a macroscopic length (Ni ≫ 1, i = 1, 2, 3):

eik·RN = 1 or k · RN = 2π × integer.

This implies (take a simple cubic lattice with V = L1L2L3 , Li = Nia as example)
that the components of the wave vector take the discrete values (particle in the box)
ki = 2πni/Li , i = 1, 2, 3 and 0 ≤ ni ≤ Ni − 1. Thus N = N1N2N3 is the number
of k in the first Brillouin zone and each k takes a volume (2π)3/V . This can be
exploited when replacing a sum over k by an integral according to

∑

k

· · · =
V

(2π)3

∫
. . . d3k.

Similar considerations hold for systems with reduced dimension.

3.4: For the commutator [as(q), a†
s′

(q′)] evaluate

[ωs(q)Q̂s(q) + iP̂s(−q), ωs′(q
′)Q̂s′(−q

′) − iP̂s′(q
′)] =

−iωs(q) [Q̂s(q), P̂s′(q
′)]

︸ ︷︷ ︸
ih̄δs,s′δq,q′

+iωs′(q
′) [P̂s(−q), Q̂s′(−q

′)]
︸ ︷︷ ︸

−ih̄δs,s′ δq,q′

= 2h̄ωs(q)δs,s′δq,q′

to find [as(q), a†
s′(q

′)] = δs,s′δq,q′ . The two other commutation relations follow in
the same way (note that ωs(q) = ωs(−q)).
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3.5: In the Schrödinger picture, we have

[as(q), H0] = h̄ωs′(q
′)as(q) or as(q)H0 =

(
H0 + h̄ωs′(q

′)
)
as(q).

Thus, for any power function f(H0) we can write

as(q)f(H0) = f(H0 + h̄ωs(q))as(q)

and obtain

as(q, t)a†
s′(q

′, 0) = eiH0t/h̄as(q, 0)e−iH0t/h̄a†
s′(q, 0)

= e−iωs(q)tas(q, 0)a†
s′(q, 0).

Using the commutation relation and taking the thermal expectation value gives

〈as(q, t)a†
s′(q

′, 0)〉 = e−iωs(q)t
(
ns(q, T ) + 1

)
δs,s′δq,q′ .

Similarly we have
a†

s(q)H0 =
(
H0 − h̄ωs′(q

′)
)
a†

s(q)

and by following the same steps we find the second relation. For the third relation
we have, after extracting the exponential with the time-dependence, the thermal
expectation value of a product of two annihilation operators, which vanishes.

3.6: The displacement is a time-dependent operator in the Heisenberg picture. Start
by writing (with [ρ0, H0] = 0)

〈
(
q · un(t)

)2〉 = Tr
(
ρ0 eiH0t/h̄(

q · un(0)
)2

e−iH0t/h̄
)

and obtain by cyclic permutation under the trace

〈
(
q · un(t)

)2〉 = Tr
((

q · un(0)
)2)

,

which is independent of t. Formulate the lattice displacement with (3.23) and (3.39)

un =
∑

s,q

(
h̄

2NMωs(q)

)1/2 (
a†

s(−q) + as(q)
)
es(q)eiq·R0

n

in terms of phonon operators and evaluate

(
q · un

)2
=

1

NM

∑

s′,q′

s′′,q′′

(
a†

s′(−q
′) + as′(q

′)
)(

a†
s′′(−q

′′) + as′′(q
′′)
)

×
(

h̄2

4ωs′(q′)ωs′′(q′′)

)1/2

ei(q′+q′′)·R0
n
(
q · es′(q

′)
)(

q · es′′(q
′′)
)
.

After multiplying out the operator terms, the thermal expectation value of this
expression follows with the formulas of problem 3.4 as

〈
(
q · un

)2〉 =
1

NM

∑

s′,q′

(
2ns′(q

′, T ) + 1
) h̄

2ωs′(q′)

(
q · es′(q

′)
)2
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For T → 0 we have ns(q, T ) → 0 which leaves only the contribution of the zero-point
motion

〈
(
q · un

)2〉 =
1

NM

∑

s′,q′

h̄

2ωs′(q′)

(
q · es′(q

′)
)2

.

For T > 0, employ the Debye model by writing ωs(q) = vq for all s and independent

of the direction of q. Summation over s′ yields a factor 3. Writing
(
q · es′(q

′)
)2

=
q2 cos ϑ2 where ϑ is the angle between q and es′(q

′), the sum over q′ can be carried
out in spherical polar coordinates with the cut-off at qD = ωD/v (with the Debye
frequency ωD) giving

〈
(
q · un

)2〉 =
6q2

Mω3
D

∫ ωD

0

h̄ω

(
1

exp (h̄ω/kBT ) − 1
+

1

2

)
dω .

For high temperatures, kBT ≫ h̄ω, the distribution function after expanding the
exponential yields kBT /h̄ω and by neglecting the term 1/2 we find for the Debye–
Waller factor

W =
3q2

Mω3
D

kBT

∫ ωD

0

dω =
3q2kBT

Mω2
D

which is always positive.
For low temperatures, kBT ≪ h̄ω, the integral over ω reads after substituting

h̄ω/kBT = x ∫ ωD

0

. . . dω =
h̄ω2

D

4
+

(kBT )2

h̄

∫ xD

0

xdx

ex − 1

For T → 0 the upper limit goes to ∞ and the integral takes the value π2/6 (see
Appendix A.3). Thus, we may write

W =
3q2

Mω3
D

(
h̄ω2

D

4
+

π2

6

(kBT )2

h̄

)
=

3h̄2q2

MkBΘD

(
1

4
+

π2

6

(
T

ΘD

)2
)

with the Debye temperature ΘD.

3.7: (a) The point group of a cubic lattice consists of 48 elements (24 rotations,
each can be combined with the inversion). Under these operations, which can be
represented by orthogonal 3×3 matrices Sαi, the coordinates x, y, z are interchanged
and (under inversion) change their sign. Likewise the components of the elastic tensor
transform according to

cαβγδ = SαiSβjSγkSδlcijkl (double index summation) .

The invariance of the elastic tensor under these transformations leaves only those
components different from zero, for which pairs of indices are identical and of the
nonvanishing components all those are identical which transform into each other by
the symmetry operations. Thus, there are only three independent tensor components

cxxxx = cyyyy = czzzz = c11

cxyxy = cxzxz = cyxyx = czxzx = c12

cxxyy = cyyzz = czzxx = cxxzz = czzyy = c44

which are written here in Voigt notation.
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(b) Using ui(r, t) = ui exp (i(q · r − ωt)) the wave equation for the elastic displace-
ment field leads to a set of coupled homogeneous linear equations for the components
ui, which has solutions if

‖ρω2δil − cijklqjqk‖ = 0 .

For Γ − X or q = (q, 0, 0) it reads

∥∥∥∥∥∥

ρω2 − c11q
2 0 0

0 ρω2 − c12q
2 0

0 0 ρω2 − c12q
2

∥∥∥∥∥∥
= 0

and has solutions

ωL =

√
c11

ρ
q , eL = (1, 0, 0) longitudinal

ωT =

√
c12

ρ
q , eT = (0, 1, 0) transverse

= (0, 0, 1) transverse .

For Γ−K or q = (q, q, 0)/
√

2, we have cijklqjqk =
(
cixxl + ciyyl + cixyl + ciyxl

)
q2/2

and the secular problem

∥∥∥∥∥∥∥∥

ρω2 − 1
2
(c11 + c12)q

2 − 1
2
(c12 + c44)q

2 0

− 1
2
(c12 + c44)q

2 ρω2 − 1
2
(c11 + c12)q

2 0

0 0 ρω2 − c12q
2

∥∥∥∥∥∥∥∥
= 0 .

One solution is immediately found to be

ωT1 =

√
c12

ρ
q , eT1 = (0, 0, 1) transverse .

The other two follow from
∥∥∥∥

ρω2 − A −B
−B ρω2 − A

∥∥∥∥ = (ρω2 − A)2−B2 = 0

with A = (c11 + c12)q
3/2 and B = (c12 + c44)q

2/2 and read

ωT2 =

√
2c12 + c11 + c44

2ρ
q , eT2 = (1,−1, 0)/

√
2 transverse

ωL =

√
c11 − c44

2ρ
q , eL = (1, 1, 0)/

√
2 longitudinal .

These results can be compared with the phonon dispersion (e.g., those given in
Sect. 3.6 which are all for lattices with cubic symmetry). The slope of the acoustic
branches for given ρ can be taken to determine the elastic constants.

3.8: The cubic anharmonicity ∆(a† + a)3) is first written in normal order

(a† + a)3 = a†3 + 3a†2a + 3(a† + a) + 3a†a2 + a3
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and then truncated by replacing a†a → 〈a†a〉 = n(T ) and omitting the terms a†3

and a3. Thus the Hamiltonian reduces to

H = h̄ω0a
†a + ∆(T )(a† + a) with ∆(T ) = 3∆

(
n(T ) + 1

)
.

Calculate now the corrections to the oscillator ground state |n〉 with n = 0 due to the
anharmonicity, which by making use of 〈0|a|1〉〈1|a†|0〉 = 1 reads in Brillouin–Wigner
perturbation theory

ε = E0 − h̄ω0

2
=

∆2(T )

ε − h̄ω0
.

The smaller solution of the quadratic equation in ε

E0 =
1

2
h̄ω0 − ∆2(T )

h̄ω0

expresses a zero-point energy which decreases as ∆(T ) increases due to thermal
phonon excitation with the temperature. This is the behavior of a soft mode.

Solutions for Chap. 4

4.1: The electrostatic potential of a homogeneous positive charge density +eN(r)
with n(r) = N/V is

φ(r) =

∫

V

e n(r′)

4πε0|r − r′| d3r′ .

Its interaction energy with the homogeneous electron density −en(r) is

Hel−ion = −e

∫

V

n(r)φ(r) d3r = −
(

N

V

)2 ∫
d3r

∫
d3r′

e2

4πε0|r − r′| .

With (see Appendix)

e2

4πε0|r − r′| =
∑

q

vqeiq·(r−r′) , vq =
e2

ε0V q2
the double integral can be evaluated

∫
d3r

∫
d3r′

e2

4πε0|r − r′| =
∑

q

vq

∫
d3reiq·r

︸ ︷︷ ︸
V δq,0

∫
d3reiq·r′

︸ ︷︷ ︸
V δq,0

=
∑

q

vqV 2δq,0

giving Hel−ion = −N2v0. Similarly the interaction energy of the homogeneous elec-
tron and ions systems can be calculated which each give the same result up to a
factor −1/2. Thus the sum of all these divergent interaction energies vanish for the
jellium model.

4.2: The electron density n determines via the density of states D(E) and the Fermi–
Dirac distribution function the chemical potential μ(T ). For a 3D electron system

we may write D(E) = 3n
√

E/2E
3/2
F define a function G(E) with

∫ E

−∞
D(E′)dE′ = G(E) = n

(
E

EF

)3/2

to express the particle density as
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n = G(E)f(E, μ, T )
∣∣∞
0

−
∫ ∞

−∞
dEG(E)

∂f(E, μ, T )

∂E
.

The first term vanishes and the integral can be evaluated by using the fact, that the
derivative of f(E, μ, T ) is strongly peaked at E = μ (for kBT ≪ μ). Expand G(E)
in a power series around E = μ

G(E) =

∫ µ

−∞
dE′D(E′) +

∞∑

n=1

(E − μ)n

n!

dnG(E)

dEn

∣∣∣
E=µ

.

The integral gives G(μ). Because ∂f/∂E is an even function only the even powers
of the expansion contribute and we find as the two leading terms

n = −G(μ)

∫ ∞

−∞
dE

∂f

dE
− 3n

8E
3/2
F

1√
μ

∫ ∞

−∞
dE(E − μ)2

∂f

dE
(∗).

The first term gives n(μ/EF)3/2. With

∂f

dE
= −β

eβ(E−µ)

(eβ(E−µ) + 1)2
, β = kBT and substituting x = β(E − μ)

∫ ∞

−∞
dE(E − μ)2

∂f

dE
= − 1

β3

∫ ∞

−∞
dx x2 ex

(ex + 1)2
.

The value of the integral is π2/6. Thus (∗) reduces to the relation

1 ≃
(

μ

EF

)3/2
(

1 +

(
kBT

μ

)2
π2

8

)

which can be solved to give

μ(T ) ≃ EF

(

1 − π2

12

(
kBT

μ

)2
)

.

This result corresponds to the Sommerfeld expansion (see Appendix A.4).

4.3: For 2D, the number of states (per unit area) D(k)dk in a circular ring with
radius k and thickness dk is

D(k)dk =
2

(2π)2
2π kdk (the factor 2 counts the spins) .

Use the dispersion relation for free electrons Ek = h̄2k2/2m to substitute k by E

D(E)dE = D(k)
dk

dE
dE =

1

π

√
2m

h̄2

√
E

√
2m

h̄2

1

2
√

E
dE

or D(E) =
m

πh̄2 = const .

For 1D the corresponding number of states per unit length is

D(k)dk =
2

2π
dk and D(k)

dk

dE
dE =

1

π

√
2m

h̄2

1

2
√

E
dE
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or D(E) =

√
m

2π2h̄2

1√
E

.

For a zero-dimensional system the spectrum is discrete (with energies Ei) and the
density of states is given by

D(E) = 2
∑

i

δ(E − Ei) .

4.4: The condition to fill n electrons into the lowest (spin-degenerate) Landau level
follows from (4.43) or in simplified form from EF = h̄ωc and reads

h̄2

2m
(3π2n)2/3 =

h̄eB

m
which can be solved to give B =

h̄

2e
(3π2n)2/3 .

Note, that B is related to the number of elementary flux quanta. Take the value
for h̄/e = 0.658 10−15 Tm2 to obtain for a metal n = 1023 cm−3 a magnetic field of
B ≃ 1.37 105 T and for a doped semiconductor with n = 1014 cm−3 B ≃ 0.137 T.
The latter is easily achieved in a laboratory.

4.5: The Zeeman energy for free electrons is ±μBB. It shifts the density of states of
up and down spins (Landau quantization is not considered here) against each other

D±(E, B) =
1

2
D(E ± μBB) ≃ 1

2
D(E) ± 1

2
μBB

dD(E)

dE
which yields

D±(E, B) ≃ 1

2

1

2π2

(
2m

h̄2

)3/2 √
E

(
1 ± μBB

E

)
.

The number of spin up and down electrons N±(E,B) is obtained by integrating the
density of states multiplied with the Fermi–Dirac distribution function and multi-
plying with the volume V . The first term of D±(E, B) gives N(μ)/2 independent
of B. The second term is evaluated by employing the Sommerfeld expansion (see
Appendix A.4) leading to

· · · = ±1

2
μBB

{∫ µ

−∞

dD(E)

dE
dE +

π2

6
(kBT )2

d2D(E)

dE2

∣∣
E=µ

}
.

The integral gives D(μ) and with D(E) ∼
√

E the second term can be rewritten
using d2D(E)/dE2 = −D(E)/4E2 to obtain

N±(E, B) ≃ 1

2
N(μ) ± V

2
μBBD(μ)

{
1 − π2

24

(
kBT

μ

)2 }
.

The magnetization follows as

M = μB(N+ − N−)/V = μ2
BBD(μ)

{
1 − π2

24

(
kBT

μ

)2 }
.

For T = 0 with D(μ ≃ EF) = 3n/2EF this is identical with (4.53).

4.6: The HF approximation is better for the electron system with the smaller density
parameter rs. According to Table 4.1 the rs-values of doped semiconductors are
smaller than those of metals. On the other hand the electron density (per cm−3) is
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higher in metals. Note, that rs is given in the length scale (effective Bohr radius) of
the material.

4.7: Second-order perturbation yields a contribution

E2 = −
∑

m

|〈Ψm|Hint|Ψ0〉|2
Em − E0

.

(a) Applying the interaction operator to the Fermi sphere |Ψ0〉 gives nonvanishing
contributions only if the states with p, q are inside and those with p − k, q + k

outside of the Fermi sphere. Consider therefore the corresponding excited states
|Ψm〉. These states with Em − E0 = h̄2k · (q − p + k)/m contribute to E2. b) The
electron taken from p to p− k is put back to p in the direct process but to q in the
exchange process. For the former evaluate

〈Ψ0|
∑

p′q′k′

ρρ′

vk′c†
p′−k′ρc†

q′+k′ρ′cq′ρ′cp′ρ|Ψm〉〈Ψm|
∑

pqk

σσ′

vkc†p−kσc†
q+kσ′cqσ′cpσ|Ψ0〉

For the direct process the intermediate states have to fulfill the conditions

p, σ = p
′ − k

′, ρ p − k, σ = p
′, ρ

q, σ′ = q
′ + k

′, ρ′
q + k, σ′ = q

′, ρ′

or
σ = ρ , σ′ = ρ′ , p

′ = p − k , q
′ = q + k , k

′ = −k .

It remains to determine

〈Ψ0|c†pσc†
qσ′cq+kσ′cp−kσc†p−kσc†

q+kσ′cqσ′cpσ|Ψ0〉 = . . . ,

which can easily be rearranged as for k = 0 all fermion operators anti-commute and
one obtains

. . . = 〈Ψ0|c†pσcpσc†
qσ′cqσ′cq+kσ′c†

q+kσ′cp−kσc†p−kσ|Ψ0〉
= npσnqσ′(1 − nq+kσ′)(1 − np−kσ),

where nqσ = θ(kF − q) is the Fermi–Dirac distribution function for T = 0 K.
Summing over spin indices (factor 4) gives for the direct process

Edir
2 = −4

∑

p,q,k

v2
k

m

h̄2k · (q − p + k)
npσnqσ′(1 − nq+kσ′)(1 − np−kσ) .

c) For small k, i.e., excitation close to the Fermi surface

np+k ≃ np + k · ∇pnp |kF
= np − k · epδ(kF − p) and

np(1 − np+k) = np{1 − np + k · epδ(kF − p)} = npk · epδ(kF − p) ∼ k .

Replace now the denominator for small k by 2kkF and perform the sum over p

and q in polar coordinates. Finally the sum over k is to be performed over an
expression which contains 1/k4 from vk , 1/k from the denominator, and k2 from the
numerator which together with k2 from integration in k-space leads to

∫
dk/k = ln k.
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4.8: (a) The meaning of c†α(cα) of creating(annihilating) a fermion in the state α
with the probability amplitude ψα(r) implies, that Ψ†(r)(Ψ(r)) creates(annihilates)
a fermion at r. (b) Write

{Ψ†(r), Ψ(r′)} =
∑

α,α′

ψ∗
α(r)ψα′(r′) {c†α, cα′}

︸ ︷︷ ︸
δα,α′

=
∑

α

ψ∗
α(r)ψα′(r′) = δ(r − r

′)

and similar for {Ψ(r, Ψ(r′)} = {Ψ†(r, Ψ†(r′)} = 0. (c) For free electrons the density
operator is

n̂(r) = Ψ†(r)Ψ(r) =
∑

k′,k

e−i(k′−k)·r 1

V
c†
k′ck and with q = k

′ − k

=
∑

q

e−iq·r 1

V

∑

k

c†k+qck → n̂q =
1

V

∑

k

c†k+qck ,

n̂0 =
∑

k c†kck/V = n̂ is the operator of particle density (its eigenvalue being n)

while
∑

q
c†k+qck = n̂q describes density fluctuations. d) The Coulomb interaction

can be rewritten with

c†p+kσc†
q−kσ′cqσ′cpσ = −c†p+kσ

(
δσ,σ′δq−k,p − cpσc†

q−kσ′

)
cqσ′

by applying the fermion commutation rules and by using the number operators the
Coulomb interaction becomes

1

2

∑

k �=0,p,q

σ,σ′

vkc†p+kσc†
q−kσ′cqσ′cpσ =

1

2

∑

k �=0

vk

(
N̂kN̂−k − N

)
.

4.9: Replace in the given expression

〈[N̂q (τ ), N̂−q(0)]〉exact → 〈[N̂q(τ ), N̂−q (0)]〉0 and Next → Next + 〈N̂q〉

with the induced number fluctuation 〈N̂q〉. From Sect. 4.5, take

lim
Γ→0

e2

ε0V q2

1

ih̄

∫ ∞

0

dτeiωτ−Γτ〈
[
N̂q(τ ), N̂−q(0)

]
〉0 = vqπ0(q, ω)

to write

〈N̂q〉 = vqπ0(q, ω)
(
〈N̂q〉 + Next

)
or 〈N̂q 〉 =

Nextvqπ0(q, ω)

1 − vqπ0(q, ω)

and identify with

1

ε(q, ω)
= 1 +

〈N̂q〉
Next

⇒ εRPA(q, ω) = 1 − vqπ0(q, ω) .

4.10: Using relations given in Sect. 4.6, the lhs of the given equation can be written

∫ ∞

0

dωωIm
1

ε(q, ω)
= −vq

1

h̄

∑

m

|〈Ψ0|N̂q |Ψm〉|2
∫ ∞

0

dωωδ(ω − ωm0) .
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After showing (by inserting a complete set of eigenstates |Ψm〉 of Hjell) that

−
∑

m

2h̄ωm0|〈Ψ0|N̂q |Ψm〉|2 = 〈Ψ0|[[Hjell, N̂q ], N̂−q ]|Ψ0〉

and one has to evaluate the double commutator. This is done with Hjell writ-
ten in terms of density fluctuations (see (4.107) and Problem 4.8). Realize first

with N̂†
k = N̂−k and [N̂k , N̂k′ ] = 0 that the interaction term commutes with N̂q .

Evaluate
[Hjell, N̂q ] = [

∑

k

ǫkc†kck , N̂q ] =
∑

k,q′

ǫk [c†kck , c†
q′−q

cq′ ]

which by applying fermion commutation rules yields

[Hjell, N̂q ] =
∑

k

ǫk

(
c†kck+q − c†k−qck

)
=
∑

k

(ǫk − ǫk+q) c†kck+q

and with ǫk = h̄2k2/2m

[Hjell, N̂q ] = − h̄2q2

2m
nq − h̄2

m

∑

k

k · q c†kck+q

The first term ∼Nq does not contribute to the double commutator which, therefore,
reads [

[Hjell, N̂q ], N̂−q

]
= − h̄2

m

∑

k,k′

k · q[c†kck+q , c†
k′+q

ck′ ] .

Evaluating the commutator with the rules for fermion operators leads to

[
[Hjell, N̂q ], N̂−q

]
= − h̄2

m

∑

k

k · q
(
c†kck − c†k+qck+q

)
and with k + q → k

= − h̄2

m

∑

k

c†kck = − h̄2

m
q2N .

Consider the factors one has
∫ ∞

0

dωωIm
1

ε(q, ω)
= −πvq

h̄

(
− 1

2h̄

)(
− h̄2

m
q2N

)
= −1

2
ω2

p .

4.11: Evaluate for ω = 0

ε1(q, 0) = 1 − e2

ε0V q2

∑

k,σ

fk+q − fk

ǫk+q − ǫk

by writing for q → 0:

fk+q − fk ≃ q · ∇kfk = q · ∇kǫk

df

dǫ
≃ −q · ∇kǫkδ(ǫk − EF)

and ǫk+q − ǫk ≃ q · ∇kǫk

Thus one has
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ε1(q) ≃ 1 +
e2

ε0V q2

∑

k,σ

δ(ǫk − EF)

= 1 +
e2

ε0V q2

2V

(2π)3
4π

∫ ∞

0

dk k2δ(ǫk − EF)

= 1 +
e2

ε0q2

1

2π2

(
2m

h̄2

)3/2

E
1/2
F and

ε1(q) ≃ 1 +
e2

ε0q2

1

2π2

2m

h̄2 kF = 1 +
k2
FT

q2
with k2

FT =
3ne2

2ε0EF
.

The meaning of kFT becomes evident when looking at the screened Coulomb inter-
action vq/ε1(q, 0) whose Fourier transform is of the form exp (−kFTr)/r: 1/kFT is
the Thomas–Fermi screening length.

4.12: Use the pair–distribution function (1.11)

g(r) = 1 +
1

N

∑

q

eiq·r(S(q) − 1) and use
N

V
=
∑

p,σ

npσ and

S(q) =
1

N

∑

p,σ

npσ(1 − np+qσ) to write

g(r) = 1 +
1

NV

∑

q

eiq·r
[

V

N

∑

p,σ

npσ (1 − nq+q,σ) − 1

]

= 1 − V 2

N2

∑

q,p,σ

npσnp+qσeiq·r .

The summation can be carried out by writing

· · · =
∑

p,σ

npe−ip·r ∑

q

np+qei(p+q)·r = 2
∑

p

npe−ip·r ∑

q′

nq′eiq′·r .

This double sum with the occupation factors was carried out already in Sect. 4.4 for
T = 0 K by integrating over the Fermi sphere and yields g(r) = 1 − ρHF/en (see
Fig. 4.13).

Solutions for Chap. 5

5.1: Taking spin into account, the expectation value of HN with the Slater deter-
minant ΨN is written

〈ΨN |HN |ΨN〉 =

N∑

α=1

∫
dxψ∗

α(x)

(
p2

2m
+ V (r)

)
ψα(x)

+
1

2

N∑

α,β=1
α �=β

∫ ∫
dxdx′ψ∗

α(x)ψ∗
β(x′)v(r − r

′)ψα(x)ψβ(x′)

−1

2

N∑

α,β=1
α �=β

∫ ∫
dxdx′ψ∗

α(x)ψ∗
β(x′)v(r − r

′)ψβ(x)ψα(x′).
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Carrying out the summation over spin variables, the first two terms become identical
with (5.8), while the third term (which appears because the Slater determinant is
an antisymmetrized product of N single-particle wave functions) contributes only
if ψα and ψβ are states with the same spin. The variational principle leads for the
first two terms to the Hartree equations, which become modified by a contribution
from the third term, the exchange term (5.11).

5.2: For free electrons with ψk(r) = exp (ik · r)/
√

V the averaged exchange density
reads

n̄HF(r, r′) = − 2

N

∑

k,k′

|k|,|k′|≤kF

1

V
eik′·(r−r′)e−ik·(r−r′)

and with the Fourier transform of 1/|r − r′| the exchange potential becomes

Vx,Slater(r) = − 2e2

ε0NV

∑

k,k′

|k|,|k′|≤kF

∑

q

1

q2

1

V

∫

V

ei(k′−k+q)·(r−r′)d3r′

︸ ︷︷ ︸
δk−k′,q

= − 2e2

ε0NV

∑

k,k′

|k|,|k′|≤kF

1

|k − k′|2 = − 3

8π2ε0
e2kF .

With the exchange energy ǫx(n) = −3e2kF/16π2ε0 from Sect. 4.4 one finds

V LDA
x (r) =

4

3
ǫLDA
x (n(r)) =

2

3
Vx,Slater(r).

5.3: The number of discrete k = (k1, k2, k3) with ki = 2πni/Li, i = 1, 2, 3 with
0 ≤ ni < Ni in a Brillouin zone is N = N1N2N3, which is the number of unit cells
in the crystal or periodicity volume. Thus, for each electron in the unit cell with
given spin there is one state in the energy band, i.e. each band can accommodate
2N electrons.

5.4: A point at the Brillouin zone boundary is characterized by the relation k′ =
k − G. The condition of degeneracy is k2 = k′2, thus (k − G)2 = (k′)2 becomes
2k · G = G2, which is the condition for Bragg reflection.

5.5: The primitive reciprocal lattice vectors of the square lattice are b1 = (1, 0)2π/a,
and b2 = (0, 1)2π/a. Write the free electron energies

E(k) =
h̄2

2m
(k + G)2 =

h̄2

2m

(
2π

a

)2

κ2

for the smallest G at the points Γ, M , and X and connect corresponding points by
parabolas defined by G.

If ν = 1, 2, 3 is the number of electrons per atom then, for one atom per unit
cell, ns = ν/a2 is the areal electron density. The radius of the Fermi circle is given
by kF =

√
2πns and the Fermi energy by

EF =
h̄2

2m
k2
F =

h̄2

2m

(
2π

a

)2
ν

2π

or κ2
F = ν/2π which is 0.159 for ν = 1.
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5.6: Proceed as in Problem 5.5 and see [121] for the free-electron bands along Γ−L.

5.7: In the almost free-electron picture, the energy bands of Al, Si, and GaAs derive
from the free-electron bands of the fcc lattice (see Problem 5.6). Due to the differ-
ent crystal structures (Bravais lattice for Al, diamond structure for Si, zinc blende
structure for GaAs) the energy gaps are determined by different Fourier components
of the pseudo-potential:

Vpsp(r) =
∑

n,τ

v(τ )
psp(r − R

0
n − τ ) → Vpsp(G) = e−ig·τ v(τ )

psp(G).

For Al with τ = 0, the structure factor S(G) =
∑

τ
exp (−iG · τ ) equals 1 for all

G. For diamond and zinc blende with τ = ±τ ′ with τ ′ = (1, 1, 1)a/8 one has

Vpsp(G) = e−iG·τ ′

v(+)(G) + eiG·τ ′

v(−)(G)

= cos (G · τ ′)vS(G) − i sin (G · τ ′)vA(G),

where

vS(G) = v(+)(G) + v(−)(G) and vA(G) = v(+)(G) − v(−)(G).

In Si the anti-symmetric potential vA(G) vanishes. Thus, Fourier components at
different reciprocal lattice vectors determine the energy bands as Al, Si, GaAs.
Especially, for G = (2, 0, 0)2π/a we have cos (G · τ ) = 0 but sin (G · τ ) = 1 and the
anti-symmetric potential present in GaAs removes the degeneracy of the level X1 in
Si (see Fig. 5.11).

5.8: The crystal field splitting is determined by the matrix formed by

Kν′ν =
∑

n

∫
d3rφ∗

ν′(r)v(r − R
0
n)φν(r)

with ν = xy, yz, zx, 3z2−r2, x2−y2. The point group operations of the cubic lattice
turn the coordinate triple x, y, z into any other permutation including sign changes
of x, y, and z, while leaving

∑
n

v(r − R0
n) invariant. Thus, the groups of orbitals

dxy, dyz, dzx and d3z3−r2 , dx2−y2 form invariant sets under the cubic point group,
which are classified by the irreducible representations Γ25′ and Γ12, respectively,
and the matrix with the elements Kν′ν has block-diagonal form. Further inspection
shows, that each of the diagonal blocks is itself diagonal for the given basis with
identical diagonal matrix elements, thus, the crystal field splitting gives a threefold
(Γ25′) and a twofold (Γ12) state as can be seen at the Γ point of the band structures
depicted in Figs. 5.14 and 5.15. There is no difference between sc, bcc, and fcc crystal
structure because they have the same point group.

5.9: The overlap matrix Sν′ν(k) is hermitian and can be diagonalized by a unitary
transformation U : USU−1 = S′ with S′

µ′µ = S′
µδµ,µ′ . The diagonal elements S′

µ of
the transformed overlap matrix represent the norms of the new basis states which
are always positive. Thus the eigenvalue equation can be rewritten

UHU−1

︸ ︷︷ ︸
H′

UC︸︷︷︸
C′

= E USU−1

︸ ︷︷ ︸
S′

UC︸︷︷︸
C′

.

One can multiply this equation with the inverse square root of the diagonal matrix
S′ to arrive at the eigenvalue equation



Solutions 371

S′−1/2H ′S′−1/2S′1/2C′ = ES′1/2C′

and with H̃ = S′−1/2H ′S′−1/2, C̃ = S′1/2C′ one has the standard eigenvalue
problem with the secular equation

∥∥∥H̃µ′µ − Eδµ′,µ

∥∥∥ = 0

with H̃ = S′−1/2UH ′U−1S′−1/2.

5.10: The nearest neighbors in the sc crystal structure are

R
0
n : a(±1, 0, 0), (0,±1, 0), (0, 0 ± 1)

leading to the dispersion

Es(k) = Es + 2Jss(a)(cos (kxa) + cos (kya) + cos (kza))

which for k = (k, 0, 0) becomes Es(k) = Es + 2Jss(a) cos (ka) and for k =
(k, k, k), Es(k) = Es + 6Jss(a) cos (ka) with band widths E(0) − E((π/a, 0, 0)) =
4Jss(a) and E(0) − E((π/a, π/a, π/a)) = 12Jss(a), respectively.
For the bcc crystal structure one has

R
0
n :

a

2
(±1,±1,±1), (∓1,±1,±1), (±1,∓1,±1), (±1,±1,∓1)

leading to the dispersion

Es(k) = Es + 2Jss

(
a√
3

){
cos

(a

2
(kx + ky + kz)

)
+ cos

(a

2
(−kx + ky + kz)

)

+ cos
(a

2
(kx − ky + kz)

)
+ cos

(a

2
(kx + ky − kz)

)}

which for k = (k, 0, 0) becomes Es(k) = Es + 8Jss(a/
√

3) cos (ka/2) and for k =
(k, k, k), Es(k) = Es + 2Jss(a/

√
3)(cos (3ka/2) + 3 cos (ka/2)) with band widths

E(0)−E((2π/a, 0, 0)) = 16Jss(a/
√

3) and E(0)−E((π/a, π/a, π/a)) = 8Jss(a/
√

3).

5.11: For a solution see P.R. Wallace, Phys. Rev. 71, 622 (1947) and the article by
S.E. Louis in [114].

5.12: Use the Peierls substitution ǫ(k) → H(p − eA)2 with the vector potential
A = (0, B(x cos θ + z sin θ, 0)) corresponding to B = B(sin θ, 0, cos θ) to write

H =
p2

x

2mt
+

1

2mt
(py − eB(x cos θ + z sin θ))2 +

p2
z

2ml
.

The equations of motion for the components of the momentum are (up to terms
∼py which vanish later due to ṗy = 0)

ṗx = − i

h̄
[px, H ] = −e2B2

mt
(x cos θ + z sin θ) cos θ

ṗz = − i

h̄
[pz, H ] = −e2B2

mt
(x cos θ + z sin θ) sin θ.

Take the derivatives of these equation with respect to t and replace ẋ = px/mt, ż =
pz/ml to obtain
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−p̈x = ω2
t cos2 θpx + ωtωl sin θ cos θpz

−p̈z = ω2
t sin θ cos θpx + ωtωl sin

2 θpz

with ωl,t = eB/ml,t. With px,z ∼ exp (−iωt) this becomes a set of homogeneous
linear equations and the eigenfrequencies follow from

∥∥∥∥
ω2

t cos2 θ − ω2 ωtωl sin θ cos θ
ω2

t sin θ cos θ ωtωl sin
2 θ − ω2

∥∥∥∥ = 0

with the nontrivial solution

ω2 = ω2
t cos2 θ + ωtωl sin2 θ = e2B2

(
cos2 θ

m2
t

+
sin2 θ

mlmt

)
.

The expression in the bracket is the squared inverse cyclotron mass for the anisotropic
energy surface if the magnetic field includes the angle θ with the z-axis. See [4].

5.13: For k = (kx, ky, 0) and ∇V ‖(001) the interface spin–orbit (or Rashba)-term
reads

HSO(k) = α|∇V |(kyσx − kxσy)

and with k± = kx ± iky = k exp (±iϕ) and σ± = (σx ± iσy)/2

HSO(k, ϕ) = iα|∇V |(k+σ− − k−σ+) = iα′(eiϕσ− − e−iϕσ+).

The subband Hamiltonian with spin–orbit interaction becomes

H(k, ϕ) =

(
ǫk iα′e−iϕ

−iα′e−iϕ ǫk

)
.

Its eigenvalues ǫ±(k) = ǫk ± α|∇V |k do not depend on ϕ and are two parabolas
shifted against each other. Use the eigenvectors

|k,±〉 =
1√
2

∣∣∣∣
1

∓ieiϕ

〉

to calculate the expectation value of the vector of Pauli spin matrices:

〈k,±|σ|k,±〉 = ±(ex sin ϕ − ey cos ϕ).

Thus, the spin is always oriented perpendicular to the wave vector k = (kx, ky, 0)
and rotates with ϕ. Note, that the states on each parabola form a Kramers pair.
See [153].

Solutions for Chap. 6

6.1: Choose the quantum numbers for the Bloch states

α = nkσ, β = n̄k̄σ̄, α′ = n′
k
′σ′, β′ = n̄′

k̄
′
σ̄′.

After carrying out the summation over spin variables the matrix element reduces to

Vαββ′α′ =

∫
d3r

∫
d3r′ψ∗

nkσ(r)ψ∗
n̄k̄σ̄(r′)

e2

κ|r − r′|ψn̄′k̄′σ(r)ψn′k′σ̄(r′).
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Decompose the Bloch function into plane wave and lattice periodic parts, expand
the products of periodic parts with the same argument in a Fourier series

u∗
nkσ(r)un̄′k̄′σ(r) =

∑

G

Bnn̄kk̄σ(G)eiG·r ,

and use the Fourier transform of the Coulomb interaction to perform the integration
over the space variables to find

Vαββ′α′ =
∑

G,G′,q

Bnn̄′kk̄′σ(G)Bn̄n′k̄k′σ̄(G′)

× e2

ε0V q2

∫
d3re−i(k−k̄′−q−G)·r

∫
d3r′e−i(k̄−k′+q−G′)·r′

.

For the single-band approximation set n = n̄ = n̄′ = n′ and with only leading terms
in the Fourier series, G = G′ = 0, write

Bnn̄′kk̄′σ(G) → Bkq , Bn̄n′k̄k′σ̄(G′) → Bk̄q

and obtain
Vαββ′α′ =

∑

q

v(q)V 2BkqBk̄qδk̄′,k−qδk̄,k′−q .

6.2: To check normalization and orthogonality write

∑

s

∫
d3rφ∗

nσ(r − R)φn′σ′(r − R
′)

=
1

N
δσ,σ′

∑

k,k′

e−ik·R−ik′·R′
∫

d3r ψ∗
nkσ(r)ψn′k′σ(r)

︸ ︷︷ ︸
δn,n′δk,k′

=
1

N

∑

k

e−ik·(R−R′)

︸ ︷︷ ︸
δR,R′

δn,n′ = δn,n′δR,R′

Thus localized functions, represented by Bloch functions, are orthogonal when cen-
tered on different sites. Insofar the Wannier representation differs from the LCAO.
Introduce fermion operators for these localized Wannier states by

cnRσ =
1√
N

∑

k

eik·Rcnkσ

and calculate the anti-commutator
{

cnRσ, c†n′R′σ′

}
=

1

N

∑

k,k′

eik·R−ik′·R′
{

cnkσ, c†n′k′σ′

}

︸ ︷︷ ︸
δn,n′δ

k,k′ δσ,σ′

= δn,n′δσ,σ′
1

N

∑

k

eik·(R−R′) = δn,n′δσ,σ′δR,R′ .

The other anti-commutators yield
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{
c†nRσ, c†n′R′σ′

}
= {cnRσ, cn′R′σ′} .

6.3: Use the representation (6.7) of the Bloch functions to write

Vαββ′α′ =
1

N2

∑

R1,R2,R′
1
,R′

2

e−ik·R1e−ik̄·R2eik̄′·R′
1eik′·R′

2

×
∫

d3r

∫
d3r′ φ∗(r − R1)φ

∗(r′ − R2)
e2

κ|r − r′|φ(r − R
′
1)φ(r′ − R

′
2).

Use (6.8) with the exponentials and sums over the wave vectors to replace the
fermion operators of Bloch states in the interaction term by those of Wannier states
to find (6.10).

6.4: The commutator between c†↑c↓ and c†↓c↑

[c†↑c↓, c
†
↓c↑] = c†↑c↓c

†
↓c↑ − c†↓c↑c

†
↑c↓

is evaluated by using the anti-commutator for fermion operators and writing

c†↑c↓c
†
↓c↑ = c†↑(1 − c†↓c↓)c↑ = c†↑c↑ − c†↑c

†
↓c↓c↑

= c†↑c↑ − c†↓(1 − c↑c
†
↑)c↓ = c†↑c↑ − c†↓c↓ + c†↓c↓c↑c

†
↑,

where the last term cancels in the commutator. Thus we have

[c†↑c↓, c
†
↓c↑] = c†↑c↑ − c†↓c↓.

The other commutation relations

[c†↑c↓, c
†
↑c↑ − c†↓c↓] = −2c†↑c↓ , and [c†↓c↑, c

†
↑c↑ − c†↓c↓] = 2c†↓c↑

follow in a similar way. These three commutators are the same as those between S±

and Sz and correspond to the operator algebra of the Cartesian components of the
angular momentum Sx, Sy , and Sz.

6.5: Evaluate the commutator

[Sβ
i Sβ

k , Sx
j ] = Sβ

k Sx
j Sβ

i − Sx
j Sβ

i Sβ
k

= −iεxβγSγ
j Sβ

k δi,j − Sβ
i iεxβγSγ

j δj,k,

to write the commutator of Sx
j with the first term of the Heisenberg hamiltonian

∑

i,k
i�=k

Jik

∑

β

[Sβ
i Sβ

k , Sx
j ] =

{
−∑k �=j

∑
β,γ JjkiεxβγSγ

j Sβ
k for i = j, k = j

−∑i�=j

∑
β,γ Jij iεxβγSβ

i Sγ
j for k = j, k = i

= −i
∑

i�=j

Jij (Si × Sj)x

where for obtaining the last line use was made of i = k and of the meaning of the
Levi–Civita symbol. For the commutator with the second term of the Heisenberg
hamiltonian evaluate

∑

i

[Sz
i , Sx

j ] =
∑

i,β

iεzxβSβ
j δi,j = iSy

j .
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Putting together both contributions find

dSx
j

dt
=

i

h̄

[
Hspin, Sx

j

]
= − 1

h̄

(
∑

i

Jij

(
Si × Sj

)
x

+ gμB

(
Hext × Sj

)
x

)
.

6.6: Evaluate the commutator
[
αk , α†

k′

]
=
[
ukb1k − vkb†2k , uk′b†1k′ − vk′b2k′

]

= ukuk′

[
b1k , b†1k′

]

︸ ︷︷ ︸
δk,k′

+vkvk′

[
b†2k , b2k′

]

︸ ︷︷ ︸
−δk,k′

=
(
u2

k − v2
k

)
δk,k′ ,

which for
(
u2

k − v2
k

)
= 1 is a boson commutation relation. In the same way,

calculate

[αk , βk′ ] =
[
ukb1k − vkb†2k , uk′b2k′ − vk′b†1k′

]

= −ukvk′

[
b1k , b†1k′

]
− vkuk′

[
b†2k , b2k′

]
= 0.

The remaining commutation relations are obtained in a similar way.

6.7: Using the new boson operators for coupled magnon–phonon modes, the
hamiltonian becomes

Hp−m =
∑

k

{
α†

kαk

(
h̄ωp

k cos2 Θk + h̄ωm
k sin2 Θk − 2ck sin Θk cos Θk

)

+ β†
kβk

(
h̄ωp

k sin2 Θk + h̄ωm
k cos2 Θk + 2ck sin Θk cos Θk

)

+ α†
kβk

[
(h̄ωp

k − h̄ωm
k ) sin Θk cos Θk + ck

(
cos2 Θk − sin2 Θk

)]

+ αkβ†
k

[
(h̄ωp

k − h̄ωm
k ) sin Θk cos Θk + ck

(
cos2 Θk − sin2 Θk

)] }
.

It can be diagonalized with

(
h̄ωp

k − h̄ωm
k

)
sin Θk cos Θk + ck

(
cos2 Θk − sin2 Θk

)
= 0

or

tan 2Θk =
−2ck

h̄ωp
k − h̄ωm

k

.

For ωp
k = ωm

k = ωk we have cos2 Θk = sin2 Θk = 1/2 and find for the eigenenergies
of the coupled modes

h̄ωα
k = h̄ωk − ck and h̄ωβ

k = h̄ωk + ck

and for the corresponding boson operators

αk =
1√
2

(
ak − bk

)
and βk =

1√
2

(
ak + bk

)
.
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6.8: With the inverted transformation relations (6.59) write the terms of (6.56):

b†1kb1k = α†
kαku2

k + β†
kβkv2

k +
(
α†

kβ†
k + αkβk

)
ukvk

b†2kb2k = β†
kβku2

k + αkα†
kv2

k +
(
β†

kα†
k + βkαk

)
ukvk

b†1kb†2k =
(
α†

kαk + βkβ†
k

)
ukvk + α†

kβ†
ku2

k + βkαkv2
k

b1kb2k =
(
αkα†

k + β†
kβk

)
ukvk + αkβku2

k + β†
kα†

kv2
k

to obtain

Hspin ≃ Ea + 2JaνS
∑

k

{(
α†

kαk + β†
kβk

)(
u2

k + v2
k + 2γkukvk

)

+
(
α†

kβ†
k + αkβk

)(
2ukvk + γk(u2

k + v2
k)
)

+ 2(γkukvk + v2
k

}
.

Add and subtract u2
k under the sum to find with u2

k − v2
k = 1 the expression (6.60).

6.9: Extend (6.53) by the terms due to the anisotropy field HA and the external
field Hext

Hspin = Ja

∑

n.n.ij

S1i · S2j − gμB

∑

i

((
HA + Hext

)
Sz

1i −
(
HA − Hext

)
Sz

2i

)

and replace the spin operators by boson operators on each sublattice using the
Holstein–Primakoff transformation to obtain

Hspin = − 2JaνNS2 − 4gμBHANS

+ 2JaνS
∑

k

{
b†1kb1k + b†2kb2k + γk

(
b†1kb†2k + b1kb2k

)}

+ 2gμBHA

∑

k

(
b†1kb1k + b†2kb2k

)
+ gμBHext

∑

k

(
b†1kb1k − b†2kb2k

)
.

Eliminate the coupling between the sublattices using the Bogoliubov transformation
(6.57) and write with the abbreviations

C = −2JaνNS2 − 4gμBHANS , A = 2JaνS , B = 2gμBHA , C = gμBHext

Hspin ≃ C +
∑

k

{
Aγk

(
2ukvk

(
α†

kαk + β†
kβk + 1

)
+ (u2

k + v2
k)
(
α†

kβ†
k + αkβk

))

+ (A + B)
(
(u2

k + v2
k)
(
α†

kαk + β†
kβk

)
+ 2ukvk

(
α†

kβ†
k + αkβk

)
+ 2v2

k

)

+ C
(
α†

kαk − β†
kβk

)}
.

Diagonalize with Aγk

(
u2

k + v2
k

)
= −2(A + B)ukvk . Square this relation and use

u2
k − v2

k = 1 to get a biquadratic equation for uk . Take its solution to find

u2
k + v2

k = ±
{

(A + B)2

(A + B)2 − A2γ2
k

}1/2

, ukvk = ∓1

2

{
A2γ2

k

(A + B)2 − A2γ2
k

}1/2

.
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Identify the prefactor of the magnon number operators as the magnon energy

h̄ωk =
{
(A + B)2 − A2γ2

k

}1/2

which without anisotropy field (B = 0) reduces to the dispersion relation for the
antiferromagnetic magnons which for small k is linear. With anisotropy field one
finds a finite magnon energy for k = 0 and a quadratic dispersion for small k as can
be seen in Fig. 6.8.

6.10: Evaluate for low temperature (T ≪ TC) the magnetization (per unit volume)

M(T ) = gμB

(

NS −
∑

k

〈b†kbk〉
)

or

M(0) − M(T ) = gμB

∑

k

1

exp (h̄ωk/kBT ) − 1

= gμB
4π

(2π)3

∫ ∞

0

k2dk

exp (Dk2/kBT ) − 1

where the quadratic dispersion for small k is used. The integral (it is a Bose integral)
can be solved as described in the Appendix (A.3) to yield Bloch’s T 3/2 law:

M(0) − M(T ) = ζ(
3

2
)

gμB

M(0)

(
kB

4πD

)3/2

T 3/2.

See [166].

6.11: Calculate the expectation value in (6.106) for T = 0:

〈. . . 〉0 =
∑

m

{
〈Ψ0|M+(q, τ )|Ψm〉〈Ψm|M−(−q, 0)|Ψ0〉

− 〈Ψ0|M−(−q, 0)|Ψm〉〈Ψm|M+(q, τ )|Ψ0〉
}
.

Replace the operators M± by the fermion operators and extract the exponentials
with the time dependence. The energy difference Em − E0 of exact eigenstates
becomes in HF approximation the energy difference of single-particle energies for
particle–hole excitations with spin-flip across the Fermi energy. By manipulations
as in Sect. 4.5 one arrives at the spin susceptibility (6.108).

To evaluate (6.108), use

ǫk+q↑ − ǫk↓ = −∆ +
h̄2

m
k · q + ǫq , ǫk↑ − ǫk−q↓ = −∆ +

h̄2

m
k · q − ǫq

with ǫq = h̄2q2/2m and perform the sum over k with the substitution k · q =
kq cos θ , cos θ = x. The first term can be written

A↓ =
∑

|k|≤kF↓

1

h̄ω + ǫk+q↑ − ǫk↓

=
V

(2π)2

∫ kF↓

0

dk k2

∫ +1

−1

1

h̄ω − ∆ + ǫq + h̄2kqx/m
dx.
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The integral over x can be solved according to

∫ +1

−1

dx

a + bx
=

1

b

∫ a+b

a−b

dz

z
=

1

b
ln

∣∣∣∣
1 + b/a

1 − b/a

∣∣∣∣.

Looking for collective excitations at small q one has b/a ≪ 1 and can use the
expansion

1

b
ln

∣∣∣∣
1 + b/a

1 − b/a

∣∣∣∣ ≃
2

b

{
b

a
+

1

3

(
b

a

)3
}

=
2

a

{

1 +
1

3

(
b

a

)2
}

to obtain

A↓ =
2V

(2π)2
1

h̄ω − ∆ + ǫq

∫ k
−
F

0

dk k2

{

1 +
k2

3

(
h̄2q

m

)2 (
1

h̄ω − ∆ + ǫq

)2
}

.

After integration and corresponding evaluation of the second term A↑ one arrives
at (6.108).

Solutions for Chap. 7

7.1: Evaluate the commutator [ck̄,σ̄, c†k+qσc†
k′−qσ′ck′σ′ckσ] by successively inter-

changing ck̄,σ̄ with the four operators appearing in the interaction term. Each step
leads to a change in sign and in addition gives a Kronecker δ for exchange with the
creation operators, thus

ck̄,σ̄c†k+qσc†
k′−qσ′ck′σ′ckσ = δk̄,k+qδσ̄,σc†

k′−qσ′ck′σ′ckσ − δk̄,k′−qc†k+qσck′σ′ckσ.

Interchange the last two operators in the second term and replace σ by σ′ and k by
k′. Replace in the first term q by −q and consider the properties of the interaction
matrix element to find the expression for [ck̄ ,Hint] (7.20). The commutator [c†

k̄
,Hint]

is evaluated by analogous steps.

7.2: The equation of motion of the full Green function G(kσ; t − t′) (7.21) can be
written with (7.23) as

(
ih̄

∂

∂t
− ǫkσ

)
G(kσ; t − t′) = δ(t − t′) +

∫
dt′′Σ(kσ; t − t′′)G(kσ; t′′ − t′).

Replace the Green function and the self-energy by their Fourier transform with
respect to the time arguments and identify the integrands to obtain

(h̄ω − ǫkσ)G(kσ; ω) = 1 + Σ(kσ; ω)G(kσ; ω).

After multiplication with the Green function of the noninteracting system

G0(kσ;ω) = (h̄ω − ǫkσ)−1

one arrives at the Dyson equation

G(kσ; ω) = G0(kσ; ω) + G0(kσ; ω)Σ(kσ;ω)G(kσ; ω).

7.3: The commutator of ni−σciσ with the single-particle part H0 yields three terms
due to interchange of creation and annihilation operators:
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[ni−σciσ, H0] =
∑

mjσ′

tmj

(
c†i−σci−σciσc†mσ′cjσ′ − c†mσ′cjσ′c†i−σci−σciσ

)

=
∑

mjσ′

tmj

(
δimδσσ′ni−σcjσ − δimδσ−σ′c†i−σciσcj−σ

− δijδσ−σ′c†m−σci−σciσ

)

=
∑

m

tim

(
ni−σcmσ + c†i−σcm−σciσ − c†m−σci−σciσ

)
,

where the last line is obtained by proper choice of the summation indices and
rearranging the operators. Similarly the commutator with the interaction term is
evaluated

[ni−σciσ, H1] =
1

2
U
∑

mσ′

(ni−σciσnmσ′nm−σ′ − nmσ′nm−σ′ni−σciσ)

=
1

2
U
∑

mσ′

ni−σ

(
ciσc†mσ′cmσ′nm−σ′ − nmσ′nm−σ′ciσ

)

=
1

2
U
∑

mσ′

ni−σ (δimδσσ′ciσni−σ + δimδσ−σ′ni−σciσ) ,

which using n2
i−σ = ni−σ becomes (7.55).

7.4: Calculate the derivative of the self-energy (7.70) and obtain the spectral weight

Z(E) =

(
1 − ∂Σ

∂E

)−1

=

(
E − ǫ0 − U(1 − 〈n−σ〉)

)2
(
E − ǫ0 − U(1 − 〈n−σ〉)

)2
+ U2〈n−σ〉(1 − 〈n−σ〉)

.

For the lower Hubbard band with E = ǫ0 + 2t cos ka this becomes

Zlower =

(
2t cos ka − U(1 − 〈n−σ〉)

)2
(
2t cos ka − U(1 − 〈n−σ〉)

)2
+ U2〈n−σ〉(1 − 〈n−σ〉)

and reduces for k = π/2a to Zlower = 1 − 〈n−σ〉. For the upper Hubbard band with
E = ǫ0 + U + 2t cos ka the result is

Zupper =

(
2t cos ka + U〈n−σ〉

)2
(
2t cos ka + U〈n−σ〉

)2
+ U2〈n−σ〉(1 − 〈n−σ〉)

and Zupper = 〈n−σ〉 for k = π/2a. Note that the spectral weights for k = π/2a are
those of the atomic limit (see Fig. 7.3).

7.5: This problem is solved in some detail in [169, 206]. It leads to the so-called t−J
model, where t is the hopping integral and J ∼ t2/U is the effective exchange matrix
element.

7.6: Describing the delocalized electrons by fermion operators c†kσ, ckσ in a band
with dispersion ǫk and the localized electrons with energy ǫd by fermion operators
d†

σ, dσ, the Hamiltonian is formulated as

H =
∑

k,σ

ǫkc†kσckσ +
∑

σ

ǫdd†
σdσ

+
∑

k,σ

Vkσ

(
d†

σckσ + c†kσdσ

)
+ Und

↑n
d
↓.
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Here the third term describes the hybridization between the localized and delocalized
electrons. This is the Anderson impurity model. It can be extended by considering
instead of a single impurity a periodic configuration of sites i with d electrons.
For this case the fermion operators for d electrons become d†

iσ, diσ and summation
over the sites i is to be considered. See P.W.Anderson: Phys. Rev. 124 41 (1961)
and [64] Sect. 6.2, [122, 195].

7.7: For the solution see [122, 195]. It uses a contour integration in the complex
frequency plane taking into account the position of the poles for quasi-particles and
holes.

7.8: Start from (4.136) for the real part of the dielectric function, which for T = 0
reads

ε1(q, ω) = 1 + vq

∑

|k|≤kF

2ǫk − ǫk+q − ǫk−q

(h̄ω − ǫk + ǫk−q)(h̄ω − ǫk+q + ǫk)
.

Making use of the free electron dispersion ǫk = h̄2k2/2m the numerator simplifies
to −h̄2q2/m while the denominator takes the form

(h̄ω − ǫk + ǫk−q)(h̄ω − ǫk+q + ǫk) =

(
h̄ω − h̄2

m
k · q

)2

−
(

h̄2

2m
q2

)2

and the expression to be evaluated by integration is

∑

|k|≤kF

1
(
h̄ω − h̄2

m
k · q

)2

−
(

h̄2

2m
q2
)2 =

(
2m

h̄2

)2 ∑

|k|≤kF

1

(q2
s − 2k · q)2 − q4

,

with q2
s = 2mh̄ω/h̄2.

For d = 1 the vectors become scalars and the sum can be written as the integral
(using the substitution x = 2kq)

I(q, ω) =
L

2π

∫ kF

−kF

dk

q4
s − q4 − 4q2

skq + 4k2q2
=

L

2π

∫ xF

−xF

dk

x2 − 2q2
sx + q4

s − q4
.

The integral can be found in integral tables giving

I(q, ω) =
L

2π

1

4q3
ln

∣∣∣∣
(2kFq − 2q2)2 − 4q4

s

(2kFq + 2q2)2 − 4q4
s

∣∣∣∣.

For ω = 0 (or qs = 0) this integral diverges for q → kF.
For d = 3, considering from the beginning the simpler case ω = 0, the

corresponding integral is

I(q) =
L3

(2π)3
2π

∫ kF

0

dk k

∫ +1

−1

d cos ϑ

4k2q2 cos2 ϑ − q4
=

L3

8π2q3

∫ kF

0

dk ln

∣∣∣∣
k − q

k + q

∣∣∣∣,

and yields by integration

I(q) =
L3

8π2q2

{(
kF

q
− 1

)
ln

(
kF

q
− 1

)
−
(

kF

q
+ 1

)
ln

(
kF

q
+ 1

)}
.

For q → kF this integral remains finite.
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Solutions for Chap. 8

8.1: The operator for linear electron–phonon interaction

Hel−ph = −
∑

l,n,τ

∇lv(rl − Rnτ )
∣∣
R0

nτ

· unτ

can be written in terms of phonon and electron operators using (3.22) together with
(3.39) and by replacing with (4.76)

∑

l

∇lv(rl − Rnτ )
∣∣
R0

nτ

→
∑

n,k,n′,k′

〈nk|∇v|n′
k
′〉c†nkcn′k′ .

The sum over the lattice sites n effects only the gradient of the potential and has
the form of a Bloch function

∑

n

eiq·R0
n∇v(r − Rnτ )

∣∣
R0

nτ

= eiq·rUqτ (r)

where Uqτ (r) is a lattice periodic function. After decomposition of the electron Bloch
functions in the matrix element into plane wave and lattice periodic part the product
u∗

nk(r)un′k′(r)Uqτ (r) can be expanded in a Fourier series. Thus the integration over
the crystal volume can be carried out with

∫
d3r e−i(k−k′−q−G)·r ∼ δk,k′+q+G

and yields the relation between the involved wave vectors.

8.2: Using (3.76) one has ∂ui/∂xi = ǫii and can write

∇ · u(r) =
∑

i

∂

∂xi
ui(r) =

∑

i

ǫii = Trǫ.

For u(r) ∼ eiq·r follows ∇ · u = iq · u which differs from zero only for longitudinal
phonons.

8.3: For transverse phonons with q =
∑

α qαeα, u =
∑

β uβeβ we have in general
q ·u =

∑
α qαuα = −iTrǫ = 0 but e.g. for the special case q = (q, 0, 0), u = (0, u2, u3)

the strain tensor components are

ǫ11 = ǫ22 = ǫ33 = ǫ23 = 0, but ǫ12 =
i

2
qu2, ǫ13 =

i

2
qu3,

giving a nonvanishing contribution to the electron–phonon interaction.

8.4: Start with the classical expression for the interaction energy (8.23) with

∇ · P (r) = −1

4
e14|εijk| (qiqkuj + qiqjuk) eiq·r double index summation

= −2e14 (qyqzux + qzqxuy + qxqyuz) eiq·r .



382 Solutions

Using (8.24) for the charge density, expressing the displacement field by phonon
operators, and integrating over the crystal volume converts Eint into the operator

HP
el−ph = − 2ee14

ε0ε∞

∑

s,q

√
h̄N

2Mωs(q)

qxqyes
z(q) + c.p.

q2

×
(
a†

s(−q) + as(q)
)∑

k

c†k+qck .

8.5: To be calculated is the expression 〈τ 〉 (8.71) with the given dependencies of τ .
The integrals are solved with the substitution ǫ/kBT = x and we may write

∫ ∞

0

ǫ3/2e−ǫ/kBT dǫ = (kBT )5/2

∫ ∞

0

x3/2e−xdx ∼ T 5/2.

Similar for τ ∼ T−1ǫ−1/2

∫ ∞

0

τǫ3/2e−ǫ/kBT dǫ = T−1 (kBT )2
∫ ∞

0

xe−xdx ∼ T

and for τ ∼ T−1ǫ1/2

∫ ∞

0

τǫ3/2e−ǫ/kBT dǫ = T−1 (kBT )3
∫ ∞

0

xe−xdx ∼ T 2.

Thus for deformation potential coupling μ(T ) ∼ T−3/2 and for piezoelectric coupling
μ(T ) ∼ T−1/2. This explains the different slopes of the corresponding graphs in
Fig. 8.5. For more details see [4, 246].

8.6: For the solution see [4], Chap. 7. The calculation is essentially the same as for the
Fröhlich coupling but with the 1/q dependence of the interaction potential replaced
by a

√
q dependence. The number of virtually excited phonons being proportional

to the square of the effective mass of the electron turns out to be much smaller
than 1. Replacing the electron by the much heavier ion would increase this number
to a value much larger than 1 indicating that the perturbation calculation is not
appropriate.

8.7: We have to evaluate the commutator

[Hel−ph, S] =
∑

k,q

k′,q′

VqVq′

[
c†k+qck

(
a†
−q + aq

)
, c†

k′+q′ck′

(
αa†

−q′ + βaq′

)]

and write

[. . . , . . . ] =
[
a†
−q + aq , αa†

−q′ + βaq′

]
c†k+qckc†

k′+q′ck′

+
[
c†k+qck , c†

k′+q′ck′

] (
αa†

−q′ + βaq′

) (
a†
−q + aq

)
.

The electron part of the first term can be rearranged giving

c†k+qckc†
k′+q′ck′ = c†k+qc†

k′+q′ck′ck + δk,k′−q n̂k′

where the first term has the structure of an electron–electron interaction (this is the
one we are looking for). The phonon part of the first term gives
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[
a†
−q + aq , αa†

−q′ + βaq′

]
= (−α + β)δq,q′ .

The second term, being bilinear in the phonon operators, is neglected as well as
the term with the electron number operator to obtain the approximate form of the
commutator [Hel−ph, S].

8.8: Using (8.120) the ground state expectation value of H̄ relative to the ground
state of the normal system is

E0 = 〈H̄〉 +
∑

k

|E(k)|

and can be written with

〈σkz〉 = cos θk , 〈σkx〉 = sin θk and
Veff

4

∑

k′

sin θk′ = E(k) tan θk

as

E0 = −
∑

k

E(k)

(
cos θk +

1

2
tan θk sin θk

)
+
∑

k

|E(k)|.

With

E(k) tan θk sin θk =
2∆2

Veff
and cos θk =

E(k)

(E2(k) + ∆2)1/2

and by replacing the sum over k by an energy integral over the shell with thickness
h̄ωD at the Fermi energy, one finds

E0 = 2D(EF)

∫ h̄ωD

0

dǫ

{
ǫ − ǫ2

(ǫ2 + ∆2)1/2

}
− ∆2

Veff
,

where D(EF) is the density of states at the Fermi energy. The integration can easily
be performed and yields

E0 = D(EF)(h̄ωD)2

⎧
⎨

⎩1 −
[

1 +

(
∆

h̄ωD

)2
]1/2

⎫
⎬

⎭ ≃ − (D(EF)h̄ωD)2 Veff .

The last expression, obtained for 1 ≫ D(EF)Veff , tells us that the superconducting
state is stable as long as the effective interaction is positive.

Solutions for Chap. 9

9.1: Besides the poles of G0(E) the full Green function G(E) has additional poles
for 1 − G0(E)U = 0. In site representation U has block-diagonal form with a non-
zero block U1 = U{RI} only in the diagonal for lattice sites around the impurity.
With G0(E) written in the corresponding block form (with G0,{RI}(E) = G1

0(E)
and corresponding matrices for the other blocks), the matrix multiplication can be
performed to give

G0(E)U =

(
G1

0(E) G2
0(E)

G3
0(E) G4

0(E)

)(
U 0
0 0

)
=

(
G1

0(E)U1 0
G3

0(E)U1 0

)
.

The determinant of 1 − G0(E)U is the product of the determinants of its diagonal
blocks or ‖1 − G0,{RI}(E)U{RI}‖ = 0.
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9.2: The average of the individual resistances is

〈r〉 =
1

N

N∑

i=1

ri and therefore 〈R〉 = 〈
N∑

i=1

ri〉 =
N∑

i=1

〈ri〉 = N〈r〉.

The variance of R is given by

VarR = 〈
∑

ij

rirj〉 − N2〈r〉2 = 〈
∑

i

r2
i 〉 + 〈

∑

i�=j

rirj〉 − N2〈r〉2

and with uncorrelated fluctuations of the ri

VarR = N〈r2〉 + N(N − 1)〈r〉2 − N2〈r〉2 = N
(
〈r2〉 − 〈r〉2

)
.

The relative variance given by

VarR

〈R〉2 =
1

N

Varr

〈r〉2 vanishes for N → ∞.

9.3: The transverse response reads

χ(0, ω) = e2
∑

i,f,i′ ,f ′

〈i|v̂|f〉〈f ′|v̂|i′〉 i

h̄

∫ ∞

0

dτ 〈[c†i (τ )cf (τ ), c†f ′ci′ ]〉0.

The time dependence of the operators gives a factor exp (i(ǫi − ǫf )τ/h̄) and the
integral over τ yields

i

h̄

∫ ∞

0

dτe
i
h̄

(h̄ω+ǫi−ǫf +iδ)τ = − 1

h̄ω + ǫi − ǫf + iδ
,

where the small parameter δ is introduced to regularize the integral. To evaluate the
remaining thermal expectation value first calculate the commutator

[c†i cf , c†f ′ci′ ] = c†i ci′δf,f ′ − c†f ′cfδi,i′ .

With the thermal expectation value of 〈c†i ci′〉0 = f(ǫi)δi,i′ the response function
takes the form of (9.87)

χ(0, ω) = −e2
∑

i,f

∣∣〈i|v̂|f〉
∣∣2 f(ǫi) − f(ǫf )

h̄ω + ǫi − ǫf + iδ
.

9.4: Write (for finite ω) the δ function in the form

δ(h̄ω + ǫi − ǫf ) =

∫
dE δ(E − ǫi)δ(E + h̄ω − ǫf )

so that with ǫi = E and ǫf = E + h̄ω the conductivity is expressed by

σ(0, ω) = πe2

∫
dE

f(E) − f(E + h̄ω)

ω

∑

i,f

∣∣〈i|v̂|f〉
∣∣2δ(E − ǫi)δ(E + h̄ω − ǫf ).

The δ functions can be replaced with (2.77) and E+ = E +iδ by the imaginary part
of the corresponding single-particle Green functions and give for the double sum
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expression under the integral

∑

i,f

. . . =
∑

i,f

〈i|v̂|f〉〈f |v̂|i〉ImGii(E
+)ImGff (E+ + h̄ω)

=
1

π2

∑

i,f

〈i|v̂G(E+ + h̄ω)|f〉〈f |v̂G(E+)|i〉,

which for ω → 0 leads to Tr(v̂ImG(E+)v̂ImG(E+)).

9.5: Write β(g) in the form

β(g) =
dg

dL

L

g
.

For g → ∞ use g(L) = σLd−2 and σ independent of L to find

dg

dL
= σ(d − 2)Ld−3 = (d − 2)

g

L

which means
lim

g→∞
β(g) = d − 2.

For g → 0 use g(L) ∼ exp (−L/λ) with dg/dL = −g/λ and

lim
g→0

β(g) = −L

λ
.

The sign of β(g) is determined by dg/dL. For d ≤ 2 and assuming a monotonous
function it is always negative while for d > 2 there is a sign change.

Solutions for Chap. 10

10.1: For Bloch states ck, vk′ write

1

m
〈ck|p|vk

′〉 = − i

h̄
〈ck|rH0 − H0r|vk

′〉 =
i

h̄

(
Ec(k) − Ev(k

′)
)
〈ck|r|vk

′〉

which for direct transitions at k = 0 gives epcv = −iEgdcv/h̄. Use E(t) = −∂A/∂t
and A(t) exp(iωt) with h̄ω = Ec(k) − Ev(k) to obtain

e

m
pcv · A =

i

ω

e

m
pcv · E =

Eg

h̄ω
dcv · E ≃ dcv · E

with h̄ω ≃ Eg for near band gap excitations.

10.2: Express Bloch functions by Wannier functions (see Problem 6.2) to write

〈nk|p|n′
k
′〉 =

1

N

∑

R,R′

e−ik·Reik′·R′
∫

φ∗
n(r − R)pφn′(r − R

′)d3r .

Replace R′ = R − R′′ and change integration variable to r′ = r − R to find

〈nk|p|n′
k
′〉 =

1

N

∑

R

e−i(k−k′)·R ∑

R”

eik′·R′′
∫

φ∗
n(r′)pφn′(r′ − R

′′)d3r′ .

The first sum gives Nδk,k′ .
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10.3: The solution of the Schroedinger equation with a spherically symmetric
potential is

φnlm(r) = Rnl(r)Ylm(θ, ϕ) .

The radial solution for the Coulomb problem is given by

Rnl(r) = Nnρle(−ρ/2)F (l + 1 − η; 2l + 2; ρ)

with the hypergeometric function depending on the variables η (for the energy)
and ρ (for the radial coordinate). For bound states one has En = −Rexc/n2 and
ρ = 2r/naB. Only s-states with l = 0 have a nonvanishing amplitude at r = 0,
thus φn(0) = NnF (1 − n; 2; 0) with Nn = 1/naB and |φn(0)|2 = (πa3

Bn3)−1. For
the continuum (E = h̄ω − Eg > 0), η = iγ, γ = (Rexc/(h̄ω − Eg))

1/2 and N =
Γ(1 − iγ) exp(πγ/2) one obtains

|φ(0)|2 = πγ
exp(πγ)

sinh(πγ)
.

The absorption coefficient is the one of (10.23) for the uncorrelated electron-hole
pairs multiplied by the enhancement factor C(ω).

10.4: Using (10.37) and (10.38) one can write

B†
νQ |Ψ0〉 = |ΨνQ〉 =

∑

ckh,cke
ke−kh=Q

ΦνQ(k)c†cke
cvkh

|Ψ0〉 .

Thus, in application to the ground state |Ψ0〉, the exciton operator is a linear com-
bination of products c†cke

cvkh
. Let us assume a two-band model, i.e. the excitons

are formed from states with fixed c, v, and consider for simplicity the exciton with
Q = 0 which implies ke = kh = k. Then, the commutator [B†

ν,0, Bν′,0] is determined
by the commutators

[c†vkcck , c†ck′cvk′ ] = c†vkcckc†ck′cvk′ − c†ck′cvk′c†vkcck

= c†vkcvk′δk,k′ − c†ck′cckδk,k′

= δk,k′

(
c†vkcvk − c†ckcck

)
= (1 − ne(k) − nh(k)) δk,k′ .

Without the electron and hole occupation this relation would lead to [Bν,0, B
†
ν′,0

] =
δν,ν′ , classifying excitons as bosons. This relation is valid, however, only if we con-
sider a single exciton. The electron and hole occupations remind of the fact, that
excitons are composed of fermions.

10.5: The zero of (10.42) close to the exciton resonance at ων0 determines the
frequency of the corresponding longitudinal exciton:

ε1(ωL) ≃ 1 +
4e2

ε0m

fν0

ω2
ν0

− ω2
L = 0 ,

which for ωL ≃ ων0 and ∆LT = h̄(ωL − ων0) allows to express the LT-splitting in
terms of the exciton oscillator strength:

∆LT =
2e2h̄2

ε0m

fν0

Eν0
with Eν0 = h̄ων0 .
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On the other hand the first term of the exchange interaction Vexch in (10.62) gives
a contribution only for longitudinal excitons (with Q‖P cv) which can be calcu-
lated as a perturbation correction to the transverse exciton energy Eν0 with the
exciton envelope function φν0(r) after taking the Fourier transform of Vexch (note:
1/Vc

∫
exp(ik · r)d3k = δ(r)) and yields (for singlet excitons with S = 0)

∆LT =
2e2

ε0

h̄2

m2

|Pcv|2|φν0(0)|2
E2

ν0

.

With Eν0 ≃ Eg one finds by comparison between the two obtained expressions for
∆LT

fν0 =
1

m

|Pcv |2|φν0(0)|2
Eν0

in accordance with (10.43).

10.6: Use the expansion of A(r, t) with aλκ(t) = aλκeiω(κ)t to write the two
contributions of Hrad as

(
∂

∂t
A(r, t)

)2

=
h̄

2ε0V

∑

λ,κ

∑

λ′,κ′

eλκ · eλ′κ′

(
ω(κ)ω(κ′)

)1/2

×
(
aλκ(t) − a†

λ−κ(t)
)(

aλ′κ′(t) − a†
λ′−κ′(t)

)
ei(κ+κ′)·r

and

c2
(
∇× A(r, t)

)2
= − h̄

2ε0V

∑

λ,κ

∑

λ′,κ′

(κ × eλκ) · (κ′ × eλ′κ′)

×
(
aλκ(t) + a†

λ−κ(t)
)(

aλ′κ′(t) + a†
λ′−κ′(t)

)
ei(κ+κ′)·r

and perform the volume integral with

1

V

∫
ei(κ+κ′)·rd3

r = δκ,−κ′ .

With eλκ · eλ′κ = δλ,λ′ and (κ × eλκ) · (−κ × eλ′κ)) = −κ2δλ,λ′ for transverse unit
vectors this reduces with ω(κ) = ω(−κ) = cκ to

Hrad =
∑

λ,κ

1

2
h̄ω(κ)

(
aλκa†

λκ + a†
λκaλκ

)
=
∑

λ,κ

h̄ω(κ)
(
a†

λκaλκ +
1

2

)
.

10.7: In quasi-equilibrium one has to find only the solution for the off-diagonal
elements of the density matrix, because the diagonal elements are the equilibrium
distribution functions (Fermi–Dirac distribution). Therefore, one finds from

d

dt
ρ̄cv(k, t) =

i

h̄
dcvE(t)ei(ǫck−ǫvk)t (fvk − fck)

with

E(t) =
1

2π

∫
E(ω)e−iωtdω

and integration over t

ρ̄cv(k, t) =
1

2πh̄

∫
dω

dcvE(ω)ei(ǫck−ǫvk−ω)t

ǫck − ǫvk − ω − iγ
(fvk − fck) .
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The dielectric polarization is obtained by

P (t) = Tr
(
ρ̄(t)d̄(t)

)

=
1

V

∑

k

(
ρ̄cv(t)d̄vc(t) + ρ̄vc(t)d̄cv(t)

)

=
1

2πh̄V

∑

k

∫
dω

|dcv|2(fvk − fck)

ǫck − ǫvk − ω − iγ
E(ω)e−iωt + c.c.

and the dielectric susceptibility with χ(ω) = P (ω)/E(ω) is

χ(ω) = − 1

V

∑

k

|dcv|2(fvk − fck)
( 1

h̄(ǫvk − ǫck + ω + iγ)

− 1

h̄(ǫck − ǫvk + ω + iγ)

)
.

Finally one recovers the result from Sect. 10.2 with ε2(ω) = Imχ(ω)/ε0.

10.8: We demonstrate here the calculation only for one term, the others follow in
similar way. The example is [α†

kαk ,
∑

k̄,k′;q �=0
vqα†

k̄+q
α†

k′−q
αk′αk̄ ]. The commutator

is evaluated by using the fermion commutation rules when changing the order of the
operators:

[α†
kαk , α†

k̄+q
α†

k′−q
αk′αk̄ ] = α†

kαkα†
k̄+q

α†
k′−q

αk′αk̄ − ↔

= δk,k̄+qα†
kα†

k′−q
αk′αk̄︸ ︷︷ ︸

(1)

−α†
kα†

k̄+q
αkα†

k′−q
αk′αk̄ − ↔

= (1) + δk,k̄+qα†
k̄+q

α†
kαk′αk̄

︸ ︷︷ ︸
(2)

−α†
k̄+q

α†
kα†

k′−q
αkαk′αk̄ − ↔

= (1) + (2) + δk,k′α†
k̄+q

α†
k′−q

αk̄αk

︸ ︷︷ ︸
(3)

−α†
k̄+q

α†
k′−q

αk′α†
kαk̄αk − ↔

= (1) + (2) + (3) − δk,k̄α†
k̄+q

α†
k′−q

αk′αk

︸ ︷︷ ︸
(4)

+α†
k̄+q

α†
k′−q

αk′αk̄α†
kαk − ↔ .

In the last line, the last two terms cancel each other and one obtains the four
contributions (1)–(4) which under the sum combine to the final result

[α†
kαk ,

∑

k̄,k′;q �=0

vqα†
k̄+q

α†
k′−q

αk′αk̄ ] =

=
∑

k′;q �=0

vq

(
α†

kα†
k′−q

αk−qαk′ − α†
k+qα†

k′−q
αkαk′

)
.

The thermal expectation values of these terms are found in (10.115).
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absorption, 295
absorption coefficient, 58

acoustic phonon, 48
adiabatic

approximation, 21, 37, 231
potential, 37, 44, 232

alkali halide, 7

alloy, 273
Anderson model, 219

anti-ferromagnet, 176, 179
approximation

adiabatic, 21, 231
Born, 278

Born, self-consistent, 278
Born–Oppenheimer, 21, 39, 231

coherent potential, 279
continuum, 52

Cooperon, 285
dipole, 295

effective-mass, 147, 153, 266, 268, 299
harmonic, 39
Hartree, 98, 120

Hartree–Fock, 97, 98, 167, 181, 185,
322

local density, 123, 125
local spin density, 163

mean field, 100, 181, 258
molecular field, 179

one-band, 267
random phase, 106, 189, 282

relaxation time, 243
self-consistent field, 106
t-matrix, 278

Thomas–Fermi, 131
tight-binding, 142, 165, 202
virtual crystal, 277

atomic limit, 204

back scattering, 285
band

conduction, 139
heavy hole, 152
index, 120, 128
light hole, 152
structure, 120, 127, 128, 136
valence, 139, 146

band gap, 134, 146
engineering, 155
problem, 126

band offset, 153
band structure

free electron, 136
of Al, 137
of Cu, 145
of Fe, 162
of Si, 139
of transition metals, 144
photonic, 8

BCS theory, 251
Bethe–Salpeter equation, 284, 303
binding

chemical, 4, 61, 75
covalent, 16, 62, 65, 145, 147
heteropolar, 16, 61
homopolar, 16
ionic, 16
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metallic, 16
van der Waals, 16

Bloch
electron, 127, 129, 185
equation, 171
function, 127, 129, 140, 267, 281, 326
representation, 172, 174, 177
state, 265
theorem, 6, 41, 326
vector, 318

Bloch equations
optical, 318, 323
semiconductor, 320, 323

Bogoliubov transformation, 177, 215
Boltzmann equation, 243
bond charge, 62, 147

model, 62
Born

approximation, 278
series, 271, 274

Born–Oppenheimer
approximation, 21, 39, 231

Bose–Einstein
condensation, 262
distribution, 47

Bragg condition, 134
Brillouin

function, 182
zone, 6, 41, 43, 49, 120

bulk modulus, 71

carbon nanotubes, 146, 214
center coordinate, 86
central-cell

correction, 268, 269
potential, 269

character table, 325
chemical potential, 81, 82, 89, 200
cluster, 4, 17
collective

excitation, 42
mode, 42, 44

collision term, 243
compliance constant, 53
composite fermion, 228
compressibility, 54
conditions

periodic boundary, 41, 77
conductance, 288

conductivity

dc, 283, 287

electric, 25, 32, 232, 244, 280
heat, 32

configuration
average, 275

equilibrium, 18, 64

of ions, 38
constant

compliance, 53
elastic, 52

Madelung, 19

stiffness, 52
Cooper pairs, 255

cooperon approximation, 285

correlation, 12
density–density, 9, 32, 69

effects, 195
electron, 195

electronic, 83

energy, 110
hole, 113

spin–spin, 30

Coulomb enhancement, 302
coupling

deformation potential, 235
exciton–photon, 177

Fröhlich, 238

phonon–photon, 177
piezoelectric, 240

plasmon–phonon, 177

spin–orbit, 18
critical

exponent, 183
point, 48, 297

temperature, 161, 179, 250, 261

crystal
liquid, 4

mixed, 7, 273
molecular, 7

momentum, 5

photonic, 8
quasi, 4

structure, 6

crystal field splitting, 141
crystalline structure, 4

Curie temperature, 184
Curie–Weiss law, 184
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current density, 282
diamagnetic, 282

electric, 25
heat, 25
paramagnetic, 282

cyclotron frequency, 84

de Haas–van Alphen
oscillations, 136, 137

Debye
frequency, 49, 255, 260
law, 50
model, 49, 175
temperature, 49, 261

Debye–Waller factor, 50, 69, 74
defect

anti-site, 266, 272
Frenkel, 266
point, 266

deformation potential, 236

degeneracy
Kramers, 128
spin, 129

density
average, 11

fluctuation, 11, 211, 215
matrix, 317
parameter, 79, 99, 111

density functional theory, 64, 120, 123
density of states, 154, 187, 260, 271, 286

combined, 297

electron, 81
phonon, 47

DFT-LDA, 126, 163
diagram

exchange, 304
ladder, 284

maximally crossing, 285
diamagnetism

Landau–Peierls, 91
diamond, 50
dielectric

function, 25, 32, 296
polarization, 25
screening, 31

dielectric constant
high frequency, 58
static, 58

dielectric function, 57
electronic part, 102
longitudinal, 103
transverse, 103

dimensionality, 8, 153, 213, 214, 289
dipole

approximation, 56, 295
moment, 55
operator, 56, 294

direct
exchange, 169
term, 98

dislocation, 273
disorder

compositional, 8, 67, 265, 273
diagonal, 273
isotope, 273
off-diagonal, 273
structural, 5, 8, 265, 273, 287
substitutional, 287

distribution
Bose–Einstein, 47
Fermi–Dirac, 82, 283

doping, 266
Dulong–Petit law, 49
dynamical matrix, 41
Dyson equation, 199, 274, 277

edge channel, 228
effect

de Haas–van Alphen, 91, 136
quantum Hall, 155

effective
g factor, 86
mass, 86, 91, 150
single-particle potential, 120, 154

Einstein relation, 289
elastic

constant, 52, 54
modulus, 53

electric conductivity, 25, 232
electron

closed shell, 15
core, 75, 131
gas, 76
valence, 15, 75, 131

electron system
low-dimensional, 84
two-dimensional, 153, 195, 222
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electron–electron interaction, 75, 96,
110, 120, 157, 165, 195, 198, 290

electron–hole

excitation, 189

electron–hole excitation, 299

electron–hole pair, 299

electron–phonon interaction, 231

elementary flux quantum, 86

energy

band structure, 120

dissipation, 58, 242

functional, 124

gap, 134, 269

loss spectroscopy, 105

relaxation, 242

energy bands

of Al, 137

of Cu, 145, 298

of ferromagnetic Fe, 162

of Ge, 146

of Si, 139

of transition metals, 144

energy gap, 139, 146

energy–loss

function, 32, 107, 109, 282, 314

ensemble

canonical, 24

grand-canonical, 24

mean value, 22

equilibrium

configuration, 18

position, 18, 38

thermodynamic, 20

exchange

density, 122

diagram, 304

direct, 169

energy, 163

hole, 102

Rudermann–Kittel, 170

term, 98

excitation

collective, 42, 109, 170, 189

electron–hole, 105, 299

elementary, 44

particle–hole, 108

spin-flip, 187

exciton
longitudinal, 306

polariton, 307
transverse, 306
Wannier–Mott, 300

Fermi
circle, 135
contour, 136
energy, 79, 144, 147, 210

gas, ideal, 78
hole, 102, 113
integral, 82, 331
liquid, 195
sphere, 77, 78, 92, 97, 98, 105, 108,

110, 163
surface, 91, 136, 257
temperature, 79
velocity, 79

wavelength, 79
Fermi surface

of Ag, 138
of Al, 138

Fermi–Dirac

distribution, 82, 211
fermion

annihilation operator, 94
composite, 155, 228
creation operator, 94

heavy, 83, 91, 217
vacuum, 94

ferromagnet, 179
ferromagnetic

ground state, 167, 171
insulator, 167, 169

ferromagnetism, 187
strong, 188
weak, 188

field quantization, 45
filling factor, 87, 155, 156
fine structure constant, 239
fluctuation

density, 103

number, 103
spin, 180

Fock representation, 95
force constant, 40, 52, 61
four-center integral, 202
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Fröhlich

coupling constant, 239

polaron, 247

fractional

charge, 228

filling, 223

quantum Hall states, 222

free energy, 71, 89, 211

function

density–density correlation, 9

dielectric, 30, 296

pair–distribution, 9, 10, 102

Wannier, 165, 271

gap

direct, 148

indirect, 148

parameter, 260

Grüneisen

parameter, 72

relation, 72

gradient approximation, 126

grand-canonical

ensemble, 24

potential, 89

Green function, 28

exciton, 303

retarded, 33, 196

spectral representation, 34

two-particle, 284, 303

ground state, 4, 78, 97

energy, 79, 99

of the lattice, 38, 45

theorem, 112

group

of the wave vector, 7, 328

point, 6, 40, 237, 325

space, 7

translation, 5, 325

harmonic

approximation, 39, 44

oscillator, 39

Hartree

approximation, 98

equation, 121

self-energy, 200

Hartree–Fock

approximation, 97, 105, 162, 185, 322

equation, 122

self-energy, 200

heavy fermion, 83, 91, 217

Heisenberg

Hamiltonian, 166, 168, 180

model, 169

heterostructure, 153, 214

hierarchy problem, 197

Hohenberg–Kohn theorem, 123

hole, 147

Holstein–Primakoff transformation, 173

Hooke’s law, 52

hopping matrix element, 165, 219

Hubbard

band, 207, 279

Hamiltonian, 203

model, 201

Hund’s rule, 171

hybridization, 144, 162, 219

impurity, 265, 286

concentration, 275

deep, 269

interstitial, 266

shallow, 268, 269

substitutional, 266

insulator, 139, 201, 287

anti-ferromagnetic, 176

ferromagnetic, 169

Mott–Hubbard, 207

interaction

effective electron–electron, 252

electron–electron, 75, 96, 110, 120,
157, 195, 198

electron–phonon, 231, 233

electron–phonon, deformation
potential, 236

electron–phonon, Fröhlich, 239

electron–phonon, piezoelectric, 240

exchange, 161

fermion–boson, 234

light–matter, 291, 293, 317

van der Waals, 62

interface, 273

ionization energy, 298
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irreducible

diagram, 277

representation, 144, 325
Ising model, 169

isotope, 67

disorder, 273

effect, 251, 261

Jastrow-type wave function, 226
jellium model, 19, 76, 96, 119

k.p theory, 149

Kohn–Sham equation, 123, 125

Kramers degeneracy, 128
Kramers–Kronig relation, 58, 296

Kubo formula, 28

Kubo–Greenwood formula, 284

Lamé constants, 54

Landau
level, 85, 279, 286

quantization, 92

lattice

body-centered cubic, 7
Bravais, 6

displacement, 18, 38

distortion, 269
dynamics, 37, 42

dynamics, nonlinear, 44

face-centered cubic, 7

point, 5
reciprocal, 6, 11

thermal expansion, 44

translation, 40

vector, 5
with basis, 6

Laughlin wave function, 226

LCAO method, 269

LDA + U, 208
lifetime, 231, 241

population, 320

quasi-particle, 279

single-particle, 285
light–matter interaction, 291, 293, 317

light-scattering, 312

Lindhard function, 106, 213
linear response, 24

liquid, 9

Bose, 209

classical, 208

Fermi, 209

Luttinger, 213

quantum, 208

localization, 222

length, 265

weak, 285

longitudinal

phonon, 56

Lyddane–Sachs–Teller relation, 60, 308

Madelung constant, 19

magnetic

length, 85, 224

order, 161

magnetism, 165

itinerant electron, 185

theory of, 168

magnetization, 181, 185

magnon, 161, 170, 173, 189, 234

magnon dispersion, 190

mass

effective, 150, 154

operator, 125

matrix element

hopping, 165

transfer, 165, 273

matter

condensed, 4

soft, 4

mean field, 181

mean free path, 285

mesoscopic

physics, 155

regime, 275

system, 17, 247

metal, 16, 50, 61, 110, 201, 287

alkali, 83

noble, 6, 80, 83, 136, 142

normal, 6, 80, 136, 142

transition, 6, 83, 143, 169

metal–insulator transition, 207, 265,
286, 287, 289

mobility, 246

edge, 287
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model

Anderson, 219

bond charge, 62

Hubbard, 219

jellium, 76

rigid ion, 61

shell, 61

Stoner, 185

Tomonaga–Luttinger, 217, 228

modulus

bulk, 54

rigidity, 54

Young, 54

molecular field, 181

nanophysics, 8

nonlinear lattice dynamics, 44

nonparabolicity, 150

normal coordinate, 42, 44, 56

occupation

number, 46, 95

number operator, 46, 95

operator

annihilation, 44

creation, 44

dipole, 294

field, 281

statistical, 23

orbital

sp2, 146

sp3, 146

anti-bonding, 146

bonding, 146

directed, 146

hybrid, 146

localized, 166

order

ferrimagnetic, 170

ferromagnetic, 170

parameter, 183, 261

oscillations

de Haas–van Alphen, 91, 138

quantum, 136

Shubnikov–de Haas, 92, 136

oscillator strength, 296, 302

overlap integral, 141

pair
Cooper, 255
electron–hole, 139, 148

pair–distribution
function, 10, 12, 102, 113

paramagnetism
Pauli spin, 90, 162

particle
independent, 195

particle–hole
continuum, 108, 190
excitation, 108

partition function
canonical, 24
grand-canonical, 24, 46

Pauli
blocking, 323
principle, 93, 98

periodic
boundary condition, 128, 329
potential, 119, 130, 138

phase
ferromagnetic, 183
liquid, 4
paramagnetic, 183
solid, 4
transition, 179, 183, 184, 209

phonon, 19, 37, 45
acoustic, 48
confined modes, 67
dispersion curves, 60
energy, 45
focusing, 54
hot, 242
lifetime, 58
longitudinal, 56
operator, 56
optical, 55
surface, 66
transverse, 56
vacuum, 45
virtual, 248

phonon dispersion
of α-Fe, 62
of Al, 61
of Cu(100), 67
of GaAs, 64
of GaAs(110), 68
of KI, 62
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of Si, 63

of solid 4He, 63, 64

phonons

acoustic, 235

optical, 238

photo-electron spectroscopy, 298

photoemission, 298

photon echo, 319

photonic

band structure, 8

crystal, 8

piezoelectric

coupling, 240

effect, 240

tensor, 240

plasma frequency, 109

plasmon, 109

plasmon dispersion, 190

plasmon–phonon modes, 110

point defect, 265

point group, 325

polariton, 307

polarization

dielectric, 307

function, 106

polaron, 232, 248

energy, 250

Fröhlich, 248

mass, 250

polymer, 214

potential

effective, 120

adiabatic, 22, 52, 63, 232

chemical, 24, 46, 81, 82, 89, 210

effective, 122

effective single-particle, 18, 120

empty core, 130

exchange–correlation, 154

grand-canonical, 89

Hartree, 121, 154

self-consistent, 270

process

normal, 235

Umklapp, 235

propagator, 196

pseudo-potential, 132

quantum

liquid, 209
oscillations, 89
well, 153
wire, 214

quantum Hall

effect, 92, 155
effect, integer, 156
plateau, 156

quantum limit

electric, 154
magnetic, 89, 156

quasi-crystal, 4
quasi-hole, 201

quasi-particle, 101, 129, 201, 205,
209–211, 213, 217, 218, 232

correction, 126
dispersion, 220

distribution, 213
effective mass, 212
energy, 126, 210
lifetime, 279

weight, 213

Rabi frequency, 318, 323
random phase approximation, 106
Rashba effect, 154

reflection coefficient, 59
relation

dispersion, 33
Kramers–Kronig, 33, 58

relaxation
electron–lattice, 231

relaxation time
transport, 231, 281

representation

Bloch, 174
occupation number, 44, 46, 93, 241,

257

Wannier, 165, 174
resonance

cyclotron, 85
electron spin, 86
paramagnetic, 86

spin–flip, 86
response

function, 28, 35, 52, 55
linear, 24, 281
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nonlinear, 32
transverse, 282

Reststrahlen band, 59, 66
RPA, 106, 189
Rudermann–Kittel exchange, 170

scaling theory, 289
scanning tunneling microscopy, 8
scattering

back, 245
backward, 281
cross section, 313
forward, 245, 281
inelastic, 60
neutron, 60
rate, 241, 243

screening, 103
Thomas–Fermi, 109, 131

SDFT-LDA, 163
self-averaging, 275
self-consistent

harmonic approximation, 74
solution, 121, 126

self-energy, 199, 205, 206, 209, 235, 241,
276, 284

exchange–correlation, 125
Hartree, 200
Hartree–Fock, 200
single-particle, 199

semiconductor, 7, 16, 80, 110, 136, 139,
146–148, 266

shell model, 61
Shubnikov–de Haas oscillations, 136
Slater determinant, 93, 121
soft mode, 74
solid

amorphous, 4, 9, 273
crystalline, 4, 9

Sommerfeld
coefficient, 82, 212, 217, 222
correction, 302
expansion, 82, 333
model, 78, 97

sound
propagation, 48, 54
velocity, 49

sound propagation
longitudinal, 54
transverse, 54

specific heat, 48, 72, 175, 210, 212
of electrons, 82
of phonons, 48

spectral function, 34
spin, 17

degeneracy, 18, 129
density, 163
dynamics, 154
paramagnetism, 162
polarization, 126, 162, 186, 191
susceptibility, 188, 189, 210, 222

spin polarized electrons, 163
spin waves, 161, 170, 173

in anti-ferromagnets, 175
in ferromagnets, 170

spin–orbit coupling, 18
spintronics, 161
splitting

longitudinal–transverse, 66
state

anti-bonding, 146
bonding, 146
extended, 6, 265, 286
localized, 8, 265, 286

states
anti-bonding, 269
bonding, 269
extended, 287
localized, 287

stiffness constant, 52
Stoner

condition, 187, 191
continuum, 188
model, 185, 187

strain tensor, 52, 53, 240
structure

diamond, 7
rocksalt, 7
zinc blende, 7

structure factor, 9, 71
dynamic, 11, 69, 107, 111, 313
static, 9, 10, 111

subband, 152
super-exchange, 169
superconductivity, 232, 250
superconductor

high-Tc, 7
superlattice, 67, 136

isotope, 68
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surface, 8, 273

magnon, 161

phonon, 66

susceptibility, 28

dielectric, 28, 55

magnetic, 29, 90

system

mesoscopic, 17

t-J model, 379

t-matrix, 274, 281

temperature

critical, 179

Curie, 184

Néel, 179

term

direct, 167

exchange, 167

theorem

dissipation–fluctuation, 35, 213

ground state, 112

Hohenberg–Kohn, 123

thermal

average, 9

energy, 48

expansion, 44, 71

expectation value, 22, 46, 196, 282

lattice expansion, 44

time

decoherence, 320

dephasing, 320

phase relaxation, 320

time reversal, 128

transfer matrix element, 165, 202, 273

transformation

Bogoliubov, 177, 215

Holstein–Primakoff, 173

Schrieffer–Wolff, 252

transition

direct, 295, 302

metal–insulator, 207, 265, 287, 289

vertical, 295, 302

translation
group, 325
operator, 127

transport
ballistic, 247
linear, 243
nonlinear, 243
relaxation time, 231, 243, 285

transverse
effective charge, 60
phonon, 56

truncation, 197

vacuum
fermion, 94
phonon, 45

van Hove singularity, 48, 297
velocity

Fermi, 79
of sound, 49
sound, 49, 54

vertex operator, 284
Voigt notation, 53, 240

Wannier
function, 165
representation, 165, 174

Wannier function, 271
Wannier–Mott exciton, 300
warping, 54, 150, 152
Weiss constant, 181
Wigner crystal, 114, 228
Wigner–Seitz cell, 5, 128
work function, 298

XY model, 169

Zeeman term, 84
zero point

contribution, 178
motion, 45

zone scheme
extended, 133
reduced, 133
repeated, 133
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