
ASTR 3740: Relativity and Cosmology
Spring 2001

MWF, 2:00–2:50 PM, Duane G131
Instructor: Dr. Ka Chun Yu

Office: Duane C-327, Phone: (303) 492-6857
Office Hours: MW 3:00–4:00 PM or by appointment

Email: kachun@casa.colorado.edu
Course Page: http://casa.colorado.edu/~kachun/3740/

This is a upper division introduction to Special and General Relativity, with applications to
theoretical and observational cosmology. This course is an APS minor elective, and is intended for
science majors. We will delve into the reasons why relativity is important in studying cosmology,
work through applications of SR and GR, and then jump from there to theoretical and observational
cosmology. Because this is an astrophysics course, there will be strong emphasis on observational
confirmations of Einstein’s theories, astrophysical applications of relativity including black holes,
and finally the evidence for a Big Bang cosmology. We will follow this with discussion of the
evolution of the universe, including synthesis of the elements, and the formation of structure. We
will conclude (if time allows) with advanced topics on the inflationary period of the early universe
and analyzing primordial fluctuations in the cosmic microwave background.

Although a year each of calculus and freshman physics are the only required prerequisites for this
course, be warned that we will be moving quickly through a wide range of quantitative material, and
hence you are expected to have a firm and thorough understanding of the prerequisite classwork.
It is also helpful to have taken or have an understanding commensurate with having taken a
sequence of the 1000 level astronomy courses. (Although not required, some level of familiarity
with thermodynamics, quantum mechanics, electromagnetism, and topics in mathematical physics
would be useful.) We will not be covering GR with full-blown tensor calculus. Students interested in
this more rigorous approach should take one of the graduate-level GR courses. If this course sounds
a bit too mathematical for you, you might be better off taking ASTR 2010, Modern Cosmology,
taught by Prof. Nick Gnedin at the same time and down the hall.

There is no required textbook for this course. Instead I will be lecturing out of a set of notes
that will be available online at the course webpage (http://casa.colorado.edu/~kachun/3740/).
A number of titles are suggested for optional reading, and are available for short-term loan from
the Lester Math-Physics Library, or can be purchased from the CU bookstore or other booksellers.
These are

Spacetime Physics, 2nd edition, by Edwin Taylor & John R. Wheeler, 1992, W. H.
Freeman & Co., $45.30 (paperback)

Principles of Cosmology and Gravitation, by M. V. Berry, 1989, Adam Hilger, $25.00
(paperback)

The Big Bang, 3rd edition, by Joseph Silk, 2000, W. H. Freeman & Co., $19.95 (pa-
perback)

Grading

Weekly homework assigments will be given out, where you will have a week to turn in the assignment
for full credit. Assignments turned in past the 5:00 PM deadline on the due date will
have points deducted. (My box can be found amongst the mailboxes across from the CASA
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office in Duane C-333.) Although you are free to work together, the work you turn in
must be your own. If I detect copying between homeworks, I will penalize all parties involved.

In addition to the homeworks, we will also have an in-class midterm and final. These will be
closed book tests. The final is Wednesday, May 9, 7:30 am to 10:00 am.

The last major component of the grade will be a 12–15 page term paper (including equations,
figures, references, etc.) on a topic in relativity and/or cosmology. For this paper, I want you to
look up one or more papers appearing in peer-reviewed journals that are related to the topic you
wish to discuss. Although you may use secondary sources of information (such as textbooks, books
written for the general public, articles in Astronomy or Sky & Telescope, websites, etc.) to help
write your report, your main goal is to report on a scientific result appearing in a scientific paper.
I will give out a list of suggested topics, as well as ways to research and look up scientific papers
later in the semester. This project will be due on the last day of classes, May 4. Because
of the technical nature of this project, I want you to turn into me bibliographic information for the
paper (title, authors, journal, volume number, etc.) and its abstract, preferably by March 16, but
no later than the last day of classes before Spring Break (March 23). It is highly recommended that
you consult with me in person or via email before making a final decision on what to write about.

The final breakdown for the grades will be roughly:

Homeworks 25%
Midterm 25%
Term Paper 25%
Final 25%

For borderline grades, class participation will be used to nudge numbers up or down. The final
total class grade will be based on a curve.

Schedule

Here is a rough breakdown of the topics that will be covered during the course of this semester:

1. Early Ideas of Our Universe

2. Special Relativity

� Length Contraction

� Time Dilation

� Velocity Transformations

� Relativistic Doppler Effect

� Gravitational Redshift

� Spacetime

3. General Relativity

� Geodesics and Spatial Curvature

� The Schwarzschild Solution

� Motion of Particles and Light in the Schwarzschild Metric

� Effective Potentials

� Effective Potentials in the Schwarzschild Metric

4. Black Holes
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� Gravitational Collapse

� Evidence for the Existence of Black Holes

� Massive Black Holes in Galaxies

5. Theoretical Cosmology

� Cosmological Principle

� Comoving Coordinates

� Friedmann-Robertson-Walker Metric

� Horizons

� Deceleration Parameter q0

� Friedmann Equations

6. Observational Cosmology

� Nucleosynthesis in the Big Bang

� Cosmic Problems

� Dark Matter

7. Formation of Structure in the Universe

� Jeans Mass

� Spectrum of Perturbations; Linear/Non-Linear Perturbations

� Primordial Spectrum of Perturbations

� Structure Formation: The Virial Theorem

� Cooling of Baryonic Gas

� Galaxy Formation

� Correlation Function

8. Inflation

9. Analyzing the Cosmic Microwave Background
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Chapter 1

Early Ideas of Our Universe

1.1 The Ancients

The Babylonians were some of the earliest astronomers. They invented a sexagesimal
(base 60) numbering system that is reflected in our modern day usage of seconds, minutes,
and hours. Babylonian astronomers kept careful logs of the motions of the Moon and the
planets in the sky in order to predict the future using astrology. They also believed in a
cosmology where the Earth was at the center of the universe, bound below by water. The
seven heavenly bodies that moved in the sky represented dieties, with each one moving in
a progressively further sphere from the Earth. (In order, they were the Moon, Mercury,
Venus, the Sun, Mars, Jupiter, and Saturn.) The fixed stars lay beyond Saturn, and beyond
that was more water binding the outer edge of the known universe.

The Rig Vedas were Hindu texts that date back to 1000 BC. Part of them discussed
the cyclical nature of the universe. The universe underwent a cycle of rebirth followed by
fiery destruction, as the result of the dance of Shiva. The length of each cycle is a “day
of Brahma” which lasts 4.32 billion years (which coincidentally is roughly the age of our
Earth and only a factor a few off from the actual age of the universe). The cosmology has
the Earth resting on groups of elephants, which stand on a giant turtle, who in turn is
supported by the divine cobra Shesha-nāga.

The Ancient Greeks: Although early Greek thought on the heavens mirrored that of
the Babylonians, with a reliance on gods and myths, by the 7th century BC, a new class of
thinkers, relying in part on observations of the world around them, began to use logic and
reason to arrive at theories of the natural world and of cosmology. These ancient Greek
philosophers had a variety of ideas about the nature of the universe.

� Thales of Miletus (634–546 BC) believed the Earth was a flat disk surrounded by
water.

� Anaxagoras (ca. 500–ca. 428 BC) believed the world was cylindrically shaped, where
we lived on the flat-topped surface. This world cylinder floats freely in space on
nothingness, with the fixed stars in a spherical shell that rotated about the cylinder.

By Ka Chun Yu.
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2 CHAPTER 1. EARLY IDEAS OF OUR UNIVERSE

The Moon shone as a result of reflected light from the Sun, and lunar eclipses were
the result of the Earth’s shadow falling on the Moon.

Figure 1.1: Left to right: Thales, Anaxagoras, Aristotle, and Claudius Ptolemy.

� Eudoxus of Cnidus (ca. 400–ca. 347 BC) also had a geocentric model for the Earth,
but added in separate concentric spheres for each of the planets, the Sun, and the
Moon, to move in, with again the fixed stars located on an outermost shell. Each
of the shells for the seven heavenly bodies moved at different rates to account for
their apparent motions in the sky. To keep the model consistent with observations of
the planets’ motions, Eudoxus’ followers added more circles to the mix—for instance,
seven were needed for Mars. The complexity of this system soon made this model
unpopular.

� Aristotle (384–322 BC) refined the Eudoxus model, by adding more spheres to make
the model match the motions of the planets, especially that of the retrograde motions
seen in the outermost planets. Aristotle believed that “nature abhors a vacuum,” so
he believed in a universe that was filled with crystalline spheres moving about the
Earth. Aristotle also believed that the universe was eternal and unchanging. Outside
of the fixed sphere of stars was “nothingness.”

� Aristarchus (ca. 310–ca. 230 BC) made a first crude determination of the relative
distance between the Moon and the Sun. His conclusion was that the Sun was 20×
further, and the only reason they appeared to be of the same size was that the Sun
was also 20× larger in diameter. Aristarchus then wondered, if the Sun was so much
larger, would it make sense for it to move around in the universe? Would it make
more sense for the Earth to move around it?

� Claudius Ptolemy (ca. 100–ca. 170 AD) writing in Syntaxis (aka Almagest; ∼
140 AD) took the basic ideas of Eudoxus’ and Aristotle’s cosmology, but had the
planets move in circular epicycles, the centers of which then moved around the Earth
on the deferent, an even bigger orbit. Ptolemy’s ideas gave the most accurate expla-
nations for the motion of the planets (as best as their positions were known at the
time). (Ptolemy’s and Aristotle’s ideas about the universe and its laws of motion
remained the dominant idea in Western thought until the 15th century AD!)
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1.2 European Thought Before the 20th Century

Nicolaus Copernicus (1473–1543) made a radical break from Ptolemaic thought by
proposing that the Earth was not at the center of the universe. In his De Revolutionibus
Orbium Celestium, he believed a Sun-centered universe to be more elegant:

In no other way do we perceive the clear harmonious linkage between the motions
of the planets and the sizes of their orbs.

However to preserve a model that accurately reflected the actual motions of the planets,
he still had to use additional smaller circles, known as an epicyclet, that orbited an offset
circle.

Figure 1.2: Left to right: Nicolaus Copernicus, Giordano Bruno, and Tycho Brahe.

Thomas Digges (1546–1595), a leading English admirer of Copernicus, published A
Perfect Description of the Celestial Orbes, which re-stated Copernicus’ heliocentric theory.
However Digges went further by claiming that the universe is infinitely large, and filled
uniformly with stars. This is one of the first pre-modern statements of the cosmological
principle.

Giordano Bruno (1548–1600) goes even further: not only are there an infinite number
of stars in the sky, but they are also suns with their own solar systems, and orbited by
planets filled with life. These and other heretical ideas (e.g., that all these other life-forms,
planets, and stars also had their own souls) resulted in him being imprisoned, tortured, and
finally burned at the stake by the Church.

Tycho Brahe (1546–1601) made and recorded very careful naked eye observations of
the planets, which revealed flaws in their positions as tabulated in the Ptolemaic system.
He played with a variety of both geocentric and heliocentric models.

Johannes Kepler (1571–1630) finally was able to topple the Ptolemaic system by
proposing that planets orbited the Sun in ellipses, and not circles. He proposed his three
laws of planetary motion. In 1610, Kepler also first pointed out that an infinite universe
with an infinite number of stars would be extremely bright and hot. This issue was taken up
again by Edmund Halley in 1720 and Olbers in 1823. Olbers suggested that the universe was
filled with dust that obscured light from the most distant stars. Only 20 years later, John
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Herschel showed that this explanation would not work. The problem of Olber’s paradox
would not be resolved until the 20th century.

Figure 1.3: Left to right: Johannes Kepler, Galileo Galilei, and Sir Isaac Newton.

Galileo Galilei (1564–1642) found observational evidence for heliocentric motion, in-
cluding the phases of Venus and the moons of Jupiter. He not only supported a heliocentric
view of the universe in his book Dialogue on the Two Great World Systems, but his work
on motion also attacked Aristotelian thought.

Sir Isaac Newton (1642–1727) discovered the mathematical laws of motion and grav-
itation that today bear his name. His Philosophiae Naturalis Principia Mathematica—or
simply, the Principia—was the first book on theoretical physics, and provided a framework
for interpreting planetary motion. He was thus the first to show that the laws of motion
which applied in laboratory situations, could also apply to the heavenly bodies.

Newton also wrote about his own view of a cosmology with a static universe in 1691: he
claimed that the universe was infinite but contained a finite number of stars. Self gravity
would cause such a system to be unstable, so Newton believed (incorrectly) that the finite
stars would be distributed infinitely far so that the gravitational attraction of stars exterior
to a certain radius would keep the stars interior to that radius from collapsing.

The English astronomer Thomas Wright (1711–1786) published An Original Theory
or New Hypothesis of the Universe (1750), in which he proposed that the Milky Way was a
grouping of stars arranged in a thick disk, with the Sun near the center. The stars moved
in orbits similar to the planets around our Sun.

Immanuel Kant (1724–1804), the German philosopher, inspired by Wright, proposed
that the Milky Way was just one of many “island universes” in an infinite space. In his
General Natural History and Theory of Heaven (1755), he writes of the nebulous objects
that had been observed by others (including Galileo!), and reflects on what the true scale
of the universe must be:

Because this kind of nebulous stars must undoubtedly be as far away from us as
the other fixed stars, not only would their size be astonishing (for in this respect
they would have to exceed by a factor of many thousands the largest star), but
the strangest point of all would be that with this extraordinary size, made up
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of self-illuminating bodies and suns, these stars should display the dimmest and
weakest light.

Figure 1.4: Immanuel Kant (left) and Sir William Herschel (right).

Sir William Herschel (1738–1822) and his son John used a telescope, based on a
design by Newton, to map the nearby stars well enough to conclude that the Milky Way
was a disk-shaped distribution of stars, and that the Sun was near the center of this disk.
He mapped some 250 diffuse nebulae, but thought they were really gas clouds inside our
own Milky Way. Others however took Kant’s view that the nebulae were really distant
galaxies. The German mathematician Johann Heinrich Lambert (1728–1777) adopted
this idea, plus he discarded heliocentrism, believing the Sun to orbit the Milky Way like all
of the other stars.

1.3 Early This Century

The argument over the location of the Sun inside the Milky Way, and the nature of the
nebulae remained unresolved until early this century.

Harlow Shapley (1885–1972), an American astronomer, observed globular clusters
and the RR Lyrae variable stars in them. From their directions and distances, he was able
to show that they placed in a spherical distribution not centered on the Sun, but at a point
nearly 5000 light years away. (We know today that Shapley over-estimated his distance by
a factor of two.) The Copernican revolution was almost complete: not only was the Earth
not at the center of the universe, but the Sun was far from the center of the Milky Way as
well.

The American astronomer Vesto Slipher (1875–1969), working at Lowell Observatory,
used spectroscopy to study the Doppler shift of spectral lines in the “spiral nebulae,” thus
establishing the rotation of these objects (1912–1920). Most of the galaxies (as they are
known today) in his sample, except for M31, the Andromeda Galaxy, were found to be
moving away from the Milky Way.

Albert Einstein (1879–1955) publishes his General Theory of Relativity in 1916, which
explains how matter causes space and time to be warped. The resulting force of gravity



6 CHAPTER 1. EARLY IDEAS OF OUR UNIVERSE

Figure 1.5: Harlow Shapley (left) and Herbert Curtis (right).

can now be thought as the motion of objects moving in a warped space-time. He realized
that General Relativity could be used to explain the structure of the entire universe. He
assumed that the universe obeyed the cosmological principle: it was infinite in size with the
same average density of matter everywhere, with spacetime in the universe warped by the
presence of matter within it. However he found that his equations predicted a universe to
be either expanding or contracting, which appeared to contradict his sensibilities. Einstein
as a result added a term into his equations, the cosmological constant to keep his model
universe static.

Figure 1.6: Albert Einstein (left) and Aleksandr Friedmann (right).

Dutch astronomer Willem de Sitter (1872–1934) used Einstein’s General Relativity
equations with a low (or zero) matter density but without the cosmological constant to
arrive at an expanding universe (1916–1917). His view was that the cosmological constant:
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. . . detracts from the symmetry and elegance of Einstein’s original theory, one
of whose chief attractions was that it explained so much without introducing
any new hypothesis or empirical constant.

Russian mathematician Aleksandr Friedmann (1888–1925) finds a solution to Ein-
tein’s equation with no cosmological constant (1920), but with any density of matter. De-
pending on the matter density, his model universes either expanded forever or expanded
and collapsed in a manner that was periodic with time. His work was dismissed by Einstein
and generally ignored by other physicists.

In 1920, Harlow Shapley and Herbert Curtis held a debate on the “Scale of the
Universe,” or really about the nature of the “spiral” nebulae. Shapley argued that these
were gas clouds inside our own Milky Way and that the universe consisted just of our Milky
Way. Curtis on the other hand argued that they were other galaxies just like the Milky
Way, but much further away. Although the debate laid open the positions of the two sides,
nothing was immediately resolved. (That same year, Johannes Kapteyn was arguing that
the Sun was in the center of a small Milky Way, based on star counts.) It was only in the
following decade that as Edwin Hubble and other astronomers found novae and Cepheid
variable stars in nearby galaxies, that Curtis’ view was slowly adopted. (When a letter from
Hubble describing the period-luminosity relation for Cepheids in M31 arrived at Shapley’s
office, Shapley held out the letter and said, “Here is the letter that destroyed my universe!”)

Edwin Hubble (1889–1953) worked at Mt. Wilson Observatory, California in 1923–
1925, to systematically survey spiral galaxies, following up on Slipher’s work. In 1929 he
published his observations showing that the galaxies around us appeared to be expanding,
and this expansion followed “Hubble’s Law:” v = H0D, which related the radial velocity
of the galaxy with its distance. His Hubble constant H0 = 500 km s−1Mpc−1, nearly 10
times the current value. In 1927, the Belgian astronomer Georges Lemâıtre (1894–1966)
independently arrived at Friedmann’s solutions to Einstein’s equations, and realized they
must correctly describe the universe, given Hubble’s recent discoveries. Lemâıtre was the
first person to realize that if the universe has been expanding, it must have had a beginning,
which he called the “Primitive Atom.” This is the precursor to what is today known as the
“Big Bang.”

Figure 1.7: Edwin Hubble.
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Figure 1.8: The figure from Edwin Hubble’s original paper showing a linear relationship
between the distance and the redshift of galaxies. From the March 15, 1929 issue of the
Proceedings of the National Academy of Sciences, 15, 3.

By 1932, Einstein had come around to excepting the idea of an expanding universe.
When he went to Mt. Wilson to meet Hubble, he said the invention of the cosmological
constant was the “the biggest blunder of my life.” That same year, he and de Sitter
published a joint paper on their Einstein-de Sitter universe, an expanding universe without
a cosmological constant.



Chapter 2

Overview of Modern Cosmology
and Relativity

Cosmology requires a theory of gravity. Why? Because gravity is the dominant force in the
universe, even though it is the weakest of the four fundamental forces (the strong nuclear
force, the weak nuclear force, electromagnetism, and gravity):

1. The strong and weak nuclear forces fall off exponentially with distance.
2. Electrostatic and gravitational forces fall off as 1/r2. The Coulomb force

is vastly more powerful, e.g., for two electrons:

FCoul

Fgrav
=

e2/r2

Gm2
e/r

2
=

e2

Gm2
e

= 4.2× 1042

However, precisely because Coulomb forces are so strong, matter is neutral
in bulk. Gravity, on the other hand, dominates on large scales.

2.1 Newtonian Gravity and Mechanics

Newton’s Law of Gravity: F = Gm1m2

r2
12

Newton’s Laws of Mechanics:

1. Free particles move with v = constant (“Law of inertia”).

2. F = ma

3. Reaction forces are equal and opposite:

F 21 = F 12

Note that (1) is really a special case of (2).

By Phil Maloney.

9



10 CHAPTER 2. OVERVIEW OF MODERN COSMOLOGY AND RELATIVITY

Velocities and accelerations must be specified with respect to some reference frame,
e.g., a rigid Cartesian frame. (This assumes Euclidean geometry—as everybody did before
1915!)

Newton’s 1st Law singles out one class of reference frames as special—inertial frames.
Only in inertial frames do Newton’s Laws apply. A reference frame in which there are
gravitational forces is not an inertial frame. Classically, the frame of the “fixed” stars was
believed to represent an inertial frame.

2.2 Transformations Between Frames

Consider two Cartesian frames, S and S′, with coordinates (x, y, z, t) and (x′, y′, z′, t′),
respectively. And assume S′ moves in the x-direction of S with velocity v; the axes remain
parallel at all times, and the origins coincide at time t = t′ = 0.

Let some event happen at (x, y, z, t) relative to S and (x′, y′, z′, t′) relative to S′. The
classical (common-sense) relation between the coordinates in the two frames is the Galilean
transform:

x′ = x− vt, y′ = y, z′ = z, t′ = t (2.1)

where the spatial origins of the two frames are separated in the x-direction by a distance
vt.

Differentiating Eq. 2.1 gives the classical velocity transformation law:

u′1 = u1 − v, u′2 = u2, u′3 = u3 (2.2)

where u1 = dx/dt, u2 = dy/dt, u3 = dz/dt, etc.
If S is an inertial frame, then so is S′: linear equations of motion of S (of free particles)

are transformed into similar linear equations of motion in S′. Furthermore, the acceleration
is the same in both frames, as can be seen by differentiating Eq. 2.2.

Conversely, any inertial frame must move uniformly with respect to any other inertial
frame, e.g., the frame of the “fixed stars.” Newton’s Laws apply in any inertial frame (in
Newtonian mechanics), e.g., a moving ship.

However, something is fishy here. Note that acceleration is absolute—it is the same in
all inertial frames. This raises the question—absolute with respect to what? The answer
is—with respect to any inertial frame. But what singles out inertial frames as the standard
of non-acceleration?

To answer this question, Newton postulated absolute space—this is supposed to act on
every particle to resist changes in its velocity—that is, absolute space is the source of inertia.
Newton identified it with the center of mass of the solar system. Later it was identified
with the frame of the fixed stars. This isn’t very satisfactory—there appears to be nothing
to single out absolute space from the class of inertial frames.

2.3 Maxwell and the Ether

In Maxwell’s equations of electromagnetism, a constant c with units of speed arises. The
equations predict that electromagnetic waves propagate with speed c in vacuum. This
constant is easily measured in laboratory experiments.
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c coincided precisely with the known value for the speed of light
in a vacuum. =⇒ Light is electromagnetic waves.

Maxwell postulated an “ether” to support electromagnetic waves. This ether was iden-
tified with absolute space. However, the Michelson-Morley experiment failed to detect any
sign of the ether.

2.4 Einstein and Special Relativity

Einstein’s solution to this puzzle is embodied in the Equivalence Principle: all inertial
frames are completely equivalent. Combining this with the observed constancy of the speed
of light in all frames leads to Special Relativity.

In Special Relativity, the Galilean transformation between reference frames is no longer
correct (except in the limit of v � c). Instead, the relations between coordinates are given
by the Lorentz transformations (more on these below). The Lorentz transformations lead
to many apparently bizarre predictions—time dilation, length contraction, etc., which have
been experimentally verified.

There is still sometihing missing, however: it is not possible to “patch” gravity onto
Special Relativity. We can’t put an inertial frame around a gravitating mass. Why are
inertial frames singled out as special?

An additional clue was provided by the anomalous precession of the perihelion of Mer-
cury (43′′ century−1), which was discrepant with Newtonian gravitation.

2.5 Mach’s Principle

In developing General Relativity, Einstein was heavily influenced by the physicist-philoso-
pher Ernst Mach. In particular, Mach denied the existence of absolute space, and proposed
that inertia was the result of the mass of the rest of the universe acting on a particular
body.

2.6 Inertial and Gravitational Mass

Newton’s 2nd Law can be regarded as the definition of inertial mass:

F = mIa

while Newton’s Law of Gravity defines gravitational mass:

F grav =
Gm1m2

r2

or

F grav =
GMmG

r2
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where F = GM/r2 is the force on a mass mG due to some other mass M . Note that
this means the acceleration of an object in a gravitational field is independent of its mass,
if mI = mG. Experimentally, inertial and gravitational masses are identical to very high
precision.

Einstein raised this equivalence to a postulate, which is the foundation of General Rela-
tivity. All local, freely falling, non-rotating laboratories (frames of reference) are completely
equivalent as far as the laws of physics are concerned. (“Local” means small compared to
gradients in the gravitational field.)

How does mI = mG enter into this? Consider a laboratory which is freely falling towards
the Earth, in a gravitational field g. Suppose there is some mass (inertial mass mI) in the
lab, which is being acted on by total force f , while fG is the gravitational force acting on
it; mG is the gravitational mass. Then

f = mIa

fG = mGg (2.3)

g is the acceleration of the lab; thus the acceleration of the mass relative to the lab is a−g,
and so the force acting on it (relative to the lab) is

f rel = (a− g)mI .

The non-gravitational force acting on it is:

fNG = f − fG = mIa−mGg.

These are identical if mI = mG. Thus gravity has been transformed away, and we can
construct local inertial frames anywhere, even near massive objects. (Note that this also
means we can create gravity by acceleration.)

The Principle of Equivalence leads to two immediate predictions:

1. Light bends in gravitational fields. Consider a person standing in an
elevator pointing a flashlight horizontally so that its beam points towards
one of the side walls. Now give the elevator some constant acceleration
upwards. The beam will appear to the person inside the elevator to curve
downward. Since the Principle of Equivalence says that we cannot tell
the difference between gravity and accelerated motion, such a beam of
light should be bent in a gravitational field as well. Equivalently, space is
curved in the presence of gravity.

2. Light climbing out of a gravitational field suffers a red-shift; con-
versely, light falling down a gravitational field is blue-shifted.
Assume the lab is dropped just as light enters the top of the lab; then
vobs = −gt:

νB = νe(1 + vobs/c) = νe(1− gt/c)

A observes the light ray just as he passes B. A observes no Doppler shift,
so B must.
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A B

Figure 2.1: Light falling down a gravitational well.
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Chapter 3

Special Relativity

To investigate the Lorentz transformations, consider two frames, S and S′, in standard
configuration:

S

x

y

z

S'

x'

y'

z'

v

Figure 3.1: Coordinate frames S and S′.

We fix the axes parallel at all times; we also set the clocks in S and S′ such that the
origins coincide at t = t′ = 0.

The transformation must be linear in coordinates. Trivially, y = y′, and z = z′. By
linearity, and since x = vt must correspond to x′ = 0, x′ must be of the form

x′ = γ(x− vt); γ is a (possibly v-dependent) constant. (3.1)

Similarly, t′ must be of the form

t′ = mt− nx. (3.2)

Now, suppose a light pulse is emitted at time t = 0, from the origin; this also occurs at
time t′ = 0 at the origin of the S′ frame. Let r and r′ denote the coordinates perpendicular
to the direction of motion (i.e., r = (z2 + y2)1/2). Since the speed of light c is a constant,

By Phil Maloney.
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the distance travelled will be the same in both frames: at time t, the light pulse will have
reached the surface of a sphere of radius ct in frame S, and of ct′ in frame S′.

Hence

x2 + r2 = c2 t2,

and similarly

x′
2 + r′

2 = c2 t2,

or

c2 t2 − x2 = r2

c2 t′
2 − x′2 = r′

2
.

Since perpendicular coordinates (y, z) are unaffected by motion in the x-direction, r and r′

must be equal at all times. Thus,

c2 t2 − x2 = c2 t′
2 − x′2. (3.3)

If we substitute Eqs. 3.1 and 3.2 into 3.3, we get

(c2m2 − v2γ2)t2 + 2(vγ2 − c2mn)tx− (γ2 − c2n2)x2 = c2t2 − x2.

This must hold for all values of x and t. This can only be true if the coefficients on both
sides are equal:

c2m2 − v2γ2 = c2 (a)
vγ2 − c2mn = 0 (b)
γ2 − c2n2 = 1 (c).

This gives us 3 algebraic equations for the three unknowns γ, m, and n.

γ2 = 1 + c2n2

c2m2 − v2(1 + c2n2) = c2

m2 − v2

c2
(1 + c2n2) = 1

m2 = 1 +
v2

c2
(1 + c2n2) = 1 +

v2

c2
+ v2n2

m2 − v2n2 = 1 +
v2

c2

v(1 + c2n2)− c2mn = 0
c2nm− c2n2v = v

c2n(m− vn) = v

n =
v

c2
(m− vn)−1

=⇒ (m− vn)(m+ vn) = 1 +
v2

c2
.
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Now,

(m+ vn) = m− vn+ 2vn = m− vn+ 2v · v
c2

(m− vn)−1

= m− vn+ 2
v2

c2
(m− vn)−1

=⇒ (m− vn)
(
m− vn+ 2

v2

c2
(m− vn)−1

)
= 1 +

v2

c2

(m− vn)2 + 2
v2

c2
= 1 +

v2

c2

(m− vn)2 = 1− v2

c2
.

Since we want to approach the Galilean transform as v/c → 0, we must take the positive
root:

m− vn = (1− v2/c2)1/2

n =
v

c2
(1− v2/c2)−1/2.

From (c):

γ2 = 1 + c2n2 = 1 + c2 v
2

c4
(1− v2/c2)−1

= (1− v2/c2)−1

γ = [1− v2/c2]−1/2.

From (a):

m2 − v2

c2
γ2 = 1

m2 = 1 +
v2

c2
γ2 = (1− v2/c2)−1 = γ2.

Thus the Lorentz transformations for x′ and t′ are:

x′ =
x− vt

(1− v2/c2)1/2
(3.4)

t′ =
t

(1− v2/c2)1/2
− vx/c2

(1− v2/c2)1/2

=
t− vx/c2

(1− v2/c2)1/2
. (3.5)

The notation γ = (1− v2/c2)−1/2 for the Lorentz factor is standard, hence:

x′ = γ(x− vt), y′ = y, z′ = z (3.6)
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t′ = γ(t− vx/c2). (3.7)

Oddly enough, the Lorentz transformations were known before the advent of Special
Relativity! They were known to be the transformations which formally left Maxwell’s
equations invariant, but their physical significance was not recognized. Thus Maxwell’s
equations were regarded as non-relativistic.

Special Relativity eliminates absolute time; instead we have a
relativity of simultaneity.

The Lorentz transformations have a number of radical and counter-intuitive implications
which will be discussed below.

3.1 Length Contraction

Consider a rod of length L0 at rest in the S′ frame; the rod is oriented along the x′ axis.
What is its length in the S frame?

Let ∆x = x2−x1, ∆y = y2− y1, etc.; denote the coordinate differences of two events in
the S frame, and similarly in the S′ frame. If we substitute these coordinates successively
into Eqs. 3.6 and 3.7 and subtract, we get

∆x′ = γ(∆x− v∆t), ∆y′ = ∆y, ∆z′ = ∆z (3.8)

∆t′ = γ(∆t− v∆x/c2). (3.9)

Let ∆x′ = L0. To determine its length in the S frame, we must observe the ends at the
same time in the S frame. This means ∆t = 0 from Eq. 3.8, and so

∆x = L(S) = L0/γ.

Since v/c is always < 1, γ is always > 1.

The rod is shortened in the direction of its motion by

1
γ

= (1− v2/c2)1/2.

Note that dimensions perpendicular to the direction of motion are unaffected. The rod has
its greatest length in the frame in which it is at rest (v = 0). This is known as its rest
frame.
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3.2 Time Dilation

The analog of Eq. 3.9 giving ∆t in terms of ∆t′ and ∆x′ is:

∆t = γ(∆t′ + v∆x′/c2). (3.10)

Consider a clock which is fixed in the S′ frame. Two events in the S′ frame are separated
by ∆t′ = t′2 − t′1. What time interval does an observer in the S frame see for these events?

Since the clock is fixed in S′, ∆x′ = 0, and so

∆t = γ∆t′ ≡ γ∆t0,

where ∆t0 is the rest-frame time interval.

Clocks moving with velocity v with respect to an inertial frame S
run slow by a factor 1/γ = (1− v2/c2)1/2 relative to stationary

clocks in S.

There is an analogous time dilation in a gravitational field, which leads to a gravitational
redshift, which we will discuss shortly.

3.3 Velocity Transformations

In the Galilean transform, velocity addition is simple—this, however, is no longer the case
in Lorentz transforms. Consider again two frames S and S′ in standard configuration.
Suppose a particle in S has velocity u = (ux, uy, uz). What is its velocity u′ in S′?

Assume the particle moves uniformly. then we can write its velocity in the two frames
as:

u = (ux, uy, uz) =
(

∆x
∆t

,
∆y
∆t

,
∆z
∆t

)
(3.11)

u′ = (u′x, u
′
y, u
′
z) =

(
∆x′

∆t′
,
∆y′

∆t′
,
∆z′

∆t′

)
. (3.12)

Substituting from Eqs. 3.8 and 3.10 into Eq. 3.12:

u′x =
γ(∆x− v∆t)

γ(∆t− v∆x/c2)

=
∆x/∆t− v

1− v∆x/∆t/c2
=

ux − v
1− uxv/c2

(3.13)

u′y =
∆y

γ(∆t− v∆x/c2)
=

∆y/∆t
γ(1− v∆x/∆t/c2)

=
uy

γ(1− uxv/c2)
(3.14)

u′z =
uz

γ(1− uxv/c2)
. (3.15)
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3.4 Relativistic Doppler Effect

Consider first the classical Doppler effect. Suppose we have a light source emitting radiation
with rest-frame wavelength λ0. Consider an observer S, relative to whose frame the source
is in motion with radial (towards the observer) velocity ur.

Let the time between two successive pulses (i.e., wavecrests) in the source’s rest frame
be ∆t′. The distance these two pulses have to travel to reach S differs by ur∆t′. Since the
pulses travel with speed c, they arrive at S with a time difference

∆t = ∆t′ + ur ∆t′/c
∆t
∆t′

= 1 +
ur
c
.

Since the frequency is just ν0 = 1/∆t′, ν = 1/∆t:

λ = c∆t λ0 = c∆t′

=⇒ λ

λ0
= 1 +

ur
c
. (3.16)

Now consider the relativistic Doppler effect. Since S′ is in motion with respect to S, the
time interval between pulses according to S is γ∆t′, due to time dilation. Thus

∆t = γ∆t′ + urγ∆t′/c

=⇒ λ

λ0
= γ

(
1 +

ur
c

)
=

1 + ur/c

(1− v2/c2)1/2
. (3.17)

If the velocity is purely radial, ur = v, so

λ

λ0
=

1 + v/c

(1− v2/c2)1/2
=
(

1 + v/c

1− v/c

)1/2

. (3.18)

However there is a Doppler shift even if ur = 0! If ur = 0 (e.g., if S′ is in a circular orbit
about S), then

λ

λ0
=

1
(1− v2/c2)1/2

. (3.19)

This is the transverse Doppler effect; it is a purely relativistic effect due to time dilation in
the moving source.

3.5 Relativistic Mass

In Newtonian mechanics,

F = ma = m
dv

dt
=

d

dt
p, (3.20)

where p = mv is the linear momentum, and we have assumed that m is constant.
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In relativistic mechanics, things are more complicated, as we will now see. We will
assume that Newton’s 2nd Law, in the form F = dp/dt, still holds, and also that mass is
conserved, and see where this gets us.

Consider a perfectly inelastic collision (i.e., the particles stick together), from the point
of view of our usual two frames S and S′. Let one of the particles be at rest in frame S
and the other have velocity u, before they collide. After the collision, the particles stick
together and move with velocity U .

We are free to pick our inertial frame any way we want, so for simplicity, pick S′ to be
the center of mass frame.

Frame S:
u

m(u) m(0)

U

U U

M(U)

Before

After

M

Before

After

Frame S':

m(U) m(U)

Figure 3.2: Collisions in a center of mass frame.

In the center of mass frame, a particle of mass M(0) is at rest after the collision; the
two particles collide with equal and opposite velocities. Remember that S′ must move at
velocity U with respect to S. From the conservation of mass in frame S:

m(u) +m(0) = M(U). (3.21)

From conservation of momentum:

m(u)u−M(U)U = 0
m(u)u− [m(u) +m(0)]U = 0,

or

m(u) = m(0)
(

U

u− U

)
. (3.22)

The left hand particle has a velocity U relative to S′; S′ in turn has a velocity U relative
to S. Adding these two velocities must give the particle velocity u in S.
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Recall the velocity transformation law (Eq. 3.13):

u′x =
ux − v

1− uxv/c2
(3.23)

for frame S′ moving with velocity v. Here we want ux in terms of u′x. Recall frames are
symmetric: to an observer in S′, frame S is moving with velocity −v. Therefore, replace v
with −v and swap primes:

ux =
u′x + v

1 + ux v/c2
. (3.24)

Here u′x = v, and v = U , while ux = u, so

u =
2U

1 + U2/c2
;

solving for U in terms of u, we get a quadratic equation:

U2 −
(

2c2

u

)
U + c2 = 0

which has roots

U =
c2

u
±

[(
c2

u

)2

− c2

]1/2

=
c2

u

[
1±

(
1− u2

c2

)1/2
]
. (3.25)

In the limit u→ 0, this must produce a finite result, so we have to take the negative sign.
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Substituting this into Eq. 3.22:

m(u) = m(0)


c2

u

[
1−

(
1− u2

c2

)1/2
]

u− c2

u

[
1−

(
1− u2

c2

)1/2
]


= m(0)

 c2

u (1− 1/γ)

u− c2

u (1− 1/γ)


= m(0)

 c2

u (γ − 1)

γu− c2

u (γ − 1)


= m(0)

 γu

c2

u (γ − 1)
− 1

−1

= m(0)

γ
(
u2

c2

)
γ − 1

− 1


−1

= m(0)

γ
(
u2

c2

)
− (γ − 1)

γ − 1


−1

= m(0)

γ
(
u2

c2

)
− γ + 1

γ − 1


−1

= m(0)

[
γ
(
1− γ−2

)
− γ + 1

γ − 1

]−1

= m(0)
[
γ − γ−1 − γ + 1

γ − 1

]−1

= m(0)
[

1− γ−1

γ − 1

]−1

= γ m(0). (3.26)

Thus, mass is not independent of velocity. Here, m(0) is the “rest mass,” or

m(0) = γ−1m =
(

1− u2

c2

)1/2

m. (3.27)
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Eq. 3.27 implies that photons have zero rest mass. This is why they can move at c; for
any particle with non-zero rest mass, m(u)→∞ as u→ c.

Now assuming that u/c is small, let’s expand Eq. 3.26:

m(u) = γ m0 = m0

(
1− u2

c2

)−1/2

= m0 +
1
2
m0

u2

c2
+ · · · (3.28)

Multiplying both sides by c2, we get:

mc2 = m0c
2 +

1
2
m0u

2 + · · · (higher order terms). (3.29)

Note that the right-hand side just looks like a constant plus kinetic energy. thus the relativis-
tic mass contains within it the expression for classical kinetic energy. In fact, conservation
of relativistic mass just leads to conservation of energy in the Newtonian limit.

For example, suppose we have two particles with rest mass m0,1 and m0,2 which collide;
their initial velocities are vi,1 and vi,2 and their final velocities are vf,1 and vf,2. Conservation
of relativistic mass requires:

m0,1 γ(vi,1) +m0,2 γ(vi,2) = m0,1 γ(vf,1) +m0,2 γ(vf,2). (3.30)

In the Newtonian limit (v/c� 1 for all v), we can expand the γs in Eq. 3.30:

m0,1

(
1 +

1
2
v2
i,1

c2

)
+ m0,2

(
1 +

1
2
v2
i,2

c2

)

= m0,1

(
1 +

1
2
v2
f,1

c2

)
+m0,2

(
1 +

1
2
v2
f,2

c2

)
.

Multiplying by c2 and subtracting the constant terms from both sides, we get

1
2
m0,1 v

2
i,1 +

1
2
m0,2 v

2
i,2 =

1
2
m0,1 v

2
f,1 +

1
2
m0,2 v

2
f,2 (3.31)

which is just the usual conservation of energy equation.
Eq. 3.29 suggests that we regard E = mc2 as the total energy of a particle; this consists

of the kinetic energy plus the rest-mass energy m0c
2. The latter is a huge quantity; one

gram of rest mass is equivalent to 9×1020 erg ≈ 20 kilotons. Let’s define the kinetic energy
of a particle to be:

K = mc2 −m0c
2 = m0c

2(γ − 1). (3.32)

For u/c � 1, this reduces to the usual K = 1
2m0u

2. Similarly, the relativistic momentum
is:

p = mu = γm0u.
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Classically, energy and momentum are related by E = 1
2mv

2 = p2/2m. What is the
relativistic relation?

Squaring the expression for relativistic momentum,

p2 = m2
0 u

2 γ2 =
m2

0 u
2

1− u2/c2

p2

c2
=

m2
0 u

2/c2

1− u2/c2(
1− u2

c2

)
p2

c2
=

m2
0u

2

c2(
m2

0 +
p2

c2

)
u2

c2
=

p2

c2

u2

c2
=

p2

m2
0 c

2 + p2

γ2 = (1− u2/c2)−1

=
[
m2

0 c
2 + p2 − p2

m2
0 c

2 + p2

]−1

= 1 + p2/m2
0 c

2

=⇒ E2 = m2
0 c

4γ2

= m2
0 c

4 + p2 c2

= (m0 c
2)2 + (p c)2. (3.33)

Note again that we can have particles with zero rest mass (e.g., the photon, and maybe the
neutrino(s)) with non-zero energy and momentum; these obey:

E = p c. (3.34)

In order to have non-zero momentum, the relativistic momentum

p = γ m0 u =
m0u

(1− u2/c2)1/2

must go to a finite value as m0 → 0; this requires that u→ c as m0 → 0. Hence all massless
particles must travel with speed c.

The relativistic mass of the photon is non-zero:

E = mc2 = p c

=⇒ m = p/c. (3.35)

And since E = hν,

p = hν/c =⇒ m = hν/c2. (3.36)

Since the relativistic, inertial mass of the photon is non-zero, photons are acted on by
gravity (as we have seen already from the Equivalence Principle).
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3.6 Gravitational Redshift

Suppose a photon of frequency νe is emitted at the surface of a body of mass M and radius
R. the photon escapes to infinity. What is the frequency as observed at infinity?

In order to escape from the gravitational field, the photon must do work. The work
done per unit mass is just ∫ ∞

R

GM

r2
dr =

GM

R
,

where we have just the potential difference. And so, since the photon’s inertial mass is
m = hν0/c

2, the energy loss is just

∆E =
GM

R

hν0

c2
.

Denote the frequency observed at infinity as ν0. then

hνe − hν0 =
GM

R

hν0

c2
, (3.37)

so

νe − ν0

ν0
=
GM

Rc2
.

It is conventional to define the redshift by

z =
λ0 − λe
λe

=
c/ν0 − c/νe

c/νe
=
νe
c

[
c

ν0
− c

νe

]
=

νe
ν0
− 1 =

νe − ν0

ν0
.

Thus the gravitational redshift is

z =
GM

Rc2
. (3.38)

Completely equivalently, since we can regard emitting atoms as clocks, we can regard this
as gravitational time dilation: clocks run slower in a gravitational field.

∆t(r)
∆t(∞)

= 1− GM

rc2
. (3.39)

3.7 Spacetime

As we have seen,

Relativity =⇒ Lorentz Transforms =⇒
Elimination of Absolute Time and Absolute Space
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Spatial and time coordinates are “mixed” for different observers. It no longer makes sense
to talk about space and time separately, as in classical physics. Instead, we have a single,
4-D entity called spacetime.

The fundamental quantity in spacetime is not position, or time, but an event. An event
is specified by four quantities, e.g., x, y, z, t.

Consider some event O, which we take as the origin of our coordinate system. Fire off
a light pulse at O. What will we see with increasing time? The wavefront should expand
outward at speed c; hence at time t, it has reached a distance ct from O. We can’t draw
in four dimensions, so let’s drop one of the spatial dimensions. What does a spacetime
diagram look like?

ct

Future

Past

45 o = π/4

x

y

Light Cone

Figure 3.3: A spacetime diagram.

With one spatial dimension suppressed, the wavefront of light pulse looks like a cone—
this is called the light cone. With ct for the vertical axis (hence letting all the coordinate
axes have the same units or dimensions), the light cone makes an angle of 45◦ with the
spatial and ct axes.

Similarly, we can consider some time −t before event O. Only photons at a distance ct
from O can reach O between times −t and O. As −t gets closer to O, the size of the light
wavefront which can reach O shrinks.

Thus, the wavefront collapses to zero at O, then re-expands
(symmetrically).

With one spatial dimension suppressed, we thus have a past light cone and a future light
cone. Since nothing can travel faster than liight, the light cones divide spacetime (as seen by
an observer at O) into accessible and inaccessible regions; not all directions are equivalent
in the spacetime diagram.

Spacetime is not isotropic.
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We can quantify this: If we send out a light pulse from the origin of a coordinate system
at t = 0 (assuming Euclidean space or Cartesian coordinates), its radial distance from the
origin is ct:

c2 t2 − x2 − y2 − z2 = 0.

If we consider two events which are connected by a light ray, then

c2∆t2 −∆x2 −∆y2 −∆z2 = 0.

(This just says the distance traveled by the light ray, c∆t, is equal to the spatial distance
between the two events, [∆x2 + ∆y2 + ∆z2]1/2.) Now recall the difference form of our
standard Lorentz transformation:

∆x′ = γ(∆x− v∆t), ∆y′ = ∆y, ∆z′ = ∆z
∆t′ = γ(∆t− v∆x/c2)
γ = (1− v2/c2)−1/2.

Using these expressions, we can show that:

c2∆t′2 −∆x′2 −∆y′2 −∆z′2 = c2γ2(∆t2 − 2v∆x∆t/c2 + v2∆x2/c4)
−γ2(∆x2 − 2v∆x∆t+ v2∆t2)−∆y2 −∆z2

= c2γ2∆t2 − 2γ2v∆x∆t+ γ2v2∆x2/c2

−γ2∆x2 + 2γ2v∆x∆t− γ2v2∆t2 −∆y2 −∆z2

= γ2c2∆t2 − γ2∆x2 − γ2v2∆t2 + γ2v2∆x2/c2 −∆y2 −∆z2

= γ2(c2∆t2 −∆x2 − v2∆t2 + v2∆x2/c2)−∆y2 −∆z2

=
c2

c2 − v2
(c2∆t2 −∆x2 − v2∆t2 + v2∆x2/c2)−∆y2 −∆z2

=
c2

c2 − v2

(
∆t2(c2 − v2)− ∆x2

c2
(c2 − v2)

)
−∆y2 −∆z2

= c2 ∆t2 −∆x2 −∆y2 −∆z2.

Thus the interval ∆s2 ≡ c2 ∆t2 −∆x2 −∆y2 −∆z2 between the two events is unchanged
by a Lorentz transformation; it is Lorentz invariant. (Note that ∆s2 is a scalar quantity.)
This is analogous to the spatial separation between two points in Euclidean space, ∆r2 =
∆x2 + ∆y2 + ∆z2, staying unchanged after a change of coordinates.

There is an important distinction, however: ∆r2 is always positive. This is not true of
the interval ∆s2 = c2 ∆t2 −∆r2, which may be positive, negative, or zero.

We have already seen that for two events separated by a light ray,

∆s2 = 0.

For obvious reasons, this is called a light-like separation.
If ∆s2 > 0, that means that

c2 ∆t2 > ∆r2,
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ct

Absolute Future

Absolute Past

x

y

Future-pointing
  Timelike Vector

Elsewhere

Spacelike Vector

Figure 3.4: Past and future in a spacetime diagram.

or

∆r2

∆t2
< c2

in any inertial frame (since ∆s2 is Lorentz invariant). This means that it is possible for an
observer moving with uniform velocity v < c to travel from one event to the other; in this
observer’s rest frame ∆r = 0, and the time separation between events is just ∆t = ∆s/c.

Thus when ∆s2 > 0, ∆s is equal to c times the time difference ∆t between the events,
as seen by the inertial observer for whom the events take place at the same point. Thus
events for which ∆s2 > 0 can lie on the world line of a material particle.

∆s2 > 0 is called a time-like separation.

If ∆s2 < 0, then

∆r2

∆t2
> c2

which again is true in any inertial frame. It is impossible for two events with ∆s2 < 0 to
be connected by a light ray, or to lie on the world line of a material particle, as this would
require superluminal travel.

There is still a physical meaning in this case, however:

∆s2 = c2 ∆t2 −∆r2,

which implies that |∆s2| is the spatial separation between the events in an inertial frame
in which the events are simultaneous; such a frame always exists, as can be seen from the
Lorentz transformation.
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∆s2 < 0 is called a space-like separation.

This is known as Minkowski spacetime, or flat spacetime, since the geometry is Euclidean.
Since ∆s2 is invariant, light cones in one inertial frame are mapped into light cones in

any other inertial frame. All inertial observers agree on the past and future of an event.

3.8 Spacetime Continued

Suppose we have some particle in motion (for convenience, along the x-axis of our coordinate
system). if we plot its position vs. time, we construct a spacetime diagram shown in Fig. 3.5.

t

x 

``World-line'' of particle:
locus of successive events
in its history

Figure 3.5: Spacetime diagram for a particle.

In the Lorentz transformations, space and time get “blended” together, analogous to a
rotation of coordinate axes. How are the spacetime diagrams of S and S′ related?

Let the vertical axis units be ct; then a light ray has slope π/4 = 45◦. As usual, we
synchronize clocks at t = t′ = 0. What are the ct′ and x′ axes in this diagram?

From the Lorentz transformations,

x′ = γ(x− vt) (3.40)

ct′ = cγ(t− vx/c2). (3.41)

The ct′ axis is the line x′ = 0; from Eq. 3.40, this means

t =
x

v

ct =
( c
v

)
.x

Thus the ct′ axis is the straight line ct = (c/v)x with slope c/v > 1. Similarly the x′ axis is
the line ct′ = 0; from Eq. 3.41 we obtain

ct =
(v
c

)
x
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ct

x


Lines of
simultaneity
in S'

x'

ct'

World-lines of fixed points in S' 

Figure 3.6: Spacetime diagram for frames S and S′.

so the x′ axis is the line ct = (v/c)x with slope v/c < 1.
Since the ct and x axes are orthogonal and the slopes of the ct′ and x′ axes are reciprocals

of one another, the angles between the x′ and x axes and the ct′ and ct axes are equal.
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Chapter 4

General Relativity

4.1 General Relativity and Curved Space Time

Last time we talked about the spacetime interval

∆s2 = c2∆t2 −∆x2 −∆y2 −∆z2

and showed that this is Lorentz-invariant, where:

∆s2 = 0 Light-like separation;
∆s2 > 0 Time-like separation;
∆s2 < 0 Space-like separation.

We had assumed Euclidean geometry (i.e., Cartesian coordinates). This is true for flat
spacetimes (also known as Minkowski space); this is the standard geometry for Special
Relativity.

However in the presence of matter, spacetime does not have Euclidean geometry. We
have seen hints of this via Einstein’s Equivalence Principle where we found that in a reference
frame that in a gravitational field, light rays tend to bend. Thus in general spacetime will
not be flat, and coordinates will not be Euclidean.

Directly related to the spacetime interval ∆s2 is the proper time interval ∆τ2:

∆τ2 =
∆s2

c2
= ∆t2 − ∆x2 + ∆y2 + ∆z2

c2
. (4.1)

This gets its name from the fact that this is the time measured by a clock moving with a
particle, for in the particle’s instantaneous rest frame, ∆x = ∆y = ∆z = 0.

Equivalently, suppose that we have an observer whose velocity at time t is v, where

v =
(
dx

dt
,
dy

dt
,
dz

dt

)
.

By Phil Maloney.
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Relative to a Cartesian set of coordinates, t is the coordinate time. Then

∆τ2 = ∆t2
(

1− 1
c2

(
∆x2

∆t2
+

∆y2

∆t2
+

∆z2

∆t2

))
= ∆t2

(
1− 1

c2

(
v2
x + v2

y + v2
z

))
= ∆t2

(
1− v2

c2

)
.

And we recover the usual time dilation expression.
As with ∆s2, the separations are:

∆τ2 = 0 Light-like separation;
∆τ2 > 0 Time-like separation;
∆τ2 < 0 Space-like separation.

We need four coordinates to designate the position of a particle in spacetime. Denote these
as (x0, x1, x2, x3). The convention is to take x0 as the time coordinate, so x1, x2, and x3

are the spatial coordinates. In Euclidean geometry, these are x, y, and z, but this will not
in general be the case.

The Principle of General Covariance: The laws of physics must take
the same form no matter what coordinates we use to describe events.

This is not true for example, Newton’s Laws, or the equations of Special Relativity, as these
hold only in inertial frames—i.e., the coordinates cannot rotate or accelerate. Einstein
however produced a completely covariant set of equations for General Relativity, and they
are very complicated.

We have already seen that relativity tosses out absolute time. We have also seen,
however, that the spacetime interval ∆s2, or equivalently the proper time interval ∆τ2, is
a Lorentz-invariant quantity. We will therefore use the proper time τ (the time read by
a clock traveling with a material body along its world-line) as the time coordinate. τ is
always a good coordinate, even in non-inertial frames, as τ increases monotonically along a
body’s world-line.

Suppose the particle is in a gravitational field. By the Equivalence Principle, we can
choose a local inertial frame which is freely falling, in which Special Relativity applies; we
can then use local Cartesian coordinates, and the proper time interval is given by Eq. 4.1.
We will not get into the full equations of General Relativity since that would involve tensor
calculus. We do however need to have general expressions for the separation ∆τ2 of two
events in spacetime.

To do this, consider regular 3-D space, where the spatial separation between a pair of
points is just:

∆r2 = ∆x2 + ∆y2 + ∆z2. (4.2)

This distance in space is independent of our choice of coordinates.
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Suppose we introduce a new set of general coordinates, x1, x2, and x3, and write the
original Cartesian coordinates x, y, and z, in terms of these new coordinates:

x = x(x1, x2, x3, ), y = y(x1, x2, x3), z = z(x1, x2, x3).

By simple calculus, the separation ∆x, for example, is then given by

∆x =
∂x

∂x1
∆x1 +

∂x

∂x2
∆x2 +

∂x

∂x3
∆x3. (4.3)

With similar expressions for ∆y and ∆z in terms of ∆x1, ∆x2, and ∆x3, if we then substitute
Eq. 4.3 and its ∆y and ∆z analogs into Eq. 4.2, then we get:

∆r2 =

[(
∂x

∂x1

)2

+
(
∂y

∂x1

)2

+
(
∂z

∂x1

)2
]

(∆x1)2

+2
[
∂x

∂x1

∂x

∂x2
+

∂y

∂x1

∂y

∂x2
+

∂z

∂x1

∂z

∂x2

]
∆x1∆x2 + · · ·

=
3∑

µ=1

3∑
ν=1

gµν(x1, x2, x3)∆xµ∆xν , (4.4)

where

gµν =
(
∂x

∂xµ
∂x

∂xν
+

∂y

∂xµ
∂y

∂xν
+

∂z

∂xµ
∂z

∂xν

)
. (4.5)

We can make this more compact by using Einstein’s summation convention; we automat-
ically sum over any index which appears twice. This is true for both µ and ν in Eq. 4.4,
so

∆r2 = gµν(r)∆xµ∆xν , (4.6)

where r = (x1, x2, x3).
Eq. 4.6 tells us how to find the spatial separation of two points given the coordinate

differences between them.
Note again that ∆r2 is invariant, but the coordinate differences are not, as they depend

on the coordinate system we choose (which can be arbitrary).
In 3-D space, there are nine functions in gµν :

gµν =

 g11 g12 g13

g21 g22 g23

g31 g32 g33

 . (4.7)

But only 6 of these terms are independent, since (as is obvious from Eq. 4.5), gµν = gνµ.
gµν is the metric tensor.

Tensors are quantities which transform between coordinate systems in a particular way.
A tensor of rank 0 is just a scalar, i.e., a single function of position which is the same in all
coordinate systems. In an n-dimensional space, a tensor of rank one is an n-dimensional
vector, i.e., a set of n functions. For example, ∆r = (∆x1,∆x2,∆x3) is a rank 1 tensor.
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A tensor of rank 2 is a set of n2 functions, e.g., the metric tensor. The simplest form of
the metric tensor is found if we use Cartesian coordinates (x, y, z). Then from Eq. 4.5,

gµν = 0 µ 6= ν
gµν = 1 µ = ν,

and the metric tensor takes the diagonal form:

gµν = g0
µν =

 1 0 0
0 1 0
0 0 1

 . (4.8)

We can make a completely analogous argument for ∆τ2 in spacetime; the proper time
interval in an arbitrary reference frame is given by

∆τ2 = gij∆xi∆xj =
4∑
i=1

4∑
j=1

gi,j∆xi∆xj . (4.9)

The spacetime metric tensor gij has sixteen components; like gµν , not all of these are
independent: nindep = (16 − 4)/2 + 4 = 10. As for the spatial metric tensor gµν , there is
a simplest possible form for gij ; this occurs in a freely-falling reference frame. In this case,
from Eq. 4.1, using x0 as the time coordinate,

gij = g0
ij =


1 0 0 0
0 −1/c2 0 0
0 0 −1/c2 0
0 0 0 −1/c2

 . (4.10)

In general however, for arbitrary (e.g., accelerating, rotating) reference frames, the compo-
nents of gij depend on the event coordinates xi; this in general is why General Relativity is
so complicated.

There are two important differences between gµν and gij :

1. Elements of gµν are always positive; thus ∆r can never be zero for ∆x,∆y,∆z 6=
0.
In regular 3-D space, there are no such distinctions as time-like and space-
like. Metrics such as the spacetime gij for which ∆τ2 can be zero are called
indefinite; in contrast, gµν is definite.

2. The spatial metric gµν can always be put in diagonal form g0
µν by a suitable

choice of coordinates.
In contrast, gij can be reduced to g0

ij only locally, via the Equivalence
Principle. This is just a restatement of the fact that it is not possible
to surround a gravitating mass with a single inertial reference frame. In
general, gij is much more complicated than g0

ij in presence of gravitational
fields: spacetime is curved.
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4.2 Geodesics and Spatial Curvature

Consider once again normal space, rather than spacetime. We will define a geodesic to be
the shortest distance between two points. In a plane, this is obviously a straight line; on
a sphere, it is a great circle. Geodesics are intrinsic properties of a surface; that is, they
can be determined entirely by measurements made within that surface (e.g., by 2-D beings
on the surface of a 2-D sphere, without making references to the fact that the sphere is
embedded in 3-D space). Since they are intrinsic, they remain unaltered even if the surface
is bent.

Consider a plane, a sphere, and a saddle; on each surface draw a geodesic circle of radius
r.

Figure 4.1: A geodesic circle on a plane, a sphere, and a saddle.

(By geodesic circle, we mean the locus of points connected by geodesics of length r to a
common center.) If we cut these circles out of each surface and tried to flatten them into a
plane, we would get Fig. 4.2.

Figure 4.2: Flattened geodesic circles from a plane, a sphere, and a saddle.

Clearly the circle on the sphere has too little surface area relative to the planar circle,
while the saddle has too much.

In plane (Euclidean) geometry, the circumference of a circle is C = 2πr, while the area
is A = πr2. Clearly on a sphere, C and A are smaller than the Euclidean values, while on
the saddle C and A are larger than the Euclidean values.

We can quantify these differences as follows: consider two geodesics on a sphere (i.e.,
great circles), which pass through the pole. Let the radius of the sphere be a; the angle
subtended at the pole by the two geodesics is θ, and θ � 1. At a distance r along the
geodesics from the pole P , let their perpendicular separation be η.

From simple geometry, perpendicular distance x from surface (at r) to midline of the



38 CHAPTER 4. GENERAL RELATIVITY

θ

a

r

r

a sin (r/a)

η

P

r

x

a

θ0

x = a sin θ0

θ0 = r/a
x = a sin (r/a)

Figure 4.3: Geodesics on a sphere.

sphere is x = a sin r/a, while η is just given by η = θx, or

η = θa sin
(r
a

)
.

Expand the sine function into a Taylor series:

η = θa

(
r

a
− 1

3!
r3

a3
+ · · ·

)
= θ

(
r − r3

6a2
+ · · ·

)
.

The circumference of the circle is obtained by letting θ → 2π:

C = 2π
(
r − r3

6a2
+ · · ·

)
.

Define the curvature of a sphere of radius a to be K = 1/a2; then to 3rd order in r,

C = 2π
(
r − r3

6
K

)
= 2πr

(
1− r2

6
K

)
. (4.11)

To the same order r, our expression for η becomes:

η = θ

(
r − r3

6
K

)
. (4.12)

It can be proved (although we won’t) that Eq. 4.12 is valid to O(r3) for any surface,
(provided that it is sufficiently differentiable, i.e., non-pathological). Eq. 4.11 therefore
provides us with a general definition for the curvature K:

K =
3
π

lim
r→0

2πr − C
r3

, (4.13)
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and so the curvature can be determined by local measurements.
So what is the curvature? It is a measure of the spread of the geodesic in any direction

from a point.

1. For a plane, K = 0, and C = 2πr, or parallel lines remain parallel; equiva-
lently the area A is given by A = π(r2 − r4

12K) (=
∫
C dr).

2. For a sphere, K > 0; C < 2πr, A < πr2.

3. For a saddle, K < 0; C > 2πr, A > πr2.

We now want to relate the curvature to the metric tensor, gµν , where in two dimensions
µ, ν range from 1 to 2. gµν gives the spatial separation between two points on the surface
in terms of their coordinate differences ∆xµ:

∆r2 = gµν∆xµ∆xν .

In Cartesian coordinates, with x1 = x, x2 = y, ∆r2 = (∆x1)2 + (∆x2)2 = ∆x2 + ∆y2, and
the metric tensor is

gµν =
(

1 0
0 1

)
.

In this case, the geometry is everywhere flat, as is obvious from the form of ∆r2 and the
fact that the non-zero components of gµν are constants, independent of x1 and x2.

Suppose however that we use plane polar coordinates instead, with radius R and polar
angle θ. In this case, x1 = R and x2 = θ, and

∆r2 = ∆R2 +R2∆θ2

= (∆x1)2 + (x1)2(∆x2)2. (4.14)

In this case, the metric tensor corresponding to Eq. 4.14 is

gµν =
(

1 0
0 (x1)2

)
. (4.15)

Thus the metric tensor is now position-dependent. However we are still dealing with the
same flat surface.

If we were just given the metric tensor (Eq. 4.15), how could we tell if the surface was
flat or not? We search for a coordinate transformation which puts gµν back into Cartesian
form. In the case of polar coordinates, this is trivial; we define:

x1′ = x1 cosx2

x2′ = x1 sinx2.

This is just x = R cos θ, y = R sin θ, and gµν is back in the form
(

1 0
0 1

)
. This is also

easy for a cylinder of radius a. cylindrical coordinates are just R, θ, and z, where

∆r2 = ∆z2 + a2∆θ2, (4.16)
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since the surface of the cylinder is just defined by R = a. If we define,

x1 = z

x2 = a θ,

the distance formula becomes

∆r2 = (∆x1)2 + (∆x2)2.

As before, a cylindrical surface is also flat. (A cylinder is just a plane which has been rolled
up.) If we tried to do this for the surface of a sphere, we would not be able to find any such
transformation.

The formal solution to this problem was obtained by Gauss, who showed how to obtain
the circumference of a circle of radius r in arbitrary coordinates in terms of the components
of gµν and their derivatives. If the components of gµν are constants, it is always possible to
find a trivial change of coordinates which diagonalizes the metric tensor: if gµν ’s components
are constants, the surface must be flat.

Curvature arises from variations in the components of gµν , so it is not surprising that
Gauss’ curvature formula involves the derivatives of gµν .

Any metric tensor in which the off-diagram components are zero (even if the diagonal
components are not constants) is called orthogonal: there is no “mixing” of coordinates,
i.e., the coordinate axes are orthogonal. For 2 dimensions and orthogonal metrics (which is
always the case for gµν), Gauss’ curvature forumula is given by Eq. 4.3.5 of M. V. Berry’s
Principles of Cosmology and Gravitation and is derived in Appendix B of that same volume:

K =
1

2g11g22

{
− ∂2g11

∂(x2)2
− ∂2g22

∂(x1)2
+

1
2g11

[
∂g11

∂x1

∂g22

∂x1
+
(
∂g11

∂x2

)2
]

+

1
2g22

[
∂g11

∂x2

∂g22

∂x2
+
(
∂g22

∂x1

)2
]}

Gauss also proved that K is invariant; it has the same value no matter what coordinate
system we choose for evaluating it.

For more than two dimensions, things are more complicated. It is not possible to describe
the curvature by a single function K. Physically this is because for a 2-D surface there is
only a single plane which passes through a point; for 3 or more dimensions, there are an
infinite number. In general, curvature is described by the curvature tensor Rijkl of rank 4;
i.e., there are n4 components in an n-dimensional space. Not all are independent; in 2-D,
only one is—this is K.

4.3 Curved Space in 3-D

Let’s consider the simplest possible curved space in 3-dimensions: the 3-D isotropic space
of constant curvature. (If the curvature is the same in every direction about a point, the
point is an isotropic point. If every point in a space is an isotropic point, then the curvature
must be the same everywhere and the space has constant curvature.)
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We use the coordinates R, θ, and φ. The radial coordinate R defines a “hyper-spherical”
surface whose area by definition is 4πR2. (For 2-D surfaces, the analog to R is the coordinate
x we discussed earlier. The circumference is C = 2πx in that case, as usual.)

z

θ

x

y

R


φ

Figure 4.4: The spherical coordinate system.

The hyper-spherical surface R = constant forms a 2-D sub-space, on which positions
are given by θ and φ. The metric of this 2-D sub-space is just the usual expression for the
surface of a sphere:

∆r2 = R2 ∆θ2 +R2 sin2 θ∆φ2 (R = constant).

The 3-D space is then made up of a succession of these “R-spheres.” However because of
curvature, R is not the proper radius of each sphere (just as x was not the radius of the
circle we considered in the 2-D case).

Therefore write the 3-D metric in this space as

∆r2 = f(R) ∆R2 +R2 ∆θ2 +R2 sin2 θ∆φ2, (4.17)

where the function f(R) allows for the fact that the proper distance between points (R, θ, φ)
and (R+ ∆R, θ, φ) is not ∆R. We want to find the function f(R).

As always, we want to do this in the simplest possible way. Since the curvature is the
same everywehere, all geodesics—which in this case are surfaces, not lines as in 2-D—have
the same curvature. So we can pick any geodesic surface to find f(R).

For simplicity, pick the “equatorial” surface θ = π/2 (i.e., the x-y plane in the figure on
on this page). In this case ∆θ = 0, and the metric on this surface is

∆r2 = f(R) ∆R2 +R2 ∆φ2. (4.18)

The coordinates on this surface are thus x1 = R, x2 = φ, and the metric tensor is

gµν =
(
f(R) 0

0 R2

)
=
(
f(x1) 0

0 (x1)2

)
.

Using Eq. 4.3.5 of Berry for the curvature gives

K =
df(x1)/dx1

2f2(x1)x1
=
df(R)/dR
2f2(R)R

. (4.19)
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This is a simple differential equation for f(R), since K is constant:

df(R)
dR

= 2Kf2(R)R

df(R)
f2(R)

= 2KRdR.

Since the derivative of −1/f(R) is just df(R)/f2(R), the left-hand side is just

d (−1/f(R)) = 2KRdR

=⇒ d

dR
(−1/f(R)) = 2KR.

Integrating gives:

1
f(R)

= −KR2 + C; C is a constant.

f(R) =
1

C −KR2
. (4.20)

To determine the value of the constant C, we require that f → 1 as K → 0, i.e., in normal
flat space R is the proper radial distance coordinate. This requires that C = 1, so

f(R) =
1

1−KR2
. (4.21)

And the metric in 3-D in this space is Eq. 4.17

∆r2 =
∆R2

1−KR2
+R2 ∆θ2 +R2 sin2 θ∆φ2. (4.22)

Recall that, by definition, the area of an R-sphere is 4πr2, while from Eq. 4.22, we can now
determine its proper radius a(R):

a(R) =
∫ a(R)

0
dr =

∫ R

0

dR

(1−KR2)1/2
=

1
K1/2

arcsin
(
RK1/2

)
. (4.23)

We finally arrive at:

R =
1

K1/2
sin
(
aK1/2

)
. (4.24)

Since A = 4πR2, we can now write the relation between area and proper radius for these
“hyper-spheres:”

A =
4π
K

sin2
(
aK1/2

)
. (4.25)

For small x, sinx ≈ x, and so for small spheres (where “small” means a� K−1/2),

A ' 4πa2,
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i.e., the usual Euclidean form. With increasing a, A departs from the Euclidean value in a
way which depends on the value and sign of K.

If K < 0, then the argument of sine squared in Eq. 4.25 is imaginary. For imaginary z,
sin z is just sinh |z|, so for K < 0, Eq. 4.25 is

A =
4π
|K|

sinh2
(
a|K|1/2

)
, (4.26)

where |K| = −K.
Since sinhx = ex−e−x

2 , for large x, sinhx ≈ 1
2e
x. Thus for large a, area increases with a

faster than in Euclidean space (where A ∝ r2), and becomes infinite as a→∞.
If K > 0, then Eq. 4.25 shows that A increases with a more slowly than in Euclidean

space (for x = 0 to π/2, x/ sinx > 1), and reaches a maximum at:

amax =
π

2K1/2
, (4.27)

at which

Amax =
4π
K
.

With increasing radius beyond amax, A decreases, and reaches zero at a = π/K1/2. The
behavior of A with increasing a is periodic.

∴ Space with positive K is closed; the periodic behavior of A
corresponds to successive circumnavigations of the surface.

To understand what this means, recall our 2-D sphere of radius a. The sphere’s surface
has constant curvature K = 1/a2. If we start from the pole, we find the circumference of
circles increases with proper radius r until we reach the equator:

C = 2πa sin
(r
a

)
.

This has a maximum value when r/a = π/2 or r = πa/2, which is when we have reached
the equator.

With further increase in r, C decreases, and goes to zero at r = πa (the opposite pole).

4.4 Geodesics in Spacetime

What path does a body subject to no non-gravitational forces follow, i.e., what is its world-
line x(τ)?

In a local inertial frame, this is easy—just use Special Relativity. The body moves
uniformly in a straight line, so the equations of motion are

d2t

dτ2
= 0

d2r

dτ2
= 0.
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r

a

Figure 4.5: Circles with increasing circumferences on a sphere.

The first equation just says that the frame is not accelerating; the second says that the body
in the inertial frame is unaccelerated. In general of course, we can’t describe everything
with inertial frames in presence of matter.

As we have already noted, in general, spacetime is curved by the presence of matter. The
General Relativistic answer to this question (the generalization of the Special Relativistic
inertial frame result) is:

Bodies subjected to no non-gravitational forces follow time-like
geodesics in spacetime.

Light rays follow light-like (or null) geodesics. (The name comes
from the fact that ∆s2 or ∆τ2 = 0 for light rays.)

The tricky part is determining the spacetime metric tensor gij from the mass distribu-
tion; this requires solving the field equations of General Relativity. Remarkably, the first
exact solution of Einstein’s field equations was found by Karl Schwarzschild in 1916 in the
trenches of World War I.

In a sense, gravity has disappeared as a force: the shape of spacetime is determined
by the presence of matter, and a free particle is now redefined to mean a particle which is
affected by no non-gravitational forces. Just as the fictitious forces associated with rotation
can be locally transformed away by switching to an inertial frame, the “fictitious” force
of gravity can be transformed away by switching to a freely falling frame. Recall that
we can always construct local inertial frames even in the presence of gravitational fields;
these are local freely-falling frames. In these local inertial frames, particles unaffected by
non-gravitational forces will obey the law of inertia, i.e., will move at constant velocity in
straight lines.

Locally, geodesics will look like straight lines in spacetime.

Globally however, the geodesics in curved spacetime will be curved lines (just as a
geodesic on the surface of a sphere looks, locally, like a straight line in a plane).
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Spatial geodesics are the shortest distances between any pair of points; equivalently,
a geodesic is the straightest possible path between two points. The latter is still true of
spacetime geodesics, but the former is not. This is connected to the fact that, while the
Euclidean metric ∆r2 is positive definite (∆r2 > 0 for ∆x, ∆y, ∆z 6= 0), the metric
of spacetime (in both Special and General Relativity) is indefinite (∆s2 can be positive,
negative, or zero).

In fact, it turns out that the spacetime separation along a time-like geodesic between
two points (events) is greatest. This is easy to see in Special Relativity: take one event O to
be the origin of a Cartesian coordinate system, and let P have the coordinates (tP , 0, 0, 0).
(We can always set up our coordiantes like this in Special Relativity.) Obviously, OP is the
straightest world line connecting O and P , and the spacetime separation is just τOP = tOP .

tP

x 

Q

P

τ O
Q

τ
O

P

τQP

O

tQ

x� Q

t

Figure 4.6: A spacetime diagram showing three events O, P, and Q.

Now consider some other possible pathOQP , where weQ has the coordinates (tQ, xQ, 0, 0).
We must have τOQP = τOQ + τQP . (This must be a time-like path.) Using the expression
for ∆τ2 from Special Relativity:

∆τ2 = ∆t2 −∆r2/c2 = ∆t2 −∆x2/c2. (4.28)

In this case, we find that τ2
OQ = t2Q − x2

Q/c
2, and similarly,

τ2
QP = (tP − tQ)2 − x2

Q/c
2.

Now,

τOP = tQ + (tP − tQ),

and so

τOQP =
(
t2Q − x2

Q/c
2
)1/2 +

[
(tP − tQ)2 − x2

Q/c
2
]1/2

< τOP .

< tQ < (tP − tQ)
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It turns out that this is also true in General Relativity.
Whether geodesics are the longest or shortest separations of two points (or events)

depends on the metric; in either case the geodesics are extremal paths. For light rays,
∆s2 = 0 in Special Relativity; in General Relativity, the paths followed by light rays are
null geodesics. Bodies subject to non-gravitational forces will follow time-like paths which
are not time-like geodesics.

4.5 The Schwarzschild Solution

We will now consider the simplest possible General Relativity problem, namely, a single
body of mass M and radius r, in otherwise empty spacetime. (The body is not rotating.)
The exact solution, from Einstein’s field equations, is

∆τ2 =
(

1− rs
R

)
∆t2 − 1

c2

 ∆R2(
1− rs

R

) +R2 ∆θ2 +R2 sin2 θ∆φ2

 , (4.29)

where rs = 2GM/c2 is the Schwarzschild radius. We won’t derive this, but let’s try to
understand it and motivate it.

Consider good old Newtonian gravitation for a moment. If we have a body of mass M
and radius r, the potential at the surface is just

φ = −GM
r
,

and the escape velocity is

vesc =
(

2GM
r

)1/2

. (4.30)

Keeping the mass fixed while decreasing the radius causes vesc to increase, and it is equal
to c when the radius is

rs =
2GM
c2

∣∣∣∣
1M�

= 3× 105 cm,

i.e., the Schwarzschild radius. This calculation is actually a swindle, since the potential will
not be Newtonian. However, the result equals the correct General Relativistic result, as we
will see when we talk about black holes.

Clearly, if R is close to rs, gravity (and hence curvature) will be very strong. In general
astrophysical situations, this is not the case; e.g., the surface of the Sun is at R�/rs =
7 × 1010 cm/3 × 105 cm = 2.3 × 105, so General Relativistic effects are small (i.e., the
curvature is small), and so we might expect the correction to be (1− rs/R).

There is another, more subtle way to understand this correction. The mass M here is at
rest and non-rotating. This implies that the metric must be static, that is, the coefficients
of all the metric coordinates must be independent of time. Consider two clocks sitting at
distances r1 and r2, respectively, from a body of mass M , and suppose there is an observer
O2 at the position of Clock 2.
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M

r1 c1

O2

r2

c2

Figure 4.7: Mass M and two clocks, with an observer O2 at clock c2.

If O2 “looks at” (i.e., receives a signal from) Clock 1, O2 will not see it reading the same
time as C2. this is expected, since it takes a finite time for the signal from C1 to reach C2.

However, we have already seen that in a gravitational field there is a gravitational
redshift, which is completely equivalent to gravitational time dilation: clocks run slow in a
gravitational field, or (Eq. 3.39)

∆t(r)
∆t(∞)

= 1− GM

rc2
. (4.31)

Thus O2 does not see C1 running at the same rate as C2, and after a given time interval
∆t2 on O2’s clock, C1 has only elapsed a time

∆t1 = ∆t2

[
1−

(
GM

c2r1
− GM

c2r2

)]
. (4.32)

For our purposes, this is a terrible property for a time coordinate, as O2 will see C1 lagging
farther and farther behind C2. This means that the time difference between C1 and C2

will depend on when O2 looks (i.e., when the clocks were synchronized), which means the
coefficient of ∆t2 in the metric (Eq. 4.29) would have to be a function of time.

To eliminate this problem, we speed up all the clocks on each R-sphere by the factor
(1 − GM/c2R)−1. Then any observer will see all clocks running at the same rate as the
observer’s clock, which will be the same rate as the clocks at infinity.

Since we have sped the clocks up, this means that an indicated time difference ∆t will
correspond to a smaller proper time difference ∆τ :

∆τ =
(

1− GM

c2R

)
∆t =

(
1− rs

2R

)
∆t, (4.33)

which leads to:

∆τ2 =
(

1− 2GM
c2R

)
∆t2 =

(
1− rs

R

)
∆t2, (4.34)

where we have neglected 2nd-order terms in rs/R. Again, although our derivation is ap-
proximate, this is the exact General Relativistic result.

4.6 Motion of Particles and Light in the Schwarzschild Met-
ric

Let’s briefly review motion in central force potentials.
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Let the position of a particle be r = r r̂, where r̂ is just the radial unit vector. By
assumption, the force per unit mass is

F = F (r) r̂, (4.35)

which depends only on radius r. The equation of motion is then just

d2r

dt2
= F (r) r̂. (4.36)

Recall that the cross-product of any vector with itself is zero. We can then write:

d

dt

(
r × dr

dt

)
=

dr

dt
× dr

dt
+ r × d2r

dt2

= F (r) (r × r̂) = 0. (4.37)

Letting dots denote derivatives with respect to time, Eq. 4.37 says that the vector r × ṙ is
some constant vector:

r × dr

dt
= L, (4.38)

where in fact L is simply the angular momentum per unit mass. Since L, which is perpen-
dicular to the instantaneous position and velocity, is constant, this says that the motion is
confined to a plane.

If we use plane polar coordinates, where r = 0 is the attracting source and θ is the angle
in the orbital plane, we can write the equation of motion as

r̈ − r θ̇2 = F (r) (4.39)
2ṙ θ̇ + r θ̈ = 0 (Eq. 4.37 again). (4.40)

Eq. 4.40 can be trivially integrated by multiplying by r to get:

r2 θ̇ = constant = L, (4.41)

which is just conservation of angular momentum again.
Now, Eq. 4.41 implies that

d

dt
=
L

r2

d

dθ
. (4.42)

So using this to switch from d/dt to d/dθ in Eq. 4.39, we get

L2

r2

d

dθ

(
1
r2

dr

dθ

)
− L2

r3
= F (r). (4.43)

This equation can be greatly simplified by introducing the new variable u ≡ 1/r,

d2u

dθ2
+ u = −F (1/u)

L2 u2
. (4.44)
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To get a better idea of what this means, assume that F (r) is derivable from a potential
Φ(r):

F (r) = −dΦ
dr

= u2 dΦ
du
. (4.45)

If we multiply Eq. 4.44 by du/dθ, we can integrate it once to obtain(
du

dθ

)2

+
2Φ
L2

+ u2 = constant ≡ 2E
L2

. (4.46)

The reason for picking this form for the constant is apparent when we multiply through by
L2/2 and, noting from Eq. 4.41 that L = r2dθ/dt, find(

r2

L

)2(
d(1/r)
dt

)2

+
2Φ
L2

+
1
r2

=
2E
L2

E =
r4

2

[
− 1
r2

dr

dt

]2

+ Φ +
L2

2r2

=
1
2

(
dr

dt

)2

+
1
2

(
r
dθ

dt

)2

+ Φ. (4.47)

The first term on the right-hand side is just the radial kinetic energy per unit mass; the
second term is the tangential kinetic energy per unit mass. So clearly, the constant E is
just the energy per unit mass.

The solutions to Eq. 4.44 are of two types: unbound orbits, in which r → ∞ (u → 0),
and bound orbits, for which r oscillates back and forth between finite limits.

For bound orbits, du/dθ = 0 at the turning points, so from Eq. 4.46, we get

u2 +
2
L2

[
Φ
(

1
u

)
− E

]
= 0, (4.48)

which has two roots, the pericenter (closest approach) and the apocenter (greatest distance).
In general, orbits in spherically symmetric potentials are not closed, that is, the radial

period Tr (the time to go from pericenter to apocenter and back) is not equal to the
azimuthal period Tθ (the time for the body to travel 2π radians). One important exception
to this is the Keplerian potential Φ = −GM/r, in which case, Eq. 4.44 becomes (using
F (r) = −GM/r2 = −GMu2):

d2u

dθ2
+ u =

GM

L2
. (4.49)

The solution of this equation is just:

u =
GM

L2
[1 + e cos(θ − θ0)] , (4.50)

where θ0 is a constant of integration and the eccentricity is:

e2 ≡ 1 +
EL4

G2M2
. (4.51)
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For convenience, set θ0 = 0:

u =
GM

L2
[1 + e cos θ] . (4.52)

We expect in General Relativity that the orbit will not be closed. Why? Because of
E = mc2: the gravitational energy associated with the central mass is itself a contributor
to the mass of the system; since the gravitational energy density is non-zero, the effective
mass seen by an orbiting body will vary as a function of r, and therefore F 6= constant/r2.

The analog of Eq. 4.49, derived from the Schwarzschild metric, is

d2u

dθ2
+ u =

GM

L2
+ 3

GM

c2
u2. (4.53)

Clearly the effect of General Relativity is in the form of the correction term 3GMu2/c2;
also unsurprisingly this correction is:

� Proportional to rs/r.

� A function of radius.

For the solar system, as we have already noted, rs/r is very small, and so the correction
term is very small. We know that in the absence of the General Relativistic correction term,
the solution is given by Eq. 4.52:

u =
GM

L2
(1 + e cos θ).

Treat the General Relativistic term as a small perturbation. Substituting Eq. 4.52 into the
right-hand side of Eq. 4.53 gives

d2u

dθ2
+ u =

GM

L2
+

3GM
c2

·
(
GM

L2

)2

(1 + 2e cos θ + e2 cos2 θ)

=
GM

L2
+

3(GM)3

c2L4
(1 + 2e cos θ + e2 cos2 θ). (4.54)

The right-hand side does not involve u, so this is a linear equation. The general solution
is given by solving the left-hand side for the individual terms on the right-hand side. Let
A = 3(GM)3/c2L4. We already know the answer for the right-hand side should be GM/L2,
so we just need to solve the equations:

d2u

dθ2 + u =


A (a)
2A cos θ (b)
Ae2 cos2 θ (c)

. (4.55)

Eq. 4.55a has the solution ua = A, Eq. 4.55b has the solution ub = Ae θ sin θ, and Eq. 4.55c
has the solution uc = Ae2 (1

2 −
1
6 cos 2θ).

The solution to Eq. 4.54 is thus given by Eq. 4.52 plus ua, ub, and uc. The solutions
ua and uc are uninteresting: they are just tiny constants and tiny oscillations. However



4.7. DEFLECTION OF LIGHT BY GRAVITATING BODIES 51

ub ∝ θ so that its contribution steadily builds up. Including this solution, the approximate
solution to Eq. 4.53 is then

u ≈ GM

L2

(
1 + e cos θ +

3(GM)2

c2L2
eθ sin θ

)
. (4.56)

Define a new angle θ′ = 3(GM/cL)2θ; here θ′ is very small. For small angles, cos θ ≈ 1,
sin θ ≈ θ, and so Eq. 4.56 is approximately

u ≈ GM

L2

(
1 + e cos θ cos θ′ + e sin θ sin θ′

)
. (4.57)

The difference-angle formula for cosine from simple trigonometry is:

cos(θ − θ′) = cos θ cos θ′ + sin θ sin θ′, (4.58)

and so Eq. 4.57 can be written as:

u ≈ GM

L2

[
1 + e cos

(
1− 3(GM)2

c2L2

)
θ

]
. (4.59)

Eq. 4.59 shows that u (and therefore r) is a periodic function of θ with period

2π
(

1− 3G2M2

c2L2

)−1

> 2π. (4.60)

Thus if we take θ = 0 to be, say, the pericenter, r does not return to the pericenter value
until the body has travelled more than 2π in azimuth.

Effectively the location of perihelion precesses, by an amount

∆θ = 2π
(

1− 3G2M2

c2L2

)−1

− 2π ' 2π
(

1 +
3G2M2

c2L2

)
− 2π

=
6πG2M2

c2L2
(4.61)

per orbit.
For a Keplerian potential, L is related to the semi-major axis by

a =
L2

GM(1− e2)
, (4.62)

so we can write Eq. 4.61 as

∆θ =
6πGM/c2

a(1− e2)
=

3πrs
a(1− e2)

. (4.63)
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Table 4.1: Anomalous perihelion advance per century

Planet Predicted Observed
Mercury 43.03′′ 43.11± 0.45′′

Venus 8.6′′ 8.4± 4.8′′

Earth 3.8′′ 5.0± 1.2′′

M

r
b

v

F

x

θ

ψ�

Figure 4.8: Deflection of light by a mass M .

4.7 Deflection of Light by Gravitating Bodies

In the Newtonian analysis, let us consider a light ray traveling past a body of mass M .
Assume that the deflection will be very small (as we will see to be the case). In the
absence of gravity, the smallest separation between the photon and the body (the “impact
parameter”) would be b. However because of the effect of gravity, the trajectory of the
photon will be altered. To estimate the magnitude of this deflection, assume that the
trajectory remains straight. What is the perpendicular force acting on the photon during
the encounter?

Suppose we have a material particle instead of a photon, traveling with velocity v. Take
t = 0 to be the moment of closest approach. Clearly,

F⊥ =
GM

b2 + x2
cos θ

=
GMb

(b2 + x2)3/2

=
GM

b2

[
1 +

(
vt

b

)2
]−3/2

, (4.64)

since x = vt. And because mv̇⊥ = p⊥, integration with respect to time gives:

|δv⊥| =
GM

bv

∫ ∞
−∞

(1 + s2)−3/2 ds =
2GM
bv

, (4.65)

since ∫
(1 + s2)−3/2 ds =

s

(1 + s2)1/2

∣∣∣∣∞
−∞

= 1− (−1) = 2.
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Thus |δv⊥| is equal to the force at closest approach, F⊥ = GM/b2, times an effective
encounter time, 2b/v. Now, the angle of deflection is given by ψ ≈ ∆v/v = |δv⊥|/v, so

ψ ≈ 2GM
bv2

. (4.66)

Now, consider the photon again. The situation is exactly the same, with v fixed at c. (Note
that this also means that |δv⊥| is entirely a deflection.) Hence in this case:

ψN =
2GM
bc2

. (4.67)

What happens in General Relativity? The analogue of Eq. 4.41 is

r2 dθ

dτ
= constant. (4.68)

However, for photons (or other massless particles) which travel along null geodesics, dτ =

rb

x�

θ

∆θ=θ∞

Figure 4.9: Deflection of light in General Relativity.

ds = 0. This implies that the right-hand side of Eq. 4.68 is infinite. Thus the analogue of
Eq. 4.53, for particles moving on null geodesics, is

d2u

dθ2
+ u = 3

GM

c2
u2. (4.69)

Again, the term on the right-hand side is very small. If the right-hand side were zero, the
solution to this equation would just be

u0 = c sin θ, (4.70)

where c is some constant. To determine c, note that when θ = π/2, 1/u = r just equals b,
the impact parameter. So

u0 =
sin θ
b
. (4.71)

If we substitute this into the right-hand side of Eq. 4.69 (just as we did earlier in deriving
the precession of perihelion), we get

d2u

dθ2
+ u =

3GM
c2b2

sin2 θ

=
3GM
c2b2

(1− cos2 θ). (4.72)
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A particular solution of this equation is

u1 =
3GM
2c2b2

(
1 +

1
3

cos 2θ
)
. (4.73)

And so

u ' u0 + u1 =
sin θ
b

+
3GM
2c2b2

(
1 +

1
3

cos 2θ
)
. (4.74)

We again expect that the deflection angle will be small. In the limit of large r, θ is a very
small angle, so sin θ ≈ θ and cos 2θ ≈ 1, so as r →∞ (u→ 0), we get

∆θ = θ∞ = −2GM
c2b

. (4.75)

By symmetry, the total deflection is twice this (r → −∞ gives the same result), so

|2∆θ| = ψGR =
4GM
bc2

= 2ψN = 1.75′′ for M = 1 M�, b = R�. (4.76)

4.8 Effective Potentials

Orbits are often easiest to understand if we use the effective potential, rather than simply
the gravitational potential. What is the effective potential? Consider the Newtonian case
again. The equation of motion is:

d2r

dt2
− r

(
dθ

dt

)2

= −GM
r2

. (4.77)

We also know from conservation of angular momentum that

r2 dθ

dt
= L = constant

=⇒ r

(
dθ

dt

)2

=
L2

r3
.

And we can write the equation of motion as

d2r

dt2
= −GM

r2
+
L2

r3

= − d

dr

(
−GM

r
+
L2

2r2

)
= − d

dr

(
Φg +

L2

2r2

)
= −dΦeff

dr
, (4.78)

where the effective potential Φeff = Φg + L2/2r2 = −GM/r + L2/2r2.
The angular momentum term in Φeff represents what is frequently termed the “centrifu-

gal barrier.” Conservation of angular momentum limits how closely a particle can approach
a center of attraction.
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Figure 4.10: Bound and unbound particles in an effective potential Φeff (dashed line) that
is the sum of the Newtonian potential (solid line) and a “centrifugal” term (not shown).

Particles with E < 0 are bound, and move back and forth between pericenter
and apocenter in an effective potential.

Particles with E > 0 are unbound; they come in from infinity along parabolic or
hyperbolic orbits, and are reflected off the centrifugal barrier at E = Φeff(r).

What happens in General Relativity? Noting that

d

dθ
=
r2

L

d

dτ

where the derivative is with respect to proper time, Eq. 4.53 can be rewritten as

d2r

dτ2
= −GM

r2
− 3GML2

c2r4
+
L2

r3
, (4.79)

and so the effective potential in the Schwarzschild metric is

Φeff = −GM
r

+
L2

2r2
− GML2

c2r3

= −GM
r

+
L2

2r2

(
1− rs

r

)
. (4.80)
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Aside: What is the meaning of the minimum in Φeff in the Newtonian case?
The minimum occurs where

dΦeff

dr
= 0 =

dΦg

dr
− L2

r3
. (4.81)

This is satisfied at the radius rg where(
dΦg

dr

)
rg

=
L2

r3
g

= rg θ̇
2. (4.82)

This is simply a circular orbit with angular speed θ̇. Thus the minimum
occurs at the radius at which a circular orbit has angular momentum L, and
the value of Φeff at this minimum is just the energy of this circular orbit.

Obviously in General Relativity, things are more complicated. In the Newtonian case,
the 1/r2 term increases faster than the 1/r term, so for any non-zero value of L, there is a
centrifugal barrier. Only L = 0 particles can reach the central body (for a point source).

In General Relativity, the additional term in rs/r (of opposite sign) means that there
is in general a maximum as well as a minimum in the potential. The behavior of orbiting
bodies is quantitatively different in two respects:

1. Particles with non-zero angular momentum fall in.

2. Particles with large enough energy can always reach the center, no matter
what their angular momentum L is.

4.9 Effective Potentials in the Schwarzschild Metric

Recall Eq. 4.80:

Φeff = −GM
r

+
L2

2r2

(
1− rs

r

)
.

The presence of the term −L2rs/2r3 makes a crucial difference from the Newtonian case.
The L2/2r2 term represents the “centrifugal barrier;” for any non-zero value of the angular
momentum L, this will prevent a particle from reaching the origin. This is now multipled
by (1− rs/r), which effectively decreases the term; it goes to zero at r = rs.

Most normal astrophysical objects have physical radii rB � rs, so the correction term
in Eq. 4.80 is not particularly important. It is somewhat more important for neutron stars,
which have M ∼ 1 M�, R ∼ 10 km, so rB/rs ∼ 3.

The correction term in Eq. 4.80 really becomes important for objects whose mass lies
entirely within their Schwarzschild radii: as we will see shortly, these are black holes, and
anything which crosses the Schwarzschild radius can never escape.

For a black hole then, what happens to particles?
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Figure 4.11: Effective potentials Φeff for black holes with λ2 = 16 and λ2 = 20. The extrema
for λ2 = 16 are at ρ = 4, 12; the extrema for λ2 = 20 are at ρ = 3.67544, 16.3246.

To see what the effective potentials look like, it is convenient to define new variables.
Let:

ρ =
r

GM/c2
=

2r
rs

(4.83)

λ =
L

GM/c
=

2cL
rs

. (4.84)

Then the effective potential is

Φeff = −c
2

ρ
+
c2λ2

2ρ2

(
1− 2

ρ

)
. (4.85)

Note that this implies the depth of the potential at ρ = 2 (r = rs) is just 1
2c

2, i.e., 1/2 of
the rest mass energy per unit mass. So define the new potential

φeff =
Φeff

c2
= −1

ρ
+

λ2

2ρ2

(
1− 2

ρ

)
. (4.86)

The potential φeff has maxima or minima at

ρ =
λ2

2

[
1± (1− 12/λ2)1/2

]
. (4.87)

The behavior of particles depends on their energy and their angular momentum. Of partic-
ular interest are the cases λ2 = 12 and λ2 = 16. As you will see in Problem Set #5, bodies
with λ2 < 12 see effective potentials with no maxima or minima, and must reach ρ = 2,
where they are lost.



58 CHAPTER 4. GENERAL RELATIVITY

At λ2 = 16, the maxima and minima of the potential are at 4 and 12, respectively, and
the effective potential has the values

φ(ρmin) = −3.704× 10−2

φ(ρmax) = 0.

This is the dividing line between bound (E < 0) and unbound (E > 0) particles. There are
thus three different regimes of behavior:

1. λ2 < 12: There is no pericenter; all bodies reach ρ = 2 and will fall into
the hole (more below).

2. 12 ≤ λ2 < 16: There are bound orbits which oscillate between pericenter
and apocenter. Any particle which comes in from ρ = ∞ (r = ∞, E > 0)
will necessarily be pulled into ρ = 2 (r = rs) and fall into the hole.

3. λ2 > 16: There are “unbound” orbits with E > 0, as in the Newtonian
case; however, any particle with E > φeff(ρmax), where

φeff(ρmax) = − 2
λ2µ

[
1− 1

µ

(
1− 4

λ2µ

)]
, (4.88)

and

µ ≡ 1− (1− 12/λ2)1/2, (4.89)

is necessarily pulled into the black hole; these particles have enough energy
to overcome the centrifugal barrier.



Chapter 5

Black Holes

5.1 Gravitational Collapse and Black Holes

Stars like the Sun will eventually finish as white dwarf stars, supported by degenerate elec-
tron pressure. The maximum possible mass of a white dwarf, known as the Chandrasekhar
limit, is MWD ≈ 1.5 M�. More massive stars can produce neutron star remnants (formed in
supernova explosions) in which the pressures are so high that the protons and electrons are
forced to form neutrons. Pulsars are undoubtedly neutron stars. The maximum possible
mass of a neutron star is somewhat more uncertain (due to uncertainties inthe equation
of state for nuclear matter at the relevant pressures), but it is certainly no more than
MNS ≈ 3–5 M�.

For more massive stars, there appears to be no way to avoid unstoppable gravitational
collapse once their nuclear fuel is exhausted. The Schwarzschild metric is the vacuum
solution to the field equations, that is, it describes spacetime in the empty space outside
the surface of a body of mass M and radius rB. If the radius of a body rB < rs, then the
Schwarzschild metric still describes the spacetime outside the surface. As we will see later,
once an object collapses within rs, it must inevitably collapse to a spacetime singularity—a
black hole.

Since all the mass is then ar r = 0, the Scharzschild metric describes spacetime every-
where except r = 0. However, as we have already seen, Schwarzschild coordinates (i.e., the
Schwarzschld metric) are singular at r = rs; the coefficient of dt2 → 0, while the coefficient
of dr2 →∞.

For a long time, this was misunderstood, and it was thought that r = rs was a singular
point. This is not true, and it is in fact just a coordinate singularity, as opposed to the gen-
uine spacetime singularity of a black hole. For a simple example of a coordinate singularity,
consider a 2-D flat (Euclidean) plane. In this case, the spatial separation (the line element)
between two points is just

dr2 = dx2 + dy2.

Now introducing a new coordinate

w =
1
3
x3.

By Phil Maloney.

59



60 CHAPTER 5. BLACK HOLES

This is perfectly acceptable, as this gives a one-to-one mapping between w and x. In terms
of w, the metric (the line element) is

dr2 = (3w)−4/3 dw2 + dy2

This obviously has a coordinate singularity at w = 0, but it is not a physical singularity;
we can get rid of it simply by transforming back to the original (x, y) coordinates.

The Schwarzschild metric holds for 0 < r < rs, rs < r ≤ ∞, just not right on the surface
r = rs. However, strange things happen when we cross r = rs, and the meaning of the
coordinates change. The Schwarzschild metric is again:

dτ2 =
(

1− rs
r

)
dt2 − 1

c2

[
dr2(

1− rs
r
) + r2 dθ2 + r2 sin2 θ dφ2

]
. (5.1)

For r > rs, the coefficient of dt2 is positive, and the coefficient of dr2 is negative. For r < rs,
these signs flip: dt2 has a negative coefficient, and dr2 has a positive coefficient.

What does this mean?
Recall that, for a material particle, dτ2 > 0, while for a photon, dτ2 = 0. From Eq. 5.1,

for rs/r > 1, no particle or photon can have r = constant. (Note the coefficients of dθ2

and dφ2 are unaltered.) For r = constant, dτ2 would be negative (for any value of r < rs).
However, since this is the square of the proper time interval, this cannot be.

There can be no equilibrium inside r = rs.

In a sense, r is now a “time” coordinate, as it is not stationary for any particle. Further-
more, since r cannot be constant, the coefficients in Eq. 5.1 are now functions of time: the
Schwarzschild metric is no longer time-independent inside rs. This is not due to a bad
choice of coordinates, but due to the intrinsically non-stationary nature of spacetime inside
rs.

However, the coordinate singularity in the Schwarzschild metric, and the change in
behavior of the coordinates across r = rs, means that Schwarzschild coordinates are not very
convenient for discussing spacetime in the vicinity of black holes. A variety of alternative
coordinate systems have been constructed. A particularly useful set are the Eddington-
Finkelstein coordinates.

The idea behind Eddington-Finkelstein coordinates is really very simple: change to a
new time coordinate in which photons falling in purely radially (following ingoing radial
null geodesics) travel in straight lines. This is obtained by changing the time variable from
coordinate time t to the new time variable

t̄ = t+ rs ln(r − rs). (5.2)

Differentiating this gives:

dt̄ = dt+
rs

r − rs
dr. (5.3)

And substitution into the Schwarzschild metric (5.1) gives the new form

dτ2 =
(

1− rs
r

)
dt̄2 − 2

rs
cr
dt̄ dr − 1

c2

[(
1 +

rs
r

)
dr2 + r2 dθ2 + r2 sin2 θ dφ2

]
. (5.4)
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This metric is regular (no singularities) over the whole range 0 < r <∞.
What happens as we approach a black hole?
In Minkowski spacetime, the geometry is flat (Euclidean): light cones always make 45◦

angles with the ct axis. Suppose we suspend an object at some height above the surface in
a gravitational field, and then release it. The trajectory is curved, as the object accelerates
downward in the gravitational field until it hits the surface.

zi

ct

0

Figure 5.1: The trajectory of an object falling in a gravitational field.

Suppose the object is emitting photons at various points along its trajectory as it falls.
These photons are also acted on by gravity, with the result that the light cones will no
longer make 45◦ angles with the ct axis. Because the gravitational potential is deeper at
the surface than at the initial height, the paths of photons emitted at z = 0 will be slightly
different than photons emitted at zi.

In curved space, light cones will change their shape and
orientation.

Close to the Schwarzschild radius, where the curvature of spacetime becomes severe, this
effect becomes severe.

It is easier to understand the behavior of photons by considering an “equatorial” spatial
slice at some time. Consider the expanding light sphers around some arbitrary points in
spacetime. In Minkowski space, the expanding spherical wavefronts are centered on their
points of origin. In the Schwarzschild metric, this is not true: at large distance from the
black hole, the picture is very similar to the Minkowski picture—the Schwarzschild metric
is asymptotically flat.

As we move closer to the center, however, the photons—and therefore the wavefronts—
are attracted towards the black hole, so that their points of origin are no longer at the
origin. This effect becomes more pronounced as r decreases, until we reach r = rs. At this
point, only radially outgoing photons “stay put;” all the rest are dragged inward.

Within r = rs, all photons are dragged towards the singularity. This is the event
horizon. Since no material particle can have v ≥ c, it follows that any particle which crosses
the Schwarzschild radius must continue in to r = 0.
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Schwarzschild MetricMinkowski Metric

Singularity

rs

Figure 5.2: Light wavefronts in the Minkowski and Schwarzschild metrics.

Birkhoff’s Theorem: A spherically symmetric vacuum solution is neces-
sarily static.
Translation: If a spherically symmetric source is confined to some ra-
dius r ≤ a, then spacetime outside the source (r > a) is given by the
Schwarzschild solution. It doesn’t matter if the body is collapsing, or pul-
sating, as long as it does it in a spherically symmetric fashion.

Combined with the fact that even light cones point inwards inside rs, this implies that
any object which collapses within its own Schwarzschild radius must collapse into a singu-
larity.

What will such a collapse look like in a spacetime diagram?
What will the external observer see of the collapse?
Let the observer be at radius r0. If a light signal is emitted at event re, te from the

surface, and travels radially outward to reach the observer at event r0, t0, then (with dθ,
dφ = 0), r and t are related along this outgoing radial null geodesic by:

0 = dt2
(

1− rs
r

)
− 1
c2

dr2

1− rs/r
. (5.5)

And so therefore

dt =
1
c

dr

1− rs/r
.
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Star Interior

World-line of
Distant Observer

_
t

r = rs

Signals sent from surface
of star at regular intervals

r

Figure 5.3: Spacetime diagram of a collapsing star.

This results in:

t0 − te =
1
c

∫ r0

re

dr

1− rs/r
=
r0 − re
c

+
rs
c

ln
(
r0 − rs
re − rs

)
. (5.6)

This light travel time becomes infinite when re = rs, so to an external observer the collapse
“freezes” at r = rs.

The external observer does not perpetually see the surface as it was when it reached
r = rs, however, due to the gravitational redshift, since

∆τe ≡
1
νe

= ∆te
√

1− rs/re

∆τ0 ≡
1
ν0

= ∆t0
√

1− rs/r0 = ∆te
√

1− rs/r0.

Since ∆te = ∆t0, we arrive at

z =
[
re(r0 − rs)
r0(re − rs)

]1/2

− 1, (5.7)

which goes to infinity as re → rs. Hence the surface very rapidly redshifts out of observ-
ability.
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5.2 Falling Into a Black Hole

We saw previously that to an external observer, the collapse of a body (such as a star) to a
black hole appears to “freeze” as the surface reaches the event horizon ar r = rs, although
this surface then very rapidly redshifts to invisibility. Suppose we now consider an existing
black hole, and two observers: one stationary at some large radius r0 from the black hole
(r0 � rs), and the other falling in freely on a purely radial trajectory.

The infalling particle will follow a radial time-like geodesic. From the Schwarzschild
metric (with dθ = dφ = 0),

dτ2 =
(

1− rs
r

)
dt2 − 1

c2

(
1− rs

r

)−1
dr2. (5.8)

This gives the equation of motion of the observer as

1 =
(

1− rs
r

)
ṫ2 − 1

c2

(
1− rs

r

)−1
ṙ2, (5.9)

where dots denote derivatives with respect to proper time τ .
We also need to relate dτ and dt for motion along the geodesic. This turns out to be(

1− rs
r

)
ṫ = K, (5.10)

where K is a constant which depends on the initial conditions. If we assume the second
(infalling) observer is at rest initially at ∞, then K = 1, as is apparent from Eq. 5.8 with
dr = 0 and rs/r → 0. This just says that proper time goes to coordinate time for a
stationary particle at infinity, as we would expect. With K = 1, then Eqs. 5.9 and 5.10
combine to give

1 =
(

1− rs
r

)−1
− 1
c2

(
1− rs

r

)−1
ṙ2(

1− rs
r

)
= 1− ṙ2

c2

ṙ2 =
(
dr

dτ

)2

= c2 rs
r

=⇒ dr

dτ
= ±c

(rs
r

)1/2
. (5.11)

Take the negative root (since the observer is falling in) and integrate:

r1/2 dr = −c r1/2
s dτ

2
3
r3/2 = −c r1/2

s τ +A.

Assume that at τ = τ0, the observer is at r = r0; then

τ − τ0 =
2

3c r1/2
s

(r3/2
0 − r3/2). (5.12)

Eq. 5.12 shows that the infalling observer reaches r = 0 in a finite proper time, although
the stationary observer will never see the infalling observer cross the event horizon.
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5.3 Evidence for the Existence of Black Holes

The blackness of black holes makes trying to detect them directly impossible. This leaves
two possible means of detecting black holes (aside from gravitational waves):

1. Gravitational Effects i.e., measurement of the black hole mass.

2. Radiation from material near the hole which is falling in.

What exactly does (2) mean?
Suppose we have a body of mass M and radius R, such as a star, and we drop a particle

onto it from infinity. When it strikes the surface, it must give up all of its gravitational
potential energy in the form of radiation, kinetic energy of fragments, etc. This gravitational
potential energy is just:

U = −GM
R

(5.13)

per unit mass. Write this as

U = −1
2
c2 2GM

c2R
= −1

2
c2 rs
R
. (5.14)

Now, 1
2c

2 is just half of the rest-mass energy (per unit mass) of the particle, and this
implies that the depth of the potential at the Schwarzschild radius is 1

2c
2; although we have

approximated the potential as Newtonian in Eq. 5.13, this is the correct General Relativistic
answer (cf. Eq. 4.85 for the effective potential).

Eq. 5.14 indicates that if the radius R � rs, then only a very small fraction of the
rest-mass energy gets turned into kinetic energy or radiation: the binding energy −U � c2.
As R approaches rs, however, this fraction gets larger, approaching 1

2 at R = rs.
Suppose we have spherical infall onto the body, with total mass accretion rate Ṁ . The

accretion luminosity generated as this accreted matter reaches the surface is then

Lacc = Ṁ · GM
R

. (5.15)

In terms of the available rest-mass energy Ṁc2, we can define an efficiency of radiating
emission,

E =
Lacc

Ṁc2
=
GM

Rc2
=

1
2
rs
R
. (5.16)

Clearly, as noted above, the efficiency will be very low if R � rs. For most astrophysical
objects, such as stars, it is true that R� rs. However, for neutron stars, where R ∼ a few
rs, it can be quite substantial.

There is another important implication of this, in terms of the temperature of the
emitting material. Suppose that the accretion luminosity is radiated as thermal emission,
i.e., the surface radiates as a blackbody of radius R. Then

Lacc = 4π R2 σ T 4
b , (5.17)
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where σ is the Stefan-Boltzmann constant. Then we have

Tb =
[

Lacc

4π R2 σ

]1/4

. (5.18)

X-ray satellites have identified large numbers (hundreds) of galactic x-ray sources, with
typical x-ray luminosities Lx ∼ 1037 erg s−1. Many of these are observed to be in binary
systems; furthermore many are observed to vary on short timescales, implying that the size
of the emitting region must be small (Re ∼< c∆t). We can then write Eq. 5.18 as

Tb ' 1.1× 107

(
L37

R2
10

)1/4

, (5.19)

where L37 = Lacc/1037 erg s−1 and R10 = R/10 km. Thus accretion onto neutron stars
(or black holes) naturally provides x-ray temperatures (1 keV ≈ 1.1× 107 K) for accretion
luminosities comparable to the observed.

Now for black holes there is no solid surface, so what happens? In principle, most of the
rest-mass energy can simply be transported across the event horizon. However, spherical
accretion is unlikely to occur in general, as infalling gas will have some angular momentum.
It will most likely then form an accretion disk around the black hole; the gas in the disk
slowly loses energy and angular momentum due to viscosity and spirals into the hole. (This
will probably happen for neutron stars as well.) The x-ray binaries are therefore excellent
candidates for compact objects, either neutron stars or black holes. Some are observed to
be pulsars, which clearly identies them as neutron stars.

How can we tell whether accretion is occuring onto a neutron star or a black hole?
Clearly, if we determine that the mass is greater than the maximum mass of a neutron star,
accretion must be occuring onto a black hole. The best candidates for accretion onto a
compact object are the so-called single-lined spectroscopic binaries.

What can we say about the mass of a binary system? Take the following figure:

m1
com

to
obse

rve
r

m2

a
i

a1 a2

Star Compact
Object

Figure 5.4: Geometry of an X-ray binary.
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Here i is the inclination of the orbital plane to our line of sight. We also have

a = a1 + a2

M1a1 = M2a2, (5.20)

from the definition of the center of mass.
Any emission line from the starM1 will be Doppler-shifted by its motion about the center

of mass of the system. The amplitude of this Doppler variation (in the non-relativistic limit)
is just v1, the projection of the orbital velocity of M1 along the line-of-sight:

v1 =
2π
P
a1 sin i, (5.21)

where P is the orbital period. By measuring v1 and P , we determine a1 sin i. From Kepler’s
laws,

G(M1 +M2)
a3

=
(

2π
P

)2

, (5.22)

while from Eq. 5.20,

a =
M1 +M2

M2
a1. (5.23)

Writing Eq. 5.21 as

a1 =
Pv1

2π sin i
, (5.24)

and substituting into Eqs. 5.23 and 5.22:

G(M1 +M2)
a3

=
G(M1 +M2)M3

2

(M1 +M2)3

(2π sin i)3

(Pv1)3

=
(

2π
P

)2

=⇒ Pv3
1

2πG
=

(M2 sin i)3

(M1 +M2)2
≡ f(M1,M2, i). (5.25)

This is the “mass function.” (Note that it has dimensions of mass.) If M2 � M1, then
f 'M2 sin3 i; if M1 �M2, f ≈M3

2 sin3 i/M2
1 . In either case, f is less than the true mass of

the compact object M2. Without further information, it is impossible to go beyond Eq. 5.25
without making additional assumptions.

For some x-ray binaries, it has been possible to determine the mass function of the
optical member of the binary, from Doppler shifts of x-ray lines. If we denote

f1 =
(M1 sin i)3

(M1 +M2)2
, f2 =

(M2 sin i)3

(M1 +M2)2
, (5.26)

then the ratio of these two expressions gives the mass ratio

q =
M2

M1
, (5.27)
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and

M2 =
f1q (1 + q)2

sin3 i
. (5.28)

A unique determination for the mass of the compact object depends on knowing sin i.
Limits on sin i can be derived if, e.g., the x-ray emission is periodically eclipsed by the
stellar companion, or for that matter, if the x-ray source is never eclipsed.

There are currently eight stellar-mass black hole candidates known:

Object Mass Function Estimated Mass Comments
(M�) (M�)

Cyg X-1 0.25 ∼ 10 Steady source w/ high-mass companion

LMC X-1 0.14 6 ′′

LMC X-3 2.3 9 Transient source w/ low-mass companion

Nova Muscae 3.1 6 ′′

GS 2023 + 33

(V404 Cyg) 6.3 10 ′′

GRO J0422 + 32

∼ 3 4.5 ′′

A0620 3.2 6 ′′

GRO J1655− 40 ′′

(Nova Scorpius) ∼ 3 4.5 Superluminal radio jet source

How can we claim that sources with such small mass functions (e.g., Cyg X-1) are
candidates for black holes? We must use other information about these systems. For
example, the distance to the Cyg X-1 system is fairly well-determined from observations of
the optical component to be d ∼ 2.5 kpc. With this distance, the luminosity of the optical
star is quite high (it is an OB supergiant) and it must be rather massive, with M at least
8.5 M� and more probably ∼ 20 M� (from stellar structure calculations). We will get a
minimum mass if we take sin i = 1, so solving

M3
2

(M1 +M2)2
= 0.25

for M1 = 8.5–20 M� gives M2 = 3.3–5.5 M�.

5.4 Massive Black Holes in Galaxies

Several percent of galaxies exhibit active galactic nuclei: high luminosity, non-thermal
emission which is generated on very small size scales (as determined by light travel-time
arguments for varying sources). As with galactic x-ray binaries, the emission extends to
x-ray wavelengths; this alone with the high luminosities from small (r � 1 pc) volumes,
suggests that the emission arises from accretion onto a massive (MBH ∼ 106–109 M�)
central black hole. The emission from these AGN can be comparable to the luminosity
from the rest of the galaxy; the most extreme examples are the quasars (for quasi-stellar
radio sources) in which the AGN is so luminous that it completely dwarfs emission from
the host galaxy (if any).
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Obviously the techniques used for trying to estimate masses which are used for galactic
x-ray binaries are of no use here. How can we try to ascertain the existence of these massive
black holes? We must look for gravitational evidence of large masses in very small volumes,
or, equivalently, to look for very large mass densities.

Observationally this has proved very difficult: even at ∼ 10 Mpc (a relatively nearby
galaxy), 1′′ ≈ 50 pc. The advent of the Hubble Space Telescope (HST) improved the
available resolution by quite a bit, but still produced no clear-cut examples, as the mass of
stars associated with the galactic nucleus generally swamps the putative black hole mass at
the size scale observed.

Ground-based radio observations with the VLBA (Very Long Baseline Array) have now
produced ironclad evidence for a massive black hole in a galaxy, NGC 4258 (M 106). Radio
observations in the 22 GHz water maser line reveal a warped disk of gas in essentially perfect
Keplerian rotation (v ∝ R−1/2), with Rinner = 0.13 pc and Router = 0.25 pc. This implies

Mc = MBH? = 3.6× 107 M�
ρc > 4× 109 M� pc−3.

To understand the significance of this, we have to detour briefly into stellar dynamics.
Suppse we have a system like a normal (no massive black hole) galactic nucleus, made

up of a very large number of stars. We will assume that this system is self-gravitating, that
is, the stars themselves provide the gravitational potential in which they move. According
to the Virial Theorem, for an isolated system

2K +W = 0, (5.29)

where K is the total kinetic energy and W is the total potential energy. If the total mass
of the stellar system is M , then the kinetic energy is just K = 1

2M〈v
2〉, where 〈v2〉 is the

mean-square speed of the stars. If the radius of the system is R, then the potential energy
W ≈ −GM2/R, so

2
(

1
2
M〈v2〉

)
=

GM2

R

〈v2〉 ≈ GM

R
. (5.30)

Since the mass of an individual star is much smaller than the mass of the galactic nucleus,
each star moves through a rather smooth potential produced by all the other stars in the
nucleus. The typical deflection of a star by gravitational encounters with other stars is quite
small, and one can show (continuing on from Eqs. 4.65 and 4.66) that the time it takes for
the velocity of a star to shift by an amount |δv| comparable to its original velocity (the
relaxation time) is

tR ∼
0.1N
lnN

tcross, (5.31)

where the crossing time

tcross =
R

v
(5.32)
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is just the typical time it takes for a star to cross the nucleus.
A typical galactic nucleus has a velocity dispersion 〈v2〉1/2 ≈ 200 km s−1, which implies

tcross ≈ 5 × 105R100 yr, where the nucleus is R = 100R100 pc; from Eq. 5.30, this also
implies that M ∼ 109 M� for these values. The relaxation time is basically the timescale
in which the system “forgets” the initial conditions.

Another important stellar-dynamical timescale is the evaporation timescale. From time
to time, an encounter (a gravitational “collision”) between stars in the system will give a
star enough energy to escape. There is a slow and irreversible “leakage” of stars from the
system. With the aid of the Virial Theorem, we can estimate this timescale in terms of the
relaxation time.

One of the consequences of Newton’s law of gravitation is that the force due to a spherical
distribution of matter contained within radius R is the same as a point mass of the same
total mass for r > R:

F (r) = −GM(r)
r2

(5.33)

M(r) = 4π
∫ r

0
ρ(R)R2 dR. (5.34)

The escape velocity at radius r is determined by the condition

1
2
mv2 +mΦ(r) > 0, (5.35)

where Φ(r) is the gravitational potential at radius r. Hence

v2
e = 2|Φ(r)| = −2Φ(r), (5.36)

where |Φ(r)| is the magnitude of the potential at r.
The mean-square escape speed from a spherical system is then just the density-weighted

average of v2
e :

〈v2
e〉 =

4π
∫
r2ρ(r)v2

e(r) dr

4π
∫
r2ρ(r)dr

=
4π
∫
r2ρ(r)(−2Φ(r)) dr

M

=
−8π

∫
r2ρ(r)Φ(r) dr

M
, (5.37)

where M is the total mass of the system.
What is this integral? For a spherically symmetric system, the total gravitational po-

tential energy is

W =
1
2

∫
4πr2ρ(r) Φ(r) dr

= 2π
∫
r2ρ(r) Φ(r) dr, (5.38)
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where the factor of 1
2 arises because we don’t want to count any star more than once, i.e.,

each star contributes to ρ and Φ equally.
Thus we can write Eq. 5.37 as

〈ve〉 = −4W
M

. (5.39)

Now from the Virial Theorem (Eqs. 5.29 and 5.30), we know that the mean-square speed
of the stars is just

〈v2〉 = −W
M

(5.40)

(since K = 1
2M〈v

2〉 = −W/2). Thus

〈v2
e〉 = 4〈v2〉 (5.41)

and the root mean-square (RMS) escape velocity 〈v2
e〉1/2 is just twice the RMS stellar

velocity 〈v2〉1/2.
Assume that the actual distribution of stellar velocities (more precisely, speeds) is a

Maxwellian:

f(v) =
(

2
π

)1/2

σ−3v2e−v
2/2σ2

, (5.42)

where σ is the velocity dispersion. This is related to the RMS velocity by

〈v2〉1/2 = vRMS =
√

3σ (5.43)

Then the fraction of stars which have velocities exceeding twice the RMS velocity is

fesc =
∫ ∞

2vRMS

f(v) dv =
(

2
π

)1/2

σ−3

∫ ∞
2vRMS

v2e−v
2/2σ2

dv. (5.44)

To simplify this, let u = v/
√

2σ; then

fesc =
2√
π
· 2
∫ ∞
uRMS

u2e−u
2
du. (5.45)

We can do the integral by parts:

2
∫ ∞
uRMS

u2e−u
2
du =

[
−ue−u2

]∞
uRMS

+
∫ ∞
uRMS

e−u
2
du

= uRMSe
−u2

RMS +
√
π

2
Erfc(uRMS),

where Erfc is the complementary error function. Since uRMS = 2
√

3σ/
√

2σ = 2
√

3/2,
evaluation gives

fesc =
2√
π
· 6.604× 10−3 = 7.45× 10−3. (5.46)
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We can approximately account for evaporation by assuming a fraction fesc of the stars are
lost every relaxation time (because a Maxwellian distribution will be re-established every
relaxation time). If the original number of stars in the system is N , then

dN

dt
≈ −fescN

tR
≡ N

tevap
, (5.47)

where the evaporation timescale is

tevap ≡
tR
fesc
≈ 134tR. (5.48)

The process of evaporation therefore limits the lifetime of any stellar system to ∼ 100
relaxation times.

What does this have to do with NGC 4258? The upper limit to any deviation from
Keplerian velocities is ∆v ≤ 3 km s−1. If we had purely Keplerian motion (i.e., a point
mass like a black hole), then the velocities at the inner and outer radii would be related by(

rout

rin

)1/2

vout = vin. (5.49)

Denote the ratio of the mass contained between radii rin and rout to that contained within
rin by

δM =
M(rout)−M(rin)

M(rin)
. (5.50)

Similary, define the velocity difference

δv =
(
rout

rin

)1/2

vout − vin. (5.51)

A little algebra shows that

δM ' 2
δv

vin
for δv/vin � 1. (5.52)

From the observations, δv/vin ∼< 0.003, and so δM ∼< 1%.
This immediately says that the mass contained between rin and rout is less than about

1% of the mass within rin. If the central mass is not a massive black hole, it must be very
sharply cut off within rin. Now suppose that we try to replace the central mass with a
stellar cluster. Even if we make the (ridiculous) assumption that we can cut it off abruptly
at rin = 0.13 pc (which maximizes the crossing, relaxation, and evaporation times), we get

vRMS ≈ 1100 km s−11

tcross ≈ 120 yrs.

Assuming that the stars have typical masses of 1 M�,

tR ≈ 2× 105 tcross ≈ 2.4× 107 yrs
tevap ≈ 3× 109 yrs.
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This is already disturbingly short, since the age of the galaxy must be greater than 109 yrs.
However this model is absurd. Any realistic model for a stellar cluster will be centrally

concentrated, and the density will decline as some power of the radius. For example, the
density profiles of globular clusters and galactic nuclei can be described reasonably well by
profiles of the form

ρ = ρ0

[
1 + (r/rc)2

]−α/2
, (5.53)

where ρ0 is the central density, rc the core radius, and α ≈ 4–5 for galactic nuclei and
globular clusters.

(Note that for α = 2, the cluster mass increases with radius at least as fast as r, so that
δM ∼> 1; clearly α > 2.)

For the choice α = 5, for example, requiring δM < 0.01 requires rc < 0.012 pc, and
ρ0 ∼> 4.5× 1012 M�. In this case the evaporation time is

tevap ∼< 108 yrs.

This timescale isn’t very sensitive to the actual parameters used; for any realistic stellar
cluster, the evaporation time is much less than the age of the galaxy. Although it is possible
to have possibly some exotic form of matter be the central mass (e.g., a massive neutrino
ball), the most conservative assumption is that the central object is a massive black hole.
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Chapter 6

Cosmology

Cosmology is fundamentally concerned with the distribution and dynamics of the material
which makes up the universe. All the information we possess on the rest of the universe
(outside the solar system) comes from collecting photons emitted by astrophysical objects.
It is straightforward (although often very tedious) to measure the distribution of objects on
the sky. But how do we tell how far away they are?

6.1 Cosmic Distance Scale

The first reasonable estimate of the distances to nearby stars was made by Newton. He
assumed that all stars have the same brightness as the Sun; this means that the apparently
brightest stars are simply the nearest. Since these are about 1011 times fainter than the
Sun, the inverse square law for flux gives

D?

D�
≈

(
f�
f?

)1/2

=
(
1011

)1/2 ≈ 3× 105 (6.1)

D? ≈ 3× 105 AU = 4.5× 1018 cm ≈ 1.5 pc (6.2)

which is pretty close to correct (although Newton actually made a numerical error of a
factor of 100).

6.1.1 Parallax

This is based on the apparent shift of nearby objects due to more distant ones as we change
position; for astronomical purposes, this shift is due to the orbit of the Earth about the
Sun.

tanψ = d/D

=⇒ D = d/ tanψ ' d/ψ (6.3)

since ψ is a very small angle.
This is also where the term parsec (“parallax-second”) arises from: an object at a

distance of 1 parsec has a parallax ψ = 1′′:

1 parsec =
1 AU

(2π/1.296× 106′′)
= 3.0856× 1018 cm
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D

dd

ψ ψ� 

Figure 6.1: Parallax geometry.

The first stellar parallax was measured by Bessel in 1837. The largest stellar parallax is
ψ ' 0.8′′. This is limited by the smallest parallax which can be reliably measured, and is
reliable out to ∼ 30 pc.

6.1.2 Standard Candles

There are other techniques which can be used for stars, as discussed in Berry and in Silk,
but for the extragalactic distance scale, all of the methods are variants of the technique used
by Newton to estimate distances to the stars: they are all based on the idea of a standard
candle.

If we know the true luminosity of an astrophysical source of radiation, and we mea-
sure the flux we receive from it (both in some arbitrary wavelength range), then we can
immediately determine its distance:

D =
(
L

4π

)1/2

(6.4)

(assuming of course, that the source is radiating isotropically).
The problem, of course, is knowing what the true luminosity is. Determination of

the cosmological distance scale has been an immensely time-consuming and controversial
business.

A hotly debated issue in the first quarter of this century was whether the so-called
“spiral nebulae”—which we now know to be galaxies like our own—were part of the galaxy
or not. The first accurate determination of the distnace to the nearest large galaxy to
our own—M31 in Andromeda—was made by Öpik in 1922, using observations of rotation
velocities.

Spectroscopic observations had already shown evidence for gas motions in M31; assum-
ing that these represented more or less circular velocities, this gives the mass interior to the
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edge of the disk, where the speed is vc, as

GM

r2
=
v2
c

r
=⇒ GM

(θD)2
=

v2
c

θD
(6.5)

where θD is the angular radius of the disk. since the observed flux f is just

f =
L

4πD2
(6.6)

from the galaxy, substituting D2 = L/4πf into Eq. 6.5 and rearranging gives

D =
v2
cθ

4πGf
L

M
(6.7)

Assuming M/L ∼ 3, and with everything else on the right-hand side of Eq. 6.7 known, Öpik
obtained D ≈ 450 kpc, compared with the modern value D ≈ 770 pc.

6.1.3 Cepheid Variables

The most important distance indicator to be discovered (which finally settled the debate
over spiral nebulae) are the Cepheid variable stars. Many stars show regular (i.e., periodic)
variations in brightness. In 1912, Henrietta Leavitt showed that there was a linear relation
between the apparent magnitude m and the period P for the Cepheid variables in the Small
Magellanic Cloud, a small nearby (D ≈ 60 kpc) galaxy. Since these stars are all at nearly
the same distance, she concluded that there is a unique relationship between the absolute
magnitude and the period.

Digression on Magnitudes: Traditionally, the brightness of astrophysical
objects have been expressed not as fluxes, but as magnitudes. This is a
logarithmic scale, with the apparent magnitude m ∝ log f . If two objects
have observed fluxes f1 and f2, then

m2 −m1 = 2.5 log(f1/f2) (6.8)

The factor of 2.5 means that a difference in flux of a factor of 100 corresponds
to 5 magnitudes.
The absolute magnitude M is defined as the magnitude a source would have
if it were at a distance of 10 pc. Since f ∝ D−2,

m−M = 5 log(D/10) (6.9)

where D is in parsecs. The absolute magnitude of the Sun is 4.72, while its
apparent magnitude is m� = −26.85. m−M is called the distance modulus.

The discovery of the Cepheid period-luminosity relationship was a major breakthrough,
as it made it possible to determine the luminosity simply by observations of the light curve;
the distance is then given immediately by the observed flux. In 1923, Hubble discovered
Cepheids in M31, thereby establishing its distance unequivocally.

Other “standard candles” include:
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� Novae: Correlation between magnitude at maximum and fading time.

� Brightest cluster galaxies: Assumes that the maximum magnitude is very similar
in all clusters. The galaxy luminosity distribution is fit pretty well by the Schecter
luminosity function: the number of galaxies with luminosity between L and L + dL
per unit volume is

φ(L) dL = φ?

(
L

L?

)α
e−L/L?

dL

L?
(6.10)

with φ? ≈ 1.2× 10−2h3 Mpc−3, α ≈ −1.25, and L? ≈ 1.0× 1010h−2 L�in the visual.

� Planetary nebulae luminosity function

� Supernovae of Type II

All these methods have sources of error, but at least they are different for different methods.

6.2 Expansion of the Universe

Using Cepheids to determine distances, and spectra to determine velocities, Hubble in 1929
announced his discovery of the expansion of the universe: the velocity of recession of a
galaxy from ours is proportional to its distance from us:

v = HD (6.11)

where H, the Hubble constant, is equal to 75±25 km s−1 Mpc−1. As we will see shortly, the
precise value of Hubble’s constant is of profound cosmological significance, as it is directly
related to the age of the universe.

Even before deducing the expansion of the universe, Hubble made another observation
of equally profound importance. It was already known that there are many more “spiral
nebulae” (galaxies) of small angular extent than large angular extent, as one would expect
if the distribution were more or less uniform around us. Hubble quantified this using the
following test, which had been devised originally in conjunction with studies of star counts
in the Milky Way.

Suppose the universe is static and the geometry is Euclidean, and that all galaxies have
the same luminosity L. Due to the geometric dilution of flux, the received flux from each
galaxy is f = L/4πD2. With all galaxies having the same luminosity, all galaxies with flux
> f are at a distance < D.

The volume of space per steradian out to a distance D is just D3/3. If the galaxies are
distributed uniformly, with average number density n, the average number per steradian
brighter than f would be:

N(> f) = nV =
nD3

3
=
n

3

(
L

4πf

)3/2

(6.12)

That is, N(> f) is proportional to f−3/2.
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This is (unfortunately) often expressed in magnitudes instead of fluxes; from Eq. 6.8,
f ∝ 10−0.4m, and so Eq. 6.12 becomes

N(< m) ∝ 100.6m (6.13)

From star counts it was known that the stellar distribution in the Milky Way did not obey
Eq. 6.13; it is a finite system. However Hubble’s galaxy counts closely followed Eq. 6.13.

What does the Hubble relation mean? It is obviously absurd to infer that everything is
expanding away from us, i.e., that we are at the center of an expanding sphere of galaxies.
However, there is an alternate and far more plausible explanation. Take our galaxy as the
origin of a system of coordinates.

0

r2
r1

G1
G2

v2

v1

v1 - v2 r1 - r2

Figure 6.2: Geometry for galaxies in an expanding universe.

Hubble’s Law is then v = Hr, where r is the position vector of a galaxy relative to us.
For galaxy G1 then, its velocity of recession is

v1 = Hr1

while for galaxy G2,

v2 = Hr2.

But what is the velocity of galaxy G1 with respect to G2? This is just

v1 − v2 = Hr1 −Hr2 = H(r1 − r2)

which is just H times the distance of G1 from G2. Thus it is clear that each galaxy sees all
others receding from it, i.e., there is a uniform expansion of the entire system.

By the end of the 1920s, therefore, observations had established two fundamental facts
about the universe:
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1. It is expanding.

2. On large enough scales (i.e., volumes big enough to contain reasonable
numbers of galaxies), it appears to be fairly homogeneous (the same at
every point) and isotropic (the same in every direction).



Chapter 7

Theoretical Cosmology

Newton realized that his theory of gravitation raised a cosmological problem. In Newton’s
time (and for more than two centuries thereafter), it was assumed that the universe was
infinite and unchanging, i.e., static. The force of gravitation causes a problem for such a
cosmos; why doesn’t gravity cause the system to collapse?

Newton argued that it was stable because of the fact that it is infinite and uniform:
the force on a particle in any direction would be cancelled out by an identical force in the
opposite direction. If the universe were finite in extent, a distribution of matter initially at
rest would inevitably collapse to the center under the influence of its own gravity.

This is an example of a symmetry argument, which frequently occurs in physics, often
to great effect. This one, however, is wrong. There is a fundamental flaw in Newton’s
homogeneous infinite universe—it is unstable, and the entire universe should collapse in
on itself, unless it is expanding, i.e., it has enough kinetic energy to overcome (at least
temporarily) the attractive force of gravity.

Another flaw with the infinite, static universe of Newton’s time is what is commonly
referred to as Olber’s paradox (although it was first pointed out by Edmund Halley more
than a century earlier): why is the night sky dark?

If the universe is infinite and unchanging, then every ray we follow away from the Earth
must eventually intercept the surface of a star. Therefore the entire sky should be as bright
as the surface of a star!

This is obviously not the case. Olber (1827) proposed that the solution is that there is
some material between the stars which absorbs the radiation from them. However this won’t
work either, because of simple thermodynamics—the absorbing material must eventually
become as hot as the radiation it is absorbing (since it is exposed to an infinite bath of
radiation) and the problem returns.

7.1 Cosmological Principle

The appearance of Einstein’s theory of General Relativity sparked an explosion of interest
in theoretical cosmology; in fact, the expansion of the universe could have been predicted

By Phil Maloney.
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by Einstein1 a decade before it was discovered by Hubble.
For simplicity, theoretical models treat the evolution of a smoothed-out version of the

universe, i.e., we will ignore (for the moment) the irregularities due to galaxies, clusters, and
other local density perturbations. In the first explicit cosmological model based on General
Relativity, Einstein (1917) adopted what has since become known as the Cosmological
Principle: on suitably large scales, the universe is homogeneous and isotropic. This was a
major leap of faith at the time, as Hubble’s observations of the galaxy distribution were not
to appear for another ten years, and star counts had already established that the Milky Way
(which observationally was “the universe” at the time) was anything but homogeneous and
isotropic. Einstein adopted the Cosmological Principle in the specific context of a closed,
“Machian” universe.

The fundamental question we need to answer to study the evolution of this smooth, per-
fect universe is then: what is the geometry of the spacetime which comprises the universe?

Although General Relativity is necessary to really answer this question, it is possible to
restrict the possible forms of the metric dramatically by the adoption of the Cosmological
Principle. If the universe is homogeneous and isotropic everywhere, then if we take a space-
like “slice” through spacetime at constant cosmic time t, then these slices must be symmetric
about every point in them. Clearly then, the spatial structure of the 3-D position space
must be one of constant curvature.

7.2 Comoving Coordinates

We discussed the 3-D space of constant curvature earlier (§4.3 starting on page 40). The
spatial part of this metric is just

dr2 =
dR2

1−KR2
+R2 dθ2 +R2 sin2 θ dφ2, (4.22)

where K is the curvature and R is the radial coordinate. The curvature is of course inde-
pendent of position, but it may be a function of time.

Now the expansion of the universe means that all galaxies are steadily moving apart from
one another. The assumption of homogeneousness and isotropy for the universe means that
the expansion (i.e., ignoring any local peculiar velocities due to, say, gravitational interaction
of nearby galaxies) cannot alter the relative orientations of galaxies (or other bodies) with
respect to one another: that is, it will lead to no rotation or anisotropic stretching.

This means that the proper physical separation between, say, a pair of galaxies, must
be

d = d◦ a(t), (7.1)

where d◦ is a constant for the pair and a(t) is a universal (the same everywhere) expansion
factor. The time derivative of Eq. 7.1 is just the relative velocity of the two galaxies:

v = ḋ = d◦ȧ =
ȧ

a
d ≡ Hd. (7.2)

1But was not, in what he later referred to as the greatest blunder of his career.
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We therefore see that the value of the coefficient in Hubble’s expansion law is determined
by the rate of change of the expansion coefficient:

H =
ȧ

a
. (7.3)

This will, in general, be a function of time; the present-day (observed) value is H◦.
The Hubble constant also sets an age scale for the universe: if we assume that ȧ is

constant, then at time

a

ȧ
= H−1

◦ = 3.09× 1017 h s = 9.8× 109 h yrs (7.4)(
where h =

H◦
100

km s−1 Mpc−1
)

ago, the radius of the universe was zero. (There are numerical factors depending on the
time dependence of a, but this sets the scale.)

The fact that the distances between galaxies (or any other objects, or arbitrarily selected
points in space) increase uniformly with time due to the expansion suggests that we want to
pick our spatial coordinates in a particular way, namely, that we separate out the effect of
the expansion. In other words, we want to use the d◦’s from Eq. 7.1 to describe the relative
positions of points.

Imagine for example, that we impose a set of spherical coordinates on the universe at
some time, and then let this coordinate grid expand as a(t).2 The physical size of the
grid would increase with time, but the coordinates would be unchanged: two galaxies with
coordinates (R1, 0, 0) and (R2, 0, 0) which are unmoving except for their expansion with the
universe (generally referred to as the “Hubble flow”) will always have a coordinate distance
separation ∆R = |R2 − R1|, but their proper physical separation will be d = a(t)∆R =
a(t)|R2 −R1|. These are referred to as comoving coordinates.

7.3 Friedmann-Robertson-Walker Metric

If we take the R-coordinate in Eq. 4.22 to be the comoving radial coordinate, then the
spatial part of the metric will just be

dr2 = [a(t)]2
(

dR2

1−KR2
+R2 dθ2 +R2 sin2 θ dφ2

)
. (7.5)

The curvature K has not yet been specified (and we will need to return to General Relativity
to do so), but it may be positive, negative, or zero, with some arbitrary magnitude if it is
non-zero. It will prove convenient to absorb the magnitude of K into the radial coordinate
and the scale factor.

To do this, define a new parameter k by

K = |K|k. (7.6)

2And assume a = 1 initially, just for convenience.
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For K 6= 0, so that k = +1 or −1 depending on whether K is positive or negative. If we
now introduce a rescaled radial coordinate by

R? = |K|1/2R, dR? = |K|1/2 dR, (7.7)

then the spatial part of the metric (Eq. 7.5) becomes

dr2 =
[a(t)]2

|K|

(
dR?2

1− kR?2 +R?2 dθ2 +R?2 sin2 θ dφ2

)
. (7.8)

Here we can define a rescaled expansion factor

a?(t) = a(t)
|K|1/2

K 6= 0,

a?(t) = a(t) K = 0.
(7.9)

(Note that this leaves H unaffected.)
Then the spatial part of the metric is

dr2 = [a?(r)]2
(

dR?2

1− kR?2 +R?2 dθ2 +R?2 sin2 θ dφ2

)
. (7.10)

What is the time part of the metric? For a comoving observer, with R?, θ, and φ constant,
t is just the proper time τ , and so (dropping the ?s on the coordinates):

dτ2 = dt2 − [a(t)]2

c2

(
dR2

1− kR2
+R2 dθ2 +R2 sin2 θ dφ2

)
. (7.11)

(More formally, the fact that the spatial coordinates of a comoving particle are constant
along a geodesic means that the time coordinate is orthogonal to the spacelike surfaces
t = constant.) Here t plays the role of a cosmic or world time.

Eq. 7.11 is called the Robertson-Walker line element, after the relativists who first
showed that it is the most general form for the metric of a spatially homogeneous and
isotropic spacetime, independent of General Relativity.

At any given cosmic time t, the geometry of the universe is just given by the spatial
part of Eq. 7.11. The proper distance between us and some other object, such as a galaxy,
at time t is then just

Dp =
[∫ R

0

dR

1− kR2

]
a(t) = a(t)×


sin−1R, if k = 1;
R, if k = 0;
sinh−1R, if k = −1

(7.12)

(cf. Eqs. 4.23 and 4.26, on p. 42). In writing Eq. 7.12, we have taken R = 0 to be us for
convenience, as we are free to center our coordinates anywhere we like. The distance is of
course proportional to a(t), which changes with time.

We obtain the proper velocity of the galaxy (or whatever) with respect to us by differ-
entiating Eq. 7.12, keeping in mind that the comoving radial coordinate R is constant:

vp = Ḋp = ȧ(t)
∫ R

0

dR

1− kR2
=
ȧ(t)
a(t)

Dp. (7.13)
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This of course is just Eq. 7.2 again, with H = ȧ(t)/a(t).
The geometry for k = 0 (flat space) is obviously Euclidean; such a universe is termed

open topologically, as the radius (i.e., distance Dp) and volume increases without limit as
the coordinate R increases.

The geometry for k = −1 (negative curvature) is not Euclidean; from our earlier discus-
sion of curved spaces, the area of an R-sphere increases as sinh2Dp, which for large Dp is
much faster than the Euclidean D2

p behavior. Such a universe is also open.
For k = 1, the universe has closed geometry: as in our earlier discussion of positively-

curved spaces, the area of an Rp-sphere has a maximum, and then decreases with increasing
Rp, finally reaching zero again. Such a universe has finite volume but no boundary (just as
a 2-dimensional being on the surface of a 2-D sphere will never encounter an edge, but the
area of the sphere is finite).

7.4 Redshifts in an Expanding Universe

Again take R = 0 to correspond to our position, and consider light reaching us at the
present (time t◦) from a distant galaxy. Two successive wave crests were emitted at times
te and te + ∆te, and are received by us at times t◦ and t◦ + ∆t◦. How are these times
related?

The light travels inwards (by definition, since we are at R = 0) along a radial null
geodesic of the Robertson-Walker metric (Eq. 7.11):

0 = dt2 − [a(t)]2

c2

dR2

1− kR2
(7.14)

=⇒ dt = ±a(t)
c

dR

(1− kR2)1/2

{
+ Receding (outgoing) light ray

− Approaching (incoming) light ray

(7.15)

Let the comoving radius of the distant galaxy be Re. Then∫ t◦

te

dt

a(t)
= −1

c

∫ 0

Re

dR

(1− kR2)1/2
=

1
c

∫ Re

0

dR

(1− kR2)1/2
(7.16)

≡ f(Re)
c

,

where

f(Re) =


sin−1Re k = +1
Re k = 0
sinh−1Re k = −1

. (7.17)

Similarly, ∫ t◦+∆t◦

te+∆te

dt

a(t)
=

1
c

∫ Re

0

dR

(1− kR2)1/2
=
∫ t◦

te

dt

a(t)
, (7.18)
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since the comoving coordinate Re is unchanged. Therefore (getting rid of the 1/c’s),∫ t◦+∆t◦

te+∆te

dt

a(t)
−
∫ t◦

te

dt

a(t)
= 0

=
∫ t◦+∆t◦

t◦

dt

a(t)
−
∫ te+∆te

te

dt

a(t)
.

Assuming that a(t) does not vary significantly over the intervals ∆t◦ and ∆te, we can remove
it from the integrals, and get

∆t◦
a(t◦)

=
∆te
a(te)

. (7.19)

The emitted and observed wavelengths λe and λ◦ are related as usual to the periods by

λe =
c

νe
= c∆te, λ◦ = c∆t◦.

And so the redshift is

z =
λ◦ − λe
λe

=
λ◦
λe
− 1 =

∆t◦
∆te
− 1 =

a(t◦)
a(te)

− 1. (7.20)

In an expanding universe, a(t◦) > a(te), i.e., the light takes time to reach us. Therefore the
redshift is positive—the light is really redshifted. Thus,

=⇒ 1 + z =
a(t◦)
a(te)

.

If the redshift is not large, so that the times of emission and reception do not differ by a
large amount, let t◦ = te + dt. Then

(1 + z) =
a(t◦)
a(te)

=
a(t◦)

a(t◦ − dt)
≡ a(t◦)

a(t◦)− ȧ(t◦) dt

' 1 +
ȧ(t◦)
a(t◦)

dt (7.21)

to lowest order in dt. We also have (cf. Eq. 7.16)∫ t◦

te

dt

a(t)
=
∫ te+dt

te

dt

a(t)
' dt

a(te)
=

dt

a(t◦ − dt)
' dt

a(t◦)
. (7.22)

Again to lowest order in dt, from Eq. 7.16,∫ t◦

te

dt

a(t)
=
f(Re)
c

(7.23)

where f(R) is given by Eq. 7.17. For small R, f(Re) ≈ Re for all three values of k, and so

dt

a(t◦)
≈ Re

c
. (7.24)
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Combining this with Eq. 7.21,

1 + z ≈ 1 + ȧ(t◦) ·
Re
c

z ≈ ȧ(t◦)Re
c

. (7.25)

Thus for small redshifts, the redshift is directly proportional to distance. Note also that
this is independent of |K| (cf. Eqs. 7.7 and 7.9).

7.5 Horizons

When discussing black holes in the Schwarzschild metric, we encountered the concept of an
event horizon (which in this case was just the Schwarzschild radius): no information (e.g.,
photons) could ever reach us from inside the event horizon.

In cosmology, there are two important horizons: the particle horizon, and the event
horizon. The particle horizon (also called the object horizon) arises in answering the fol-
lowing question: what is the comoving coordinate R of the most distant object we can see
now? This will obviously be the objects which emitted their light at the beginning of the
universe, tB. In some model universes, tB = 0, in others tB = −∞. (We’ll discuss this
later, when we consider the dynamical evolution of the universe explicitly.) In either case,
we have from the Robertson-Walker metric (cf. Eq. 7.16 again)

∫ t◦

tB

dt

a(t)
=

1
c

∫ Rph

0

dR

(1− kR2)1/2
=
f(Rph)

c
(7.26)

=⇒ Rph =



sin
(
c

∫ t◦

tB

dt
a(t)

)
k = +1

c

∫ t◦

tB

dt
a(t) k = 0

sinh
(
c

∫ t◦

tB

dt
a(t)

)
k = −1

. (7.27)

To actually evaluate Rph requires a specific form for a(t). No object with R > Rph can
be seen by us. However, whatever the value of k, there may not be a particle horizon,
depending on the form of a(t); in some model universes, the entire universe is visible to us
(in principle!).

The event horizon arises in asking a slighlty different question: what is the coordinate
Reh of the most distant event occurring now (at time t◦) which we will ever be able to see?
This coordinate is the event horizon. The light from an event at the event horizon must
reach us by the time the universe ends at time tE ; tE is often infinite, but as we will see
later there are universes which stop expanding at a finite time and recollapse.
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Analogous to Eqs. 7.26 and 7.27, we get that the event horizon is given by

Reh =



sin
(
c

∫ tE

t◦

dt
a(t)

)
k = +1

c

∫ tE

t◦

dt
a(t) k = 0

sinh
(
c

∫ tE

t◦

dt
a(t)

)
k = −1

. (7.28)

Depending on the model universe, Reh may be infinite, in which case we eventually get to
see all events, or it may be finite; in the latter case, we may still get to see all events if the
universe is bounded (k = +1) and Reh is greater than the maximum radius of the universe.

The particle or object horizon determines the greatest possible
distance at which an object can have had any effect on our

locality.
The event horizon is the greatest distance at which an object will

eventually be able to affect our locality.

7.6 Luminosity Distance

We observe the rest of the universe by receiving photons emitted by astrophysical objects.
In a static, Euclidean universe, flux is related to luminosity by

f =
L

4πD2
.

This will obviously not be true in an expanding, curved space. Define the luminosity distance
by

f =
L

4πD2
L

=⇒ DL =
(

L

4πf

)1/2

(7.29)

where L is the true, intrinsic luminosity of the source. Using the Robertson-Walker metric,
we can calculate DL exactly.

Let the coordinates of the emission event be Re, te. The light reaches us at t = t◦; at
this time, the area of the hyper-spherical wavefront is

A = 4πR2
e a

2(t◦). (7.30)

The flux of energy crossing this surface is reduced by two additional factors:

1. The redshift of the radiation:

λ◦ = (1 + z)λe → ν◦ =
νe

1 + z

E = hν → E◦ =
Ee

1 + z
.



7.7. DECELERATION PARAMETER Q◦ 89

2. Time dilation: Recall Eq. 7.19, ∆t◦/a(t◦) = ∆te/a(te), which implies

=⇒ ∆t◦
∆te

=
a(t◦)
a(te)

= 1 + z.

In addition to having lower energy, the rate of arrival of photons is therefore
reduced by a factor of 1 + z, relative to the rate at which they are emitted
at R = Re.

Thus the energy flux arriving at the spherical hyper-surface which includes us is

f =
L

4πR2
e a

2(t◦) (1 + z)2

=
La2(te)

4πR2
e a

4(t◦)
. (7.31)

Thus the luminosity distance is

DL =
Re a

2(t◦)
a(te)

= Re a(t◦)(1 + z). (7.32)

Note that this is not the same as the proper distance Dp (Eq. 7.12); these two distances are
equivalent in general for small Re (small z).

7.7 Deceleration Parameter q◦

Most observed objects (unsurprisingly) have small redshifts (z � 1) and therefore t◦ − te
is also small (i.e., (t◦ − te)/t◦ � 1). It is therefore useful to expand a(t) in a power series
about t = t◦:

a(t) = a(t◦) + (t− t◦) ȧ(t◦) +
1
2

(t− t◦)2 ä(t◦) + · · ·

= a(t◦)
[
1 + (t− t◦)

ȧ(t◦)
a(t◦)

+
1
2

(t− t◦)2 ä(t◦)
a(t◦)

+ · · ·
]

= a(t◦)

[
1 + (t− t◦)

ȧ(t◦)
a(t◦)

+
1
2

(t− t◦)2 ä(t◦) a(t◦)
ȧ2(t◦)

(
ȧ(t◦)
a(t◦)

)2

+ · · ·

]

= a(t◦)
[
1 + (t− t◦)H◦ +

1
2

(t− t◦)2 ä(t◦) a(t◦)
ȧ2(t◦)

H2
◦ + · · ·

]
= a(t◦)

[
1 +H◦(t− t◦)−

1
2
q◦H

2
◦ (t− t◦)2 + · · ·

]
(7.33)

where the deceleration parameter is

q◦ ≡ −
ä(t◦) a(t◦)
ȧ2(t◦)

= − ä(t◦)
a(t◦)H2

◦
. (7.34)
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Note that q◦ is positive if ä(t◦) is negative, i.e., if the expansion is slowing down.
Using Eq. 7.33 in Eq. 7.20 for z yields a power series for z in terms of (t◦ − te):

z = H◦(t◦ − te) +
(

1 +
1
2
q◦

)
H2
◦ (t◦ − te)2 + · · · (7.35)

Inverting this power series gives a series for t◦ − te in terms of z:

(t◦ − te) =
1
H◦

[
z − (1 +

1
2
q◦)z2 + · · ·

]
(7.36)

Now, from Eq. 7.25, we have for small z

Re =
cz

ȧ(t◦)
=⇒ Re a(t◦) = cz

a(t◦)
ȧ(t◦)

=
cz

H◦
.

Substituting this expression into Eq. 7.31

f =
L

4π
a2(te)
a2(t◦)

[Re a(t◦)]−2

=
LH2
◦

4πc2z2

[
a(te)
a(t◦)

]2

.

With a(te)/a(t◦) from Eq. 7.33, and using Eqs. 7.36 for (t◦ − te), we finally get

f =
LH2
◦

4πc2z2
[1 + (q◦ − 1)z + · · · ] (7.37)

This finally gives us a direct relation between f and z, provided we have a population of
standard candles for which we know L.

For galaxies close enough for the (q◦ − 1)z term to be negligible, the slope of f vs. z−2

gives us H◦. If we can then extend our measurements out to larger z, so that the (q◦ − 1)z
term starts to contribute significantly, then we can determine q◦ from the deviation of f vs.
z−2 from a straight line.

As we will see later, q◦ is directly related to the dynamical state of the universe; if we
could determine q◦ precisely, we would know the ultimate fate of the universe: continued
expansion, or halt and recollapse. This is the “classical” cosmological test; astronomers
(notably Allan Sandage) have been struggling with this problem for decades. It has been
plagued by both selection effects and evolutionary effects.

7.8 Cosmic Dynamics

So far, the form of a(t) has been left indeterminate. We now want to relate a(t) to the
mass-energy content of the universe. Although we need General Relativity to do this, we
can get a surprisingly long way using Newtonian mechanics. However, we will need two
special results from General Relativity:
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1. In a spherically symmetric system, the gravitational force (i.e., the accel-
eration) at a given radius is determined by the mass within that radius.
This is known as Birkhoff’s Theorem (first mentioned back on p. 62), and
is the General Relativity generalization of Newton’s first theorem.

2. The active gravitational mass density is equal to the sum of the matter
density plus 1/c2 times the energy density of radiation and relativistic
particles (e.g., neutrinos).

Our Newtonian approximation will be valid provided that all velocities are � c and the
potential φ� c2. For a region of size L, this latter condition amounts to

GM(< L)
L

∼ GρL3

L
� c2. (7.38)

As we will see shortly, the value of the Hubble constant H ∼ (Gρ)1/2, and so

H2L2 � c2

L � c

H
. (7.39)

Since the relative velocity due to the Hubble expansion v = HL, Eq. 7.39 also implies that
v � c. The length c/H (the horizon distance) is the distance a photon can have travelled
in the age of the universe.

With the aid of Birkhoff’s Theorem, we can ignore the effect of any matter or energy
outside our sphere of radius L. Including the effect of the expansion, write L = L◦ a(t).
The acceleration of the surface of the sphere is then given by

d2L

dt2
= −GM

L2
, (7.40)

where M is the mass (including relativistic mass) within the sphere. There are no pressure
forces, since ∇P = 0 by the assumption of homogeneity. At present, the energy density
in radiation and relativistic particles is much less than the rest mass energy in matter.
However we will see shortly that this was not always true, so we cannot ignore the radiation
mass-energy.

The pressure due to both matter and radiation is now unimportant. At early times,
when pressure was important, the pressure due to radiation greatly exceeded that due to
matter. Therefore ignore the matter pressure at all times3 and use the radiation equation
of state:

P =
1
3
ρrc

2 (7.41)

where the radiation mass energy ρr = ur/c
2, where ur is the radiation energy density (in

erg cm−3). Then the gravitational mass density is

ρ = ρm +
3P
c2
, (7.42)

3In General Relativity, pressure-less matter is technically known as “dust.”



92 CHAPTER 7. THEORETICAL COSMOLOGY

and the mass within radius L is just M = ρV = 4π
3 L

3ρ. Since L◦ is a constant, Eq. 7.40
can then be written as an equation for the scale factor a(t):

ä = −4πG
3

(
ρ+

3P
c2

)
a (7.43)

where a, ρ, and P are all functions of time.
In order to integrate this equation, we need to know how ρ and P vary with the scale

factor a(t). This is given by the first law of thermodynamics:

d

dt
(ρc2V ) = −P dV

dt
. (7.44)

This just says that the change in the internal energy ρc2V (noting that ρ = ρm + ρr
includes the rest-mass energy) is equal to minus the work done in the expansion (i.e.,
dU + PdV = dS = 0 since there can be no heat exchange in a homogeneous universe).
Using Eq. 7.42 in 7.44, this becomes

d

dt
(ρc2V ) + P

dV

dt
= 0

d

dt
(ρmc2V + 3PV ) + P

dV

dt
= 0

=
dρm
dt

c2V + ρmc
2dV

dt
+ 3P

dV

dt

+3V
dP

dt
+ P

dV

dt
. (7.45)

Except for very early times (the first few seconds after the Big Bang), the coupling between
matter and radiation was very small, in the sense that the energy transfer between matter
and radiation ∆E � ρmc

2, ρrc
2. Eq. 7.45 then can be separated into two equations:

dρm
dt

c2V + ρmc
2dV

dt
= 0 (7.46)

4P
dV

dt
+ 3V

dP

dt
= 0. (7.47)

Eq. 7.46 is just:

dρm
ρm

= −dV
V

=⇒ ρm ∝ V −1

=⇒ ρmV = constant, (7.48)

while Eq. 7.47 is

dP

P
= −4

3
dV

V

P ∝ V −4/3

=⇒ PV 4/3 = constant
=⇒ ρrV

4/3 = constant. (7.49)
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Since V/a3 is equal to a constant,

ρm = ρm◦
a3
◦

a3(t)
(7.50)

ρr = ρr◦
a4
◦

a4(t)
, (7.51)

where the zero subscripts denote present-day values. Note that the radiation mass-energy
density increases faster (by one power of a(t)) than the matter density as we go back in
time; hence at some time in the past, the universe will become radiation-dominated, rather
than its present matter-dominated state.

Physically this is because although the numbers of particles and photons are both con-
served as we run the universe backward, the radiation is also being blueshifted (just the
reverse of the expansion-induced redshift). Thus the radiation energy density increases by
an additional factor of a(t◦)/a(t).

7.9 Friedmann Equations

We can write Eq. 7.44 in the form

d(ρc2V ) + PdV = 0

dρ+ ρ
dV

V
+
P

c2

dV

V
= 0

dρ+
(
ρ+

P

c2

)
dV

V
= 0.

Using V ∝ a3(t) and dV/V = 3da/a, along with a little algebra, we can write Eq. 7.44 as

3
(
ρ+

P

c2

)
= −dρ

da
· a

P

c2
= −a

3
dρ

da
− ρ. (7.52)

We can use this to eliminate P/c2 from Eq. 7.43:

ä = −4πGa
3

(
ρ+ 3

[
−a

3
dρ

da
− ρ
])

=
4πGa

3

(
2ρ+ a

dρ

da

)
=

4πG
3

(
2ρa+ a2 dρ

da

)
. (7.53)

Note that
d

dt
(a2ρ) = 2a · ȧρ+ a2dρ

dt

= 2aȧρ+ a2 dρ

da

da

dt

= 2aȧρ+ a2ȧ
dρ

da
.
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Thus the right-hand side is just

1
ȧ

d

dt
(a2ρ).

If we multiply both sides by ȧ, then the left-hand side is

äȧ =
1
2
d

dt
(ȧ)2.

So Eq. 7.53 can be integrated once:

1
2
d

dt
(ȧ2) =

4πG
3

d

dt
(a2ρ)

ȧ2

2
=

4πG
3

ρa2 + E

ȧ2 =
8πG

3
ρa2 + 2E, (7.54)

where E is a constant which is related to the energy.
Using the actual field equations of General Relativity, we obtain Eq. 7.54 again, with

the constant 2E now identified as −k c2. Thus

ȧ2 =
8πG

3
ρa2 − k c2. (7.55)

We will include one further complication. As we will see shortly, Eq. 7.55 implies that the
universe is dynamic, i.e., evolving. In his first model for the universe, Einstein sought a
static solution. In order to produce this, he was forced to introduce an additional term into
the field equations (and therefore in Eq. 7.55). This is known as the cosmological constant.

The reason for this is apparent from Eq. 7.43: in order for ä to be zero, ρ+ 3P/c2 = 0.
In other words, if the density ρ > 0, the pressure associated with this matter must be
negative, which is impossible for any matter or radiation. Einstein therefore introduced the
cosmological constant Λ, which acts like a repulsion term:

ä = −4πG
3

(
ρ+

3P
c2

)
a+

Λ
3
a, (7.56)

where the factor of 1/3 is for convenience. With the inclusion of this term, Eq. 7.55 becomes

ȧ2 =
8πG

3
ρa2 +

Λ
3
a2 − k c2. (7.57)

this is known as Friedmann’s equation—or, for the truly GR-inclined, the initial-value equa-
tion.

7.9.1 Critical Density

Using the Friedmann equation, we can now explicitly solve for a(t), and therefore determine
the histories of model universes, one of which (hopefully) is a good approximation to our
own.
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For simplicity, let us first set the cosmological constant Λ = 0, so that Friedmann’s
equation is

ȧ2 + k c2 =
8πG

3
ρa2. (7.58)

Note that the pressure is not explicitly present in this equation. For the moment, let us
also assume that the pressure is also negligible (i.e., ignore the contribution of radiation
and relativistic particles to the right-hand side). In this case the density as a function of a
is given by Eq. 7.50:

ρ = ρ◦
a3
◦
a3

(7.50)

(where we have dropped the m subscripts on ρ). Substituting into Eq. 7.58:

ȧ2 + k c2 =
8πG

3
ρ◦a

3
◦

a
, (7.59)

where a◦ = a(t◦). Now, Eq. 7.58 holds at all times, including the present where t = t◦. We
can then write this as an equation for k c2:

k c2

a2
◦

=
8πG

3
ρ◦ −

(
ȧ◦
a◦

)2

=
8πG

3
ρ◦ −H2

◦

=
8πG

3

(
ρ◦ −

3H2
◦

8πG

)
. (7.60)

Hence whether k is > 0, equal to 0, or < 0 depends on whether ρ◦ > ρc, ρ◦ = ρc, or ρ◦ < ρc,
respectively, where the critical density is

ρc ≡
3H2
◦

8πG
. (7.61)

We can also write q◦ for the zero-pressure case in terms of ρc. Recall that

q◦ ≡ −
ä◦

a◦H2
◦
. (7.34)

From Eq. 7.43, with P = 0,

ä◦ = −4πG
3

ρ◦a◦. (7.62)

Thus

q◦ =
4πG

3
ρ◦H

−2
◦

=
1
2
ρ◦
ρc
. (7.63)
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7.9.2 Ω and Flat, Closed, and Open Universes

It is customary to define

Ω ≡ ρ

ρc
. (7.64)

Thus Ω = 1 corresponds to the critical case of a flat, k = 0 universe.
We can now determine the evolution of the universe for the three possible zero pressure,

zero-Λ models (usually referred to as the Friedmann models).

k = 0 This is the flat, Ω = 1 universe (Ωc = 1). For convenience, defineA2 ≡ (8πG/3)ρ◦a3
◦,

so that the Friedmann equation is

ȧ2 + k c2 =
A2

a
(7.65)

so that in this case,

da

dt
=

A

a1/2
. (7.66)

This can be trivially integrated:

a1/2da = Adt

a3/2 =
3
2
At+ 6 c→ 0 for a = 0 at t = 0

a =
(

3A
2

)2/3

t2/3. (7.67)

This is known as the Einstein-de Sitter model. Note that if we differentiate Eq. 7.67

ȧ =
2
3

(
3A
2

)2/3

t−1/3, (7.68)

which approaches zero as t→∞. Thus the Ω = 1, k = 0 universe slows to a halt, but only
as t approaches infinity. Obviously, models with Ω > 1 will stop expanding (and re-collapse)
at some finite time, while those with Ω < 1 will always expand (for Λ = 0).

k = 1 This is a closed, Ω > 1 universe. In this case, the Friedmann equation becomes

ȧ2 + c2 =
A

a

da

dt
=

(
A2 − c2a

a

)1/2

. (7.69)

This can be written as an equation for t:

t =
∫ a

0

(
a

A2 − c2a

)1/2

da. (7.70)
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To get this into a more convenient form, define the angle ψ by

a ≡ A2

c2
sin2

(
ψ

2

)
. (7.71)

(We’ll see the reason for the factor of 1/c2 momentarily.) Then

da =
1
c2
A2 · 2 sin

(
ψ

2

)
cos
(
ψ

2

)
· 1

2
dψ

=
A2

c2
sin
(
ψ

2

)
cos
(
ψ

2

)
dψ

a

A2 − c2a
=

c−2A2 sin2
(
ψ
2

)
A2 −A2 sin2

(
ψ
2

)
=

1
c2

sin2
(
ψ
2

)
1− sin2

(
ψ
2

)
=

1
c2

sin2
(
ψ
2

)
cos2

(
ψ
2

)
.

And so Eq. 7.70 becomes

t =
A2

c2

∫ ψ

0
sin2

(
ψ

2

)
dψ

=
1
2
A2

c2

∫ ψ

0
(1− cosψ) dψ.

We use the half-angle formula from trigonometry:

t =
1
2
A2

c2
(ψ − sinψ), (7.72)

while a is given by (cf. Eq. 7.71)

a =
A2

c2
sin2

(
ψ

2

)
=

1
2
A2

c2
(1− cosψ). (7.73)

This gives a(t) parametrically, in terms of a(ψ), while t(ψ) is given by Eq. 7.72. Note that
a is a periodic function of time; it will be zero whenever ψ is an integer multiple of 2π.

k = −1 This is an open, Ω < 1 universe. In this case, the Friedmann equation becomes

da

dt
=
(
A2 + c2a

a

)1/2

(7.74)



98 CHAPTER 7. THEORETICAL COSMOLOGY

which gives the equation for t as

t =
∫ a

0

(
a

A2 + c2a

)1/2

da. (7.75)

In this case, define ψ by

a ≡ A2

c2
sinh2

(
ψ

2

)
. (7.76)

And so the equation for t (7.75) becomes

t =
A2

c3

∫ ψ

0
sinh2

(
ψ

2

)
dψ

=
1
2
A2

c3

∫ ψ

0
(coshψ − 1) dψ

=
1
2
A2

c3
(sinhψ − ψ), (7.77)

using the half-angle formulae for hyperbolic sine and cosine. This again gives an expression
for t(ψ), while a(ψ) is

a =
1
2
A2

c2
(coshψ − 1). (7.78)

From Eqs. 7.78 and 7.77, we can obtain an expression for ȧ:

da

dt
=
da

dψ

dψ

dt
=

1
2
A2

c2
sinhψ ·

[
1
2
A2

c3
(coshψ − 1)

]−1

1
c

da

dt
=

sinhψ
coshψ − 1

=⇒ sinhψ
coshψ

= tanhψ = 1 as ψ →∞. (7.79)

Thus ȧ → c as t → ∞ for k = −1 models. (This seems odd, but remember that we folded
a factor of |K|1/2 into the scale factor for K 6= 0.)

In fact, from Eq. 7.74, we see that, since a→∞ as t→∞ (from Eq. 7.78), as t→∞,

da

dt
→ c.

The physical origin of different behavior for the k = 0, ±1, P = 0, and Λ = 0 Friedmann
models is easiest to understand by returning to our Newtonian derivation, which gave

ȧ2 =
8πG

3
ρa2 + 2E (7.54)

where 2E was a constant, which the field equation derivation of General Relativity identifies
as −k c2.
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We derived Eq. 7.54 by integrating Eq. 7.53 for ä. Eq. 7.53, in classical terms, is an
equation of motion (in this case, for the entire universe!). By integrating this equation, we
obtain 7.54, with 2E as a constant of integration. Thus 2E is an integral of motion, in this
case, an energy equation.

With our definition of A2, the equation for ȧ can be written (cf. Eq. 7.65)

ȧ2 − A2

a
= −k c2. (7.80)

Pursuing our Newtonian analogy, we can identify ȧ2 as the kinetic energy, −A2/a as the
potential energy, and −k c2 as the total energy.

If k = +1, then the total energy of the universe is negative, i.e., the total kinetic energy
is less than the gravitational potential energy. In this case the expansion must eventually
come to a halt, when

A2

a
= c2

=⇒ a =
A2

c2
, (7.81)

and the universe contracts with increasing time.
If k = 0, then the total energy of the universe equals zero, and the kinetic energy is just

large enough to allow the universe to keep expanding, but at an ever-decreasing rate (ȧ→ 0
as t→∞).

If k = −1, then the total energy is positive, and the universe has enough kinetic energy
to allow it to expand forever, at an eventually constant rate (ȧ→ c as t→∞). This latter
behavior arises because the potential energy term eventually becomes negligible as a→∞,
and so the expansion of the universe “coasts” at constant velocity.

7.9.3 Models with Non-zero Λ

In general, the scale factor as a function of time in these models requires the use of elliptic
functions, whose physical meaning is rather opaque. For the special case of a flat (k = 0)
universe, however, it is possible to get closed-form expressions for a(t).

k = 0 : For these flat-space models, Friedmann’s equation simplifies to

ȧ2 =
A2

a
+

1
3

Λa2. (7.82)

We have two cases to consider: Λ > 0 and Λ < 0.

Λ > 0 : In the first case, introduce a new variable,

u ≡ 2Λ
3A2

a3. (7.83)

Differentiating this equation gives

u̇ =
2Λ
A2
a2ȧ. (7.84)
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Using Eqs. 7.83 and 7.84 in Eq. 7.82 results in:

A4

4Λ2
u̇2a−4 =

A2

a
+

1
3

Λa2

u̇2 =
4Λ2

A4

[
A2a3 +

1
3

Λa6

]
=

4Λ2

A2
a3 +

4
3

Λ3

A4
a6

= 6Λu+ 3Λu2

= 3Λ(2u+ u2). (7.85)

Therefore,

u̇ = (3Λ)1/2(2u+ u2)1/2, (7.86)

where we have taken the positive square root since both terms on the right-hand side of
Eq. 7.82 are positive, and therefore ȧ (and hence u̇) must be > 0. This also implies that
a = 0 when t = 0; we’ll discuss this further shortly.

With this assumption (i.e., a Big Bang cosmology), we can solve Eq. 7.86 as:

∫ u

0

du

(2u+ u2)1/2
=
∫ t

0
(3Λ)1/2 dt = (3Λ)1/2t. (7.87)

To perform the integral over u, first complete the square:∫ u

0
=

du

[(u2 + 1)2 − 1]1/2
=
∫ v

1

dv

(v2 − 1)1/2
,

where v ≡ u+ 1. The integral is just cosh−1 v|v1 = cosh−1 v since cosh−1 1 = 0:

=⇒ cosh−1 v = (3Λ)1/2t

v = cosh
(√

3Λt
)

u = v − 1 = cosh
(√

3Λt
)
− 1. (7.88)

And so, finally,

a3 =
3A2

2Λ

[
cosh

(√
3Λt
)
− 1
]

a =
(

3A2

2Λ

)1/3 [
cosh

(√
3Λt
)
− 1
]1/3

. (7.89)

This is, of course, an ever-expanding universe.
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Λ < 0 : In this case, introducing the new variable u by

u ≡ − 2Λ
3A2

a3, (7.90)

and proceeding as before, we get the result

a3 =
3A2

2(−Λ)

[
1− cos

(√
−3Λt

)]
a =

(
3A2

2(−Λ)

)1/3 [
1− cos

(√
−3Λt

)]1/3
. (7.91)

This is clearly another periodic universe: a will equal zero whenever

cos
(√
−3Λt

)
= 1,

√
−3Λt = n · 2π =⇒ t =

2πn√
−3Λ

.

7.9.4 Classification of Friedmann Universes

In general, solutions require elliptic functions, which are not very enlightening. However,
it is possible to classify the dynamical behavior of Friedmann universes much more simply,
without solving for the exact behavior of a(t). The acceleration and velocity equations for
a in the Friedmann cosmologies are:

ä = −1
2
A2

a2
+

Λ
3
a (7.92)

ȧ2 =
A2

a
− k c2 +

Λ
3
a. (7.93)

t1 t0
T0

a(t)

t

Figure 7.1: Expansion of the universe over time.
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Consider first the past histories of Friedmann universes. If ä < 0 for all t (or equivalently,
for all a), then the universe must have begun in an infinitely dense singularity—the Big
Bang—less than a Hubble time (≡ H−1

◦ ) ago:

t◦ − t1 =
a(t◦)
ȧ(t◦)

= T◦.

The tangent to the a(t) curve at the present, t = t◦, intercepts the t-axis (i.e., a = 0) at
some time t1. T◦ is thus the time since a = 0, if the universe had always been expanding at
its current rate. If ä < 0 always, that means that the rate of expansion ȧ has been slowing
down ever since the Big Bang; therefore

1. The universe must have begun in a Big Bang singularity.

2. The time since the Big Bang is less than the Hubble time T◦.

Clearly if Λ ≤ 0, then ä is always < 0—the universe must begin in a Big Bang singularity.
What if Λ > 0? To investigate this, define the right-hand side of Eq. 7.93 to be a

function, f(a):

f(a) ≡ A2

a
− k c2 +

Λ
3
a2. (7.94)

Clearly from Eq. 7.92, if Λ > 0 then ä is not necessarily always less than zero. Whenever
a(t) has a maximum or minimum, then ȧ must be zero.

Note that we can write Eq. 7.93 as

ȧ = ± (f(a))1/2 . (7.95)

Since ȧ must be real, f(a) ≥ 0 always.
Now, ȧ has zeros whenever f(a) has zeros. If k = 0 or k = −1, all the terms on the

right-hand side of Eq. 7.94 are positive, and so f(a) (and therefore ȧ) can never be zero.
This leaves the case k = +1. When will f(a) have zeros in this case? f(a) will have a

maximum, minimum, or inflection point whenever df/da = 0. This is

df

da
= −A

2

a2
+

2Λ
3
a = 0

2Λ
3
a3 = A2

a3
c =

3A2

2Λ

ac =
(

3A2

2Λ

)1/3

. (7.96)

So at this critical value of ac (note there is only one), f has a maximum, minimum, or
saddle point. If we take the second derivative,

d2f

da2
=

2A2

a3
+

2Λ
3
,
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we see that f(a) has a minimum at ac for Λ ≥ 0, as d2f/da2 > 0. At this critical value of
a, f(a) has the value:

f(a) =
A2

A2/3

(
2Λ
3

)1/3

− c2 +
Λ
3

(
3

2Λ

)2/3

A4/3

=
(

Λ
3

)1/3

A4/3
(

21/3 + 2−2/3
)
− c2

= 2−2/33
(

Λ
3

)1/3

A4/3 − c2

=
(

9
4

ΛA4

)1/3

− c2. (7.97)

This defines a critical value of Λ:

Λc =
4c6

9A4
(7.98)

at which f(a) = 0 at a = ac. Clearly, then, for 0 < Λ < Λc, f(a) goes through zero, so
ȧ→ 0 and then changes sign, since for 0 < Λ < Λc, f(a) is < 0 at a = ac.

Recalling that A2 = 8πGρ◦a3
◦/3, we can also write Λc as

Λc =
c6

(4πGρ◦r3
◦)2

. (7.99)

Now, we have established that for 0 < Λ < Λc, ȧ must go to zero and then change sign.
(The sign change is mandated by the requirement that f(a) ≥ 0.) Depending on initial
conditions, there are then two possible model universes:

1. An oscillating universe, which begins in a singularity, expands to a finite
radius, and then collapses back to a singularity.

2. A model which contracts initially to a finite minimum size amin, and then
re-expands. a(t) is symmetric in time about the minimum value. This is
one of only two Friedmann models which do not have a Big Bang origin.

Similar considerations apply to the future evolution. If Λ < 0, then Eq. 7.92 shows that ä <
0 always. Therefore at some point the expansion must halt and the universe recollapses—
ending in the Big Crunch.

If Λ = 0, ä → 0 as a → ∞; as we have already seen, for k = 0 or −1, the universe can
expand forever, although for k = +1, it recollapses.

If Λ > 0, as we have just seen, the expansion can be halted if Λ < Λc; otherwise the
expansion must continue forever.

What about Λ = Λc? This critical value of Λ results in the original Einstein universe, a
static model in which a = ac always. It was, of course, precisely to obtain a static solution
that Einstein introduced the cosmological constant in the first place. Both ȧ and ä must
be zero.
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However there is a serious flaw with Einstein’s static model. It is unstable. Write the
equation of motion as:

ä = −4πGρ
3

a+
Λ
3
a

=
a

3
(Λ− 4πGρ) =

ac
3

(Λc − 4πGρ). (7.100)

Right off the bat, this indicates that there is something peculiar about this model: we have
set a fundamental constant, Λ, equal to a density.

This equation also immediately indicates the nature of the instability. If we perturb the
density to slightly higher or lower densities, then ä is non-zero, being negative or positive,
respectively. Thus ȧ will also become non-zero, and the universe must run away from the
static solution, either collapsing or expanding.

This leads to two additional possible models with Λ = Λc: one begins as the Einstein
static model at early times and eventually expands away from it; the other begins in a singu-
larity and asymptotically approaches the Einstein static universe. The former is known as
the Eddington-Lemâıtre universe. In principle, the universe could have spent an arbitrarily
long time in a static state before the expansion began.

The final k = +1, Λ > 0 model is for Λ > Λc. This is known as Lemâıtre’s model.
In a sense, models with Λ > Λc are a combination of the two non-static Λ = Λc models:
the universe expands from a singularity, and a(t) exhibits a pronounced “kink” where the
expansion rate slows, so the universe spends an extended period of time in a state in which
a is nearly constant, until eventually the Λ-term becomes dominant and the expansion
resumes at an accelerating rate. The closer Λ is to Λc, the longer the universe remains in a
nearly static state.

Finally let us mention one other solution: the de Sitter universe, in which k, P , and
ρ = 0, i.e., this is an empty universe. Since ρ = 0 means A2 = 0, Eq. 7.93 simplifies to

ȧ2 =
Λ
3
a2

=⇒ ȧ =
(

Λ
3

)1/2

a. (7.101)

This can be trivially integrated:

da

a
=

(
Λ
3

)1/2

dt

a = ce(Λ/3)1/2t, (7.102)

where the constant c determines the value of the scale factor at t = 0. Thus the universe
expands exponentially with time.

This model is of historical interest because it was the first expanding universe solution.
It is also the end state of all the continually-expanding Λ > 0 models:

ȧ2 =
A2

a
− k c2 +

Λ
3
a2 → Λ

3
a2 as a→∞.
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I.e., at large a, both the matter and curvature terms become negligible compared to Λ, and
the universe is driven to exponential expansion.

As we have seen, nearly all of the Friedmann universes begin in a Big Bang singularity.
At early times, all of these Big Bang models behave the same way. This is also obvious
from the above equation: since a→ 0 at the beginning of a Big Bang universe, the matter
term A2/a must dominate at small a even if k and Λ are non-zero. Thus at early times, all
Big Bang models behave like the Einstein-de Sitter k = 0, Λ = 0 universe:

ȧ = A
a1/2

=⇒ a =
(

3A
2

)2/3
t2/3

. (7.67)

7.10 The Steady State Model

A radically different picture of the universe is the Steady State model, proposed by Bondi
and Gold (1948) and Hoyle (1948). This is based on what is generally referred to as the
perfect cosmological principle: the universe is not only homogeneous but unchanging.

This immediately implies that the universe must be expanding, on thermodynamic
grounds: a static, infinitely old universe would reach thermodynamic equilibrium. In a
contracting universe, blueshifting of radiation leads to a situation in which radiation domi-
nates over matter, while in an expanding universe redshifting leads to the opposite. Since
this is the observed condition of our universe, it must be expanding.

Since the universe is expanding and unchanging, matter must be continually created to
keep the mean density constant. Furthermore, this must be a flat, k = 0 universe, since
expansion of the universe causes the curvature K to decrease. This is most easily seen from
the spatial part of the Robertson-Walker metric (Eq. 7.5):

dr2 = [a(t)]2
(

dR2

1−KR2
+R2 dθ2 +R2 sin2 θ dφ2

)
. (7.5)

If we introduce the new coordinate ρ = a◦R, this can be written as

dr2 =
a2

a2
◦

(
dρ2

1−K ′ρ2
+ ρ2 dθ2 + ρ2 sin2 θ dφ2

)
, (7.103)

which aside from an overall scale factor, is unaltered from Eq. 7.5 except that the curvature
is now K ′ = K/a2

◦.
The dynamics of the Steady State universe are very simple. Since the Hubble constant

H =
ȧ(t)
a(t)

must be the same at all times,

ȧ

a
=

1
T◦

where T◦ is a constant = H◦

=⇒ a = cet/T◦ where c is a constant.
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This is just the de Sitter solution, with an exponentially expanding universe, although this
is not an empty universe.

The Steady State model also predicts that the deceleration parameter is equal to −1:

q◦ = − ä
a
H−2
◦

ȧ =
a

T◦
= aH◦

ä = ȧH◦

q◦ = − ȧ
a
H◦H

−2
◦ = −H2

◦ H
−2
◦ = −1.

As we will see in the next chapter, the discovery of the cosmic microwave background—
generally interpreted as the signature of a hot Big Bang origin for the universe—put an end
to interest in Steady State models, except for the truly committed.

7.11 The Effect of Radiation

So far, we have ignored the effect of pressure, i.e., radiation, in the evolution of the universe.
Although the contribution of radiation to the dynamics of the universe is now unimportant,
at early times this was not true. As we saw earlier, the mass-energy density of radiation
scales like a−4 vs. a−3 for matter (Eqs. 7.50 and 7.51), and thus at sufficiently early epochs
radiation dominates. We can quantify this simply: the densities of matter and radiation
were equal at a time tE given by

ρm◦
a3
◦

a(tE)
= ρr◦

a4
◦

a(tE)

=⇒ a(tE)
a(t◦)

=
ρr◦
ρm◦

. (7.104)

For times earlier than tE , radiation dominated the dynamics; hence, 0 < t < tE is known
as the radiation-dominated era.

At early times, the radiation mass-energy density dominates over all other terms. If we
define

B2 =
8πGρr◦a4

◦
3

, (7.105)

then

ȧ2 =
B2

a2

a da = B dt

a =
√

2B1/2t1/2 (7.106)

(again assuming that a → 0 as t → 0 for a Big Bang universe). Note the difference from
the t2/3 scaling for the early stages of a radiation-less universe; the universe expands more
slowly due to the active gravitational mass associated with the radiation, cf. Eq. 7.43:

ä = −4πG
3

(
ρ+

3P
c2

)
a. (7.43)
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As we will see very shortly, the cosmic microwave background radiation is one of the key
pieces of evidence for a Big Bang origin to the universe. To understand why, let us suppose
that at some epoch the universe is filled with radiation, and that the radiation has a thermal
(blackbody) distribution, with temperature Tr = Tr(t); i.e.,

Bν =
2hν3

c2

1
ehν/kTr(t) − 1

(7.107)

is the frequency distribution of the radiation in units of ergs cm−2 s−1 Hz−1 sr−1. The
number of photons in a volume v(t) with frequencies between ν and ν + dν is then given by

dN(t) =
4π
c
· 1
hν
Bν (7.108)

=
8πν2

c3

(
ehν/kTr(t) − 1

)−1
v(t) dν. (7.109)

Assuming that the number of photons is conserved, the number in the volume does not
change with time. Because of the expansion, however, at some new time t′ the photons at
frequency ν have been redshifted:

ν ′ = ν
a(t)
a(t′)

, dν ′ = dν
a(t)
a(t′)

(7.110)

for t′ > t, while the volume has expanded to

v(t′) = v(t)
a3(t′)
a3(t)

. (7.111)

With these two expressions and conservation of the number of photons, we get

dN(t′) = dN(t) =

8π
c3

(
ν ′
a(t′)
a(t)

)2

v(t′) a
3(t)

a3(t′)
dν ′

a(t′)
a(t)

exp
[
hν ′

a(t′)
a(t) /kTr(t)

]
− 1

(7.112)

=
8πν ′2

c3 v(t′) dν ′
(
ehν

′/kTr(t′) − 1
)−1

, (7.113)

where Tr(t′) = Tr(t) a(t)/a(t′). Thus the radiation preserves its blackbody spectrum as the
universe expands, but the temperature of the blackbody decreases with the expansion, with
Tr ∝ (1 + z).

At any time t, we can obtain the energy density of radiation by integrating Eq. 7.109
over frequency, with v(t) = 1:

ur(t) =
∫ ∞

0
hν dN(t) dν =

8π
c3

∫ ∞
0

hν3
(
ehν/kTr − 1

)−1
dν

=
8π
c3h3

∫ ∞
0

ε3
(
eε/kTr − 1

)−1
dε (where ε = hν)

=
8π
c3h3

k4
B T

4
r

∫ ∞
0

x3

ex − 1
dx (where x =

ε

kBTr
). (7.114)
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The integral on the right-hand side of Eq. 7.114 is standard:∫ ∞
0

x3

ex − 1
dx =

π4

15
.

Thus

ur(t) =
8π5

15c3h3
k4
B T

4
r

=
4σ
c
T 4
r erg cm−3 (7.115)

where σ = 8π5k4
B/60c2h3 = 5.67×10−5 erg cm−2 s−1 K−4 is the Stefan-Boltzmann constant.



Chapter 8

Observational Cosmology

8.1 Cosmic Microwave Background

Direct evidence for a hot Big Bang origin of the universe is provided by the cosmic microwave
background (CMB), discovered Penzias and Wilson in 1965 (for which they received the 1978
Nobel Prize in physics). Specifically what they found was an apparently uniform radiation
field characterized by a temperature of about 3 K, and apparently with a blackbody spectral
shape. Since the temperature is so low, the radiation peaks at λ ∼ 1 mm, i.e., in the
microwave region of the spectrum. An enormous amount of effort has gone into improved
measurements of the CMB spectrum over the last 30 years, culminating in the COBE
mission in 1991.

The best-fit value to the temperature of the CMB is T = 2.728 ± 0.004 K (Fixsen
et al. 1996). The CMB is almost uniform. The main departure from uniformity is the
dipole pattern, consistent with the idea that the Local Group of galaxis is moving through
the CMB at 627 ± 22 km s−1 towards the direction [l, b] = [276◦ ± 3◦, 30◦ ± 3◦] (in the
constellation of Hydra)1 We will return to analyzing the fluctuations in the CMB in Ch. 11.

8.1.1 Energy Density of the Universe

With the value of T = 2.728 K for the mean CMB temperature, the present-day energy
density is

ur(t0) = 4.24× 10−13 erg cm−3, (8.1)

or, in terms of the equivalent mass density,

ρr(t0) =
ur(t0)
c2

= 4.72× 10−34 g cm−3. (8.2)

By Phil Maloney.
1These numbers are arrived at after correcting for the motion of the Solar System around the Milky Way,

and the small correction for the motion of the Milky Way with respect to the other galaxies in the Local
Group. See Kogut et al. 1993, ApJ, 419, 1.
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Figure 8.1: CMB fluctuations as seen by the COBE DMR. The top picture shows the dipole
anisotrophy as a result of the Local Group’s motion with respect to the CMB. The second
picture shows emission from the plane of the Milky Way, after the dipole component has
been subtracted out. The last picture shows the data after the galactic emission has been
removed, showing fluctuations on the order of ∼ 10−5 of the 2.728 K background.

Recall that the critical density ρc, which produces a flat universe, is

ρc =
3H2

0

8πG
= 1.88× 10−29 h2 g cm−3; with h = H0/100 km s−1 Mpc−1. (8.3)

The contribution of radiation to the density parameter, Ω = ρ/ρc, is then

Ωr =
4.72× 10−34

1.88× 10−29
= 2.5× 10−5. (8.4)

So clearly the contribution of radiation to the mass density of the universe is very small at
the present.

Since it is extremely difficult to see how such a uniform thermal radiation field could
have been produced under conditions similar to present-day, the CMB is evidence for a
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Figure 8.2: The CMB blackbody spectrum as measured by the FIRAS detector onboard
COBE. The spectrum was measured at 43 equally spaced points along the curve; the line
shows a blackbody fit to the data. The error bars are a tiny fraction of the width of the
line in the plot, so they have been multiplied by a 400 to make them visible.

much hotter, denser phase of the universe at early times. To most astronomers, this settled
the question of Big Bang vs. Steady State cosmologies.

(There are other background radiation fields, such as the X-ray background, but these
are non-thermal and contribute much less to the total energy density.)

8.2 Baryon/Photon Number

If we write the present-day matter density as

ρm0 = Ωbρc (b = baryonic)

then the transition from a radiation-dominated universe to a matter-dominated one occurred
at a redshift:

(1 + zeq)−1 =
a(teq)
a(t0)

=
4.72× 10−34

1.88× 10−29 Ωbh2

=⇒ zeq ≈ 4× 104 Ωbh
2. (8.5)

Here we have explicitly distinguished baryons from other possible forms of matter, such as
massive neutrinos, because the way in which they interact with radiation is different.
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As we will see shortly, calculations of nucleosynthesis (element formation) during a hot
early stage of the universe indicate that Ωbh

2 ≈ 0.015, which indicates that the redshift of
matter-radiation equality zeq ≈ 1000. At this time the temperature of the radiation field
was ∼ 3000 K.

If we extrapolate back to earlier epochs (larger redshifts), the temperature of the radi-
ation field gets hotter and hotter. At a redshift z = 1010, T ≈ 3 × 1010 K. Why is this
significant?

At this epoch, the characteristic photon energy is:

hν ∼ kT ∼ 4× 10−6 erg
∼ 3 MeV.

At this energy, the CMB photons are energetic enough to photodisintegrate complex nuclei
into neutrons and protons, so that there would be no heavy elements at this redshift. As
we will see shortly, it is possible to make detailed predictions about the abundances of the
light elements during this phase of the universe.

Why does the radiation have a blackbody spectrum? The heat capacity of the radiation
field at constant volume is just

crv =
dUr
dT

=
16σ
c
T 3
r (8.6)

from Eq. 7.115. Assuming that the matter consists of atomic hydrogen, the heat capacity
of the matter is just

cmv =
3
2
nkB =

3
2
kB · 1.124× 10−5 Ωbh

2 cm−3. (8.7)

The ratio of these two quantities

cmv
crv

= 4× 10−9 Ωbh
2, (8.8)

which is independent of redshift. At high redshifts, where the interaction between matter
and radiation is strong, the matter relaxes to the radiation temperature since the heat
capacity of the radiation is so much greater; in thermal equilibrium, the spectrum remains
thermal no matter how strong the interaction between matter and radiation.

The total number of photons per unit volume in the CMB is given by integrating
Eq. 7.109 for dN(t) over frequency, with v(t) = 1:

nγ =
∫ ∞

0
dN(t) dν =

8π
c3h3

∫ ∞
0

ε2
(
eε/kTr − 1

)−1
dε

=
8π
c3h3

k3
B T

3
r

∫ ∞
0

x2

ex − 1
dx. (8.9)

The integral is: ∫ ∞
0

x2

ex − 1
dx = 2ζ(3) = 2.404
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where ζ is the Riemann ζ-function. Thus

nγ =
16π
c3h3

ζ(3) k3
B T

3
r

= 416(1 + z)3 cm−3. (8.10)

What is the entropy in this radiation? For an isolated system at fixed volume,

dS =
dur
T

=
crv dT

T

=
16σ
c
T 2
r dTr, (8.11)

which is trivially integrable to

Sγ =
16σ
3c

T 3
r

=
16
3c
·

8π5k4
B

60c2h3
T 3
r

=
32
45
π5k4

B

c3h3
T 3
r . (8.12)

This is the entropy per unit volume in blackbody radiation at temperature Tr. The entropy
per photon is then

Sγ
nγ

=

[
32
45
π5k4

B

c3h3 T
3
r

]
[

16π
c3h3 ζ(3) k3

B T
3
r

]
=

2π4kB
45

ζ−1(3)

= 3.6 kB. (8.13)

The ratio of the number of photons to the number of baryons is

η−1 =
nγ
nb

=
416

1.124× 10−5 Ωbh2

= 3.7× 107(Ωbh
2)−1 (8.14)

η =
nb
nγ

= 2.7× 10−8 Ωbh
2.

What is the significance of this? We showed earlier (Eq. 8.8) that the heat capacity of the
matter is negligible compared to the radiation. Thus all of the entropy is in the radiation.
Eq. 8.13 shows that the dimensionless entropy per photon, Sγ/nγkB, is of order unity. Thus
the dimensionless entropy per baryon is approximately the ratio of the number of photons
to the number of baryons, given as η−1 in Eq. 8.14. This is a huge number—in other words,
the entropy of the universe is very high compared to its matter content. This has significant
implications for the formation of the light elements during the era of nucleosynthesis.

One final point: the formation of the elements, at z ∼ 1010, occurred during the
radiation-dominated era (i.e., zEF � zeq), so the radiation energy density determines the
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dynamics—as we saw earlier, both Λ and curvature are negligible during this phase. The
solution for the scale factor during this era is Eq. 7.106:

a =
√

2Bt1/2, B2 = 8πGρr0a
4
0/3

=
√

2(8πGρr0/3)1/4a0.

Since a/a0 = (1 + z)−1 = Tr0/Tr, we can write this as an equation for t in terms of the
radiation density or temperature:

t =
(

3
32πGρr0

)1/2(Tr0
Tr

)2

=

(
3

32πGρr0

(
Tr0
Tr

)4
)1/2

=
(

3
32πGρr

)1/2

, (8.15)

since ρr ∝ T 4
r .

As we noted earlier, the formation of the elements occurred when the mean photon
energy dropped to about 3 MeV, at z ∼ 1010, when the radiation temperature Tr ∼ 3 ×
1010 K. Expressing ρr in terms of the temperature using Eqs. 7.115 and 8.2 and evaluating
the constants in Eq. 8.15:

t =
(

3c2

32πGur

)1/2

=
(

3c3

128πGσT 4
r

)1/2

= 2.3
(
Tr

1010

)−2

s. (8.16)

Thus nucleosynthesis became possible when the universe was about 2 seconds old.

8.3 Nucleosynthesis in the Big Bang

The rest mass of an electron or positron mec
2 ' 0.511 MeV. For temperatures Tr ∼> 1 MeV,

therefore, there is a “sea” of electron-positron pairs produced by photon-photon interactions:

γ + γ 
 e− + e+

The free neutrons and protons produced by photo-disintegration of nuclei by the radiation
field are thermally coupled to the sea of electron-positron pairs (and a similar sea of neutrino-
antineutrino pairs) by the reactions

e− + p ↔ n+ ν

ν̄ + p ↔ n+ e+ (8.17)
n ↔ p+ e− + ν̄,
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where ν̄ denotes an antineutrino. (In Eq. 8.17, the neutrinos are all electron neutrinos.) As
long as the reactions in Eq. 8.17 occur at rates much faster than the expansion rate, the
proton to neutron ratio will be at the thermal equilibrium value.

This ratio is very important to the outcome of nucleosynthesis, because essentially all of
the neutrons get incorporated in 4He. In thermal equilibrium, the neutron-to-proton ratio
is just given by the Boltzmann distribution,

n

p
= e−∆E/kT (8.18)

where ∆E is the proton-neutron rest-mass energy difference,

∆E = (mn −mp)c2 = 1.2934 MeV. (8.19)

There is a high rate of capture of neutrons to form deuterium radiatively:

p+ n→ d+ γ, (8.20)

the first step in the formation of the elements. However the reverse photodissociation
reaction keeps the deuterium abundance extremely low. This is a direct consequence of the
tiny value of η, the baryon to photon ratio.

When the temperature drops to T ∼ 1010 K, the weak interaction rates for Eqs. 8.17
drop below the expansion rate, and the neutron to proton ratio essentially “freezes out,” at

n

p
= e−1.2934 MeV/kB ·1010

= 0.22. (8.21)

The neutron-to-proton ratio continues to decline beyond this temperature due to neutron
decay, with tN ≈ 17 minutes (= 1020 seconds). This is not a huge effect, however, because
nucleosynthesis is essentially complete before the universe is 1000 seconds old.

When the temperature has dropped to T ∼ 0.1 MeV, there is no longer a significant
number of thermal photons more energetic than 2.2 MeV, the binding energy of deuterium.
(Note that 1 MeV ∼ 1.16× 1010 K.) This is at t ∼ 170 seconds. By this time, the electron-
positron pairs have annihilated, and the neutron-proton ratio has dropped to about 1/7.

At this point the deuterium abundance has grown large enough for the deuterons to
produce helium, via the sequence of reactions:

d+ d ↔ t+ p (where t = tritium)
d+ d ↔ 3He + n

t+ d ↔ 4He + n
3He + d ↔ 4He + p. (8.22)

Essentially all of the neutrons wind up in 4He, the most tightly bound of the light nuclei. If
we assume that all of the neutrons form He, then it is trivial to calculate the mass fraction
of 4He: 2 neutrons and 2 protons are required to form 4He. The number of 4He nuclei is
then 1/2 the number of neutrons at the time of He formation, at T ∼ 0.1 MeV. Since the
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4He nucleus weighs ≈ 4 times as much as a neutron or proton, and ignoring everything
except 4He and H:

x4He ≈
4n4He

nN
(nN = nn + np = Total # of baryons)

=
4(nn/2)
nn + np

=
2(n/p)T=0.1

1 + (n/p)T=0.1

' 0.25.

8.3.1 Predictions of Big Bang Nucleosynthesis

Essentially only D, 3He, 4He, and 7Li are produced; this is due to the absence of stable
nuclei of masses 5 and 8, so that build-up of heavy elements essentially shuts off at 4He.
Trace amounts of 7Li are produced by

4He + t→7 Li + γ
3He +4 He→7 Li + γ. (8.23)

Stars get around the mass barrier through the triple-α process:

4He +4 He→8 Be + γ
3He +8 He→12 C + γ. (8.24)

The second step is able to occur in stars before the decay of the highly unstable 8Be nucleus
because the densities are very high, considerably higher than the density at T ∼ 1 MeV in
the Big Bang.

What are these calculations sensitive to? Most of the nuclear physics input into the cal-
culations (i.e., cross-sections for reactions) is well-determined; the only signifcant exception
is for 7Li, for which the predicted uncertainty is ≈ 50%.

The predicted 4He abundance depends almost entirely on the value at which the neutron-
to-proton ratio freezes out. This ratio depends on the rates of the weak interactions which
interconvert protons and neutrons. These same rates determine the lifetime of free neutrons:

τ1/2(n) = 10.5± 0.2 minutes. (8.25)

It is important to note that the predicted abundances depend only on the ratio of baryons
to photons, η, and not on the individual values of nb and nγ . The reason for this is that
during the epoch of nucleosynthesis, the universe is radiation-dominated, so the radiation
density determines the expansion rate. Since the temperature and density of the blackbody
radiation field are directly related (ρr ∝ T 4

r ), the expansion rate is then simply a function
of temperature. The various reaction rates are all proportional to thermally-averaged cross
sections, 〈σv〉 = σ̄(T )2 times the number densities of the various species, ni ∝ ηnγ =
ni(η, T ), since, as just noted, nγ and Tr are directly related.

The results of standard Big Bang nucleosynthesis models then depend on one cosmolog-
ical parameter, η, and two physical ones: τ1/2(n), and the number of additional relativistic
(at the time of Big Bang nucleosynthesis) particles, which contribute to the energy density.
How do these affect the calculations?

2I.e., averaged over a Maxwellian velocity distribution.
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η: If η is larger, then the abundances of 3H, D, and 3He, which depend on ηx where x > 0,
build up slightly earlier, and this formation of 4He begins earlier, when the neutron-
to-proton ratio is larger, leading to a greater abundance of 4He. The amounts of D
and 3He which survive therefore also depend on η, in the opposite way: there is more
surviving D and 3He for smaller values of η.

τ1/2(n): All of the weak interaction rates are proportional to 1/τ1/2(n). An increase in
τ1/2(n) therefore leads to a decrease in the weak interaction rates that interconvert
neutrons and protons. Thus the neutron-to-proton ratio will freeze-out at a higher
temperature, leading to an increase in the predicted 4He abundance.

Nν : Any relativistic particles add to the energy density at the time of Big Bang nucle-
osynthesis, and therefore lead to an increase in the expansion rate.3 We can express
this as a constraint on the number of neutrino flavors, Nν . At present 3 are known:
νe, νµ, and ντ . Increasing Nν leads to freeze-out of n/p earlier, at a higher value.

8.3.2 Comparison with Observations

The tricky part to comparing with observations is trying to determine whether the abun-
dances being measured in any astronomical source are truly primordial (not counting the
difficulties in making the observations and determining the abundances!).

Deuterium : The abundance of deuterium (usually expressed as the D/H ratio) has
been determined in solar system objects and in the local interstellar medium. For the solar
system objects and the molecular interstellar medium (ISM), the measurements are based
on observations of deuterated molecules (e.g., DHO vs. H2O, DCO vs. HCO). The best (?)
determination in the solar system is for the atmosphere of Jupiter, with D/H ' 1–4×10−5;
a similar range is found from studies of the local ISM.

Since deuterium is very weakly bound, it is easy to destroy in stars through nuclear
burning at T ∼> 5× 105 K. It is very difficult to find “contemporary” astrophysical sites for
D formation. Thus the present value of the D/H ratio should be taken as a lower limit to the
Big Bang nucleosynthesis value. With (D/H)p ∼> 1×10−5 (where p stands for “primordial”),
this leads to an upper bound on η of about 10−9.

3He : This is very difficult to measure in astronomical sources; the only way to do it (so
far) relies on the 3He+ hyperfine line, as measured in H ii regions. Its abundance has also
been measured in meteorites and the solar wind.

3He is much harder to destroy by nuclear processes than D, and it is hard to do this
without also producing heavy elements and/or large amounts of 4He. Of equal importance is
the fact that deuterium burning produces 3He, so that measurements of the 3He abundance
in the solar wind represent the sum of the Sun’s original 3He + D abundances.

The bottom line from stellar nucleosynthesis models is that the 3He abundance has
probably been reduced by burning in stars (“astration”) by no more than a factor of two,

3At a fixed temperature.
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and the upper limit to the primordial D+3He abundance is(
D +3 He

H

)
p
∼< 8× 10−5

which in turn implies that η ∼> 4× 10−10.

7Li : Since stellar nucleosynthesis produces heavy elements such as oxygen and carbon, one
criterion for stars of primordial (or nearly) composition is to require that the metallicities
are very low. The abundance of 7Li as determined in the local ISM, young stars, and
meteorites is ∼> 10 times the Big Bang nucleosynthesis value. However since 7Li is produced
by cosmic ray spallation and some stellar processes, there was little reason for believing this
reflected primordial abundances.

7Li determinations have been made in old, metal-poor stars (z = z�/12 to z�/250) with
masses 0.6–1.1 M�. There is a clear correlation of 7Li/H with stellar mass; the highest mass
stars show a plateau at 7Li/H ≈ (1.1 ± 0.4) × 10−10. There is some speculation that this
could be the result of deeper surface convective zones in lower mass stars. If we take this to
be the primordial abundance, then η is in the range (2–5)× 10−10. With 50% uncertainty,
take η = (1–7)× 10−10.

4He : Since 4He is produced in stars, the observed 4He abundance will in general not be
the primordial value, but will be greater. Again, if we look at very metal-poor objects we
expect to find a trend of 4He abundance vs. metallicity. This is another area fraught with
controversy, where systematic effects clearly dominate the errors.

The current best estimates suggest the primordial 4He mass fraction is

0.22 ∼< Yp ∼< 0.25,

where Yp is the primordial helium abundance. This depends not only on η, but also on Nν .
Taking all of these constraints together, we get

4× 10−10
∼< η ∼< 7× 10−10

2 ∼< Nν ∼< 4.

Thus, as we have seen here, it is possible to derive a consistent set of values for the
abundances of the light elements from Big Bang nucleosynthesis. Furthermore, Big Bang
nucleosynthesis makes a direct prediction for the number of neutrino flavors, ≥ 2 and ≤ 4.
In fact, an independent determination of the number of neutrino flavors is provided by
measuring the decay width of an elementary particle called the Z0 boson. This has now
been found to give the constraint Nν ≈ 3± 0.5.

8.3.3 Omega in Baryons

Since we know the temperature—and therefore the energy density—of the cosmic microwave
background quite accurately, combined with the Big Bang nucleosynthesis constraints on
η, we get a direct estimate of the density of baryons in the universe:

0.010 ≤ Ωb h
2 ≤ 0.016. (8.26)
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This immediately tells us that baryons alone (i.e., normal matter) cannot close the universe,
since even the smallest plausible value of h (∼ 0.5) gives an upper limit to Ωb ∼< 0.1.

How many baryons do we see? We can estimate the contribution from baryons in stars
by using the galaxy luminosity function, provided we know how to convert from luminosity
to mass. In order to do this, we need dynamical information, i.e., observations of stellar or
gas motions to determine v(r). Then we can estimate the mass from

GM(r)
r2

=
v2
c

r
(8.27)

as before, where vc is the outermost observed velocity/radius.
Most spiral galaxies exhibit flat rotation curves (which in itself has remarkable implica-

tions, which we will return to shortly). There is a well-established correlation between the
maximum rotation velocity and the luminosity, the so-called Tully-Fisher relation:

vc = 220 (L/L?)0.22 km s−1, (8.28)

where L? is the characteristic luminosity in the galaxy luminosity function, Eq. 6.10. Ap-
plication of this relation gives M/L ∼ 12h with only a very weak dependence on galaxy
luminosity. Since most of the luminosity comes from galaxies near L?, the mass density
contributed by galaxies is

ρgal ∼
M

L
· L? · φ?

≈ 12h · 1.0× 1010 L� h−2 · 1.2× 10−2 h3 M� Mpc−3

= 1.4× 109 h2 M� Mpc−3, (8.29)

which in terms of the critical density is

Ωgal =
ρgal

ρc
=

9.5× 10−32 g cm−3

1.88× 10−29 g cm−3

= 5× 10−3. (8.30)

This immediately suggests that there are unobserved baryons, since even for h = 1 this is
less than the Big Bang nucleosynthesis value by a factor of at least 3. In fact, as we will
discuss later, there is direct observational evidence for baryons which have not coalesced
into galaxies, in the form of an intergalactic medium, as seen in absorption against high
redshift objects such as quasars.

8.4 Cosmic Problems

So the standard Big Bang cosmology can explain the origin of the light elements, requires
the observed number of neutrino families, and predicts approximately the observed number
of baryons. It also explains the origins of the cosmic microwave background radiation. Can
we stop here? No!

Although extremely successful in accounting for many properties of the observed uni-
verse, the standard Big Bang model has a number of shortcomings.
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8.4.1 The Smoothness or Horizon Problem

In deriving the Robertson-Walker metric, we assumed that the universe was homogeneous
and isotropic. Why should this be? In general, Einstein’s field equations have solutions
which are inhomogeneous and/or anisotropic.

The best evidence that the universe is homogeneous and isotropic comes from observa-
tions of the microwave background. The COBE measurements show that the background
is smooth to a few parts in 106 on scales above a few degrees. At smaller scales—down to
about 20′′—the cosmic microwave background is isotropic to better than one part in 104.

To understand the significance of this, we need to digress back to the evolution of the
universe for a moment. At early times, the gas and radiation are in thermal equilibrium.
Under conditions of thermodynamic equilibrium, the ionization equilibrium is given by the
Saha equation: assuming pure hydrogen for implicity, let n = nH+ +nH be the total density
of hydrogen nuclei, and x = ne/n = nH+/n is the electron fraction. Then

nenp
nHn

=
x2

1− x
=

(2πme kT )3/2

nh3
e−B/kT , (8.31)

where the binding energy (ionization potential) B = 13.6 eV.
With T = 2.736 (1 + z) K and n = 1.12× 10−5 Ωb h

2(1 + z)3 cm−3, and plugging in all
the constants, this can be written as

log
[
x2

1− x

]
= 20.99− log

[
Ωb h

2(1 + z)3/2
]
− 25050

1 + z
. (8.32)

The ionization fraction has dropped to 1/2 at a redshift

zdec = 1360; Tdec = 3700 K for Ωb h
2 = 0.013.

The equlibrium ionization drops very rapidly; the redshift at which it has declined to 10−3

is

z10−3 = 1030, T10−3 = 2820 K for Ωb h
2 = 0.013.

In fact, the ionization fraction plateaus at a value above the equilibrium value after recom-
bination, due to scattering of Lyman continuum photons.

The epoch at which the universe recombined is also referred to as the Decoupling Era.
Why? When the universe was highly ionized, the photons and matter were very tightly
coupled together, by Thompson scattering off of the free electrons. (We will see that this
has very important implications when we talk about structure formation.)

The optical depth at any epoch z is then set by the electron density and the Thompson
cross-section, σT = 6.65× 10−25 cm−2:

τ ' σT ne ct, (8.33)

taking the length scale to be L = ct, where t is the expansion age of the universe. Assuming
that the mass-energy density dominates over curvature and Λ, so that we approach the
Einstein-de Sitter solution (cf. Eq. 7.67), and we can write the expansion time as

t =
2
3

[
H0 Ω1/2 (1 + z)3/2

]−1
. (8.34)
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And so

τ = 0.046× (1 + z)3/2 Ωb Ω−1/2 h. (8.35)

(Note the distinction between Ωb and Ω, which refers to the total density.)
For x = 1, this is τ ∼ 40 Ω−1/2 at z = 1000 (∼ 170 if Ω = Ωb) so that each photon has

been scattered many times. Once the universe recombines, however, this rapidly drops to
a value τ � 1, and the universe becomes transparent to the cosmic microwave background
photons. Thus the isotropy of the cosmic microwave background measures the isotropy of
the surface of last scattering, at z = zdec. (Note that this is coincidentally, also about the
time teq of matter-radiation equality.)

If the universe had been substantially inhomogeneous or anisotropic, a significant sig-
nature would have been imprinted on the microwave background. If the entire observable
universe were causally connected at the time of the last scattering of the cosmic microwave
background photons, then one could imagine that some microphysical process acted to
smooth out any temperature fluctuations to produce a uniform temperature.

However, this is not possible, because at the time of decoupling, the particle horizon
size was much smaller than the size of the region which is now observable (i.e., the present
particle horizon size): assume for simplicity a flat universe; the distance to the particle
horizon (assuming a matter-dominated universe) is

Rph = 2 cH−1
0 (1 + z)−3/2. (8.36)

The present-day particle horizon—our observable universe—is just 2 cH−1
0 . At some earlier

epoch, the size of this region—that is, the size of the region which grows into our presently
observable universe—is

R0
ph

a(t)
a(t0)

=
R0

ph

1 + z
= 2 cH−1

0 (1 + z)−1 = R0
ph(z). (8.37)

Hence at decoupling/recombination at z ≈ 1000, the ratio of the particle horizon to the
present-day observable universe (at the size it was then) was

Rph

R0
ph

= (1 + z)−1/2 ≈ 3.2× 10−2. (8.38)

In other words, at the era of decoupling of the radiation field from matter, our universe (as
we now observe it) consisted of ∼ 105 causally disconnected regions. For this reason the
smoothness problem is also called the horizon problem.

8.4.2 Formation of Small-Scale Problem

The tight coupling between matter and radiation prior to decoupling also means that any
matter density fluctuations will have imprinted a signature on the cosmic microwave back-
ground. The observational limits constrain these fluctuations to very small amplitudes
(δρ/ρ ∼< 10−5), but this is not really the problem. The problem is that, in a baryon-only
universe, it is very difficult to make structure formation models work on galaxy-mass scales;
we will discuss this later on.
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8.4.3 Flatness Problem

Models of Big Bang nucleosynthesis and observations of galaxies both suggest that Ω ∼ 0.01,
i.e., it is not equal to 1. But it’s not that far from 1. Should we be surprised by this? Maybe!

We earlier defined the present-day value of the critical density to be

ρc =
3H2

0

8πG
. (7.61)

In general, of course, this is a function of time. We can re-write Friedmann’s equation (with
a zero cosmological constant) as

ȧ2 + k c2 =
8πGρ

3
a2

H2 +
k c2

a2
=

8πGρ
3

k c2

H2a2
=

8πGρ
3H2

− 1 ≡ Ω− 1, (8.39)

where ρc ≡ 3H2/8πG and Ω = ρ/ρc, as before. We can re-write Eq. 8.39 as an equation for
H2:

H2 =
8πGρ

3
− k c2

a2

=⇒ k c2

H2a2
=

3k
8πGρa2 − 3k

=
1

8πGρa2

3k − 1
.

And so we get an expression for Ω:

Ω = 1 +
k c2

H2a2

=
1

1− k c2/a2

8πGρ/3

. (8.40)

The second term on the right-hand side of Eq. 8.40 becomes extremely small at early times;
since ρ ∝ a−3 (for matter dominated) or a−4 (for radiation dominated), the second term
becomes ∝ a(t) or a2(t) respectively.

This indicates that at very early times, Ω was extremely close to 1, and approaches 1
to arbitrarily good accuracy at small t. If Ω is not exactly 1 (i.e., k = 0) then why should
it be fairly close to 1 now?

Another way of seeing this problem is the following. Write Friedmann’s equation, in-
cluding curvature, as (

ȧ

a

)2

= H2 =
8πGρ

3
− k c2

a2
+

Λ
3
. (8.41)

Each term on the right-hand side of Eq. 8.41 varies with time in a different way. We have
seen that the predictions of Big Bang nucleosynthesis, occurring at z ∼ 1010, are in excellent
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agreement with observations, and indicate that the mass-energy density is dominated by
radiation and neutrinos (and nothing else!). This term varies like (1 + z)4. The curvature
term ∝ a−2 ∝ (1+z)2, while the Λ term is constant. Because of these different dependencies,
in principle each term can dominate at a different epoch.

At z ∼ 1010, the radiation mass-energy term is 40 orders of magnitude larger than
its current value, the curvature term is 20 orders of magnitude larger, and the Λ term is
unaltered. If the curvature term dominates now (i.e., it is � 10−2, the value of the mass
density—now dominated by matter rather than radiation) at z ∼ 1010 it was down from
the mass-energy density term by ∼ 16 orders of magnitude.

In other words, although the curvature dominates now, by assumption, at z ∼ 1010

it was negligible, and the balance between the kinetic energy term (ȧ2) and the potential
energy term (∝ Gρa2) held to an accuracy of ∼ 1 part in 1016. If the cosmological constant
dominates now, then this balance was even tighter (∼ 1 part in 1036).

This raises two questions. Why was there such a perfect balance between the kinetic
and potential energy terms, and why should we just happen to be here in the epoch when
this balance is disappearing? This problem does not arise in the Einstein-de Sitter k = 0,
Ω = 1 universe, because the ratio of the kinetic and potential energy terms is independent
of time:

ȧ2 =
8πG

3
ρa2

=⇒ ȧ2

Gρa2
= constant.

This is also known as the “Dicke coincidence argument,” after R. Dicke, who first pointed
it out in the 1960s. No one paid all that much attention to these problems, however, until
a solution was proposed!

The theoretical prejudice that Ω = 1 has now become quite firmly entrenched. If
we take these arguments and Big Bang nucleosynthesis at face value, we are forced to a
remarkable conclusion: the mass of the universe is dominated by something other than
normal (baryonic) matter.

8.5 Dark Matter

At about the same time that astronomers began to worry about the problems with the
standard Big Bang model of the universe, a related problem cropped up in the field of
galaxy dynamics.

From studies of the light distribution in spiral galaxies, it was well established that their
surface brightness profiles are typically exponential in radius. Assuming that the mass-to-
light ratio is constant, i.e., assuming that the mass of the galaxy is dominated by the stars,
then galactic rotation curves should exhibit a Keplerian fall-off at large radius; once we are
well outside the radius containing most of the mass, then

v2
c

R
≈ GM

R2

vc ≡
(
GM

R

)1/2

with M =constant, so v ∝ R−/2.
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(Since galaxies are flattened, not spherical, there will be a correction to the rotation velocity
of order unity, but we can ignore this.)

This is not what is observed in spiral galaxies. Instead, the rotation curves tend to
rise to a maximum, and stay at that value, i.e., they are flat. A flat rotation curve, with
v = constant = vmax, immediately implies that GM/R = constant, or in other words,
M ∝ R.

R0 

vmax

v(
R

)

0 

Figure 8.3: A sample rotation for a spiral galaxy, which rises to some maximum value vmax

at large distances R from the galactic center.

Since this does not at all resemble the distribution of light, this immediately implies
that the ratio of mass to luminosity—the mass-to-light ratio—must increase rapidly with
radius. This is usually described by saying that the luminous parts of galaxies must be
embedded within massive “halos” of dark matter.

If the dark matter distribution is spherical, then the fact that M ∝ R implies that
(assuming a power-law density profile)

M = 4π ρ◦
∫ R

0
r2
(r◦
r

)α
dr

= 4π ρ◦ rα◦

∫ R

0
r2−α dr

=
4π ρ◦ rα◦
3− α

R3−α, (8.42)

which would imply ρhalo ∝ r−2. The evidence for spherical dark matter halos is very weak,
however.

How big and how massive are galaxies? Our knowledge is limited by the distance to
which we can measure rotation curves. The 21 cm hyperfine line of atomic hydrogen is the
most useful tracer, since atomic hydrogen distributions in galaxies are usually considerably
more extended than the stellar distributions. However, the atomic hydrogen eventually gets
ionized by the extragalactic radiation field, which limits how far out it is possible to measure
the rotation curves. For those galaxies with extended rotation curves, the total mass at the
last measured point is typically ∼ 3–4 times the mass in stars.

What is this mass? There are two possibilities: baryonic and non-baryonic. Proposed
objects that fall into the baryonic category include normal astrophysical phenomena (such
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as low-mass stars, brown dwarfs or Jupiter-sized planets, and stellar remnants, e.g., neutron
stars and black holes), as well as more exotic creatures such as super-massive (105−6 M�)
black holes. Non-baryonic matter includes normal neutrinos, which might have a non-zero
mass, as well as exotic particles that may or may not exist, e.g., WIMPs.

8.5.1 Hot Dark Matter: Massive Neutrinos

If neutrinos have mass, they can contribute substantially to the total mass of the universe,
because there are so many of them: there is a background sea of neutrinos analogous to the
cosmic microwave background photons.

How many neutrinos are there? At very early times, the neutrinos were in equilibrium
along with everything else. We can estimate the total number the same way we did for pho-
tons. There is a slight difference, however, because neutrinos, with spin 1/2, are fermions,
whereas photons have spin zero and are bosons. Recall that for photons, the energy density
is

ur = 8π
c3h3

∫ ∞
0

ε3(ee/kTr − 1)−1 dε

= 8π
c3h3k

4
BT

4
r

∫ ∞
0

x3

ex − 1
dx

. (7.114)

If the temperature is very high (kT � neutrino rest mass), then the neutrinos are relativis-
tic, and we can set the neutrino momentum ρ = ε/c. (If neutrinos have zero rest mass, of
course, this is always true.) In terms of momentum rather than energy, the energy density
of a single family of neutrinos is

uν =
2
h3

∫ ∞
0

4π p2 dp pc

epc/kTν + 1

=
8π
c3h3

k4
BT

4
ν

∫ ∞
0

x3

ex + 1
dx, (8.43)

where Tν is the neutrino temperature. Note ex + 1 in the denominator rather than ex − 1
for photons, which is due to Fermi-Dirac vs. Bose-Einstein statistics. We use∫ ∞

0

x3

ex + 1
dx =

7
8

∫ ∞
0

x3

ex − 1
dx,

and therefore the energy density in neutrinos is 7/8 the energy density in radiation at the
same temperature.

A similar calculation to determine the number density of neutrinos (cf. Eqs. 8.9 and
8.10 for photons) gives

nν =
12π
c3h3

ζ(3) k3
BT

3
ν , (8.44)

which is 3/4 the number of photons at the same temperature.
The present-day temperature of the neutrinos is slightly lower than that of the photons.

Why? The neutrinos are kept in equilibrium by weak interactions. As we saw in discussing
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nucleosynthesis, the expansion rate eventually becomes larger than the weak interaction
rate, which causes the neutron/proton ratio to “freeze out.” This also means that the
neutrinos aren’t kept in equilibrium anymore. This happens to occur before the electron-
positron pairs annihilate and dump their energy (and entropy) into the radiation field. The
result is:

Tν =
(

4
11

)1/3

Tr, (8.45)

with T 0
r = 2.736 K and Tν = 1.95 K. Just like the photons, Tν ∝ (1 + z). Also, the number

density varies as (1 + z)3. With Eq. 8.45 and the present-day value for the radiation
temperature, we get that the present-day number density of neutrinos plus anti-neutrinos
in a single family is

nν =
3
11
nγ = 113 cm−3. (8.46)

If neutrinos in one family have rest mass mν , then this family contributes a mass density

ρν = nνmν . (8.47)

In terms of the neutrino density relative to the critical density,

mν =
ρν
nν

= 1.88× 10−29 Ωνh
2

nν
g

= 1.66× 10−31 Ωνh
2 g

mνc
2 = 1.5× 10−10 Ωνh

2 ergs
= 93 Ωνh

2 eV. (8.48)

In the Standard Model of particle physics, neutrinos are massless. Most of the attempted
extensions of the Standard Model which have massive neutrinos predict that the neutrino
masses scale with the mass of their associated leptons, e.g.,

(mνe : mνµ : mντ ) : (m2
e : m2

µ : m2
τ ).

Since me ≈ 0.511 MeV, mµ ≈ 0.105 GeV, and mτ ≈ 1.8 GeV, these extensions of the
Standard Model predict that the mass of the τ neutrino is much greater than that of the
µ or e neutrino. If some scheme like this is correct, then one family (flavor) of neutrino
dominates, and its mass is given by Eq. 8.48. For comparison, the experimental limits to
the masses of the individual neutrinos are:

mνe ∼< 8 eV, mνµ ∼< 250 keV, mντ ∼< 35 MeV.



Chapter 9

Formation of Structure in the
Universe

So far we have considered the evolution of a smoothed-out version of the universe. However,
the universe as we see it today is anything but smooth, except on the very largest scales:
matter is clustered into stars, galaxies, clusters of galaxies, even clusters of clusters. How
did it wind up this way?

In order to address this question, we have to understand how perturbations to the
average density of the universe evolve, since it is these perturbations which will evolve into
objects such as galaxies.

9.1 Jeans Mass

A crucial concept in the evolution of perturbations in a self-gravitating fluid is the Jeans
mass. Consider a spherical cloud of radius Rc, mass Mc, and density ρc (assumed uniform).
A spherical shell within the cloud of radius r and thickness dr has mass

dM(r) = 4πr2ρ dr. (9.1)

The pressure gradient across the shell must balance the gravitational attraction on the shell,
in equilibrium:

4πr2 dP = −GM(r)
r2

dM(r), (9.2)

which can be re-written as

3V dP = −GM(r)
r

dM(r). (9.3)

Integrating both sides of this equation from the center of the cloud to the cloud edge gives

3
∫ Ps

Pc

V dP =
∫ Rc

0

GM(r)
r

dM(r), (9.4)

By Phil Maloney.
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where Ps is the pressure at the cloud surface. The left-hand side can be integrated by parts:

3
∫ Ps

Pc

V dP = 3
[
PV

]edge
center

− 3
∫ Vc

0
P dV

= 3 Ps Vs − 3
∫ Vc

0
P dV.

Assume the cloud is isothermal. The energy of the cloud gas (per unit volume) is ε =
3
2nkT = 3

2P where n is the particle number density. Thus

−
∫ Vc

0
P dV = −2

3

∫ Vc

0
ε dV = −2

3
ε Vc = −2

3
Tk,

where Tk is the total kinetic energy of the cloud. Thus

3
∫ Ps

Pc

V dP = 3 Ps Vc − 2 Tk.

The right-hand side of Eq. 9.4 is just the gravitational energy of the cloud:∫ Rc

0

GM(r)
r

dM(r) ≡ W =
16π2

3
ρ2c G

∫ Rc

0
r4 dr

=
16π2

3
ρ2c G

R5c
5

=
3
5

GM2
c

Rc
.

Therefore

3 Ps Vc = 2 Tk − W. (9.5)

This is another form of the Virial Theorem, only now allowing for the effect of an external
pressure.

Writing the internal energy as ε = 3
2Pc = ρc kT/µ where µ is the mean mass per particle,

we can write Eq. 9.5 as

4π R3c Ps =
3 Mc kT

µ
− 3

5
GM2

c

Rc
. (9.6)

If we assume the surface pressure term is negligible, then the condition for equilibrium is

3 Mc kT

µ
=

3
5

GM2
c

Rc
. (9.7)

If the right-hand side of this equation is larger than the left-hand side, then the cloud must
collapse, since the internal pressure forces are not strong enough to resist gravity. Thus the
cloud will collapse if

3
5

GM2
c

Rc
>

3 Mc kT

µ

=⇒ Rc <
3 GMc µ

15 kT
. (9.8)
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The critical radius for gravitational collapse is then

Rcr =
3 GMc µ

15 kT
. (9.9)

If we compress a cloud of mass Mc (for fixed µ and T ) to a radius smaller than Rcr, it must
collapse.

We can re-write Eq. 9.8 as

4π R3c
3

Gρc

5Rc
>

kT

µ

4π

15
Gρc >

kT

µ

1
R2c

.

The sound speed in the gas—the speed at which pressure disturbances travel—is cs �
(kT/µ)1/2. Therefore,

4π

15
Gρc >

c2s
R2c

. (9.10)

The right-hand side of this equation is just 1/t2s, where ts = Rc/cs is the time for a sound
wave to travel a cloud radius. Thus, we have

ts ≥
(

15
4π Gρc

)1/2
. (9.11)

What is the right-hand side? In the absence of pressure, the equation of motion of a shell
would be

d2r

dt2
= −GM(r)

r2
= −4πr

3
ρG ≡ ag. (9.12)

From simple dimensional arguments, r ∼ agt2ff , where tff is the free-fall time scale for the
shell to reach the center, which results in

tff ∼
(

3
4π Gρc

)1/2
. (9.13)

The equation of motion can actually be solved exactly, giving

tff =
(

3π

32 Gρc

)1/2
. (9.14)

The right-hand side of Eq. 9.11 can then be written as(
15

4π Gρc

)1/2
=

2
√

10
π

tff � 2 tff ,

and therefore,

tff ∼<
1
2

ts. (9.15)
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Thus the cloud will collapse only if the gravitational free-fall time is less than the sound
crossing time. this makes simple physical sense: if tff < ts, then the cloud collapses before
the internal pressure has time to respond to halt the collapse.

We can re-write Eq. 9.15 as an expression for a critical mass. Since ts = R/cs, and

R =
(

3Mc

4π ρc

)1/3
,

for a fixed cloud mass and density, cubing both sides of Eq. 9.15 leads, after a little algebra,
to

MJ =
(

3π5

32

)1/2
c3s ρ−1/2c G−3/2

=
1
4

(
3
2

)1/2
πρc

(
πc2s
Gρc

)3/2
. (9.16)

This is known as the Jeans mass. For a given density and temperature (or cs), objects with
masses M > MJ are unstable to gravitational collapse, while objects with M < MJ are
stabilized by their internal pressure.

In a static universe, only perturbations with M > MJ , i.e., tff < ts, can collapse. In an
expanding universe, there is an additional criterion: a perturbation can only collapse (i.e.,
grow in amplitude) if the gravitational collapse time tff is less than the expansion timescale
tE .

Assuming a flat, mass-energy dominated universe, Friedmann’s equation (7.57) is just

ȧ2 = 8πG
3 ρa2

ȧ =
(

8πG
3 ρ

)1/2
a

(7.57)

and the expansion time a/ȧ is just

tE =
a

ȧ
=

(
3

8π Gρ

)1/2
. (9.17)

If we are interested in a universe with only one mass-energy component, then this is
never a problem, since the same density enters into the equation for the expansion time
(Eq. 9.17) and the collapse time (9.14). Suppose that we are interested in a perturbation
to a component which is only a minor fraction of the total mass density, however, and the
main component is smoothly distributed on the scale of the perturbation. This is the case,
for example, for perturbations to the baryons during the radiation-dominated era, when the
mass-energy density in radiation dominates by a large factor over that in baryons. In that
situtation,

tE ∼
(

1
GρR

)−1/2
� tff ∼

(
1

GρB

)−1/2
, (9.18)

and the rapid expansion inhibits collapse.
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If the size scale of a perturbation is larger than the horizon dH , then processes such as
pressure support, etc., cannot possibly affect it, as the perturbation is by definition larger
than the maximum causally-connected region. What happens in this case?

We can derive the behavior by the following clever argument. Consider a spherical region
of radius λ > dH , containing matter of mean density ρ1, embedded in a k = 0 universe of
density ρ◦. Let ρ1 = ρ◦ + δρ, where δρ is small and positive. Thus, this is a positive density
perturbation. By spherical symmetry (i.e., Birkhoff’s Theorem), the matter outside this
region cannot affect the evolution of the perturbation. Since ρ1 > ρ◦, and ρ◦ corresponds to
a flat (k = 0) universe, the perturbation must behave as a k = 1 universe. With negligible
cosmological constant, Friedmann’s equation is(

ȧ

a

)2
= H2 =

8π Gρ

3
− kc2

a2
. (8.41)

Thus these two regions obey the evolution equations:

H2
1 =

8π Gρ1
3

− c2

a21

H2
◦ =

8π Gρ◦
3

. (9.19)

Note that H◦ does not refer to the present-day value of H! But

H1 =
ȧ1
a1

, H◦ =
ȧ◦
a◦

.

Now, compare the perturbed universe with the background universe when their expansion
rates are the same, i.e., H1 = H◦. Then

8πG

3
(ρ1 − ρ◦) =

c2

a21
, (9.20)

or (
ρ1 − ρ◦

ρ◦

)
=

(
δρ

ρ◦

)
=

(
3c2

8π Gρ◦a21

)
. (9.21)

In general, if H◦ = H1 at some time, then a◦ 	= a1 at that time. But if δρ/ρ◦ is small, then
a1 and a◦ will differ by a small amount and we can approximate a1 ≈ a◦.

Since ρ◦ ∝ a−4 in the radiation-dominated phase and ρ◦ ∝ a−3 in the matter-dominated
phase, (

δρ

ρ

)
∝

{
a2 radiation-dominated
a matter-dominated.

Thus perturbations on scales larger than the horizon size always grow; since a ∝ t1/2

(radiation-dominated) and a ∝ t2/3 (matter-dominated).
(

δρ

ρ

)
∝

{
t radiation-dominated era
t2/3 matter-dominated era.
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What happens to perturbations that are smaller than the horizon depends on both the
epoch and the material involved in the perturbation.

We will consider three potential components to the universe: baryons, radiation, and
dark matter (explicitly non-baryonic). This last may be either massive neutrinos, or some
more exotic form of elementary particle. Before the universe recombines at zdec, the baryons
and photons are tightly coupled by Thompson scattering of the photons off the electrons,
while the dark matter particles (henceforth denoted as DM) are not; thus the evolution of
these two components is quite different.

Since the particle horizon size increase with time, a perturbation which was initially
larger than the horizon size Rph—and was therefore growing—will eventually enter the
horizon. What happens then?

As we have already seen, there are two processes which can prevent it from growing
further: pressure (i.e., M < MJ) and expansion (if the mass density of the universe is
dominated by some species other than the perturbed component). For the DM, there is no
“pressure” as such (we can assume the DM to be collision-less); but the analogous support
is provided by the velocity dispersion of the DM particles (just as stellar systems such as
galaxies are supported by the stellar velocity dispersions). If neither of these two processes
are effective, then the perturbations will grow.

Clearly during the radiation-dominated era, no DM or baryon perturbations can grow,
as the expansion time (dominated by the radiation density) is too short. Growth of pertur-
bations with λ < Rph can only occur once the universe is matter-dominated.

If we define the Jeans Length by

4π

3
λ3Jρ = MJ , (9.22)

then from Eq. 9.16,

λJ =
(

3πc2s
8Gρc

)1/2
. (9.23)

For perturbations with λ � λJ (i.e., M � MJ) then pressure effects will be negligible, and
the perturbations will grow like super-horizon speed perturbations (assuming Ω ≈ 1) with
δρ/ρ ∝ a, or t2/3. Perturbations with λ ∼> λJ also grow, but at a slower rate, due to the
effects of pressure.

Consider first the evolution of a DM perturbation. At some high temperature TD,
the DM will have decoupled from the thermal equilibrium, and it will have become non-
relativistic (v � c) once the temperature drops below Tnr ≈ mDMc2. Assume that the DM
is non-relativistic when the perturbation enters the horizon (we will see shortly why this is
important).

Since it is collisionless, the DM does no pressure work in the expansion. However,
its velocity dispersion (or temperature) decreases as a−1 due to redshifting of the particle
momentum, just like the redshifting of photon energies. This has an important consequence:
if the velocity dispersion of the DM is v, then Eq. 9.23 says that

λJ ∝ v

ρ1/2
, (9.24)
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where ρ corresponds to the dominant component. For z > zeq (a < aeq), this is the
radiation, while for z < zeq (a > aeq), it is the DM. (In a multi-component medium it
is the velocity dispersion—or sound speed—of the perturbed component which enters into
Eq. 9.23, since it provides the pressure support, but the density of the dominant component,
since it is the gravitationally dominant component which causes the collapse.) When the
DM is relativistic, its velocity dispersion v � c is constant.

Since ρ = ρR for a < aeq, ρ−1/2 ∝ ρ
−1/2
R ∝ a2 for a < aeq, while for a > aeq, ρ−1/2 =

ρ
−1/2
DM ∝ a3/2. Thus

λJ ∝




a2 (a < anr)
a (anr < a < aeq)
a1/2 (aeq < a).

(9.25)

When the DM is relativistic, λJ ≈ Rph. (This is just the size of the causally-connected
universe.) Once the DM goes non-relativistic, the Jeans length increases at most as fast
as the expansion rate. Hence any DM perturbation which is non-relativistic when it enters
the horizon will have λ > λJ .

a2

a

a1/2

a2

a3/2

λ ph
ys

∝
a

Rph

λJ

lo
g 

le
ng

th

log a
anr

aenter

aEQ

Figure 9.1: Evolution of a dark matter perturbation.

We can then divide the evolution of a DM perturbation into three stages.

1. a < aenter. The perturbation wavelength is larger than the horizon; δρ/ρ ∝
a2.
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2. aenter < a < aeq. The perturbation enters the horizon. Since λ > λJ ,
pressure forces (velocity dispersion, in this case) cannot halt the collapse.
However, ρR � ρDM, so expansion prevents further growth: δρ/ρ = constant.

3. aeq < a. ρ is now dominated by ρDM, and the perturbation grows. If
λ � λJ , δρ/ρ ∝ a.

The scalings for λJ in Eq. 9.25 give the Jeans mass for the DM component as (with ρDM ∝
a−3 in the non-relativistic space)

MJ =
4π

3
λ3JρDM ∝




a2 (a < anr)
constant (anr < a < aeq)
a−3/2 (aeq < a).

(9.26)

Thus the DM Jeans mass decreases steadily once the universe reaches the matter-dominated
stage.

Plugging in numbers, we get

MJ = 3.2 × 1014 M� (Ωh2)−2
(

a

aeq

)−3/2
for a > aeq, (9.27)

since
a(t◦)
a(teq)

= 4 × 104Ωh2, (8.5)

so therefore

MJ(t◦) = 4 × 107 M� (Ωh2)−7/2.

This is much smaller than, say, the mass of a galaxy (∼ 1011 M�).
For baryons, the behavior is somewhat different because of their coupling to the photons.

For a < adec the baryons and photons are in pressure equilibrium. After decoupling, the
matter temperature drops faster than the radiation, because the matter does work in the
expansion (adiabatic expansion) and so Tm ∝ a−2, rather than a−1 for Tr.

When the photons and baryons are tightly coupled, the pressure and density are dom-
inated by the radiation, and the characteristic value of the velocity dispersion v2 ≈ 1

3c
2

(with the factor of 1/3 arising from the one-dimensional velocity dispersion). (For the
allowed range of Ωbh

2 from Big Bang nucleosynthesis, zdec and the redshift of equality
of mass-energy density in baryons and photons are very similar.) After decoupling, the
characteristic velocity dispersion drops from 1

3c
2 to

v2 ≈ 5
3

kT◦
mp

(1 + zdec), (9.28)

which is a factor ≈ 2×10−9. The Jeans mass is ∝ v3, so this drops by a factor � 8.3×10−14.
This is an enormous change: just before and after decoupling,

MJ(t ∼< tdec)baryon = 3.1 × 1016 M�
(

Ωb

Ω

)
(Ωh2)−1/2

MJ(t ∼> tdec)baryon = 2.5 × 103 M�
(

Ωb

Ω

)
(Ωh2)−1/2, (9.29)
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inconsequence of the sudden, huge pressure drop.
As for the DM perturbations, baryon perturbations evolve in 3 stages:

(
δρ

ρ

)
∝




a2 (a < aenter)
constant (aenter < a < aeq)
a (adec < a).

(This last assumes λ > λJ,baryon.)
There is an important distinction here from the DM case. Note that DM perturbations

grow once a > aeq, while baryon perturbations grow only for a > adec. If ΩDM � 1,
then zeq � 4 × 104 h2, while zdec ≈ 1000. Hence DM perturbations can begin growth well
before baryonic perturbations; from the time teq to tdec, the DM perturbations grow by
a factor adec/aeq ≈ 21 Ωh2. Thus when the baryons decouple from the photons, the DM
perturbations are much more important, and the baryons will rapidly fall into the DM
potential wells.

9.2 Spectrum of Perturbations

What are these perturbations? Presumably they represent primordial fluctuations in the
universe; we do not presently have a good understanding of their origins.

However, what we observe in the universe will not in general be a direct reflection of
some primordial spectrum of fluctuations. (By the spectrum we basically mean dρ/ρ as a
function of mass scale.) The reason is that there are processes which basically filter the
spectrum, one of which affects relativistic matter, the other of which affects baryons.

1. Free-streaming. Suppose we have a DM perturbation, and the DM is still relativistic
when it enters the horizon. Because the DM particles do not interact collisionally, each
particle is free to move along a geodesic in spacetime. This means that on sufficiently
small scales, any perturbations will be wiped out, because the DM particles are free
to stream from an overdense region to an underdense region, thereby eliminating the
perturbation.

What is this scale? When the DM is relativistic, it essentially has velocity c. The
proper distance traveled by a particle in time t can be written as

L = a(t)
∫ t

0

v(t′)
a(t′)

dt′ (9.30)

(since the proper velocity v = a dl/dt). In time tnr, the particle will travel a distance
2 ctnr (where the extra factor of 2 coming from the integration over the expansion
rate). At present, this free-streaming scale is LFS = a◦

anr
· 2 ctnr.

The epoch tnr depends on the mass of the DM particle:

LFS = 0.5 Mpc (ΩDMh2)1/3
( m

1 keV

)−4/3
. (9.31)
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For neutrinos, for example, with Ωνh2 = mν/93 eV,

LFS = 28 Mpc
( mν

30 eV

)−1
(9.32)

MFS = 4 × 1015 M�
( mν

30 eV

)−2
. (9.33)

Any perturbations on mass scales smaller than this will be wiped out by free-streaming.

DM thus gets divided into two varieties: hot dark matter (relativistic at the epoch of
horizon crossing) and cold dark matter (non-relativistic). The former also corresponds
to a “top-down” scenario for structure formation (all the power in density fluctuations
is on large scales), while cold dark matter is a “bottom-up” scenario.

2. Photon viscosity. At t � tdec, the photons and baryons are very tightly coupled,
and any fluctuations on scales smaller than the photon mean free path

lMFP =
1

xeneσ
� 1.3 × 1029x−1

e (1 + z)−3(Ωbh
2)−1 cm (9.34)

will be obliterated.

However, this works on even larger scales: the photons can diffuse out of over-dense
regions, and they drag the matter with them. This actually has its largest effect just
as the universe is recombining, as the photon mean free path increases. This scale
turns out to be

Ms � 6.2 × 1012
(

Ω
Ωb

)3/2
(Ωh2)−5/4 M�. (9.35)

This process is known as “Silk damping,” after Silk (1968). Since the limits from Big
Bang nucleosynthesis restrict Ωb/Ω ∼< 0.1, the scale mass must be Ms ∼> 1014 M� in
either a baryon-only or a flat (Ω = 1) universe.

Thus in either baryon-only or hot dark matter-dominated universes, the minimum
mass scale of perturbations available to form galaxies, clusters, etc., once growth
resumes is much greater than the mass of a galaxy, or even a cluster, and so galactic
mass objects must form by the collapse and subsequent fragmentation of these very
large (both in mass and size) scales.

In a cold dark matter-dominated universe, however, this is not the case: from Eq. 9.31,
if the mass of the dark matter particle mDMc2 � 1 keV, then LFS � 0.5 Mpc. For
reference, assuming that the mass of a typical galaxy is Mgal � 1011–1012 M�, then
with Ω = 1 =⇒ ρ = ρcrit = 1.88 × 10−29h2 g cm−3, the radius corresponding to a
galaxy mass is

Mgal =
4π

3
λ3ρcrit =⇒ λ = (0.44–0.95)h−2/3 Mpc

for Mgal = 1011–1012 M�.

Thus the mass of a typical galaxy corresponds to a region ∼ 1 Mpc in size today. In
other words, to form a galaxy we needed to collapse all the matter in a region which
today would be ∼ 1 Mpc in size.
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Since LFS � 0.5 Mpc for MDMc2 � 1 keV, in cold dark matter scenarios perturbations
on scales much smaller than galactic mass scales can survive until growth resumes at
z = zeq.

9.2.1 Linear/Non-Linear Perturbations

As we have seen, density fluctuations grow as δρ/ρ ∝ a in the matter-dominated era (only
after recomination for baryonic perturbations). For a flat (Ω = 1, k = 0) universe,

δρ

ρ
∝ t2/3

so the density perturbations grow as power-laws in time. The flat Ω = 1 universe gives
the optimum case for forming structure gravitationally. For Ω < 1 growth is shut off by
the expansion of the universe, while for Ω > 1 the time available for the growth of density
fluctuations is less.

In deriving this result for the growth of density perturbations, we assumed that δρ � ρ;
this is known as the linear regime. Once δρ/ρ reaches ∼ 1, the perturbation becomes
nonlinear: the gravitational attraction due to the perturbation (its self-gravity) becomes
dominant (locally) over the expansion. While the perturbation was in the linear phase, its
physical size continued to increase as the universe expanded (but not as fast as the scale
factor a) while the density contrast δρ/ρ grew; once δρ/ρ reaches ∼ 1, however, and its self-
gravity becomes dominant, the perturbation breaks away from the expansion: it reaches its
maximum size at this point, then collapses and forms a bound object.

Thus in order to have formed a bound object which is no longer influenced by the
expansion of the universe (e.g., a galaxy), the corresponding density fluctuation δρ/ρ on
the relevant size/mass scale must have reached 1 before today.

For a flat universe, the age as a function of redshift is

t = 2 × 1017(1 + z)−3/2 h−1 seconds. (9.36)

For baryon perturbations, as we have seen, growth does not start until the decoupling
matter and radiation, at zdec ≈ 1500, when the universe was

tdec ≈ 3.4 × 1012 h−1 seconds

old (about 110,000 years). Thus baryon perturbations can only have grown by

(
t◦

tdec

)2/3
=

(
2 × 1017

3.4 × 1012

)2/3
≈ 1.5 × 103. (9.37)

Thus at zdec, the magnitude of the density fluctuations must have been at least (δρ/ρ)zdec ∼>
6 × 10−4. In reality, this is an underestimate, because galaxies formed at z > 0, so a more
realistic value is (δρ/ρ)zdec ∼> 10−3.

Note that at zdec, a region corresponding to a galactic mass—λ ∼ 1 Mpc—was ∼ 1 kpc
in size. This corresponds to an angular size scale θ ∼ 30 Ω h arcsec on the sky today.

This is a big problem for baryon-only universes—the limits on δT/T = δρ/ρ ∼< 10−4 on
these size scales. Thus, in order to have grown to nonlinearity and collapse, baryon-only
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perturbations have to be ∼ 10 times larger than allowed by limits to fluctuations in the
microwave background.

For dark matter perturbations, growth begins substantially earlier, at z = zeq, rather
than z = zdec. Since zeq � 4 × 104Ωh2, in a flat Ω = 1 universe:

teq � 2 × 1017(4 × 104h2)−3/2h−1 seconds
≈ 2.5 × 1010h−4 seconds.

And so dark matter perturbations will have grown by(
t◦
teq

)2/3
� zeq = 4 × 104h2, (9.38)

so that (
δρ

ρ

)
zeq

(DM) ∼< 10−4 for the allowed range of h.

Of course, at zdec these perturbations will have grown to the same amplitude as the baryon
perturbations would have to be; however since the baryons will not respond (i.e., fall into)
the dark matter perturbations until after decoupling, this is not a problem.

9.3 Primordial Spectrum of Perturbations

The usual convention for specifying the initial (i.e., primordial) psectrum of perturbations
to the density of the universe is to specify the amplitude (that is, δρ/ρ) at the time they
enter the horizon. This eliminates some General Relativistic ambiguities which arise in
dealing with super-horizon-size perturbations. (These ambiguities can be resolved, but this
is not something we want to get into.) It is usually assumed that the primordial fluctuation
spectrum is a featureless power-law (i.e., no low-mass or high-mass cutoffs):(

δρ

ρ

)
hor

(M) = A M−α, (9.39)

where A is a normalization constant (setting the actual amplitude), and α is the slope. The
amplitude can be fixed by comparison with observations (e.g., the COBE results, which
measure the amplitude of density perturbations on very large scales, which are still in the
linear regime).

Can we say anything a priori about the slope, α?
We have seen that on galaxy scales (M ∼ 1011–1012 M�, λ ∼ 1 Mpc), the amplitude

of perturbations to the density δρ/ρ ∼ 10−4 at zeq. In fact, the size of the horizon (Rph ∼
11 Mpc (Ωh2)−1) was only a few times larger than the galaxy mass scale at zeq, so we must
have had (

δρ

ρ

)
hor

(Mgal) ∼ 10−4

to order of magnitude.
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The COBE results for the amplitude of fluctuations on much larger size/mass scales
(the size of the present-day horizon, corresponding to M ∼ 1022Ωh2 M�) indicate that(

δρ

ρ

)
hor, now

(M ∼ 1022 M�) ∼ 10−5.

If the initial spectrum of perturbations was not cut off in some fashion at long wavelengths
(large masses), then the fact that (δρ/ρ)hor is constrained to be very similar on mass scales
that differ by 10 or 11 orders of magnitude implies that α must be very small, i.e., not very
different from zero.

What about masses much less than a galaxy mass? If α > 0, then (δρ/ρ)hor increases
with decreasing mass.

Any perturbation with (δρ/ρ)hor ∼ 1 will collapse into a black hole: as we saw earlier
on p. 135, any perturbation in non-relativistic matter has M > MJ when it crosses the
horizon. If (δρ/ρ)hor ∼ 1, the perturbation immediately breaks away from the expansion,
and acts like a small closed universe: since M > MJ , pressure forces will be unable to
resist the collapse, and the result will be collapse to a black hole. Black holes with masses
< 1015 g will have evaporated by now via Hawking radiation, but larger mass ones will still
be around, while those with M � 1015 g will now be evaporating.

Such a scenario will produce too much of a γ-ray background (due to the evaporating
black holes) and produce far too much mass in primordial black holes (which would, for
example, have non-trivial consequences for the dynamics of stellar systems). Thus scales
much smaller than galaxy masses also require that α is very small (at least if α > 0).

The combination of these two arguments favors α = 0 or 1, so that (δρ/ρ)hor is inde-
pendent of mass. One particularly important model has α = 2/3, which is known as the
Harrison-Zel’dovich spectrum (Harrison 1970, Zel’dovich 1972). We will discuss more about
the Harrison-Zel’dovich spectrum in Ch. 11.

9.4 Structure Formation: The Virial Theorem

At z < zdec, baryons are free to fall into the dark matter potential, as they are no longer
tied to the radiation field. What happens next? This depends on the depth of the potential
well.

Recall from our discussion of the Virial Theorem with no external pressure, in equilib-
rium we must have (Eq. 9.7)

3MkT

µ
=

3
5

GM2

R

(where µ is the mean mass per particle). We can use this to define the virial temperature
for an object to be supported by thermal motions against its own gravity:

Tvir =
Gmµ

5kR

= 106
(

M/1011 M�
R/10 kpc

)
K. (9.40)
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(We have taken µ = 1.67×10−24 g in calculating this, i.e., we have assumed an atomic gas.)
At zdec ∼ 1000, the baryons and radiation will have equal temperatures, Tb ∼ 4000 K.

Dark matter potentials with Tvir ∼< Tb will have very little effect on the baryons,
as these DM fluctuations are not sufficiently “deep.”

Dark matter potentials with Tvir � Tb will have a large effect on the nearby
baryons, which will fall in with no initial pressure support (because the baryons
are too “cold” compared to the temperature Tvir characterizing the depth of the
DM potential).

What happens to the baryons after they fall in? For a dissipation-less system (such as the
dark matter perturbations) which breaks away from the expansion when it has a radius
Rmax, the subsequent collapse to a new equilibrium (a process known as virialization for
a self-gravitating system) leads to a decrease in size by a factor of two. This is easy to
show using the Virial Theorem. When the DM perturbation reaches its maximum radius
(when δρ/ρ ∼ 1), then its kinetic energy is zero (because the velocity goes to zero as it goes
from expansion to collapse). Thus its total energy E just equals its gravitational potential
energy:

E = W = −GM2

Rmax
(9.41)

T = 0.

After the perturbation collapses and virializes at its new radius R◦, it obeys the virial
theorem, so 2T − W = 0.

=⇒ v2 =
GM

R◦
,

where v is the velocity dispersion of the system; this is just twice the kinetic energy per
unit mass:

T

M
=

1
2

v2 =
1
2

GM

R◦
. (9.42)

The gravitational potential energy is −GM2/R◦, and so the total energy is

E = T + W =
1
2

GM2

R◦
− GM2

R◦
= −1

2
GM2

R◦
. (9.43)

However, since we have assumed that this system is dissipation-less, there can be no loss of
energy, and so the energy in Eqs. 9.41 and 9.43 is the same:

− 1
2

GM2

R◦
= −GM2

Rmax

=⇒ R◦ =
1
2

Rmax. (9.44)

Thus the equilibrium radius after virialization is 1
2 the radius at maximum expansion (also

known as “turnaround”); the mean density therefore increases by a factor of 8.
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9.5 Cooling of Baryonic Gas

Baryons are not dissipation-less, however: as the baryons fall into the potential well, they
are gravitationally accelerated until they collide in the center of the DM potential well.
At this point, collisions between the baryons lead to shock heating of the baryons up to
the virial temperature (because this is the temperature corresponding to the kinetic energy
they have acquired by falling into the potential well). What happens to the baryons next
depends on whether they can cool, or simply remain at Tvir.

There are 3 main processes at work in the early universe, when the matter consists
essentially of just H and He.

1. Compton cooling: This occurs when cosmic microwave background (CMB)
photons scatter inelastically off of electrons. (This is the same process
which imprints fluctuations on the CMB.)

e 
_

θ

pe,f

p γ,f

p γ,i

p γ,i = Initial Photon Momentum
p γ,f = Final Photon Momentum
pe,f = Electron Momentum after collision

Figure 9.2: Scattering of CMB photons by free electrons.

If the electrons have more energy than the photons, the photons gain energy
from the electrons; if the photons have more energy, the reverse is true (this
is known as inverse Compton scattering). This process acts to drive the
photons and electrons to the same temperature. The cooling rate per unit
volume (ergs cm−3 s−1) is proportional to nγne.
Because the magnitude of Compton cooling depends on the energy density
in the CMB (since it depends not only on the number density of photons,
∝ (1 + z)3, but also their momenta ∝ Tr ∝ 1 + z), it is very dependent
on redshift, scaling as (1 + z)4. For the redshifts at which galaxy-mass
perturbations go non-linear (z ∼< 6), Compton cooling is unimportant.

2. Recombination: When a proton and electron recombine, a photon is
emitted:

e− + p+ → H + γ,

where the photon energy E ∼> 13.6 eV. This energy is therefore lost from
the gas (the electrons) and goes into the radiation field, which is no longer
coupled to the matter for z < zdec. The cooling rate per unit volume is
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proportional to nenpT−1/2 ∝ n2eT−1/2 (since, neglecting helium, ne = np);
the T−1/2 dependence comes from averaging over a Maxwellian velocity
distribution for the electrons. The faster the electron passes the proton,
the less likely it is to recombine, given the shorter encounter time between
the two. Since the typical velocity is porportional to T 1/2 for a Maxwellian
velocity distribution, this leads to the T−1/2 dependence.

3. Bremsstrahlung (Free-Free): Even if they do not recombine, an elec-
tron which passes sufficiently close to a proton will be accelerated by the
electromagnetic attraction between the two; since an accelerated charged
particle radiates, this leads to radiation, and again loss of energy from the
gas; the magnitude of the energy loss is set by the charge-to-mass ratio
of the electron. The cooling rate per unit volume for this process is pro-
portional to nenpT 1/2 ∝ n2eT 1/2. The T 1/2 scaling again arises from the
velocity scaling; it is positive in this case because the number of encounters
between protons and electrons increases with T .

e 
_

e 
_

p+

Figure 9.3: An electron accelerated by a proton and subsequently emitting radiation via
the Bremsstrahlung effect.

The cooling rate per unit volume is usually written as

Ė = n2Λ(T ) ergs cm−3 s−1, (9.45)

where Λ(T ) is the cooling function (not to be confused with the cosmological constant!).
For recombination and Bremsstrahlung cooling, Λ(T ) is independent of density. (This is
true for most cooling processes, which is why Eq. 9.45 is defined this way.)

The cooling timescale is then

tcool =
E

Ė
=

3
2

nkT

n2Λ(T )
=

3
2

kT

nΛ(T )
. (9.46)

The evolution of baryons after they fall into the dark matter potential wells and virialize
then depends on the values of 3 timescales: the cooling time tcool, the dynamical time
tdyn(= tff), and the expansion time tE = H−1.

If tcool > tE , then the baryons can have evolved very little since they fell into the DM
perturbation. If tcool > H−1◦ , the present value of the expansion timescale, then the cooling
time is greater than the age of the universe.
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If tcool < tE but tcool > tdyn, where the dynamical (free-fall) time is (Eq. 9.14)

tdyn =
(

3π

32Gρ

)1/2
=

π

2

(
2GM

R3

)−1/2
. (9.47)

(Note that, since ΩDM � Ωbaryon for interesting dark matter, it is the dark matter density
which determines the dynamical time.) Then the baryons can cool, but they evolve quasi-
statically (i.e., through a series of near-steady states) because the pressure has time to keep
up with the dynamical evolution; thus the baryon distribution evolves on the timescale tcool.

If tcool < tdyn < tE , then the baryons cool and collapse rapidly, on a dynamical timescale.
Numerically,

tcool ∼ 8 × 106 yr
( n

1 cm−3
)−1

[(
T

106 K

)−1/2
+ 1.5

(
T

106 K

)−3/2]−1
. (9.48)

↑
Bremsstrahlung term

↑
Recombination term

Important point: Tvir ∝ M/R ∝ R2ρ, while tdyn ∝ ρ−1/2, tcool ∝ ρ−1. Thus the cooling and
dynamical times depend only on ρ, but Tvir depends on both R and ρ.

9.6 Galaxy Formation

There are two ways to get the gas to cool on a dynamical timescale:

1. Keep Tvir low, so that Λ(T ) is large (i.e., make the total cooling rate large
by making Λ(T ) large).

2. Make the density large (make the total cooling rate large by increasing ρ
since tcool drops faster with increasing ρ (∝ ρ−1) than tdyn (∝ ρ−1/2).

Using the approximate cooling function (Eq. 9.48) and Eq. 9.40 for Tvir, we find that
the baryons will be able to cool on a dynamical timescale provided that:

1. M ∼< 1012 M� (Tvir ∼< 106 K)
or

2. R ∼< 100 kpc (Tvir ∼> 106 K).

Thus galactic masses and dimensions are naturally picked out by the cooling timescale.
However this is only true if we have density perturbations on these mass scales! As we
have seen, this is true of cold dark matter models, but not hot dark matter or baryon-only
universes.

The evolution of structure is qualitatively different in cold dark matter (CDM) and hot
dark matter (HDM)-dominated universes. In CDM models, density perturbations exist over
a very wide range of mass scales, from M ∼ 1014 M� down to M ∼ 105 M� (the lower
limit depends on how “cold”—i.e., how massive—the CDM particles actually are), with
comparable amplitude. As perturbations on small scales evolve, they also merge together
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as part of larger scale perturbations. This is known as “hierarchical clustering,” which
simply means that structures build up from smaller scale (smaller mass) structures.

In the HDM scenario (and similarly in a baryon-only universe), the initial perturbations
at z = zeq peak at M = MFS ≈ 1014 M�. Thus the initially forming structures all have
masses around this value.

Because this corresponds to such a large size scale (∼ tens of Mpc), the assumption of
spherical symmetry which we made in discussing the dynamical times and virialization is
poor for describing the evolution of these size scales. Basically, these perturbations have to
collapse such a long way that any initial asymmetries in the shape and velocities is magnified
during collapse. The most likely result is that collapse occurs first along one dimension,
leading to a flattened, 2-dimensional structure known as a “Zel’dovich pancake,” after the
Russian physicist who first proved this result. Objects on smaller scales then form by further
collapse and fragmentation of the pancake.

9.7 Correlation Function

Clearly the resulting distribution of objects—galaxies, clusters, and super-clusters—must be
very different in these two scenarios. this is apparent from visual inspection of simulations
of the evolution of CDM and HDM universes.

How can we quantify this? The most commonly-used statistical measure of the spatial
distribution (and probably the most powerful) is the spatial two-point correlation function.

Suppose we have a spatial distribution of galaxies with average number density n per
Mpc3. Rigorously, when we say that the number density is n, we mean that the probability
of finding a galaxy in a volume element dV is

dP = n dV. (9.49)

If galaxies are randomly distributed with respect to one another, then the probability of
finding galaxies within two volumes dV1 and dV2 simultaneously (the joint probability) is
obtained from Eq. 9.49 in the usual way:

dP2 = n dV1 n dV2 = n2 dV1 dV2. (9.50)

Because we have assumed the positions of galaxies are uncorrelated, this depends only on
the size of the two volume elements, and not on their spatial separation.

To make allowance for the possibility that galaxies actually are spatially correlated,
re-write Eq. 9.50 for the joint probability with an additional term:

dP2 = n2 dV1 dV2 [1 + ξ(r)], (9.51)

where Eq. 9.51 is now the joint probability that galaxies are found in the two volumes dV1
and dV2, separated by distance r. ξ(r) is by definition, the two-point correlation function.
Obviously if ξ(r) = 0 for all r, then Eq. 9.51 reduces to the result for the random distribution
Eq. 9.50.

We can define ξ(r) in another, equivalent way: if we start with a position centered on
a galaxy, then the conditional probability that we find another galaxy in a volume element



9.8. HOT DARK MATTER MODELS 145

dV at distance r is

dPc = n dV [1 + ξ(r)], (9.52)

which reduces to Eq. 9.49 if ξ(r) = 0.
Observations show that ξ(r) 	= 0 for galaxies; the galaxy-galaxy correlation function

ξgg(r) =
(r◦

r

)1.8
, r◦ = (5.4 ± 1) h−2 Mpc. (9.53)

Eq. 9.53 holds over the range 10 kpc ≤ hr ≤ 10 Mpc. 9.53 shows that the galaxy-galaxy
correlation function falls to unity at r = r◦ = 5.4 h−1 Mpc; on smaller scales, galaxies are
highly correlated.

In addition, clusters of galaxies are also correlated with one another; the cluster-cluster
correlation function is

ξcc(r) =
(r◦

r

)1.8
, r◦ ≈ 18 h−1 Mpc. (9.54)

Under the assumption that only gravity is important in forming structure, it is straightfor-
ward (if computationally expensive) to follow the evolution of structure in CDM and HDM
scenarios and compare them with observations. The results are summarized in the following
two sub-sections.

9.8 Hot Dark Matter Models

Because of the elimination of all perturbations on scales less than a few tens of megaparsecs
due to free-streaming of the HDM (usually assumed to be neutrinos), formation of galaxies
depends on large scales going non-linear and fragmenting.

Because of this “top-down” mode of structure evolution, HDM models run into trouble
when compared to the real universe. This is because scales much larger than galaxies go
non-linear first; if we require that galaxy formation took place at some reasonable amount of
time before the present (current observations suggest that the redshift of galaxy formation
zf ∼> 1), then the HDM models produce too much clustering. (The slope of the 2-point
correlation function is too steep, and its amplitude is too high.) This is true even if one
makes a distinction between the “neutrino” distribution (the total matter distribution) and
the “galaxy” distribution (mass concentrations which have already collapsed).

In addition, one of the attractive features of an HDM universe—the formation of large
sheets and filaments of galaxies, as seen in the real universe—is only a transient stage, as the
Zel’dovich pancakes formed early on continue to collapse in the remaining two dimensions,
forming first filaments and then quasi-spherical “clusters.” The latter are far too massive to
correspond to anything in the observed universe, so that some unknown mechanism would
have to act to prevent visible (baryonic) matter from falling into these mass concentrations.
For these reasons, hot dark matter models are generally not regarded as viable at present.
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9.9 Cold Dark Matter Models

In this scenario there is plenty of power in density fluctuations on galactic and sub-galactic
mass scales, so we do not run into the problem of having to wait for fragmentation on larger
scales, as in HDM models.

However matching both the slope and the amplitude of the galaxy-galaxy correlation
function requries Ωh ∼< 0.2. Thus either h ∼< 0.2 for Ω = 1, which is an unacceptably
low value for the Hubble constant, or else Ω ∼ 0.2 for h ∼ 1, which suffers from the usual
arguments against Ω < 1 (in particular, Ω = 1 is predicted by inflation, which we will discuss
in the next chapter). Equivalently, the predicted peculiar (non-Hubble flow) velocities of
galaxies in this scenario are too large compared with observations. This is not surprising,
since observations of the velocity dispersions in groups and clusters of galaxies give mass
estimates corresponding to Ω ∼ 0.1 (discussed further below); thus if galaxies accurately
trace the mass distribution, then observations show that Ω < 1, and we do not live in a
critical-density universe. The remedy to this problem is to assume that galaxies do not
trace the mass distribution accurately, but only a subset of it.

The idea behind this is as follows. A point we have ignored so far is that, at a given
time and a given size (or mass) scale, all fluctuations in density will not have the same
amplitude; instead, there will be a range of values. In most models, this spread in the
actual amplitudes of density fluctuations around the mean value is Gaussian in shape. In
“biased” galaxy formation, it is assumed that only density peaks with amplitudes greater
than some minimum threshold times the mean value actually become galaxies. Physically,
this could be because only exceptionally high density peaks can capture and cool sufficient
mass in baryons to form visible galaxies; in the absence of actual hydrodynamic simulations
with realistic treatment of heating and cooling, this is only a plausibility argument.

In these CDM models with biased galaxy formation, the galaxies represent a more
highly clustered subset of the total mass distribution. (This is because an exceptionally
high-density peak in the density distribution is statistically more likely to occur in a region
of higher than average density.) These biased CDM models can produce a good match
to the galaxy-galaxy correlation function for Ω = 1 and reasonable values of the Hubble
constant.

However they still have difficulties in producing enough power on large scales (M �
Mgal) compared to galactic-mass scales. This is reflected in a too-small value of the cluster-
cluster correlation function. A similar problem has arisen as a result of the COBE detection
of fluctuations in the microwave background (on very big scales) at the 10−5 level: if the
amplitudes of these fluctuations are used to set the normalization constant A in Eq. 9.39,
then everybody’s favorite α = 2/3 (Harrison-Zel’dovich) CDM model produces too much
power on small scales. Matching the normalization on large scales produces over-clustering
on the galaxy-mass level. CDM models also tend to have trouble producing voids as large
as those seen in the real galaxy distribution.

A truly realistic assessment of either HDM or CDM models requires an accurate inclusion
of gas dynamical processes, heating and cooling, and feedback effects (e.g., the injection of
energy in the form of radiation and supernovae once massive stars begin forming). Work
along these lines is still very preliminary.
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9.10 Variations on CDM

Recent trends in structure formation models include the following:

1. Open Cold Dark Matter (OCDM): These models can generally reproduce the
sponge-like distributions of matter seen in surveys. The difference between normal
CDM and OCDM is that for the latter, the epoch of matter and radiation equilibrium
occurs later, and hence the growth of structure occurs over a smaller range in z. The
fluctuation spectrum has less power at smaller scales. The only problem with these
models is that they conflict with inflationary theory which predicts Ω = 1.

2. ΛCDM: These have become very trendy, usually with ΩCDM ≈ 0.2 and the rest
provided by ΩΛ so that ΩCDM + ΩΛ = 1. They give qualitatively similar dynamics as
the OCDM models. They do have the advantage of producing an older universe for
a given value of H◦, because the cosmological constant stretches out the expansion
timescale. This avoids the over-clustering at late times which troubles ΩCDM = 1
models. They suffer from horrible fine-tuning problems, however.

3. Mixed Dark Matter (HCDM): These usually have ΩHDM ≈ 0.2 and ΩCDM ≈ 0.8.
The HDM provides the large-scale power and the CDM provides the small-scale power.
These are computationally very difficult, because of the interaction between the hot
and cold dark matter.

4. Cold Dark Matter with Decaying Neutrinos (τCDM): The objective of this
class of models is to increase the radiation to matter energy densities so that zeq
for matter-radiation equilibrium occurs later (i.e., at smaller values of z), similar
to the OCDM models. However if you have more families of relativistic particles,
Big Bang nucleosynthesis would result in excessive helium production. The τCDM
models therefore propose relativistic particles which decay away before the epoch of
nucleosynthesis. Whether such particles really do exist is of course another question
altogether.
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Chapter 10

Inflation

10.1 A Solution for Problems with the Big Bang?

As discussed previously in §8.4 (pp. 119–123), although the Big Bang model is highly
successful (especially in predicting the light element abundances), there are a number of
problems that the standard model does not address. In fact, the traditional Big Bang theory
can be thought of as really addressing what happens to the Universe after the Big Bang,
and how it evolves from its originally hot, dense state. It does not say anything about
why the Universe started expanding from this initial condition, what was it that expanded,
or what might have preceded it. Although the concept of inflation was proposed to solve
several of the problems in the standard Big Bang model, some theorists believe that it may
also contain clues to these more fundamental questions about the origins of the Universe.

The central idea is that the Universe underwent a phase transition very early in its
history, at t ∼ 10−35 seconds, when the temperature dropped below the point where it was
possible to maintain symmetry between the strong nuclear force and the electroweak force.
This phase transition lasted about 10−34 seconds.

Why was this important? Consider a more familiar example, the freezing of water to
ice. If we take a container of water at room temperature, say, and steadily remove heat
from it, the temperature of the water will drop until it reaches the freezing point. At this
point, although we continue to remove heat, the temperature remains constant while the
fraction of ice increases. Only after all the liquid water in the container has frozen does
the temperature continue to drop. The latent heat of crystallization of the ice keeps the
temperature constant until the phase transition is complete.

A constant energy density behaves just like a positive cosmological constant; when this
term is dominant, the scale factor expands exponentially,

a ∝ e(Λ/3)1/3t

(cf. Eq. 7.102). Since the epoch of inflation lasts for a factor of 100 in age, the expansion of
the Universe can be huge: in typical inflation models, a grows from as little as ∼ e70 ∼ 1030

to as large as ∼ e100 ∼ 1043. This enormous rapid expansion solves some of the biggest
difficulties with the standard Big Bang model:

By Ka Chun Yu and Phil Maloney.
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1. The horizon (or smoothness) problem: prior to the epoch of infla-
tion, our presently observable Universe was a causally connected region.
Particles inside this region therefore have the opportunity to attain a uni-
form, homogeneous state. It is only after inflation then that the particles
are driven so far apart from the exponential expansion that they cannot
communicate with or affect each with light signals. So it is not difficult to
understand why the Universe appears to be so homogeneous and isotropic,
as shown by the microwave background. Although all of the volume en-
closed by the observable CMB was not causally connected at the time of
recombination, it was so even earlier in time, before inflation.

2. The flatness problem: Whatever the curvature of the Universe before
inflation, the enormous expansion of the Universe during the inflationary
era will have made it asymptotically flat. Of course, it is not possible to
transform a k 6= 0 Universe into a k = 0 Universe, and at late enough
times, when the particle horizon exceeds the size of the inflated region, we
would be able to tell that k 6= 0, so it does not solve this problem forever.
It does, however, solve it for a very long time (orders of magnitude longer
than the current age of the Universe, for typical inflation models).

3. Hidden relics problem: Many Grand Unified Theories (GUT) predict
the creation of magnetic monopoles, gravitinos, and other exotic particles
after the phase transition when the strong nuclear force breaks from the
electroweak force. We should expect to see enormous numbers of these
exotic particles, as well as topological defects like cosmic strings and do-
main walls in the present-day Universe. In fact, the density of magnetic
monopoles should exceed Ω = 1. Inflation however expands the bulk of the
exotic particles out of our particle horizon, so there is at most one magnetic
monopole inside the present horizon.

(We will cover other problems that inflation addresses in §10.2.1.)
The horizon problem returns in a slightly different form in discussing the origin of

perturbations. A perturbation of physical size λ◦ today had a proper length λ◦(a(t)/a◦) in
the past; a(t)/a◦ ∝ tn, where n < 1. For the radiation-dominated phase, n = 1/2, for a
matter-dominated Universe, n = 2/3.

The size of the horizon is

RH ≈
c

H(t)
= c

(a
ȧ

)
=
ct

n

Since this scales as t, the ratio

λ(t)
cH−1(t)

∝ tn−1

Since n − 1 < 0, this ratio increases with decreasing t; at early enough times, any pertur-
bation will be bigger than the horizon. As we have discussed earlier, with every size scale
λ we can associate a mass scale:

M(λ) =
4π
3
ρ̄(t)λ3(t) = 1.5× 1011 M�Ωh2

(
λ

0.5 Mpc

)3
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where ρ̄(t) is the mean density of the Universe. This mass scale is independent of redshift
since ρ̄ ∝ a−3 while λ ∝ a.

The size scale of a perturbation of a given mass will be bigger than the horizon at all
redshifts z > zenter(M), where

zenter(M) = 1.41× 105(Ωh2)1/3

(
M

1012 M�

)−1/3

,

M < Meq ≈ 3.2× 1014 M� (Ωh2)−2

(
TR◦

2.75 K

)6

= 1.1× 106(Ωh2)−1/3

(
M

1012 M�

)−2/3

,

M > Meq

Meq is the mass corresponding to

λeq ≈ 13 Mpc (Ωh2)−1

(
TR◦

2.75 K

)2

,

the size scale which crosses (enters) the horizon at t = teq. Perturbations on scales with
λ < λeq enter the horizon at t < teq (z > zeq).

From the above estimate, perturbations on ∼ galaxy-mass scales were bigger than the
horizon for z ∼> 106. How can causal processes have operated on super-horizon sized scales?

Inflation provides a way out of this problem. Suppose the Universe is radiation-dominated
up to some time ti, but expanded exponentially in the interval ti ≤ t ≤ tf ; after tf , the
Universe returns to radiation-dominated, and then (eventually) matter-dominated. Thus,

a(t) = ai e
H(t−ti), ti ≤ t ≤ tf

where ai = a(ti).
This has drastic consequences. All physical size scales increase exponentially, but the

horizon size is unchanged:

H(t) =
ȧ

a
=
H ai e

H(t−ti)

aieH(t−ti)
= H,

so the horizon size remains constant during inflation. This means that a given length scale
can actually cross the horizon twice in inflationary models.

For inflation that is driven by the GUT phase transition, the start of the inflationary
period is at ti ≈ 10−35 seconds, while it ends at tf ≈ 10−33 seconds. For example, consider
a scale λ◦ ∼ 1 Mpc (M ∼ 1.2 × 1012 M� Ωh2), i.e., a typical bright galaxy mass. At the
end of inflation, this size scale was

λ(tf ) = λ◦
a(tf )
a(t◦)

' 1.8× 10−2 cm.

This is much bigger than the horizon size at tf :

c

H(tf )
' 1.4× 10−24 cm
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Figure 10.1: A perturbation in a Universe undergoing inflation.

However, before inflation, this size scale was smaller by a factor of

e−Htf ' e−70 ≈ 4× 10−31

so that at ti,

λ(ti) ' 7× 10−33 cm

which is much smaller than the horizon size at t = ti.

10.2 The Origin of Inflation

We have explored how inflation can resolve many problems with the basic Big Bang model.
However we have not discussed in any detail about the underlying physics behind the
expansion. We basically need a short-term cosmological constant that starts the expansion
period. Looking at the Friedmann equation for a flat (k = 0) Universe,

ȧ2 =
8πG

3
ρa2 +

Λ
3
a2, (7.57)

notice that even in an empty Universe with ρ = 0, a positive cosmological constant Λ can
still result in a net force acting on a test particle. Since this can occur without any matter
or energy density, we attribute the repulsive force that results in expansion to the vacuum.
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One can think of the vacuum as not just empty space, but as the ground state for any
physical theory. The ground state is the lowest energy state, but it should also appear
to be the same in all coordinate systems; i.e., the vacuum is Lorentz invariant. Instead
of describing it as a vector field (as with electromagnetic theory) or with tensors (as in
General Relativity), the vacuum must be described by a scalar field. It has been shown by
Zel’dovich (1968) that a scalar field follows the following equation of state:

pvac = −ρvacc
2 (10.1)

This relationship follows from the 1st Law of Thermodynamics with the proviso that mass-
energy density ρvac must be constant if the vacuum expands or is compressed:

dE = dU + p dV = ρvacc
2 dV − ρvacc

2 dV = 0. (10.2)

Classically the vacuum has the lowest energy state ρvac = 0. However things are more
complicated in quantum mechanics. Note that the simplest energy system in quantum
mechanics is the harmonic oscillator, which has the potential

V (x) =
1
2
mω2x2, (10.3)

where we are following a particle with mass m that oscillates along the x direction. However,
the energy that a particle can have is quantized, so that the possible energies are

En =
1
2
~ω + n~ω, (10.4)

with n = 0, 1, 2, . . . . The lowest possible energy is therefore

E0 =
1
2
~ω. (10.5)

This is the zero-point energy of the vacuum. Alternatively, this can be thought of simply
as a consequence of Heisenberg’s Uncertainty Principle, where at the level of “empty”
space, virtual particle-antiparticle pairs appear and disappear. In quantum field theory, the
vacuum field can be interpreted as a collection of harmonic oscillators of all frequencies.
The vacuum energy is a sum over all possible contributing modes:

E0 =
∑
j

1
2
~ωj , (10.6)

where the total energy is computed by putting the system in a box with volume L3, letting
L → ∞, and summing up over all modes. Standard periodic boundary conditions are set
up so that we add only the allowed wavenumbers

ki =
2π
λi

=
2πni
L

, (10.7)

where ni is an integer. If we add up all possible contributing wavelengths, the vacuum
energy E0 diverges as ki → ∞. However we have good reason to believe that quantum
mechanics starts to break down at large enough energies, so we do not have to integrate
out to infinite wavenumbers.
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10.2.1 The Planck Era

We can guess when quantum mechanics as we know it breaks down. As we saw earlier
in classifying the possible Friedmann Universes (§ 7.9 starting on p. 93), using General
Relativity to evolve the Universe backward in time, almost all model Universes begin in an
initial singularity, with a = 0, ρ =∞. The precise nature of the singularity depends on the
geometry of the Universe.

k = +1 (Closed Universe): A finite amount of matter is packed into zero proper vol-
ume. All of spacetime is packed into this “point” singularity; there is nothing outside it.

k = 0 or −1 (Open Universe): An infinite amount of matter is packed into infinite
proper volume, so the singularity is “everywhere.” This is a consequence of the unchanged
topology of the Universe: an infinite (open) Universe is always infinite, even initially.

An initial singularity arises as we try to extrapolate back to t = 0 using General Relativity.
As t→ 0, radiation dominates over matter, and so the dynamics is just that of the radiation-
dominated era, the expansion rate is

H =
ȧ(t)
a(t)

=
1
2t

(10.8)

When the temperature of the radiation is T , the characteristic radiation frequency ω = 2πν
is given by

hν = ~ω = kT

=⇒ ω =
kTr
~

=
k

~

(
3c2

32πGσ

)1/4

t−1/2 (10.9)

where we have used Eq. 8.16 to relate t and T in the radiation-dominated era; σ is the
Stefan-Boltzmann constant.

The expansion rate cannot exceed the frequency ω without quantum effects becoming
important. This restriction H(t) < ω means that General Relativity breaks down for times
earlier than

tPl ≈
~

2

4k2

(
32πGσ

3c2

)1/2

= π

(
hG

45c5

)
∼ 10−43 s, (10.10)

which is roughly the Planck time. At tPl, the temperature of the Universe is T ∼ 5×1031 K.
Alternatively we can think of this as the time when quantum effects and gravitational

effects become equally important. Remember that in quantum mechanics, we can always
associate a Compton wavelength λ with a particle of mass m by the relationship

λC =
~

mc
(10.11)
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Gravitational effects become extremely important at distances on the order of the Schwarzschild
radius. Equating these two fundamental length scales from quantum mechanics and General
Relativity, (

λC =
~

mc

)
=
(
rSchw =

2Gm
c2

)
, (10.12)

we can define a Planck mass:

mPlanck =

√
~c

G
= 1.22× 1019 GeV c−2, (10.13)

a corresponding length scale, the Planck length:

lPlanck =
~

mPlanckc
=

√
~G

c3
= 1.62× 10−33 cm, (10.14)

and a Planck time scale:

tPlanck =
lPlanck

c
=

√
~G

c5
∼ 5.31× 10−44 cm. (10.15)

Our knowledge of physics breaks down when we reach these mass, length, or time scales.
Until we can come up with a theory of quantum gravity, we cannot describe any event prior
to the Planck time, ∼ 10−43 sec, after the Big Bang.

10.2.2 Inflationary Phase Transition

The cosmological phase transition that drives inflation is thought to come as the result of
new hypothetical particles that exist during the GUT era. This is analogous to the Higgs
field, which was introduced to remove singularities in electroweak theory, and to give the
W± and Z0 bosons mass. Measurements at CERN of the masses of these particles have
confirmed electroweak theory to a high degree of precision. The Higgs field is predicted
to be a scalar field, which is exactly the type of force necessary to create a vacuum-driven
expansion.

The basic idea is to postulate a particle, the “inflaton,” which is important during the
GUT era before the split between the strong and electroweak forces occurred. Following the
work by Alan Guth, the founder of inflationary theory, let us suppose that the inflaton has
a temperature-dependent quantum field ϕ and potential V (ϕ, T ). At a high temperature
greater than Tcrit, the potential has a minimum at ϕ = 0. The Universe would settle into
this minimum value, and ϕ = 0 would gradually pervade all of spacetime.

Suppose that the potential at ϕ = 0 is non-zero, so that V (0, T > Tcrit) > 0. All
observers would observe this same value for the scalar field in all reference frames, so we
may think of V (ϕ, T ) as being a property of the vacuum. However the field would actually
fluctuate due to the Heisenberg Uncertainty principle around its vacuum expectation value

〈ϕcrit〉 = 0,

while the potential energy fluctuates around the mean vacuum energy

〈V (0, Tcrit)〉 > 0.
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The value of this vacuum energy can be equated with Λ in Friedmann’s equation, and will
thus give the repulsive force that drives an exponential cosmological expansion.

This expansion cannot go on forever (or else our Universe today would look very dif-
ferent!). The key here is that the potential depends on temperature, and the expansion
can drive the energy density of the Universe low enough so that V (ϕ, T ) will significantly
change its shape. It is assumed then that in the hot GUT era, the potential was symmetric
about ϕ = 0, and as the Universe cooled and went through its GUT phase transition, the
potential developed additional minima at ϕ = ±φmin. If the potential is at all like the Higgs
potential, it can be described as

V (ϕ, T ) = −(µ2 − aT 2)ϕ2 + λφ4, (10.16)

where µ is the mass of the field, and a and λ are constant. The minima for V will occur at

ϕmin =

{
0 for T > Tcrit√

µ2−aT 2

2λ for T < Tcrit,
(10.17)

with the critical temperature

Tcrit =
µ√
a
, (10.18)

and

Vmin =

{
0 for T > Tcrit

− (µ2−aT 2)2

4λ for T < Tcrit.
(10.19)

If the inflaton field is like the Higgs field in electroweak theory, then the scalar field is
complex so it is defined over the ϕ1 and ϕ2 plane. The original symmetric V (ϕ1, ϕ2, T ) is
paraboloidal in shape, while the new post-GUT potential has a ‘Mexican hat’ shape so that
it has rotational symmetry. The “true” vacuum is found at the circle along the bottom of
the hat, while the minimum in the original symmetric potential is a “false vacuum.”

Note that the critical temperature when the phase transition occurs is Tcrit ∝ µ. Thus
inflation will set in at the mass scale of the scalar field that produces inflation. For GUTs,
this is roughly mc2 ∼ 1015 GeV. This characteristic energy is expected to be prevalent about
10−34 sec after the Big Bang, and is often refered to as the GUT energy scale. In typical
inflationary scenarios, the exponential expansion period lasts for about 100 times as long as
this. Thus the scale factor of the Universe increased by a factor of roughly e100 ≈ 1043. The
horizon scale at the start of inflation was only r = ct ≈ 3 × 10−24 cm and so was inflated
to a size of 3× 1019 cm at the end of inflation. After inflation, the Universe would expand
at much slower rates, so that this original horizon scale would now be 3 × 1044 cm, which
is much larger than the present size of the observable Universe (∼ 1028 cm).

By originating as a result of a GUT phase transition, inflation also manages to solve a
number of other problems.

4. The expansion of the Universe: Inflation naturally explains why the
Universe is expanding. The idea that the Universe is expanding because it
has always expanded in the past is not very satisfactory. Inflation however
forces the initial quantum fluctuation that is the beginning of the Universe
into expansion.
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5. Structure formation in the Universe: Inflation not only predicts the
extremely uniform cosmic microwave background radiation that we observe
today, but it also makes predictions about fluctuations in this smooth back-
ground. More precisely, quantum fluctuations in the inflationary period can
create the seeds of the density perturbations which eventually evolve into
the structures we have today in the present Universe. Although the spe-
cific details for how this works depends on the exact scalar potential used,
a wide range of theories predict a Harrison-Zel’dovich type spectrum.

6. Baryon-antibaryon asymmetry: Sakharov (1967) outlined three rules
that must hold for baryons to outnumber antibaryons:

(a) The baryon number must be violated, so that more particles are formed
than antiparticles.

(b) C (charge conjugation) and CP (charge conjugation and parity) must
be violated. This means particles and antiparticles must behave dif-
ferently in certain reactions.

(c) The matter-antimatter asymmetry must be created under non-equilibrium
conditions. Similar arguments to the ones in § 8.3 for the primordial
nucleosynthesis of the light elements are used. Since the masses of a
proton and antiproton are expected to be exactly the same, thermal
equilibrium would imply that they are created in equal numbers.

These rules may be satisfied by observations in particle physics as well as
conditions in the early Universe. The first rule comes naturally out of the
symmetry breaking in GUTs (with a secondary prediction that the proton
must be unstable, with lower limits on the decay time of ∼> 1032 yrs). C
and CP violation has been observed in the decay of neutral K0 and K̄0

mesons, with a slight imbalance of one extra matter particle for every 1000
decays—much greater than the ∼ 10−8 asymmetry necessary for baryo-
genesis. The details by which the baryons and antibaryons reach their
final asymmetry are not entirely understood, although the typical theory
involves a hypothetical massive boson and antiboson which are involved
with the unification of the strong and electroweak forces. After symmetry
breaking and the GUT phase transition, they decay into the final baryon
states with the matter-antimatter asymmetry.

Many people have worked on inflation theory since its initial proposal by Guth (1981).
The main difficulty is choosing the right potential V (ϕ, T ). Usually what people have done is
to work backwards from what type of inflation is necessary to explain observations, and then
to derive the scalar field and reconstruct the inflation potential from these requirements.
Problems with Guth’s classical inflation model, involving quantum tunneling through the
potential, resulted in non-stop inflation and a Universe that would continue to expand
exponentially forever. Thus other variants have been proposed over the years, including
Andre Linde’s chaotic inflation which doesn’t fix the initial minimum of the false vacuum
at ϕ = 0, but instead assigns it a random, fluctuating starting value ϕa. However no single
model has been completely satisfactory, and so new versions of inflation continue to be
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developed, often in what seems to be a rather ad hoc manner, although they all have basic
foundations in modern quantum and gravitation theory.

Note then that there is not a single theory of inflation, but actually a class of theories.
Although inflation solves many fundamental problems of the Big Bang, this feature does
not guarantee that inflation actually occurred. The very ad hoc nature of the many variants
of inflation may even argue against the theory as a whole. However many physicists would
agree that the inflation model solves more problems than it introduces, and some variant
of inflation is here to stay.

10.3 The Earliest Phase of the Universe

We have seen in previous chapters that the earlier we look back in time after the start of
the Big Bang, the higher the temperatures and densities are observed. Let’s summarize the
most significant events in the early universe:

∼ 104 K, 1 eV, ∼ 105 yr after BB:
Formation of atoms; decoupling of matter and radiation.

∼ 105 K, 10 eV, ∼ 104 yr after BB:
Domination of matter energy over radiation energy densities.

109 K, ∼ 90 keV, ∼ 3 min after BB:
Neutron decay becomes important; nucleosynthesis starts at this time and
ends ∼ 30 min later.

1010 K, ∼ 1 MeV, ∼ 1 sec after BB:

Neutrinos decouple; e−-e+ pairs annihilate.

3× 1010 K, ∼ 3 MeV, ∼ 0.1 sec after BB:
The weak interactions that interconvert n and p become unimportant, so
that unequal numbers of n and p freeze out.

∼ 1013 K, 1 GeV, ∼ 10−5 sec after BB:

Quark/hadron transition: quarks are confined into baryons and mesons.

∼ 1015 K, ∼ 1 TeV, ∼ 10−12 sec after BB:
End of electroweak unification; the electromagnetic and weak nuclear forces
split.

∼ 1026 K, ∼ 1014 GeV, ∼ 10−33 sec after BB:
End of Grand Unification of the strong and electroweak force; origin of
matter-antimatter asymmetry; creation of magnetic monopoles; era of in-
flation.

∼> 1032 K, ∼> 1019 GeV, ∼< 10−43 sec after BB:

Unification of all forces including gravity: supergravity?, superstrings?,
supersymmetry?, M-brane theory?
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The limit of known physics occurs at times less than the Planck time ∼< 1043 sec.
Hawking and Penrose (1988, 1989) have shown that at t = 0, singularities are unavoidable
with the current theory of gravity, and the field equations of General Relativity break down.
Hence, quantum gravity is absolutely necessary for understanding physics shorter than the
Planck time. However this has not stopped physicists from speculating what might have
occurred before this time, and even wondering what might have started off the Big Bang
to begin with. These ideas are of course highly speculative, and there is no guarantee that
any of them might become testable in the near (or far) future. Many of these ideas usually
involve the Universe beginning as an acausal quantum fluctuation.

Remember that in quantum theory, a vacuum is never truly empty. Virtual particle-
antiparticle pairs appear and disappear, “borrowing” energy from the vacuum, and then
giving up this energy a short time later in an act of mutual annihilation, with the only
requirement that the Heisenberg Uncertainty principle must be obeyed:

∆E∆t ∼> h (10.20)

Before the Big Bang, spacetime may not exist, but the laws of quantum mechanics are
thought to still operate. Thus mini-universes may be popping in and out of existence in a
kind of quantum “foam.” For one of these virtual universes to actually grow into a “real”
universe requires inflation to take hold. The probability for inflation to start is irrelevant;
it only has to take hold once, in all of eternity, after which it inflates the Universe.

Here is a possible variant origin for the Universe based on the above ideas. Guth
(2001) has recently developed a model for “eternal inflation.” Inflation ends once the
Universe cools to the point where the phase transition ends, and the GUT symmetry is
broken. However the rate at which this occurs can be thought of as quantum-like probability,
that can be expressed with a half-life. The scalar potential can decay at slightly different
rates, and hence end its phase transitions in different parts of the Universe at different
times. Thus one part of the expanding spacetime bubble may end its inflationary phase
and continue expanding normally, forming a pocket universe. The other parts continue their
exponential expansion, until these inflationary pockets also subdivide themselves into other
pocket universes that are no longer inflationary, and inflationary pockets. This continues
ad infinitum until you get an infinite tree of reproducing Universes, all separate from each
other (since inflation has expanded them all outside of each others’ horizons).
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Chapter 11

Analyzing the Cosmic Microwave
Background

After subtracting of the dipole anisotropy, residual variations in the CMB are found at the
δT = 29± 1 µK level, or

δT

T
= 1.06× 10−5 (11.1)

level. Thus the CMB is amazingly isotropic, although it is not completely smooth. We
can describe the level of fluctuations by spherical harmonics. Spherical harmonics can be
thought of as the modes of vibration of a sphere, where each harmonic produces a pure
“note” of a definite frequency.

The normal procedure in describing the CMB fluctuations is to examine the changes in
temperature from point to point in the sky. This distribution of T is then expanded as a
sum of spherical harmonics:

δT (θ, φ)
T

=
∞∑
l=0

m=+l∑
m=−l

almYlm(θ, φ), (11.2)

where θ and φ are the usual spherical angles, and the normalized functions Ylm are defined
by

Ylm(θ, φ) =
[

2l + 1
4π

(l − |m|)!
(l + |m|)!

]1/2

Plm(cos θ)eimφ ×

{
−1m for m ≥ 0,
1 for m < 0,

(11.3)

where Plm(cos θ) are the associated Legendre polynomials of order l. This expansion into
spherical harmonics is analogous to a Fourier decomposition of a wave into plane wave
elements. For each wave number l, there are m = 2l + 1 separate modes producing the
same “note,” where −l ≤ m ≤ +l. Thus for the quadrupolar mode of l = 2, there are five
different spherical harmonics functions: Y2,−2, Y2,−1, Y2,0, Y2,1, Y2,2.

By Ka Chun Yu
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Figure 11.1: A diagram showing the amplitudes of spherical harmonics with l = 1, 2, 3, 4
and positive m. Each function is defined over the entire surface of a sphere, and hence is
shown in its entirety via a sinusoidal projection, with the poles at the top and bottom. The
l = 1 modes are dipoles; the l = 2 modes are quadrupolar modes. The l = 0 mode is not
shown since it is just an amplitude without any angular dependences.

The Ylm (Fig. 11.1) are a complete orthonormal set of functions on a sphere, so that∫
4π
Y ∗lmYl′m′dΩ = δll′δmm′ , (11.4)

where the asterisk means a complex conjugate, the integral is taken over the whole sky (i.e.,
for a spherical element of solid angle, dΩ = sin dθ dφ), and δij is the Kronecker δ-function
(which is = 1 if l = l′ and m = m′, and = 0 otherwise). If we use the orthogonality condition
Eq. 11.4, the values for alm can be found by multiplying the temperature distribution over
the sphere by Y ∗lm and integrating over the sphere:

alm =
∫

4π

δT

T
(θ, φ)Y ∗lmdΩ. (11.5)

The alm are generally complex and follow the condition,

〈a∗l′m′alm〉 = Clδll′δmm′ , (11.6)
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where Cl is the angular power spectrum:

Cl ≡
1

2l + 1

∑
m

alma
∗
lm = 〈|alm|2〉. (11.7)

Thus the power spectrum measures the mean square temperature fluctuation in the 2l + 1
spherical harmonic modes at each l. The analyses start with the quadrupole mode l = 2
since the l = 0 monopole mode is just the mean temperature over the observed part of the
sky, and the l = 1 mode corresponds to the dipole anisotropy. Higher multipoles correspond
to fluctuations on angular scales

ϑ ' 60◦

l
. (11.8)

Thus for higher angular resolution observations, more terms of high l must be included to
describe the power spectrum.

Do we expect fluctuations in the CMB? We see today that matter in the universe is not
homogeneously distributed, but it is collected into galaxies, groups and clusters of galaxies,
and super-clusters, with large voids in between. We would expect the CMB to contain
lumpy seeds of the cosmic structures that we see today.

If we were to follow photons from the surface of last scattering at recombination, photons
climbing out of a gravitational well (in regions of higher density) would be redshifted. Those
photons coming from a region of low density “rolls down” a gravitational potential and hence
are blueshifted. While the photons traverse across the universe to reach us, they may run
across additional pockets of matter, but the blueshift going in is compensated by a redshift
climbing out (unless the gravitational potential changes during the traverse), so the photons’
frequencies should not be affected after recombination. Photons also suffer time dilation
compared to unshifted photons.

CMB photons thus preserve a “memory” of the density fluctuations from emission from
the surface of last scatter (LS). The combination of gravitational redshift and time dilation
is known as the Sachs-Wolfe effect, where both effects contribute to δT/T in a way that is
linearly dependent on δρ/ρ. We found in Eq. 3.38 that the shift in frequency for photons
climbing out of a gravitational potential well is:

δν

ν
=
δT

T
=
GδM

dc2
≈ δφ

c2
,

where δφ is the Newtonian gravitational potential and d is the size of the perturbation. For
the time dilation term, we use Eq. 7.20 that tells us the cosmic scale factor a was smaller
in the past when the radiation was emitted:

δT

T
= −δa

a
. (11.9)

In the standard models in the matter-dominated era, density fluctuations grow as δρ/ρ ∝ a.
For a flat universe, a ∝ t2/3 (Eq. 7.67), or δρ/ρ ∝ t2/3. Thus the cosmic scale factor will
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incrementally change with time as

δa ∝ 2
3
t−1/3 δt

=⇒ δa

a
=

2
3 t
−1/3 δt

t2/3

=
2
3
δt

t
. (11.10)

As shown in Eq. 3.38 though, δν/ν = −δt/t is just the Newtonian gravitational redshift.
The net result of the gravitational redshift and the time dilation contributions is therefore

δT

T
=
δφ

c2
− 2

3
δφ

c2
=

1
3
δφ

c2
. (11.11)

The physical size of the perturbation d at redshift z corresponds to a physical size today of
d◦ = d/(1 + z). From 1 + z = a◦/a and ρ ∝ a−3 ∝ (1 + z)3, we know that

δρ

ρ
∝ a ∝ 1

1 + z
.

This can then be used to give us the size of the density perturbation at the time of decou-
pling:

δρ

ρ
=

δρ◦
ρ◦

1
1 + z

=⇒ δρ =
δρ◦

1 + z

ρ

ρ◦

= δρ◦
(1 + z)3

1 + z

= δρ◦ (1 + z)2. (11.12)

Since δM ≈ δρ d3, it follows that

δφ ≈ GδM

d
≈ Gδρ◦ d2

◦. (11.13)

The gravitational potential in Eq. 11.13 does not have any dependence on z; thus δφ at any
redshift is the same as that estimated for the perturbation once it has evolved linearly to
the present epoch.

In §9.3, we saw that there are a number of arguments which suggest that the primordial
fluctuation spectrum,

δρ

ρ
∝M−α, (9.39)

is likely to be nearly flat, i.e., α = 0 or α = 2/3 for the Harrison-Zel’dovich spectrum. Along
with M ≈ ρ◦ d3

◦, Eq. 9.39 will give

δρ◦ ∝ ρ◦M
−α

∝ d−3α
◦

=⇒ δφ ≈ Gδρ◦ d
2
◦

∝ d2−3α
◦ . (11.14)
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Figure 11.2: A summary of observations of the CMB power spectrum including the recent
results from BOOMERanG and MAXIMA (2000), shown as blue and purple boxes. These
two balloon-borne experiments measured patches of the sky (instead of the entire sky á la
COBE) and are the best results to date for data that covers the angular range in the first
acoustic peak of the power spectrum. The boxes show the size of the error bars as well as
the width of the data bins. The solid lines represent different universe models.

If the perturbation now subtends an angle θ = d◦/D in the sky, then

δφ ∝ θ2−3α

=⇒ δT

T
∝ θ2−3α ∝ θ0 = 1 for α = 2/3. (11.15)

Thus the amplitude of the fluctuations due to the Sachs-Wolfe effect is independent of
angular scale. (The Harrison-Zel’dovich perturbation spectrum is thus known as a scale-
invariant spectrum.)

Fig. 11.2 shows a current compilation of measurements of the power spectrum. At
l < 30 (i.e., large angular scales) in the points associated with COBE measurements, the
spectrum is flat as predicted by the Sachs-Wolfe effect. In fact one can make a direct
estimate of the perturbation power spectrum index α by analyzing the COBE data. This
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has been done by a number of authors who derive α ≈ 0.68, which is remarkably close to
the Harrison-Zel’dovich index of 2/3 (Bennett et al. 1996, Hancock et al. 1997).

Near l = 200, the power spectrum peaks in the first of a series of Sakharov or acoustic
peaks.1 The wavelengths associated with these higher order multipoles are smaller than
the horizon at last scattering. Thus this region looks fundamentally different from l ∼< 100
because different physical processes start to effect the inhomogeneities within the LS horizon.

The acoustic peaks are the result of density perturbations in the baryon and photon
fluid which exists before recombination. The radiation pressure from the photons resists the
gravitational compression due to the inhomogeneities in the fluid. This pressure reverses the
compression until the perturbation overshoots its original size, making it more rarefied than
the surrounding medium. The pressure from outside the perturbation then acts to reverse
the motion of the perturbation. This cycle continues in a cycle of oscillating compressions
and rarefactions. These oscillations due to the photon pressure can then be thought of as
acoustic standing waves inside the LS surface horizon. They oscillate about regions of low
and high energy density, with the shorter wavelengths of the potential fluctuation resulting
in faster fluid oscillations, since the frequency of oscillation is given by

ωi = kics, (11.16)

where ki is the wavenumber of the oscillation, and cs is the sound speed in the medium.
The size of the mode k1 is inversely related to the distance the sound wave can travel by
recombination. Thus for a perturbation with a sound horizon at recombination of ds,

k1 =
π

ds
.

A mode with twice the wavenumber (or half the wavelength) oscillates with twice the
frequency, and hence this mode k2 = 2k1 can compress and then rarefy before recombination.
Similarly the mode k3 = 3k1 can compress, rarefy, and compress again. These first three
modes correspond to the first, second, and third acoustic peaks in the power spectrum.

At recombination, the photons begin to free-stream and will not be available to provide
the pressure in the fluid. Thus the photon-baryon fluid stops oscillating. The modes that
are frozen in an extremum of their oscillation will have enhanced temperature fluctuations.
Waves that have completed a half-integral number of oscillations (every other mode) by
the time of LS will be at maximum amplitude. The rest of the wave modes which were at
mid-phase at LS will have smaller amplitudes. Thus variations in the oscillation phase with
wavelengths rsults in a series of peaks as a funciton of l.

The exact form of the power spectrum depends on virtually every important param-
eter of the universe, including Ω and H◦. Thus if we were able to measure the power
spectrum accurately out to high l, we would be able to constrain these parameters much
more accurately. So how exactly do physical parameters of the universe effect the power
spectrum?

In a flat universe, the dominant angular scale for CMB fluctuations, the angle subtended
by the sonic horizon at the surface of last scatter is roughly 1◦. In our temperature fluc-
tuation spectrum, this corresponds to l = 180. If the universe is open, photons move on

1These peaks are also called “Doppler” peaks, although they do not have anything to do with Doppler
shifts.
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more rapidly diverging paths in negatively curved space. Due to this effect, the dominant
angular scale for microwave shifts to smaller angular scales (and hence larger l). This result
leads to Fig. 11.3 where the CMB power spectrum shifts to higher l.

The position of the first acoustic peak in the CMB power spectrum is most sensitive to
the value of Ω. The peak moves to the right in proportion to 1/

√
Ω for large values of Ω, with

only a weak dependence on the Hubble constant H◦, Ωb, and other cosmological parameters.
Decreasing Ω to ∼ 0.2 has the dramatic consequence of shifting the first acoustic peak from
l ≈ 200 to l ≈ 600. The BOOMERanG and MAXIMA results thus strongly imply that
Ω ≈ 1. Note however that the first acoustic peak does not tell you the actual breakdown
of Ω into the various energy and mass densities, be it radiation, baryonic matter, CDM,
HDM, or Λ. However measurements of dark matter in galaxy clusters imply that there isn’t
enough cold dark matter to get Ω up to 1; the upper limits to neutrino mass, as we have
seen, also can contribute no more than a few percent. Any shortfall would have to be made
up by a cosmological constant (or dark energy as it is popularly being called currently).
This is supported by the independent line of evidence of an accelerating expansion from
supernovae light curves.

Figure 11.3: A comparison of power spectra from an open (black) and a flat (cyan) universe,
a standard cold dark matter model.

The behavior of the early universe fluid will also depend upon the number densities of
baryons relative to photons. Baryons increase the effective mass of the baryon-photon fluid
that is oscillating. The greater gravitational potential leads to a larger compression of the
fluid in the potential well. This is similar to a larger mass on a spring that results in a wider
swing in oscillations. This increase in the amplitude of the oscillation does not change the
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location of the zero point. The first, third, fifth, . . . acoustic peaks are associated with how
far the plasma is compressed or “falls” into the potential wells. Thus increasing the baryon
density ρb will enhance the odd-numbered peaks. The even acoustic peaks however trace
the movement of fluid outwards, or how much the plasma rarefies. Thus the even peaks will
be relatively suppressed when the baryon-photon ratio goes up. By measuring the relative
heights of the peaks in the fluctuation spectrum, we should be able to determine the density
of protons and electrons relative to that of the radiation.

Figure 11.4: Increasing the ratio of baryon to photons results in different enhancements of
the odd acoustic peaks with respect to the even peaks.

If there is a cosmological constant, then the depth of gravitational potential wells decay
with time. Thus, a photon which falls into a deep potential well gets to climb out of a slightly
shallower well. The net effect leads to a slight increase in photon energy along this path.
Another photon which travels through a low density region (which produces a potential
“hill”) will lose energy as it gets to descend down a shallower hill than it climbed up.
Because of this effect, a model with a cosmological constant will have additional fluctuations
on large angular scales. Large angular scale measurements are most sensitive to variations
in the gravitational potential at low redshift.

Additionally the higher acoustic peaks can also be used to measure the ratio of dark
matter energy density to radiation density. This has to do with what happens to modes in
the radiation-dominated versus the matter-dominated eras. Density fluctuations can damp
easily during the radiation epoch as a result of photon viscosity, leaving the gravitational
potential to decay away. The fluid bouncing back from a compression sees no potential
to climb out of, and hence, the amplitude of the oscillation increases dramatically. Since
the shorter wavelength modes start oscillating first, it is the larger l modes that will be
driven in this manner. A comparison of the amplitudes of the high multipole peaks, most
importantly the first three peaks, should give us the matter-energy density ratio ρm/ρr.
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Figure 11.5: A cosmological constant reduces the depth of gravitational potential wells over
time, resulting in additional fluctuations at large angular scales.

Finally the amplitudes of the highest wavenumber modes decrease quickly in the power
spectrum as a damping tail. The fluctuations associated with these small angular scales have
sizes that are comparable to the distance that photons travel during recombination. Note
that recombination does not occur instantly, and so photons do have a chance to scatter for
a bit longer. If photons random walk a distance equal to the size of the fluctuation before
they start free-streaming, then hot and cold photons can mix and average out, resulting
in a damping of the amplitude of these high order peaks. Increasing ρb will decrease the
mean free path of the photons, and shift the damping tail to higher l. Increasing the matter
density ρm will increase the relative age of the universe at recombination, and move the
damping tail the other direction towards larger scales. Finally the curvature of the universe
will also affect the location of these peaks in the damping tail. Measuring high multipole
peaks and determining the location of the damping tail can therefore give a consistency
check to the determinations of the baryon and matter densities, and the curvature from the
lower l peaks.
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Appendix A

Gravitational Lensing

A.1 Basics of Gravitational Lensing

We have seen in Ch. 4 that the theory of General Relativity predicts the deflection of light
by a gravitating body. The amount of deflection was given by:

α = −4GM
bc2

, (ref113)

where b is the impact parameter, and M is the mass of the deflector. For small deflection
angles, b is amost exactly the closest approach distance of the light rays to the deflector.

If the deflector is precisely aligned with the background source, then the light would
be equally deflected above, below, and off to the side of the deflector. The observer would
therefore see a circular ring of emission. The idea for this effect originated first with Chwol-
son (1924), and subsequently by Einsten (1936), although today, they are known as Einstein
rings.

It is easy to calculate the size of the Einstein ring radius. Let Dd be the distance from
the observer to the deflector, Ds be the distance to the source, and Dds be the distance
between the deflector and the source. If θE is the angular radius of the Einstein ring, then
by simple geometry,

θE = α

(
Dds

Ds

)
, (A.1)

where α is given by Eq. 4.75. Eq. A.1 is thus

θE −
4GM
bc2

(
Dds

Ds

)
. (A.2)

Since b = θEDd,

θ2
E =

4GM
c2

(
Dds

DsDd

)
=

4GM
c2

1
D
, (A.3)

By Ka Chun Yu.
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Figure A.1: The gravitational lensing geometry when the deflector and background source
are aligned.

where D = DsDd/Dds. The Einstein angle θE is therefore

θE =
(

4GM
c2

)1/2

D−1/2. (A.4)

We have worked out this derivation assuming Euclidean geometry. However the relation in
Eq. A.4 also works at cosmological distances if the D terms are angular diameter distances.
This is a term often used in the literature and is defined as

DA =
Dm

1 + z
. (A.5)

The usefulness of the above definition comes about in the expression for the angular
size of an object derived in a Robertson-Walker metric. Here the distance measure is
Dm = |k|−1/2 sin k1/2R where k is the curvature constant in Eq. 7.11, and R is the spatial
coordinate in the Robertson-Walker metric. The angular size of an object at cosmological
distances is therefore

∆θ =
d

DA
, (A.6)

where d is the proper length of the object. For small redshifts, z � 1, and Eq. A.6 turns
into the Euclidean expression d = r∆θ.

Eq. A.2 can be re-written so that the mass M is in solar masses and the distance D in
109 pc (= 3.056× 1022 km):

θE = 3× 10−6

(
M

M�

)1/2( D

109 pc

)−1/2

arcsec. (A.7)
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Thus clusters of galaxies with Mcluster ∼ 1015 M�, and located at cosmological distances,
can have Einstein rings with sizes of tens of arcseconds across, which is easily observed.

The Einstein ring will appear if the background source and deflecting mass are precisely
aligned. However as the below sequence shows, the appearance of the source changes in
appearance depending on the angular separation between the two. Note that the following
example is for a point source lens and a compact background object.

Figure A.2: The changing appearance of the background source as it passes behind a point
mass. An Einstein ring is formed when the two sources are perfectly aligned.

Here the dashed circle is the location of the Einstein ring. The large and small solid
circles denote the deflector and background source, respectively. As the angular separation
of the two objects approaches the Einstein radius, a second image of the source appears on
the opposite side of the deflector. Both images grow into arcs that merge into a circle when
the objects are exactly aligned.

Gravitationally lensed arcs in galaxy clusters were first reported by Soucail et al. (1987)
and Petrosian (1986). One of the most famous examples is the cluster Abel 2218 observed
with the Hubble Space Telescope by Kneib et al. (1996). The rings seen there are incomplete
and elliptical, as oppose to being exaclty circular. this suggests that the gravitational
potential of the cluster is not precisely spherically symmetric, and the background galaxy
is not aligned with the cluster center.

In general, for a compact object that is lensed by an extended source, the gravitational
pontential is not spherically symmetric. The lensing effect is also not true lensing in the
sense of geometric optics. The total delay in time from a lensed image is a combination
of both a geometric delay as well as a gravitational time delay from time dilation. The
appearance of the (multiple) image(s) of the background source can merge and/or split
when the background object passes through caustics. The images formed as a result fo this
orientationk tend to lie along critical lines or curves.

A.2 Microlensing

Gravitational lensing can occur for objects within our galaxy as well. For instance, let’s say
we observe a star near the center of our galaxy (Ds ∼ 8 kpc) being lensed by a foreground
star located halfway to the Galactic center (Dd ∼ 4 kpc). Assuming a deflector mass
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equivalent to the mass of the Sun, from Eq. A.4, the Einstein angle is

θE =
(

4GM
c2

)1/2

D−1/2

∣∣∣∣∣
M=2×1033 g

≈ 4× 10−4 arcsec. (A.8)

Any arcs or other examples of multiple images will be at this size scale, and will thus be too
small to observe. However, there will still be a cumulative brightening of the background
star as it passes close to the deflecting star. In fact, if the closest approach between the
point mass lens and the source is b ≤ θE , the peak amplification of the source is

µmax ∼> 1.34. (A.9)

This corresponds to a brightening of 0.34 mag, which is easily observed.
The probability that any one star will pass close enough in angular separation to another

star is small. As a result, observers must look at many stars (100,000s to millions) over a
length of time to catch any chance lensing. Paczyński (1986) first proposed the monitoring
of millions of stars in the Large Magellanic Cloud to look for lensing by stars within the
halo of our Galaxy. In this way, one could map out the distribution of stellar-mass objects
in our halo.

Because monitoring millions of stars will inevitably lead to the detections of variables,
one has to separate stars with variability from stars underoing microlensing. Fortunately
the light curves of stars that are being lensed should brighten and fade symmetrically with
time, and the brightening should be achromatic, i.e., the same light curve should be seen
at different wavelengths.

For a lens with a relative velocity (in the plane of the sky) v with respect to the source,
the time-scale for microlensing light curve variation is:

t◦ = 0.214 yr×
(
M

M�

)1/2( Dd

10 kpc

)1/2(Dds

Ds

)1/2(200 km s−1

v

)
. (A.10)

The ratio (Dds/Ds)−1/2 is close to 1 if the lenses are in the Galactic halo and the sources in
the LMC. There are several attempts currently to find MACHOs (Massive Compact Halo
Objects) via microlensing. If the light curves are sampled anywhere from time intervals
of an hour to a year, MACHOs in the mass range 10−6 M� to 102 M� can be potentially
detected.



Appendix B

Weighing the Universe

With the data we currently possess, what do we actually estimate for Ω? We can subdivide
the total Ω into two components:

Ω = Ωm + ΩΛ, (B.1)

where Ωm is the contribution from matter and energy that has gravity, and ΩΛ is from the
vacuum energy. The former includes radiation (which we can estimate from the CMB),
hot dark matter such as neutrinos, cold dark matter, and ordinary matter in the form of
baryons. Recall Eq. 8.4 which gives the radiation component:

Ωr =
4.72× 10−34

1.88× 10−29
= 2.5× 10−5.

Summing up all three neutrino families gives:

Ων = 0.68Ωr. (B.2)

The best evidence for the baryon density comes from Big Bang nucleosynthesis models.
Burles, Nollett, & Turner (1999) give

Ωbh
2 = 0.020± 0.002, (B.3)

at the 95% confidence level. Actually attempting to measure the luminous and dark mass
in galaxies requires a number of different methods. Adding up all the stars that we see
gives just a tiny fraction:

Ω? ≈ 0.005± 0.002. (B.4)

Observations of spiral galaxies however suggest that there are extensive dark matter haloes
that keep the galaxies’ rotation curves flat out past the edge of the visible matter. The
mass-to-light ratios for stars versus galaxies is:

M

L

∣∣∣∣
?

= 1–3
M�
L�

(B.5)

M

L

∣∣∣∣
galaxy

= 10–20
M�
L�

. (B.6)

By Ka Chun Yu and Phil Maloney.
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Thus rotation curves suggests that there is about ten times as much dark matter as there
is ordinary baryonic matter.

Similar conclusions are found from other independent techniques. Using the virial theo-
rem along with observed sizes of the clusters and velocity dispersions of the cluster members,
Merritt (1987) finds a mass-to-light ratio in galaxy clusters of

M

L

∣∣∣∣
cl,vir

≈ 350h−1 M�
L�

, (B.7)

which again suggests that the dark matter density is many times the baryonic density.
Studies of the dynamics of galaxies at small cosmological distances (say r ∼< 10h−1 Mpc)

give

Ωr<10 ∼ 0.05–0.2. (B.8)

This value is based on statistical analyses of the relative velocities of galaxies as a function of
separation (statistical because the redshift only gives one component of the relative velocity
of galaxies), on studies of the dynamics of loose groups of galaxies, and estimates of the true
mass-to-light ratios of galaxies with flat rotation curves (i.e., including the contribution of
the dark matter to the estimate of Ω?).

Cluster masses can also be determined by several other techniques. The binding mass
can be estimated from observations of temperature and density profiles of hot, x-ray emitting
gas in rich clusters, under the assumption that the gas is in hydrostatic equilibrium in the
cluster potential. (Note that for masses of 1013–1014 M� and radii of ∼ 1 Mpc, as is typical
of rich clusters, Eq. 9.40 gives Tvir ∼ 106–107 K, at which temperature the gas will radiate
in x-rays.) This gives a density ratio in the range Ωcl,xray ∼ 0.10–0.4.

For rich clusters that are fortuitous enough to be aligned with background galaxies, the
size of the lensing arcs can be related to the cluster mass via Eq. A.7. Studies in these cases
give results that are consistent with the x-ray determinations. Including both baryonic and
dark matter in the sum total, the density ratio of the gravitating matter is:

Ωm ∼ 0.25, (B.9)

of which roughly 1% of this is in the form of baryons.
At larger distances r ∼> 10h−1 Mpc, dynamical studies show

Ωr>10 ∼ 0.05–1.0. (B.10)

These results are based on attempts to measure peculiar (non-Hubble flow) velocities on
these scales. Perhaps the most important (and certainly the least controversial) is that due
to the CMB dipole anisotropy. The microwave background is observed to be anisotropic at
the ∼ 10−3 level, being hotter in one direction and cooler in the opposite direction (hence
a “dipole” term). This dipole anisotropy indicates that our local patch of the universe
is moving with a velocity of ∼ 600 km s−1 with respect to the frame in which the CMB
appears uniform, i.e., the dipole anisotropy is just due to the Doppler effect. The standard
interpretation is that this peculiar motion is due to acceleration caused by large-scale density
inhomogeneities.



177

This last estimate gives the first direct indication that Ω ∼ 1. However as we have seen,
if galaxies are more clustered than the matter distribution, then only observations on very
big scales will probe the true value of Ω.

If we believe that Ωtotal = 1, and Ωm ∼ 0.25, then this implies that ΩΛ ∼ 0.7. Two
independent lines of reasoning support the conclusion that ΩΛ > 0. First are the results of
groups finding Type Ia supernovae at high z and measuring their light curves. Type Ia SNs
are believed to be good standard candles. Therefore they are good objects to observe to test
the luminosity-redshift relationship (cf. Eq. 7.32). Deviations from DL ∝ z for observations
of a standard candle would hint that a cosmological constant Λ is at work. Two separate
research groups (Perlmutter et al. 1999, Ries et al.1998) find similar results showing an
acceleration in the Hubble expansion. The best fit from the Perlmutter et al. Supernova
Cosmology Project team gives

Ωm = 0.28+0.09
−0.08. (B.11)

Figure B.1: A plot from Netterfield et al. (2001) showing the CMB angular power spectrum
out to l ∼ 1000, plotted with best fit models.

Yet another independent check comes from the BOOMERanG and MAXIMA exper-
iments to measure and analyze the angular power spectrum from the Cosmic Microwave
Background. Preliminary results from the BOOMERanG team (de Bernardis et al. 2000)
show a spectrum with a strong acoustic peak at l ≈ 200 which strongly suggests a Ω = 1
universe (see Ch. 11). New results using more data that sampled the power spectrum out
to l ∼ 1000 were recently presented by Netterfield et al. (2001). They used nine different
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fits to extract the values of various cosmological parameters. The median values of these
fit results are:

Ωtotal ≈ 1.00
Ωm ≈ 0.38

Ωbh
2 ≈ 0.022

ΩCDMh
2 ≈ 0.13

ΩΛ ≈ 0.62.

There is thus growing evidence to suggest that

Ωm ∼ 0.3, (B.12)
ΩΛ ∼ 0.7, (B.13)
Ωb ∼ 0.02. (B.14)

Thus not only is baryonic matter—the type we are most familiar with—just a fraction
of the total matter density, but the dominant form of energy density in the universe is
a cosmological constant (or “dark energy”), something that we have just a bare minimal
understanding of.



ASTR 3740: Homework #1
Due: Friday, January 26, 2001

1. Distribution of globular clusters [10 pts.]: Early this century, the American as-
tronomer Harlow Shapley studied stellar clusters, including a number of globular clus-
ters, spherical distributions of 100,000s to millions of stars. He was able to determine
the distance to 69 of them by measuring the periods of Cepheid variable stars located
in the closest clusters, and then bootstrapping his way to more distant clusters by
assuming all globular clusters have roughly the same angular diameter. (Cepheid
variables have a well known period-luminosity relationship: if you can determine the
periodicity of their variability in brightness, you know how intrinsically bright they
are. From this intrinsic brightness, you can estimate how far any Cepheid must be to
appear as faint as it does in your observations.)

Shapley’s observations were surprising. They revealed that globular clusters were
randomly distributed in the z direction with respect to the plane of the Milky Way:
there were just as many above the Galactic plane as there were below it. However
they were not randomly distributed azimuthally, but appeared to be found in a prefered
direction. This was one of the first indications that the Copernican principle applied
to our Sun with respect to the Galaxy. Our Sun is not in a privileged location—i.e.,
the center of the Galaxy—but is instead somewhere in the outskirts of the Galactic
disk.

The table on the next page is a compilation of Shapley’s results, showing the name
of the globular cluster, its right ascension coordinate, its declination coordinate, and
its radial distance in parsecs (= 3.26 light years). The right ascension and declination
pinpoint the location of the object in the sky, and are the equivalent to longitude and
latitude on the surface of the Earth. Although declinations are similar to latitudes, by
varying from 0◦ to ±90◦, from the celestial equator to the poles, the azimuthal right
ascension is measured in hours, minutes and seconds, whereby 24h = 360◦, 60m = 1h,
and 60s = 1m.

For this problem, you will follow in Shapley’s footsteps by calculating:

(a) In what direction is the distribution of globular clusters centered (i.e., what is
the right ascension and declination)? And . . .

(b) How far from the Sun is the center of the distribution?

Hint: One obvious way to solve this problem is to take an average of each set of
numbers. However this does not necessarily give you the most correct results—in fact
doing this will result in an answer in position that is about 30◦ away from the true
Galactic center (which we now know to be at 17h42m30s,−28◦55′00′′).

The standard transformations from spherical coordinates to Cartesian coordinates
(which you might or might not need) is:

x = r sinα cos(π/2− δ)
y = r sinα sin(π/2− δ)
z = r cosα

1



Globular Cluster R.A. Decl. Radial Distance
(in 100s of parsecs)

NGC 104 0h19.m6 −72◦38′ 68

NGC 288 0h47.m8 −27◦08′ 189

NGC 362 0h58.m9 −71◦23′ 152

NGC 1261 3h09.m5 −55◦36′ 256

NGC 1851 5h10.m8 −40◦09′ 172

NGC 1904 5h20.m1 −24◦37′ 256

NGC 2298 6h45.m4 −35◦54′ 244

NGC 2808 9h10.m0 −64◦27′ 170

NGC 3201 10h13.m5 −45◦54′ 147

NGC 4147 12h05.m0 +19◦06′ 526

NGC 4372 12h20.m1 −72◦07′ 114

NGC 4590 12h34.m2 −26◦12′ 161

NGC 4833 12h52.m7 −70◦20′ 164

NGC 5024 13h08.m0 +18◦42′ 189

NGC 5139 13h20.m8 −46◦47′ 65

NGC 5272 13h37.m6 +28◦53′ 139

NGC 5286 13h40.m1 −50◦52′ 196

NGC 5634 14h24.m4 − 5◦32′ 303

NGC 5897 15h11.m7 −20◦39′ 149

NGC 5904 15h13.m5 + 2◦27′ 125

NGC 5986 15h39.m5 −37◦27′ 208

NGC 6093 16h11.m1 −22◦44′ 200

NGC 6101 16h14.m4 −71◦58′ 213

NGC 6121 16h17.m5 −26◦17′ 114

NGC 6144 16h21.m2 −25◦49′ 244

NGC 6171 16h26.m9 −12◦50′ 161

NGC 6205 16h38.m1 +36◦39′ 111

NGC 6218 16h42.m0 − 1◦46′ 123

NGC 6229 16h44.m2 +47◦42′ 435

NGC 6235 16h47.m4 −22◦01′ 500

NGC 6254 16h51.m9 − 3◦57′ 120

NGC 6266 16h54.m8 −29◦58′ 152

NGC 6273 16h56.m4 −26◦07′ 159

NGC 6284 16h58.m4 −24◦37′ 370

NGC 6287 16h59.m1 −22◦34′ 435

NGC 6293 17h04.m0 −26◦26′ 263

NGC 6304 17h08.m2 −29◦20′ 322

NGC 6316 17h10.m3 −28◦01′ 526

NGC 6333 17h13.m3 −18◦25′ 250

NGC 6341 17h14.m1 +43◦15′ 123

NGC 6352 17h17.m8 −48◦19′ 227

NGC 6356 17h17.m8 −17◦43′ 385

NGC 6362 17h21.m5 −66◦58′ 130

NGC 6388 17h29.m0 −44◦40′ 276

NGC 6397 17h32.m5 −53◦37′ 81

NGC 6402 17h32.m4 − 3◦11′ 233

NGC 6441 17h43.m4 −37◦01′ 453

NGC 6541 18h00.m8 −43◦44′ 144

2



NGC 6584 18h10.m6 −52◦15′ 253

NGC 6624 18h17.m3 −30◦24′ 283

NGC 6626 18h18.m4 −24◦55′ 185

NGC 6637 18h24.m8 −32◦25′ 209

NGC 6638 18h24.m8 −25◦34′ 345

NGC 6642 18h25.m8 −23◦32′ 385

NGC 6652 18h29.m2 −33◦04′ 305

NGC 6656 18h30.m3 −23◦59′ 85

NGC 6681 18h36.m7 −32◦23′ 177

NGC 6712 18h47.m6 − 8◦50′ 312

NGC 6715 18h48.m7 −30◦36′ 155

NGC 6723 18h52.m8 −36◦46′ 121

NGC 6752 19h02.m0 −60◦08′ 79

NGC 6779 19h12.m7 +30◦00′ 250

NGC 6809 19h33.m7 −31◦10′ 91

NGC 6864 20h00.m2 −22◦12′ 455

NGC 6934 20h29.m3 + 7◦04′ 333

NGC 6981 20h48.m0 −12◦55′ 294

NGC 7006 20h56.m8 +15◦48′ 626

NGC 7078 21h25.m2 +11◦44′ 147

NGC 7089 21h28.m3 − 1◦16′ 156

NGC 7099 21h34.m7 −23◦38′ 172

Here, we assume r is the distance along the radial direction, α is the right ascension
angle in the azimuthal direction, and δ is the declination angle. You might (or might
not) also wish to have the inverse transforms:

r =
√
x2 + y2 + z2

δ =
π

2
− tan−1

(y
x

)
α = cos−1

(
z√

x2 + y2 + z2

)

2. Radioactive decay of relativistic neutrons [10 pts.]: Free neutrons (those not
bound inside an atomic nucleus) undergo radioactive decay with a half-life of only 17
minutes. However if the neutrons are traveling at relativistic speeds, their “internal
clocks” are slowed down, so the decay rate measured by an observer at rest is slower.
For this problem, you will calculate this effect for neutrons produced in solar flares.
Assume that the neutron decay law is:

N(t) = N(0) e−t/17 minutes,

where t is time measured in the rest frame of the neutrons, N(0) is the number of
neutrons at time t = 0, and N(t) is the number of neutrons at time t.

Now assume that neutrons leave the Sun, as soon as they are created, at speed 0.5c.
Using a Sun-Earth distance of 1 astronomical unit = 1.5× 108 km, calculate

(a) The fraction of neutrons expected to arrive at the Earth without including special
relativistic effects, and

3



(b) The fraction of neutrons arriving with Special Relativity.
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ASTR 3740: Homework #2
Due: Friday, February 2, 2001

1. The relativity of simultaneity: (10 pts.) We showed in class that if a reference
frame S′ moves with velocity V x̂ with respect to a frame S, then the coordinates x′

and t′ are related to x and t by the Lorentz transformation:

x′ =
x − V t

√
1 − V 2/c2

, t′ =
t − V x/c2

√
1 − V 2/c2

(a) Derive the inverse transformation, i.e., express x and t in terms of x′ and t′.
(b) Consider two events (x1, t1) and (x2, t2) which have a timelike separation. Show

that there is a reference frame S′ in which these two events have the same space
coordinate, i.e., x1

′ = x2
′. Find the velocity of this frame.

(c) Redo part (b) for events with a spacelike separation, and in this case, find a
frame in which these two events are simultaneous, t1

′ = t2
′. Can the events in

part (b) be made to have a spacelike separation by a Lorentz transformation?

2. Past and future light cones: (5 pts.) Draw a spacetime diagram with the hori-
zontal and vertical axes labeled, respectively, x and ct. Label a point P (an event)
somewhere on the diagram away from the origin. Draw the path followed by a light
ray emitted from the event and propagating to the right, and the path of another light
ray propagating to the left. This is called the future light cone of P . Then draw the
paths of all light rays emitted in the past which arrive at P . This is the past light cone
of P . Now shade in the part of the diagram occupied by the worldlines of observers
which pass through P , and the part of the diagram occupied by events which can be
connected to P by some form of signal.

3. Spacetime diagrams: (10 pts.) For this exercise, you will get to draw more space-
time diagrams. Start with the standard diagram with axes ct and x for an observer
O. Now draw the following:

(a) The worldline of O’s clock at x = 1 m.

(b) The worldline of a particle moving with velocity v = 0.1c, and which is at
x = 0.5 m when t = 0 s.

(c) The ct′ and x′ axes of an observer O′ who moves with velocity v = 0.5c in the
positive x direction relative to O and whose origin (x′, t′) = (0, 0) coincides with
that of O.

(d) The calibration tick along the coordinate axes of O′ for intervals of ct′ = 1 m
and x′ = 1 m.

(e) The locus of events, all of which occur at the time ct = 2 m (i.e., simultaneous
as seen by O).

(f) The locus of events, all of which occur at the time ct′ = 2 m (i.e., simultaneous
as seen by O′).

(g) The event which occurs at ct′ = 0 m and x′ = 0.5 m.

(h) The locus of events at x′ = 1 m.

1



(i) The worldline of a photon that is emitted from an event at ct = −1 m, x =
0 m, travels in the negative x direction, is reflected when it encounters a mirror
located at x′ = −1 m, and is absorbed when it encounters a detector located at
x = 0.75 m.

(j) The locus of events whose interval ∆s2 from the origin is −1 m2.

4. Gravitational redshifts: (10 pts.) Radiation emitted from the surface of a body
of mass M and radius R with wavelength λe is observed far from the body to be
redshifted to wavelength λ0. As we saw in class, the redshift z is

z ≡ λ0

λe
− 1 ≈ GM

c2 R

(a) Consider a white dwarf star with radius equal to ∼ 0.1 that of the Earth’s radius
(R⊕ = 6.052 × 103 km) and with a mass equal to that of our Sun (M� =
2 × 1033 g). What is the redshift of radiation emitted from such an object?

(b) Suppose you set up a spectrograph on the surface of this white dwarf and measure
the wavelength of radiation from singly ionized Sulfur atoms (i.e., S ii) located
in a distant nebula in interstellar space. The wavelengths of two emission lines
measured near the atoms themselves are 6716.4 Å and 6730.8 Å. What would be
the wavelengths measured on the white dwarf?

2



ASTR 3740: Homework #3
Due: Friday, February 9, 2001

1. The Twin Paradox: (4 pts.) Sam and Sarah are fraternal twins. On their 21st
birthday, Sarah leaves her brother and goes off in a spaceship headed in the +x
direction for four years (= 1.26 × 108 sec) of her time at a speed of 0.75c. She then
stops, reverses course, and travels back at 0.75c taking another four years of her time.
Assume that she instantly accelerates and decelerates (and manages to survive the
tremendous g forces!).

(a) What is Sarah’s age when she returns back to Earth?

(b) What is Sam’s age?

2. (10 pts.) Here is a possible paradox: Sam sees Sarah moving away at 0.75c and
therefore sees her clocks slowed. However Sarah sees Sam moving in the opposite
direction at 0.75c and views his clocks as being slowed. Time dilation implies that
one person should be older than the other, but is it Sarah or Sam? We will try to
reconcile their two different viewpoints in the rest of this problem.

(a) Draw a space-time diagram from the vantage point of stationary Sam. Now draw
the worldline for Sarah on her journey. According to Sarah, what time does her
calendar read when she turns around? According to Sam, what time does his
calendar read when Sarah stops and reverses direction?

(b) Let’s assume that Sarah sends light pulses back to Sam at regular intervals of
once a year (in her time). How many of these signals will Sam have received
by the time Sarah has stopped and turned around? How many signals will Sam
receive during Sarah’s entire return trip? If Sam was also sending light pulses
at yearly intervals (in his time), would Sarah receive more signals during her
outbound trip or her inbound trip?

(c) If Sam was watching Sarah’s spaceship with a telescope the entire time of her
journey, describe how the clocks aboard the spaceship would appear to him.

(d) Has Sarah been in an inertial reference frame during her entire trip? Explain
why or why not.

3. The Bus/Garage Paradox: (12 pts.) Suppose you have access to an atomic-
powered bus which at rest is 20 m in length.1 You manage to accelerate it up to a
speed of 0.8c. Before the bus and the ground and air around it heats up to the point
where everything evaporates in a large explosion, you aim it towards a garage which
is 15 m long. Your friend remains at rest by the garage door, ready to slam shut the
door as soon as the bus is all the way inside.

(a) How long does your friend measure the length of the bus to be as it approaches
the garage?

(b) The garage door is initially open and immediately after the bus is entirely inside
the building, your friend shuts the door. How long after the door is shut does

1See for instance http://bcn.boulder.co.us/campuspress/1995/nov301995/bigbus113095.html.
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the front of the bus hit the other end of the garage as measured by the friend?
Compute the interval between the events of shutting the barn door and hitting
the wall. Is it spacelike, timelike, or null?

(c) In the reference frame of you, the bus driver, what are the lengths of the garage
door and your bus?

(d) Do you, as the driver, believe that the bus is entirely inside the garage when its
front hits the far wall of the garage? Can you explain why?

(e) After the collision, the bus comes to rest relative to the garage. From your
friend’s point of view, the 20 m bus now has fit inside a 15 m garage, since the
door was shut before the bus stopped. How is this possible? Alternatively, from
your point of view, the collision should have stopped the bus before the door
closed, so the door could not close at all. Was the door closed with the bus
inside? Or not?

(f) Draw a spacetime diagram from your friend’s POV. Use it to illustrate and justify
your conclusions.

(g) Assume the total mass of the bus is 10 tons, or roughly 107 g. Now assume
all of the bus’ kinetic energy is released instantaneously when it stops. What
is the equivalent megatonnage of the resulting explosion? (Use for conversion,
9× 1020 erg ≈ 20 kilotons of TNT, from p. 24 of the notes.)
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ASTR 3740: Homework #4
Due: Friday, February 16, 2001

1. Curvature of space by a massive body: (20 pts.) In this problem, we will
examine the curvature of space by a static spherical body with mass M . The proper
time interval is given by

dτ2 =
(
1 − rs

r

)
dt2 − 1

c2

[
dr2

1 − rs/r
+ r2 dθ2 + r2 sin2 θ dφ2

]
, (1)

where rs = 2GM/c2 is the Schwarzschild radius. Eq. 1 is also known as the Schwarz-
schild line element since it can be used to determine distances between points in the
curved spacetime.

(a) Suppose you wish to measure the radial distance between two radii r1 and r2,
both located outside rs. You can calculate the proper length L12 between the
radii by setting dt = dθ = dφ = 0 in Eq. 1. The length interval is then

L12 =
∫ r2

r1

dr√
1 − rs

r

. (2)

If r/rs is very large, the integral can be simplified by using the Taylor expansion:

1√
1 − rs

r

≈ 1 +
rs

2r
(3)

You may do either the full integral or the simplified integral.

(b) Consider light emitted at r1 at t1, and traveling outward to r2, where it is received
by a detector at t2. Using the fact that dτ = 0 for a light ray, and dθ = dφ = 0 for
propagation in the radial direction, calculate t2 − t1 in terms of r2 and r1. Hint:
You will again need to integrate over r. You may use the same approximation
as in part (a).

(c) Now suppose two successive crests of a light wave are emitted from r1 at times t1
and t1 + δt1, and that they are received at r2 at times t2 and t2 + δt2. Relate the
emitted frequency νe to the proper time interval δτ1 by δτ1 = 2π/νe. What is the
observed frequency ν◦ or 2π/δτ2? Work this out by calculating δτ2 in terms of
δτ1, r1, and r2. This is the gravitational redshift. Hint: From Eq. 1, the proper
time interval is related to the coordinate time interval by δτ = δt

√
1 − rs/r when

dr = dθ = dφ = 0.
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(d) When electrons and positrons annihilate, they release γ-ray photons of energy
5.11×105 electron volts (eV). A burst of γ-rays of energy 4.2×105 eV was detected
on March 5, 1979, and was thought to be electron-positron annihilation photons
produced near the neutron star SGR 0526–66 located in the Large Magellanic
Cloud. Since it originates from a compact, massive object, the radiation should
hence be gravitationally redshifted. If this explanation is correct, and the mass
of the neutron star is 1 M�, how far from the center of the star were the γ-rays
produced? Hint: Let r2 → ∞.
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ASTR 3740: Homework #5
Due: Friday, February 23, 2001

1. The binary pulsar: (25 pts.) In 1975 Russell Hulse (a graduate student) and Joseph
Taylor (a professor) discovered a pair of neutron stars (one of which is a pulsar) in
orbit around each other. These stars are so close together, and have such strong
gravitational fields, that both Special and General Relativistic effects are important
in determining their orbits. Thus this system has been an important laboratory for
testing the theory of relativity. Hulse and Taylor were awarded the Nobel Prize for
Physics in 1992 for their discovery of this binary system. In the following problems,
we will examine some aspects of the double pulsar.

(a) The classical orbit: According to Kepler’s laws, these neutron stars have an
elliptical relative orbit with semimajor axis a and period P . If the two stars have
masses M1 and M2, then

G(M1 +M2)P 2 = 4π2a3.

Suppose that M1 = M2 = 1 M�, where the solar mass 1 M� = 2×1033 gm. The
period is measured to be 2.79×104 s. Calculate a and express it in astronomical
units (where 1 AU = 1.496× 1013 cm). [Hint: If you are clever, you won’t need
to know G nor the size of an AU.]

(b) Orbital velocity: Assuming each orbit is circular, calculate the velocity of each
star using the relation

V 2 =
G(M1 +M2)

a
,

and express it as a fraction of the speed of light.

(c) Doppler shift: Suppose the orbits were perpendicular to the plane of the sky.
The pulsar period measured in its own rest frame is 0.059 sec. What are the
maximum and minimum periods measured, due to the Doppler shift, as the
pulsar moves along its orbit?

(d) General Relativistic precession: As discussed in class, GR effects cause the
perihelion of an elliptical orbit with semimajor axis a and eccentricity e to ad-
vance by an angle ∆φ over each orbit, given approximately by

∆φ ≈ 6πGM

c2a(1− e2)
.

Although in the first three parts of this problem, we assumed the orbit to be
circular, it actually is not. Let a be the value you calculated before, e = 0.6, and
assume M = 2 M�. Calculate the precession angle per orbit.

(e) Again use an orbital period of 2.79 × 104 sec. Calculate how far the perihelion
has precessed in one year. Compare this with the precession of the perihelion of
Mercury.

1



ASTR 3740: Homework #6
Due: Friday, March 2, 2001

1. Capture by black holes: (25 pts.) We saw in class that the effective potential per
unit mass Veff(r) of a particle with angular momentum per unit mass L moving under
the influence of a black hole of mass M is

Veff(r) =
L2

2r2

(
1− rs

r

)
− GM

r
,

where rs is the Schwarzschild radius. This potential allows particles to be captured
from infinity, which the Newtonian potential does not allow. The purpose of this
problem is to work out some of the conditions for capture.

(a) The locations at which Veff has maxima or minima are the locations at which

dVeff

dr
= 0.

Calculate dVeff/dr.

(b) Use the expression you obtained in part (a) to show that maxima and minima
are roots of the quadratic equation

r2 − L2

GM
r +

3
2
L2

GM
rs = 0.

(c) Show that if

L2

GM
< 6rs

then Veff has no maxima or minima, unlike the case shown in the notes and in
class. Sketch Veff(r) in this case. Use your sketch to argue that if a particle has
L <

√
6GMrs, it must fall into the black hole.

(d) A leading model for quasars is that they are powered by gas falling onto massive
black holes at the centers of galaxies. What is the critical angular momentum√

6GMrs for capture onto such a black hole? Assume the mass of the black hole
is 108 M�.

1



(e) If the speed of a particle very far from the black hole is V , and its distance of
closest approach from the hole in the absence of gravity would be b, then L = V b.
Suppose the average velocity of gas is V = 300 km s−1, and that the gas is moving
randomly in all directions. What is the maximum b for capture onto the black
hole? Compare this with the size of the galactic nucleus, Dnucleus ≈ 100 pc =
3× 1015 km.

Black Hole

M
otion in absence

of gravity

b
�
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ASTR 3740: Homework #7
Due: Friday, April 6, 2001

Newton’s Cosmology (20 pts. total) The first attempt at a physical cosmology was
that of Isaac Newton in 1692. Newton argued that an infinite, homogeneous, static universe,
while it might have local regions of gravitational instability, would be globally stable, as there
would be equal gravitational forces acting in every direction. There is a fatal flaw in this
argument however. The purpose of this problem set is to identify this flaw and determine
the fate of Newton’s universe.

1. The force within a spherical shell (5 pts.) In order to understand the flaw in
Newton’s cosmology, we need (appropriately enough) Newton’s First Theorem: A
body located within a spherical shell of matter experiences no net gravitational force
from that shell. Suppose we take Newton’s infinite, static, homogeneous universe
and remove a spherical volume of matter (i.e., remove all the galaxies, which we will
assume to be uniformly distributed on average) about some point, which we will call
A. What does Newton’s First Theorem say about the gravitational force on any
particle within the empty sphere about A due to the rest of the universe?

2. Matter inside the spherical volume (5 pts.) Now suppose we put matter back
into the spherical volume around A; in fact, put back exactly the same galaxies we
removed initially. In keeping with the assumptions of Newton’s cosmology, assume
all of the galaxies are initially at rest when we put them back. (This is suppose to
be a static universe, after all.) What are the implications of part (1) for the force
exerted on these galaxies by the rest of the universe? If they are initially at rest (zero
velocity), what must happen to the galaxies within this volume?

3. A spherical shell around a second point (5 pts.) Draw another spherical shell
around another point, which we will call B. Assume the galaxies within the sphere
around B are also at rest initially. From parts (1) and (2), what must happen to the
galaxies within this volume?

4. (5 pts.) Now consider a spherical shell which is large enough to contain the shells
around both A and B. What must happen to the galaxies (initially at rest) within
this volume? What are the implications of this result for the fate of Newton’s universe?

1



ASTR 3740: Homework #8
Due: Friday, April 13, 2001

1. Radioactivity and Cosmology (5 pts.) We saw in class that a time interval ∆t
measured within an object at cosmological redshift z is measured by us as a time
interval ∆t(1 + z). The purpose of this problem is to apply this to observations of
Type II supernovae in distant galaxies. The visible light curves of these supernovae
are thought to be powered by the decay of a radioactive isotope of nickel, Ni56, which
has a half-life of 6.4 days. That is, the time over which the supernova luminosity
declines is proportional to the half life of Ni56. Recently a galaxy was reported with
a redshift of z = 6.68 (Chen, Lanzetta, & Pascarelle, 2000, Nature, 408, 562):

This object is so distant that even the image on the far right, taken with STIS onboard
the Hubble Space Telescope, shows only a faint smudge. However suppose that in the
future, a supernova is discovered in this galaxy using the next generation of 100 m class
ground-based telescopes. Predict the time over which its luminosity would appear to
decay.

2. Searching for Distant Galaxies (5 pts.) The light from galaxies appears to be
dominated by G and K type giant stars. Assume that this light is blackbody radiation
with a temperature T = 4000 K. From Wien’s law, the wavelength of maximum
intensity is

λmax =
0.3 cm
T

.

Calculate λmax for galaxies. In what part of the spectrum does it fall (i.e., visible,
radio, etc.)? Now, using the redshift principle, what should be λmax for a galaxy of
redshift z? What type of telescope would be best for detecting galaxies at redshift
6.68—optical, ultraviolet, infrared, or radio?

3. Particle Horizons (10 pts.) Can we see every part of the universe? The maximum
distance to which we can see (if there is one) is called the particle horizon. The
purpose of this problem is to calculate the location of the horizon, rmax, in a flat
universe (k = 0). We determine rmax by requiring that the light emitted from rmax at
the beginning of the universe, t = 0, be reaching us now. That is,

c

∫ t◦

0

dt

R(t)
=
∫ rmax

0
dr.

In a flat universe, we can write

R(t) = R(t◦)
(
t

t◦

)2/3

.

Calculate rmax as a function of time t◦. Can we see more of the universe as time goes
on, or less? Explain why.
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ASTR 3740: Homework #9
Due: Friday, April 20, 2001

The Coupling of matter and radiation: (30 pts) The purpose of this problem is to
study how cosmic background radiation (CBR) photons interact with matter now and in
the past.

(a) Assume that space is flat, so that the cosmic scale factor a(t) ∝ t2/3. Let the present
time be t◦. Show that the radiation which we observe now to have redshift z was
emitted at a time t1 which can be expressed in terms of t◦ and z by

t1 =
t◦

(1 + z)3/2
.

This formula is often used to express time in terms of redshift.

(b) Recall that in a flat universe, the present value of the Hubble parameter H◦ is related
to t◦ by H◦ = 2/(3t◦). Writing H◦ as usual as 100h km s−1 Mpc−1, and using your
solution from (1), what was the age of the universe at the time of recombination, at
about z = 1500?

(c) Show that the density of (non-relativsitic) matter scales in a flat universe as (1 + z)3.
Assume (consistent with the abundances of light elements made in the Big Bang),
that Ωbh

2 = 0.01, or the present average density of baryons in the universe, nb(t◦), is
∼ 10−7 cm−3. What was the average baryon density at the time of recombination?

(d) The Thompson cross-section, i.e., the cross-section for scattering of photons by elec-
trons, has the value σT = 6.65 × 10−25 cm2. What is the average distance a photon
travels before being scattered both now and at z = 1500?

(e) What is the average time a photon travels before being scattered in these two cases?

(f) Compare the time for a photon to scatter with the age of the universe, now and also
at z = 1500. What are your conclusions about the importance of scattering now and
at the earlier time?

1



ASTR 3740: Homework #10
Due: Friday, April 27, 2001

1. Massive neutrinos (5 pts) Traditionally, neutrinos (ν) have been thought to be
massless. Whether they really are is an open question. If the mass mν 6= 0 the
cosmological consequences could be major, because the density of ν produced in the
early universe is quite high—the present number density nν is about 100 cm−3. A
recent experiment suggests mνc

2 ≈ 2.5 eV (1 eV ≈ 1.6 × 10−12 erg). Assume this is
correct and calculate Ων .

2. Dark matter in the solar system (5 pts) Suppose that the universe contains
enough invisible matter in the form of elementary particles that Ω = 1, i.e, ρ = ρcrit ≈
1.88×10−29h2 gm cm−3. This dark matter must also fill the solar system. How much
of an effect does it have? Compute the mass of dark matter in a sphere 1 AU in radius
and compare with the mass of the Sun. What are the prospects for detecting the dark
matter through its gravitational effect?

3. Galactic halos (10 pts) A variety of observations suggest that galaxies have extended
“halos” of dark matter. How big would these halos have to be to close the universe?
To answer this question, assume that each halo is a sphere with mass density ρh and
radius rh Then the mass of each halo is

Mh =
4πρhr3

h

3
.

If there are ng galaxies per unit volume with such halos, then the mean mass density
〈ρh〉 in galactic halos is

〈ρh〉 = Mhng.

Assume that ρh ≈ 4×10−23 gm cm−3, which is about the value in the solar neighbor-
hood. Calculate the radius rh that galactic halos must have in order that 〈ρh〉 = ρcrit.
(Assume that ng = 0.01h3 Mpc−3.)
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ASTR 3740: Review for the Midterm
Note: Midterm is March 12, 2001

The Format: The midterm will be a 50 minute closed-book exam. You will need to bring
a pencil and eraser; a calculator, ruler, and extra scratch paper are optional.

What Is Covered: The midterm will test all material that has been covered in the
lectures up through March 7, 2001. This therefore includes all of Special Relativity, General
Relativity, black holes, and the beginning lectures on cosmology.

What To Study: Review all of the homework problems. Make sure you understand the
solutions completely. (If you are missing a solution, please ask me for one.) Look over and
make sure you are familiar with all notes that you might have taken or were handed out.
Going through and making sure you understand the official lecture notes should be helpful
too!

Some General Study Questions:

1. What is the difference between inertial and gravitational mass? Why are they impor-
tant in relativity?

2. Work out the expression for the Doppler effect in the classical case and in the rela-
tivistic case. Do not just memorize the equations; be sure you know how to derive
them. In what instances would you use the relativistic Doppler expression to tell you
how fast moving clocks appear move with respect to your (at rest) clocks? How is
this different from using the time dilation formula?

3. What are the postulates of General Relativity?

4. What are some of the earthbound laboratory tests of Special Relativity? Of General
Relativity? What about astronomical observations that support relativity?

5. Explain the meaning of the Equivalence Principle. What are some of its physical
consequences?

6. What is a geodesic? What are some of the differences between a metric for measuring
distances on a surface, versus a spacetime metric? What happens when your path
deviates from a geodesic in spacetime? What about in a purely spatial metric? If given
the equation for a metric, how would you use it to make measurements of distances
in a spacetime described by this metric?

7. What is the meaning of the proper time τ? What is the coordinate time t that appears
in the Schwarzschild metric?

8. In a spacetime diagram, what past events can influence you? What future events
will you be able to send signals to? How can events that are spacelike appear to be
simultaneous?

1



9. Roughly what form does the effective potential for a black hole take? How is it
different from the Newtonian effective potential? Under what conditions will particles
fall into the black hole versus orbiting it in bound or unbound orbits?

10. What is a standard candle in astronomy? Why are they important in the study of
cosmology?

11. What is the Cosmological Principle?

12. In the Robertson-Walker metric, what is the parameter k? What do different values
of k signify?
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ASTR 3740: Review for the Final
Note: Midterm is Wednesday, May 9, 2001; 7:30–10:30 AM

The Format: The midterm will be a closed-book exam. You will need to bring a pencil and
eraser; a calculator, ruler, and extra scratch paper are optional.

What Is Covered: The midterm will test all material that has been covered in Chapters 6–11 in
the notes, including all class lectures and handouts pertaining to these sections.

What To Study: Review all of the appropriate homework problems. Make sure you understand
the solutions completely. (If you are missing a solution, please ask me for one.) Look over and make
sure you are familiar with all notes that you might have taken or were handed out.

Some General Study Questions:

1. What are the three key pieces of evidence that provide observational support for the Big Bang?
Be sure you can explain each of these in detail.

2. Derive the redshift relationship in Eq. 7.20. You should not just merely memorize the formula,
but be able to obtain this from first principles.

3. The classical expression for the Doppler redshift of a moving object is:

z =
λ

λ◦
− 1 =

v

c

The maximum redshift must be z < 2 since v < c. How is the relativistic Doppler redshift
different that allows z to be greater than this? Now compare both of these to the cosmological
redshift.

4. What is the particle horizon? Contrast this with the cosmological event horizon (which is not
the same as the event horizon around a black hole).

5. Starting with the Friedmann equation, derive the critical density ρc.

6. Starting with the Friedmann equation, derive the dependence of the scale factor on time for a
flat universe.

7. Using the Friedmann equation and the defintion of the critical density, derive an expression
for how Ω in terms of the Hubble constant and the scale factor. If Ω = 1 now (i.e., a flat
universe), what does this imply for the value of Ω in the past?

8. Describe the principles behind the Steady State model. What must be occuring in the Universe
for this model to be true? What observations do most people agree have falsified Steady State?

9. Show how a radiation field with a blackbody Planck spectrum remains a Planck spectrum in
an expanding universe. What does change between the spectra during the expansion?

10. What are the sources and sinks of deuterium in the Universe? How will these affect the
attempts to measure the primordial deuterium abundance?

11. Describe in succinct detail the concepts behind the following problems with Big Bang:

(a) The horizon/smoothness problem.

(b) The flatness problem.

(c) The problem of hidden relics (e.g., magnetic monopoles).
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(d) The problem of the formation of small-scale structure.

12. How does an inflation model for the early universe solve the above problems?

13. What is the evidence for dark matter in individual galaxies? What about in clusters of galaxies?
Be able to explain by what observational means does one infer its existence (including at least
one method for dark matter in galaxies and at least two different methods for clusters).

14. Dark matter has been suggested to be in baryonic form, such as black holes, brown dwarfs,
and planets, all of which are difficult to detect. Explain why many believe that there must be a
non-baryonic component to dark matter as well, such as massive neutrinos or exotic particles.
You should be able to argue from both a nucleosynthesis viewpoint as well as from a structure
formation viewpoint.

15. What is the Jeans mass? What equilibrium conditions are assumed in determining it? What
is the Jeans length? Why is the sound speed a useful parameter in determining whether a
cloud collapses?

16. Given an expansion time scale for the universe,

tE =
a

ȧ
=
(

3
8πGρ

)1/2

; (1)

a free-fall time for a perturbation in the early universe to collapse:

tff =
(

3π
32Gρ

)1/2

; (2)

and the time for a sound wave to cross the perturbation:

ts =
(

15
4πGρ

)1/2

; (3)

what happens to the perturbation if:

(a) ts < tff?

(b) tE < tff?

(c) tff < ts < tE?

17. Free-streaming and photon viscosity act as filters to damp small fluctuations. What does this
imply for how structure in the Universe forms?

18. Perturbations of size δρ grow linearly if δρ � ρ, where ρ is the background density in the
Universe. The perturbation is said to go nonlinear if δρ ∼ ρ. Describe what happens to the
perturbation at this point.

19. What is the difference between the growth of baryonic matter and dark matter perturbations?
What is the importance of the scale factors aEQ and adec (or the corresponding redshifts zEQ

and zdec) in describing the growth of the perturbations?

20. How is heating of a piece of iron past its Curie point, and then letting it cool akin to the phase
transition that is thought to have started inflation?
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ASTR 3740: Term Paper

Term papers are due on the last day of class, Friday, May 4. They should be
12-15 pages, should include a bibliography, and may include equations, figures, etc. The
topic of the paper should be a scientific paper that you’ve found, that is on some topic
in relativity and/or cosmology. although you may use secondary resources (e.g., popular
magazines, websites, textbooks, encyclopediae) to help write this report, the main goal is
to write about a scientific result that appears in a scientific paper.

Topic: You should have a paper picked out, preferably by March 16, but no later than the
last day of classes before Spring Break (March 23). You should turn into me bibliographic
information for the paper (title, authers, journal, volume number, etc.) and the abstract.
It is also highly recommended that you consult with me in person or via email before making
a final decision on what to write about. Because of the technical nature of this assignment,
you might find it helpful to consult with me regularly even after you’ve picked your topic
and have started writing. Do not be afraid to ask questions. I can make suggestions on
finding additional references, and determine whether the scope of the paper is appropriate.
It is all too easy to pick a paper that is too difficult. In such cases, I would rather you pick
a new paper/topic rather than spend all your time on this one assignment.

Here is a list of some possible topics (you may of course choose something not on this
list):

� Laboratory tests of relativity
� Solar system tests of relativity
� Outside the solar system tests of relativity
� Rotating (Kerr) black holes
� Astronomical evidence for black holes
� Gravitational radiation
� Gravitational lensing
� The extragalactic distance scale
� Determinations of the Hubble parameter
� Evidence for either an open or closed universe
� Candidates for dark matter
� Big Bang nucleosynthesis
� Distribution of galaxies and/or galaxy clusters; large-scale structure
� Galaxy formation
� The cosmic microwave background radiation

Paper Resources: The astronomical literature is vast. The list of journals that most as-
tronomers publish in however is short. If you limit yourself to just the first four publications,
you will have covered ∼> 99% of all important peer-reviewed astronomical papers. Following
each title in parentheses is the common abbreviation for each journal that you will see in
bibliographies; the Library of Congress catalog number, and the library on campus where
you can find the journal (MATHPHYS for the Lester Math-Physics library in Duane and
SCIENCE for the Science stacks in Norlin).

1



Astrophysical Journal and Astrophysical Journal Letters (ApJ and ApJL;
QB1 .A9 MATHPHYS)

Astronomy & Astrophysics (A&A; QB1 .A83 MATHPHYS)
Monthly Notices of the Royal Astronomical Society (MNRAS; 520.6 R81m

MATHPHYS)
Nature (Q1 .N2 SCIENCE)
Publications of the Astronomical Society of the Pacific (PASP; QB1 .A423

MATHPHYS)
Annual Reviews of Astronomy & Astrophysics (ARAA; QB1 .A2884 MATH-

PHYS)

Web Resources: You could spend days sorting through journals looking for something
interesting. But there are useful Web resources out there which you may use, that can
pinpoint papers for you quickly. These are the online abstract and paper services:

� ADS: [http://http://adsabs.harvard.edu/default_service.html] This service
allows you to search for paper abstracts using the authors’ names, publication date,
words in the title, and words in the abstract. ADS keeps an online archive of scans
of pages from papers older than a few months (including papers dating back to the
19th century!) If you are on a CU machine, you can also download the latest papers
directly from the journal websites.

� Astro-ph: [http://xxx.lanl.gov/archive/astro-ph] This abstract and paper ser-
vice allows you to search for papers that have been submitted but not yet published.
Hence you can find the most current and latest work from researchers at this site.
However since there is no guarantee that the papers submitted here will actually be
accepted for publication, “crank” papers can sometimes slip in under the site man-
agers’ noses.

Other Resources: Other references which you might find useful can be found in the Lester
Math-Physics library:

Encyclopedia of astronomy and astrophysics , 1989, Meyers, Robert A.,
Ed. (San Diego: Academic Press). [MATHPHYS REF QB14 .E53 1989]
For scientists in one sub-field to keep abreast of topics in other sub-fields,
but is generally written at a level that is accessible to upper-division un-
dergraduates.

Scientific American [T1 .S5 MATHPHYS for current year, SCIENCE for
past years] Excellent popular magazine with well written and accurate ar-
ticles written by the scientists who are actually doing research on the topics
they write about.

Sky and Telescope [QB1 .S536 MATHPHYS] A popular astronomy maga-
zine, that by nature is non-technical, but it still has many useful feature
articles which might be starting points for research.

Astronomy [QB1 .A7998 MATHPHYS] Another popular astronomy magazine,
but (in my opinion) even less technically-oriented than Sky and Telescope.
Its emphasis is more on “pretty pictures.”
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