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Soft condensed matter physics relies on a fundamental understanding of the inter-
faces between physics, chemistry, biology, and engineering for a host of materials
and circumstances that are related to, but outside, the traditional definition of con-
densed matter physics. Featuring contributions from leading researchers in the
field, this book uniquely discusses both the contemporary experimental and com-
putational manifestations of soft condensed matter systems.

From particle tracking and image analysis, novel materials and computational
methods, to confocal microscopy and bacterial assays, this book will equip the
reader for collaborative and interdisciplinary research efforts relating to a range
of modern problems in nonlinear and nonequilibrium systems. It will enable both
graduate students and experienced researchers to supplement a more traditional
understanding of thermodynamics and statistical systems with knowledge of the
techniques used in contemporary investigations. Color versions of a selection of
the figures are available at www.cambridge.org/9780521115902.
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dynamics, including granular systems, biomechanics, and imaging algorithms.





EXPERIMENTAL AND
COMPUTATIONAL TECHNIQUES IN

SOFT CONDENSED MATTER PHYSICS

Edited by

JEFFREY OLAFSEN
Baylor University



CAMBRIDGE UNIVERSITY PRESS
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore,
São Paulo, Delhi, Dubai, Tokyo

Cambridge University Press
The Edinburgh Building, Cambridge CB2 8RU, UK

First published in print format

ISBN-13    978-0-521-11590-2

ISBN-13    978-0-511-78803-1

© Cambridge University Press 2010

2010

Information on this title: www.cambridge.org/9780521115902

This publication is in copyright. Subject to statutory exception and to the 
provision of relevant collective licensing agreements, no reproduction of any part
may take place without the written permission of Cambridge University Press.

Cambridge University Press has no responsibility for the persistence or accuracy 
of urls for external or third-party internet websites referred to in this publication, 
and does not guarantee that any content on such websites is, or will remain, 
accurate or appropriate.

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org

eBook (EBL)

Hardback



For all those who succeed us, and
in deep appreciation of those who preceded us.





Contents

Contributors page viii
1 Microscopy of soft materials 1

Eric R. Weeks
2 Computational methods to study jammed systems 25

Carl F. Schreck and Corey S. O’Hern
3 Soft random solids: particulate gels, compressed emulsions,

and hybrid materials 62
Anthony D. Dinsmore

4 Langmuir monolayers 97
Michael Dennin

5 Computer modeling of granular rheology 121
Leonardo E. Silbert

6 Rheological and microrheological measurements of soft
condensed matter 147

John R. de Bruyn and Felix K. Oppong
7 Particle-based measurement techniques for soft matter 180

Nicholas T. Ouellette
8 Cellular automata models of granular flow 209

G. William Baxter
9 Photoelastic materials 230

Brian Utter
10 Image acquisition and analysis in soft condensed matter 248

Jeffrey S. Olafsen
11 Structure and patterns in bacterial colonies 279

Nicholas C. Darnton
Index 326

vii



Contributors

Dr. George W. Baxter
School of Science
Penn State Erie
The Behrend College
4205 College Drive
Erie, PA 16563-0203

Dr. Nicholas C. Darnton
Visiting Asst. Prof. Physics
118 Merrill Science Center
PO Box: AC# 2244
Amherst College
Amherst MA 01002-5000

Dr. John de Bruyn
Department of Physics and Astronomy
The University of Western Ontario
1151 Richmond Street
London, Ontario, Canada, N6A 3K7

Dr. Michael Dennin
University of California, Irvine
4129 Frederick Reines Hall
Irvine, CA 92697-4575

Dr. Anthony D. Dinsmore
Associate Professor of Physics
University of Massachusetts

Amherst
Hasbrouck Lab 411
666 North Pleasant Street
Amherst, MA 01003

Dr. Corey S. O’Hern
Associate Professor of Mechanical

Engineering and Physics
Department of Mechanical Engineering
Yale University
P. O. Box 208286
New Haven, CT 06520-8286

Dr. Jeffrey S. Olafsen
Department of Physics
Baylor University
One Bear Place #97316
Waco, TX 76708-7316

Felix K. Oppong
(1) Department of Physics and

Astronomy
The University of Western Ontario
1151 Richmond Street
London, Ontario, Canada N6A 3K7
(2) Unilever R & D
Colworth Science Park
Sharnbrook, Bedfordshire MK44 1LQ
UK

Dr. Nicholas T. Ouellette
Assistant Professor of Mechanical

Engineering
Department of Mechanical Engineering
Yale University
P.O. Box 208286
New Haven, CT 06520-8286

viii



Contributors ix

Carl F. Schreck
Department of Physics
Yale University
New Haven,
CT 06520-8120

Dr. Leonardo E. Silbert
Assistant Professor
Department of Physics
Southern Illinois

University
Carbondale, IL 62901

Dr. Brian Utter
MSC 4502
Dept. of Physics & Astronomy
James Madison University
Harrisonburg, VA 22807

Dr. Eric R. Weeks
Emory University
Physics Department
mail stop 1131/002/1AB
400 Dowman Drive
Atlanta, GA 30322





1

Microscopy of soft materials

eric r. weeks

1.1 Introduction

“Soft materials” is a loose term that applies to a wide variety of systems we
encounter in our everyday experience, including:

• Colloids, which are microscopic solid particles in a liquid. Examples include
toothpaste, paint, and ink.

• Emulsions, which are liquid droplets in another immiscible liquid, for example
milk and mayonnaise. Typically a surfactant (soap) molecule or protein is added
to prevent the droplets from coalescing.

• Foams, which are air bubbles in a liquid. Shaving cream is a common example.
• Sand, composed of large solid particles in vacuum, air, or a liquid; examples of

the latter include quicksand and saturated wet sand at the beach.
• Gels are cross-linked polymers such as gelatin, or sticky colloidal particles. Usu-

ally the components of a gel (the polymers or particles) are at low concentration,
but the gel still is elastic-like due to strong attractive forces between the gel
components.

One common feature to all of these materials is that they are all comprised of
objects of size 10 nm–1 mm; that is, objects much larger than atoms. In fact, it
is these length scales that gives them their softness, as a typical elastic modulus
characterizing these sorts of materials is kBT /a3, where kB is Boltzmann’s constant,
T is the absolute temperature, and a is the size of the objects the material is made
from [1]. For example, a could be the radius of a colloidal particle or of a sand
grain, or in a conventional crystalline solid a would be the lattice spacing. For soft
materials such as those listed above, a is much larger than the lattice spacing of
a crystalline solid, resulting in a much reduced elastic modulus. This then is why
soft materials are “soft.”
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2 Experimental and Computational Techniques

While grains of sand are large enough to be seen with the naked eye, smaller
objects, such as micron-diameter colloidal particles or emulsion droplets, are
sufficiently large enough that they are easily viewed with optical microscopy. For
this reason, microscopy has become an important tool for studying the structure of
these types of samples, for example how the bubbles in a foam are arranged.

Along with the spatial scales, the temporal scales of these soft systems are
often compatible with conventional video microscopy. For example, consider food
products such as mayonnaise or peanut butter. These are somewhat solid-like, in
that one can imagine a glop of peanut butter but not a puddle of peanut butter;
however, they are also fairly easy to spread with a knife. The speed of spreading
with a knife is set by human time scales. For example, a knife moved with velocity
v = 10 cm/s spreading peanut butter with thickness h = 4 mm results in a strain
rate given by γ̇ = v/h = 25 s−1. Thus, to understand what happens to the peanut
butter microscopically when it is deformed by the knife, one might wish to take 25
images per second, which is easily achieved with inexpensive video cameras that
are straightforward to connect to a microscope.

Another relevant time scale is set by diffusion. Very small particles undergo
Brownian motion due to thermal fluctuations. The diffusion constant D for a
sphere of radius a is given by the Stokes–Einstein–Sutherland formula:

D = kBT /6πηa (1.1)

where η is the liquid viscosity [2, 3]. D then can be used to quantify the particle
motion as follows. The motion in the x direction is equally likely to be left or right,
so the mean displacement 〈�x〉 = 0, where the angle brackets indicate an average
over many different particles. However, the mean square displacement will not be
zero, but instead will be proportional to the time �t over which the displacements
are measured:

〈�x2〉 = 2D�t ; (1.2)

thus a larger value for D results in faster motion. 〈�x2〉 is often called the variance.
If you can imagine injecting a tiny blob of dye molecules at a single point, then the
expanding cloud of dye has a characteristic size

√
〈�x2〉.

Using the mean square displacement, we can estimate the Brownian time scale
τB as the time a typical particle takes to diffuse its own size as:

τB ≡ a2/2D = 3πηa3/kBT . (1.3)

For a particle of diameter 2a = 1 µm in water (η = 1 mPa·s) at room temperature,
τB ≈ 1 s. Again, this motion is easy to study with a conventional video camera
and a microscope. Of course, particles that are ten times smaller move 1000 times
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faster, by Equation (1.3); nonetheless, many systems of interest have micron-sized
components.

This chapter will discuss several types of optical microscopy, although it will not
provide a complete survey of the variety of microscopy techniques; the interested
reader should consult reference [4]. Likewise, several representative applications
of microscopy will be presented, although this will not be an exhaustive review; for
more comprehensive review of articles of the applicability of microscopy to soft
matter experiments, see references [5–8].

1.2 Video microscopy

Conventional optical microscopes are powerful, highly sophisticated instruments,
which are nonetheless straightforward to use [4]. They are common in biology and
biochemistry laboratories, and therefore it is easy to borrow time on one if you
do not wish to purchase a microscope. For data acquisition, it is simple to attach
a camera to the microscope, whether it be a conventional “snapshot” camera or a
CCD video camera. The latter is now more common, and well-suited for studying
samples which move or change. The output of the CCD video camera is usually
attached to a frame grabber card in a computer, so that data are saved digitally,
although a conventional VCR (video cassette recorder) can also be used.

There are several types of optical microscopy, and frequently the same micro-
scope can be used in different ways by making slight modifications. The simplest
technique is termed brightfield microscopy. Here, the light source is focused by
a lens onto the sample, and the objective lens on the other side of the sample
collects the light, allowing the user to see an image of the sample, for example
the left image in Figure 1.1. Note that microscopes can be either “upright,” where
the objective lens is above the sample and the light source below, or “inverted,”
where the situation is reversed. Upright configurations are good for samples that
“float,” such as Langmuir–Blodgett films, which are layers of surfactant molecules
on the surface of a water bath [9, 10] (see also Chapter 4). Inverted configurations
are useful for samples that “sink,” such as suspensions of dense particles. In some
cases, inverted microscopes are also useful as the light source can be moved far
above the sample, and other instrumentation then placed above the objective.

In brightfield microscopy, the image contrast can be due to components in the
sample which absorb light (dyes, for example) or variations in the index of refraction
of the sample. Variations in the refractive index are common, such as between oil
and water in an emulsion; both oil and water are transparent, but the differences
in the index of refraction allow the oil droplets to be seen. A good example of this
effect is milk, which is white not because it contains white components, but because
the variations in the index of refraction between the water and the milk fat scatter
light randomly, resulting in a white appearance. A similar argument explains why
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snow is white, despite the transparency of ice; it is the reflection and refraction at
the ice/air interfaces within the snow.

A second common method is fluorescence microscopy. Here, short-wavelength
light is sent in, typically through the objective. Fluorescent molecules in the sample
absorb this light, and radiate slightly longer wavelength (lower energy) light, which
is collected through the objective. Special filters and mirrors are used to direct the
light appropriately from the light source to the sample, and from the sample to the
camera. In particular, a “dichromatic” (or “dichroic”) mirror reflects the excitation
light onto the sample, but allows the emitted light to pass through to the camera or
microscope eyepiece. The advantage of fluorescence microscopy is that the dye can
be placed in specific parts of the sample, such as in the solid particles of a colloidal
suspension, or even in the surfactant molecules stabilizing emulsion droplets. This
makes it easier to distinguish different sample components.

Fluorescence microscopy has one significant limitation: photobleaching. After
dye molecules absorb the excitation light, but before they emit light, they can
chemically react with oxygen present in the sample to form a non-fluorescent
molecule. This only happens when they are excited, so photobleaching happens in
direct proportion to the illumination light (with the limitation that once all the dye
molecules are excited, they have reached saturation). Thus a sample can sit stably
for a long time in the dark, but the photobleaching starts precisely when the sample
is observed, that is when the excitation light is turned on (although, this only affects
the local region illuminated by the microscope). Photobleaching manifests itself as
the image becoming gradually darker. In some cases, photobleaching can be delayed
by adding chemicals such as propyl gallate to the sample, which will bind to the free
oxygen in the sample. This trick is limited to samples which are compatible with
such chemicals, generally restricting the use of these chemicals to nonbiological
samples. In other cases, photobleaching can be useful for studying local diffusion
in samples, a technique known as “fluorescent recovery after photobleaching” [11].
Intense light is used to photobleach a region of the sample, and then low-intensity
light is used to monitor the recovery of fluorescence as nonbleached dye molecules
diffuse back into the region. With this method, the diffusivity of the dye molecules
can be measured.

There are other common types of optical microscopy such as darkfield
microscopy, phase contrast microscopy, and differential interference contrast
microscopy (see the right image in Figure 1.1). These are modifications of bright-
field microscopy and are able to enhance the contrast from very slight differences
in the index of refraction. These techniques are more often used in biology, where
one might wish to study a cell, filled with water and biopolymers, immersed in a
cell culture medium that also is primarily water. These are less often used for soft
condensed matter; for more details, see reference [4].
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(a) (b)

Figure 1.1 (a) Image of an oil-in-water emulsion taken using brightfield
microscopy. The picture is ∼60 µm wide. (b) Image of the same field of view
taken using differential interference contrast microscopy. This form of microscopy
produces a fictitious three-dimensional appearance; in reality, these are the cross-
sections of spherical droplets. Note: the contrast in both pictures has been enhanced
for better appearance.

1.3 Confocal microscopy

A confocal microscope is a laser scanned optical microscope. This is a fluorescent
technique; the laser light is used to excite fluorescence in dye added to a sample.
Typically, the laser beam is reflected off two scanning mirrors that raster the beam
in the x and y directions on the sample. Any resulting fluorescent light is sent
back through the microscope, and becomes descanned by the same mirrors. A
dichroic mirror is used to then direct the fluorescent light onto a detector, usually
a photomultiplier tube.

One additional modification is necessary to make a confocal microscope: before
reaching the detector, the fluorescent light is focused onto a screen with a pinhole.
All of the light from the focal point of the microscope passes through the pinhole,
while any out-of-focus fluorescent light is blocked by this screen. This is crucial
for viewing samples which may be full of fluorescent objects. Figure 1.2 shows
excitation light being focused through a sample, and clearly the highest intensity
of the excitation light is at the focus of the lens. However, the weaker out-of-focus
light still excites fluorescence in other layers of the sample. While this emitted
light is much weaker (in proportion to the excitation light), there is a large volume
where this out-of-focus emitted light emanates. The pinhole filters out most of this
out-of-focus light, allowing a strong and clean signal to come from the in-focus
region. The pinhole is conjugate to the focal point of the lens, meaning that a point
in focus at the focal point of the objective lens is re-imaged onto the pinhole, and
this is the origin of the term “confocal.” Intriguingly, the confocal microscope was
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Figure 1.2 Sketch of light being focused by an objective lens. While the intensity
is highest at the focal point, other portions of the sample are illuminated as well.

(a)

10   mm

(b)

Figure 1.3 Images from confocal microscopy. (a) 2D image of a foam. Because
of the narrow depth of focus of confocal microscopy, only foam channels that
are close to parallel to the field of view are visible. At the upper right, a channel
perpendicular to the field of view can be seen as a small black triangle. The depth
of focus of this image is approximately 0.5 µm. (b) 3D image of a foam, 100 µm
wide. (Images from Doug Wise and Eric R. Weeks.)

invented by Marvin Minsky in 1955, who is much better known for his work in
artificial intelligence [12, 13].

This ability to reject out-of-focus fluorescent light directly results in the main
strength of confocal microscopy, the ability to take three-dimensional pictures of
samples. By rejecting out-of-focus light, a crisp two-dimensional image can be
obtained, as shown in Figure 1.3(a). The sample (or objective lens) can be moved
so as to focus at a different height z within the sample, and a new 2D image
obtained. By collecting a stack of 2D images at different heights z, a 3D image is
built up, as shown in Figure 1.3(b).

The time to scan one 2D image can range from 10 ms to several seconds,
depending on the details of the confocal microscope and the desired image size
and quality. For faster rates one typically substitutes an Acoustic-Optical Deflector
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(“AOD”) for one of the scanning mirrors. This uses a radio-frequency sound wave
to set up a standing density wave pattern in a crystal. The standing wave acts
as a diffraction grating and steers the laser light depending on the wavelength of
the standing wave, which is controlled by the sound wave. Because there are no
moving parts, the AOD is faster than a scanning mirror. However, because the
diffraction grating behavior is dependent on the wavelength of the diffracted light,
the fluorescent light (being a longer wavelength than the excitation light, and not
monochromatic) cannot be descanned by the AOD. Thus, AOD-based confocal
microscopes replace the confocal pinhole with a confocal slit, with some slight
loss of optical performance.

Another high-speed confocal microscopy technique is the Nipkow disk confocal
microscope. This uses a spinning disk with many pinholes in it, such that some
fraction of the field of view is illuminated at any given moment. As the disk spins,
the entire field of view is scanned. The collected light is imaged by a standard video
camera rather than a photomultiplier tube, and thus by using different cameras, the
technique can be adapted to different conditions (low light levels, higher speed,
etc.) Given that there are no moving mirrors, the scanning speed can be quite fast,
100 images/s or more depending on the camera choice. The drawback is that the
resolution is not as good, as more out-of-focus light returns through the pinholes.

1.4 Strengths, weaknesses, and tradeoffs

1.4.1 Strengths of optical microscopy

Like the other methods described in this book, optical microscopy has strengths and
weaknesses. One strength is the ability to visualize the heterogeneous structure.
Often, complex fluids are spatially heterogeneous (for example, colloidal gels such
as the one shown in Figure 1.4), and it may be desirable to understand this structure.
A second strength is the ability to distinguish different features of the material, for
example by using fluorescence techniques and adding different dyes to different
regions. A third strength is that the data provided by video microscopy are fairly
straightforward to understand; directly imaging what is in a sample can often
be easier to interpret than more indirect measurements. A fourth strength is the
ability to understand local properties. An example of this is studying how granular
particles pack next to a wall, and comparing that with the packing in the interior.
Other examples will be given in Section 1.6.

1.4.2 Weaknesses of optical microscopy

A weakness of video microscopy is the necessity to prepare the sample to be
compatible with microscopy. Often this means matching the index of refraction
of the components. For example, consider a dry sample of small glass spheres,
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Figure 1.4 Image of a colloidal gel, taken with confocal microscopy. The particles
are 2 µm diameter and aggregate due to the depletion force which is caused by
adding small polymers to the solvent [14]. Image from Gary Hunter and Eric
R. Weeks. See Chapter 3 for more information about colloidal gels.

perhaps each 50 µm diameter. These are of the right length scale for microscopy,
but each sphere acts like a small lens and scatters light. Thus, this sample will look
like white powder, for the same reason as the milk and snow examples discussed
above. Microscopy would only be able to see the first layer of particles clearly.
To better observe this sample, you would need to add an index-matching fluid.
However, then you would be studying a wet sample, and the properties might be
much different [15–19].

A second weakness of video microscopy is the lack of averaging. This short-
coming is complementary to the strength of visualizing spatially heterogeneous
structures: while a good picture is gained of the local structure, it might be nec-
essary to examine a large number of different regions to get a true picture of
the average structure. For example, consider the case of colloidal crystallization.
A sample of monodisperse hard sphere-like colloidal particles can form crystals,
usually hexagonal-close-packed, as shown in Figure 1.5. This occurs at volume
fractions φ > 0.494, for reasons due to maximizing entropy by improving the local
packing; for a fuller description, see references [1, 20]. Microscopy can be used
to study the nucleation of these crystals, but is limited to the crystals that happen
to nucleate within the field of view [20, 21]. Direct observation with microscopy
can thus determine the specific shapes of a crystal nucleus. On the other hand,
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10   mm
Figure 1.5 Confocal microscope image of a colloidal crystal. The black patch at
the lower left is due to out-of-focus particles, likely because of a crystalline defect.
A grain boundary is seen running through the middle of the image. The particles
have a radius a = 1.18 µm and the sample is otherwise similar to those described
in reference [20].

a spatially averaging technique like light scattering is better able to measure the
average nucleation rate, but is unable to determine nuclei shapes [22].

1.4.3 Tradeoffs when doing optical microscopy

The speed of image acquisition can be either a strength or weakness, depending on
the experiment. Video cameras typically acquire images at 30 frames per second
(fps). Interlaced video cameras acquire an image alternately from the odd and even
rows of pixels, and thus acquire half-images at 60 half-frames per second, which
can be useful in some cases [23]. Confocal microscopes, as noted above, have
speeds ranging from 1 fps to 30 fps, depending on the hardware. It is possible to
use faster cameras, but the tradeoff is then the need to have an illumination level
sufficient for the camera. Higher illumination levels (required for faster imaging)
will often result in substantial heating of the sample. For fluorescent samples,
higher illumination levels cause faster photobleaching.

For confocal microscopy, the main way to achieve faster speeds is to decrease
the field of view and number of pixels in the image, so that the scanning optics
have shorter distances to cover. One can then maintain the same light levels and
the same photobleaching rate as with the slower scanning speed over a larger field
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of view. It is, of course, harder to take three-dimensional images very quickly;
the limitation is how fast the objective can be moved to scan in the z direction.
Scanning in the z direction is often achieved by attaching the microscope objective
to a fast piezo-electric transducer, which is in turn attached to the microscope. In
this way, 3D images of reasonable size can be acquired at speeds of more than 1
image/s, with faster rates possible for thinner image stacks (thinner in z).

One straightforward tradeoff is the optical resolution as compared to the field of
view. Higher magnification lenses have better optical resolution, but at the price of
looking at a smaller region within the sample. However, to understand this tradeoff
one first needs to understand the relevant terms:

• Magnification: Technically this is defined as the apparent angular extent of the
image as seen by the eye, compared to the actual angular extent of the object if
it was at a reference distance of 25 cm from the eye. In practice, magnification
is not a crucial parameter. Any image can be magnified as much as desired
by projecting it onto a big screen. Objective lenses typically range from 5× to
100× magnification, and the rest of the microscope optics typically provide an
additional factor of 10×.

• Field of view: More directly useful than the magnification, this is the region
within the sample that is viewed. For the highest magnification lenses, the field
of view can be as small as 50 × 50 µm2. Field of view also relates to the camera
and the optics attaching the camera to the microscope. Typically the field of
view as seen by the camera is a quarter of the area seen through the microscope
eyepieces.

• Size of image in pixels: This depends on the camera. Having more pixels over
the same field of view is often helpful, although it requires more room to store
the data on a computer. Note, however, that switching to a camera with more
pixels does not increase the field of view, which is set by optics. However, the
physical size of the CCD chip within a camera can impact the field of view.

• Resolution: The optical resolution is set by diffraction effects, quantified by
Rayleigh’s criterion, and is tied with the quality of the optics and the wavelength
of light used to view the sample [4]. The best (smallest) resolution of optical
microscopes is about 200 nm. The optical resolution quantifies the ability to
distinguish two closely spaced objects. For example, a typical test pattern is a
grid of lines, and if the grid spacing is smaller than the resolution, no lines will
be seen. Another way to think about resolution is to consider the fluorescence
microscopy image of a small fluorescent molecule. The size of the molecule is
much smaller than the resolution, but the light emitted from the molecule can
still be seen. However, rather than appearing as an extremely sharp point of light,
the molecule appears as a fuzzy round spot with a diameter equal to the optical
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resolution. The best way to think of optical resolution is that all images will be
blurry on the scale of the resolution.

• Ability to resolve features: Consider the same fluorescent molecule, which
appears as a diffraction limited spot. As just mentioned, the presence of this
molecule can be detected by the emitted light, and the true size of the molecule
is irrelevant (although the intensity of the emitted light may be highly relevant
for the ability of the camera to see it). How accurately can the position of the
center of this molecule be determined? Perhaps surprisingly, it is easy to do
much better than the optical resolution. Suppose the image of the fluorescent
molecule spans a region N pixels wide in the image, and each pixel has size δ

in microns. Then, typically the position of the molecule can be determined to a
precision of ≈ δ/N . This argument also holds true for other optical microscopy
techniques, not just fluorescence. The real limitation of the resolution is that two
such molecules that are closer together than the resolution will blend together
into one diffraction limited spot, and their separation will be nearly impossible
to measure. The fact that there are two molecules rather than one might still be
measurable by the quantity of emitted light, although this ability applies only to
fluorescent techniques.

Overall, as with many experimental techniques, these abilities can be tweaked
by spending more money. Higher magnification lenses tend to be more expensive.
At a given magnification, lenses with higher resolution are more expensive. In
general, the resolution of a lens is reasonably well-suited to the field of view. That
is, a high-resolution lens with low magnification would not be useful, as then the
limitations would be set by the limited pixel size of the camera rather than optical
considerations. It is best to work with a camera with pixel sizes at least as small as
the resolution of the microscope; that is, an image of an object the size of δ (the
resolution limit) should be at least one pixel wide. Without this, you do not get
the best abilities from your microscope; one does not want a cheap camera limiting
the capability of an expensive microscope.

1.5 Particle tracking

Particle tracking is a powerful and common technique used to study soft materials
[23]. The general idea is to embed tracer particles in our sample that are imaged
using video microscopy. By taking a movie of these particles moving, a computer
can post-process the images to determine where the particles are at each moment.
These particle positions are then used for the tracking step. If the particles do not
move large distances between subsequent images, then they can be easily tracked,
as shown in Figure 1.6(a). Specifically, they need to move less between images
than their typical inter-particle spacing [23].
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Figure 1.6 (a) Schematic of particle positions at one time (light gray) and a later
time (dark gray). If the particles have not moved much between the two times,
particle tracking can assign each particle a unique identity number at each time.
(b) In particle image velocimetry, two regions within an image are compared at
two different times separated by �t , and the displacement vector necessary to
shift one region onto the other provides the velocity as �v = �d/�t . This method
neither requires identifying individual particles, nor requires that the regions are
exact matches, as indicated in this sketch.

In some cases, the particles themselves may be a key part of the sample, for
example with colloids or granular materials. With confocal microscopy, particles
can be tracked in three dimensions, allowing the structure of the materials to
be determined or three-dimensional flow fields to be measured [7, 24]. Specific
examples will be discussed in Section 1.6.

A complementary method is particle image velocimetry (PIV). In this method,
again a sequence of images is taken. PIV uses the fact that if there is motion within
the sample, then small regions within the image will move roughly uniformly
between consecutive frames. By identifying how these regions move with time,
the coarse-grained displacement can be measured. The key assumption is that the
spatial variation of the velocity field is not too great; that is, within a small region the
velocity is fairly uniform. Consider two sequentially taken images that are slightly
different from each other, and examine a small region of the first image, say 10 ×
10 pixel2. To determine the velocity vector, compare this region with nearby 10 ×
10 pixel2 regions of the second image. The region from the second image that most
closely resembles the region from the first image then indicates that whatever you
are looking at has moved to the position of the second region. (If the region in
the second image has the same location as the original region, then nothing has
moved.) Thus, this measures a displacement vector for the position of the original
region, as shown in Figure 1.6(b). By checking regions everywhere in your picture,
you get a displacement vector field. The advantage of this method is that individual
particles do not need to be identified. Typically the size of the compared regions
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are large enough that there are several particles within each region, and so there
is enough information within that area to have a sensible determination of where
those particles have moved.

One advantage of PIV (compared to particle tracking) is that the particles are
never identified as individual particles, and so PIV easily identifies the flow field
even for noisy images. This technique works well for samples with good contrast,
and is well suited for movies where particles move large distances between images.
The advantage of particle tracking is that information is obtained about each and
every individual particle, which can be useful in many applications where flow fields
are not the primary interest. Furthermore, with careful techniques that combine PIV
and particle tracking, it is possible to track particles even in quickly moving flows
where particles move large distances [7]. See Chapter 7 for more information about
using particles to measure flow fields.

1.6 Specific applications

This section discusses a few examples of the utility of microscopy for studying soft
materials. As noted earlier, these are only representative examples rather than an
exhaustive review.

1.6.1 Structure of colloidal glasses

A major application of microscopy is to visualize the structure of soft materials. In
1995, van Blaaderen and Wiltzius used a confocal microscope to study the structure
of dense colloidal glasses; this study was one of the very first major applications of
confocal microscopy to soft materials [25]. To understand their experiment, a few
comments about the glass transition should be made.

When some materials are rapidly cooled, they form an amorphous solid known
as a glass. The transition from a liquid to a disordered solid is called the glass
transition [26, 27]. As the temperature of a molecular glass-forming material is
decreased, the viscosity rises smoothly, but rapidly, with little change in the micro-
scopic structure [25, 28, 29]. Colloidal suspensions are a useful model system for
studying the glass transition. In particular, colloidal particles can often be consid-
ered as hard spheres with an interaction potential due only to excluded volume
effects [30, 31]. Hard spheres only interact when their surfaces touch, and then
they are strongly repulsive (imagine frictionless marbles, for example). Because of
their simplicity, hard spheres are used to simulate properties of crystals [32, 33],
liquids [34–36], and glasses [37–39]. Clearly, attractive interactions between
atoms and molecules are responsible for dense phases of matter, but given dense
states of matter, repulsive interactions play the dominant role in determining the
structure [40, 41].
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The control parameter for hard sphere systems is the concentration, expressed
as the volume fraction φ. For φ > φg ≈ 0.58, the system acts like a glass. The
transition is the point where particles no longer diffuse through the sample; for φ <

φg, spheres do diffuse at long times, although the asymptotic diffusion coefficient
D∞ decreases sharply as the concentration increases [28, 39]. The transition at
φg occurs even though the spheres are not completely packed together; in fact,
the volume fraction must be increased to φRCP ≈ 0.64 (for “random-close-packed”
spheres [34, 42–45]) before the spheres are motionless. See Chapters 3 and 5 for
more details of hard sphere systems.

The work of van Blaaderen and Wiltzius studied the structure of colloidal glasses.
A key question about glass transitions is whether there is a structural change that
explains the increase in viscosity as the glassy state is approached. Indirect mea-
surements suggest there is no change [28, 29]. In their experiment, van Blaaderen
and Wiltzius used confocal microscopy to directly observe particle positions in a
colloidal glass. Even with full information about particle positions, they did not
find any structural change in the glassy state [25]. In particular, they could find
no structural correlation length scale, and therefore no direct structural link to
the growing viscosity. Several quantities related to structure could be measured
in their experiments, however, and agreed quite well with simulations of random
close-packed spheres [25].

This is merely one example of microscopy being used to study the structure of
soft materials. Microscopy has also been used to study the structure of colloidal
gels [14, 46], colloidal crystals [20, 47, 48], and emulsions [49, 50].

1.6.2 Dynamics of colloidal glasses

At the time of the earlier work of van Blaaderen and Wiltzius (1995), confocal
microscopy was still a relatively slow technique, taking one second to scan a 2D
image and correspondingly longer for a 3D stack of images [46]. The study of col-
loidal glasses, with their naturally slow dynamics, was thus well-suited to confocal
microscopy. Faster microscopy techniques allow the study of faster motion, and, in
particular, particle tracking techniques enable investigation of how particle motion
changes in liquids as the glass transition is approached, rather than only motion
within the slower glassy state.

Light scattering techniques allow the measurement of the average behavior of
samples. Thus, early light scattering experiments that studied dense colloidal sam-
ples found results analogous to the average mean square displacement of particles,
as shown in Figure 1.7. At time scales less than 100 s, particles are “caged” by their
neighbors. Because they cannot move past their neighboring particles, the mean
square displacement shows a plateau, with the plateau height related to the size of
the “cage” formed by the neighbors. At long time scales, particles are able again
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Figure 1.7 (a) Mean square displacement, measured by confocal microscopy, on
a colloidal sample with volume fraction φ = 0.52. Open symbols are from two-
dimensional images taken within the 3D sample, and solid symbols are from
three-dimensional images of the same sample. The particles in the sample are
monodisperse with a radius a = 1.18 µm. (b) Particle trajectory from the same
sample, showing 120 min of data. The particle started at the left, and changed
position at t ≈ 51 min and t ≈ 84 min. In addition to moving in x and y, the
particle also moved δz = 0.3 µm during the first jump, and δz = 0.2 µm during
the second jump.

to diffuse through the sample when the cages rearrange. That is, the neighboring
particles somehow rearrange so that the caged particle can move to a new location.
Of course, every particle is caged; in other words, not only is a given particle caged,
but it also forms part of the cages for its neighbors.

This general picture has been known for a while, and microscopy allows us to
directly visualize the motion responsible for cage rearrangements. Figure 1.7(a)
suggests a smooth evolution from diffusion, to cage trapping, to cage rearrange-
ment; perhaps cage rearrangements could be a slow wandering of the position of the
particle. Figure 1.7(b) shows that this is not the case; rather, cage rearrangements
can be rather abrupt. The jumps in particle position shown take approximately
1–2 minutes to occur. This is slow compared to a freely diffusing particle, which
would diffuse approximately 1 µm in 10 s, but fast compared to the time scales
between rearrangements in this dense sample. Averaging over thousands of parti-
cles, which undergo many cage rearrangements, results in the smooth curve shown
in Figure 1.7(a).

Furthermore, with microscopy we can answer the question about the motion
of the adjacent particles when the cage rearrangement occurs; that is, what does
a cage rearrangement look like? Figure 1.8 shows the motion of several parti-
cles in one region. Neighboring particles with large displacements typically move
in similar directions, although occasionally cases of neighboring particles with
different directions can also be seen [51]. Notably, in general the most mobile
particles are clustered together, and also there are regions where particles move
relatively little [52, 53]. Overall this is termed “dynamical heterogeneity” – the
motion of particles is spatially and temporally heterogeneous. Many experiments
provided indirect evidence of dynamical heterogeneity in glassy materials [54],
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Figure 1.8 Displacement vectors for particles from the sample shown in
Figure 1.7. The axes are labeled in microns, and the particle radius is a = 1.18 µm;
the circles indicating particles are not drawn to scale. The time scale for the dis-
placement is 10 min, and the displacement vectors have been stretched by a factor
of 5 to make the cooperative motions more apparent. Only displacements longer
than 0.1 µm are shown. The particles are taken from a 2 µm thick slice, and
because some have different z positions, they may be closer in x and y than their
diameters.

and microscopy allows us to directly see it. While the data shown here are from
confocal microscopy, similar results were obtained earlier by video microscopy
[55, 56].

1.6.3 Microrheology: determining macroscopic properties
from microscopic measurements

Another widespread application of microscopy is microrheology. For example,
consider adding a few tracer particles to a Newtonian liquid such as water. Using
particle tracking methods, their diffusive motion can be observed and a mean square
displacement 〈�x2〉(�t) calculated. The diffusion constant D can be calculated
using Equation (1.2). If the particle size a and temperature T are known, then
the viscosity η of the solvent can be determined from Equation (1.1). This is the
simplest example of microrheology, using the motion of tracer particles to measure
the viscosity.

Likewise, consider a particle trapped in a purely elastic medium like gelatin.
It too undergoes thermal vibrations, but now the particle is trapped in place. The
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amplitude of the vibrations is related to kBT and the elastic modulus of the material.
By measuring 〈�x2〉(�t → ∞), the elastic modulus can be determined. More
generally, for a viscoelastic material, the �t dependence of 〈�x2〉 can be used to
determine the frequency-dependent viscoelastic moduli [57–60].

This method is complementary to macroscopic rheology. In a macroscopic
rheometer, a few milliliters of sample are placed in the instrument, for exam-
ple between two circular plates. In a “controlled strain” rheometer, the top plate
is oscillated at a given frequency, and the torque required to maintain that rota-
tion is measured. In a “controlled stress” rheometer, this is reversed: the torque is
controlled and the plate displacement is measured. In either case, the relationship
between the applied strain and required torque determines the viscoelastic mod-
uli [1, 61]. (In general, there is a phase angle between the strain and torque, and
the sample has both viscous and elastic moduli. The physical meaning of the phase
angle is that the torque and the strain, while both oscillating sinusoidally, do not
do so in phase.) A large advantage of microrheology is that the same rheologi-
cal properties can be measured with microliters of sample rather than milliliters.
For materials such as biopolymers, purified samples may only be available in
tiny quantities. Another advantage is that microrheology can sometimes cover a
larger frequency range. Essentially, the camera speed of the microscope sets the
highest frequency obtainable, and the duration of the measurement sets the lowest
frequency. Using a fast camera, higher frequencies can be studied (>1000 Hz);
macroscopic rheometers typically are limited to about 100 Hz at the fast end.
Microrheology can also be done using light scattering techniques, which can get
to still higher frequencies [57].

A further advantage of using microscopy for microrheology is that the measure-
ment is local. If the sample is spatially heterogeneous, then this can be observed
with microscopy and the local rheology determined. In some cases, microrheology
can be used to diagnose spatial heterogeneity. The most straightforward method
for this is termed two-particle microrheology [62,63]. This method uses the cross-
correlation of the motion of pairs of particles to infer the rheological properties. The
cross-correlation can be examined as a function of the separation R of particles.
For a homogeneous viscoelastic medium, the correlation should decay as 1/R.
Deviations from this can be used to infer spatial structure of the sample [64]. This
method is very robust, and does not depend on the tracer size, shape, or interactions
between the tracers and the medium [62]. For example, imagine trying to study
microrheology of a polymer network with added tracer particles. The single-particle
mean square displacement would be different if particles stick to the polymers, or
if the polymers avoid the particles. However, two-particle microrheology will give
the correct results in either case, as it only depends on the long-wavelength behav-
ior of the material. The local details which depend on the specific particle/system
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interactions are uncorrelated over the longer distances, and thus drop out of the
analysis.

A limitation of microrheology is that for very stiff or very viscous materi-
als, the particle motion may be hard to observe. For purely viscous materials,
〈�x2〉 ∼ �t/ηa, and for purely elastic materials, 〈�x2〉 ∼ 1/Ga (using the elastic
modulus G). Thus, for very stiff or very viscous materials, either the particle size a

needs to be decreased or else one must be able to measure very small displacements
�x. A limitation of the two-particle method is that, in very spatially heterogeneous
samples, one must study the correlated motion of particles separated by distances
larger than any spatial heterogeneity, and, at those separations, the amount of cor-
related motion may be very hard to distinguish from the uncorrelated Brownian
motion. (Note that macroscopic rheometers avoid this problem by having a macro-
scopically large gap between the two plates. Samples which are heterogeneous
on the scale of a macroscopic rheometer will still have problems; for example,
rheology of granular materials is tricky [61].)

See Chapter 6 for more details about rheology and microrheology.

1.6.4 Flow fields

A final application of microscopy is to determine the flow fields within microscopic
samples and microfluidic devices. As mentioned in Section 1.5, this can be done
either with particle tracking or particle image velocimetry.

In microscopic systems, the Reynolds number characterizing flow is typically
very small. The Reynolds number, given by:

Re = ULρ/η, (1.4)

is based on a characteristic velocity U , characteristic length L, viscosity η, and
fluid density ρ. So, for water flowing with a maximum velocity of 1000 µm/s in a
cylindrical tube of radius 100 µm, Re = 0.1. The Reynolds number indicates the
relative importance of inertial and viscous forces. Viscous forces are much more
significant in situations with Re � 1. For a cylindrical tube, one expects the velocity
profile to be parabolic with zero velocity at the walls (due to the no-slip boundary
condition) and maximal velocity along the long axis of the tube. This simple flow
field is termed “pipe Poiseuille flow” [65]. Given that microscopes study things
at small length scales corresponding to low Reynolds numbers, and flow fields at
low Reynolds numbers are simple, why would one want to measure flow fields in
microscopic devices? Here we consider three examples where measurements are
indeed useful.

Experiments by Frank et al. examined the flow of particle-laden suspensions
flowing through rectangular capillary tubes [66]. Indeed, to first approximation,
the flow was parabolic in accordance with pipe Poiseuille flow. However, due to
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shear forces between particles, the particle concentration evolves such that more
particles are in the center of the tube compared to near the walls. This is because
of the parabolic velocity profile which ensures that particles move at different
velocities. A particle will overtake slower particles which are closer to the wall,
and be overtaken by faster particles which are closer to the center of the tube. When
two particles moving at different velocities approach each other, they interact via
the fluid, which jostles them into new positions. There is an effective diffusivity
for this particle which depends on the shear rate, that is the slope of the velocity
gradient. Particles in the center of the tube see a much smaller velocity gradient
(since they are at the local maximum of the flow) and tend to stay in the center of
the tube. The overall result is that particles move out of regions of high shear (near
the walls) and into regions of low shear (in the center) (although note that the full
explanation of this phenomenon is more detailed as discussed in reference [66]).
Ultimately for small colloidal particles, this is balanced by diffusion which attempts
to homogenize the particle distribution [66]. The heterogeneous particle distribution
modifies the velocity profile. Microscopy allows simultaneous measurements of the
concentration and velocity profile, and in fact the deviations from a pure parabolic
velocity profile agree well with theoretical predictions [66].

The second example relates to mixing in microfluidic devices. In macroscopic
applications, turbulence is often used to provide rapid mixing. In microfluidic
applications, Re � 1, so turbulence is suppressed. Experiments by Gao et al.
studied mixing in microfluidic flow chambers designed to enhance mixing [67].
The microchannels had a rectangular cross-section, with occasional raised ridges
on the bottom of the channel. The ridges had a “herringbone” pattern, shaped
like a “V” with the pointed end of the V pointing downstream. Using confocal
microscopy, they studied the flow of moderately concentrated colloidal suspensions
through these microchannels. Their observations enabled them to determine the best
geometries to optimize mixing.

The third example is that of water draining through a foam. Between pairs of
bubbles in a foam, one has a foam face. Where three bubbles meet, there is a
liquid channel in between; these are visible in Figure 1.3. Between four mutually
adjacent bubbles, four liquid channels come together and meet in a node. Thus the
structure of channels and nodes form a network, somewhat like connected pipes,
through which liquid can drain out of a foam. Figure 1.9 shows such a draining
foam, and clearly the channels are thicker at the bottom where the liquid has not
yet completely drained. Several questions then arise: Are the walls of the bubbles
slippery or rigid? Does water flow through the channels like pipe Poiseuille flow,
or do the surfactants at the boundaries of the channels prevent a no-slip boundary
condition?

Using confocal microscopy, Koehler et al. studied the flow of water through
a draining foam [68, 69]. They added water with a few tracer particles at the



20 Experimental and Computational Techniques

Figure 1.9 Image of a draining foam (taken by Gianguido C. Cianci and Eric
R. Weeks).

top of a foam, and, by tilting the microscope sideways, were able to study the
flow of the water through the foam channels. Foams made with a small-molecule
surfactant resulted in plug-like flow, indicating that the channel walls were indeed
slippery. For plug-like flow, the velocity is nearly constant across the width of the
channel (similar to how toothpaste comes out of the tube). Using a larger protein
as a surfactant, they found parabolic flow, indicating that the no-slip boundary
condition was recovered. Thus, changing the surfactant can dramatically change
the character of foam drainage (and thus the rate at which foams drain).

1.7 Summary

Microscopy as a scientific technique dates back many centuries, for example to the
important work of Antonie van Leeuwenhoek in the late 1600s. This chapter has
only touched on suggestive applications of microscopic techniques, and only a few
varieties of optical microscopy. Overall, microscopes coupled with video cameras,
which in turn can be directly connected to a computer, have greatly expanded the
applications of microscopy. Within the limitations of Section 1.4, microscopy is a
powerful tool for studying soft condensed matter systems. Given that you get to
see the samples, it is also a fun technique, as hopefully the images in this chapter
have suggested.
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Computational methods to study jammed systems

carl f. schreck and corey s. o’hern

2.1 Introduction

Jammed materials are ubiquitous in nature and share several defining character-
istics. They are disordered, yet solid-like with a nonzero static shear modulus.
Jammed systems typically exist in metastable states with structural and mechan-
ical properties that depend on the procedure used to create them. There are a
number of different routes to the jammed state, including compressing systems to
densities near random close packing [1], lowering the applied shear stress below
the yield stress [2], and quenching temperature below the glass transition for the
material [3]. Examples of jammed and glassy particulate systems include dense
colloidal suspensions [4], attractive glasses and gels [5], static packings of granular
materials [6], and quiescent foams [7] and emulsions [8]. Due to space constraints,
we will limit our discussion to athermal jammed systems in which thermal energy
at room temperature is unable to induce local rearrangements of particles. We note
though that there are deep connections [9] between athermal jammed systems and
thermal, glassy systems [10]. An important open problem in the field of jammed
materials is identifying universal features that are not sensitive to the particular
path in parameter space taken to create them.

In this contribution, we will review the computational techniques used to gen-
erate athermal jammed systems and characterize their structural and mechanical
properties. We will focus on frictionless model systems that interact via soft, pair-
wise, and purely repulsive potentials. (Computational studies of frictional granular
materials will be the focus of Chapter 5.) The methods for generating jammed par-
ticle packings discussed here are quite general and can be employed to study both
two- and three-dimensional systems; both monodisperse and polydisperse systems;
a spectrum of particle shapes, including spheres, ellipsoids, and rods; and a variety
of boundary conditions and applied stress.
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The remainder of the chapter will be organized as follows. In Section 2.2, we
will review computational methods for creating static particle packings. Many prior
studies of jamming have focused on spherical particles under isotropic compression.
We will therefore describe how packing-generation methods can be generalized,
with a particular emphasis on grains with nonspherical shapes. This review will
be restricted to completely jammed, mechanically stable (MS) packings, and thus
in Section 2.3, we will define mechanical stability of particle packings in terms of
the normal modes of the dynamical matrix [11]. In Section 2.4, we will describe
many of the computational measurements that can be performed to characterize the
structural and mechanical properties of jammed packings, including the pair distri-
bution function, structure factor, translational and orientational order parameters,
correlation functions, spectra of vibrational modes, and elastic moduli.

2.2 Methods to generate static-particle packings

Computational methods to generate jammed particle packings fall into two general
categories: ‘hard’ [12] and ‘soft’ [13–15] particle methods. Hard particle meth-
ods strictly enforce the constraint that particles cannot overlap; these include the
Lubachevsky–Stillinger algorithm of binary collisions between elastic particles
coupled with compression [16], single-particle and collective Monte-Carlo moves
with successive compressions, and various geometrical techniques [17–19].

In this contribution, we will review two soft-particle packing-generation tech-
niques: (1) the isotropic compression method in which we successively compress
or decompress the system followed by energy relaxation until all particles are just
touching and (2) the applied shear method in which we generate just-touching
particle packings at arbitrary values of shear strain. We focus on soft-particle
packing-generation methods for several reasons. First, the structural and mechani-
cal properties can be studied as a function of overcompression φ − φJ , where φJ

is the jamming packing fraction, which allows numerical results to be compared
to experiments on foams, emulsions, and granular materials. Second, features of
hard-particle MS packings can be recovered from soft-sphere packings in the just-
touching limit. Finally, many hard-particle methods yield locally jammed packings,
which are not mechanically stable. In contrast, soft-particle methods, which sat-
isfy the constraints of force and torque balance on all grains, reliably produce
mechanically stable packings.

2.2.1 Isotropic compression

The isotropic compression method for soft particles consists of initializing
the system in a dilute, fluid-like configuration and successively compressing/
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Figure 2.1 Schematic showing the definition of the contact distance σij for two
disks i and j , with diameters ai and aj and center-to-center separation rij . The two
particles overlap when rij < σij , where σij = (ai + aj )/2 is the average diameter.

decompressing the system followed by energy relaxation to the nearest local min-
imum. The method terminates at packing fraction φJ when all particles (except
floater particles that are not locally stable) achieve force and torque balance with
infinitesimal particle overlaps. In these studies, we will employ pairwise, short-
range repulsive interactions between particles. The pair potential V (rij /σij ), where
rij is the center-to-center separation and σij is the contact distance between grains
i and j , is positive if particles are overlapped (rij < σij ) and zero otherwise. Thus,
the packings possess nonzero, but infinitesimal pressure and potential energy at
jamming.

We will focus on two forms for the interaction potential: the repulsive spring
potential Vs in (2.1) and the repulsive Lennard–Jones potential in (2.2):
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where α = 2 (α = 5/2) correspond to the linear (Hertzian) repulsive spring poten-
tial, �(x) is the Heaviside step function, which ensures that particles only interact
when they overlap. For spherical particles, the contact distance is simply the average
of their diameters σij = (ai + aj )/2, as shown in Figure 2.1. The contact distance
σij for nonspherical grains, which depends on r̂ij and the orientations of grains i

and j , will be discussed in detail in Section 2.2.3.2. The total potential energy per
particle for the system is given by V = N−1∑

i,j V (rij ).
The isotropic compression method can be viewed in terms of the potential

energy landscape V (�ξ ) of the system, as shown in Figure 2.2. All possible con-
figurations of N particles, each denoted by �ξ = (�r1, �r2, . . . , �rN ), yield a value of
the potential energy per particle V (�ξ ). Static, force- and torque-balanced packings
correspond to local minima in the potential energy landscape. Jammed packings
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Figure 2.2 Schematic of the isotropic compression method to create jammed
packings. In panels (a)–(c), we show the potential energy landscape V (�ξ ) in the
vicinity of the static granular packings (at point �ξ0 in configuration space) in
panels (d)–(f). If the system exists in a nonoverlapped configuration (panel (f))
with gaps between particles and V = 0, it will be compressed followed by energy
minimization. If the system exists in an overlapped configuration (panel (d)) at
a local potential energy minimum with V > 0, it will be decompressed followed
by energy minimization. When the system switches between the cases displayed
in panels (d) and (f), the compression/decompression increment is decreased. The
process stops when the system exists in a static packing at a local potential energy
minimum that is infinitesimally above zero.

correspond to minima with V (�ξ ) � 0. During the packing-generation process, if
there are significant particle overlaps (Figure 2.2(d)) and the energy of the system
at a local minimum is nonzero (Figure 2.2(a)), the system will be subsequently
decompressed. If the potential energy of the system is zero (Figure 2.2(c)) and
gaps exist between particles (Figure 2.2(f)), the system will be compressed at the
next step. The increment by which the packing fraction φ is changed at each com-
pression or decompression step is gradually decreased. After a sufficiently large
number of steps, a jammed packing with infinitesimal overlaps (Figure 2.2(e)) and
potential energy V � 0 (Figure 2.2(b)) is obtained.

The isotropic compression method for generating jammed particle packings
consists of four basic steps: (1) initialization of particle positions and orientations,
(2) compression or decompression of the system, (3) relaxation of the potential
energy to the nearest local minimum, and (4) repetition of steps (2) and (3) until
a jammed packing with infinitesimal overlaps is obtained. We will describe the
implementation of these steps in detail here:

Step (1) Choose an initial configuration for N particles in the simulation cell. This
is typically accomplished by assigning each particle a random position and orien-
tation, in the case of nonspherical particles, in the simulation cell. For the repulsive
Lennard–Jones interaction potential, random initial configurations without signifi-
cant particle overlaps must be used. If the initial packing fraction, φ0, is well below
the mean jammed packing fraction, 〈φJ 〉, the initial conditions will not bias the
final set of packings. The results obtained for φ0 > 〈φJ 〉 and for φ0 < 〈φJ 〉 only
show small differences for frictionless grains, but these differences are important
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and should be studied in more detail in future studies. When choosing orientations,
directors can be selected randomly from a uniform distribution on the unit disk
(sphere) in 2D (3D).

Step (2) Compress the system (or increase particle sizes uniformly) if it is below
the jamming point (V < Vtol) or decompress the system (or decrease particle sizes
uniformly) if it is above the jamming point (V > 2Vtol). Vtol is the potential energy
threshold that dictates how close the final packing is to the point at which all particles
are just touching. We typically consider Vtol = 10−16 (where V is normalized by
the energy-scale parameter ε) based on numerical precision. We must choose the
initial packing fraction increment �φ0 to be sufficiently small so that it does not
influence the jammed packing fraction, but also large enough to efficiently generate
jammed packings. Previous studies have used �φ0 = 10−4 [14, 15]. The packing
fraction increment is successively decreased to locate φJ . If the potential energy
of the system at successive compressions or decompressions n − 1 and n satisfy
Vn−1 > 2Vtol and Vn < Vtol or Vn−1 < Vtol and Vn > 2Vtol, the step size is halved.
Otherwise it remains at the current value of �φ.

Step (3) Minimize the total potential energy of the system after each compression or
decompression step to find a local potential energy minimum. The energy minimiza-
tion can be performed in several ways, including (a) numerical energy minimiza-
tion procedures, such as the conjugate-gradient technique [20] and (b) molecular
dynamics (MD) simulations with dissipative forces proportional to velocity. The
conjugate-gradient method is a numerical scheme that begins at a given point in
configuration space and moves the system to the nearest local potential energy min-
imum without traversing any energy barriers [20]. In contrast, molecular dynamics
with finite damping is not guaranteed to find the nearest local potential energy
minimum since kinetic energy is removed from the system at a finite rate. The
system can thus surmount a sufficiently low energy barrier. A comparison of these
two methods provides important geometric information about the width of basins
and heights of energy barriers separating the basins in the energy landscape.

In the molecular-dynamics method, each particle i obeys Newton’s equations of
motion:

m�ai =
∑
j �=i

[
−dV (rij )

drij

− b�vij · r̂ij

]
r̂ij , (2.3)

where �ai is the acceleration of particle i, �vij is the relative velocity of particles
i and j , r̂ij is the unit vector connecting the centers of these particles, and b is
the damping coefficient. In the infinite-dissipation limit, b → ∞, the potential
energy cannot increase during a molecular-dynamics relaxation, and thus the
molecular-dynamics and conjugate-gradient methods should give very similar
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Figure 2.3 Schematic of the isotropic compression method for creating jammed
particle packings. The system is initialized at a packing fraction φ0 below the
jamming onset φJ . After a series of compressions and decompressions of decreas-
ing amplitude, the jamming onset φJ is identified with total potential energy per
particle at a local energy minimum that satisfies Vtol < V < 2Vtol.

results. We note, however, that even in this limit the two methods are not equivalent
because there may be more than one energy minimum accessible from a given
point in configuration space without traversing an energy barrier.

For the conjugate-gradient method, we terminate the minimization process when
either of the following two conditions on the potential energy per particle V

is satisfied: (a) two successive conjugate-gradient steps t and t + 1 yield nearly
the same energy value, (Vt+1 − Vt )/Vt < δ = 10−16; or (b) the potential energy
per particle at the current step is extremely small, Vt < Vmin = 10−16. Since the
potential energy oscillates in time in the molecular-dynamics method, condition
(a) is replaced by the requirement that the relative potential-energy fluctuations
satisfy the inequality 〈(V − 〈V 〉)2〉1/2/〈V 〉 < δ. Stopping criteria based on the rms
or maximum total force on the particles can also be implemented.

Step (4) The packing-generation procedure terminates when the potential energy
at a local energy minimum satisfies Vtol < V < 2Vtol. Using this method, we are
able to locate the jamming threshold in packing fraction φJ to within 10−8 for
each static packing. A schematic of the dynamics of the packing fraction during
the compression method is shown in Figure 2.3. This method can be performed for
many different initial configurations to generate an ensemble of jammed packings.

2.2.2 Applied shear strain

Athermal jammed systems can also be generated in the presence of applied shear
stress or strain. In fact, recent experimental [21], simulation [22], and theoreti-
cal [23,24] studies have emphasized that the form of stress correlations in jammed
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Figure 2.4 Schematic diagram of shear-periodic boundary conditions. (a) Static
packing with N = 6 particles confined to a Lx × Ly box with shear strain
γ = �x/Ly = 0. The shading indicates a given particle in the primary cell and
its image. (b) Static packing in a unit cell with γ = 0.2. Note that at arbitrary
γ , a given particle in the primary cell is not directly above (or below) its image.
(c) Static packing at γ = 0.8, which shows that configurations at γ and 1 − γ
are related by an inversion about the vertical (shear-gradient) direction. (d) Static
packing in (a) at γ = 1, which is identical to standard periodic boundary condi-
tions. Thus shear-periodic boundary conditions have unit period. Adapted from
reference [28].

packings created by isotropic compression and shear are fundamentally different,
with longer ranged spatial correlations along the compressive direction in sheared
systems. In experiments, simple shear can be implemented using planar [25] or
Couette geometries [26]. In simulations, bulk planar shear flow can be realized
using Lees–Edwards or shear-periodic boundary conditions [27]. In Figure 2.4, we
show a schematic diagram of shear-periodic boundary conditions implemented in
2D. In each panel, the top (bottom) image cells are shifted by �x = γLy to the
right (left), where γ is the shear strain and Ly is the dimension of the simulation
cell in the shear gradient direction.

Note that shear-periodic boundary conditions are identical at γ = x and 1 − x

and have unit period as shown in Figure 2.4; thus, we only need to study the
range γ = 0 to 0.5 to generate static packings over the full range of shear strain.
Prior studies of jammed systems have focused on isotropically compressed pack-
ings at γ = 0 [13], whereas there are relatively few studies of sheared packings
at nonzero γ [28]. To generate anisotropic static packings, the region γ = [0, 0.5]
can be divided into small shear strain intervals, e.g. �γ = 10−2. At each sam-
pled shear strain γs , the four-step compression/decompression method discussed
in Section 2.2.1 can be implemented to generate static, just-touching particle pack-
ings. That is, the particles’ positions and orientations are chosen randomly, and
the system is subjected to a sequence of compressions and decompressions with
decreasing amplitude, each followed by energy relaxation at a fixed shear strain,
until the energy of the system falls within a prescribed window. When this proce-
dure is repeated many times for different γs and independent initial conditions, one
can generate ensembles of packings over a series of discrete strains γs .

To create continuous maps of static packings between sampled shear strains γs

and γs+1, one can apply n successive shear strains to each static packing at γs of
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size δγ = �γ/n, each followed by the compression packing-generation process
described in Section 2.2.1. Shear strain steps δγ are applied by shifting the x-
coordinate of each particle i according to:

xi → xi + δγyi (2.4)

in conjunction with shear-periodic boundary conditions. A similar procedure can
also be performed to study the continuous set of static packings for shear strains
in the opposite direction between γs and γs−1. Note that this procedure generates a
series of static packings over a range of shear strain at fixed zero pressure, not at
fixed volume as in previous studies of quasistatically sheared Lennard–Jones [29]
and other model glasses [30].

A schematic of the process for generating the continuous set of static packings
between shear strains γs and γs+1 (or γs and γs−1) is shown in Figure 2.5. Panels (a)
and (b) show two possible evolutions of the potential energy landscape following
a shear strain step δγ . In (a), no particle rearrangement event occurs and the local
minimum (1) can be continuously deformed into local minimum (4) by applying
shear strain δγ . The dynamics of the system can be summarized as follows: we
apply a shear strain δγ to the initial static packing with strain γ (1), which shifts
the point in configuration space and the potential energy landscape (2). The energy
is then minimized at fixed shear strain γ + δγ (3), and the system is decompressed
(or compressed, followed by energy minimization) to bring it to a static packing
with infinitesimal overlap (4). The static packings at shear strains γ (1) and γ + δγ

(4) are overlayed in panel (c). Note that the particle contact networks are identical
at γ (gray) and γ + δγ (black).

In contrast, Figure 2.5(b) shows the evolution of the system when at least one
particle rearrangement occurs following a shear strain step. In this case, a shear
strain δγ is applied to a static packing at shear strain γ (1), and the system moves in
configuration space so that it exists in the basin of a new local minimum (2). Upon
energy minimization at fixed γ + δγ , the system moves to an unjammed packing
(3). Following compression and energy minimization, the system resides in a new
static packing at γ + δγ (4) that is not continuously related to the static packing at
γ . In Figure 2.5(d), we overlay the static packings at γ (gray) and γ + δγ (black)
and show that the particle contact networks are not the same.

For each distinct static packing at γs , one can monitor the particle contact network
as the system evolves toward γs+1 (and γs−1) and identify any changes that occur.
If there are changes in the particle contact network, physical quantities such as
the jamming packing fraction φJ , pressure, and shear stress (and their derivatives)
are discontinuous. For example, in Figure 2.6(b), we show a discontinuity in φJ at
γs < γ ∗ < γs+1, where a particle rearrangement event occurs. δγ can be tuned to
eliminate as many of the particle rearrangement events as possible.
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Figure 2.5 Schematic of the evolution of the potential energy landscape during
quasistatic shear at fixed zero pressure from shear strain γ to γ + δγ . In (a),
the system evolves continuously from the local minimum at shear strain γ (1)
to the one at γ + δγ (4) because there are no particle rearrangement events
during the shear strain interval. In contrast, in (b) the system undergoes particle
rearrangement events during the strain interval δγ , and therefore it resides in a
fundamentally different potential energy minimum at γ + δγ (4) compared to
the one at γ (1). Snapshots of the static packings at shear strain γ (gray) and
γ + δγ (black) are superimposed in (c) and (d), which correspond to the potential
energy landscape dynamics in (a) and (b), respectively. In (d), three of the original
contacts are removed and four new contacts are generated as a result of the
particle rearrangements that occurred during the strain interval δγ . Adapted from
reference [28].

(a) (b)

J J

Figure 2.6 Schematic of the evolution of the jamming packing fraction φJ during
the shear strain interval γs to γs+1. In (a) the particle contact network does not
change from γs to γs+1, while in (b), it does at γ ∗. Adapted from reference [28].

In Figure 2.6(a), we show the continuous evolution of φJ between γs and γs+1

when there are no particle rearrangement events. This continuous evolution of φJ

represents a portion of a ‘geometric family’ of static packings all with the same
particle contact network that exist over a continuous range of shear strain from
γs to γs+1. In Figure 2.7, we show results where we have pieced together these
continuous segments to construct nearly all of the geometric families over the full
range of shear strain for a small N = 10 frictionless granular system [28]. Note
that even though there are an infinite number of static packings over the continuous
range of shear strain, there are a finite number of geometric families that can be
counted.
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Figure 2.7 The solid lines show the jammed packing fraction φJ versus shear
strain γ for different geometric families. The continuous geometric families of
static packings possess the same contact network over a given range of shear
strain. When the solid line breaks, the continuous family becomes unstable and
the particle contact network changes. The families are symmetric with respect
to reflection about γ = 0.5 (dashed vertical line). This figure is adapted from
reference [28].

(a) (b) (c) (d)

Figure 2.8 Snapshots of static particle packings created using the isotropic com-
pression method in Section 2.2.1 (a) 2 : 1 (fraction of small particles to fraction
of large particles) mixture of bidisperse disks with diameter ratio σl/σs = 1.4,
(b) 2 : 1 mixture of bidisperse ellipses with ratio of major axes al/as = 1.4,
(c) polydisperse mixture of disks with a flat probability distribution for the diam-
eters between σs and 1.4σs , and (d) monodisperse spheres.

2.2.3 Other important variables

The packing-generation methods described in Sections 2.2.1 and 2.2.2 can be gen-
eralized to study packings as a function of a number of important variables that
affect their structural and mechanical properties. These parameters include the
dimension (2D, 3D, and higher dimensions) [31], particle size distribution [32],
boundary conditions [28], and particle shape [16]. In Figure 2.8, we show sev-
eral different types of static granular packings that we generated in prior studies,
including (a) bidisperse (2N/3 small and N/3 large) disks with diameter ratio
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σl/σs = 1.4 [13], (b) bidisperse (same composition as in (a)) ellipses with ratio of
the major axes al/as = 1.4 [33], (c) polydisperse disks with a uniform distribution
of particle sizes with width 0.4σs and mean 1.2σs [34] (labeled polydispersity
p = 1.4), and (d) monodisperse spheres [13].

Important control variables for the particle size include the diameter ratio and
relative number of large and small particles for bidisperse, tridisperse, or other
systems with discrete particle species, and properties of the particle size distribution
for continuously polydisperse systems, i.e. the mean and rms width for uniform,
normal, and log-normal size distributions.

The packing-generation procedures we discussed in Sections 2.2.1 and 2.2.2
employ periodic boundary conditions at either fixed zero pressure (Section 2.2.1)
or fixed shear strain (Section 2.2.2). However, it is straightforward to generalize
these methods to systems with smooth or rough fixed walls [2], constraints imposed
at the boundaries, such as constant stress [35], and gravity [36].

In addition, particle shape is a key variable that significantly affects the jam-
ming transition in particle packings. Introducing nonspherical shapes does not
significantly alter the steps in the packing-generation procedures in Sections 2.2.1
and 2.2.2. However, even for simple anisotropic shapes, such as ellipses, the calcu-
lation of the contact distance between grains i and j is nontrivial since it depends
on r̂ij and grain orientations.

2.2.3.1 Particle shape

Recent studies have suggested that particle shape strongly influences the nature of
the jamming transition [33,37]. Specifically, the scaling of the shear modulus with
packing fraction and the shape of the vibrational spectrum are fundamentally dif-
ferent from that for spherical particles. Thus, the ability to create jammed packings
of nonspherical particles and study the effects of particle shape on the jamming
transition are clearly timely and important research efforts.

Particle shape is an enormous parameter space. In this discussion, we will
focus on three relevant shape variables, all of which are captured in Figure 2.9:
(1) convex (a) versus concave (b) – (d) shapes, (2) rigid anisotropic grains with
different degrees of symmetry constructed by fusing spherical particles together
(b) – (d), and (3) ellipsoidal particles (a). The jamming behavior of convex vs.
concave particle shapes can be contrasted by studying ellipsoidal vs. rigid linear
n-mers, where n is the number of spherical particles that have been fused together.
Fused colloidal silica spheres can now be made reliably in a variety of shapes,
including dimers and trimers. The benefit of studying rigid anisotropic particles
formed from fusing spherical particles together, such as linear n-mers, asymmetric
n-mers, and nonlinear n-mers, is that the contact distance, forces, and interaction
energy between grains i and j can be calculated by assuming that the grains are
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Figure 2.9 The packing-generation methods described in Section 2.2 can be
employed in systems with anisotropic particle shapes, such as ellipsoids, linear
n-mers, asymmetric n-mers, and nonlinear n-mers. Examples of geometric param-
eters that can be tuned are the aspect ratio α = L/D, asymmetry s = D2/D1 for
asymmetric dimers, and bending angle c = h/L for nonlinear trimers.

composed of a series of spherical particles. The calculation of the contact distance
and all other quantities is trivial for spherical particles. In contrast, ellipsoidal par-
ticles have simple nonspherical shapes, yet the calculation of the contact distance,
interaction forces, and other quantities is quite complicated.

The packing-generation procedures discussed in Sections 2.2.1 and 2.2.2
require the specification of a potential energy function V (�ξ ) and its first deriva-
tives ∂V (�ξ )/∂�ξ , where �ξ represents the configurational degrees of freedom, e.g.
�ξ = {xi, yi, θi} with i = 1, . . . , N for ellipses, where θi is the angle between x̂ and
the long axis of grain i. We also assume that the potential energy only depends
on rij /σij , where σij is the contact distance between grains i and j . For spherical
particles, the contact distance σij = (σi + σj )/2 is a constant (average diameter)
that depends on the particle species in polydisperse systems and the only relevant
derivatives of the potential energy are ∂rij /∂ri , where r = x, y, z. For nonspherical
particles, the contact distance is not constant and depends on r̂ij and the orientations
of particles i and j . For ellipsoidal particles, we define σij as the true contact dis-
tance: the center-to-center separation rij at which two particles come into contact
at fixed orientation. The definition of σij for two ellipses i and j with orientations
µ̂i and µ̂j and center-to-center separation rij is shown in Figure 2.10. The method
for calculating σij for ellipsoidal particles is described in detail below.

2.2.3.2 Contact distance for ellipsoidal particles

To generate static packings of ellipsoidal particles using soft-particle methods,
one must be able to calculate the potential energy V (�ξ ) and its derivatives for
general configurations �ξ , which involves determining the contact distance σij and
its derivatives. This section will provide a survey of the techniques for calculating
σij in both 2D and 3D. In 3D, we will limit the discussion to spheroids – ellipsoids
with one axis of symmetry. A spheroid in which the long (short) axis is the axis of
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µ̂i

µ̂j
r̂ij

σij

Figure 2.10 Definition of the contact distance σij for ellipsoidal particles i and j
with unit vectors µ̂i and µ̂j that characterize the orientations of their major axes.
σij is the center-to-center separation rij at which ellipsoidal particles first touch
when they are brought together along �rij at fixed orientation.

Figure 2.11 (a) Oblate and (b) prolate spheroids with aspect ratios α = 0.375 < 1
and α = 1.7 > 1.

symmetry is termed an oblate (prolate) spheroid, as shown in Figure 2.11. We will
refer to both ellipses and spheroids as ellipsoidal particles and characterize the ratio
of the major to minor axes by α = a/b in 2D or the ratio of the polar to equatorial
lengths in 3D. As shown in Figure 2.10, configurations of ellipsoidal particles are
specified by the centers of mass �ri and the orientation of the major axis µ̂i of each
particle i.

One of the simplest methods for obtaining an approximate expression for the
contact distance between ellipsoidal particles is the ‘Gaussian approximation’ intro-
duced by Berne and Pechukas [38]. In this method, the contact distance between two
ellipsoidal particles of the same size is approximated by finding the overlap between
two Gaussian functions, Gi(�r) and Gj (�r), whose contour surfaces at 1/e coin-
cide with the surfaces of particles i and j . Gi(�r) = e−((x−xi )2+(y−yi )2)/a2

i −(z−zi )2/b2
i

for an ellipsoidal particle centered at (xi, yi, zi) with orientation µ̂i = ẑ and
major (minor) axis a (b). More generally, Gi(�r) = e−(r−ri )k(γ −1)kl (r−ri )l , where
γkl = (a2 − b2)µkµl + b2δkl , δkl is the Kronecker delta, and k, l ∈ {x, y, z}. Inte-
grating

∫
Gi(�r)Gj (�r)d3r , we obtain another Gaussian function, G0e

−2(rij /σ
g

ij )2
[39].
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(b) (d)(a) (c)

Figure 2.12 Ellipses with α = 2 at their ‘Gaussian contact distance’ σ c
ij . For

two ellipses with the same size, (a) the end-to-end configuration is exact, while
(b) the side-to-end configuration has a relative error of 5%. For two ellipses with
aj/ai = 1.4, (c) the end-to-end configuration has a relative error of 1%, while
(d) the side-to-end configuration has a relative error of 10%.

σ
g

ij > σij is an approximation to the true contact distance, and is given by:

σ
g

ij = σ0√
1 − χ

2

∑
±

(r̂ij · µ̂i ± r̂ij · µ̂j )2

1 ± χµ̂i · µ̂j

, (2.5)

where χ = (a2 − b2)/(b2 + a2) and σ0 = b.
The Gaussian approximation was generalized by Cleaver et al. for ellipsoidal

particles with different sizes and aspect ratios [40]. This approximation for the
contact distance σ c

ij has a similar simple analytic form:

σ c
ij = σ0√

1 − χ

2

∑
±

(βr̂ij · µ̂i ± β−1r̂ij · µ̂j )2

1 ± χµ̂i · µ̂j

, (2.6)

where σ0 =
√

(b2
i + b2

j )/2, χ =
(

(a2
i −b2

i )
(
a2

j −b2
j

)
(
a2

j +b2
i

)(
a2

i +b2
j

)
)1/2

, and β =
(

(a2
i −b2

i )
(
a2

j +b2
i

)
(
a2

j −b2
j

)(
a2

i +b2
j

)
)1/4

in the Cleaver form. The Gaussian approximation to the contact distance behaves
poorly for ellipsoidal particles with different sizes. In Figure 2.12, we show σ c

ij

for different relative orientations of bidisperse ellipses; the relative deviation from
the true contact distance can be as large as e ∼ 10% for aj/ai = 1.4 and α = 2.0.
The Gaussian approximation should therefore not be used to study 2D amorphous
ellipse packings since polydispersity is required to suppress bond orientational
order. For monodisperse ellipses with α = 2.0, 0% < e < 5%, and similar results
are expected for 3D systems.

Perram and Wertheim pursued a related approach, yet their formulation yields the
exact contact distance for ellipsoidal particles with different sizes in 2D and 3D [41].
They define F

single
i (�r) = (r − ri)k(γ −1)kl(r − ri)l , where F

single
i (�r) > 1(< 1) for a

point �r outside (inside) ellipsoidal particle i. They were able to show that for
a given λ, the function F

pair
ij (�r, λ) = λF

single
i (�r) + (1 − λ)F single

j (�r) has a unique
minimum at �r = �rmin(λ). Note that F

pair
ij (�rmin(λ), λ) = 0 when �rmin(λ = 0) = �rj



Computational methods to study jammed systems 39

(a) (b) (c)

0.2 0.4 0.6 0.8 1.0

1.2

1.4

1.6

1.8

2.0

1.0

(d)

Figure 2.13 Three configurations with the same r̂ij , µ̂i , and µ̂j , but different rij

are shown in panels (a)–(c). The solid curve �rmin(λ) starts from the center of
ellipse j at λ = 0 and ends at the center of ellipse i at λ = 1. In (a), Fij > 1 for
nontouching ellipses; in (b), Fij = 1 for ‘just-touching’ ellipses; and in (c), Fij < 1
for overlapping ellipses. σij has the same value for (a)–(c). In (d), we show that
σ (λ)/σij = [Fij /F

pair
ij (�rmin(λ), λ)]1/2 has a minimum at λ∗ = 0.415 (filled circle)

for this particular choice of r̂ij , µ̂i , and µ̂j .

and �rmin(λ = 1) = �ri . Thus, λ parameterizes a curve �rmin(λ) for which the function
F

pair
ij (�rmin(λ), λ)) goes from 0 at λ = 0 back to 0 at λ = 1 and is concave down for

λ in the range [0, 1] [41].
For the nonoverlapping ellipsoidal particles i and j in Figure 2.13(a),

F single(�rmin(λ), λ) > 1 for both i and j over some range of λ, which implies that
F

pair
ij (�rmin(λ), λ) > 1 for the same range of λ. For the overlapping ellipsoidal par-

ticles in Figure 2.13(c), F single(�rmin(λ), λ) < 1 for either ellipses i or j for all
λ, and thus F

pair
ij (�rmin(λ), λ) < 1 for all λ [41]. Since the maximum over λ of

F
pair
ij (�rmin(λ), λ) < 1 for overlapping ellipsoidal particles and is greater than unity

for nonoverlapping ellipsoidal particles, the two particles will come into contact
when Fij ≡ maxλ F

pair
ij (�rmin(λ), λ) = 1. Perram and Wertheim further showed that

Fij = (rij /σij )2, where the contact distance σij = minλ σ (λ) and σ (λ) = σ c
ij with

λ-dependent parameters σ0(λ) = 1
2

√
b2

i

λ
+ b2

j

1−λ
, χ (λ) =

(
(a2

i −b2
i )
(
a2

j −b2
j

)
(
a2

j + 1−λ
λ

b2
i

)(
a2

i + λ
1−λ

b2
j

)
)1/2

,

and β(λ) =
(

(a2
i −b2

i )
(
a2

j + 1−λ
λ

b2
i

)
(
a2

j −b2
j

)(
a2

i + λ
1−λ

b2
j

)
)1/4

. We obtain the Cleaver–Gaussian approxima-

tion for σij , if instead of minimizing σ (λ) over λ, we set λ = 1/2 [40, 42].
The final step in determining the contact distance is to calculate λmin at which

σ (λ) is a minimum. This task can be approached in two ways: either minimize
σ (λ) numerically or derive an analytical expression for λmin. We prefer the latter
because it improves the efficiency and accuracy of the calculation. Determining
λmin involves solving a quartic (for 2D bidisperse ellipses) or quintic (for 3D
monodisperse ellipsoids) polynomial equation.

We now sketch an outline for deriving these polynomial equations since this has
not yet appeared in the literature. First, minimizing σ (λ) with respect to λ is the
same as maximizing σ−2(λ) over λ. We then make the substitution y = λ − 1/2
(because it simplifies the algebra) and define h(y) = [σ (y + 1/2)]−2. Thus, to find
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λmin, we must solve dh(y)/dy = f (y)/g(y) = 0 for ymin, where f (y) and g(y)
are polynomials, by solving for the roots of f (y). For 2D bidisperse ellipses (3D
monodisperse ellipsoids), f2D(y) (f3D(y)) is a quartic (quintic) polynomial with
coefficients that depend on four parameters J , K , L, and M:

f2D(y) = q4y
4 + q3y

3 + q2y
2 + q1y + q0 (2.7)

q0 = 1

16
J (L + 4) − 1

16
K(J + 4) (2.8)

q1 = −(1 + K/2)(J + 2) (2.9)

q2 = −1

2
J (L + 6) − 1

2
K(3J + 2) (2.10)

q3 = −2JK (2.11)

q4 = J (L − K) (2.12)

J = a2
j − (a2

j − b2
j )(r̂ij · µ̂j )2

a2
i − (a2

i − b2
i )(r̂ij · µ̂i)2

− 1 (2.13)

K =
(

ajbj

aibi

)2

− 1 (2.14)

L = 1

a2
i b

2
i

(a2
i a

2
j + b2

i b
2
j + (a2

i − b2
i )(a2

j − b2
j )(µ̂i · µ̂j )2) − 2 (2.15)

f3D(y) = q5y
5 + q4y

4 + q3y
3 + q2y

2 + q1y + q0 (2.16)

q0 = 1

16
J (L + 4) (2.17)

q1 = −(J + 2) + 1

8
M(L + 8) (2.18)

q2 = −1

2
J (L + 6) (2.19)

q3 = −M(L + 4) (2.20)

q4 = JL (2.21)

q5 = 2ML (2.22)

J = α2 − 1

α2

((r̂ij · µ̂i)2 − (r̂ij · µ̂j )2)

1 − α2−1
α2 (r̂ij · µ̂i)2

(2.23)

L = (α2 − 1)2

α2
(1 − (µ̂i · µ̂j )2) (2.24)

M = (α2 − 1)2

α2

1

1 − α2−1
α2 (r̂ij · µ̂i)2

((r̂ij · µ̂i)
2 + (r̂ij · µ̂j )2

− µ̂i · µ̂j (2(r̂ij · µ̂i)(r̂ij · µ̂j ) − µ̂i · µ̂j ) − 1). (2.25)
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Table 2.1 The base 10 logarithm of the relative error of the Gaussian, linear, and
quadratic approximations for the contact distance from the exact value,
log10(|σapprox − σexact|/σexact), for bidisperse ellipses with size ratio 1.4 over a
range of aspect ratios α. These estimates were averaged over r̂ij and orientations.

Approximation α = 1.0 1.2 1.5 2.0 3.0 10.0

Gaussian −2.0 −2.0 −1.9 −1.6 −1.3 −0.4
Linear −3.9 −3.8 −3.7 −3.6 −1.5 −0.1
Quadratic −6.3 −6.2 −6.3 −5.0 −3.8 −1.4

The coefficients J , K , L, and M reveal the symmetry of the polynomial f (y).
M = 0 in two dimensions, L = 0 when ellipsoidal particles i and j of the same
aspect ratio have parallel orientations, K = 0 when i and j have the same size,
and J = 0 when the orientations of ellipsoids i and j of the same size and aspect
ratio have the same angle with respect to their center-to-center vector �rij . The
symmetries found for M , L, and K are obvious (2D, parallel, and same size), but
the symmetry found in J is not. When J = 0, f3D(y) only contains odd terms in
y, which implies that λmin = 1/2 is a solution, and one has a simple expression for
the contact distance in a nontrivial case!

We are now in a position to quantitatively compare the exact results for the
contact distance to various levels of approximation. For example, we can truncate
f (y) at either linear or quadratic order, which yield:

λlinear
min = −q0

q1
; λquadratic

min = −

(
q1 −

√
q2

1 − 4q0q2

)
2q2

. (2.26)

Even at this level of approximation, the solution is significantly more precise than
the commonly used Gaussian approximation, and is more efficient than numerically
solving a quartic or quintic equation at each step in the packing-generation process.
To demonstrate the improved precision, we include Table 2.1 that lists the relative
error in finding the true contact distance for the Gaussian, linear, and quadratic
approximation methods for two ellipses i and j with aj/ai = 1.4 over a range
in aspect ratios from α = 1 to 10. These estimates were averaged over r̂ij and
orientations.

2.2.3.3 Particle shape annealing

Static packings of anisotropic particles can also be generated using a ‘particle shape
annealing’ method. This method involves starting with a static packing of spherical
particles, changing a shape parameter at a given rate to cause the particles to
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Figure 2.14 Distribution of (a) packing fractions φJ and (b) mean contact num-
bers 〈z〉J at jamming onset for ellipses at α = 1.6 using the isotropic compres-
sion packing-generation method as a function of system size N = 32 (black dot
dashed), 64 (gray dashed), 256 (black dashed), 512 (gray solid), and 1024 (black
solid).

become nonspherical, and using the compression method described in Section 2.2.1
to obtain a packing of just-touching particles with the new shape parameter.

We provide specific details of the particle shape annealing method for creating
packings of ellipsoidal particles at a given aspect ratio α. The process starts with
a static packing of spherical particles. The aspect ratio of each disk/sphere is
then increased from α = 1 to 1 + �α with the direction of the major axis chosen
randomly. A static packing of ellipsoidal particles at α = 1 + �α is formed from
this initial state using the compression method from Section 2.2.1. The ellipsoidal
particles in this new packing are further elongated, and the protocol is repeated
until a packing with the desired aspect ratio is reached. From our previous studies
of ellipse packings [33], we find that the average jammed packing fraction 〈φJ 〉
is larger than that obtained using the isotropic compression method, even though
the packings do not possess increased spatial or orientational order as shown in
Figure 2.18(b). In addition, the particle shape annealing procedure does not depend
sensitively on the step size �α, at least for sufficiently small �α.

2.2.4 Distributions of jamming onsets

In previous sections, we described several methods for generating jammed particle
packings. By creating packings for large numbers of independent, random initial
conditions, one can create an ensemble of static packings and measure the distri-
bution of jammed packing fractions P (φJ ) as shown in Figure 2.14(a) for ellipses
at α = 1.6 and several system sizes from N = 32 to 1024. Note that the distribu-
tion is broad for small systems, but approaches a δ-function in the large-N limit.
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Packing-generation procedures for frictionless spherical and nonspherical grains
give rise to jammed packings with well-defined mean packing fractions 〈φJ 〉 in the
large-system limit. In previous studies, we found that the width W of the packing
fraction distribution for spherical particles scaled as W ∼ N−ν , with ν ≈ 0.5 [13].
Preliminary studies indicate that the scaling exponent depends on the aspect ratio
α for ellipsoidal particles [43].

2.3 Mechanical stability

After static particle packings are generated, one can determine whether they are
mechanically stable, i.e. in a state of total force and torque balance for each
particle (except floater particles that are not locally stable) and stable with respect
to infinitesimal deformations. Mechanical stability can be assessed by calculating
the dynamical matrix of second derivatives of the total potential energy V [11]:

Mkl = ∂2V

∂�ξk∂�ξl

, (2.27)

where �ξk are the relevant configurational degrees of freedom for particle k. As
examples, �ξk = {xk, yk} for disks and �ξk = {xk, yk, dkθk} for ellipses, where xk and
yk are the center of mass coordinates, θk is the angle between the major axis and x̂,
and dk is a lengthscale for dimensional consistency that is typically obtained from
the second moment of the mass distribution of the grain about its major axis. For

ellipses, dk = 1
4

√
a2

k + b2
k . In this discussion, we will assume that all grains have

mass m = 1 with a uniform mass distribution. The dimension of the dynamical
matrix is determined by the number of degrees of freedom (DOF) dfN for a
given system, where N = N − Nf and Nf is the number of floaters in the system.
For example, df = 2 (3) for disks (ellipses). The dynamical matrix is real and
symmetric with dimension dfN × dfN .

To determine whether or not a static packing is mechanically stable, we diag-
onalize Mkl to find its dfN eigenvalues ei and associated eigenvectors êi , with
ê2
i = 1. For systems with periodic boundary conditions, d of these eigenvalues are

zero due to translational invariance. For mechanically stable states, the dynamical
matrix possesses dfN − d nontrivial eigenvalues with ei > 0. This implies that all
nontrivial deformations give rise to particle overlap and an increase in the potential
energy to second order. In practice, one typically uses a threshold (e.g. emin = 10−6)
above which eigenvalues are deemed nonzero [28].

To illustrate the importance of testing mechanical stability, we show two N = 7
monodisperse static disk packings (solid circles) in Figures 2.15(a) and (b) at nearly
the same packing fraction φ ≈ 0.73. The packing in (a) is mechanically stable,
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Figure 2.15 (a) Mechanically and (b) locally stable packings at nearly identi-
cal packing fractions. The original (perturbed) packings are shown using solid
(dashed) circles. The packings are deformed according to: �ξ = �ξ0 + δê1, where
�ξ0 is the unperturbed configuration, δ is the amplitude of the perturbation, and
ê1 is the eigenvector of the dynamical matrix (evaluated at �ξ0) corresponding to
the lowest nontrivial eigenvalue. Solid lines connecting the centers of correspond-
ing particles in configurations �ξ and �ξ0 at δ = 0.2 are also shown. (c) Change in
potential energy per particle V (�ξ ) − V (�ξ0) versus δ for the (a) mechanically stable
(solid line) and (b) locally stable (dashed line) configurations. Note that the locally
stable configuration can be deformed along ê1 without energy cost.

while that in (b) is only locally stable [44]. To show this, we diagonalized the
dynamical matrix for these configurations and then deformed them by δ along the
eigenvector ê1 corresponding to the smallest nontrivial eigenvalue: �ξ = �ξ0 + δê1.
In Figure 2.15(c), we plot the change in energy �V ≡ V (�ξ ) − V (�ξ0) versus δ.
�V ∼ δ2 for the mechanically stable packing, while �V = 0 for the locally stable
packing. In Figure 2.15(b), one can see that for locally stable packings there are
collective modes that do not give rise to particle overlap and thus do not change
the potential energy.

The spectrum of normal modes (or vibrational frequencies) ωi = √
ei/M , where

M = Nm, yields significant insight into the structural and mechanical properties
of MS packings. The normal mode spectra are typically visualized in two ways:
(1) the ordered list of dfN − d nonzero frequencies and (2) the density of states
(DOS) D(ω) = (N(ω + δω) − N (ω))/δω, where N(ω) is the number of modes
with frequency ω. The spectrum of normal modes for jammed bidisperse disk
packings is shown in Figure 2.16, where we plot the sorted list of frequencies
and DOS in (a) and (b), respectively. For jammed disk packings, we see the
characteristic continuous increase in the sorted frequencies in (a) and plateau in
the DOS at low frequencies in (b) [13]. In contrast to jammed sphere packings, we
find three distinct regimes, separated by two gaps, in the normal mode spectrum
for jammed ellipse packings over a range of aspect ratios [33, 37] as shown in
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Figure 2.16 (a) Vibrational modes ωi sorted in increasing order versus index i/2N
normalized by the number of DOF and (b) density of vibrational modes D(ω)
(averaged over 100 configurations) for jammed 50–50 bidisperse disk packings
with diameter ratio d = 1.4 at φ − φJ = 10−4.
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Figure 2.17 Normal mode frequencies ωi vs. index i/3N normalized by the
number of DOF, sorted by increasing frequency for N = 120 ellipse packings at
six aspect ratios, α = 1.02 (black circles), 1.06 (gray circles), 1.1 (black squares),
1.2 (gray squares), 1.4 (black diamonds), and 1.8 (gray diamonds). The sorted
frequency spectrum possesses three distinct branches (numbered 1, 2, and 3).
Adapted from reference [33].

Figure 2.17. A novel feature of ellipse packings is that in the just-touching limit
perturbations along modes in region 1 give rise to quartic, not quadratic, increases
in potential energy. Moreover, modes in regions 1 and 2 are primarily rotational in
character.
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2.4 Measurements of structural and mechanical properties

In previous sections, we discussed methods to generate mechanically stable par-
ticle packings. In this section, we will describe a number of measurements that
can be performed to quantify the structural and mechanical properties of these
jammed packings, which include the contact number, pair distribution function,
structure factor, bond orientational and nematic order parameters, positional cor-
relation functions, and elastic moduli. The focus will be on methodology, not a
comprehensive discussion of the results for jammed particle packings. That is, the
purpose of this section is to facilitate the calculation of these quantities for jammed
particle packings.

2.4.1 Contact number

In a static granular packing, mechanical stability (to second order) can be achieved
only if the number of contacts is greater than or equal to the number of degrees
of freedom (DOF), Nc ≥ Ndf − d + 1 [45, 46]. We subtract off d trivial DOF
due to translational invariance in systems with periodic boundary conditions and
add 1 from the packing fraction DOF. For N frictionless spherical grains in d

dimensions, jammed packings are isostatic [47,48] with Nc = Nd − d + 1. Using
Nc = N 〈z〉/2, we obtain 〈z〉iso = 2d − (d − 1)/N for frictionless packings of
spherical particles. In the large-N limit, 〈z〉iso = 2d as shown in Figure 2.18(a) for
α = 1.

When counting the number of contacts in jammed systems, we must first remove
all floaters in the system since they do not contribute to the force network. We
assume that particles are floaters if they are not locally stable. Convex particles
must generally have at least df + 1 contacts to remain locally stable. Thus, disks
must have at least three contacting neighbors; ellipses, 2D n-mers, and spheres
must have at least four contacting neighbors; and ellipsoids and 3D n-mers must
have at least six contacting neighbors. However, counter-examples include a disk
with three contacting neighbors on one side of its equator and an ellipse with three
contacts, whose normals at the points of contact intersect at a single point [16] as
shown in Figure 2.19.

Once all floaters have been removed, Nc is obtained by counting the num-
ber of just-touching (slightly overlapped) pairs of particles. Since there are two
contacting particles for each contact, the average number of contacts per particle
〈z〉 = 2Nc/N . Note that the constraint of mechanical stability is global, i.e. on Nc

or N 〈z〉/2, not the contact numbers of individual grains zi . We show the distribu-
tion of zi for bidisperse disk packings in Figure 2.20. Note that a large fraction of
particles have three (and five) contacts, not four.
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Figure 2.18 Average (a) contact number 〈z〉 and (b) packing fraction at jam-
ming φJ versus aspect ratio α for bidisperse ellipse packings using the isotropic
compression (dashed line) and particle shape annealing methods. Two annealing
rates are shown, �α = 0.05 (solid line) and 0.005 (diamonds). Adapted from
reference [33].

Figure 2.19 Ellipses are generically locally jammed, i.e. the ellipse can neither
translate nor rotate without causing particle overlap with other particles held fixed,
when they possess four or more contacts. However, ellipses can be locally jammed
with three contacts if the normals to the tangent lines at contact happen to intersect
at a single point [16].

Unlike spherical particles, ellipsoidal particles are hypostatic with Nc < Ndf −
d + 1. Packings of ellipsoidal particles can have nearly any value of contact number
from the isostatic value for spherical particles 〈z〉iso = 2d to the isostatic value for
ellipsoidal particles 〈z〉iso = 2df . In Figure 2.18(a), we show that 〈z〉 ranges from
〈z〉 = 4 when α = 1 to 〈z〉 � 6 (for particle shape annealing) near α = 2 for ellipse
packings [16, 33, 37].

2.4.2 Pair distribution function and structure factor

The pair distribution function g(�r) gives the probability for finding two particles
�r apart in a given system normalized by the probability for finding two particles
separated by �r in an ideal gas at the same density. In isotropic systems, the pair
distribution function only depends on separation r . Here, g(r) can be used to detect
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Figure 2.20 Histogram of the number contacts for individual particles zi for
jammed packings of bidisperse disks. Note that there are significant fluctuations
away from four contacts, but all particles have zi ≥ 3 except for floaters.

whether systems exist in the gas, liquid, or solid phases, and provide a sensitive
measure of the distance to jamming in particle packings. g(r) can be expressed as:

g(�r) = V

N2

〈
N∑

i=1

N∑
i �=j

δ(�r − �rij )

〉
, (2.28)

where V is the volume of the system [27]. In simulations, the δ-function is replaced
by a function that is nonzero over a small range δr . Also, in periodic systems with
simulation cell size L, the maximum separation is L/

√
2; however, the statistics

are greatly reduced for r > L/2. In liquids and solids, g(r) is a function φ and T ,
but in model hard sphere systems, g(r) is only a function φ.

The pair distribution function has strikingly different features for fluids, jammed
packings, and crystalline systems as shown in Figure 2.21. Note that we normalize
r by the rms contact distance 〈σ 2〉1/2 averaged over all particle species to account
for polydispersity and anisotropic particles. For monodisperse systems, 〈σ 2〉1/2 is
the particle diameter. For fluids (Figure 2.21(a)) with only short-range correlations,
g(r) has noticeable first and second neighbor peaks and then decays to 1 beyond
3–4 particle diameters.

For crystalline solids, g(r) possesses sharp peaks that correspond to the
different interparticle distances allowed by the symmetry of the lattice. In
Figure 2.21(c), we show g(r) for a hexagonal crystal in 2D. The hexagonal
lattice is composed of linear combinations of the vectors n̂1 = (1, 0) and n̂2 =
(1/2,

√
3/2). In units of the particle diameter, the lattice vectors are �nkl =

kn̂1 + ln̂2, where k, l are nonnegative integers, and the corresponding distances
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Figure 2.21 Pair distribution function, g(r), for (a) liquid (b) jammed, and (c)
crystalline systems. In (a), we show g(r) for a 2D bidisperse system at φ = 0.7 and
temperature T/ε = 0.004 � Tg (where kb = 1 and Tg is the glass transition) with
repulsive linear spring interactions. In (b) (adapted from reference [13]), we show
g(r) for jammed 3D monodisperse packings at φ − φJ = 10−2 using the repulsive
linear spring potential. Note that the first peak in (b) extends to g(r → σ ) ≈ 40.
g(r) for a hexagonal crystal in 2D near φhex = π/2

√
3 and T = 0 is plotted in

(c). The dashed vertical lines indicate the possible separations for the hexagonal
lattice.

are nkl = √
k2 + lk + l2 = 1,

√
3, 2,

√
7, 3, 2

√
3,

√
13, . . . . A similar procedure

can be followed for other crystals, e.g. the face centered cubic (FCC) lat-
tice, with n̂1 = (1, 0, 0), n̂2 = (1/2,

√
3/2, 0), and n̂3 = (1/2, 1/2

√
3,

√
2/3), and

nklm = √
k2 + l2 + m2 + kl + lm + km = 1,

√
3, 2,

√
6,

√
7, . . . .

Even though g(r) for glassy systems does not show strong signatures that signal
the glass transition [49], there are several key features of g(r) that signal the onset of
jamming. For example, as systems approach the jamming transition, the height of
the first peak diverges as its width tends to zero and the broad second peak found in
liquids splits into two peaks, both of which become singular near jamming [13,50].
In Figure 2.21(b), we show these features for a 3D monodisperse system with
φ − φJ = 10−2.

The pair distribution function can be measured easily in granular and col-
loidal systems via direct visualization of particles. On smaller lengthscales or
in cases where direct visualization is not possible, one can obtain structural infor-
mation, such as the structure factor S(�k) from light or x-ray scattering. S(�k) is
the autocorrelation function of Fourier transformed density ρ(�k) =∑N

i=1 eı�k·�ri ,
S(�k) = N−1〈ρ(�k)ρ(−�k)〉, which can be written as:

S(�k) = 1

N

〈
N∑

i=1

N∑
i �=j

eı�k·(�ri−�rj )

〉
, (2.29)

where �k = (2π/L)(nxx̂ + nyŷ + nzẑ), with nx, ny, nz = 0, 1, . . . , are the allowed
wavevectors and angle brackets denote an ensemble average. The isotropic S(k)
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Figure 2.22 Angular averaged structure factor S(k) for jammed monodisperse
sphere packings at φ − φJ = 10−4. Adapted from reference [13].

can be obtained by angular averaging over �k/k at fixed k. S(k) is also related to
the spatial Fourier transform of g(r), but since simulations have access to particle
positions, both are typically calculated directly. In Figure 2.22, we show S(k) for
jammed packings of monodisperse spheres at φ − φJ = 10−4. A key feature of
S(k) for jammed packings is the long-lived fluctuations that occur at k∗

n = 2πn/a,
where n = 1, 2, 3, . . . and a is the particle diameter, which are a direct result of
the divergent first peak in g(r). Recent studies have also investigated the novel
power-law scaling of S(k) at low k in jammed sphere packings [51].

2.4.3 Order parameters

It is important to characterize the translational and orientational order as systems
approach the jamming transition. For example, in granular shear flows one must
distinguish between crystallization kinetics and jamming behavior [52, 53]. Order
parameters that identify various symmetries can be measured and used to quan-
tify order or disorder. We will discuss three commonly used order parameters: the
nematic order parameter P2, which evaluates to one in the case that all orientations
of uniaxial particles are parallel; the bond orientational parameter Q6, which eval-
uates to one for systems in which the positional degrees of freedom have perfect
six-fold symmetry; and a translation order parameter G, which is the ratio of the
first minimum to the first maximum in g(r) and tends to zero as systems crystallize.

The nematic order parameter is defined as P2 = 〈2 cos2 θ − 1
2〉 in 2D and

P2 = 〈 3
2 cos2 θ − 1

2〉 in 3D, where angle brackets denote an average over all parti-
cles in the system, θ is the angle of the particle director (i.e. the unit vector along the
long axis, n̂) relative to the average nematic director N̂ . N̂ can be obtained by cal-
culating 〈n̂〉 or by maximizing P2 with respect to n̂. P2 = 1 for completely aligned
systems, whereas P2 ∼ 1/

√
N (1/

√
Nd) in the absence (presence) of nematic

domains, where Nd is the number of domains. In Figure 2.23(c) and (d) we show
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Figure 2.23 Packings that display varying degrees of bond orientational Q6 and
nematic P2 order. In (a) and (b), we show N = 1024 disk packings with polydis-
persity p = 1.1 (1.4), Qg

6 = 0.93 (0.03), and Ql
6 = 0.95 (0.63). In (c) and (d), we

show N = 256 monodisperse ellipse packings with α = 3 and P2 = 0.64 (0.11)
using two different packing protocols.

monodisperse ellipse packings at aspect ratio α = 3 and roughly the same packing
fraction that were created using two different packing-generation methods. The
method used in (c) produces roughly aligned ellipses with P2 = 0.64, while the
method in (d) produces randomly oriented ellipses with P2 = 0.11.

The bond orientational order parameter Q6, which measures hexagonal registry
of nearest neighbors, can be calculated “locally,” which does not consider phase
information, or “globally,” which allows phase cancellations. A polycrystal will
yield a large value for the local bond orientational order parameter Ql

6, even though
the global order parameter Ql

6 ∼ 1/
√

Nd , where Nd is the number of polycrystalline
domains. The expressions for the global and local definitions of Q6 are given below.
Equations (2.30) (global), (2.31) (local), (2.32) (global), and (2.33) (local) provide
expressions for the bond orientational order parameters in 2D and 3D, respectively:

Q
g

6 = 1

N

∣∣∣∣∣∣
N∑

i=1

1

ni

ni∑
j=1

e6ıθij

∣∣∣∣∣∣ (2.30)

Ql
6 = 1

N

N∑
i=1

1

ni

∣∣∣∣∣∣
ni∑

j=1

e6ıθij

∣∣∣∣∣∣ (2.31)

Q
g

6 =


4π

13

6∑
m=−6

∣∣∣∣∣∣
1

N

N∑
i=1

1

ni

ni∑
j=1

Ym
6 (θij , φij )

∣∣∣∣∣∣
2



1/2

(2.32)

Ql
6 =


4π

13

6∑
m=−6

1

N

N∑
i=1

1

ni

∣∣∣∣∣∣
ni∑

j=1

Ym
6 (θij , φij )

∣∣∣∣∣∣
2



1/2

, (2.33)
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Figure 2.24 The nearest-neighbor range employed for calculations of Q6. The
dashed particle is outside the nearest-neighbor radius rmin, which is defined as the
first minimum of g(r).

where θij is the angle (axial angle in 3D) between a central particle i and neighbors
j , φij is the polar angle between i and j , Y l

m are the spherical harmonics, and ni

denotes the number of nearest neighbors of i. Two particles are deemed nearest
neighbors if their center-to-center separation rij < rmin, which we set as the first
minimum of g(r) as shown in Figure 2.24. The spherical harmonics Ym

l (θij , φij ) =√
2l+1
4π

(l−6)!
(l+6)!e

ımφij P m
l (cos θij ), where P m

l (cos θij ) are Legendre polynomials [54].
In Figure 2.23 we show two jammed disk packings with different polydisper-

sities at roughly the same packing fraction. The lower polydispersity p = 1.1 is
polycrystalline with a large Q

g

6, while the packing at p = 1.4 is amorphous with
a negligible Q

g

6. This shows that weakly polydisperse disk packings are prone to
crystallization. In Figure 2.25, we show that both finite aspect ratio α and poly-
dispersity p give rise to disorder. α > 1.2 and p > 1.2 both lead to amorphous
packings with small Q

g

6. In Figure 2.26, we show snapshots of dimer packings as a
function of increasing α and disorder. Panels (a)–(f) correspond to the dashed line
in Figure 2.25.

We also mention briefly the order parameter G = g(rmin)/g(rmax) that is sensitive
to translational order. It is zero for crystalline systems, but is a finite constant for
jammed systems. It has been used for example in studies of metallic and structural
glasses to determine the onset of crystallization as a function of cooling rate [55].

2.4.4 Correlation functions and lengths

Although jammed systems are amorphous on macroscopic scales, they can possess
order over short lengthscales that is averaged out when calculating global order
parameters such as Q6 and P2. For instance, jammed systems of monodisperse disks
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Figure 2.25 Q6 (global) versus aspect ratio α for monodisperse ellipse packings
(solid line), α for 2D dimer packings (dashed line), and polydispersity p for disk
packings (dot-dashed line). All data are for N = 256 particles.

Figure 2.26 Jammed packings of N = 256 dimers with aspect ratios (a) α = 1.04,
(b) 1.1, (c) 1.2, (d) 1.3, (e) 1.4, and (f) 1.6. Corresponding global Q6 values are
plotted in Figure 2.25 (dashed line).

form polycrystals, which yield a low value of Q
g

6 because the ordered domains are
out of phase with each other. Similarly, uniaxial objects form nematic domains when
quenched rapidly [56]. We will now review several spatial correlation functions
that provide correlation lengths related to the size of ordered subregions.

We will first measure a spatial correlation length from the decay of correlations
in g(r). As we showed earlier in Figure 2.21, the fluctuations in g(r) − 1 die out
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Figure 2.27 The magnitude of the complex Q6 spatial correlation function for
N = 1024 jammed disk packings with polydispersity p = 1.1 (solid black), 1.2
(solid gray), 1.3 (dashed black), 1.4 (dashed gray), and 1.5 (dot–dashed black).

quickly for fluid systems, less quickly for jammed systems, and persist over large
distances for crystalline systems. In Figure 2.28(b), we plot the local maxima of
g(r) − 1 for disk packings with different polydispersities. The decay of correlations
is exponential with a correlation length ξ that grows with decreasing polydispersity
as shown in Figure 2.29.

The Q6 spatial correlation function also provides a correlation length related
to fluctuations in particle positions [57]. Just as we defined Q

g

6 and Ql
6 averaged

over the whole system, we can also define qi
6 for each particle i. In 2D, qi

6 =
n−1

i

∑ni

j=1 e6ıθij . We consider two spatial correlation functions formed from qi
6: the

complex Q6 correlation function 〈q6(r)q6(0)〉 and the magnitude Q6 correlation
function 〈|q6(r)||q6(0)|〉. These correlation functions are calculated by choosing a
bin size δr , binning all values of q6(r ′)q6(0) (or |q6(r ′)||q6(0)|) between r ′ = r and
r ′ = r + δr , and then dividing by the number of pairs between r and r + δr . Since
q6(r)q6(0) is a complex number and contains phase information, the difference
between these two correlation functions is analogous to the difference between
the order parameters Q

g

6 and Ql
6. The complex Q6 correlation function is sensitive

to fluctuations in phase. Therefore, it should decay to 1/
√

Nb in an amorphous
system, where Nb is the number of bonds, or 1/

√
Nd in a polycrystal. In contrast,

the magnitude Q6 correlation function is not sensitive to fluctuations in phase.
In Figure 2.27, we show the magnitude of the complex Q6 correlation func-

tion |〈q6(r)q6(0)〉| as a function of polydispersity for jammed disk packings.
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Figure 2.28 Local maxima of (a) C(r) (defined in the text) and (b) g(r) − 1 for disk
packings with polydispersities p = 1.1 (circles), 1.2 (squares), 1.3 (diamonds),
1.4 (upward triangles), and 1.5 (leftward triangles). The lines show least-square
fits to e−r/ξ .
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Figure 2.29 Correlation length ξ obtained from the decay of the local maxima
of C(r) = |〈q6(r)q6(0)〉 − 〈q6(∞)q6(0)〉| (dashed line) and g(r) − 1 (solid line)
shown in Figure 2.28 for disk packings as a function of polydispersity p.

|〈q6(r)q6(0)〉| decays more slowly as the polydispersity decreases due to the
increase in polycrystalline domain size as shown in the snapshots in Figure 2.23(a)
and (b). To extract a correlation length from the decay of correlations in Fig-
ure 2.27, we plot the local maxima of C(r) = |〈q6(r)q6(0)〉 − 〈q6(r)q6(∞)〉| in
Figure 2.28(a). The correlations decay exponentially with distance over a length-
scale that increases with decreasing polydispersity p. The dependence of the cor-
relation length from |〈q6(r)q6(0)〉| on p appears in Figure 2.29. Note that the
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Figure 2.30 (a) Isotropic compression and (b) simple shear for strain γ = �L/L.

lengthscales from the complex Q6 and g(r) correlation functions show a marked
departure at low polydispersities.

2.4.5 Bulk and shear moduli

The mechanical properties of jammed systems are qualitatively different from
those of crystalline solids. For example, in crystalline solids, the response to shear
strain is generally comparable to the response to isotropic compression. However, in
jammed, frictionless particulate systems, the response to shear is much weaker than
that for isotropic compression. In this section, we will demonstrate this property
by calculating the static bulk modulus, B, (response to isotropic compression) and
shear modulus, G, (response to shear strain) for jammed frictionless packings.

To measure B (G), we slightly deform the system by applying an infinitesimal
isotropic compressive (shear) strain as shown in Figure 2.30(a) (Figure 2.30(b)),
allowing the system to relax, and then measuring the resulting isotropic (shear)
stress in the system [13]. We perturb the system over a range of strains to verify
that the measurements are in the linear response regime. The shear and bulk moduli
are obtained by measuring the response of the pressure tensor, Pαβ to the applied
strain, where:

Pαβ = −L−d
∑
i>j

rijα

rijβ

rij

dV

drij

(2.34)

and α, β ∈ {x, y, z}. The bulk and shear moduli are defined by B = φdP/dφ and
G = d�/dγ , where P is the pressure and � = −Pxy is the shear stress (when
x (y) is the shear (gradient) direction). In Figure 2.31, we show that � is linear
in γ and P is linear in φ − φJ over several orders of magnitude in jammed disk
packings.
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Figure 2.31 (a) Shear stress � versus shear strain γ in jammed disk packings
at φ − φJ = 6 × 10−5 (solid black), 3 × 10−4 (solid gray), 1 × 10−3 (dashed
black), 4 × 10−3 (dashed gray), 2 × 10−2 (dot–dashed black). (b) Pressure P
versus φ − φJ for jammed disk packings. P is linear in φ − φJ , and � is linear in
γ over several orders of magnitude.

The magnitude of the shear stress versus strain curve has strong φ − φJ depen-
dence, showing a power law dependence G ∝ (φ − φJ )1/2 [13]. In contrast, the
bulk modulus does not depend strongly on φ − φJ . Thus, in the limit φ → φJ , the
bulk modulus remains finite, while the shear modulus goes to zero. This behavior
has been related to the depletion of low frequency modes in the jamming density
of states [58, 59], revealing fundamental physics not found in crystalline solids.

A subtle aspect of the shear modulus calculations especially for packings of
spherical particles is the wide distribution of yield strains. In Figure 2.31, the yield
strain γy > 10−4 for all φ − φJ shown. However, γy even at fixed φ − φJ has large
fluctuations, and thus for measurements on some configurations it is difficult to
be simultaneously below the yield strain, above numerical noise, and within the
linear regime. Several examples of nonlinear stress versus strain curves are shown
in Figure 2.32. We have noticed that this behavior is diminished in large systems
and systems composed of ellipsoidal particles.

Though B is nearly the same for jammed packings of ellipses and disks
(Figure 2.33, main panel), G is much smaller for ellipses than for disks (Fig-
ure 2.33, inset). In fact, G ∝ (φ − φJ ) for ellipses at sufficiently low φ − φJ ,
whereas G ∝ (φ − φJ )1/2 for disks. For low aspect ratio (α < 1.01), the φ − φJ

scaling intersects the (φ − φJ )1/2 scaling for disks at φ∗(α), below which the sys-
tem has sphere-like (φ − φJ )1/2 scaling, and above which the system has φ − φJ

scaling [33]. This new scaling behavior has been linked to quartic vibrational modes
found in “just-touching” ellipse packings. Thus, near-jamming ellipse packings are
much more susceptible to shear than packings of spherical particles.
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Figure 2.32 (a) Shear stress � versus shear strain γ for the same φ − φJ values in
Figure 2.31. For some of these configurations, the yield strain is extremely small,
which causes nonlinearity in �(γ ).
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Figure 2.33 Shear (main plot) and bulk (inset) moduli versus φ − φJ for ellipse
packings at α = 1.0 (circles), 1.002 (squares), 1.01 (diamonds), 1.1 (upward
triangles), 1.5 (leftward triangles), 2.0 (downward triangles). Notice that over the
range φ − φJ = 10−5 to φ − φJ = 10−1, B changes by a factor of 1.5, while G
changes by a factor of 100. The solid (dashed) line has slope 1 (0.5). Adapted
from reference [33].
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3

Soft random solids: particulate gels, compressed
emulsions, and hybrid materials

anthony d. dinsmore

3.1 Introduction

This chapter will review aspects of soft random solids, including particulate gels,
compressed emulsions, and other materials having similar basic features. Soft ran-
dom solids are appealing for a number of reasons – and not just because of their
taste (as in foods) or appearance (as in cosmetics). They offer the potential for
insight into much broader and quite elegant problems in nonequilibrium thermody-
namics such as the dynamics of phase transitions, the origin of the glass transition,
and stresses and flows in granular media. They are also central players in a host of
industries in the form of paint, ink, concrete, asphalt, dairy foods, and cosmetics.
From the range of examples and the techniques involved, it should be apparent
that investigation of these materials is a multi-disciplinary process, combining
contributions from physicists, chemists, and engineers.

Since the 1980s, studies of soft random solids have benefited enormously from
advances in microscopy, computer-aided image analysis, computer simulations,
and new methods to synthesize colloidal particles with controlled shape, surface
chemistry, and interactions. The chapter’s purpose is to summarize areas of recent
investigations and point out experimental breakthroughs, remaining questions, and
relevant experimental methods. Despite the recent progress, a number of funda-
mentally interesting and practically relevant questions remain, and it is hoped that
this chapter will stimulate further work in these areas.

The chapter’s survey of soft, random solids begins with particulate gels in order
to establish some useful concepts such as network architecture and topology, frac-
tal scaling and correlation lengths. We will also explore insights into gelation – a
nonequilibrium process – that come from principles of equilibrium thermodynam-
ics. The chapter will then turn to another nonequilibrium soft random solid made
from a mixture of phase-separating liquids and small particles. These materials
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have a quasi-two-dimensional surface that confers solidity to the sample and also
divides it into two separately continuous regions. These materials are known as
“bijels” (for bicontinuous, interfacially jammed emulsion gel); they are solid yet –
remarkably – they allow fluids to flow through them in two separate but inter-
twined compartments [2, 8, 9]. Toward the end of the chapter, we will encounter
compressed emulsions, which have a number of interesting structural properties
as well as a spontaneous chain-like arrangement of interior stresses in response to
applied load. Here, the structures of interest appear not only in the arrangement of
the particles, but also in the spatial distribution of internal stresses or inter-particle
contact forces.

The chapter focuses on experimental results and methods, including scattering
and optical microscopy. Thanks to confocal and related techniques of microscopy
and new methods of image analysis, heterogeneous structure can be measured in
two or three dimensions with single-particle resolution. (Technical aspects of these
techniques are described in Chapter 1.) An equally important but less obvious
power of imaging is to quantify forces, free-energies, and elastic moduli. Hence
much of the discussion will focus on the results of microscopy. The chapter will
also describe how tuning the interactions among colloidal particles or droplets
affects gelation. Experiments, simulations, and theoretical models have addressed
the problem of how the form of the interaction alters the morphology and dynamics,
sometimes in rather striking ways.

Sections 3.2–3.4 focus on particulate gels, providing an overview, then describ-
ing their structure in detail, then their viscoelasticity. Section 3.5 describes efforts
to understand gelation as a phase-separation process that is arrested before reach-
ing equilibrium. Section 3.6 discusses bijels as an example of controlled, arrested
phase separation. Section 3.7 discusses compressed emulsions with emphasis on
the emergent stress network. Section 3.8 offers a brief conclusion.

3.2 Overview of particulate gels

The term ‘gel’ typically refers to an amorphous solid composed of a network-
like structure with fairly low concentration, leaving discernible pores or voids
(Figure 3.1). This chapter will include particulate gels, which are composed of
colloidal particles that aggregate. The term gel can also apply to polymer-based
materials and – while the same basic questions and theoretical and experimental
techniques might apply – these materials will be left out of this chapter. The
definition of colloidal or particulate gel is admittedly imprecise and a discussion
of this point will help to motivate some of the fundamental questions.

It is generally assumed that gels are trapped out of equilibrium. That is, even
gels composed of spherical particles remain amorphous for months or years, but
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Figure 3.1 Two images of particulate gels, exemplifying the characteristic struc-
ture. Left: SEM micrograph of yogurt, showing the network of aggregated casein
(protein) micelles, two of which are marked with the symbol c©. A single fat glob-
ule is visible near the top middle. (Image reprinted from reference [1], Internat.
Dairy J. 14, O. Sandoval-Castilla et al., “Microstructure and texture of yogurt
as influenced by fat replacers,” (2004), with permission from Elsevier.) Right:
Computer-generated image of a colloidal gel, reconstructed from particle posi-
tions measured by confocal microscopy. (Image from Lu et al. [7], reprinted by
permission from Macmillan Publishers Ltd, Nature 453, 499, copyright (2008).)

presumably would become crystalline given sufficient time (far exceeding the
patience of the investigator). In practice, experimentation with spherical, attractive
colloidal particles will quickly show that it is rather difficult to form crystals;
instead one often finds that increasing the force of attraction between particles leads
to a white sediment rather than the hoped-for iridescence. Rather than becoming
frustrated by the difficulty of forming crystals, we hope the reader will be inspired
to understand how this solidification occurs, why crystals are difficult to obtain,
and why the random sediment is by itself a very fascinating and useful material.
One can look forward with confidence to progress in understanding gels because,
remarkably, the structural and rheological properties of gels have broadly consistent
behavior that transcends variation in composition, size, and timescales. Hence,
even though gels are formed by a very random process of aggregation of many
particles, one can make quite definite predictions of the resulting properties using
fundamental concepts.

A particulate gel is typically structurally distinct from a glass. In a glass, the
high concentration prevents an individual particle from rearranging unless many
other particles also move in order to make space (at least in a hard-sphere glass).
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Hence, slow dynamics and solid-like resistance to applied shear stem from the high
volume fraction of particles. By contrast, a gel has a low concentration of particles,
so that particles have plenty of space to rearrange but attractive forces between par-
ticles create multiple connections that are not easily broken. Coordinated motion
of many particles is needed to break enough bonds to allow rearrangement. Relax-
ation toward the equilibrium crystal state is enormously slowed. Despite having
a concentration as low as 0.01% by volume, a gel is a solid because it extends
from one wall of its container to the other. Thus, a shear applied to one wall pulls
on bonds and perhaps reduces the network’s entropy; this leads to a spring-like
restoring force that resists the applied shear.

Whereas a compact solid fills space uniformly, in a gel the particles adopt a
combination of one-dimensional, chain-like structures with branches, or roughly
two-dimensional, sheet-like structures. The result is a structure having an effective
space dimension less than three (i.e., it is fractal). As will be discussed below in
some detail, this low-dimensional architecture cleverly allows a network of parti-
cles to remain in contact with one another and yet span the length of a macroscopic
sample, even at arbitrarily low particle concentrations. By contrast, in a uniform
or three-dimensional architecture, particles at low concentration could only fill
space by keeping far apart from one another; this material would not be a solid
unless there were very long-range interactions. Hence the remarkable and perhaps
identifying feature of a gel is the spontaneous emergence of a low-dimensional net-
work. The network also has long structural correlation lengths, which help explain
why gels can be so soft (e.g., why yogurt is so much softer than, say, parmesan
cheese).

Particulate aggregates, gels, and compressed emulsions are very common in
nature and in industry, so that understanding how to control rheological or optical
behavior can be quite relevant for food [10], paint [11], and cosmetics [12]. In the
case of particulate gels, the particles might be organic or inorganic and nanometers
to microns in size. In recent work, mesoscopic aggregates of metallic nanoparticles
form a gel that can be molded and then fired to create a shaped metal piece
[13,14]. More everyday examples include yogurt, whose viscoelasticity arises from
a network of milk protein (casein), which aggregate when rennet is added [1,15,16].
Other proteins form gels too [17–19], as do carbon-black aggregates in motor
oil [20] or in ink [21], and cloisite particles in clay [22]. Particulate aggregates
(which share structural features of gels) also influence the handling of dry powders
such as toner [23] and soot [24, 25]. Very similar architectures are formed by
chemical precipitation; this is the route to making aerogels, which are an ultra-low-
density solid with a host of useful optical, thermal, acoustic, and other properties
[26, 27].
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3.3 Structure of particulate gels

Particulate gels that arise from random aggregation of Brownian particles share
a number of very striking structural properties. At first glance, the emergence
of common properties may seem surprising: random aggregation by particles of
different sizes, shapes, and inter-particle forces might be expected to yield very
distinct structures. On the contrary, gels share many common architectural features
over a wide range of length scales, as shown by scattering of neutrons, x-rays,
and visible light. (Reviews of scattering experiments are available separately [28].
Reference [29] provides a comprehensive review of colloidal gels.) To start, it will
suffice to note that over a wide range of scales (from roughly the particle radius
to 1–2 orders of magnitude larger [30, 31]), the scattering follows a power law in
the wavevector q, indicating the absence of any characteristic length scale. This
scaling arises from the characteristic fractal real-space structure seen in Figures 3.1
and 3.2 and described below.

To understand gelation, it is instructive to consider first a very dilute sample
with strongly adhesive particles and no convection or gravity. The standard model
describing this limit is known as diffusion-limited cluster aggregation, DLCA
[32, 33]. (Its cousin DLA differs by considering the growth of a single cluster,
as particles are added to the system one by one [34].) We consider N spherical
objects of radius a, distributed at random in a volume V . We define a volume
fraction, φ, by the fraction of the total volume that is occupied by the particles: φ ≡
(4/3)πa3N/V . If the particles are smaller than several microns, then gravity can be
neglected, at least during early stages of aggregation. Provided that the temperature
is uniform and the sample is not stirred, the particles’ motions are adequately
described by single-particle diffusion. The particles will naturally collide with
one another and, if every collision results in a permanent bond, then clusters will
appear throughout the sample. Though this process is random, there are nonetheless
surprisingly repeatable statistical features. Perhaps the most striking (and famous)
feature is the chain-like architecture that is apparent in Figure 3.2. To see how this
emerges, the reader can imagine following a single particle as it diffuses toward
one of the ramified clusters in Figure 3.2(c). Our particle is unlikely to slip past the
outermost tips of the cluster without sticking. In fact, it is more likely to stick to
the end of the tip and hence make it longer.

This ramified morphology is not just an unusual shape, it is also a way of packing
that is profoundly different from the ball-stacking of our everyday experience. To
see this, one can ask how many gelled particles can fit inside a box of lateral
dimension L. In ordinary collections of objects, such as oranges in a crate, N ∝ L3;
for oranges rolling about on the floor, N ∝ L2; for beads on a string, N ∝ L. For the
gel shown in Figure 3.2(d), the particles were free to move in 2D (along a water–air
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Figure 3.2 Optical micrographs of 1 µm diameter polystyrene spheres trapped
at a water–air interface. To initiate gelation, CaCl2 was added to the aqueous
subphase at a concentration of 0.73 mol/L. The images were acquired after various
delay times: (a) 15 min; (b) 75 min; (c) 105 min; (d) 135 min. The ramified
structure characteristic of a gel is clearly visible in (d). Image analysis showed a
fractal dimension df = 1.43 ± 0.04. (Figure reprinted with permission from D.
J. Robinson and J. C. Earnshaw [5]. Copyright (1993) by the American Physical
Society.)

interface), but the clusters scaled as 〈N〉 ∝ Ldf , with df = 1.43 ± 0.04 [5]. (The
symbols 〈...〉 indicate the mean of many measurements.) When particles are free in
move in 3D, a similar kind of experiment yields df ≈ 1.8 [35]. (Other experiments
will be described below.) The gel structure is something between chain-like (1D)
and sheet-like (2D).

The fractal scaling can also be quantified by counting the number of particles in
a cluster as a function of its radius of gyration, Rg [33]. The average of many such
measurements follows the same scaling as the above case. As a practical matter,
the same power-law scaling applies again with a different definition of cluster
radius [35]. Alternatively, one can obtain df from the power-law decay of the two-
point density correlation function measured from images. If one only has access to
an image of a slice through the sample, then the decay of the correlation function
provides df – 1 and the fractal dimension can still be measured accurately [36]. This
scaling also appears in the structure factor of the particles and df is thus obtained
from scattering experiments with x-rays, neutron, or light in the single-scattering
limit or even in the presence of some multiple scattering [28, 37].

The DLCA model offers a few different routes to predicting the fractal dimen-
sion. The most direct method is to simulate DLCA with a computer [38,39]. There
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has been substantial activity in this area, and interested readers are referred to
Meakin’s review [40]. For the present purpose, we will simply list the resulting
values of df for DLCA. In 2D, df = 1.42, and in 3D, df = 1.78 [40]. This 2D result
agrees with the experimental example shown in Figure 3.2. More broadly, these
values show a trend in which the packing of DLCA gels becomes less efficient
as the space dimension increases. (Note that DLCA in one-dimensional systems
should yield compact clusters with df = 1.)

Gelation can also be modeled at a mean-field level by solving the diffusion
equation to find the flux of particles onto a cluster’s surface [41]. Another approach
envisions gelation as a hierarchical process of clustering that follows a prescribed
evolution of shape [42]. This latter approach is purely geometric and similar in
spirit to the Mandelbrot approach to forming fractals. It is also very schematic but
nonetheless very accurate: in 2D it predicts df = 1.4, in agreement with the DLCA
simulations [42].

Early measurements of df in particulate gels with low concentration were made in
the 1980s by Weitz and collaborators [43]. They began with aqueous suspensions
of charged gold nanoparticles of radius a = 7.5 nm. After adding a relatively
large amount of pyridine (to achieve 0.01 mol/L), they found that the particles
formed large aggregates within minutes. Electron-microscopy images of clusters
showed df = 1.75 ± 0.05, and light-scattering showed df = 1.77 ± 0.05. When
less pyridine was added, the aggregation occurred more slowly and a larger df was
measured; we will return to this observation below in the context of ‘reaction-
limited’ aggregation. Rapid aggregation of particles composed of other materials
(e.g., silica, polystyrene) were found to follow the same aggregation dynamics
and fractal scaling [44, 45]. For the two-dimensional aggregation experiment of
Figure 3.2, the images showed df = 1.43 ± 0.04 [5]. Soot from an annular flame
of acetylene burning in air also forms 2D aggregates with df = 1.40 ± 0.04 [46].
These and many subsequent measurements of pre-gel clusters and of fully formed
gels agree with the DLCA model.

Before exploring gelation under other conditions, we should consider more
carefully the consequences of fractal scaling. The first is a structural correlation
length Rc, which can become very large at low concentrations. To see how this
characteristic length emerges, consider the average volume fraction φ of particles
within a spherical shell of radius R : φ(R) ∝ 〈N (R)〉a3/R3, where 〈N (R)〉 is the
average number of particles inside the shell. From the fractal scaling, we have
φ(R) ∝ (a/R)3−df . Because φ(R) scales with R raised to a negative power, at large
scales the clusters have vanishing volume fractions – they are mostly empty. Clearly,
this trend cannot continue indefinitely, since as R → ∞, φ(R) must approach the
sample-averaged volume fraction, φ. The upper limit to the range of fractal scaling
determines the correlation length, Rc = aφ−1/(3−df ) [28, 32]. At larger scales, the
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sample is a uniform, 3D solid. The correlation lengths can be measured from
scattering from dilute particulate gels, where a peak appears at a wavenumber
∼1/Rc [47]. Real-space images of gels also show a length scale Rc, beyond which
the radial distribution function becomes roughly constant.

A second consequence of fractal scaling is that the topology or ‘connectedness’
of gels also follows power-law scaling. To quantify topology, a common approach
is to imagine a tiny bug walking along the network and measure the shortest length
it must crawl along the gel to move from one point to another. Looking again
at Figure 3.2(d), imagine choosing two particles (α and β) a distance r from one
another. To crawl from α to β, our bug must travel a minimum pathlength Sαβ . From
measurements of particle positions (in experiments or simulations), a list of the
shortest pathlengths S can be obtained. The result is 〈S/a〉 ∝ (r/a)db , as long as r <

Rc. This scaling defines a new dimension, db, known as the backbone or chemical
dimension [48, 49]. We will see in Section 3.4 that the chemical dimension plays
a role in the elasticity of gels. Confocal microscopy of poly(methylmethacrylate)
spheres suspended in organic solvent with short-range depletion and a weak long-
range repulsion show db = 1.2 ± 0.1 [50]. Computer simulations of DLCA in 2D
and 3D find db = 1.15 ± 0.04 and 1.25 ± 0.05, respectively [49]. The 3D result
agrees with the experiment, despite the presence of weak long-range repulsion in
the latter. It should be noted that the results for 2D and 3D are quite similar, and in
both cases are close to 1. To our tiny bug, the gel looks like a nearly one-dimensional
network.

The dynamics of aggregation can also be understood from fairly basic principles.
For example, to predict how rapidly aggregates will form, we can first find out how
rapidly particles collide with one another. We place one particle at the origin, treat
it as a perfectly absorbing surface of radius a, then solve the diffusion equation to
find the steady-state concentration, c, around it [51–53]. The boundary conditions
require c = 0 at the surface and c → 3φ/(4πa3) as r → ∞. One can then solve
first for the flux of colliding particles at r = a, and then for the number of particles
hitting the surface per unit time. The inverse of this rate is τagg, the “doubling time”
or characteristic time per diffusive collision: τagg = a2/(6φD) = πa3η/(φkBT ),
where D = kBT/(6πηa) is the single-particle diffusion coefficient [51–53]. (It
should be noted that the effective diffusion constant describing mean-square sep-
aration between two spheres is twice D.) The quantity η is the shear viscosity of
the liquid. For µm-sized particles in water, τagg is on the order of 1 s, but clearly is
a strong function of a for a given φ.

The mean cluster radius Rg increases with time, t , as (t × c)1/df [43, 51, 54].
Extrapolating this result, one can estimate the time for gelation as the time for the
mean cluster size to reach Rc [55]. Even before the gel is fully formed – as clusters
appear and grow at random throughout the sample – the statistical distribution of
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cluster sizes is a universal function of the mean cluster size [56,57]. This remarkable
result means that the aggregation dynamics are, to a great extent, captured by just
the aggregation time τagg and the fractal dimension df [57]. This result also provides
a pathway to a useful thermodynamic descriptor of the system, as will be described
in Section 3.5.

The power of the random aggregation model is that its features are observed –
albeit with quantitative variations – over a far broader range of parameter space
than strictly allowed by the DLCA model. A common example arises in systems
where the particle collisions rarely lead to bonds (in contrast to DLCA, where
bonds always form). The resulting clusters are more compact than in DLCA, but
still fractal. In experiments with Ludox spheres in water with acid and salt added
to induce aggregation, x-ray scattering showed df = 2.12 ± 0.05 [58, 59]. This
fractal dimension is noticeably larger than the DLCA prediction. Returning to
the experiments with gold nanoparticles described above: when a relatively small
amount of pyridine was added, the particles aggregated slowly because the remain-
ing weak repulsion made bond formation a rare event. In this limit, the experiments
showed df = 2.05 ± 0.05. Remarkably, the fractal scaling and the value of df are
reproducible, just as they were in the strong-attraction, fast-aggregation (DLCA)
limit [43, 44]. The limit of very improbable bonding is now known as “reaction-
limited” cluster aggregation, or RLCA [60,61]. According to computer simulations
of RLCA, df = 1.53 in 2D and 1.99 in 3D [40]. The latter is close to the experimen-
tal values [43, 44, 58]. Because of the repulsion, the rate of aggregation is slowed
and τagg is increased by a factor known as the Fuchs stability ratio, W . The ratio
can be estimated from an integration over particle separation of the Boltzmann
factor divided by a factor that accounts for hydrodynamic friction between two
particles [15, 53, 55, 62, 63].

Hydrodynamic interactions among particles can also change the aggregate struc-
ture. Even when the particles are neutrally buoyant and do not sediment, movement
of the particles leads to solvent flow (e.g., see [64, 65]). The flow, in turn, leads to
long-range interactions. In equilibrium, these hydrodynamic interactions cancel,
but during aggregation they could have a major effect. Using computer simula-
tions of 2D, Tanaka and Araki pointed out that hydrodynamic flows around a
dimer approaching another cluster would tend to align it parallel to the direction of
motion, hence leading to a ramified structure [66]. By comparison, “free-draining”
(nonhydrodynamic) Brownian dynamic simulations of the same particles yielded
substantial local crystalline order [66]. This interaction is unavoidable in particulate
suspensions, though the magnitude of the effect in 3D might be quite different. A
different hydrodynamic effect arises from sedimentation when the particles are not
perfectly density-matched to the solvent. Even if the sedimentation of individual
particles is very slow (which is readily achieved in experiments), the difficulty
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is that the sedimentation velocity scales with the square of the cluster radius.
Therefore, the aggregates may eventually become large enough to sediment and
the resulting flows can lead to more compact clusters (e.g., df = 2.3 [67]; see
also [29, 68]).

A finite attraction allows rearrangement of bonds after they form. Although
this rearrangement leads to gradual relaxation of the structure, there is still a
clearly discernible fractal dimension that is less than 3. Studies of Ludox particles
aggregating in water show that df is initially either 1.75 ± 0.05 or 2.05 ± 0.05,
depending on the sample conditions (and consistent with either DLCA or RLCA).
For rapidly aggregating samples, however, df increased from 1.75 to 2.05 over a
period of minutes or hours, via internal restructuring [59]. Similarly, light scattering
from polystyrene-particles show that df slowly climbs from 1.8 to nearly 2.0 as a
result of rearrangement over a period of two weeks [69]; in these experiments the
particles were buoyancy-matched to suppress sedimentation. The weaker attraction
could also lead to a more compact structure and relaxation even during the initial
aggregation process. Monte Carlo simulations in 2D and 3D have demonstrated
this effect [70, 71], though full accounting of hydrodynamic effects in 3D might
yield a different result.

Experimental exploration of these effects might benefit from a recently devel-
oped trick to tune the strength of attraction in situ. When surfactant micelles are
used to induce depletion, the size and concentration of micelles – and hence the
depletion attraction – can vary strongly with temperature. Thus, modest changes
in temperature (as little as 1◦C) can reversibly induce crystallization, gelation, or
melting of the particles [72, 73].

Why are the aggregating particles trapped in a random, nonequilibrium state
rather than forming crystals with lower free energy? One answer is that the bonds
themselves might be rigid (i.e., they might resist changes of bond angle), perhaps
because of faceted or bumpy surfaces. This is the obvious explanation for jagged
powders or bumpy or faceted colloidal particles. Even for spheres, rigid bonds can
arise as shown by a nice set of measurements with charge-stabilized polystyrene
spheres in water. The classic Derjaguin–Landau–Verwey–Overbeek (DLVO) model
for colloidal interactions describes a combination of van der Waals attraction at
short range and electrostatic/entropic repulsion at long range [54, 74]. Although
these interactions should be centro-symmetric (nonrigid), Pantina and Furst showed
that single-file strings of aggregated spheres nonetheless resist bending forces
applied with an optical trap [75]. Another example of rigid bonds with seemingly
centro-symmetric forces is found in colloidal spheres where attraction is induced
by addition of nonadsorbing polymer; this example will be described in Section 3.4
[76]. Ultimately the mechanism of the rigidity might be nanometer-scale rough-
ness of the particle surfaces. At the other limit, liquid droplets form molecularly



72 Experimental and Computational Techniques

Figure 3.3 Illustration of the competition between bond-angle rearrangement in a
cluster and addition of new particles to the cluster. The typical time for the solid
gray particle to diffuse along the cluster, make a new bond, and adopt a locally
crystalline packing is τrearr. The typical time for a new particle from suspension,
to bind, to the gray particle is τagg.

smooth surfaces and have no mechanism for bond-bending rigidity (as long as the
surfactant layer is fluid). Recent experiments and simulations have explored this
interesting regime, now referred to as “slippery DLCA.” Liquid droplets do indeed
form low-density solids (gels) in the presence of strong attractive forces [77–79].
They also show fractal scaling of the mass with df = 1.8, similar to the DLCA
(rigid-bond) limit [47]. At first glance, this result defies intuition because the
droplets can slip past one another and should therefore form a compact struc-
ture (such as a crystal). Computer simulations show that the slippery bonds do
indeed lead to compact and rigid tetrahedral arrangement of droplets – but only at
short lengthscales. The tetrahedra do aggregate and form a hierarchical DLCA-like
structure [80].

This still might not fully explain why spheres with isotropic (centro-symmetric)
forces do not crystallize. Whereas liquid droplets form short-range order, experi-
ments with solid spheres find none [50, 81]. Some insight comes from comparing
time-scales for aggregation and for bond rearrangement. Figure 3.3 shows an illus-
tration of a small cluster in the early stages of gelation. To estimate whether the
cluster can crystallize, we consider the motion of a target particle shown in gray.
Assuming it is strongly bound to its neighbor with an isotropic bond, the solid gray
particle will undergo a random walk along its neighbor’s surface until it reaches
the position shown by the dashed, light-gray circle, where it forms one additional
bond and is then held rigidly in place. The characteristic timescale for this pro-
cess is labeled τrearr. On the other hand, if another particle from the surrounding
suspension first binds to the gray particle, then its motion is slowed because rear-
rangement requires multiple particles to move together. The timescale for one new
particle to bind to the gray one is τagg (defined above). In this very simplified
approach, therefore, the cluster should crystallize if τrearr/τagg � 1, but otherwise
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remain amorphous. An estimate of τrearr comes from the time to diffuse (in 1D) a
distance of approximately the particle diameter, hence τrearr = 2a2/Db, where Db

is the diffusion constant of a particle bonded to another particle. The condition
for crystallization would therefore be τrearr/τagg = 12φD/Db � 1. When φ � 1 it
might appear that cluster should always crystallize, but we should take care with
Db: for solid particles Db is smaller than D – potentially far smaller – because of
the hydrodynamic friction of the thin layer of fluid between the particles [82, 83].
Hence hydrodynamic friction would make the particles behave as though rigidly
bonded. This very qualitative model suggests: (i) that liquid droplets are more
likely to crystallize than solid spheres because the hydrodynamic friction is less
(though a viscous surfactant layer might also slow rearrangement); (ii) that a strong
attraction leads to a smaller separation between particles, smaller Db, and slower
rearrangement into ordered clusters; (iii) that spherical particles with isotropic
interactions in a vacuum would crystallize, at least locally. Computer simulations
typically do not account for hydrodynamic interactions of the sort that determine
Db, and so might not (yet) shed light on this problem. Experiments with confocal
microscopy showed that a stronger inter-particle attraction leads to fewer rigidly
packed regions [50], which might be interpreted as a reduced tendency to adopt
local order; this result supports point (ii).

Finally, a great deal of recent work has gone into changing the overall form
of the inter-particle potential and observing how the behavior changes. An inter-
esting example is spheres with a short-range attraction (which ultimately causes
aggregation) and a long-range repulsion (typically electrostatic). The combination
is sometimes known as SALR [84]. Early experimentation with SALR colloids
showed that, in some cases, fractal aggregates appear but reach a steady state (per-
haps even equilibrium) with a finite cluster size [18, 50, 85–88]. There are fractal
clusters but they do not gel! This structure has been called a ‘fluid-cluster phase’ –
it is literally a fluid of clusters. Similarly finite-sized clusters are found in some
protein (lysozyme) solutions [18, 19], in clay [22], and with charged liposomes in
water [89]. The fluid-cluster phase is attributed to a balance between aggregation
of particles at the tips of these clusters and repulsion from the main bodies of the
clusters [90,91]. It should be noted, however, that some authors concluded that the
fluid-cluster phase appears even in samples without repulsion, when the attraction
is weak [92, 93]. Within the context of the fluid-cluster phase, gelation may be
viewed as a glass transition of the clusters [92, 94]. More generally, theory and
simulations have shown that SALR can lead to a variety of equilibrium phases,
such as a fluid of solid or fluid clusters, lamellar phases and solids with voids in
2D [95–97], and fluid-cluster phases and fluids with voids in 3D [84]. It might
be that the range of possible nonequilibrium states of SALR is correspondingly
expanded.
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Short-range attraction and long-range repulsion (SALR) by no means represents
the full range of possibilities. For example, mixing attractive particles with repul-
sive particles provides an additional control of gel structure and dynamics [98].
This is a clever means of tailoring gel properties and future research will likely
uncover other useful and illuminating lessons.

3.4 Viscoelasticity of particulate gels

The response of gels to applied stress (i.e., their rheology) is, naturally, a function
of their structure. In detail, this is clearly a very difficult problem: even if the
inter-particle bonds may be considered harmonic (a common assumption), the gel
resembles a complex mix of springs in series and in parallel. Nonetheless, the
observation that gel structure has so many common features, despite differences in
composition, offers hope of common features in rheology.

Experiments have borne this out. In a series of experiments with carbon-black
aggregates, Trappe, Prasad, Weitz, and co-workers applied oscillatory shear strain
at a frequency ω while measuring the in-phase and out-of-phase components of
stress [3, 99]. (In some cases, a controlled stress is applied and the resulting strain
is measured.) These measurements provide the real and imaginary parts of the
complex shear modulus, which represent the elastic and viscous components G′

and G′′, respectively. Solid materials, by common definition, have G′ → constant
(referred to as the plateau modulus Gp) and G′′ decreasing as ω approaches some
practical limit near zero. As a caveat, it should be remembered that very slow aging
makes the true ω = 0 limit inaccessible to experiments and difficult to interpret. At
the other limit, G′′ → ηω as ω → ∞, reflecting the viscous response of the solvent,
characterized by its shear viscosity η. A very important (and satisfying) observation
is that although G′(ω) and G′′(ω) differ for each sample, they exhibit a remarkable
scaling. Each sample has a characteristic timescale τ and modulus G0. Trappe and
Weitz showed that a plot of G′/G0 (and, separately, G′′/G0) as a function of ωτ

has a common form for all samples studied [99]. Figure 3.4 shows data from gels
composed of carbon-black particles in oil. The data curves superimpose across ten
decades in timescale and more than six decades in modulus. Moreover, for each
sample the two scale factors are related by τ ∝ η/G0, where η is the shear viscosity
of the solvent [3]. Aside from showing a remarkable universality, the scaling has
significant pragmatic utility: it allows a measurement of the plateau modulus by
extrapolation even when the experimentally accessible values of ω are too high to
show a plateau in G′.

How does the gel’s structure determine the plateau (low-frequency) modulus
Gp? As noted earlier, the randomness of the structure makes a general theory
appear daunting, yet measurements have shown that Gp scales with particle volume
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Figure 3.4 Measured shear moduli, G, of particulate gels as functions of oscilla-
tory frequency ω. The gels are subjected to an oscillatory strain and the resulting
stress is measured. The in-phase component (G′) is the storage modulus, repre-
sented by the filled symbols. The out-of-phase component (G′′) is the loss modulus,
represented by the open symbols. The larger symbols correspond to seven samples
with φ ranging from 0.056 to 0.149. The small circular symbols correspond to
samples with φ = 0.14 and varying inter-particle potentials. For each sample, the
ω and G axes are rescaled by two empirical constants τ and G0. (Plot from V.
Prasad et al. [3], reproduced by permission of the Royal Society of Chemistry.)

fraction φ with an exponent that ranges between 3 and 4. These scaling exponents
have been predicted starting from an elegantly simple fractal elastic model proposed
by Kantor and Webman [100]. The model uses the fractal scaling of the mass
described above. At length scales (r) that are shorter than the fractal correlation
length Rc, a region of the gel is viewed as a single elastic fractal beam. If the inter-
particle bonds do not resist bending, then the chain is simply a linear collection
of springs. The spring constant that corresponds to pulling on the ends of the
fractal segment, κ(r), would then scale as κ0/N (r), where κ0 is the single-bond
spring constant and N is the number of particles in the chain whose end-to-end
(Euclidean) length is r . If, however, the bonds resist bending, then the elastic
constant of the fractal chains is given by κ(r) = χ/[N(r)r2

⊥(r)], where χ is the
rigidity of a single bond or segment of the chain and r⊥ is the radius of gyration
of the chain for rotations about the end-to-end axis. (For later use, it will be useful
to note here that computer simulations of the strain-response of DLCA gels show
that 70% of the energy is stored in bending [101] and should thus be accounted
for with this modulus.) This expression for κ shows why it is easier to compress
a u-shaped wire than a straight one: bending the wire increases r⊥. Returning
to gels, simulations and experiments show that N (r) ∝ rdb , where db is known
as the “bond” or “chemical” dimension and has the value 1.2 ± 0.1 in imaging
experiments [50] and 1.25 in computer simulations of DLCA [49] (see Section 3.3).
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The perpendicular radius of gyration scales as r2
⊥(r) ∝ ra . The value of a appears

not to be firmly established, though it is generally assumed to be 2 for DLCA.
Confocal microscopy of gels formed with particles having a long-range repulsion
in addition to the short-range attraction showed a = 1.2–1.5 (numerically similar
to db) [50].

Some of these scaling laws have been verified in situ using optical microscopy
[76]. Imaging naturally provides the structure and topology of the gel network.
By visualizing thermal motions of the particles, however, imaging also leads to
quantitative measurements of elastic constants. In the simplest analysis, the average
mean-square fluctuation of the distance between two particles in the gel, 〈�r2〉, is
related to the stiffness (κ) of a spring-like element that connects them. According to
the equipartition theorem, κ = kBT/〈�r2〉. The effective κ can then be compared
to the shape of the shortest gel segment that connects the two particles. In gels
composed of particles with short-range attraction and weak long-range repulsion,
segments of the colloidal gel had spring constants scaling as κ(r) ∝ κ0/N (r),
indicating a lack of bond-bending rigidity [76]. In this regime, the gel structure
was held in place by the multiple connections among gel segments, which frustrated
reorganization [76]. In gels formed by particles having a shorter-range and stronger
attraction, the scaling changed to κ(r) ∝ 1/[N(r)r2

⊥(r)] ∼ r (−db+a). This scaling
indicated that rigid bonds had formed, perhaps owing to interlocking of asperities
on the particle surfaces. In both cases, the fractal-elastic-beam model agreed with
the experiments for segments of the gel whose size was smaller than or comparable
to the fractal correlation length, Rc [76].

At length scales greater than Rc, the gel is modeled as a homogeneous solid of
springs of size Rc and spring constant κ(Rc). This simplified approach very ele-
gantly allows quantitative prediction of the dependence of shear or Young’s mod-
ulus on volume fraction, particle size, and inter-particle bond stiffness [102–107].
As dimensional analysis will show, if the solid becomes homogeneous at scales
larger than Rc, then the modulus of such a structure would then scale as κ(Rc)/Rc.
For nonrigid bonds, we thereby arrive at the prediction that Gp ∼ κ0R

−(1+db)
c .

Recalling from above that Rc ∼ φ−1/(3−df ), one predicts that Gp ∝ φα, where
α = −(1 + db)/3 − df) . If the fractal dimensions are given by the DLCA model
(df = 1.78 and db = 1.25, though strictly speaking DLCA assumes rigid bonds),
then α ≈ 1.8. If the bonds are rigid, then the modulus has a different scal-
ing: Gp ∼ γR−(a+db+1)

c . Hence, Gp ∝ φα where α = −(1 + a + db)/(3 − df). The
early models assumed a = 2 so that α = −(3 + db)/(3 − df) ≈ 3.5 [102, 107].
This scaling-law prediction should apply to shear and Young’s moduli of the net-
work. (It should be noted, though, that experimental measurements of Young’s
modulus will be strongly influenced by the surrounding fluid, even at low
frequency.) Finite-element-method numerical calculations of the Young’s modulus
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of DLCA solids show α = 3.6, which agrees very nicely with the predicted scal-
ing [108].

Measurements of the φ-scaling of the modulus are broadly consistent with the
above power-law, though there are variations. For nonspherical particles or in the
limit of strong attraction, one expects the rigid-bond result to apply (i.e., α ≈
3.5). From measurements of gels composed of colloidal alumina, Shih et al. found
G′ ∝ φα with α = 4.1–4.2 [103]. For colloidal polystyrene, rheometer experiments
gave α = 4.6 ± 0.3 (250-nm radii in water) [105]. Later experiments with gels
composed of 10-nm-radius silica spheres in water showed that the shear modulus
increased as a power law with time; accounting for this effect, Manley et al. found
that the time-independent modulus scales with φα where α = 3.6, in excellent
agreement with the model [109]. (These highly controlled experiments were also
done under microgravity conditions on the International Space Station.) The shear
modulus can also be measured by dynamic light scattering in a technique commonly
referred to as microrheology [110–112] (see also Chapter 6). In this approach, the
scattering effectively measures the strain caused by thermal fluctuations. Studies
of 10-nm radius polystyrene spheres suspended in neutrally buoyant mixture of
H2O and D2O showed power-law scaling of the modulus with α = 3.9 [113].
Aerogels show similar scaling of the shear and Young’s moduli with exponents in
the range of α = 2.6 − 3.8 [108]. (Note that in aerogels the solvent is removed by
super-critical drying [26] so that the Young’s modulus comes only from the particle
network.)

For spherical particles with relatively weak and long-range attraction, gels are
only formed when φ exceeds some minimum value (φg). This observation con-
tradicts the DLCA model, where gels can form even in the limit where φ →
0. Remarkably, similar scaling of the modulus is still observed if φ is replaced
by (φ − φg). In rheology measurements of gels formed by functionalized silica
spheres in cooled cyclohexane, Grant et al. found G′ ∝ (φ − φg)α with α = 3.0 ±
0.5 [114]. Prasad et al. studied gels composed of poly(methylmethacrylate) spheres
with depletion induced by added polystyrene [3]. In those experiments, the range
of the depletion attraction, set by the size of the polymer, altered the scaling.
With a relatively short-range attraction, they reported G′ ∝ (φ − φg)α with α =
3.3 ± 0.1, whereas a long-range attraction led to α = 2.10 ± 0.05. Once again,
the scaling model agrees with these results if short-range attraction causes rigid
bonds and long-range attraction causes nonrigid bonds (consistent with the confocal
microscopy study described earlier [76]). Finally, measurements of carbon-black
gels in oil yielded a slightly larger value, α = 4.1, but the difference might arise
from the relatively large value of df (2.2) [99, 115]. In general, the range of results
for α probably came from from slightly different values of the exponents that
characterized the gel’s mass (df) or topological properties (db or a). For example,
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it is known from confocal microscopy that when there is a long-range repulsion
in addition to the short-range attraction, the particle “chains” become straighter
than expected for DLCA, so that a = 1.2–1.5 ≈ db [50]. The scaling argument
described above would then predict that α ≈ 2.9. From a pragmatic point of view,
this suggests how to tune the modulus by means of φ, interaction potential, and
fractal architecture.

3.5 Gelation and arrested phase-separation dynamics

The power of equilibrium thermodynamics and the absence of a known counterpart
in nonequilibrium phenomena inspire us to look to the former for guidance. There
are at least two specific ways in which equilibrium thermodynamics can make
useful and verifiable predictions relevant to gelation. The first is that equilibrium
thermodynamics can predict the regions of parameter space where a particular
phase is unstable with respect to small fluctuations of density (or some other order
parameter). There is now compelling evidence that these unstable regions, known
as spinodal regions [116], might well explain some of the important aspects of
gelation, even as others remain very much open. The second power of equilibrium
thermodynamics is to indicate likely sequences of stages in the dynamics of phase
transitions. A suspension of spherical particles can adopt many possible struc-
tures in equilibrium: gas, liquid, face-centered cubic crystal, body-centered cubic
crystal, to name a few. When a sample undergoes a phase transition, it is now well
established that the dynamic process might involve several intermediate steps, each
characterized by a structurally distinct phase. For example, a supercooled gas that
crystallizes can first form liquid droplets, which then crystallize. Or a supercooled
gas or liquid might first adopt one crystalline structure and then change to the true
equilibrium crystal structure as it grows. According to “Ostwald’s Rule of Stages,”
these intermediate states appear in order of decreasing free energy [117–121]. The
Rule has a mostly empirical support and is not quantitative, but it is nonetheless
a very useful tool. Recent models and experiments have shown that the above
extensions of equilibrium thermodynamics might explain aspects of gelation, as
will be described just below. For still other thermodynamic approaches to modeling
gelation, including the increasingly successful mode-coupling theory, the reader is
referred to published references [122–128], one of which offers a comprehensive
review [127].

Before discussing nonequilibrium dynamics, it will be useful to clarify a few
points about the equilibrium states and summarize a few key results relevant to
colloids (which are also summarized in a recent review [129]). In a dilute suspen-
sion, the particles may be viewed as a thermodynamic gas phase. The term “gas,”
of course, refers to the random arrangement of the particles, not to the solvent.
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It is well established that lowering the temperature or increasing particle–particle
attractions in such a system can lead to formation of crystalline or fluid phases, as
well as gel and glass phases. When the attraction is of relatively long range (i.e.,
the range exceeds approximately 14% of the particle diameter), then the equilib-
rium phase diagram contains regions of gas–liquid, gas–crystal, and liquid–crystal
coexistence, with a triple point. [129–132]. There is also a gas–liquid critical point
and a region where gas–liquid separation occurs by spinodal decomposition [133].
The topology of this phase diagram resembles that of atomic and molecular sys-
tems. However, when the range of attraction falls below approximately 14%, there
remains only one amorphous phase in equilibrium; gas–liquid coexistence does
not occur in equilibrium. The equilibrium phases are gas and/or crystal [130].
(With very short-range attraction, a second crystal phase with the same structure
becomes stable [134, 135].) Although the liquid phase might be “lurking” behind
the scenes as a metastable phase, it could nonetheless play a major role in the
observed behavior.

Studies of particle gelation in the 1990s showed that the structure evolves during
gelation in a way that resembles spinodal decomposition of a molecular gas follow-
ing a deep quench. By imaging, it is clear that gels form a bicontinuous structure,
a characteristic shared by spinodal decomposition [92, 136]. (This bicontinuous
structure will be described in more detail below and in Figure 3.5.) To quantify
this resemblance, Carpineti and Giglio reported light-scattering data with 19 nm
diameter polystyrene spheres in water with very low φ (0.003 or less). On addi-
tion of a divalent salt, the particles aggregated and eventually formed a gel. The
structure factor S(q) formed a peak at a wavenumber qm, then grew in magnitude
and shifted toward smaller q as time passed [51, 137]. The results are consistent
with some essential pieces of the DLCA model: df appeared in the scaling of S(q),
qm scaled with φ in the same way that the fractal correlation length does, and
the inferred cluster size grew in time as expected from DLCA (at least at early
times) [51]. The authors, however, pointed out a similarity to the scaling behav-
ior seen in molecular fluids undergoing spinodal decomposition. Partway into the
gelation process (t >∼ 104 s, much longer than τagg), the structure factor followed
a time-invariant form. That is, plots of (qdf

m )S(q/qm(t)) as a function of q/qm at
various times collapsed onto a common curve with df = 1.90 ± 0.02. A true map-
ping to spinodal decomposition would require that the scaling exponent equal the
space dimension (i.e., 3), but the proposal sparked many subsequent studies. Later
authors, however, expressed reservations about the link to spinodal decomposition.
A similar scaling of S(q) was reported in two dimensions in samples with area
fractions ∼10% by Robinson and Earnshaw, but they also pointed out that similar
scaling could arise from nonspinodal processes [5]. Later analysis showed that the
resemblance of S(q) to spinodal decomposition may be coincidental, since a peak
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in S(q) can arise from a competition between two length scales rather than the
unstable wavenumber characteristic of spinodal decomposition [78, 138, 139].

More recent experiments have looked at colloidal gels with larger volume
fractions: φ = 0.10 by light scattering [140], and 0.045 < φ < 0.16 by confocal
microscopy [7, 127]. In the latter experiments, the solvent’s density was matched
to that of the particles so that the growing clusters did not sediment. (The impor-
tance of neutral buoyancy is demonstrated by another investigation, which showed
that sedimentation can alter the gelation process [85].) The structure factor S(q)
evolved over time in a manner reminiscent of spinodal decomposition of molecular
fluids (at least in some cases). The peak wavenumber, qm(t), shifted toward smaller
values as a power-law in time t , then nearly stopped once the sample became
solid. Moreover, the structure factor followed a common form when plotted as
(q3

m)S(q/qm(t)) vs. q/qm: this time, the scaling is with the space dimension rather
than the fraction dimension [7,127] (though the exponent reverted to df with strong
attraction in one experiment [140]).

If gelation is indeed triggered by spinodal decomposition, then theoretical pre-
dictions of the spinodal region should identify which samples in an experiment form
a gel. As a practical limitation, though, phase diagrams have only been predicted
for particular forms of the interaction potential. Therefore, one needs a way to map
an experimental system to a theoretically tractable system. Lu et al. showed how
this could be done [7]: for any system having short-range attractions, an “extended
principle of corresponding states” proposed by Noro and Frenkel [132] predicts
that the phase behavior for different inter-particle potentials can be described with
just one parameter, the second virial coefficient, B2. (Recall that B2 is the second
term in the series expansion of the pressure as a function of the density [141].) By
this principle, the magnitude and the range of the potential do not separately matter;
only the particular combination represented by B2 does. Lu et al. went further and
pushed the corresponding-states principle to a nonequilibrium quantity, the distri-
bution of cluster sizes during gelation. Thus, by matching experimentally measured
cluster-size distributions to those computed in simulations, those authors obtain B2

for their experimental system. For experimentalists, this is potentially a very useful
contribution that might allow phase diagrams – and perhaps even nonequilibrium
properties – to be plotted in a universal form as a function of B2, rather than as a
function of polymer concentration or size, temperature, or other system-dependent
parameters. From this analysis, Lu, Zaccarelli and co-workers concluded that the
gel transition in their experiment occurred at a B2-value that coincided with the
spinodal boundary in a theoretical reference model (the Baxter sticky hard-sphere
model) [7,142]. It should be noted, however, that earlier attempts to compare gela-
tion to the predicted spinodal curve showed a discrepancy when φ > 0.2. Further
experimental testing of this idea over a broader range in φ would be useful.
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The notion of a spinodal decomposition may go a long way toward explaining
gelation dynamics. Comparisons of experimental scattering data to mode-coupling-
theory predictions provides evidence that spinodal decomposition is arrested by
the formation of a glass in the more concentrated fluid phase [126]. Still, several
questions remain, such as when or at what lengthscale the spinodal decomposition
arrests, and why the structure-factor scaling exponent changes from df to 3 with
increasing φ. Even if the early stages are dictated by a thermodynamic instability
in the starting gas, one still must account for the fact that the gas–liquid coexistence
is metastable with respect to gas–crystal coexistence. Crystals should eventually
appear.

To explain what happens to the crystal phase, one can turn again to concepts
of equilibrium thermodynamics, as suggested at the start of this section. (This
question, why crystals do not form, was addressed to some extent at the single-
particle level in Section 3.3, but here we consider an alternative approach.) Approx-
imately 40 years ago, Cahn described how the equilibrium phase behavior can
allow us to predict the dynamics of phase separations. The topic has been very
nicely described by Poon and co-workers in the context of colloids [131,141–145].
The analysis starts with a common approach to determining the equilibrium state
by plotting of the free-energy density, f, as a function of particle concentration. If
two or more phases can coexist, then such a curve has two or more local minima.
The region of equilibrium coexistence is found by the “double-tangent” construc-
tion. Regions where f (φ) has negative curvature correspond to the spinodal region,
since even small fluctuations in the local f can reduce the total free energy.

When there are three phases in equilibrium, these plots can indicate in what order
the phase separation occurs if one starts from an initially homogeneous suspension.
From the plot of f (φ), one can also obtain the difference of free energy between
the initial state and any of the equilibrium states [131,144]. From this information,
regions of parameter space can be defined where an initially homogeneous fluid
will have a lower free-energy barrier by first forming a liquid, then a crystal. In
other regions, the free-energy barrier favors the formation of a crystal first, then a
liquid.

The “kinetic maps” predicted by this approach compare well to the experimen-
tal observations: in suspensions of sterically stabilized poly(methylmethacrylate)
spheres (a = 240 nm) with polymer added to induce depletion. The polymers
had a radius of gyration of 88 nm, so that the range of the depletion attraction
was long enough to observe gas–liquid coexistence as well as gas–crystal and
liquid–crystal [131]. Poon et al. used scattering and low-magnification imaging
to measure the phase-separation dynamics. They identified three distinct types of
behavior: (i) gas–liquid separation, followed by crystallization in the liquid phase,
(ii) crystallization in the liquid phase, followed by gas–liquid separation, and
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(iii) crystallization in pockets of the gas phase surrounded by liquid, followed
by macroscopic separation. All of these behaviors can be qualitatively, but very
elegantly, explained by features of the f (φ) curve [131].

Even when the liquid phase is not seen in equilibrium (through choice of φ or
interaction strength, or because the attraction is of too short a range), the kinetic-map
approach still applies, and the liquid phase can still play a transient role [131]. The
metastable liquid was shown to play a major role in enhancing crystal nucleation
by Monte Carlo simulations [146] and by recent experiments using colloids with a
tunable depletion attraction [73].

To explain gelation, Poon et al. propose that the liquid phase forms a glass at high
density, which then arrests further evolution. Consider a homogeneous fluid that
in equilibrium would separate into coexisting crystal and gas phases. If the kinetic
map indicates that the crystal phase should nucleate directly from the liquid (as in
case (ii) above), then the sample might crystallize. Crystals could nucleate and grow
while the surrounding liquid phase becomes gradually less and less concentrated.
Nevertheless, the kinetic map could indicate that gas–liquid separation should
occur first (even though liquid is metastable); this would be analogous to case (i)
above. In this case, the liquid phase would become more concentrated over time
and could vitrify in the same way that uniform suspensions with large φ form glass.
The dynamics at this stage might be more appropriately thought of as viscoelastic
phase separation [147]. If the kinetic-map approach is correct, then it may be
possible to suppress gelation by tuning the form of the particle interactions to
broaden the type (ii) regime.

3.6 Bicontinuous solid networks from arrested phase separation

Controlling the dynamics of liquid–liquid phase transitions provides an elegant
alternative route to random solids with a remarkable structure. Bicontinuous,
interfacially jammed emulsion gels (“bijels” [8]) consist of an approximately
two-dimensional surface that separates two distinct domains in three dimensions
(Figure 3.5) [2,6,8,148–150]. The bijel contains two continuous liquid phases sep-
arated by an elastic interface. Each of the two fluid phases can flow, yet the material
as a whole is solid because of the network-like architecture of the interface. To put
it another way, two microscopic fish that start off on opposite sides of the dividing
interface can each swim across the entire sample, yet they are prevented by the
membrane from touching one another. As in the particulate gel, a 3D solid can
be constructed from an arbitrarily low particle volume fraction φ. Once again, the
particles are brought into contact with one another (and therefore can be strongly
bonded), and yet they permeate the entire sample by forming a low-dimensional
network. As in the particulate gel, tunable structural correlation lengths should
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allow considerable power to tune permeability, elasticity, or other properties for a
variety of technological applications.

The bijel is formed by intentional arrest of spinodal decomposition of two
(molecular) fluids. As described in the previous section, a supercooled fluid can
rapidly separate into two phases by the process of spinodal decomposition if the
temperatures and concentrations are appropriately adjusted. In general, spinodal
decomposition leads to a scattering peak at high q (i.e., at short length scales), cor-
responding to a bicontinuous arrangement of the two fluids. The structure coarsens
by reducing the interfacial area, which leads to a larger characteristic length and a
shift of the scattering peak to smaller q. To make bijels, small particles are added to
the starting fluid. The particles are chemically modified to segregate to the interface
(where they lower the interfacial energy by removing some of the area of contact
between the two fluids [151]). As the material coarsens, the particles are squeezed
together until they solidify, or “jam.” The remarkable feature of the bicontinuous
structure is that it is then trapped; forming droplets or macroscopically separated
phases would first require a reduction of the interfacial area. This mechanism has
an interesting similarity to the proposed spinodal route to particle gels, but in the
bijel case the solidification occurs by jamming in 2D, whereas we have seen that
gelation might be explained by solidification or vitrification in 3D.

Chung et al. showed that phase separation in polymer blends can also be arrested
by addition of particles [148]. They investigated thin films (∼2 µm or less in
thickness) composed of a fifty/fifty blend of poly(methylmethacrylate) with a ran-
dom copolymer, poly(styrene-ran-acrylonitrile). After the samples were heated to
195◦C, 30◦C above the critical temperature, the polymers phase separated. In this
case, the resulting structure arose from a combination of phase separation (perhaps
spinodal decomposition) and possibly de-wetting of one phase from the surface. In
samples with 20-nm particles added, the structure was trapped with a correlation
length as low as 1 µm.

A fully 3D, trapped, bicontinuous structure was formed by Herzig et al. in a
mixture of 2,6-lutidine and water mixed with partially hydrophobic silica spheres
580 nm in diameter (φ = 0.02) [2]. The water-lutidine mixture had approximately
critical composition and was heated to 40◦C, 6◦C above the critical temperature.
Figure 3.5 shows confocal microscopy images of the fluorescent particles, clearly
showing that they pack densely at the interface. Fourier transforms of the images
(akin to a structure factor) show a stretched exponential behavior, which can be
fit to obtain a correlation length of approximately 40 µm. Reconstruction of the
images shows that the structure is indeed bicontinuous, even over a sample depth
that is several times larger than the correlation length. In addition, it was preserved
for several months while the sample temperature was maintained in the two-phase
region. Even though the bulk phases are fluid, the bijel can support weight: it is
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Figure 3.5 Confocal optical micrographs of a “bijel,” consisting of two distinct
fluid domains separated by a solid interface packed with jammed microparticles.
The microparticles are fluorescent. The images are parallel to the (x, y) plane at
various heights in the sample (as marked on the images). The structure was formed
by spinodal decomposition of the molecular fluid, and further coarsening was pre-
vented by the jammed interface. Scale bar: 100 µm. (Images by E.M. Herzig
et al. [2]. Reprinted by permission from Macmillan Publishers Ltd Nature Mate-
rials 6, 966, copyright (2007).) Lower-right: Illustration of the bijel structure,
showing two fluid phases (light and dark gray) separated by a densely packed
monolayer of particles. (Illustration from M. E. Cates and P. S. Clegg [6], repro-
duced by permission of the Royal Society of Chemistry.)

a solid [2]. Earlier work by the same group explored thin, quasi-two-dimensional
samples of alcohol-alkane mixtures (e.g., ethanol and dodecane, methanol and
hexane or heptanes), but these structures were less stable than the ones formed in
water–lutidine mixtures [149].

Firoozmand et al. recently reported slowed spinodal decomposition (but not quite
arrested) in phase-separating mixtures of gelatin, starch, and sugar in water [152].
Further investigation of these biopolymer mixtures might lead to application of the
bijel approach to foods, where the trapped nonequilibrium structure should have a
significant impact on food texture and appearance. In biopolymer mixtures, there is
the interesting possibility of electrostatic interactions among polyelectrolytes and
charged particles, which might allow an additional way to solidify the particle-
coated interface.
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Chung et al. and Herzig et al. found that the particles’ effectiveness at arresting
phase separation varied with chemical modification of the interface [2,148]. Com-
puter simulations have raised the possibility that the particles might be more easily
ejected from the liquid interface than expected from the binding energy [8, 153],
though van der Waals and other inter-particle forces were not taken into account.
Finding the optimal surface chemistry remains an important practical issue.

The correlation length that appears in the bijel (roughly the characteristic length
that is seen in Figure 3.5) can be tuned by the particle volume fraction, φ. The
correlation length ξ can be roughly predicted by assuming that (i) all of the particles
bind to the interface and (ii) the structure can be modeled as a close-packed array
of spherical droplets, each fully coated by the particles. This model predicts ξ =
(2π/

√
3)(a/φ), where a is the particle radius. The scaling with φ was confirmed in

experiments [2] and in computer simulations using dissipative particle dynamics
[154]. As with the particulate gels, the correlation length could become arbitrarily
large in principal. It may therefore be possible to tune elasticity, permeability, and
other properties over a wide range.

3.7 Stress and structure in compressed emulsions

Compressed emulsions are a form of soft, random solid that is routinely found in
your medicine cabinet, in the form of Vaseline and other skin lotions. Even though
these materials contain only liquids, they can nonetheless form solid materials – a
scoop of these materials maintains its shape against gravity. So although the indi-
vidual particles are squishy (easily deformed) and slippery (lacking static friction),
they resist shear stress at low frequency. These samples are referred to as com-
pressed emulsions, indicating that some pressure is typically needed to exceed the
jamming volume fraction and distinguish them from liquid suspensions of droplets
(such as vinaigrette). When the droplets are deformed by shear, their surface area
increases and the interfacial tension, γ , causes a restoring force. More precisely,
the deformation is resisted by the excess (Laplace) pressure inside each droplet,
which is proportional to γ /a. Consequently, the measured shear modulus scales
with γ /a [155].

The arrangement of droplets within compressed emulsions is compact. In the
language of Section 3.3, df = 3 and there are negligible structural correlations
beyond the scale of a droplet size [4, 156–159]. Nonetheless, there are reports of
significant variations in ‘connectedness’ – the number and orientation of contacts
among particles – which are described below. Emulsions that have a broad dis-
tribution of sizes (i.e., are polydisperse) offer an additional form of randomness:
the neighbors around a given particle can vary in size as well as in proximity and
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angular position. Here, the structural randomness does not arise from thermal fluc-
tuations; indeed thermal motion in compressed emulsions is generally negligibly
small, especially when the droplets are several microns in size or larger. A recent
study by Clusel et al. [160] used 3D images of compressed, polydisperse emulsions
to measure the number of neighbors n (defined by a Voronoi-like analysis), and the
number of contacts Z (defined as touching droplets). The measurements showed
that n and Z both vary from droplet to droplet, but the ratio Z/n has a well-defined
average that is independent of droplet size: 〈Z/n〉 = 0.41. The data are accurately
described by a statistical model that reduces to the problem of randomly pack-
ing a layer of spheres of various sizes around a single target sphere. This elegant
single-particle view (or ‘granocentric’ view, in the words of Clusel et al.) includes
the enormously simplifying assumptions that the particles are statistically indepen-
dent of one another aside from well-defined geometric constraints, and that only
nearest neighbors need to be considered. While this approach works for a variety
of problems, its general validity is not obvious a priori, since perturbing a single
particle in a dense solid can have long-range effects (see, for example, [161]).
The single-particle concept is not new to this field, but the polydisperse emulsion
provides an elegant confirmation of its accuracy and demonstrates its potential to
address many problems associated with random media.

When stress is externally applied to a compressed emulsion, by means of a
weight pressing on the droplets, the stress is spontaneously focused into lightning-
bolt-like regions of the samples, known as “force chains” [4, 159]. Force chains
were first reported in granular media, i.e. in piles of macroscopic solid grains
(see [161, 162] and cited references). To measure this effect in emulsions,
experiments take advantage of the softness of droplets in a way first used by Brujic
et al. [156, 157]: when two droplets are pushed together with a force F , they
both deform. The magnitude of F can be obtained from the sizes of the droplets,
the area of the deformed contact region, and γ . By imaging the contact regions
with confocal microscopy, one can measure the positions, orientations, and mag-
nitudes of hundreds or thousands of contact forces in a sample [4, 156, 157, 159].
Figure 3.6 shows a 3D confocal image of droplets coated with a layer of fluo-
rescent nanoparticles. (They assemble on the surface for the same reasons that
applied in the bijel case.) Computer analysis of the 3D images led to identifi-
cation of the contact regions and a list of quantitative forces. As an alternative
method to visualize the interfaces, one can dissolve fluorophore (Nile red dye)
uniformly in the droplet phase. Nile red dye molecules that reside at the oil-
water interface have a fluorescence emission spectrum that is shifted relative to
emission from the oil phase [158]. Hence, contrast between interface and droplet
interior can be achieved with a color filter [158] without addition of interfacially
bound nanoparticles. The contact regions can then be identified from their greater
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(a)

(b)

Figure 3.6 Images of contact forces and geometry in a compressed emulsion.
(a) 3D confocal-microscope image of droplets coated with fluorescent nanoparti-
cles. The mean droplet diameter was 30 µm. (b) Reconstructed image of contact
forces F , looking only at forces greater than 1.6〈F 〉. Each cylindrical section rep-
resents an individual contact, with the cylinder radius proportional to |F |. Forces
acting on interfaces of the same droplet are represented by connected cylinders.
The grayscale is arbitrarily chosen to aid visualization. The chain-like arrange-
ment is apparent in the image, where the longest chain is 12 diameters in length.
(Images from Zhou [4]). Reprinted with permission from AAAS.)

intensity because of the double layer of interfacially bound fluorophores in those
regions [157, 158].

From the measurements of individual inter-drop contact forces, it is possible
to look for chains or other spatial correlations. The sum of all of the scalar force
magnitudes on each droplet has negligible correlations beyond roughly a diameter
(unless the sample is sheared, as shown by experiments with photoelastic discs in
2D [163]). The average contact force on a droplet also has negligible correlations
[4, 156, 157]. To identify chains, the direction of the force should be considered:
when two inter-drop contacts (i,j ) are separated by the vector reij , then correlations
of |Fi ·eij | and |Fj ·eij | describe the alignment of forces in addition to correlations
of their magnitudes [4]. Here, Fi is the force at a given contact (not the net force
on a droplet) and eij is the unit vector from i to j . More precisely, correlations
appear only when one looks selectively at the contact forces that are large compared
to the sample average, 〈F 〉. The correlations become rapidly stronger with larger
F and correlation lengths of 10–12 diameters were reported for contacts with
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F > 1.6〈F 〉 [4]. Figure 3.6 shows a reconstructed image of the contact forces that
exceed 1.6〈F 〉; many of these contacts are clearly aligned in a chain-like fashion.

Force chains have also been reported in experimental studies of granular media,
where the particles are macroscopic solid objects (see, for example [162–164]).
While it remains unclear what role these high-stress regions play in the overall
response of the material, there is evidence that they affect the nonlinear response
of an emulsion when the system size approaches the force-correlation length [4].
It is possible (but it remains to be proven) that these force chains support much
of the stress and that the aging of these materials can be viewed as remodeling
of this stress network. There is an intriguing similarity between low-dimensional
force-bearing structures at high concentration under load, and low-dimensional
structural and force-bearing features at low concentration under strong attraction
(see, for example, [115, 165]). The analogy is not exact, since force chains might
not propagate continuously through the sample and are not subject to mass con-
servation, but the connection suggests that the rheological behavior of the force
chains could be described by the sort of scaling laws that are found in particulate
gels.

3.8 Conclusion

This chapter provided a summary of some of the exciting advances from the past
three decades. Many of these advances were made possible by new methods of
imaging, image analysis, chemical synthesis, and new theoretical paradigms. The
range of materials that qualify as soft, random solids is very broad. This chapter
focused on particulate gels, emulsions, and hybrids of the two (e.g., bijels). Among
other things, these examples highlight the potential to fabricate new materials by
trapping them in nonequilibrium states in a controllable and reproducible fashion.
There continues to be great potential for breakthroughs in fundamental science and
invention of new materials.
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4

Langmuir monolayers

michael dennin

4.1 Introduction

Langmuir monolayers have proven themselves to be a powerful experimental sys-
tem for the study of a range of issues in soft condensed matter [1–4]. Essentially,
Langmuir monolayers are a single layer of insoluble molecules at the air–water
interface. As such, they form an almost ideal two-dimensional system. This offers
the opportunity to study fundamental questions in the phase behavior and material
properties of two-dimensional systems. Secondly, they are readily transferred from
the surface to a solid substrate. This has been the motivation for studying these
systems for a range of technological applications. Finally, they are a natural system
for the study of biological questions given that much of biology relies on processes
at interfaces, such as cellular membranes and membranes of cellular components.

The experimental techniques associated with Langmuir monolayers can loosely
be divided into two classes: formation of the monolayer and characterization of the
monolayer. In this chapter, we will briefly review important issues in the forma-
tion of Langmuir monolayers. The focus will be mostly on the general concepts
and issues, with some specific recipes given for illustrative purposes. However, it
should be recognized that many groups specializing in Langmuir monolayers have
refined and developed specific methods that are optimized for their system. So,
some care needs to be taken in applying any given specific recipe. In the area of
characterization, we will briefly review standard surface pressure characterization
and provide a survey of commercial tools, including x-ray and neutron scattering
techniques. However, the bulk of the chapter will focus on optical and mechanical
characterization of Langmuir monolayers. This choice reflects the relative ease with
which custom optical and mechanical systems can be constructed for relatively low
cost as well as the corresponding usefulness of such systems.
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Barrier

Figure 4.1 Schematic representation of a “classic” Langmuir monolayer on a water
subphase. The molecules at the air–water interface are represented by the circular
headgroups that are hydrophilic and the carbon chains that are hydrophobic. The
rectangle labeled “barrier” represents a movable element (as indicated by the
arrows) of the apparatus that is used to compress and expand the monolayer at the
water surface. Typically, the barrier is a Teflon bar that is pressed onto the edges
of the trough so it seals the surface, but it is still free to move.

4.2 Monolayer basics

There are two main classes of monolayers: soluble and insoluble. By raising the
issue of solubility, we need to briefly comment on the issue of the subphase. Sub-
phase refers to the fluid that the monolayer sits on top of. Though we generally
will be considering monolayers confined to an air–water interface, there is nothing
particularly special about using water. In fact, many important classes of experi-
ments, especially those of a biological nature, require that an appropriate buffer
solution or other fluid substrate is used (e.g. [5]). So, even when we refer to water,
keep in mind that everything we discuss applies to a general fluid–air interface. The
situation is illustrated schematically in Figure 4.1, where the molecules are shown
as having a circular “headgroup” and a long chain. This represents the generic
molecular monolayer. However, both molecular [1,2] and nanoparticle [6] systems
are actively studied using similar techniques.

Monolayers composed of soluble particles are generally referred to as Gibbs
monolayers [7]. A key feature of these monolayers is that the concentration of
particles on the surface is set by the equilibrium between particles in a solution
and on the surface. These monolayers will not be explicitly discussed in this
chapter, though many of the same techniques can be used with them [7]. We
will focus on monolayers of insoluble particles, generally referred to as Langmuir
monolayers [1, 2].

A key feature of Langmuir monolayers is the fact that the concentration of
particles is determined by the number of particles on the air–water interface and the
area of the interface. We are specifically using the word particles because Langmuir
monolayers can be molecular in composition or composed of nanoparticles. Much
of the early work has focused on simple long chain hydrocarbons, such as fatty
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Figure 4.2 Schematic representation of three classic systems used as monolayers.
The difference between the molecules is in the headgroup, for which the chemical
composition is shown explicitly. The carbon chain in each case is indicated by
the straight lines. Typical chain lengths for insoluble monolayers are in the range
from 16 to 24 carbons.

Figure 4.3 Schematic representation of the top a Langmuir trough (left side) and
corresponding photograph (right side). The top view shows two barriers that can
be moved laterally to change the area/molecule of the system. Additionally, there
is a schematic side view that shows the basin for holding the subphase and an
optional extra channel used for temperature control.

acids, esters, and alcohols, examples of which are given in Figure 4.2 [2]. Also,
phospholipids have been heavily studied because of their prevalence in biological
membranes [4]. More recently, there has been a growing interest in monolayers of
nanoparticles, largely because of the technological motivations.

4.2.1 Langmuir trough

The main element of any Langmuir monolayer experiment is the trough. A
schematic representation and photograph of a trough are shown in Figure 4.3.
The photograph is of a custom-made trough, but many commercial troughs are
available. (Two main producers of commercial troughs are Nima Technology and
KSV Instruments Ltd.) The trough is the container for the water, or subphase, and
the basic design is rather standard. The trough is composed of a basin that holds
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Figure 4.4 Schematic (left side) and photograph (right side) of a typical barrier
design. Of particular importance is the spring mechanism that helps provide a
good seal between the barrier and the trough.

the subphase, a barrier or barriers for compressing the monolayer, and a method for
controlling the temperature of the subphase. Additionally, the trough may involve a
window for optical access and some form of cover to limit drifts due to air currents.

Traditionally, the Langmuir trough basin and barriers are composed of Teflon.
For the basin, this can either be a solid piece of Teflon or a Teflon coating on
another material. The main reason for the use of Teflon is to maintain the necessary
level of cleanliness of the trough so as to preserve the purity of the subphase. This
can be a particular challenge for trough designs with an optical window or access
to a lens below the system. Sealing such a feature requires special care to maintain
the necessary level of cleanliness. If care is not taken, many standard epoxies or
sealants will leak contaminants into the system. One solution is to use thin Teflon
gaskets that provide a protective barrier to any other materials. Cleaning procedures
are sufficiently important that they will be given their own section.

Another consideration in the design of the experiment is the nature of the
barriers. At least one movable barrier is critical for a well-controlled monolayer
experiment because it allows for systematic changes in the surface concentration
of the monolayer. There are three basic choices: single barriers, double barriers,
and centrosymmetric barriers. Most troughs have the basic rectangular design
illustrated in Figure 4.3. In this case, there is either a single barrier for compressing
the monolayer or two barriers. Generally, two barriers are used to compress the
monolayer symmetrically from both sides, so the material in the center is not
moving. Figure 4.4 provides an illustration of the two elements of the barrier design
that lead to a good seal between the barrier and the trough basin: a step structure to
the barrier and a top-loaded force. The use of a step structure in the design allows
for the barrier to extend below the water surface. The use of an additional force
on the barrier helps provide a good seal. Often, this force is provided by a spring
mechanism. Finally, to achieve motion of the barrier, it needs to be attached to a
motor by a drive chain.

The geometry of rectangular troughs is such that shear stresses are induced in the
monolayer during compression. Depending on the experiment, this may or may not
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Figure 4.5 Image of a centrosymmetric trough. This is a version in which the
outer barrier is composed of individual fingers [12].

be relevant. In contrast, centro-symmetric troughs have been designed to provide
essentially uniform compression of the monolayer [8–11]. An image of such a
trough is shown in Figure 4.5. There have been two basic designs for the barriers
for such troughs: an elastic band supported by “fingers” [8], or Teflon pieces that
form an iris, also supported on individual fingers [12]. It should be noted that some
experiments have used a conically shaped basin and controlled the concentration
by changing the subphase level [9]. This provides another method of obtaining
symmetric compression/expansion of the monolayer without any moving parts.

One of the most common classes of experiments using Langmuir monolayers
are phase studies. The range of phases (solid, liquid, liquid crystalline, gas, etc.)
will be discussed in a later section. However, for most phase studies, a method
of controlling the temperature of the subphase is critical. There are two basic
designs: water-controlled and Peltier device-based methods. A Peltier device is
solid-state-based mechanism that uses thermo-electric cooling/heating, and it can
typically be attached to the bottom of the trough. Some troughs combine the two
methods. For a water cooling systems, channels are made in the trough base and
temperature-controlled water is flowed through the channels. Often, with such a
design the Teflon basin is placed in a secondary metal (usually aluminum) base
through which the water is flowed. This increases the heat transfer between the
water and the trough. The only disadvantage of a water-controlled system is that
one is limited to heating and cooling in the range for which water is still a liquid.
For most experiments of biological relevance, this is not a severe limitation.

The most common alternative to water cooling is the use of Pelletier devices to
actively cool or heat the trough. A Pelletier device works by converting a voltage to
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a temperature difference. Generally, such a system is used when one is interested
in temperature ranges that are difficult to achieve with purely water-controlled
systems. As a Pelletier device generally needs a good heat sink if it is used in a
cooling mode, it is often combined with a water-based cooling system.

One of the challenges in achieving precision temperature control in Langmuir
monolayer systems is the air–water interface. Because of this, the temperature of
the water subphase is controlled indirectly through the temperature of the base,
and the temperature of the air above the trough is generally not controlled. This
makes it necessary to monitor the temperature of the suphase directly. An excellent
option for this is Teflon-coated thermistors, which are available commercially. This
both protects the thermistor from the water and meets the necessary cleanliness
requirements.

A final step in temperature control is to add a cover to the system. This serves two
purposes. First, it provides an additional insulating barrier that helps to maintain
constant temperature of the subphase. And for situations in which the subphase
is heated above room temperature, heating the cover can help maintain a constant
temperature. Also, the cover helps to minimize air flows. The morphology of low-
density phases are particularly sensitive to air-currents, so, when making optical
measurements, a cover is extremely useful. There are a number of challenges
associated with covering the monolayer. The first has to do with the relation
between the cover and the barriers. Generally, the cover has to be very close to the
air–water interface if a microscope objective is going to be able to focus on the
system. This precludes placing the cover above the barrier. Therefore, generally
systems with a cover require a single barrier. For systems in which the optical
access is from below, one has more options on the cover design.

4.2.2 Cleaning procedures

As mentioned, an important feature of any Langmuir monolayer experiment is the
cleaning protocols for the trough. It is beyond the scope of this book to cover
all possible detailed cleaning procedures, in part because this can depend on the
materials being studied. For instance, many proteins are notoriously “sticky” and
require a more rigorous cleaning protocol. But, also over the years, many groups
have developed there own variations of cleaning, which generally work equally
well. However, we will give some general principles and a few specific examples.
The basic issue is to recognize the types of contaminants you wish to avoid,
and design a cleaning procedure to eliminate those. Two common problems are
surfactant contamination and ionic contamination.

When cleaning the trough, one has to be aware of a number of other issues –
avoiding scratching the trough and possible contamination by the cleaning agent
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itself. The first issue is important because so many troughs have a composite design
in which the Teflon dish is contained in another material, or even simply a coating on
another material. In this design, if the Teflon is scratched in the process of cleaning,
its integrity can be compromised. This is especially important in situations where
the Teflon is in a metal container, as the metal can provide ionic contaminates to the
subphase. Therefore, any scrubbing of the trough should involve the use of Teflon
forceps to hold soft tissue paper.

To avoid contamination by the solvents, it is a good idea to use a cycle of solvents.
The general principle is to use an excellent polar solvent to remove any surfactant
contaminants followed by a solvent for the first cleaning agent that is also soluble
in water. The final stage is to clean with pure water. This principle is highlighted by
a common combination: chloroform followed by ethanol followed by pure water.
Chloroform is a powerful solvent for organics, but relatively insoluble in water.
Ethanol provides a bridge between the chloroform and water, as it is soluble with
both. Therefore, a cleaning cycle of chloroform, ethanol, and pure water provides
a mechanism for removing organics and ending with pure water.

The above suggestion does not generally deal with ionic contaminates. Often,
one uses lipids with various charged head groups (fatty acids, for example). In
this case, the presence of ionic contaminants is a potential problem. Often, simply
soaking the trough in a pH-2 acid solution and rinsing with pure water is sufficient
to clean the trough. This technique also serves as a good test for any “metallic
leaks.” If the trough is Teflon within a metal dish, any holes in the Teflon will
reveal themselves in an acid bath. Such holes, even if extremely small, can be a
source of future ionic contaminants. Occasionally, if the ionic contaminant is a
specific ion, a chelating agent is required. Chelating agents are chemicals that have
a high affinity for specific ionic species.

A final stage of cleaning usually involves the monolayer itself. In general, even
with the best cleaning procedures, a small amount of contaminant will be present in
the water if the trough is new or has not been used recently. This will show up
when one compresses the barriers on a pure water surface. If a change in the surface
pressure is measured (measuring surface pressure is discussed in the next section),
there is material at the surface. This can be “vacuumed” off with an aspirator. An
aspirator is basically a needle on the end of a hose attached to a vacuum system.
To protect the vaccum system, the hose is generally connected through a flask for
collection of water. This is illustrated in Figure 4.6.

The basic vacuuming procedure is as follows. The barriers are compressed to
minimize the area between them. At this point, one carefully removes a small
amount of the water by passing the aspirator needle back and forth across the
surface. The system is expanded and compressed again. This process is repeated
until no measurable change in surface pressure is observed upon compression. If
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Figure 4.6 Schematic of a system for aspirating the air–water interface with a
close up of the aspirator tip near the monolayer surface.

necessary, a small amount of pure water is added to replace the volume of water
removed by the vacuuming process. As with any interaction with the system, the
needle itself must be clean. Two main styles of needles are used: Teflon and glass.
A glass aspirator is relatively straightforward to make using a standard disposable
glass pipet. It is useful to heat the edge of the pipet to smooth it. This helps avoid
scratching the Teflon in the trough if contact is accidentally made. In either the
glass or Teflon case, the cleaning of the needle is similar to the cleaning of the
trough.

A final comment on general lab cleaning is necessary. Though in many regards a
clean room would be ideal, surprisingly it does not seem to be necessary for running
careful Langmuir monolayer experiments. However, maintaining a generally clean
lab space is extremely helpful. This includes regular mopping of floors and a general
cleaning of the area around the trough. There also needs to be consideration of the
ventilation system when placing the trough. Having the trough too close to an
air-vent can cause problems.

4.2.3 Solution preparation

In order to make accurate measurements of monolayers, it is useful to know the
amount of material placed on the surface. Therefore, solution preparation is an
important step in any monolayer experiment. Generally, a known weight of material
(and hence number of molecules) is added to a known volume of solvent. When a
fixed volume of this solution is added to the water surface, it is known how many
molecules have been added.
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Figure 4.7 Schematic representation of a drop of solvent containing the monolayer
molecules being placed on the water surface.

Arguably the most important step in the preparation of a monolayer solution is
the selection of a solvent. The basic principle is to use a solvent that is insoluble in
water and that evaporates rapidly. This allows for placing the monolayer directly on
the surface of water with a high degree of confidence in the number of molecules
that are present. In general, this makes chloroform an ideal choice, but often one
needs to be prepared to use mixtures of chloroform and alcohols, or other solvents
all together.

As with the trough, solution preparation requires great care to maintain a
clean solution without additional contamination. The glassware involved should be
cleaned with the same care as the trough; in this case, finishing the cleaning with the
solvent that will be used to form the solution. One does need to be careful with any
syringe/needle combination that is used for handling of the solution. These often
contain epoxies that are dissolved by the solvents used to make the monolayer
solution.

Finally, placing the monolayer on the water surface requires some practice.
Ideally, one places the material a single drop at a time (see Figure 4.7). The
drop should be touched to the water surface and it will visibly spread when this
occurs. One places the drops in different positions around the trough, to minimize
any accidental aggregation of the molecules or particles. Dripping the drops from
above the surface runs the risk that the drops will go below the surface and not
deposit the material on the surface.

4.3 Phase characterization

The characterization of phase transitions in monolayers relies on three main tech-
niques: isotherms, optical studies, and x-ray scattering. In this section, we review
the basic principles and techniques in measuring isotherms and optical stud-
ies. (However, we include a number of references on x-ray studies [1, 13–18].)
Before discussing the techniques, we will outline briefly the nomenclature and
general characteristics of the main phases in Langmuir monolayers. We should
refer to one of the excellent reviews of this topic for more details [1, 2].
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Figure 4.8 Schematic representation of the relative spacing of the headgroups and
tilt of the molecular chains for the four main categories of Langmuir monolayer
phases: gas, liquid expanded (LE), liquid condensed (LC), and solid.

For surfactant monolayers, there are two aspects to the observed phases: the
orientation of the headgroups (or of the molecules in the air–water interface plane)
and the orientation of the hydrocarbon chains. There are four basic phase categories:
gas, liquid expanded (isotropic liquid), liquid condensed (liquid crystalline), and
solid. These are shown schematically in Figure 4.8. The key element is the spacing
of the molecules, or the area per molecule. At the lowest densities, the chains are
completely free to move and the system is in a gas phase. At higher densities, the
chains are still free to move, but remain essentially off the water surface on average.
This is the liquid expanded (LE) phase, which is essentially an isotropic liquid.
At higher densities, the molecules are still free to rotate, and maintain enough
mobility so that they are still in an essentially liquid phase, but now the chains take
on orientational order. They now possess a fixed angle (on average) relative to the
vertical, and point in the same azimuthal direction. There are a wide number of
such liquid condensed phases, depending on the nature of the headgroup orientation
and the direction of alignment of the tilt. For example, the L2 and L′

2 phases are
distinguished by a tilt toward the nearest or next-nearest neighbor, as illustrated
in Figure 4.9. Finally, at sufficiently high densities, the molecules are all vertical
and the system is in a solid phase. As with the LC phases, there exist a number of
different solid phases.

In addition to the chain ordering, the headgroups can exhibit different degrees
of ordering, such as hexatic and herringbone [1, 2]. A common situation for LC
phases and nanoparticle systems is for the headgroups to have some degree of
hexatic ordering. This is shown schematically in Figure 4.10. A hexatic phase is
characterized by local hexagonal ordering of the molecules with no long-range
positional order of the molecules [1,2]. However, there is long-range orientational
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Figure 4.9 Schematic representation of two options for the direction of tilt align-
ment: nearest neighbor (the gray circles) and next nearest neighbor (one of which
is highlighted in solid black).

Figure 4.10 Schematic representation of ordering in a hexatic phase.

order to the hexagonal structure. This is indicated in Figure 4.10 by showing
two local hexagonal structures that are orientated in the same direction, but the
molecules are not a fixed lattice spacing apart (as indicated by the arrows). For
naonparticle systems, there is generally no issue of the chain ordering, just the
in-plane ordering of the molecules. For such systems, one is generally interested
in gas, liquid, glassy, hexatic, and crystalline phases.

4.3.1 Isotherms

Isotherm measurements are arguably the most basic characterization of Langmuir
monolayers, and should be part of any study. Because monolayers are essen-
tially two-dimensional systems, the basic thermodynamic variables are the area per
molecule (two-dimensional density), temperature, and the surface pressure (�).
The surface pressure is directly related to surface tension, and is defined as the
difference between the surface tension of the pure interfaces (γw) and the surface
tension with the surfactant present (γ ): � = γw − γ . Recall that surface tension is
the force per length acting on a line through the surface. Another way to think of
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Figure 4.11 Schematic representation of an isotherm for which a number of tran-
sitions occur. In this case, a single LC phase is assumed to exist. In many systems,
multiple LC phases will exist. The area/molecule scale is typical of single chain
fatty acids near room temperature.

Figure 4.12 Schematic representation of a Wilhelmy plate inserted into the surface
of the subphase.

surface tension is the energy per area to create a piece of surface. Therefore, surfac-
tants always lower surface tension. Therefore, this definition of surface pressure has
important properties. For the pure surface, the surface pressure is zero as expected.
Because surfactants lower the surface tension, the surface pressure increases as the
density of the molecules on the surface increases. A very schematic isotherm is
shown in Figure 4.11.

Because the surface pressure is defined in terms of the surface tension, there
are a number of straightforward methods for measuring it. These all use the same
basic principle. A probe is inserted in the surface and measures the force per length
on the probe. Perhaps the most common technique for Langmuir monolayers is
the Wilhelmy plate. In this case, a thin piece of paper (often filter paper) or a thin
metal plate of a known width is touched to the surface (schematically shown in
Figure 4.12). The total force on the plate is given by the surface tension force, the
weight, and the buoyancy force. The buoyancy force is present because a certain
fraction of the plate is submerged. In terms of the weight, for plates made from filter
paper, some liquid is absorbed by the paper, changing its weight, so one must make
sure this is accounted for. Surface tension itself is not a force. It is the product of
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the surface tension (which for pure water at room temperature is 72 mN/m) and the
perimeter of the plate in contact with the water that is the magnitude of the force due
to surface tension. Since one is interested in changes in surface tension, the weight
and the buoyancy terms can by zeroed out ahead of time. This is accomplished
by placing the plate in contact with the surface before adding any surfactant and
waiting a sufficient time for the weight due to water absorption to equilibrate. After
zeroing the system, one needs to be aware of evaporation of the subphase altering
the relative level of the Wilhemy plate and the water. This is generally a very small
effect and only relevant when highly accurate phase measurements are of interest.

The measurement of an isotherm combines the ability to measure surface pres-
sure with the compression/expansion of the monolayer. As mentioned, because
Langmuir monolayers are insoluble, they can be compressed with barriers. If this
is done at constant temperature while monitoring the surface pressure, one obtains
the surface pressure as a function of molecular density at constant temperature:
an isotherm. Features in the isotherm are an indication of phase transitions. As
with three-dimensional systems, a plateau represents a first-order phase transition
with the coexistence of two phases. A kink (or change in slope) in the isotherm
represents a second-order phase transition (again, see Figure 4.11 for a schematic
representation of these features).

It is worth reviewing some common nomenclature. First, the surface pressure
in the gas phase is typically indistinguishable from zero pressure. The area per
molecule at which the pressure first rises above zero is often called the lift-off
point and is a measure of the transition to the liquid phase. This point plays a
critical role in calibrating a given system as it is a good measure of the amount
of material actually on the surface. Also, if one performs cycles of isotherms,
changes in the value of the lift-off point imply that there has been a loss of material
upon compression either due to collapse or leakage around barriers. Finally, one
generally reports isotherms in terms of the area per molecule. Occasionally, when
only relative changes are of interest, one will report results in terms of the area of
the trough if the number of molecules is not known with sufficient precision to be
useful.

One of the challenges in monolayer experiments is that isotherms are very
sensitive to small amounts of contaminants. This can be a problem if the goal is
an accurate measurement of the phase behavior based on the isotherm. However, it
can be an advantage when using standard systems. The quality of the isotherms can
provide a direct indication of the purity of the sample. There are a number of useful
resources that provide isotherms for standard systems that can be used to check the
cleanliness of our samples and trough. Another challenge for isotherms is barrier
leakage. Often, a particular set of barriers works well for relatively low surface
pressures. However, upon compression of the monolayer, material leaks around the
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barriers. A clear signature of this is significant changes in the area per molecule
at which transitions are measured during subsequent compressions, especially the
lift-off pressure.

An important parameter for any measurement of an isotherm is the rate of
compression/expansion. There are a number of aspects of the kinetic response of
the monolayer as it relates to the compression speed. Clearly, if the compression
speed is too fast, especially through a phase transition region, one can quench
the system into a quasi-static state that does not represent the true phase of the
system. One would expect that going at the slowest possible speed is always
ideal. However, monolayers also possess an equilibrium spreading pressure. This
is the surface pressure at which the monolayer coexists with the three-dimensional
phase of the material. Typically, this value is at or below surface pressures of
interest to any given study. Therefore, many of the high-pressure phases are, strictly
speaking, only metastable phases. Generally, the nucleation barrier to forming
the three-dimensional phase is sufficiently high that, for all practical purposes,
the high-pressure phases are stable. But, one needs to be aware of the possibility
of the nucleation of the three-dimensional phase even at relatively low pressures if
one is compressing the barriers over sufficiently long time scales.

4.3.2 Optical measures

Some of the most interesting issues in monolayer experiments involve the coex-
istence of two different phases and/or ordering of the molecules [3, 19–37].
Because of this, optical experiments have proven very useful. We will briefly
review two standard techniques: Brewster angle microscopy [23, 38] and fluo-
rescence microscopy [29, 37, 39]. For both of these methods, commercial sys-
tems are readily available, and the techniques are well developed. However, one
can also construct a custom apparatus, depending on the needs of our particular
application.

The most straightforward optical technique is fluorescence microscopy. Here
a small amount of fluorescent probe is added to the monolayer (typically a few
molar percent). This technique is most useful in situations where one has coex-
isting phases. In general, there are three distinct regimes probed by fluorescence
microscopy. At the lowest densities (gas phase), the molecular probe is free to flop
around on the surface, and this results in substantial quenching of the fluorescence.
So, the gas (G) phase is usually dark. At the higher densities of the isotropic liq-
uid phase, the probe molecules are supported in a relatively upright position, and
one has the maximum fluorescence. Therefore, the liquid expanded (LE) phase
is bright. Finally, liquid condensed (LC) phases (ones in which the molecules are
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closely packed and achieve orientational order) generally expel the probe, as it can-
not fit in the packed geometry. Therefore, these phases are again dark. Therefore,
straightforward fluorescence is best for observing either G–L coexistence or LE–
LC coexistence. At the final stages of collapse, the fluorescence of the bulk phase
can become substantial again, so fluorescence can be useful in collapse studies.

For studies of the liquid condensed phases, where the orientation of the molecular
chains matters, a variation on simple fluorescence is possible [32,33]. In this case,
a significantly smaller amount of probe is used (usually 0.1–0.01% probe). This
allows a reasonable fraction of the probe to remain in the condensed phase. The
orientation of the surrounding molecule orients the fluorescent probe so that the
fluorescent signal is proportional to the polarization of the incoming light. This
allows for direct measurement of textures due to the alignment of the tilt-azimuth
orientation. However, the low probe concentrations require a powerful light source,
and one generally needs a laser for illumination of the monolayer. It should be noted
that this technique played a crucial role in connecting Brewster Angle Microscope
studies (with no probe) and fluorescent studies, establishing the fact that fluorescent
probes have a minimal impact on the phase behavior.

There are two main issues with fluorescence microscopy: impact of the fluores-
cent impurity and bleaching of the probe. The first can be minimized by reducing
the concentration of the probe. This generally requires using more powerful light
sources, and/or intensified CCD cameras for detection. An intensified CCD camera
has a separate element that enhances the signal before it strikes the CCD element
in the camera. Also, if one is more interested in the morphology of the phases
than precise measurements of transition points, the impurities have minimal effect.
This has been confirmed with the alternate optical technique of Brewster angle
microscopy [23, 32, 38].

Bleaching of the probe refers to the fact that the fluorescence often decays in time
as the probe is exposed to light. As this generally results in the degradation of the
image, it is often not desirable. Probes which last longer are generally preferred.
However, bleaching can be turned into a positive feature for certain questions,
especially those involving diffusion.

The basic structure of a fluorescent microscope is shown schematically in
Figure 4.13. The main components are the light source (usually a mercury lamp
or a laser), a beam splitter, and additional filters. The key physics is that the probe
is excited at one wavelength and emits light at a different wavelength. To increase
the signal, one uses both a filter and a beam splitter that serves as an additional
filter by reflecting the excitation wavelength and passing the fluorescent signal. In a
commercial system, these components are all integrated and the filter/beam splitter
combinations generally come as integrated cubes that can be easily switched in
and out. For custom applications, it is relatively straightforward to put together the
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Figure 4.13 Schematic of a fluorescence microscope setup. The light source is
filtered to the excitation wavelength of the probe. A beam splitter is used that
also reflects in the general range of the excitation wavelength and passes light
in the range of the fluorescence. The fluorescent signal is additionally filtered
to improve image quality. In the case of polarized fluorescence, an additional
polarizer is added to the system.

necessary components. A key element of any fluorescent microscope application
is a long working distant objective lens. This is often the most expensive compo-
nent of the system, but it is critical to maintain the necessary distance between
the objective and the water surface, especially if a cover is needed as part of the
temperature control.

The Brewster angle microscope (BAM) takes advantage of the minimum in
reflection of p-polarized light at the Brewster angle for the air–water interface (or
any interface of interest). The presence of the monolayer changes the index of
refraction of the interface, which changes the Brewster angle. Therefore, when one
sends in p-polarized light at the Brewster angle for the pure water surface, there
is no reflection. Addition of the monolayer changes the reflectivity and produces
a signal. If there is spatial variation in the properties of the monolayer, those will
be detected as variations in the intensity in reflected light. Both variations in the
tilt-azimuth and the density of the molecules produce variations in the intensity
of the reflected light. The end result is images in which the intensity variations
reflect domains of different density or alignment of the tilt-azimuth. An additional
polarizer located in the reflected beam can be used as an analyzer. Rotation of the
analyzer provides information about the variations of the tilt-azimuth. A BAM has
proven to be a powerful tool for studying the textures and morphology of tilted LC
domains in monolayers [23, 32, 37, 38, 40].

One can purchase commercial BAMs for a variety of applications. However, if
necessary, custom BAMs can be constructed that vary in price. A number of review
articles address the construction of a BAM, but it is worth highlighting a few key
issues. First, the most common light source is a laser. Because of the coherence of a
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Figure 4.14 A schematic of a custom Brewster angle microscope. Shown in the
figure are mirrors (M1 and M2) for reflecting the light at the Brewster angle, lenses
(L1 and L2) for forming the image, and polarizers (P and A) for polarizing the
light and using as an analyzer.

laser beam, one can end up with reduced image quality due to interference fringes
from various optical elements in the BAM. Space requirement will determine the
design of the optical path. A system with parallel optical paths that uses mirrors
to achieve the Brewster angle is illustrated in Figure 4.14 [40]. Camera sensitivity
will dictate the power of laser that is required for reasonable image quality. Finally,
an important feature of BAM images is distortion of the image due to the angle
of incidence of the light. This is discussed in detail in the original papers on the
subject [23, 38].

4.4 Mechanical properties

From the perspective of soft-condensed matter, one of the most interesting ques-
tions is the mechanical response of a system. Soft systems are generally special
because they exhibit both solid-like and fluid-like behavior. Langmuir mono-
layers are no different, and the study of flow in monolayers has a long his-
tory [9–12, 24, 27, 41–72]. The basic goal of any flow study is the ability to probe
both the viscous and elastic properties of the monolayer. As this area is extremely
rich, the discussion will be very brief and the reader should refer to the extensive
references. The techniques can be loosely divided into macroscopic rheometers
and microrheology, or local, techniques. We will provide a brief list of techniques
in each of these categories, but the main goal of this section will be to provide
a sufficient introduction that the references are useful. To aid in the introduc-
tion, we will present two common experimental methods in more detail: Couette
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Figure 4.15 Sketch of a standard shear geometry. Two plates of area A confine a
material. A force applied parallel to one plate generates a stress σ = F/A. The
displacement d of the plate corresponds to a strain γ = d/h, where h is the plate
separation. The rate of strain is the velocity of the plate divided by the plate
separation: γ̇ = v/h.

viscometer [10] and magnetic needle rheometers [44] (for which a commercial
setup is available).

Most macroscopic rheometers that have been developed to measure rheological
properties of Langmuir monolayers are modeled after standard three-dimensional
rheometers in some fashion. Among the more common techniques are various
forms of channel viscometers [71,73] and knife-edge torsion pendulum [46,49,74].
Another technique that has been used is light-scattering [52,75]. A powerful method
for which a commercial system is available based on the motion of a sphere or
a needle floating on the surface [44]. Finally, there exist techniques based on a
standard Couette viscometer [10].

The first use of local techniques in Langmuir monolayers was based on relations
between translational and rotational mobilities [70,76]. Experiments have included
measuring the electric field driven motion of liquid crystalline domains [54], mea-
suring the diffusion of liquid crystalline domains [61], and using liquid crystalline
domains as particles for measuring velocity profiles [73]. More recently, there
has been work that combines the rotational and translation motion of liquid crys-
talline domains in the liquid expanded phase [77], and, in the liquid crystalline
phase region, Brewster angle microscopy has been used to study the motion of the
domains [24, 27, 56–60, 63, 68].

As most phases of Langmuir monolayers are viscous or viscoelastic, the general
goal is to measure a steady state viscosity or a frequency dependent shear modulus.
Figure 4.15 illustrates the general geometry for shear measurements. Recall that for
a fluid, the shear stress is proportional to the rate of strain (gradient in the velocity),
and the proportionality constant is the viscosity. For a solid, the shear stress (where
stress is force per area) is proportional to the shear strain (dimensionless displace-
ment). For a material with both a solid-like and a fluid-like response, one considers
the combined response: σ (ω) = G′γ (ω) + ηγ̇ (ω), where σ (ω) is the frequency
dependent shear stress, γ (ω) is the shear strain, and γ̇ (ω) is the rate of strain. Here
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Figure 4.16 Schematic of the Couette trough. Shown here are two of the “fingers”
(A) that support the elastic band, the fixed inner cylinder (C), and the knife-edge
rotor (B).

G′ is the elastic shear modulus and η is the shear viscosity. For the special case of
harmonic strain, γ (ω) = Aeiωt ⇒ γ̇ (ω) = iωAeiωt = iωγ (ω), one discusses the
properties of the system in terms of the complex shear modulus G∗ = G′ + iG′′,
and σ (ω) = G∗γ (ω). Therefore, the two basic experiments are to move a boundary
(or probe) with a steady velocity and measure the ratio of stress and rate of strain
to determine steady state viscosity (η) or to oscillate a boundary of the sample (or
probe placed in the sample) with a fixed force (or displacement) and the resulting
displacement (or force) is measured. In this case, the combination of the ratio of
the force and displacement and the phase shift between the two determines the
complex shear modulus.

Figure 4.16 illustrates a classic geometry for measuring material properties in
three-dimensional materials as it can be adapted to Langmuir monolayers: a Cou-
ette viscometer [9, 10, 51]. The main idea is to confine the material between two
concentric cylinders and either apply a constant rate of strain by rotating the outer
cylinder and measuring stress on the inner cylinder (steady state viscosity measure-
ment), or to oscillate the inner cylinder (complex shear modulus measurement).
The challenge in adapting this method to Langmuir monolayers is to deal with
the connection to the water subphase. There are two elements to this. First, the
trough itself has three main components: (A) an outer barrier; (B) and “inner cylin-
der,” which consists of a disk with a knife edge that is just in contact with the
monolayer and supported by a torsion wire; and (C) a fixed inner cylinder in the
water subphase. The fixed cylinder is critical when the system is used to generate
flow in the monolayer, as it ensures the water and the monolayer have essentially
the same velocity profile. This minimizes dissipation between the monolayer and
the water [10]. For measurements of the complex shear modulus, it is important to
account for flow in the water subphase. The details of this are given in reference [9],
and are discussed in reference [51].

An alternative method for measuring the complex shear modulus uses a small
magnetic needle floating on the water surface. This is illustrated schematically in
Figure 4.17, and a detailed discussion of this method is given in reference [44].
Here the basic idea is to either move the needle at its terminal velocity in a constant
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Figure 4.17 A schematic representation of a magnetic needle viscometer. The two
key elements are coils to provide the magnetic field and a small magnetic needle
floating on the surface of the water.

magnetic field (viscosity measurement) or to oscillate the needle in a magnetic field.
Again, the main issue is the need to understand the interaction of the needle with the
pure fluid. However, appropriate calibration of the system allows for determination
of both the complex shear modulus and the steady state viscosity.

4.5 Summary

This chapter reviews the most basic of techniques for studying monolayers. The
perspective has been to provide a starting point for any study that allows for
the preparation of the monolayer and the measurement of its most basic char-
acteristics: phase behavior and macroscopic mechanical properties. It should be
noted that a range of techniques exist that go well beyond the basic methods
reviewed here. These include the already mentioned x-ray studies, but also surface
potential measurements, spectroscopic techniques, advance optical techniques,
and additional rheological methods. Many of these techniques are best imple-
mented with commercial equipment, details of which are made available by the
companies.
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Computer modeling of granular rheology

leonardo e. silbert

5.1 Introduction

Granular materials are ubiquitous throughout nature. From the beauty of sand dunes
and the rings of Saturn to the destructive power of snow avalanches and mudslides,
the flow of ice floes, and the manner in which plate tectonics determine much of the
morphology of the Earth [1–4]. These phenomena arise from the interplay between
structural and dynamical properties that result in the collective behavior of a vast
number of smaller, distinct entities that we call “grains.” From a technological
point of view, granular materials play a dominant role in numerous industries,
such as mining, agriculture, civil engineering, pharmaceuticals manufacturing, and
ceramic component design. Even apparently the most mundane of activities from
coffee bean bag filling at the grocery store to pouring salt onto our dinner plates at
night involve various aspects of granular matter mechanics that continue to puzzle
us. It is estimated that particulate media are second only to water as the most
manipulated material for human usage [4], amounting to trillions of dollars per
annum in the US alone. The importance of granular materials to our daily lives
cannot be overstated.

On the face of it, the study of macroscopic, millimeter-sized sand grains might
be perceived as the purview of various engineering disciplines [5]. How is it then
that granular materials remain at the forefront of contemporary research projects
and are of particular interest to physicists? The answer to this question lies in the
fact that granular materials are inherently nonequilibrium systems displaying a
wealth of fascinating complex phenomena [6–8]. Take even the simplest granular
system: a static packing of grains such as a sandpile. The grains remain stuck
indefinitely in their original configuration simply because thermal fluctuations
at a (room) temperature T do not provide enough energy to allow the grains
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to explore their local environment: kBT/mgd ≈ 10−12, for grains of typical size
d ≈ 1 mm and mass density ρ ≈ 2600 kgm−3 [1], in the Earth’s gravitational field
g = 9.8 ms−2, and kB = 1.38 × 10−23 JK−1 is Boltzmann’s constant. However, it
has long been recognized that providing an external forcing to a granular material,
through shearing or shaking, plays an analogous role to thermal temperature in
liquids [9]. Thus, when a pile of grains is sufficiently agitated, the grains can be
made to flow like a fluid. Hence, through controlled excitations, a grain pile can
be made to mimic a liquid or brought to rest into a static or jammed state. Indeed,
the study of packings of ball bearings [10] was motivated by the belief that the
random arrangements of the ball bearings in a container structurally resemble the
instantaneous configurations of the molecules in a liquid. It turns out jammed sphere
packings share much in common with molecular glasses [11–13], as discussed in
more detail in Chapter 2.

Thus, granular materials exhibit many features that are common to a wide range
of physical systems that exist in nonequilibrium and/or athermal amorphous states,
such as glasses, foams, and colloidal suspensions. Consequently, there is a common
belief that the study of granular matter phenomena can provide further insight into
the properties of systems of academic, environmental, and technological interest.

The focus of this chapter is the study of the flow properties of a collection of
grains using computer simulation methods. Understanding the rheology of granular
materials is of direct relevance to many areas of industry and also includes many
natural phenomena that affect our everyday lives, from avalanches to grain transport
and storage [2, 3].

5.2 Rheology of granular media

Granular flows are usually categorized into three regimes. The principle parameters
that delineate these regimes are the packing fraction φ and the flow rate. The
packing fraction measures the ratio of the volume occupied by the particles to the
total volume of the system. For N monodisperse spheres of diameter d, contained
in a volume V :

φ = Nπd3

6V
. (5.1)

It is worth pointing out several reference values here for packings of hard grains.
The face-centered cubic ordered array of osculating spheres has a packing fraction
φfcc = π/

√
18 ≈ 0.74. However, granular materials have a tendency to form disor-

dered piles that are stable over a range of packing fractions, φrlp < φ < φrcp. Here,
the limits refer to random close packing (random loose packing) with corresponding
values φrcp ≈ 0.64 (φrlp ≈ 0.55) [1, 11, 14–19]. The specific value of the packing
fraction that a static packing takes is sensitive to preparation protocol and the
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material properties such as the frictional properties of the grains [1, 19–23]. The
following criteria serve as an approximate rule to determine the nature of the flow:
dilute flows correspond to low densities where the particles experience only occa-
sional collisions, whereas in dense flows the particles largely remain in contact
with their nearest neighbors.

Quasi static flows When the packing fraction is in the region, φ � φrlp, flow
proceeds through the slow deformation of a quasi-static, continuous medium creep-
ing via plastic deformations. In such cases, the flow properties become velocity
independent [5], whence the shear stress is proportional to the strain only, and is
independent of the rate of shearing in the quasi-static limit.

Dilute rapid flows At the other extreme, φ << φrcp, the particles are far enough
apart so they experience only instantaneous two-body, or binary collisions, whereby
the typical collision time of contact between two colliding particles is short com-
pared to the mean free time [24]. These systems can then be treated using the
framework of Boltzmann kinetic theory applied to a gas of inelastic particles.
Although the particles are transported with the mean hydrodynamic flow, they also
possess large velocity fluctuations commonly referred to as the granular temper-
ature, analogous to thermal temperature in equilibrium fluids. The goal then is
to determine macroscopic behavior at the continuum level through hydrodynamic
fields such as the density, velocity, and granular temperature, to develop consti-
tutive relations that describe granular matter rheology on a similar footing as the
Navier–Stokes equations for regular liquids.

Dense granular flows An intermediate class of flows exists with features from
both of the regimes described above. These flows are dense, yet, at the macroscopic
scale, the material continuously deforms. Dense granular flows generally tend
to exhibit a range of highly complex rheological features, such as large spatial
and temporal inhomogeneities [25–27], large-scale structural rearrangements that
sensitively depend on boundary conditions and the external forcing [28, 29], and
even multiple flow profiles within the same system [31,32]. Despite the wide range
of behaviors, several flow geometries admit steady state flow regimes, whereby
power dissipated through inelastic and frictional collisions is balanced by the
external forcing.

Dense granular flows are the class of flows that are the subject of this chapter.
Before we discuss this further below, we introduce the traditional models used to
describe granular particles and collisions between grains to be used in computer
simulations of granular materials.

5.3 Force model

Although simulation schemes to study liquids and gases have been around for
over 50 years, computational studies of granular materials are more recent. Current
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granular dynamics simulation models are based on pioneering work on the discrete
element method of Cundall and Strack [33] and Walton [34]. The main distinctions
between the algorithms describing granular materials (granular dynamics) and
other simulated systems such as Lennard–Jones particles (molecular dynamics
[35, 36]) stem from the fact that granular materials lose energy in collisions, and
collisions only occur on contact between two particles. The description of inelastic
and frictional collisions is quite well known [37, 38] and can be written down and
coded straightforwardly [39,40]. We use spring–dashpot interactions to model the
forces in the directions normal and tangential to the mutual contact surface between
interacting particles [41,42]. Consider two particles {i, j} of masses {mi, mj }, with
diameters {di, dj }, at positions {ri , rj }, with translational velocities {vi , vj } and
angular velocities {ωi , ωj }. The two particles are considered to be in contact if they
experience an overlap; that is, their center–center separation, rij = ri − rj , is less
than the sum of their radii, |rij | < d = 1

2 (di + dj ). Then, the normal compression
of the contact δij , relative normal velocity vnij

, and relative tangential velocity vtij ,
for the two contacting particles are given by:

δij = d − |rij |, (5.2)

vnij
= (vij · nij )nij , (5.3)

vtij = vij − vnij
−
(

di

2
ωi + dj

2
ωj

)
× rij , (5.4)

where nij = rij /rij , is the unit normal vector along their line of centers, with
rij = |rij |, and their relative velocity, vij = vi − vj .

The normal and tangential components of the contact force Fij = Fnij
+ Ftij , are

given by:

Fnij
= f (δ/d)(knδij nij − meffγnvnij

), (5.5)

Ftij = f (δ/d)(−kt�stij − meffγtvtij ), (5.6)

where the effective mass, meff = mimj

mi+mj
, and the particle parameters kn,t and γn,t are

the elastic and dissipative constants in the directions normal (n) and tangential (t) to
the mutual contact surface. These determine the stiffness of the individual particles
and how much energy is lost during a collision. The prefactor in Equations (5.5)
and (5.6), f (x), is unity for Hookean contacts (the force goes linearly with com-
pression) and

√
x for Hertzian contacts (the force goes as the compression to the

3/2 power) [38]. Note that for the study presented here, the particles are considered
to be noncohesive; therefore, the forces are compressive and act only on contact.
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The elastic tangential displacement, �stij , is set to zero upon formation of a
contact and tracks the displacement of the contact point for the duration of the
contact:

�stij =
∫ t ′

0
vtij dt ′′, (5.7)

where the integration occurs over the lifetime, t ′, of the contact. The tangential
displacement obeys the equation:

�snew
tij

= �stij − (�sold
tij

· nij )nij (5.8)

to ensure that �stij always lies in the local tangent plane of contact surface. The
static yield criterion, characterized by the local particle friction coefficient µ, is
modeled by truncating the magnitude of �stij as necessary to satisfy the local
Coulomb yield criterion, |Ftij | ≤ |µFnij

|. The surfaces between two particles in
contact are treated as “stuck” while Ftij < µFnij

, and as “slipping” while the yield
criterion is satisfied.

Energy dissipation occurs during collisions due to the velocity dependent forces
in Equations (5.5) and (5.6). Additionally, the work done in creating tangential
elastic strains, �st , at an established interparticle contact, is lost with either inter-
particle slip at the Coulomb criterion or particle separation. For Hookean contacts,
the coefficient of restitution parameterizes the dissipative nature of the interparticle
collisions. In terms of the parameters introduced in Equation (5.5) for Hookean
contacts:

en = e(−γntcol/2), (5.9)

where tcol is the duration of interparticle contact during a collision:

tcol = π√
(2kn/m − γ 2

n /4)
. (5.10)

A similar expression can be written down for the tangential restitution coefficient.
Note, for velocity dependent forces, the coefficient of restitution is not constant
and goes to zero as the relative velocity goes to zero. These expressions also carry
over for interactions between the moving particles and any confining boundaries
that define the simulation geometry. If the boundary is composed of particles fixed
in position with the same properties as the flowing particles, the only term that
changes in the force equations is the value of the effective mass, meff → mi , for a
rigid, infinite boundary.
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In a gravitational field g, the total forces and torques on particle i are obtained
by summing over all particles j that are in contact with i:

Ftot
i = mig +

∑
j

(
Fnij

+ Ftij

)
(5.11)

τ tot
i = −1

2

∑
j

rij × Ftij . (5.12)

The translational, ai , and rotational, αi , accelerations of particle i are determined
by Newton’s second law for the forces and torques:

Fi = miai (5.13)

τ i = Iiαi , (5.14)

where I is the moment of inertia so that Ii = 2
5mid

2
i for spheres.

The components of the stress tensor σαβ within a given sampling volume V are
computed as the sum over all particles i within V of the contact stresses arising
from the contact forces and the streaming stress due to velocity fluctuations:

σαβ = 1

V

∑
i


∑

j �=i

1

2
rα
ijF

β

ij + mi(v
α
i − v̄α)(vβ

i − v̄β)


 , (5.15)

where F
β

ij = F
β
nij

+ F
β
tij , and v̄ is the time-averaged velocity of the particles within

the sampling volume V .
The equations of motion for the translational and rotational degrees of freedom

can be integrated with either a Gear predictor–corrector or a velocity–Verlet scheme
[35]. The value of the spring constant should be large enough to avoid grain
interpenetration, yet not so large as to require an unreasonably small simulation
time step δt , since an accurate simulation typically requires δt ∼ tcol/50. For a
typical particle stiffness of kn = 2 × 105mg/d , the time step is δt = 1 × 10−4τ ,
where τ = √

d/g. The time step must be decreased by an order of magnitude for
every two orders of magnitude increase in the value of kn.

To study steady state problems and erase any history of the preparation procedure
of the initial conditions, the simulation must be run until standard measures become
time independent. For example, one might want to monitor the time evolution of
the average kinetic energy per particle as such a measure. When this quantity
becomes approximately constant in time and exhibits only fluctuations about a
well-defined mean value, then the system is considered to have reached the steady
state regime. Once in the steady state, production simulations can be run to compute
physical properties of interest, such as the stress tensor and other kinematic and
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(a) (b) (c)

Figure 5.1 Three visualizations of granular dynamic simulations. (a) Inclined
plane flow, N = 160 000 [42]. (b) Impact of a single particle onto a quasi-ordered
bed containing N = 16 000. (c) Rotating drum, N = 80 000. The black frame is
a guide to the size of the computational domain [43].

dynamic information. Several examples of active research in granular dynamic are
represented in Figure 5.1.

5.4 Gravity-driven inclined plane granular flows

5.4.1 Constitutive relations for inclined plane flows

A particularly simple class of flow reminiscent of avalanches is that of gravity-
driven, dense granular flow down a rough and bumpy inclined plane, or chute
flows. This geometry is the archetypal granular flow through which one can study
the relation between the stress state and the dynamics and structure, i.e. the consti-
tutive relation of the granular material. Indeed, a number of recent, well-controlled
experiments [46–49] and large-scale simulations [41, 42, 50, 51] have motivated
numerous theories that capture some of the features of inclined plane flows [52–60].
However, it remains a challenge to reconcile the various observations and results on
the nature of particle collisions and contacts, and the mode of stress transmission
in dense flows in general [61–65]. Here we provide a view as to how simulations
can help us understand various aspects of granular rheology as applied to inclined
plane flows, though it should be understood that several issues and controversies
persist as open avenues of contemporary research.

To date, the most generally accepted treatment of dense granular rheology is still
the physical picture put forward by Bagnold over 50 years ago [66, 67]. Bagnold
described a mechanism of momentum transfer between particles in adjacent flowing
layers undergoing binary collisions. More generally, it can be understood that in the
(infinitely) hard sphere limit, the inverse strain rate is the only relevant time scale in
the problem [67]. Provided that the particles are sufficiently stiff, a large separation
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in timescales also exists between collision times and inverse strain rate. Consider a
1 mm glass sphere with Young’s modulus, E = 60 GPa. The time it takes for sound
to traverse the particle, τs ≈

√
ρd2/E ≈ 0.1µs, is much shorter than the typical

timescale associated with rearrangements during flow, τf ≈ γ̇ −1 ≈ √
d/g ≈ 0.1 s.

Thus, the stress, σ , in the system can be obtained from the following arguments
[68]: the momentum transferred during a collision is proportional to the impact
velocity, which, in turn, is proportional to the shear rate γ̇ . The rate at which
particles are brought into contact – the collision rate – is solely determined by γ̇ .
The stress is the product of these two factors and we arrive at the constitutive
relation between the shear stress, σ , and rate of shear, strain, γ̇ :

σ = A2
Bagγ̇

2, (5.16)

which is often referred to as Bagnold scaling. The prefactor ABag, which we call
the Bagnold coefficient, is independent of γ̇ , but depends on properties such as the
packing fraction, which we will investigate below.

In steady state flow, the Cauchy equations of motion for the stress tensor are:

∂σzz

∂z
= ρg cos θ (5.17)

∂σxz

∂z
= ρg sin θ. (5.18)

For a given tilt angle, θ , and constant density, ρ = 6mφ/πd3, these reduce to:

σzz = (h − z)ρg cos θ, (5.19)

σxz = (h − z)ρg sin θ, (5.20)

where h is the height of the flowing pile. Combining these with the Bagnold
rheology equation leads to the following velocity profile in the direction down the
incline:

vx(z) = ABagh
3/2

(
2

3

√
ρg sin θ

)[
1 −

(
h − z

h

)3/2
]

, (5.21)

which we test below.
Along with the stress and shear rate, the granular temperature is another variable

that is used to provide closure to granular kinetic theory. This is defined in an
analogous manner to thermal fluids as the mean square velocity fluctuations:

Tgran = (m < (v − v̄)2 > +I < (ω − ω̄)2 >
)
/3, (5.22)
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where v̄ and ω̄ are the translational and rotational averaged velocities, and < · · · >

represents a microscopic average over the particles and an ensemble average over
the steady state regime. From transport theory and energy balance requirements
[69], Bagnold scaling is recovered provided:

Tgran ∝ γ̇ 2. (5.23)

Although the Bagnold equation, Equation (5.16), provides a suitable description
of granular rheology in several geometries [46, 50, 64], it is still conceptually
difficult to reason why this should be the case in the dense flow regime due to the
fact that its origins lie in kinetic theory. Such theories are inherently local in nature
in that they depend on the local neighborhood of the particles so that the stress
at some point depends on the local value of the shear rate and other fields at this
point. This is at odds with several observations made on granular materials that
point toward a more nonlocal approach to take into account mechanisms of energy
dissipation and stress transmission that occur over length scales much larger than
the size of the particle.

Despite these concerns, recent simulation studies examining the role of contact
times in the inclined plane geometry [70] have demonstrated that for sufficiently
stiff particles Bagnold scaling does describe the bulk rheology. Whereas, when
the particles become softer or cohesive forces are present [71, 72], then Bagnold
scaling breaks down. This feature of the rheology can be attributed to the formation
of long-lasting particle contacts [70], which transmit stresses elastically due to
the finite compliance of the particles [68] or through correlated force networks
[68, 73–75]. These ideas are consistent with the contributions to the stress tensor,
which are dominated by contact forces. The Reynolds stress associated with the
kinetic energy of the particles plays a subdominant role [42]. This latter criterion
is often used to differentiate between different flowing regimes. In the language
of Campbell [68,76], here we investigate the region of the inertial–elastic-inertial
regime, using large-scale simulations of gravity driven, dense granular flows down
a rough and bumpy inclined plane.

5.4.2 Simulations of inclined plane flows

In the simulations, the imposition of chute flow is achieved by rotating the gravity
vector g in the flow-shear plane by a tilt angle θ away from the −z direction. In
other words, the higher end of the incline is to the left and the grains flow down the
slope from left to right, as indicated in Figure 5.1(a). The supporting inclined base
is composed of particles that are fixed in position in a random configuration having
the same material properties as the flowing grains in the bulk. This particular
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Table 5.1 Parameters used in the simulation studies of the
steady state, inclined plane flows of monodisperse spheres.

Number of particles N 8000–160000
Force law f (x) 1 (Hookean)
Normal stiffness kn 2 ×105 mg/d

Tangential stiffness kt
2
7kn

Timestep δt 1 × 10−4τ

Normal damping coefficient γn 50.0
√

g/d
Tangential damping coefficient γt γn/2
Normal restitution coefficient ε 0.88
Friction coefficient µ 0.5
Angle of repose θr 19.4◦
Intermittency angle θi 20.5◦
Maximum angle θmax 26.5◦

boundary condition is implemented to reduce slip [28]. The area of the base is
A = LxLy , where Lx and Ly are the dimensions of the simulation cell in the x and
y directions respectively. Unless otherwise indicated, most of the studies presented
here have N = 8000 particles, Lx = 20d, and Ly = 10d. With these dimensions,
we see no system size effects. The direction parallel to the incline is the flow
direction and defined to be the x-axis. The direction normal to the plane of the
incline is the shear direction and defined to be the z-axis. The third orthonormal
y-axis is perpendicular to the xz-plane and in rheological studies is known as
the vorticity direction. The parameters chosen for this study are summarized in
Table 5.1. We choose simulation parameters that have previously been shown [50]
to quantitatively match experimental data [46].

For a typical simulation of granular flow down an inclined plane as described
below, a serial algorithm running on a single AMD 2.6 GHz central processing
unit (cpu) core can perform 10 million timesteps in 1152 minutes (0.8 days) for a
three-dimensional (3D) system containing 8000 spheres. Significant improvement
of simulation times can be achieved using a parallelized version of the same
code using a standard message-passing interface library such as MPI. The parallel
code partitions the simulation domain into smaller 3D subblocks, designating a
single cpu to each of these domains, thus reducing the number of calculations
per cpu. Nowadays, it is relatively inexpensive to build/purchase a Beowulf Linux
computer cluster. Linux clusters are composed of a head node controlling data
communications and handling between the compute nodes. Each node typically
possesses two or four dual or quad core processors, that is each node can contain
between four and 16 cores. Even with standard gigabit communication connections
between the head and compute nodes, for the same system mentioned above, the
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parallel algorithm performs 10 million timesteps in 286 minutes (0.2 days) using
one node consisting of two dual-core processors. This represents a linear scaling
in compute time over the single cpu run.

This efficiency decreases somewhat when using more than one node due to intra-
node communication. On implementing the parallel algorithm, there is a trade-off
between sharing the simulation load over several processors and the communication
times between the different nodes connecting the different simulation domains. As
a rule of thumb, higher parallel efficiencies are obtained for 1000–2000 particles
per core. The data presented below were generated using both serial and parallel
algorithms. The parallel algorithm used here is known as LAMMPS and was
originally developed [44] at Sandia National Laboratories. It is now an open source
software [45]. Additional information for particle dynamics algorithms in various
programming languages can be found in the following references [35, 36, 40].

5.4.3 Steady flows

Inclined plane flows exhibit several phases. These have been extensively discussed
in terms of an effective flow phase diagram [42, 46, 50]. To initiate flow from a
static pile of grains, the inclination angle must be increased beyond a threshold
angle. This starting angle, θstart, essentially encodes the preparation history of the
pile. Once flow has been initiated, a steady state regime exists over a range of
inclinations: θr < θ < θmax . The lower bound, θr , is often referred to as the angle
of repose. In general, θr ≤ θstart, expressing the strong hysteretic nature of granular
materials. If the inclination angle for a flowing system is reduced below θr , flow
ceases. The upper bound, θmax > θstart, represents the maximum angle at which
steady state flows exist. Beyond this angle, the flow accelerates without bound
and never achieves a well-defined steady state. Within the steady state regime,
yet another phase exists, which is characterized by strong intermittency [26]. The
onset of this steady state, intermittent regime occurs at an angle θi ≈ θstart, and
lies close to, but above, θr : θi � θr . We focus here on the continuously deforming,
steady state regime: θi < θ < θmax . For the parameters used in this study, see
Table 5.1, we restrict the range of inclination angles to the continuous steady state
regime: 20.5◦ < θ ≤ 26◦.

In Figure 5.2, time-depth profiles of various properties of the flow at θ = 24◦

indicate that steady state has been established. (1) Packing fraction. The packing
fraction remains approximately constant throughout the bulk, away from the bot-
tom surface and the saltating top layers. This observation satisfies the assumption
leading to the derivation of the Bagnold equation and is a strong motivating factor in
accepting Bagnold scaling to describe inclined plane flow. (2) Coordination num-
ber. The average number of contacts per grain exhibits a mild depth dependence as



132 Experimental and Computational Techniques

Figure 5.2 Inclined plane flow with N = 8000 at θ = 24◦. Time-depth profiles
of the (a) packing fraction, (b) coordination number, (c) velocity in the direction
of flow, (d) shear rate, (e) x-component of the velocity fluctuations, and (f) shear
stress.

the overburden of weight from the above layers push particles into contact deeper
into the pile. (3) Flow velocity. The velocity in the direction of flow (x-component
of the velocity vector) is a convex function with height, and as shown below agrees
quite well with the Bagnold form, Equation (5.21). (4) Shear rate. The derivative
of the velocity with respect to height gives the rate of shear strain. The shear rate
is maximum close to the bottom boundary and decreases with depth. There is a
slight upturn near the top surface in the saltating layer where the particles exist in
a thin ‘gas’ layer. (5) Velocity fluctuations. The x-component of the translational
velocity fluctuations are obtained from the second term on the right-hand side of
Equation (5.15), setting α = β = x. These also show a maximum in the vicinity of
the bottom boundary. (6) Stress tensor. The normal and shear (shown) components
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Figure 5.3 Inclined plane flow at θ = 24◦ for different system sizes, 2000 ≤ N ≤
20 000 and base areas 100d2 ≤ A ≤ 400d2. Depth profiles of the (a) packing
fraction φ, and (b) velocity in the direction of flow vflow [42].

of the stress tensor all decrease linearly with increasing height through the pile.
This is to be expected in the absence of side walls due to the hydrostatic head effect
of gravity acting on the pile.

A further test of Bagnold scaling can be obtained through the study of different
system sizes at the same inclination angle. In Figure 5.3, systems of varying flow
heights at θ = 24◦ are compared. The remarkable property shown is the constancy
of the packing fraction independent of the height of the flowing system. Thus,
despite the increasing weight of the pile on the bottom boundary, the system adapts
to achieve the same flow characteristics that scale according to the Bagnold relation,
Equation (5.21). The precise way the system achieves such a balance is through an
increase in the generation of “granular temperature” with increasing system size.
This highlights the unusual and complex interplay that granular materials display
during flow.

5.4.4 Microscopics

We can use simulations to examine in more detail the microscopic behavior of the
flow at the particle level. Representative, instantaneous snapshots of the flow are
shown in Figures 5.4 and 5.5 which display some of these properties. The simulation
snapshots of Figure 5.4 show the particle coordination number, and the magnitudes
of the translational velocity in the direction of flow and the rotational velocity.
These particle-scale data indicate that at the particle level there are noticeable
fluctuations.

Another quantity that is of interest in granular matter is the distribution of forces
between particles in contact. The snapshots of Figure 5.5 show how the normal
and tangential contact forces are distributed at an instant in time during the flow.
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(a) (b) (c)

Figure 5.4 Instantaneous snapshots of different particle properties at θ = 24◦
for N = 8000. (a) Local coordination number, (b) translational velocity, and (c)
rotational velocity. Darker shading indicates larger magnitudes. Flow is from left
to right. The inclination and the fixed base particles have been removed for clarity.

(a) (b)

Figure 5.5 Instantaneous snapshot of the forces acting between N = 8000 par-
ticles in contact at θ = 24◦. The lines represent the forces between contacting
particles. Particles not shown for clarity. (a) Normal forces perpendicular to the
contact surface. (b) Tangential forces in the contact plane. Darker shading and
thicker lines indicate larger magnitude of force.

As expected, the influence of gravity leads to the majority of the largest forces to
be found near the bottom of the flowing pile due to the overburden of particles
above. One common theme of interest is the notion of force chains. These are
considered to be extended, approximately linear, clusters of particles that bear a
significant fraction of the force or stress in the system. There is little evidence for
the presence of force chains in the system. There are some extended structures of
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Figure 5.6 Time averaged depth profiles for N = 8000 at different inclination
angles; θ = 26◦, 24◦, 22◦, 21◦. (a) Packing fraction φ. Bulk packing fraction
decreases with increasing angle. (b) Velocity in the direction of flow vflow. Velocity
increases with angle. Lines are fits using Equation (5.21) [42].

forces larger than the average at the bottom of the pile (bottom right of Figure 5.5
(left)), but these extend over a length scale of only a few particle diameters. These
force chains are distinct entities from the overall pervading force network of all
the forces of varying magnitudes that exist throughout the system. Clearly, this
network of forces controls the rheology, but how strongly the presence or lack of
force chains influence this remains an open debate [50, 76, 77].

5.4.5 Rheology

We have investigated some of the macroscopic and microscopic features of the
inclined plane flow at one angle. Now we turn to the flow behavior as a func-
tion of inclination angle. In this geometry, the inclination angle controls the flow
rate. From computing the flow data over a range of angles we can therefore
extract the bulk rheological behavior and test this against the Bagnold scaling of
Equation (5.16).

Before we do this, we wish to determine whether varying the inclination angle
leads to any dramatic qualitative or quantitative changes to the flow. As shown in
Figure 5.6(a), we find that the steady state regime is characterized by a constant bulk
packing fraction that depends on the angle (see inset to Figure 5.6(a)). Increasing
the inclination leads to an increase in the velocity down the incline, i.e. flow rate,
as shown in Figure 5.6(b), which, in turn, leads to a decreasing bulk density due to
a slight dilation of the pile. In Figure 5.6(b) the lines are fit to the Bagnold velocity
profile of Equation (5.21). We find that the velocities agree quite well with the
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Figure 5.7 Rheology data obtained over a range of steady state inclined plane
flows. (a) Shear stress, σ , vs. square of the shear rate, γ̇ 2 (on log-log axes).
(b) Square-root dependence of the shear rate, γ̇ , on the granular temperature,
Tgran.

Bagnold form from which we obtain ABag as a fitting parameter, which we discuss
further below.

From the velocity profiles, we also obtain the shear rates, which we plot para-
metrically against the shear stress as shown in Figure 5.7(a). Even for these dense
flows, over a range γ̇ we find that the shear rate scales quadratically with shear
stress, consistent with Bagnold scaling. Interestingly, at smaller stresses, corre-
sponding to the upper region of the pile, Bagnold scaling breaks down and the
shear stress appears to approach zero at a finite shear rate. The reason for this is
unclear, but suggests that free surface effects extend well into the constant density
region of the flowing pile [41]. We can also determine the relationship between the
granular temperature and the shear rate. The results of Figure 5.7(b) demonstrate
that γ̇ ∼ T 1/2, as expected for Bagnold rheology.

5.4.6 Analogy to dense fluids

These data present an intriguing scenario. The flows are sufficiently dense to allow
the formation of system-spanning force networks of particles experiencing multiple
contacts. However, there is minimal evidence for the existence of actual force
chains that carry a significant fraction of the stress. Yet, the rheology is dominated
by features often ascribed to dilute flows, whereby Bagnold scaling persists and the
relationship between the granular temperature and shear rate satisfies the Bagnold
requirement. There are two additional aspects of dense granular flows that we
explore in this and the following sections. The first is the analogy between steady
state granular flows and dense equilibrium fluids. The other is the relation between
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Figure 5.8 (a) Pair correlation function g(r) for different inclination angles.
(b) Mean squared displacement in the z-direction computed over time windows
τlag . (c) Velocity autocorrelation function, Cv(τlag) computed over time windows
τlag (d) Distribution, P (θ ), of two-particle contact angles θ , projected onto the
flow-gradient plane.

the approach toward the angle of repose and jamming phenomena as described in
Chapter 2.

In this first section, we discuss the liquid-like properties of granular flows. In
liquid state theories of fluids [78], there are several variables and statistical analyses
that are useful to describe the properties of the system. We present some of these
measures in Figure 5.8: the radial distribution function g(r), mean squared dis-
placement in the z-direction, velocity autocorrelation function for the z-component
of the velocity, and the two-particle contact angle. The radial distribution functions
for these granular flows are similar to that for dense fluids. In particular, we note
a sharp first nearest neighbor peak located at a separation of a particle diameter,
r = d, and the emergence of a split second peak at separations of

√
3 ≤ r/d ≤ 2,

which is indicative of an amorphous structure.1 The split second peak grows as
the inclination angle decreases. Such features are also observed in jammed static
packings, see Chapter 2, as the jamming transition is approached [13]. The mean
squared displacement is calculated in the z-direction to avoid the influence of the
mean flow directed along the x-direction. Similar results to those shown here are

1 The second peak is skewed compared to an isotropic system due to the flow geometry.
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Figure 5.9 Distributions of velocity fluctuations for three different angles; 26◦ (◦),
24◦ (�), and 22◦ (�). Distribution of velocity fluctuations, P (δvz), for the com-
ponent of the translational velocity in the z-direction using (a) linear–linear and
(b) linear–log scales. Distribution of velocity fluctuations, P (δωz), for the com-
ponent of the rotational velocity vector in the z-direction using (c) linear–linear
and (d) linear–log scales. The lines are fits to Gaussians: P (x) = 1√

2πσ 2
e−x2/2σ 2

.
Here, σ is the variance of the distribution. In both cases exponential tails develop.

obtained in the y-direction. The mean squared displacement provides a measure of
the diffusion of particles, and again the behavior shown in Figure 5.7 is analogous
to dense fluids. At short times, the particles undergo unimpeded ballistic motions
characterized by < (�z)2 >∼ τ 2

lag, which crosses over to the diffusive regime at
later times, < (�z)2 >∼ τlag. The velocity autocorrelation function, Cv(τlag):

Cv(τlag) =
〈

1

N

N∑
i=1

viz(τlag)viz(0)

〉
(5.24)

is computed over an ensemble average over time windows τlag. This quantity
measures correlations between the velocities (z-component) at some origin of time
viz(0), and their velocities, viz(τlag), at some time τlag later. Again, the qualitative
features are consistent with those seen in dense fluids. As the inclination angle
decreases, the correlations die off more slowly. Finally, the two-particle contact
angle is a projection of the angle between a pair of contacting particles projected
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onto the flow-gradient plane. These results clearly show how the imposition of
flow in the inclined plane geometry strongly influences the geometry of the contact
network. The effect of the shearing throughout the bulk induces a relative increase
in contacts along the compressive direction at ≈ −45◦, and a relative depletion of
contacts along the extensional direction at ≈ 45◦.

We can push this analogy between granular flow and fluids further by measuring
quantities that have well-known properties in equilibrium systems, such as distri-
butions of velocity fluctuations. In Figure 5.9, we show these distributions over a
range of angles for the z-component of the translational and rotational velocities.
For a thermal system in thermodynamic equilibrium, these distributions follow
the Maxwell–Boltzmann distribution for velocities [78], and therefore should be
Gaussian. The lines in Figure 5.9 are Gaussian fits to the data. Although the peak
region is accurately described, the tails of the distributions deviate strongly from
Gaussian and decay exponentially. This breakdown of Gaussian behavior is usu-
ally attributed to the presence of correlations in the system [79]. Interestingly, the
rotational velocity fluctuations are significant in this flow geometry and should not
be ignored in future theoretical developments.

5.4.7 Approach to jamming

In this second section, we probe the onset of jamming as the inclination angle is
decreased to the point where flow ceases. The parameters studied in the previ-
ous section provide further evidence of this slowing down, such as the increased
splitting in the second peak of g(r) and the decrease in the mean squared displace-
ment. In this study, we do not decrease the angle below the intermittency angle θi ,
where the rheology becomes spatially and temporally heterogeneous, so we do not
get infinitely close to the angle of repose. However, we can extrapolate several
parameters down to the point where the flow stops.

In Figure 5.10(a), we present data for the Bagnold coefficient ABag defined in
Equations (5.16) and (5.21), which we obtain from fitting the velocity profile results
to the expected Bagnold expression. We plot ABag versus φ, the bulk value of the
constant packing fraction for a given inclination angle. We find that ABag decreases
linearly with increasing φ. Extrapolating these data down to ABag = 0, we obtain
φ0 = 0.59. Notice that this value of the packing fraction is well below the random
close packed value for frictionless spheres (φrcp = 0.64) but larger than the lowest
reported value for random loose packing (φrlp = 0.55). In fact, the extrapolated
packing fraction obtained here, φ0, coincides closely with the value of a static
packing, with µ = 0.5, at the jamming transition, φJ (µ = 0.5) ≈ 0.57 [19, 23].

We also see a similar trend in the bulk averaged coordination number, nc, which
was computed in a large slab of the flowing system away from the bottom and



140 Experimental and Computational Techniques

0.54
(a) (b) (c)

0.56 0.58 0.6
f

0

0.1

0.2

0.3

0.4

ABag

0.54 0.56 0.58 0.6
f

0

1

2

3

4

nc

10 10 10
f0 f

10

10
0

10
1

nc0 c

Figure 5.10 Onset of jamming in granular flows. (a) Dependence of the Bagnold
coefficient, ABag , on the packing fraction, φ. (b) Dependence of coordination
number on packing fraction. (c) Coordination number and packing fraction relative
to the jammed values. Line is a square root power law fit to the data.

top surfaces. As the inclination angle decreases, and correspondingly φ increases,
the coordination number also increases. Motivated by recent studies of jammed
systems [11, 13, 31], we fit the data to the following power law:

(nc0 − nc) ∝ (φ0 − φ)1/2, (5.25)

Here φ0 is the value of the packing fraction obtained from extrapolating ABag → 0
in Figure 5.10(a), and nc0 is a fitting parameter that provides the best fit to the
square root power law behavior. We find that for the system studied here, nc0 ≈ 4.2.
Therefore, from extrapolating our data to the jamming limit, we characterize the
granular flow–jammed transition by the values φ0 ≈ 0.59 and nc0 = 4.2. These
results are quite remarkable in that they are close in value to those for the jamming
transition of an isotropic packing with µ = 0.5 [19, 23] and poured frictional
particles [20]. Thus, we can conclude that studying granular flows can also shed
light on the jamming transition and the likely stability properties, for example the
coordination number and packing fraction of the jammed state.

The distribution of forces, P (f ), is also known to be a good indicator of the
onset of jamming in driven systems [80, 81]. In Figures 5.11(a) and (b), we plot
the distributions of the normal and tangential contact forces between pairs of
interacting particles. Although the tails of the distributions, corresponding to large
forces, are somewhat insensitive to the inclination angles, the most noticeable
changes occur at small forces. At higher inclination angles, the low-force region
of the normal force distribution is almost flat. As the inclination angle is decreased
towards the angle of repose, a peak develops between 0.5 ≤ f ≤ 1.0, as more and
more particles achieve mechanical equilibrium. This jamming notion is further
emphasized in Figure 5.11(c), which shows the distributions of the ratios of the
largest to next largest magnitudes of the total contact forces [82]. Again, as the
inclination angle is reduced, an increasing fraction of the particles experience
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forces that balance, f12 ≈ 1, which indicates that the system is approaching a state
of mechanical equilibrium, or in other words it is starting to jam.

5.5 Summary

We have provided details on methods for granular dynamics simulations and applied
these to a particular class of dense granular flows down an inclined plane. The sim-
ulations not only provide macroscopic information that can be compared directly
with experiment, but also shed light on microscopic properties at the particle scale
that are typically inaccessible experimentally in 3D systems, such as force networks
and coordination numbers.

The particle and force model used here was the simplest type of granular parti-
cles: monodisperse spheres with the same mass density, interacting through a linear
repulsive force law and static friction with one value of the friction coefficient. The
force model appears to have little affect on the qualitative and quantitative behavior
described here [42]. However, smaller values of the particle friction coefficient are
likely to shift the region over which steady state flow is observed. One would expect
the angle of repose to decrease with decreasing friction.

We also used the simulation results to connect with other theoretical avenues,
in particular liquid state theory and jamming. The approach to the angle of repose
shares strong similarities with the onset of jamming in static packings. The fea-
tures reported here for the radial distribution function, mean squared displacement,
and velocity autocorrelation functions are similar to the behavior of dense flu-
ids. Moreover, we find similar power-law behavior in the relative coordination
number and packing fraction with respect to the jammed values. One unanswered
question not explored here is the notion of a characteristic length scale that con-
trols the rheology. Numerical and theoretical studies on inclined plane flows have
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attempted to identify growing length scales that might provide a connection with
critical phenomena. However, previous studies have yet to find anything conclusive
[83, 84]. Such a project is worth pursuing.

It would be interesting to understand how other interparticle forces influence the
rheology. It is worthwhile to point out that the one-sided spring-dashpot models
represented by Equations (5.5) and (5.6) are the simplest models belonging to a
class of spring-dashpot potentials. In some cases one might want to incorporate
hysteretic springs, where the values of the spring constants depend on the history of
the contact force and/or the signs of the relative velocities between two interacting
particles [34,39,85]. Such models are guided by plastic deformations of the contact
point.

The results presented here neglect particle cohesion. Damp or humid sand can be
modeled through the introduction of a cohesive force, Fc, acting between the grains.
Cohesive forces that mimic the presence of liquid bridges have been developed for
inclined plane flow simulations [71]. This uses a rather simple model that can
be incorporated into the simulations. The interaction potential is modeled as an
attractive Gaussian well:

Fc
ij = 2A

(rc − |rij |)
�2

e−(rc−|rij |)2/�2
nij . (5.26)

The short-range cohesive force is set to zero for distances greater than some pre-
defined cutoff, rc = 1.02d. The strength of the attraction is controlled by A and the
width of the attractive well by �.

Powders, composed of small particles d ≤ 100µm, can also experience cohe-
sion through van der Waals attraction. If the powders become charged, long-ranged
electrostatic forces might be required, perhaps implemented through some Ewald
summation procedure [35]. This is computationally expensive, so suitable paral-
lelized algorithms might be required to simulate large systems.

Another area where computational studies have made little progress is in the
study of slurries, where the granular particles are suspended in some background
fluid, such as water. Accurately taking into account the coupling to hydrodynamic
fields of the suspending medium also introduces long-ranged interaction coupled
effects, which are also computationally problematic.

Finally, another area of research that has received little attention is the study of
complex particle shapes and particle composites. Chapter 2 presents some of the
first results on simulation studies of ellipsoidal particles. This needs to be extended
to include friction forces in a physically suitable manner that allows the study of
frictional complex particles that would provide further steps towards simulations
of real granular materials.
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[40] T. Pöschel and T. Schwager, Computational Granular Dynamics (Springer, Berlin,
2005).

[41] D. Ertaş, G. S. Grest, T. C. Halsey, D. Levine, and L. E. Silbert, “Gravity-driven
dense granular flows,” Europhys. Lett. 56, 214 (2001).
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Rheological and microrheological measurements
of soft condensed matter

john r. de bruyn and felix k. oppong

6.1 Introduction

Fluids deform irreversibly under shear; in other words, they flow. In contrast,
solids deform elastically when subjected to a small shearing force and recover their
original shape when the force is removed. The behavior of what is termed soft
matter is somewhere in between. Soft matter systems are typically viscoelastic,
that is they display a combination of viscous (fluid-like) and elastic (solid-like)
behavior. Measuring the flow behavior and the mechanical response to deformation
of viscoelastic materials provides us with information that can be interpreted in
terms of their small-scale structure and dynamics.

The mechanical properties of soft materials depend on the length scale probed by
the measurements due to the fact that the materials are structured on length scales
intermediate between the atomic and bulk scales [1]. For example, a colloidal sus-
pension has structure on the scale of the spacing between the colloidal particles;
a concentrated polymer system, on the scale of the entanglements between large
molecules. As a result, their bulk properties can be quite different from proper-
ties on length scales smaller than or comparable to the structural scale. Making
measurements on both macroscopic and microscopic length scales can help us to
develop a better understanding of the relationship between microstructure and bulk
properties in soft materials.

Following a brief introduction to viscoelasticity, this chapter will focus on two
methods of measuring the viscoelastic properties of soft matter. On the macroscopic
scale, rotational shear rheometry provides a well-established set of techniques
for determining the mechanical properties of complex fluids. We will summa-
rize the principles of rheology and describe the types of measurements one can
perform [2–4]. Typically shear rheometry will be performed using a commercial
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Figure 6.1 A small element of material subject to a shear force Fs . The bottom edge
of the material is held fixed. The material experiences a shear strain γ = d�/�.

rheometer, and we will discuss the types of instrument commonly available. We
will not discuss extensional rheology or other rheometrical methods; the inter-
ested reader is referred to a number of excellent textbooks [2–4]. Techniques for
making rheological measurements on the microscopic scale have been developed
more recently, and the field of microrheology is still evolving. Several reviews of
the field have been published recently [5–9]. We will summarize the theoretical
background and describe a frequently used experimental method based on tracking
the motion of micron-sized tracer particles as they diffuse through the material
of interest [6, 7, 10, 11]. Such experiments are typically home-built, and we will
describe one implementation. In both cases, we will provide examples that illus-
trate how rheological measurements can provide information about the structure
and dynamics of soft materials.

Consider a small solid cube having sides of length � and area A = �2, as shown
in Figure 6.1. Suppose that the bottom surface is held in place, and that we apply
a shear force Fs parallel to plane of the top surface. The shear stress σ is the shear
force divided by the surface area:

σ = Fs/A. (6.1)

In response to the applied shear force, the solid will deform by an amount dl. The
shear strain γ is the relative deformation, given by

γ = d�/�. (6.2)

For small strains, this is the same as the angle γ shown in Figure 6.1. For a perfectly
elastic solid, Hooke’s Law tells us that stress and strain are linearly proportional,
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that is,

σ = G′γ, (6.3)

where the elastic modulus G′ is a measure of the elastic energy stored in the
material when it is deformed. Hooke’s Law implies reversibility – the deformation
immediately returns to zero when the shear stress is removed.

Now imagine applying the same shear stress to a cubic element of a Newtonian
fluid. In this case, the material flows continuously – the strain continues to increase
for as long as the stress is applied. If the stress is increased, the fluid flows faster.
Newton’s law of viscosity states that

σ = ηγ̇ , (6.4)

where γ̇ = dγ /dt is the strain rate. Here the strain rate, not the strain, is pro-
portional to the stress. Equation (6.4) can be considered to define the viscosity η,
which is related to the dissipation of energy in the flow. η can be thought of as the
tendency of a material to resist flow.

The discussion above (and throughout this chapter) is very much simplified
by our neglect of the fact that stress, strain, and strain rate are all, in general,
tensor quantities. For example, the shear stress σ referred to in the above equa-
tions is really just one component of a symmetric second-rank stress tensor. Since
the focus of this book is on experimental techniques, we will ignore this rather
important detail and use a simple scalar description. This implies a neglect of
any material anisotropy and, more seriously, of several interesting and impor-
tant physical phenomena, some of which will be mentioned very briefly below.
More mathematically rigorous discussions can be found in textbooks such as
references [2, 3, 12].

In general, the response of soft matter systems or complex fluids to an applied
deformation or stress is time-dependent – they typically behave as solids on short
time scales or at high frequencies and as viscous liquids over long times or at
low frequencies. For example, when a viscoelastic material is subjected to a step
increase in strain by an amount γ0, the stress σ in the material undergoes a step
change followed by, in the simplest case, an exponential relaxation. For small
strains, one can define a relaxation modulus G(t) = σ (t)/γ0, which is independent
of γ0, so

dσ = G(t)dγ. (6.5)

Analogously, in a creep experiment, the stress is suddenly increased from zero to
some value σ0. In this case, the strain will initially change rapidly in response, then
continue to evolve more slowly as a function of time. The creep compliance J (t)



150 Experimental and Computational Techniques

x

k m

Figure 6.2 The spring-dashpot representation of the Maxwell model for a vis-
coelastic medium. The viscous and elastic elements are combined in series and
stretched by a distance x.

is defined as

J (t) = γ (t)/σ0, (6.6)

and is conceptually equivalent to the reciprocal of the relaxation modulus G(t).
The range of strains in which stress and strain are linearly related is called the
linear viscoelastic regime. In this regime, the strain is small enough that it does not
seriously disrupt any structure in the material, and one thus probes the response
of the material to small perturbations of its equilibrium configuration. At higher
strains, the structure is disrupted and the response of the material changes accord-
ingly. In particular, the material properties become functions of strain or strain rate,
and often functions of time as well. For example, outside of the linear regime, the
viscosity of polymer solutions typically decreases as the strain rate is increased
(shear thinning), because the shear stretches out the polymer molecules and allows
them to partially disentangle. On the other hand, a concentrated clay suspension,
which is a gel at rest, will become liquid when subjected to a large enough strain as
the small-scale arrangement of the interacting clay particles is changed. It will then
slowly gel again over time [13] as the clay particles rearrange and reorient. The
interpretation of rheological measurements in the nonlinear regime is complex, and
a subject of substantial current research [14, 15].

The simplest model of a viscoelastic material is originally due to Maxwell [16],
and is mechanically equivalent to a spring in series with a viscous damper (a
dashpot), as in Figure 6.2. If we stretch this combined system by a displacement x,
a force F is developed that obeys the differential equation

F + µ

k

dF

dt
= µ

dx

dt
, (6.7)
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where k is the spring constant and µ the viscosity of the dashpot. In terms of the
viscoelastic properties of a complex fluid, the Maxwell model takes the form

σ + ϕ
dσ

dt
= η

dγ

dt
, (6.8)

where the viscosity η is assumed to be constant and ϕ is a time scale for the
relaxation of the material.

We can derive the integral form of the Maxwell model by imagining that the
stress in a material depends on the strain to which it has been subjected over
all time, from the distant past to the present [2]. The stress due to an arbitrary
deformation can be calculated by integrating over contributions due to a series of
small deformations as long as the relaxation modulus G(t) depends only on time
and not on γ . In this case, we can rewrite Equation (6.5) in the form

dσ = G
dγ

dt
dt = Gγ̇ dt. (6.9)

Integrating, we have

σ =
t∫

−∞
G
(
t − t ′

)
γ̇
(
t ′
)
dt ′, (6.10)

where t ′ runs from −∞ to the present time t , and in general the strain rate γ̇ is
a function of time. In this context, the relaxation modulus G(t − t ′) is referred to
as a memory function. If G(t) can be represented by an exponential decay with a
decay time ϕ, that is, G(t) = G0e

−t/ϕ , then Equation (6.10) becomes

σ =
t∫

−∞
G0e

−(t−t ′)/ϕ γ̇ (t ′)dt ′, (6.11)

which gives the stress as a sum of infinitesimal contributions weighted by the
memory function. Differentiating Equation (6.11) with respect to time recovers
Equation (6.8), showing that the two formulations are equivalent. At steady state,
dσ/dt = 0 and Equation (6.8) becomes Newton’s law of viscosity, while for rapid
changes, dσ/dt � σ/ϕ and Hooke’s law is recovered.

This model captures the basic physics of linear viscoelasticity and provides
a reasonable description of some of the viscoelastic behavior of some “simple”
materials such as wormlike micelles, some emulsions, and linear polymers at
frequencies low compared to the slowest relaxation time of the system [2, 3].
Most soft materials are more complex, however. In a typical soft matter system,
several different processes contribute to the relaxation of stress, each operating on
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a different time scale, and a model with a single relaxation time is inadequate.
This more complicated behavior is often described empirically by fitting data to
a “generalized Maxwell model” involving a sum of several exponential relaxation
terms with different time constants [2, 3]. Much more sophisticated rheological
models based on microscopic physics have been developed to describe the behavior
of a range of complex fluids, and are discussed, for example, in References [2,3,12].
Briefly, a physically reasonable constitutive model must treat stress as a second-rank
tensor and must thus be coordinate-invariant; beyond that it must be “materially
objective,” meaning that the predicted material response must be independent of
the reference frame of the observer. These very reasonable physical constraints
result in significant mathematical complexity that would quickly take us beyond
the scope of this chapter.

6.2 Shear rheometry

The principle of shear rheometry is straightforward: the material of interest is
subjected to shear in a controlled way, and the mechanical response measured.
Typically one either applies a controlled shear strain and measures the resulting
shear stress, or applies a known shear stress and measures the strain. Commercial
rheometers are available that can do either, and many modern instruments do a
good job of both.

A schematic representation of a layer of fluid subjected to simple shear is
shown in Figure 6.3. The fluid to be studied is sandwiched between two parallel
plates separated by a gap d. In a strain-controlled experiment (Figure 6.3(a)), one
plate – for concreteness, say the upper plate – is moved to the right at a constant
speed v0, while the other plate is fixed. The no-slip boundary condition ensures
that the flow velocity is v = 0 at the bottom plate, while v = v0 at the top plate.
As a result, a uniform shear is set up in the fluid, and the strain rate within the
fluid layer is γ̇ = ∂v/∂y = v0/d . The horizontal (shear) force required to hold the
lower plate fixed in position is measured by a transducer and the corresponding
shear stress calculated from the geometry of the experiment. In a stress-controlled
measurement, shown in Figure 6.3(b), the lower plate is again fixed. A known force
applied to the upper plate causes it to move, and its displacement and velocity are
measured.

Most commercial shear rheometers are rotational rheometers, meaning that the
rheometer tool has cylindrical symmetry and shear is applied by rotating the tool
about its axis. In a strain-controlled shear rheometer, a motor rotates the lower
element of the rheometer tool in a precisely controlled manner. Depending on
the type of measurements being performed, this can mean rotation at a constant
angular velocity, a sinusoidally varying angular velocity, or a rapid jump to a
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Figure 6.3 The distinction between strain- and stress-controlled deformation.
(a) In a strain-controlled measurement, a fluid sample sandwiched between two
plates is deformed by moving the upper plate at a controlled velocity v0, while
the bottom plate is kept stationary. The force required to hold the lower plate
fixed is measured by a transducer, indicated by the circle. (b) In a stress-controlled
measurement, a controlled shear force is applied to the top plate, and the resulting
velocity is measured.

specified angular displacement. The upper element of the tool is connected to a
sensitive torque transducer. The rotation of the lower element induces deformation
in the fluid, which in turn causes a torque to be exerted on the upper element. This
torque is used to calculate the shear stress, as outlined below for three common
tool geometries. In the case of a stress-controlled rheometer, the lower element is
rigidly fixed. A motor applies a controlled torque to the upper tool, causing it to
rotate, and the resulting angular displacement and angular velocity are measured.

Many rheometers can also measure the normal (upward or downward) force
produced in response to the shear. Normal forces are a tensor phenomenon and will
not be discussed in detail here, but they are significant in many complex fluids.
The normal force – or, more correctly, the normal stress difference – is the cause
of the well-known rod-climbing (or Weissenberg) effect seen when a rotating rod
is immersed in an elastic polymer solution [17].

The difference between stress- and strain-controlled measurements is analogous
to the difference between voltage- and current-controlled measurements in elec-
tronics. In many cases, the same information can be obtained with either technique –
a resistor has the same resistance no matter whether one measures it using a volt-
age supply or a current supply. On the other hand, the mode of measurement can
make a difference for complex systems. The current–voltage curve for a tunnel
diode, which has a negative differential resistance over a range of bias voltages,
would look quite different in the two cases. It is thus important to be aware of the
mode of operation and limitations of any instrument being used. There is really
no “better” or “worse” mode, but some things are more easily measured in one
mode than the other. For example, stress relaxation by definition involves mea-
suring a time-dependent stress. This is most straightforwardly measured with a
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strain-controlled instrument, by applying and maintaining a known strain and mea-
suring the stress. Creep measurements involve applying a fixed stress and measur-
ing the time-dependent strain, and consequently are most easily performed using
a stress-controlled rheometer. Extending the analogy with the tunnel diode, stress-
and strain-controlled measurements will give very different results on materials for
which the stress is a decreasing function of strain rate, such as clay suspensions
under certain conditions [18, 19]; the negative slope of the stress–strain-rate curve
signals the presence of a flow instability, which leads to shear localization. This
said, however, many currently available rheometers can effectively perform both
stress- and strain-controlled measurements by making use of fast computer control.
For example, an instrument might actually function by applying a known torque to
the tool, but its control system can continuously adjust the torque so that the net
result is a constant strain rate. Given this, the distinction is perhaps not so much
whether the instrument is stress- or strain-controlled, but whether the measurement
transducer is on the part of the tool that is moved by the motor, or that which is
fixed.

There are several high-quality rotational rheometers available commercially.
Published specifications for high-end instruments quote minimum torques of a
few times 10−9 Nm with a resolution of 10−11 Nm, minimum angular veloci-
ties on the order of 10−9 rad/s, and 10−8 rad resolution in angular position. As
with any instrument, there is a trade-off between cost and performance, and less
expensive instruments will have less impressive specifications. For the most accu-
rate torque measurements, the body or frame of the rheometer should be very
stiff, so that the torques applied to or generated by the sample act only on the
rheometer tool and do not twist the instrument itself. High sensitivity and low fric-
tional losses are extremely important for accurate measurements, particularly at
low stresses or strain rates. Typically an air bearing or, in some commercial instru-
ments, a magnetic thrust bearing, is used to reduce friction and inertial effects to
a very low level. Other important features include the available range of applied
shear rates or torques, the range of tool geometries, temperature control capa-
bilities, and ease of use. Some rheometers have the capability for in-situ optical
visualization of the sample while it is under shear, or even for small angle light
scattering, which is useful for studies of structure under shear. All commercial
instruments come with control software, which allows for several standard pre-
programmed measurement sequences and has some data analysis capability; rhe-
ological software packages that perform more detailed data analysis can also be
purchased.

There are three primary types of measurements that one can perform with a
rotational rheometer – oscillatory shear, steady shear, and transient measurements.
These are directly analogous to ac, dc, and transient electronic measurements.
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The first two will be described in the context of controlled strain experiments, but
analogous controlled stress measurements can also be performed.

Small-amplitude oscillatory shear measurements are used primarily to determine
the linear viscous and elastic moduli. When a material is subjected to a small
sinusoidal strain – small enough that the material remains in the linear viscoelastic
regime – the resulting stress oscillates sinusoidally at the same frequency, but
in general with a phase shift φ with respect to the strain. Thus, if γ is given
by

γ = γ0 sin ωt, (6.12)

the resulting stress is

σ = σ0 sin (ωt + φ). (6.13)

(If the applied strain takes the material beyond its linear regime, the response
will include higher harmonics, as discussed in References [14, 15].) The stress in
Equation (6.13) can be decomposed into a component in phase with the strain and
another 90◦ out of phase:

σ = σ ′ + σ ′′ = σ ′
0 sin ωt + σ ′′

0 cos ωt. (6.14)

The in-phase component is the elastic part of the response, with the elastic modulus
defined as

G′ = σ ′
0

γ0
, (6.15)

while the out-of-phase component is the viscous part, with the viscous modulus
given by

G′′ = σ ′′
0

γ0
. (6.16)

Note that the viscous response is out of phase with the strain, but in phase with the
strain rate γ̇ . It is common to define a complex modulus G∗ as

G∗ = G′ + iG′′. (6.17)

G′ is a measure of the elastic energy stored per unit volume per cycle, while G′′

is a measure of the energy dissipated per unit volume per cycle [2]. Note that
G′(ω) and G′′(ω) are not independent quantities, but satisfy the Kramers–Kronig
relations [20]; similarly, both are related to the relaxation modulus G(t) discussed
above by a Fourier transform [21].
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For a Maxwell model with a single relaxation time ϕ, it is straightforward to
show that G′ and G′′ depend on the frequency of oscillation as

G′(ω) = G0
ω2ϕ2

1 + ω2ϕ2
(6.18)

and

G′′(ω) = G0
ωϕ

1 + ω2ϕ2
. (6.19)

Thus at low frequencies, G′ ∝ ω2 and G′′ ∝ ω. This is in agreement with obser-
vations for linear polymer melts and micelle solutions [2]. More generally, the
frequency dependence of the elastic and viscous moduli reflects the time depen-
dence of the small-scale dynamics within the material.

In steady shear experiments, shear is applied at a series of constant strain rates
and, once the system has reached a steady state, the stress is measured at each
rate. Such experiments are inherently nonlinear, since the strain increases steadily
with time for the duration of the experiment. The material typically exhibits a
transient stress response as its microscopic structure is driven from its equilibrium
state, then settles to a constant stress once the microstructure has reorganized into
a new nonequilibrium configuration, which depends on the strain rate. The result
of such a measurement is a plot of stress versus strain rate, commonly called a
flow curve. Since the viscosity η = σ/γ̇ , η(γ̇ ) is also determined from steady shear
experiments.

In a transient measurement, a step strain is applied, and the resulting stress
recorded as it relaxes. Similarly, a step stress can be applied and the strain measured
as a function of time. The former is a stress relaxation experiment, and the latter
a creep experiment. One can also apply shear at a fixed strain rate and record the
stress transient discussed above. A Newtonian fluid dissipates – but does not store –
energy, and so responds instantaneously to an applied stress or strain. The presence
of a transient response is thus an indication of elastic effects, and consequently
measurements of stress relaxation or other transient effects are useful as probes of
the elastic behavior of a material. In particular, stress relaxation is a fairly direct
method of determining the relaxation times of a material – ϕ in the simple Maxwell
model described by Equation (6.8) above.

Several different geometries can be used for the rheometer tool, which contains
and deforms the sample being studied. Three commonly used tool geometries are
illustrated in Figure 6.4. Figure 6.4(a) shows a cone-and-plate tool. One part of the
tool – here the lower part – is a horizontal plane, while the other part is a truncated
cone. The gap between the cone and plate is set such that the extrapolated tip of
the cone would just touch the surface of the plate. The angle between the surface
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(a) (b) (c)

Figure 6.4 Three commonly used rheometer tool geometries. (a) Cone-and-plate;
(b) parallel plates; (c) the Couette, or concentric cylinder, geometry. In all cases,
one part of the tool is fixed and the other rotates about its axis.

of the cone and the plate is small, typically a few degrees (that is, so that the
small-angle approximation is valid). The sample fills the gap between the two parts
of the tool, remaining confined by surface tension. A parallel-plate tool is shown in
Figure 6.4(b). As the name implies, both parts of the tool are planar, and the sample
again fills the gap between them. In this case, the separation between the two parts
of the tool can be varied. The Couette geometry, shown in Figure 6.4(c), consists
of an outer cup of radius Ro and a coaxial inner cylinder of radius Ri and length
L. The sample fluid fills the annular gap between the two cylinders, as well as
the volume below the end of the inner cylinder. The shape and depth of this lower
volume should be designed to minimize its effects on the measurements.

In practice, loading the sample into the rheometer tool cannot be done without
causing some disruption to its structure. As an example, to load the cone-and-plate
tool, the upper cone is raised well above the lower plate, an appropriate amount of
the sample is placed on the plate, and the cone is then lowered to give the correct gap.
As the cone is lowered, the sample is squeezed between the two parts of the tool.
This clearly shears the sample in a somewhat uncontrolled way. This is addressed
either by giving the sample adequate time to recover its equilibrium structure before
measurements are started, or by subjecting it to a controlled “pre-shear” to prepare
it in a reproducible initial state before starting to take measurements. It is also
important to load the tool in such a way that the shape of the free surface at the
perimeter of the cone-and-plate or parallel plate tools, or at the top of the annulus
in the Couette geometry has the appropriate symmetry and is reproducible.

In all cases, the flow within the material under study must be steady and laminar,
and no secondary flows due to hydrodynamic instabilities (such as Taylor vortices
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in the Couette geometry) should be present [22]. Some high-viscosity materials are
subject to elastically driven “edge failure” at the free surface of the sample, and
some materials exhibit instabilities that cause the sample to be expelled from the
open edge of the tool at higher strain rates [2]. These phenomena limit the range
of strain rates over which measurements can be made for particular materials.
Some materials, particularly thixotropic (that is, history dependent) yield-stress
materials, are prone to shear localization [23], both in the interior of the sample
(shear banding) or at the interface between the sample and the rheometer tool (wall
slip). This will also affect the accuracy of rheological measurements. Analysis of
the flow for each type of tool assumes that the free surface of the sample has a
particular shape: a segment of a sphere for the cone and plate, a cylinder for parallel
plates, and a flat annulus for the Couette geometry. Particularly with the cone-and-
plate and parallel-plate geometries, care must be taken to avoid evaporation at the
free surface, which will change not only its shape, but also the fluid properties.
In some cases, viscous heating of the sample, and the resulting change in fluid
properties with temperature, must also be considered.

The relationship between the shear stress, which is the rheological quantity
of interest, and the torque, which is the quantity actually measured (or applied),
depends on the geometry of the tool. In the cone-and-plate geometry, Figure 6.4(a),
simple shear flow is produced in the azimuthal direction when the plate is rotated
at a constant angular velocity �, and, as long as the cone angle θ is small, the strain
rate is the same everywhere in the sample. It is given by

γ̇ = −�

θ
. (6.20)

If the plate is rotating, the torque M on the cone is

M =
∫

A

(stress)(lever arm) dA =
∫ 2π

0

∫ R

0
σr2 dφdr, (6.21)

where σ here is the shear stress on the surface of the cone, and the integral is over
that surface. Since the strain rate is constant, the shear stress is also constant and
can be removed from the integral, in which case it is straightforward to show that

σ = 3M

2πR3
. (6.22)

Because the deformation of the sample is homogeneous and the strain rate and
stress are independent of position, the cone-and-plate is the most commonly used
geometry for studying soft materials.
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In the parallel-plate geometry of Figure 6.4(b), the strain rate is simply given
by

γ̇ = �r

h
, (6.23)

where h is the spacing between the plates and r the radial coordinate. While h can
be varied, it should be small compared to the radius R of the plates and large com-
pared to the scale of any structure in the material (for example, the size of any sus-
pended particles). In this geometry, the deformation is not uniform: Equation (6.23)
shows that the strain rate depends on r . The shear stress can be calculated in terms
of the torque to be

σ = M

2πR3

(
3 + d ln M

d ln γ̇R

)
, (6.24)

where γ̇R is the strain rate the the edge of the plate [2]. Note that in principle the
derivative in Equation (6.24) has to be measured to permit an accurate determination
of the stress (see, for example, Reference [24]), while rheometer software typically
calculates an effective stress based on an approximation to Equation (6.24) which
assumes a particular value for d ln M/d ln γ̇R [2]. One should, in general, be aware
how the numbers produced by the software are actually determined! Despite this,
parallel-plate tools are simple to use, and by making h small can be used for
measurements at high strain rates. Measurements at different values of h can also
be used to check and correct for the presence of slip at the surfaces of the tool [25].

In the Couette geometry with the inner cylinder fixed and the outer cylinder
rotating at a constant angular velocity �, the velocity field in the fluid is purely
azimuthal. In this case, the shear stress σ on the inner cylinder at r = Ri can
straightforwardly be shown to be [2]

σ = M

2πR2
i L

, (6.25)

where Ri is the radius of the inner cylinder and L its length. If the gap between
the cylinders is small, that is, if Ro − Ri � Ri , then the strain rate in the gap is
uniform and is given by

γ̇ = R̄�

Ro − Ri

, (6.26)

where Ro is the radius of the outer cylinder, and R̄ = (Ro + Ri)/2. If the gap is
not small (as is usually the case in practice), the strain rate varies across the gap
and the analysis becomes more complex. As with the parallel-plate geometry, the
strain rate then involves a derivative, in this case d ln Mi/d ln �i . In principle,
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this must be measured, but in practice an approximation is often used. As above,
one should be aware of exactly how the rheometer software handles this situation.
The Couette geometry is well-suited for measurements on low viscosity fluids
because of the large surface area of the tool, and for measurements at high shear
rate, as the fluid cannot easily be expelled from the gap between the cylinders.

We end this section with a few examples of rheological measurements on soft
materials of interest in our research group. Figure 6.5 shows rheological data for
Carbopol 2050, a commercial polymer microgel [26]. These data were obtained
using a cone-and-plate tool on a strain-controlled rheometer. Carbopol consists
of micron-sized particles of cross-linked polymer molecules [27]. The sample
used here was prepared by dispersing Carbopol powder in deionized water at a
concentration of 0.5 wt%. When initially mixed, the pH is about 3 and the microgel
particles are about 2 µm in diameter. As the pH is increased, the polymer molecules
become charged, causing the microgel particles to expand dramatically. The data
shown in Figure 6.5 were taken at a pH of 6. At this pH and concentration, the
Carbopol forms a fairly stiff gel that keeps its shape; it has a consistency similar to
hair gel (of which it is often a major ingredient). The flow curve for this material
is shown in Figure 6.5(a). An important feature of these data is that the stress
approaches a nonzero value at low strain rates. This finite stress is called the yield
stress. Since the viscosity η = σ/γ̇ , the finite yield stress implies that η diverges
as γ̇ approaches zero. This is illustrated in Figure 6.5(b). (As an aside, we note
that there has been some controversy for several years as to whether the yield
stress is “real,” that is whether the viscosity of so-called yield-stress fluids at low
stress is actually infinite, or just extremely high [28]. Certainly, for all practical
purposes, the yield stress is real [29], and very recent experimental results strongly
support the existence of a real yield stress in materials (like Carbopol), which
do not show significant rheological aging [30].) The viscous and elastic moduli
of Carbopol determined from small-amplitude (that is, linear) oscillatory shear
experiments are plotted as a function of the angular frequency ω in Figure 6.5(c).
The response of the material is solid-like, in the sense that G′ � G′′ over the entire
frequency range accessible to the rheometer. Both G′ and G′′ are more-or-less
independent of frequency, although the viscous modulus shows a weak minimum.
This behavior is characteristic of a large class of so-called soft glassy materials,
including foams, slurries, gels, and emulsions, and has been shown to result from
small-scale structural disorder [31]. The lines plotted in Figure 6.5(c) were obtained
from microrheological measurements and will be discussed in Section 3.

Figure 6.6 shows the relaxation modulus G(γ, t) = σ (t)/γ of 2-hydroxy-
ethylcellulose, a linear-chain polymer with a molecular weight of 720 000 g/mol,
for several different values of the strain γ [33]. The sample was prepared in a
reproducible initial state, strain was applied at time zero, and the stress σ (t) was
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Figure 6.5 The rheological behavior of a pH-neutralized 0.5% by weight aqueous
dispersion of Carbopol 2050, a polymer microgel. (a) The stress σ as a function
of strain rate (flow curve), measured under steady shear with a controlled-strain
rheometer using a cone-and-plate tool. The data approach a finite yield stress at
zero strain rate. The curve is fit to a particular model for yield-stress behavior
(the Herschel–Bulkley model), which describes the data reasonably well. (b) The
viscosity η = σ/γ̇ as a function of strain rate. (c) The solid and open triangles
are the elastic and viscous moduli, G′ and G′′ respectively, plotted as a func-
tion of angular frequency. They were measured using small-amplitude oscillatory
shear with a controlled-strain rheometer. The heavy and light dashed lines are the
elastic and viscous moduli, respectively, determined from microrheological mea-
surements [32]. They differ from the bulk measurements because the Carbopol is
inhomogeneous on the micron scale, as discussed in the text.
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Figure 6.6 (a) The stress relaxation modulus of a 5% by weight solution of 2-
hydroxyethylcellulose with a mean molecular weight of 720 000 g mol−1. The
applied strains vary from 0.05 to 8, with G(γ, t) decreasing as γ increases.
(b) The same data are shown on a semi-logarithmic plot. The dashed lines in
(b) are fits of the late-time data to an exponential decay, which give a long-time
relaxation time of 400 ± 10 s, independent of γ . The measurements were made
with a controlled-strain rheometer using a cone-and-plate tool [33].

then recorded as a function of time. For small strains, the material remains in the
linear regime, so σ (0) is proportional to γ and G(γ, t) is thus independent of γ . For
larger strains, however, the structure of the material is changed – in this case, some
of the entanglements between polymer molecules are lost – the material properties
change, and so G(γ, t) becomes dependent on γ . The behavior of G(γ, t) shown in
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Figure 6.6(b) is clearly not a simple exponential decay, reflecting the fact that the
stress in this system relaxes through a variety of different processes, which have
a large range of time scales. Fitting the data to a sum of five exponential decays
(a generalized Maxwell model) gives relaxation times ranging from less than one
second up to 400 s. The longest relaxation time is independent of γ , and is charac-
teristic of the time required for the polymer molecules to completely re-establish
their original state of entanglement [33, 34].

6.3 Microrheology

Shear rheometry provides information about the viscoelastic behavior of soft mat-
ter systems using samples that are typically a few milliliters in volume, and the gap
between the parts of the rheometer tool is on the order of a millimeter. The rheolog-
ical data that one obtains are thus some sort of average over that millimeter length
scale. Since soft matter systems are structured on a much smaller length scale,
however, their properties will be inhomogeneous on the same scale. Experimental
techniques which probe the material properties and dynamics on that structural
length scale, or, even better, as a function of length scale, can therefore provide a
great deal of information that is not available from bulk measurements.

Microrheology involves the determination of the viscoelastic properties of
materials on the micrometer scale. Here we will focus on multiple particle-
tracking microrheology, which is arguably the most straightforward microrheologi-
cal technique, both conceptually and experimentally. Particle-tracking microrheol-
ogy involves directly following the thermally-driven motion of neutrally-buoyant
microscopic tracer particles suspended in a viscoelastic fluid. This is a passive
technique – no external forces are applied, and the particle motion is driven only by
equilibrium thermal fluctuations. As a result, their motion automatically reflects the
linear response of the system [35]. Microrheological measurements can often be
performed on very small quantities of material – on the order of tens of microliters
is easy – and so are well-suited for the study of expensive or hard-to-obtain mate-
rials such as some biopolymers. Direct imaging of the thermally-driven motion
of the tracer particles provides information on the rheological properties of the
material on the length scale of the particle size and in the region in which each
individual particle moves [10, 11, 35, 36]. If the particles are large compared to
the structural length scale of the soft material, bulk rheological parameters are
recovered, while if they are small, the material’s microstructure and spatial hetero-
geneity [11,32,37–40] can be explored. Correlations in the motion of pairs of tracer
particles can be analyzed to give information about the viscoelastic properties as a
function of length scale [41]. The diffusion of tracer particles has also been studied
using interference microscopy [42, 43].
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A variety of other microrheological techniques have also been developed.
Dynamic light scattering from suspended tracer particles can measure viscoelastic
properties to much higher frequencies than can be attained by mechanical rheome-
try [44, 45]. Active techniques involving, for example, manipulation of suspended
particles using laser tweezers [46, 47] or magnetic forces [48] allow the study of
both linear and nonlinear microrheology. A completely different class of methods
for measuring micron-scale viscoelastic properties involves probing the material
surface with the tip of an atomic force microscope [49,50]. Rheological techniques
drawing on microfluidics have also been developed [9], while small-angle neutron
and x-ray scattering are well-established and powerful techniques for studying the
small-scale structure of soft materials [51]. Several recent reviews of microrheol-
ogy provide an exposition of the development of the field as well as more detailed
discussions of other microrheological techniques [5–9, 52].

It is well-known that a microscopic particle suspended in a Newtonian fluid
such as water undergoes Brownian motion, that is, random motion due to thermal
fluctuations in the forces acting on the particle due to its collisions with liquid
molecules. In 1905, Einstein argued that Brownian motion was direct evidence for
the atomic nature of matter [53], and showed that the mean squared displacement
of a particle of radius a undergoing Brownian motion grows linearly with time

〈r2(τ )〉 = 2dDτ, (6.27)

where r is the displacement, τ is the time, d the dimensionality of the motion, and
D the diffusion constant. The angle brackets indicate an average over an ensemble
of particles. This equation can be derived from a Langevin equation for the motion
of a particle acted on by a randomly fluctuating force and a viscous drag [54]. D is
related to the viscosity of the fluid by the Stokes–Einstein equation:

D = kBT

6πηa
, (6.28)

which is itself a result of the fluctuation-dissipation theorem [54]. Here kB is the
Boltzmann constant and T the temperature.

In a viscoelastic fluid, however, the motion of a suspended particle is subdiffu-
sive, that is, 〈r2(τ )〉 increases more slowly than linearly. The subdiffusive behavior
is due to elasticity of the fluid; the fact that some energy is stored by elastic defor-
mations of the medium leads to correlations in the particle’s velocity fluctuations
and consequently a slower increase in the mean squared displacement [10]. Alter-
natively, the motion of the suspended particles can be thought of as being restricted
by the small-scale structure of the material. Note that from a practical point of view,
the medium must be soft enough that there is enough energy in the thermal motion
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of the suspended particles to deform it by a measurable amount. In practice, this
requires an elastic modulus less than of order 10 Pa for multiple particle-tracking
experiments [6].

If 〈r2(τ )〉 does not vary too rapidly with τ , it is convenient to write

〈r2(τ )〉 ∝ τα, (6.29)

where the power law exponent α can itself be a (slowly varying) function of τ

and can also depend on the length scale being probed. For soft-matter systems,
0 ≤ α ≤ 1. If α = 1, the particle motion is purely diffusive, while if α = 0, the
mean squared displacement does not grow at all with time and the particle is trapped,
either temporarily “caged” within transient pores formed by the microstructural
elements of the material [55, 56] or constrained by the material’s elasticity [11].
Which mechanism is at play can be determined from the way in which the plateau
in 〈r2(τ )〉 depends on the particle size a [11]. A power law exponent α > 1 would
indicate the presence of a mean flow, which is possible in nonequilibrium or
biological systems [57], but in the present context would typically be caused by a
leak in the experimental cell.

One can account for the elastic forces exerted on the particle as it moves in
response to the fluctuating collision force by adding a term involving a mem-
ory function into the Langevin equation, in analogy to the approach taken in
the Maxwell model of viscoelasticity in Equation (6.10) above. This leads to a
generalized Stokes–Einstein relation involving a frequency-dependent complex
modulus, whose magnitude is related to the mean squared displacement [10]. The
complex modulus is most rigorously calculated by taking a Laplace transform
of the Langevin equation to obtain a modulus G̃(s) in the Laplace domain, then
using analytic continuation to obtain the complex modulus G∗(ω) in the Fourier
domain [6, 7, 10, 35]. In practice, performing numerical Laplace or Fourier trans-
forms on limited data sets introduces errors at either end of the frequency range.
It is more accurate (and numerically simpler) to use Equation (6.29) to approxi-
mate 〈r2(τ )〉 by a power law locally, in which case the magnitude of the complex
modulus can be calculated as

|G∗(ω)| = kBT

πa〈r2(1/ω)〉� (1 + α(ω))
. (6.30)

Here � is the gamma function and α(ω) is the local power-law exponent of 〈r2(τ )〉,
that is; the logarithmic derivative d ln〈x2(τ )〉/d ln τ , evaluated at τ = 1/ω. More
details of the reasoning leading to Equation (6.30) can be found in References
[6, 10, 35, 58, 59]. The real part of G∗ is the elastic modulus of the material on the
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scale of the particle motion, and the imaginary part the viscous modulus, that is

G′(ω) = |G∗| cos(πα(ω)/2) (6.31)

and

G′′(ω) = |G∗| sin(πα(ω)/2). (6.32)

It is possible to rewrite Equation (6.30) as

〈r2(τ )〉 = kBT

πaJ (τ )
(6.33)

to give the mean squared displacement in terms of the creep compliance J (τ ).
Larsen and Furst [60] have recently used microrheology to study the gel transition
in physical and chemical polymer gels using J (τ ) directly rather than converting
〈r2(τ )〉 into frequency-dependent elastic and viscous moduli, thereby avoiding the
numerical issues mentioned above.

The moduli calculated using Equations (6.31) and (6.32) describe the material
of interest on the length scale of the particle size a. Suppose the length scale char-
acterizing the microscopic structure of the material is r . If a � r , the diffusing
particles effectively average over the structural heterogeneities of the material, and
the microrheological values of the viscous and elastic moduli will be the same as the
bulk values. However, if a � r , different particles will sample a range of microrhe-
ological environments, and the properties of these micro-environments may not be
the same as those of the bulk material. In this case the microrheological moduli
will in general differ from those measured in bulk experiments, and variations in
the microscopic moduli among a group of tracer particles can be used to study local
inhomogeneities in the structure and properties of the material [11, 13, 37, 38, 40].
Similarly, measurements covering a range of values of a/r provide information
about the micron-scale structure [39, 41].

It has been shown theoretically that the response function of a particle diffusing
in a viscoelastic fluid is well approximated by the generalized Stokes–Einstein
relation as long as inertial effects can be neglected and the size of the particle is
large compared to both the amplitude of its oscillations and the structural length
scale of the material, so that the material can be treated as a continuum [58, 59].
These conditions are met over a range of frequencies, limited at the high end by the
viscous dissipation rate, which has been estimated to be at least 105 Hz, and at the
low end by the decay rate of the longitudinal compression mode of the medium,
which is on the order of 10 Hz [58,59]. Under these conditions, microrheology will
measure bulk properties. It is worth noting that the case a � r discussed above
explicitly violates the assumption of homogeneity, and also that the frequency range
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covered by most particle-tracking experiments extends below 10 Hz. Some caution
is thus required in quantitatively interpreting data obtained under these conditions,
but such data nonetheless contain useful information about the small-scale structure
and properties of the material.

The apparatus required to perform multiple particle-tracking microrheology
measurements is straightforward to assemble and relatively economical, the most
expensive component being a research-quality optical microscope. Tracer particles
are suspended in the fluid of interest, which is placed in a sample holder that is typ-
ically fabricated from microscope slides as described below. The sample is placed
on the stage of the microscope and the particles imaged using a video camera
mounted on the microscope and interfaced to a computer. While particle-tracking
measurements can be done using a standard upright microscope, an inverted micro-
scope is more convenient simply because its design provides more space on the
microscope stage. This allows for flexibility in the design of the holder and can
simplify sample handling. All modern research microscopes can accommodate a
video camera. It is convenient to mount the camera on one microscope port, while
using a second port for direct viewing of the sample by eye.

We have typically worked with sample volumes of the order of 100 µl in
cells 1 cm by 1 cm by 1 mm thick, but it would be straightforward to reduce
the horizontal dimensions of the cell substantially when working with scarce or
expensive materials. Since this technique is based on actually imaging the tracer
particles, the fluid being studied must be sufficiently transparent that the particles
can be visualized through a sample on the order of a millimeter thick. We have
fabricated sample chambers from microscope slides as illustrated in Figure 6.7.
Three small glass bars are cut from a microscope slide and glued with optical
cement onto a second slide to form a U-shaped wall. A cover slip is then glued
on top of these bars to form a covered chamber with one end open. Once the
glue has set, the experimental fluid is injected into the open end of the chamber
using a dropper or other appropriate tool, and the open side is sealed with an
inert silicone-based grease. Other chamber geometries can easily be fabricated.
Pre-made microscope well slides and cover slips could also be used. Note that
evaporation or a small leak in the chamber will likely lead to a mean flow in the
sample fluid, which will in turn result in a nonzero mean displacement of
the particles from one image to the next. This will affect the measurement of
〈r2〉. If the mean flow is small, it can be compensated for by subtracting the
mean displacement from all individual particle displacements when the images are
analyzed, but it is far better to build a chamber that does not leak.

The tracer particles should be neutrally buoyant in the fluid of interest, at least to
the extent that they do not settle significantly over the duration of the experiment.
Polystyrene latex spheres with a density of 1.05 g/cm3 are suitable for aqueous
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silicone grease

microscope slide

glass bars

cover slip
fluid sample

Figure 6.7 A sketch of a sample cell used in a particle-tracking microrheology
experiment. See the text for more details.

solutions and are available in a range of sizes from several sources. These can
be obtained with a variety of chemical coatings, and care should be taken to
ensure that the tracer particles are truly passive, that is, that they do not interact
either chemically or electrostatically with the material being probed [45, 61]. This
can usually only be confirmed by experiment. Smaller particles display larger
and more easily measurable displacements, and performing measurements as a
function of particle size allows characterization of the microstructural length scale
in the complex fluid [39], as noted above. If direct bright-field microscopy is used,
the minimum usable particle diameter determined by the diffraction limit of the
microscope optics is typically a bit less than 0.5 µm. An alternative is to image
fluorescently dyed particles with a fluorescence microscope, in which case the
motion of particles smaller than 0.1 µm in diameter can be followed. The operation
of a fluorescence microscope is shown schematically in Figure 6.8. The fluorescent
dye is excited by light in a particular wavelength band and fluoresces at longer
wavelengths. Light in the excitation band is reflected by a dichroic mirror through
the microscope objective and onto the sample. The longer-wavelength emitted light
is collected by the objective and passes directly through the dichroic mirror to the
detector. Filter sets corresponding to the excitation and emission wavelengths of a
range of fluorescent dyes are available as accessories for microscopes designed for
fluorescent imaging.
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camera
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Figure 6.8 A schematic illustration of the setup for a particle-tracking microrhe-
ology experiment using a fluorescence microscope.

To get good statistics in the calculation of the mean squared displacement, the
trajectories of a large number of particles must be averaged, so there should be
many tracer particles in the microscope’s field of view. At the same time, if the
particles are too close together, it is difficult to unambiguously determine their
trajectories, as discussed below. We have used particle concentrations of the order
of several times 10−5 by volume, giving roughly 50 particles in the field of view
with a 40× objective. With this objective, the spatial resolution in our system is
about three pixels per micron. The field of view should be located away from the
walls of the sample cell so that they do not affect the motion of the particles.
Similarly, the microscope should be focused at approximately mid-height within
the sample cell.

The minimum lag time that can be studied, or equivalently the maximum fre-
quency, is set by the frame rate of the video camera being used. The standard
(North American) video frame rate is 30 frames per second. CCD cameras nor-
mally record an image as two interlaced fields, one consisting of rows 1, 3, 5, . . . in
the CCD array, and the other of rows 2, 4, 6, . . . . A tracer particle can easily move
a distance corresponding to one pixel in 1/60 s, so it is important to separate the
two fields and analyze them individually to avoid smearing of the particle image.
(Similarly, the shutter speed of the camera must be fast enough that particles do not
move significantly while the image is being captured.) Treating fields separately
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increases the time resolution to 60 Hz, although it should be realized that the scan
time of the odd lines is often more stable than that of the even lines. The cost of
this increased temporal resolution is a decrease in spatial resolution in the direction
perpendicular to the rows of the detector array. Because of this, it is common to cal-
culate the one-dimensional mean squared displacement 〈x2〉 rather than the two- or
three-dimensional versions. Cameras with frame rates higher than 30 Hz are easily
available, and more data are always better. However, some high-resolution cameras
(such as those typically attached to microscopes intended for biological imaging
applications) have a significantly lower frame rate. The longest lag time (lowest
frequency) accessible is determined by the duration of the experiment, which in
turn depends on the extent to which the properties of the fluid under study change
with time, by the amount of computer memory available, or by the patience of the
experimenter. Even with current personal computers, it remains difficult to store
full video images onto a hard drive in real time, although this can be done with
specialized hardware [62]. Consequently, the images must either be stored in the
computer’s RAM and saved to a hard drive at the end of the experiment, or recorded
digitally or to video tape for later analysis. A fast computer with lots of RAM is
therefore recommended.

Once the video images of the diffusing particles have been recorded, they must be
analyzed to extract the trajectory of each particle, and ultimately the mean squared
displacement of an ensemble of particles. Several freely available and commercial
image processing software packages exist that can be used to do this analysis.
Particle-tracking software written in the IDL programming language by Crocker et
al. [63] is freely available [64] and has been used extensively within the soft matter
community. MATLAB versions of the same package are also available [65]. We
will briefly describe the method used by this software [63,64] (see also Chapters 7
and 10 in this volume).

The steps involved in the image analysis process are illustrated in Figure 6.9.
Digitized images may contain imperfections such as nonuniform contrast and
background intensity variations. The first step in the image processing filters the
image and subtracts a background image (recorded with the same optical system and
illumination, but without tracer particles) to reduce these variations. The brightness
of the images of the individual tracer particles will vary depending on how well
focused they are and, for fluorescent spheres, can be affected by photobleaching.
Pixels brighter than a threshold level are considered as candidate particles if no
other pixel within a specified distance, chosen to be larger than the apparent radius
of a single particle but smaller than the average separation between them, is brighter.
The software allows the use of parameters such as eccentricity and image size to
further discriminate true particles from doubtful ones, and can produce an image
with circles drawn around the identified particles to reassure the user. Once the
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1 2

34
Figure 6.9 Steps in the image processing. 1 The raw image captured by the CCD
camera. The white spots are possible particle images. 2 The image after filtering
and subtracting a background image. 3 The original image with circles drawn
around the features identified as particle images. In 4, the positions of one particle
obtained from a series of successive images are linked to give its trajectory.

particles have been satisfactorily identified, the software refines their positions to
sub-pixel accuracy by calculating the centroid of the brightness distribution of each
particle’s image.

The final stage in the procedure is to match particles in each image with their
most likely counterparts in later images. For indistinguishable particles, this is
only possible by proximity, and unambiguous identification of particles from one
frame to the next is possible only if the typical particle displacement at each time
step is sufficiently small compared to the typical interparticle spacing b. The most
likely assignment of particle labels from one frame to the next is the one which
minimizes

∑N
i=1 dr2

i , where dri is the displacement of particle i between frames
and N is the number of particles. The dri are constrained to be shorter than a length
L, chosen based on a plot of the distribution of displacements to be in the range
dri < L < b/2.
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Once the trajectories of all particles in the field of view have been determined,
it is straightforward to calculate their squared displacements. It is usual to reduce
noise by averaging not only over all individual particles, but also over all statistically
independent starting times. As noted above, most CCD cameras will give better
spatial resolution in one direction, and so it is common to report one-dimensional
mean squared displacements, 〈x2〉. If the material being studied is isotropic, the
three-dimensional mean squared displacement is simply given by 〈r2〉 = 3〈x2〉.
Once 〈r2〉 has been determined, it is straightforward to calculate the microscopic
values of G′ and G′′ from Equations (6.31) and (6.32). The length of time a given
particle can be tracked is mainly limited by its motion perpendicular to the focal
plane. A particle is “lost” when it moves far enough out of the focal plane that it
is no longer bright enough to be identified by the software. Similarly, a particle
moving into (or back into) focus will be identified as a new particle. As a result,
a data set will include many more short trajectories than long, and the statistical
noise at long lag times will be correspondingly larger.

Uncertainties in the particle positions can be estimated by recording a series
of images of immobilized tracer particles [66]. For a particle undergoing normal
diffusion, the measured mean squared displacement will be 〈x(τ )2〉 = 2Dτ + σ 2

x ,
where σx is the mean random error in x. For immobile particles, D = 0, so σx is
just the square root of the apparent mean squared displacement of a particle that
does not move. For example, in an experiment using 0.49 µm tracer particles, we
found σx to be 0.02 µm, corresponding to less than 0.1 pixels.

Figure 6.10 shows data obtained in a particle-tracking experiment on a 0.4% by
volume suspension of Laponite clay particles in water [13]. Laponite is a synthetic
clay consisting of disk-shaped particles about 30 nm in diameter by 1 nm thick [67].
When initially mixed, the suspension is very fluid, but it forms a stiff gel over a
period of about an hour. Figure 6.10 shows the one-dimensional mean squared
displacement 〈x (τ )2〉 for a series of times t after the start of the experiment. The
sample was prepared at t = 0 by sonicating it to destroy any pre-existing structure.
The video images from which 〈x (τ )2〉 was calculated were recorded over time
intervals short enough that the material properties are constant for a given set of
data, but Figure 6.10 indicates that they change significantly over longer times.
〈x (τ )2〉 is well described by a power law in τ for all ages t , but the power law
exponent α decreases from close to one initially to zero as the material gels [13].
Figure 6.11 shows selected tracer particle trajectories from the same experiment.
At early times, the particles move quite freely and their trajectories are close to
Brownian random walks, although, as can be seen in Figure 6.11, they tend to spend
substantial periods of time stuck in one region before wandering over a relatively
short time from one “cage” to another. This behavior, which has also been observed
in other soft matter systems [39, 55, 56], is the cause of the sublinear growth
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Figure 6.10 The mean squared displacement of 0.5 µm radius fluorescent spheres
in an aqueous suspension of Laponite clay particles, measured at a series of times
after the sample was prepared at t = 0. The logarithmic slope of 〈x (τ )2〉 decreases
over time as the material forms a gel [13].
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Figure 6.11 The trajectories of individual particles in the Laponite suspension
recorded at different times as the material gels. At early times, the particles move
quite freely, while, at later times, they are completely immobilized by the small-
scale structure of the material [13].

of the mean squared displacement. At later times, the particles become completely
immobilized. The microrheological moduli calculated from 〈x (τ )2〉 are plotted
in Figure 6.12 for four different times from the start of the experiment. Initially
G′′ > G′ and the tracer particles a viscous fluid. As time passes, however, the
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Figure 6.12 The microscopic elastic and viscous moduli of Laponite, determined
via Equations (6.31) and (6.32) from the mean squared displacements plotted
in Figure 6.10. The data were obtained (a) 1800 s, (b) 3600 s, (c) 5400 s, and
(d) 72000 s after the start of the experiment. At early times, G′′ > G′ and the
suspension is liquid-like, while, at later times, the material is a gel with G′ > G′′.
The gel transition occurs near t = 3600 s [13].

moduli cross over, and at long times the material is a soft solid with G′ > G′′.
Microrheology allows us to monitor the progress over time of the gel transition at
the micron length scale [13].

The motion of a single suspended particle is clearly sensitive to the rheolog-
ical properties of the material at the location of the particle. If the material is
homogeneous on the length scale being probed by the tracers, then all tracers
will see a similar rheological environment and the moduli determined from the
mean squared displacement should be equal to those measured using bulk shear
rheometry. This has indeed been demonstrated on a variety of simple and complex
fluids [11]. However, the technique is sensitive to tracer-scale heterogeneities in
the material properties. This can be viewed as a limitation if the goal is to use
microrheology to determine bulk rheological properties [41], but one can also take
advantage of this sensitivity to probe the heterogeneity itself, and to learn about
the structure of the material on the micron length scale [11, 13, 26, 37, 38, 40]. For
example, in a homogeneous material, the squared displacements of a collection
of individual tracer particles at a given lag time should be normally distributed,
and averaging them would give a mean squared displacement that is characteristic
of the material as a whole. In an inhomogeneous material, in contrast, the dis-
tribution of squared displacements will not be normal, and statistical techniques
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can be used to investigate the range of rheological microenvironments that are
present [11, 38].

The lines plotted in Figure 6.5(c) above show the microscopic elastic and viscous
moduli of a 0.5% dispersion of Carbopol [32]. These data were obtained from the
mean squared displacement of an ensemble of tracer particles suspended in the
Carbopol using Equations (6.31) and (6.32). While at lower Carbopol concen-
trations the microscopic and bulk viscoelastic moduli are in agreement (data not
shown), at this concentration they differ substantially. This is because the dispersion
is inhomogeneous on the micron scale, and, as discussed above, the tracer particles
see a rheological microenvironment that has very different properties from the
bulk material. In particular, the material is predominantly viscous over most of the
frequency range plotted in Figure 6.5(c), while on the bulk scale it is a soft elastic
solid.

This result is examined in more detail in Figure 6.13, which shows histograms of
the distribution N (α) of the logarithmic slopes of the squared displacements of each
individual tracer particle moving in dispersions of Carbopol [26]. The Carbopol
concentration increases as one goes from panel (a) to panel (d) in Figure 6.13. At
the lowest concentration, N (α) has a single peak close to α = 1, corresponding to
diffusive tracer motion. This indicates that the dispersion is more-or-less homoge-
neous and essentially purely viscous at this concentration. As the microgel con-
centration is increased, however, a second peak at a lower value of α appears in the
distribution. In this range of concentrations, some of the particles still move diffu-
sively, while others move subdiffusively. In other words, the material has become
inhomogeneous, with some particles seeing a purely viscous environment and oth-
ers seeing a viscoelastic environment. This inhomogeneity is reflected in the moduli
calculated from Equations (6.31) and (6.32). If one neglects the heterogeneity and
average over all tracer particles, one obtains the microscopic elastic and viscous
moduli shown by the dashed lines in Figure 6.5(c), which are substantially lower
than those of the bulk material. At the highest concentration shown in Figure 6.13,
N (α) is sharply peaked at α = 0, indicating that the material is again homogeneous
(at least on the length scale probed by the tracer particles) and completely elastic;
the tracer particles are immobilized.

The motion of an individual tracer particle in a viscoelastic fluid sets up a fluctu-
ating strain field, which in turn affects the motion of other tracer particles. Because
of this, correlations in the motion of pairs of particles can provide information about
the rheological properties on the scale of the separation between them. This is the
basis of two-particle microrheology [41]. This technique has the advantage that it
gives moduli independent of the way the tracer particles couple to the medium,
meaning that interactions between the tracer particles and the material under study
can be neglected [41].
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Figure 6.13 Histograms showing the distribution N (α) of the logarithmic slopes
of the squared displacements of particles suspended in a Carbopol dispersion. At
low Carbopol concentration, N (α) has a single peak near α = 1, indicative of
diffusive motion. As the concentration is increased, a second peak appears at a
lower value of α, indicating that a fraction of the tracer particles experience a more
elastic environment [33].

The apparatus required to do two-particle microrehology is identical to that
described above for single-particle measurements; the only difference is in the
data analysis. Since two-particle measurements involve calculating correlations
between the motion of pairs of particles, they typically require substantially more
data than in single-particle measurements for the same level of accuracy. Crocker et
al. [41] confirmed that two-particle microrheology gave results that were consistent
with bulk measurements in heterogeneous materials, while the moduli obtained
from single-particle measurements were quite different from the bulk values. Two-
particle microrheology has been used to study length-scale dependent rheology in
inhomogeneous materials such as actin networks [41, 68].

6.4 Summary

Rheological measurements probe the bulk mechanical properties of soft mate-
rials directly, while microrheology provides a window on their local proper-
ties and structure on length scales one thousand times smaller. In combina-
tion, these experimental techniques provide one path towards addressing one of
the key goals and challenges of research on soft materials, which is to under-
stand the connection between their bulk material properties and their microscopic
structure.
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Particle-based measurement techniques
for soft matter

nicholas t. ouellette

7.1 Introduction

Optical measurement techniques are ubiquitous across many disciplines of science.
Since so much of our everyday interaction with the world around us is based on
vision, optical investigations feel very natural and, when possible, are often the
preferred interrogation technique.

While the sophistication of optical measurement has certainly increased with
time, the basic idea remains the same: the physical system of interest is illuminated
with visible light (which is assumed to interact with the system only passively) and
is imaged by a photosensitive detector. In the early days of optical measurement,
film was the preferred medium, and optical studies were by and large static. The
few dynamic measurements that were made involved long or multiple exposures
and tedious reconstructions done by hand [1]. With the advent of digital imaging
and large-scale digital storage, however, optical measurements can now easily
address dynamic questions, with enough temporal and spatial resolution to measure
a wide range of quantities and sufficient storage to gather enough samples for
well-converged statistics. In physics, we are often interested in velocities and
accelerations, which give us access to momentum, energy, and force; such dynamic
quantities are now accessible with imaging techniques.

Before discussing particular imaging techniques, let us draw the distinction
between qualitative and quantitative optical measurement. Qualitative measure-
ments have been made for a very long time, particularly in fluid mechanics, where
they date back to Prandtl [2]. Also known as flow visualization, qualitative tech-
niques seek to visualize otherwise invisible information, such as, say, the streamline
pattern of a flow, much as iron filings can be used to “see” the field of a permanent
magnet. Pure visualization, however, does not give quantitative information about
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the flow. To make an optical measurement quantitative, it must be well calibrated,
robust against noise, and we need to know what exactly is being measured.

In this chapter, we discuss some of the ideas behind quantitative optical mea-
surement, as well as some specific techniques that have become standard tools.
The first technique we describe, in Section 3, is Particle Image Velocimetry (PIV),
which has become ubiquitous in fluid mechanics and is rapidly being adopted in
other areas of soft condensed matter physics. PIV relies on the assumption that
nearby elements of a continuum system move similarly, and uses this information
to generate velocity fields.

Sometimes, however, we want to study the time-resolved motion of individual
points rather than the statistical properties of regions; in these cases, the tracking
techniques described in Section 4 can be applied. True particle tracking gives us
not only the instantaneous positions, velocities, and accelerations of points in the
system, but also their full histories. We describe some ways in which this extra
information is currently being used to deepen our understanding of dynamically
complex systems.

Most real physical systems are three-dimensional; cameras, however, record
two-dimensional projections of the three-dimensional world. In Section 5, we
describe several methods that have been developed for reconstructing the full
three-dimensional information we often desire.

Finally, in Section 6, we discuss several future directions for optical measurement
science. We focus on the difficult problem of measuring three-dimensional, highly
resolved field information in rapidly evolving systems, on extensions of particle-
based measurements to nonkinematic quantities, and on potential technological
improvements.

First, however, in Section 2 we discuss some generic considerations of digital
imaging, as they are common to all the measurement techniques presented here.

As digital imaging and computing technology continues to advance at a rapid
pace, the techniques described here (as well as their future iterations) will become
more and more widely adopted standard tools, and will help us to better characterize
the rich dynamics of soft condensed matter systems.

7.2 Digital imaging

7.2.1 Film versus pixels

Traditionally, images were recorded on film. When the mechanical shutter of a
camera was opened, its lens system focused light onto a photosensitive emulsion,
which would later be chemically developed. The spatial resolution of such a system
(meaning, essentially, the smallest feature that could be resolved accurately) can
be very high, determined by the size of the crystals in the emulsion.
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Analog imaging, however, has many serious drawbacks as a scientific tool. Chief
among these is the requirement that the film images must either be processed by
hand, which is time consuming and often subjective, or must later be digitized to be
put on the computer, a process that is lossy and that reduces the spatial resolution of
the image. In addition, since the imaging process is mechanical, the imaging speed
(and therefore the temporal resolution of the measurement) is severely limited by
the physical components of the camera.

In a digital imaging system, the physical film is replaced by an electronic photo-
sensitive array that converts the incident light to electric current, which can then be
amplified and measured. The quantum efficiencies of digital image sensors tend to
be much higher than those for film: digital sensors perform much better in low-light
conditions since they register more of the incoming photons. Each element of the
array (corresponding to a pixel in the output image), however, integrates the light
that it collects, coarse-graining the image at the pixel scale. The spatial resolution
of the resulting image is therefore limited by the size and spacing of the pixels.
Because there are (in principle) no moving parts, however, the imaging rate and
therefore temporal resolution is limited only by the sensitivity of the photosensitive
elements and the rate at which information can be read from them, and commer-
cial cameras that can operate in the kilohertz range are now commonplace. Since
digital images never exist in hard-copy form, the number of images that can be
collected and stored is limited only by hard-drive capacity, leading to an enormous
advantage over film imaging. The images can also be processed easily by compu-
tational means, as we discuss below. In addition, electronic detectors can be con-
structed to image not only visible light, but also other ranges of the electromagnetic
spectrum.

Modern digital cameras fall into two categories: charge-coupled devices (CCDs)
and complimentary metal-oxide semiconductor (CMOS) sensors. As a rule of
thumb, CCD cameras tend to have smaller pixels and somewhat greater sensitivity,
while CMOS sensors feature on-pixel electronics (so that they are sometimes called
“active pixel sensors”) and faster readout times; there are, of course, exceptions in
each category. The fastest cameras on the market today tend to be based on CMOS
sensors; cameras designed for increased sensitivity tend to be CCD based. From the
standpoint of the techniques presented here, the underlying technology on which
the image sensor is based is relatively unimportant: either CCD or CMOS may be
used with equal success.

7.2.2 Noise and imaging errors

As with any measurement device, digital cameras are noisy. We can roughly break
the sources of noise into three classes: photon counting, intrinsic noise from the
detector, and pixelation effects.
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Digital detectors work by collecting photons on each pixel and converting them
to electrons, which can then be read out. This photon collection is a random process,
and is governed by Poisson statistics. There is therefore an intrinsic noise associated
with photon counting, which is independent of the quality of the detector. Photon-
counting noise is a small effect for well-lit situations, but can be nonnegligible for
low light conditions.

Since both CCDs and CMOS sensors rely on semiconductor physics, thermal
effects can also play a role and produce noise. As the temperature rises, thermally
excited electrons and phonons can interact with the electrons that carry the pho-
tocurrent, leading to noisy images. Additionally, even when no light falls on the
detector, a digital sensor at finite temperature will produce a signal known as dark
current. The solution to both of these problems is cooling: as the camera temper-
ature decreases, both the dark current and thermal noise also decrease. Typically,
cameras designed for high sensitivity are therefore actively cooled.

Finally, the physical arrangement of the photosensitive elements into finite-size
pixels can lead to undesired effects. In theory, all the incident light falling onto
a pixel is integrated to produce the signal. In practice, however, pixels are not
uniformly sensitive; their sensitivity tends to fall off near the edges. There are
also unavoidable dead regions between pixels. Because of these effects, position
measurements from digital images (made via the various methods discussed below)
are biased to lie nearer to the centers of the pixels than to their edges. This effect
is known as peak locking and is unavoidable, as it derives from the physical
construction of the detector. With properly chosen imaging parameters, however,
it can be minimized.

7.3 Particle image velocimetry

In many situations of interest, the dynamics of a physical system can be well char-
acterized by its velocity. Velocity measurements allow access to the momentum,
and tell us directly about the evolution of the relative positions of various points.
For a continuum system like a fluid, we desire the velocity field, that is, a mapping
of a velocity vector to (ideally) each point in space. Once we know the velocity
field, its spatial gradients give us information about strain rate and therefore stress,
and we can in principle completely determine the system dynamics.

In this section, we describe a technique for measuring the full velocity field
that has become a powerful and widely used tool in fluid mechanics [3], and
is beginning to find application more generally in soft matter physics. Based on
optical imaging of the motion of many closely spaced flow tracers, this technique
of PIV is noninvasive and under proper conditions can be highly accurate.

In this section, we discuss the ideas that underlie PIV, as well as its basic algo-
rithmic implementation. As PIV has become more widely used, several extensions
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to the basic algorithm have been proposed to increase its accuracy; we therefore
also describe some of these extensions. Finally, we discuss the advantages and
disadvantages associated with the closely related technique of particle tracking
velocimetry (PTV).

7.3.1 Tracers

It is almost tautological to say that optical measurement depends on having some-
thing to see. If our system of interest has spatial inhomogeneities in, say, material
composition (such as granular media), optical tags (such as specific fluorescent
labels in a biological system), or the index of refraction (as in a thermal convection
system), imaging of these inhomogeneities can give us the dynamical information
we desire. But very frequently we wish to study a homogeneous material, such as
a single-phase fluid. In that case, all points look the same; so what can we see?

For homogeneous media, we are forced to make approximations. Instead of
imaging the fluid itself, we study the motion of small, solid tracer particles that
are assumed to follow the flow of the continuum system faithfully. While the full
dynamics of a small solid particle in a fluid flow are quite complex [4], the tracer
assumption is valid when the particles are both neutrally buoyant and very small
compared to the relevant dynamical length scales. For small particles, the degree
to which the particles follow the flow is captured by the Stokes number:

St = 2

9

ρp

ρf

a2

ντ
, (7.1)

where ρp and ρf are the densities of the particle and the suspending fluid, respec-
tively, a is the particle radius, ν is the kinematic viscosity, and τ is the smallest
dynamical time scale of the flow. Typically, particles with Stokes numbers of order
10−3 or smaller are valid tracers. Note, however, that recent work has suggested
that the effects of finite size and finite density can be quite different [5], and that
the minimum Stokes number required to make a particle a good flow tracer may
depend on the quantity being measured [6].

Common materials for tracer particles include plastics (primarily polystyrene
or polymethylmethacrylate) or hollow glass spheres, all available commercially in
a wide range of sizes. We note that it is very difficult to find good tracers for gas
flows, since the density of most solids is so much larger than typical gas densities.
Under some conditions, however, either hollow glass spheres [7] or helium-filled
soap bubbles [8] can be used.

7.3.2 Basic PIV algorithm

Unlike some of techniques we will discuss below, PIV does not attempt to measure
the motion of individual tracers. Rather, it is a statistical measurement that reports
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the average motion of groups of nearby tracers that are within the same subregion,
or interrogation region, of the image. Implicit in the method is the assumption that
particles in an interrogation region move similarly, and that apparent differences
in their behavior can be ascribed to noise rather than to real dynamical effects. As
we note below, under some conditions this assumption is inappropriate, and PIV
will provide untrustworthy results; but, when used correctly, PIV is very effective
at providing reliable, quantitative velocity fields. For robust PIV, then, the size
of the interrogation regions must be determined by the properties of the velocity
field. Subsequently, the loading density of tracer particles is adjusted so that each
interrogation region contains many particles, leading to converged statistics.

Single-exposure optical systems can only measure position information; without
time-resolved measurements, dynamics cannot be measured. The canonical PIV
method therefore records two images separated by a short time lag, δt . Measurement
of the displacement field between the images then yields the velocity field when
scaled by δt , in a finite-difference approximation. For such a measurement, δt must
be kept small for two reasons. First, the quality of the finite-difference derivatives
increases as the time lag between the images decreases. Additionally, PIV systems
typically illuminate thin slices of the flow of interest rather than thick volumes; the
high seeding density of tracer particles required by the method makes volumetric
illumination impossible. Keeping δt small therefore minimizes uncertainties due
to out-of-plane motion of the tracers.

Early PIV measurements often used multiple exposures on photographic film in
order to maximize the spatial resolution of the image and to minimize δt [9]. In this
type of experiment, δt is determined solely by the pulse rate of the light source.
More modern systems based on digital cameras1 typically record two images in
rapid succession. Commercial PIV systems provide image pairs with very small
values of δt by using specialized “PIV cameras” and dual-head lasers sent through
cylindrical lenses to compress the beams into laser sheets. Most such systems are
not, however, capable of sustained high-speed acquisition, and so the time lag
between individual velocity fields is often much longer than δt ; note, though, that
as camera technology develops, systems are becoming available that are capable
of time-resolved or “cinema” PIV.

The problem now becomes one of computing the displacement field between the
two images. We desire a single displacement vector for each interrogation region
of the image. To find this vector, we compute the cross-correlation function:

R12(x) =
∫∫

W1(x)I1(x)W2(x + s)I2(x + s)ds, (7.2)

1 Such techniques are sometimes known as “DPIV,” for digital particle image velocimetry.
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where I1 and I2 are the spatially resolved intensities of the two images and W1 and
W2 are window functions that specify the interrogation domain in each image [10].
If the PIV conditions are met, R12 will show a pronounced peak corresponding to
the mean displacement of the particles in the interrogation region. The displacement
vector for the interrogation region is then given by the center of this peak, typically
estimated either by taking its centroid or by fitting it to a Gaussian profile. In either
case, the displacement vector can generally be found to sub-pixel accuracy, usually
to roughly 0.1 pixels or better [3, 10, 11].

7.3.3 Error control

The uncertainty of the velocity field returned by PIV is primarily determined
by the accuracy with which we can determine the displacement field, which
in turn comes from the accuracy with which we can determine the center of
the mean-displacement peak in the cross-correlation function R12(x) defined in
Equation (7.2). In general, the image intensities I1 and I2 can be broken into the
sum of their mean values 〈I1〉 and 〈I2〉 and the fluctuations about these means I ′

1

and I ′
2. R12 can then be broken into the sum of three contributions [3, 10]:

R12(x) = RD(x) + RC(x) + RF (x). (7.3)

RD is the cross-correlation of I ′
1 and I ′

2; it is the part we are interested in, since
it tells us how the particles are moving. RC is the cross-correlation of 〈I1〉 and
〈I2〉, which tells us only about characteristics of the global image illumination. It
contains no dynamical information, and yet may obscure the RD signal that we want
to measure. RF contains the two cross terms, namely the cross-correlations of one
mean image with the other fluctuation. As with RC , RF contains only information
that we do not want.

In practice, we can often eliminate RC and RF by subtracting the mean illumi-
nation from each image. If the illumination is uniform and if the particle seeding is
homogeneous, then removing the background intensity will force 〈I1〉 = 〈I2〉 = 0,
and RC and RF will vanish. Note, however, that if either of these conditions is not
met, these unwanted terms will remain. If the illumination is not uniform, removing
the spatially averaged mean image intensity will not remove the mean intensity
of any individual interrogation region; instead 〈I1〉 and 〈I2〉 become functions of
space, and cannot be made to vanish everywhere by subtracting a constant value.
If the particle seeding is not homogeneous, then 〈I1〉 and 〈I2〉 cannot be removed
by subtraction of a single value even if the illumination is uniform, since the scat-
tered light will still be nonuniform; a signal is only recorded when particles are
physically present.
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Now let us consider RD. Just as we did with the image intensities, we can
break RD into a mean 〈RD〉, known as the displacement-correlation peak, and a
fluctuation R′

D, known as the random correlation. The displacement-correlation
peak contains the average displacement of the interrogation region; the random
correlation contains the fluctuations about this average, due both to noise and
to nonuniform movement of the particles in the region. PIV will only provide a
reasonable result if the peak in 〈RD〉 is significantly higher than the maximum
value of R′

D; otherwise, the algorithm will report a spurious value. The ratio of
these two peak heights gives a lower bound on the signal-to-noise ratio of PIV.

We note finally that it is common practice to locate such spurious vectors in
a postprocessing step by comparing the results found for nearby interrogation
regions. If the velocity vector found for one interrogation region is significantly
different from its nearest neighbors, it is most likely incorrect (assuming, as always,
that nearby points in the flow move similarly). The correct vector can then be
approximated by interpolation [3].

7.3.4 Applicability and limitations

When the assumptions underlying PIV are met, it can be a very useful tool. It is
not, however, an appropriate technique for all situations, including several that are
very common in soft matter systems.

As we have seen, PIV assumes locally correlated tracer motion. If the nearby
motion of particles is, however, uncorrelated, the algorithm will produce spurious
results. In particular, PIV should be applied to Brownian particles only with great
caution. If the Brownian particles are embedded in a shear flow, for example, PIV
can often successfully find the shear velocity field, though with a lower signal-to-
noise ratio than the corresponding non-Brownian case [12]: the random motion of
the individual tracers enhances R′

D relative to 〈RD〉 in the image cross-correlation.
If PIV is applied to a pure Brownian system without an imposed flow, however, it
will return very poor results: the random correlation term will dominate, and any
velocity vectors found will be spurious.

PIV also assumes that the tracer seeding is homogeneous. In bulk flow, this is a
reasonable assumption: nothing breaks the spatial symmetries, and the particles will
remain (approximately) homogeneously distributed. Near an interface, however, the
homogeneity assumption may fail. The interface may be one between two fluids or
may be a solid wall; in either case, the tracer seeding density will fall off close to the
interface, leading to biased correlation functions (due to the cross terms between
the mean image intensities and the intensity fluctuations). PIV is therefore only
fully valid away from such interfaces.
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7.3.5 Extensions

When PIV is implemented exactly as described above, using a simple single-pass
image cross-correlation analysis, its quantitative accuracy can be compromised by
many different effects. Since it has become so ubiquitous in fluid mechanics, many
extensions have been proposed in order to compensate for the shortcomings of the
basic algorithm. We describe some of these methods briefly here; a more complete
discussion can be found in [13] or [3].

In the basic algorithm, the ring of pixels around the edge of each interrogation
region contributes very little to the measurement: in the interframe time δt , some
particles will leave the region, while others will enter it. In both cases, they will
not contribute to the displacement-correlation peak. If the assumption of locally
correlated motion holds, however, we should be able to recover the information
contained in these edge particles by appropriately shifting the interrogation region
in the second image relative to its position in the first image. This idea is at the heart
of iterative window-shifting methods. A first cross-correlation pass determines the
rough displacement vector associated with the interrogation region. The region in
the second image is then shifted based on this displacement vector, and the cross-
correlation analysis is performed a second time. In principle, this window-shifting
can be performed multiple times until the change in the determined displacement
vector drops below some threshold. As the interrogation region is shifted, we
may also choose to refine the windowing, changing the number of pixels in the
interrogation region to capture the local motion most effectively.

In most situations, the assumption that all particles in the interrogation region
move identically will be false; instead, there is likely to be some velocity gradient
across the interrogation region. We can attempt to correct for such a gradient by
deforming the interrogation region between the two images in addition to shifting
it. Typically, one applies a linear deformation to the region, amounting to keeping
the first term in the Taylor expansion for the velocity gradient.

Most commercial PIV packages have support for these and other analysis tech-
niques beyond the standard PIV algorithm, in order to increase the robustness of
the method. We also note that new PIV extensions are rapidly being proposed in
order to increase the accuracy of the technique.

7.3.6 Particle Tracking Velocimetry

Particle Tracking Velocimetry (PTV) is the low-seeding-density limit of PIV, and
relies on a fundamentally different technique to generate similar data. The end
result is the same as in traditional PIV: a velocity field defined on a regular grid.
Instead of measuring the average displacement vectors of interrogation regions that
contain many particles, however, PTV measures the displacements of individual
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tracer particles by explicitly locating them in the image pairs. Since we seek to
locate the individual particles, the seeding density must be lower: particles must
be well separated in space so that their images are nonoverlapping. To find the
displacements, either a nearest-neighbor approach is used (described more fully
below), or an iterative method based on prior cross-correlation analysis. This latter
technique is sometimes known as “super-resolution” PIV, since it returns multiple
velocity vectors for each PIV interrogation region [14].

7.4 Particle tracking and Lagrangian measurement

PIV, as described above, is a powerful technique for measuring field variables;
it gives us direct access to the velocity field, which under suitable conditions
can be integrated or differentiated to give us strain or acceleration fields. But
since PIV measures only statistical averages of the motion of tracers, it can-
not give us information about individual tracers. PTV, the low-density limit of
PIV, does measure the displacement of individual particles, but does not main-
tain long-time information, and still leaves us with a velocity field as the output
information.

In many cases, however, the individual motion of each particle is the real quan-
tity we want, rather than the mean velocity field. Consider, for example, a granular
material or a colloidal suspension. The most natural description of such particulate
systems is in terms of the particles themselves, rather than a coarse-grained field
description. And even for true continuum systems, such as homogeneous fluids,
problems of mixing and transport are most elegantly described in a “Lagrangian”
framework based on the dynamics of hypothetical “material points” or “fluid ele-
ments.” What we desire for Lagrangian measurement, therefore, is not explicitly
the field variables but rather the long-time trajectories of individual tracers. If the
density of tracers is sufficient, we can still construct fields from them (as in classical
PTV), but we retain more information that can be used to extract more dynamical
information, as we describe below. Additionally, since we have more history for
each tracer, we can apply higher-order time differentiation schemes than are possi-
ble with PIV, including polynomial fitting [15,16] or convolution with a smoothing
and differentiating kernel [17, 18].

A Lagrangian tracking system must accomplish two main tasks: we must locate
each tracer spatially at every instant of time, and we must then solve the corre-
spondence problem to match successive positions of the same tracer together in
time. If the number of tracers in view is very small and if they are well separated
in space, tracking is not a difficult problem. If, however, the tracer particles are
densely seeded or if they move quickly or randomly, tracking can become very
challenging. In this section, we describe strategies for solving the correspondence
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(a) (b)

Figure 7.1 (a) Sample image of tracer particles. (b) Detailed view of several
particle images from the white box in part (a).

problem for different types of systems. First, however, we briefly review methods
for locating individual tracers with sub-pixel resolution.

7.4.1 Tracer identification

In principle, any well-defined feature in an image may be tracked. Suppose, for
instance, that we want to track a square object as it moves through space, we could
then follow the motion of each of its corners as time evolves, thereby capturing
both the translational and rotational degrees of freedom. Most commonly, though,
tracking algorithms are applied to the case of spherical, featureless tracer particles,
such as those used for PIV; that is the case on which we will focus here.

A sample image of 80 micron-diameter spherical tracer particles in water is
shown in Figure 7.1. Several features are immediately apparent. First, the par-
ticles appear as bright spots on a dark background; this is the typical case for
imaging either by scattering or fluorescence. Second, as shown in more detail in
Figure 7.1(b), the brightness of the particle image is largest at its center and falls
off towards its edges. Because of this feature, we associate each local intensity
maximum with a particle.

Several complicating factors arise in this kind of imaging that make accurately
locating the particles a difficult problem. The discretization of the particle image
by the camera pixels can obscure the expected smooth intensity falloff of the
particle image, and can lead to large fluctuations as the particle moves over pixel
boundaries due to peak locking. The experimental illumination of the imaging may
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be nonuniform, and particles passing through dimly lit regions will change their
appearance on the camera sensor; similar effects are seen for particles that move
into or out of the focal region of the camera. By far the largest source of difficulty
in particle identification, however, arises when two particle images overlap. In
general, particles move in some three-dimensional volume. The camera image is a
perspective projection of this volume onto a plane; therefore, even particles that are
well separated in the depth direction may appear to be extremely close to one
another in the camera image. If the particles overlap too much, they appear to be
a single, albeit distorted, particle. This situation can lead to significant uncertainty
and error. PIV solves this problem by using laser sheets rather than volumetric
imaging. Laser sheets do not work well for Lagrangian particle tracking, however,
since particles pass out of the sheet rapidly, leading to short trajectories. We are
therefore forced to use volumetric imaging and the face the problem of overlap.

Any particle-finding method must be robust against the unavoidable problems
described above. Additionally, an algorithm should ideally also perform well in
situations when there is a significant amount of background noise in the image, as is
the case in low-light situations, such as biological imaging or in field measurements
of fluid flows where background signals cannot be eliminated. We also desire an
algorithm that is computationally efficient, so that we can process hundreds of
thousands of images containing thousands or tens of thousands of particles in a
reasonable amount of time. Many different particle-finding algorithms have been
proposed that fulfill some of these criteria. We here review several, including two
methods that are widely used.

In general, the more we know about the image and the cleaner it is, the better we
can design a particle-finding algorithm. For example, if we knew the particle-image
intensity profile, we could fit that profile to the image and extract the coordinates
of the center. Even though we do not formally know the full profile, we do know
that it is peaked in the center; it is therefore reasonable to approximate it as a
two-dimensional Gaussian [19]. Fitting the measured intensity profile can then
give us the position of the particle center that can be as accurate as 0.01 pixels.
Two-dimensional nonlinear least-squares fits (using, for example, the Levenberg–
Marquardt algorithm [20]) are, however, computationally expensive, and the com-
putational cost can become prohibitive as the particle seeding increases. Addition-
ally, since a two-dimensional Gaussian is defined by five independent parameters
(the two coordinates of the peak, the width in each direction, and the height of the
peak), a large number of pixels are required to converge the fit satisfactorily. In
principle, this fitting procedure can handle weakly overlapping particle images by
fitting N Gaussians to a pixel cluster with N intensity maxima; we then, however,
need a number of pixels that increases rapidly with N in order to get a reasonable
fit.
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Alternatively, if we empirically know what most particle images look like,
we can cross-correlate the particle image with a template image, with which we
can account for the discretization of the particle intensity profile by the pixilated
camera [21]. Template matching can work well if the particle images are all the
same size and shape, but loses accuracy rapidly due to defocusing, which changes
the apparent size of particle images, and overlap, which distorts their apparent
shape. Template matching is also somewhat computationally expensive, requiring
discrete Fourier transforms for each particle in the camera image.

To avoid both the computational cost problem and the sensitivity to the exact
particle size and shape, several simpler methods have been proposed and have
found widespread use. If the particle image is large and covers many pixels, a
simple intensity-weighted average (equivalent to locating the center of mass of the
pixel group) may be used. The horizontal position of the particle center is computed
as:

xc =
∑

p xpI (xp, yp)∑
p I (xp, yp)

, (7.4)

where xc is the horizontal coordinate of the particle center, xp and yp are the posi-
tions of the centers of the pixels making up the particle image, and I (xp, yp) is
the image intensity of the pixel at (xp, yp). The vertical coordinate of the particle
center is determined analogously. While center-of-mass averaging can work well
for large particle images, its accuracy drops as the particle image becomes smaller.
Additionally, center-of-mass averaging does not handle overlap well: while over-
lapping particle images can be segmented based on lines of minimum intensity in
a pixel cluster [22], the overlapping images tend to shift the particle center away
from the true value, since the weighting factors are modified. Segmenting the pixel
cluster also introduces additional computational work. If the particle images are
large and nonoverlapping, however, center-of-mass averaging can be a good choice
for a particle identification scheme [23].

For smaller particle images, an approximate method that combines some of
the accuracy of function fitting with the computational simplicity of center-of-
mass averaging works well. As mentioned above, peaked functions can be well
approximated as Gaussian near their centers. Full 2D fitting is computationally
difficult; fitting a 1D Gaussian is much simpler. If we choose only a local intensity
maximum and its two directly adjacent neighbors, we can solve the system of
equations:

Ii = I0 exp

[
−1

2

(
xi − xc

σx

)2
]

(7.5)
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and determine the position of the particle center xc as:

xc = 1

2

(x1 − x2)2 ln(I2/I3) − (x2 − x3)2 ln(I1/I2)

(x1 − x2) ln(I2/I3) − (x2 − x3) ln(I1/I2)
; (7.6)

here xi are the horizontal coordinates of the three pixels, where i = 1, 2, 3 (x2 is
the coordinate of the local maximum), Ii are the corresponding pixel intensities,
I0 is the peak value of the Gaussian fit, and σx is the Gaussian width. The vertical
coordinate yc is found analogously. Since the image is digital with a known bit-
depth, the required logarithms can all be precomputed; finding the particle center
then only requires a few multiplications, and is computationally efficient. To handle
overlap, we simply fit one Gaussian to each local intensity maximum; the error
increases for overlapping images, but remains acceptable. This method has proved
to be both computationally efficient and reasonably accurate, to at least 0.1 pixels
and often much better [11, 23].

7.4.2 Basic algorithm: nearest-neighbor tracking

Once the positions of the tracer particles (or other features) have been determined,
we must match the instantaneous positions together in time. This correspondence
problem is an instance of the more general multidimensional assignment problem.
For a pair of images, this problem is computationally tractable; for more than two
images, however, multidimensional assignment is computationally intractable [24],
and approximations must be made. Typically, we must limit the temporal scope of
our matching, in what is termed a greedy matching approximation. By considering
only a few frames at a time, we make tracking computationally feasible and hope
to find the correct solution to the correspondence problem, despite ignoring large
amounts of our raw data. In addition, the tracking problem can be simplified by
restricting the distance we allow a correctly matched particle to move between
frames, effectively limiting the spatial scope of the problem as well.

At its heart, tracking is an optimization problem: we seek to minimize the number
of incorrect frame-to-frame links made. Suppose that xn

i is the position of the ith
particle in the nth frame. Generating a correct link to frame n + 1 means choosing
the xn+1

j such that the particle identity is conserved. To solve this problem, we

define a cost function φn
ij that is defined for each pair xn

i and xn+1
j ; φn

ij encodes

the likelihood that xn
i and xn+1

j are images of the same particle in the two frames.
We then seek to minimize the total cost

∑
n,i,j φn

ij . The total cost is in principle
summed over all frames and all particles; the greedy-matching approximation,
however, limits the number of frames for which we perform the optimization.
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A successful tracking algorithm depends crucially on choosing a proper cost
function φ. In general, any slowly changing (or fixed) property can be included in
φn

ij . For example, suppose that we wish to track two particles, and that one of the
particles is red and one is blue. By choosing φn

ij to be the difference in color between
particle images i and j , we can track these two particles perfectly, regardless of
how quickly or irregularly they move: since the color does not change, it makes an
excellent tracking variable. In many cases, however, our tracers do not have any
distinguishing features, and we must instead use characteristics of their motion that
change slowly from frame to frame. For featureless particles, it is convenient to
define a nondimensional measure of the difficulty of the tracking problem as:

ξ = �r

�0
, (7.7)

where �r is the mean distance traveled by a particle between a pair of images
and �0 is the mean minimum distance between particles in a single image [23].
As ξ increases to order unity, tracking becomes nearly impossible for featureless
particles: the imaging is slow enough and the particle seeding density high enough
that the particle identities are irretrievably lost from frame to frame. If ξ is small,
however, we can track accurately, and in the limit ξ → 0, corresponding to a single
particle per frame, tracking becomes trivial.

The simplest choice of cost function for featureless particles is the particle
position: as long as we are imaging quickly compared to the velocity of the particles,
their position will not change much from frame to frame. We can then define:

φn
ij = |xn+1

j − xn
i |, (7.8)

which we refer to as a nearest neighbor approach: minimizing the frame-to-frame
distance traveled by each particle amounts to picking the particle in frame n + 1
that is closest to each measured position in frame n. This method is sketched in
Figure 7.2(a).

The nearest-neighbor method works well if the imaging is very fast in compari-
son to the particle motion; as we will see below, however, more complex algorithms
can perform better. But if the motion of a particle is unpredictable, as in the case of
Brownian motion, the nearest-neighbor algorithm is often the only viable choice
[25]. Nearest-neighbor algorithms also have the advantage of computational sim-
plicity, both in terms of memory requirements and processing time. They tend to fail
frequently, however, as ξ grows: in tests of tracking algorithms on simulated data
in weakly turbulent flow fields, Ouellette, et al. found that the nearest-neighbor
algorithm failed nearly 90% of the time for ξ = 0.5 [23]. For difficult tracking
problems, we therefore need more complex and robust algorithms.
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(a) (b)

Figure 7.2 (a) Schematic of the nearest-neighbor tracking algorithm. Black circles
are points already connected to a trajectory (shown by the solid black line); grey
circles are points in the next frame. The arrow shows the point that will be chosen
to continue the trajectory: in this case, it is the closest neighbor. (b) Schematic
of the four-frame predictive “best estimate” algorithm. Here, circles with dashed
edges show estimated positions (so that the grey, dashed circle is the estimated
position one frame into the future and open circles are points found two frames
into the future). Note that the point chosen to continue the trajectory is a better
choice than the nearest-neighbor algorithm picked.

7.4.3 Predictive algorithms

If the motion of the tracer particles is not random and if we are imaging rapidly
compared with their motion, then in principle the particle velocity and acceleration
are also slowly changing variables and can be integrated into the cost function. In
addition to making the tracking algorithm more accurate (in the sense of increasing
the likelihood that the algorithm chooses the correct links), cost functions that use
this type of additional information are capable of handling images with higher par-
ticle seeding densities; that is, ξ can be increased while still maintaining acceptable
accuracy.

With the added velocity and acceleration information, however, we can make
another change to the algorithm that has a larger effect. We can now predict where
we expect a particle in frame n to be in frame n + 1, which allows us to increase ξ yet
higher and still maintain acceptable accuracy. Using both the particle acceleration
and velocity makes this prediction more accurate, but it can be done with velocity
alone with reasonably good results [23]. For added accuracy, at the cost of typically
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shorter tracks, we can extend the temporal scope of the prediction, estimating the
position of the particle for several frames in the future.

Several variations on predictive algorithms have been proposed, differing in
both the number of estimates made for each particle (typically either one or two
frames) and in the cost function used to determine the correct match once the
estimates have been made. In this context, the nearest-neighbor approach can be
viewed as a single-frame predictive algorithm that assumes a vanishing particle
velocity.

Ouellette et al. studied several predictive algorithms, and concluded that a two-
frame predictive algorithm with a nearest-neighbor-like cost function performed
very well even in highly turbulent flows with densely seeded tracer particles [23].
Suppose as above that xn

i is the ith particle in frame n, and we have access to its
prior history. We can estimate its velocity as:

ṽn
i = 1

�t
(xn

i − xn−1
i ), (7.9)

where �t is the time between frames and tildes denote estimated values. We then
linearly extrapolate the particle position into frame n + 1, obtaining:

x̃n+1
i = xn

i + ṽn
i �t. (7.10)

Now, since we are restricting the spatial scope of the tracking algorithm, equivalent
to setting a maximum speed for the particles, we consider only real particles xn+1

j

that fall within a distance Rs of x̃n+1
i . This search radius Rs is often easiest to define

empirically: ideally, there should be a few particles (on average) less than Rs away
from the estimate. For each of these xn+1

j , we project another frame into the future,
using now both a velocity and an acceleration. Defining:

ṽn+1
i = 1

�t
(xn+1

j − xn
i ) (7.11)

and:

ãn+1
i = 1

�t2
(xn+1

j − 2xn
i + xn−1

i ), (7.12)

we generate an estimated position x̃n+2
i for each xn+1

j given by:

x̃n+2
i = xn

i + ṽn+1
i (2�t) + 1

2
ãn+1

i (2�t)2. (7.13)

We then define our cost function to be:

φn
ij = min

k
|x̃n+2

i − xn+2
k |, (7.14)
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that is, the smallest distance between our estimated position in frame n + 2 and
a real particle in frame n + 2. We therefore will create a link between xn

i and the
xn+1

j that leads to the best estimate of a particle position in frame n + 2. This “best-
estimate” algorithm is shown schematically in Figure 7.2, along with the nearest-
neighbor algorithm. We note that this method differs from algorithms that use the
minimum acceleration or change in acceleration as the cost function [26]. Even
though the particle velocity and acceleration may be defined well enough to make
estimates of the new particle position, they remain very uncertain quantities and
therefore make poor choices for the cost function. Ouellette et al. found that such
algorithms failed rapidly as ξ increased, performing nearly as poorly as the nearest-
neighbor algorithm for ξ → 0.5 [23]. In contrast, the predictive “best-estimate”
algorithm presented here had a failure rate of only about 10% for ξ ≈ 0.5.

7.4.4 Error control

Errors in Lagrangian particle tracking come from two primary sources: uncertainty
in locating the particle centers and incorrect frame-to-frame links. As with PIV
or PTV, particle centers can be found to an accuracy of at least 0.1 pixels, and
often better if the imaging is very good. We are therefore primarily concerned with
mistakes in the tracking, since they will play the dominant role in determining the
accuracy of the technique.

Analyzing the accuracy of a particle-tracking algorithm mathematically is very
difficult: unlike PIV, it is not a statistical process, and traditional error analysis
methods are not readily applicable. Instead, we can discuss the accuracy only
qualitatively. As described above, tracking algorithms tend to fail when the tracking
difficulty ξ becomes large; in the limit of vanishing ξ (corresponding to well-
separated particles moving slowly), any of the algorithms presented above will
perform essentially perfectly [23]. As ξ grows, the number of possible links for
each particle in the current frame increases, and the algorithm begins to make
choices between multiple possible frame-to-frame links. Algorithms that make
these choices poorly will be inaccurate. As discussed above, well-chosen predictive
algorithms make good choices by using an extended temporal scope: it is highly
unlikely that a decision that leads to a consistent set of future particle locations will
be a mistake. Still, as ξ approaches 0.5, incorrect choices do occur, due to the rise
of tracking ambiguities and tracking conflicts.

When the particle density is high or when the particles are moving quickly
relative to the frame rate of the camera, multiple links may lead to equivalent
tracking costs: a single particle in frame n links equally well to multiple particles
in frame n + 1, and we have a tracking ambiguity. We may also have the case
where the best match for multiple particles in frame n is a single particle in frame
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(a) (b)

Figure 7.3 (a) A tracking ambiguity: one partially determined trajectory matches
equally well to multiple particles in the next frame. Solid circles denote matched
positions, and the solid line is the partially completed trajectory. The open circles
are potential next matches, which would add the dashed lines to the trajectory.
(b) A tracking conflict: several trajectories match equally well to a single particle
in the next frame.

n + 1; then, we have a tracking conflict. These two cases are shown schematically
in Figure 7.3.

Tracking conflicts can be handled in several ways. The most conservative choice
is simply to give up. Instead of trying to decide which of the multiple tracks to
assign the new particle to, we simply end all the conflicting tracks and start a new
track with the particle in frame n + 1. This choice tends to limit the overall length of
trajectories (though we can potentially recover the proper links in a postprocessing
step; see below), but is guaranteed not to make an incorrect decision. A second
choice is to optimize the tracking cost globally over the entire frame, often by
adding some fixed penalty for ending a trajectory [27]. Efficient algorithms exist
for computing such a global optimization [28]; in simulated test cases, however,
such global optimization was found to degrade the performance of the tracking
algorithm, leading to more incorrect links being made [23]. A third choice is to
allow all of the conflicting tracks to match to the same particle in frame n + 1, with
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the hope that the predictive algorithm will not lead to all these tracks becoming
superimposed for all future times. The implicit assumption in this case is that due to
image overlap, what the particle-finding algorithm has identified as a single particle
is in fact the superimposed images of several particles. This strategy can work well
if overlap is a significant problem (due, for instance, to a very high particle loading
with a large depth of field).

Tracking ambiguities are much more pernicious, since they are harder to detect.
In a floating-point calculation, the tracking costs for multiple particles in frame
n + 1 are highly unlikely to be exactly the same, and setting a threshold below
which two values are considered to be equal is uncontrolled. Typically, therefore,
all that can be done is to keep ξ small enough that tracking ambiguities are rare, and
will therefore have a negligible impact on the statistical analysis of the ensemble
of trajectories. We can also try to remove ambiguities in a postprocessing step by
looking for anomalously large accelerations along the trajectories, which may cor-
respond to incorrect links. This approach, however, can be dangerous, particularly
for systems such as turbulent flow where we expect enormously large short-lived
acceleration fluctuations.

A third effect must be considered when we compute statistical analyses of
particle-tracking data. In general, we image particles in a finite subvolume of the
full system of interest. We must therefore contend with the problem of finite-volume
bias. The bias is twofold. On the one hand, particles that move faster are more likely
to enter our measurement subvolume. On the other, particles that stay in view for
long periods of time (and which lead to long trajectories) are more likely to be
moving slowly. These effects suggest that our short-time statistics will be biased
towards fast velocities, while our long-time statistics will be biased towards slow
velocities. Since these are true biases, collecting larger data sets cannot solve the
problem; we must simply be cognizant of it, and try to estimate how it skews our
statistics. For measurements of velocities and accelerations, Voth et al. [15, 16]
and Mordant et al. [29] used schemes based on weighting the contribution of a
particle track to ensemble averages by the amount of time they spent in view to
attempt to correct for the finite-volume bias. For position-based statistics, however,
corresponding schemes are not known.

7.4.5 Extensions

As we have seen, inhomogeneities in illumination cause serious problems for PIV,
by the inclusion of extra terms in the image cross-correlation that obscure the signal
we want to measure. Illumination inhomogeneities are much less of a problem for
particle tracking, in that they only marginally affect the accuracy of the technique
(primarily through small variations in the detection of the particle centers). They
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may, however, lead to holes in the trajectories: if a particle is sitting in a dim region
of the measurement volume, it may not be detected. Predictive algorithms lend
themselves to a simple solution to this drop-out problem. In the case where we do
not find an acceptable match for a trajectory from frame n to frame n + 1, we store
instead the estimated position x̃n+1, and try to extend the track between frames
n + 1 and n + 2 with a real particle. We can in principle continue this process for
several frames. As we try and push this drop-out handling to larger time windows,
however, the probability of finding a true continuation of the track drops rapidly.
In practice, keeping the number of frames we extrapolate through to four or fewer
seems to work well.

We can also try to resolve drop-out and tracking conflicts in a postprocessing
step. In an approach recently developed by Xu [30], we can use both the position
information along trajectory and its velocity information, once we have differ-
entiated it. As long as we are imaging fast enough, both of these quantities are
slowly changing variables, and we can re-track our data in this higher-dimensional
position-velocity phase space. The advantage to this procedure is that the extra
dimensions spread out the particles: effectively, we reduce ξ . We can then increase
our temporal and spatial scope without loss of accuracy, leading to more reliable
tracking and the connection of previously broken trajectories. Xu showed that this
method was effective at producing long tracks, both in a simulated data set and in
real experimental measurements.

7.4.6 Field measurements

As we have described them so far, PIV and Lagrangian particle tracking seem to
produce fundamentally different information: in PIV, we extract velocity fields,
while in particle tracking we generate tracer-particle trajectories. As long as the
seeding density of the tracer particles is high enough, however, the instantaneous
velocities of all the Lagrangian tracers may be interpolated together to create a
velocity field, just as they are in PTV. In general, such interpolation is reasonable
if �0, the mean minimum interparticle distance, is much smaller than the scale on
which the velocity field varies.

Generating a velocity field from Lagrangian particle-tracking data has two major
advantages over PIV. Since we have longer time-histories of position information
for each particle, we can apply a higher-order differentiation scheme than a simple
two-point finite difference. Each individual velocity that goes into generating the
field can therefore be more accurate, irrespective on any statistical smoothing of the
field. Additionally, we still retain and have access to the Lagrangian information
associated with each particle. While the field of Lagrangian data analysis is not yet
fully mature, Lagrangian field information has been exploited to study the spatially
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localized stretching of fluid flows [31, 32], a quantity related to the Lyapunov
exponents, as well as the dynamics of flow topology [33, 34]. We anticipate that
new uses for Lagrangian information will be discovered in the future.

7.5 Three-dimensional measurement

Physical phenomena are not, in general, confined to two dimensions. The measure-
ment techniques we have discussed, however, rely on camera imaging: our raw data
are particle images projected onto a two-dimensional plane. In order to measure
fully three-dimensional dynamics, we therefore have to extend our measurement
system.

Three-dimensional measurements are in general more difficult than their two-
dimensional counterparts. Indeed, for some techniques, including PIV, fully three-
dimensional measurement, in which we measure the three-dimensional dynamics
of a physical system in a nearly isotropic volume, are not yet possible.

In this section, we describe three ways in which three-dimensional information
may be gained from two-dimensional imaging systems. Multiple cameras may be
used to collect three-dimensional information with proper calibration, much as
our eyes do. Or, we may choose to collect many rapid two-dimensional slices (or
one-dimensional spots) of the volume. We may also use holographic techniques
to take advantage of the three-dimensional information stored in the diffraction
pattern of each tracer particle. We discuss these ideas in turn below, as well as
generic limitations on three-dimensional imaging as it is currently understood.

7.5.1 Stereoimaging

Biology gives us a clue as to an efficient way to reconstruct three-dimensional
information from two-dimensional images: take several images from different
angles and combine them. With our two eyes, we are able to compute the missing
depth information. Unfortunately, our brains are much better at this process than
the computer is: to implement such a stereoimaging system on the computer is
nontrivial.

In general, information from at least two viewpoints is required to reconstruct
the three-dimensional information using only image-based techniques. Each image
contains overlapping information; the information redundancy combined with a
knowledge of the relative positions of the cameras can be used to resolve the
third coordinate. In practice, at least three views are needed in order to perform a
good reconstruction, and four is better [35]. Further cameras lead to diminishing
returns.
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Each camera performs a perspective projection of the three-dimensional world
onto its two-dimensional image sensor. Even though perspective projection is a
nonlinear, lossy operation, we can still assert that a line of sight drawn through the
camera’s projective center and a point on the image plane will pass through the
actual three-dimensional location of the imaged object; this is sometimes referred
to as the photogrammetric condition. Furthermore, the lines of sight from all
the different cameras in the measurement system will intersect at the true three-
dimensional position of the object. This observation is the basis of stereoimaging:
lines of sight are drawn through the position of each feature in each image, and
their intersections are found [23]. In practice, lines of sight never intersect at a
point, but rather come closer together than some small threshold; in that case, the
centroid of the region defined by the lines of sight is chosen as the three-dimensional
coordinate.

7.5.2 Tomography

Instead of attempting to image an entire volume using a set of simultaneous images
recorded from different viewpoints, as in stereoimaging, we can generate three-
dimensional information by recording a rapid sequence of two-dimensional images
scanned through the desired measurement volume. Each image gives us a single
slice of the volume; reconstruction of the full volumetric data is achieved by
reassembling the individual slices. If we image very quickly compared to the
fastest dynamical timescale, we can consider the sequence of images to be an
approximately instantaneous snapshot of the full volume.

This type of tomographic imaging is very common in medical applications,
where the subject is often static. Computed tomography (CT) scans are now a
standard diagnostic tool. Rapid scanning in order to recover volumetric information
is also the principle behind three-dimensional confocal microscopy, which has
found widespread adoption in soft matter physics. For rapidly evolving systems
such as fluid flows, however, tomographic techniques are only in their infancy,
since the imaging rates required are often tremendously high.

Recently, building on earlier work with tomographic laser-induced fluorescence
and PIV, Hoyer et al. have developed a tomographic particle-tracking technique,
which they call scanning PTV [36]. They used a laser light sheet that passed through
a rotating prism in order to scan the beam through the measurement volume.
Owing to the speed of their camera and the mechanical rotation speed of the
prism, however, they were limited to a volume scan rate of 50 Hz; as implemented,
then, their system can be applied only to low-speed flows. Building a tomographic
particle-tracking system for turbulent or other high-speed flows remains an open
challenge.
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7.5.3 Holography

In most particle-based measurements, lasers are the light sources of choice. Lasers
can deliver very high power densities, since they are directed light sources, and
they can be pulsed at high repetition rates. The ease of collimation of a laser beam
makes alignment of optical systems much simpler. Lasers are also coherent light
sources, but this coherence is typically not used from a measurement standpoint.
Instead, the techniques we have described so far simply use the light scattered from
the particles in order to make measurements.

We can gain more information about the particles, however, if we also store
the phase information of the scattered light. If, instead of recording simply the
scattering, we image the interference pattern between the scattered light and a
reference beam, the three-dimensional spatial characteristics of each particle are
encoded in the resulting hologram. For images with relatively low particle seed-
ing density, we can use in-line holography: in this case, the reference beam is
simply the unscattered light of the original illumination beam. By subsequently
inverting the hologram [37], we can obtain three-dimensional information with a
single camera. Holographic systems are therefore some of the most compact three-
dimensional imagers as well as being simple to align, and are excellent choices
for fieldwork installations where space is at a premium and complex alignment
is a serious drawback [38]. Additionally, since only a single camera is required,
in-line holographic systems are relatively inexpensive compared with multi-camera
stereoimaging systems.

Holographic imaging does, however, have drawbacks. The particle density must
be kept low, both to minimize the distortion of the reference beam and to increase
the reliability of the real-space reconstruction [39]. Inverting the holograms is also
tremendously computationally intensive, limiting the total amount of data that can
be processed in a reasonable amount of time.

7.5.4 Limitations

As we have seen above, techniques that give us field information in two dimensions
require very high particle seeding densities. PIV performs better when there are
more particles in an interrogation region; PTV and Lagrangian particle tracking
require closely spaced particles if their characteristics are to be reasonably inter-
polated. In volumetric measurements, however, the particle seeding required to
measure three-dimensional fields is prohibitive, and techniques such as stereoimag-
ing will fail due to the high rates of overlap and shadowing. For the present, then,
three-dimensional measurements are limited to low-speed flows where we can use
tomography or to low seeding densities where we cannot measure field quantities.
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In Section 7.6, we discuss several strategies that may be able to overcome these
obstacles.

7.6 Frontiers of particle-based measurement

While optical particle-based measurement science can be considered to be a fairly
mature field, new developments are continually being made to address many of
the challenges we have discussed above. Here, we describe a sampling of topics at
the forefront of the field, and conclude with a brief discussion of features that we
anticipate will be present in the next generation of digital cameras.

7.6.1 Three-dimensional fields

As discussed above, volumetric field measurements are not currently possible in
rapidly evolving systems, leading to severe experimental limitations. For turbulent
flow, for example, the large-scale three-dimensional velocity is currently only
accessible via numerical simulation. The next major leap forward in particle-based
measurement will most likely be the development of robust tools to measure three-
dimensional fields.

At present, tomography appears to be the most viable candidate for making such
measurements feasible. In principle, the technology for rapid tomographic imaging
of high-speed flows already exists: while no single camera or laser is fast enough,
multiple cameras and lasers could be interlaced to provide very rapid scanning.
The cost of such a system, as well as the complexity of the synchronization,
is currently prohibitive. Camera technology, however, is always improving, and
prices correspondingly drop. Within a few years, therefore, we are hopeful that
tomographic systems will become practical.

7.6.2 Measurement of additional quantities

Above, we have primarily discussed methods for extracting velocities from mea-
surements of the motion of particles. In particular, PIV and PTV are used to
construct velocity fields; Lagrangian particle tracking can also be used to mea-
sure fields, but is more often used to analyze statistics along particle trajectories.
As these techniques have matured, however, researchers have begun to use these
types of imaging methods to measure additional dynamical quantities, including
accelerations and forces.

One particularly exciting new technology is traction force microscopy (TFM),
designed for measuring wall shear stresses. In this technique, tracer particles are
embedded in a thin elastic medium of known elastic modulus. By measuring the
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displacements of the particles from their equilibrium positions (using PIV or some
other suitable technique), the strain field can be determined; subsequent inversion
of the relationship between stress and strain can then be used to measure the stress
in the elastic substrate [40]. Currently, researchers are using TFM to measure the
forces exerted by cells as they crawl. In the future, it is expected that this technique
will also be applied to fluid systems in order to measure wall shear stresses, which
are difficult to determine with contemporary techniques.

7.6.3 Advances in camera technology

Camera hardware remains the single greatest limitation in digital imaging science.
As camera sensors are pushed to ever larger pixel arrays and faster speeds, data
bandwidth has become a bottleneck. There are two aspects to the bandwidth prob-
lem. First, information simply cannot be read out from large pixel arrays at very
fast speeds: in general, higher-speed cameras use smaller image sensors. Second,
once the image is read into internal camera RAM buffers, it cannot be transferred
to computer hard drives quickly: typically the transfer to disk is orders of magni-
tude slower than the image acquisition rate. The great frontier of camera design is
therefore solving these bandwidth problems.

A potential solution is on-chip processing. Chan et al. recently developed a real-
time image compression system that tremendously improved their data bandwidth
by partially processing the images before they were stored to disk [41]. They
modified an off-the-shelf camera system by placing an extra digital processing
stage between the camera and the recording computer; in principle, however, such
processing methods could be implemented in the camera itself. The camera would
lose some its appeal as a general-purpose imaging device, but could perform
significantly better for a small range of tasks. In essence, the camera would become
a specialized scientific instrument, just as microscopes have become specialized
for different tasks over time. Such advances would have a considerable impact on
digital imaging science.

7.6.4 Conclusions

Particle-based optical measurements have advanced significantly from the early
days of manual analysis of long-exposed film. Digital PIV and particle tracking
are fast becoming standard tools in soft matter physics, after already dominating
experimental fluid mechanics. As we have discussed, these techniques are not with-
out their problems; when the conditions are correct, however, they are quantitative,
reasonably simple to implement, and powerful. With the promise of new develop-
ments and the capability of three-dimensional field measurement on the horizon,
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we anticipate that optically based measurements of tracer particles will continue to
be standard tools for many years to come.
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Cellular automata models of granular flow

g. william baxter

8.1 Introduction

The modeling and simulation of granular materials is important to our under-
standing of their behavior and the wealth of phenomena they exhibit [1–3]. Many
phenomena and practical applications, such as the design of industrial processes,
remain out of reach of traditional simulation methods due to the large numbers of
grains involved.1 A liter of fine sand, mgrain ≈ 0.1 mg, may contain 107 grains.
An industrial process such as mixing or hopper flow can easily involve 101 to 103

liters. Geophysical processes, such as sand dunes and earthquake faults, involve
even larger numbers of grains. Traditional simulation techniques are currently
unable to deal with such large numbers of grains; however, cellular automata mod-
els are able to simulate larger numbers of grains for longer times and show promise
in the simulation of large, real-world granular flows.

Molecular dynamics, where Newton’s laws are applied to individual grains and
the resulting motion is determined from the forces, has made dramatic progress
in the past two decades through improved techniques and more powerful comput-
ers. Molecular dynamics is particularly effective for gases of simple grains inter-
acting through hard-sphere collisions. In principle, even the physics of complex
grain interactions can be included. However, as the complexity of the interactions
increases or the number of grains increases, the computational demands increase as
well. As a result, molecular dynamics is primarily used for relatively small numbers
of grains (102–105), whereas real granular flows often contain many more.

Cellular automata do not attempt to exactly model the physical interactions
between grains. Instead, automata rules are constructed to imitate some behaviors

1 For this chapter, modeling will refer to a simplified model, picture, or rule of how grains interact, whereas
simulation will refer to the use of this model to study the large-scale temporal or spatial behavior of a granular
material subjected to a specific set of driving forces and boundary conditions.
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Published by Cambridge University Press. © Cambridge University Press 2010.

209



210 Experimental and Computational Techniques

of the grains. Simplifying the grain interaction makes it possible to simulate
many more grains for longer periods of time. This allows the study of large-scale
flows and processes. This is the essential trade-off of cellular automata models:
reduced microscopic exactness in exchange for larger numbers of grains and longer
timescales.

Over the past two decades, cellular automata models have been introduced
to study many granular flow phenomena. One can loosely group these automata
models into two types: surface flows where the behavior is dominated by avalanches
and bulk flows where grain motion throughout the material is important. Following
a brief history of cellular automata and a look at their key features, we will examine
these two types of cellular automata models and how to optimize them. The chapter
will conclude with a short discussion of future directions for grain flow cellular
automata.

8.2 History

Cellular automata were invented in the 1940s by John von Neumann and Stanislaw
Ulam [4]. In a traditional cellular automata, parameters of time, space, and value are
all discrete. The automata operates on a lattice of sites, where each site has a discrete
number of allowed values. This lattice can have any dimensionality. The automata
rule determines how lattice site values change in time. The value of the lattice site
at the next time step depends on the value at the current time as well as the values of
neighboring sites. Traditionally, all sites on the lattice will update simultaneously.

Cellular automata became popular in the 1960s and 1970s as their behavior
reminded people of other physical systems. Perhaps the most famous is John
Horton Conway’s Life which operates on a two-dimensional square lattice and
looks like a bacterial colony [5]. Though using a simple rule, Life displays quite
complex behavior and could be used for computation [6]. Cellular automata can be
designed to resemble and model many different physical systems [7–11]. Automata
have been especially successful in the modeling of fluids.

Cellular automata used for modeling fluids are known as lattice gas automata
[12]. The first lattice gas automata used square lattices. One of the first successful
lattice gas automata was the HPP lattice gas [13]. In the HPP lattice gas, up to
four molecules or fluid particles are allowed at each lattice point and molecules
have unit velocities directed toward one of the four nearest-neighbor sites. All sites
are updated simultaneously following a propagate and collide procedure. First,
all particles are moved one lattice site along their velocity vector. Sites with
multiple particles experience collisions in which two particles with velocities
directly toward each other are given new velocity vectors at right angles to the
original directions. In 1986, Frisch et al. [14] introduced a lattice gas automata
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which used a two-dimensional regular triangular lattice. In this model, particles
may have one of six unit velocities which move toward each of the six nearest
neighbor sites. Each site on the lattice may hold up to six fluid particles with the
constraint that each particle must have a unique velocity. Again, all sites are updated
simultaneously using a propagate and collide procedure. Each particle moves to the
next lattice site along its velocity vector and then collisions are processed at each
site to determine the new particle velocities. They called this cellular automata the
hexagonal lattice gas, but it has come to be known as the FHP lattice gas after its
creators. The FHP lattice gas, unlike the HPP lattice gas, can be shown to reduce to
the correct continuum equations [14, 15] for Newtonian fluids, the Navier–Stokes
equations. Related lattice gas automata have been used to study fluid flows in many
geometries [16, 17] and magnetohydrodynamics [18]. Some lattice gas automata
have been applied directly to granular systems such as fluidized beds [19]; how-
ever, the behavior of granular media is often very different from that of fluids. As a
result, cellular automata describing the flow of grains generally differ from lattice
gas automata describing fluids, although they share many common elements.

Cellular automata models of granular materials use a simplified model of grain
interactions. Instead of the rigorous physical modeling of grain interactions used
in molecular dynamics [20–22], the use of a simplified model allows a cellular
automata to follow many more grains for a longer time. It is not uncommon for
cellular automata of granular systems to employ a random number generator. This
may be used to determine the order in which the rule is applied to lattice sites
or it may be part of the rule itself. Traditionally cellular automata are purely
deterministic and their rules are not probabilistic; nevertheless, we will call the
model a cellular automata even if a random number generator is used provided
most of the other features of a cellular automata are present. There are many
variations of granular cellular automata, but they can be grouped into two broad
categories: surface flows or avalanches where the motion is primarily along the
surface and bulk flows where grain movement at the surface and interior are treated
the same.

8.3 Surface flow models

A cellular automata model of avalanches was first introduced by Bak, Tang, and
Wiesenfeld (BTW) in 1986 [23, 24]. This simple model was originally intended
to study self organized criticality (SOC) [25]. It may be applied to many different
systems; but, conceptually, it is easiest to think of the model as representing a
sandpile, and that was how the authors described it. In the one-dimensional BTW
model, the lattice extends from x = 0 to N and the height of the pile is an integer
h(x). z(x) = h(x) − h(x + 1) is the local difference in heights or effectively the
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Figure 8.1 When a grain is added at a random lattice site, here x = 2, the local
slope may exceed the critical, resulting in a series of avalanche events.

local slope. In the standard BTW model, grains are added to the pile at random
sites x one at a time as h(x) = h(x) + 1 (Figure 8.1). Adding a grain to site x

results in z(x) → z(x) + 1 and z(x − 1) → z(x − 1) − 1. This creates the possi-
bility that the local slope will exceed its critical slope or angle of repose, zc. In the
BTW model, zc = 1. If z(x) > zc, then the grains rearrange through an avalanche
event:

h(x) → h(x) − 1 (8.1)

h(x + 1) → h(x + 1) + 1. (8.2)

Equivalently, the avalanche event can be written in terms of the local slope:

z(x) → z(x) − 2 (8.3)

z(x ± 1) → z(x ± 1) + 1. (8.4)

A local avalanche at site x may cause neighboring sites to exceed their critical
angles. The avalanches continue until no further motion occurs, at which time
another grain may be added. In the original BTW model, boundary conditions
are a fixed wall at x = 0 with no limit in height z(0) = 0 and an edge at x = N

where h(N) = 0. Avalanches only occur in the direction of increasing x, and over
time the slope gradually evolves to a constant value of zc. This gradual evolution
toward a critical value is central to the concept of SOC, which may occur in many
systems [25]. SOC was thought to explain the common presence of 1/f noise
in physical systems and the BTW model’s avalanche sizes and frequencies were
extensively studied to probe the mechanisms of SOC [26–31].

The BTW model can be extended to a two-dimensional square lattice [23–25]
with 0 < x ≤ N and 0 < y ≤ M . z(x, y) represents the local slope at a point on
the lattice which, extending the one-dimensional case, might be related to height
as z(x, y) = 2h(x, y) − h(x − 1, y),−h(x, y − 1). The rule for adding a grain at
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site x, y as h(x, y) → h(x, y) + 1 can be written in terms of slopes:

z(x, y) → z(x, y) + 2 (8.5)

z(x − 1, y) → z(x − 1, y) − 1 (8.6)

z(x, y − 1) → z(x, y − 1) − 1. (8.7)

Again avalanches occur when z(x, y) > zc and the avalanche rule in terms of the
local slope becomes:

z(x, y) → z(x, y) − 4 (8.8)

z(x, y ± 1) → z(x, y ± 1) + 1 (8.9)

z(x ± 1, y) → z(x ± 1, y) + 1. (8.10)

Typically, z = 0 at fixed walls and h = 0 at edges.2

Despite the appealing simplicity of the BTW model, experimenters were quick
to point out that it does a poor job of describing some features of real sandpiles.
Simple BTW models tend to evolve toward a universal slope and a pure power
law of avalanche sizes (hallmarks of SOC). Real piles of granular materials are
generally not characterized by a single slope and their avalanches have a different
power law in both size and lifetime [32,33]. In experiments, SOC was found under
some conditions and not under others [33, 34]. Nevertheless, the model of spatial
rearrangement of grains by avalanches was quickly adapted by other researchers
to make it more realistic. Adaptations include the following:

• modifying the critical slopes
• multiple grain types
• rotations
• inertial effects.

While the interaction rules remain simple at the grain–grain level, these improved
avalanche models have proven successful at capturing the behavior of real flows
on larger scales.

Frette addressed the problem of poorly defined angles of repose by modifying
the automata rules to allow two critical slopes [34,35]. Each time a lattice site was
processed, one of these two critical slopes was chosen at random. In real sandpiles,
he argued that varying critical slopes were caused by anisotropies in the grains
themselves (varying size or shape), which affected the local packing. The automata
rules needed to change in time if they were to capture changes in critical slope as

2 Basic code implementing a similar rule is provided by Pöschel and Schwager in Computational Granular
Dynamics [22].
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Figure 8.2 (a) and (b) illustrate the toppling rule of Prado and Olami. (c) and
(d) illustrate the rotation method of Yanagita. (e) and (f) illustrate the solid-body
rotation of Lai et al. (g) illustrates the centrifuging pile of Shinbrot et al. [44].

grains moved and the grain packing evolved. His model resulted in higher local
slopes at the down-stream end of avalanches, reminiscent of height steps seen in
real avalanches.

Alternately, the BTW model can be modified to have two species of grains
with different frictional properties and therefore different critical angles. Cizeau
et al. [36] studied sandpile formation with two grain types 1 and 2 and four angles θij

for the critical slope when grain type i was on top of grain type j . Depending on the
relative sizes of these critical angles, they found either stratification or segregation,
much as occurs in real sandpiles.

Prado and Olami [37] modified the BTW model to include inertia by using a rule
where, whenever the slope at a site exceeds the threshold, two grains from that site
topple onto the two downhill nearest neighbors as shown in Figures 8.2(a) and (b).
This is no longer a nearest-neighbor model, but it could be extended to topplings of
three or more grains. Moreover, they counted the number of times a grain at site x

had moved, n(x), during each avalanche and gradually decreased the critical slope at
that site as zc(x) = zc − αn(x). This models inertia by making avalanches easier for
grains that have already avalanched. The parameter α determines the magnitude
of the inertial effect. The resulting avalanche behavior was considerably more
complex [38]. Their results were in agreement with the experimental avalanche
studies of Held et al. [33].

A variation on the inertia idea was used by LaMarche et al. to study chute
flow [39]. In their model, both the number of grains in an avalanche and the
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distance they moved during an avalanche were determined by the local slope.
They added white noise to the local slope as a means of incorporating diffusive
motion. The resulting flows were quite complex and included shockwaves, ripples,
and vortices. The authors noted that the model’s parameters had to be carefully
adjusted to produce results in agreement with a particular experimental flow – a
situation common to automata models of granular materials.

Many researchers have addressed segregation and flow in rotating drums as
studied experimentally by Hill et al. [40] and by Nakagawa et al. [41,42]. Lai et al.
[43] used an automata with two grain types to study avalanches in a two-dimensional
half-filled rotating cylinder. As shown in Figures 8.2(e) and (f), rotations were
modeled by removing rω grains from the bottom front of the grain pile (moving
the rest of the grains down) and adding these to the bottom of the back of the
pile (moving the rest of the back grains up). r here is the distance from the axis
of rotation so more grains are moved at sites farther from the axis. This has the
effect of raising grains at the back higher than at the front so that avalanches occur
when the critical slopes are exceeded. Further, Lai et al. allowed a limited number
of avalanche events Na between each rotation event. If the number of avalanches
required to bring all sites below the critical slope Nr was less than Na , then the
pile’s slope was static; however, if Nr > Na , then the pile’s slope was dynamic.
The disadvantage of this scheme was that the system had to be half filled.

Ktitarev and Wolf [45] used a similar two-dimensional model to Lai et al.,
but resolved the filling limitation by using a cylindrical lattice where grains were
arranged in circular rings. As a result, they could study stratification at any fill
level.

Yanagita [46] used a simpler rotation mechanism to model three-dimensional
flow in a rotating drum with two grain types with different critical slopes. As shown
in Figures 8.2(c) and (d), rotations were modeled by removing the bottom layer
of the grain pile from the front of the pile (moving the rest of the grains down),
flipping it over, and adding it to the bottom layer of the back of the pile (moving
the rest of the back grains up). This model was able to model both axial and radial
segregation in the rotating drum.

Several authors have experimented with adding inertial effects to BTW-type
surface-flow models. Nerone and Gabbanelli [47] used an unusual two-dimensional
square lattice orientation on which they defined both a height and momentum m

at each lattice site. Avalanches occur along diagonals. The effect of increasing
momentum at a lattice site was to lower the critical slope for avalanches at that site
as zc = z0 − αm(x, y) (a technique similar to that of Prado and Olami [37]).

BTW inspired models of grain flow have a lot in common with BCRE theory,
named after its authors Bouchaud, Cates, Prakash, and Edwards [48]. In BCRE
theory, a flowing granular material can be considered to be composed of two
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regimes: fast-moving grains along the surface and slower near-static grains in
the bulk. This separation of time scales, where one region’s grains move at a
much faster time scale than another region’s grains, is common in surface flows
of granular materials. In BCRE theory, the two regions are treated separately.
Similarly, BTW-inspired automata models focus on the avalanche behavior and
the interior of the sandpile is treated as static or subjected to simple solid-body
rotations. By focusing the calculation on the surface grains rather than the bulk,
the computational complexity scales as order

√
N for N grains.

Avalanches in certifuging systems, rotating about the vertical axis as shown in
Figure 8.2(g), can also be simulated with BTW-type surface flow models. Shinbrot
et al. studied rotating granular heaps [44]. In their model, which uses a cartesian
coordinate system x, y, h, avalanches always occur in the direction of the local
gradient of height. Moreover, both the number of grains moved and the distance
at which they are deposited is determined by the local slope. A radial centrifugal
force is imposed by adding a term to the local slope proportional to rω2, where
r is the distance to the axis of rotation and ω was the angular velocity of the
system. Shinbrot and coworkers performed experiments using the same geometry
and saw comparable static and dynamic patterns in both experiments and the
cellular automata experiments. Yoon et al. [49] used a similar idea to study conical
depressions in rotating containers, where the axis of the container coincided with
the axis of rotation and both were tilted slightly from the vertical. Both the angle
of tilt and the rotation rate could change during runs. Their simpler model assumes
grains move only radially and thereby reduces to a one-dimensional BTW-type
surface flow model. Nevertheless, the automata reproduces the kinks and surface
shapes seen in the experiments.

8.4 Bulk flow models

The alternative to surface flow automata like the BTW-type models is to model
flow in the bulk. This is typically done in one of three ways:

• probabilistic models (diffusing void models)
• momentum models
• energy and interaction models.

8.4.1 Probabilistic models

It is not unusual for cellular automata models to require the occasional use of a
random number generator; however, some rules can be overwhelmingly dominated
by probabilities. We refer to these as probabilistic models. Random walks have
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been used in modeling the flow of granular media since at least Litwiniszyn [50]
in 1956. He used a two-dimensional random walk to model the gravity flow of
a thin sheet of sand through a small bottom slot and compared these predictions
with experimental measurements [51]. Later, Mullins [52] used a similar idea to
relate the flow of voids on a two-dimensional square lattice to a two-dimensional
diffusion equation, which he then solved for a variety of boundary conditions.
While these were discrete models, they were not cellular automata.

The primary example of a probabilistic cellular automata model of granular
media is that introduced by Caram and Hong in 1991 [53]. In their diffusing void
model, sites on a two-dimensional triangular lattice were either grains, walls, or
voids. Voids are introduced at the bottom of the lattice and diffuse upwards by
randomly switching places with grains above them. This model was able to capture
broad surface shapes and particle streamlines appropriate to flow around obstacles
and through hoppers. A similar probabilistic cellular automata using a square lattice
was introduced by Savage [54].

A more complex model was introduced by Fitt and Wilmott [55]. This model also
used a square grid on which holes moved upward while grains moved downward
but with two types of grains. The probability of a particle, located in one of the
three sites above a hole, moving into a hole is determined by the size of the particle
type and the hydrostatic pressure or height of grains above that site. This model
allowed the authors to study segregation in gravity-driven hopper flows.

8.4.2 Momentum models

Cellular automata models, which implement momentum conservation, are the gran-
ular flow equivalents of FHP lattice gases. While FHP lattice gases conserve both
momentum and energy in collisions, granular materials are dissipative so that
energy is not conserved. These granular automata tend to use a regular triangular
lattice such as that of the FHP lattice gas with up to seven particles per lattice
site, one at rest, and one with a velocity toward each of the six nearest neighbor
sites. The rules generally have a collision step and a propagation step. During the
collision step, grains collide at each site according to a rule. Figure 8.3 shows
one example.3 Similar collision rules have been used by many researchers [56–58]
with different probabilities, depending on the behavior being modeled. Note that
some collisions result in more than one stationary particle, even though the model
allows only one rest grain per site. Since only one rest particle is allowed per
site, the extra rest particles are moved at random to the nearest lattice site with

3 Basic code implementing a similar rule is provided by Pöschel and Schwager in Computational Granular
Dynamics [22].
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Figure 8.3 A possible nearest-neighbor collision rule for a triangular lattice. The
incoming grains are shown in the left column and the outgoing grains in the right.
When more than one output state is possible, the probability of each is shown with
p being the probability of one of the output states. Moving grains are indicated
with a vector; stationary grains are indicated with an open circle and wall points
with a filled circle. Each diagram represents three similar cases, each rotated
through 60◦.

no rest grain. Some models [56,57] implement gravity by setting rest particles into
motion downward with probability g if the neighboring lattice site in that direction
is empty. Walls are implemented though lattice sites that are not allowed to move.
The probability b determines whether a grain reflects back from a rough wall.
For a smooth wall, b = 0. This model has been successfully used by Alonso and
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Herrmann to study the shape of sandpiles [56], and by Peng and Herrmann [57]
and later Peng and Ohta [58] to study granular flow in a channel.

Károlyi and Kertész [59] used a triangular lattice with up to seven particles per
site (one rest particle and one velocity in each direction) to study sandpile flows.
They implemented different collision rules for the flowing surface layers and for
the static interior of the pile. In the rapidly flowing region, the rule was momentum
based, similar to that discussed above, with both elastic and inelastic collisions; but,
in the slowly changing or static portion of the pile, the rule was nearly static with
motion determined only by gravity and the presence of holes. They were able to
build their piles grain by grain using this model, and watch the resulting avalanches.
The results looked much like the behavior seen in experiments on sand [33] and
rice [34], which had previously been simulated using BTW-like automata.

A more complicated automata was implemented by Kozicki and Tejchman to
study flow in hoppers [60]. Each site on a 2d triangular lattice was allowed 13
particles: a rest particle and particles with velocities toward each of the nearest and
next-nearest neighbors. The collision rule was motivated by momentum conserva-
tion, but there were two propagation steps. A look-up table was used to dramati-
cally speed up the simulation. The results were compared with experiments on sand
flow through thin hoppers, with very good agreement in surface shapes and flow
fields.

8.4.3 Energy and interaction models

Automata rules can also be constructed using energy minimization. The assumption
is that the motion of any individual grain will be that which lowers its local energy.
This technique was used by Baxter and Behringer [61–63] in one of the earliest
grain flow automata. Their automata modeled ellipsoidal-shaped grains, such as
rice or grass seed, on a triangular lattice with one grain, wall, or hole per site.
Grains were described by an orientation and a velocity as shown in Figure 8.4.
There were three allowed orientations along the three primary basis vectors of
the triangular lattice. There were seven allowed grain velocities which were unit
velocities toward any of the nearest-neighbor sites, or the rest state, or zero velocity.
The energy included contributions from gravity and both the motion and orientation
of the grains and their nearest neighbors. Baxter and Behringer were able to model
the flow of shaped grains in a hopper geometry and achieve good agreement with
flows of Kentucky Bluegrass grass seed in a thin nearly two-dimensional hopper.

The motion of grains is determined by a local energy function, which includes
both a gravitational interaction and interactions with nearest-neighbor grains as
shown in Figure 8.4. For a grain at site i at iteration t , the energy is:

Ei,t = Egravity + �nnEinter, (8.11)
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Figure 8.4 A portion of a regular triagonal lattice showing holes and grains.
The shading indicates the three allowed grain orientations. Also shown are the
directions of motion of a grain i toward its six nearest neighbors, three of which
are occupied. The interaction energy Einter is computed separately for each nearest
neighbor site such as j . ‘Down’ is determined by the gravity vector ĝ, which rotates
during the simulation.

where the sum is over nearest neighbors:

Egravity =



� ∗ (d̂ij · ĝ) if an adj. site below is vacant
& v̂i is not toward it.

0.0 if there are no empty holes below.
(8.12)

Here � is a scale factor determining the strength of the gravitational interaction.
v̂i,t is the velocity at site i and the next iteration t , d̂ij is a vector from site i to the
empty site j located below i, and ĝ is a unit vector along the direction of gravity
at iteration t . If there are more than one vacant site below, Egravity is computed for
each and the largest value is used. The same automata can be extended to study
the motion of shaped grains in a rotating two-dimensional cylinder by allowing the
gravity vector to rotate in time as shown in Figure 8.4.



Cellular automata models of granular flow 221

The interaction term Einter models the effects of shearing, dilation, and relative
grain orientation between a grain and its nearest neighbors:

Einter = Fα
shearF

β
orientF

γ

dilation. (8.13)

The exponents α, β, and γ make it possible to vary the strengths of the interactions.
The shearing factor Fshear increases the local energy of grain i if it is moving in a
different direction from its neighbor:

Fshear = |v̂j − v̂i | + 0.1. (8.14)

v̂i is a possible velocity vector for grain i at the next iteration and v̂j is the velocity
vector of the neighboring grain after the previous iteration. The orientation factor
reduces the energy if shaped grains are aligned while moving:

Forient =



S ≤ 1 if both grains are aligned along
one of their velocity vectors

1.0 otherwise.
(8.15)

Note that S = 1 or β = 0 correspond to spherical grains. Finally, the dilation factor
ensures that grains will only interact when they are in contact:

Fdilation =
{

1
d

if d ≤ 1
1−C

0.2 otherwise.
(8.16)

Here, d is the mean spacing (time-averaged) of the grains and 0 ≤ C < 1. We
have studied the case C = 0.2 corresponding to slightly cohesive grains. (C = 0
corresponds to perfectly noncohesive grains.)

The automata uses a two-step rule consisting of an interaction step followed
by a propagation step. The interaction step is where each grain may select a new
orientation and direction of motion which minimizes its local energy. However, the
interaction rule includes an explicit density coupling such that the local density sur-
rounding a grain determines the probability that the grain will be allowed to change
its orientation and direction of motion. This density coupling is implemented by
choosing a random number between 0 and 1 for each grain. If this number is less
than the density coupling function at this grain’s local density, then the grain is
allowed to change its orientation and direction of motion; otherwise, no changes
are allowed. Several possible density coupling functions are shown in Figure 8.5.
If a grain is allowed to change its orientation and direction of motion, then these
are chosen to minimize its local energy Ei,t . This set of calculations is done simul-
taneously for all sites. Following the interaction step, all grains are moved one site
along their direction of motion during the propagation step.
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Figure 8.5 Probability that a grain will be allowed to move based on the local
density. Several possible density coupling functions are shown.

This automata has been used to study the flow of shaped grains in a hopper
geometry with results very similar to the orientations, flow patterns, and density
waves seen in grass seed or rice [61–63]. By tagging otherwise identical shaped
grains with a color, blue or yellow, and allowing the gravity vector to slowly rotate,
this model can simulate mixing of two colors of rice in a two-dimensional rotating
container. This is similar to the mixing experiments of Metcalfe et al. [64], but the
automata allows the grain shape to be varied from round to ellipsoidal.

The mixing simulation is initialized by placing wall points at every lattice
site located greater than a distance R from the lattice center. As in the physical
experiment, grains are placed at lattice points within the walls up to an initial fill
height. Grains to the left of the vertical center line have one color, while grains to
the right of the vertical center line have the the other color. These grains are given
random initial orientations. The remaining lattice sites above the initial fill height
are left vacant. An example of the initial state is shown in Figures 8.6(a) and (b).

The container is incrementally rotated by rotating the direction of gravity in the
Egravity calculation. After each change in the gravity vector, any avalanches that
result are allowed to complete before the gravity vector is changed again. Sample
results showing the evolution of mixing and grain alignment after one, four, and nine
revolutions are shown in Figure 8.6. The data run shown in Figure 8.6 used a lattice
with 65536 sites on which is built a container with a diameter of 250 lattice spacings,
which is 70% filled with shaped grains. The gravity vector was rotated in 30◦

increments with 1500 iterations between each increment. (Parameters: � = 3.0,
S = 0.01 corresponding to ellipsoidal grains, C = 0.2, α = 3, β = 2, γ = 1, and
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Figure 8.6 Cellular automata states from a run with shaped grains using parameter
values given in the text. (a), (c), (e), and (g) are the grain types after 0, 1, 4, and
9 revolutions with shade indicating grain type. (b), (d), (f), and (h) are the corre-
sponding grain orientations after 0, 1, 4, and 9 revolutions with shade indicating
the grain orientations from Figure 8.4. Notice that the grain types mix quickly
outside the central core, but grain orientations align during the avalanches.
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the density coupling is P2 shown in Figure 8.5.) As seen in experiments, grain types
mix quickly outside the central core and grain orientations align during avalanches.

A complex cellular automata model was introduced by Désérable [65] in 2002
which allows an energy-minimization rule, though the design is more general.
The automata uses a regular triangular lattice and a nearest-neighbor rule. The
nearest-neighbor rule uses an external field to allow biasing in certain directions
and excluded sites like walls. Motion is implemented using a ‘request-exchange’
model, where each site uses the nearest-neighbor rule to make a ‘request’ as to
where it would like to move, but moves only occur if adjacent sites have requested
to ‘exchange’ positions. All moves occur simultaneously. In addition, the model
allows for ‘exclusion rules’ which help to model particle behaviors, such as rough-
ness or size, by inhibiting motion in certain grain configurations. The result is to
make it easier to form structures, such as stable arches and locked chains of grains.
Through careful choices of parameters, Désérable has used this automata to model
suspensions, sedimentation, hopper flows, mixing, and segregation.

Katsura et al. used a discrete element method (DEM) to model small numbers
of grains, and from these results they built a sophisticated cellular automata to
describe the flow [66]. While the DEM was capable of relatively small numbers
of grains, the automata model was able to model many more in less time. Their
resulting rule had three components: a collision rule describing how moving grains
collide and interact, a contact rule describing how force is exerted between rest
particles, and a propagation step in which grains move. In addition, they carefully
tested their automata model against flow in a two-dimensional blast furnace with
good success [66].

Energy minimization automata have seen little use to date but hold great promise.
These methods can be adapted to virtually any grain type, mixture, and flow geom-
etry. As has been shown, the automata rule must only approximate the observed
grain behavior and energy minimization is one obvious way to achieve this.

8.5 Hybrid models

These models mix continuous parameters, such as those found in molecular dynam-
ics models with discrete parameters commonly found in cellular automata. As
such, they are not traditional cellular automata, but they attempt to capture some
of the speed of automata while retaining one or more continuous variables. Hybrid
models are faster than molecular dynamics models. The presence of continuous
variables can guarantee the numerical stability of the calculation, offer additional
flexibility, and lower statistical noise in the measurements [10]. The most common
two-dimensional model, introduced by Gutt and Haff [67], used continuous x and
y, but overlayed a grid on this space and allowed only a single particle per grid
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site. This made the collision book-keeping easier since a particle could only collide
with those in neighboring lattice sites.

A variation was employed by Jasti and Higgs to study granular lubrication [68].
They used a square lattice with one grain per site and continuous velocities.

Baldassarri et al. [69] studied cooling in a granular gas using a two-dimensional
triangular lattice on which grains were allowed continuous velocities but only
discrete positions (lattice sites). Their model explicitly conserved both linear
and angular momentum and included dissipation. By confining grains to lattice
sites, they obtained much of the efficiency advantages of automata while pre-
serving the continuous velocities necessary to carefully study internal energy and
temperature.

8.6 Optimizations

Evaluation of the rule becomes more computationally intensive as more sites are
involved. The most efficient rules use only the nearest-neighbor sites. Depending
on the complexity and the number of sites involved in the rule, it is sometimes
possible to implement the rule through a lookup table [9, 70], where the new
state is determined by reading a value from a multidimensional array. Once built, a
lookup table requires no significant calculations for the remainder of the simulation.
The resulting efficiency means that larger lattices and more iterations are possible
in less time. A simple automata with a nearest-neighbor rule on a triangular lattice,
one grain or hole or wall per site, and seven unit velocities would require a lookup
table of 97 = 4.7 megabytes. This is sufficiently small that the time required to
build it may quickly be recouped in its use. More complex rules may require much
larger lookup tables. For example, the energy minimization rule of Baxter and
Behringer [61] has 23 possible states for each lattice site (three possible grain
orientations with seven possible velocities as well as a wall or a hole), and the new
state is determined by the old state and its six nearest neighbors. This requires a
lookup table of 237 = 3.4 gigabytes (without invoking any symmetries). These are
within the current memory ranges found in modern desktop computers; however,
some grain automata rules are sufficiently complex that their lookup table would
be too large to be practical. The lookup table makes sense if the number of entries
in the table is much less than the number of times the rule would be evaluated
during a run. Alternatively, the table can be created during the course of the run so
that each configuration of local states need be evaluated only once.

It is also worth considering whether a simpler rule would produce usable results.
For example, there have been many different BTW-type grain automata applied to
sand piles [34–37, 39] and flows in rotating cylinders [43, 45–47, 71]. The goal in
any automata model is to find the simplest, and therefore computationally fastest,
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set of rules that describe the behavior of the granular material sufficiently well
for a particular geometry and grain type. As yet, there has been no head-to-head
comparison of the strengths and weaknesses of these different models.

8.7 The future

Many interesting processes are three dimensional so cellular automata models
need to be fully three dimensional. This is already being done with the surface
flow models, but little has been done with bulk flow models. It is certainly possible
to create three-dimensional momentum rules as has been done for lattice gas
fluids [72]. In addition, it is not hard to imagine how to create energy or interaction
rules for three-dimensional lattices.

Much of the industrial design of granular processes still uses ‘trial and error’
rather than simulation, but cellular automata simulation is now producing results
sufficiently close to real flows that this could change. It is important that automata
models, as with any computer simulation, always be proofed against experiments;
and many of the models mentioned above have been carefully compared with real
flows to demonstrate their similarities and limitations. We are, as yet, unaware of
the use of grain automata in the design of any industrial processes, though this will
be a logical step as grain automata continue to improve.

Finally, it is astonishing that the simple models of grain interactions found in
cellular automata can produce such close approximations to the behavior of real
granular materials. This may cause us to rethink how grain–grain interactions lead
to the formation of large-scale behavior and which interactions are most important.
The results may some day lead to both an enhanced understanding of the nature of
granular materials and improved theories of their behavior.
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Photoelastic materials

brian utter

9.1 Introduction

The behavior of dense granular materials, which consist of large collections of
individual grains, is an example of a complex system. Despite the relative simplicity
of the constituents, the large number of frictional contacts leads to indeterminacy,
history dependance, and jamming. We still lack a general set of macroscopic
equations to describe their flow. A continuum description of the relevant state
variables is desirable, and early studies in soil mechanics focused on characterizing
bulk stress/strain relationships and failure. However, it was determined through
experiments using photoelastic materials [1–3] that forces transmitted through
granular assemblies are carried through an inhomogeneous network of stress chains
in which the majority of force is carried through chains of particles comprising a
minority of grains (e.g. Figure 9.1(b)). The creation and failure of these chains are
central to the fluctuations that can dominate in measurements of dense, granular
systems [4].

To visualize internal stresses, these experiments used grains composed of photoe-
lastic materials, which exhibit stress-induced birefringence. When placed between
crossed polarizers, in a polariscope, the intensity of transmitted light varies with
the local principal stress difference, allowing visualization of the internal stresses
in the system. Regions of differential stress appear as a series of bright and dark
fringes. The resulting pattern offers both an immediate insight into the spatial
stress distribution and the opportunity to measure quantitative local force data in
the sample.

Photoelasticity has historically been used in models of mechanical parts to
measure locations of high stress to avoid failure, particularly for parts that fail due
to concentrated stresses that occur at sharp discontinuities in the design which are
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(a)

(b)

Figure 9.1 Images of a sheared granular material. (a) The analyzer is removed to
observe the grains without the photoelastic effect. (b) The same granular assembly
is shown in which the analyzer has been inserted to image the stress chains. In
each image, the bottom surface is moving to the left relative to the top surface.

difficult to model, either due to geometry or complicated loading [5]. There has
been a resurgence in their use, though, as constituents in experiments in which one
desires to know the sometimes complicated internal stresses in complex systems,
most notably in granular materials, the focus of this chapter.

Figure 9.1(a) shows the top view of a 2D granular assembly of pentagonal
photoelastic grains in which the bottom surface is moving left to impose a shear.
Figure 9.1(b) shows the same granular assembly placed between crossed polar-
izers in order to visualize the internal stresses. Bright lines indicate the force- or
stress-chains through which the majority of the pressure is transmitted through the
experiment.
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Although quantities such as overall strain, mean pressure, and boundary forces
are often experimentally accessible, it is generally not possible to know the internal
forces between constituents. While these forces can be inferred in some cases, for
example from deformations of droplets in emulsions [6], photoelastic materials
offer a direct measure of the internal stress state. In addition, the photoelastic
response can be calibrated to measure mean pressure in the granular assembly,
which can show dramatic fluctuations as the stress-chains form and break during
flow [7].

The stress field in an elastic body, given particular contact forces imposed at
the boundary, was known by the time that photoelasticity was applied to granular
systems. Vector force information can be determined at each contact from photoe-
lastic images through the “inverse problem,” in which forces at the contacts are
parameters used in fitting the image intensity to the expected photoelastic fringe
pattern [8–11].

Significant advances have been made recently by Behringer et al. in making
quantitative photoelastic measurements in granular experiments [4,7,12–14]. This
has included the gradient-squared method of calibrating photoelastic images with
mean pressures [4,7] and an implementation of the inverse method of determining
vector forces [12–14].

In attempts to visualize 3D stress patterns in an extended photoelastic object, the
transmitted light intensity is determined by the phase shifts induced by different
regions of the experiment due to local differences in the principal stress tensor.
Therefore, it is not possible to know from a particular image where the stress is
located or the magnitude and orientation of principal stresses along the direction
of light transmission, making 3D measurements difficult. When 3D stresses are
desired in a solid model, measurements often consist of the destructive technique in
which stresses in an elastic solid are frozen-in during the experiment and the sample
is machined to image 2D slices [15]. More recent attempts based on correlations
in scattered light [16] and integrated, or tomographic, photoelasticity [17,18] have
enabled nondestructive measurements of 3D stress fields in limited situations.

While straightforward interpretation of photoelastic data is limited to two-
dimensional systems, particle tracking allows the ability to fully describe both
the kinematics and forces at the grain scale, since all grains can be kept in view
during an experimental run [19–21].

Increasingly powerful numerical methods and discrete element simulations have
reduced the need for experimental tests on stresses in systems traditionally studied
with photoelastic models. However, there is ongoing research in related areas,
such as the minimization of photoelastic defects in fiber optics, use of photoelastic
models for effects of stresses in osteology, and integrated photoelasticity mentioned
above. In addition, while quantitative results were historically determined by a
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trained expert assigning a fringe order to the centers of photoelastic fringes, digital
photoelasticity has resulted in both improved accuracy and automation [15,22,23].

9.2 Theory

In a birefringent material, there is a different refractive index, and therefore speed of
propagation, for two orthogonal linear polarizations of light, such that they exit the
material with a relative phase difference. These orthogonal directions are referred
to as fast and slow axes. Birefringence is also referred to as double refraction, since
a single beam of light entering a birefringent material will split into two refracted
beams (the ordinary and extraodinary rays) that exit the material.

In a photoelastic material, the amount of birefringence at each point in the
sample is set by the local principal stresses. For polymeric materials, this is often
due to the local alignment of polymer chains or, for glasses, details of the dielectric
response. As a result, many transparent plastics and glasses are, to some degree,
photoelastic [24].

In the simplest experimental setup, a 2D photoelastic material can be placed
between plane polarizers, that is in a plane polariscope, illuminated by a light
source and viewed from the opposite side. The first polarizer is typically referred to
as the “polarizer” and the latter, oriented at 90◦ relative to the first, is the “analyzer.”
In this crossed-polarizer geometry, polarized light from the first polarizer that is
undisturbed by the photoelastic material will be blocked by the analyzer. However,
stressing a photoelastic material induces a local birefringence and therefore alters
the polarization of light from the polarizer, which allows light to pass through
the analyzer. This is the basic operation of a dark-field polariscope, in which the
image is dark in the absence of a photoelastic material and stresses appear as bright
regions. By rotating the analyzer to the same orientation as the polarizer, one can
create a bright-field polariscope, in which stressed regions appear as dark fringes
on a bright background.

In a plane polariscope, there is an additional condition that leads to extinction of
light. If a local stress is induced in the photoelastic medium such that the principal
stress axes are aligned with the orientations of the polarizer and analyzer, no light is
allowed to pass. That is, if the polarizer allows light which is oriented entirely along
the fast or slow axis, it retains this polarization through the birefringent material and
is blocked by the analyzer. In these cases, a dark band will be produced, regardless
of level of stress on the system. This limitation can be avoided by using crossed
circular polarizers, or a circular polariscope, as shown in Figure 9.2 for which this
dark band is absent.

A circular polarizer is a linear polarizer with a fixed-birefringence, quarter wave
plate attached to it such that its fast axis is at 45◦ relative to the polarizer. The
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Figure 9.2 Schematic of a circular polariscope. A light source is observed at the
detector to study a photoelastic system observed between crossed polarizers. The
polarizer and analyzer are circular polarizers, consisting of a linear polarizer with
a quarter-wave plate.

linearly polarized light can be viewed as equal components along the fast and slow
axes, initially in phase:

�Efast ∝ cos(2πz/λ)x̂
(9.1)�Eslow ∝ cos(2πz/λ)ŷ

for light traveling in the z direction and the fast axis oriented in the x̂ direction.
The slow axis is retarded by a quarter of the wavelength of light relative to the fast
axis:

�Eslow ∝ cos

(
2π

(
z

λ
− 1

4

))
ŷ ∝ sin

(
2πz

λ

)
ŷ. (9.2)

The result, �Efast + �Eslow, is a polarization that rotates in a circle in the (x, y) plane.
Circularly polarized light is right- or left-handed, based on the sense in which

the polarization rotates in the (x, y) plane, and it is not possible to determine
the orientation of the polarizer from the light that is transmitted. That is, it is
nondirectional, and unlike the plane polariscope the orientation of the experiment
relative to the polarizer is therefore not important. The second quarter-wave plate
restores the circular light to a plane polarized light which enters the analyzer as
with the plane polariscope. The analyzer should be the opposite-handed polarization
compared to the polarizer for a dark field image. Strictly speaking, the quarter-wave
plate is specific to a particular wavelength of incident light, so monochromatic light
is often used in precise photoelastic measurements. However, in most cases, the
use of white light does not alter the results significantly [25].
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The speed of light through a photoelastic material, v, is dependent on whether
the polarization of light is parallel or perpendicular to the local principal stress ori-
entation [5]. The optical path difference, or the phase difference for light polarized
parallel or perpendicular to the local stress orientation, is:

α = 2π (φn‖ − φn⊥)t

λ
= 2πCσt

λ
, (9.3)

where φ are the phase differences for light parallel and perpendicular to the local
polarization axis, t is the thickness or optical path length of the light, C is the
stress-optic coefficient, σ ≡ σ1 − σ2 is the difference in local principal stresses,
and λ is the wavelength of light. Similar expressions can be written in terms of
strain or written in terms of a retardation length � = λα/2π or relative retardation
δ ≡ �/λ = α/2π , which correspond to the relative phase shift of the two rays in
terms of distance or fraction of a wavelength respectively [25].

The principal stresses are axes of maximum and minimum direct stresses and can
be either extension or compression. These stresses act in mutually perpendicular
planes. The phase difference for light polarized along these principal stresses (with
the waves oscillating in these perpendicular principal planes) depends on the local
shear stress, (σ1 − σ2)/2 [25].

For a material with fixed birefringence, leading to a fixed-phase difference
between the two polarizations of light α, the intensity of light exiting a dark-field
polariscope is given by:

I = I0 sin2 α

2
= I0 sin2 π�

λ
= I0 sin2 δπ, (9.4)

where I is the measured light intensity and I0 is the incident light intensity. In this
case, in the absence of a photoelastic response, the light is extinguished, but if the
relative phase shift is λ/2, a bright spot will be observed.

For photoelastic materials then:

I (x, y) = I0 sin2

(
π (σ2 − σ1)tC

λ

)
, (9.5)

where σ1 and σ2 are local planar, principal stresses at position (x, y). The stress
optic coefficient C is material dependent and typically relatively insensitive to the
wavelength of light [25].

Regions with the same transmitted intensity are referred to as isochromatics and
indicate locations in the sample with the same prinicipal stress difference. As the
difference in principal stresses changes in a sample, this will be visualized as a
series of bright and dark bands referred to as fringes. The degree to which each
of these bands of light are retarded, as a fraction of the wavelength of light, is
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Figure 9.3 Photoelastic disk (PSM-4, diameter = 3 cm) with compressional force
of approximately 0, 0.3, 1.0, 2.0, 2.9, and 3.8 N, illuminated by white light.

referred to as the fringe order. For instance, the centers of dark and bright bands
have fringe orders n and n + 1/2, where n is any integer, with larger fringe orders
associated with larger principal stress differences. Since light of different colors
will be extinguished at different locations, monochromatic light is often used,
though white light will often times produce a similar resulting image. An example
is shown in Figure 9.3. In this case, different isochromatics will appear as different
colors. In grayscale, the primary effect is that higher-order fringes close to the
contact force are blurred as one color is extinguished while another is transmitted.

The relative retardation δ can take any value, however, expressing δ = n + δ∗

where n is an integer and δ∗ is the fractional part 0 < δ∗ < 1:

I (δ) = I0 sin2(π (n ± δ∗)) = I0sin2(πδ∗). (9.6)

Therefore, only the fractional part of the relative retardation is found directly
by measuring the light intensity. That is, the integral part must be determined
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separately and does not result directly from the intensity. Historically, this would
be done visually based on the experience of a photoelastician. The quantity δ, or
sometimes n, is referred to as the fringe order.

While it is often sufficient to identify the location or number of fringes, it
is possible to make accurate measurements of the fractional fringe order using
the well-established Tardy method, a compensator, or fringe multiplication [26].
Additionally, it is possible to use two images taken with two different wavelengths
of light to determine fringe order automatically. In this method, using Equation 9.3,
δ = α/2π , and the fact that the sample thickness t and stress σ is the same for both
images:

δ1λ1

C1
= δ2λ2

C2
. (9.7)

Since C1 ≈ C2 for different wavelengths of light, δ1λ1 ≈ δ2λ2, which provides an
additional constraint to determine the integer portion of the fringe order [26].

Lines along which the principal stress directions are identical are called isoclin-
ics. A plane polariscope is able to show a particular isoclinic, since it produces a
dark line for local stresses for which one principal stress orientation is along the
axis of the polarizer. This particular isoclinic is the dark band mentioned above that
is absent in a circular polariscope. The measured intensity in a plane polariscope
is:

I = I0 sin2 π�

λ
sin2 2(α − w), (9.8)

where α − w is the difference between the orientation of the principal stress axes
in the sample and the polarization axes of the polariscope. The quantity α is also
referred to as the isoclinic angle. By rotating the optical elements in the polariscope,
or phase-stepping, it is possible to observe isoclinics as dark bands moving across
the sample and to determine both the local isoclinic angle and the relative retardation
δ [23]. Therefore, isochromatics and isoclinics allow determination of principal
stress difference and principal stress direction respectively.

9.3 Experimental methods

While many materials are photoelastic, there are some which are designed to have a
large stress optic coefficient, for instance, those produced by Vishay [27]. There are
a range of Young’s moduli for available materials (from 1 to 3000 MPa), which are
supplied in sheets and can easily be cut or machined, using razor blades, rotating
punches for circles, or end mills on a CNC mill for other shapes. Images for this
article were taken using PSM-4, a fairly soft material. The stiffer materials also
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exhibit a strong photoelastic effect, but frequently retain “frozen in” stresses for
many hours after being compressed, while the softer materials lose their induced
birefringence almost immediately, making them ideal for dynamic experiments.
PSM-4 has a Young’s modulus of 4.8 MPa, a Poisson ratio of 0.4–0.5, a strain optic
coefficient of C ≈ 0.002MPa−1, and a static friction coefficient of 0.85 [27], [13].
In experiments, to avoid grains sticking to surfaces of the experiment, one can use
a dry lubricant such as baking powder [19].

It is possible that in cutting grains, some may be left with similar frozen-in
stresses, particularly if they are heated during cutting, not cut cleanly, or not
lubricated when punched. These grains will appear bright even in the absence of
external forces. While it is often a small fraction, which may be discarded, it is
possible to anneal the grains at a moderate temperature to remove the frozen-in
stresses, though grains may become somewhat discolored in the process. There
are also liquid materials available that cure to photoelastic solids, and which can
be used to cast other shapes. However, creating grains with flat surfaces and no
bubbles can be difficult.

Detailed calibration of the force F (in Newtons) versus displacement x (in
mm) at a single contact yields F ∝ x3/2 for x > 250 µm, or forces larger than
approximately 0.05 N. The photoelastic response is detectable at δ ≈ 150 µm [14].
Under gravitational loading, the material is sensitive enough that forces due to the
“hydrostatic” pressure are observable for 5–7 mm diameter grains more than ten
layers below the surface.

One way to highlight changes in the force network is to use difference images,
in which sequential images are subtracted from each other and rescaled, as shown
in Figure 9.4. Regions which remain unchanged between successive pictures are
observed as grey; white lines indicate stress chains that formed, and black lines
indicate chains that disappeared. In the left image of Figure 9.4, a difference image
is shown for planar shear, similar to Figure 9.1. In the right image, a difference
image is shown for a free-surface avalanching flow. In this case, stresses near the
free surface, which are nearly imperceptible in the original images, are emphasized.
The disadvantage is that in applications with significant rearrangement of grains,
changes in the stress network are obscured by changes in the positions of the grains.
This is particularly evident in the free surface flow on the right of Figure 9.4.

A peculiar fact about these materials is that for a given applied force, the
photoelastic response (that is the fringe pattern) is to lowest order, independent
of the thickness of the grains [25]. A thicker sample will have a stress and path
length which are inversely proportional to each other. The only constraint is that
the grains must have a diameter larger than their thickness to avoid flipping. In the
results presented here, sheets of 3 mm thick material are used to create grains of
5–7 mm diameter.
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Figure 9.4 Difference images, in which sequential pictures are subtracted to high-
light changes in the force network, are shown for (left) planar shear (e.g. in
Figure 9.1) and (right) a free-surface avalanching flow.

Experimentally, for a diffuse light polariscope, the light source should be rela-
tively uniform, providing reasonably parallel light.1 (It is also possible to illuminate
the sample using a point light source at the focus of a large lens in a lens polariscope
geometry [25].) Polarizers of sufficient quality can be purchased as large sheets of
polarizing film from a variety of sources. Their primary measure of quality is the
degree to which they extinguish light when crossed. The polarizer can be placed
directly on the light source and the analyzer can be placed on the lens of the camera
used for data collection. If desired, a second camera without an analyzer in place
can simultaneously record images for particle tracking.

Experiments can be constructed using cast acrylic. Note that acrylic material,
particularly when extruded, will act as a weak linear polarizer and can compromise
the quality of images. Additionally, scratches on either the polarizer or experimental
apparatus are typically more apparent when viewed with crossed polarizers, so care
should be taken to avoid scratches.

9.4 Analysis

9.4.1 G-squared calibration

While photoelastic experiments will readily allow visualization of stresses, quan-
titative data can be obtained by calibrating the photoelastic response of the system
to a known applied pressure [4]. An example of such calibration images is shown

1 The LD Illuminators from Lumined are one example of suitable light sources. They are CCFL lamps with a
flicker rate of over 40 kHz, making them practical also for high-speed photography. For slower frame rates,
similar illuminators by S&S X-ray Products may be useful.
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Figure 9.5 Images used for calibrating the g-squared technique [29]. The increas-
ing force on the piston is 0.04, 0.25, 0.78, and 1.73 N.

in Figure 9.5. In this figure, a piston on the left is compressed with a force gauge
and the photoelastic response is calibrated to the force reading.

With larger mean pressure, there are more grains that allow light to pass through
the analyzer. The intensity of the image roughly corresponds to the overall pressure.
In addition, the number of fringes increases monotonically with the force at the
contact. For instance, in Figure 9.5 grains with larger forces are those with a fringe
structure of light and dark bands observed within the grain. Correspondingly, the
average gradient in image intensity increases. The scale of the local forces can then
be characterized by the average square gradient or “G-squared” (〈G2〉) at a pixel
(i, j ) written in terms of the intensity or pixel values of its neighbors. In a particular
region of space, 〈G2〉 correlates with the mean pressure in the sample, that is the
trace of the stress tensor [28]:

〈G2〉 ∝
∑
i,j

(
(Ii−1,j − Ii+1,j )2 +

(
Ii−1,j−1 − Ii+1,j+1√

2

)2

+ (Ii,j−1 − Ii,j+1)2 +
(

Ii+1,j−1 − Ii−1,j+1√
2

)2)
, (9.9)
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Figure 9.6 Calibration curve for Figure 9.5 [29].

where the sum is taken over all pixels in the region of interest and the average 〈G2〉
per pixel is used.

An example of the calibration curve for the images in Figure 9.5 is shown in
Figure 9.6. At small forces, the photoelastic effect is difficult to detect and the
background noise due to the edges of the grains dominates. At the upper limit,
one has to resolve the fringes, typically with at least 10–20 pixels across a grain
diameter, but this is rarely a limitation in situations of interest. While not strictly
linear, the calibration is monotonic and sufficiently linear in the region of interest
(forces of 0.25–1.5N) to allow a scale for pressure measurements.

Additionally, since 〈G2〉 corresponds to force analogous to a spring of effective
constant k diplaced a distance x (F ∼ kx), it is also possible to calibrate the energy
stored in the system. In this case, the energy applied to the piston, calculated as the
force times the displacement of the piston, correlates well with the square of 〈G2〉
(energy = 1

2kx2 ∝ 〈G2〉2) [29].

9.4.2 The inverse problem

Photoelastic data can be used to identify contact forces by assigning a fringe order
to the images and using the stress optic coefficient to determine the stress. Early
methods proposed using fringe orders from two or more experimental data points
to calculate forces at the boundary, including the overdetermined system in which
multiple points from a photoelastic image, are used in a nonlinear fit [8–10, 30].
This is referred to as the inverse problem and has recently been implemented in
experimental systems by Behringer et al. [12–14].

The measured photelastic images are fit using the plane elastic solution, assuming
that deformations are not substantial. The force components at the boundaries are
treated as fitting parameters, which are determined through a nonlinear fit. For
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(a) (b)

(d)(c)

Figure 9.7 Experimental images (a) and (c) with the corresponding theoretical
images (b) and (d) expected based on contact forces determined through the
inverse method. (Reprinted from Figure 9.2 of [12] by permission from Macmillan
Publishers Ltd, Nature 435, 1079 (2005), copyright 2005.)

adequate results, it is necessary to also know the locations of the grains and
contacts, which is most easily obtained with a second camera without the analyzer
in place. Differences between the experimental fringe pattern and a calculated
pattern, given a known set of forces are minimized to find the best fit for the
forces. The 〈G2〉 measurement is one way to estimate the initial forces for the fit. In
addition, a minimum 〈G2〉 threshold can be used to verify that a force contact exists,
rather than simply a “rattler,” which does not exert significant force on its nearest
neighbors. These are difficult to distinguish using nearest neighbor distances from
nonphotoelastic images alone. This results in vector forces at each contact rather
than simply a mean measure of the local pressure.

Examples of the use and validity of the inverse problem can be found in [12–14].
It is possible, upon fitting experimental data with the inverse method to find vector
forces at each contact, to then use the calculated forces to reconstruct a photoelastic
image by solving elasticity equations to find the theoretical stress in each grain. The
result can be compared with the experimental image as a validation of the method.
An example is shown in Figure 9.7, reproduced from [12], with experimental
images (a), (c) and corresponding theoretical images (b), (d). While a completely
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automated process is not easy to accomplish, given the nonlinear fit inherent in
the method, experimental images, along with images reconstructed using contact
forces found through the fit, appear remarkably similar.

9.5 Photoelastic measurements in granular media

As mentioned earlier, photoelastic measurements were the first to reveal the in-
homogeneous network of stress chains (or force chains) which transmit force
through a granular medium [1–3]. More recently, photoelasticity has played a
prominent role in elucidating the properties of these force chains and the behavior
of granular matter. Below, some of the recent findings from photoelastic granular
measurements are summarized.

A number of photoelastic granular studies focus on the transmission of forces
through a static granular packing. Geng et al. found that ordered packings can lead
to strong forces along crystallographic directions, while disorder leads to a broad-
ened, diffusive force transmission [28]. These results produce visual evidence for
similar conclusions observed in experiments at the boundaries of three-dimensional
packings [31]. It is also possible to use sheets of photoelastic material at the bound-
aries of such an experiment to measure boundary forces in 3D experiments [32].

Even in granular systems that appear similar, for instance with two qualitatively
similar piles of grains, the construction history is found by Geng et al. to have a
significant effect on the force structure of the pile as evidenced by photoelastic
measurements [33, 34]. A pile created from a point source typically exhibits a
dip in pressure below the center of the pile due to the avalanche-induced force
network which establishes stress chains that transmit force along the sides of the
pile [33, 34]. This stress dip was found by Zuriguel et al. to be accentuated with
elongated particles [35, 36].

Through the inverse problem, Majmudar and Behringer determined vector forces
at each contact, thereby allowing a bulk measurement of the probability distribution
of forces [12]. They also used photoelasticity to determine the presence or absence
of contacts and make measurements of scaling laws for contact number and pres-
sure versus packing fraction near jamming [13]. They have similarly applied this
technique to dynamics, such as pure shear [37].

Under shear, stress chains are found to align along the principal stress direction
and fail due to buckling [38]. These chains have been proposed to be strong in
compression, but weak to transverse forces through a buckling instability [39];
therefore, experiments that are able to access the force network can offer signif-
icant insight. This buckling is fundamental to the behavior of granular materials,
particularly at the threshold of jamming, where grains may become frustrated and
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immobile or suddenly flow with instantaneous changes in the force network. Pho-
toelastic experiments also allow visualization of the stress network during transient
situations [21], where the anisotropy of the force network is proposed to lead to
weakening observed when the direction of shear is reversed [40]. In this case,
the strong force network established during shear establishes a force network that
cannot oppose significant shear in the reverse direction.

These force fluctuations are found to dominate in granular dynamics [4]. Pho-
toelastic experiments by Howell et al. revealed a diverging force chain length scale
similar to a critical transition as the critical packing fraction is approached from
above [7, 19]. In dense flows, the mean (time-averaged) stress in a Couette shear
also displays a perhaps surprising logarithmic dependence on the shear rate [41].

Other properties of the flow, such as diffusion, are also affected by the force
network. For instance, diffusivity is observed to be lowest along directions corre-
sponding to the orientation of the observed stress chains [20].

Additional applications of photoelastic granular materials include the failure
of granular soils [42], visualization of the load transfer profiles due to explosive
loading in granular aggregates [43], measurement of various fabric tensors during
cyclic shear [44], and characterization of the jamming transition through responses
of the force network and resulting flow to imposed vibrations [45]. Shear in an
anolog to geological faults is also studied using photoelastic techniques [46]. In
these experiments, small stress drops are observed to occur due to localized events
punctuated by occasional, large system-spanning events.

It should be noted that it is possible to exploit the somewhat weaker photoelastic
response in other materials. Lesniewska et al. used glass beads in an indexed
matched fluid to measure internal stresses and particle displacements [47].

As interest in the jamming transition in granular materials continues, photoelastic
experiments are sure to contribute insight into the complicated, dynamic force
network that exists during the jamming/unjamming transition.

9.6 Conclusions

Photoelastic materials have been receiving increased attention in recent years as the
building blocks of complex systems, such as granular materials. Due to their stress-
induced birefringence, when placed between crossed polarizers, they allow visual-
ization of internal stresses within 2D experiments – information that is inaccessible
in most other experiments. In granular systems, early photoelastic experiments were
the first to reveal that stresses are carried by an inhomogeneous network of force
chains. Subsequent experiments continue to probe the real-time stress response of
these complex systems.
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While they provide immediate, full-field information about the relative magni-
tude and location of stresses in the system, it is also possible to gather quantitative
data, either through calibration of a gradient-squared method using images at known
pressures or using nonlinear fitting to solve the fill inverse problem to determine
contact forces based on measured photoelastic fringes. Additionally, photoelastic
materials are easily machined into a variety of shapes and sizes, which allows for
a large range of experimental systems.

Although implementing the full inverse problem involves a significant amount
of work, acquiring qualitative or average results in simple geometries requires little
more than polarizers, a light source, and a camera. In this sense, photoelastic mate-
rials offer an easy way to visualize forces in systems for which stress information
is typically difficult to access.
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[3] T. Travers, D. Bideau, A. Gervois, J. P. Troadec, and J. C. Messager, “Uniaxial
compression effects on 2d mixtures of ‘hard’ and ‘soft’ cylindars,” J. Phys. A: Math.
Gen. 19, L1033–L1038 (1986).

[4] D. W. Howell, R. P. Behringer, and C. T. Veje, “Fluctuations in granular media,”
Chaos 9, 559–72 (1999).

[5] M. M. Frocht, Photoelasticity, vol. 1 (John Wiley and Sons, New York, 1941).
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Image acquisition and analysis in soft
condensed matter

jeffrey s. olafsen

10.1 Introduction

Fast and affordable computing power, especially in the form of personal computers
and workstations, has enabled the expansion of the study of soft condensed matter
physics over the last two decades. The use of computing power to not only analyze
image data but acquire it from high-resolution and high-speed digital sources has
also made many significant investigations in soft condensed matter experiments
accessible to students while still pursuing their undergraduate degrees. Unlike
students just a generation before, contemporary undergraduates are well versed in
the use of computing power, even operating systems such as Linux, when they
first arrive on campus. Because of outreach initiatives such as REU programs,
intentions to recruit future graduate students, and an increasingly competitive trend
in the careers of undergraduate majors, the opportunities to engage undergraduates
in research has flourished over nearly the same period of time.

Granular systems, with simple hard sphere interactions and inter-particle fric-
tion, tend to be investigated in experiments that are tabletop in scale. As a subset of
soft condensed matter systems, the macroscopic nature of granular physics makes
the systems conceptually accessible to students as early as the sophomore or junior
year of their baccalaureate careers. This no way trivializes the investigations or
minimizes the advances in knowledge that a properly trained undergraduate can
contribute to the larger scientific community when mentored well. Indeed, as most
undergraduate physics programs do not typically offer courses in contemporary
advanced topics, such an nonequilibrium thermodynamics or soft condensed mat-
ter physics, the ability to have students pursue journal-publishable research efforts,
while still enrolled in more classical undergraduate physics courses, is a transfor-
mational opportunity for their educational development.
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This chapter will discuss the topics of image acquisition and analysis for soft
condensed matter systems in general before detailing the specific example of
techniques for particle tracking in granular gas systems. Finally, the chapter will
focus on the author’s experience in mentoring undergraduate research and the
specifics of introducing students to the tools of the trade. The intent is to present
the material in such a manner that one might use the general outline of undergradu-
ate research presented by the author with the specifics of any of the soft condensed
matter techniques offered in this book. Also, the framework for involving an under-
graduate student researcher in journal-publishable research will be discussed with
the view that the chapter should be read by both the student and the faculty mentor,
as well as any graduate students or postdoctoral fellows who will be involved in
the mentoring of undergraduate students. It is by no means the only manner in
which to involve undergraduates in a research laboratory in soft condensed matter
physics, but it is one that has worked extremely well for the author.

10.2 Image acquisition

While there have been investigations of granular systems with what might be termed
more exotic image acquisition systems, such as X-ray [1] and magnetic resonance
imaging (MRI) [2–4], or novel light sources and spectroscopic techniques [5, 6],
the primary image acquisition in granular gas systems, and soft condensed matter
systems more broadly, is through high-resolution and high-speed digital camera
technology. The CCD (charge-coupled device) sensor that makes such digital imag-
ing possible was recognized with the 2009 Nobel Prize in Physics awarded in part
to Willard S. Boyle and George E. Smith [7]. The use of such digital optical
acquisition relies on using primarily visible light sources. There are cameras that
are designed or enhanced with optics that are optimized to operate in particular
wavelength ranges such as infrared (IR), and most off-the-shelf CCD cameras
are sensitive in the near-IR spectrum in addition to the visible. Several differ-
ent companies exist that will design and construct image acquisition systems as
intermediaries to original equipment manufacturers (OEMs). These intermediate
companies are beneficial in building pre-packaged systems that are more turn-key
and accessible for undergraduate students with limited backgrounds in interfacing
computer components. However, even such platforms as LabVIEW have recently
made the development of the image acquisition portion of granular gas investi-
gations accessible to relatively inexperienced undergraduates. The primary con-
sequence of the limitation of optical imaging to the visible spectrum is that most
granular investigations are thereby constrained to being 1D or 2D in design [8,35]
(although one can pursue a 3D investigation in a dilute particle density limit [36,37]
or with a tracer particle technique similar to MRI [38,39]). While some applications
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have been able to develop 3D imaging through the use of multiple orthogonal cam-
eras [40] or novel uses of index matching and illumination [41–43], the typical use
of high-speed and high-resolution digital imaging is primarily for the investigations
of systems in fewer than three dimensions.

As computers have developed faster and faster processors and bus speeds, the
data transfer rates have allowed computer handshaking through quicker framegrab-
bers. In the past, the data transfer rates typically were expended to acquire either
high-resolution images (with a large number of pixels) at a relatively slow frame
rate, or a smaller image with fewer pixels at a relatively fast frame rate. The
increased reliance on progressive scan technology (where the camera image is writ-
ten in sequential lines rather than in an interlaced manner of half images for even
and odd lines [44]) allows for newer cameras that are able to be more flexible in how
the data transfer rate is used. Lines of progressive images may be cut to improve the
camera frame rate, resulting in a camera that may have several modes that exchange
image size for speed. There are both expensive and inexpensive models of such cam-
eras. Measurements of mean field properties of granular systems, such as density
and position correlations, are typically made utilizing images with high resolution
over large spatial scales of the granular media. Corresponding “microscopic” or
local measurements that are particularly sensitive to small windows of time, such as
collision times or velocity fluctuations, are made with high-speed cameras. In the
case of velocity measurements that are not capable of measuring the entire system,
ensemble statistical techniques are used to sample the system and describe it in a
statistically meaningful manner [10–12, 16–18, 22, 25, 31, 35, 42, 43, 45]. In larger
scale images, PIV techniques, similar to that described in Chapter 7, can be used
for particle tracking over larger volumes. In this chapter, the specific example that
will be discussed was designed to be able to track the motion of a granular bath as
well as a tracer particle in a finite volume, so there were no particles either entering
or leaving the sample volume. This aspect of the particular experiment that will be
discussed is relatively unique [13, 15, 21, 23, 26, 46], and the selection of a sample
volume that is a subset of the entire system is more common in order to obtain data
away from the experimental boundaries. The details of the experiment used for the
specific example discussed in this chapter are available from references [47,48]. A
broader and more fundamental discussion of image analysis beyond this specific
example is also available [49].

10.3 Lighting

Unlike chemical film from traditional optical cameras, the CCD element of a
digital camera can be operated at a variety of frame rates. As discussed above,
the frame rate is often limited by the speed at which the image can be triggered
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and electronically processed. Separate from the frame rate of the camera is the iris
and electronic shutter (or both), which allow the user to adjust the amount of light
that is acquired within the trigger window of the CCD element. While available
CCD cameras have improved the higher end frame rates, such cameras require
an increasingly large amount of light in order to properly stimulate the elements
of the CCD (or CMOS) sensor to create the electrical response that is processed by
the camera’s electronics to produce the image. The faster the camera frame rate,
the brighter the image source in general that is needed to illuminate the region of
interest of the camera. Lenses may have manual or electronic irises and a lens is
typically chosen based on the experimental application to image the proper field of
view (dimension) and depth of field, as discussed in Chapter 1. A complication of
some CCD cameras is what are intended to be helpful features, such as automatic
gain and white level adjustment, which may need to be disabled or placed in a
manual mode so they do not undo adjustments made by the user in attempting to
set the light level correctly.

Particle tracking through image analysis with such software languages as the
interactive data language (IDL) or MATLAB rely on the contrast between the illu-
mination of the items of interest in the cell and the undesired portions of the image.
In images relying on backscattered illumination, the particles are identified by a
bright spot reflecting off the particle against the background of the experimental cell
see Figure 10.1, although many experiments use the reverse process of backlight-
ing an experimental region and tracking the particles as the dark regions (shadows)
against the bright background [10, 12, 14, 26, 28–30, 34, 35, 50]. The processing of
both types of lighting is essentially the same – whereas reflected light produces
peaks in the image, backlighting produces minima in the image. In both practices, it
is still the contrast between the particle and the background that is used to identify
the location of the particles. Care should be taken with high-speed cameras and
light sources running off AC sources by which it is possible to see 60 or 120 Hz
artifacts in the illumination intensity.

The ability of a CCD camera to resolve light intensity is denoted by the bit-level
of the camera. Most inexpensive off-the-shelf cameras are typically 8-bit, which
means the camera has 28 levels of light intensity that may be resolved. The z-
direction of a three-dimensional rendering of the image (pixel intensity), such as
in Figure 10.2, would have values between 0 (darkest pixels) and 255 (brightest
pixels) for a complete range of 256 levels. A 10-bit camera would have 1024 levels,
and so on. The production of an image with too much illumination (such as the
left image in Figure 10.1) will produce mesas in the pixel intensity – regions for
which several neighboring pixels are all saturated to their maximum pixel value
(255 for an 8-bit camera). This is typically a poor image for particle tracking, which
works best when each particle is illuminated with a single sub-maximum peak. In
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(a) (b) (c)

Figure 10.1 The experiment that will be used as the specific example discussed in
this chapter. Viewed from above, the dynamics of a tracer particle (lower left of
each image) are tracked as the lower dimer layer is shaken in the vertical direction.
(a) Illumination with too much light that produces secondary reflections on the
edge of the cell (lower right) as well as the connecting rods and the spheres of
the metallic dimers, (b) a lower level of lighting that produces one bright spot on
each of the particles that are desired to be tracked, and (c) an insufficient amount
of light that fails to illuminate all of the particles within the cell.

(a) (b) (c)

Figure 10.2 Two-dimensional images can be rendered as three-dimensional sur-
faces where the x and y are dimensions of the image and the z value is the
pixel intensity at each element in the image as obtained from the CCD array.
(a) A three-dimensional surface representing the image with proper lighting from
Figure 10.1, (b) a contour plot of the same image in which the tracer particle is
clearly evident, (c) an expanded view of the lower left portion of the image in
which the tracer particle is located. Much of the rest of this example will focus on
this lower left corner of the image.

other words, a single pixel on the particle that has a higher intensity than any other
is optimum for tracking. In addition, such saturated images are not useful for a
refinement, to be discussed later, that allows for the identification of the particle
position to sub-pixel resolution.

One will note a gradient in the light from one side of the image to the other in the
left panel of Figure 10.2. Since the camera in this example is positioned directly
above the experiment being imaged, any light source will be at an angle to the
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experimental cell. That angle results in the gentle gradient observed in the surface
plot of the image. While a second light could be added opposite the first, solving the
one problem introduces a new one, namely two spots of reflected light off of each
particle that one wishes to track. Some experiments employ a circular light source
closer to the surface of the cell to solve this issue [21]. The reliance on the use
of light reflection can produce circles or halos in this instance rather than a single
spot on the particle. Light sources positioned too closely to the horizontal also may
introduce variations of lighting in this example and similar experiments, in that
nearby particles may cast shadows on their neighbors, further causing problems
for the methods of peak detection and particle identification discussed here.

10.4 Particle identification

One helpful pedagogical technique, especially in training undergraduates to under-
stand and develop their own particle tracking algorithms, is to ask them to reflect on
how they themselves interpret an image by eye and know the location their brain is
assigning as the particle’s position. Encouraging this sort of self-reflective method
allows us to appeal to the student’s own intuition in later tailoring their software
to issues specific to their particular experiment, which almost always results in
modifications to techniques being presented even in this illustration.

The specific example of image analysis that is being presented here now turns
from image preparation (lighting) to image manipulation. However, as different
techniques of image modification are introduced, it is wise to keep in mind that as
one tries to optimize the image for each of the different corrections discussed, it
is often necessary to return to the issue of lighting and contrast and to take new
images in order to optimize the particle tracking results. There is a “knack” to this
sort of feedback process between the lighting and the image analysis which is best
understood experientially. This is often an investment of time that can be quite
significant (and frustrating to inexperienced students, but is absolutely necessary
in order to rely on the veracity of results of subsequent analysis), mainly to remove
inadvertent reflections and other artifacts that can corrupt the experimental data.
Particularly when training undergraduates, this is a learning experience that cannot
be stressed enough.

Before moving on to other image manipulations to begin to find the particle
positions, it is often helpful, to minimize unintended side effects, to remove extra-
neous background information in the image. This can be done by simply zeroing
out the pixel values below a certain value. Subsequent image manipulations will
end up mixing values in adjoining and neighboring pixels, so removing noise and
unnecessary background light can aid in removing information that may result
in unintended artifacts. At this point, however, it should be noted that any image
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Figure 10.3 Removing background noise and secondary reflections. The original
subimage (a), corresponding to the right panel of Figure 10.2, is filtered (b) by
zeroing out pixel values below a particular threshold. It is possible to zero out
too much (c) and remove information of interest – in this case, the contour of the
tracer particle (arrows).

algorithm process should always maintain a copy of the original image so that there
is always a baseline measure to reference in order to quantify the effectiveness of
the particle identification algorithm [51].

The fundamental basis for particle identification in this specific example is a
peak detection of the pixel intensities, the single light source producing a spot of
light reflecting off each particle. (In a backlit experiment, this peak would be the
minimum/darkest point detection, or the blacklit image could simply be inverted
to produce a peaked image similar to the images in Figure 10.3.) If each pixel in
a CCD array were truly isolated from its neighbors, the peaks produced in such
images would be more pristine. However, due to crosstalk and noise, the peaks
corresponding to the bright spots are more complicated, as discussed in Chapter 7.

10.4.1 Resolution

One could conceivably extract the isolated peaks and achieve the particle local-
ization by passing each peak through a parabolic or Gaussian fitting routine. The
precision of such a technique would necessitate having a larger reflected light spot
in order to provide a suitable number of weighted points for the fit to converge in
a robust manner [49–52]. In addition, such particle-by-particle fittings require in
some sense the ability to separate out the particles without yet identifying where
the particles are actually located. This is an issue if the particles are small and in
contact (which is an effect minimized by illuminating only the center region of
each sphere with light, thus separating the peaks of light by a significant fraction of
the particle radius, and adjusting the resolution of the image so that each complete
sphere is rendered over several more pixels than the number illuminated with the
bright spot). What is presented here is computationally quicker and can extract the
particle location with only a few (∼10) pixels of illumination per particle. However,
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Figure 10.4 The effect of smoothing the image. The raw image surface plot (a)
is smoothed over a small number of nearest neighbor pixels (b) and detrimentally
smoothed with a radius that is too large, much of the detail of the image being lost
(c). The arrows indicate the edge of the tracer contour.

because the procedure is not a fit per se, it is beneficial to “sculpt” the peaks before
using them to identify the particles. Because the noise and lighting may not result
in a single largest pixel in a peak, but perhaps two or three, one should first smooth
the peak to ensure there is a single maximum to the peak [49]. There is a fine
balance between having a significant number of illuminated pixels per particle and
the shape of the illumination peak and illuminating the particle with too much light,
resulting in a mesa of pixels all with an intensity of maximum value.

10.4.2 Smoothing

In order to identify a single peak per particle from the bright spot reflecting off
each particle, it is beneficial to smooth the image, dulling it in a uniform manner
that eliminates noise or spikes in the illumination that could produce artifacts such
as two maxima. The simplest sort of smoothing is to reassign the pixel intensity at
each location within the image to be the average of the pixel and its eight nearest
neighbors. This can be thought of as smoothing over each pixel with a radius equal
to one pixel. Averaging over larger numbers of nearest neighbors is, of course,
possible, but smoothing over too large a radius can be detrimental.

Figure 10.4 is a demonstration of an unsmoothed image (a), previously seen
in Figure 10.3, that is smoothed over a relatively small radius (b) and also an
example of smoothing with an extreme radius (c). Note that in the center panel of
Figure 10.4, the small smoothing radius does not result in loss of any of the structure
within the image. The low intensity circle corresponding to the nonmetallic tracer
particle is still evident in the smoothed image. Only the smallest structure and
tiniest peaks are washed away by the smoothing. By eye, the reader will be able
to identify each of the raw peaks (a) corresponding to the smooth peaks in (c).
However, if the radius of surrounding pixels is increased too much, many of the
details in the image’s structure are averaged away. No matter what the radius of
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the smoothing, there is an attenuation of overall image intensity, the illumination
being averaged over an increasingly large number of pixels producing a less intense
image.

A particularly effective type of smoothing is called Gaussian smoothing, as the
resulting peaks have been averaged in a manner to produce distributions that could
be described well by Gaussian fitting [49]. With the following four steps one will
find that (1) adjusting the illumination, both in its intensity and angle, balanced
against (2) the field of view, as well as (3) how many pixels at the center of each
sphere are illuminated, and (4) the quality of the peaks after smoothing the image
comprise the first iterative loop of image acquisition and analysis.

Caution should be taken when smoothing a particle that is too close to the edge
of an image. If the radius of smoothing extends beyond the boundary of the image,
an artifact can be introduced from the lack of pixel intensities with which to average
beyond the boundary of the image. This can adversely affect the weighting of the
center of the illumination and introduce an error in the particle location.

10.4.3 Peak detection

Now that the peaks in the image have been properly sculpted, simple peak detection
may be used to identify the location of each particle. By shaping the peaks in the
image intensity, local maxima can be obtained in a straightforward manner, often
with something as simple as comparing the value of each pixel with its eight nearest
neighbors. The MATLAB and IDL software platforms, having been developed with
powerful compilers specifically to handle image data, are capable of doing this in
a straightforward manner with limited computational structure.

The example presented here was chosen because it demonstrates the need to
discriminate between one of two types of particles. The highly reflective metallic
particles produce nice peaks in the pixel intensity, which are easily located once
the image has been sculpted. However, the duller plastic particle offers the oppor-
tunity to discuss another type of particle detection before moving on to the further
refinement of sub-pixel resolution of the particle locations. The center of the larger
plastic particle can be seen to produce a much smaller peak in Figures 10.4(a) and
(b). This small peak is situated within the much duller and larger circle of the ball
itself. Simply increasing the illumination, as shown in Figure 10.1, does not help,
creating a mesa in the bright spot of the particle and never resulting in an illumina-
tion of the particle that is brighter than the metallic particles. However, the size of
the dull sphere is larger, albeit dimmer. Again, particularly with an undergraduate
student, one might ask: “How does one differentiate the plastic particle from the
metallic one?” The trick is folding into the algorithm a way of teaching the software
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to do what the brain does almost instantly: differentiating shapes and sizes within
an image [49, 51].

10.4.4 Convolutions

Just as the brain quickly differentiates the two types of particles, the particle
identification should locate the plastic particle in this example with a different
method from the metallic particles. Here, the concept of a convolution, a concept
that students often find opaque from introductory mathematics [53], can be of great
assistance.

In a two-dimensional image, one can think of a convolution as an overlap between
the image, I , and a mask of the same geometrical shape, M . The convolution in
effect passes the mask over the entire two-dimensional image and at each pixel
location calculates the overlap between the image value and the mask value of size
(m, n) at each location (i, j ):

Ci,j = 1

W

m/2∑
k=−m/2

n/2∑
l=−n/2

I ((i + k), (j + l))M(k, l), (10.1)

where the convolution is normalized by a weighting W , which can simply be
the sum of the pixel values of the mask, thus removing the magnitude of the
mask from result. Figure 10.5 is a demonstration of using a mask for the larger,
dull tracer particle to determine its location within the image. Since the convo-
lution is a geometric calculation, it is highly dependent upon the use of a mask
of the appropriate size of the particle being identified. Note that although the
mask is larger than the smaller particles in the lower layer of the experiment,
the convolution generates a nonzero background as the mask passes over these
particles. This background can be somewhat reduced by choosing a mask that
is an annulus rather than a filled disk, thus reducing the overlap between the
mask and the smaller particles (see Figure 10.6). As can be noted from the equa-
tion above, if the mask is hollowed out as with the annulus, it reduces the value
of the convolution at the centers of the smaller particles, the mask having zero
weight at those pixel locations. The mask then weights the edge detection of the
larger, duller particle, but nonetheless still properly identifies its center. The pre-
sentation here is similar to a kernel-based Hough transform [10, 12, 49, 50] and
can also be used to better detect distorted or partial objects, particularly near an
image edge.

Since the identification in this case is based more on the size of the particle rather
than its peak intensity, it is often helpful to sculpt the image in a different fashion
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Figure 10.5 Convolution to locate the larger, dimmer particle. The sculpted image
(a) with each pixel set to either 0 or the maximum intensity to create a sharp edge
to aid in the convolution with the test mask (lower left inset of (a)). A surface plot
(b) and contour plot (c) of the result of the image convolution (d). The result of the
convolution produces a single definite peak at the center of what was the larger,
dimmer particle in Figure 10.1. The pentagonal shape evident in the convolution
(d) and the contour plot of the convolution (c) is due to the five metal particles
that encircle the larger Delrin ball in the image (a).

than described in Section 4.2. As the convolution is simply looking to identify,
geometrically, the position in the image with maximum overlap with the test mask,
the pixel variations in the original image are not necessarily helpful. As shown
in Figure 10.5, the image may be modified in an extreme fashion, first passing
over the image and setting each pixel to either its minimum (0) or maximum (bit
level – 1, that is 255 for an eight-bit image) values. Whereas peak detection was
not assisted by mesas in the pixel intensities, the convolution can get a better
calculation of the center of the larger particle in this manner. However, since this
method of particle identification is based on the particle’s size, the construction of
a mask of appropriate radius is important.



Image acquisition and analysis in soft condensed matter 259

Figure 10.6 Comparable results to those shown in Figure 10.5 for a convolution
with a ring mask instead of a filled circular mask. The sculpted image (a) is shown
with an inset of the hollow ring mask used for this convolution. The results for the
convolution are shown as surface plot of the convolution intensity (b), a contour
plot (c), and the actual convolution (d). The high intensity center determined from
the convolution is more pronounced here relative to the noisy background. The
peak is the location of the center of the larger, dimmer plastic tracer riding on top
of the smaller, metallic lattice (see Figure 10.1).

10.4.5 Error checking

Now that all of the particles have been potentially identified, it is important to
pause and examine the results at this intermediate level before proceeding with a
refinement of the particle positions. The caveat of “nominal” identification reflects
that the results need to be checked for both false positives (objects that were
identified as particles that were not present) and false negatives (objects that were
within the image that were not identified). An ideal analysis would have neither false
positives nor false negatives. However, in many statistical experiments, where data
are obtained through ensemble averaging, some small percentage of false negatives
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Figure 10.7 The results for three analyses of the same image data with a different
threshold set for the peak detection of the metallic spheres. Triangles represent
where the algorithm found metallic spheres; the square is the peak from the
convolution to detect the larger, dull plastic sphere plotted on top of a contour
plot of the original image. If the peak detection level is set too high (a) then real
particles are not detected, in this example, to the left of the convolution-detected
plastic sphere (arrow in (a)). Recall the gradient in the lighting discussed with
Figure 10.2. If the level is optimized (b), all of the particles are identified with
no false positives. If the level is set too low, the algorithm returns locations for
particles that are incorrect. In this example, the false positives are caused either
by the rods connecting the metallic spheres or secondary reflections off of other
locations on one of the spheres (arrow in (c)).

(missing particles) is acceptable and can be corrected for by obtaining additional
data. Care should be taken to optimize the image analysis to have as few false
negatives as possible, and even when acceptable, error checking should be done to
make sure that the false negatives are not correlated in either a spatial or temporal
fashion, implying that there is a “gap” in the observations, due to a shadowing on
one side of the cell, for example see Figure 10.7. The presence of false positives
cannot be tolerated as the data are corrupted for any further use until and unless
the false positives are removed or otherwise filtered from the data analysis.

The error checking at this point in the image analysis process can typically
be thought of as a separate iterative loop similar to steps (1)–(4) discussed in
Section 4.2. However, if care was not taken with the illumination, the optimization
process may require using the results of the error checking to return to the adjust-
ment of lighting and acquire new images. One typically learns in this process to
take only small sets of images until the lighting, smoothing, and peak detection
have been optimized.

The discrete elements in the CCD array of the digital camera force a spatial
truncation on an image, and the image analysis methods discussed so far only
allow the particle location to be determined to the nearest pixel. If the purpose of
the image analysis is particle tracking, this introduces a least measure that must
be addressed. Imagine an object whose center moves only a fraction of a pixel
between two frames. The methods described here would locate the particle center
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in the same pixel in both frames, leading to the incorrect result that the object’s
displacement was zero. One might think this is simply the smallest resolution of the
particle location, and a reflection of the minimum sensitivity of the measurement.
However, there is a refinement that allows for the sub-pixel determination of the
particle location.

10.4.6 Sub-pixel resolution

In particle tracking, what is desirable is measurement of the smooth transition of
the object being tracked across the field of view. To recapture this from the image
data, it is common to not only identify the particle center by locating the pixel
with the peak illumination, but also to examine the surrounding pixels to refine the
particle center, allowing the particle’s dynamics to be captured as the peak traverses
a pixel element.

To accomplish this refinement, the information surrounding the peak illumina-
tion is used. Given that the illumination should be consistent from the source as the
particle is tracked, then the illumination can be thought of in terms of the extended
Gaussian shape of the peak and not simply its peak value. This shape is what
transverses the field of view from one pixel to another. The pixel of peak illumina-
tion simply finds the rough location of the center. However, if the illumination is
considered as the whole of the three-dimensional shape, then that information can
be used to refine the position, removing the pixilation introduced by only tracking
the discrete pixel where the peak of illumination is located. This refinement can
be considered a “center of light” calculation, akin to a center of mass location of
the object, where the consistency of the illumination is relied upon to calculate
the refined center (X, Y ) of the illumination as the entirety of the shape moves
across several pixels. The pixel intensity I and distances xp and yp from the peak
pixel are used to weight the refined center in the direction of the local gradients of
illumination out to a distance r away from the pixel of peak illumination:

X =

r∑
p=0

xpI (xp, yp)

r∑
p=0

I (xp, yp)
, Y =

r∑
p=0

ypI (xp, yp)

r∑
p=0

I (xp, yp)
, (10.2)

where a sample refinement using the above calculation is shown in Figure 10.8.
Note that while the pixel at the (x, y) location of the peak illumination does not
contribute to the numerators in the equations above (as it is a distance 0 from the
peak), it does weight the denominator, playing the same role that inertia would in
a center of mass calculation (see Figure 10.9).
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(a) (b)

Figure 10.8 Expanded view in surface plot of a single peak in the pixel intensity
of the sample image (a). Contour image (b) of the same peak. The plus symbol
denoted the pixel with the highest illumination value. The triangle symbol denotes
the result of the sub-pixel refinement of the peak location.

Care should be taken to error check the sub-pixel resolution. Too small a radius
in the calculation can result in sub-pixel localizations that are still tightly tied to
the integer pixel values. Too large a radius may introduce artifacts from secondary
reflections and illumination that are time and space dependent in the image. One
quick method of error checking a large amount of data is to perform a modulo
function of the sub-pixel location with integer 1 to remove the leading integer
value and either plot the resulting fractional locations or produce a histogram of
the values. A sufficiently large data set of properly valued sub-pixel locations will
produce a uniform plot or histogram, there being no bias in the system to, on
average, favor any of the fractional pixel locations. Here again, it is worth noting
that it is assumed that the lighting is as uniform as possible. Biases in such a plot
toward the integer values indicate a residual pixilation in the values. While varying
some of the parameters discussed in Section 4 can improve the results, one should
keep in mind that changing the illumination to a more diffuse, less-localized type
is sometimes necessary to remove the pixilation completely, thus beginning the
entire process all over again with a new set of image data. Experience is the best
teacher in this process, and a sample tracking set up has been used in the author’s
laboratory to introduce new students to this process.

10.4.7 Momentum filtering

Chapter 7 discusses the use of image locations to produce particle tracks of tracers
in soft condensed matter systems. However, if the purpose of image tracking is
to extract information about the velocities of particles between collisions, there is
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Figure 10.9 Example of the pixel values centered on the pixel with the highest
intensity denoting a peak. A cursory view of the pixel values would indicate that
the corresponding “center of light” would refine the peak up and to the left. The
quantitative result of averaging over the numerical values shown for a radius of
one pixel from the maximum value of 211 would result in the refined pixel location
moving to the left by 0.38 pixels and up by 0.22 in agreement with the triangle’s
location in Figure 10.8. The pixel values are taken from the original image, not the
sculpted image, so that the refinement is tied to the actual lighting in the original
image. A similar, but more refined, result can be calculated for extending the
calculation to a radius of two pixels from the maximum.
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Figure 10.10 A set of sample data from a dilute cell experiment showing the
trajectories of two particles before and after collision.

an additional filtering that must be performed on the particle locations. Since the
capture of images is a discrete process, one should be careful to remove errant data
(again, a criterion that denies false positives.)

In Figure 10.10, we show an example of two particle tracks with a collision
in the middle of the image, where momentum was exchanged between the two
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particles. It is not possible, due to the discrete nature of the image capture to know
where (exactly) the collision took place. As such, the four positions within the grey
circle are suspect. In which interval did the collision take place? If the purpose of
the analysis is to examine the velocities of the particles between collisions, then
the displacements on either side of these four suspect particle positions should
be removed from the ensemble due the uncertainty of the moment of collision. A
calculation of the velocities (displacements per frame) in each of the trajectories
can be used to calculate a change in momentum along the particle paths to filter
out the collisions.

10.5 Data analysis

While many of the refinements discussed in the previous section are meant to
optimize the analysis process, small residual effects may sometimes remain even
after the process in the previous sections is followed. This is due to small biases
in the particle locations that may not be evident in small subsets of the analysis.
Once the complete data set is analyzed, it is important to scrutinize the results at
least one more time.

In the example data set discussed in most of this chapter, the aim was to examine
the velocity statistics of both the lower layer of particles and the upper layer tracer
that was free to move on top [31,54,55]. In such granular systems, particle tracking
is used to measure the velocity fluctuations to obtain the granular temperature, or
root mean square value of the velocity fluctuations [56]. As the investigation of
such systems has been a topic of debate and intense interest due to the wide variety
of results that have been obtained in different geometries [8, 10–13, 15–18, 22, 23,
25–27, 31, 33, 39, 43, 45–48, 54, 55, 57, 58], it is important that the data analysis be
proven to yield an accurate ensemble representation of the system. Since there is
an equal probability of the particles in this example system moving in either the x

or y directions, a plot of the velocity fluctuations (displacements of the particles
between frames) with a non-zero mean would indicate a bias in the system, such as
a tilt in the sample cell. A typical set of plots for the velocity fluctuations as both a
diagram in the xy plane and a histogram of fluctuations is shown in Figure 10.11.

In the case of the convolution example, pixilation may occur due to either the sub-
pixel refinement, similar to the situation shown above, but also due to the incorrect
sizing of the mask for the convolution procedure. Figure 10.12 demonstrates a
pixilation in the velocity fluctuations (particle displacements) in the xy plane for
the tracer particle due to a slight under-sizing of the mask, which leads to an
incorrect identification of the pixel about which the sub-pixel refinement is then
processed.
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Figure 10.11 The measured particle displacements ((a) and (c)) about the zero mean value
in the xy plane for the lower layer particles and a histogram ((b) and (d)) of the displacement
probabilities in the x direction, respectively. Since the frame rate of the camera is a constant,
the particle displacements are related to the velocity fluctuations by that constant rate. The
shoulders on the distribution correspond to a residual bias of pixilation around the integer
pixel locations ((a) and (b)). After a slight adjustment of the smoothing radius as well as
the sub-pixel refinement radius, the robust behavior of the fluctuations is obtained in the
absence of pixilation ((c) and (d)).

As stated earlier, this entire process is an iterative one, and a technique which
is best conveyed experientially in the lab with a sample set of data, or sample
experiment for a new student to use to learn in a hands-on manner. Once the fun-
damental process is understood, a student is better equipped to know how to prove
the robust nature of their data acquisition and data analysis in a novel experimental
manifestation, with a better appreciation of what is a real dynamic behavior and
what is an undesired artifact from their data-processing algorithms. The author
has had significant success in teaching this general procedure to undergraduate
students who are then able to take their general understanding of the ideas of image
acquisition and analysis and apply them to a new experimental investigation.
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Figure 10.12 The measured particle displacements (velocity fluctuations, see
Figure 10.11) about the zero mean value in the xy plane for the upper layer
Delrin particle ((a) and (c)) and a histogram ((b) and (d)) of the fluctuation prob-
abilities in the x direction, respectively. The multiple peaks on the distribution
correspond to a residual bias of pixilation around the integer pixel locations ((a)
and (b)). After a slight adjustment of the mask radius, the robust behavior of the
fluctuations is obtained in the absence of pixilation ((c) and (d)).

10.6 Incorporating undergraduates into soft condensed matter research

The tabletop nature of many soft condensed matter investigations makes them
accessible to students early in their development as scientists, even at the under-
graduate level and soon after their completion of the introductory physics sequence.
Unlike large experiments with numerous personnel, each of whom are given a sub-
task of the experiment, soft condensed matter systems and their smaller scale
allow a student to learn about a wide variety of experimental and computational
techniques. A tabletop experiment can expose a student to a suitable sampling of
theory, computation, data acquisition and analysis, design and machining, electron-
ics, automation, and troubleshooting. The experience can aid a student in learning
about their own strengths and weaknesses, helping to guide their decision about
what sub-discipline of physics holds both their interest and their aptitude.
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The advent of the personal computer and undergraduates’ familiarity with the
technology – computing or otherwise – will aid in the incorporation of their efforts
into physics in general, and soft condensed matter systems more specifically. As
many departments do not yet offer classes in soft condensed matter systems,
research opportunities in the field allow undergraduates to incorporate the sci-
ence of these modern endeavors into their undergraduate experience. The benefits
are not limited to the undergraduates themselves. More focus has been made of
late on the professional development of both postdoctoral fellows and graduate
students as science mentors [59]. Undergraduate researchers in a soft condensed
matter laboratory can quickly be trained to the point where they are seen as con-
tributing colleagues within the research group. There are important differences,
however, that the author would like to highlight between the successful integration
of undergraduates into a thriving research laboratory and simply “helping out.”

While REU experiences are fantastic opportunities for students to visit other
universities and colleges during the summer months and be exposed to research
and resources not available at their home institution, the typical REU experience
lasts on the order of ten weeks during the summer. Typically, the student is between
their sophomore and junior year (a rising junior) or their junior and senior year (a
rising senior) when they engage in such a research experience. The limited duration
of the REU puts tremendous pressure on someone who is typically still trying to
make the transition from what is taught in a lecture class out of a textbook to
understanding how to make a contribution to a modern research endeavor.

The author has developed what is a more prosperous model of incorporating
undergraduates into a research setting. The involvement of undergraduates involves
a significant contribution to the mentoring relationship – more than is typical for a
graduate student or postdoctoral fellow. Also, the supervision of an undergraduate
student means accepting an alternative timeline to the advancement of a research
effort from the expectation that would be placed upon a graduate student or postdoc-
toral fellow. A typical postdoctoral fellow arrives in a research laboratory already
trained, hired for a period of time that is on average two years, and is on a career path
to establishing their credentials for a more permanent position in either academia
or industry. Graduate students may arrive with a wide diversity of undergraduate
backgrounds, many with little more than a set of lecture setting classes to their
physics background, but with a more open-ended time period of five to seven years
to develop their skills as they work toward their degree.

Undergraduates represent a third distinct group: their course of study is not as
open-ended as a graduate student, with a typical bachelor’s degree still taking four
(to sometimes five) years. However, unlike either the postdoctoral fellow or the
graduate student, their aims in pursuing research are broader. Some students are
simply looking for a summer job, some are trying to understand what a career in
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physics entails, and others even come with a true passion to make their mark on
a topic that truly interests them. Investing in undergraduates as researchers is to
everyone’s advantage: schools are increasingly challenged to identify and recruit
driven, capable graduate students, and all graduate students start out as undergrad-
uates somewhere. Hence, the investment made in developing an undergraduate
researcher impacts the entire scientific community, even (and especially) if that
undergraduate researcher pursues their graduate degree at another institution. As
an undergraduate has not yet made the commitment of either a graduate student
or postdoctoral fellow, they do require additional care and mentoring, lest they be
overwhelmed too quickly as they assimilate the differences between working in
the laboratory setting and simply learning in the classroom environment.

Unlike a postdoctoral fellow, who may be teaching a class as part of their post-
graduate position, or a graduate student who is progressing from taking classes to
developing their thesis topic, an undergraduate student should be primarily focused
on their academic classes in each of their four years, pursuing their degree in order
to develop both the diversity of their education as well as to build the proper
theoretical foundation of their major. As such, the expectations for an undergrad-
uate researcher should be flexible during the academic year. Here, the author
discusses a model that has been developed over several years that has proven to
work well.

10.6.1 The two-year plan/three-year plan

A science student in chemistry, physics, biology, or other such field is usually
involved in their introductory major sequence during the freshman year of college,
as well as in many cases, learning the social and self-sufficiency skills of living
on their own for the first time in a new environment. In terms of soft condensed
matter systems, it is in the best interest of the mentor (whether graduate student,
postdoctoral fellow, or faculty member) to wait until after this first year to consider
involving an undergraduate student in research. Simply put, there is too much that
is in flux in a student’s undergraduate development in that first year for them to be
making any long-term commitments. For anything beyond an REU, incorporating
an undergraduate into a research group in a meaningful way should be looked on
as exactly that: a long-term commitment.

This commitment may raise the immediate question as to why one should mentor
an undergraduate. This question is a valid one. As mentioned above, the implica-
tions go far beyond simply exposing someone to an opportunity to do research.
Incorporating undergraduates in research is a way in which to develop future grad-
uate students, postdoctoral fellows, and scientists to be recruited in academia and
industry. As such, doing research with undergraduates is not something that is
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just to be pursued at institutions that do not offer graduate degrees. However, if the
investment of time is not something that you can make as a mentor, then the question
may best be answered that you should not mentor an undergraduate. It is true that,
in an equal amount of time, a graduate student or postdoctoral fellow is going to be
more productive from a research standpoint, and, thus, a more profitable investment
of a faculty supervisor’s time. That is not the only matter to consider. Graduate
students and postdoctoral fellows were previously undergraduates themselves, and
given the difficult trends in the sciences [60–62] are persons to be cultivated for
their future contributions and not to be taken for granted. Additionally, the faculty
member’s development is not the only professional maturity to be considered. The
graduate students and postdoctoral fellows in a research lab are all working towards
being scientists themselves, and in their development need to learn how to manage
and supervise students as well.

In the spring of either a student’s freshman or sophomore year, depending upon
their background and any college credit they may have been able to earn while still
in high school, the undergraduate is finally prepared to make the commitment to
their major in such a way that their potential for finishing what they have started
can accurately be assessed. During the spring of that academic year, students often
begin to seek opportunities to learn about the career paths that their major will
offer. Their introductory major courses now completed, and supplemental courses
such as introductory computer science and general education classes out of the
way, the typical major curriculum is designed to immerse the student in the details
of their major over the final two to three years of their undergraduate degree.
During this spring semester, a student’s focus will remain fixed on success in
the classroom, as everything from scholarship to their familial assessments of their
progress rely on maintaining as high a grade point average as possible. However, the
interest in doing research may be cultivated via conversations with faculty about
research opportunities in the laboratory for the coming summer months. These
meetings are most fruitful when they include a frank assessment of the student’s
background and abilities (available via both conversation with the student and
reviewing their academic transcript) and matching their interests and abilities to
an available project in the research laboratory. Within every research lab there is
a wide variety of projects that exist as either fully developed investigations, pilot
projects, or efforts that are little more than a question in the faculty member’s mind
in need of background research. Every lab is different, yet with a little effort it is
possible to find an endeavor that both the research group and the undergraduate
will benefit from investigating.

These spring semester conversations should be used by the faculty member and
the student to express what they are each hoping to gain from their collaboration.
Expectations and lab practices should be made clear, including a thorough review
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of lab safety. It is important to remember that for all of their enthusiasm, under-
graduates lack experiences that graduate students, postdoctoral fellows, and faculty
members often take for granted. How to involve a student in a manner that is both
safe for them and the other members of the laboratory (and for the equipment in
the lab) is an important consideration. During this lead up to the first summer,
the student can be given papers to read, even if what they digest of the content
is limited, the experience should foster questions on the part of the student, and
lead the faculty member to help identify those skills that can be developed part
time during the preceeding academic semester. Since the topics of data acquisi-
tion and analysis discussed in the first part of this chapter are typically handled
through a software platform such as MATLAB or IDL, it is an excellent time to
give the student the opportunity to familiarize themselves with these packages,
and both have manuals or have associated texts that lend themselves well to use
as tutorials. Sample data from a prior investigation can be given to the student to
develop an understanding of the skills laid out in this and other chapters in this
volume.

During the first summer, the student should be given a project with a definite goal,
and in soft condensed matter systems this can take a wide variety of manifestations
depending on the student’s abilities and the laboratory’s needs. Everything from
writing a small bit of code to prototyping a new experiment can give the student
a better understanding of the demands of doing research, as well as the members
of the research group the opportunity to mentor, encourage, and guide a student
to a goal which will contain both failures and successes along the way. With
undergraduates, one may find that after the first project has been completed, and
the student has come to a better operational understanding of either the work done
in that research group, specifically, or their major discipline, in general, that they
decide they want to work on something different. In this regard, REU programs are
excellent short-term programs for such experiences. Because one of the possible
outcomes of the first summer is that a student decides they want to do something
else, it can be decided not to invest the time in mentoring undergraduates. If
committed to supervising undergraduate research, this must simply be accepted as
a potential outcome.

The discussion here will continue, however, under the assumption that the first
project has left the student eager to do more. Hence, there often exists within
the first summer the time to begin to develop the student’s own investigation,
whether this is a new experiment, a different set of experiments on an existing
apparatus, or development of the background information on a project that has not
yet been pursued in the research group at all. Again, the particular strengths and
interests of the student and mentor should come together to chart the course the
research endeavor will take. In the author’s laboratory, the first summer is often an
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opportunity for the undergraduate student to apply the training on image acquisition
and analysis to a pilot project of interest within the lab. The undergraduate is
closely supervised to make sure that frustration does not arise from insurmountable
roadblocks in the investigation. The author has discovered that this is an important
stage of the undergraduate’s development in the laboratory.

Due to the larger amount of experience and knowledge, a faculty member,
postdoctoral fellow, or graduate student may be able to see in advance the pitfalls
to the student’s approach to a problem. There is an almost natural reflex in these
situations, to help the student by saving them the time of going down an avenue
that will not pay off. It is the author’s belief that this reflex should be suppressed,
to a degree. Allow the student to develop their own experiences, which may mean
failure, as experience often does. Point the undergraduate student in the correct
general direction and do not let them languish in one failure after another for too
long, but do not give them the answer, or part of their professional development
will be subverted. By all means, continue to ensure their safety and the safety of the
equipment in the lab by training and supervision. However, as one supervises more
and more undergraduates, one develops a library of common guesses that students
make about how best to solve a problem. When the avenue is correct, encourage
them by complimenting their intuition. When the avenue is not correct, commiserate
with them that they are not the first or only student to make that bad guess. From
time to time, these common mistakes will even become signposts for a mentor
about a student’s development, helping to gauge how well they are developing
their problem-solving skills. If a student begins to languish, offer the benefits of
experience, but try to temper the desire to simply give them the answer. Use the
same pedagogical skills developed in the classroom to ask questions to answer their
questions, rather than simply supplying them with the answers. This process is not
as completely negative as the cautions above might imply. The author has often
been impressed by some of the novel techniques that his undergraduate colleagues
have developed to solve a problem of image analysis from a fresh perspective.
The author has also noted an effect of critical mass in the research group, when
three or four well-trained undergraduates will begin to develop their own skills of
interacting with each other to help solve issues with their image analysis algorithms.
As with the similar observations in classroom experiences [62], these peer-related
teaching moments in a research setting are a boon to the learning environment.

This is obviously a time-consuming process and one reason why it is not pursued
by everyone and may not be for everyone. Remember that journal articles are
only one product of a research laboratory. The other significant product is the
professional development of the lab’s members [60]. Both of these outputs benefit
the larger scientific community. No matter how busy a lab is, there is always more
to do than there is the time to investigate; ancillary or side projects of developed



272 Experimental and Computational Techniques

research efforts are good fodder for an undergraduate project, especially if they
are being mentored by a postdoctoral fellow or graduate student responsible for
the primary investigation to which the project is attached. By the end of the first
summer, the synergy between the mentor and the student should allow for the
identification of the particular project that the student will pursue. Depending
upon the obstacles, the end of the first summer may actually result in some data
acquisition on the student’s project, but it should at least achieve the design of
the experiment. This minimal goal for the end of the first summer is important
because when the next academic year begins, the student’s focus will shift back to
their classroom requirements. While full-time students may not have the ability to
devote significant investments of time in the research lab during the academic year,
it is important to keep the momentum going from the first summer.

If the first summer resulted in only training and the background understanding
for the experiment, the academic year that follows it should focus on the design
and construction of the experiment. The guidance of a student in the design of
machined parts is an important skill, but one that should be handled through several
iterations of the drawings and conversations with the mentor about the pitfalls of the
design, rather than the actual physical construction of incorrect or badly designed
machined parts. Many institutions are fortunate to have extremely skilled and
experienced machinists who have the patience to work in an advisory role with
less-experienced students. The academic year should continue with moving the
design and modification of the project forward in anticipation of hitting the ground
running in the second summer, taking data and doing the necessary analysis to
prove the robust nature of the project’s results.

If the first summer resulted in the actual construction of a new experiment,
or ownership of a previously constructed experiment by the undergraduate, then
the academic year following the first summer experience is related but somewhat
different. There may be modifications necessary to the existing experiment to allow
for the particular study on which the student will focus or the adjustment or removal
of part of the experiment that is resulting in an undesirable artifact in the data. If
the student has progressed to this point before the end of the summer, then the
reduced time available during the academic year is valuable time to allow the
student to explore the phase space accessible by the experiment, and in the author’s
experience this has resulted in several serendipitous discoveries. Even working in
the lab for as little as an hour each day is often enough to maintain momentum,
albeit at a slower pace, during the academic year. Ultimately, the benefit of this
reduced effort is to avoid losing time in a subsequent summer to a repetition of the
learning curve.

In either course, the second summer should focus on the acquisition of the
pristine data from the experiment, optimized for the apparatus and techniques,
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and careful to avoid experimental artifacts with which the student may be less
familiar. While the student is more experienced in the second summer, and may
be able to work for longer periods of time with less supervision, it is important
to monitor their progress so that they are not going down fruitless avenues of
exploration. This second summer is important as it will typically occur between
the junior and senior year, although an advanced undergraduate may be between
their sophomore and junior year. An important goal for the end of the second
summer is for the student to have collected sufficient data with which to proceed
with their analysis and authorship of the results to be published in a journal. The
academic year after the second summer is an excellent period of time to pass such
a manuscript back and forth between the student and the mentor, and may also
serve as part of the undergraduate’s senior thesis if they are involved in such an
endeavor.

Some students either arrive with enough advanced preparation or end up pursuing
their undergraduate degree over a longer period of time such that a third academic
year and a third summer of association with the laboratory is an option. In such
cases, the student may now be able to work as independently as an experienced
graduate student would, with a nearly complete understanding of the investigation.
In such instances, a second paper may be obtained from further data acquisition
and analysis, and having the undergraduate present results at a professional meet-
ing should also be encouraged. The additional year may be used to the benefit
of the research group by having the undergraduate student hand the investigation
over to a graduate student who will have the time to devote to a longer study
of the system. Finally, the third year may be used to encourage and develop the
undergraduate’s own mentoring skills by having them supervise a new under-
graduate student researcher who will assume the responsibility for continuing the
investigation.

10.6.2 Student outcomes

If an undergraduate student and a mentor in a research laboratory are going to
make the deep investment of time, the outcome of the effort should be at least
one refereed journal article. However, if the student is not working on something
that will result in a journal article over this period of time, it should only occur
because both the student and the faculty member were clear that the goal was
some sort of hands-on experience that was desired by the student, such as learning
how to program, learning lab protocol, etc. However, such experiences can be
accomplished over the course of a single summer, and again, REU programs are an
excellent option for these goals. For the rubric described here, the goal should be a
journal-publishable paper. Every school can offer research courses, and universities
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can encourage students to work on a senior thesis, but a refereed journal article is
the “coin of the realm” that reflects the standard of peer review by the community.
While the mentor may invest more time in writing the paper, the student should
be encouraged to write the first version of the paper, if for no other reason than to
ensure that the mentor can understand both what the undergraduate researcher has
assimilated as well as to discern any misunderstandings between how the faculty
member thought the experiment was being pursued and what the student actually
did.

The author has been fortunate to supervise several undergraduates in research
that resulted in refereed journal articles [33, 47, 48, 63–65]. In each case, the stu-
dents joined the lab after either their sophomore year, or in certain cases where
they already had advanced college credit for the introductory physics sequence,
after their freshman year. The students began with a set of tutorials to be exposed
to the data acquisition and analysis software packages in order to understand the
issues discussed in optimizing image analysis as outlined in the example. After
learning the basics of image acquisition and analysis with a test system, each of the
students began a design phase of their research project, which included tailoring
the general image analysis algorithms to their particular research application. In
some cases, the modifications included clusters of individual micron-sized parti-
cles [63], tracking a single particle over a continuous set of 100 000+ images to
investigate a dynamical system [33], and tracking pairs of connected particles [64]
or longer structures with a set number of particles in the structure [65]. The stu-
dents would often improve upon the general tracking algorithms with innovations
specific to their needs. For instance, in a couple of the latter cases [33, 65], unlike
granular gas experiments, where an ensemble sample could be obtained via several
measurements, the demands of the particular investigations demanded the track-
ing of a single particle or a set number of particles in every frame. Variations in
lighting would sometimes result in a failure to identify the single particle or the
set number of particles in every frame. The students would introduce their own
innovations to the basic tracking programs, allowing the software algorithms to
self-correct by looping through images with variations of the tracking parameters
until the proper number of particles were properly identified and accurately refined.
More recently, in the work associated with the sample data shown in this chapter, a
hybrid approach of two types of particle tracking were implemented by the student
to track two different species of particles in a single experiment [47, 48]. In each
of these examples, the students moved on to successful graduate programs with
research skills and a better understanding of the role of research in their career
paths, which did not necessarily continue in the same scientific discipline as their
undergraduate work. Nevertheless, their professional development was advanced
through the experiences.
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Structure and patterns in bacterial colonies

nicholas c. darnton

11.1 Introduction

Though the movement of a single, isolated bacterium is reasonably well under-
stood, when a large number of interacting bacteria are put together they produce
beautiful and often complex phenomena. “Large” here typically means from 106

to 1012 individual cells: a small population by thermodynamic standards, but cer-
tainly unwieldy for any except statistical descriptions. Even restricting ourselves
to the simple system of bacteria moving on or in solidified agar plates, the colony
structures produced are surprisingly rich. In dilute solutions, swimming cells move
independently, interacting with each other through their common consumption of
a reservoir of nutrient. A point source of swimming cells expands in concentric
rings as successive waves of bacteria chase gradients of nutrients, sometimes con-
densing into regular geometric patterns by chasing self-generated gradients. More
concentrated solutions of swimming cells interact hydrodynamically through the
fluid, producing large-scale swirls reminiscent of turbulence. This swirling occurs
in two-dimensional surface motility as well, where uncorrelated motion turns into
large-scale swirling as surface density increases. At extremely high density, bacte-
ria jam and stop moving, as occurs in colloids. These high densities occur naturally
on hard surfaces, where colony expansion is driven by cell growth rather than
by motion; as the surface property becomes softer and wetter and bacteria begin
to move, the resulting colonies change from fractal-like to radially symmetric
and finally to a form dominated by a fast-growing, single-cell-thick outer layer.
In this chapter, we will describe these phenomena, introduce some mathematical
models that attempt to reproduce these behaviors, and present experimental tech-
niques that are being used to measure colony properties beyond the simple visible
structure.
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Most bacteria can actively move through their environment, at least under some
growth conditions. Though the method of locomotion may vary, particularly when
cells grow on surfaces [1], the most common and best-studied form of propulsion
uses bacterial flagella. Bacterial flagella (not to be confused with eukaryotic flag-
ella) are thin helices, each connected to a rotary motor, whose rotation propels a
cell forward. The mechanical characteristics of the motor and of flagella are well
known [2–7]. Flagellar propulsion occurs at low Reynolds numbers, so the physics
of an isolated, swimming bacterial is understood [8–11]. Bacteria can change the
operation of their flagellar motors in response to environmental cues, swimming up
(or down) a gradient of chemical attractant (or repellent). This behavior, known as
chemotaxis, is best understood in Escherichia coli, which modulates the probability
of reversing its motors in order to navigate. The phenomenology of chemotaxis, its
formal mathematical correspondence to a biased random walk, and the biological
control circuitry that produces it, are all well characterized [12–15].

The first experiments describing colony morphology were limited to quantifying,
or at least describing evocatively, colony shapes and growth rates that were visible
by eye or by microscope. Biophysical models tried to reproduce the observed
phenomena using reasonable approximations to the underlying physics and biology.
Experiments are now beginning to look beyond simple optical microscopy to probe
subtleties of the colony structure and to validate predictions of the models.

We start with a description of bacterial colony growth and of the likely underlying
physics. This entire range of population behavior can be accessed in the laboratory
by varying the conditions of growth in a simple agar plate. The extremes of pattern
formation in low agar plates (dilute populations governed by motility alone) and
colony morphology on high agar plates (dense populations governed by growth
alone) are the oldest studied and the best understood. The intermediate regime of
swarming on medium agar plates (rapid surface colonization depending on both
growth and movement) contains the most interesting biology and is currently the
most actively researched.

11.2 Phenomenology of bacteria in and on agar

Agar plates are produced by gelling solutions of a seaweed extract in a nutrient
broth. They provide flat, featureless surfaces that allow simultaneous access to air
(from above) and to water and nutrients (from below). The gelled agar forms a
random cross-linked network with a typical pore size that increases as the con-
centration of agar decreases. When the average pore size is larger than the size
of a bacterium (roughly 1 µm for the species of interest here), cells can swim
through the agar matrix; when the pore size is smaller than a bacterium, cells
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(a) (b)

Figure 11.1 (a) Traveling chemotactic waves produced by E. coli consuming
glucose and galactose [16]. (b) Aggregation pattern produced by chemotaxing
E. coli [17]. Both patterns are photographed from above the Petri dish with oblique
illumination from below. Contrast comes from the slight index of refraction
difference between cells and medium; these should be considered only semi-
quantitative measures of population density as a function of position. (Reprinted
from (a) Science 153, p. 708 (1966) with permission from AAAS; and from
(b) Nature 349, p. 630 (1991) with permission from Macmillan Publishers Ltd.)

grow only on the surface of the agar.1 Low agar concentrations (a few g/l) produce
semi-solid plates that resemble soft gelatin; high agar concentrations (10 g/l or
higher) act as hard surfaces. Agar is not metabolizable by bacteria; it simply serves
as a mechanical support that prevents bulk motion of the broth. From a practical
standpoint, this is convenient because it prevents sloshing and mixing of colonies
when a plate is moved; from a physics standpoint, this produces large volumes of
fluid where advective flow is abolished. When pore sizes are large and bacteria
can swim through the agar plate, cells effectively swim freely in three dimensions,
except that the agar matrix prevents bulk entrainment of the fluid by the moving
bacteria.

11.2.1 Chemotactic patterns

In a low-density agar plate that supports swimming, point inoculation at the center of
the plate produces concentric waves of spreading bacteria, as seen in Figure 11.1(a)
[16,18]. Cells consume the most metabolically accessible carbon source, depleting

1 Unfortunately, historically extremely low agar plates that support free swimming were called ‘swarm plates’.
This conflicts with the modern usage of the term ‘swarming’ to refer to surface motility (as in Section 11.2.3)
and risks confusing the reader about swimming and swarming phenomena.
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it in the center and creating a gradient that is followed outward by chemotaxis.
The population that is left behind eventually converts over to metabolizing another,
undepleted carbon source, and the cycle begins again; in the experiment pictured
in Figure 11.1(a), the waves consume first glucose and then galactose, the two
sugars added to the minimal medium of the agar plate. Similar waves occur in
a one-dimensional system of bacteria migrating in a sealed capillary tube [19];
the physics of the one-dimensional system is arguably simpler, but the biology is
more complicated since oxygen consumption by bacteria causes an additional wave
due to aerotaxis, and the dominant metabolic process with and without oxygen are
different. The entire process takes hours to days.

In E. coli, these expanding rings are unstable under some conditions, collapsing
into small aggregates which leave behind beautiful, complex, and often highly sym-
metrical patterns, as seen in Figure 11.1(b). Microscopic observation of the traveling
wave clearly shows the radially expanding front becoming unstable and condensing
into islands of cells distributed regularly along the circumference [20, 21]. Rings
and points have been observed in many species, including E. coli [17, 20, 22],
Salmonella [23, 24], and Pseudomonas [25]. The pattern formation process varies
somewhat from species to species; for instance, Salmonella typhimurium initially
expands in a relatively uniform bacterial lawn, within which form stationary rings
which subsequently break up into a symmetrical pattern of point-like aggregates,
while E. coli produces expanding rings that leave behind point-like aggregates in
their wake. In E. coli and S. typhimurium, aggregation can occur in liquid medium
(without agar), though the resulting patterns are less ordered than those produced in
agar [17, 24]. Since non-chemotactic (but otherwise normal) bacteria cannot form
any of these patterns, the phenomenon must require chemotactic communication
of some kind; for instance, the pattern in Figure 11.1(b) results from chemotaxis
towards aspartate excreted by the bacteria themselves. A typical pattern requires
several days to develop fully.

11.2.2 Colony morphology

At agar concentrations above a few g/l, bacteria cannot fit through the pores in the
agar matrix and are restricted to the plate’s surface. At the highest agar concentra-
tions (above around 10 g/l) they cannot even move. On these hardest plates, a point
inoculant expands into a macroscopic colony by simple cell growth: as bacteria
grow and divide, the colony expands in height and girth. As the agar concentration
is lowered, bacteria begin to move on the surface, though they are still prevented
from entering the plate’s interior by the small agar pore size.

Qualitative descriptions of the shapes of growing bacterial colonies date back
more than a century, but the Matsushita lab’s experiments on Bacillus subtilis



Structure and patterns in bacterial colonies 283

C
on

c.
 o

f n
ut

rie
nt

 [g
/1

]

(a) (b)

20
40

20

10

5

2

1

0.5

10

5

2

1

0.5

0.2

C
on

c.
 o

f n
ut

rie
nt

 [g
/l]

C
on

c.
 o

f n
ut

rie
nt

 [g
/l]

1/15 1/15 1/10 1/8 1/7 1/6 1/5 1/41/10 1/8 1/7 1/6 1/5 1/4
1/(Conc. of agar) [1/(g/l)] 1/(Conc. of agar) [1/(g/l)]

disk-like

35°C 90mm

DLA-like

DBM

Eden-like

Eden-like

ring-like

DBM

E. coli pH7.8
37°C, 90%

DLA-like

ring-like

B. subtilis

Figure 11.2 Phase diagrams of (a) B. subtilis [26] and (b) E. coli [27] on agar plates,
as a function of the hardness of the agar (abscissa) and of the initial amount of
nutrient (ordinate). In the hashed or gray areas between shapes, the observed colony
may produce either morphology or switch between morphologies. (Reprinted from
(a) Physica A 249, p. 517 (1998) with permission from Elsevier; and from (b) J.
Phys. Soc. Japan 78, 074005 (2009) with permission from the Physical Society of
Japan.)

prompted modern efforts to map and explain the morphological phase diagram
[28–35]. A typical Bacillus phase diagram is shown in Figure 11.2(a); it is
similar to the morphological phase diagram for other related species, such as
E. coli (Figure 11.2(b)). Such diagrams generally contain four or five phases: (1)
the diffusion-limited-aggregation-like morphology (DLA-like) at high agar and
low nutrient concentrations; (2) the dense, rough morphology (Eden-like) at high
agar and high nutrient concentration; (3) the dense, branching morphology (DBM)
at low agar and low nutrient concentration; (4) the dense, round morphology
(disk-like) at low agar and high nutrient concentrations; and (5) the concentric
ring morphology (ring-like) between the Eden-like and disk-like morphologies.
Cells in the DLA-like and Eden-like colonies are nonmotile. As agar concentration
decreases, moving to the right in the phase diagram, cells become free to move on
the agar surface. The resulting transitions between colony shapes, namely DLA-like
to DBM and Eden-like to ring-like to disk-like, are entirely due to increasing cell
motility. The most direct evidence for this is that nonmotile Bacillus mutants do not
produce the ring-like, disk-like, or DBM morphologies [28]; that is, the nonmotile
phase diagram contains only two colony types (DLA-like and Eden-like) and has
no dependence on agar concentration. In practice, even at low-agar concentrations
only cells on the colony periphery are motile; cells in the interior usually revert
to a nonmotile, vegetative state. Though the locations of the boundaries between
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(a) (b)

Figure 11.3 DLA-like colony morphologies for (a) B. subtilis [33]; and (b)
E. coli [27]. The edge of the 88 mm Petri dish is visible in both images. These
photographs were taken twenty days and one month after inoculation, respectively.
(Reprinted by permission from (a) J. Phys. Soc. Japan 58, p. 3875 (1989); and
from (b) J. Phys. Soc. Japan 78, 074005 (2009) with permission from the Physical
Society of Japan.)

phases may differ, the general features of this phase diagram are similar in close
relatives of B. subtilis and E. coli, such as Serratia and Salmonella.

The low-nutrient, high-agar portion of the phase diagram is particularly robust.
Not just B. subtilis (summarized in [34]) but many other bacteria [27, 28, 31–33,
36–42] produce DLA-like colonies. The spreading colony produces a self-similar
structure, with the area covered, A, obeying a power law with size l: A ∝ lα

for distances ranging over several orders of magnitude. The fractal dimension
α of a DLA-like colony is typically around 1.7 [34], which is consistent with
classical two-dimensional diffusion-limited aggregation. Though many DLA-like
colonies have a fractal mass distribution at any particular time, so that the colony is
always instantaneously self-similar, the fractal dimension may change with time –
usually increasing towards the DLA limit of 1.7 – as the colony expands [43, 44].
DLA-like colonies have the qualitative fine-branching structure associated with
diffusion-limited aggregation: an arm grows by intercepting incoming material,
which prevents nearby arms from growing, producing characteristic gaps between
arms on all distance scales. This is seen qualitatively in Figure 11.3. The occasional
slight quantitative discrepancy between colony shape and DLA theory are probably
due to the bacterial colony being imperfectly two dimensional: (1) the colony is
not flat, as it is normally slightly thicker towards the center of each arm and
towards the center of the colony [33]; this is not captured by two-dimensional
DLA simulations and is largely ignored by the traditional method of extracting
the colony’s fractal dimension, which reduces a photograph of the colony to a
binary image and assigns areal coverage based on the presence or absence of cells



Structure and patterns in bacterial colonies 285

rather than their total surface density, and (2) the diffusion of nutrients occurs in
the bulk agar; the agar is typically several mm thick, so nutrient transport in the
third, vertical, dimension is not negligible for early, small colonies or for fine arm
spacing.

The fractal dimension is only a single measure of morphology and does not
capture all important structural details. For instance, some filamentous colonies
(which are typical of fungi) have similar fractal dimensions near 1.7, but their
structure is clearly different. They lack the screening effect in fractal colonies:
filamentous arms cross each other and sometimes intersect, whereas in DLA,
arms are mutually repulsive because they competitively deplete the local nutrient
supply. Fractal scaling laws have been found in three dimensions in growth [37]
and flocculation of bacteria, as analyzed though direct imaging and through small-
angle light scattering [45]. Flocculation more closely corresponds to true DLA
(cells diffuse and then aggregate), as opposed to DLA-like colony growth, which is
more accurately described as diffusion-limited reaction (nutrients diffuse and then
‘react’ to form bacterial cells).

The Eden-like colony, which occurs at higher nutrient levels, is named for the
model of Murray Eden [46]. This two-dimensional model ignores cell motility and
differentiation, examining the possible shapes of colonies that grow exclusively by
cell division according to simple laws for where and when cells may reproduce.
In particular, the model assumes that division rates are determined endogenously,
by cell processes, rather than by cells’ limited access to nutrients (as occurs for
DLA-like morphologies). The Eden model typically produces colonies that are
approximately radially symmetric and have significant surface roughness. Extend-
ing the fractal measure of colony roughness to the Eden-like colony, Matsushita
et al. [26] examined the roughness of the Eden-like colony boundary explicitly.
They measured the standard deviation W of the boundary width as a function of
size L, and found a scaling law W ∝ Lα with α = 0.78. Unlike DLA-like colonies,
where many bacteria are found to obey the same scaling law, it is unclear to what
extent this scaling holds for other strains under similar conditions.

11.2.3 Swarming

When swimming bacteria are grown on a medium-density agar plate (typically
around 0.5% agar) with copious nutrients, they swarm. These conditions provide
plentiful access to nutrients (allowing rapid growth), and to water (allowing motil-
ity), but the agar pore size is just small enough to prevent bacteria from leaving the
surface. After an initial lag period required to turn on swarming genes, the bacteria
spread out in a shallow, highly motile layer, covering the surface in a matter of
hours. Swarming cells are long (generally multinucleate, resulting from delayed
septation), hyperflagellated, and extremely motile.
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The swarm consists of a thin, highly motile outer layer with a well-defined edge.
The outermost boundary is paused cells: cells that have swum too far onto agar, into
an environment that is not sufficiently wet. Inside the boundary is a large monolayer
of moving cells that can extend over centimeters radially; eventually, a second layer
of moving cells assembles on top of the monolayer, followed by a third, etc. as the
swarm thickens. The cells in each layer are in constant motion, and the boundary
between successive layers moves slowly outward in concert with overall swarm
growth. The boundary of a layer is a dynamically stable structure resulting from
continuous, vigorous population exchange between different strata. Toward the
center of the swarm, cells return to the shorter, nonmotile vegetative state.

In addition to the direct physical manifestation of the swarm phenotype
(increased length and number of flagella), swarm cells often produce a wetting
agent, usually a surfactant of some type. For instance, the surfactants in Serra-
tia (serrawettins [47]) and Bacillus (surfactin [48]) are known. Loss of surfactant
dramatically decreases swarming proficiency in Bacillus [49, 50] and laboratory
strains of E. coli do not make surfactant, which is probably why they are such
picky swarmers [51]. Surfactants act mainly to maintain surface wetness, which
in turn allows cells to swim in the very shallow (often only one cell deep) layer
of fluid on the surface of the plate. Increased slime production alone can allow
swarming even without the elongation and hypermotility usually present in the
swarm phenotype [52]. The onset of swarming is caused by high bacterial density
(usually detected by quorum sensing agents [53]), availability of water, nutrients
and oxygen, and a viscous environment. In quorum sensing, cells excrete chemical
messengers in the medium; if the overall extracellular concentration of these mes-
sengers rises above a threshold (signaling a large number of cells in a confined
volume), cells respond by activating density-dependent groups of genes. Depend-
ing on other environmental factors, these can lead to either swarming or biofilm
formation.

The most famous swarmer is Proteus mirabilis, which has the above discussed
swarm characteristics of elongation, multinucleation, hyperflagellation, and surfac-
tant production, but also synchronizes its differentiation and consolidation along
the entire colony front, from vegetative to swarmer cells and back. Old fronts are
left behind as terraces in the colony, while successive phases of expansion, occur-
ring at roughly hourlong intervals, expand the colony boundary outward in steps of
roughly 2 mm. This time synchronization is more complicated than the monotonic
swarm expansion seen in other species, and Proteus swarming has developed into
its own sub-discipline: early quantitative efforts include Rauprich et al. [54], who
examined parameters such as lag time and reconsolidation intervals as a function
of agar concentration, temperature, and other environmental variables.

Swarming occurs at a self-maintained high bacterial density, close to 50% of the
close-packed surface density. It is possible to artificially confine high of densities
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bacteria in thin films [55,56]. These systems show some of the properties of swarms,
in particular swirling motions on length scales 10 to 100 times larger than the size
of a bacterium.

Swarming is technically defined as rapid surface translocation driven by flagella.
Though the bodies of most cells are apolar, in that there is no geometrical way to
define the head and tail of the cell, this symmetry can be broken by the location
of a cell’s flagella. There are modes of flagellation that mark one end of a cell
as geometrically distinct: polar flagellation (a single flagellum at one end of the
cell) and subpolar (a tuft of several flagella at one end of the cell) modes uniquely
define the tail of a cell. In contrast, in peritrichous flagellation many flagella are
distributed uniformly, and probably randomly, on the cell surface.

Interestingly, all bacteria that swarm are peritrichously flagellated. In fact, some
bacteria possess both polar and peritrichous modes of flagellation; they use a single
polar flagellum for swimming but switch to (or add) many distributed flagella for
swarming. This behavior has been most noticeably reported in several species of
Vibrio, but it also occurs in many other bacteria: see references in McCarter [57]
and in Kirov [58] for further examples. Peritrichous flagellation allows cells to
produce more flagella, since additional flagella can be manufactured and inserted
anywhere on the cell surface. More flagella presumably increase the swarming
cells’ speed, and speed is crucial for the colony to quickly colonize a surface,
but quantity alone may not explain the correlation of peritrichous flagellation with
swarming. When a peritrichously flagellated cell swims, its flagella trail behind it
and assemble in a rotating, phase-locked bundle (or in several braid-like bundles
if the cell body is longer than the flagella themselves). The location of the bundle
dynamically defines the tail of the cell, and this polarity is maintained as long as
the cell keeps moving.2 Because the bacterium itself is fundamentally apolar, if
the bundle is disrupted it can reform at the other end of the cell body, effectively
flipping the previous roles of head and tail. This occurs when a cell slows or
stops, usually because it encounters an obstacle or because too many of its motors
reverse [59]. The punctuated polarity associated with motor reversal in bundles
of peritrichous flagella appears to be necessary for successful swarming, since
mutants whose motors are locked in a single direction of rotation (either clockwise
or counterclockwise), and which therefore cannot reverse direction, are unable to
swarm [60]. A monoflagellated cell that occasionally reversed its motor would have
similar intermittent polarity flips; in practice, however, a monoflagellate’s motor
slows or stops when it tumbles, but never reverses [61].

In swimming cells, independently operating flagella coalesce into a bundle, so
one might also expect co-bundling between the flagella from neighboring cells.

2 Under normal conditions flagella push a cell, so the point of attachment of a flagellum becomes the trailing end
of cell body. There is no physics constraint that prevents a cell from pulling itself forward – it could do so by
reversing the direction of rotation of its flagellum – but this almost never occurs.
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Figure 11.4 A swarming E. coli in the process of colonizing an agar plate. The
swarm extends about three quarters of the way across the dish, starting from the
inoculation site near the lower edge of the Petri dish. This image was taken after
overnight incubation. The edge of a swarm of this size typically advances at around
5 µm/s. (Image courtesy of Linda Turner.)

This would only happen if the cells were close together, such as in a swarm, which
could explain why swarming flagella assemble into rafts or groups. Co-bundling
is suggested by EM images of fixed cells (such as Figure 11.4); however, direct
observation of the fluorescently labeled flagella of live swarming cells revealed
little co-bundling, perhaps because bundling relies on the twisting up of flagella
attached to the same, counter-rotating cell body [62].

11.2.4 Comments

The ability to make precise statements about the spatial and temporal patterns of
developing colonies has suffered from the poorly defined nature of agar and of the
media used in experiments. This undoubtedly stems from agar’s historical role as
a substrate for bacterial cultivation rather than as an analytical tool. Agar itself is a
poorly defined and understood substance: its primary purpose is to provide a large-
pore structure that provides easy diffusive access to the nutrients of the growth
medium while preventing bulk motion. In the long run, the use of chemically
defined media [63] and synthetic surfaces to replace agar [64] will provide more
reproducible and more easily interpretable results; see Julkowska et al. [65] for one
such example.

11.3 Modeling

The analysis of almost all of these experiments presume that self-generated gra-
dients within the agar matrix or within the developing colony are responsible for
the resulting structures. The gradient may be in one or more dissolved nutrients
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(often a carbon source), oxygen availability, or in a waste product. The role of
the gradient is demonstrated indirectly by comparing the observed colony shape
to predictions of a reaction–diffusion–chemotaxis theory. Direct observation of
the gradient is rare, though the group of Wimpenny has systematically examined
spatial variations in pH [66–68], oxygen [69,70], and pyruvate [71] in conjunction
with colony growth. Still, experimental validation of the gradients that figure so
prominently in models is scarce.

Bacteria adjust their gene expression in response to environmental conditions,
which provides an obvious mechanism for generating a physiological pattern.
Physical changes in cells are often invisible to the experimenter, however, who
may only detect total cell density or, even more often, just the location of the
colony edge. When physiological changes are extreme enough, they are consid-
ered to correspond to distinct phenotypes; for instance, the differentiation into
swarmer cells. Many models introduce such a binary phenotype switch. Some phe-
notypic variation is abrupt and discontinuous and can be traced to a binary genetic
regulatory circuit, especially in the case of extreme phenotypical variations like
swarm cell differentiation [72,73], but in many cases a binary switch model of cell
activity is an oversimplification of a complex and continuous process of differen-
tiation. Efforts to model bacterial populations are driven by an analogy between
the phenotypic pattern in a growing colony and cell differentiation in a developing
organism [74, 75]. Bacteria colonies are seen as simple versions of multicellu-
lar organisms [76], or more fancifully as teams [77], communities [78], or even
societies [79].

11.3.1 Chemotactic patterns

The chemotactic bands of Figure 11.1(a) are qualitatively described by a reduced
version of the Keller–Segel equations [80–83]:

∂b

∂t
= �∇ · (Db

�∇b − �Jch) (11.1)

∂n

∂t
= Dn∇2n − c(b, n) (11.2)

�Jch = bχ (n) �∇n, (11.3)

where b is density of bacteria and n is density of a nutrient substrate that func-
tions as an attractant. Bacteria and nutrient diffuse with diffusion coefficients Db

and Dn, respectively. Db is a macroscopic expression of run-tumble behavior by
chemotaxing bacteria; in principle it could be non-constant (for instance, depend-
ing on n), but for swimming bacteria the dependence is small and can be neglected.
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The last term in Equation (11.2) represents consumption of the nutrient at the rate
c(b, n). Since the nutrient consumption rate is proportional the number of bacteria,
we expect that c(b, n) = c̃(n)b. Bacteria sense and respond to the nutrient, moving
(on average) with a chemotactic speed, also called the drift velocity, that depends
on the spatial distribution of n. This drift velocity can be generally written as
�vch = χ (n) �∇n, where the entire complicated chemotactic response of bacteria is
placed in the chemotactic coefficient χ (n). This drift acts to advectively transport
the local bacterial density, producing the flux �Jch = b�vch in Equation (11.3). The
sign of the flux term is reversed for a repellent.

The exact form of the chemotactic coefficient χ (n) depends on assumptions
about how the cell detects its environment. From a purely modeling perspective,
one can search for the simplest form of χ (n) that produces reasonable-looking
traveling wave solutions to Equations (11.1)–(11.3). This is largely a mathematical
question; it may be answered precisely as such, but often at the expense of bio-
logical plausibility. For instance, Odell and Keller [81] prove that, if the bacterial
population in the wake of the wave is to be zero, χ (n) must be singular. This is
necessary to produce strong enough chemotactic attraction that the pulse of bac-
teria moves as a group, without leaving any stragglers behind. In reality, there is
a population left behind after the wave passes; these stragglers are precisely the
individuals that are responsible for the second wave, as seen in Figure 11.1(a). This
possibility is rejected by Odell and Keller because, without a growth term in Equa-
tions (11.1)–(11.3), any residual population left behind would deplete the bacterial
pulse, which is not consistent with a traveling wave solution. Despite misgivings
about the form of χ (n), this simple reaction–diffusion–chemotaxis system, with
only one reaction term, two diffusion terms, and one chemotaxis term, reproduces
the phenomenon of traveling chemotactic bands and matches the observed front
speed reasonably well [80, 82], even without including diffusion [18]. Successive
waves in Figure 11.1(a) are generated by subpopulations of bacteria consuming
different substrates; to model this, the population b is split into separate subpopu-
lations bi , each consuming with its own substrate ni . Due to Equation (11.3), this is
not a linear system, and we do not expect the principle of superposition to hold. In
fact, colliding waves annihilate both in experiment and in simulation [84]; however
since it is the concentration gradients that annihilate during the collision, waves
chasing different attractants pass through each other unperturbed [85].

Equations (11.1)–(11.3) include diffusion and consumption of a nutrient (or
attractant) and chemotactic chasing of the resulting gradient. If cells can themselves
produce attractant, they can become self-attracting.3 To describe phenomena such

3 A self-attraction term is included in the original, full Keller–Segel equations, which sought to describe slime
mold aggregation, but is omitted from our reduced version of them in Equations (11.1)–(11.3) [83].
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as those in Figure 11.1(b), therefore, an additional production term is added to
Equation (11.2):

∂n

∂t
= Dn∇2n − c(b, n) + p(b, n). (11.4)

The traditional Keller–Segel equations make some assumptions about the form of
c(b, n) and p(b, n), namely that c(b, n) = c̃(n)n and p(b, n) = p̃(n)b. From the
modeling perspective, even the simplest functional forms (constant Db, c̃(n), p̃(n),
and χ (n)) can produce ‘chemotactic collapse’: the formation of delta-function
spikes in bacterial concentration in two dimensions [86]. This is not a strong
statement about the biological relevance, since many other choices of functional
forms also lead to spikes in density. These are arguably more physically plausible,
since in many cases the resulting density does not diverge; see Horstmann [87] and
Hillen and Painter [88] for reviews of modeling efforts.

Alternatively, one can encode as much known biology as possible in the func-
tions that specify substrate consumption and production (c(b, n) and p(b, n))
and describe chemotaxis (χ (n) and Db(n)) and compare the solutions of
Equations (11.1), (11.3), and (11.4) to experiments. Based on the binding properties
of chemoreceptors, a particular form of the chemotactic coefficient χ (n) is com-
monly used. In chemotaxis, a cell measures the time rate of change of attractant;
since the cell is in motion during this process, this effectively becomes a measure-
ment of the spatial rate of change of attractant. To first order, molecules of the
attractant bind to chemoreceptors independently, so that the fraction of chemore-
ceptors occupied f (n) obeys a noncooperative Hill function: f (n) = n/(K + n).
Assuming the rest of the signal transduction machinery in the cell simply acts
to amplify this signal,4 the eventual chemotactic velocity must be proportional to
�∇f . That is, �Jch ∝ b �∇f ∝ b/(K + n)2 �∇n; comparing with Equation (11.3), the
chemotactic coefficient is (up to a constant of proportionality):

χ (n) = 1/(K + n)2. (11.5)

In most cases, the process of forming chemotactic aggregates takes several hours to
days, so bacterial growth is not negligible. For this reason, the equation describing
the evolution of bacterial density acquires a growth term g(b, n):

∂b

∂t
= �∇ · (Db

�∇b − �Jch) + g(b, n). (11.6)

4 The signal transduction pathway extends from attractant binding through motor function to flagellar bundling.
It is an oversimplification to assert that a single noncooperative binding function captures the entire pathway,
including noninstantaneous adaptation responses, plus (because we are trying to model the swimming speed
that results) the hydrodynamics of propulsion with several independently controlled flagella. However, this
simplification has a kernel of biochemical justification, and should apply over a wider concentration range than,
for instance, a constant chemotactic coefficient.
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Typically availability of nutrient is not a limiting factor, but overcrowding can be,
so the growth term is often set to

g(b, n) = τ−1b(1 − b/b0), (11.7)

where b0 is the maximum bacterial density (the carrying capacity of the medium)
and τ is the bacteria mass doubling time, which is normally the time between
bacterial divisions: typically around two hours.

The production and consumption terms in Equation (11.4) are harder to derive
rigorously. In an initial model of chemotactic aggregation, Woodward et al. [24]
used Michaelis–Menton-like production and consumption terms, but were able
to reproduce aggregation only by permitting the nonphysical condition that sub-
strate consumption not be proportional to the number of bacteria. Later models
were more successful in using biologically plausible production and consumption
terms, but only by supplementing the model with additional coupled fields. For
instance, Brenner et al. [21] and Tyson et al. [89] divide the roles of nutrient and
attractant in two, positing two separate chemical species, each of which obeys
a reaction–diffusion equation similar to Equation (11.4). This has a biological
justification, since in reality the carbon source in spot-forming experiments is pro-
cessed into a separate chemoattractant (for instance, succinate into aspartate in the
experiments of Budrene and Berg [20]). It is reassuring that biologically plausible
functions for consumption, production, growth, and chemotaxis seem to require
both a nutrient and a chemoattractant, which agrees with the experimental observa-
tion that chemotactic aggregates form only under conditions where bacteria excrete
metabolic products that are chemoattractants. This highlights the crucial difference
between stable traveling waves (Figure 11.1(a)) and waves that collapse into point-
like aggregates (Figure 11.1(b)): the former occur in a medium containing several
nutrients (a different one for each wave) that are themselves chemoattractants; the
latter occur in a minimal, chemically defined medium, where the principal nutrient
is a negligibly weak attractant compared to the principal excreted by-product.

All these patterns are produced during free swimming, where the bacterial pop-
ulation is relatively dilute and the agar matrix prevents any bulk bio-convection, so
there is no appreciable direct interaction between cells. The bacterial population
moves coherently only because cells are consuming and detecting the same reser-
voir of nutrient. Each bacterium is performing normal chemotaxis on its own; in
that sense, these experiments are just complex versions of basic chemotaxis. The
great attraction of these experiments is that the fundamental chemotactic behavior
can be measured accurately in controlled chemotaxis assays, so there is direct data
to determine the form of the chemotactic flux in Equation (11.3). See Section 11.4.5
for references that translate from single cell data to population dynamics.

Equations (11.1) and (11.3) incorporate chemotaxis through the parameters Db

(the bacterial diffusion coefficient) and χ (n) (the chemotactic response). Just as
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kinetic gas theory predicts macroscopic properties from microscopic statistics,
one can calculate Db and χ (n) from a complete microscopic knowledge of the
swimming chemotactic behavior of cells. Substantial data on the trajectories of
swimming cells under different nutrient field conditions is available, and several
approaches to deriving macroscopic equations of motion for the bacterial popula-
tion have been developed. Some approaches start from cell-level information (such
as distribution of turn angles and of run lengths) [90–94]. Other approaches start
from the sub-cellular level, with the known biochemistry of the signal transduction
pathway, simulating the motor’s response to external stimuli, inferring the conse-
quences for the cell’s swimming motion, and finally calculating the macroscopic
consequences [95–97]. The latter approach has the advantage that responses can
be simulated under a wider range of stimuli than have been tested in cell trackers,
but this is much more computationally expensive and vulnerable to uncertainties
in more elements of the model. These practices are usually used to calculate the
population-level parameters Db and χ (n) in Equations (11.1) and (11.3), which
equations are then used to simulate aggregation as outlined above; one can, how-
ever, directly simulate individual cells responding to an attractant field, skipping
the continuum limit [22].

11.3.2 Colony morphology

Theories of the colony morphology phase diagram generally start from the Keller–
Segel equations supplemented with reaction–diffusion equations for nutrients and,
in more elaborate models, production of the superficial lubrication layer. By analogy
with chemical reactions, growth of cells is represented as conversion of nutrients
into new cells. The patterns seen are more complicated than simple reaction–
diffusion can produce because (1) cells may perform chemotaxis, which couples
cell flux to concentrations of other components, and (2) cell growth (or death) rates
depend on components in highly complex way.

11.3.2.1 Diffusion–reaction

The majority of diffusion–reaction equations that describe the various morpholo-
gies in the phase diagrams of Figures 11.2(a) and (b) follow a general pattern:

∂b

∂t
= �∇ · (Db(n, s) �∇b) + g(b, n) − d(b) (11.8)

∂n

∂t
= Dn∇2n − αg(b, n) (11.9)

∂s

∂t
= d(b). (11.10)
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This is essentially the diffusion–reaction–chemotaxis equations of the previous
section, with chemotaxis removed and another field, the spore density s, coupled
to the bacterial density b via a differentiation rate d(b). The principal property
of spores is that they are nonmotile – hence the absence of any diffusive term
in Equation (11.10). Here we have written Db(n, s) explicitly as a function of n

and s in order to emphasize that a nonconstant bacterial diffusion coefficient Db

is required in order to reproduce the morphological phase diagram.5 While the
bacterial diffusion coefficient previously had a good microscopic explanation (as
a result of the statistical nature of population movement in the run-tumble behav-
ior of chemotaxis), here Db represents cell-growth-independent colony spreading,
which may occur even without motility, as at high agar concentrations. The physical
mechanism of this spreading is unclear when there is no motility to drive it, and in
fact models typically choose the bacterial diffusion coefficient to be small (though
not zero) on hard agar surfaces where motility is low; increasing Db as agar concen-
tration drops is a way to encode the fact that bacterial motility increases with lower
agar concentration. The growth of bacteria g(b, n) is accomplished through the
metabolic conversion of nutrient with an efficiency of α (g nutrient)/(g bacterium);
hence, what had been a generic consumption term c(b, n) in Equation (11.4) is
now explicitly proportional to growth: c(b, n) = αg(b, n). The exact conversion
factor depends slightly on the nature of the nutrient, but it is roughly 3 (g nutrient)/
(g bacterium) [98].

As in the previous section, it is possible to reproduce the observed experimental
phenomena with fewer terms in the model if one is willing to make each term
more complicated and less biologically defensible. For instance, an early model
due to Kawasaki et al. [99] dispenses with the spore field s completely, but still
manages to reproduce the DBM-to-disk transition. Its growth/consumption term
is plausibly Michaelis–Menton: g(b, s) ∝ bs/(K + s), but bacterial diffusion is
increased heuristically by setting Db ∝ bn. The latter cannot be justified on physical
grounds, but it serves to restrict cell motility to the colony edge (where both b and n

are high), as is observed in experiments. Extensions of this model produce a DLA-
like morphology by requiring a minimal colony density so that different colony
branches remain separated [98]; this can be enforced by using highly nonlinear
(step-function) consumption/growth functions [100]: the lower cutoff is meant to
reflect that there are no infinitesimally small bacteria.

If cell differentiation is included, as in Equation (11.10), this will abolish
motility in the colony interior, which would otherwise gradually fill up the gaps
between branches. Still, unless a highly nonlinear growth term is adopted, a

5 In the previous section, the bacterial diffusion coefficient Db was generally assumed to be constant, though it
was not required by the models.
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non-constant bacterial diffusion is necessary to produce fractal growth, and in
any case Db must vary somehow to account for the morphological change with
changing agar concentration.

This nonphysical variation of the bacterial diffusion coefficient Db with agar con-
centration is critiqued by Pipe and Grimson [101], who instead develop a model
that includes height and growth throughout the colony interior. In general, the vari-
able bacterial diffusion coefficient required in many models can be explained as the
consequence of locomotion within a lubrication layer, whose depth is controlled by
a separate partial differential equation [98,102]. Since motility depends on surface
wetness, the depth of the surface film of water determines the amount of cell move-
ment and, therefore, the size of Db. The presence and importance of the lubrication
layer is clear from experiments, though it is less clear how it affects the bacterial
diffusion coefficient. A similar approach is taken by Lega and Passot [103–105]
who include reaction–diffusion for cells, water, and nutrients. This model includes
cell motility, which contributes an advective term to the cell-density evolution, and
prescribes the cell/fluid velocity as resulting from force balance at low Reynolds
number (propulsion, drag force, noise, and pressure (collisions)). This produces a
complete prediction of colony morphology; much of this information such as the
colony height as a function of position ought to be experimentally accessible, but
it is rarely reported in the literature.

Equations (11.8) and (11.9) in this section differ from Equations (11.1) and
(11.2) in the previous section principally by the inclusion of the additional growth
term g(b, c). Simple exponential growth (such as growth limited exclusively by
the bacterial doubling time) would have g(b) ∝ b; in practice, growth is usually
capped by setting g(b, n) ∝ b(bmax − b) to reflect the fact that the medium can reach
a saturation population density (also called its carrying capacity) bmax. Variations
on this growth-capping scheme are possible: a common method to limit growth
in the interior of the colony is to allow cells to transform to a dormant state: for
instance, Bacillus sporulates, producing a, nongrowing, nonmotile – for purposes
of colony evolution, effectively dead – field s, as in Equation (11.10) [106]. In
its simplest form, bacterial motility can be represented by an effective bacterial
diffusion term that depends on agar concentration [99], which reproduces the
transition from DLA-like to DBM to disk-like colonies. Matsushita et al. [26,107]
make this conversion from active to inactive populations dependent on nutrient
concentration; this modulation reproduces the ring-like colony morphology. These
formulations are biologically plausible, but the exact dependence of sporulation
rate on environmental conditions is unknown. Note that chemotaxis does not appear
explicitly in any of these equations: there is no chemotactic flux term analogous to
Equation (11.3). In the extreme high agar and low nutrient part of the morphology
phase diagram (the lower left corner of Figures 11.2(a) and (b)), bacteria do not
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move and the distinction between bacteria and spores in Equations (11.8) and
(11.10) vanishes.

In parallel with continuous models, there are models of individual cells that
prescribe behavior rules (for growth, death, and locomotion) and simulate colony
evolution. For instance, the walker model of Ben-Jacob [108–110], which assumes
that discrete spatial portions of the colony (coarse-grained chunks containing many
bacteria) transform from active to inactive states, affecting their consumption of
a continuously defined nutrient field. Ginovart et al. perform a more traditional
Monte Carlo model, simulating the growth and division of each individual cell
in the colony as well as individual nutrient particles [111]. A more recent model
posits two classes of cells, one associated with migration (motility) and proliferation
(growth), successfully reproducing the entire morphological phase diagram [112].
The biological relevance of these models depends on the behavior rules of their
cells; for instance, the model uses a characteristic time for differentiation to drive
periodic waves of colony expansion; this causes terrace formation and reproduces
the ringlike colony morphology, the most elusive of the morphologies [112]; how-
ever, there is little biological support for a biological clock in Bacillus and none in
other species.

11.3.2.2 Diffusion-limited aggregation

As its name implies, the DLA-like colony results from growth that is limited by
diffusional access to scarce nutrients. This is physically plausible since the DLA-
like structure occurs under conditions of poor nutrient availability and extremely
slow growth (the DLA-like colonies in Figure 11.3 correspond to several weeks of
development). The resulting colony shape is similar to the snowflake pattern that
occurs in many nonliving natural processes. DLA was originally designed to model
colloidal aggregation [113], but has since been applied to viscous fingering phe-
nomena, electrodeposition of metals, and beyond (reviewed in Ben-Jacob [114]).
Growth is limited by diffusion of a species which then aggregates on the growing
structure. In the case of the growing bacterial colony, ‘aggregation’ corresponds
to a pseudo-chemical ‘reaction’ that transforms nutrients into cell mass, which is
then visible in the microscope. Some details of the growing structure depend on
the geometry (anisotropy) of the interface, which for bacteria would map to the
geometrical constraints of cell growth and division, but the general structure is
dictated by diffusive access to reactants being the rate-limiting step. To make the
growing colony correspond strictly to two-dimensional diffusion-limited aggrega-
tion, the surface colony is assumed to have constant surface density, and bacteria
are assumed to be nonmotile. The latter assumption is reasonably accurate at high
agar concentrations, but the former is only approximately true.
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DLA can be modeled discretely as individual particles that perform Brownian
motion and aggregate on contact with the colony, or continuously as a density field
in contact with a growing, perfectly absorbing colony boundary:

∂λ

∂t
= ηφn (11.11)

∂n

∂t
= Dn∇2n, (11.12)

where λ is the linear density of bacteria along the colony edge. Equation (11.11)
represents “aggregation.” The nutrient flux per colony boundary of length dl is
φn = Dn

�∇n · n̂. By assumption, the colony has a constant surface density b0, so
the accretion in Equation (11.11) produces growth in the colony radius R:

b0
∂R

∂t
= ηφn. (11.13)

Equation (11.12) is diffusion of the nutrients; since the colony grows slowly, the
nutrient field n is in quasi-static equilibrium, so ∂n/∂t = 0 at all times. Any-
thing that reaches the colony edge by diffusion adheres, so n = 0 on the colony
boundary. This is equivalent to a reaction–diffusion–chemotaxis model with non-
motile bacteria (Db = 0), consumption of substrate occurring rigorously only at
the colony edge �R (so c(b, n) ∝ nδ( �R − �r)), and cell growth linked directly to
consumption (so g = ηc). Since the bacteria are nonmotile, they cannot perform
chemotaxis.

The simplest simulations of diffusion-limited aggregation model the diffusion of
individual particles until each particle irreversibly sticks to part of the colony. In two
dimensions, these simulations produce a fractal dimension of 1.7, in agreement with
the observed fractal dimension for Bacillus growth of 1.73. In a bacterial colony,
the diffusing particle is a molecule of nutrient, while aggregation is the transfor-
mation of the nutrients into cell mass. Since nutrients diffuse through the bulk
of the agar plate, rather than on the surface, this corresponds to two-dimensional
diffusion-limited aggregation only in the limit that plate thickness (typically a few
mm) is negligibly small compared to colony size; in fact, colonies growing in
the DLA-like region of the phase diagram are not self-similar when they are very
small [33].

The boundary of a diffusion-limited aggregate is extremely unstable to fluctu-
ations. Despite years of effort to model DLA using a partial differential equation
approach, it is still standard practice to perform particle-by-particle simulations,
precisely because the extreme sensitivity of the equations to perturbation resists
continuum analysis. It seems unlikely, therefore, that the DLA-like morphology will
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be computationally tractable using a continuum description as in Equations (11.8)–
(11.10). As a consequence, attempts to explain the entire phase diagram using a
single set of principles tend to start from single-cell-level descriptions of behavior,
implemented in Monte Carlo simulations.

The DLA-like colony morphology gives way to other morphologies when the
controlling factor becomes the bacterial growth rate rather than nutrient availability,
which occurs at high nutrient concentration, or when the individual cells become
motile, which occurs at high wetness and low agar concentrations. For instance,
the transition from DLA-like to Eden-like morphology, along the vertical in
Figure 11.2, is caused by increasing nutrient concentration: growth becomes limited
by the bacterial doubling time, which is presumably limited by the rate of metabolic
process within the cell rather than by diffusion of nutrients. This produces not just
a quantitative increase in the speed of colony growth, but a qualitative change in
the shape of the colony.

11.3.3 Swarming

Unlike the reaction–diffusion–chemotaxis models of the previous two sections,
models of swarming usually start with a set of rules for the motion of individual
cells. Most models are variations of Vicsek et al. [115], which assumes that cells
move at a constant speed v0, and align their orientation θ with their local neighbors,
subject to a certain amount of random noise in the orientation. Mathematically, the
orientation, position, and velocity of the ith self-propelled particle follows the rules

θi(t + dt) = 〈θj

〉+ η(t) (11.14)

�ri(t + dt) = �ri(t) + �vi(t)dt (11.15)

�vi(t + dt) = v0û(θi(t + dt)), (11.16)

where the average 〈〉 is over all neighbors j , usually within a certain distance
of i, but sometimes over a certain number of nearest neighbors of i. This aver-
aging is not perfect, since it is subject to white noise η(t) of a certain strength.
The orientation angle θ gives the direction û of the velocity vector. Such models
generally find, provided the noise is not too strong, that a sufficiently dense, ran-
dom collection of particles will spontaneously order so that all particles eventually
move in the same direction [116, 117]. More complicated swarming models intro-
duce attractive forces (to produce clustering) and/or repulsive forces (to prevent
collisions) [118, 119]. Since the physically appropriate inter-particle potential is
usually unknown, it is typically chosen for computational convenience, though data
on real-world flocking, which may ultimately be used to infer a more reasonable
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form for the interaction force, are becoming available [120]. These models were
inspired by the collective motion of schools of fish and flocks of birds; in these
higher organisms, individual fish or birds presumably align themselves with their
neighbors deliberately. In contrast, bacteria have no way to sense and respond to
nearby cells, so interactions between bacteria are limited to hydrodynamic coupling
through the fluid in which they all swim.6 Though such an interaction is ultimately
governed by low-Reynolds-number hydrodynamics, the force exchanged between
many geometrically accurate representations of swimming bacteria has not yet been
calculated with any certainty. Steric repulsion prevents the cell bodies from occu-
pying the same space at the same time, but flagella are thin and flexible enough that
they do not physically exclude other cells. Under most circumstances the repul-
sion is very short-range; although it presumably has some short distance scale,
since it is mediated by the fluid in which the cells swim, for practical purposes it
seems equivalent to a hard-core repulsion. There is no direct evidence of an attrac-
tive force between swarming bacteria,7 though this has not been tested rigorously.
In many ways, bacterial swarms are probably more similar to nonliving systems
(‘self-propelled’ rods with hard-core interactions [122, 123]) than to birds [120],
fish [124, 126], locusts [127, 128], or herd animals [129]; for reviews, see Toner
et al. [130] and Giardina [131].

The long-range order of two-dimensional swarms is generally predicted to be
unstable [132–135]. Although, as mentioned above, cells’ velocities spontaneously
align locally, the direction of alignment is unstable over long distances. This leads
to large-scale swirling patterns and to anomalous diffusion [122, 136]. Even if the
underlying hydrodynamics is the same, interactions in two dimensions may differ
fundamentally from ones in three dimensions because the presence of a surface
changes not just the strength but the scaling of the interaction.8 To date there is no
experimental system that can transition continuously from three dimensions to two
dimensions to directly observe the importance of this hydrodynamic screening.

Many swarming models have a self-sustained vortex as a possible solution. Such
vortices are found in several bacterial systems, including the eponymous Bacillus

6 Quorum sensing can detect the total concentration of bacteria, and over larger length and time scales bacteria
can excrete chemoattractants and perform chemotaxis in response. These behaviors, however, do not act on
the sub-second timescale typical for realignment within bacterial swarms. In other contexts, more sophisticated
cell–cell interactions are possible; for instance, fimbriae can be used for selective cell–cell adhesion in bacteria,
and directional sensing is clearly possible in more slowly evolving situations, such as cell migration during
embryonic development.

7 In contrast, there are measurable correlations between pairs of cells swimming in bulk fluid [121], presumably
due to an effective interaction potential. Similar effects are likely to occur during locomotion near a surface, as
occurs in swarming.

8 For simple geometries, the interaction between an object and a surface (and its attendant no-slip boundary
condition) is mathematically equivalent to the interaction with an image object located on the other side of the
surface. Just as in electrostatics, where this image charge steepens the power law dependence of the electric
field from a point charge, this causes flow fields from the object to die off more rapidly with distance.
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circulans [137] and Paenibacillus vortex [138], as well as in fish keratocytes [139]
and in three dimensions in the zooplankton Daphnia. One can see a macroscopic
example of this phenomenon from the viewing areas above the large tank in any
major aquarium, where schools of fish continuously circle the inner wall. In order
to create a cohesive swarm with a well-defined edge, the constituent particles must
be prevented from wandering off. As mentioned above, this can be accomplished
mathematically by adding an attractive force between particles, but in real bacterial
swarms the system is more likely to be confined by geometry. Swarming bacteria
move in the thin layer of fluid above the agar; the boundary of the swarm is defined
by the edge of the wetting layer. Cells that attempt to swim onto insufficiently wet
agar stall, and usually remain stranded until the expanding swarm rescues them.
This is a less extreme example of the phenomenon of bacterial rafts in Proteus
swarming: isolated swarming cells are nonmotile, but pairs of adjacent cells can
move and large rafts of cells are the fastest. The local swirling structure predicted
by self-propelled particle models of swarming should be relatively insensitive to
either a large-scale attractive potential or to distant boundaries, but a full description
of colony evolution would need to include the boundary conditions. This likely
involves modeling the lubrication layer and the convective effects of motile swarmer
cells, patterns of surfactant production, and the interaction between wetting agents
and the agar undersurface on the spread of the lubrication layer.

Proteus swarming has the unique added feature of synchronized differentia-
tion. The times and distances associated with the formation of successive terraces
have been measured experimentally [140]. Proteus-specific growth models attempt
to reproduce this behavior by, for example, adding an inherent time constant to
the equations relating diffusion, growth, and interconversion of the two Proteus
phenotypes [140–143]. The ring-like morphology of Bacillus colonies involves
coordinated swarming and consolidation phases, a less synchronized version of the
phenomenon in Proteus. In both Bacillus and Proteus the cycle time is indepen-
dent of nutrient concentration [54,144,145] (as expected for growth on rich media
where dynamics are limited by essential cell processes rather than by uptake of
nutrients) and the cycle phase cannot be transported by individual cells (indicat-
ing that there is no fundamental biological clock involved), leading to models that
waves of differentiation are triggered by local cell density thresholds, and converted
to characteristic times via the cell growth rate.

11.3.4 Comments

The Keller–Segel Equations ((11.1)–(11.3) and variants) are one of the most exten-
sively studied sets of equations in mathematical biology. The preceding sections
give a few examples of how they have been applied to understanding colony growth
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and shape in the particular case of bacteria growing on agar surfaces. This is meant
to give a sense of the types of approaches that have been used to model these
phenomena, with more or less success and more or less contact with the under-
lying biology. The literature in this area is vast and continually increasing, so the
examples chosen here are often the earliest, simplest, or most closely linked to real
experimental conditions, rather than the latest or most sophisticated. Currently, the
theoretical effort seems to have outpaced experimental confirmation; in the follow-
ing section we present experimental techniques that are, can, or should be used to
produce more and different data to confront models.

11.4 Detection

As illustrated in the previous sections, bacteria on agar plates produce highly diverse
structures in response to simple variations in agar concentration and nutrient level.
This range of behavior can only be explained by the bacteria responding to external
conditions in nontrivial ways. That is, cells develop ‘internal states’ that depend on
their history of environmental exposures, not merely on the instantaneous values
of local nutrients, temperatures, etc. [79]. This bacterial memory is encoded as
stable, altered patterns of gene expression that ultimately produce a spatial or tem-
poral pattern of different phenotypes in different parts of the population. The most
extreme examples of this phenomenon are sporulation in the interior of Bacillus
colonies and differentiation into swarmer cells at the edge of swarming colonies
of Bacillus and related species. A small number of authors have directly mea-
suring gene expression in concert with colony development. For instance, Wang
et al. [147] have looked at differential gene expression in swarming Salmonella
by mechanically removing edge cells and assaying them; Kim and Surette [73]
have shown that differentiation persists even once swarm-promoting conditions are
removed; while Mendelson and Salhi [48] have indirectly looked at gene expres-
sion near the DBM morphology phase boundary in B. subtilis. However, many
sophisticated techniques for mapping physiological states are available, often in
the biofilm community [148], which are only starting to be applied to physiological
patterns in colony growth; these will be addressed in Section 11.4.2 below.

11.4.1 Optical microscopy

Historically, optical microscopy has most often been used to simply report the
physical extent of colony growth. This ignores subtleties in colony structure, such
as varying patterns of density or motility. Many colony models predict colony
structure, either implicitly through cell surface density or explicitly as colony
height. The integrated surface density can be inferred from absorbance measure-
ments using transmission microscopy [149], and confocal microscopy can measure
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the colony height directly [150, 151]. The global colony shape affects the small-
angle light scattering intensity; this was used to rapidly distinguish Listeria colony
shapes [152, 153]. While many colony models assume two-dimensional colony
growth, in practice variations in colony height are not always negligible; see Pipe
and Grimson [101] for a review of scaling laws for radial growth and height profiles
of compact colonies. In particular, oxygen can be scarce in the interior of a thick
colony. In organisms other than bacteria, growth in mounds is limited by diffusive
access to nutrients and oxygen, which dictates the height profile as a function of
radius; for example, Kamath and Bungay [154] have demonstrated this in yeast.

The motion of individual bacteria in dilute solutions can be tracked optically
on a cell-by-cell level. The run-tumble description of chemotaxis was originally
developed from this type of data [155]. More recently, higher-throughput methods
have been developed that can track many chemotaxing bacteria simultaneously: the
two-dimensional locations of a large number of cells are recorded by video camera,
and the third dimension (vertical distance from the focal plane) is reconstructed
from the defocusing of each cell; this method can follow around 100 cells simul-
taneously [156]. Cells are tracked using a particle tracking velocimetry algorithm,
so successive position measurements can be reliably assigned to the proper cells
only if the distance moved is small compared to the inter-particle distance. This
process breaks down at high cell density and high cell speeds: tracking individual
cells in a dense, highly motile colony (like a swarm) is very challenging. If one is
willing to give up single-cell statistics, the overall motion can be measured at lower
position resolution using particle imaging velocimetry (Chapter 7), as illustrated in
Figure 11.5. This has been employed in swarming Serratia marcescens [157] or P.
vortex [138] and in self-concentrated 3D motion of B. subtilis [158]. In these exper-
iments, the ‘particles’ imaged were actually cells, either unlabeled or fluorescently
labeled. In traditional tracking and imaging velocimetry, the fluid flow is marked
with tracer particles, which are usually fluorescent microspheres; in biological con-
texts, this kind of tracer technique can be used in larger systems [159] and was
originally used to track the swirling motion of swarming B. subtilis by hand [160].
Because of the widespread use of beads as tracers, many tracking algorithms implic-
itly assume that the particles being tracked are radially symmetric, so images are
usually querying against a library of radially symmetric patterns. Although most
bacteria have length:width ratios of 4:1 or higher, in practice standard tracking algo-
rithms generally perform relatively well. High-density tracking could be improved
by incorporating information about the shape of the tracked object into the tracking
algorithm, something which is not currently standard practice.

At high bacterial densities or low magnifications, when it is impossible or
impractical to resolve single cells, a labeled subpopulation can be introduced.
This subpopulation can be tracked as in a low-density experiment. For instance,
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Figure 11.5 Velocity field of swarming E. coli, measured by particle image
velocimetry, showing the characteristic swirling pattern. The velocity vector was
computed for spatial bins that contained several bacterial cells. The field of view
was 90 × 120 µm; the maximum swarm speed was around 100 µm/s. (Image
courtesy of Rongjing Zhang.)

Mittal et al. labeled a fraction of chemotaxing E. coli using a green fluorescent
protein marker [22]. Provided the expression level does not affect cell behavior, this
gives a statistically valid description of cell motility of the colony, but at the expense
of knowledge of the immediate environment of a tracked cell. Individual cells can
be tracked by hand, though the process is very labor-intensive, by using cell size,
shape, and continuity of direction as additional clues to cell identity. Automating
this process is difficult without very good picture quality, which is compromised
by imaging through a turbid agar plate. A small data set of hand-tracked cells gave
correlations between cells’ velocities; these correlations extended for a shorter
distance ahead of a cell (where ‘front’ is defined as the direction of motion) than
behind it, presumably because the cell has had more opportunities to interact, and
align, with cells in the trailing direction (Figure 11.6(a)). This correlation length is
consistent with the 9 µm correlation length, averaged over all orientation, measured
by Steager et al. [157]. In a swarm-like thin film whose bacterial density they can
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Figure 11.6 (a) Velocity–velocity correlation (the average of the cosine of the
angle between two cells’ velocities) as a function of the separation between two
cells, for swarming E. coli. The axes are aligned locally with the major body
axis of one of the two cells. (b) Mean swimming speed and velocity–velocity
correlation length (averaged over all orientations) for B. subtilis swimming in a
thin film, as a function of concentration fraction ρ [55]. ρ = 1 is the close-packed
limit. ((b) reprinted from Phys. Rev. Lett. 98, 158102 (2007) with permission from
the American Physical Society.)

control, Sokolov et al. map correlation as a function of density; at high density they
report a 20 µm correlation length, which is not inconsistent with the previously
quoted measurements considering that it is likely that less hydrodynamic screening
occurs in a thin film than on a swarm plate [55]. At high packing fractions, they
observe an abrupt drop in mean cell speed caused by jamming (see Chapter 2).

11.4.2 Fluorescent reporters

Fluorescent proteins (FPs) are versatile, convenient, endogenously manufactured
in vivo cellular labels. They can be expressed constitutively, so that they simply
make the cell easier to see, or they can be expressed in tandem with a gene
of interest, so that their presence indicates the level of the gene’s expression.
Fluorescing markers in general have much higher signal to noise ratios than simple
pigments, and are more convenient that other expressible fluorescing systems (such
as luciferase) because they require no substrate or cofactors. Variants of FPs are
now available that span the entire optical spectrum, with a variety of Stokes shifts,
fast folding times, and high quantum yields. It is possible to choose fluorescent
proteins whose emission and excitation spectra overlap, so that they function as
resonant energy transfer (FRET) pairs, as well as more exotic versions such as
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photo-activatable FPs [162]. At its simplest, the gene for a fluorescent protein can
be introduced into a bacterial cell on a plasmid. The promoter that governs the
gene’s expression can be constitutively active (always on) or inducible (tunable by
an externally supplied chemical). If the molecular biology is amenable, adding an
FP on a plasmid is a straightforward and benign way to make a non-fluorescent
cell visible. The only requirements are that it be possible to transfect the target cell,
that the plasmid be stably maintained once it is introduced,9 and that the FP not
adversely affect the cell at expression levels that makes the fluorescent signal large
compared to background. The FP tagging technique is often applied in the study
of biofilms, communities of bacteria enmeshed in an excreted extracellular matrix.
Biofilms are medically important because they can shield bacteria from antibiotics.
They frequently incorporate more than one bacterial strain, and the interaction and
communication between strains plays an important role in biofilm development,
so the temporal and spatial distribution of species in a biofilm is of interest. Each
bacterial strain is labeled with its own FP color before the biofilm is seeded; once the
biofilm has formed, the spatial arrangement of FPs reveals where each population
has flourished [163–166]. Many variations on this technique are possible; for
instance, Rani et al. (Staphylococcus [148]) and Werner et al. (Pseudomonas
aeruginosa [167]) use inducible FPs in conjunction with a pulse-labeling protocol.
FP expression is induced after several days of biofilm growth; since only active
cells take up the inducer and produce FP, a visual map of fluorescence distinguishes
between active and dormant or dead cells.

Even within a single bacterial species, we expect that different regions of a
bacterial colony should correspond to different patterns of gene expression. If
the effect of a gene of interest is not directly observable, it may be possible to
introduce an FP that is linked to the target gene; the level of FP fluorescence
then acts as a visual signature of the expression of the target gene. For instance,
Figure 11.7 shows a population of B. subtilis containing both vegetative (small) and
swarmer (long) cells. The cells contain a red fluorescent protein that is regulated
by the same promoter that regulates the main protein that comprises flagella; since
flagellar synthesis is up-regulated in swarmer cells, the swarmer cells glow red,
distinguishing the swarm phenotype among genetically identical cells.10 Swarm
differentiation is an abrupt, all-or-none phenomenon, but FP tagging can be also
be used to monitor continuous variations in expression levels. Since colony growth

9 This is traditionally accomplished by including antibiotic resistance on the plasmid and applying selection
pressure by growing cells in the presence of antibiotic. Such a process is not always feasible under the
desired experimental conditions; for instance, if the labeled cell is to be grown in a background of unlabeled,
non-antibiotic-resistance cells.

10 In this case, of course, swarmer and vegetative cells can be distinguished by the difference in their lengths,
but the tagging principle is generally applicable, even to genes that have no effect that is visible under the
microscope.
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Figure 11.7 Vegetative cells (short) and swarmer cells (long) of B. subtilis [161].
The swarmer cells are labeled with a red fluorescent protein fused to the promoter
for flagellin; since flagellin production is increased in swarmer cells, those cells
produce red fluorescent protein which appears dim in this image, compared to the
brighter green autofluorescence of vegetative cells. (Reprinted from Genes & Dev.
19, p. 3083 (2005) with permission from Cold Spring Harbor Press.)

Figure 11.8 Stratified expression of rrnBp1 (a growth-correlated gene) in a
P. aeruginosa biofilm, as visualized by GFP fused to the rrnBp1 promoter [167].
Reprinted from Appl. Env. Microbiol. 70, p. 6188 (2004) with permission from the
American Society for Microbiology.

is generally nonuniform, with more growth at the outside of the colony where
resources such as nutrients and oxygen are more abundant, we expect metabolic
activity to be higher near the edge of the colony. This is a relatively minor effect
in the thin colonies discussed in Sections 11.3.2 and 11.3.3, but not so in thicker
structures like biofilms. A typical experiment is shown in Figure 11.8, which reports
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Figure 11.9 Expression pattern of motility-related genes in a colony of B. subtilis
growing on high nutrient and moderately high agar plates [48]. The dark blue color,
which is generally located near the edge of the colony, indicates high activity of
lacZ, which has been transformed into the Bacillus chromosome. (Reprinted from
J. Bacteriol. 178, p. 1980 (1996) with permission from the American Society for
Microbiology.)

the activity of a growth-correlated gene in a cross section of a P. aeruginosa biofilm.
The gene’s promoter was fused to an FP tag11 so the FP level is proportional to the
activation of that particular promoter, and therefore proportional to the expression
level of the gene of interest [167].

A more traditional method of revealing expression patterns uses the lactase gene
lacZ as a reporter. When lacZ is active, lactase is produced and excreted by cells,
cleaving a colorless galactose analog in the medium and turning it blue. The color
change reveals the pattern of expression of genes adjacent to lacZ, which can be
inserted at a location of interest. Figure 11.9 shows a reporter that is expressed
mainly at the tips of a growing colony of B. subtilis. The pattern of expression
is relatively stable over time, indicating that there is little population exchange
between the colony edge (dark) and interior (white).

11.4.3 Infrared and Raman spectroscopy

Nongenetic techniques can also be used to map spatial patterns of cell phenotype
in a colony. Keirsse et al. use an infrared probe to map the swarmer cell distribution
in P. mirabilis (Figure 11.10), showing that the swarmer phenotype is restricted
to a narrow band on the outside of the colony [168]. They distinguish between
swarmer and vegetative cells based on the differences in infrared absorbance [169].

11 The FP gene was incorporated into the bacterial chromosome in order to avoid the possibility of losing the
gene, which is always a risk if the gene is carried on a plasmid.
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Figure 11.10 Degree of P. mirabilis cell differentiation as a function of radial
position in a swarm, as determined by real-time infrared spectroscopy of the
colony surface [168]. The ordinate is an estimate of the population fraction of
swarmer cells, based on a decomposition of the observed infrared spectra into
the characteristic spectra of swarming and stationary cells. Above the plot is a
schematic depiction of the colony structure, showing six terraces and the swarm
front, which has expanded 16 mm from the point of inoculation. The vertical
numbers show the increase in average cell lengths, at four locations in the colony,
as the fraction of swarmer cells increases. (Reprinted from Appl. Spectros. 60,
p. 584 (2006) with permission from the Society for Applied Spectroscopy.)

Spectral properties fortunately show large differences between swarmer and veg-
etative cells, an identifiable signature due to flagella, and a signal due to excreted
‘slime’ (lipopolysaccharide and exopolysaccharide); the respective spectra are
determined empirically, by harvesting and assaying the appropriate cells or sub-
stances from a developing swarm. These data show that elongation (associated
with changes in the cell membrane) occurs while slime production is increasing,
but before the surge in flagellar synthesis. This type of information is available
through genetic screens, but infrared spectroscopy has the advantage that, provided
a useful signature is available, it does not require modification (chemical or genetic)
of the organism or the addition of any labeling agents.

Similar types of information about colony structure can be obtained using Raman
microspectroscopy. For instance, spatially resolved measurements (µm-size vol-
ume elements, defined confocally) showed measurable differences between the
interior and surface of a colony after a few days’ growth [170]; as with infrared
spectroscopy, the characteristic spectra associated with each phenotype are deter-
mined empirically, in this case by using principal component analysis to construct
maximally independent signatures. The spatial resolution is slightly larger than
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single cells, though confocal Raman spectroscopy has high enough sensitivity to
classify individual cells [171]. This technique is typically used to identify medi-
cally important pathogenic bacteria, as reviewed in Maquelin et al. [172] and Harz
et al. [173]. Since position resolution is generally coarser than the cell size, single-
cell measurements are used on isolated cells rather than on cells in the middle of a
dense colony [174].

Spectrally resolved confocal microscopy can be performed in the visual range as
well. As with confocal Raman microscopy, the probed volume is several µm on a
side, so in a close-packed bacterial colony single cells are not resolved. The spectral
information from a fluorescently labeled subpopulation at each position is used to
identify the target. The signatures used are similar to those employed in traditional
flow cytometry. Of course, this technique requires either an external fluorescent
label, an engineered endogenously produced fluorescent protein, or some easily
identifiable autofluorescence.

A powerful, though indirect, tool for probing the important parameters that
govern colony growth is to change the geometry of the agar plate and observe
the consequences for the population pattern. Shimada et al. [145] investigated the
mechanism of concentric ring formation in the ring-like colony morphology of B.
subtilis. By transferring portions of swarms to new plates (either by cutting and
pasting portions of the colony or by blotting cells from one surface to another),
they show that bacterial density is the phase-determining factor in colony cycling;
in particular, that there is no biological clock, consistent with the conclusions about
Proteus swarming referenced in Section 11.4.4. Bacteria can be excluded from a
geometrically defined section of the plate by applying a pattern of ultraviolet light.
Depending on the intensity of the light, this can either kill or inhibit growth, and the
light pattern can be moved to measure the colony’s dynamic response to changing
conditions [175, 176]. A nutrient gradient can be added to the agar plate by, for
instance, inserting a small plug of high-nutrient agar into a low-nutrient plate [177].

11.4.4 Other techniques

Debois et al. used mass spectroscopy to map the concentration of surfactant pro-
duced by a developing B. subtilis colony [178]. The surface of the developing
colony was blotted onto a silicon wafer, and its mass-to-charge ratio was measured
using time-of-flight mass spectroscopy. Scanning the ion beam yielded a position
resolution as small as two µm – essentially single-cell size. Figure 11.11 shows the
total surfactant density; the chemical structure of the surfactins present in different
parts of the colony can be inferred from the time of flight spectra (not shown). The
highest surfactant concentration occurs at the center of the colony; apparently the
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(a)

(b)

Figure 11.11 A section of a B. subtilis swarm colony (a) and its surfactin distribu-
tion (b) as mapped by spatially resolved mass spectrometry [178]. (Reprinted from
Proteomics 8, p. 3682 (2008) with permission from Wiley-VCH Verlag GmbH &
Co.)

large number of cells in the thick center compensates for the fact that a substantial
fraction of those cells are dormant.

Lahaye et al. [151] measured the microrheological properties of an intact Proteus
swarm, finding significant differences between the leading edge of the swarm
and its interior (at a given time), and periodic variations in the swarm over a
cycle of expansion and consolidation (at a given location). They measured the
swarm surface’s strain in response to local stress produced by a 50-µm-sized puff
of air. Based on microbiology, viscosity is clearly involved in triggering swarm
differentiation [179,180], but this conflicts with the molecular understanding of the
flagellar motor, which has no known mechanism to sense load and therefore no way
to sense the viscosity of the external medium. Based on the microrheological data,
Lahaye et al. proposed that changes in the viscoelastic properties of the Proteus
swarm front, caused by the production of exopolysaccharides and the absorption
of water from agar, serve to coordinate differentiation and consolidation in the cell
population. This explanation ascribes Proteus cycling to cells’ response to varying
viscoelasticity (which has been observed in many species, though its molecular
mechanism is unknown) instead of to a synchronized biological clock (which
would be specific to Proteus, but for which there is no direct evidence).

A typical bacterial cell is roughly the same size as the wavelength of light,
so none of the previously mentioned techniques can resolve subcellular parts.
Scanning electron microscopy (SEM), on the other hand, can image cell organelles
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(a) (b)

Figure 11.12 Scanning electron micrograph of fixed P. mirabilis obtained from
a swarm [181]. Individual flagella are visible between the long cell bodies. most
of the flagella have assembled in large bundles that appear to include flagella
from neighboring cells. Scale bars are approximately 1 µm long. (Reprinted from
Inf. Immun. 72, p. 3941 (2004) with permission from the American Society for
Microbiology.)

such as flagella and pili. Since it must be done in a vacuum, SEM requires the cell
sample first be fixed and dried. This preparation process risks disrupting normal
interactions between cells and introducing spurious ones. Nevertheless, it produces
evocative images such as the massive flagellar bundles between Proteus cells shown
in Figure 11.12.12

11.4.5 Single-cell measurements

Knowledge of bacterial behavior at the single-cell level will provide a rigorous
basis for the constructing the rules of cellular automaton models and a way to
calculate parameters in continuum models of population dynamics. Unfortunately,
it is difficult to resolve individual cells while maintaining the crowded environ-
ment typical of colony growth, so many of the experimental characterizations of
individual cell behavior must be obtained at lower population densities.

The statistics of cell division in E. coli and Listeria innocua have been recorded
inside a flow cytometer that removes daughter cells [182], and these data have been
used to model statistics of individual growth [183–185]. Under conditions more
relevant for colony growth, individual divisions on agar were resolved through
image analysis (though without single-cell precision imaging) to give lag time
distributions in E. coli, Listeria monocytogenes and P. aeruginosa [186] division,
and the distribution of Listeria colony sizes was used to infer lag times in the early

12 When this technique was applied to P. vortex, it revealed ‘entangled’ flagella. Since these bacteria were motile
before fixation, and since no such entanglement has been reported in other contexts, even at extremely high
cell density, this apparent entanglement is probably an artifact of fixation [138].
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division events in the colony growth [187]. The results obtained are consistent with
those obtained for growth of dilute populations, but all of these are nonnutrient-
limited situations that are relevant only in the high nutrient region of the colony
morphology phase diagram (the upper portion of Figures 11.2(a) and (b)).

Most data for chemotaxis come from tracking the behavior of individual cells,
either freely swimming [156,188] (in which case the run-tumble statistics are mea-
sured directly), or attached to surfaces [189, 190] (in which case the run-tumble
statistics must be inferred from the motor reversal probabilities). This detailed
knowledge can be used to derive rules for population-wide behavior in the same
way that kinetic gas theory can be related to the equation of state of a gas. The
connection of individual cell behavior to a population-level chemotaxis equation
has been made with increasing generality, starting from either particular single-
cell-level distributions (for instance, experimentally motivated distributions are
used in Patlak [191] and Alt [90]), or more general single-cell-level distributions
(for instance, in Chubin et al. [192] and Erban and Othmer [96]). These papers
show that the Keller–Segel equations (our Equations (11.1)–(11.3)) govern popu-
lation dynamics in the long-time limit, and give explicit rules for calculating the
bacterial diffusion coefficient Db and the chemotactic coefficient χ (n) from micro-
scopic data. Lewus and Ford experimentally verified the translation from single-cell
statistics to population-scale chemotaxis in E. coli [193].

11.5 Comments

Invocation of chemotaxis in surface growth systems is appealing but dangerous [98].
Its appeal lies in the elegant mathematical descriptions of chemotaxis – it maps
to a biased random walk with step lengths that depend on the chemoattractant
concentration – but these results apply only to chemotaxis by swimming cells in
bulk fluid. Microscopic observation of cells on surfaces shows that the run-tumble
behavior underlying the theory of chemotaxis does not apply to swarming motility.
It is unlikely to apply to any surface motility because viscous coupling to the surface
will significantly impede active reorientation by cells, a necessary condition for
conventional chemotaxis. Chemotaxis produces diffusion as well as transport, and
diffusion is a major component of most of the processes described in this chapter, but
the correspondence between diffusion coefficients in different contexts is unclear.
In particular, cell motility becomes more and more constrained as locomotion
goes from three-dimensional bulk swimming (Section 11.2.1) to two-dimensional
surface swimming (Section 11.2.3) to two-dimensional growth-driven spreading
(Section 11.2.2); the consequences for the effective bacterial diffusion coefficient
are not well understood. Though the traditional features of swimming chemotaxis
(random-walk trajectories with active modulation of step length in response to
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environment) are not observed in dense, two-dimensional populations of bacteria
(as occur on all but the softest agar plates), nonetheless colonies can perform
‘effective’ chemotaxis towards nutrient sources, expanding more quickly towards
a nutrient-rich region of an agar plate [29, 33]. This occurs even in systems where
individual cells are unable to do chemotaxis [177].

Chemotactic-like response of a whole colony would occur if cell growth rates
or swimming speeds changed in response to nutrient levels – a plausible though
unproven effect – but neither of these mechanisms would legitimize the appli-
cation the traditional biased random walk model of chemotaxis. Run-tumble
chemotaxis produces a statistical drift along a chemical gradient; mathematically,
this corresponds to both a bacterial diffusion term13 Db and a flux term �Jch in
Equations (11.1) and (11.3). Some formulations conspicuously omit the flux term
but retain the diffusion term, as in Equation (11.8): this can represent an implicit
dependence on only a portion of chemotactic behavior. Indeed, successful swarm-
ing seems to require the random part of chemotaxis but not the directed part –
nonchemotactic cells that do not reorient do not swarm, while similar cells that
randomly change direction do swarm. Though chemotaxis is critical to the phe-
nomenon of pattern formation, it is surprisingly unimportant in colony develop-
ment: it is not necessary for successful swarming [194], or for the formation of
ring-like colonies of Bacillus [145]. In simulations, nonchemotactic cells produced
colonies with the same fractal structure as chemotactic cells, though they grew
more slowly [195]. That chemotaxis is inhibited in dense colonies was noted some
time ago; for example, Golding et al. [98] commented that chemotaxis is reduced
in colonies, but that random-walk-like motility of cells is visible under the micro-
scope. This observation implies that, although diffusion occurs, there is no net
population transport, as mentioned above. In contrast with the long experimental
history for chemotaxis in swimming bacteria [188, 196], experimental attention
to the individual cell statistics of surface locomotion in bacterial colonies is just
beginning.

From a physicist’s point of view, differentiation of cells within a colony – and
in particular, differentiation into a nonmotile form, as in the coupling between
Equations (11.8) and (11.10) – is a mathematical device required to model colony
structures. For a biologist, however, this differentiation foreshadows the com-
plex body structures in higher organisms, and is therefore a central reason to
study colony development. Empirically, differentiated forms (either dormant cells,
spores, or swarmers) are important in colony development, but colony models’
rules for differentiation are currently rather arbitrary; the differentiation model

13 The bacterial diffusion coefficient, which we have called Db , is often termed ‘bacterial random motility’
and designated µ(s). We have renamed it to emphasize the parallels between modeling of pattern formation
(Section 11.2.1) and colony morphology (Section 11.2.2).
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ought to adhere to known microbiology, though a complete description will
require more biological information than is currently available. If the appear-
ance, disappearance, and distribution of phenotypes are measured more accu-
rately, the forces that drive these dramatic transformations in cell appearance,
metabolism, and gene expression may become clear. Ultimately, this may lead to
an understanding of the forces that drive epigenetic differentiation in eukaryotes
as well.

Though the physics of low Reynolds number hydrodynamics is well under-
stood,14 its application to the complicated geometry of bacterial cells, and particu-
larly to cells near surfaces, is still being developed. Most of the work is numerical,
though there are some experimental results for cells in defined geometries [121]
and for scaled-up mechanical models [200]. The locomotion of many interacting
bacteria is clearly more complicated than the locomotion of a single, isolated cell;
experimental observations of the two-body problem have revealed nonisotropic
hydrodynamic coupling [121, 201]. Adding a boundary complicates the problem
further. Some of the consequences are known: for instance, individual cells are
attracted to surfaces [202] and swim in circles near a surface [203]. This can have
macroscopic consequences for colony growth, leading to a chiral pattern of the
colony itself [204]. A complete understanding of the low-Reynolds-number many-
body problem, particularly near a surface, will allow us to better understand the
properties of self-propelled bacteria moving on an agar plate.

Reaction-diffusion-chemotaxis models have increased in complexity as they
attempt to explain more phenomena, from bacterial waves to chemotactic aggre-
gation to swarming to variations in colony morphology. The theory has incor-
porated structures observed qualitatively on a plate (such as lubrication layers,
zones of activity, and patterns of cell differentiation) or quantitatively in simpli-
fied environments (such as chemotactic responses and cell growth rates measured
in vitro). Experimental techniques from molecular biology and microbiology can
probe some of these features on an intact colony, delivering information beyond
the early, basic measurements of population distributions in space and time. There
are currently several models of colony evolution. As advanced techniques pene-
trate the experimental community and knowledge of patterns of differentiation and
metabolic activity improves, including more accurate microscopic measurements
of population structures and individual cell characteristics, it will become possible
to distinguish between competing models.

14 Viscoelastic fluids are considerably more complicated than Newtonian fluids, which have linear stress-strain
relations. Most of the environments discussed in this chapter are reasonably Newtonian, with the possible
exception of swarms that produce particularly large amounts of extracellular slime [197]. Viscoelastic fluids
are known to change bacterial swimming behavior in vitro [198, 199], but the importance of this phenomenon
on agar plates – or, indeed, more generally in biologically relevant environments – is unclear.



Structure and patterns in bacterial colonies 315

Acknowledgments

Swarming work included in the chapter was performed in the laboratory of Howard
C. Berg at the Rowland Institute at Harvard, in collaboration with Howard Berg,
Linda Turner and Svetlana Rojevskaya. Figures 11.4 and 11.5 were kindly supplied
by Linda Turner and Rongjing Zhang, respectively.

References

[1] J. Henrichsen, “Bacterial surface translocation: a survey and a classification,”
Bacteriol. Rev. 36, 478–503 (1972).

[2] M. Baker and R. M. Berry, “An introduction to the physics of the bacterial flagellar
motor: a nanoscale rotary electric motor,” Contemp. Phys. 50, 617–32 (2009).

[3] Y. Sowa and R. M. Berry, “Bacterial flagellar motor,” Q. Rev. Biophys. 41, 103–32
(2008).

[4] H. Terashima, S. Kojima, and M. Homma, “Flagellar motility in bacteria structure
and function of flagellar motor,” Int. Rev. Cell. Mol. Biol. 270, 39–85 (2008).

[5] A. Kitao, “Switch interactions control energy frustration and multiple flagellar
filament structures,” Proc. Nat. Acad. Sci. USA 103, 4894–9 (2006).

[6] K. Yonekura, S. Maki-Yonekura, and K. Namba, “Complete atomic model of the
bacterial flagellar filament by electron cryomicroscopy,” Nature 424, 643–50
(2003).

[7] K. Namba and F. Vonderviszt, “Molecular architecture of bacterial flagellum,”
Q. Rev. Biophys. 30, 1–65 (1997).

[8] E. Lauga and T. R. Powers, “The hydrodynamics of swimming microorganisms,”
Rep. Prog. Phys. 72, 096601 (2009).

[9] S. Chattopadhyay and X.-L. Wu, “The effect of long-range hydrodynamic
interaction on the swimming of a single bacterium,” Biophys. J. 96, 2023–8 (2009).

[10] N. C. Darnton, L. Turner, S. Rojevsky, and H. C. Berg, “On torque and tumbling in
swimming Escherichia coli,” J. Bacteriol. 189, 1756–64 (2007).

[11] S. Chattopadhyay, R. Moldovan, C. Yeung, and X. L. Wu, “Swimming efficiency
of bacterium Escherichia coli,” Proc. Nat. Acad. Sci. USA 103, 13712–17 (2006).

[12] G. Hazelbauer, J. Falke, and J. Parkinson, “Bacterial chemoreceptors: high-
performance signaling in networked arrays,” Trends Biochem. Sci. 33, 9–19
(2008).

[13] A. Vaknin and H. C. Berg, “Physical responses of bacterial chemoreceptors,”
J. Mol. Biol. 366, 1416–23 (2007).

[14] G. H. Wadhams and J. P. Armitage, “Making sense of it all: bacterial chemotaxis,”
Nat. Rev. Mol. Cell Biol. 5, 1024–37 (2004).

[15] V. Sourjik, “Receptor clustering and signal processing in E. coli chemotaxis,”
Trends Microbiol. (2004).

[16] J. Adler, “Chemotaxis in bacteria,” Science 153, 708–16 (1966).
[17] E. O. Budrene and H. C. Berg, “Complex patterns formed by motile cells of

Escherichia coli,” Nature 349, 630–3 (1991).
[18] R. Nossal, “Growth and movement of rings of chemotactic bacteria,” Exp. Cell

Res. 75, 138–42 (1972).
[19] J. Adler, “Effect of amino acids and oxygen on chemotaxis in Escherichia coli,”

J. Bacteriol. 92, 121–9 (1966).



316 Experimental and Computational Techniques

[20] E. O. Budrene and H. C. Berg, “Dynamics of formation of symmetrical patterns by
chemotactic bacteria,” Nature 376, 49–53 (1995).

[21] M. P. Brenner, L. S. Levitov, and E. O. Budrene, “Physical mechanisms for
chemotactic pattern formation by bacteria,” Biophys. J. 74, 1677–93 (1998).

[22] N. Mittal, E. O. Budrene, M. P. Brenner, and A. V. Oudenaarden, “Motility of
Escherichia coli cells in clusters formed by chemotactic aggregation,” Proc. Nat.
Acad. Sci. USA 100, 13259–63 (2003).

[23] Y. Blat and M. Eisenbach, “Tar-dependent and -independent pattern formation by
Salmonella typhimurium,” J. Bacteriol. 177, 1683–91 (1995).

[24] D. E. Woodward, R. Tyson, M. R. Myerscough, J. D. Murray, E. O. Budrene, and
H. C. Berg, “Spatio-temporal patterns generated by Salmonella typhimurium,”
Biophys. J. 68, 2181–9 (1995).

[25] D. Emerson, “Complex pattern formation by Pseudomonas strain kc in response to
nitrate and nitrite,” Microbiology 145, 633–41 (1999).

[26] M. Matsushita, J. Wakita, H. Itoh, I. Rafols, T. Matsuyama, H. Sakaguchi, and
M. Mimura, “Interface growth and pattern formation in bacterial colonies,”
Physica A 249, 517–24 (1998).

[27] R. Tokita, T. Katoh, Y. Maeda, J.-I. Wakita, M. Sano, T. Matsuyama, and
M. Matsushita, “Pattern formation of bacterial colonies by Escherichia coli,”
J. Phys. Soc. Jpn 78, 074005 (2009).

[28] M. Ohgiwari, M. Matsushita, and T. Matsuyama, “Morphological-changes in
growth phenomena of bacterial colony patterns,” J. Phys. Soc. Jpn 61, 816–22
(1992).

[29] M. Matsushita and H. Fujikawa, “Diffusion-limited growth in bacterial colony
formation,” Physica A 168, 498–506 (1990).

[30] T. Vicsek, M. Cserzo, and V. Horvath, “Self-affine growth of bacterial colonies,”
Physica A 167, 315–321.

[31] H. Fujikawa, “Periodic growth of Bacillus subtilis colonies on agar plates,”
Physica A 189, 15–21 (1992).

[32] H. Fujikawa and M. Matsushita, “Bacterial fractal growth in the concentration field
of nutrient,” J. Phys. Soc. Jpn 60, 88–94 (1991).

[33] H. Fujikawa and M. Matsushita, “Fractal growth of Bacillus subtilis on agar
plates,” J. Phys. Soc. Jpn 58, 3875–8 (1989).

[34] H. Fujikawa, “Diversity of the growth patterns of Bacillus subtilis colonies on agar
plates,” FEMS Microbiol. Ecol. 13, 159–67 (1994).

[35] I. Rafols, “Formation of concentric rings in bacterial colonies,” Chuo University
(1998).

[36] T. Matsuyama, M. Sogawa, and Y. Nakagawa, “Fractal spreading growth of
Serratia marcescens which produces surface active exolipids,” FEMS Microbiol.
Lett. 61, 243–6 (1989).

[37] T. Matsuyama and M. Matsushita, “Self-similar colony morphogenesis by gram-
negative rods as the experimental model of fractal growth by a cell population,”
Appl. Environ. Microbiol. 58, 1227–32 (1992).

[38] T. Matsuyama and M. Matsushita, “Fractal morphogenesis by a bacterial cell
population,” Crit. Rev. Microbiol. 19, 117–35 (1993).

[39] A. Nakahara, Y. Shimada, J. Wakita, M. Matsushita, and T. Matsuyama,
“Morphological diversity of the colony produced by bacteria Proteus mirabilis,”
J. Phys. Soc. Jpn 65, 2700–6 (1996).

[40] I. Das, A. Kumar, and U. Singh, “Nonequilibrium growth of Klebsiella ozaenae on
agar plates,” Indian J. Chem. A 36, 197–200 (1997).



Structure and patterns in bacterial colonies 317

[41] I. Das, A. Kumar, and U. Singh, “Dynamic instability and non-equilibrium patterns
during the growth of E. coli,” Indian J. Chem. A 36, 1018–22 (1997).

[42] M. Tcherpakov, E. Ben-Jacob, and D. L. Gutnick, “Paenibacillus dendritiformis sp.
nov., proposal for a new pattern-forming species and its localization within a
phylogenetic cluster,” Int. J. Syst. Bacteriol. 49, 239–46 (1999).

[43] M. Ruzicka, M. Fridrich, and M. Burkhard, “A bacterial colony is not self-similar,”
Physica A 216, 382–5 (1995).

[44] M. Obert, P. Pfeifer, and M. Sernetz, “Microbial growth patterns described by
fractal geometry,” J. Bacteriol. 172, 1180–5 (1990).

[45] S. Tang, Y. Ma, and I. Sebastine, “The fractal nature of Escherichia coli biological
flocs,” Colloids and Surfaces B: Biointerfaces 20, 211–18 (2001).

[46] M. Eden, “A two-dimensional growth process,” Proc. Berkeley Symp. Math. Stat.
Prob. 4, 233 (1961).

[47] P. W. Lindum, U. Anthoni, C. Christophersen, L. Eberl, S. Molin, and M. Givskov,
“N-acyl-l-homoserine lactone autoinducers control production of an extracellular
lipopeptide biosurfactant required for swarming motility of Serratia liquefaciens
mg1,” J. Bacteriol. 180, 6384–8 (1998).

[48] N. H. Mendelson and B. Salhi, “Patterns of reporter gene expression in the phase
diagram of Bacillus subtilis colony forms,” J. Bacteriol. 178, 1980–9 (1996).

[49] D. B. Kearns and R. Losick, “Swarming motility in undomesticated Bacillus
subtilis,” Mol. Microbiol. 49, 581–90 (2003).

[50] D. Julkowska, M. Obuchowski, I. B. Holland, and S. J. Séror, “Comparative
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[118] G. Gregoire, H. Chaté, and Y. Tu, “Moving and staying together without a leader,”
Physica A 181, 157–70 (2003).

[119] H. Levine, W. Rappel, and I. Cohen, “Self-organization in systems of self-
propelled particles,” Phys. Rev. E 63, 017101 (2000).

[120] M. Ballerini, N. Cabibbo, R. Candelier, A. Cavagna, E. Cisbani, I. Giardina,
A. Orlandi, G. Parisi, A. Procaccini, M. Viale, and V. Zdravkovic, “Empirical
investigation of starling flocks: a benchmark study in collective animal behaviour,”
Anim. Behav. 76, 201–15 (2008).

[121] Q. Liao, G. Subramanian, M. P. Delisa, D. L. Koch, and M. Wu, “Pair velocity
correlations among swimming Escherichia coli bacteria are determined by
force-quadrupole hydrodynamic interactions,” Phys. Fluids 19, 061701 (2007).

[122] L. J. Daniels, Y. Park, T. Lubensky, and D. J. Durian, “Dynamics of gas-fluidized
granular rods,” Phys. Rev. E 79, 041301 (2009).



Structure and patterns in bacterial colonies 321

[123] V. Narayan, S. Ramaswamy, and N. Menon, “Long-lived giant number fluctuations
in a swarming granular nematic,” Science 317, 105–8 (2007).

[124] N. C. Makris, P. Ratilal, S. Jagannathan, and Z. Gong, “Critical population density
triggers rapid formation of vast oceanic fish shoals,” Science 323, 1734–1737
(2009).

[125] B. Birnir, “An ODE model of the motion of pelagic fish,” J. Stat. Phys. 128,
535–568 (2007).

[126] C. Becco, N. Vandewalle, J. Delcourt, and P. Poncin, “Experimental evidences of a
structural and dynamical transition in fish school,” Physica A 367, 487–93 (2006).

[127] J. Buhl, D. Sumpter, I. D. Couzin, J. J. Hale, E. Despland, E. R. Miller, and S. J.
Simpson, “From disorder to order in marching locusts,” Science 312, 1402–6
(2006).

[128] L. Edelstein-Keshet, J. Watmough, and D. Grunbaum, “Do travelling band
solutions describe cohesive swarms? an investigation for migratory locusts,”
J. Math. Biol. 36, 515–49 (1998).

[129] S. Gueron, “The dynamics of herds: from individuals to aggregations,” J. Theor.
Biol. 182, 85–98 (1996).

[130] J. Toner, Y. Tu, and S. Ramaswamy, “Hydrodynamics and phases of flocks,” Ann.
Phys. 318, 170–244 (2005).

[131] I. Giardina, “Collective behavior in animal groups: theoretical models and
empirical studies,” HFSP J. 2, 205–19 (2008).

[132] N. Sambelashvili, A. W. C. Lau, and D. Cai, “Dynamics of bacterial flow:
emergence of spatiotemporal coherent structures,” Phys. Lett. A 360, 507–11
(2007).

[133] S. Sankararaman and S. Ramaswamy, “Instabilities and waves in thin films of
living fluids,” Phys. Rev. Lett. 102, 118107 (2009).

[134] R. Simha and S. Ramaswamy, “Hydrodynamic fluctuations and instabilities in
ordered suspensions of self-propelled particles,” Phys. Rev. Lett. 89, 058101 (2002).

[135] D. Saintillan and M. J. Shelley, “Instabilities and pattern formation in active
particle suspensions: kinetic theory and continuum simulations,” Phys. Rev. Lett.
100, 178103 (2008).

[136] D. Saintillan and M. J. Shelley, “Orientational order and instabilities in suspensions
of self-locomoting rods,” Phys. Rev. Lett. 99, 058102 (2007).

[137] A. Komoto, K. ichi Hanaki, S. Maenosono, J. Y. Wakano, Y. Yamaguchi, and
K. Yamamoto, “Growth dynamics of Bacillus circulans colony,” J. Theor. Biol.
225, 91–7 (2003).

[138] C. J. Ingham and E. B. Jacob, “Swarming and complex pattern formation in
Paenibacillus vortex studied by imaging and tracking cells,” BMC Microbiol. 8, 36
(2008).
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[174] P. Rösch, M. Harz, M. Schmitt, K.-D. Peschke, O. Ronneberger, H. Burkhardt,
H.-W. Motzkus, M. Lankers, S. Hofer, H. Thiele, and J. Popp, “Chemotaxonomic
identification of single bacteria by micro-Raman spectroscopy: application to
clean-room-relevant biological contaminations,” Appl. Environ. Microbiol. 71,
1626–37 (2005).



324 Experimental and Computational Techniques

[175] A. M. Delprato, A. Samadani, A. Kudrolli, and L. S. Tsimring, “Swarming ring
patterns in bacterial colonies exposed to ultraviolet radiation,” Phys. Rev. Lett. 87,
158102 (2001).

[176] T. Neicu, A. Pradhan, D. A. Larochelle, and A. Kudrolli, “Extinction transition
in bacterial colonies under forced convection,” Phys. Rev. E 62, 1059–62
(2000).

[177] R. G. Taylor and R. D. Welch, “Chemotaxis as an emergent property of a swarm,”
J. Bacteriol. 190, 6811–16 (2008).
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