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Preface

It is a commonly accepted fact in the mathematical scientific community that
the rigorous understanding of turbulence and related questions in hydrody-
namics is one of the most important problems in mathematics and one of
the challenging tasks for the future development of the theory of partial dif-
ferential equations in particular, but also of analysis in general. One of the
central open problems, namely the well posedness of the 3D-Navier–Stokes
system has been selected as one of the millennium problems and has resisted
all attempts to solve it up to the present day.

Over more than half a century a lot of deep mathematics was developed
to tackle these problems. One of the approaches was to use stochastic analysis
based on modifying the equations (as e.g. Euler, Navier–Stokes and Burgers)
adding a noise term. The idea here was to use the smoothing effect of the
noise on the one hand, but also to discover new phenomena of stochastic
nature on the other hand. In addition, this was also motivated by physical
considerations, aiming at including perturbative effects, which cannot be mod-
elled deterministically, due to too many degrees of freedom being involved, or
aiming at taking into account different time scales of the components of the
underlying dynamics. Today we look back on 30 years of mathematical work
implementing probabilistic ideas into the area. During the last few years ac-
tivities have become even more intense and several new groups in the world
working on probability have turned their attention to these classes of highly
interesting SPDEs of fundamental importance in Physics.

In a sentence, one of the purposes of the course was to understand the link
between the Euler and Navier–Stokes equations or their stochastic versions
and the phenomenological laws of turbulence. The idea can be better under-
stood by analogy with Feynmans description of statistical mechanics: in that
field on the one hand one has the Hamilton (or Schrödinger) equations for the
dynamics of molecules and, on the other hand, the macroscopic laws of ther-
modynamics. In between there is the concept of Gibbs measures, so the theory
looks like the ascent of a mountain, from Hamilton equations to Gibbs mea-
sures (here ergodicity is a central topic), and a descent from Gibbs measures
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to thermodynamics. Translating this viewpoint in the realm of turbulent fluid
dynamics, on the one side we have the Navier–Stokes equations as dynamical
equations (that we commonly accept as essentially correct). On the other side,
we know a number of phenomenological laws, like the Kolmogorov’s scaling
(which he proposed in 1941, therefore called K41 scaling) or the multifractal
scalings, which fit experimental and numerical data to some extent, but miss
a rigorous foundation and presumably require some correction. If we aim at
an analogy with statistical mechanics, the missing point is a concept of Gibbs
measure linking these two extreme parts of the theory.

Three courses of eight hours each were delivered to develop these ideas,
both for the deterministic and the stochastic case.

Sergio Albeverio presented an approach to (deterministic) Euler and sto-
chastic Navier–Stokes equations in two dimensions based on invariant mea-
sures and renormalization methods. His last lecture was devoted to asymptotic
methods for functional integrals.

Franco Flandoli started from some basic results on Navier–Stokes
equations in three dimensions, discussing topics as existence of martingale
solutions, construction of a transition semigroup, ergodicity and continuous
dependence on initial conditions. One of the main results was a preliminary
step to prove well posedness of the stochastic 3D-Navier–Stokes equations by
showing the existence of a Markov selection. He also has presented a review
of the Kolmogorov K41 scaling law and some rigorous results on it for the
stochastic Navier–Stokes equations.

Finally, Yakov Sinai described some rigorous mathematical results for
d-dimensional (determinisitic) Navier–Stokes systems. In this direction he ex-
plained the power series and diagrams method for the Fourier transform of
Navier–Stokes equations and the Foias-Temam Theorem. He also presented
some recent results on the one-dimensional Burgers equation with random
forcing, that is, in the stochastic case.

Afternoon sessions were devoted to research seminars delivered by the
participants.

We thank the lecturers and all participants for their contributions to the
success of this Summer School.

Finally, we thank the CIME Scientific Committee for giving us the op-
portunity to organize this meeting and the CIME staff for their efficient and
continuous help.

Bielefeld and Pisa 2008 Giuseppe Da Prato
Michael Röckner



Contents

Some Methods of Infinite Dimensional Analysis
in Hydrodynamics: An Introduction
Sergio Albeverio and Benedetta Ferrario . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 The Euler Equation, its Invariants and Associated

Invariant Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.1 The Euler Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 The Euler Equation in Terms of Vorticity . . . . . . . . . . . . . . . . . . . . 3
2.3 The Conserved Quantities for the Euler Equation . . . . . . . . . . . . . 4
2.4 Heuristic Invariant Measures Associated

with the Euler Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.5 The Euler Equation in Terms of the Fourier Components

of the Stream Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.6 The Necessity of Looking for Singular Solutions. Divergence

of the Energy with Respect to the Enstrophy Measure . . . . . . . . . 9
2.7 Relation of the Enstrophy Measure µγ

with the Euler Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.8 The Infinitesimal Invariance of µγ . Relation with the “Hopf

Approach” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.9 The Question of Uniqueness of Generators of the Euler Flow . . . . 12
2.10 An Euler Flow in a Sobolev Space of Negative Index . . . . . . . . . . . 14
2.11 Some Remarks on the Vortex Model and its Relations

with the Euler Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3 Stochastic Navier–Stokes Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1 The Navier–Stokes Equation with Space-Time White Noise . . . . . 17
3.2 The Gaussian Invariant Measure Given by the Enstrophy

(and the Viscosity Parameter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Existence of Strong Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4 Pathwise Uniqueness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.5 Some Additional Remarks and Complements . . . . . . . . . . . . . . . . . 33
3.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36



VIII Contents

An Introduction to 3D Stochastic Fluid Dynamics
Franco Flandoli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2 Abstract Framework and General Preliminaries . . . . . . . . . . . . . . . . . . . 52
3 Finite Dimensional Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.1 Introduction and Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.2 A Priori Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.3 Comparison of Two Solutions and Pathwise Estimates . . . . . . . . . 71
3.4 Existence and Uniqueness, Markov Property . . . . . . . . . . . . . . . . . . 73
3.5 Invariant Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.6 Galerkin Stationary Measures for the 3D Equation . . . . . . . . . . . . 79

4 Stochastic Navier–Stokes Equations in 3D . . . . . . . . . . . . . . . . . . . . . . . . 82
4.1 Concepts of Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.2 Existence of Solutions to the Martingale Problem . . . . . . . . . . . . . 86
4.3 Technical Complements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.4 An Abstract Markov Selection Result . . . . . . . . . . . . . . . . . . . . . . . . 95
4.5 Markov Selection for the 3D Stochastic NSE’s . . . . . . . . . . . . . . . . . 103
4.6 Continuity in u0 of Markov Solutions . . . . . . . . . . . . . . . . . . . . . . . . 109

5 Some Topics on Turbulence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.1 Introduction and a Few Keywords . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.2 K41 Scaling Law: Heuristics and Unclear Issues . . . . . . . . . . . . . . . 126
5.3 Definitions and Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.4 Brownian Eddies and Random Vortex Filaments . . . . . . . . . . . . . . 133
5.5 Necessary Conditions for K41 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
5.6 A Condition Equivalent to K41 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

Mathematical Results Related to the Navier–Stokes System
Yakov G. Sinai . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
2 Power Series and Diagrams for the Navier–Stokes-System . . . . . . . . . . . 154
3 Foias-Temam Theorem for 2D–Navier–Stokes System with Periodic

Boundary Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
4 Burgers System and 1−D Inviscid Burgers Equation

with Random Forcing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

List of Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165



Some Methods of Infinite Dimensional
Analysis in Hydrodynamics: An Introduction

Sergio Albeverio1 and Benedetta Ferrario2

1 Institute of Applied Mathematics, University of Bonn, Wegelerstr. 6, 53115
Bonn, Germany albeverio@uni-bonn.de

2 Dipartimento di Matematica “F. Casorati”, Università di Pavia, Via Ferrata 1,
27100 Pavia, Italy benedetta.ferrario@unipv.it

1 Introduction

Mathematical modeling and numerical simulation for the study of fluids are
topics of great interest, both for our understanding of the phenomena related
to fluids and for applications. In fact, we are still far from a complete under-
standing of fluid phenomena. There is nowadays an increasing interplay of ap-
proaches based on deterministic modeling and on stochastic modeling. Already
Leonardo da Vinci was fascinated, observed carefully and made drawings of
the vortex formation in turbulent fluids. L. Euler formulated the equation of
motion for the ideal case of inviscid fluids, H. Navier in 1822 and C.H. Stokes
in 1845 introduced the most studied of fluid models, namely the one described
by the “Navier–Stokes equations”. These equations constitute a challenging
prototype for non linear parabolic differential equations. At the same time
they are the starting point for the building of discrete models used in numer-
ical simulation of fluids. A deep mathematical analysis of the Navier–Stokes
equations was initiated by J. Leray (1933). He, N. Kolmogorov and others
also introduced and developed concepts used in what can be called a “the-
ory of turbulence”. N. Wiener, according to his autobiographical account,
developed a theory of Brownian motion as a first step for constructing an
infinite dimensional analysis, capable eventually to handle problems of tur-
bulence. Developments in the study of fluids, in particular in their turbulent
behaviour, are connected with areas like non linear functional analysis, the
theory of dynamical systems, ergodic theory, the study of invariant measures
and stochastic analysis. We shall not discuss here the derivation of Navier–
Stokes equations, but just mention some recent work on it. There are indeed
attempts of deriving the Navier–Stokes equations from microdynamics, but
the theory is far from complete. The most ambitious starts from quantum
dynamics, derives in a certain limit a suitable Hamiltonian reversible dynam-
ics for particles, then from these by certain limit operations the (irreversible)
Boltzmann equation and the Navier–Stokes equations; see, e.g., [ABGS00],
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[NY03], [LM01]. The program of understanding turbulence phenomena start-
ing from the Navier–Stokes equations is also still widely open, see, e.g. [Fri95].

In these lectures we shall concentrate on certain mathematical results
concerning the case of deterministic Euler and stochastic Navier–Stokes equa-
tions for incompressible fluids. For general references we refer to [Fri95],
[Tem83], [CF88], [VF88], [VKF79], [Lio96], [MP94], [NPe01], [Che96b],
[Che98], [Che04], [CK04a], [Con95], [Con94], [Con01a], [Con01b], [FMRT01],
[LR02], [MB02] [Tem84] and [Bir60] and for a discussion of challenging
open problems see, e.g. [Fef06], [Can00], [Can04], [CF03], [Cho94], [Con95],
[Con01a], [FMRT01], [Gal01], [ES00a], [Hey90], [Ros06] and [FMB03]. We
shall concentrate particularly on the study of invariant measures associated
with the above equations for fluids. On the one hand, this follows an anal-
ogy with the statistical mechanical approach to classical particle systems
and ergodic theory, see, e.g. [Min00], [Rue69]. On the other hand, it follows
Kolmogorov’s suggestion, see e.g. [ER85], of adding small stochastic pertur-
bations (“noise”) in classical dynamical systems, so to construct invariant
measures and then study what happens when removing the noise.

The content of our lecture is as follows: in Section 2 we shall study the
deterministic Euler equation and construct certain natural invariant measures
for it. We also relate this analysis with the study of a certain Hamiltonian
system describing vortices (“vortex models”). In Section 3 we shall study the
stochastic Navier–Stokes equation with Gaussian space-time white noise and
its invariant measure. We also provide brief comments and bibliographical
references concerning recent work in directions which are complementary to
those described here.

2 The Euler Equation, its Invariants and Associated
Invariant Measures

2.1 The Euler Equation

An Euler fluid is the particular case for vanishing viscosity of a fluid described
by the Navier–Stokes equation (for an incompressible, i.e. divergenceless and
homogeneous, i.e. constant density fluid). It is also called a “perfect fluid”.

Its equations of motion express the conservation of mass (ρ̇+div(ρu) = 0)
which reduces for ρ = constant in space and time to div(u) = 0, and Newton’s
law. Here one takes into account that one has a “continuum of fluid particles”
moving with coordinates x(t) in d–dimensional space R

d associated with the
(smooth) velocity field u: ẋ(t) = u(t, x(t)) ∈ R

d (t being the time and x(t)
taking values in a subset Λ of R

d which contains the fluid). The corresponding
acceleration is given by:
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ẍ =
∂

∂t
u(t, x(t)) +

d∑

i=1

∂u

∂xi
(t, x(t))ui(t, x(t))

=
∂

∂t
u(t, x(t)) + (u(t, x(t)) · ∇)u(t, x(t)) ≡ D

Dt
u(t, x(t)).

(1)

D
Dt is the “material derivative”. The total force acting on the particles of the
fluid can be decomposed in a “stress force” −∇p (p being the pressure and ∇
the gradient in R

d) and an external force f . The Newton equation for fluids
is then

(2)
D

Dt
u = −∇p + f,

where u = (u1, . . . , ud) = u(t, x), x ∈ Λ ⊂ R
d, t ≥ 0. This together with the

div u = 0 condition constitutes Euler’s equation of motion for a fluid. One has
to specify the boundary conditions, usually taken to be u · n = 0 (u · n being
the component of u normal to ∂Λ), which is natural when p is interpreted as
the pressure in the fluid, or u periodic in the space variables, if Λ is identified
with a torus. Moreover one has to specify initial conditions at t = 0.

Remarks 2.1.

(i). Euler’s equation is an equation for an “ideal fluid”, in particular it con-
tains no viscosity term (which would be present if the stress tensor would
be more realistic. . . ). The condition div u = 0 leads by Liouville’s theo-
rem (cf. e.g. [AK98]) to volume (and thus also mass) conservation.

(ii). The form (2) of a Newton’s equation leads naturally to a geometrical pic-
ture of Euler’s equation as a Hamiltonian system. This has been exploited
by P. and T. Ehrenfest and V. Arnold, see, e.g. [AK98], [MEF72], in
particular through work by Ebin and Marsden to prove existence results
for smooth solutions. The geometrical picture is further exploited e.g.
[Ebi84] in [AK98] [Gli03] [Rap02a, Rap03, Rap05].

(iii). Results on existence respectively uniqueness of solutions of Euler’s equa-
tion in various spaces and various degrees of smoothness of initial condi-
tions and of the force f have been established. The results are particularly
strong for d = 2, see e.g. [Ebi84], [Kat67].

2.2 The Euler Equation in Terms of Vorticity

Let us first proceed heuristically assuming that there exist solutions of the
Euler equation in the class of vector fields one is interested in. Set rotu ≡ ξ
(ξ is called vorticity function) and from now on assume f is a gradient field
(which is natural due to the Newton’s equation point of view), i.e., there exists
a scalar function ψ : R+×Λ → R so that f = ∇ψ. Then Euler’s equation can
be written as

(3)
D

Dt
ξ = (ξ · ∇)u



4 S. Albeverio and B. Ferrario

with ξ = rotu, and u ·n = 0 on ∂Λ (resp. u periodic if Λ is a torus) and initial
conditions. (3) is called “vorticity equation”. In fact, to see that (2) implies
(3) it suffices to realize that 1

2∇(u · u) = u× rotu + (u · ∇)u, hence

(u · ∇)u =
1
2
∇(u · u)− u× rotu

Moreover

rot(u× ξ) = (ξ · ∇)u− ξ(∇ · u)− (u · ∇)ξ + u(∇ · ξ)
= (ξ · ∇)u− (u · ∇)ξ,

where we used that ∇ · u = 0 by the incompressibility condition and ∇ξ = 0.
Taking then rot of (2) we get, observing that rot

(
1
2∇(u · u)

)
= 0:

∂

∂t
ξ = rot(u× ξ) = (ξ · ∇)u− (u · ∇)ξ,

hence D
Dtξ = (ξ · ∇)u.

For d = 2 and for Λ a simply connected domain we can set, using div u = 0,

u = ∇⊥ϕ,

with ϕ a scalar function, called “stream function”, ∇⊥ = (−∂2, ∂1). Moreover,
for d = 2 the vorticity vector has only one non vanishing component. We write
ξ for this scalar quantity (for d = 2): ξ = ∇⊥·u. Since∇⊥·u = ∇⊥·∇⊥ϕ = ∆ϕ,
we get ξ = ∆ϕ, so (ξ · ∇)u = (∆ϕ · ∇)∇⊥ϕ = 0. In this case, (3) becomes

(4)
D

Dt
ξ = 0

This expresses the “conservation of vorticity” for d = 2. As an equation for
ϕ, (4) reads:

(5)
∂

∂t
∆ϕ = −

(
(∇⊥ϕ).∇

)
∆ϕ

(where we used ξ = ∆ϕ, (u · ∇)ξ = ((∇⊥ϕ · ∇)∆ϕ)).

Remark 2.1. For a corresponding treatment in the case of non simply con-
nected domains see [AHK89].

2.3 The Conserved Quantities for the Euler Equation

Proposition 2.1. Let Λ be either R
d or a bounded open subset of R

d with
“smooth” boundary ∂Λ (in which case one requires that the boundary condition
on the Euler velocity u, u · n = 0, is satisfied) or the d-dimensional torus T

d.
Let u be a classical solution of the Euler equation (2) (see, e.g. [Kat67, Ebi84,
BA94]). Then the following functionals of u are time independent (i.e. are
conserved):
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(i). the energy

E(u) =
1
2

∫

Λ

u2dx

(for all d ≥ 1)
(ii). for d = 2: the enstrophy

S(u) =
1
2

∫

Λ

(rot u)2dx

(iii). for d = 2: the g–functionals of the vorticity

Sg(u) =
∫

Λ

g(rot u) dx,

for any g ∈ C(R), such that the integral exists.

Proof. (a):

∂

∂t
E(u) =

∫

Λ

u
∂u

∂t
dx =

∫

Λ

u(−(u.∇)u−∇p)dx,

where we used (2); integrating by parts and using the boundary conditions
and div u = 0, we obtain ∂

∂tE(u) = 0.
(b), (c):

∂

∂t
Sg(u) =

∫

Λ

g′(rot u)
∂

∂t
rotu dx

= −
∫

Λ

g′(rot u)(u · ∇) rot u dx = −
∫

Λ

(u · ∇)g(rot u) dx,

where we used Leibniz rule ∇g(h) = g′(h)∇h together with (4); integrat-
ing by parts and using the boundary conditions and div u = 0, we obtain
∂
∂tSg(u) = 0.

Remarks 2.2.

(i). The integral Sg for g(λ) = λ is called circulation.
(ii). The above are essentially all known conserved quantities, called also in-

variants, see e.g. [Ser84a, Ser84b, Cip99].
(iii). Sg can be expressed in terms of the vorticity ξ respectively stream func-

tion ϕ as follows:

Sg(u) =
∫

Λ

g(ξ)dx =
∫

Λ

g(∆ϕ)dx.

E can be expressed by the stream function ϕ as

E(u) =
1
2

∫

Λ

(∇⊥ϕ)2dx.
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2.4 Heuristic Invariant Measures Associated
with the Euler Equation

The first observation is that the heuristic “flat measure” du on the space of
solutions at time t of the Euler equation (2) does not depend on t, because
of the incompressibility conditions div u = 0. This is a heuristic expression of
the rigorous fact that the Euler flow t �→ u(t, x) preserves volumes (see, e.g.
[AK98]).

Let I(u) be any of the conserved quantities of Proposition 2.1. Heuristically
µI(du) = “Z−1 exp(−I(u))du”, with Z ≡ “

∫
Γ

e−I(u)du” and Γ being a space
of solutions of (2), is an invariant (i.e. time independent) probability measure
associated with (2).1

Remark 2.2. From its heuristic expression in the case I(u) = E(u) we see
that µE(du(0, ·)) can be realized rigorously as the Gaussian white noise mea-
sure (i.e. the cylinder measure) associated with L2(Λ, Rd) (with mean zero and
unit covariance) (see, e.g. [HKPS93]). Whether this measure is indeed invari-
ant in some sense under the “Euler flow” τt : u(0, ·) �→ u(t, ·) is a subtle open
question, due to the “bad support properties” of µE, τt being understood as a
map in a space of generalized functions (in the support of µE). Henceforth we
shall concentrate on the case d = 2, and for I(u) of the form b) in Proposition
2.1 (which are “less singular”).

Let us consider for simplicity the case Λ = T
2 (a 2–dimensional torus, identi-

fiable with [0, 2π] × [0, 2π]), with space periodic boundary conditions for the
solution u of (2) (the general case of a bounded Λ is discussed in [AHK89];
a corresponding explicit discussion for Λ = R

2 seems to be lacking). Intro-
duce the complex Hilbert space L2(Λ). For ϕ ∈ L2(Λ) we have the Fourier
expansion

(6) ϕ(x) =
∑

k∈Z2

ωk
eik·x

2π
,

with ω ≡ (ωk) ∈ 
2(Z2) in the sense that ωk ∈ C for all k ∈ Z
2 and ‖ω‖2�2(Z2) ≡∑

k∈Z2 |ωk|2 < ∞.

Remarks 2.3.

(i). Correspondingly we have u =
∑

k ukek, with ek(x) ≡ eik·x

2π
k⊥

|k| , k ∈ Z
2,

k 
= 0, k⊥ = (−k2, k1). Then uk = i|k|ωk. The reality of u is equivalent
with uk = −u−k, k ∈ Z

2, since ωk = ω−k (with ¯ meaning complex
conjugation).

1 This heuristics appears originally in work by L. Onsager and T.D. Lee and ex-
panded in [Gal76], which provided the inspiration for the first rigorous work on
this line in [ARdFHK79], [BF80], [BF81], to which we refer for further references,
see also [Gla81], [Gla77], [KM80], [RS91] for further physical discussions along
these lines.
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(ii). The modification of ϕ by an additive constant does not change the relation
u = ∇⊥ϕ. By this we see that we can assume, without losing generality,
that

∫
Λ

ϕ(x)dx = 0. This corresponds to taking ω0 = 0.

Hence the above expansion (6) for ϕ can be written

(7) ϕ(x) =
∑

k∈Z
2
0

ωk
eik·x

2π
,

with ωk = ω−k, Z
2
0 ≡ Z

2\{0}. Let us express the invariants E,S of Proposition
2.1 in terms of the variables (ωk)k∈Z

2
0

(denoting them again by the symbols
E,S):

(8) E(ω) =
1
2

∑

k∈Z
2
0

|k|2|ωk|2 ,

(9) S(ω) =
1
2

∑

k∈Z
2
0

|k|4|ωk|2.

Let us moreover remark that at least for the simple case where I = E or
I = S a rigorous meaning can be immediately given to the measure µγI as
Gaussian product of measures, for any γ > 0. In fact in these cases

I(ω) =
∑

k∈Z
2
+

|k|α(I)|ωk|2

with α(I) = 2 for I = E and α(I) = 4 for I = S. We have set Z
2
+ ={

k ∈ Z
2
0 : k1 > 0 or {k1 = 0, k2 > 0}

}
, because it is enough to consider half

of the indices k. Then

µγI(dω) =
⊗

k∈Z
2
+

µk
γ(dωk),

where µk
γ is the Gaussian measure on C ∼= R× R given by

µk
γ(dωk) = Z−1

k e−γ|k|α(I)|ωk|2dωk,

Zk =
∫

C

e−γ|k|α(I)|ωk|2dωk

(|ωk|2 = x2
k + y2

k, dωk = dxk dyk for ωk = xk + iyk; xk, yk ∈ R). µγI

can be realized as a cylinder probability measure on C
Z
2
+ . It is identifiable

with the standard centered Gaussian measure N(0, | · |2H(γI)), with H(γI)

the complex Hilbert space H(γI) ≡
{

ω = (ωk)k∈Z
2
+

: I(ω) < ∞
}

, with scalar
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product (ω, ω′)γI ≡ γ
∑

k∈Z
2
+
|k|α(I)ωkω′

k. It is well known that to µγI one
can give a meaning as a σ–additive probability measure on a larger space
H̃(γI) ⊃ H(γI), the embedding being an Hilbert–Schmidt operator (see, e.g.
[Kuo75], [DPZ92]). The nontrivial problem is then to show that these rigorous
measures are indeed invariant under the “Euler flow” in some rigorous sense,
see Sections 2.8–2.10. In the next section we shall discuss the Euler equation
in terms of the Fourier variables ω, in order to later on discuss the invariance
of above µγI under the “Euler flow”.

2.5 The Euler Equation in Terms of the Fourier Components
of the Stream Function

Proposition 2.2. Let ϕ(t) be a classical solution of the Euler equation (5)
on the 2-torus T

2, with initial condition ϕ(0) = ϕ0. Let ω(t) = (ωk(t))k∈Z
2
0

be
the Fourier components of ϕ(t):

ϕ(t)(x) =
∑

k∈Z
2
0

ωk(t)
eik·x

2π
, x ∈ T

2,

with ϕ0(x) =
∑

k∈Z
2
0
ωk(0) eik·x

2π .
Then

(10)
d

dt
ωk(t) = Bk(ω(t)), k ∈ Z

2
0

with

Bk(ω) ≡ 1
2π

∑

h∈Z
2
0

h�=k

ch,kωhωk−h

ch,k ≡ − (h⊥ · k)(h · k)
|k|2 +

h⊥ · k
2

for any h 
= 0, h 
= k.

Viceversa, if the sequence ω ≡ (ωk) satisfies (10), then ϕ satisfies (5).

Proof. This is easily seen by computation. For details see, e.g. [ARdFHK79].

Proposition 2.3. Let Bk be as in Proposition 2.2. Then

(i). ∂
∂ωk

Bk(ω) = 0

(ii). Bk(ω) = B−k(ω), for all k ∈ Z
2
0

Proof. These properties are immediate consequences of the definition of Bk.

Remark 2.3. These equations hold for ω = ω(t), for all t ≥ 0.

Proposition 2.4. Let ω(t) be as in Proposition 2.2. Then for all t ≥ 0:
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(i).
∑

k∈Z
2
0

|k|2Bk(ω(t))ωk(t) = 0, if E(ω(0)) < ∞

(ii).
∑

k∈Z
2
0

|k|4Bk(ω(t))ωk(t) = 0, if S(ω(0)) < ∞.

Proof.

(i). Follows by computation from d
dtE(ω(t)) = 0, bearing in mind (8).

(ii). Follows by computation from d
dtS(ω(t)) = 0, bearing in mind (9).

Remarks 2.4.

(i). Independently of the time independence of E(ω) and S(ω), properties (i),
(ii) can also be seen to hold by exploiting the particular form of Bk.

(ii). A corresponding result holds for the Galerkin approximation to the Euler
equation, obtained by taking the equation system (4) only for k ∈ IN (IN

is the subset of Z
2
0 so that |k| ≤ N and IN = −IN ), i.e.

d

dt
ωk(t) = BN

k (ω(t)) for k ∈ Z
2
0, |k| ≤ N

with BN

k (ω) =
1
2π

∑
h

0<|h|≤N
0<|k−h|≤N

ch,kωhωk−h.

2.6 The Necessity of Looking for Singular Solutions. Divergence
of the Energy with Respect to the Enstrophy Measure

For the discussion of the Euler equation it is necessary to relate the potentially
invariant measures µγI to the Euler equation itself. A first step is to give a
meaning to Bk(ω) for all ω in the support of µγI . For the Gaussian cases
I = E and I = S, it turns out that the second one is better in this sense. We
call µγ = µγS the “enstrophy measure” (with parameter γ > 0). We are going
to show in the next section that Bk ∈ L2(µγ) (for all k ∈ Z

2
0, γ > 0), and

thus Bk(ω) has a meaning for almost all ω in the support of µγ . Before doing
so, let us however point out that the support of µγ is “bad” in the sense that
the energy E(ω) is infinite for all ω in the support of µγ . In fact we have the
following

Proposition 2.5. Let EN (ω) ≡ 1
2

∑
k∈Z

2
0

0<|k|≤N

|k|2|ωk|2. Then EN ∈ L2(µγ) for

all N ∈ N and EN ↑ +∞ as N → ∞. However : EN (ω) :≡ EN (ω) −
Eµγ

(EN (·)) (with Eµγ
the expectation with respect to µγ) is in L2(µγ) and

converges in L2(µγ) as N →∞.

Remark 2.4. The L2(µγ)–limit of : EN : as N → ∞ is written : E : and
called the µγ-renormalized energy.
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Proof. Eµγ
(EN (·)) =

1
2

∑
k∈Z

2
0

0<|k|≤N

|k|2Eµγ
(|ωk|2). But Eµγ

(|ωk|2) = 2
γ|k|4 (from

the definition of µγ). Hence Eµγ
(EN ) diverges logarithmically as N → ∞.

A similar computation shows, however, that : EN : is a Cauchy sequence in
L2(µγ), hence it converges to an L2(µγ) limit : E : (see [ARdFHK79] for
details). By subsequences then : EN : (ω) →: E : (ω) for µγ-a.e. ω, which
implies, together with the above divergence of Eµγ

(EN ), that EN (ω) diverges
for µγ - a.e. ω, as N →∞.

Since the energy E(ω) = lim
N

EN (ω) is infinite for µγ-a.e. ω, the solutions of

the Euler equation we are interested in are solutions of infinite energy. Some
results for these singular (or generalized) solutions will be presented in Section
2.10. The technique exploits the invariant measure µγ ; the situation is thus
very different from the general analysis of solutions of Euler’s equation with
infinite energy (see, e.g. [Shn97]).

Remark 2.5. One can show that e−β:E: ∈ L1(µγ) for all β > −γ (see
[ARdFHK79, AHK89, CC95]). It follows then that

µβ,γ(dω) ≡ e−β:E:(ω)µγ(dω)∫
e−β:E:(ω)µγ(dω)

is a probability measure associated with both the energy and enstrophy. µβ,γ

is heuristically invariant under the Euler flow ω(0) �→ ω(t) (being constructed
from invariant functions and the heuristic invariant flat measure). In the next
section we shall discuss more closely the invariance of µγ = µ0,γ (and µβ,γ).

2.7 Relation of the Enstrophy Measure µγ with the Euler
Equation

Proposition 2.6. For any k ∈ Z
2
0, Bk is the L2(µγ)–limit for N →∞ of its

Galerkin approximations BN
k (ω).

Proof. Set for simplicity Eµγ
≡ E.

For ω = (ωk)k∈Z
2
0
∈ suppµγ , the ωk are independent and µk

γ–distributed
random variables, i.e. Gaussian centered with covariance E(ωkω′

k) = 2
γ|k|4 δkk′ .

We have

E
(
|BN

k |2
)

=
1

(2π)2

N∑
h,h′

ch,kch′,k′E (ωhωk−hωh′ωk′−h′)

where the sum is over the indices h, h′ such that 0 < |h| ≤ N, 0 < |k − h| ≤
N, 0 < |h′| ≤ N, 0 < |k′ − h′| ≤ N . But it is well known that all the even
moments of a Gaussian process can be computed in terms of its covariance.
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Hence we get

E
(
|BN

k |2
)

= 8
(2πγ)2

∑
h h�=k
|h|≤N

c2
h,k

1
|h|4|k−h|4

≤ 8
(2πγ)2

∑
h∈Z

2
0h�=k

c2
h,k

1
|h|4|k−h|4 < ∞

(see [ARdFHK79] for details). Hence BN

k ∈ L2(µγ). Similarly one shows that
(BN

k )N∈N is a Cauchy sequence in L2(µγ), which proves the proposition.

Remark 2.6. One can also show that Bk ∈ Lp(µγ), for any 1 ≤ p < ∞. In
fact Cipriano [Cip99] has shown that supk

(
Eµγ

|Bk|p
)1/(2p) ≡ cp,γ < ∞. From

this one sees that
∑

k

|k|2b
Eµγ

|Bk|2p < ∞, for all b < −1.

2.8 The Infinitesimal Invariance of µγ . Relation
with the “Hopf Approach”

Hopf in [Hop52] introduced a general (heuristic) approach to the study of the
equations of hydrodynamics, “lifting” the evolution equation from individual
solutions to “statistical solutions”. A rigorous implementation of this approach
can be obtained as follows (see [ARdFHK79, AHK89]).

Let FC∞
b be the space of finitely based functions (“cylinder functions”)

of ω = (ωk) (smooth and bounded with all derivatives, on the base). Thus
F ∈ FC∞

b iff ∃F̃ ∈ C∞
b (Cn), for some n ∈ N, so that F (ω) = F̃ (ωk1 , . . . , ωkn

),
for some ki ∈ Z

2
+, i = 1, . . . , n. The following proposition can easily be proved.

Proposition 2.7. If ω(t) satisfies the Euler equation d
dtωk(t) = Bk(ω(t)),

k ∈ Z
2
0, and F ∈ FC∞

b , then

d

dt
F (ω(t)) = BF (ω(t)),

with B ≡
∑

k Bk
∂

∂ωk
(defined on FC∞

b ).

Remarks 2.5.

(i). One calls B the Liouville operator in L2(µγ) (associated with the Euler
equation). This describes the dynamics when looked through its action on
cylindric smooth functions F . Proposition 2.6 assures that B is well de-
fined on the set FC∞

b . One calls the equation in Proposition 2.7 “Liouville
equation” (associated with the Euler equation).

(ii). For F ∈ FC∞
b , BF =

∑
k Bk

∂F
∂ωk

and the sum is finite.

Definition 2.1 (Infinitesimal invariance). A probability measure ν on the
space of sequences ω = (ωk)k∈Z

2
+

is called infinitesimal invariant with respect
to B (or with respect to the Euler flow) if

∫
BFdν = 0 for all F ∈ FC∞

b .
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Equivalent to this is B∗1 = 0, where 1 is the function identically one in L2(ν)
and ∗ is the adjoint in L2(ν), as seen from

∫
BFdν = 〈1, BF 〉L2(ν) = 〈B∗1, F 〉L2(ν).

Proposition 2.8.

(i). B∗ ⊃ −B, i.e. (B,FC∞
b ) is skew-symmetric in L2(µγ).

(ii). µγ is infinitesimal invariant with respect to B.

Proof.

(i). We have B =
∑

k Bk
∂

∂ωk
on FC∞

b . But
(
Bk

∂
∂ωk

)∗
⊃

(
∂

∂ωk

)∗
B∗

k on

FC∞
b with

(
∂

∂ωk

)∗
⊃ − ∂

∂ω−k
+ γ|k|4ωk. We know from Proposition 2.3,

ii) that B∗
k = B−k; then B∗ ⊃

∑
k − ∂

∂ω−k
B−k+γ

∑
k |k|4ωkB−k. Bearing

in mind Proposition 2.4, ii) and Proposition 2.3, i), we prove (i).
(ii). From the definition, we have infinitesimal invariance iff B∗1 = 0. By (i)

B∗1 = B1 = 0 (the latter step is an easy consequence of the specific form
of B).

Remarks 2.6.

(i). µN
γ ≡

⊗

0<|k|≤N

µk
γ(dωk) is infinitesimal invariant with respect to BN ≡

∑
k

0<|k|≤N

BN

k

∂

∂ωk
. In general, all the results on the Galerkin approximations

are easily proved.
(ii). Instead of the definition domain FC∞

b for B, we could have taken other
dense sets in L2(µγ), e.g. of polynomial type (see [AHK89, AF02b]).

2.9 The Question of Uniqueness of Generators of the Euler Flow

Let us set L ≡ iB. L is densely defined (e.g. on FC∞
b ) in L2(µγ), symmetric

(i.e. L∗ ⊃ L, which follows from B∗ ⊃ −B). µγ is infinitesimal invariant under
L in the sense that

∫
LFdµγ = 0 ∀F ∈ FC∞

b . In addition L is real in L2(µγ)
in the sense that it is invariant under the following operation J of conjugation.
J is defined in L2(µγ) by

JF (ω) ≡ F (−ω), F ∈ L2(µγ);

so J2F = F . The J-symmetry of L is expressed by

JL = LJ on FC∞
b .

By a theorem of von Neumann (see, e.g. [RS75]) L has then at least one self–
adjoint extension in L2(µγ). The question raised in [ARdFHK79, AHK89]
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was: how many different self–adjoint extensions of L do exist? Let us first
remark that any such extension L̃, L̃ being self–adjoint, by Stone’s theorem
generates a strongly continuous unitary group (eitL̃)t∈R in L2(µγ). One calls
F �→ UtF = eitL̃F , F ∈ L2(µγ) a generalized Euler flow (associated with
the Euler equation in the L2(µγ)-sense: this is a form of the Hopf–Koopman–
von Neumann approach to the study of evolution equations and ergodic ques-
tions. See, e.g, [GGM80]).

Remark 2.7. If L is essentially self–adjoint on FC∞
b in L2(µγ) (i.e. its clo-

sure L̄ is already self–adjoint), then there is only one self–adjoint extension
of L, namely L̄ itself. One can show, see [AF04b, AF03] that the generated
Euler flow F �→ eitL̃F comes from a µγ–measurable point flow Φt, in the sense
that there exists a µγ–measurable flow Φt : ω(0) �→ Φt(ω(0)) ≡ ω(t), which is
µγ–preserving and so that (eitL̃F )(ω) = F (Φ−1

t (ω)), for µγ–a.e. ω.

The problem of essential self–adjointness of L seems to be still open. Partial
results have however been obtained:

(a). In [AF02b] it is shown that L is dominated by a related self–adjoint oper-
ator H of the “Schrödinger type”, in the sense that there exist constants
b > 1, Cb > 0 so that

2|〈F,LF 〉L2(µγ)| ≤ Cb 〈F,HF 〉L2(µγ),

with H ≡
∑

k∈Z
2
+
|k|2b( ∂

∂ωk
)∗ ∂

∂ωk
+ V (ω), V ≡

∑
k∈Z

2
+
|k|−2b|Bk|2.

(b). Essential self–adjointness of L is a subtle question, certain finite dimen-
sional analogues of L are indeed not essential self–adjoint on correspond-
ing domains. E.g. i(x2 d

dx + d
dxx2) on C∞

0 (R) is symmetric, real (with
respect to Jf(x) = −f̄(x)), but not essential self–adjoint in L2(R, dx),
having defect indices (0, 1) although it is dominated by the self–adjoint
Schrödinger operator − d2

dx2 +x4, see [RS75, AF02b]. Similar results hold

for the corresponding operators in L2(R, e− 1
2 x2

√
2π

dx). Related problems
of essential self–adjointness arise for certain operators of quantum field
theory, see [AFY04].

(c). The finite-dimensional operators LN = iBN (i.e. the Galerkin approxi-
mations of Section 2.5) are essentially self-adjoint in L2(µN

γ ), when de-
fined on C∞

b , and have µN
γ (dω) =

⊗
0<|k|≤N µk

γ(dωk) as invariant mea-
sure. But the Galerkin dynamics is well defined globally in time. The
problem of essential self-adjointness arises when we pass to the infinite
dimensional setting, i.e. for N → ∞. For similar problems, we mention
the essential self-adjointness of a Liouville operator in spatial dimension
d = 1 solved in [MPP78].

(d). A uniqueness result on extensions of L in a space different from L2(µγ)
has recently been obtained in [ABF].

(e). For further work on invariant measures for the Euler flow see [CDG85],
[CC99], [Pul89]. For related work see also [CC06].
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2.10 An Euler Flow in a Sobolev Space of Negative Index

Let us consider for any p ∈ R the Sobolev space

Hp
2 ≡

{
ω = (ωk)k∈Z

2
+

:
∑

k∈Z
2
+

|k|2p|ωk|2 < ∞
}

;

for p = 2 this is a Hilbert space with scalar product (ω, ω′)H2
2

= S(ω) (S
being the enstrophy introduced in Sections 2.3, 2.4). For any ε > 0 the triple
(H2

2,H1−ε
2 , µγ) constitutes an abstract Wiener space (in L. Gross’ sense); in

fact the embedding H2
2 ⊂ H1−ε

2 is Hilbert–Schmidt, for the proof of this see
[AC90], [HKPS93]. One has µγ(H1

2) = 0 (another expression of the fact that
the energy E is µγ–a.s. infinite) and µγ(H2

2) = 0, but µγ(H1−ε
2 ) = 1. One can

take for support of the enstrophy measure µγ the space
⋂

ε>0H1−ε
2 .

By the way, the support of the energy measure µE , defined in Section 2.4,
is

⋂
ε>0H−ε

2 (for d = 2).
The following theorem was established in [AC90]:

Theorem 2.1. There exists a probability space (Ω,A, Pγ) and a pointwise
flow Φ(s, ω) ≡ (Φk(s, ω))k∈Z

2
+
, s ∈ R, ω ∈ Ω so that Φ(·, ω) ∈ C(R;H1−α

2 )

for any α > 3
2 and Φk(t, ω) = Φk(0, ω) +

∫ t

0
Bk (Φ(s, ω)) ds for Pγ–a.e. ω,

∀k ∈ Z
2
+.

Moreover µγ is invariant under Φ, in the sense that
∫

F (Φ(t, ω))Pγ(dω) = Eµγ
F ∀t,∀F ∈ FC∞

b

Proof. It uses essentially the estimate Bk ∈ L2(µγ), for details see [AC90].

Remarks 2.7.

(i). One shows that : E :∈ L2(µγ) is an invariant function under Φ.
(ii). According to the Remark 2.6, the Hb

2-norm of (Bk)k∈Z
2
+

is in L2(µγ) for
any b < −1.

(iii). Theorem 2.1 gives the existence of solutions of the Euler equation µγ–
almost everywhere in a weak probabilistic sense (implying, in particular,
a change of probabilistic space).

2.11 Some Remarks on the Vortex Model and its Relations
with the Euler Equation

Consider the vorticity ξ = rot u concentrated in a finite number n of distinct
points:

ξ(t, x) =
n∑

j=1

νjδxj(t)(x)
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νj is the intensity of the j-th vortex, x ∈ T
2 the 2D-torus. For an ideal fluid,

the time evolution of these point vortices in the vortex model is given by

(11) νj
d

dt
xj(t) = ∇⊥

xj

∑n

1
h, l
h�=l

νhνl G(xh(t)− xl(t)), j = 1, . . . , n

G is the Green’s function of −∆ on the torus.

Remark 2.8. Equation (11) has the structure of an Hamiltonian system, with
Hamiltonian function

H(x) =
1
2

∑n

1
j, l
j �=l

νjνlG(xj − xl).

It has been studied by itself, see, e.g. [DP82], [Caf89]. Particular attention
has been given to the case where the νj take only 2 values, say ±α, α > 0.
In this case there is a close relation (due to the special logarithmic singularity
of G) with the Coulomb gas in 2 dimensions, which has been studied in con-
nection with statistical mechanics [AHK73], [FS76], [CLMP92] (and plasma
physics [AHKM85]) . Existence of Gibbs states Z−1e−βH(x)dx1 . . . dxn with
any number of vortices (resp. particles) for 0 < β < 4π

α2 has been shown, see
e.g. [FR83], [Lio98].

We are particularly interested here in the relation of the vortex model with the
Euler equation. This has been studied by Marchioro and Pulvirenti [MP94]. As
far as we are concerned with invariant measures, this comes about through the
consideration of invariance of the Lebesgue measure for the Euler equation, see
the first Remark 2.1, as well as for (11), because of its Hamiltonian structure.
Let us construct a “concrete” invariant measure considering any number of
vortices. For this we define the compound Poisson measure Π on the space Γ
of configurations of T

2. Let for any n ∈ N:

Γ (n) ≡
{

ξ =
n∑

l=1

νlδxl
: νl ∈ R0, xl ∈ T

2, xl 
= xk for l 
= k

}

(where R0 ≡ R\{0}). Γ (n) is looked upon as a space of n–point configurations
in T

2. Let Λ̃(n) =
{
(νi, xi) ∈ (R0 × T

2)n : i = 1, · · · , n, xi 
= xk for i 
= k
}
.

There is a bijection J (n) of Λ̃(n) mod S(n) into Γ (n), where S(n) is the per-
mutation group over {1, · · · , n}. Let Θ be a finite positive measure on B(R0)
such that

∫
R0

(1∧ ν2)Θ(dν) < ∞. Set ‖Θ‖ =
∫

R0
Θ(dν). Consider the measure

σ⊗n ≡ (Θ ⊗ λ)⊗n on B(Λ̃(n) mod S(n)), λ being the Lebesgue measure on
R

2. Let σn be the image of σ⊗n on Γ (n). Set Γ (0) = {∅}, σ0 = δ{∅}. The space
of configurations is by definition Γ = ∪∞

n=0Γ
(n), defined as disjoint union of

topological spaces with the corresponding Borel σ-algebra (see, e.g. [AKR98b],
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[AKR98a]). The compound Poisson measure Π on Borelians of Γ is defined
by Π = e−‖Θ‖(2π)2

∑∞
n=0

σn

n! . In [AF03] it is shown that Π is invariant with
respect to a unique vortex flow, well defined for Π–a.e. initial data. This is
based on results by Dürr and Pulvirenti [DP82]. In fact in each component
Γ (n) of Γ there is a σn–preserving flow, because the Lebesgue measure is in-
variant and the vortex intensities are constant during the motion. Hence there
is a unique strongly continuous positivity preserving unitary group on L2(Π).
Under the assumption

∫
R0

ν2Θ(dν) < ∞ one has Bk ∈ Lp(Π), 1 ≤ p < ∞,
∂Bk

∂ξk
= 0 Π–a.e. ξ, B̄k(ξ) = B−k(ξ) Π–a.e. ξ, k ∈ Z

2
0. Thus the Liouville

operator L = i
∑

k Bk
∂

∂ξk
in L2(Π) is Markov unique in the sense that there

exists only one self–adjoint extension which generates a positivity preserving
strongly continuous unitary group Ut in L2(Π), see [GGM80], [AF03]. Π is
invariant unter Ut.

Remarks 2.8.

(i). Π and µγ are singular, see [AF03], and µγ(Γ ) = 0.
(ii). See also [AF02a], [AF02b] for other measures of the Poisson type,

which are heuristically invariant for the 2D Euler flow, also discussed
in [BF80], [BF81], [AHKM85], [CDG85].

(iii). Stochastic perturbations of the vortex model are mentioned in [AF02a].
It would be interesting to study them in more details. Let us mention
in passing that stochastic perturbations of 2–dimensional Euler equa-
tions have been studied in particular in [BF99], [Bes99], [MV00], [BP01],
[Kim02], and in [CC99] (using non–standard analysis, see [AHKFL86]).
Stochastic models for the study of formation of vortices have been devel-
oped [FG04], [FG05]. For related work see also, e.g., [BLS05].

3 Stochastic Navier–Stokes Equation

The study of the deterministic Navier–Stokes equation is well known to present
challenging problems, especially in the case of 3 dimensions. E.g. the global
existence and uniqueness of classical solutions of this equations with smooth
initial data is a famous open problem, see, e.g. [Sin05b, Sin05a], [Fef06],
[Con01a], [CF03], [Soh01], [Zgl03]. In 2 space dimensions the situation is better
understood, see, e.g. [BA94], [Can04], [Tem83], [Tem84], [KT01]. However the
problem of the existence of invariant measures (different from those concen-
trated on stationary solutions [VF88]) is widely open. In 2 space dimensions
there are results on the construction of invariant measures for Navier–Stokes
equations stochastically perturbed by Gaussian white noise, which we are go-
ing to describe in detail. We are interested in the stochastic Navier–Stokes
equation with a space-time white noise. We consider, as in Section 2, the
spatial domain to be the torus T

2 = [0, 2π]2 (hence periodic boundary con-
ditions are assumed); we point out that for other finite spatial domains, the
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boundary conditions for the Euler equation and for the Navier–Stokes equa-
tion are different (see e.g. [Bir60]). In Section 3.1 we present the stochastic
Navier–Stokes equation. In Section 3.2 we introduce an infinitesimal invari-
ant measure associated to this stochastic equation, as done in [AC90]; this
is a Gaussian measure µν , with covariance given in terms of the enstrophy
(and of the viscosity parameter ν). Existence of a solution of this stochastic
Navier–Stokes equation has been proved in two different ways: [AC90] con-
siders a weak solution and [DPD02] a strong solution (weak and strong are
to be understood in the probabilistic sense). We present the second approach
in Section 3.3. Uniqueness of these strong solutions is given in Section 3.4,
following [AF04b]. In the Appendix a technical lemma is presented.

3.1 The Navier–Stokes Equation with Space-Time White Noise

We consider an homogeneous incompressible viscous flow in T
2 with periodic

boundary conditions. Displaying the external force on the right hand side of
the equation, we have

(1)

⎧
⎪⎨

⎪⎩

∂
∂tu− ν∆u + [u · ∇]u +∇p = f

∇ · u = 0
u|t=0 = u0

The unknowns are u = u(t, x), p = p(t, x). The definition domains of the
variables are t ≥ 0, x ∈ T

2. ν > 0 is the viscosity coefficient.
The mathematical setting is as in Section 2. We expand in Fourier series

any periodic divergence-free vector u (see Section 2.4):

(2) u(x) =
∑

k∈Z
2
0

ukek(x), uk ∈ C, uk = −u−k

Note that {ek}k∈Z
2
0

is a complete orthonormal system of the eigenfunctions
(with corresponding eigenvalues |k|2) of the operator −∆ in [Ldiv

2 (T2)]2 =
{u ∈ [L2(T2)]2 : ∇ · u = 0,

∫
T2 u(x) dx = 0, with the normal component of u

being periodic on ∂T
2}. With respect to the Fourier components, the energy

is given by E = 1
2

∑
k∈Z

2
0
|uk|2 and the enstrophy by S = 1

2

∑
k∈Z

2
0
|k|2|uk|2.

Each ek is a periodic divergence-free C∞-vector function. The convergence
of the series (2) depends on the regularity of the vector function u, and can
be used to define Sobolev spaces as in the following definition.

Let U ′ be the space of zero mean value periodic divergence-free vector
distributions. Any element u ∈ U ′ is uniquely defined by the sequence of the
coefficients {uk}k∈Z

2
+
; indeed, by duality, uk = 〈u, e−k〉. In the following we

often identify the space of vectors u and the space of sequences {uk}, for
u =

∑
k ukek.

Following [BL76], we define the periodic divergence-free vector Sobolev
spaces (s ∈ R, 1 ≤ p ≤ ∞)
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Hs
p = { u =

∑

k∈Z
2
0

ukek ∈ U ′ :
∑

k

uk|k|sek(·) ∈ Lp(T2) }

and the periodic divergence-free Besov spaces as real interpolation spaces

Bs
pq = (Hs0

p ,Hs1
p )θ,q, s ∈ R, 1 ≤ p, q ≤ ∞

s = (1− θ)s0 + θs1, 0 < θ < 1

In particular, Bs
2 2 = Hs

2, the Hilbert spaces already defined in Section 2.10.
(Notice, however, that we dealt there with the Euler equation in the unknown
stream function ϕ, whereas here we deal with the stochastic Navier–Stokes
equation in the unknown velocity u.) Moreover, U ′ = ∪s∈R,1≤p≤∞Hs

p with the
inductive topology.

Remark 3.1. For u =
∑

k∈Z
2
0
ukek, if we define

δju =
∑

2j−1<|k|≤2j

ukek for j ∈ N

then δju contains the Fourier components of u between 2j−1 and 2j.
For s ∈ R, p, q ≥ 1 we then have (see [DPD02])

Bs
pq =

{
u ∈ U ′ :

∑

j∈N

2qjs‖δju‖q
Lp(T2) < ∞

}

Bs
pq is a Banach space with the norm ‖u‖Bs

pq
=

(∑
j 2qjs‖δju‖q

Lp(T2)

)1/q

.

We define the Stokes operator as

A = −∆

which is a linear operator in Hs
p with domain Hs+2

p . It is an isomorphism from
Hs+2

p to Hs
p (s ∈ R, 1 ≤ p < ∞). For u =

∑
k ukek we have Au =

∑
k uk|k|2ek.

Let P be the projector operator from the space of periodic vectors onto the
space of periodic divergence-free vectors. Applying P to both sides of the first
equation in the Navier–Stokes system (1), we get rid of the pressure term (see
[Tem84]).

Let the bilinear operator B̃ be defined by

B̃(u, v) = P [(u · ∇)v]
= P [∇ · (u⊗ v)] (by the divergence-free condition)

= P

[(
∂1

∂2

)
·
(

u1v1 u1v2

u2v1 u2v2

)]
,

(3)

whenever it makes sense. For instance, a classical result is that B̃ : H1
2 ×

H1
2 → H−1

2 (see, e.g., [Tem83]). For less regular vectors u and v, estimates
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on B̃ are given in Besov spaces (see, e.g., [Che96b, Che98]). The (optimal)
regularity of B̃ is the key point to solve the Navier–Stokes equation, both in
the deterministic and in the stochastic case.

We shall very often write shortly B̃(u) for the quadratic term B̃(u, u).
The stochastic Navier–Stokes equation we are interested in, has the fol-

lowing abstract Itô form

(4)

{
d u(t) + [νAu(t) + B̃(u(t))] dt = dw(t), t > 0
u(0) = vx.

{w(t)}t≥0 is a Wiener process, defined on a complete probability space
(Ω,F , P) with filtration {Ft}t≥0, which is cylindric in the space of finite energy
H0

2, i.e.
w(t) =

∑

k∈Z
2
0

wk(t)ek

where {wk}k∈Z
2
+

is a sequence of standard independent complex valued Wiener
processes and w−k = −wk for k ∈ Z

2
+ (for k ∈ Z

2
+: wk(t) = ak(t) + ibk(t) and

{ak}, {bk} i.i.d. with Eakaj = Ebkbj = δkj). This is a process with continuous
paths taking values in Hσ

2 for any σ < −1 (see, e.g., [DPZ92]). In other terms,
dw(t) is a Gaussian space-time white noise.

We shall denote by E the expectation with respect to the measure P.

Remark 3.2. For noise which is more regular in space(“coloured Gaussian
noise”) the techniques to analyse equation (4) are very different from ours.
E.g. solutions with finite energy have been discussed with global existence
in space dimensions 2 and 3, uniqueness being known only for d=2 (as
for the deterministic case). Further typical results include existence and
uniqueness of invariant measures and ergodicity (mostly for “many Fourier
modes” but some also for “few Fourier modes”) See, e.g., [Cru89a], [Cru89b],
[BDPD04], [BG96], [BL04], [Car03], [Cha96], [CK04b], [CE06], [Cut03],
[DPD03], [Fer99], [Fer01], [Fer03], [Fer06], [FG95], [FG98], [Fla], [Fla94],
[Fla02], [Fla03], [FGGT05], [FR01], [LJS97], [Mel00], [MS02], [Pes85],
[QY98], [Rob91], [Rob03], [EMS01], [ES00b], [BT73], [Cho78], [VF88],
[BCF92], [FY92], [Kot95], [CG94], [FM95], [Fer97a], [ES00a], [KS01],
[BKL01], [MR04], [BDS04], [MR05], [HM06].

For d = 3 there is an existence result on invariant measures and ergodicity
in [DPD03] (for further results see the lectures by F. Flandoli).

Equation (4) is equivalent to the following equations for the Fourier com-
ponents

d uk(t) + [ν|k|2uk(t) + B̃k(u(t))] dt = dwk(t), t > 0

where B̃k(u) = i
2π

∑
h∈Z

2
0,h�=k c̃h,kuhuk−h , with c̃h,k = (h⊥·k)|k|

2|h||k| − (h⊥·k)(h·k)
|h||k−h||k| .



20 S. Albeverio and B. Ferrario

3.2 The Gaussian Invariant Measure Given by the Enstrophy
(and the Viscosity Parameter)

We shall consider the centered Gaussian measure µν on the space of complex
valued sequences {uk}k∈Z

2
+
, heuristically defined as the infinite product of

centered Gaussian measures µk
ν on C ∼= R× R

(5) µν(du) =
⊗

k∈Z
2
+

µk
ν(duk)

where

µk
ν(duk) =

ν|k|2
π

e−ν|k|2|uk|2duk

It is identifiable with the standard centered Gaussian measure N(0, ν|·|H1
2
).

Let us denote by Eµν
the expectation with respect to this measure: Eµν

F ≡∫
U ′ F (u)µν(du).

In particular

Eµν
[ukuj ] =

{
1

ν|k|2 if k = j

0 if k 
= j

Heuristically we can write (5) as “Z−1 exp(−νS(u))du”, S being the enstro-
phy associated to the velocity field u: S(u) =

∑
k∈Z

2
+
|k|2|uk|2. Thus, µν cor-

responds to the Gaussian measure µνS of Section 2.4.
For later use we shall need more information on the support of the measure

µν . We have, for any integer n

Eµν

(
‖u‖2n

H−σ
2n

)
= Eµν

(∫

T2
|
∑

k uk|k|−σek(x)|2n
d x

)

=
∫

T2
Eµν

(
|
∑

k uk|k|−σek(x)|2n
)

d x

= cn

[∑
k |k|−2σ

Eµν
|uk|2

]n

(6)

for some constant cn > 0. In these calculations we have used that, for any
γk ∈ C:

(7) Eµν

(
|
∑

k ukγk|2n
)

=
(2n)!
2n n!

[∑
k |γk|2 Eµν

(|uk|2)
]n

and the fact that |ek(x)| = 1
2π for any x ∈ T

2.
Since Eµν

(|uk|2) = 1
ν|k|2 , the above calculation implies that there exists a

positive constant c′n such that

Eµν

(
‖u‖2

H−σ
2n

)
≤

(
Eµν

‖u‖2n

H−σ
2n

) 1
n

≤ 1
ν

c′n
∑

k∈Z
2
0

1
|k|2+2σ
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The latter series converges as soon as σ > 0. Hence µν(H−σ
2n ) = 1 for any σ > 0

and integer n. Since we are in a bounded domain, we have the embedding
H−σ

2(n+1) ⊂ H−σ
q ⊂ H−σ

2n for 2n < q < 2(n + 1). Therefore

µν(H−σ
q ) = 1 ∀σ > 0, 1 ≤ q < ∞

and by interpolation (see the details in [AF04b], based on [BL76]) we get
Besov spaces of full measure µν :

Proposition 3.1. For any ν > 0

µν(B−σ
pq ) = 1 ∀σ > 0, 1 ≤ p ≤ q < ∞.

��

Remark 3.3. It was already known from [ARdFHK79] that the space H0
2 of

finite energy velocity vectors has not full measure with respect to µν ; in fact
one has even µν(H0

2) = 0.
With calculations similar to (6) we can obtain that, P-a.s., the paths w of

the Wiener process w(t) belong to H−1−σ
p for σ > 0 and 1 ≤ p < ∞.

We collect the main properties of the Fourier components B̃k. We look for
uniform estimates for the sequence of finite approximations B̃N

k . The extension
to the infinite dimensional dynamics has to be checked carefully. In fact, we
cannot deal directly with B̃(u) for any u in the support of the measure µν ,
since such u are too irregular for the quadratic term B̃(u) to be defined. But
all the components Bk are well defined.

Proposition 3.2. For any k ∈ Z
2
0

∂kB̃k = 0(8)

B̃k = −B̃−k(9)

B̃k ∈ Lp(µν) for any 1 ≤ p < ∞(10)

Indeed each component B̃k is the Lp(µν)-limit (as N → ∞) of the Galerkin
approximations

B̃N

k (u) =
∑

h
0<|h|,|k−h|≤N

c̃h,kuhuk−h, k ∈ Z
2
0, |k| ≤ N,N ∈ N

for which conservation of the enstrophy holds, that is
∑

k
0<|k|≤N

B̃N

k (u)|k|2uk = 0, N ∈ N.

��
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Remarks 3.1.

(i). Let B̃(u) =
∑

k B̃k(u)ek. B̃, resp B̃k are the corresponding quantities
−B, resp −Bk discussed in Section 2.2 written for the variables uk in-
stead of the variables ωk

(ii). The coefficients c̃hk are naturally related with the coefficients chk of
Section 2.4.

Notice that the dynamics (4) is a “combination” of the Euler dynam-
ics and of the stochastic Stokes dynamics. Therefore, if the stochastic linear
dynamics dz(t) + νAz(t)dt = dw(t) has as a unique invariant measure ex-
actly µν , then the whole dynamics (4) has µν as infinitesimal invariant mea-
sure. We have that the stochastic Stokes equation corresponds to a system
of uncoupled linear equations dzk(t) + ν|k|2zk(t)dt = dwk(t). Each compo-
nent has invariant measure corresponding to the law of the stationary process
zk(t) =

∫ t

−∞ e−(t−s)ν|k|2dwk(s); this is a stationary centered Gaussian process
whose covariance is 1/(ν|k|2). Hence the infinite product (k ∈ Z

2
+) of these

Gaussian measures is an invariant measure for the stochastic Stokes equation.
We point out that the proper choice of the noise and of the viscosity coefficient
gives this expression for the invariant measure (for each ν > 0 there exists a
unique invariant measure µν).

We can see this infinitesimal invariance of µν also by introducing the
Kolmogorov operator K associated to the stochastic equation (4) (see, e.g.,
[AF02b])

K =
∑

k∈Z
2
0

[ ∂

∂u−k

∂

∂uk
+

(
−νk2uk− B̃k

) ∂

∂uk

]
≡ −

∑

k∈Z
2
0

∂∗

∂uk

∂

∂uk
−

∑

k∈Z
2
0

B̃k
∂

∂uk

where ( ∂
∂uk

)∗ is the dual of the operator ∂
∂uk

in the space L2(µν).
As done above for the Liouville operator L, we have that the Kolmogorov

operator K is a linear operator in L2(µν), well-defined on D(K) = FC∞
b . In-

deed, K = −Q+L with Q =
∑

k( ∂
∂uk

)∗ ∂
∂uk

, the positive symmetric Ornstein–
Ulenbeck operator defined on FC∞

b . The operator K, defined on FC∞b , is
dissipative and closable. The measure µν is infinitesimal invariant also for Q;
hence for the sum −Q + L. (see [AF02b]).

Remark 3.4. For other results on Kolmogorov’s equation for stochastic
Navier–Stokes, see e.g. [FG98, BDPD04, Sta07]. For particular results of
uniqueness of closed extensions of K see [AF02b] and [ABF07]. For problem
of uniqueness of other, somewhat related, generators in infinite dimensional
spaces, see e.g. [AKR92, AKR95, AR95, BDPD04, DPD99, DPD07, DPT00,
DV87, KR07, LR98, Ebe99, Sta99, Sta03, DP04, RS06].

We now provide an estimate of the quadratic term B̃ with respect to the
measure µν . This will be useful later on.
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Proposition 3.3. For any viscosity ν > 0 and any 1 ≤ γ < ∞, we have

(11)
∫

U ′
‖B̃(u)‖γ

H−1−ε
2

dµν(u) < ∞ ∀ε > 0.

Proof. See [AF04b]. We only point out that [AC90] showed ‖B‖H−α
2

∈ L2(µγ)
for any α > 3

2 . In [AF04b] that result was improved by showing that
Eµγ

|Bk|2 ≤ c
π2ν2 log |k| for any |k| ≥ 2.

Remark 3.5. According to the latter result, the nonlinear term B̃(u) is de-
fined for µν-a.e. u. Since µν(H0

2) = 0 but µν(H−ε
q ) = 1 (ε > 0, 1 < q < ∞),

the elements u for which the nonlinear term B̃(u) exists are (non regular)
distributions. In [DPD02] it is explained that B̃(u) ∈ Lγ(µν ;H−1−ε

2 ) for
1 ≤ γ < ∞, ε > 0, as follows. Denote by : u ⊗ u : the renormalized square
(Wick square), defined as : u ⊗ u := u ⊗ u − Eµν

(u ⊗ u) (see, e.g., [Sim74]).
Consider the finite dimensional approximations uN :=

∑
|k|≤N ukek; one has

that supN Eµν
‖ : uN ⊗ uN : ‖γ

H−ε
2

< ∞. Notice that ∇ · (: uN ⊗ uN :) =

∇·(uN⊗uN−Eµν
(uN⊗uN)) = ∇·(uN⊗uN). Hence B̃(uN)P [∇·(:uN⊗uN :)] and

in the limit B̃(u) = P [∇·(:u⊗u :)] is well defined, i.e. B̃(u) ∈ Lγ(µν ;H−1−ε
2 ).

Moreover, in [Deb02] there is a useful proposition providing this result in
the Besov spaces, i.e. B̃(u) ∈ Lγ(µν ;B−1−ε

p q ) for any ε > 0 and γ, p, q ≥ 1.
��

3.3 Existence of Strong Solutions

The results in this section are from [DPD02, Deb02].
Set

z(t) =
∫ t

−∞
e−(t−s)νAdw(s), t ∈ R

which is a stationary solution of the stochastic Stokes equation

(12) dz(t) + νAz(t)dt = dw(t)

This is a linear stochastic equation. We know from Section 3.2 that the invari-
ant law L(z(t)) is exactly the Gaussian measure given by the enstrophy and
the viscosity parameter. We have z ∈ C(R;B−σ

p q ) P-a.s. for any σ > 0, p, q ≥ 1.
This is shown by means of Kolmogorov’s criterium, as in [DPZ92].

Then we define v = u− z. Taking the difference between (4) and (12) the
additive noise disappears; hence v satisfies the random equation

dv(t)
dt

+ νAv(t) + B̃(v(t) + z(t)) = 0

Using the bilinearity of B̃, we can write this equation in the integral form
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(13) v(t) = e−tνA(x−z(0))−
∫ t

0

e−(t−s)νA[B̃(v)+B̃(v, z)+B̃(z, v)+B̃(z)] ds

The term B̃(z) is defined according to (11). Indeed, B̃(z) ∈ Lγ(0, T ;H−1−ε
2 )

P-a.s., because

E

∫ T

0

‖B̃(z(t))‖γ

H−1−ε
2

dt = T

∫

U ′
‖B̃(u)‖γ

H−1−ε
2

dµν(u)

Since the initial data are not smooth, it is not expected that the equation for
v has a solution with paths in C([0, T ];Hs

2) for s ≥ 0. On the other hand, this
is a parabolic equation for which it will be proved in Proposition 3.4 that the
solution v exists in C([0, T ];B−σ

pq )∩Lβ(0, T ;Bα
pq) for some −σ < 0 and α > 0;

this is enough to define all the terms in (13).
To have short notations, it is convenient to introduce the space

E = C([0, T ];B−σ
pq ) ∩ Lβ(0, T ;Bα

pq)

for σ, α > 0 and p, q, β ≥ 1.
This is a Banach space with norm ‖v‖E = ‖v‖C([0,T ];B−σ

pq ) + ‖v‖Lβ(0,T ;Bα
pq)

We have a local existence result.

Proposition 3.4. Let the real parameters σ, p, q, α, β, ε, γ satisfy 2 ≤ p, q <
∞, ε > 0, 1 ≤ γ, β < ∞ and

0 < σ < α <
2
p

(14)

1
p
− 1

2
<

α

2
− 1

β
< −σ

2
(15)

1
γ

+
α

2
+

ε

2
<

1
p

+
1
β

(16)

ε

2
<

1
γ

+
σ

2
+

1
p

(17)

Then, given T > 0 for any f ∈ Lγ(0, T ;H−1−ε
2 ), z ∈ C([0, T ];B−σ

pq ) and v0 ∈
B−σ

pq , the equation

v(t) = e−tνAv0 −
∫ t

0

e−(t−s)νA[B̃(v) + B̃(v, z) + B̃(z, v) + f ] ds

has a unique solution in C([0, T ∗];B−σ
pq ) ∩ Lβ(0, T ∗;Bα

pq) provided T ∗ ≤ T is
such that

T ∗ ≤ C(‖v0‖B−σ
pq

+ ‖z‖C([0,T ];B−σ
pq ) + ‖f‖Lγ(0,T ;H−1−ε

2 ))
−1/η

with
η =

1
2
− 1

p
+

α

2
− 1

β

and where C depends on ν, σ, p, q, α, β, ε, γ.
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Proof. This result is based on the lemmas below. We only give a sketch, con-
taining the main ideas, full justification is made by passing through Galerkin
approximations. Define the mapping Φ by

(Φv)(t) = e−tνAv0 −
∫ t

0

e−(t−s)νA[B̃(v) + B̃(v, z) + B̃(z, v) + f ] ds.

The lemmas below show that Φ : E → E and

‖Φv‖E ≤ c1‖v0‖B−σ
pq

+c2‖f‖Lγ(0,T ;H−1−ε
2 )+c3T

η
(
‖v‖2E + 2‖v‖E‖z‖C([0,T ];B−σ

pq )

)
.

Moreover, if ‖v‖E ≤ R, then ‖Φv‖E ≤ R, provided

2Rc3T
η ≤ 1 and R ≥ 2(c1‖v0‖Bσ

pq + c2‖f‖Lγ(0,T ;H−1−ε
2 ) + ‖z‖C([0,T ];B−σ

pq )).

Choosing a ball in E of radius R, the mapping Φ restricted to this ball is a
contraction. In fact, given v1, v2 ∈ E with norms bounded by R we have

‖Φv1 − Φv2‖E
≤ c3T

η(‖v1‖E‖v1 − v2‖E + ‖v2‖E‖v1 − v2‖E + 2‖v1 − v2‖E‖z‖C([0,T ];B−σ
pq ))

≤ 2c3T
η(R + ‖z‖C([0,T ];B−σ

pq ))‖v1 − v2‖E .

We conclude that Φ has a unique fixed point v if

T <
(
2c3(R + ‖z‖C([0,T ];B−σ

pq ))
)−1/η

and this v is the solution of (13) in [0, T ].

Remark 3.6. Since σ > 0, condition on (15) imposes that p > 2. This is the
reason for working in Besov spaces, instead of the usual Hilbert spaces. ��

In the three following lemmas, the parameters fulfil the conditions (14)–
(17) in Proposition 3.4.

Lemma 3.1. If v0 ∈ B−σ
pq , then e−tνAv0 ∈ E and

‖e−tνAv0‖E ≤ c1‖v0‖B−σ
pq

for some constant c1.

Proof. These estimates follow from classical results on semigroup theory.
Indeed

‖e−tνAv0‖Bα
pq
≤ c

t
α+σ

2

‖v0‖B−σ
pq

for t > 0 and α ≥ −σ

So (∫ T

0

‖e−tνAv0‖β
Bα

pq
dt

)1/β

≤ c‖v0‖B−σ
pq

T
1
β −α+σ

2

if 1
β −

α+σ
2 > 0.
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In the above proof and in the following, we denote by c different constants.
When needed, we shall specify them by a subindex.

Lemma 3.2. If f ∈ Lγ(0, T ;H−1−ε
2 ), then

∫ t

0

e−(t−s)νAf(s)ds ∈ E and

‖
∫ t

0

e−(t−s)νAf(s)ds‖E ≤ c2‖f‖Lγ(0,T ;H−1−ε
2 )

for some constant c2.

Proof. We use

‖e−(t−s)νAf(s)‖
H

α+1− 2
p

2

≤ c

(t− s)1+
α
2 + ε

2− 1
p

‖f(s)‖H−1−ε
2

and the embedding (see [BL76] Th. 6.5.1)

Hα+1− 2
p

2 ⊂ Bα
pq for p, q ≥ 2

We deduce

‖
∫ t

0

e−(t−s)νAf(s)ds‖Bα
pq
≤

∫ t

0

c

(t− s)1+
α
2 + ε

2− 1
p

‖f(s)‖H−1−ε
2

ds

By Young’s inequality, the convolution integral is in Lβ(0, T ) if

1
γ

+
α

2
+

ε

2
<

1
p

+
1
β

For the second estimate, we have similarly

‖
∫ t

0

e−(t−s)νAf(s)ds‖B−σ
pq

≤ c

∫ t

0

‖e−(t−s)νAf(s)‖
H

−σ+1− 2
p

2

ds

≤ c

∫ t

0

1

(t− s)−
σ
2 +1− 1

p + ε
2
‖f(s)‖H−1−ε

2
ds

The convolution integral is bounded if

ε

2
<

1
γ

+
σ

2
+

1
p

Lemma 3.3. Let v1 ∈ Lβ(0, T ;Bα
pq) and v2 ∈ C([0, T ];B−σ

pq ). Then for (i, j) =

(1, 2) or (i, j) = (2, 1) we have
∫ t

0

e−(t−s)νAB̃(vi(s), vj(s))ds ∈ E and

‖
∫ t

0

e−(t−s)νAB̃(vi(s), vj(s))ds‖E ≤ c3T
η‖v1‖Lβ(0,T ;Bα

pq)‖v2‖C([0,T ];B−σ
pq )

for some constant c3, with η = 1
2 −

1
p + α

2 −
1
β .



Some Methods of Infinite Dimensional Analysis in Hydrodynamics 27

Proof. Choose (i, j) = (1, 2); but the same works, and is needed, for the other
choice (i, j) = (2, 1).
We use product rules in Besov spaces (see [Che96b] Corollary 1.3.1):

‖vi ⊗ vj‖
B

α−σ− 2
p

pq

≤ c‖vi‖Bα
pq
‖vj‖B−σ

pq

with 0 < σ < α, α < 2
p , and q ≥ 1 and some constant c which in the following

can vary from line to line. Bearing in mind the expression (3) of the bilinear
term B̃, we have

‖B̃(vi, vj)‖
B

α−σ− 2
p
−1

pq

≤ c‖vi‖Bα
pq
‖vj‖B−σ

pq

Therefore

‖e−(t−s)νAB̃(vi, vj)‖Bα
pq
≤ c

(t− s)
σ
2 + 1

p + 1
2
‖vi‖Bα

pq
‖vj‖B−σ

pq

From Young’s inequality, it follows that
∫ t

0
e−(t−s)νAB̃(vi(s), vj(s)) ds ∈

Lβ(0, T ;Bα
pq) provided

1
2

>
σ

2
+

1
p

and

‖
∫ t

0

e−(t−s)νAB̃(vi(s), vj(s)) ds‖Lβ(0,T ;Bα
pq)

≤ cT
1
2−σ

2 − 1
p ‖vi‖Lβ(0,T ;Bα

pq)‖vj‖C([0,T ];B−σ
pq )

To estimate the second norm, we proceed in the same way as above. We have

‖
∫ t

0

e−(t−s)νAB̃(vi(s), vj(s)) ds‖B−σ
pq

≤ c

∫ t

0

1

(t− s)−
α
2 + 1

p + 1
2
‖B̃(vi(s), vj(s))‖

B
α−σ− 2

p
−1

pq

ds

≤ ‖vj‖C([0,T ];B−σ
pq )

∫ t

0

1

(t− s)−
α
2 + 1

p + 1
2
‖vi(s)‖Bα

pq
ds

Again by Young’s inequality, we conclude that

‖
∫ t

0

e−(t−s)νAB̃(vi(s), vj(s)) ds‖L∞(0,T ;B−σ
pq )

≤ c T
1
2−

1
β + α

2 − 1
p ‖vj‖C([0,T ];B−σ

pq )‖vi‖Lβ(0,T ;Bα
pq)

if
1
2

+
α

2
>

1
β

+
1
p
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Theorem 3.1. Let the real parameters σ, p, q, α, β satisfy 2 ≤ p, q < ∞,1 ≤
β < ∞ and

0 < σ < α <
2
p

1
p
− 1

2
<

α

2
− 1

β
< −σ

2

Then, given T > 0 for any µν-a.e. x ∈ B−σ
pq there exists a solution ux to (4)

such that
ux ∈ C([0, T ];B−σ

pq ) P− a.s.

Moreover, for any l ∈ N

(18) E

(
sup

t∈[0,T ]

‖ux(t)‖l
B−σ

pq

)
< ∞

Proof. We start from Proposition 3.4, giving the local in time solution v. Then
u = v + z is a pathwise solution of (4) on a time interval [0, T ∗], where the
time T ∗ is a random time depending on the initial data. It is sufficient to have
an a priori estimate in C([0, T ];B−σ

pq ) in order to have global existence. We
want to show that

(19)
∫

U ′
E( sup

t∈[0,T ]

‖ux(t)‖B−σ
pq

)dµν(x) < ∞

This implies for µν-a.e. x that supt∈[0,T ] ‖ux(t)‖B−σ
pq

< ∞, P-a.s. Therefore
the pathwise local in time construction can be iterated leading to a global
solution.

We now prove (19). We have

ux(t) = e−tνA(x− z(0))−
∫ t

0

e−(t−s)νAB̃(ux(s)) ds + z(t)

We estimate the convolution integral as usual; then

(20)

‖ux(t)‖B−σ
pq

≤ c(‖x‖B−σ
pq

+‖z‖C([0,T ];B−σ
pq ))+c

∫ t

0

(t−s)−1/2‖B̃(ux(s))‖B−σ−1
pq

ds

In the latter term, we use the Hölder inequality in time, take the expectation
E and use again the Hölder inequality:

E[ sup
t∈[0,T ]

∫ t

0

(t− s)−1/2‖B̃(ux(s))‖B−σ−1
pq

ds]

≤ E[(
∫ t

0

(t− s)−3/4ds)2/3(
∫ T

0

‖B̃(ux(s))‖3B−σ−1
pq

ds)1/3]

≤ cT 1/6

(
E[

∫ T

0

‖B̃(ux(s))‖3B−σ−1
pq

ds]

)1/3
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Then, we integrate with respect to µν , use Hölder inequality and the invariance
of µν ; so

∫
E[ sup

t∈[0,T ]

∫ t

0

(t− s)−1/2‖B̃(ux(s))‖B−σ−1
pq

ds] dµν(x)

≤ cT 1/6

(∫
E[

∫ T

0

‖B̃(ux(s))‖3B−σ−1
pq

ds]dµν(x)

)1/3

= cT 1/2

(∫
‖B̃(x)‖3B−σ−1

pq
dµν(x)

)1/3

Coming back to (20), we have obtained that
∫

E‖ux‖C([0,T ];B−σ
pq ) dµν(x) ≤ c

∫
‖x‖B−σ

pq
dµν(x) + cE‖z‖C([0,T ];B−σ

pq )

+ cT 1/2

(∫
‖B̃(x)‖3B−σ−1

pq
dµν(x)

)1/3

By Remark 3.5, the right hand side is finite.
Similar computations show the validity of (18). This concludes the proof.

3.4 Pathwise Uniqueness

The results in this section are from [AF04b].
Consider a solution ux to (4) with random initial data x with probability

distribution µν . This is obtained pathwise as the limit of a subsequence of
Galerkin approximations uN (taking the limit as done in [DPD02]) and has
invariant measure µν , in the sense that

(21)
∫

Ef(uv(t)) dµν(v) =
∫

f(v) dµν(v), ∀f ∈ L1(µν), t ≥ 0

The fact that µν is invariant for the Galerkin approximations is an important
tool in the proof of the existence (in the spaces considered in [DPD02] as
well as in those considered in [AC90]). Moreover any solution u, obtained as
the limit of a subsequence of Galerkin approximations, has µν as invariant
measure. It is natural to ask about uniqueness of this limit obtained from any
subsequence of Galerkin approximations.

From now on, we consider as state space any Besov space B−σ
pq of full

measure µν .
For µν-a.e. x, a solution given by Theorem 3.1 enjoys (P-a.s.) the property

(22)
∫ T

0

‖B̃(ux(t))‖γ

H−1−ε
2

dt < ∞ ∀T > 0, ε > 0, 1 ≤ γ < ∞
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Let ũx be any other process defined on the same probability space
(Ω,F , {Ft}, P), with the same properties given above for ux and solving equa-
tion (4) with the same {Ft}-Wiener process as for ux. Define the difference
Ux = ux−ũx; then Ux ∈ C([0, T ];B−σ

pq ). From now on we drop the dependence
on x and work pathwise (P-a.s.). U satisfies the equation

(23)

{
d
dtU(t) + AU(t) = −B̃(u(t)) + B̃(ũ(t)), t > 0
U(0) = 0

Bearing in mind the regularizing effect of the Stokes operator A, something
more can be proven. More precisely, (22) grants that the right hand side
of the first equation in (23) belongs to the space Lγ(0, T ;H−1−ε

2 ) for any
1 ≤ γ < ∞, ε > 0. By Proposition 3.5 in the Appendix one has that

(24) U ∈ Lγ(0, T ;H1−ε
2 ) ∩ C([0, T ];B1−ε− 2

γ

2 γ )

This holds for any ε > 0, 1 ≤ γ < ∞. Hence we have proven that any solution
U to equation (23) must belong to the functional space Σ := ∩1≤γ<∞,ε>0Σγ,ε,

where Σγ,ε := Lγ(0, T ;H1−ε
2 ) ∩ C([0, T ];B1−ε− 2

γ

2 γ ). Let us point out that for

2 ≤ p ≤ γ ≤ q we have B1−ε− 2
γ

2 γ ⊆ B−ε− 2
γ + 2

p
p γ ⊆ B−ε

p γ ⊆ B−ε
pq and for ε ≤ σ we

have B−ε
pq ⊆ B−σ

pq ; therefore B1−ε− 2
γ

2 γ ⊆ B−σ
pq . Thus the regularity specified in

(24) is stronger than the regularity U ∈ C([0, T ];B−σ
pq ) given by the definition

of U itself.

Remark 3.7. The regularizing effect of the Stokes operator is not enough to
obtain more regularity in the stochastic equation (4), because of the presence
of the cylindric noise dw. As soon as the noise disappears in (23), the solution
is more regular. This is enough to get uniqueness. ��

Bearing in mind the bilinearity of the operator B̃, the equation for U can be
written in the following form

(25)

{
d
dtU(t) + AU(t) + B̃(u(t), U(t)) + B̃(U(t), ũ(t)) = 0, t > 0
U(0) = 0

The function U ≡ 0 is a solution to (25). We are going to prove that this is
the only solution of (25) in the class Σ.

To prove this, we first show that, given u, ũ ∈ C([0, T ];B−σ
pq ), under the

assumptions below there exists a unique solution U to the problem (25) be-
longing to a class less regular than Σ. This is proved in Theorem 3.2 below.
From this, uniqueness in the smaller class Σ immediately follows. This con-
cludes our proof that the unique solution for (23) is U ≡ 0. What remains to
be proven is therefore the following
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Theorem 3.2. Let real numbers σ, a be given as well as 2 ≤ p, q < ∞, 1 ≤
b < ∞ satisfying the following conditions

0 < σ < a <
2
p

σ

2
+

1
p

<
1
2

1
b

+
1
p

<
1
2

+
a

2

Then, given T > 0, for any u, ũ ∈ C([0, T ];B−σ
pq ) there exists a unique U ∈

D := C([0, T ];B−σ
pq ) ∩Lb(0, T ;Ba

pq) solution to the following problem

(26)

{
d
dtU(t) + νAU(t) + B̃(u(t), U(t)) + B̃(U(t), ũ(t)) = 0, t > 0
U(0) = 0

In particular, if U satisfies (26) then U(t) = 0 for all t ∈ [0, T ].

Proof. We consider the mild solution to (26) in the integral form (in the sense
of, e.g., [DPZ92])

(27) U(t) = −
∫ t

0

e−(t−τ)νA[B̃(u(τ), U(τ)) + B̃(U(τ), ũ(τ))]dτ

We want to prove existence and uniqueness of a solution in D by a fixed point
theorem. We proceed as in Proposition 3.4. Since the equation to deal with is
linear in the unknown U , the estimate leads easily to the desired result. We
have

(28) ‖
∫ t

0

e−(t−τ)νAB̃(u(τ), U(τ)) dτ‖Lb(0,T ;Ba
pq)

≤ c4 T
1
2−σ

2 − 1
p ‖u‖C([0,T ];B−σ

pq )‖U‖Lb(0,T ;Ba
pq)

if
1
2

>
σ

2
+

1
p
.

Moreover

(29) ‖
∫ t

0

e−(t−τ)νAB̃(u(τ), U(τ)) dτ‖L∞([0,T ];B−σ
pq )

≤ c5T
1
2− 1

b + a
2− 1

p ‖u‖C([0,T ];B−σ
pq )‖U‖Lb(0,T ;Ba

pq)

if
1
2

+
a

2
>

1
b

+
1
p
.

Hence, if U ∈ D and the conditions on the parameters hold, then
∫ t

0
e−(t−τ)νAB̃(u(τ), U(τ)) dτ ∈ D.

We perform the same computations for B̃(U, ũ).
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The mapping

U �→ −
∫ t

0

e−(t−τ)νA[B̃(u(τ), U(τ)) + B̃(U(τ), ũ(τ))]dτ

is then a contraction in DT∗ with T ∗ ≤ T and such that

(30) T ∗ < min
{

(c4 NT )−1/( 1
2−σ

2 − 1
p )

, (c5 NT )−1/( 1
2− 1

b + a
2− 1

p )
}

where NT = ‖u‖C([0,T ];B−σ
pq ) + ‖ũ‖C([0,T ];B−σ

pq ). Hence on the interval [0, T ∗]
there exists a unique solution U with the regularity specified in D. One has
U(t) = 0 for 0 ≤ t < T ∗. Notice that the amplitude of the time interval for
local existence depends only on the C([0, T ];B−σ

pq )-norms of u and ũ; therefore
we can continue in such a way as to cover the time interval [0, T ] with a finite
number of intervals of amplitude 3

4T ∗.
Since this holds for any finite T , the proof is achieved.

Choose now the parameters of Proposition 3.2 to be p = q = b = 3,
σ = 1

6 , a = 1
2 . In this way, bearing in mind Proposition 3.1, we have fixed

a set B−σ
pq of initial data such that µν(B−σ

pq ) = 1 (but many other choices
are possible); moreover the assumptions of Theorem 3.2 are satisfied. Choose
also the parameters γ = 3, ε = 1

6 for the regularity of (24). Finally, by an
embedding theorem (see [BL76] Theorem 6.5.1) we have

B1−ε− 2
γ

2 γ ⊂ B−σ
pq

H1−ε
2 ⊂ Ba

pq

Hence Σ ⊂ D. And the uniqueness in D implies the uniqueness in Σ.
We have therefore proven the following

Theorem 3.3. Pathwise uniqueness of the solutions to the stochastic Navier–
Stokes equation with space-time Gaussian white noise (4), for which µν is
an invariant measure, holds in the following precise sense: there exists a set
S ⊂ U ′ with µν(S) = 1 such that for µν-a.e. x ∈ S the C([0, T ];S)-valued
paths of any two solutions of (4), defined on the same probability space with
the same Wiener process and having invariant measure µν , coincide P-a.s.

A further result concerns the ergodicity of the stochastic Navier–Stokes
flow given by the above equations. It is contained in [Deb02]:

Theorem 3.4. The solution process ux of Theorem 3.2 is exponentially
L2(µν) ergodic in the sense that

ϕ(ux(t)) −→ ϕ̄ ≡
∫

ϕdµν
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as t →∞, exponentially quickly, for all measurable ϕ ∈ L2(µν).
I.e. ∃λ > 0 such that as t →∞:

(31) ‖ϕ(ux(t)))− ϕ̄‖L2(µν) ≤ e−λt ‖ϕ− ϕ̄‖L2(µν)

The proof uses the fact that µν is Gaussian and the classical Dirichlet operator
Lµν

associated with µν (cf. [Alb00]) has a spectral gap (of some length λ).

Remark 3.8. Ergodicity for stochastic equations for fluids has been an inten-
sively discussed topic in recent years. One of the main points has been to prove
ergodicity also in the presence of noise “concentrated only in a few Fourier
modes”, see [HM06].

Remark 3.9. Theproblemofextending theaboveconsiderations to3dimensions
having a flow for Euler deterministic resp. stochastic Navier–Stokes equations
with an “explicit (physically relevant) invariant measure” is open. For the 3
dimensional space or the 3 dimensional torus the only explicit positive invariant
functional for the deterministic Euler equation is the energy. But the corre-
sponding Gaussian measure seems to have too singular support to be related in
some way to the equation itself.

3.5 Some Additional Remarks and Complements

In the whole presentation we have restricted our attention to incompressible
fluids. We shall continue to do so, except for the remark 8 below.

1. Stochastic Euler equations have been studied e.g. in [Bes99], [BF99],
[CFM07], [BP01], [CC99], [Kim02], [MV00], both with additive and mul-
tiplicative noise of the Gaussian type. Deterministic Euler equations are
studied e.g. in [Lio98, Bre99]. Dissipative Euler equations are studied e.g.
[BF00]. See also [CC06].

2. Deterministic Burgers equations with initial random conditions have been
studied e.g. [AMS94], [LOR94a, LOR94b] with interesting connections
with the study of large scale structures in astrophysics [ASZ82], [SZ89],
see also e.g. [Sin91]. A useful tool in the study of the Burgers equation
is the Cole-Hopf transformation to a heat equation see [ABHK85] for an
early proposal for its use. The stochastic Burgers equation in one resp.
higher dimensions has been studied with Gaussian white noise e.g. in
[DPDT05], [DPDT94], with spatial periodic and white Gaussian in time
[LNP00], [BCJL94], [LW01], [TRW03], [E01], see also [EKMS00]. An ana-
lytic approach (uniqueness, infinitesimal invariance) to stochastic Burgers
equation has been developed in [RS06], [BR01], [DPDT94] Propagation of
chaos results for Burgers equation has been obtained e.g., [Szn87], [Osa87].
Burgers equation with other types of noise (Lévy noise) has been discussed
[TW06], [TW03], [TZ03].
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3. Stochastic Navier–Stokes equations with other types of Gaussian noise
have been studied, see the references in Remark 3.2. Recently also additive
and multiplicative noises of Lévy type have been considered, see [ABW].
Ergodicity of finite dimensional approximations of the stochastic, Navier–
Stokes equation is discussed by [Rom04]. For other studies on ergodicity
of 2D Navier–Stokes equations with random forcing, see e.g., [Fer97a],
[FM95], [HM06], [KS01], [Kuk06], [Mat99].

4. The study of the deterministic limit of stochastic Navier–Stokes (or Euler)
equations when there is a small parameter ε > 0 in front of the noise and ε
is sent to zero is largely open, see, however [ABHK85], [Cru89b], [Hab91]
for some initial considerations.

5. The study of the behaviour of solution of stochastic (and deterministic)
Navier–Stokes equations as the viscosity coefficient ν tends to zero (i.e.
the passage Navier–Stokes → Euler) has been performed in several pub-
lications. It was suggested in [ABHK85] and developed e.g. in [TRW03],
some remarks are also in [Cru89b] [Hab91]. In [Kuk04] on a 2D-torus and
for an additive noise of the Gaussian white type in time and smooth in
space it is shown that for a subsequence (νi) of viscosity parameters the
double limit limνj→0 limT→∞ uνj

(T + t) yields a stationary solution of the
deterministic Euler equation. See also, e.g., [Che96a], [CMR98], [Fre97],
[Swa71].

6. There exists a probabilistic approach to deterministic hydrodynamical
equations. In particular the solution of deterministic Navier–Stokes equa-
tions can be expressed by the solution process associated with a backward
Kolmogorov equation. This goes back to E. Nelson and has been devel-
oped by Belopolskaya and Daletski (’78-’90), Busnello [Bus99], [BFR05],
[AB02], [AB06], [Oss05], [BRV01], see also [BDS04], [FR02], [Rap02b].

7. Other problems connected with Euler and Navier–Stokes equation relate
to
a) coupling with heat equation (“Bénard problem”) see e.g. [Fer97b].
b) approximations, see, e.g. [DG95]
c) physical properties like turbulence see, e.g. [Cho94]
d) optimal control [Bar98], [CFMT83], [GSS02]

8. The phenomena associated with compressible fluids are quite different
from those associated with incompressible fluids. In particular blow up
phenomena for good initial data have been intensively studied. There
is indeed a large literature on compressible Burgers and Burgers-type
equations, with resp. without viscosity term, as well as on determinis-
tic and stochastic compressible Euler and Navier–Stokes equations see,
e.g., [FY92], [Mas00], [Roz03], [Roz04].

9. There are interesting basic connections between singularity phenomena
occuring in (stochastic) equation for fluids and those occuring in the
study of wave propagation and in certain quantum fields. E.g. the invari-
ant measure constructed in Section 2 have close similarities with those
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constructed for wave propagation in [MV94], [CH97] and with the sto-
chastic quantization equations studied in the theory of quantum fields, see,
e.g. [AR95], [DPT05], [ABR], [ALZ06], [AR96], [BCM88], [JLM85], [MR],
[Sim74]. Analogies are already apparent in the non linearities and the
fact of renormalization needed, an instance of which we saw in Section 2,
where we had to introduce the renormalized energy : E: (this is similar to
renormalizing the non linear term in the stochastic quantization equation,
see, e.g., [JLM85], [AR95], [AR96]). Also the form of invariant measures
µγI is similar to the one occuring in the theory of quantum fields. Other
relations concern the analogy of the classical limit of quantum fields and
the ν ↘ 0 in hydrodynamics, see, e.g., [ABHK85]. Also quantum fields de-
scribed by stochastic differential equations with Poisson noise have been
considered (see, e.g., [AGY05]), they have analogies with the invariant
measures for the Euler-Navier–Stokes equations discussed in [AF04a]. It
is well known from quantum field theory that problems get worse with the
dimension of space increasing and this is also so in stochastic hydrody-
namics. A “renormalization group approach”, see, e.g. [Sin05b], [Sin05a],
[Fri95], (see also [Sin08]), has been considered to be helpful in handling
these problems. In any case it is likely that progress in one of these areas,
fluids resp. quantum fields, will be beneficial to the other area. These are
most challenging areas for future mathematical research and, in partic-
ular, further development of the type of infinite dimensional stochastic
analysis we tried to present in form of an introduction in these lectures.

3.6 Appendix

We give a result of regularity for parabolic equations.

Proposition 3.5. Let T ∈ (0,∞], 1 < γ < ∞ and σ ∈ R. Let A be the Stokes
operator described in Section 3.1.
For any f ∈ Lγ(0, T ;Hσ

2 ), the Cauchy problem
{

d
dtX(t) + AX(t) = f(t), t ∈ (0, T ]
X(0) = 0

has a unique solution X ∈ W1,γ(0, T ) ≡ {X ∈ Lγ(0, T ;Hσ+2
2 ) : d

dtX ∈
Lγ(0, T ;Hσ

2 )}. Moreover, the solution depends continuously on the data in
the sense that there exists a constant cγ,σ such that

(∫ T

0
[‖X(t)‖γ

Hσ+2
2

+ ‖ d
dtX(t)‖γ

Hσ
2
] dt

)1/γ

≤
(
cγ,σ

∫ T

0
‖f(t)‖γ

Hσ
2
dt

)1/γ

Finally, X ∈ Cb([0, T ];Bσ+2− 2
γ

2 γ ).

Proof. The Stokes operator A is a positive self adjoint operator in Hσ
2 with

domain Hσ+2
2 and it generates an analytic semigroup in Hσ

2 . Then the first
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part of the proposition is obtained applying Theorem 3.2 in [DV87]. Moreover,
by interpolation we get that the space W1,γ(0, T ) is continuously embedded

in the space Cb([0, T ];Bσ+2− 2
γ

2 γ ), that is there exists a positive constant c such
that

(32) ‖X‖
Cb([0,T ];B

σ+2− 2
γ

2 γ )
≤ c ‖X‖

W1,γ (0,T )
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1 Introduction

We consider a viscous, constant density, Newtonian fluid described by the
stochastic Navier–Stokes equations on the torus T = [0, L]3, L > 0,

(1)
∂u

∂t
+ (u · ∇) u +∇p = ν�u +

∞∑

i=1

σihi (x)
·
βi (t)

with divu = 0 and periodic boundary conditions, with suitable fields hi (x)
and independent Brownian motions βi (t). The notation (u · ∇) u stands for
the vector field with components [(u · ∇) u]j =

∑d
k=1 uk∂kuj ; the opera-

tion �u has to be understood componentwise. The fluid is described by
the velocity field u = u (t, x) (a random vector field) and the pressure field
p = p (t, x) (a random scalar field). The fluid in a torus is an artificial model,
but the topics we are going to investigate are so poorly understood that it is
meaningful to idealize the mathematics as much as possible, preserving only
those aspects that we believe to be essential. The random white noise force
∑∞

i=1 σihi (x)
·
βi (t) is also part of the idealization, not only for its specific form

but more basically because body forces are usually either absent or gradient-
like (as the gravitational force field) and not so roughly varying. The complex
phenomena (related to turbulence) we want to investigate are usually caused
by complicate boundary effects (think to the fluid below a grid), too difficult
to be dealt with at present. Thus we hope that a white noise force may both
simplify the investigation and produce some phenomena similar to those of
more realistic fluid systems.

The parameter ν > 0 is called the kinematic viscosity. We shall investigate
sometimes the limit as ν → 0, without any rescaling with ν of the random
force: this is a singular limit problem, hopefully similar to the more realis-
tic boundary layer ones. The limit as ν → 0 with constant-amplitude force
essentially corresponds to the limit of infinite Reynolds number.
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The white noise force is assumed, for sake of simplicity, to be the super-
position of independent perturbations of various modes: we shall assume that
the hi (x)’s are eigenfunctions of the Stokes operator and the βi (t)’s are inde-
pendent scalar Brownian motions. The most interesting physical situation is
the case when only a few large modes are activated, those with smaller wave
length. In such a case L has the meaning of length scale of the action of the
external force. A force with a typical length scale is a model for a fluid which
interacts with a boundary or an object. However, in some cases one is able to
deal only with the case of several or infinitely many modes, for mathematical
reasons.

Section 3 is devoted to a finite dimensional model that captures several
features of equations (1). It covers the Galerkin approximations of (1), so its
analysis represents a main step in view of the infinite dimensional system;
even the results of Section 5 are only based on the finite dimensional facts of
Section 3.

In Section 4 we take the limit as the dimension goes to infinity and treat
the 3D stochastic Navier–Stokes system. We define solutions to the martin-
gale problem, prove their existence, and (partially) describe how to extract
Markov selections. Finally, as a short introduction to the theory of Da Prato
and Debussche [23], we prove that every Markov process composed of martin-
gale solutions has a Strong Feller like property, under the assumptions on the
noise imposed in [23]. This is a property of continuous dependence on initial
condition that represents a striking step forward with respect to the deter-
ministic theory. Relevant references on the topics of this section are, among
others, [8], [12], [15], [16], [18], [19], [24], [25], [26], [33], [35], [36], [40], [41],
[42], [45], [57], [58], [59], [61], [63], [64], [66], [67].

Section 5 deals with turbulence, restricting the attention to the so called
K41 theory. A definition of K41 scaling law is given and investigated, disproved
in 2D, shown to be equivalent to hopefully more manageable properties in 3D,
that could be better analyzed in the future to understand whether they are
true or, more likely, how they should be modified. These notes are restricted
to the 3D case, where we aim to describe a few first steps in the direction of
relevant open problems. The theory in the 2D case is richer of well posedness
results, even for cylindrical noise, ergodicity, control, non-viscous case and
limit, see among others references [2], [3], [4], [6], [8], [9], [11], [13], [14], [17],
[21], [22], [23], [28], [30], [31], [32], [47], [49], [50], [51], [55], [56], [62].

2 Abstract Framework and General Preliminaries

We describe here a minimal amount of preliminaries on spaces and opera-
tors appearing in fluid dynamics; see for instance [53] and [65] for extensive
discussions. Let L

2 (T ) be the space of vector fields u : T → R
3 with L2 (T )-

components. For every α > 0, let H
α (T ) be the space of fields u ∈ L

2 (T )
with components in the Sobolev space Hα (T ) = Wα,2 (T ).
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Let D∞ be the space of infinitely differentiable divergence free periodic
fields u on T , with zero mean:

∫

T
u (x) dx = 0.

This zero mean condition plays somewhat the role of a boundary condition.
Let H be the closure of D∞ in the L

2 (T )-topology; it is the space of all fields
u ∈ L

2 (T ) such that divu = 0, u ·n on the boundary is periodic (one can show
that for divergence free fields the trace u ·n on the boundary is a well defined
H−1/2-distribution),

∫
T u (x) dx = 0. We endow H with the inner product

〈u, v〉H =
1
L3

∫

T
u (x) · v (x) dx

and the associated norm |.|H .
Let V (resp. D(A)) be the closure of D∞ in the H

1 (T )-topology (resp.
H

2 (T )-topology); it is the space of divergence free, zero mean, periodic el-
ements of H

1 (T ) (resp. of H
2 (T )). The spaces V and D(A) are dense and

compactly embedded in H (Rellich theorem). Due to the zero mean condition
we also have ∫

T
|Du (x)|2 dx ≥ λ

∫

T
|u (x)|2 dx

for every u ∈ V , for some positive constant λ (Poincarè inequality). So we
may endow V with the norm

|u|2V :=
∫

T
|Du (x)|2 dx

where |Du (x)|2 =
∑3

i,j=1

(
∂ui(x)

∂xj

)2

.
Let A : D(A) ⊂ H → H be the operator Au = −�u (componentwise).

Notice that �u ∈ H because we are in the periodic case (otherwise we would
need a projection on divergence free fields). Since A is a selfadjoint positive
(unbounded) operator in H, there is a complete orthonormal system {hi}i∈N

⊂
H made of eigenfunctions of A, with eigenvalues 0 < λ1 ≤ λ2 ≤ ... (Ahi =
λihi). Notice that the positivity is due to the zero mean condition. We may
take the Poincaré constant λ above equal to λ1. Notice that we have

〈Au, u〉H = |u|2V
for every u ∈ D(A), so in particular

〈Au, u〉H ≥ λ |u|2H .

On the torus we know explicitly eigenfunctions and eigenvalues (see example
3.1 below), and often it is useful to parametrize them by vector wave numbers
instead of the index i ∈ N.

Let V ′ be the dual of V ; with proper identifications we have V ⊂ H ⊂ V ′

with continuous dense injections, and the scalar product 〈·, ·〉H extends to the
dual pairing 〈·, ·〉V,V ′ between V and V ′. Denote the norms in H and V by
|·|H and ‖·‖V respectively.
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Let B (·, ·) : V × V → V ′ be the bilinear operator defined as

〈w,B (u, v)〉V,V ′ =
3∑

i,j=1

∫

T
ui

∂vj

∂xi
wjdx

for every u, v, w ∈ V . To clarify the definition, first take u, v, w ∈ D∞ and
notice that by Hölder inequality

∣∣∣∣∣∣

3∑

i,j=1

∫

T
ui

∂vj

∂xi
wjdx

∣∣∣∣∣∣
≤

3∑

i,j=1

|ui|Lα1 (T ) |vj |W 1,α2 (T ) |wj |Lα3 (T )

where αi > 1,
∑3

i=1
1
αi

= 1. Sobolev embedding theorem says

|u|Lq(T ) ≤ C (s, p, T ) |u|W s,p(T ) ,
1
q

=
1
p
− s

d

Hence, for p = 2,
∣∣∣∣∣∣

3∑

i,j=1

∫

T
ui

∂vj

∂xi
wjdx

∣∣∣∣∣∣
≤ C

3∑

i,j=1

|ui|W s1,2(T ) |vj |W 1+s2,2(T ) |wj |W s3,2(T )

(C = C (s1, s2, s3, T )) for si ≥ 0 such that 3
2 −

1
d

∑3
i=1 si = 1, namely∑3

i=1 si = d
2 . In particular

∣∣∣∣∣∣

3∑

i,j=1

∫

T
ui

∂vj

∂xi
wjdx

∣∣∣∣∣∣
≤ C

3∑

i,j=1

|ui|W s1,2(T ) |vj |W 1,2(T ) |wj |W s3,2(T )

with s1 + s3 = d
2 . For d = 3 (but also d = 2 and 4) we may take s1 = s3 =

d
4 and confirm that B (·, ·) can be extended to a bilinear mapping B (·, ·) :
V × V → V ′.

We every u, v ∈ D∞ we have

〈B (u, v) , v〉H =
1
2
L−3

∫

T
(u (x) · ∇) |v (x)|2 dx = 0

since divu = 0, and this property extends from D∞ to the various spaces of
vector fields used in the sequel.

To get further estimates, it is useful to recall that the function α �→
log |u|W α,2(T ) is convex:

|u|W αs1+(1−α)s2,2(T ) ≤ |u|αW s1,2(T ) |u|
(1−α)

W s2,2(T )

for α ∈ [0, 1] (easy by Fourier analysis).
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Among the infinitely many consequences of the previous computations we
have

|〈B (u, v) , w〉| ≤ C (T )
d∑

i,j=1

|ui|
W

d
4 ,2(T )

|vj |W 1,2(T ) |wj |
W

d
4 ,2(T )

and
|u|

W
d
4 ,2(T )

≤ |u|1−
d
4

L2(T ) |u|
d
4
W 1,2(T )

thus
|〈B (u, v) , w〉| ≤ C |u|1−

d
4

H ‖u‖
d
4
V ‖v‖V |w|

1− d
4

H ‖w‖
d
4
V .

We have proved:

Lemma 2.1. In d = 3,

|〈B (u, v) , w〉| ≤ C |u|1/4
H ‖u‖3/4

V ‖v‖V |w|
1/4
H ‖w‖3/4

V .

We also need the following inequalities.

Lemma 2.2. In d = 3,

|〈Ax,B(x, x)〉H | ≤ C ‖x‖3/2
V |Ax|3/2

H

for every x ∈ D(A).

Proof. Due to the periodicity of vector fields that allows us to drop the bound-
ary terms in the integrations by parts, for every u, v ∈ D∞ we have

〈Au,B(v, u)〉H =
3∑

i,j=1

∫

T
vi∂iuj�uj = −

3∑

i,j,k=1

∫

T
∂k (vi∂iuj) ∂kuj

= −
3∑

i,j,k=1

∫

T
∂kvi∂iuj∂kuj −

1
2

3∑

i,j,k=1

∫

T
vi∂i (∂kuj)

2

= −
3∑

i,j,k=1

∫

T
∂kvi∂iuj∂kuj

since divv = 0 and thus

〈Au,B(u, u)〉HL
≤ C

3∑

i,k=1

(∫

T
|∂kui|3

)
≤ C |Du|3L3(T )

≤ C |Du|3W 1/2,2(T ) ≤ C |Du|3/2
L2(T ) |Du|3/2

W 1,2(T ) .

Lemma 2.3.

|AB (u, v)|H ≤ C (|Au| ‖Av‖V + |Av| ‖Au‖V )
∣∣∣A1/2B (u, v)

∣∣∣
H
≤ C |Au| |Av|

|B (u, v)|H ≤ C
(
|Au|

∣∣∣A1/2v
∣∣∣ ∧

∣∣∣A1/2u
∣∣∣ |Av|

)
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and for every γ ∈ (0, 1/2)

|AγB (u, v)|H ≤ C

(
|Au|2

∣∣∣Aγ+ 1
2 v

∣∣∣
2

∧ |Av|2
∣∣∣Aγ+ 1

2 u
∣∣∣
2
)

.

Proof. Up to multiplicative constants that we omit,

|AB (u, v)|H ≤

√√√√
3∑

i,j=1

∫

T
[� (ui∂ivj)]

2
dx

≤ |Dv|∞ |Au|+ |Du|∞ |Av|+ |u|∞ ‖Av‖V

≤ |Au| ‖Av‖V + |Av| ‖Au‖V

∣∣∣A1/2B (u, v)
∣∣∣
H
≤

√√√√
3∑

i,j=1

∫

T
[D (ui∂ivj)]

2
dx

≤ |Du|4 |Dv|4 + |u|∞ |Av|

|B (u, v)|2H ≤
3∑

i,j=1

∫

T
[ui∂ivj ]

2
dx ≤ |u|24 |Dv|24 ≤

∣∣∣A1/2u
∣∣∣ |Av|

|B (u, v)|2H ≤ |u|2∞ |Dv|22 ≤ |Au|
∣∣∣A1/2v

∣∣∣

and the last one follows by interpolation.

With the previous notations in mind, we (formally) rewrite equations (1)
of Section 1 as an abstract stochastic evolution equation in H

(1) du(t) + [νAu(t) + B (u(t), u(t))] dt =
∞∑

i=1

σihidβi (t) .

The rigorous definition of solution will be given in Section 4 and is not entirely
trivial; here we only anticipate that, as in the deterministic case, we have to
interpret expressions in integral and weak form over test functions

〈u(t), ϕ〉H +
∫ t

0

ν 〈u(s), Aϕ〉H ds−
∫ t

0

〈B (u(s), ϕ) , u(s)〉H ds(2)

= 〈u0, ϕ〉H +
∞∑

i=1

σi 〈hi, ϕ〉H βi (t)

with ϕ ∈ D∞. As a last general remark, we shall always assume at least

∞∑

i=1

σ2
i < ∞
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(H-valued Brownian motion), but some of the most interesting results will
require

∞∑

i=1

λiσ
2
i < ∞

to have certain regularities in D(A).

3 Finite Dimensional Models

The reason for this Section is twofold: first we may illustrate a number of
basic facts and open problems in a simple setting where the rigor is easy to
control; second, most of these results are a preliminary technical step for the
analysis of Sections 4 and 5.

3.1 Introduction and Examples

Consider a real finite dimensional Hilbert space H,

dim H < ∞

endowed with norm |.|H and inner product 〈., .〉H . We stress that H is not
the space introduced above but it is finite dimensional; we should write Hn

to avoid misunderstandings, and similarly we should write An, Bn etc., but
in the whole Section we never take the limit as n → ∞ (except in very few
well advertized places) so we drop the subscript n for sake of simplicity.

About the various constants involved in the following estimates, we say
that a constant is not universal if it depends on dim H, ν, the norm in H of
A, or constants related to the continuity properties of B. When a constant
is independent of these quantities, we call it universal and denote it gener-
ically by C > 0 . The non-universal constants are not stable in the limit of
the stochastic Navier–Stokes equations (Section 4) or in the limit as ν → 0
(Section 5).

Let A be a positive definite symmetric linear mapping in H,

〈Ax, x〉H ≥ λ |x|2H

for every x ∈ H, where λ > 0 is a universal constant (Poincaré constant in
our applications); B(., .) : H ×H → H a bilinear mapping such that

(1) 〈B (x, x) , x〉H = 0

for every x ∈ H, Q a semi-definite symmetric matrix in H, (Wt)t≥0 a Brownian

motion in H defined on a filtered probability space
(
Ω,F , (Ft)t≥0 , P

)
.
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Remark 3.1. Sometimes we need a stronger version of (1):

(2) 〈B (y, x) , x〉H = 0

for every x, y ∈ H. This is equivalent to

(3) 〈B (y, x) , z〉H = −〈B (y, z) , x〉H

for every x, y, z ∈ H: if (2) holds, then

0 = 〈B (y, x + z) , x + z〉H
= 〈B (y, z) , x〉H + 〈B (y, x) , z〉H

so (3) is true. If (3) holds then, taking z = x, we get (2).

Since A is positive definite, (u, v) �→ 〈Au, v〉H is another inner product in
H and

‖u‖V :=
√
〈Au, u〉H

is a norm in H and we have

λ |x|2H ≤ ‖u‖2V ≤ CA |x|2H

for a non universal constant CA (the norm of A in H); the lower bound is
universal.

Consider the stochastic differential equation (SDE) in H, with ν > 0,

(4) dXt = [−νAXt −B (Xt,Xt)] dt +
√

QdWt, t ≥ 0

with initial condition given by an F0-measurable random variable X0 : Ω →
H. As usual, we interpret the equation in the integral sense

(5) Xt = X0 +
∫ t

0

[−νAXs −B (Xs,Xs)] ds +
√

QWt.

Example 3.1. Our main example is the Galerkin approximation of equation
(1) of Section 1. Given L > 0, on the torus T = [0, L]3, consider the complex-
ification of the infinite dimensional spaces and operators introduced in the
previous section, that we denote just in this example by H, V, D(A), A, B
to avoid superposition with the notations of the present chapter. Define the
index sets

Λ(n) =

{
(k, α) ∈

(
2π

L
Z

3

)
× {1, 2} : 0 < |k|2 ≤

(
2π

L
n

)2
}

and Λ(∞) = ∪nΛ(n). The eigenvectors of A are given by

hk,α (x) := ak,αeik·x, x ∈ T , (k, α) ∈ Λ(∞)
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(with eigenvalues λk,α = |k|2), where, for every k ∈ R
3
�0, we have to choose

an orthonormal basis ak,α, α = 1, 2, of the orthogonal space to k (the space

generated by the vectors
(
eα − kαk

|k|2
)
, α = 1, 2, 3). Let

H(n) = span
{

hk,α; (k, α) ∈ Λ(n)
}

and let π(n) be the orthogonal projection of H on H(n), which commutes with
A. With these notations, our main example of finite dimensional system is
defined by the objects

H(n),A|H(n) , π(n)B(., .)|H(n)×H(n)

that we simply denote by H, A, B(., .).

Example 3.2. The famous Lorenz system in R
3, with parameters a, b, c > 0,

⎧
⎨

⎩

dx + (ax− ay) dt = σ1dβ1

dy + (−bx + y + xz) dt = σ2dβ2

dz + (cz − xy) dt = σ3dβ3

fits into the framework of this section if b = a ∈ (0, 1]. The same is true for
the Minea system:

⎧
⎨

⎩

dx +
(
x + δ

(
y2 + z2

))
dt = σ1dβ1

dy + (y − δxy) dt = σ2dβ2

dz + (z − xz) dt = σ3dβ3.

Example 3.3. Another interesting example is the GOY model (from Gledzer,
Ohkitani, Yamada), a particular case of the so called “shell model”. See [44]
for an introduction and references. It is a simplified Fourier system where the
interaction between different modes is preserved only between neighbor modes,
and the complex valued variables un (t) = un,1 (t) + iun,2 (t) are summaries
of the Fourier coefficients. The finite dimensional model is defined, for n =
−1, 0, 1..., N,N + 1, N + 2, by the constraints

u−1 (t) = u0 (t) = uN+1 (t) = uN+2 (t) = 0

and the equations for n = 1, ..., N

dun + νk2
nundt + ikn

(
1
4
un−1un+1 − un+1un+2 +

1
8
un−1un−2

)

= σndβn

where kn = 2nk0, k0 > 0 given. Some foundational results on the related
infinite dimensional system can be found in [4].
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3.2 A Priori Bounds

Throughout this section we assume that (Xt)t≥0 is a continuous adapted
solution of equation (4). In this section it is sufficient to work under condition
(1) on B.

Lemma 3.1. [L2 bounds and energy equality]Assume E |X0|2H < ∞. Then,
for every T > 0, we have

(6) E

(
sup

t∈[0,T ]

|Xt|2H + ν

∫ T

0

‖Xs‖2V ds

)
≤ C1

(
E |X0|2H , T rQ, T

)

where C1

(
E |X0|2H , T rQ, T

)
is given by (12),

(7) |Xt|2H + 2ν

∫ t

0

‖Xs‖2V ds = |X0|2H + TrQ t + Mt

where Mt is a square integrable martingale, and

(8)
1
2
E |XT |2H + νE

∫ T

0

‖Xs‖2V ds =
1
2
E |X0|2H +

1
2
TrQ T.

Proof. Step 1. The function f(x) = |x|2H has derivatives

Df(x) = 2x, D2f(x) = 2 · Id

hence Itô formula and property (1) give us

(9) |Xt|2H = |X0|2H −
∫ t

0

2ν 〈AXs,Xs〉H ds + Mt + TrQ t

where

Mt = 2
∫ t

0

〈
Xs,

√
QdWs

〉

H

is a local martingale.
Step 2. Let us prove that

(10) E

∫ T

0

|Xt|2H dt < ∞

for every T > 0. The reader not interested in details but only in the main
concepts may drop this technical point and go to step 3. To simplify, one
may think that (10) has been imposed as an additional assumption in the
lemma. However, it is conceptually interesting to notice that the assumptions
of the lemma do not include any quantitative bound on the solution, but only
on the data (the integrability of the initial condition and the gaussianity of
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the forcing term), and it is the equation itself, with its particular algebraic
structure, that produce bounds on the solution.

We may localize Mt by an increasing sequence of stopping times (τn):
τn →∞ a.s. and t �→ Mt∧τn

is a square integrable martingale for every n. To
be more specific, we may take

τn = inf
{

t ≥ 0 : |Xt|2H = n
}

.

From (9) and the positivity of A we have

(11) |Xt∧τn
|2H ≤ |X0|2H + Mt∧τn

+ TrQ (t ∧ τn)

and thus
E

[
|Xt∧τn

|2H
]
≤ E |X0|2H + TrQ t.

We also have
∫ T∧τn

0

|Xt|2H dt =
∫ T∧τn

0

|Xt∧τn
|2H dt ≤

∫ T

0

|Xt∧τn
|2H dt

hence

E

∫ T∧τn

0

|Xt|2H dt ≤
∫ T

0

E |Xt∧τn
|2H dt ≤ T

(
E |X0|2H + TrQ T

)
.

By the monotone convergence theorem we get (10).
Step 3. Having proved (10), Mt is now a square integrable martingale.

Then we have (7) and then (8), which also implies the second part of the
bound (6). To prove the first part of (6) we use the bound

|Xt|2H ≤ |X0|2H + |Mt|+ TrQ t

coming from (7) due to the positivity of A. We have

sup
t∈[0,T ]

|Xt|2H ≤ |X0|2H + 1 + sup
t∈[0,T ]

|Mt|2 + TrQ T

hence, by Doob’s inequality E supt∈[0,T ] |Mt|2 ≤ 4E |MT |2, we have

E sup
t∈[0,T ]

|Xt|2H

≤ E |X0|2H + 1 + 16E
∫ T

0

〈QXs,Xs〉 ds + TrQ T.

From (8) (with t in place of T ) and the positivity of A we already know
that

sup
t∈[0,T ]

E
[
|Xt|2H

]
≤ E |X0|2H + TrQ T.
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Hence we have (6) with

C1

(
E |X0|2H , T rQ, T

)
(12)

:= E |X0|2H + 1 + 16TrQ
(
E |X0|2H + TrQ T

)
+ TrQ T.

The proof is complete.

Remark 3.2. The bound (6) tells us the basic topologies where we have to look
for solutions. With others below, it will give us the bounds, on the Galerkin
approximations of the stochastic Navier–Stokes equations, needed to extract
subsequences that converge in a proper way to pass to the limit in the equa-
tions.

Remark 3.3. The two identities (7) and (8) express energy balance laws. Let
us comment the second one: we may think that the term 1

2TrQ is the mean
rate of energy (mean energy per unit of time) injected into the system,
νE

∫ T

0
‖Xs‖2V ds is the mean energy dissipated on [0, T ], 1

2E |XT |2H is the
mean (kinetic) energy of the system.

We say that a stochastic process (Xt)t≥0 is stationary if given any 0 ≤
t1 < ... < tn and s ≥ 0, the law of the r.v. (Xt1+s, ...,Xtn+s) (r.v. in Hn)
is independent of s. In the following corollary in fact we just need that the
covariance of Xt is independent of t.

Notice that in principle we should assume a quantitative bound like
E |X0|2H < ∞ to start with, like in Lemma 3.1; but stationarity provides
itself a mechanism for proper estimates (the property of stationarity is like
an a priori bound itself). Somewhat related results can be found in [10] by a
different approach.

A technical remark: in the proof of the following corollary there is a step
where we use the fact that equation (4) has a unique solution for every square
integrable F0-measurable initial condition X0. This fact will be proved in a
subsequent section. So, from a logical viewpoint, we should state this corollary
only later on. We anticipate here to avoid repetitions.

Corollary 3.1. If (Xt)t≥0 is stationary then

(13) E ‖Xt‖2V =
TrQ

2ν

for every t ≥ 0 (in particular E ‖Xt‖2V < ∞ for every stationary solution).

Proof. If E |X0|2H < ∞, from (8) and the stationarity we first have

2ν

∫ T

0

E ‖Xs‖2V ds = TrQ T

but also E ‖Xs‖2V is independent of t, whence the result. Therefore, in order
to complete the proof, we have only to show that E |X0|2H < ∞ is true for
every stationary solution.
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Given ε > 0, let Rε > 0 be such that P
(
|X0|2H > Rε

)
< ε. Let Ωε ∈ F

be defined as Ωε =
{
|X0|2H ≤ Rε

}
; we have P (Ωε) ≥ 1 − ε. Define X

(ε)
0 as

X0 on Ωε, 0 otherwise. Let
(
X

(ε)
t

)

t≥0
be the unique solution of equation (4)

with initial condition X
(ε)
0 (theorem 3.1 below). Just looking at the integral

form of (4) (which has an elementary pathwise meaning) it is easy to realize
that X

(ε)
· (ω) = X· (ω) for P -a.e. ω ∈ Ωε. For

(
X

(ε)
t

)

t≥0
we have (8), hence

1
T

∫ T

0

E
∥∥∥X(ε)

s

∥∥∥
2

V
ds ≤ Rε

2νT
+

TrQ

2ν

(in a sense, we use here an idea of Chow and Hasminski [20]). Then, given
N > 0,

E
(
‖X0‖2V ∧N

)

=
1
T

∫ T

0

E
[
‖Xs‖2V ∧N

]
ds

=
1
T

∫ T

0

E
[
1Ωε

(
‖Xs‖2V ∧N

)]
ds +

1
T

∫ T

0

E
[
1Ωc

ε

(
‖Xs‖2V ∧N

)]
ds

≤ 1
T

∫ T

0

E

[
1Ωε

(∥∥∥X(ε)
s

∥∥∥
2

V
∧N

)]
ds + Nε

≤ 1
T

∫ T

0

E

[∥∥∥X(ε)
s

∥∥∥
2

V

]
ds + Nε

≤ Rε

2νT
+

TrQ

2ν
+ Nε.

It is now sufficient to take first the limit as T →∞, then as ε → 0, finally as
N →∞. The proof is complete.

Remark 3.4. Quantitative knowledge of the statistics of the stationary regime
of a turbulent fluid is one of the most important and open problems of fluid
dynamics (due in great part to the fact that a turbulent fluid is a non-
equilibrium, although possibly stationary, system, so there are no general
paradigm as the Gibbs one to describe its stationary regime; in mathematical
terms, equation (4) is not gradient like, hence we do not know the density of
its invariant measure explicitly in a simple Gibbs form). The identity (13) is
a positive example in this direction. It has a very interesting interpretation in
connection with the experimental fact that the rate of energy dissipation of a
turbulent fluid has a finite limit when the viscosity goes to zero.

In the proof of existence of solutions we need a stopped version of part
of the previous result. This is the only point in this section where we do not
assume that X is a solution over the whole half-line [0,∞), but only on a
random time interval.
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Lemma 3.2. Let τ ≥ 0 be a stopping time and (Xt)t≥0 a continuous adapted
process that P -a.s. satisfies (5) for t ∈ [0, τ (ω)]. Assume E |X0|2H < ∞. Then,
for every T > 0, we have

E

(
sup

t∈[0,T ]

|Xt∧τ |2H

)
≤ C1

(
E |X0|2H , T rQ, T

)
.

Proof. We may repeat step by step the previous proof, substituting every-
where the process Xt∧τ to Xt and stating every identity or inequality for
t ∈ [0, τ (ω)] only. But we profit of this repetition to give an alternative proof.
Let

τ ′
R = inf

{
t ≥ 0 : |Xt|2H = R

}
, τR = τ ′

R ∧ τ

and notice that τ ′
R ↑ τ as R →∞. We have (also for τ in place of τR)

Xt∧τR
= X0 +

∫ t∧τR

0

[−νAXs −B (Xs,Xs)] ds +
√

QWt∧τR

= X0 +
∫ t

0

[−νAXs∧τR
−B (Xs∧τR

,Xs∧τR
)] 1s≤τR

ds

+
∫ t

0

1s≤τR

√
QdWs.

Apply Itô formula to |Xt∧τR
|2H and get

|Xt∧τR
|2H = |X0|2H − 2

∫ t

0

〈νAXs∧τR
−B (Xs∧τR

,Xs∧τR
) ,Xs∧τR

〉H 1s≤τR
ds

+ M̃t + TrQ (t ∧ τR)

and thus

|Xt∧τR
|2H + 2ν

∫ t

0

‖Xs∧τR
‖2V 1s≤τR

ds = |X0|2H + M̃t + TrQ (t ∧ τR)

where

M̃t = 2
∫ t

0

〈
Xs∧τR

, 1s≤τR

√
QdBs

〉

H
.

Then, by Doob’s inequality along with the isometry formula of Itô integrals

E sup
t∈[0,u]

|Xt∧τR
|2H ≤ E |X0|2H + 1 + E sup

t∈[0,u]

∣∣∣M̃t

∣∣∣
2

H
+ TrQ u

≤ E |X0|2H + 1 + +TrQ u

+ C · TrQ · E
∫ u

0

1s≤τR
|Xs∧τR

|2H ds
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Therefore

E sup
t∈[0,u]

|Xt∧τR
|2H ≤ C + C

∫ u

0

E sup
t∈[0,s]

|Xt∧τR
|2H ds

which implies the result by Gronwall lemma applied to the function f(t) =
E supt∈[0,u] |Xt∧τR

|2H and the independence of the constants of R. The proof
is complete.

The statement of the following lemma is not the strongest possible one
(because we claim (15) only for p∗ < p), see the next remark. However we
restrict ourselves to this result since its proof is now elementary, being very
similar to the one just given above. Moreover, it will be sufficient for our
purposes.

Lemma 3.3 (Lp estimates). Assume E |X0|pH < ∞ for some p > 2. Then,
for every T > 0,

(14) E

∫ T

0

|Xs|pH ds < C2 (p,E |X0|pH , T rQ, T )

and

(15) E sup
t∈[0,T ]

|Xt|p
∗

H < C3 (p,E |X0|pH , T rQ, T )

where p∗ = p/2 + 1 (which is also greater than 2) and the constants C2 and
C3 are given in the proof.

Proof. Step 1. We consider now the function

f(x) = |x|pH =
(
|x|2H

)p/2

which has derivatives

Df(x) = p |x|p−2
H x,

D2f(x) = p (p− 2) |x|p−4
H x⊗ x + p |x|p−2

H · Id

with the property

Tr
[
QD2f(x)

]
= p (p− 1) |x|p−2

H TrQ.

Itô formula and property (1) give us now

|Xt|pH + pν

∫ t

0

|Xs|p−2
H 〈AXs,Xs〉H ds(16)

= |X0|pH + M
(p)
t +

p (p− 1) TrQ

2

∫ t

0

|Xs|p−2
H ds
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where

M
(p)
t = p

∫ t

0

|Xs|p−2
H

〈
Xs,

√
QdWs

〉

H

is a local martingale.
Step 2. The proof of (14) is now the same as the proof of (10), plus a

simple iterative argument. Let p′ be any number between 2 and the value of p
declared in the assumptions of the lemma. By the same localization argument
used in the previous proof, we get

E
[
|Xt∧τn

|p
′

H

]
≤ E

[
|X0|p

′

H

]
+

p′ (p′ − 1) TrQ

2
E

∫ T

0

|Xs|p
′−2

H ds

and thus

E

∫ T∧τn

0

|Xt|p
′

H dt ≤ E

∫ T

0

|Xt∧τn
|p

′

H dt ≤ TE
[
|X0|p

′

H

]

+T
p′ (p′ − 1) TrQ

2
E

∫ T

0

|Xs|p
′−2

H ds

which implies

(17) E

∫ T

0

|Xt|p
′

H dt ≤ TE
[
|X0|p

′

H

]
+ T

p′ (p′ − 1) TrQ

2
E

∫ T

0

|Xs|p
′−2

H ds

by the monotone convergence theorem. This inequality allows us to iterate
a bound of the form (14) from a smaller value of p to a larger one, starting
from p = 2 given in the previous lemma. More formally, let Π be the set of
p′ ∈ [2, p] (p given in the claim of the lemma), such that, for some constant
C (p,E |X0|pH , T rQ, T ), we have

E

∫ T

0

|Xt|p
′

H dt ≤ C (p,E |X0|pH , T rQ, T )

for all T ≥ 0. The set Π is non empty (2 ∈ Π by the previous lemma) and
has the property that a ∈ Π, a < p implies that b = (a + 2) ∧ p ∈ Π (from
(17)). Then p ∈ Π, so (14) is proved.

Step 3. Unfortunately (14) does not imply that M
(p)
t is a square integrable

martingale, but this is true for M
(p∗)
t , since

(p∗)2
∫ t

0

|Xs|2(p
∗−2)

H 〈QXs,Xs〉H ds

≤ (p∗)2 |Q|
∫ t

0

|Xs|2(p
∗−1)

H ds = (p∗)2 |Q|
∫ t

0

|Xs|pH ds.

We can now repeat the proof of step 3 of the previous lemma:
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sup
t∈[0,T ]

|Xt|p
∗

H ≤ |X0|p
∗

H + 1 + sup
t∈[0,T ]

∣∣∣M (p∗)
∣∣∣
2

+

p∗ (p∗ − 1) TrQ

2

∫ T

0

|Xs|p
∗−2

H ds

hence, by Doob’s inequality,

E sup
t∈[0,T ]

|Xt|p
∗

H ≤ E |X0|p
∗

H + 1 + 4 (p∗)2
∫ T

0

|Xs|2(p
∗−2)

H 〈QXs,Xs〉H ds

+
p∗ (p∗ − 1) TrQ

2

∫ T

0

|Xs|p
∗−2

H ds

which is easily bounded by a constant C3 (p,E |X0|pH , T rQ, T ) due to (14).
The proof is complete.

Corollary 3.2. For a stationary solutions we have E
[
|Xt|p−2

H ‖Xt‖2V
]

< ∞
(hence in particular E |Xt|pH < ∞) for every p ≥ 2 and

E
[
|Xt|p−2

H ‖Xt‖2V
]

=
(p− 1) TrQ

2ν
E

[
|Xt|p−2

H

]
.

Proof. The proof is the same given above for p = 2 and it is based on identity
(16), that one has to iterated in p.

Remark 3.5. Under the same assumptions we have the expected estimate

E sup
t∈[0,T ]

|Xt|pH ≤ C (p,E |X0|pH , T rQ, T )

for every T > 0. Its proof follows the lines of the proof of lemma 3.2 and
makes use of Burkholder-Davis-Gundy inequality. See Flandoli and Gaterek
[34], Appendix 1.

We have seen that the regularity of solutions can be improved in the di-
rection of p-integrability on Ω. Less easy is to improve it in the direction of
stronger topologies (in fact in finite dimensions they are all equivalent, but
the equivalence is not stable in the passage to the limit). A natural question
would be whether we have an estimate of the form

(18) E

(
sup

t∈[0,T ]

‖Xt‖2V + ν

∫ T

0

|AXs|2H ds

)
≤ C1

(
E ‖X0‖2V , T rQ, T

)
.

This is an open problem (the answer is positive in the 2D case). Nevertheless,
under assumptions inspired to the 3D case we can state at least one result
on the time integrability of |AXs|2H , proved by [41] in the deterministic case
(see a related result with a different proof in [52], Thm 3.6) and extended to
the stochastic case by Da Prato and Debussche [23]. To avoid unnecessary
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complications due to the generality, let us assume that A and Q commute, so
there exists a common orthonormal system {ei} of eigenvectors, with Aei =
λiei, Qei = σ2

i ei.
To understand assumption (19) below, notice that in a finite dimensional

space H we always have 〈Ax,B(x, x)〉H ≤ CA,B |x|2H for a suitable nonuniver-
sal constant CA,B . On the contrary, the constant C in (19) is universal, see
lemma 2.2. In 2D (always with periodic boundary conditions) the situation is
entirely different since we have 〈Ax,B(x, x)〉H = 0 (vorticity conservation for
ν = 0).

Lemma 3.4 (bounds on |AXt|H). Assume that

(19) 〈Ax,B(x, x)〉H ≤ C ‖x‖3/2
V |Ax|3/2

H , x ∈ H

and ∑

i

σ2
i λi < ∞.

Then

E

∫ T

0

|AXs|2H(
1 + ‖Xs‖2V

)2 ds ≤ C
1
ν4

E

∫ T

0

‖Xs‖2V +
1
ν

(
1 + C

∑

i

σ2
i λi

)

3
√

νE

∫ T

0

|AXs|2/3
H ds ≤ C

(
T,

∑

i

σ2
i λi

)(
1 +

1
ν

E

∫ T

0

‖Xs‖2V

)

where, concerning the term E
∫ T

0
‖Xs‖2V ds, we recall the bound (6).

Proof. Introduce the function f : H → R defined as

f(x) =
1

1 + ‖x‖2V
= (1 + 〈Ax, x〉H)−1

.

We have

Df (x) = −
(
1 + ‖x‖2V

)−2

D 〈Ax, x〉H = −2
Ax

(
1 + ‖x‖2V

)2

D2f (x) = 8
Ax⊗Ax

(
1 + ‖x‖2V

)3 − 2
A

(
1 + ‖x‖2V

)2 .

Hence

1
1 + ‖Xt‖2V

=
1

1 + ‖X0‖2V
+ 2

∫ t

0

〈AXs, νAXs + B(Xs,Xs)〉H(
1 + ‖Xs‖2V

)2 ds

+M̃t +
1
2

∫ t

0

g (Xs) ds



An Introduction to 3D Stochastic Fluid Dynamics 69

where

M̃t = −2
∫ t

0

〈
AXs,

√
QdWs

〉
H(

1 + ‖Xs‖2V
)2

is a local martingale and

g (x) =
∑

i

σ2
i

⎡

⎢⎣8
〈Ax, ei〉2H(
1 + ‖x‖2V

)3 − 2
〈Aei, ei〉H(
1 + ‖x‖2V

)2

⎤

⎥⎦ .

In fact M̃t is a square integrable martingale, because

∫ t

0

〈QAXs, AXs〉H(
1 + ‖Xs‖2V

)4 ds ≤
∫ t

0

∣∣A1/2QA1/2
∣∣ ∣∣A1/2Xs

∣∣2
H(

1 + ‖Xs‖2V
)4 ds

≤
∑

i

σ2
i λi

∫ t

0

‖Xs‖2V(
1 + ‖Xs‖2V

)4 ds ≤
∑

i

σ2
i λi < ∞.

We also have |g (x)| ≤ C
∑

i σ2
i λi, so, from

2ν

∫ t

0

|AXs|2H(
1 + ‖Xs‖2V

)2 ds ≤ 1
1 + ‖Xt‖2V

− 2
∫ t

0

〈AXs, B(Xs,Xs)〉H(
1 + ‖Xs‖2V

)2 ds

−M̃t −
1
2

∫ t

0

g (Xs) ds

the assumption on B and the martingale property of M̃t we have

2νE

∫ t

0

|AXs|2H(
1 + ‖Xs‖2V

)2 ds

≤ 1 + 2CE

∫ t

0

‖Xs‖3/2
V |AXs|3/2

H(
1 + ‖Xs‖2V

)2 ds +
C

2

∑

i

σ2
i λi.

Moreover,

E

∫ T

0

‖Xs‖3/2
V |AXs|3/2

(
1 + ‖Xs‖2V

)2 dt ≤ ενE

∫ T

0

|AXs|2(
1 + ‖Xs‖2V

)2 + Cε
1
ν3

E

∫ T

0

‖Xs‖2V

for every ε > 0 and for a suitable constant Cε, due to the following Young
inequality (f, g ≥ 0)
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fg ≤ εfp +
C

ε1/(p−1)
gp′

, p′ =
p

p− 1
.

With a universal choice of ε > 0 we have

νE

∫ t

0

|AXs|2H(
1 + ‖Xs‖2V

)2 ds ≤ 1 + C
1
ν3

E

∫ t

0

‖Xs‖2V + C
∑

i

σ2
i λi.

This implies the first inequality of the lemma. The second one simply follows
from the following inequalities:

3
√

νE

∫ T

0

|AXs|2/3
H ds ≤

⎛

⎜⎝E

∫ T

0

⎛

⎜⎝ν
|AXs|2H(

1 + ‖Xs‖2V
)2

⎞

⎟⎠ dt

⎞

⎟⎠

1/3

·
(

E

∫ T

0

(
1 + ‖Xs‖2V

)
dt

)2/3

≤
(

1 + C
1
ν3

E

∫ t

0

‖Xs‖2V + C
∑

i

σ2
i λi

)1/3 (
T + E

∫ T

0

‖Xs‖2V dt

)2/3

.

The proof is complete.

Remark 3.6. Under the assumption E |X0|2H < ∞ we know that E
∫ t

0
‖Xs‖2V ds

is bounded by a universal constant, so the same is true for E
∫ T

0
|AXs|2/3

H ds.

This implies E
[
|AXt|2/3

H

]
< ∞ for almost every t. If in addition the process

is stationary, we have E
[
|AXt|2/3

H

]
< ∞ for every t. In terms of invariant

measures µ of the limit infinite dimensional problem this will imply that
µ (D(A)) = 1.

Remark 3.7. For stationary Xs,

2E
〈AXs, νAXs + B(Xs,Xs)〉H(

1 + ‖Xs‖2V
)2 +

1
2
Eg (Xs) = 0.

Notice that |g (x)| ≤ C
∑

i σ2
i λi, so under the assumption that this quantity

is finite and given, we may heuristically think that Eg (Xs) converges to a
nonzero value g0 as ν → 0. Then we have

E
|AXs|2H(

1 + ‖Xs‖2V
)2 ∼

1
ν

⎛

⎜⎝
g0

4
+ E

〈AXs, B(Xs,Xs)〉H(
1 + ‖Xs‖2V

)2

⎞

⎟⎠ .
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Remark 3.8. Let us briefly understand that under assumption (19) it is not
possible to obtain a bound of the form (18). Without all the details, from Itô
formula for d ‖Xt‖2V , we have

d ‖Xt‖2V + 2ν |AXt|2H ≤ |〈AXt, B(Xt,Xt)〉H | plus other terms

and

|〈AXt, B(Xt,Xt)〉H | ≤ C ‖Xt‖3/2
V |AXt|3/2

H

≤ ν |AXt|2H + C ‖Xt‖6V
so we meet the differential inequality

d ‖Xt‖2V ≤ C ‖Xt‖6V plus other terms

that cannot be closed on a global time interval.

3.3 Comparison of Two Solutions and Pathwise Estimates

Having assumed an additive noise, it disappears when we write the equation
for the difference of two solutions; this has some advantages. We can reach
similar advantages for a single solution with the following trick: we consider the
difference between the solution and an auxiliary process, usually the solution
of the associated linear equation. Let us perform some of these computations
in this section.

However, here we assume the stronger algebraic condition (2) on B.

Lemma 3.5. Let
(
X

(1)
t

)
and

(
X

(2)
t

)
be two solutions on some interval [0, T ]

and let us set Vt = X
(1)
t −X

(2)
t . Let CB be a constant such that

〈B (x, y) , x〉H ≤ CB |x|2H |y|H
for every x, y ∈ H. Then

|Vt|H ≤ |V0|H eCB

∫ t
0 |X(2)

s |
H

ds.

Proof. We have

dVt

dt
+ νAVt + B

(
X

(1)
t , Vt

)
+ B

(
Vt,X

(2)
t

)
= 0

whence

(20)
1
2

d |Vt|2H
dt

+ ν 〈AVt, Vt〉H = −
〈
B

(
Vt,X

(2)
t

)
, Vt

〉

H

and thus
1
2

d |Vt|2H
dt

≤ CB |Vt|2H
∣∣∣X(2)

t

∣∣∣
H

.

The conclusion follows from Gronwall lemma.

The previous result is not stable in the limit of infinite dimensions. On the
contrary, the assumption on B of the next lemma is stable in dimension 3.
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Lemma 3.6. Assume that

〈B (x, y) , x〉H ≤ C |x|1/2
H ‖x‖3/2

V ‖y‖V

for every x, y ∈ H, where C is a universal constant. Then we have

|Vt|H ≤ |V0|H eC
∫ t
0‖X(2)

s ‖4

V
ds.

Proof. We restart from (20) and get now (we use Young inequality in the
second step)

1
2

d |Vt|2H
dt

+ ν ‖Vt‖2V ≤ C |Vt|1/2
H ‖Vt‖3/2

V

∥∥∥X
(2)
t

∥∥∥
V

≤ 1
2
‖Vt‖2V + C |Vt|2H

∥∥∥X
(2)
t

∥∥∥
4

V
.

Therefore
1
2

d |Vt|2H
dt

≤ C |Vt|2H
∥∥∥X

(2)
t

∥∥∥
4

V

which implies the claim of the lemma, again by Gronwall lemma.

From the viewpoint of the limit to infinite dimensions for 3D fluids, the
problem in the first lemma is the constant CB . On the contrary, the problem

in the second lemma is the term
∫ t

0

∥∥∥X
(2)
s

∥∥∥
4

V
ds, on which we do not have

bounds which are stable with the dimension.
To summarize, we have shown two simple computations which imply

uniqueness for the finite dimensional problem but are useless for 3D fluids.
There exist very many variants of these computations in different topologies,
but the result, until now, is always the same: either the constant or some norm
of the solutions blow-up in the case of the 3D Navier–Stokes equation.

Exercise 3.1. In the application to the 2-dimensional Navier–Stokes equa-
tions the continuity properties of B are stronger, due to the improvement
coming from Sobolev embedding theorem. One has

〈B (x, y) , x〉H ≤ C ‖y‖V |x|H ‖x‖V

for every x, y ∈ H, where C is a universal constant. Prove that

|Vt|H ≤ |V0|H eC
∫ t
0‖X(2)

s ‖2

V
ds.

Deduce a pathwise uniqueness result.

Exercise 3.2. (from Schmalfuss [60]). Continue the 2-dimensional case but
consider a multiplicative noise of the form

G (Xt) dWt
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in place of the additive noise
√

QdWt. Assume that G is a Lipschitz continuous
mapping from H to the space of linear bounded operators in H. Under this
more general condition, one can prove an existence result along the same lines
developed above. However, the uniqueness is more difficult, since the equation
for the difference of two solutions Vt = X

(1)
t − X

(2)
t is still an Itô equation,

and an estimate on |Vt|2 cannot simply be obtained by a pathwise application
of Gronwall lemma. On the other side, the inequality that one gets from Itô
formula for |Vt|2 cannot be closed at the level of mean values since it contains
cubic terms. Solve the problem using Itô formula for

e−C
∫ t
0‖X(2)

s ‖2

V
ds |Vt|2 .

In another form, this trick comes out again in the paper of DaPrato and
Debussche [23].

3.4 Existence and Uniqueness, Markov Property

In the next theorem we shall show that equation (4) has a unique strong
solution (Xx

t )t≥0 for every initial condition x ∈ H, that depends measurably
on x. We then may define the operators Pt : Bb (H) → Bb (H) as

(Ptϕ) (x) = E [ϕ (Xx
t )] .

Here Bb (H) is the space of Borel bounded functions on H and Cb (H) will
be the space of continuous bounded ones. We prove also that (4) defines a
Markov process in the sense that

E
[
ϕ

(
Xx

t+s

)
|Ft

]
= (Psϕ) (Xx

t ) (P -a.s.).

for every ϕ ∈ Cb (H), t, s > 0, x ∈ H. Taking the expectation in this identity
one gets the semigroup property Pt+s = PtPs on Cb (H). We say that Pt is
Feller if Ptϕ ∈ Cb (H) for every ϕ ∈ Cb (H).

Theorem 3.1. For every F0-measurable X0 : Ω → H, there exists a unique
continuous adapted solution (Xt)t≥0 of equation (4) on

(
Ω,F , (Ft)t≥0 , P

)
.

If the initial conditions xn converge to x in H, the corresponding solutions
converge P -a.s., uniformly in time on bounded intervals. Equation (4) defines
a Markov process with the Feller property.

Proof. Uniqueness and continuous dependence have been proved above in
lemma 3.5 (of course such a result is not stable in the limit of infinite di-
mensions). This implies also the Feller property. Let us divide the proof of
existence and Markov property in several steps. They are classical and are
given for completeness. Preliminary, we remark that the proof of existence
can be performed either by means of classical probabilistic arguments or by
a pathwise analysis, due to the additivity of the noise. Let us give the proba-
bilistic proof.
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Step 1. (existence for bounded X0). It is sufficient to prove the existence
on [0, T ]. Assume that |X0|H ≤ C for some constant C > 0. For any n > C, let
Bn (.) : H → H be a Lipschitz continuous function such that Bn (x) = B(x, x)
for every |x|H ≤ n. Consider then the equation

dX
(n)
t =

[
−νAX

(n)
t −Bn

(
X

(n)
t ,X

(n)
t

)]
dt +

√
QdWt

with initial condition X0. It has globally Lipschitz coefficients, so there exists
a unique continuous adapted solution

(
X

(n)
t

)

t≥0
. The proof of this classical

result can be done by contraction principle in L2 (Ω;C ([0, T ] ;H)). Let τn be
defined as

τn = inf
{

t ≥ 0 :
∣∣∣X(n)

t

∣∣∣
H

= n
}
∧ T.

Up to τn the solution X
(n)
t is also a solution of the original equation: it is

sufficient to observe the integral form of the equations. Therefore, by lemma
3.2, applicable since E |X0|2H < ∞, we have

E

(
sup

t∈[0,T ]

∣∣∣X(n)
t∧τn

∣∣∣
2

H

)
≤ C1

(
E |X0|2H , T rQ, T

)
.

In particular

E

(
1{τn<T}

∣∣∣X(n)
T∧τn

∣∣∣
2

H

)
≤ C1

(
E |X0|2H , T rQ, T

)

which implies

P (τn < T ) ≤ 1
n2

C1

(
E |X0|2H , T rQ, T

)

since
∣∣∣X(n)

T∧τn

∣∣∣
2

H
= n2 on {τn < T}. If N > n then τN > τn and

P
(
X

(N)
t = X

(n)
t , t ∈ [0, τn]

)
= 1

Therefore, if τ∞ := supn>C τn, we may uniquely define a process X
(∞)
t for

t ∈ [0, τ∞), equal to X
(n)
t on [0, τn] for every n. Hence X

(∞)
t is a solution on

[0, τ∞). But we have

P (τ∞ < T ) ≤ P (τn < T ) ≤ C

n2

for every n, hence P (τ∞ < T ) = 0. Thus X
(∞)
t is a solution for t ∈ [0, T − ε]

for every small ε > 0. Since T is arbitrary, we have proved global existence.
Denote by (Xx

t )t≥0 the unique solution with initial condition x ∈ H.
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Step 2. (existence for general X0). Let Ωn ∈ F be defined as Ωn ={
|X0|2H ≤ n

}
. Define X

(n)
0 as X0 on Ωn, 0 otherwise. Let

(
X

(n)
t

)

t≥0
be the

unique solution of equation (4) with initial condition X
(n)
0 . If N > n, then

P
(
Ωn ∩

(
X

(N)
t = X

(n)
t for every t ≥ 0

))
= P (Ωn) .

We may then uniquely define a process X
(∞)
t on Ω′ = ∪nΩn as X

(∞)
t = X

(n)
t

on Ωn. Looking at the equation in integral form, in particular at its pathwise
meaning, it is clear that X

(∞)
t solves the equation on Ω′. But P (Ω′) = 1,

hence we have proved the existence of a global solution.
Step 3. (Markov property). Given x ∈ H, ϕ ∈ Cb (H), t, s > 0, we have

to prove that
E

[
ϕ

(
Xx

t+s

)
Z

]
= E [(Psϕ) (Xx

t ) Z]

for every bounded Ft-measurable r.v. Z. By uniqueness

Xx
t+s = X

Xx
t

t,t+s (P -a.s.)

where
(
Xη

t0,t

)
t≥t0

denotes the unique solution on the time interval [t0,∞),
with the Ft0 -measurable initial condition Xη

t0,t0 = η. It is then sufficient to
prove that

E
[
ϕ

(
Xη

t,t+s

)
Z

]
= E [(Psϕ) (η)Z]

for every H-valued Ft-measurable r.v. η. By approximation (one has to use
Lebesgue theorem and the fact that strong convergence of ηn in H implies
that (Psϕ) (ηn) converges P -a.s. to (Psϕ) (η)), it is sufficient to prove it for
every r.v. η of the form η =

∑k
i=1 η(i)1A(i) with η(i) ∈ H and A(i) ∈ Ft.

By inspection (everything decomposes with respect to the partition A(i)) one
can see that it is sufficient to prove it for every deterministic element η ∈ H.
Now the r.v. Xη

t,t+s depends only on the increments of the Brownian motion
between t and t + s, hence it is independent of Ft. Therefore

E
[
ϕ

(
Xη

t,t+s

)
Z

]
= E

[
ϕ

(
Xη

t,t+s

)]
E [Z] .

Since Xη
t,t+s has the same law of Xη

s (by uniqueness), we have E
[
ϕ

(
Xη

t,t+s

)]
=

E [ϕ (Xη
s )] and thus

E
[
ϕ

(
Xη

t,t+s

)
Z

]
= (Psϕ) (η) E [Z] = E [(Psϕ) (η)Z] .

The proof is complete.

3.5 Invariant Measures

Let P ∗
t be the semigroup on the space of probability measures on H defined as

(P ∗
t µ) (f) = µ (Ptf)
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where we use the notation µ (f) for
∫

H
fdµ. We have P ∗

t+s = P ∗
t P ∗

s for every
t, s ≥ 0 and P ∗

0 is the identity. If (Xt)t≥0 is a solution and νt denotes the law
of Xt, then P ∗

t−sνs = νt for every t ≥ s ≥ 0.
We say that a probability measure µ is invariant if P ∗

t µ = µ for every
t ≥ 0. Equivalently, if

µ (ϕ) = µ (Ptϕ)

for every t ≥ 0 and ϕ ∈ Cb (H).
We recall that, given a metric space (X, d) with its Borel σ-field B, a set

of probability measures Λ on (X,B) is tight if the following condition holds:
for every ε > 0 there is a compact set Kε ⊂ X such that µ (Kε) > 1 − ε for
every µ ∈ Λ. Moreover, a set of probability measures Λ on (X,B) is relatively
compact if from every sequence {µn} ⊂ Λ one may extract a subsequence
{µnk

} and find a probability measure µ on (X,B) such that µnk
→ µ weakly

(by this we mean that µnk
(ϕ) → µ (ϕ) for every ϕ ∈ Cb (H)). If X is a Polish

space, Prohorov theorem states that Λ is tight if and only if it is relatively
compact. Notice that if X is compact, tightness is free and then also the
relative compactness of Λ, but in our applications the metric space is H, so
we need estimates to prove tightness.

Theorem 3.2. There exists at least one invariant measure for (4), with the
property

(21) µ
(
‖.‖2V

)
≤ TrQ

2ν
.

Proof. Step 1 (preparation). Following the general scheme attributed to
Krylov and Bogoliubov, we consider a solution (Xt)t≥0 with a suitable initial
condition, say X0 = 0, we denote the law of Xt by νt and introduce the time
averages

µT =
1
T

∫ T

0

νsds =
1
T

∫ T

0

P ∗
s ν0ds

or more explicitly µT (ϕ) = 1
T

∫ T

0
νs (ϕ) ds for every ϕ ∈ Cb (H). The family

of measures {µT ;T ≥ 0} is tight. Let us give two illuminating proofs of this
fact.

Step 2 (first proof of tightness). We follow a clever argument of Chow
and Khasminskii [20]. From the energy equality (8), taking into account the
choice X0 = 0, we know that

1
T

∫ T

0

E ‖Xs‖2V ds ≤ TrQ

2ν
.

Notice that

µT

(
‖.‖2V

)
=

1
T

∫ T

0

νs

(
‖.‖2V

)
ds =

1
T

∫ T

0

E ‖Xs‖2V ds
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(the first identity holds true for the test function ‖.‖2V ∧N by definition of µT ,
and then extends to the function ‖.‖2V by monotone convergence theorem).
Hence

(22) µT

(
‖.‖2V

)
≤ TrQ

2ν

and thus, by Chebyshev inequality,

µT

(
‖x‖2V ≥ R2

)
≤ R−2µT

(
‖.‖2V

)
≤ R−2 TrQ

2ν
.

This implies the tightness.
Step 3 (second proof of tightness). Equation (8), which reads

E |Xt|2H + 2ν

∫ t

0

E ‖Xs‖2V ds = TrQ t

implies that E |Xt|2H is differentiable and

dE |Xt|2H
dt

+ 2νE ‖Xt‖2V = TrQ.

Hence
dE |Xt|2H

dt
≤ −2νλE |Xt|2H + TrQ.

This implies

E |Xt|2H ≤ e−2νλtE |X0|2H +
∫ t

0

e−2νλ(t−s)TrQds ≤ TrQ

2νλ
.

The Gronwall-like inequality can be easily proved as Gronwall lemma, com-

puting
d(e2νλtE|Xt|2H)

dt and integrating the result on [0, t]. From the previous
inequality we have, as above,

µT

(
|x|2H ≥ R2

)
=

1
T

∫ T

0

νs

(
|x|2H ≥ R2

)
ds

≤ 1
T

∫ T

0

νs

(
|.|2H

)
ds =

1
T

∫ T

0

E |Xs|2H ds ≤ TrQ

2νλ

which yields the tightness. Notice that the result of this second method is
weaker from the viewpoint of the topologies.

Step 4 (conclusion). From Prohorov theorem, there exists a sequence µTn

weakly convergent to a probability measure µ. Let us show that µ is invariant.
We have, for every f ∈ Cb (H), and using the fact that Ptf ∈ Cb (H) by the
Feller property,

(P ∗
t µ) (f) = µ (Ptf) = lim

n→∞
µTn

(Ptf) = lim
n→∞

(P ∗
t µTn

) (f)
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and

P ∗
t µTn

= P ∗
t

1
Tn

∫ Tn

0

P ∗
s ν0ds =

1
Tn

∫ Tn

0

P ∗
t+sν0ds

=
1
Tn

∫ t+Tn

t

P ∗
σν0dσ = µTn

− 1
Tn

∫ t

0

P ∗
σν0dσ +

1
Tn

∫ Tn+t

Tn

P ∗
σν0dσ.

The last two terms converge weakly to zero. This proves P ∗
t µ = µ, so the

existence of an invariant measure is assured.
Finally, from (22), we get

µTn

(
‖.‖2V ∧N

)
≤ TrQ

2ν

for every N,n > 0, hence

µ
(
‖.‖2V ∧N

)
≤ TrQ

2ν

for every N > 0, and thus we have (21) by monotone convergence theorem.
The proof is complete.

Remark 3.9. If Q is invertible, the invariant measure is unique and ergodic.
We refer to specialized text for definitions and results.

Remark 3.10. In specific examples one can say more about ergodicity: it
holds also for certain degenerate noises. Consider our main example 3.1 on
the Galerkin approximation of the d-dimensional Navier–Stokes equations.
Weinan E and Mattingly [27] in d = 2 and Romito [59] in d = 3 proved that
ergodicity is true if the noise is active at least on a very small number of modes
(like 4), properly displaced to “generate” all other modes through the action
of the drift. Let us mention also the work of Mattingly and Hairer [53] on the
true 2D Navier–Stokes equations (ergodicity with very degenerate noise) and
the references therein.

In the previous theorem we have constructed an invariant measure with
the property (21). For this purpose we had to start Krylov-Bogoliubov scheme
from a good initial condition. In fact, this is not necessary: the invariance itself
provides the mechanism to prove (21).

Theorem 3.3. All invariant measures have the property (21). In fact they
also satisfy

µ
(
‖.‖2V

)
=

TrQ

2ν
.
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Proof. Let µ be an invariant measure. If
(
Ω,F , (Ft)t≥0 , P

)
is the filtered

probability space where the Brownian motion is defined, consider the enlarged
filtered probability space

Ω′ = Ω ×H, F ′ = F ⊗ B, F ′
t = Ft ⊗ B, P ′ = P ⊗ µ

with the new Brownian motion (W ′
t ) and the F ′

0-measurable r.v. X0 defined
as

W ′
t (ω, x) = Wt (ω) , X0 (ω, x) = x.

The law of X0 is µ. The unique solution (Xt) of (4) with initial condition
X0 is a stationary process, with the law of Xt equal to µ for every t ≥ 0
(we do not give the details, the result is intuitively clear). Then we can apply
corollary 3.1. Finally, from (8) we deduce that µ

(
‖.‖2V

)
is truly equal to TrQ

2ν .
The proof is complete.

Corollary 3.3. Assume that A and Q commute and have eigenvalues λi and
σ2

i respectively, with
∑

i σ2
i λi < ∞. Assume also that condition (19) holds

true. Then all invariant measures µ have the property

µ

⎡

⎢⎣
|Ax|2H(

1 + ‖x‖2V
)2

⎤

⎥⎦ ≤ C

∑
i σ2

i

2ν5
+

1
ν

(
1 + C

∑

i

σ2
i λi

)

3
√

νµ
[
|Ax|2/3

H

]
≤ C

(
1 +

∑
i σ2

i

2ν5

)∑

i

σ2
i λi

with universal constant C > 0.

3.6 Galerkin Stationary Measures for the 3D Equation

Our main concern are the stochastic Navier–Stokes equations (1) of Section
1. We work only with the Galerkin approximations and use the notations and
definitions of Example 3.1 of Section 1, but restricted to real (not complex)
spaces and operators. We assume for simplicity that the noise has the form

√
QWt =

∞∑

i=1

σihi (x)βi (t)

where σi are real numbers, hi are eigenfunctions of A, βi are independent
Brownian motions. We do not define here the concept of solution to (1) (this
will be done later on), but simply introduce a class of probability measures
on H that we call Galerkin stationary measures of equations (1).

Let us say that a probability measure µ on H is a cluster points of Galerkin
invariant measures if there exists a sequence {nk} diverging to infinity and for



80 F. Flandoli

each nk an invariant measure µnk
of the corresponding Galerkin approxima-

tion system, such that the sequence of measures {µnk
} weakly converges to µ

on H. Then we call Galerkin stationary measures of equations (1) every such
cluster point. We denote by PGalerkin

NS the set of all such probability measures
on H.

Theorem 3.4. PGalerkin
NS is non empty. Every µ ∈ PGalerkin

NS satisfies

(23) µ
(
‖.‖2V

)
≤

∑
i σ2

i

2ν
.

Proof. For every n, let µn be an invariant measure of the corresponding
Galerkin approximation system. We have

µn

(
‖.‖2V

)
≤

∑
i σ2

i

2ν

so the family {µn} of measures is bounded in probability in V, and thus it
is tight in H since the space V is compactly embedded into H. By Prohorov
theorem, there is a subsequence {µnk

} weakly convergent to some probability
measure µ on H. Thus PGalerkin

NS is non empty.
From the previous uniform bound we also have

µn

(
m∑

i=1

λi |〈·, hi〉|2 ∧N

)
≤

∑
i σ2

i

2ν

for every N > 0 and integer m > 0, where we observe that

‖.‖2V =
∞∑

i=1

λi |〈·, hi〉|2 .

Now
∑m

i=1 λi |〈·, hi〉|2 ∧N ∈ Cb (H), hence we may take the limit as n → ∞
and have

µ

(
m∑

i=1

λi |〈·, hi〉|2 ∧N

)
≤

∑
i σ2

i

2ν

which implies (23) by monotone converge theorem. In general, given µ ∈
PGalerkin

NS , by definition there is {µnk
} as above, so the previous argument

applies, and (23) is proved for every µ ∈ PGalerkin
NS .

Remark 3.11. Unfortunately, even if for the finite dimensional approximations
we have

µn

(
‖.‖2V

)
=

∑Nn

i σ2
i

2ν
,

this equality does not pass to the limit because we cannot say that µn

(
‖.‖2V

)

converges to µ
(
‖.‖2V

)
. We could have
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lim
n→∞

µn

(
‖.‖2V

)
= µ

(
‖.‖2V

)

(and then the equality above for µ) if
∣∣∣µn

(
‖.‖2V

)
− µ

(
‖.‖2V

)∣∣∣ ≤
∣∣∣µn

(
‖.‖2V

)
− µn

(
‖.‖2V ∧N

)∣∣∣

+
∣∣∣µn

(
‖.‖2V ∧N

)
− µ

(
‖.‖2V ∧N

)∣∣∣

+
∣∣∣µ

(
‖.‖2V ∧N

)
− µ

(
‖.‖2V

)∣∣∣

can be made small for large n. The last term is small for large N . The second
term is unclear in general, but under the assumption of the next theorem it is
small since we may have weak convergence of µn to µ in V. But the problem
is to have the first term uniformly small in n, for large N . We have

∣∣∣µn

(
‖.‖2V

)
− µn

(
‖.‖2V ∧N

)∣∣∣ =
∫

‖.‖2
V>N

‖x‖2V dµn (x)

≤ µn

(
‖.‖2p

V

)1/p

µn

(
‖.‖2V > N

)1/p′

≤ µn

(
‖.‖2p

V

)1/p

⎛

⎝
µn

(
‖.‖2V

)

N

⎞

⎠
1/p′

and this would be small uniformly small in n, for large N , if µn

(
‖.‖2p

V

)
≤ C

for some p > 1. But this is unknown. It can be proved in dimension 2.

We use now assumption (19), that holds true in the 3D case (lemma 2.2,
plus the fact that the projection πn is selfadjoint in H and commutes with
A).

Theorem 3.5. If
∑

i σ2
i λi < ∞ then µ (D(A)) = 1 for every µ ∈ PGalerkin

NS

and
3
√

νµ
[
|Ax|2/3

H

]
≤ C

(
1 +

∑
i σ2

i

2ν5

)∑

i

σ2
i λi.

Proof. We have both
∑

i σ2
i λi < ∞ and condition (19), so, given µ ∈ PGalerkin

NS

and a sequence {µnk
} converging to µ, by corollary 3.3 we have

3
√

νµnk

[
|Ax|2/3

H

]
≤ C

(
1 +

∑
i σ2

i

2ν5

) ∑

i

σ2
i λi

with a universal constant C > 0. This easily implies the claim, with an argu-
ment already used in the previous proof. The proof is complete.
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Let µ be a probability measure on H. We say that it is space homogeneous
if

(24) µ [f (u (· − a))] = µ [f (u)]

for every a ∈ TL and f ∈ Cb (H). We say it is partial (or discrete) isotropic
if, for every rotation R that transforms the set of coordinate axes in itself, we
have

(25) µ [f (u (R·))] = µ [f (Ru(·))]

for all f ∈ Cb (H). This is the form of isotropy compatible with the sym-
metries of the torus. The same definitions apply to random fields, hence to∑∞

i=1 σihiβi (t) for given t. Notice that
∑∞

i=1 σihiβi (t) is space homogeneous
and partial isotropic for every t ≥ 0 if and only if it is such for some t, being
gaussian with covariance of the form Qt.

Theorem 3.6. If
∑∞

i=1 σihiβi (t) is space homogeneous and partial isotropic,
then there exist µ ∈ PGalerkin

NS that is space homogeneous and partial isotropic.

Proof. There exist space homogeneous and partial isotropic invariant mea-
sures for the Galerkin approximations: it is sufficient to start the Krylov-
Bogoliubov method from the initial condition equal to zero. Then their cluster
points have the same property. The proof is complete.

The problem whether under the previous assumptions all elements of
PGalerkin

NS are space homogeneous and partial isotropic, seems to be open
(symmetry breaking).

4 Stochastic Navier–Stokes Equations in 3D

4.1 Concepts of Solution

Consider the abstract (formal) stochastic evolution equation (1) of Section 2
and its weak formulation over test functions (2) of that Section. From Lemma
2.1 we have

∫ t

0

|〈B (us, ϕ) , us〉| ds ≤
∫ t

0

C |us|1/2
H ‖us‖3/2

V ‖ϕ‖V ds(1)

≤ Cϕ sup
s∈[0,t]

|us|1/2
H

∫ t

0

‖us‖3/2
V ds

hence the nonlinear term in (2) (Section 2) is well defined for functions u that
live in L∞ (0, T ;H)∩L2 (0, T ;V ), T > 0 (but many other spaces work as well,
like L2

(
0, T ;L4

)
).
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As in the deterministic case, strong continuity of trajectories in H is an
open problem. There will be strong continuity in weaker spaces, like D(A)′,
and a uniform bound in H. Let Hσ be the space H with the weak topology.
Since

C ([0, T ] ;D(A)′) ∩ L∞ (0, T ;H) ⊂ C ([0, T ] ;Hσ)

(see lemma 4.6 below), the trajectories of the solutions will be at least weakly
continuous in H. One could also prove strong continuity from the right at
t = 0 and for a.e. t, and in addition there is strong continuity in [Lp (T )]3 for
p < 2; we do not prove these results.

The following presentation is strongly inspired to [55].

Definition 4.1. We call Brownian stochastic basis the object
(
W,F , (Ft)t≥0 , Q, (βi (t))t≥0,i∈N

)

where (W,F , Q) is a probability space, (Ft)t≥0 a filtration, (βi (t))t≥0,i∈N
a se-

quence of independent Brownian motions on
(
W,F , (Ft)t≥0 , Q

)
(namely, the

real valued processes βi are independent, are adapted to (Ft)t≥0, are continu-
ous and null at t = 0, and have increments βi (t)−βi (s) that are N (0, t− s)-
distributed and independent of Fs).

Definition 4.2 (strong solutions). Let
(
W,F , (Ft)t≥0 , Q, (βi (t))t≥0,i∈N

)

be a Brownian stochastic basis. Given u0 : W → H, F0-measurable, we say
that a D(A)′-valued process u on (W,F , Q) is a strong solution of equation
(1) with initial condition u0 if:

1. u is a continuous adapted process in D(A)′ and

u (., ω) ∈ L∞ (0, T ;H) ∩ L2 (0, T ;V ) Q-a.s.

for every T > 0, and
2. (2) is satisfied.

Definition 4.3 (weak martingale solutions). Given a probability mea-
sure µ0 on H, a weak solution of equation (1) with initial law µ0 consists of
a Brownian stochastic basis

(
W,F , (Ft)t≥0 , Q, (βi (t))t≥0,i∈N

)
and a D(A)′-

valued process u on (W,F , Q) such that

[WM1 ] u is a continuous adapted process in D(A)′ and

u (., ω) ∈ L∞ (0, T ;H) ∩ L2 (0, T ;V ) Q-a.s.

for every T > 0,
[WM2 ] (2) is satisfied
[WM3 ] u0 := u(0) has law µ0.
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Let us set
Ω = C ([0,∞);D(A)′)

and denote by (ξt)t≥0 the canonical process (ξt (ω) = ωt), by F the Borel
σ-algebra in Ω and by Ft the σ-algebra generated by the events (ξs ∈ A) with
s ∈ [0, t] and A ∈ B (D(A)′).

Definition 4.4 (solution to the martingale problem). Given a proba-
bility measure µ0 on H, we say that a probability measure P on (Ω,F ) is a
solution of the martingale problem associated to equation (1) with initial law
µ0 if

[MP1 ]for every T > 0

P

(
sup

t∈[0,T ]

|ξt|H +
∫ T

0

‖ξs‖2V ds < ∞
)

= 1

[MP2 ] for every ϕ ∈ D∞ the process Mϕ
t defined P -a.s on (Ω,F ) as

Mϕ
t := 〈ξt, ϕ〉H − 〈ξ0, ϕ〉H +

∫ t

0

ν 〈ξs, Aϕ〉H ds

−
∫ t

0

〈B (ξs, ϕ) , ξs〉H ds

is square integrable and (Mϕ
t , Ft, P ) is a continuous martingale with

quadratic variation

[Mϕ]t =
∞∑

i=1

σ2
i 〈ϕ, hi〉2H · t

[MP3 ] µ0 = π0P .

We have given the definition of strong solutions only for completeness, since
unfortunately at present there is no result of existence of strong solutions for
the 3D stochastic Navier–Stokes equation (except when identically σi = 0). In
fact one can solve pathwise the equation with additive noise (see for instance
[40]) and prove the existence of a measurable selection, but the existence of a
progressively measurable selection remains an open problem. See also [57].

Therefore we concentrate on the other two notions. The term “weak
martingale solution” has the following origin. In the theory of SDE’s, weak
solutions are those described by such a definition (let us say weak in the prob-
abilistic sense). But in the theory of PDE’s the term weak usually refers to
some kind of distributional formulation (let us say weak in the deterministic
sense). Here we have to mix-up both kind of weaknesses, and a way to remind
that we mean weak also in the probabilistic sense is to add the qualification
“weak martingale”. No special martingale notion appear in the definition, but
the next theorem of equivalence is a motivation for this choice of the name.
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Theorem 4.1. P is a solution of the martingale problem if and only if there
exists a weak martingale solution with law P .

Proof. Step 1. Let
(
W,F , (Ft)t≥0 , Q, (βi (t))t≥0,i∈N

)
and u be the objects in

the definition of weak martingale solution. Let P̃ be the law of u on (Ω,F ).
Let us prove that P̃ solves the martingale problem. The main point is to prove
[MP2]. With the notation u (γ) for the function (u (t, γ))t≥0, we have

Mϕ
t (u (γ)) = 〈u (t, γ) , ϕ〉H − 〈u (0, γ) , ϕ〉H

+
∫ t

0

ν 〈u (s, γ) , Aϕ〉H ds−
∫ t

0

〈B (u (s, γ) , ϕ) , u (s, γ)〉H ds

so for Q-a.e. γ ∈ W

Mϕ
t (u (γ)) =

∞∑

i=1

σi 〈ϕ, hi〉H βi (t, γ) .

First, Mϕ (t) is square integrable: since P̃ is the law of u, we have

EP̃
[
Mϕ (t)2

]
= EP

[
Mϕ (t, u (.))2

]
=

∞∑

i=1

σ2
i 〈ϕ, hi〉2H .

The other assertions of [MP2] are a consequence of lemma (4.1).
Step 2. Let now P be a solution of the martingale problem. Due to the

special shape of the quadratic variation of Mϕ
t , by Levy martingale charac-

terization of the Brownian motion it follows that Mϕ
t is a Brownian motion.

Furthermore, βi (t, ω) := Mhi (t, ω) is a sequence of independent Brownian
motions on (Ω,F, Ft, P ) and

Mϕ
t (ω) =

∞∑

i=1

σi 〈ϕ, hi〉Hi (t, ω) .

This immediately implies [WM2], from [MP2].

Remark 4.1. The Brownian motions βi (t, γ) depend on P . Thus this proof
does not provide a space with a simultaneous solution for every initial condi-
tion.

Remark 4.2. For equations with non-constant diffusion term, step 2 requires
a representation theorem for martingales.

Lemma 4.1. Let
(
Ω,F , (Ft)t≥0 , P

)
and

(
Ω′,F ′, (F ′

t)t≥0 , P ′
)

be two filtered
probability spaces and X : Ω → Ω′ be a measurable mapping such that
P ′ = XP ; and such that Z ′ ◦ X is Ft-measurable for every F ′

t-measurable
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Z ′. Let (M ′
t)t≥0 be a continuous adapted process on

(
Ω′,F ′, (F ′

t)t≥0 , P ′
)

such that Mt := M ′
t ◦ X is a martingale on

(
Ω,F , (Ft)t≥0 , P

)
and there

is an increasing adapted process (At)t≥0 on
(
Ω′,F ′, (F ′

t)t≥0 , P ′
)

such that

At ◦X = [M ]t. Then (M ′
t)t≥0 is a martingale on

(
Ω′,F ′, (F ′

t)t≥0 , P ′
)
, with

quadratic variation (At)t≥0.

The proof is left as an exercise.

4.2 Existence of Solutions to the Martingale Problem

The theorem of existence will be based on a classical Galerkin approximation
scheme. For other purposes, like the existence of the so called suitable weak
solutions (satisfying local energy inequalities) other approximations must be
used, but we shall not take that direction (see Flandoli and Romito [38]).

Let Hn be the finite dimensional space spanned by the first Nn eigenvectors
of A, with Nn increasing to infinity. We endow Hn with the inner product
induced by |.|H , and use the same notation. Let An be the restriction of A to
Hn and Bn (., .) : Hn ×Hn → Hn the continuous bilinear operator defined as

〈Bn (u, v) , w〉 = 〈B (u, v) , w〉

for every u, v, w ∈ Hn. We have also

Bn (u, v) = πnB (u, v) , u, v ∈ Hn

where πn is the orthogonal projection of H on Hn.
Consider the equation in Hn

(2) dXn
t + [νAnXn

t + Bn (Xn
t ,Xn

t )] dt =
Nn∑

i=1

σihidβi.

The operators in this equation satisfy all the assumptions of the previous
Section, so we may use all the results proved there. Of course we may take
advantage only of those estimates having universal constants.

Theorem 4.2. Assume σ2 :=
∑

i σ2
i < ∞. Let µ be a measure on H such

that m2 :=
∫

H
|x|2H µ (dx) < ∞. Then there exists at least one solution to the

martingale problem with initial condition µ.

Proof. Step 1 (a priori bounds on Galerkin approximations). Let
(
W,F , (Ft)t≥0 , Q, (βi (t))t≥0,i∈N

)

be a Brownian stochastic basis supporting also an F0-measurable r.v. u0 :
W → H with law µ (to construct such a basis it is sufficient to use product
spaces, as we did in theorem 3.3). Let Xn

0 := πnu0.
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For every n, there exist a unique continuous adapted solution (Xn
t )t≥0 of

equation (2) in Hn, with initial condition Xn
0 . Under the embedding Hn ⊂ H

we have that (Xn
t )t≥0 is a continuous adapted process in H, so it defines a

measure Pn on C ([0,∞);H), and thus on (Ω,F ). In Section 3 we have proved

Pn

[
sup

t∈[0,T ]

|ξt|2H + ν

∫ T

0

‖ξs‖2V ds

]
≤ C1

(
m2, σ

2, T
)

We have used the fact that

Q
[
|Xn

0 |
2
H

]
=

∫

H

|πnx|2H µ (dx) ≤ m2.

Moreover, in view of the time regularity, equation (2) has the form

Xn
t = Xn

0 + Jn
t +

Nn∑

i=1

σihidβi

where

Jn
t = −

∫ t

0

[νAnXn
s + Bn (Xn

s ,Xn
s )] ds

and we have, on one side,

Q

∥∥∥∥∥

Nn∑

i=1

σnhnβ·

∥∥∥∥∥

p

W α,p(0,T ;H)

< C

(C independent of n) for every p > 1, α ∈ (0, 1/2), T > 0, from Corollary 4.2;
on the other side, for Jn

t , chosen γ ∈ (3/2, 2), we have

‖Jn
· ‖

2
W 1,2(0,T ;D(A−γ))

≤ Cν

∫ T

0

|AnXn
s |

2
V ′ ds + C

∫ T

0

|Bn (Xn
s ,Xn

s )|2D(A−γ) ds

≤ Cν

∫ T

0

‖Xn
s ‖

2
V ds + C sup

s∈[0,T ]

|Xn
s |

2
H

∫ T

0

‖Xn
s ‖

2
V ds

since, for x, ϕ ∈ D∞,

|Bn (x, x)|2D(A−γ) = sup
|ϕ|D(Aγ )≤1

∣∣∣〈Bn (x, x) , ϕ〉D(A−γ),D(Aγ)

∣∣∣

= sup
|ϕ|D(Aγ )≤1

|〈B (x, x) , ϕ〉| ≤ C |x|2H ‖x‖2V

from the Sobolev embedding of D (Aγ) in the continuous fields. Therefore

Pn

[
‖ξ‖W α,2(0,T ;D(A−γ))

]
≤ C4

(
ν,m2, σ

2, T
)

for every α ∈ (0, 1/2), γ ∈ (3/2, 2), T > 0.
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Step 2 (tightness). By Chebyshev inequality, given α ∈ (0, 1/2), γ ∈
(3/2, 2), T > 0, for every ε > 0 there is a bounded set

Bε ⊂ L2 (0, T ;V ) ∩Wα,2
(
0, T ;D

(
A−γ

))

such that Pn (Bε) > 1− ε for every n. From theorem 4.6, there is a compact
set

Kε ⊂ L2 (0, T ;H)

such that Pn (Kε) > 1−ε for every n. From the boundedness of the law of Jn in
W 1,2 (0, T ;D (A−γ)) and of the law of the Brownian motion in Wα,p (0, T ;H)
for every p > 1 and α ∈ (0, 1/2), we may apply lemma 4.3 and have a compact
set

K ′
ε ⊂ C ([0, T ] ;D(A)′)

such that Pn (K ′
ε) > 1−ε for every n. Therefore the family of measures {Pn} is

tight in L2 (0, T ;H) and in C ([0, T ] ;D(A)′), with their Borel σ-fields. Hence
there exists a probability measure P on

C ([0, T ] ;D(A)′) ∩ L2 (0, T ;H)

that is the weak limit in such spaces of a subsequence {Pnk
}.

Step 3 (P is a solution to the martingale problem). From the uniform
estimates on {Pnk

} in L2 (0, T ;V ) and L∞ (0, T ;H) we may deduce that P
gives probability one to each one of these spaces and has bounds in the mean
similar to those uniform of Pnk

. The details of this fact are rather tedious
so we give only a sample in the next section, see lemma 4.8. This way we
have checked property [MP1] in the definition of solution to the martingale
problem.

Concerning [MP3], we have

Pnk
(ϕ) → P (ϕ)

for every ϕ ∈ Cb (C ([0, T ] ;D(A)′)), hence in particular π0Pnk
→ π0P as

probability measures on D(A)′. But π0Pnk
is the law of πnu0, which converges

to µ since πnu0 converges Q-a.s. to u0. Hence π0P is µ.
Finally, let us check property [MP2]. Given ϕ ∈ D∞, we have to prove

that for every t > s ≥ 0 and every Fs-measurable bounded r.v. Z, we have

P
[
(Mϕ

t )2
]

< ∞

P [(Mϕ
t −Mϕ

s ) Z] = 0

P
[(

(Mϕ
t )2 − ςt −

(
(Mϕ

s )2 − ςs

))
Z

]
= 0

where ςt :=
∑∞

i=1 σ2
i 〈ϕ, hi〉2H · t. For the measure Pnk

we know (by lemma
4.1) that (Mϕ,nk

t , Ft, Pnk
) is a square integrable martingale with quadratic

variation
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[Mϕ,nk ]t =
Nnk∑

i=1

σ2
i 〈ϕ, hi〉2H · t

where

Mϕ,n
t := 〈ξt, ϕ〉H − 〈ξ0, ϕ〉H +

∫ t

0

ν 〈ξs, Aϕ〉H ds−
∫ t

0

〈B (ξs, πnϕ) , ξs〉H ds.

Thus (Mϕ,nk
t , Ft, Pnk

) is a Brownian motion and we have

sup
k

Pnk

[
(Mϕ,nk

t )2+ε
]

< ∞

Pnk
[(Mϕ,nk

t −Mϕ,nk
s ) Z] = 0

Pnk

[(
(Mϕ,nk

t )2 − ςnk
t −

(
(Mϕ,nk

s )2 − ςnk
s

))
Z

]
= 0

where ςn
t :=

∑Nn

i=1 σ2
i 〈ϕ, hi〉2H · t and ε > 0. It is now sufficient to use lemma

4.2 below. The proof is complete.

Remark 4.3. In the case of noise depending on u, the passage to the limit
(step 3, proof of [MP2]) is more involved and requires uniform estimates on
p-moments of Xn

t , see [34].

Lemma 4.2. On a Polish space X, if Pn converges weakly to P (in the sense
of measures), ϕn, ϕ : X → R are measurable and ϕn(xn) → ϕ(x) for every
x ∈ X and any sequence xn → x, and

Pn

[
|ϕn|1+ε

]
≤ C

for some ε, C > 0, then P [|ϕ|] < ∞ and Pn [ϕn] → P [ϕ].

Proof. Let Yn, Y be r.v. on a probability space (Ω,F,Q), with expectation
E, with values in X, with laws Pn and P respectively, such that Yn

X→ Y ,
Q-a.s. (Skorohod theorem). We have to prove that E [|ϕ (Y )|] < ∞ and
E [ϕn (Yn)] → E [ϕ (Y )]. But we know that

E
[
|ϕn (Yn)|1+ε

]
≤ C

and ϕn (Yn) → ϕ (Y ), Q-a.s.; hence it is sufficient to apply Vitali convergence
theorem.

For the definitions of space homogeneous and partial isotropic measure
or random field, see section 3.6 above. The proof of the following facts is
similar to the previous theorem and will be omitted. Under the assumptions
of theorem 4.2 we have:
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Theorem 4.3. If µ and
∑∞

i=1 σihiβi (1) are space homogeneous and partial
isotropic, then there exists a solution P of the martingale problem with initial
condition µ such that πtP is space homogeneous and partial isotropic for every
t ≥ 0.

If
∑

i σ2
i λi < ∞ then there exists a solution P of the martingale problem

with initial condition µ such that

P

⎡

⎢⎣
∫ T

0

|Aξs|2H(
1 + ‖ξs‖2V

)2 ds

⎤

⎥⎦ < ∞.

In particular, P (ξt ∈ D (A)) = 1 for a.e. t ≥ 0.

We complete the section by stating a result proved in [34], proof that is a
variant of the previous one and we do not repeat. By stationary martingale
solution we mean a solution P of the martingale problem that is shift invariant
(in time) on Ω.

Theorem 4.4. There exists at least one stationary martingale solution Pstat,
with the following properties:

Pstat

[
‖ξt‖2V

]
≤ TrQ

2ν
, Pstat [|ξt|pH ] < ∞

for every t ≥ 0 and p ≥ 2.

Remark 4.4. In dimension d = 2 we have the identity

EPstat ‖ξt‖2V =
TrQ

2ν
.

Theorem 4.5. If
∑∞

i=1 σihiβi (1) is space homogeneous and partial isotropic,
there exists at least one stationary martingale solution Pstat such that πtPstat

is space homogeneous and partial isotropic for every t ≥ 0.
If

∑
i σ2

i λi < ∞ then there exists at least one stationary martingale solu-
tion Pstat such that for every t ≥ 0 we have Pstat (ξt ∈ D (A)) = 1 and

Pstat

⎡

⎢⎣
|Aξt|2H(

1 + ‖ξt‖2V
)2

⎤

⎥⎦ < ∞.

In the usual context of Markov dynamics, one introduces the notion of
invariant measure (see above in the finite dimensional case). This can be done
in dimension 2, but in 3D we have the obstacle of the lack of Markov property
(at least a priori; see the next sections). Nevertheless, there are several ways
to introduce measures that may play the role of invariant measures. In order
to stress the difference w.r.t. the Markov set-up, we shall call them stationary
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measures. Recall the definition of Galerkin stationary measure given above;
call PGalerkin

NS the set of such measures; we have proved that it is non empty.
Here, having the existence of stationary solutions, it is meaningful to consider
the measures of the form πtPstat, where Pstat is a stationary solution of the
martingale problem; call P stationary

NS the set of such measures. One can prove
the following relation:

PGalerkin
NS ⊂ P stationary

NS

However, the other relations are less clear (opposite inclusion, relation to
invariant measures for Markov selections, etc.).

4.3 Technical Complements

We collect here some technical facts used in the previous section.

Sobolev spaces of fractional order

Let E be a (separable) Banach space, p > 1, α ∈ (0, 1), T > 0,
Wα,p (0, T ;E) the (Sobolev) space of all u ∈ Lp (0, T ;E) such that

[u]pW α,p(0,T ;E) :=
∫ T

0

∫ T

0

|u(t)− u(s)|pE
|t− s|1+αp dtds < ∞

endowed with the norm

‖u‖p
W α,p(0,T ;E) =

∫ T

0

|u(t)|pE dt + [u]pW α,p(0,T ;E) .

One can show that Wα,p (0, T ;E) is a (separable) Banach space. Moreover, if
αp > 1, Wα,p (0, T ;E) ⊂ Cγ ([0, T ] ;E) for every γ < αp− 1. We also have:

Lemma 4.3. If E ⊂ Ẽ are two Banach spaces with compact embedding, p > 1
and α ∈ (0, 1) satisfy αp > 1, then Wα,p (0, T ;E) is compactly embedded
into C

(
[0, T ] ; Ẽ

)
. Similarly, if E1, ..., En are compactly embedded into Ẽ and

p1, ..., pn > 1, α1, ..., αn ∈ (0, 1) satisfy αipi > 1 for every i = 1, ..., n, then

Wα1,p1 (0, T ;E1) + · · ·+ Wαn,pn (0, T ;En)

is compactly embedded into C
(
[0, T ] ; Ẽ

)
.

Theorem 4.6. Let E0 ⊂ E ⊂ E1 be Banach spaces, E0 and E1 reflexive, E0

compactly embedded in E, E continuously embedded into E1. Given p > 1,
α ∈ (0, 1), T > 0, the space

X := Lp (0, T ;E0) ∩Wα,p (0, T ;E1)

is compactly embedded into Lp (0, T ;E).
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Detailed proofs can be found in [34].

Gaussian measures in Hilbert spaces

Let X be the gaussian r.v. in H defined as

X =
∞∑

i=1

σih
(i)Xi

where
(
h(i)

)
is a c.o.s. in H,

∑∞
i=1 σ2

i < ∞ and (Xi) is a sequence of inde-
pendent standard Gaussian random variables on a probability space (Ω, �, P )
with expectation E. Then:

Lemma 4.4. For all t ∈ [0, infi
1

2σi
) we have

E
[
et|X|2H

]
= exp

(
−1

2

∞∑

i=1

log
(
1− 2σ2

i t
)
)

.

Proof. We leave the proof as an exercise, based on the formula

1√
2πσ2

i

∫ +∞

−∞
exp

(
tx2 − x2

2σ2
i

)
dx =

1√
1− 2σ2

i t
.

Corollary 4.1. For every p > 1 we have

E [|X|pH ] ≤ Cp

( ∞∑

i=1

σ2
i

)p/2

.

Proof. If p = 2m with a positive integer m, this follows from the lemma by
differentiation. For p ∈ (2m− 1, 2m) we apply Hölder inequality:

E [|X|pH ] ≤ E
[
(|X|pH)

2m
p

] p
2m ≤ C2m

( ∞∑

i=1

σ2
i

)p/2

.

Remark 4.5. Applied to Gaussian martingales, this is the upper bound in
Burkholder-Davies-Gundy (BDG) inequality. In fact, if we want to deal with
non additive noise, we have to replace the present arguments with BDG in-
equality.

Corollary 4.2. If B(t) is a Brownian motion in H given by

B(t) =
∞∑

i=1

σih
(i)β(i) (t)
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with
∑∞

i=1 σ2
i < ∞ and

(
β(i) (t)

)
a sequence of independent standard Brownian

motions, then for every p > 1, α ∈ (0, 1/2), T > 0,

E ‖B‖p
W α,p(0,T ;H) < C (p, α, T )

( ∞∑

i=1

σ2
i

)p/2

.

Proof. From the corollary above we have

E

∫ T

0

∫ T

0

|B(t)−B(s)|pH
|t− s|1+αp dtds

≤
∫ T

0

∫ T

0

Cp

(∑∞
i=1 σ2

i

)p/2 (t− s)p/2

|t− s|1+αp dtds

= Cp

( ∞∑

i=1

σ2
i

)p/2 ∫ T

0

∫ T

0

1

|t− s|1+(α− 1
2 )p

dtds.

The integral is finite since 1 +
(
α− 1

2

)
p < 1. The proof is complete.

Remark 4.6. If we would not know yet that B(t) has a.s. continuous trajecto-
ries, we could deduce it from the previous result.

Remarks on Ω = C ([0,∞);D(A)′)

The following and other similar results are used several times throughout
this Section, often without mention. We discuss the following ones as a sample.
The general idea of the following results is that apparently stronger topologies
in D(A)′ and Ω define measurable sets and functions. First, H is a Borel set
in D(A)′. Indeed, there is a c.o.s. {en} in H made of elements of D(A), such
that, for an element x ∈ D(A)′, we have x ∈ H if and only if

∑
〈x, en〉2 < ∞

(since en ∈ D(A), 〈x, en〉 is a priori well defined for x ∈ D(A)′, so
∑
〈x, en〉2

either converges or diverges to +∞). Similarly, the (possibly infinite) function
x �→ |x|H is measurable on D(A)′.

Lemma 4.5. C ([0,∞);H) is a Borel set in Ω.

Proof. Fix a dense countable set D in [0,∞). For an ω ∈ Ω we have ω ∈
C ([0,∞);H) if and only if it is uniformly continuous on every bounded subset
of D: for everyN > 0, n > 0 there is m > 0 such that t, s ∈ D ∩ [0, N ],
|t− s| < 1/m implies |ω(t)− ω(s)|H < 1/n. This condition is expressed by
means of countably many operations (recall also that x �→ |x|H is measurable
on D(A)′).
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Lemma 4.6. Let B([0,∞);H) be the set of H-valued functions ω, bounded
on every bounded set, i.e. such that for every T > 0

sup
t∈[0,T ]

|ω(t)|H < ∞.

Then
B([0,∞);H) ∩Ω = C ([0,∞);Hσ) ∩Ω.

Moreover
B([0,∞);H) ∩Ω ∈ F

and the (possibly infinite) function

f(ω) = sup
t∈[0,T ]

∞∑

n=1

〈ω(t), en〉2

is measurable, for every T > 0.

Proof. If ω ∈ B([0,∞);H) ∩Ω and ϕ ∈ H, then, givenT > 0, t0 ∈ [0, T ] and
ε > 0, let ϕ′ ∈ D(A) be such that |ϕ− ϕ′|H ≤ ε, and take δ > 0 such that
|ω(t)− ω(t0)|D(A)′ ≤ ε for |t− t0| ≤ δ, t, t0 ∈ [0, T ]. We have

|〈ω(t)− ω(t0), ϕ〉| ≤ |〈ω(t)− ω(t0), ϕ− ϕ′〉|
+ |〈ω(t)− ω(t0), ϕ′〉|

≤ εC + εC.

Viceversa, if ω ∈ C ([0,∞);Hσ) ∩Ω, then, for every T > 0 and ϕ ∈ H,

sup
t∈[0,T ]

|〈ω(t), ϕ〉| ≤ ∞.

So (ω(t)) is a family of functionals on H that are pointwise equibounded.
By Banach-Steinhaus theorem, they are equibounded in the operator norm,
namely

sup
t∈[0,T ]

|ω(t)|2H < ∞.

Finally, about the measurability, consider the sets

AN,R =

{
ω ∈ Ω : sup

t∈[0,T ]

N∑

n=1

〈ω(t), en〉2 ≤ R

}
.

They are measurable and
⋃

R>0

⋂

N>0

AN,R = B([0,∞);H) ∩Ω.

The proof is complete.
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Lemma 4.7. Let P ∈ Pr (Ω) be such that

P (C ([0,∞);Hσ) ∩Ω) = 1.

Then, given t ≥ 0, the mapping ω �→ ω (t), a priori Ft-measurable with values
in D(A)′, has a P -modification on Ft that is Ft-measurable with values in
(H,B (H)).

Lemma 4.8. Let Pn ∈ Pr (Ω), weakly convergent to P . Assume that for every
T > 0 there is a constant CT > 0 such that

Pn

[
sup

t∈[0,T ]

|ω(t)|2H

]
≤ CT .

Then P (B([0,∞);H) ∩Ω) = 1 and

P

[
sup

t∈[0,T ]

|ω(t)|2H

]
≤ CT .

Proof. Given R,N > 0, the functional

fN,R(ω) = sup
t∈[0,T ]

N∑

n=1

〈ω(t), en〉2 ∧R

belong to Cb (H), so

lim
n→∞

Pn (fN,R) = P (fN,R) .

Moreover,
fN,R(ω) ≤ sup

t∈[0,T ]

|ω(t)|2H

so Pn (fN,R) ≤ C and thus P (fN,R) ≤ C. By monotone convergence we get
the result.

4.4 An Abstract Markov Selection Result

The topics of this and the following sections are quite technical and a complete
treatment of them would exceed the reasonable size of this note. Therefore
we limit the discussion to the main ideas. Details of this section can be found
in [39].

Let V ⊂ H ⊂ V ′ be a Gelfand triple of separable Hilbert spaces with
continuous dense injections. In our application V will be D(A). Denote by
Ω the space C ([0,∞);V ′), with Borel σ-field B, and for every t ≥ 0 we set
Ωt := C ([t,∞);V ′), with its Borel σ-field Bt; clearly Ωt is isomorphic to Ω by
the natural map Φt : Ω → Ωt, (Φtω) (t + s) = ω (s) for every s ≥ 0. Denote
also by (Ft)t≥0 the canonical filtration on Ω.
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Given P on Ω, given t > 0, there is an Ft-measurable (P -unique) function
ω �→ PFt

ω , from Ω to Pr (Ωt), such that

P
(
Aext ∩ F

)
=

∫

F

PFt
ω (A) dP (ω)

for every F ∈ Ft and A ∈ Bt, where Aext ∈ B is the set
{
ω|[t,∞) ∈ A

}
.

Moreover,
PFt

ω (ξt = ω (t)) = 1

for P -a.e. ω ∈ Ω. The existence of such function PFt
ω comes from the existence

of a regular conditional probability distribution, which exists since Ω is Polish
and Ft is countably generated. We also have:

Lemma 4.9. Given P on Ω and an Ft-measurable function ω �→ Qω, from
Ω to Pr (Ωt), such that

Qω (ξt = ω (t)) = 1

for every ω ∈ Ω, there is a (unique) measure PQ on Ω such that

PQ (F ) = P (F ) for every A ∈ Ft

(
PQ

)Ft

ω
= Qω

for PQ-a.e. ω ∈ Ω.

Details can be found in [62]. The idea is to define

PQ (F ×A) =
∫

F

Qω (A) dP (ω)

and verify all the assertions.

Definition 4.5. Let {P x}x∈H ⊂ Pr (Ω) be a family of measures such that

P x (Ω ∩ C ([0,∞);Hσ)) = 1.

We say it is Markov if for every t ≥ 0

(P x)Ft

ω = ΦtP
ω(t) for P x-a.e. ω ∈ Ω.

A priori ω ∈ Ω, so Pω(t) could be not-well-defined, but we require the
identity only for P x-a.e. ω, and we know that P x is supported by H valued
functions. So the previous definition is meaningful.

Definition 4.6. Let {Cx ⊂ Pr (Ω) ;x ∈ H} be a collection of families of mea-
sures such that P (Ω ∩ C ([0,∞);Hσ)) = 1 for every P ∈ Cx. We say it is
pre-Markov if for every t ≥ 0 the following two assertions hold:

i) for every P ∈ Cx,
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(P )Ft

ω ∈ ΦtC
ω(t) for P -a.e. ω ∈ Ω

ii) for every P ∈ Cx, and every Ft-measurable function ω �→ Qω, from Ω
to Pr (Ωt), such that Qω ∈ ΦtC

ω(t) for every ω ∈ Ω,

PQ ∈ Cx.

Remark 4.7. If a family of singletons is pre-Markov, then it is Markov.

The set Pr (Ω) with the weak converge is Polish. Denote by Comp (Pr (Ω))
the family of all compact sets in Pr (Ω). It is a metric space and we can talk
about measurability of functions from a measurable space to Comp (Pr (Ω))
(see [62] for details).

Remark 4.8. To understand the following proof it may be useful to recall the
following well-known principle in the calculus of variations: if the functional
to be maximized is “local”, then every segment of a global maximizer is a
maximizer of the corresponding segmented functional. To be more specific,
assume f∗(t) maximizes the functional J0 (f) :=

∫ T

0
ϕ(f(t))dt (under suitable

assumptions on ϕ) with the constraint f(0) = x0. Then, given s ∈ (0, T ),
the segment f∗|[s,T ] maximizes the functional Js (f) :=

∫ T

s
ϕ(f(t))dt with the

constraint f(s) = f∗ (s). Indeed, if this would not be true, if g is a function
on [s, T ] with g(s) = f∗ (s) and Js (g) > Js (f∗), then the function

f̃ =
{

f∗ on [0, s]
g on [s, T ]

has the property J0

(
f̃
)

> J0 (f∗), contradicting the assumption that f∗ was
optimal for J0.

Theorem 4.7. Let {Cx ⊂ Pr (Ω) ;x ∈ H} be a pre-Markov family such that

P (Ω ∩ C ([0,∞);Hσ)) = 1

for every P ∈ Cx. If Cx is a convex compact set in Pr (Ω) for every x ∈ H
and x �→ Cx is measurable, then there exist a Markov selection.

Proof. We essentially repeat the proof of [62], with minor topological remarks
due to the infinite dimensions and different notations.

Step 1 (reduction of Cx by local functionals; preparation). Given a mea-
surable pre-Markov family {Cx ⊂ Pr (Ω) ;x ∈ H}, given λ > 0, let us define
the operator R+

λ : Cb (V ′) → Cb (V ′) as
(
R+

λ ϕ
)
(x) = sup

P∈Cx

Jϕ,λ (P )

where, for any ϕ ∈ Cb (V ′) and λ > 0, the functional Jϕ,λ on Pr (Ω) is defined
as
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Jϕ,λ (P ) = P

[∫ ∞

0

e−λtϕ (ξt) dt

]
.

The notation R+
λ is inspired by the particular case when Cx is a singleton

and thus we have a Markov process {P x ∈ Pr (Ω) ;x ∈ H}; if it is sufficiently
regular and L is its infinitesimal generator, then

R+
λ = (λ− L)−1

(a rigorous formulation of this sentence requires specification of function
spaces and regularities that are not of interest here).

Since the function

ω �→
∫ ∞

0

e−λtϕ (ξt (ω)) dt

is bounded and continuous on Ω, Jϕ,λ is continuous on Pr (Ω). Therefore,
given x ∈ H, on the compact set Cx there is at least one maximizing element
for Jϕ,λ. Denote by Cx

ϕ,λ the set of all such maximizing elements; thus

(
R+

λ ϕ
)
(x) = Jϕ,λ

(
Cx

ϕ,λ

)
.

Let us show that the family
{
Cx

ϕ,λ ⊂ Pr (Ω) ;x ∈ H
}

is pre-Markov and has all the same properties of {Cx ⊂ Pr (Ω) ;x ∈ H}.
Clearly

P (Ω ∩ C ([0,∞);Hσ)) = 1

for every P ∈ Cx
ϕ,λ. The set Cx

ϕ,λ is compact (it is the set of maximizing
elements of a continuous mapping on a compact set). The mapping x �→ Cx

ϕ,λ

is measurable since the two mappings x �→ Cx and Cx �→ Cx
ϕ,λ are measurable

(the last assertion comes from [62], lemma 12.1.7). Finally, Cx
ϕ,λ is convex:

given P i ∈ Cx
ϕ,λ and αi ≥ 0, i = 1, 2, such that α1 + α2 = 1, setting P =

α1P
1 + α2P

2, we have

Jϕ,λ (P ) = α1Jϕ,λ

(
P 1

)
+ α2Jϕ,λ

(
P 2

)

which implies that P ∈ Cx
ϕ,λ. Let us prove it is pre-Markov.

Step 2 (pre-Markov property, part 1). First, let us prove that for every
P ∈ Cx

ϕ,λ,

(3) P
[
ω ∈ Ω : (P )Ft

ω ∈ ΦtC
ω(t)
ϕ,λ

]
= 1.

As a preliminary remark, notice that ω �→ (P )Ft

ω is Ft-measurable with values
in Pr (Ωt), and up to a P -modification ω �→ ΦtC

ω(t)
ϕ,λ is Ft-measurable with
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values in compact sets in Pr (Ωt), because ω �→ ω (t) is Ft-measurable with
values in H and x �→ ΦtC

x
ϕ,λ is measurable from B (H) to compact sets in

Pr (Ωt). Therefore, by [62], lemma 12.1.9, the set
[
ω ∈ Ω : (P )Ft

ω ∈ ΦtC
ω(t)
ϕ,λ

]

belongs to Ft. If (3) is not true, there is A ∈ Ft such that P (A) > 0 and
(P )Ft

ω /∈ ΦtC
ω(t)
ϕ,λ for every ω ∈ A, namely

Jϕ,λ

(
Φ−1

t (P )Ft

ω

)
< max

Cω(t)
Jϕ,λ

for every ω ∈ A.
Choose an Ft-measurable selection from Ω  ω �→ ΦtC

ω(t)
ϕ,λ , call it Qω,

define the Ft-measurable mapping

Rω =
{

Qω if ω /∈ A

(P )Ft

ω if ω ∈ A

with values in Pr (Ωt), and define the probability measure PR. We have

(4) Jϕ,λ

(
Φ−1

t (P )Ft

ω

)
< Jϕ,λ

(
Φ−1

t Qω

)

for every ω ∈ A.
We show now that Jϕ,λ

(
PR

)
> Jϕ,λ (P ), which is a contradiction since P

is a maximizer; the proof of (3) will be then complete, by contradiction. We
have

Jϕ,λ

(
PR

)
= PR

[
PR

[∫ ∞

0

e−λsϕ (ξs) ds

∣∣∣∣ Ft

]]

=PR

[∫ t

0

e−λsϕ (ξs) ds

]
+e−λtPR

[
PR

[∫ ∞

t

e−λ(s−t)ϕ (ξs) ds

∣∣∣∣ Ft

]]

= P

[∫ t

0

e−λsϕ (ξs) ds

]
+ e−λtP

[
PR

[∫ ∞

t

e−λ(s−t)ϕ (ξs) ds

∣∣∣∣ Ft

]]

and

PR

[∫ ∞

t

e−λ(s−t)ϕ (ξs) ds

∣∣∣∣ Ft

]
(ω)

=
{

Qω

[∫ ∞
t

e−λ(s−t)ϕ (ξs) ds
]

if ω /∈ A

(P )Ft

ω

[∫ ∞
t

e−λ(s−t)ϕ (ξs) ds
]

if ω ∈ A

=
{

Φ−1
t Qω

[∫ ∞
0

e−λsϕ (ξs) ds
]

if ω /∈ A

Φ−1
t (P )Ft

ω

[∫ ∞
0

e−λsϕ (ξs) ds
]

if ω ∈ A

=

{
Jϕ,λ

(
Φ−1

t Qω

)
if ω /∈ A

Jϕ,λ

(
Φ−1

t (P )Ft

ω

)
if ω ∈ A
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so, by (4),

P

[
PR

[∫ ∞

t

e−λ(s−t)ϕ (ξs) ds

∣∣∣∣ Ft

]]
> P

[
Jϕ,λ

(
Φ−1

t (P )Ft

ω

)]

= P

[
(P )Ft

ω

[∫ ∞

t

e−λ(s−t)ϕ (ξs) ds

]]

= P

[
P

[∫ ∞

t

e−λ(s−t)ϕ (ξs) ds

∣∣∣∣ Ft

]]

= P

[∫ ∞

t

e−λ(s−t)ϕ (ξs) ds

]
.

Therefore

Jϕ,λ

(
PR

)
> P

[∫ t

0

e−λsϕ (ξs) ds

]
+ e−λtP

[∫ ∞

t

e−λ(s−t)ϕ (ξs) ds

]

= Jϕ,λ (P ) .

The proof of the first part of the pre-Markov property is complete.
Step 3 (pre-Markov property, part 2). Let us prove that for every P ∈

Cx
ϕ,λ, and every Ft-measurable function ω �→ Qω, from Ω to Pr (Ωt), such

that Qω ∈ ΦtC
ω(t)
ϕ,λ for every ω ∈ Ω,

PQ ∈ Cx
ϕ,λ.

We have, similarly to some of the above arguments,

Jϕ,λ

(
PQ

)
= P

[∫ t

0

e−λsϕ (ξs) ds

]
+ e−λtP

[
PQ

[∫ ∞

t

e−λ(s−t)ϕ (ξs) ds

∣∣∣∣ Ft

]]

= P

[∫ t

0

e−λsϕ (ξs) ds

]
+ e−λtP

[
Qω

∫ ∞

t

e−λ(s−t)ϕ (ξs) ds

]

≥ P

[∫ t

0

e−λsϕ (ξs) ds

]
+ e−λtP

[
(P )Ft

ω

∫ ∞

t

e−λ(s−t)ϕ (ξs) ds

]

since Qω is a maximizer,

= P

[∫ t

0

e−λsϕ (ξs) ds

]
+ e−λtP

[
P

[∫ ∞

t

e−λ(s−t)ϕ (ξs) ds

∣∣∣∣ Ft

]]

= Jϕ,λ (P )

hence PQ is a maximizer.
Step 4 (iterative reduction to singletons) Let {ψj} and {θk} be dense

subsets of (0,∞) and Cb (V ′) respectively. Let {ϕn, λn} be an enumeration of
{ψj , θk}j,k. Given x ∈ H, let Cx

ϕ1,λ1
be the set of maximizers of Jϕ1,λ1 over

Cx, Cx
ϕ2,λ2

be the set of maximizers of Jϕ2,λ2 over Cx
ϕ1,λ1

, and so on. The sets
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Cx
ϕn,λn

are a decreasing sequence of compact sets, hence they have non empty
compact intersection, that we denote by C̃x.

The family
{

C̃x
}

x∈H
is pre-Markov: it is the intersection of a sequence

of pre-Markov families (it is easy to check that the pre-Markov property is
preserved by countable intersection).

Let us prove that C̃x is a singleton; this will imply that the family{
C̃x

}

x∈H
is Markov. If P,Q ∈ C̃x, then, for every n, P,Q ∈ Cx

ϕn,λn
, hence

Jϕn,λn
(P ) = Jϕn,λn

(Q)

This means
∫ ∞

0

e−θktP [ψj (ξt)] dt =
∫ ∞

0

e−θktQ [ψj (ξt)] dt

for every j, k, and since t �→ P [ψj (ξt)] and t �→ Q [ψj (ξt)] are continuous,
from the uniqueness of the Laplace transform we have

P [ψj (ξt)] = Q [ψj (ξt)]

for every t and j. Hence

P [ϕ (ξt)] = Q [ϕ (ξt)]

for every t and ϕ ∈ Cb (V ′).
Step 5 (conclusion). Let us summarize what we know: that for every

x ∈ H, for every P,Q ∈ C̃x, for every t and ϕ ∈ Cb (V ′) we have P [ϕ (ξt)] =
Q [ϕ (ξt)]. We have to prove the following statement: given x ∈ H and P,Q ∈
C̃x, for every n, every 0 ≤ t1 < ... < tn and every ϕ1, ..., ϕn ∈ Cb (V ′),

P [ϕ1 (ξt1) ...ϕn (ξtn
)] = Q [ϕ1 (ξt1) ...ϕn (ξtn

)] .

We prove it by induction. It is true for n = 1. Assume it is true for n.
Denote by Mt1.....tn

the σ-field generated by ξt1 , ..., ξtn
. We have

P
[
ϕ1 (ξt1) ...ϕn (ξtn

) ϕn+1

(
ξtn+1

)]

= P
[
ϕ1 (ξt1) ...ϕn (ξtn

) P
[
ϕn+1

(
ξtn+1

)
|Mt1.....tn

]]

so if we prove that

P
[
ϕn+1

(
ξtn+1

)
|Mt1.....tn

]
= Q

[
ϕn+1

(
ξtn+1

)
|Mt1.....tn

]
, P − a.s.

the proof will be complete, by the induction hypothesis (notice we cannot take
simply Ftn

in place of Mt1.....tn
because we have to apply here the induction

hypothesis). With other notations, we have to prove that

P
Mt1.....tn
ω

[
ϕ

(
ξtn+1

)]
= Q

Mt1.....tn
ω

[
ϕ

(
ξtn+1

)]
, P − a.s.
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for every ϕ ∈ Cb (V ′). If we had Ftn
here in place of Mt1.....tn

, the proof
would be complete by the main assumption, since a.s. we have P

Ftn
ω , Q

Ftn
ω ∈

Φtn
C̃ω(tn). Let us use this fact.
We know that the family

{
C̃x

}

x∈H
is pre-Markov, so there are sets NP ,

NQ ∈ Ftn
, with P (NP ) = 0 and Q (NQ) = 0, such that P

Ftn
ω ∈ Φtn

C̃ω(tn) for
every ω /∈ NP and Q

Ftn
ω ∈ Φtn

C̃ω(tn) for every ω /∈ NQ. Therefore

P
Ftn
ω

[
ϕ

(
ξtn+1

)]
= Q

Ftn
ω

[
ϕ

(
ξtn+1

)]

for every ω /∈ NP ∪NQ.
We have

P
Mt1.....tn
ω (.) =

∫
P

Ftn

ω′ (.) P
Mt1.....tn
ω (dω′)

and P
Mt1.....tn
ω (ξ (tn) = ω (tn)) = 1, so the integral is a convex combination

of elements of Φtn
C̃ω(tn). By the convexity property of Φtn

C̃ω(tn) we get
P

Mt1.....tn
ω ∈ Φtn

C̃ω(tn), and similarly for Q
Mt1.....tn
ω . This implies P = Q and

the proof is complete.

Remark 4.9. As in [62], one can easily show that there exists a unique Markov
selection if and only if for every x ∈ H the set Cx is a singleton.

Remark 4.10. With less easy notations one can prove the strong Markov prop-
erty, under a pre-strong Markov property for Cx, see [62], [39].

Remark 4.11. A Markov selection allows us to define a Markov semigroup on
Bb (H):

(Ptϕ) (x) = P x [ϕ (ξt)] .

The semigroup property is a consequence of the Markov property:

(Pt+sϕ) (x) = P x [ϕ (ξt+s)] = P x [P x [ϕ (ξt+s) |Fs]]

= P x
[
P ξs [ϕ (ξt)]

]
= (PsPtϕ) (x) .

Remark 4.12. Let Cx be a pre-Markov family with the associated operator
R+

λ defined in the previous proof. Let Pt be the semigroup generated by one
of the Markov selections and let Rλ be the operator associated to it by

Rλϕ =
∫ ∞

0

e−λt (Ptϕ) (x) dt.

If (λ1, ϕ1) is the first pair used in the selection procedure of Pt, then we have

Rλ1ϕ1 = R+
λ1

ϕ1.

In the particular case when Cx is the singleton P x, we have Rλ1 = R+
λ1

.
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Remark 4.13. In our applications, from Itô formula we have

P x
[
e−λT θ (ξT )

]
= θ (x) +

∫ T

0

e−λtP x [((L0 − λ) θ) (ξt)] dt

for every θ of the form

θ (x) = ψ
(
〈v1, x〉V,V ′ , ... 〈vn, x〉V,V ′

)

with vi ∈ V and ψ ∈ C2
b (Rn); denote this class of functions by FC2

b . Here L0

is defined as

(L0θ) (x) =
1
2
Tr

[
QD2θ (x)

]
− 〈Dθ (x) , Ax + B (x, x)〉V,V ′

for θ ∈ FC2
b and x ∈ V . As T →∞ we get

θ (x) =
∫ ∞

0

e−λt (Pt (λ− L0) θ) (x) dt.

Then λ− L0 is injective,

|θ|∞ ≤ 1
λ
|(λ− L0) θ|∞ for every θ ∈ FC2

b

and for every
ϕ ∈ Eλ := Range

(
(λ− L0)FC2

b

)

we have
(
(λ− L0)

−1
ϕ
)

(x) =
∫ ∞

0

e−λt (Ptϕ) (x) dt = Rλϕ (x) .

Moreover, while Rλ depends on the Markov process, L0 does not. Therefore

(Ptϕ) (x)

is independent of the Markov selection for every ϕ ∈ ∩λ>0Eλ. If ∩λ>0Eλ would
be a separating class, then we have uniqueness of the Markov selection and
also of the martingale solutions. This is one of the several ways to see that
density properties of the range of λ−L0 over FC2

b are related to uniqueness.
See [58] for an example of rigorous use of this argument.

4.5 Markov Selection for the 3D Stochastic NSE’s

Let us go back to equation (1). Verifying that martingale solutions of (1) sat-
isfy the assumptions of the abstract theorem 4.7 is a very difficult task. On
one side we need a definition of martingale solution that is stable by disinte-
gration and recollection. On the other side, we have to prove compactness of
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Cx, namely as a first step its tightness. For the tightness we need quantita-
tive bounds on elements P ∈ Cx and 3D Navier–Stokes equations have the
unpleasant feature that it is not possible to perform computations on weak
solutions, so we cannot prove bounds from the definition given in a previous
section. The usual trick in similar problems is to include the bounds in the
definition itself: on one side one can prove the existence of martingale solu-
tions satisfying such bounds, on the other the bounds hold true by definition.
But here comes the conflict with the first requirement, that solutions should
be stable by disintegration and recollection. Indeed, quantitative properties
on mean values are not stable by disintegration.

Therefore the idea is to include in the definition of martingale solution not
the final mean energy inequality, but an instrument that implies it and is stable
by disintegration and recollection. The main instrument that is stable is the
concept of martingale. All properties that we express in terms of martingales,
or sub or super - martingales, will be stable. This is the reason why we include
in the definition of martingale solution a special super-martingale property
that implies the mean energy inequality.

Unfortunately, even if the idea is clear, the details are still hard since we
need energy inequalities over generic intervals [s, t], not only [0, t], since we
have to disintegrate at time s and have the same property after time s. Here a
detail emerges, namely that for 3D Navier–Stokes equations there is a problem
to prove energy inequalities on [s, t] for every s, while one can prove them for
almost every s with respect to the Lebesgue measure.

Because of these details, the topic is very technical and we address to [39].
In this section we content ourselves with a conditional result. We introduce two
concepts: enriched martingale problem and a.s. enriched martingale problem;
in the definition of the first one we include a super-martingale property; in
the definition of the second one we include an a.s. martingale property. Then
we prove the existence of at least one solution to the a.s. enriched martingale
problem. On the other side, assuming the existence of at least one solution to
the enriched martingale problem, we prove the existence of a Markov selection.

In this section
Ω = C ([0,∞);D(A)′) .

Recall that (θt, Ft, P )t≥0 is a super-martingale if P [θt] < ∞ for every t ≥ 0
and

P [θt1A] ≤ P [θs1A]

for every t ≥ s ≥ 0 and every A ∈ Fs.
We say that (θt, Ft, P )t≥0 is an almost sure (a.s.) super-martingale if

P [θt] < ∞ for every t ≥ 0 and there exists a full Lebesgue measure set
S ⊂ [0,∞) (namely a set S ⊂ [0,∞), with Lebesgue measure of [0,∞) \ S
equal to zero), with 0 ∈ S, such that

P [θt1A] ≤ P [θs1A]

holds for every s ∈ S, every t ≥ s, and every A ∈ Fs.
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Definition 4.7 (solution of the enriched martingale problem). Given
a probability measure µ0 on H, we say that a probability measure P on (Ω,F )
is a solution of the enriched martingale problem associated to equation (1)
with initial law µ0 if

[MP1 ]

P

(
sup

t∈[0,T ]

|ξt|2H +
∫ T

0

‖ξs‖2V ds < ∞
)

= 1

[MP2 ] for every ϕ ∈ D∞, the process Mϕ
t defined P -a.s. on (Ω,F ) as

Mϕ
t := 〈ξt, ϕ〉H − 〈ξ0, ϕ〉H +

∫ t

0

ν 〈ξs, Aϕ〉H ds

−
∫ t

0

〈B (ξs, ϕ) , ξs〉H ds;

is P -square integrable and (Mϕ
t , Ft, P ) is a continuous martingale with

quadratic variation

[Mϕ]t =
∞∑

i=1

σ2
i 〈ϕ, hi〉2H · t

[MP3 ] the process Nt defined P -a.s. on (Ω,F ) as

Nt := |ξt|2H + 2ν

∫ t

0

‖ξs‖2V ds− |ξ0|2H −
∞∑

i=1

σ2
i t

is P -integrable and (Nt, Ft, P ) is a super-martingale
[MP4 ] more generally, for every integer n > 0 the process N

(2n)
t defined

P -a.s. on (Ω,F ) as

N
(2n)
t := |ξt|2n

H + 2nν

∫ t

0

|ξs|2n−2
H ‖ξs‖2V ds

− |ξ0|2n
H − n (2n− 1)

∞∑

i=1

σ2
i

∫ t

0

|ξs|2n−2
H ds

is P -integrable and (Nt, Ft, P ) is a super-martingale
[MP5 ] µ0 = π0P .

Definition 4.8 (solution of the a.s. enriched martingale problem).
The definition of solution of the a.s. enriched martingale problem associated
to equation (1) with initial law µ0 is the same as the previous one, with the
only difference that N

(2n)
t are a.s. super-martingales, for n ≥ 1.
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Remark 4.14. In the deterministic case, a basic concept is the validity of the
energy inequality; the analog in the stochastic case is the super-martingale
property [MP3]. It seems that the decreasing process of the Doob-Meyer de-
composition of Nt is the extra dissipation process which could exist in 3D
fluids (it is an open problem whether it is zero or not).

Similarly to Theorem 4.2 we have:

Theorem 4.8. Given x ∈ H, there exists at least one solution to the a.s.
enriched martingale problem with initial condition x.

Proof. Step 1. The construction of P is the same done in Theorem 4.2.
Step 2. Let us check that P fulfills [MP3]. The property

P [|Nt|] < ∞

is a consequence of the estimate

Pnk

[
sup

t∈[0,T ]

|ξt|2H + ν

∫ T

0

‖ξs‖2V ds

]
≤ C1

(
m2, σ

2, T
)

proved in Section 3, that passes to the limit to P . We have to prove that there
exists a full Lebesgue measure set S ⊂ [0,∞) with 0 ∈ S, such that

P [(Nt −Ns) 1A] ≤ 0

holds for every s ∈ S, every t ≥ s, and every A ∈ Fs. Namely, we need to have

(5) P

[(
|ξt|2H + 2ν

∫ t

s

‖ξr‖2V dr − |ξs|2H −
∞∑

i=1

σ2
i (t− s)

)
1A

]
≤ 0.

From the results of Section 3 we have

Pnk

⎡

⎣

⎛

⎝|ξt|2H + 2ν

∫ t

s

‖ξr‖2V dr − |ξs|2H −
Nnk∑

i=1

σ2
i (t− s)

⎞

⎠ 1A

⎤

⎦ = 0.

Let us argue as in the proof of lemma 4.2. Let Ynk
, Y be r.v. on a probability

space (Σ,G, Q), with expectation E, with values in

X = C ([0, T ] ;D(A)′) ∩ L2 (0, T ;H)

with laws Pnk
and P respectively, such that Ynk

X→ Y , Q-a.s. Let us prove
that for every t ≥ s ≥ 0 there is a subsequence Y ′

nk
of Ynk

such that

(6) E

[
1A

∫ t

s

‖Y (r)‖2V dr

]
≤ lim inf

k→∞
E

[
1A

∫ t

s

∥∥Y ′
nk

(r)
∥∥2

V
dr

]
.
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We know that

E

[∫ t

s

‖Ynk
(r)‖2V dr

]
= Pnk

[∫ t

s

‖ξr‖2V dr

]
≤ C

uniformly in k, hence there is a subsequence Y ′
nk

of Ynk
that converges weakly

to some Ỹ in L2 ([s, t]×Σ;V ); relaxing to weaker common topologies we
identify Y = Ỹ ; then (6) holds true.

Let us prove that there is a subsequence Y
′′

nk
of Y ′

nk
such that

(7) E

[∣∣∣Y
′′

nk
(t)

∣∣∣
2

H

]
→ E

[
|Y (t)|2H

]
for a.e. t ≥ 0.

It follows from

E

[∣∣∣Y
′′

nk
(t)− Y (t)

∣∣∣
2

H

]
for a.e. t ≥ 0.

There exists such Y
′′

nk
since

(8) E

∫ T

0

∣∣Y ′
nk

(t)− Y (t)
∣∣2
H

dt → 0

and this convergence to zero is true since
∫ T

0
|Ynk

(t)− Y (t)|2H dt converges to
zero Q-a.s. and we have uniform Q-integrability by the estimates (p∗ > 2)

E sup
t∈[0,T ]

|Ynk
(t)|p

∗

H < C3 (p,E |x|pH , T rQ, T )

proved in Section 3. Properties (6) and (7) imply (5) for a.e. t and s, t ≥ s ≥ 0.
Given such an s, the extension to every t > s comes from weak continuity in
H of trajectories and Fatou lemma.

Step 3. Let us check that P fulfills [MP4]. Set p = 2n. The proof that
P

[∣∣∣N (p)
t

∣∣∣
]

< ∞ is like in step 2 and to prove that P [(Nt −Ns) 1A] ≤ 0 the
only novelty is to show that there is a subsequence Y ′

nk
of, say, Ynk

such that

E

[∫ t

s

|Y (r)|p−2
H dr

]
= lim

k→∞
E

[∫ t

s

∣∣Y ′
nk

(r)
∣∣p−2

H
dr

]
.

From (8) (for Ynk
) there exists Y ′

nk
which converges to Y a.s. in (t, σ) (σ ∈

Σ). Thus it is sufficient to apply Vitali convergence theorem; the uniform
integrability is guaranteed always by the p∗-estimates of Section 3, where p∗

is arbitrary since x is deterministic. The proof is complete.

Let us now prove a conditional result of Markov selection (see [39] fo a non
conditional result). Let Cx be the collection of all solutions of the enriched
martingale problem. Assume Cx 
= ∅ for every x ∈ H. Let us prove that
{Cx}x∈H is pre-Markov and satisfies the assumptions of theorem 4.7, namely
that:
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Claim. The family {Cx ⊂ Pr (Ω) ;x ∈ H} has the following properties:

Lemma 4.10. i) for every P ∈ Cx,

PFt
ω ∈ ΦtC

ω(t) for P -a.e. ω ∈ Ω

ii) for every P ∈ Cx, and every Ft-measurable function ω �→ Qω, from Ω
to Pr (Ωt), such that Qω ∈ ΦtC

ω(t) for every ω ∈ Ω,

PQ ∈ Cx

iii) Cx is a convex compact set in Pr (Ω) for every x ∈ H and x �→ Cx is
measurable.

As a consequence, under the conditional assumption Cx 
= ∅, there exists
a Markov selection from the family of all solutions of the martingale problem
associated to equation (1).

The proof of the claim is rather lengthy and we only describe the idea (see
[39] for the details). The difficult property in (iii) is the compactness, that
can be proved as follows. Let {P x

m} ⊂ Cx be given. From the supermartingale
properties we have

P x
m

[
|ξt|2H + 2ν

∫ t

0

‖ξs‖2V ds− |x|2H −
∞∑

i=1

σ2
i t

]
≤ 0

P x
m

[
|ξt|2n

H + 2nν

∫ t

0

|ξs|2n−2
H ‖ξs‖2V ds

− |x|2n
H − n (2n− 1)

∞∑

i=1

σ2
i

∫ t

0

|ξs|2n−2
H ds

]
≤ 0

and in addition we may use Doob’s maximal inequality to estimate the supre-
mum in time (recall that given a supermartingale Xt on a discrete set of times
t = 0, ..., T one has

P

(
sup
t≤T

Xt ≥ λ

)
≤ 1

λ

(
E [X0] + E

[
X−

T

])

for every λ > 0). From these estimates one has bounds, uniform in m, similar
to those of Galerkin approximations, and then the proof of the existence of a
subsequence converging to some P x ∈ Cx is similar to the case treated above.

As to points (i) and (ii) of the lemma, we use the fact that the martingale
and super-martingale properties are stable under disintegration and recom-
bination; the same is true for properties having probability zero or one. Let
us state the theoretical results in this direction that we have to use and omit
some of the proofs, that can be found in [39] (some of the results are taken
from [62], Thm. 1.2.10). This is the machinery to complete the proof.

The proof of the following lemma is easy.
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Lemma 4.11. Given P ∈ Pr (Ω), a σ-field G ⊂ B, a set A ∈ B and a mea-
surable mapping ω �→ Qω from (Ω,G) to Pr (Ω), defined PQ as

PQ =
∫

Ω

QωdP (ω)

the following statements are equivalent:
i) PQ (A) = 1
ii) there is a P -null set N ∈ G such that, for all ω /∈ N

Qω (A) = 1.

The proof of the following two lemmas is less elementary; the first one is
very similar to [62], Thm. 1.2.10; for the second one see [39].

Lemma 4.12. Given P ∈ Pr (Ω), two continuous adapted processes θ, ζ :
[0,∞)×Ω → R and t0 ≥ 0, the following conditions are equivalent:

i) (θt, Ft, P )t≥t0
is a P -square integrable martingale with quadratic varia-

tion (ζt)t≥t0

ii) there is a P -null set N ∈ Ft0 such that, for all ω /∈ N ,
(
θt, Ft, P

Ft0
ω

)

t≥t0

is a P
Ft0
ω -square integrable martingale with quadratic variation (ζt)t≥t0

; and

P
[
P

Ft0· [ζt]
]

< ∞ for every t ≥ t0.

Lemma 4.13. Let α, β : [0,∞)×Ω → R+ be two adapted processes, β being
non decreasing, and let

θ = α− β.

Assume θ is left lower semicontinuous. Given P ∈ Pr (Ω) and t0 ≥ 0, the
following conditions are equivalent:

i) (θt, Ft, P )t≥t0
is a super-martingale, P [αt] < ∞ and P [βt] < ∞ for

every t ≥ t0;
ii) there is a P -null set N ∈ Ft0 such that, for all ω /∈ N ,

(
θt, Ft, P

Ft0
ω

)

t≥t0

is a super-martingale, P
Ft0
ω [αt] < ∞ and P

Ft0
ω [βt] < ∞ for every t ≥ t0; and

P
[
P

Ft0· [βt]
]

< ∞ for every t ≥ t0.

4.6 Continuity in u0 of Markov Solutions

Although the uniqueness of solutions to (1) is still an open problem (as in
the deterministic case), striking results in the direction of the well posedness
have been proved by Da Prato and Debussche [23]. Under proper assumptions
on non degeneracy of the noise, they have proved the existence of a selection
that depends continuously on the initial conditions (in the sense that the
associated Markov semigroup is Strong Feller). They have also provided a
direct solution of the Kolmogorov equation and certain gradient estimates
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that could be helpful in relation with the range problem of remark 4.13 and
thus the uniqueness problem.

In this section we revisit their approach and prove that every Markov
process associated to equation (1) has a Strong Feller like property of contin-
uous dependence on initial conditions. We give here only a few details, and
address the reader to [33].

Recall that a Markov operator Pt is Strong Feller if it maps bounded
Borel functions in bounded continuous functions; here we always talk about a
Strong Feller like property since it will turn out that Pt maps bounded Borel
functions in continuous but possibly unbounded functions; and moreover the
topology of continuity is that of D(A).

It is difficult to figure out how non-uniqueness could be compatible with
such a result if we compare this situation with that of measurable selections,
as described by the following simple remark.

Remark 4.15. Let X, Y be two metric spaces, with Borel σ-fields B (X) and
B (Y ), and let Φ be a measurable multivalued mapping from X to Y . Assume
that X has no isolated points. If every measurable selection from Φ is con-
tinuous, then Φ is univalued. Indeed, let ϕ be a measurable selection. Given
(x0, y0) ∈ X×Y such that y0 ∈ Φ (x0), the function ϕ̃ : X → Y equal to ϕ on
X \{x0} and to y0 at x0, is a measurable selection too, hence it is continuous,
hence

y0 = lim
x→x0

ϕ̃ (x) = lim
x→x0

ϕ (x) = ϕ (x0) .

This means that Φ is univalued.

However, the situation with Markov selections is not so simple: the Markov
structure is much more demanding than measurability only, to the extent
that different Strong Feller Markov selections may exists, as in the example of
exercise 6.7.7 of Stroock-Varadhan [62]. Thus the uniqueness problem remains
open.

Example 4.1. We briefly recall the following example from [62]. Consider the
equation on the real line

(9) dXt =
(
|Xt|1/4 ∧ 1

)
dWt, X0 = x.

Existence of solutions is not a problem. Until Xt 
= 0, there is also unique-
ness. If x = 0, then Xt ≡ 0 is a solution; one can embed it into a Markov
process: given x 
= 0, when the solution from x meets zero we glue it with the
zero solution. Let us give another solution (of the martingale problem) from
zero and another Markov process. Let (Bt)t≥0 be a Brownian motion and let
(τx

t (ω))t≥0 be a solution of the equation

dτx
t (ω)
dt

=
(∣∣x + Bτx

t (ω) (ω)
∣∣1/4 ∧ 1

)
, τx

0 = 0.
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Then Xx
t := x + Bτx

t
is a solution of (9) and is a Markov process. One can

choose
(
τ0
t (ω)

)
t≥0

different from zero and have a process different from the
first one described above. One can also show that they are Feller. Moreover,
there are other Markov selections, described in [62].

Nevertheless, the fact that every Markov process is Strong Feller may have
interesting consequences. In the following two remarks we describe informally
two consequences.

Remark 4.16. If the equation is well posed for one initial condition, and the
noise allows us to prove irreducibility, then the equation is well posed for every
initial condition. The scheme of the proof is first to show, by irreducibility and
the Markov property, that there is a dense set of initial conditions for which
the equation is well posed. Such dense set then belongs to every Markov
process; by the Strong Feller property, a priori different Markov processes will
coincide on every initial conditions. Notice that in the deterministic case the
well-posedness is known for sufficiently small and regular initial conditions.
But the proofs of such results do not extend to the case of additive white
noise, since preservation of smallness is impossible in such a case. This is an
interesting dichotomy between the deterministic and the stochastic case.

Remark 4.17. Under the assumptions that produce the Strong Feller property
and irreducibility, we have the following result: for every initial condition
x ∈ H, for every solution P x of the martingale problem from x (at least for
those that are members of some Markov selection), at every time t ≥ 0 we
have

(10) P x (ξt ∈ D(A)) = 1.

Related easier and well-known results are: i) just under the assumption∑∞
i=1 λiσ

2
i < ∞, without any other condition of nondegeneracy, (10) is true

for a.e. t; ii) (10) is known at every time t for stationary solutions. To pass to
the case of every solution P x and every t we take any Markov selection

(
P̃ x

)
,

we prove it has an invariant measure µ with full support, from (ii) we deduce
that given t, for µ-a.e. x ∈ D(A) we have P̃ x (ξt ∈ D(A)) = 1. Then we use
Strong Feller to extend to every x ∈ D(A). Finally we use (i) to extend to
every x ∈ H. This proves the claim for every solution P̃ x being a member of a
Markov selection. The result should be extendible to every solution P x by the
reconstruction theorem of [62], but the details should be investigated. Finally,
notice that this property looks related to the fact, proved in [23], that the
Kolmogorov equation is solvable for initial conditions defined only on D(A).

To shorten a few details, we directly assume that Q has the form

Q = A−α, 5/2 < α < 3.
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The assumption α > 5/2 implies that A
1
2+ς

√
Q is Hilbert-Schmidt in H (the

embedding of H3/2+ε into L2 is Hilbert-Schmidt, in 3D) for some ς > 0, so
that the noise lives in D

(
A

1
2+ς

)
. This will imply z ∈ C ([0,∞);D(A)) and

other regularity properties. The assumption α < 3, on the contrary, allows us
to deal with Q−1/2Dxux

t .
The first ingredient is the bunch of regular paths that every weak solution

has for a positive local (random) time, when the initial condition is regular.
Following [23] we work with x ∈ D(A) but other choices seem possible (like
x ∈ V ). To introduce and analyze this bunch of regular paths, that we call the
regular plume, we study pathwise equation (1). Notice that such a pathwise
analysis is possible, for a given x, also for the solutions of the martingale
problem that are probability measures in path space, since the theorem of
equivalence describes them as the law of a pathwise solution on some Brownian
filtered space (which may depend on x).

Consider the deterministic equation

u(t) +
∫ t

0

(Au (s) + B (u, u)) ds = x + ω (t)

(interpreted in weak form over test functions ϕ ∈ D∞) and the corresponding
Galerkin approximation (an equation in Hn)

un(t) +
∫ t

0

(Aun (s) + πnB (un, un)) ds = πnx + πnω (t)

when ω ∈ ∩α∈(0,1/2)C
α

(
[0,∞);D(A

1
2+ς)

)
, ς > 0 given in the assumptions on

Q. Consider also the auxiliary Stokes equations

z(t) +
∫ t

0

Az (s) ds = ω (t)

having the unique mild solution

z(t) = e−tAω (t)−
∫ t

0

Ae−(t−s)A (ω (s)− ω (t)) ds.

From elementary arguments based on the analytic estimates
∣∣Aαe−tA

∣∣ ≤ Cα,T

tα

for t ∈ (0, T ), we have (see for instance [32] for details)

z ∈ C
(
[0,∞);D(A1+ς−ε)

)

for every ε > 0. In particular,

z ∈ C ([0,∞);D(A)) .
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Lemma 4.14. Given x ∈ D(A), there exists t0 > 0 and a unique solution
u ∈ C ([0, t0);D(A)); moreover, there is at least one weak solution

u ∈ C ([0,∞;Hσ) ∩ L2
loc ([0,∞);V ) ∩ L

2/3
loc ([0,∞);D(A)) .

Local uniqueness, on [0, t0), holds in the weak class too, thus any such weak
solution coincides on [0, t0) with the unique u ∈ C ([0, t0);D(A)). Finally,
given T > 0, if for a weak solution we have

∫ T

0

|Au (t)|2 dt < ∞

then there exists a unique solution u ∈ C ([0, T ];D(A)).

Proof. The proof of this result is standard, so we omit the details; let us
simply show, formally, that an a priori estimate in C ([0, t0];D(A)) can be
proved locally, and it holds true on an interval [0, T ] if

∫ T

0
|Au (t)|2 dt < ∞.

The new variable v = u− z satisfies

v(t) +
∫ t

0

(Av (s) + B (u, u)) ds = x

hence
dv

dt
+ Av + B (u, u) = 0

d |Av (t)|p

dt
= p |Av|p−2

〈
Av,A

dv

dt

〉

= −p |Av|p−2 〈Av,AAv + AB (u, u)〉

and therefore

d |Av (t)|p

dt
+ p |Av|p−2 ‖Av‖2V = −p |Av|p−2 〈Av,AB (u, u)〉

≤ p |Av|p−2 ‖Av‖V

∣∣∣A1/2B (u, u)
∣∣∣ ≤ Cp |Av|p−2 ‖Av‖V |Au|2

from lemma 2.3; this implies

(11)
d |Av (t)|p

dt
≤ C |Av|p−2 |Au|4 .

Hence in particular

d |Av (t)|2

dt
≤ C |Av|2 |Av|2 + C |Az|4 .

It is not difficult to deduce the results from this estimate.
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Given an initial condition x ∈ D(A) and a corresponding weak solution
ux define

τx = ∞ if
∫ T

0

|Aux (t)|2 dt < ∞ for every T ≥ 0, otherwise

τx = inf

{
T ≥ 0 :

∫ T

0

|Aux (t)|2 dt = ∞
}

and notice that τx > 0 (for x ∈ D(A)) because of the aforementioned results.
A priori this definition depends on the weak solution, because of lack of global
uniqueness.

Lemma 4.15. The definition of τx is independent of the weak solution. It
depends only on u|[0,τx), that is unique and continuous in D(A). Moreover, if

τx < ∞, then
∫ τx

0
|Aux (t)|2 dt = ∞. Finally, τx coincides with τ̃x defined as

τ̃x = ∞ if ux is locally bounded around t in D(A) for every t ≥ 0, otherwise

τ̃x = inf {t ≥ 0 : ux locally bounded around t in D(A)} .

Proof. Recall that
∫ T

0
|Aux (t)|2 dt < ∞ implies ux regular and unique on

[0, T ]. Denote by τx
1 , τx

2 , the times associated to two weak solutions ux
1 and

ux
2 . If τx

1 = ∞ then ux
1 is globally unique, hence ux

1 ≡ ux
2 and τx

1 = τx
2 .

Therefore (by symmetry) it is sufficient to consider the case τx
1 , τx

2 < ∞. In
such a case

∫ T

0
|Aux

1 (t)|2 dt < ∞ for every T < τx
1 , hence ux

1 is regular and
unique on [0, τx), thus ux

2 ≡ ux
1 on [0, τx). This implies

∫ T

0
|Aux

2 (t)|2 dt < ∞
for every T < τx

1 , hence τx
2 ≥ τx

1 . Reversing the role of τx
1 and τx

2 we prove
the converse inequality, thus τx

1 = τx
2 .

If
∫ τx

1
0
|Aux

1 (t)|2 dt would be finite, then ux
1 would be regular on [0, τx],

in particular ux
1 (τx) ∈ D(A), hence it could be prolonged as a continuous

function in D(A) on some interval [0, τx + ε], ε > 0, contradicting the fact
that

∫ τx
1 +ε

0
|Aux

1 (t)|2 dt = ∞. Therefore
∫ τx

1
0
|Aux

1 (t)|2 dt = ∞.
Finally, τx ≤ τ̃x because

∫ T

0
|Aux (t)|2 dt < ∞ implies u ∈ C ([0, T ];D(A)).

Viceversa, if T < τ̃x, then (by a covering argument) u is bounded on [0, T ]
with values in D(A), hence

∫ T

0
|Aux (t)|2 dt < ∞; therefore T < τx, and thus

τ̃x ≤ τx. The proof is complete.

Lemma 4.16. For t < τx, we have

un → u in C ([0, t] ;D(A))

(hence in particular
∫ t

0
|Aun (r)|2 dr →

∫ t

0
|Au (r)|2 dr) while for t ≥ τx we

have ∫ t

0

|Aun (r)|2 dr →∞.
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Proof. Step 1. On un we have

1
2

d

dt
|A (un − zn)|2 +

∣∣∣A3/2 (un − zn)
∣∣∣
2

= −
〈
A2 (un − zn) , πnB (un, un)

〉
≤ C

∣∣∣A3/2 (un − zn)
∣∣∣ |Aun|2

≤
∣∣∣A3/2 (un − zn)

∣∣∣
2

+ C |A (un − zn)|4 + C |Azn|4

Hence, given R, T > 0, there is �t > 0 such that for every t0 ∈ [0, T ]

|Aun(t0)| ≤ R ⇒ sup
t∈[t0,t0+�t]

|Aun(t)| ≤ 2R.

Step 2. With the notations

vn (t) = un(t)− u(t)
ṽn (t) = (un(t)− u(t))− (πn − I) z (t)

we have

ṽn (t) +
∫ t

0

Aṽn (t) ds +
∫ t

0

[πnB (un, un)−B (u, u)] ds = xn − x.

Formally (in some intermediate computations we use ‖Az (.)‖V that we do
not know to be finite; but in the final inequality (12) it disappears; then the
rigorous proof can be done by an approximation, see [33] for details)

1
2

d

dt
|Aṽn|2 +

∣∣∣A3/2ṽn

∣∣∣
2

= −
〈
A2ṽn, πnB (un, un)−B (u, u)

〉
.

We have

πnB (un, un)−B (u, u)=(πn − I) B (u, u)+πn [B (un − u, un)+B (u, un − u)]

Therefore

1
2

d

dt
|Aṽn|2 +

∣∣∣A3/2ṽn

∣∣∣
2

≤ |〈Aṽn, (πn − I)AB (u, u)〉|

+ |〈Aṽn, πnAB (un − u, un)〉|+ |〈Aṽn, πnAB (u, un − u)〉|

≤
∣∣∣A3/2ṽn

∣∣∣
2

+ fn + C |Avn|2
(
|Aun|2 + |Au|2

)

and thus
d

dt
|Aṽn|2 ≤ f̃n + C |Aṽn|2

(
|Aun|2 + |Au|2

)

or in integral form
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|Aṽn (t)|2 ≤ |Aṽn (t0)|2(12)

+
∫ t

t0

C |Aṽn|2
(
|Aun|2 + |Au|2

)
ds +

∫ t

t0

f̃nds

where

fn =
∣∣∣(πn − I) A1/2B (u, u)

∣∣∣
2

,

f̃n = fn + C |A (πn − I) z (t)|2
(
|Aun|2 + |Au|2

)
.

On any interval [t0, t0 +�t] we have

|Aṽn (t)|2 ≤
(
|Aṽn (t0)|2 +

∫ t0+�t

t0

f̃nds

)

+
∫ t

t0

C |Aṽn|2
(
|Aun|2 + |Au|2

)
ds

and we notice that
∫ t0+�t

t0
f̃nds → 0 by Lebesgue theorem, if on that interval

we can invoke the result of step 1.
Step 3. Given u0 ∈ D(A), t1 < τu0 , we have

∫ t1

0

|Au (r)|2 dr < ∞, u ∈ C ([0, t1] ;D(A)) .

Let
R := 1 + sup

t∈[0,t1]

|Au (t)|

and �t be given by step 1. We can apply the result of step 1 for every n, since
|Aπnu0| ≤ R.

By Gronwall lemma, for t0 = 0, we have

|Aṽn (t)|2 ≤ e
∫ t
0 C(|Aun|2+|Au|2)ds

(
|Aṽn (0)|2 +

∫ �t

0

f̃nds

)

and therefore
sup

[0,�t]

|Avn (t)| → 0.

We have established the result of the first part of the lemma on [0,�t]. More-
over, since |Au (�t)| ≤ R− 1, eventually in n we have |Aun (�t)| ≤ R. Hence
we can apply the result of step 1 eventually in n on the interval [�t, 2�t]. By
Gronwall lemma for t0 = �t, we have

|Aṽn (t)|2 ≤ e
∫ t
�t

C(|Aun|2+|Au|2)ds

(
|Aṽn (�t)|2 +

∫ 2�t

�t

f̃nds

)
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and therefore
sup

[�t,2�t]

|Avn (t)| → 0.

In a finite number of steps we prove the first claim of the lemma.
Step 4. It is sufficient to consider the case τx < ∞ and prove that

∫ τx

0

|Aun (r)|2 dr →∞.

By contradiction, assume there is a constant C > 0 and a subsequence (unk
)

such that
∫ τx

0
|Aunk

(r)|2 dr ≤ C for every k. In addition to the global usual
estimates, this implies that there exists a further subsequence

(
u′

nk

)
and

an element u′ ∈ L2 ([0, τx];D(A)) (beyond the usual regularities) such that
u′

nk
→ u′ strongly in L2 ([0, τx];H), weakly in L2 ([0, τx];D(A)), etc. Then

it is possible to prove that u is a weak solution on [0, τx]. On [0, τx) it must
coincide with u. Hence u ∈ L2 ([0, τx];D(A)), which contradicts the definition
of τx. The proof is complete.

Let us now apply the previous results to the stochastic case. Given ω ∈ Ω,
let τ (ω) ∈ [0,∞] be defined as

τ (ω) = ∞ if
∫ T

0

|Aω (t)|2 dt < ∞ for every T ≥ 0, otherwise

τ (ω) = inf

{
T ≥ 0 :

∫ T

0

|Aω (t)|2 dt = ∞
}

Definition 4.9 ((of regular plume)). Given a Brownian stochastic basis
(

Ω,F , (Ft)t≥0 , Q,
(
β(i) (t)

)

t≥0,i∈N

)
,

given x ∈ D(A), equation (1) can be uniquely solved pathwise on [0, τ), giving
rise to a locally defined continuous process in D(A). Its value, in H, at time
τ is uniquely prescribed by weak continuity in H of any weak solution. The
process (ux

t∧τ )t≥0 so defined will be called the regular plume from x associated
to equation (1).

Definition 4.10 (of regularized semigroup). Given a Brownian stochastic
basis, with expectation E, and the regular plume (ux

t∧τ )t≥0 from any x ∈ D(A),
the regularized semigroup associated to equation (1) is defined as

(Stϕ) (x) =
∫

{t<τx}
e−K

∫ t
0 |Aux

r |2drϕ (ux
t ) dQ

= E
[
e−K

∫ t
0 |Aux

r |2drϕ (ux
t ) 1t<τx

]
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(with the understanding that e−∞ = 0) for every t ≥ 0, x ∈ D(A), ϕ ∈
Bb (D(A)). Here K is any positive constant, so we should write S

(K)
t , but we

shall omit the superscript. Given any Markov selection {P x}x∈H , we also have

(Stϕ) (x) = P x
[
e−K

∫ t
0 |Aξr|2drϕ (ξt) 1t<τ

]
.

Remark 4.18. Here and below we use the notation E [X1A] to denote
∫

A
XdQ;

so X may be infinite or even not well defined on Ω \A.

Lemma 4.17. Given p > 0, if K is sufficiently large, (Stϕ) (x) is also well
defined for every t ≥ 0, x ∈ D(A) and measurable ϕ : D(A) → R, such that

|ϕ (x)| ≤ C (1 + |Ax|p)

for some C > 0, p > 0. In such a case we have

|(Stϕ) (x)| ≤ C ′ (1 + |Ax|p) .

Proof. From (11) we have (vt = ux
t − zt)

d |Av|p

dt
≤ Cp |Av|p−2 |Au|2

(
|Av|2 + |Az|2

)

≤ Cp |Av|p |Au|2 + Cp |Av|p−2 |Au|2 |Az|2

≤ C ′p |Av|p |Au|2 + C ′p |Au|2 |Az|p .

Hence, for K = C ′p,
(
e−K

∫ t
0 |Au|2dr |Av|p

)′
≤ Ke−K

∫ t
0 |Au|2dr |Au|2 |Az|p

≤ −C(p)
z

(
e−K

∫ t
0 |Au|2dr

)′

where C
(p)
z = supt∈[0,T ] |Az (t)|p, which implies

e−K
∫ t
0 |Au|2dr |Av (t)|p ≤ |Ax|p + C(p)

z

hence

(13) e−K
∫ t
0 |Au|2dr |Au (t)|p ≤ p

(
|Ax|p + 2C(p)

z

)

which finally implies the result since C
(p)
z has all finite moments.

Given a Brownian stochastic basis
(
Ω,F , (Ft)t≥0 , Q,

(
β(i) (t)

)
t≥0,i∈N

)

(with expectation E) on which we have constructed the regular plume, let
(ux,n

t ) be the unique adapted continuous solution of the Galerkin approxima-
tion. Define the semigroup Sn

t on Bb (D(A)) as

(Sn
t ϕ) (x) = E

[
e−K

∫ t
0 |Aux,n

r |2drϕ (ux,n
t )

]
.
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Lemma 4.18. If K is sufficiently large, for every continuous ϕ : D(A) → R,
such that

|ϕ (x)| ≤ Cϕ (1 + |Ax|)k

for some C > 0, k ≥ 0, we have

(Sn
t ϕ) (x) → (Stϕ) (x)

for every t ≥ 0, x ∈ D(A).

Proof. If k = 0 (ϕ bounded), it is sufficient to use lemma 4.16 to check that,
given x, t, Q-a.s., we have

(14) e−K
∫ t
0 |Aux,n

r |2drϕ (ux,n
t ) → e−K

∫ t
0 |Aux

r |2drϕ (ux
t ) 1t<τx

as n →∞ (as explained above, the understanding of e−K
∫ t
0 |Aux

r |2drϕ (ux
t ) 1t<τx

is that it is zero for t ≥ τx, even if ϕ (ux
t ) is not well defined) and then apply

Lebesgue theorem. For a general k, (14) is still true for the same reason
for t < τx, while it requires more care for t ≥ τx. Indeed, for t ≥ τx, we
know that e−K

∫ t
0 |Aux,n

r |2dr → 0, but we need a control on the possible rate of
explosion of ϕ (ux,n

t ). But, as in the previous proof, we have

e−K
∫ t
0 |Aux,n

t |2dr |Aux,n
t |k ≤ Ck

(
|Ax|k + Cz + Ck/2

z

)

with the same constants. Choose K ′ ≥ 2K, where K is the one of the latter
estimate. Then

e−K′ ∫ t
0 |Aux,n

r |2dr |ϕ (ux,n
t )|

≤ e−K
∫ t
0 |Aux,n

r |2drCϕ

(
1 + Ck

(
|Ax|k + Cz + Ck/2

z

))

which goes to zero Q-a.s., as n → ∞, Hence (14) is true also for t ≥ τx,
with Q-probability one, with the constant K ′ at the exponent. From the same
estimate we see that

e−K′ ∫ t
0 |Aux,n

r |2dr |ϕ (ux,n
t )| ≤ Cϕ

(
1 + Ck

(
|Ax|k + Cz + Ck/2

z

))

for every t, hence we can apply again Lebesgue theorem. The proof is complete.

Let us now prove a Strong Feller property for the regularized semigroup.

Lemma 4.19. Given k ≥ 0, if K is sufficiently large, for every measurable
ϕ : D(A) → R, such that

|ϕ (x)| ≤ Cϕ (1 + |Ax|)k

for some C > 0, k ≥ 0, we have

|(Stϕ) (x)− (Stϕ) (y)|

≤
[
c · Cϕ

(
tε−1 + 1

)
(|Ax|+ |Ay|+ 1)k

]
· |A (x− y)|

for every t > 0, x, y ∈ D(A) and for some ε > 0.
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Proof. Step 1. From [23] we know that (lemma 4.1)

(15) |DhSn
t ϕ (x)| ≤ c · Cϕ

(
tε−1 + 1

)
|Ah| (|Ax|+ 1)k

for a certain ε > 0. We sketch the proof below. Here by Dh we denote the
derivative in the direction h. Hence, for x, y ∈ D(A),

|(Sn
t ϕ) (x)− (Sn

t ϕ) (y)|

≤
[
c · Cϕ

(
tε−1 + 1

)
(|Ax|+ |Ay|+ 1)k

]
· |A (x− y)| .

Up to mollification of ϕ, we may apply the previous lemma and get the result.
Step 2. To have an idea of the role of the regularization given by the

potential and of the assumption α < 3 , let us sketch the proof of (15).
Following [23], from a variant of Bismut-Elworthy-Li formula we have

Dh (Sn
t ϕ) (x) =

1
t

(I1 + I2)

I1 = E

[
e−K

∫ t
0 |Aux,n

r |2drϕ (ux,n
t )

∫ t

0

〈
Q−1/2Dhux,n

s , dWs

〉]

I2 = E

∫ t

0

Sn
t−sϕ (ux,n

s ) Dh

[
e−K

∫ s
0 |Aux,n

r |2dr
]
ds.

Let us treat only the (most difficult) term I1. We have (ut = ux,n
t for brevity)

I1 ≤ E
[
e−K

∫ t
0 |Aur|2drC2

ϕ (1 + |Aut|)2k
]1/2

E
[
ς2
t

]1/2

with

ςt := e−
K
2

∫ t
0 |Aur|2dr

∫ t

0

〈
Q−1/2Dhus, dWs

〉
.

The first factor can be treated by the analog of (13) for ux,n
t . As to the second

factor,

dς2
t = −K |Aut|2 ς2

t dt + 2ςte
−K

2

∫ t
0 |Aur|2dr

〈
Q−1/2Dhut, dWt

〉

+ e−
K
2

∫ t
0 |Aur|2dr

∣∣∣Q−1/2Dhut

∣∣∣
2

dt

E
[
ς2
t

]
≤ E

∫ t

0

e−
K
2

∫ s
0 |Aur|2dr

∣∣∣Aα/2Dhus

∣∣∣
2

ds.

We have thus to analyze the regularity of ηh,x,n
t = Dhux,n

t .
Step 3. We have (ηt = ηh,x,n

t for brevity), for every β ≥ 0

dηt

dt
+ Aηt + πnB (ηt, ut) + πnB (ut, ηt) = 0, η0 = πnh.
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d
∣∣Aβηt

∣∣2

dt
+ 2

∣∣∣Aβ+ 1
2 ηt

∣∣∣
2

≤ 2
∣∣〈A2βηt, B (ηt, ut) + B (ut, ηt)

〉∣∣

and from lemma 2.3, for β ∈ (1/2, 1),

d
∣∣Aβηt

∣∣2

dt
+

∣∣∣Aβ+ 1
2 ηt

∣∣∣
2

≤
∣∣∣Aβ− 1

2 [B (ηt, ut) + B (ut, ηt)]
∣∣∣

≤ C |Aut|2
∣∣Aβηt

∣∣2

which implies, for sufficiently large K,
∫ t

0

e−
K
2

∫ s
0 |Aur|2dr

∣∣∣Aβ+ 1
2 ηs

∣∣∣
2

ds ≤
∣∣Aβh

∣∣2 .

For β = α−1
2 we get the estimate E

[
ς2
t

]
≤

∣∣Aβh
∣∣2. This is the essence of the

proof of (15).

The previous result has consequences on the Markov processes associated
to equation (1) by means of the following variation of constant formula. Given
a Markov selection {P x}x∈H we associate to it the Markov semigroup Pt on
Bb (H) defined as

(Ptϕ) (x) = P x [ϕ (ξt)]

A priori, this semigroup depends on the selection, but it satisfies the same
relation w.r.t. St.

Lemma 4.20. Let K > 0 be large enough. For every

x ∈ D(A) and ϕ ∈ Bb (H)

we have

P x [ϕ (ξt)] = (Stϕ) (x) +
∫ t

0

(
Ss

(
K |A·|2 (Pt−sϕ) (·)

))
(x) ds.

Proof. Step 1. We use the convention e−∞ = 0; 0·∞ is not necessarily defined
but

∫ b

a
f (t) dt is well defined as soon as f is well defined a.s., and integrable.

Let x ∈ D(A) and ux
t be a weak solution of the deterministic equation

(usual assumptions on ω). The main result of step 1 is to show that

e−K
∫ t
0 |Aux

r |2dr − 1 = −
∫ t

0

e−K
∫ s
0 |Aux

r |2drK |Aux
s |

2
ds

for every t ≥ 0. For t < τx this is obvious. The proof for t ≥ τx seems
to be non trivial. We have

∫ t

0
|Aux

r |
2
dr = ∞, then e−K

∫ t
0 |Aux

r |2dr − 1 = −1;
about the integral, the integrand for s ∈ [0, τx) is obviously defined and finite,
while for s ∈ [τx, t] we have e−K

∫ s
0 |Aux

r |2dr = 0, |Aux
s |

2 is finite a.s., hence
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e−K
∫ s
0 |Aux

r |2dr |Aux
s |

2 is well defined and equal to zero a.s.; in conclusion, for
t ≥ τx we have

∫ t

0

e−K
∫ s
0 |Aux

r |2dr |Aux
s |

2
ds =

∫ τx

0

e−K
∫ s
0 |Aux

r |2dr |Aux
s |

2
ds.

By (13) this integral is finite and

∫ τx

0

e−K
∫ s
0 |Aux

r |2drK |Aux
s |

2
ds = lim

η↑τx

∫ η

0

e−K
∫ s
0 |Aux

r |2drK |Aux
s |

2
ds

= lim
η↑τx

(
e−K

∫ η
0 |Aux

r |2dr − 1
)

.

We know that
∫ τx

0
|Aux

r |
2
dr = ∞. By monotone convergence theorem,

lim
η↑τx

∫ η

0

|Aux
r |

2
dr = lim

η↑τx

∫ τx

0

|Aux
r |

2 1r≤ηdr =
∫ τx

0

|Aux
r |

2
dr = ∞

hence limη↑τx

(
e−K

∫ η
0 |Aux

r |2dr − 1
)

= −1, and the identity is proved also for
t ≥ τx.

Step 2. Take now a non negative ϕ ∈ Bb (H) (by linearity, this is suf-
ficient), x ∈ D(A) and ux

t be a weak martingale solution of the stochastic
equation having law P x (the element of the Markov selection under investi-
gation). Let (

Ωx,Fx, (Fx
t )t≥0 , Qx,

(
β(i)

x (t)
)

t≥0,i∈N

)

be the Brownian stochastic basis in the definition of the weak martingale
solution ux

t . From the identity of the previous step, Qx-a.s. we have

ϕ (ux
t ) = e−K

∫ t
0 |Aux

r |2dr1t<τxϕ (ux
t )

+
∫ t

0

e−K
∫ s
0 |Aux

r |2drK |Aux
s |

2
ϕ (ux

t ) ds.

The first two terms are clearly Qx-integrable and equal to (Ptϕ) (x) and
(Stϕ) (x) resp., thus also the third one is Qx-integrable and we have

(Ptϕ) (x) = (Stϕ) (x) +

Qx

[∫ t

0

e−K
∫ s
0 |Aux

r |2drK |Aux
s |

2
ϕ (ux

t ) ds

]
.

The last term is, by monotone convergence, the limit as N →∞ of

Qx

[∫ t

0

e−K
∫ s
0 |Aux

r |2drK
(
|Aux

s |
2 ∧N

)
ϕ (ux

t ) ds

]
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which in turns is equal to
∫ t

0

Qx
[
e−K

∫ s
0 |Aux

r |2drK
(
|Aux

s |
2 ∧N

)
ϕ (ux

t )
]
ds

=
∫ t

0

P x
[
e−K

∫ s
0 |Aξr|2drK

(
|Aξs|2 ∧N

)
ϕ (ξt)

]
ds

=
∫ t

0

P x
[
e−K

∫ s
0 |Aξr|2drK

(
|Aξs|2 ∧N

)
P x [ϕ (ξt) |Fs]

]
ds

The Markov property gives us (this is a crucial point)

P x [ϕ (ξt) |Fs] = (Pt−sϕ) (ξs) .

Therefore the previous integral is equal to
∫ t

0

P x
[
e−K

∫ s
0 |Aξr|2drK

(
|Aξs|2 ∧N

)
(Pt−sϕ) (ξs)

]
ds

=
∫ t

0

P x
[
e−K

∫ s
0 |Aξr|2dr1s<τK

(
|Aξs|2 ∧N

)
(Pt−sϕ) (ξs)

]
ds

that converges, by monotone convergence, as N →∞, to
∫ t

0

P x
[
e−K

∫ s
0 |Aξr|2dr1s<τK |Aξs|2 (Pt−sϕ) (ξs)

]
ds

=
∫ t

0

(
Ss

(
K |A·|2 (Pt−sϕ) (·)

))
(x) ds.

The proof is complete.

We can now prove the main result of this section.

Theorem 4.9. Given a Markov selection {P x}x∈H , for every ϕ ∈ Bb (H) and
x, y ∈ D(A) we have

|P x [ϕ (ξt)]− P y [ϕ (ξt)]|

≤ c
[
tε−1 + 1 + tε (|Ax|+ |Ay|+ 1)2

]
|A (x− y)| .

Proof. From the variation of constant formula and lemma 4.19 we have

|P x [ϕ (ξt)]− P y [ϕ (ξt)]| ≤ |(Stϕ) (x)− (Stϕ) (y)|

+
∫ t

0

∣∣∣
(
Ss

(
K |A·|2 Pt−s

))
(x)−

(
Ss

(
K |A·|2 Pt−s

))
(y)

∣∣∣ ds

≤
[
c
(
tε−1 + 1

)]
|A (x− y)|

+
[∫ t

0

(
sε−1 + 1

)
ds · c (|Ax|+ |Ay|+ 1)2

]
|A (x− y)|

≤ c
[
tε−1 + 1 + tε (|Ax|+ |Ay|+ 1)2

]
|A (x− y)| .

The proof is complete.
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5 Some Topics on Turbulence

5.1 Introduction and a Few Keywords

We shall mainly refer to the ideas related to Kolmogorov and Obukhov theory
developed around 1941 (shortly denoted by K41 theory, see [46]). It is an ex-
ample of phenomenology of turbulence. Following Frisch [42], by this we mean
that we create in ourselves a mental image of what a turbulent fluid could
be, with the help of intuitive geometric structures that usually are called ed-
dies (or vortex filaments when they have strongly elongated shapes, or vortex
pancakes when they are more surface like, etc.). A typical intuition we have
about them is that they rotate (in a complex way, not as rigid bodies), with
a typical velocity U of rotation. We also idealize their shape and associate a
size l to them (a typical length scale of the eddy, something like its diameter).
When the structure is more filament (or pancake) like, there could be more
than one typical length scales involved, but for the time being let us discuss
the case of structures with only one length scale l.

A usual idealization is to think that l takes the values 2−n for positive
integers n (more physically we should say l = l02−n where l0 is a measure of
the length of the whole space occupied by the fluid). We apply the intuitive
correspondence between length l and wave number k saying that a structure
of size l has wave number k = l−1. Hence we have the different wave numbers
k = 2n (or better k = k02n).

We may think that the various geometric structures interact. There are
very many interactions that could take place. For the time being, let us forget
the interaction between structures of the same size. Let us concentrate our
attention on the interaction between different scales. Its description is not
simple at all and to some extent not completely understood. Let us idealize it
by thinking that structures of size l = l02−n produce, by instability, smaller
structures of size l = l02−n′

for some n′ > n (for instance, when an instability
of the so called Kelvin-Helmoltz type occurs, a new vortex structure originates,
and it has a smaller size than the typical size of the original part of fluid where
the instability took place). This is the so called direct cascade. There could be
an inverse cascade, in which several small structures merge to form a larger
structure (Onsager provided a statistical mechanics explanation of this fact);
this seems to be a relevant effect mostly for 2D fluids, so we do not discuss it.

Let us mention the fact that a relevant part of the cascade seems to be due
to vortex stretching : an eddy undergoes geometric transformations that make
it longer in a direction and thinner along the orthogonal plane, so from a blob
like shape it gets a filament like shape. This would oblige us to introduce the
multiple length scales of filaments now, so for simplicity we do not discuss
this mechanism for a while.

The mental image proposed by Kolmogorov is roughly the following one.
The turbulent fluid that we observe is entirely composed of eddies; for each
eddy size l = l02−n, there are eddies of that size that fill in the whole space
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occupied by the fluid. A cascade of energy takes place from length l to length
l/2 for every l: eddies of size l produce eddies of size l/2 by instability and
in such a transformation the larger eddies transfer part of their energy to
the smaller ones. Energy is injected by some mechanism at the largest scales
(some solid object which moves in the fluid, some external force). Such energy
is transferred from scale to scale, from the larger to the smaller scales. There
is a length scale η, that we shall call Kolmogorov dissipation scale, such that
eddies of scale l of the order of η or smaller dissipate very fast their energy
(into heat), so the cascade mechanism described above stops. The rate of
energy dissipated by such small eddies will be equal to the rate of energy
injected at large scales, otherwise the system would be not in a stationary
regime.

The viscosity of the fluid does not play a major role on structures with
l essentially larger than η, while it is a basic ingredient at scales l ∼ η or
smaller. If the viscosity is decreased, then the scale η becomes smaller, but
always positive. If we keep unchanged the external forces acting at large scales,
so the rate of energy injection remains constant when we send ν to zero, to
preserve a stationary regime the rate of energy dissipation will remain also
constant (in spite of the fact that, as we shall see, it is the product of ν which
goes to zero, and the mean square gradient of the velocity).

If there is hope to discover universal statistical laws which hold for every
turbulent fluid (independently of geometry of the region, particular features
of the mechanism of injection of energy etc.), it is reasonable to expect that
they will hold at quite small scales and when the viscosity is very small.
For this reason the previous comment on the limit as ν → 0 is relevant:
this is the “regime” where one looks for universal statistical laws. We need a
mathematical model which incorporate the idea that when ν → 0 the energy
injection and the energy dissipation remain constant. The model proposed
above of the stochastic equation

dXt = [−νAXt −B (Xt,Xt)] dt +
√

QdWt

is in this direction; for the finite dimensional approximations we have the
identity

νE ‖Xt‖2V =
TrQ

2
for stationary solutions which states precisely that energy injection and the
energy dissipation remain constant in the limit ν → 0. Unfortunately, for
the 3D infinite dimensional model the equality above is an open problem, but
perhaps this is just a technical issue related to our present poor understanding
of the well posedness.

With these intuitive ideas in mind, Kolmogorov analyzed a specific sta-
tistical index of the turbulent fluid, the so called structure function of order
2, and proposed a formula for it. This formula is still now one of the few
quantitative predictions that are close to experimental results (up to some
approximation).
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5.2 K41 Scaling Law: Heuristics and Unclear Issues

Let u(t, x) be the velocity field of the fluid. Statistical quantities like the mean
value or the covariance of this field are not expected to have universal behavior
(their size, for instance, depends too much on the particular conditions of the
fluid), except for some qualitative feature: we assume x �→ u(t, x) to be space
homogeneous and isotropic.

The velocity displacements u(t, x+ry)−u(t, x) on the contrary could have
universal statistical properties when r is small. So let us look at their second
moment E

[
|u(t, x + ry)− u(t, x)|2

]
. We assume to work on time-stationary

fields, so this mean value is independent of t; we shall drop t and write
E

[
|u(x + ry)− u(x)|2

]
. Since we assume space homogeneity, this mean value

will not depend on x; by isotropy, it will not depend on the particular direction
y either. So take a unitary coordinate vector e and consider the quantity

S2 (r) = E
[
|u(re)− u(0)|2

]

(assume 0 is a point of the domain where the fluid lives). This is called second-
order structure function. The structure function of order p is simply the same
expression with the p power; we do not discuss it at the beginning.

Kolmogorov and Obukhov conjectured that S2 (r) could have a universal
behavior in r, for small r and small viscosity. Let us describe the argument
by dimensional analysis that Kolmogorov proposed to obtain a formula for
S2 (r).

Let us denote by [L] the dimension of a length, [T ] for time. Velocity has
dimension [L] [T ]−1, hence S2 (r) has dimension [L]2 [T ]−2.

Let us assume that, when ν → 0, for small r the function S2 (r) depends
only on r and the rate of energy dissipation ε, as a power law. The latter is
defined as

ε = νE
[
|Du (0)|2

]

(we advertise that this discussion is still heuristic; precise definitions will be
given below for random fields on the torus). So the assumption is that

S2 (r) = Crαεβ

for some adimensional constant C and some exponents α and β.
The dimension of ε is a little tricky to determine. A simple way is to think

that the energy dissipated is dimensionally as the time derivative of the kinetic
energy (this is clear from the Navier–Stokes equations). The kinetic energy
1
2E

[
|u (0)|2

]
has dimension [L]2 [T ]−2, so its time derivative has dimension

[L]2 [T ]−3. Thus ε has dimension [L]2 [T ]−3.
Using finally the fact that r has obviously dimension [L], from the power

assumption above we must have
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[L]2 [T ]−2 = [L]α
(
[L]2 [T ]−3

)β

= [L]α+2β [T ]−3β
.

The only solution is β = 2/3 and α = 2− 2β = 2/3. Hence

(1) S2 (r) = Cr2/3ε2/3.

In particular, the behavior in r is like r2/3, or

lim
r→0

log S2 (r)
log r

=
2
3
.

It is common to observe in (sophisticated enough) experiments that the log-
log plot of S2 (r) has a plateau of approximate slope 2

3 . As we said, this is still
now one of the two best statistical laws compared to experiments (the other
one is concerned with boundary layers).

We have just remarked that in experiments a slope close to 2
3 is observed

along a plateau of the curve, but not along the whole curve. So the previous
argument has to be made a little more precise about the range of r where
it is expected to be true. Going back to the mental image described in the
previous section, we have seen that we may expect an energy cascade up
to some dissipation scale η only; and the universal behavior that we try to
describe with the structure function S2 (r) refers to scales r in such a range
where the cascade takes place, called inertial range. So the prescription of
K41 theory is that the law (1) holds true in a range r ∈ [η, r0]. We have now
to determine η.

Let us find η again by a dimensional argument. Assume that η depends
only on ε and the viscosity ν, as a power law. [Notice that these assumptions
are a very strong idealization but they are reasonable: the rate of energy
injection or dissipation ε has to play a role in the quantitative laws; for S2 (r)
there should be also an obvious dependence on r, while for η there should be
a dependence on ν, as already remarked in the previous section.]

So we assume
η = Cναεβ .

The dimension of η is [L] and the dimension of ε is [L]2 [T ]−3. The dimension
θ of ν could be found from the relation ε = νE

[
|Du (0)|2

]
: Du has dimension

[T ]−1, so from [L]2 [T ]−3 = θ [T ]−2 we deduce θ = [L]2 [T ]−1. Therefore the
power relation imposes

[L] =
(
[L]2 [T ]−1

)α (
[L]2 [T ]−3

)β

= [L]2α+2β [T ]−α−3β
.
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The only solution is α = 3/4 and β = −1/4. Thus the law for η is

η = Cν3/4ε−1/4.

There are more refined arguments which support the power laws given
here, but all of them are in any case based on unproved assumptions, never
deduced from the Navier–Stokes equations.

In the sequel we give a rigorous definition of the K41 scaling law and
prove some necessary and some sufficient conditions for it, with the hope to
throw some light on this problem. The presentation is based on the work
by Flandoli, Gubinelli, Hairer and Romito [37], but, to simplify, we avoid
anomalous exponents and restrict ourselves to K41 theory. It is necessary to
say that we do not believe K41 is exactly true for the Navier–Stokes equations.
Neverthless, understanding necessary and/or sufficient conditions for K41 may
help to start a rigorous investigation of such scaling laws.

The arguments just presented rely on some assumptions, namely the de-
pendence of S2 (r) and η only on certain variables in the form of a power law,
that are unjustified. They may look natural:

• it is clear that S2 (r) should depend on r and that η should depend on ν
(we have limν→0 η = 0);

• it can be intuitively clear that both of them should depend on ε: by anal-
ogy with queuing theory, in the stationary regime, independently of the
complexity of the queuing network, the rate of input is equal to the rate
of output, and such rate is a basic parameter that affects several main
quantities of the system;

• but it is not clear why no other quantity should be involved.

The agreement of K41 prediction with experimental results is good but
not perfect. The same dimensional argument described above may be applied
to 2D fluids (thin layers of fluids), where on the contrary the experiments do
not confirm the K41 prediction. Essentially the explanation has something to
do with the additional conservation law for 2D fluids, that is the conservation
of enstrophy (for zero viscosity).

Another failure of the scaling argument above is when it is applied to the
structure function of order p: here it is better to work with the longitudi-
nal structure function to appreciate also the case of odd numbers (especially
p = 3)

Sl
p (r) = E [〈u(re)− u(0), e〉p] .

For even p the behavior in r is expected to be the same as that of

Sp (r) = E [‖u(re)− u(0)‖p] .

If we believe that the assumptions of K41 theory apply to Sl
p (r) as well, by

the same dimensional analysis we would find

Sl
p (r) ∼ rp/3.
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On the contrary, if we “define” the numbers ζp as those for which

Sl
p (r) ∼ rζp

there is experimental evidence that the function

p �→ ζp

is strictly concave for large p’s, not equal to the line p �→ p/3. For p = 3 it
seems both from the experimental viewpoint and from some heuristics that
the correct value is really ζ3 = 3/3 = 1. For p = 2 the experiments give
values ζ2 very close to 2/3, but possibly slightly larger. But for large p the
experimental values of ζp, although not coinciding from one experiment to the
other, is definitely smaller that p/3.

5.3 Definitions and Examples

Given the unitary torus T = [0, 1]d, d = 2, 3, recall the definitions of H and
D(A). We denote by P the class of all probability measures µ on H (with the
Borel σ-algebra) such that µ (D(A)) = 1, µ is space homogeneous and partial
isotropic, and

µ

[∫

T
‖Du (x)‖2 dx

]
< ∞.

Since H
2 (T ) ⊂ C (T ) by Sobolev embedding theorem, the elements of D(A)

are continuous (have a continuous element in their equivalence class). Conse-
quently, given x0 ∈ T , the mapping u �→ u (x0) is well defined on D(A), with
values in R

d. In particular, any expression of the form

µ [f (u (x1) , ..., u (xn))]

is well defined for given x1, ..., xn ∈ T , given µ ∈ P, and suitable f : R
nd →

R (for instance measurable non negative). It will follow that Sµ
2 (r) is well

defined (possibly infinite) for every µ ∈ P. On the contrary we cannot evaluate
pointwise Du and D2u, but we may use the quantities

µ

[∫

T
‖Du (x)‖2 dx

]
, µ

[∫

T

∥∥D2u (x)
∥∥2

dx

]

the first of which is finite by assumption for µ ∈ P, while the second one is
either finite or equal to +∞.

For every µ ∈ P we introduce the second order structure function

(2) Sµ
2 (r) = µ

[
‖u (r · e)− u (0)‖2

]

for some coordinate unitary vector e, with r > 0 (the results proved below
extend to the so called longitudinal structure function; we consider (2) to
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fix the ideas). The symmetries in P imply that Sµ
2 (r) is independent of the

coordinate unitary vector e, and the velocity difference could be taken at any
other point x: u (x + r · e)− u (x) gives us the same result.

We are going to define K41 scaling law for a set M⊂ P×R+. The reason
is that equation (1) may have (a priori) more than one stationary measure
for any given ν and in certain claims it seems easier to consider a set of
measures for a given ν. Given ν > 0 we use the notation Mν for the set
section {µ ∈ P : (µ, ν) ∈M}.

Given (µ, ν) ∈ P × R+, we define the mean energy dissipation rate as

ε = ε (µ, ν) := ν · µ
[∫

T
‖Du (x)‖2 dx

]
.

In the sequel, to simplify the exposition, we impose on families M⊂ P ×R+

the following condition (constant mean energy dissipation rate as the viscosity
goes to zero):

(3) ε (µ, ν) = ε0 for every (µ, ν) ∈M.

This is true if we consider the finite dimensional models of Section 3 (with the
identification of ε (µ, ν) with ν · µ

(
‖·‖2V

)
). It remains true for the stochastic

Navier–Stokes equation (1), if the dimension is d = 2. Unfortunately, in 3D,
it is an open problem, as illustrated in the section on Galerkin stationary
measures. So, in a sense, we impose here an assumption that we do not know
whether it is satisfied by our main example, the 3D case. We do this for
simplicity of exposition: in [37] the assumption is partially removed.

Given (µ, ν) ∈ P × R+, we also define the quantity

η = η (µ, ν) := ν3/4ε (µ, ν)−1/4
.

Under the assumption (3) we simply have

η (µ, ν) = ν3/4η0

where, for shortness, we have used the symbol η0 = ε0
−1/4.

Let us come to the definition of K41 scaling law. See [37] for a more general
version, including also a correction to the 2/3 exponent.

Definition 5.1. We say that a scaling law of K41 type holds true for a set
M⊂ P × R+ if there exist ν0 > 0, C > c > 0, r0 > 0 such that the bound

c · r2/3 ≤ Sµ
2 (r) ≤ C · r2/3

holds for every pair (µ, ν) ∈M and every r such that ν ∈ (0, ν0] and η (µ, ν) <
r < r0, namely

ν3/4η0 < r < r0.
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This is the mathematical formulation of K41 theory that we analyze. We
shall prove some necessary conditions and some sufficient conditions for it.
Let us insist on the fact that we do not claim that K41 is true. Presumably
a version with an exponent larger than 2/3 exponent is true. The reason to
state a definition is to attempt a rigorus investigation of this scaling property.

Before going into some rigorous results about this definition, let us ask
ourselves a few preliminary apparently easy questions: can we give examples
of functions f(ν, r) (we have the association in mind f(ν, r) = S

µ(ν)
2 (r)) such

that
c · r2/3 ≤ f(ν, r) ≤ C · r2/3 for ν3/4 < r < 1 and small ν?

It is important to realize that our usual way of thinking in mathematics is
about limit properties. The previous property is not a limit one, but it is a
property in an intermediate range, with some kind of uniformity as a para-
meter goes to a limit (ν → 0).

The easiest way to answer the previous question is by the example

f(ν, r) = r2/3 for all (r, ν) .

But such an example cannot be related to our models. Indeed, we shall see
below that, due to the property µ (D(A)) = 1, we must have a regular behavior
in r → 0, for every given ν:

f(ν, r) ∼ r2 as r → 0, for every ν.

More precisely, we shall see that essentially we have

f(ν, r) =
r2

ν
for sufficiently small r.

So let us refine our question and ask whether we may:

• find examples of functions f(ν, r) such that

(4) C1 · r2/3 ≤ f(ν, r) ≤ C2 · r2/3

for C3ν
3/4 < r < 1 and

(5) C4 · r2 ≤ f(ν, r) ≤ C5 · r2

for r < C6ν
3/4.

This is not easy (unless we artificially define piecewise f(ν, r)).

Example 5.1 (Negative example). Let us preliminary understand better the
function

f0(ν, r) :=
r2

ν
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which certainly satisfies the second part of the requirement. We have

f0(ν, r) = r2/3
(
rν−3/4

)4/3

so we have

C1 · r2/3 ≤ f(ν, r) ≤ C2 · r2/3 for C3ν
3/4 < r < C4ν

3/4

for suitable constants. Apparently we get a property very close to the re-
quired one, but it holds true only on an interval of r whose boundary values
are infinitesimal of the same order. This is a basic point: to have a meaningful
definition of a scaling law we must ask its validity on an interval whose bound-
ary points diverge one w.r.t. the other. What is meaningless in the previous
2/3 property on C3ν

3/4 < r < C ′
3ν

3/4 is simply that a similar property holds
true replacing 2/3 with any other exponent α ∈ (0, 2). Indeed we have

f0(ν, r) = rα
(
rν− 1

2−α

)2−α

hence
C ′

1 · rα ≤ f0(ν, r) ≤ C ′
2 · rα for C ′

3ν
1

2−α < r < C ′
4ν

1
2−α .

Summarizing, f0(ν, r) = r2

ν clearly does not have any interesting non-integer
scaling law, as we see from its definition, and it shows in addition that in the
definition of a scaling law it is necessary to impose that the range of r has
boundary points that diverge one from each other.

Example 5.2 (Positive example). This example arose in the computations
made of a random vortex model of Flandoli and Gubinelli, see [36]. Consider
the function

f(ν, r) =
∫ 1

η

l2/3

(
l ∧ r

l

)2
dl

l

with η = ν3/4. We have

r ≤ η ⇒ f(ν, r) =
∫ 1

η

l2/3
(r

l

)2 dl

l
=

3
4
r2

[
ν−1 − 1

]

which gives us (5). On the other hand,

r ∈ [η, 1] ⇒ f(ν, r) =
∫ r

η

l2/3 dl

l
+

∫ 1

r

l2/3
(r

l

)2 dl

l

=
9
4
r2/3 − 3

2
ν1/2 − 3

4
r2

which is bounded above and below by the order r2/3 since r ∈
[
ν3/4, 1

]
(ν1/2 ≤

r2/3). This implies (4).
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5.4 Brownian Eddies and Random Vortex Filaments

Before entering into some rigorous results around K41 scaling law for the
stochastic Navier–Stokes equations, let us get more intuition from a phenom-
enological model. This model is a priori given, in the sense that it does not
come from the Navier–Stokes equations, but it is nevertheless defined in rigor-
ous mathematical terms and it is an attempt to describe some of the numerical
observations of vortex filaments obtained in the last 15 years. The main source
of motivation has been the book of Chorin [19], where discrete vortex filaments
based on paths of self-avoiding walk are investigated. Other related works are
[10], [37].

Let (Wt)t≥0 be a 3D Brownian motion. Let ρ : R
3 → R be the function

ρ (x) = exp
(
−‖x‖2

)
(there is a lot of freedom in the choice of ρ, this is just

a convenient example). Given 
 > 0, rescale ρ as

ρ� (x) = ρ
(x




)
= exp

(
−‖x‖

2


2

)
.

Let K�(x) : R
3 → R

3 be the field

K�(x) =
1
4π

∫

R3
ρ�(y)

x− y

|x− y|3 dy.

Remark 5.1. If γ : R → R
3 is the curve γ (t) = (0, 0, t), then the vector field

(interpret it as a velocity field)

uBurgers(x) :=
∫ +∞

−∞
K�(x− γ (t)) ∧ ·

γ (t) dt

is called a Burgers vortex, and is easily seen to be a rotating field around the
z-axis, with some decay at infinity. It is also given by the Biot-Savart law with
respect to the “vorticity” field ξ (x):

uBurgers(x) =
1
4π

∫

R3

x− y

|x− y|3 ∧ ξBurgers (y) dy

ξBurgers (y) :=
∫ +∞

−∞
ρ�(y − γ (t)) ∧ ·

γ (t) dt.

The number 
 is a measure of the “cross section” of the vortex “tube”.

We repeat the mathematics of the previous example but starting from the
Brownian motion (Wt)t≥0 in place of the line γ.

Definition 5.2. Let us call Brownian eddy at scale l > 0 the following random
field (W )⊥� (x):

(W )⊥� (x) :=
1

2

∫ �2

0

K� (x−Wt) ∧ dWt x ∈ R
3.
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Remark 5.2. We use the notation (.)⊥. because the field (W )⊥� (x) is somewhat
orthogonal to the trajectory of the Brownian motion.

Remark 5.3. Let us explain the rigorous use of the notation. Given a stochas-
tic process (X) = (Xt)t≥0, if the stochastic integral is well define we may
introduce the associated random field

(X)⊥� (x) :=
1

2

∫ �2

0

K� (x−Xt) ∧ dXt x ∈ R
3.

Such an integral is well defined for instance for every semimartingale (X). The
notation (.)⊥� denotes a mapping from processes to random fields; for instance,
if we write

(X0 + W )⊥� (x)

where X0 is a 3D random variable, we understand the vector field associated
to the process X0 + W , that is a Brownian motion starting from position X0.

Remark 5.4. It may help the intuition to figure out the shape of a Brownian
eddy. The Brownian motion has sometimes long excursions: along them a
Brownian eddy looks like an irregular Burgers vortex. On the contrary, most
often the trajectory of a Brownian motion is very much folded around itself: in
such a case the Brownian eddy is more blob-like. The number 
 is a measure
of the size, and also of the smoothness. Notice finally that the typical dis-
placement of a Brownian motion in a time 
2 is of the order 
, that is the size
of the kernel K�: therefore for most of the trajectories of the Brownian motion
the associated eddy is as long as large, eddy-like more than filament-like.

Remark 5.5. One can verify by stochastic analysis that the field (W )⊥� (x) is
very regular (it has C∞-realizations) and

div (W )⊥� (x) = 0.

The reason why this field turns out to be interesting is the following scaling
property.

Lemma 5.1. For every λ, 
 > 0,

(W )⊥� (λx) L= (W )⊥�/λ (x)

the equality in law being at the level of random fields.

Proof.

(W )⊥� (λx) =
1

2

∫ �2

0

K�

(
λ

(
x− Wt

λ

))
∧ λd

(
Wt

λ

)

=
1

(
/λ)2

∫ �2

0

K�/λ

(
x− Wt

λ

)
∧ d

(
Wt

λ

)
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since
K� (λx) = λK�/λ (x) .

The processes
(

Wt

λ

)
and

(
Wt/λ2

)
have the same law, hence

(W )⊥� (λx) L=
1

(
/λ)2

∫ �2

0

K�/λ

(
x−Wt/λ2

)
∧ d

(
Wt/λ2

)

where it is not difficult to see that the equality in law is at the level of random
fields (namely jointly in different locations x). Finally, simple arguments on
time change in stochastic integrals show that

(W )⊥� (λx) L=
1

(
/λ)2

∫ (�/λ)2

0

K�/λ (x−Wt) ∧ d (Wt) .

The proof is complete.

Remark 5.6. In particular,

(W )⊥� (
x) L= (W )⊥1 (x).

This says that the velocities we observe in (W )⊥� are the same as those of
(W )⊥1 . The energy will be much smaller: the “support” of an 
-eddy is roughly
of order 
3, hence its kinetic energy is roughly of order 
3 times the kinetic
energy of (W )⊥1 .

Remark 5.7. The analogous definition of fractional Brownian eddy at scale

 > 0 and Hurst parameter H ∈ (0, 1) would be

(
WH

)⊥
�

(x) =
1

2

∫ �1/H

0

K�

(
x−WH

t

)
∧ dWH

t x ∈ R
3

whenever the integral is well defined, where
(
WH

t

)
is a fractional Brownian

motion in R
3 with Hurst parameter H ∈ (0, 1). With the same proof one can

show that (
WH

)⊥
�

(λx) L=
(
WH

)⊥
�/λ

(x).

Indeed, the only difference in the proof is that now the processes
(

W H
t

λ

)
and

(
Wt/λ1/H

)
have the same law.

With the same proof of the previous lemma we have:

Lemma 5.2. Given a non anticipating 3D r.v. X0, for every λ, 
 > 0,

(X0 + W )⊥� (λx) L=
(

X0

λ
+ W

)⊥

�/λ

(x)

the equality in law being at the level of random fields.
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With the help of the previous objects we may define more complex random
fields. Let

{
X

(n)
0

}

n∈N

be a sequence of 3D i.i.d. random variables,
{
W (n)

}
n∈N

be a sequence of 3D independent Brownian motions,
{

(n)

}
n∈N

be a sequence
of positive i.i.d. random variables, with all these objects independent one of
each others. Then define formally the series

u(x) =
∞∑

n=1



1/3
(n)

(
X

(n)
0 + W (n)

)⊥

�(n)

(x) .

Assume formally that

• X
(n)
0 are uniformly distributed in R

3

• 
(n) are distributed according to d�
�4 on (0,∞).

Exercise 5.1. Understand intuitively that the natural distribution to have
space filling of eddies of every size is d�

�4 and not d�
�3 . The “invariance” below

of the law of
(
X

(n)
0 , 
(n)

)
by homotheties is a technical explanation.

These sentences are not rigorous as they stand since they refer to measures
which are only σ-finite, but they may be made rigorous by using Poisson point
processes.

The intuitive geometric idea about u(x) is that at every (small) interval of
scales [
, 
 +�
] we see the space filled in of vortex eddies of size in [
, 
 +�
].
And u(x) is the velocity field associated to such a fluid composed of many
eddies of every size.

Let us show formally that

(6) u(λx) L= λ1/3u(x).

By the lemma above we have

u(λx) L=
∞∑

n=1



1/3
(n)

(
X

(n)
0

λ
+ W (n)

)⊥

�(n)/λ

(x)

= λ1/3
∞∑

n=1

(

(n)

λ

)1/3
(

X
(n)
0

λ
+ W (n)

)⊥

�(n)/λ

(x)

L= λ1/3
∞∑

n=1



1/3
(n)

(
X

(n)
0 + W (n)

)⊥

�(n)

(x) = λ1/3u(x)

where we have used the formal fact that the joint law of
(
X

(n)
0 , 
(n)

)
is in-

variant by homotheties:
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E

[
ϕ

(
X

(n)
0

λ
,

(n)

λ

)]
=

∫ ∞

0

∫

R3
ϕ

(
x

λ
,



λ

)
dx

d



4

x′= x
λ=

∫ ∞

0

λ3

∫

R3
ϕ

(
x′,




λ

)
dx′ d



4
=

∫

R3

∫ ∞

0

ϕ

(
x′,




λ

)
d (
/λ)
(
/λ)4

dx′

�′= 

λ=

∫

R3

∫ ∞

0

ϕ (x′, 
′)
d
′

(
′)4
dx′ = E

[
ϕ

(
X

(n)
0 , 
(n)

)]
.

Unfortunately all these computations are not rigorous since the series
defining u(x) does not converge! That something is wrong can be immedi-
ately guessed from the fact that (6) implies that either u(x) is identically
zero, or that in some sense it is identically infinite. Indeed as λ → 0, if we
accept continuity, we get u(0) L= 0 ·u(0); and on the other side u(x) should be
a space homogeneous random field, so u(x) L= 0·u(x) at every x. Even without
continuity, any meaning of stationarity implies that u(x) and u(λx) should
have certain equal quantities, and this is compatible only with the multiplier
λ = 1. In addition, certainly it is not reasonable to believe that the field u
written above is identically zero, so we have to conclude that in a sense it is
infinite everywhere. We do not make this argument rigorous, since the final
result is a negative one and there is no intuitive hope that the behavior is
better than the one just described.

However, having a random field with the self-similarity property (6) would
give us an example of random field with a K41-type property over an infinite
range of r:

S2 (r) = E
[
‖u (r · e)− u (r · 0)‖2

]

= E

[∥∥∥r1/3u(e)− r1/3u (0)
∥∥∥

2
]

= r1/3S2 (1) .

If S2 (1) where different from zero and finite (but it is infinite) we would get
K41, even without limitations on r.

All of this is formal but very instructive. One should come back to this
example after having learned more about the scaling transformations that we
shall perform on the stochastic Navier–Stokes equations.

In fact the only problem with the previous objects is that 
(n) have dis-
tributions that extend to infinite too much, so that there are arbitrarily large
and intense eddies. It is sufficient to cut-off 
 and we get a rigorous example
of random field that has the K41 scaling law. But it is not exactly self-similar:
only “at small distances” (see Kupiainen [50]).

Theorem 5.1. Given a positive real number 
max, consider the σ-finite mea-
sure d�

�4 1l∈(0,�max]. Assume that the r.v. 
(n) are distributed according to this
measure. Then the random field u(x) above is well defined, it has all finite
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moments, it is space homogeneous and isotropic, and its second order struc-
ture function S2 (r) is bounded above and below (uniformly in r ∈ (0, 1), say)
by the function

f(r) =
∫ 1

0


2/3

(

 ∧ r




)2
d





and therefore by r2/3.

The proof is very technical (based on Burkholder-Davis-Gundy inequality,
strong Markov property, arguments of potential theory similar to those of the
theory of the Brownian sausage) and may be found in [36]. The meaning of
the r.v.’s distributed according to only σ-finite measures is rigorously given
in [36] by means of Poisson point processes, as we have already said; this is a
quite technical issue so we do not give the details here.

The following modification of the previous theorem, again proved in [36],
which includes a cut-off at viscous scales, may also be of interest.

Theorem 5.2. For every ν ∈ (0, 
max) consider the σ-finite measure
d�
�4 1l∈(η,�max] where

η = η (ν) = ν3/4.

Assume that the r.v. 
(n) are distributed according to this measure. Then the
same conclusions of the previous theorem hold but with the function

f(ν, r) =
∫ 1

η


2/3

(

 ∧ r




)2
d





and therefore satisfies K41 scaling law (see section 5.2).

Is it the idealization proposed by this Brownian eddies model close to
reality? We do not know the answer, simply it looks like the mental image
described by Kolmogorov [46]. Let us only mention that other models give
the same result. We may introduce more filament-like random vortices of the
form

u
(X0,�,T,U)
single (x) =

U


2

∫ T

0

K� (x−X0 −Wt) ∧ dWt.

If T is larger than 
2 the displacement of the Brownian trajectory is typically
longer than the cross-section 
. With these fields as building objects one may
still construct random field with K41 law but not eddy-like. Notice that nu-
merical simulations in the last 15 years have often shown that a turbulent
fluid is rich of elongated vortex filaments (but their relevance for the statistics
is not proved).

In favor of the previous model of Brownian eddies we may quote the local
self-similarity, which seems to be one of the observed features of turbulent flu-
ids and is also related to the scaling properties of the stochastic Navier–Stokes



An Introduction to 3D Stochastic Fluid Dynamics 139

equations, as we shall see. In this respect, if we believe that more filament like
objects are also present in the fluid, they could constitute a secondary object,
but maybe important to explain certain intermittent features and corrections
to K41.

5.5 Necessary Conditions for K41

Let us leave random vortex filaments and go back to the rigorous analysis of
K41 property. We give some general results and then their application to the
stochastic Navier–Stokes equations.

The first results of this subsection apply to suitable families of probabil-
ity measures, without any use of the Navier–Stokes equations. They will be
applied to stochastic Navier–Stokes equations at the end of the section.

Given a measure µ ∈ P, µ 
= δ0, we introduce the number θ = θ (µ) defined
by the identity

(7) θ2 =
µ

[∫
[0,1]d

‖Du (x)‖2 dx
]

µ
[∫

[0,1]d
‖D2u (x)‖2 dx

]

with the understanding that θ = 0 when µ
[∫

[0,1]d

∥∥D2u (x)
∥∥2

dx
]

= ∞ and
θ = 1 when µ = δ0. θ has the dimension of a length and we interpret it as an
estimate of the length scale where dissipation is more relevant. Indeed, very
roughly, from

∫
T

∥∥D2u (x)
∥∥2

dx
∫
T ‖Du (x)‖2 dx

∼
∑
|k|2

(
|k|2 |û (k)|2

)

∑
|k|2 |û (k)|2

we see that θ (µ)−2 has the meaning of typical square wave length of dissi-
pation (looking at |k|2 |û (k)|2 as a sort of distribution in wave space of the
dissipation).

Lemma 5.3. For every µ ∈ P such that θ (µ) > 0 we have

(8)
1
4d

· r2 ≤ Sµ
2 (r)

µ
[∫

T ‖Du (x)‖2 dx
] ≤ r2 for every r ∈ (0,

θ (µ)
4d

].

Proof. We have to use Taylor formula, but the measures µ are concentrated a
priori only on W 2,2 vector fields. For sake of brevity, we give the proof under
the additional assumption that

µ
(
D(A) ∩ C2 (T )

)
= 1

for all the measures µ involved. In [37] one may found the proof in the general
case, performed by mollification.
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By space homogeneity of µ

µ
[
‖u (re)− u (0)‖2

]
≤ r2

∫ 1

0

µ
[
‖Du (σe)‖2

]
dσ

= r2µ
[
‖Du‖2

]

and thus the right-hand inequality of (8) is proved for every r > 0.
On the other side, for smooth vector fields we have

u (re)− u (0) = Du (0) re + r2

∫ 1

0

D2u (σe) (e, e) dσ

and thus

µ
[
‖Du · re‖2

]
≤ 2µ

[
‖u (re)− u (0)‖2

]

+ 2µ

[∥∥∥∥r2

∫ 1

0

D2u (σe) (e, e) dσ

∥∥∥∥
2
]

.

Again from space homogeneity of µ,

µ

[∥∥∥∥r2

∫ 1

0

D2u (σe) (e, e) dσ

∥∥∥∥
2
]
≤ r4µ

[∥∥D2u
∥∥2

]

and from discrete isotropy we have (see the appendix of [37])

µ
[
‖Du · e‖2

]
=

1
d
µ

[
‖Du‖2

]
.

Therefore

µ
[
‖u (re)− u (0)‖2

]
≥ r2

2d
µ

[
‖Du‖2

]
− r4µ

[∥∥D2u
∥∥2

]
.

Therefore, by definition of θ (µ),

S2 (r) ≥
(

1
2d

− r2

θ (µ)

)
µ

[
‖Du‖2

]
· r2.

This implies the left-hand inequality of (8) for r ∈ (0, θ(µ)
4d ]. The proof is

complete.

Theorem 5.3. Let M⊂ P ×R+ be a set with the following scaling property:
there is a function η̃ : M→ R+ (the length scale of the scaling property), with

lim
ν→0

sup
µ∈Mν

η̃ (µ, ν) = 0,
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a scaling exponent α ∈ (0, 2) and constants C2 ≥ C1 > 0, ν0 > 0, r0 > 0 such
that

(9) C1 · rα ≤ Sµ
2 (r) ≤ C2 · rα for r ∈ [η̃ (µ, ν) , r0]

for every ν ∈ (0, ν0) and every µ ∈ Mν . Let θ (µ) be the dissipation length
scale defined above.

Then the two length scales θ (µ) and η̃ (µ, ν) are related by the following
property: there exist C > 0, ν1 > 0 such that

(10) θ (µ) ≤ C · η̃ (µ, ν)

for every ν ∈ (0, ν1) and every µ ∈Mν .

For the proof we address to [37]; we do not repeat it here since it is in-
tuitively rather clear that (8) is in contradiction with (9) if the ranges of r
where the two properties hold overlap, so we need the bound (10).

Remark 5.8. The divergence of the range of r’s in the definition (9) of a scaling
law is essential to have a non trivial definition. If, on the contrary, we simply
ask that the scaling law holds on a bounded interval r ∈ [C3ην , C4ην ], we have
a definition without real interest, as it is explained by the example of section
5.1.

Let us finally state two general consequences of the previous theorem, that
we shall apply to stochastic Navier–Stokes equations.

Corollary 5.1. Given a family M⊂ P × R+, if

inf
(µ,ν)∈M

θ (µ) > 0

then no scaling law in the sense of the previous theorem may hold true.

Corollary 5.2. Let M⊂ P×R+ be a family with the K41 scaling law, in the
sense of definition 5.1. Then there exists ν0 > 0 and C > 0 such that

µ

[∫

T

∥∥D2u (x)
∥∥2

dx

]
≥ Cε

3/2
0 · ν−5/2

for every ν ∈ (0, ν0) and every µ ∈Mν .

Proof. From (10), the definition of η (µ, ν) and the definition of θ2 (µ) we have

µ
[∫

T ‖Du (x)‖2 dx
]

µ
[∫

T ‖D2u (x)‖2 dx
] ≤ Cν3/2η2

0

Thus, from the definition of ε0,
ε0

µ
[∫

T ‖D2u (x)‖2 dx
] ≤ Cν5/2η2

0 .

This implies the claim of the Corollary. The proof is complete.
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Remark 5.9. Dimensional analysis says that ν has dimension [L]2 [T ]−1, ε has
dimension [L]2 [T ]−3, so ε

3/2
0 · ν−5/2 has dimension [L]−2 [T ]−2, the correct

dimension of µ
[∫

T
∥∥D2u (x)

∥∥2
dx

]
.

Remark 5.10. The previous and next corollaries are based only on the scaling
exponents of η (µ, ν), not on the exponent 2/3 in definition 5.1. Therefore,
any other α ∈ (0, 2) in place of 2/3 would give us the same result.

Let us first apply the general results to disprove K41 in the 2D case. The
following result is well known.

Lemma 5.4. Let µ be an invariant measure of (1) (d = 2) such that

µ

[∫

T
‖Du (x)‖2 dx

]
< ∞.

Then µ ∈ P0 and

ν · µ
[∫

T
‖Du (x)‖2 dx

]
=

1
2

∞∑

i=1

σ2
i

ν · µ
[∫

T
‖Dcurlu (x)‖2 dx

]
=

1
2

∞∑

i=1

σ2
i λi.

Since
∫
T

∥∥D2u
∥∥2

dx =
∫
T ‖Dcurlu‖2 dx, we readily have:

Corollary 5.3. In 2D, there exists a positive constant θ0, independent of ν,
such that

θ (µ) = θ0

for every invariant measure µ ∈ P of (1). Hence a family of invariant mea-
sures M⊂ P × R+ of (1) cannot have any scaling law (in the sense of (9).

Remark 5.11. Under our assumptions on the noise, invariant measures of (1)
that belong to P certainly exist. In principle there could be others not in P,
but this cannot happen in all those cases when uniqueness of the invariant
measure is known (see [53] and the references therein).

Remark 5.12. Consider equation (1) without the nonlinear term (called Stokes
equations):

du(t) + νAu(t)dt =
∞∑

i=1

σihidβi (t) .

in dimension d = 2, 3. Let M⊂ P ×R+ be a family of invariant measures for
it. Then the same results of the previous theorem hold true. The proof is the
same. Alternatively, one may work componentwise in hi and prove easily the
claims.
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Let us treat now the 3D case. Recall the concept of Galerkin stationary
measures introduced at the end of Section 3 and the notations PGalerkin

NS (ν)
for the set of all such measures and Sn (ν) for the invariant measures of the
approximating Galerkin system (we underline here the dependence on ν).

Given u ∈ V , let Su be the tensor with L2 (T ) components

Su =
1
2

(
Du + DuT

)

(called stress tensor). The scalar field

Su (x) curlu (x) · curlu (x)

describes the stretching of the vorticity field. If we set ξ = curlu, then formally
we have

∂ξ

∂t
+ (u · ∇) ξ = ν�ξ + Suξ +

∞∑

i=1

σi (curlhi)
·
βi (t) .

A formal application of Itô formula yields the inequality

(11) ν · µ
∫

T
‖Dcurlu‖2 dx ≤ µ

∫

T
Sucurlu · curlu dx +

1
2

∞∑

i=1

σ2
i λi.

for µ ∈ PGalerkin
NS (ν) (in fact formally the identity). Along with the general

results proved above we would get

(12) µ

[∫

T
Su (x) curlu (x) · curlu (x) dx

]
≥ Cε

3/2
0 ν−3/2.

This would be the final result of this section, having an interesting physical
interpretation. However, we cannot prove this result in this form, without
further assumptions. We give, without proof (see [37]), two results around
(12): theorem 5.4 reformulates it for the coarse graining scheme given by
Galerkin approximations; theorem 5.4 expresses the most natural statement
directly for µ ∈ PGalerkin

NS (ν) but it requires an additional unproved regularity
assumption.

Theorem 5.4. Let M⊂ P ×R+, with Mν ⊂ PGalerkin
NS (ν), be a family with

the K41 scaling law. Then there exists ν0 > 0 and C > 0 such that

lim inf
k→∞

µnk

[∫

T
Sucurlu · curludx

]
≥ Cε

3/2
0 ν−3/2

for every ν ∈ (0, ν0), every µ ∈ Mν and every sequence µnk
∈ Skn (ν) such

that µkn
converges to µ on H.
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Lemma 5.5. If µ ∈ PGalerkin
NS (ν) is the weak limit of a sequence µnk

∈
Skn (ν) such that µnk

[
‖·‖2+ε

V

]
≤ C for some ε, C > 0, then

ν · µ
[∫

T
‖Du (x)‖2 dx

]
=

1
2

∞∑

i=1

σ2
i .

If in addition µnk

[
‖·‖3+ε

V

]
≤ C then (11) holds true.

Corollary 5.4. Let M⊂ P×R+, with Mν ⊂ PGalerkin
NS (ν), be a family with

the K41 scaling law. Assume that every µ in M is the weak limit of a sequence
µnk

∈ Skn (ν) such that
µnk

[
‖·‖3+ε

V

]
≤ C

for some ε, C > 0. Then there exists ν0 > 0 and C > 0 such that (12) holds
for every ν ∈ (0, ν0) and every µ ∈Mν .

Remark 5.13. If K41 scaling law holds then vortex stretching must be intense.
Heuristically, no geometrical depletion of such stretching may occur (in con-
trast to the 2D case where the stretching term is zero because curlu (x) is
aligned with the eigenvector of eigenvalue zero of Su (x)): indeed, if we ex-
trapolate the behavior E

[
|Du|2

]
∼ 1

ν as Du ∼ 1√
ν
, curlu ∼ 1√

ν
, then we get

E [Sucurlu · curlu] ∼ 1
ν
√

ν
if there is no help from the geometry. Another way

to explain this idea is the following sort of generalized Hölder inequality (for
the proof, see [37]).

Corollary 5.5. Let M⊂ P×R+, with Mν ⊂ PGalerkin
NS (ν), be a family with

the K41 scaling law, fulfilling the assumptions of theorem 5.4. Then there
exists ν0 > 0 and C > 0 such that

(
µ

∫

T
‖Du‖2 dx

)1/2

≤ C

(
µ

[∫

T
‖Sucurlu · curlu‖2 dx

])1/3

for every ν ∈ (0, ν0) and every µ ∈Mν .

5.6 A Condition Equivalent to K41

We continue with the notations and concepts just introduced in the last section
on the 3D case. Let u(t, x) be a solution of equation (1) on the unitary torus
(L = 1). We analyze the K41 property for it. Given L > 0, consider the new
fields (see Kupiainen [50])

uL (t, x) = L1/3u(L−2/3t, L−1x)

and pL (t, x) = L2/3p
(
L−2/3t, L−1x

)
. To help the intuition, think that L is

large so we blow-up the solution u. Formally, these fields satisfy the equations
on the torus of size L
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(13)
∂uL

∂t
+ (uL · ∇) uL +∇pL = νL�uL +

∞∑

i=1

σihi

( x

L

) ·
β

L

i (t)

where hi were the eigenfunctions of the Stokes operator on the unitary torus,
βL

i (t) are the independent Brownian motions

βL
i (t) = L1/3βi

(
L−2/3t

)

and
νL = νL4/3.

The heuristic proof of this fact is a simple exercise: all terms ∂uL

∂t , (uL · ∇) uL,
etc. are equal to L−1/3 times the analogous terms ∂u

∂t , (u · ∇) u, etc., and
formally

·
β

L

i (t) = L1/3
·
βi

(
L−2/3t

)
L−2/3 = L−1/3

·
βi

(
L−2/3t

)
.

The same computation can be performed for the more general transformation

u(λ,α) (t, x) = λαu
(
λα+1t, λx

)
, p(λ,α) (t, x) = λ2αp

(
λα+1t, λx

)

but the previous choice of exponents is the only one such that the energy
input per unit time and space is the same for every L, or λ (no coefficient
depending on the scale parameter appears in front of the noise). Heuristically,
if we believe in a uniform (not spiky, not intermittent) cascade picture of the
energy (without essential inverse cascade), this invariance of the energy input
should imply that the small scale properties of (1) (on the unitary torus) and
(13) are the same, namely that they are invariant under this transformation;
so we should expect that in the stationary regime uL (x) and u (x) have ap-
proximatively the same law. But this would imply that L1/3u(L−1x) and u (x)
have approximatively the same law, namely u (Lx) ∼ L1/3u(x). Such scaling
property would imply K41.

Let us stress again that not only we cannot prove claims like u(Lx) ∼
L1/3u(x) but we do not believe they are exactly true. Presumably the correct
result is closer to u(Lx) ∼ L1/3+ku(x) for some k > 0.

Let us denote by PGalerkin
NS (ν) the family of Galerkin stationary measures

for (1) on the unitary torus. Similarly, given L and a number ν̃ (not necessar-
ily equal to νL4/3), let us denote by PGalerkin

NS (ν̃, L) the family of Galerkin
stationary measures for equation (13) on the torus of size L, where we replace
the symbol νL by ν̃.

Let us denote by PGalerkin
NS ×R+ the set of all pairs (µ, ν) such that µ ∈

PGalerkin
NS (ν). Similarly, let us denote by P̃Galerkin

NS ×R
2
+ the set of all triples

(µ̃, ν̃, L) such that µ̃ ∈ P̃Galerkin
NS (ν̃, L).

Let P be the set of measures of the previous sections relative to the unitary
torus. Let P̃L for the set of probability measures analogous to P, but on



146 F. Flandoli

the torus [0, L]3. Denote by P̃ × R
2
+ the set of all triples (µ̃, ν̃, L) such that

(ν̃, L) ∈ R
2
+ and µ̃ ∈ P̃L. In the next definition and later on we use the

notation µ̃
[
‖u (e)− u(0)‖2

]
when µ̃ ∈ P̃L (and other similar mean values):

this means

µ̃
[
‖u (e)− u(0)‖2

]
=

∫

HL

‖u (e)− u(0)‖2 dµ̃ (u)

where HL is the usual space H but on the torus [0, L]3.
The following condition seems interesting since it looks rather qualitative,

in contrast to the definition of the K41 law, and shows that the exponent
2/3 arises from the scaling properties of the stochastic Navier–Stokes equa-
tions. Also the exponent in the range of r’s arises spontaneously from this
transformation.

Condition. A subset M̃ ⊂ P̃ × R
2
+ is said to satisfy Condition A if there

exist ν̃0 > 0, L0 > 0, C > c > 0 such that

(14) c ≤ µ̃
[
‖u (e)− u(0)‖2

]
≤ C

for every (µ̃, ν̃, L) ∈ M̃ with ν̃ ≤ ν̃0, L ≥ L0.

Theorem 5.5. The set P̃Galerkin
NS ×R

2
+ satisfies Condition A if and only if the

set PGalerkin
NS ×R+ has a scaling law of K41 type, in the sense of Definition 5.1.

Proof. Step 1 (preparation). The proof is simple but notationally non trivial.
The statement of K41 property involves two parameters, (ν, r), subject to the
following constraints:

ν ≤ ν0 , r ∈ [η0ν
3/4, r0].

Hence we deal with the region

Kν0,r0 =
{

(ν, r) ∈ R
2
+ : ν < ν0 , r ∈ [

(
η0ν

3/4, r0

)}

It is not restrictive to assume r0 = ν
3/4
0 η0, so the region Kν0,r0 looks like a

right-angled triangle with a round hypotenuse (we suggest the reader to draw
a picture of this set in the plane ν − r).

Condition A involves two other parameters, (ν̃, L), subject to the con-
straint

ν̃ ≤ ν̃0, L ≥ L0.

Hence, in condition A, we deal with the region

Dν̃0,L0 =
{
(ν̃, L) ∈ R

2
+ : ν̃ < ν̃0, L > L0

}
.



An Introduction to 3D Stochastic Fluid Dynamics 147

Such a region is a vertical semi-strip open upwards. Let us introduce the
transformation f : R

2
+ → R

2
+ defined as

f (ν, r) =
(
νr−4/3, r−1

)

which is invertible, with inverse given by

f−1 (ν̃, L) =
(
ν̃L−4/3, L−1

)
.

We have
f (Kν0,r0) = Dν̃0,L0

if ν̃0 = η
−4/3
0 , L0 = r−1

0 . The piece of the curve r = η0ν
3/4 pertaining to the

boundary of Kν0,r0 is mapped into the vertical half-line ν̃ = ν̃0, L > L0 of the
boundary of Dν̃0,L0 . The horizontal boundary segment of Kν0,r0 is mapped
into the horizontal boundary segment of Dν̃0,L0 . The vertical boundary seg-
ment of Kν0,r0 is mapped into the vertical half-line ν̃ = η

−4/3
0 , L > L0 of

Dν̃0,L0 .
Given any L > 0, let us also consider the mapping SL : HL → H defined

by (see the scaling transformation above)

u(x) = L−1/3ũ (Lx) .

It is possible to prove rigorously (see [37]) that

SL

(
P̃Galerkin

NS (ν̃, L)
)

= PGalerkin
NS (ν)

for every (ν, ν̃, L) ∈ R
3
+ such that ν = ν̃L−4/3.

The heuristic has been given above before the theorem.
Step 2 (Condition A implies K41). Given ν̃0, L0 in the definition of Con-

dition A, choose ν0, r0 such that f (Kν0,r0) ⊂ Dν̃0,L0 . Given (ν, r) ∈ Kν0,r0

and µ ∈ PGalerkin
NS (ν), let (ν̃, L) = f (ν, r), so that ν = ν̃L−4/3, and denote

by µ̃ the measure in P̃Galerkin
NS (ν̃, L) such that µ = Sr−1 µ̃. We have

Sµ
2 (r) =

∫

H

‖u (re)− u(0)‖2 dµ (u)

=
∫

H

‖u (re)− u(r0)‖2 d (Sr−1 µ̃) (u)

=
∫

Hr−1

∥∥∥r1/3ũ (e)− r1/3ũ(0)
∥∥∥

2

dµ̃ (ũ)

= r2/3

∫

Hr−1

‖ũ (e)− ũ(0)‖2 dµ̃ (ũ) .

By Condition A,
∫

Hr−1
‖ũ (e)− ũ(0)‖2 dµ̃ (ũ) is bounded between two con-

stants, hence we get K41.
Step 3 (K41 implies Condition A). The proof proceeds like step 2 but in

the opposite direction and is left to the reader.
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1 Introduction

The d–dimensional Navier–Stokes System, d � 2, is written usually for d + 1
unknown functions u(x, t) = (u1(x, t), u2(x, t), . . . , ud(x, t)), p(x, t) where x =
(x1, . . . , xd), t � 0 and it has the form

∂ui

∂t
+

d∑

k=1

∂ui

∂xk
uk(x, t) = ν∆ui −

∂p

∂xi
+ fi(x, t), i = 1, . . . , d

divu =
d∑

i=1

∂ui

∂xi
= 0.

(1)

The last equation is called the incompressibility condition and assumes
the density ρ ≡ 1. The coefficient ν is called the viscosity. In this paper we
take ν = 1 unless something else is mentioned.

The vector u(x, t) describes the velocity of the moving gas or liquid, p =
p(x, t) is the pressure, f = (f1(x, t), . . . , fd(x, t)) is the vector of external
forces which is a given function of x, t. Usually people consider three cases:
I) x ∈ R

d; II) x ∈ T
d; III) x ∈ Q ⊂ R

d where Q is a compact domain with a
smooth boundary and u(x, t) = 0, x ∈ ∂Q is a non-slip boundary condition.

It is believed that (1) describes the dynamics of an uni-phase gas. So the
phenomena like clouds, rain, snow, etc. are not described by the system (1)
and require more complicate equations. In the first part of these lectures we
deal mostly with the case I and f ≡ 0. Thus we study the dynamics of a
viscous fluid on the whole space when external forcing is absent. Presumably,
in this case we have a reasonable approximation to the dynamics of a dry
air in a big desert which has a purely kinematic character. However, in the
deserts such phenomena like tornados are possible and it is conceivable that
solutions of (1) can describe them to some extent.
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The basic property of (1) is the energy inequality. We shall derive it for
complex solutions of (1). Write down the system (1) in a sightly modified
form

∂ui

∂t
+

d∑

k=1

∂ūi

∂xk
uk(x, t) = ν∆ui −

∂p

∂xi
+ fi(x, t), i = 1, . . . , d (1′)

in (1′) it is assumed that u(x, t) is a complex-valued function of (x, t). Put

(2) E(u) =
1
2

∫
|u(x, t)|2dx

where |u(x, t)| =
d∑

i=1

ui(x, t)ūi(x, t). Then from (1′) under assumption f ≡ 0

dE

dt
=

1
2

∫

Rd

[
d∑

i=1

∂ui(x, t)
∂t

ūi(x, t) +
∂ūi(x, t)

∂t
ui(x, t)

]
dx

=
1
2

∫

Rd

[
ν

d∑

i=1

∆ui(x, t)ūi(x, t) + ν
d∑

i=1

∆ūi(x, t)ui(x, t)

−
d∑

i=1

d∑

k=1

∂ūi(x, t)
∂xk

uk(x, t)ūi(x, t)−
d∑

i=1

d∑

k=1

∂ui(x, t)
∂xk

ūk(x, t)ui(x, t)

−
d∑

i=1

∂p(x, t)
∂xi

ūi(x, t)−
d∑

i=1

∂p̄(x, t)
∂xi

ui(x, t)

]

The integration by parts of the first two terms gives −2ν
∫ d∑

i=1

|∇ui|2dx

which is always negative. The third term
d∑

i=1

d∑
k=1

∂ūi(x, t)
∂xk

uk(x, t)ūi(x, t) =

1
2

d∑
i=1

∂

∂xi

d∑
k=1

∂

∂xi

∂

∂xk
ū2

i (x, t)uk(x, t) and after the integration by parts

gives zero in view of incompressibility condition. The same is true for
d∑

i=1

d∑
k=1

∂ui(x, t)
∂xk

ui(x, t)ūk(x, t).

The last term also is zero in view of the incompressibility condition. Thus

dE

dt
= −2ν

∫ d∑

i=1

|∇ui(x, t)|2dx � 0

which is the main energy inequality.
As was mentioned before, in the first part of these lectures we consider

d = 3 and f ≡ 0. It will be convenient to make the Fourier transform



Mathematical Results Related to the Navier–Stokes System 153

v(k, t) =
∫

R3

exp{−i〈k, x〉}u(x, t)dx

and to write down the equation for v(k, t) equivalent to (1):

(3)

v(k, t) = e−|k|2tv(k, 0)+i

t∫

0

exp{−(t−s)|k|2}ds

∫

R3

〈k, v(k−k′, s)〉Pkv(k′, s)dk′

The incompressibility condition takes the form v(k, t)⊥k for any k 
= 0.
For this reason the pressure does not appear in (3) but instead we consider the
space of functions v(k), v(k)⊥k, k ∈ R

3 as the phase space of the dynamical
system corresponding to (3).

The properties of solutions of (3) depend on the functional space in which
(3) is studied. We shall call strong solutions of (3) on the interval [0, T ] func-
tions v(k, t), 0 � t � T , such that the integrals

∫

R3

|v(k − k′, s)||v(k′, s)|dk′

are uniformly bounded in s and the rhs equals the lhs. This definition is
slightly different from the one proposed by T. Kato (see [K1]).

We need the subspaces Φ(α, ω) introduced in [S1]. Namely
Definition 1. {v(k), k ∈ R

3} ∈ Φ(α, ω) if for some constants C, D

1. |v(k)| � C

|k|α , |k| � 1;

2. |v(k)| � D

|k|ω , |k| � 1.

In this definition instead of 1 we could take any positive number and α,
ω satisfy the inequalities α � 2, ω < 3. Infimum of all possible C + D can be
considered as some norm in the space Φ(α, ω).

In the spaces Φ(α, ω), α > 2, ω < 3 a local existence theorem is valid (see
[S1]). Namely, for any v(k, 0) ∈ Φ(α, ω) one can find t0 = t0(v(k, 0)) such that
(3) has a unique solution on [0, t0] belonging to the space Φ(α, ω).

In the space Φ(2, 2) even a stronger statement is valid. Let v(k, 0) =
c(k, 0)
|k|2

and sup |c(k, 0)| = ‖c(k, 0)‖ � c0 where c0 is sufficiently small. Then there
exists the unique solution v(k, t) of (3) defined for all t > 0. This theorem
was proven by Le Jan and Sznitman (see [LJS]) and by M. Cannone and
F. Planchon (see [CP]). In [S1] a short proof of this theorem was given.

Hypothesis 1. For “typical” v(k, 0) =
c(k, 0)
|k|2 and large ‖c(k, 0)‖ even

the local existence theorem in not valid.
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For any d > 3 the space of functions v(k, 0) =
c(k, 0)
|k|d−1

has the same prop-

erties as Φ(2, 2) for d = 3 and is called critical space.
Hypothesis 2. A limiting orbit of any solution of (3) from Φ(2, 2) with

small initial condition is periodic (or fixed point).
After Fourier transform the functions v(k, t) take values in the space C

3.
We shall allow v(k, t) to be arbitrary C

3–valued functions on R
3, which is

equivalent to the assumption that we allow to consider complex-valued solu-
tions of (1).

Take v(k, 0) =
c(k, 0)
|k|α ∈ Φ(α, α), α = 2 + E and E > 0, ‖c(k, 0)‖ = 1 and

introduce a one-parameter family of initial conditions vA(k, 0) =
Ac(k, 0)
|k|α

where A is a complex number. According to the local existence theorem an
interval of time where the solution exists is t0(A). In [S2] the following theorem
was proven.

Theorem 1.1. The local existence theorem is valid on the time interval [0, t]
such that |λ| � λ0(α) where λ = At

E

2 and λ0(α) is an absolute constant
depending only on α.

The proof of this theorem is based on the method of iterations. In the case
of (3) the iterations are defined by the formula

c(n)(k, t) = exp{−t|k|2}c(k, 0) + i

t∫

0

exp{−(t− s)|k|2}ds

∫

R3

〈k, c(n−1)(k − k′, s)〉Pkc(n−1)(k′, s)dk′

|k − k′|α|k′|α

(4)

First we show that if |λ| � λ0(α) then ‖c(n)‖ � 2A for all n � 1. Then
we show that the c(n−1) → c(n) given by (4) is a contraction. This gives the
result.

A similar statement in the 2–dimensional case was proven by M. Arnold

for
1
2

< α < 1 (see [A1]).

2 Power Series and Diagrams
for the Navier–Stokes-System

As was mentioned before, in the first part of these lectures the previous results
show λ = At

E

2 is the ruling parameter in Φ(α, α). Therefore it is natural to
construct power series of λ which give solutions of (3). We write such a series
in the form:
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(1)

vA(k, t)=A

⎛

⎝exp{−t|k|2}v(k, 0)+
∑

p�1

Ap

t∫

0

exp{−(t− s)|k|2}s pE

2 gp(k
√

s, s)ds

⎞

⎠

Put k̃ = k
√

s, k̃′ = k′√s, s1 = ss̃1, s2 = ss̃2. Then

g1(k̃, s) = i

∫

R3

〈k̃, c
(

k̃−k̃′
√

s
, 0

)
〉Pkc

(
k̃′
√

s
, 0

)
e−|k̃′|2−|k̃−k̃′|2dk̃′

|k̃ − k̃′|α|k̃′|α

g2(k̃, s) =

i

⎡

⎣
t∫

0

s̃E

1ds̃1

∫

R3

〈k̃, g1((k̃ − k̃′)
√

s̃1, ss̃1)〉Pkc
(

k̃′
√

s
, 0

)
e−|k̃′|2−(1−s̃1)|k̃−k̃′|2dk̃′

|k̃′|α

+

t∫

0

s̃E

2ds̃2

∫

R3

〈k̃, c
(

k̃−k̃′
√

s
, 0

)
〉Pkg1(k̃′√s̃2, ss̃2)e−(1−s̃2)|k̃′|2−|k̃−k̃′|2dk̃′

|k̃ − k̃′|α

⎤

⎦

and in the general case

gp(k̃, s) =

i

⎡

⎣
t∫

0

s̃
pE

2
1 ds̃1

∫

R3

〈k̃, c
(

k̃−k̃′
√

s
, 0

)
〉Pkgp−1(k̃′√s̃1, ss̃1)e−(1−s̃1)|k̃′|2−|k̃−k̃′|2dk̃′

|k̃ − k̃′|α

+
∑

p1,p2�1
p1+p2=p−1

t∫

0

s̃
(p1+1)E

2
1 ds̃1

t∫

0

s̃
(p2+1)E

2
2 ds̃2

∫

R3

〈k̃, gp1((k̃ − k̃′)
√

s̃1, ss̃1)〉

Pkgp2(k̃
′√s̃2, ss̃2)e−(1−s̃2)|k̃′|2−(1−s̃1)|k̃−k̃′|2dk̃′

+

t∫

0

s̃
pE

2
2 ds̃2

∫

R3

〈k̃, gp−1((k̃ − k̃′)
√

s̃2, ss̃2)〉Pkc
(

k̃′
√

s
, 0

)
e−|k̃′|2−(1−s̃2)|k̃−k̃′|2dk̃′

|k̃′|α

⎤

⎦

(2)

We shall discuss these relations under the
Main Assumption:
The function c(k, 0) ≡ 0 if |k| � R. If |k| � R then |c(k, 0)| � C|k|α. Here

C and R are arbitrary positive constants.
This assumption means that the initial velocity v(k, 0) ≡ 0 if |k| � R and

|v(k, 0)| � C if |k| � R.
Important Remark. Take any bounded function with compact support

v(k, 0). We can embed it into any space Φ(α, α) and the corresponding function
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c(k, 0) will depend on α: v(k, 0) =
c(α)(k, 0)
|k|α . The series also depends on α.

However, it is easy to check that the result v(k, t) does not depend on α.
In [S2] the estimates of gp(k̃, s) were derived which imply that the series

(1) converges if |λ| � λ1(α) where λ1 is a constant depending only on α.
The series (1) can be expressed as a sum of multi-dimensional integrals

which we call diagrams.
Consider any term in (2). Using (2) we can express gp1, gp2 through gq1, gq2 ,

q1 < p1; q2 < p2 and so on. As a result gp can be written as a sum of multi-
dimensional integrals involving the products of p initial conditions c(·, 0) with
different values of the arguments.

Each integral corresponds to some choice of terms in (2). It is easy to show
that the number of diagrams grows with p not faster than exponentially.

We shall explain in more detail the structure of diagrams (see [S3]). Each
diagram is determined by a scheme. Any scheme is a sequence of partitions.
We start with the set [1, 2, . . . , p+1] = ∆(0) and decompose it onto two subsets
∆(j1), j1 = 1 or 2, where ∆(1) = [1, . . . , p1], ∆(2) = [p1 + 1, . . . , p + 1].

In the same way each subset ∆(j1) can be decomposed onto two subsets
∆(j1,j2), j2 = 1 or 2 and so on.

Elements of partitions which appear in this way are denoted by
∆(j1,j2,...,jm), p(j1, j2 . . . , jm) is the number of integer points belonging to
∆(j1,j2,...,jm).

An element ∆(j1,j2,...,jm) is called final if it has only one point and thus it
cannot be decomposed onto smaller parts. The whole sequence of partitions
is called a scheme.

Take a scheme S(p+1). For each non-final ∆(j1,j2,...,jm) introduce a variable
s̃(j1, . . . , jm), 0 � s̃(j1, . . . , jm) � 1. The integral

Λ(S(p + 1)) =
∏(nf)

1∫

0

(s̃(j1, . . . , jm))
p(j1,...,jm)E

2 ds̃(j1, . . . , jm)

is called the partition function of the diagram,
∏(nf) is the product over all

non-final ∆(j1,...,jm). There are diagrams for which Λ(S(p + 1)) decay faster
that exponentially and there are the other ones for which Λ(S(p+1)) decay ex-

ponentially with p. Introduce the rescaling s̃(j1, . . . , jm) = 1− 2θ(j1, . . . , jm)
p(j1, . . . , jm)E

and write
∏(nf)

(s̃(j1, . . . , jm))
p(j1,...,jm)E

2

= Λ(S(p + 1))
∏(nf)

(
1 +

2
p(j1, . . . , jm)E

)(
1− 2θ(j1, . . . , jm)

p(j1, . . . , jm)E

) p(j1,...,jm)E

2

dθ(j1, . . . , jm)

.
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This formula shows that for large p the distribution of θ(j1, . . . , jm) is close
to exponential.

The whole integral corresponding to a diagram is a double integral and
the outer integration is the integration over all variables θ(j1, . . . , jm) for non-
final ∆(j1,...,jm). For each ∆(j1,...,jm) introduce the variable k̃(j1, . . . , jm) such
that k̃(j1, . . . , jm) = k̃(j1, . . . , jm, 1) + k̃(j1, . . . , jm, 2). The inner integrations
are the integrations over all variables k̃(j1, . . . , jm) satisfying the last rela-
tion. There is a Gaussian factor under the sign of integration which we shall
describe. The integration goes from ∆(j1,...,jm,j), j = 1, 2 to ∆(j1,...,jm).

Assume that for ∆(j1,...,jm,j) we have the Gaussian factors
exp{−r(j1, . . . , jm, j)|k̃(j1, . . . , jm, j)|2}. First we add the Gaussian factor
exp

{
− 2θ(j1,...,jm,j)

p(j1,...,jm,j)E |k̃(j1, . . . , jm, j)|2
}

. This suggests that r(j1, . . . , jm, j) can

be written in the form r(j1, . . . , jm, j) = ρ(j1,...,jm,j)
p(j1,...,jm,j) so that ρ(j1, . . . , jm, j)

takes values O(1). The first step can be written as

r′(j1, . . . , jm, j) = r(j1, . . . , jm, j) +
2θ(j1, . . . , jm, j)
p(j1, . . . , jm, j)E

or

(3) ρ′(j1, . . . , jm, j) = ρ(j1, . . . , jm, j) +
2θ(j1, . . . , jm, j)

E

The next step follows from the formula (see [S2] or [S3])

a1|k̃(j1, . . . , jm, 1)|2 + a2|k̃(j1, . . . , jm, j, 2)|2 =
a1a2

a1 + a2
|k̃(j1, . . . , jm)|2

+ (a1 + a2)
∣∣∣∣k̃(j1, . . . , jm, 2)− a1

a1 + a2
k̃(j1, . . . , jm)

∣∣∣∣
2(4)

This shows that

r(j1, . . . , jm) =
1

1
r′(j1,...,jm,1) + 1

r′(j1,...,jm,2)

or

1
ρ(j1, . . . , jm)

=
1

ρ′(j1, . . . , jm, 1)
p(j1, . . . , jm, 1)
p(j1, . . . , jm)

+
1

ρ′(j1, . . . , jm, 2)
p(j1, . . . , jm, 2)
p(j1, . . . , jm)

(5)

The last expression can be considered as a two-dimensional version of the
famous Gauss map in the theory of dynamical systems. The second term in
(4) is used as the weight with respect to which the integration goes.

The last part in the inner integration is the product
∏(f) over all final

elements and each factor is c

(
k̃(j1,...,jm,j)√
s(j1,...,jm,j)

, 0
)

which stays either under the



158 Y.G. Sinai

inner product or under the sign Pk̃(j1,...,jm) depending on the structure of the

diagram. Also s(j1, . . . , jm) = s
m∏

r=1
s̃(j1, . . . , jr).

It turns out that the estimates of the diagrams depend on the behavior of
the partition function. A diagram is called simple if in each partition one of
the elements is final. It was shown in [S3] that simple diagrams decay faster
than exponentially. Presumably this result can be extended to the class of
diagrams where each partition has one element with less than d1 points where
d1 is a fixed number.

Quite different type of behavior is displayed by another class of diagrams.

Choose constants d2, 0 < d2 <
1
2
, d3 and consider the diagrams where

d2 � p(j1, . . . , jm, 1)
p(j1, . . . , jm)

� 1− d2 for all elements of partitions which have more

than d3 points. Such diagrams are called short because the number of floors
in the related tree is less than (const) log2 p. Partition functions of short dia-
grams decay exponentially. In [S3] we described some approach which allows
to study and to estimate short diagrams for large p. This approach resembles
the renormalization group method in statistical mechanics.

3 Foias-Temam Theorem for 2D–Navier–Stokes System
with Periodic Boundary Condition

Probably this case is the simplest in the whole mathematical theory of Navier–
Stokes system. Foias and Temam proved in [FT] a remarkable theorem which
says that for any sufficiently smooth initial condition the solution of (1) is
real-analytic for all t > 0. We shall reproduce here this theorem following our
joint paper with J.Mattingly (see [MS] and [ES]).

We shall use the Fourier series:

u(x, t) =
∑

k∈Zd

vk(t) exp{2πi〈k, x〉}

Then the system of equation for the Fourier modes takes the form

(1)
dvk(t)

dt
= −|k|2vk(t)− 2πi

∑

k1∈Zd

〈k, vk1(t)〉Pkvk−k1(t) + fk

Here fk are Fourier coefficients of the external force. For simplicity we
assume that fk do not depend on t and are different from zero only for finitely
many values of k. The sum Ω({vk}) =

∑
k

|k|2|vk|2 is called the enstrophy.

Below we consider the case d = 2 or 3.

Lemma 3.1. Assume that |vk(0)| � D1

|k|γ for some D1 < ∞ and γ � d

2
+ 1

and for a solution {vk(t), 0 � t � T} the enstrophy Ω({vk(t)}) � Ω0. Then
one can find another constant D2 such that
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|vk(t)| � D2

|k|γ , 0 � t � T

for all k 
= 0.

Proof: For simplicity we assume that all vk(t) and fk are pure imaginary
and therefore we can consider the real-valued version of (1). Take a sufficiently
large K. Then we can find a constant D2(K) = D2 such that

|vk(t) �
√

Ω0

|k| | �
D2(K)
|k|γ , |k| � K.

We shall prove that |vk(t)| � D2(K)|k|−γ for all k, |k| > K, provided that
K is large enough.

Suppose that this is wrong and

|vk̄(t̄)| = D2(K)
|k̄|γ .

We may assume that t̄ is the least value of t̄ for which this is true (however,
see the Remark at the end of the proof) and consider the case

vk̄(t̄) =
D2(K)
|k̄|γ .

The other case when there is a minus in this relation can be discussed in
a similar way. We must have

dvk̄(t̄)
dt

� 0.

We shall come to a contradiction if we show that the viscous term in (1)
dominates and the rhs of (1) is negative.

I. |k1| �
1
2
|k̄|. In this case |k̄ − k1| �

1
2
|k̄| and therefore |vk̄−k1

||k̄ − k1| �

D2(K)
1

|k̄ − k1|γ−1
.

We can write
∣∣∣∣∣∣

∑

|k1|� 1
2 |k̄|

〈k̄, vk1〉Pk̄vk̄−k1

∣∣∣∣∣∣
�

∑

|k1|� 1
2 |k̄|

|vk1 ||k̄ − k1||vk̄−k1
|

� D22γ−1|k̄|−γ+1
∑

|k1|� 1
2 |k̄|

|vk1 |

and by Cauchy-Schwartz inequality
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∑

|k1|� 1
2 |k̄|

|vk1 | �
∑

k1 �=0
|k1|� 1

2 |k̄|

|k1||vk1 |
1
|k1|

�
√∑

k1

|k1|2|vk1 |2
√√√√√

∑

k1 �=0
|k1|� 1

2 |k̄|

1
|k1|2

�
√

Ω0Const|k̄|d−2

In the two-dimensional case we shall have ln |k̄|. It is clear that last ex-
pression is much smaller than the viscous term |k̄|2−γD2 if K is large enough.

II.
1
2
|k̄| � |k1| � 2|k̄|. In this case

∑

1
2
|k̄|�|k1|�2|k̄|

|vk1 ||k̄ − k1||vk̄−k1
| � 2γD2(K)

|k̄|γ
∑

1
2
|k̄|�|k1|�2|k̄|

|vk̄−k1
||k̄ − k1|.

Using the same arguments as before we get
∑

1
2
|k̄|�|k1|�2|k̄|

|vk̄−k1
||k̄ − k1| �

√
Ω0|k̄|

3
2 .

Again we see that the viscous term dominates.
III. |k1| > 2|k̄|. Here |k̄ − k1| > |k̄| and

∑

|k1|>2|k̄|

|vk1 ||k̄ − k1||vk̄−k1
| �

∑

|k1|>2|k̄|

D2
2Const

|k1|d+3
� D2

2Const

|k̄|3

and the viscous term dominates. Lemma is proven. �

Remark. One has to prove that in our situation t̄ > 0. This follows from
the method of iteration (see above) and from the construction of solutions for
small t.

Now we can formulate and prove the main theorem.

Theorem 3.1. Let us assume that {vk(0)} is such that |vk(0)| � D1

|k|γ , k 
= 0

and for a solution {vk(t)} the enstrophy Ω � Ω0, 0 � t � T0. Then one can

find positive numbers α, D3 such that |vk(t)| � D3 exp{−αt|k|}
|k|γ .

The proof goes essentially in the same way as the proof of Lemma 3.1.

First we take a large K and find α(K) = α such that |vk(t)| � 2D1

|k|γ e−αt|k|,

0 � t � T0 for all k, |k| � K. Introduce v
(1)
k (t) = eαt|k|vk(t). Then we can

write down the system of equations for v
(1)
k (t) and prove that the viscous term

again dominates for |k| > K. The arguments are the same as in the proof of
Lemma 3.1. The details are left for the reader.
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4 Burgers System and 1 − D Inviscid Burgers Equation
with Random Forcing

Burgers system differs from the Navier–Stokes system by the absence of the
pressure term. In the d-dimensional case it has the form:

(1)
∂ui

∂t
+

d∑

k=1

∂ui

∂xk
uk = ν∆ui +

∂F (x, t)
∂xi

Here u = (u1, . . . , ud) is the velocity vector, F is the potential of external
forces. The viscosity ν again equals to 1. There is no incompressibility condi-
tion and, for this reason, no pressure term. We shall consider (1) with periodic
boundary conditions.

For the system (1) one can prove the existence and uniqueness of strong
solutions (G.A. Seregin, private communication). The system (1) has the fol-
lowing remarkable property: if u(x, 0) is a gradient of some function then
u(x, t) for all t > 0 is a gradient of some function. Let us write u = −2∇ϕ

ϕ .
Then ϕ(x, t) satisfies the heat equation

(2)
∂ϕ(x, t)

∂t
= ∆ϕ(x, t) + F (x, t)ϕ(x, t)

whose solution can be written with the help of Feynman-Kac formula. The
transition from u to ϕ is called the Hopf-Cole substitution. However, presum-
ably it was known much before the works of Hopf and Cole. In [S4] the case of
random potential F was considered. With the help of methods of statistical
mechanics the existence and uniqueness of stationary measure for the related
Markov process was proved. It would be interesting to extend the results of
[S2] to the case of hyperbolic systems, i.e. to the case of systems of conser-
vation laws perturbed by viscous terms (see a very interesting but concise
survey paper [B1] by Bressan about systems of conservation laws).

Now we shall consider d = 1 and ν = 0 which is called one-dimensional
inviscid Burgers equation. The function F (x, t) =

∑
|k|�K

σ′
k sin 2πkxB′

k(t) +
∑

|k|�K

σ′′
k cos 2πkxB′′

k (t) where B′
k, B′′

k are independent white noises, σ′
k and σ′′

k

are constants. The equation (1) determines a Markov process in the functional
space of periodic functions u(x) and we shall discuss the problem of existence
and uniqueness of stationary measure for this process. It is well known that
in a typical situation solutions of (1) have discontinuities of the first kind.
Therefore the phase space of this process should be the Skorokhod space.

The equation (1) was studied in the paper [EKMS1] by Weinan E,
K. Khanin, A. Mazel and myself. The construction of the stationary measure
was done with the help of the so-called “One force – One solution principle”
which we explain below.

Consider a piece-wise continuously differentiable function x={x(t), t � 0}
with values in S1 and introduce the formal expression
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A(x) =

0∫

−∞

[
1
2

(
dx

dt

)2

+ F (x, t)

]
dt

which we shall call action. The last integral is a stochastic integral which
should be understood in the sense of Ito calculus.

Definition 4.1. A function x̄ is called a one-sided minimizer if for any x
such that x̄(t) = x(t) for all t � t0 for some t0 the difference A(x)−A(x̄) � 0.

Clearly, the difference is well-defined. It is easy to show that if x̄ is a
one-dimensional minimizer then it satisfies the Euler-Lagrange equation

dx

dt
= v,

dv

dt
= −∂F (x, t)

∂x

which should be treated as a system of stochastic differential equations. The
first result is the following theorem.

Theorem 4.1.. With probability 1 for every x0 ∈ S1 there exists a one-sided
minimizer x̄(t), t � 0, such that x̄(0) = x0.

These minimizers have many remarkable properties.

Theorem 4.2.. With probability 1 the one-sided minimizers are pair-wise
disjoint. More precisely, if x̄′, x̄′′ are two minimizers then x̄′(t) 
= x̄(t)′′ for
all t < 0.

The usual methods of variational calculus allow us to prove the absence of two
values t1, t2 such that x̄′(tj) = x̄′′(tj), j = 1, 2. The absence of one value t1
requires more subtle arguments and uses the random character of the forcing.

Put u(x, 0) =
dx̄(t)

dt

∣∣∣∣
t=0

x̄(0)=x

and u(x, s) is the same function u(·, 0) con-

structed for the shifted potential B(x, t + s). The so-called Lax-Oleinik vari-
ational principle (see [L], [O]) says that u(x, s) is a weak solution of (1).
One can easily see that the induced probability distribution of u(·, 0) gener-
ates a stationary measure for our Markov process. It is possible to show that
this measure is unique. This statement is an illustration of the principle “one
force — one solution”.

Using the described construction one can study properties of typical real-
izations wrt this measure.

For example for any s with probability 1 the set where u(x, s) is discontin-
uous is finite for every s. Having a realization of the random potential F (x, t)
consider the set of (x, s) ∈ S1 × R

1 where u(x, s) is discontinuous. It has the
from of skeleton containing a special curve y = y(s), −∞ < s < ∞, which is
called the main shock. Other components of this set are compact ribs which
sooner or later merge with the main shock. The main shock is unique with
probability 1.
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A curve ȳ(t), −∞ < t < ∞ is called the two-sided minimizer if it gives
minimum to all compact perturbation of the integral

∞∫

−∞

[
1
2

(
dȳ

dt

)2

+ F (ȳ(t), t)

]
dt

It is possible to show that with probability 1 the two-sided minimizer exists
and is unique. It satisfies the Euler-Lagrange equation

(3)
dȳ

dt
= v̄,

dv̄

dt
= F (ȳ, t)

and with probability 1 is a hyperbolic solution of the system (3) in the sense
of theory of dynamical systems. In particular, it has stable and unstable man-
ifolds and the set {x, u(x, 0)} is a subset of the unstable manifold of the
two-sided minimizer.

Using the described construction one can study the probability distribu-
tions of various random variables important from the point of view of physical
applications (see [EKMS2], [ES] and other references given there).
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11. Teoria della funzioni di più variabili complesse e delle funzioni

1957 12. Geometria aritmetica e algebrica (2 vol.)

13. Integrali singolari e questioni connesse

14. Teoria della turbolenza (2 vol.)

1958 15. Vedute e problemi attuali in relatività generale
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31. Proprietà di media e teoremi di confronto in Fisica Matematica

1964 32. Relatività generale
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