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Preface

This is an introductory textbook on the geometrical theory of dynamical
systems, fluid flows, and certain integrable systems. The subjects are
interdisciplinary and extend from mathematics, mechanics and physics to
mechanical engineering. The approach is very fundamental and would be
traced back to the times of Poincaré, Weyl and Birkhoff in the first half of
the 20th century. The theory gives geometrical and frame-independent char-
acterizations of various dynamical systems and can be applied to chaotic
systems as well from the geometrical point of view. For integrable systems,
similar but different geometrical theory is presented.

Underlying concepts of the present subject are based on the differen-
tial geometry and the theory of Lie groups in mathematical aspect and
based on the gauge theory in physical aspect. Usually, those subjects are
not easy to access, nor familiar to most students in physics and engineering.
A great deal of effort has been directed to make the description elementary,
clear and concise, so that beginners have easy access to the subject. This
textbook is intended for upper level undergraduates and postgraduates in
physics and engineering sciences, and also for research scientists interested
in the subject.

Various dynamical systems often have common geometrical structures
that can be formulated on the basis of Riemannian geometry and Lie group
theory. Such a dynamical system always has a symmetry, namely it is invari-
ant under a group of transformations, and furthermore it is necessary that
the group manifold is endowed with a Riemannian metric. In this book,
pertinent mathematical concepts are illustrated and applied to physical
problems of several dynamical systems and integrable systems.

The present text consists of four parts: I. Mathematical Bases,
II. Dynamical Systems, III. Flows of Ideal Fluids, and IV. Geometry of

v
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Integrable Systems. Part I is composed of three chapters where basic math-
ematical concepts and tools are described. In Part II, three dynamical sys-
tems are presented in order to illustrate the fundamental idea on the basis
of the mathematical framework of Part I. Although those systems are well-
known in mechanics and physics, new approach and formulation will be
provided from a geometrical point of view. Part III includes two new theo-
retical formulations of flows of ideal fluids: one is a variational formulation
on the basis of the gauge principle and the other is a geometrical for-
mulation based on a group of diffeomorphisms and associated Riemannian
geometry. Part IV aims at presenting a different geometrical formulation for
integrable systems. Its historical origin is as old as the Riemannian geom-
etry and traced back to the times of Bäcklund, Bianchi and Lie, although
modern theory of geometry of integrable systems is still being developed.

More details of each Part are as follows. In Part I, before considering
particular dynamical systems, mathematical concepts are presented and
reviewed concisely. In the first chapter, basic mathematical notions are
illustrated about flows, diffeomorphisms and the theory of Lie groups. In
the second chapter, the geometry of surface in Euclidian space R

3 is sum-
marized with special emphasis on the Gaussian cuvature which is one of
the central objects in this treatise. This chapter presents many elementary
concepts which are developed subsequently. In the third chapter, theory of
Riemannian differential geometry is summarized concisely and basic con-
cepts are presented: the first and second fundamental forms, commutator,
affine connection, geodesic equation, Jacobi field, and Riemannian curva-
ture tensors.

The three dynamical systems of Part II are fairly simple but funda-
mental systems known in mechanics. They were chosen to illustrate how
the geometrical theory can be applied to dynamical systems. The first sys-
tem in Chapter 4 is a free rotation of a rigid body (Euler’s top). This is a
well-known problem in physics and one of the simplest nonlinear integrable
systems of finite degrees of freedom. Chapter 5 illustrates derivation of the
KdV equation as a geodesic equation on a group (actually an extended
group) of diffeomorphisms, which gives us a geometrical characterization of
the KdV system. The third example in Chapter 6 is a geometrical analysis
of chaos of a Hamiltonian system, which is a self-gravitating system of a
finite number of point masses.

Part III is devoted to Fluid Mechanics which is considered to be a central
part of the present book. In Chapter 7, a new gauge-theoretical formulation
is presented, together with a consistent variational formulation in terms of
variation of material particles. As a result, Euler’s equation of motion is



August 2, 2004 16:5 WSPC/Book Trim Size for 9in x 6in fm

Preface vii

derived for an isentropic compressible flow. This formulation implies that
the vorticity is a gauge field. Chapter 8 is a Riemannian-geometrical formu-
lation of the hydrodynamics of an incompressible ideal fluid. This gives us
not only geometrical characterization of fluid flows but also interpretation
of the origin of Riemannian curvatures of flows. Chapter 9 is a geometrical
formulation of motions of a vortex filament.

It is well known that some soliton equations admit a geometric interpre-
tation. In Part IV, Chapter 10 reviews a classical theory of the sine–Gordon
equation and the Bäcklund transformation which is an oldest example of
geometry of a pseudo-spherical surface in R

3 with the Gaussian curvature
of a constant negative value. Chapter 11 presents a geometric and group-
theoretic theory for integrable systems such as sine–Gordon equation, non-
linear Schrödinger equation, nonlinear sigma model and so on. Final section
presents a new finding [CFG00] that all integrable systems described by the
su(2) algebra are mapped to a spherical surface.

Highlights of this treatise would be: (i) Geometrical formulation of
dynamical systems; (ii) Geometric description of ideal-fluid flows and
an interpretation of the origin of Riemannian curvatures of fluid flows;
(iii) Various geometrical characterizations of dynamical fields; (iv) Gauge-
theoretic description of ideal fluid flows; and (v) Modern geometric and
group-theoretic formulation of integrable systems.

It is remarkable that the present geometrical formulations are successful
for all the problems considered here and give insight into common back-
ground of the diverse physical systems. Furthermore, the geometrical for-
mulation opens a new approach to various dynamical systems.

Parts I–III of the present monograph were originally prepared as lecture
notes during the author’s stay at the Isaac Newton Institute in the pro-
gramme “Geometry and Topology of Fluid Flow” (2000). After that, the
manuscript had been revised extensively and published as a Review arti-
cle in the journal, Fluid Dynamics Research. In addition, the present book
includes Part IV, which describes geometrical theory of Integrable Systems.
Thus, this covers an extensive area of dynamical systems and reformulates
those systems on the basis of geometrical concepts.

Tsutomu Kambe
Former Professor (Physics)∗

December 2003 University of Tokyo

∗Visiting Professor, Nankai Institute of Mathematics (Tienjin, China)
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Chapter 1

Manifolds, Flows, Lie Groups
and Lie Algebras

In geometrical theory of dynamical systems, fundamental
notions and tools are manifolds, diffeomorphisms, flows,
exterior algebras and Lie algebras.

1.1. Dynamical Systems

In mechanics, we deal with physical systems whose state at a time t is
specified by the values of n real variables,

x1, x2, . . . , xn,

and furthermore the system is such that its time evolution is completely
determined by the values of the n variables. In other words, the rate of
change of these variables, i.e. dx1/dt, . . . ,dxn/dt, depends on the values of
the variables themselves, so that the equations of motion can be expressed
by means of n differential equations of the first order,

dxi

dt
= Xi(x1, x2, . . . , xn), (i = 1, 2, . . . , n). (1.1)

A system of time evolution of variables, such as (x1(t), . . . , xn(t)) described
by (1.1), is termed a dynamical system [Birk27]. A simplest example would
be the rectlinear motion of a point mass m located at x under a restoring
force −kx of a spring:

dx/dt = y, dy/dt = −kx,

where k is a spring constant. A system of N point masses under self-
interaction governed by Newton’s equations of motion is another example.

3
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However, the notion of the dynamical system is more general, and not
restricted to such Newtonian dynamical system.

The space where the n-tuple of real numbers (x1, . . . , xn) reside is called
a n-dimensional manifold Mn which will be detailed in the following sec-
tions. The space is also called the configuration space of the system, while
the physical state of the system is determined by the 2n variables: the coor-
dinates (x1, . . . , xn) and the velocities (ẋ1, . . . , ẋn) where ẋi = dxi/dt. Such
a system is said to have n degrees of freedom. It is of fundamental impor-
tance how the differential equations are determined from basic principles,
and in fact this is the subject of the present monograph.

Study of dynamical systems may be said to have started with the work
of Henri Poincaré at the turn of the 19th to 20th century. Existence of
very complicated orbits was disclosed in the problem of interacting three
celestial bodies. After Poincaré, Birkhoff studied an exceedingly complex
structure of orbits arising when an integrable system is perturbed [Birk27;
Ott93]. Later, the basic question of how prevalent integrability is, was given
a mathematical answer by Kolmogorov (1954), Arnold (1963) and Moser
(1973), which is now called the KAM theorem and regarded as a funda-
mental theorem of chaos in Hamiltonian systems (e.g. [Ott93]).

The present approach to the dynamical systems is based on a geo-
metrical point of view.1 The geometrical frameworks concerned here were
founded earlier in the 19th century by Gauss, Riemann, Jacobi and others.
However in the 20th century, stimulated by the success of the theory of gen-
eral relativity, the gauge theory (a geometrical theory) has been developed
in theoretical physics. It has now become possible to formulate a geometri-
cal theory of dynamical systems, mainly due to the work of Arnold [Arn66].

1.2. Manifolds and Diffeomorphisms

A fundamental object in the theory of dynamical systems is a manifold.
A manifold Mn is an n-dimensional space that is locally an n-dimensional
euclidean space RRR

n in the sense described just below, but is not necessar-
ily R

n itself.2 A unit n-sphere Sn in (n + 1)-dimensional euclidean space
R

n+1 is a typical example of the n-dimensional manifold Mn. Consider

1In this context, the following textbooks may be useful: [Fra97; AK98; AM78].
2The euclidean space R

n is endowed with a global coordinate system (x1, . . . , xn) and
is basically an important manifold. Henceforth the lower case e is used as “euclidean”
because of its frequent occurrence.
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u2

u2
�2�3

u1

p� (u1, u2)

p (x, y, z )

u1

0

S2

U

U

Fig. 1.1. Two-sphere S2 and local coordinates.

a unit two-sphere S2 which is a two-dimensional object imbedded in three-
dimensional space RRR

3 (Fig. 1.1). Denoting a point in R
3 by p = (x, y, z), the

two-sphere S2 is defined by all points p satisfying ‖p‖2 = x2 + y2 + z2 = 1,
where ‖ · ‖ is the euclidean norm. The two-sphere S2 is not a part of the
euclidean space R

2. However, an observer on S2 would see that the imme-
diate neighborhood is described by two coordinates and cannot be distin-
guished from a small domain of R

2. A point p′ in a patch U (an open subset
of S2) is represented by (u1, u2).

In general, an n-dimensional manifold Mn is a topological space
(Appendix A.1), which is covered with a collection of open subsets
U1, U2, . . . such that each point of Mn lies in at least one of them (Fig. 1.2).
Using a map FU , called a homeomorphism (Appendix A.2), each open

U1

U4

U5

U2

U3

Mn

Fig. 1.2. Atlas.
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subset U is in one-to-one correspondence with an open subset FU (U) of
R

n. Each pair (U, FU ), called a chart, defines a coordinate patch on M . To
each point p (∈ U ⊂ M), we may assign the n coordinates of the point
FU (p) in R

n. For this reason, we call FU a coordinate map with the jth
component written as xj

U . This is often described in the following way. On
the patch U , a point p is represented by a local coordinate, p = (x1

p, . . . , x
n
p ).

The whole system of charts is called an atlas.
The unit circle in the plane R

2 is a manifold of one-sphere S1. The S1

has a local coordinate θ ∈ [0, 1] (with the ends 0 and 1 identified) ⊂ R
1.

Consider a map by a complex function f(θ),

f(θ) = ei2πθ, f : θ ∈ [0, 1] ⊂ R
1 → p(x, y) ∈ S1 ⊂ R

2 (1.2)

where ei2πθ = x + iy (i =
√

−1, x2 + y2 = 1). The map is one-to-one and
onto if we identify the endpoints by f(0) = f(1) → (1, 0) ∈ R

2 (Fig. 1.3).
Choosing a patch (open subset) U ⊂ S1, a homeomorphism map FU is
given by f−1(U).

It is readily seen that the unit circle S1 (a connected space3) is covered
by the real axis RRR

1 (another connected space) an infinite number of times
by the map f : R

1 → S1. Corresponding to an open subset U ⊂ S1, the
preimage f−1(U) consists of infinite number of disjoint open subsets {Uα}
of R

1, each Uα being diffeomorphic with U under f : Uα → U . It is said
that the R

1 is an infinite-fold cover of S1.
Suppose that a patch U with its local coordinates p = x = (x1, . . . , xn)

overlap with another patch V with local coordinates p = y = (y1, . . . , yn).

y

x2��

0 1
–1

U–1

U

U0

U0

U1 U2 �1

�2

0 1 2

�

FU (U )

f (U0)S1

Fig. 1.3. Manifold S1.

3A manifold M is said to be (path-)connected if any two points in M can be joined by a
(piecewise smooth) curve belonging to M .
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�n

�U

p = (x1,…,xn)
p = (y1,…,yn)

U
V

�U (U ) �V (V )

�V

Mn

p

Fig. 1.4. Coordinate maps.

Then, a point p lying in the overlapping domain can be represented by both
systems of x and y (Fig. 1.4). In particular, yi is expressed in terms of x as

yi = yi(x1, . . . , xn), (i = 1, . . . , n). (1.3)

We require that these functions are smooth and differentiable, and that the
Jacobian determinant

|J | =
∂(y)
∂(x)

=
∂(y1, . . . , yn)
∂(x1, . . . , xn)

. (1.4)

does not vanish at any point p ∈ U ∩ V [Fla63, Ch. V].
Let F : Mn → W r be a smooth map from a manifold Mn to another

W r. In local coordinates x = (x1, . . . , xn) in the neighborhood of the point
p ∈ Mn and z = (z1, . . . , zr) in the neighborhood of F (p) on W r, the
map F is described by r functions F i(x), (i = 1, . . . , r) of n variables,
abbreviated to z = F (x) or z = z(x), where F i are differentiable functions
of xj (j = 1, . . . , n).

When n = r, we say that the map F is a diffeomorphism, provided
F is differentiable (thus continuous), one-to-one, onto, and in addition
F−1 is differentiable (Fig. 1.5). Such an F is a differentiable homeomor-
phism. If the inverse F−1 does exist and the Jacobian determinant does
not vanish, then the inverse function theorem would assure us that the
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∆x

∆z
∆z = F�∆x

∆x = (F–1)�∆z

1–1
onto

F (differentiable)

F–1 (differentiable)

Mn

W n

Fig. 1.5. Diffeomorphism.

inverse is differentiable. In the next section, the fluid flow is described to be
a smooth sequence of diffeomorphisms of particle configuration (of infinite
dimension).

1.3. Flows and Vector Fields

The vector field we are going to consider is not an object residing in
a flat euclidean space and is different from a field of simple n-tuple
of real numbers.

1.3.1. A steady flow and its velocity field

Given a steady flow4 of a fluid in R
3, one can construct a one-parameter

family of maps: φt : R
3 → R

3, where φt takes a fluid particle located at p

when t = 0 to the position φt(p) of the same particle at a later time t > 0
(Fig. 1.6). The family of maps are the so-called Lagrangian representation of
motion of fluid particles. In terms of local coordinates, the jth coordinate
of the particle is written as xj ◦ φt(p) = xj

t (p), where “xj◦” denotes a
projection map to take the jth component.

Associated with any such flow, we have a velocity at p,

v(p) :=
d
dt

φt(p)
∣∣∣∣
t=0

.

In terms of the coordinates, we have vj(p) = (dxj
t (p)/dt)|t=0. Taking a

smooth function f(x) = f(x1, x2, x3), i.e. f : R
3 → R and differentiating

4Steady velocity field does not depend on time t by definition.
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v ( p)

p = �0( p)
�t ( p)

stream line

Fig. 1.6. Map φt.

f(φt(p)) with respect to t, we have5

d
dt

f(φt(p))
∣∣∣∣
t=0

=
∑

j

dxj
t (p)
dt

∂f

∂xj
=
∑

j

vj(p)
∂

∂xj
f (1.5)

=: X(p)f, X(p) :=
∑

j

vj(p)
∂

∂xj
. (1.6)

This is also written in the following way by bearing in mind that f is a
map, f : R

3 → R:

Xf =
d
dt

f(φt) :=
d
dt

f ◦ φt. (1.7)

The differential operator X is written also as v by the reason described in
the next subsection.

Conversely, to each vector field v(x) = (vj) in R
3, one may associate a

flow {φt} having v as its velocity field. The map φt(p) with t as an integra-
tion parameter can be found by solving the system of ordinary differential
equations,

dxj

dt
= vj(x1(t), x2(t), x3(t))

with the initial condition, x(0) = p. Thus one finds an integral curve (called
a stream line) in a neighborhood of t = 0, which is a one-parameter family
of maps φt(p) for any p ∈ R

3, called a flow generated by the vector field
v, where v = φ̇t (Fig. 1.7). The map φt is a diffeomorphism, because φt(p)
is differentiable, one-to-one, onto and φ−1

t is differentiable, with respect
to every point p ∈ R

3.6 This is assured in flows of a fluid by its physical
property that each fluid particle is a physical entity which keeps its identity

5We use the symbol := to define the left side by the right side, and =: to define the right
side by the left side.
6The flow {φt} is considered to be diffeomorphisms of Sobolev class Hs in Chapter 8
(s > n/2 + 1 in R

n, Appendix F).
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(a) (b)

U

�t (U )

p1

p2

�t ( p2)

�t ( p1)

Fig. 1.7. (a) An integral curve and (b) a flow φt.

during the motion, as long as two particles do not come to occupying an
identical point simultaneously.7

Remark. Continuous distribution of fluid particles in a three-dimensional
euclidean space has infinite degrees of freedom. Therefore, the velocity field
of all the particles as a whole is regarded to be of infinite dimensions. In
this context, the set of diffeomorphisms φt forms an infinite dimensional
manifold D(∞) and a point η = φt ∈ D(∞) represents a configuration (as a
whole) of all particles composing the fluid at a given time t.

1.3.2. Tangent vector and differential operator

The vector fields we are going to consider on Mn are not an object residing
in a flat euclidean space. We need a sophisticated means to represent vectors
which are different from a simple n-tuple of real numbers. In general, on a
manifold Mn, one can define a vector v tangent to the parameterized curve
φt at any point x on the curve. We motivate the definition of vector as
follows.

A flow φt(p) = (xj
t (p)) on an n-dimensional manifold Mn is described

by the system of ordinary differential equations,

dxj
t

dt
= vj(x1

t , . . . , x
n
t ), (j = 1, . . . , n), (1.8)

with the initial condition, φ0 = p. The one-to-one correspondence between
the tangent vector v = (vj) to Mn at x and the first order differential

7The present formulation is relevant to the time before a spontaneous formation of
singularity (if any).
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operator
∑

j vj(x)∂/∂xj , mediated by (1.8) and the n-dimensional version
of (1.6), implies the following representation,

v(x) :=
∑

j

vj(x)
∂

∂xj
, (1.9)

which defines the vector field v(x) as a differential operator vj(x)∂/∂xj .
In fact, with a local coordinate patch (U, xU ) in the neighbor-

hood of a point p, a curve will be described by n differentiable func-
tions (x1

U (t), . . . , xn
U (t)). The tangent vector at p is described by vU =

(ẋ1
U (0), . . . , ẋn

U (0)) where ẋ(0) = dx/dt|t=0. If p also lies in the coordinate
patch (V, xV ), then the same tangent vector is described by another n-tuple
vV = (ẋ1

V (0), . . . , ẋn
V (0)). In terms of the transformation function (1.3) on

the overlapping domain which is now represented by xi
V = xi

V (xj
U ), the two

sets of tangent vectors are related by the chain rule,

vi
V =

dxi
V

dt

∣∣∣∣
t=0

=
∑

j

(
∂xi

V

∂xj
U

)
dxj

U

dt

∣∣∣∣
t=0

=
∑

j

(
∂xi

V

∂xj
U

)
vj

U . (1.10)

This suggests a transformation law of a tangent vector. Owing to this
transformation, the definition (1.9) of a vector v is frame-independent,
i.e. independent of local coordinate basis. In fact, by the transformation
xi

V = xi
V (xj

U ), we obtain

∑
j

vj
U

∂

∂xj
U

=
∑

j

vj
U (x)

∑
i

(
∂xi

V

∂xj
U

)
∂

∂xi
V

=
∑

i

vi
V

∂

∂xi
V

. (1.11)

It is not difficult to see that the properties of the linear vector space are
satisfied by the representation (1.9).8 Usually, in the differential geometry,
no distinction is made between a vector and its associated differential oper-
ator. The vector v(x) thus defined at a point x ∈ Mn is called a tangent
vector.

1.3.3. Tangent space

Each one of the n operators ∂/∂xα (α = 1, . . . , n) defines a vector. The
αth vector ∂/∂xα (vα = 1 and vi = 0 for i �= α) is the tangent vector to
the αth coordinate curve parameterized by xα. This curve is described by

8It is evident from (1.9) that the sum of two vectors at a point is again a vector at that
point, and that the product of a vector by a real number is a vector.
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∂α

∂3

∂2

∂1

x α
= s

(a) (b)

R3

Fig. 1.8. (a) αth coordinate curve, (b) coordinate basis in R
3.

xα = s and xi = const for i �= α. Then the tangent vector ∂/∂xα for the αth
curve has components dxα/ds = 1 and dxi/ds = 0 for i �= α (Fig. 1.8(a)).
The n vectors ∂/∂x1, . . . , ∂/∂xn form a basis of a vector space, and this
base is called a coordinate basis (Fig. 1.8(b)). The basis vector ∂/∂xα is
simply written as ∂α. A tangent vector X is written in general as9

X = Xj∂j , or Xx = Xj(x)∂j .

If r = (r1, . . . , rN ) is a position vector in the euclidean space R
N and

Mn is a submanifold of R
N : Mn ⊂ R

N (n ≤ N), the vector ∂/∂xα is
understood as ∂α ≡ ∂/∂xα = ∂r/∂xα = (∂/∂xα) (r1, . . . , rN ), where ri =
ri(x1, . . . , xn).10

The tangent space is defined by a vector space consisting of all tangent
vectors to Mn at x and is written as TxMn.11 When the coefficients Xj

are smooth functions Xj(x) for x ∈ Mn, the X(x) is called a vector field.

1.3.4. Time-dependent (unsteady) velocity field

In most dynamical systems, a parameter t called the time plays a special
role, and the tangent vector v = (vj) is called the velocity. A velocity field is
said to be time-dependent, or unsteady, when vj depends on t (an integration
parameter) as well as space coordinates (Fig. 1.9). In the unsteady problem,
an additional coordinate x0 is introduced, and the n equations of (1.8) for

9The summation convention is used hereafter, i.e. the summation with respect to j is
understood for the pair of double indices like j without the summation symbol

∑
.

10The parameters (x1, . . . , xn) form a curvilinear coordinate system.
11It is useful in later sections to keep in mind that the tangent space TxMn is the usual
n-dimensional affine subspace of R

N .
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t3
V� (t3) ∂�

V� (t2 ) ∂�

V� (t1 ) ∂�

Mn

t

∂t

t2

t1

Fig. 1.9. Time-dependent velocity field.

vj ∈ R
n are replaced by the following (n + 1) equations,

dxj

dt
= vj(x0(t), x1(t), . . . , xn(t)), with v0 = 1, (1.12)

for j = 0, 1, . . . , n. It is readily seen that the newly added equation reduces
to x0 = t. Correspondingly, the tangent vector in the time-dependent case
is written as, using the tilde symbol,

ṽ := ṽi∂i = v0∂0 + vα∂α = ∂t + vα∂α, (1.13)

where the index α denotes the spatial components 1, . . . , n.12

1.4. Dynamical Trajectory

A fundamental space of the theory of dynamical systems is a fiber
bundle. How is the phase space of Hamiltonian associated with it?

1.4.1. Fiber bundle (tangent bundle)

In mechanics, a Lagrangian function L of a dynamical system of n degrees
of freedom is usually defined in terms of generalized coordinates q =
(q1, . . . , qn) and generalized velocities q̇ = (q̇1, . . . , q̇n) such as L(q, q̇),
while a Hamiltonian function is usually represented as H(q, p), where

12Nonvelocity tangent vector such as the Jacobi vector J̃ is written simply as J̃ = Jα∂α

(see the footnote of §8.3.4).
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M1 fib
er

TqM 1= R 1q

Fig. 1.10. A tangent bundle TM1 for M1 (a curve).

p = (p1, . . . , pn) are generalized momenta. Is there any significant differ-
ence between the pairs of independent variables?

Suppose that q = (q1, . . . , qn) is a point in an n-dimensional manifold
Un, which is a coordinate patch of a manifold Mn and a portion of R

n,
and that q̇ = (q̇1, . . . , q̇n) is a tangent vector to Mn at q. The pair (q, q̇) is
an element of a tangent bundle, TMn. Namely, a tangent bundle TMn is
defined as the collection of all tangent vectors at all points of Mn, called a
base manifold.13 A schematic diagram of a tangent bundle TM is drawn in
Fig. 1.10 (see also Fig. 1.23 for a tangent bundle TS1).

Associated with any bundle space TM , a projection map π : TM → M

is defined by π(Q) = q, where Q ∈ TM, q ∈ M . On the other hand, the
inverse map π−1(q) represents all vectors v tangent to M = Mn (base
manifold) at q, i.e. a vector space TqM = R

n. It is called the fiber over q.
In this regard, the tangent bundle is also called a fiber bundle, or a vector
bundle14 (Fig. 1.11). Since π−1(Un) is topologically Un ⊗ R

n, the tangent
bundle is locally a product. However, this is not so in general (see [Fla63,
Ch. 2; Sch80, Ch. 2; NS83, Ch. 7]).

1.4.2. Lagrangian and Hamiltonian

The space of generalized coordinates q = (q1, . . . , qn) is called the config-
uration space in mechanics (also called a base space), whereas the space
(q, q̇) is called the tangent bundle, a mathematical term. The Lagrangian
L(q, q̇) is a function on the tangent bundle to Mn, namely L : TMn → R.

13If a point of TMn is represented globally as (q, q̇), i.e. a global product bundle q⊗q̇, the
tangent bundle is called a trivial bundle. Note that the first n coordinates (q1, . . . , qn)
take their values in a portion Un ∈ R

n, whereas the second set (q̇1, . . . , q̇n) take any
value in R

n. Thus, the patch is of the form, Un ⊗ R
n.

14A fiber is not necessarily a simple vector. It takes, for example, even an element of Lie
algebra. See Chapter 9.
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base space

Mn

TMn

�–1(Un)

�n

�–1( f )

( f, v)

f

Un

Fig. 1.11. A fiber bundle TMn.

t0

t1

f (t)
f (t1)

Mn

Fig. 1.12. Dynamical trajectories.

If we consider a specific trajectory q(t) in the configuration space with t as
the time parameter, then we have q̇ = dq/dt. Thus, the pair (q, q̇) has a
certain geometrical significance (Fig. 1.12).

Dynamical trajectory of the point q(t) is determined by the following
Lagrange’s equation of motion (see §7.2.3):

d
dt

(
∂L

∂q̇i

)
− ∂L

∂q
= 0. (1.14)



August 2, 2004 16:2 WSPC/Book Trim Size for 9in x 6in chap01

16 Geometrical Theory of Dynamical Systems and Fluid Flows

The Hamiltonian function H(q, p) is defined by

H(q, p) =
∑

i

piq̇
i − L(q, q̇), (1.15)

where pi is an ith component of the generalized momentum defined by

pi(q, q̇) :=
∂

∂q̇i
L(q, q̇). (1.16)

Change of variables from (q, q̇) for the Lagrangian L(q, q̇) to (q, p) for the
Hamiltonian H(q, p) has a certain significance more than a mere change of
coordinates. Consider a coordinate transformation from qU to qV by qV =
qV (qU ). Correspondingly, the change of velocity, q̇U → q̇V , is represented by

q̇i
V =

∑
k

∂qi
V

∂qk
U

q̇k
U . (1.17)

On the other hand, the generalized momentum is transformed as follows,

(pV )i =
∂

∂q̇i
V

L(qU , q̇U ) =
∑

k

∂q̇k
U

∂q̇i
V

∂L

∂q̇k
U

=
∑

k

∂q̇k
U

∂q̇i
V

(pU )k =
∑

k

∂qk
U

∂qi
V

(pU )k, (1.18)

since qU = qU (qV ) and therefore ∂qk
U/∂q̇i

V = 0 in the second equality, and
(1.17) is used to obtain the last equality since ∂q̇k

U/∂q̇i
V = ∂qi

U/∂qk
V . Thus,

it is found that the transformation matrix for p is the inverse of that of q̇.
The expression (1.17) represents the transformation law of vectors and

characterizes the tangent bundle, while the expression (1.18) characterizes
the transformation law of covectors (see §1.5.2). The two transformation
laws imply that the product

∑
i piq̇

i would be a scalar, an invariant under
a coordinate transformation, since

∑
i(pV )iq̇

i
V =

∑
i(pU )iq̇

i
U can be shown.

A covector and a vector are associated with each other by means of a metric
tensor (see §1.4.2).

1.4.3. Legendre transformation

Mathematically, the change q̇ → p is interpreted as a Legendre transfor-
mation (e.g. [Arn78, §14]). Consider a function l(x) of a single variable x,
where l′′(x) > 0, i.e. l(x) is convex. Let p be a given real number and define
the function h(x, p) = px − l(x). The function h(x, p) has a maximum with
respect to x at a point x∗(p). The point x∗ is determined uniquely by the



August 2, 2004 16:2 WSPC/Book Trim Size for 9in x 6in chap01

Manifolds, Flows, Lie Groups and Lie Algebras 17

l(
x)

px

x
x*(p)

h (x*, p) = px* – l (x*)

Fig. 1.13. Legendre transformation.

condition, ∂h/∂x = p − l′(x∗) = 0, since l′(x) is a monotonically increasing
function by the convexity (Fig. 1.13). Thus, p = l′(x∗). If we write x = q̇,
the relation p = l′(x) is equivalent to (1.16) as far as the variable q̇ is
concerned.

By the Legendre transformation, the Lagrangian L(q, q̇) on a vector
space is transformed to the Hamiltonian H(q, p) on the dual space, defined
by (1.15) and (1.16). In mechanics, the space (q, p) is called the phase space.
The equations of motion in the phase space are derived as follows:

dH(q, p) =
∑

i

(
∂H

∂qi
dqi +

∂H

∂pi
dpi

)
. (1.19)

On the other hand, taking the differential of the right-hand side of (1.15)
and using (1.16), we obtain

d

(∑
i

piq̇
i − L(q, q̇)

)
=
∑

i

(
pidq̇i + q̇idpi − ∂L

∂qi
dqi − ∂L

∂q̇i
dq̇i

)

=
∑

i

(
− ∂L

∂qi
dqi + q̇idpi

)
. (1.20)

Equating the right sides of the above two equations, we obtain the following
Hamilton’s equations of motion,

dqi

dt
=

∂H

∂pi
,

dpi

dt
= −∂H

∂qi
, (1.21)
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since dpi/dt = ∂L/∂qi by using (1.16) and Lagrange’s equation of
motion (1.14).

1.5. Differential and Inner Product

A basic tool of a dynamical system is a metric. How are vectors and
covectors related to it?

1.5.1. Covector (1-form)

Differential df of a function f on Mn is defined by df [v] := vf and is
regarded as a linear functional TxMn → R for any vector v ∈ E = TxMn.
In local coordinates, we have v = vj∂j . Using (1.9), we obtain

df [v] = df [vj∂j ] = vf =
∑

j

vj(x)
∂f

∂xj
. (1.22)

This is a basis-independent definition (see (1.11)). The differential df [vj∂j ]
is linear with respect to the scalar coefficient vj . In particular, if f is the
coordinate function xi, we obtain

dxi[v] = dxi[vj∂j ] = vj dxi

[
∂

∂xj

]
= vj ∂xi

∂xj
= vjδi

j = vi (1.23)

by replacing f with xi. Namely the operator dxi reads off the ith component
of any vector v (Fig. 1.14). It is seen that15

dxi[∂j ] = δi
j .

v = (v1, ···, v n) dxi v i

v = (v1, ···, vn) � �[v] = aiv
i

Fig. 1.14. 1-forms: dxi and α = aidxi.

15The symbols δij , δij and δi
j are identity tensors of rank 2, i.e. second order covariant,

second order contravariant and mixed (first order covariant and first order contravariant)
unit tensor, respectively (see §1.10).
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Thus, the n functionals dxi (i = 1, . . . , n) yield the dual bases correspond-
ing to the coordinate bases (∂1, . . . , ∂n) of a vector space TxMn, in the
sense described below. The dual bases (dx1, . . . ,dxn) form a dual space
(TxMn)∗. The most general linear functional, α : TxMn → R, is expressed
in coordinates as

α := a1dx1 + · · · + andxn. (1.24)

The α is called a covector, or a covariant vector, or a differential one-form
(1-form),16 and is an element of the cotangent space E∗ = (TxMn)∗. Corre-
sponding to the covariant vector α, the vector v is also called a contravari-
ant vector. Given a contravariant vector v = vj∂j , the 1-form α ∈ E∗ takes
the value,

α[v] =
∑

i

ai dxi[vj∂j ] = aiv
i. (1.25)

Correspondingly, a contravariant vector v ∈ E can be considered as a linear
functional on the covariant vectors with the definition of the same value
as (1.25)17:

v[α] ≡ α[v] = aiv
i. (1.26)

When the coefficients ai are smooth functions ai(x), the α is a 1-form field
and an element of the cotangent bundle (TMn)∗.

Appendix B describes exterior forms, products and differentials in some
detail. A function f(x) on x ∈ Mn is a zero-form. Differential of a function
f(x) is a typical example of the covector (1-form):

df =
∂f

∂xi
dxi = ∂if dxi, ∂if =

∂f

∂xi
, (1.27)

where dxi is a basis covector and ∂f/∂xi is its component. This form holds
in any manifold. In the next subsection, a vector grad f is defined as one
corresponding to the covector df .

16The differential one-form is called also Pfaff form, and the equation a1dx1 + · · · +
andxn = 0 is called Pfaffian equation on Mn.
17In Eqs. (1.25) and (1.26), the Einstein’s summation convention is used, i.e. a summa-
tion is implied over a pair of double indices (i in the above cases) appearing in a lower
(covariant) and an upper (contravariant) index in a single term, and is used henceforth.
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1.5.2. Inner (scalar) product

Let the vector space TxMn be endowed with an inner (scalar) product
〈·, ·〉. For each pair of vectors X,Y ∈ TxMn, the inner product 〈X,Y 〉 is
a real number, and it is bilinear and symmetric with respect to X and Y .
Furthermore, the 〈X,Y 〉 is nondegenerate in the sense that

〈X,Y 〉 = 0 for ∀Y ∈ TxMn, only if X = 0.

Writing X = Xi∂i and Y = Y j∂j , the inner product is given by

〈X,Y 〉 := gijX
iY j , (1.28)

where

gij := 〈∂i, ∂j〉 = gji (1.29)

is the metric tensor. If it happens that the tensor is the unit matrix,

gij = δij , i.e. g = (δij) = I, (1.30)

we say that the metric tensor is the euclidean metric, where δij is the
Kronecker’s delta: δij = 1 (if i = j), 0 (if i �= j).

By definition, the inner product 〈A, X〉 is linear with respect to X

when the vector A is fixed. Then the following α-operation on X, α[X] =
〈A, X〉, is a linear functional: α = 〈A, ·〉. In other words, to each vector
A = Aj∂j , one may associate a covector α. By definition, α[X] = gijA

jXi =
(gijA

j)Xi. On the other hand, for a covector of the form (1.24), one has
α[X] = ai dxi[X] = aiX

i, in terms of the basis dxi. Thus one obtains

ai = gijA
j = gjiA

j =: Ai, (1.31)

which defines a covector Ai, and the component ai is given by gijA
j and

written as Ai using the same letter A. The covector α = Aidxi = (gijA
j)dxi

is called the covariant version of the vector A = Aj∂j . In tensor analysis,
Eq. (1.31) is understood as indicating that the upper index j is lowered by
means of the metric tensor gij . In other words, a covector Ai is obtained by
lowering the upper index of a vector Aj by means of gij . In summary, the
inner product is represented as

〈X,Y 〉 = gijX
iY j = XiYi = XjY

j . (1.32)
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On the other hand, a vector Aj is obtained by raising the lower index
of the covector Ai as

Aj = gjiAi, (1.33)

which is equivalent to solving Eq. (1.31) to obtain Aj . This is verified by
the property that the metric tensor g = (gij) is assumed nondegenerate,
therefore the inverse matrix g−1 must exist and is symmetric. The inverse is
written as g−1 =: (gji) in Eq. (1.33) using the same letter g. As an example,
we obtain the expression of the vector grad f as

(grad f)j = gji ∂f

∂xi
. (1.34)

1.6. Mapping of Vectors and Covectors

Dynamical development is a smooth sequence of maps from one state
to another with respect to a parameter “time”. Here we consider
general rules of mappings (transformations).

1.6.1. Push-forward transformation

Let φ : Mn → V r be a smooth map. In addition, let us define the differential
of the map φ by φ∗ : TxMn → TyV r. In local coordinates, the map φ is
represented by a function F (x) as y = φ(x) = F (x), where x ∈ Mn and
y ∈ V r. Let p(t) be a curve on Mn with p(0) = p and ṗ(0) = X (a tangent
vector), where X ∈ TpM

n. The differential map φ∗ at p is defined by

Y = φ∗X(= F∗X) :=
d
dt

(F (p(t))|t=0. (1.35)

This is called a push-forward transformation (Fig. 1.15) of the velocity
vector X to the vector Y (the velocity vector of the image curve at F (p)).

X

�

x y

p p (t)
F(p)

Mn Vr

Y =�* X

F (p (t ))

Fig. 1.15. Push-forward transformation φ by a function y = F (x).
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(a) Let us consider the case n = r. Suppose that the transformation is given
by x �→ y = (F k(x)) within the same reference frame ∂k, and that the
tangent vector X = Xj∂j is mapped to Y = Y k∂k. Then the components
are transformed as (see §4.2.1)

Y k = (φ∗X)k =
(

∂F k

∂xj

)
Xj . (1.36)

(b) Next, consider a transformation between two basis vectors for n = r

again. The transformation φ∗ applies to the basis vectors ∂/∂xj , and we
have

Y = φ∗X = φ∗

[
Xj ∂

∂xj

]
= Xjφ∗

[
∂

∂xj

]
= Xj ∂yk

∂xj

∂

∂yk
= Y k ∂

∂yk
. (1.37)

The components of Y are given by

Y k =
∂yk

∂xj
Xj = Jk

j Xj , Jk
j :=

∂yk

∂xj
. (1.38)

This is also written as Y = JX, where J = (Jk
j ).

In particular, setting Xi = 1 (for an integer i) and others as zero in
(1.37), it is found that the bases (∂/∂xi) are transformed as

φ∗

[
∂

∂xi

]
=

∂yk

∂xi

∂

∂yk
. (1.39)

If we write this in the form,

∂

∂yk
= Bi

k

∂

∂xi
, (1.40)

the matrix Bi
k = ∂xi/∂yk is the inverse of J since

BJ =
∂xi

∂yk

∂yk

∂xj
=

∂xi

∂xj
= δi

j = I. (1.41)

A physical example of the transformations (a) and (b) is seen in §4.2.1 for
rotations of a rigid body. Equation (1.39) is also written as

φ∗

[
∂

∂xi

]
f =

∂yk

∂xi

∂f

∂yk
=

∂

∂xi
f(φ(x)) ≡ ∂

∂xi
f ◦ φ(x). (1.42)

Writing as X = Xj(x)∂/∂xj ,

φ∗X[f ] = X[f ◦ φ]. (1.43)

(c) A manifold Mn is called a submanifold of a manifold V r (where n < r)
provided that there is a one-to-one smooth mapping φ : Mn → V r in
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which the matrix J has (maximal) rank n at each point. We refer to φ as
an imbedding or an injection. This appears often when V = R

r so that we
consider submanifolds of an euclidean space R

r.

1.6.2. Pull-back transformation

Corresponding to the push-forward φ∗, one can define the pull-back φ∗,
which is the linear transformation taking a covector at y back to a covector
at x, i.e. φ∗ : (TyV )∗ → (TxM)∗. Suppose that a vector X at x ∈ M is
transformed to Y = φ∗(X) at y = φ(x) ∈ V , then the pull-back φ∗ of a
covector α (one-form) is defined, using the push-forward φ∗(X), by

(φ∗α)[X] := α[φ∗(X)], (1.44)

for any one-form α = Aidyi. This defines an invariance of the pull-back
transformation. Namely, the value of the covector α = Aidyi at the vector
Y = φ∗X (in V ) is equal to the value of the pull-back covector φ∗α at the
original vector X (in M).

Note that, owing to dxi[∂j ] = δi
j , one has

α

[
∂

∂yk

]
= Aidyi

[
∂

∂yk

]
= Ak. (1.45)

Writing

φ∗α = ai dxi, (1.46)

one obtains ai = φ∗α[∂/∂xi], and furthermore one can derive the following
transformation of the components of covectors by using (1.39) and (1.45):

ai = φ∗α
[

∂

∂xi

]
= α

[
φ∗

∂

∂xi

]
= α

[
∂yk

∂xi

∂

∂yk

]

=
∂yk

∂xi
α

[
∂

∂yk

]
= Ak

∂yk

∂xi
. (1.47)

Thus, using Jk
i of (1.38), we have the transformation law,

ai = AkJk
i . (1.48)

Substituting the expression Akdyk for α in (1.46) and using (1.47), we have

φ∗(Akdyk) = Ak
∂yk

∂xj
dxj . (1.49)



August 2, 2004 16:2 WSPC/Book Trim Size for 9in x 6in chap01

24 Geometrical Theory of Dynamical Systems and Fluid Flows

�

�*

Mn Vr

x

�* f (x)
f ( y)

y = �(x)

Fig. 1.16. Pull-back of a function f(y) to (φ∗f)(x).

Setting Ai (only) = 1 (the other components being zero) as before (for an
integer k), it is found that the bases (dyi) are transformed as

φ∗[dyi] =
∂yi

∂xj
dxj . (1.50)

The pull-back of a function f(y) (Fig. 1.16) is given by

(φ∗f)(x) = f(φ(x)),

where a scalar function f(y) is a zero-form. If one sets Ai = ∂f/∂yi in
(1.44), Eq. (1.44) expresses invariance of the differential:

φ∗(df)y = φ∗
[(

∂f

∂yi

)
dyi

]
=
(

∂f

∂yi

)(
∂yi

∂xj

)
dxj

=
(

∂f

∂xj

)
dxj = (df)x.

Based on this invariance, the general pull-back formula is defined for the
integral of a form (covector) α over a curve σ as∫

φ(σ)
α =

∫
σ

φ∗α, (1.51)

where φ : σ ⊂ M → φ(σ) ⊂ V . Namely, the integral of a form α over the
image φ(σ) is the integral of the pull-back φ∗α over the original σ. See the
next section 1.6.3 for M = V , and Appendix B.7 for an integral of a general
form α.

1.6.3. Coordinate transformation

Change of coordinate frame can be regarded as a mapping y = y(x) : x ∈
Un → y ∈ V n, where (Un, x) and (V n, y) are two identical coordinate
patches. A same vector is denoted by X = (Xj) in Un and by Y = (Y k)
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in V n. Transformation of the components of the same vector X = Y is
described by Eq. (1.38) (using W in place of J):

Y k = W k
j Xj , W k

j =
∂yk

∂xj
, (1.52)

which is equivalent to (1.17). Correspondingly, transformation of bases is
described by (1.39):

∂

∂xj
= W k

j

∂

∂yk
, or

∂

∂yk
= (W−1)j

k

∂

∂xj
, (1.53)

where W = (W k
j ). It is easy to see the identity: Y k∂/∂yk = Xj∂/∂xj .

The transformation (1.18) corresponds to Eq. (1.48) which describes the
transformation of components of a covector. Solving (1.48) for Ak, we obtain

Ak = ai (W−1)i
k. (1.54)

Thus, we find the invariance of inner product:

AkY k = ai(W−1)i
kW k

j Xj = aiδ
i
jX

j = aiX
i. (1.55)

1.7. Lie Group and Invariant Vector Fields

Dynamical evolution of a physical system is described by a trajectory
over a manifold, which is often represented by a space of Lie group,
a symmetry group of the system. This and the following section are a
concise account of some aspects of the theory of Lie group and Lie
algebra related to the present subject.

We consider various Lie groups G associated with various physical systems
below. In abstract terms, a group G of smooth transformations (maps) of
a manifold M into itself is called a group, provided that (i) with two maps
g, h ∈ G, the product gh = g ◦ h belongs to G : G × G → G, (ii) for every
g ∈ G, there is an inverse map g−1 ∈ G. From (i) and (ii), it follows that
the group contains an identity map id, which is often called unity denoted
by e. Thus, gg−1 = g−1g = e.

A Lie group is a group which is a differentiable manifold, for which the
operations (i) and (ii) are differentiable. Some lists of typical Lie groups
are given in Appendix C. A Lie group always has two families of diffeomor-
phisms, the left and right translations. Namely, with a fixed element h ∈ G,

Lh(g) = hg (or Rh(g) = gh), for any g ∈ G,
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where Lh (or Rh) denotes the left- (or right-) translation of the group onto
itself, respectively. Note that Lg(h) = Rh(g) = gh. The operation inverse
to Lh (or Rh) is simply Lh−1 (or Rh−1), respectively.

Suppose that gt is a curve on G described in terms of a parameter t.
The left translation of gt by g∆t for an infinitesimal ∆t is given by g∆t ◦ gt.
Hence the t-derivative is expressed as

ġt = lim
∆t→0

gt+∆t − gt

∆t
= X ◦ gt, X = lim

∆t→0

g∆t − id

∆t
, (1.56)

where id denotes the identity map. Thus, the left-translation leads to the
right-invariant vector field [AzIz95] in the sense defined just below. Simi-
larly, the right-translation leads to the left-invariant vector field. The ġt is
said to be a tangent vector at a point gt.

A vector field XL, or XR on G is left-invariant, or right-invariant, if
it is invariant under all left-translations, or right-translations respectively,
namely for all g, h ∈ G, if

(Lh)∗XL
g = XL

hg, or (Rh)∗XR
g = XR

gh, (1.57)

respectively. Given a tangent vector X to G at e, one may left-translate or
right-translate X to every point g ∈ G as

XL
g = (Lg)∗X = g ◦ X = gX, (1.58)

XR
g = (Rg)∗X = X ◦ g = Xg, (1.59)

respectively. It is readily seen from (1.59) that (Rh)∗XR
g = XR

gh, hence the
transformation (1.59) gives a right-invariant field generated by X. Similarly,
the transformation (1.58) gives a left-invariant field.

Consider a curve ξt : t ∈ R → G with the tangent ξ̇0 = X at t = 0.
The left-invariant field is given by XL

s = (d/dt)(gs ◦ ξt) for gs ∈ G (s:
a parameter), whereas the right-invariant vector field is represented by
XR

s = (d/dt)(ξt ◦ gs). Examples of such invariant fields are given by (3.86)
and (3.87) in §3.7.3.

The left-translation (Lg)∗X is understood as a transformation of a vec-
tor X located at x under the push-forward to gX at g(x) (Fig. 1.17(a)).
On the other hand, the right-translation (Rg)∗X = X ◦ g (x) is understood
as follows: first let the map g act on the point x and then the vector X is
taken at the point g(x) (Fig. 1.17(b)). This is something like a change of
variables when g is an element of a transformation group.
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a

x

x
b

X

X

ga
g

g

g*X

gb

g · �t

�t · g

X · g

�t

�t

(a) (b)

Fig. 1.17. (a) Left- and (b) Right-translation of a vector field X.

For two right-invariant tangent vectors XR
g and Y R

g , the metric (1.28)
is called right-invariant if

〈XR
g , Y R

g 〉 = 〈Xe, Ye〉.

Similarly, the metric is left-invariant if 〈XL
g , Y L

g 〉 = 〈Xe, Ye〉 for left-
invariant vectors, XL

g , Y L
g . Examples of the left-invariant field are given

in Chapters 4 and 9.

1.8. Lie Algebra and Lie Derivative

1.8.1. Lie algebra, adjoint operator and Lie bracket

Every pair of vector fields defines a new vector field called the Lie bracket
[·, ·]. More precisely, the tangent space TeG at the identity e of a Lie group
G is called the Lie algebra g of the group G. The Lie algebra g (= TeG) is
equipped with the bracket operation [·, ·] of bilinear skew-symmetric pair-
ing, [·, ·] : g×g → g, defined below. The bracket satisfies the Jacobi identity,

[[X,Y ], Z] + [[Y, Z], X] + [[Z,X], Y ] = 0, (1.60)

for any triplet of X,Y, Z ∈ g.
Any element of the Lie algebra X ∈ g defines a one-parameter subgroup

(Appendix C.2, Eq. (C.4)):

ξt = exp[tX] = e + tX +
1
2!

t2X2 + O(t3), X ∈ g (1.61)

where ξt is a curve t → G with the tangent ξ̇0 = X ∈ g at t = 0. In this
sense, the element X is called an (infinitesimal) generator of the subgroup.
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A Lie group G acts as a group of linear transformations on its own Lie
algebra g. Namely for ∀g ∈ G, there is an operator Adg, such that

AdgY := (Lg)∗ ◦ (Rg−1)∗Y = gY g−1, (1.62)

for ∀Y ∈ g.18 The operator Adg transforms Y ∈ g into AdgY ∈ g linearly
(Fig. 1.18). The set of all such Adg, i.e. Ad(G), is called the adjoint repre-
sentation of G, an adjoint group. Setting g with the inverse ξ−1

t := (ξt)−1,
the adjoint transformation Adξ−1

t
Y is a function of t. Its derivative with

respect to t is a linear transformation from Y to adXY defined by

adXY =
d
dt

ξ−1
t Y ξt

∣∣∣∣
t=0

:= [X,Y ]. (1.63)

This defines the Lie bracket [X,Y ].19 Its explicit expression depends on
each group or each dynamical system considered. It can be shown that the
bracket [X,Y ] thus introduced satisfies all the properties required for the
Lie bracket in each example considered below. The bracket operation is
usually called the commutator. The adX is a linear transformation, g → g,

e

AdgY
Y

g

g*Y

g · �s�s

g · �s· g–1

Fig. 1.18. Adjoint transformation AdgY , where Y = dηs/ds|s=0 and AdgY =
(d/ds)(g ◦ ηs ◦ g−1)|s=0.

18g is the Lie algebra and g is an element of the group G. The operator gY g−1 may be
better written as the push-forward notation, g∗Y g−1.
19Most textbooks in mathematics adopt this definition. Arnold [Arn66; Arn78] uses the
definition of its opposite sign which is convenient for physical systems related to rotation
group (see (1.64)) in Chapters 4 and 9, characterized with the left-invariant metric. In
fact, the difference between the left-invariant and right-invariant field, (1.58) and (1.59),
results in different signs of the Lie bracket of right- and left-invariant fields (see [AzIz95]).
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by the representation, Y → adXY = [X,Y ]. The operator adX stands for
the image of an element X under the linear ad-action.

1.8.2. An example of the rotation group SO(3)

Consider the rotation group G = SO(3). Any element A ∈ SO(3) is repre-
sented by a 3×3 orthogonal matrix (AAT = I) of det A = 1 (Appendix C),
where AT denotes transpose of A, i.e. (AT )i

k = Ak
i . Let K = (∂x, ∂y, ∂z)

be a cartesian right-handed frame. By the element A, the coordinate frame
K is transformed to another frame K ′ = (∂x′ , ∂y′ , ∂z′) = AK, and a point
X = (x, y, z) in K is transformed to X ′ = (x′, y′, z′) = WX by the rules in
§1.6.3, where W = (A−1)T . Then, we have

(X ′)T K ′ = (WX)T AK = XT WT AK = XT A−1AK = XK.

Consider successive transformations A′ = A2A1, i.e. A1 followed by A2.
Then we have (X ′)T = XT (A2A1)−1 = XT A−1

1 A−1
2 , that is, the compo-

nents X evolve by the right-translation, resulting in the left-invariant vector
field (§1.6).20

Let ξ(t) be a curve (one-parameter subgroup) issuing from e = ξ(0)
with a tangent vector a = ξ̇(0) on SO(3). Then one has ξ(t) = exp[ta] =
e+ ta+O(t2) for an infinitesimal parameter (time) t, where a is an element
of the algebra g (usually written as so(3)) and a skew-symmetric matrix
due to the orthogonality of ξ(t) (Fig. 1.19).

∂x�

∂z�

∂y�

a

∂x

∂z

∂y

Fig. 1.19. K = (∂x, ∂y , ∂z), K′ = ξ(t)K with e = ξ(0),a = ξ̇(0).

20The length of vector is also invariant by this transformation, i.e. isometry, since
〈X′, X′〉 = 〈X, (W T W )X〉 = 〈X, X〉, where W T W = (A−1)T A−1 = (AAT )−1 = I.
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Then, for a,∀b ∈ so(3), the operation ada : g → g is represented by

adab = [a,b] = −(ab − ba), (1.64)

where the minus sign in front of (ab − ba) is due to the definition (1.63).
This is verified as follows. Since ξ(t)−1 = exp[−ta] = (e− ta+ · · · ), we have

ξ(t)−1bξ(t) = (e − ta + · · · )b(e + ta + · · · )
= b − t(ab − ba) + O(t2). (1.65)

Its differentiation with respect to t results in Eq. (1.64).
In Chapter 4, we consider time trajectories over the rotation group

SO(3) such as ξ(t) with time t. In such a case, it is convenient to define the
bracket [a,b](L) for the left-invariant field defined as

[a,b](L) := −[a,b] = ab − ba = c. (1.66)

In Appendix C.3, it is shown that, for a,b ∈ so(3), c is also skew-symmetric,
and that the matrix equation ab−ba = c is equivalent to the cross-product
equation (C.14),

ĉ = â × b̂, (1.67)

where â, b̂ and ĉ are three-component (axial) vectors associated with the
skew-symmetric matrices a, b and c, respectively.

1.8.3. Lie derivative and Lagrange derivative

(a) Derivative of a scalar function f(x)
Suppose that a vector field X = Xi∂i is given on a manifold Mn. As
described in §1.2, with every such vector field, one can associate a flow, or
one-parameter group of diffeomorphisms ξt : Mn → Mn, for which ξ0 = id21

and (d/dt)ξtx|t=0 = X(x). A first order differential operator LX on a scalar
function f(x) on M (a function of coordinates x only) is defined as

LXf(x) :=
d
dt

(ξt)∗f(x)
∣∣∣∣
t=0

=
d
dt

f(ξtx)
∣∣∣∣
t=0

= Xi ∂

∂xi
f(x), (1.68)

(see (1.44) and below, and (1.5)). This defines the derivative LXf of a
function f (a zero-form) by the time derivative of its pull-back ξ∗

t f at
t = 0, where the point ξtx moves forward in accordance with the flow of

21The id is used here in order to emphasize that this is an identity map.
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sitting
fisherman

flow

x
x

�∆t x

�x
∆t f (x) ⇐     f (x)

pull-back

∆ f (�∆t x)∆ (�x
∆t f )

Fig. 1.20. Fisherman’s derivative.

velocity X. Relatively observing, the pull-back ξ∗
t f is evaluated at x, and

its time derivative is defined by the Lie derivative. This is sometimes called
as a derivative of a fisherman [AK98] sitting at a fixed place x (Fig. 1.20).22

In fluid dynamics however, the same derivative is called the Lagrange
derivative, which refers to the third and fourth expressions,

Df

Dt
:=

d
dt

f(ξtx) = Xi ∂

∂xi
f(x).

Therefore we obtain that (Df/Dt)f = LXf , which is valid for scalar func-
tions. But this does not hold for vectors, as shown in the next subsection.

In the unsteady problem, the right-hand side is written as (∂t +
Xi∂i)f(x, t). The Lagrange derivative is understood as denoting the time
derivative, with respect to the fluid particle ξtx moving with the flow, of
the function f(x, t).

(b) Derivatives of a vector field Y (x)
Now, suppose that we are given a second vector field Y (x) = Y i∂i, and
consider its time derivative along the X-flow generated by X(x). To that
end, let us denote the second Y -flow generated by Y (x) as ηs with η0 =
e = id. The first flow ξt transports the vector Y (x) in front of a fisherman
sitting at a point x. After an infinitesimal time t, the fluid particle at x

22The Lie derivative LX also acts on any form field α in the same way, (d/dt)(ξt)∗α as
(1.78). On the contrary, to a vector field Y , the Lie derivative is defined by (1.69) in terms
of the push-forward (ξt)∗. This definition is different from that of Arnold [1978, 1966]
by the sign, but consistent with the present definition of (1.63).
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will arrive at ξtx. We take the vector Y at this point ξtx and translate it
backwards to the original point x by the inverse map of the push-forward,
that is (ξt)−1Y (ξtx), in precise (ξt)−1

∗ Y (ξtx). Its time derivative is the Lie
derivative of a vector Y , given by

LXY := lim
t→0

ξ−1
t∗ Y (ξtx) − Y (x)

t
= lim

t→0
ξ−1
t∗

Y ξt − ξt∗Y
t

∣∣∣∣
x

= lim
t→0

1
t
(Y ξt − ξt∗Y ). (1.69)

The first expression is nothing but that of adXY (x) according to (1.63).
Thus we have

LXY =
d
dt

ξ−1
t∗ Y ξt

∣∣∣∣
t=0

= adXY = [X,Y ], (1.70)

where [X,Y ] is the Lie bracket (see (1.63)).
The last expression of (1.69) suggests another useful expression of [X,Y ],

which is given by

LXY = [X,Y ]:= lim
t→0,s→0

1
st

(ηsξt − ξtηs)

=
∂

∂t

∂

∂s
(ηsξt − ξtηs)

∣∣∣∣
t=0,s=0

. (1.71)

According to Appendix C, the two flows ξt and ηs generated by X and Y

can be written in the form [AK98, §2]:

ξt : x �→ x + tX(x) + O(t2), t → 0, (1.72)

ηs : x �→ x + sY (x) + O(s2), s → 0. (1.73)

Recalling that ηsξt(x) for diffeomorphisms is given by ηs(ξt(x)), i.e. the
composition rule, we have

ηsξt = e + tX + O(t2) + sY (ξt) + O(s2)

= e + tX + sY + stXj∂jY + O(t2, s2), (1.74)

where ξt = e+tX +O(t2). The expression of ξtηs is obtained by exchanging
the pairs (t, X) and (s, Y ). Thus finally, we have

ηsξt − ξtηs = st

(
Xj ∂Y

∂xj
− Y j ∂X

∂xj

)
+ O(st2, s2t). (1.75)
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The first term may be written as st[X,Y ] according to (1.71). Thus the
non-commutativity of two diffeomorphisms ξt and ηs is proportional
to [X,Y ], where

[X,Y ] = {X,Y } := {X,Y }k∂k, (1.76)

{X,Y }k := Xj ∂Y k

∂xj
− Y j ∂Xk

∂xj
(1.77)

and {X,Y } is the Poisson bracket. The degree of non-commutativity of
ξt and ηs is interpreted graphically in Fig. 1.21. According to the defini-
tion (1.70), by using the expression LX := Xi∂i, the Lie derivative of the
vector field Y with respect to X is given by

LXY = [X,Y ] = LXLY − LY LX = [LX , LY ] = L{X,Y }. (1.78)

If they commute, i.e. ξtηs = ηsξt, then obviously we have [X,Y ] = 0.
This suggests that the coordinate bases commute since the coordinate
curves are defined to intersect. In fact, for X = ∂α, Y = ∂β , we obtain
from (1.78)

[∂α, ∂β ] = ∂α∂β − ∂β∂α = 0. (1.79)

In general, we have

ξtηs − ηsξt = [X,Y ]st + O(st2, s2t).

If [X,Y ] = 0, then we obtain ξtηs − ηsξt = O(st2, s2t).

x

X

[ X, Y ]st + O (st2, s2t )

Y

�t x

�t�s x

�s�t x
�s x

t

s

Fig. 1.21. Graphic interpretation of [X, Y ] for infinitesimal s and t.
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In unsteady problem of fluid dynamics, the Lagrange derivative of the
vector Y = Y k(x, t)∂k is defined by

D
Dt

Y =
D
Dt

Y k(ξtx)∂k :=
∂Y k

∂t
∂k + Xj ∂Y k

∂xj
∂k. (1.80)

This derivative makes sense in the gauge-theoretical formulation described
in §7.5 and denotes the derivative following a fluid particle moving with the
velocity Xj∂j , whereas the Lie derivative characterizes a frozen field (see
the remark just below).

Remark. A vector field Y defined along the integral curve ξt generated
by the tangent field X is said to be invariant if Y (ξtx) = (ξt)∗Y (x). Sub-
stituting this in the previous expression of (1.69), it is readily seen that
LXY = 0, or rewriting it,

LXY =
(

Xj ∂Y i

∂xj
− Y j ∂Xi

∂xj

)
∂i = 0. (1.81)

In unsteady problem, Xj∂jY
i is also written as DY i/Dt given by the right-

hand side of (1.80). Then, using the operator D/Dt = ∂t +Xj∂j , the above
equation (1.81) becomes

D
Dt

Y = (Y j∂j)X. (1.82)

In fluid dynamics, the equation LXY = 0 is called the equation of
frozen field (Fig. 1.22).23 If we set φ = ξt in (1.37) together with X = Y (x)
and Y = Y (ξtx), then the equation Y (ξtx) = (ξt)∗Y (x) represents the

flow

XY

x = �ox y = �t x

(�t)*Y Y ( y )

Fig. 1.22. Frozen field (ξt)∗Y (push-forward of Y ) coincides with Y (y) at y = ξtx.

23The Jacobi field Y (= J below) satisfies this equation (see §8.4).
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push-forward transformation. Therefore, writing ξtx = yt(x), the solution
of (1.82) is given by Eq. (1.38),

Y α(t) = Y j(0)
∂yα

t

∂xj
, (1.83)

which is called the Cauchy’s solution [Cau1816] in the fluid dynamics.

1.9. Diffeomorphisms of a Circle S1

A smooth sequence of diffeomorphisms is a mathematical concept of
a flow and the unit circle S1 is one of the simplest base manifolds
for physical fields.

Diffeomorphism of the manifold S1 (a unit circle in R
2, see Fig. 1.3) is

represented by a map g : x ∈ R
1 → g(x) ∈ R

1 (where g ∈ C∞) with
every point of x or g(x) is identified with x + 1 or g(x) + 1 respectively.24

Collection of all such maps constitutes a group D(S1) of diffeomorphisms
with the composition law:

h = g ◦ f, i.e. h(x) = g(f(x)) ∈ D(S1),

for f, g ∈ D(S1). The diffeomorphism is a map of infinite degrees of freedom
(i.e. having pointwise degrees of freedom). In Chapter 5, the diffeomorphism
is assumed to be orientation-preserving in the sense that g′(x) > 0, where
the prime denotes ∂/∂x.

Consider a flow ξt(x) which is a smooth sequence of diffeomorphisms
with the time parameter as t (see (1.72)). Its tangent field at ξt is defined by

ξ̇t(x) :=
d
dt

ξt(x)
∣∣∣∣
t

= lim
τ→0

ξτ (x) − id

τ
◦ ξt(x) = u(x) ◦ ξt(x),

in a right-invariant form. The tangent field X(x) at the identity (id) is given
by u(x) = dξt(x)/dt|t=0.

Alternatively, with the language of differentiable manifolds, the tangent
field X(x) is represented as

X(x) = u(x)∂x ∈ TS1, (1.84)

where TS1 is a tangent bundle (§1.3.1) over the manifold S1. The tan-
gent bundle TS1 allows a global product structure S1 × R

1 as shown in
Fig. 1.23(a). The figure (b) is obtained from (a) by cutting it along one

24By the map φ(x) = ei2πx, there is a perioditity φ(x + 1) = φ(x) for x ∈ R
1.
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a

R1( fiber)

R1( fiber)

R1

b

(a) (b)

a

b

0

a�

b�

1x

u (x)

S1

Fig. 1.23. Tangent bundle S1 × R
1 with the circle S1 and the fiber R

1.

fiber ab and developing it flat, where a′b′ is identified with ab. The solid
curve in the figure describes a particular vector field u(x) on S1, which is
called a cross-section of the tangent bundle TS1.

If a′b′ is identified with ba by twisting the strip, then a Möbius band is
formed. The resulting fiber bundle is not trivial, i.e. not a product space
(see, e.g. [Sch80]). The Möbius band is a double-fold cover, i.e. two-sheeted
cover of the circle S1 (see Fig. 1.4).

For two diffeomorphisms ξt and ηt corresponding to the vector fields
X and Y respectively, the Lie bracket (commutator) is given by (1.76)
and (1.77):

[X,Y ] = (uv′ − vu′)∂x, (1.85)

where X = u(x)∂x, Y = v(x)∂x ∈ TS1. This is sometimes called Witt
algebra [AzIz95].

1.10. Transformation of Tensors and Invariance

1.10.1. Transformations of vectors and metric tensors

We considered the transformations of vectors and covectors in §1.4 (see
also (1.10)) together with the invariance of the value of covectors based
on (1.44).
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Here, we consider a transformation and an invariant property of ten-
sors.25 Let M be an n-manifold with a Riemannian metric and covered
with a family of local (curvilinear) coordinate systems, {U : x1, . . . , xn},
{V : y1, . . . , yn}, . . . , where U, V, . . . are open sets (called patches) with
coordinates x, y, . . . . A point p ∈ U ∩ V , lying in two overlapping patches
U and V , has two sets of coordinates x(p) and y(p) which are related differ-
entiably by the functions yk(x):

yk
(p) = yk(x1

(p), . . . , x
n
(p)), k = 1, . . . , n.

In the corresponding tangent spaces, the vectors are represented as X =
Xi∂/∂xi ∈ TpU and Y = Y k∂/∂yk ∈ TpV . The coordinate bases are
transformed according to

∂

∂xi
=

∂yk

∂xi

∂

∂yk
= W k

i

∂

∂yk
, where W k

i =
∂yk

∂xi
, (1.86)

by the chain rule (in an analogous way to (1.39)), W k
i being the transfor-

mation matrix. Suppose that the components of the vectors are related by

Y k = W k
i Xi, (written as Y = WX), (1.87)

as is the case of the push-forward transformation (1.38), then the vectors
are invariant in the sense:

X = Xi ∂

∂xi
= XiW k

i

∂

∂yk
= Y k ∂

∂yk
= Y.

Equation (1.87) is the rule of transformation of vector components. In phys-
ical problems, the logic is reversed. The vector, like the velocity vector of a
particle, should be the same (may be written as X = Y ) in both coordinate
frames. Then the components must be transformed according to the rule
(1.87).

The metric tensor is defined by (1.29). According to the basis transfor-
mation (1.86), we obtain

gij(x) =
〈

∂

∂xi
,

∂

∂xj

〉
=
〈

W k
i

∂

∂yk
, W l

j

∂

∂yl

〉

= W k
i W l

j

〈
∂

∂yk
,

∂

∂yl

〉
= W k

i W l
jgkl(y). (1.88)

25See §3.11 for differentiation of tensors.
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This is the transformation rule of the tensor gij . Using (1.87) for the
transformation of two pairs (X,Y ) and (ξ, η) of tangent vectors, where
X, ξ ∈ TpU and Y, η ∈ TpV , we have the invariance of the inner product
with the transformation (1.88):

G(ξ,X) = 〈ξ,X〉(x) = gij(x)ξiXj = W k
i W l

jgkl(y)ξiXj

= gkl(y)ηkY l = 〈η, Y 〉(y), (1.89)

where Y k = W k
i Xi and ηl = W l

jξ
j .

1.10.2. Covariant tensors

The inner product G(ξ,X) in the previous section is an example of covariant
tensor of rank 2. In general, a covariant tensor of rank n is defined by

Q(n) : E1 × E2 × · · · × En → R,

a multilinear real-valued function of n-tuple vectors, written as
Q(n)(v1, . . . ,vn) which is linear in each entry vi (i = 1, . . . , n), where Ek

is the tangent vector space for the kth entry.
A covector α = aidxi on a vector v = vj∂j = vj∂/∂xj is an example of

Q(1), a covariant tensor of rank 1. In fact, we have α(v) = aiv
jdxi(∂j) =

aiv
i. An example of Q(2) is G(A, X) = gijA

iXj . Both are shown to be
invariant with the coordinate transformation (see §1.6.3 for α(v)).

In general, the values of Q(n) must be independent of the basis with
respect to which components of the vectors are expressed. In components,
we have

Q̄(n)(x) := Q(n)(v1(x), . . . ,vn(x)) = Q(n)(vk1
1 ∂k1 , . . . , v

kn
n ∂kn)

= Q
(n)
k1,...,kn

(x)vk1
1 · · · vkn

n

at x ∈ U , where

Q
(n)
k1,...,kn

(x) = Q(n)(∂/∂xk1 , . . . , ∂/∂xkn).

Considering that the bases are transformed according to (1.86) and Q(n) is
multilinear, we have the transformation rule,

Q
(n)
k1,...,kn

(x) = W l1
k1

· · ·W ln
kn

Q
(n)
l1,...,ln

(y). (1.90)

Owing to the transformation (1.87), it is obvious that we have the invari-
ance, Q̄(n)(x) = Q̄(n)(y).
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From two covectors α = aidxi and β = bjdxj , one can form a covariant
tensor of rank 2 by the tensor product ⊗ as follows: α ⊗ β : E × E → R,
defined by

α ⊗ β(v,w) := α(v)β(w) = aidxi ⊗ bjdxj(v,w)

= Qklv
kwl, (1.91)

Qkl = Q(2)(∂k, ∂l) = aibjdxi ⊗ dxj(∂k, ∂l)

where v = vk∂k,w = wl∂l ∈ E.

1.10.3. Mixed tensors

A mixed tensor of rank 2 is defined by

M i
j(x) = M (2)

(
dxi,

∂

∂xj

)
,

which is a first order covariant and first order contravariant tensor.
According to (1.50), a 1-form base dxi is transformed as

dxi =
∂xi

∂yj
dyj = Ŵ i

j dyj , where Ŵ i
j := ∂xi/∂yj . (1.92)

Thus, using (1.86) and (1.92), we obtain the transformation rule of the
mixed tensor M :

M i
j(x) = W β

j Ŵ i
αMα

β (y). (1.93)

The transformation matrix Ŵ = ∂x/∂y is the inverse of W = ∂y/∂x, i.e.
Ŵ = W−1, since one can verify WŴ = I, i.e.

(WŴ )k
j =

∂yk

∂xβ

∂xβ

∂yj
=

∂yk

∂yj
= δk

j .

Let us consider such mixed tensors through several examples.

(i) Transformation: A mixed tensor M (2) of rank 2 arises from the matrix
of a linear transformation W = (W k

i ). In the coordinate patch V , taking a
covariant vector α = Aidyi ∈ E∗ (cotangent space, §1.5.1) and a contravari-
ant vector Y = Y k∂k ∈ E, the mixed tensor M (2) : E∗ × E → R is defined
by M (2)(α, Y ) ≡ α[Y ] = AiY

i. Next, consider the transformation φ and
its matrix W (= φ∗) : E(U) → E(V ), i.e. Y = WX defined by (1.86) and
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(1.87). The corresponding pull-back is given by φ∗α = aidxi (see (1.46)),
and the component ai is expressed by (1.47):

ai = Aj
∂yj

∂xi
= AjW

j
i . (1.94)

Thus, we have the invariance of the value of the mixed tensor as follows
(using Y j = W j

i Xi):

M
(2)
W (α, Y ) := α[Y ] = AjW

j
i Xi = aiX

i = φ∗α[X]. (1.95)

According to (1.93), the transformation of the tensor W = (Wα
β ) is

(W β
j Ŵ i

α) Wα
β = W i

j . Namely, the transformation of W is an identity:
W → W .

(ii) Vector-valued one-form: Next example of the mixed tensor is the tensor
product, M (2) = v⊗α : E∗ ×E → R, of a vector and a covector, defined by

M
(2)
V (β,w) := v ⊗ α(β,w) = vj∂j ⊗ aidxi(β,w)

= ∂j(β)vjaidxi(w) = bjM
j
i wi, (1.96)

where w = wi∂i, β = bidxi and M j
i = vjai. The value of the tensor v ⊗ α

on a vector X = Xi∂i takes the value of a vector (rather than a scalar) as
follows:

M
(2)
V (X) = v ⊗ α(X) = v ⊗ aidxi(X) = vaiX

i. (1.97)

In this sense, M
(2)
V = v ⊗ α is interpreted also as a vector-valued 1-form.

In particular, the following I is the identity mixed-tensor:

I := ∂i ⊗ dxi. (1.98)

In fact, we have

I(X) = I(Xα∂α) = ∂i ⊗ dxi(Xα∂α) = Xαδi
α∂i = X.

(iii) Covariant derivative: The third example is the covariant differentiation
∇, which is an essential building block in the differential geometry and also
in Physics, and investigated in the subsequent chapters as well.

Consider a vector X = Xk∂k and the transformation X = ŴY with
Ŵ k

i = ∂xk/∂yi. It may appear that, just like the tensor W k
i = ∂yk/∂xi,
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the derivative ∂Xk/∂xj is also a mixed tensor. But this is not the case. In
fact, we have

∂Xk

∂xj
=

∂

∂xj
Y αŴ k

α =
∂

∂xj

(
Y α ∂xk

∂yα

)

=
∂Y α

∂yβ

∂yβ

∂xj

∂xk

∂yα
+ Y α ∂2xk

∂yα∂yβ

∂yβ

∂xj
= W β

j Ŵ k
α

∂Y α

∂yβ
+ W β

j

∂2xk

∂yα∂yβ
Y α.

(1.99)

Only the first term follows the transformation rule (1.93), while the sec-
ond does not. In order to overcome this difficulty, the differential geometry
introduces the following linear operator ∇∂j on the product of a scalar Xk

and a vector ∂k, defined by

∇∂j
(Xk∂k) = (∇∂j

Xk)∂k + Xα(∇∂j
∂α)

:=
∂Xk

∂xj
∂k + XαΓk

jα∂k, (1.100)

where Γk
ij is the Christoffel symbol, which can be represented in terms of

the derivatives of the metric tensors gαβ (see §2.4 and 3.3.2). From (1.100),
the following mixed tensor is defined:

Xk
;j :=

∂Xk

∂xj
+ Γk

jαXα. (1.101)

In fact, it can be verified that this tensor is transformed like a mixed tensor
according to Xk

;j(x) = Xα
;β(y)W β

j Ŵ k
α (see e.g. [Eis47]).

In order to write it in the form of a vector-valued 1-form just as (1.97),
it is useful to define

∇X = ∂k ⊗ (∇Xk), (1.102)

∇Xk = dXk + Γk
iαXαdxi =

∂Xk

∂xi
dxi + Γk

iαXαdxi = Xk
;idxi.

Then the value of ∇X on a vector v = vj∂j is found to be a vector, which
is given by

∇X(v) = ∂k ⊗ ∇Xk(vj∂j) = vj∇Xk(∂j)∂k

=
(

vj ∂Xk

∂xj
+ Γk

jαXαvj

)
∂k = vjXk

;j∂k. (1.103)

The operator ∇Xk is called a connection 1-form (see §3.5), and ∇X(v) is
called the covariant derivative of X with respect to the vector v.
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(iv) Riemann tensors: In the differential geometry, a fourth order tensor
called the Riemann’s curvature tensor plays a central role. This is defined
as Rl

ijk = ∂jΓl
ik − ∂kΓl

jl + Γl
jmΓm

ki − Γl
kmΓm

ji (see §2.4 and 3.9.2). It can be
verified (e.g. [Eis47]) that this tensor is transformed according to

Rl
ijk(x) = Rδ

αβγ(y)Ŵ l
δW

α
i W β

j W γ
k , (1.104)

showing that Rl
ijk is a mixed tensor of rank 4, the third order covariant

and the first order contravariant tensor.

(v) General mixed tensor: In general, a mixed tensor of rank n is defined by

M (n) : E∗
1 × · · · × E∗

q × E1 × · · · × Ep → R.

This is a p times covariant and q times contravariant tensor (p + q = n)
and a multilinear real-valued function of p-tuple vectors and q-tuple covec-
tors, written as M (n)(α1, . . . , αq, v1, . . . ,vp), which is linear in each entry
αi (i = 1, . . . , q) and vi (i = 1, . . . , p). The values of M (n) is indepen-
dent of the basis by which the components of the vectors are expressed. In
components, we have

M̂ (n)(x) = M (n)(α1, . . . , αq,v1, . . . ,vp) = a1k1 · · · aqkq
M

k1···kq

l1···lp vl1
1 · · · vlp

p ,

where

M
k1···kq

l1···lp = M (n)(dxk1 , . . . ,dxkq , ∂l1 , . . . , ∂lp).

1.10.4. Contravariant tensors

In the second example (ii) of the mixed tensor, we obtained the expres-
sion, M (2) = bjM

j
i wi. According to the rule (1.31) of §1.3, the lower-index

component bj is related to the upper-index component Bk (the vector coun-
terpart of bj) by means of the metric tensor gjk as bj = gjkBk. Similarly,
according to (1.33), the upper-index component wi is related with its cov-
ector counter part W = Wldxl as wi = gilWl by means of the inverse of
the metric tensor gil = (g−1)il. Hence, we have

M (2) = bjM
j
i wi = (gjkM j

i )Bkwi = (gilM j
i )bjWl. (1.105)

Thus it is found that a covariant tensor Mki of rank 2 is obtained by lowering
the upper index of the mixed tensor of rank 2:

Mki = gjkM j
i .
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Similarly, a contravariant tensor M jl of rank 2 is obtained by raising the
lower index:

M jl = gilM j
i .

In this way, we have found the equivalence:

M jlbjWl = M j
i bjw

i = MkiB
kwi.

In tensor analysis, one can use the same letter M for the derived tensors
by lowering or raising the indices by means of the metric tensor.

In general, a contravariant tensor of rank n is defined by

P (n) : E∗
1 × E∗

2 × · · · × E∗
n → R,

a multilinear real-valued function of n-tuple covectors, written as
P (n)(α1, . . . , αn) which is linear in each entry αi (i = 1, . . . , n). The values
of P (n) is independent of the basis. In components, we have

P̄ (n) = P (α1, . . . , αn) = a1 k1 · · · ak kn
P k1,...,kn ,

where

P k1,...,kn = P (dxk1 , . . . ,dxkn).

From the two vectors v = vi∂i and w = wj∂j , one can form a contravariant
tensor of rank 2 by the tensor product: v ⊗ w, defined by

v ⊗ w (dxi, dxj) := dxi(v) dxj(w) = viwj . (1.106)
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Chapter 2

Geometry of Surfaces in R
3

Most concepts in differential geometry spring from the
geometry of surfaces in R

3.

2.1. First Fundamental Form

Consider a two-dimensional surface Σ2 parameterized with u1 and u2 in the
three-dimensional euclidean space R

3. A point p on Σ2 ∈ R
3 is denoted by a

three-component vector x(u1, u2), which is represented as x = xi+yj+zk =
x1i+x2j+x3k with respect to a cartesian frame with the orthonormal right-
handed basis (i, j,k) (Fig. 2.1). The vector x is also written as

x(u1, u2) = (x1(u1, u2), x2(u1, u2), x3(u1, u2)), (2.1)

where (u1, u2) ∈ U ⊂ R
2. A surface defined by (x, y, f(x, y)) is considered

in Appendix D.3.
A curve C lying on Σ2, denoted by x(t) with the parameter t, is the

image of the curve CU : uα(t) on U . The tangent vector T to the curve C
is given by

T =
dx

dt
=

duα

dt
xα = u̇αxα = u̇α∂α,

where

xα = (xi
α) :=

∂x

∂uα
= xuα = ∂α.

The two tangent vectors (x1,x2) form a basis for the tangent space TpΣ2

to Σ2 (Fig. 2.2).

45
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z

x

x

y
u1

u1

u2

u2p(x,y,z)

Σ2

Cu

(u1(t), u2(t))

Fig. 2.1. Surface Σ2 in R
3.

C

C

u2

u1

p
x 2

= ∂ 2

x
1 =

∂
1

T p
Σ2

T

Σ2

x(t)

Fig. 2.2. Tangent space TpΣ2.

A scalar product in R
3 is defined for a pair of general tangent vectors

A = Aαxα = Aα∂α and B = Bαxα = Bα∂α as

〈A,B〉 = 〈Aαxα, Bβxβ〉 = gαβAαBβ , (2.2)

where the metric tensor g = {gαβ} is defined by

gαβ(Σ2) = 〈∂α, ∂β〉 = 〈xα,xβ〉 := (xα,xβ)R3 (2.3)

(xα,xβ)R3 :=
3∑

i=1

δij xi
α xj

β =
3∑

i=1

∂xi

∂uα

∂xi

∂uβ
, (2.4)
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where the symbol (·, ·)R3 is defined by (2.4), the scalar product with the
euclidean metric (§1.5.2) in R

3. This is so that the euclidean metric induces
the metric tensor gαβ on the surface Σ2. The metric tensor is obviously
symmetric by the definition (2.4): gαβ = gβα.

Denoting a differential 1-form as dx = xαduα, the first fundamental
form is defined by

I := 〈dx, dx〉 = 〈xαduα,xβduβ〉 = gαβduαduβ

= g11du1du1 + 2g12du1du2 + g22du2du2. (2.5)

Note that duα is a 1-form (§1.5.1), i.e. duα(A) = duα(Aβxβ) = Aα. The
first fundamental form I = 〈dx, dx〉 is a quadratic form associated with
the metric. This quadratic form I is interpreted, in a mathematical term,
as a second-rank covariant tensor (§1.10.2) taking a real value on a pair of
vectors A and B,

I(A,B) = gαβduα ⊗ duβ(A,B)

= gαβduα(A) ⊗ duβ(B) = gαβAαBβ , (2.6)

by using the definition (1.91) of the tensor product ⊗. In this context, dx

is a 1-form yielding a vector, defined by a mixed tensor: dx = xα ⊗ duα,
and we have

dx(A) = xα ⊗ duα(A) = xαAα = A. (2.7)

Thus, eating a vector A, dx yields the same vector A. In this language,
dx is not an infinitesimal increment vector, but a vector-valued 1-form
(§1.10.3(ii)).

Example. Torus (I). Consider a surface of revolution called a torus Σtor,
obtained by rotating a circle C of radius a about the z-axis, where the cir-
cle C is in the x–z plane with its center located at (x, y, z) = (R, 0, 0)
with R > a (Fig. 2.3). The surface is represented as xtor(u, v) =
(x(u, v), y(u, v), z(u, v)), where

xtor = (x, y, z) = ((R + a cos u) cos v, (R + a cos u) sin v, a sin u). (2.8)

The parameter u is an angle-parameter of the circle C (e.g. u ∈ [0, 2π]) and
v denotes the angle of rotation of C around the z-axis (e.g. v ∈ [0, 2π]).
In this sense, the surface Σtor is denoted as T 2 in a standard notation:
T 2([0, 2π], [0, 2π]) with 2π being identified with 0 for both parameters.
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R
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>0
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K < 0
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∂�

∂u

(a) (b)

Fig. 2.3. Torus. (xu, xv) = (∂u, ∂v).

The basis vectors to TpΣtor are

xu = ∂uxtor = (−a sin u cos v,−a sin u sin v, a cos u), (2.9)

xv = ∂vxtor = (−(R + a cos u) sin v, (R + a cos u) cos v, 0). (2.10)

The metric tensors gαβ = 〈xα, xβ〉 are

guu = a2, guv = 0, gvv = (R + a cos u)2, (2.11)

which are independent of v, and guu is a constant. The first fundamental
form is

I = a2(du)2 + (R + a cos u)2(dv)2. (2.12)

A line element of the curve x(t) (on Σ2) for an increment ∆t is denoted
as ∆x = (∆uα)xα, and its length ∆s is defined by

∆s = ‖∆x‖ := 〈∆x, ∆x〉1/2 (2.13)

〈∆x, ∆x〉 = gαβ(∆uα)(∆uβ) (2.14)

(Fig. 2.4). Thus the length of an infinitesimal element of u1-coordinate
curve (∆1u

1, 0) is given by (∆1s)2 = g11(∆1u
1)2. Similarly, the length

of an infinitesimal element (0, ∆2u
2) is given by (∆2s)2 = g22(∆2u

2)2.
Consequently, we have g11 > 0 and g22 > 0.

The angle θ between two tangent vectors A and B is defined by

cos θ =
〈A,B〉

‖A‖ ‖B‖ . (2.15)
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u2

u1
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� �

∆u
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∆u 1

∆ x

∆s = ||∆ x||

∆
1u 1

∆ 2
u
2

∆A

Fig. 2.4. Length, angle and area over Σ2, (∆s)2 = g11(∆u1)2 + 2g12∆u1∆u2 +
g22(∆u2)2.

So the intersecting angle θ of two coordinate curves u1 = const and
u2 = const is given by

cos θ =
〈x1,x2〉∆1u

1∆2u
2

(∆1s)(∆2s)
=

g12√
g11

√
g22

. (2.16)

Hence, it is necessary for orthogonality of two coordinate curves on a surface
to be g12 = 0 at each point. It is also the sufficient condition.

Consider a small parallelogram spanned by two infinitesimal line-
elements (∆1u

1, 0) and (0, ∆2u
2). Its area ∆A is given by

∆A = sin θ(
√

g11∆1u
1)(

√
g22∆2u

2) =
√

g∆1u
1∆2u

2, (2.17)

where g = g11g22−(g12)2 = det(gαβ), where g can be shown to be positive.1

The metric properties of a surface, such as the length, angle and area,
can be expressed completely by means of the first fundamental form of the
surface. It is true that these quantities are embedded in the enveloping space
R

3, where the metric tensor is euclidean, i.e. gij(R3) = δij (Kronecker’s
delta) with i, j = 1, 2, 3. In this sense, the metric gαβ(Σ2) = (xα,xβ)R3 of
the surface Σ2 is induced by the euclidean metric of the space R

3. Consider
two surfaces, and suppose that there exists a coordinate system on each sur-
face which gives an identical first fundamental form for the two surfaces, i.e.
their metric tensors are identical, then it is said that the two surfaces have
the same intrinsic geometry. Two such surfaces are said to be isometric. As
far as the measurement of the above three quantities are concerned, there
is no difference in the two surfaces, no matter how different the surfaces
may appear when viewed from the enveloping space. Furthermore, we can

1g = (A12)2 + (A23)2 + (A31)2 > 0, where Aik = xi
1xk

2 − xk
1xi

2. This is verified by using
(2.4) and the identity, det(gαβ) = det(

∑3
i=1 xi

αxi
β) = (A12)2 + (A23)2 + (A31)2.
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define an intrinsic curvature called the Gaussian curvature for the isometric
surfaces, which is considered in §2.5. It will be seen later that the Gaussian
curvature is one of the central geometrical objects in the analysis of time
evolution of various dynamical systems.

2.2. Second Fundamental Form

The vector product of two tangent vectors x1(=xu1) and x2(=xu2) yields
a vector directed to the normal to the surface Σ2 with the magnitude
‖x1 × x2‖ (Appendix B.5). Thus, the unit normal to Σ2 is defined as

N =
x1 × x2

‖x1 × x2‖

(
=

xu1 × xu2

‖xu1 × xu2‖

)
, (2.18)

at a point x(u1, u2). Since 〈N , N〉 = 1, we obtain 〈Nα,N〉 = 0 by differ-
entiating it with respect to uα, where Nα = ∂N/∂uα. Hence, Nα ⊥ N

for α = 1 and 2, i.e. N1 and N2 are tangent to Σ2. Thus, we have two
pairs of tangent vectors, (x1,x2) and (N1,N2) (Fig. 2.5). Using the pair
(N1,N2), one can define a mixed tensor, dN := Nβ ⊗duβ (see §1.10.3(ii)).
The assignment b(xα) : xα �→ −dN(xα) = −Nα (α = 1, 2) defines a linear
transformation between (x1,x2) and (N1,N2), where the equation

Nα = −b(xα), or Nα = −bβ
αxβ = −b1

αx1 − b2
αx2 (2.19)

(α = 1, 2) is called the Weingarten equation. The (bβ
α) is the transforma-

tion matrix from (x1,x2) to (N1, N2), whose elements are related to the

N

N1 = –b1
1 x1– b2

1 x2

N2 = –b1
2 x1–b2

2 x2

(a) (b)

x2

x2

x1

x1

p

p
Σ2

TpΣ2T
p Σ 2

Fig. 2.5. (a) Unit normal N , (b) Two pairs: (x1, x2) and (N1, N2).
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coefficients of the second fundamental form defined below. For ∀A ∈ TΣ2,
this assigns another tangent vector b(A) = −dN(A) = −AαNα.

With two tangents dx = xαduα and dN = Nβduβ , the second funda-
mental form is defined by

II = −〈dx, dN〉 = −〈xαduα,Nβduβ〉 = bαβduαduβ , (2.20)

where

bαβ = −〈xα,Nβ〉. (2.21)

In the language of the tensor product, the II is a second-rank covariant
tensor taking a real value on a pair of vectors, i.e.

II(A,B) = −〈dx, dN〉(A,B) = 〈A, b(B)〉
= bαβduα ⊗ duβ(A,B) = bαβAαBβ . (2.22)

Owing to the orthogonality 〈xα,N〉 = 0, we obtain

0 = ∂uβ 〈xα,N〉 = 〈xαβ , N〉 + 〈xα, Nβ〉 = 〈xαβ ,N〉 − bαβ .

Note that the equality xαβ = ∂2x/∂uα∂uβ = ∂2x/∂uβ∂uα is considered to
be a condition of integrability to obtain a smooth surface (see §2.7). This
leads to the symmetry of the tensor bαβ :

bαβ = 〈xαβ , N〉 = bβα. (2.23)

Thus, it is found that the second fundamental form is symmetric:

II(A,B) = 〈A, b(B)〉 = bαβAαBβ = 〈B, b(A)〉 = II(B,A). (2.24)

Taking the scalar product of (2.19) with xγ , and using (2.4) and (2.21), we
have the relation

〈Nα,xγ〉 = −〈bβ
α xβ ,xγ〉, or bγα = bβ

α gβγ .

Solving this, we obtain bβ
α = gβγ bγα, where gαβ denotes the components of

the inverse g−1 of the metric tensor g, that is,

gαβ = (g−1)αβ and gαβgβγ = gγβgβα = δα
γ , (2.25)

where δα
γ is the Kronecker’s delta. Thus,

g11 =
g22

det g
, g12 = g21 = − g12

det g
, g22 =

g11

det g
. (2.26)
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Example. Torus (II). In §2.1, we considered a torus surface Σtor and its
metric tensor. According to the formula (2.18), unit normal to the surface
Σtor is obtained as

N = (−cos u cos v,−cos u sin v,−sin u), (2.27)

where the expressions (2.9) and (2.10) are used for the two basis vectors
xu,xv ∈ TpΣtor. The coefficients bαβ of the second fundamental form are
obtained by using (2.23) and the derivatives of xu and xv as

buu = a, buv = 0, bvv = (R + a cos u) cos u. (2.28)

Using the metric tensor g of (2.11), we have det g = a2(R+a cos u)2. Hence,
the inverse g−1 is given by

guu =
1
a2 , guv = gvu = 0, gvv =

1
(R + a cos u)2

. (2.29)

2.3. Gauss’s Surface Equation and an Induced Connection

What is an induced derivative for a curved surface in R
3.

Although the vectors x1 and x2 are tangent, the second derivatives xαβ

are not necessarily so, and we have the following expression,

xαβ = ∂βxα = bαβ N + Γγ
αβ xγ . (2.30)

This represents four equations, called the Gauss’s surface equations
(Fig. 2.6). The first normal part is consistent with (2.23) and the sec-
ond tangential part introduces the coefficient Γγ

αβ , the Christoffel symbols

Σ 2

b∝�N

x∝�

Γ
∝� xr

∝� x
� =

∆–

∂� ∂
� =Γ r

�� ∂
�

∆–

(a) (b)

Fig. 2.6. (a) ∂βxα, (b) covariant derivative ∇∂β
xα.
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defined by

〈xν ,xαβ〉 = 〈xν , xγ〉Γγ
αβ = gνγΓγ

αβ =: Γαβ,ν .

Evidently we have the symmetry, Γγ
αβ = Γγ

βα and Γαβ,ν = Γβα,ν .
Using the expression (2.30), one can introduce an induced covariant

derivative ∇̄ of a base vector xα with respect to a second base xβ defined as

∇̄xβ
xα(= ∇̄∂β

∂α) := xαβ − bαβN = Γγ
αβxγ , (2.31)

where ∇̄ (the nabla with an overbar) denotes the tangential part of the
derivative. The equation ∇̄xβ

xα = ∇̄∂β
∂α = Γγ

αβ∂γ is consistent with an
equality in (1.100) for Xk = 1, that is ∇∂j

∂α = Γk
jα∂k. This is the property

of (an affine) connection considered in §1.10.3(iii).2

For two tangent vectors X,Y ∈ TΣ2, one can introduce a vector-valued
1-form,

∇̄X = ∂k ⊗ ∇̄Xk, ∇̄Xk = dXk + Γk
βαXαdxβ ,

where ∇̄Xk is a (connection) 1-form. Then, we have the induced covariant
derivative of X with respect to Y :

∇̄Y X := ∂k ⊗ ∇̄Xk(Y ) = ∇̄Xk(Y )∂k (2.32)

∇̄Xk(Y ) = dXk(Y ) + Γk
βαXαY β . (2.33)

The covariant derivative ∇̄Y X is considered to be a map, ∇̄ : TΣ2×TΣ2 →
TΣ2, namely ∇̄Y X represents a tangent vector as evident by (2.32), and
the operator ∇̄ is called an induced connection. Taking Xα = 1 and Y β = 1,
Eq. (2.33) reduces to ∇̄∂β

∂α = Γk
βα ∂k, which is equivalent to (2.31), the

tangential part of (2.30).
For later application, let us rewrite the expression (2.30) (or (2.31)) by

multiplying XαY β on both sides. Then we obtain

XαY β∂βxα = XαY βbαβN + XαY β∇̄xβ
xα. (2.34)

The first term on the right-hand side is equal to the second fundamental
form II(X,Y )N by (2.24). Using (2.31)–(2.33), the second term is found to
be equal to ∇̄Y X − dX(Y ), where dX(Y ) = dXα(Y )xα = Y β∂βXαxα.

2See §3.5 for general definition of affine connection or covariant derivative.
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Now let us define the nabla ∇ in the ambient space (in the ordinary
sense) by

∇Y X = Y β ∂β(Xαxα) = dX(Y ) + XαY β∂βxα.

Collecting these, it is found that Eq. (2.34) is written as

∇Y X = ∇̄Y X + II(X,Y )N , (2.35)

∇̄Y X = dXα(Y )xα + Xα d̄xα(Y ), (2.36)

d̄xα(Y ) := Y β ∇̄xβ
xα (tangential part).

The first is called the Gauss’s surface equation, and the second gives another
definition of the covariant derivative.

A vector field X(x) is said to be parallel along the curve generated by
Y (x) if the covariant derivative ∇̄Y X vanishes:

∇̄Y X = 0. (2.37)

See §3.5 and 3.8.1 for more details of the parallel translation.
Sometimes (very often in the cases considered below), it is possible to

formulate the curved space (such as Σ2) without taking into consideratiaon
the enveloping flat space R

3. In those cases, the nabla ∇ (without the
overbar) is used to denote the covariant derivative.

2.4. Gauss–Mainardi–Codazzi Equation and Integrability

We consider some integrability condition of a surface.

Differentiating the metric tensor gνα = 〈xν , xα〉 with respect to uβ , we
obtain

∂βgνα = ∂β〈xν ,xα〉 = 〈xνβ ,xα〉 + 〈xν ,xαβ〉
= Γνβ,α + Γαβ,ν . (2.38)

It is readily shown that ∂βgνα+∂νgαβ −∂αgβν = 2Γβν,α = 2gαλ Γλ
βν . Hence,

we find

Γµ
βν = gµα Γβν,α, (2.39)

Γβν,α =
1
2
(∂βgνα + ∂νgαβ − ∂αgβν), (2.40)

which are well-known representations of the Christoffel symbols in terms of
the metric tensors.
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Example. Torus (III). Using the metric tensor g of (2.11), we can calculate
the Christoffel symbols Γαβ,u and Γαβ,v for the torus Σtor, as follows:

Γαβ,u =
(

0 0
0 aQ sin u

)
, Γαβ,v =

(
0 −aQ sin u

−aQ sin u 0

)
, (2.41)

where Q = R + a cos u. Next, using the inverse g−1 of (2.29), we obtain
Γu

αβ = guu Γαβ,u + guv Γαβ,v = guu Γαβ,u since guv = 0. Similarly, we have
Γv

αβ = gvv Γαβ,v. Thus,

Γu
αβ =

1
a

(
0 0
0 Q sin u

)
, Γv

αβ = − 1
Q

(
0 a sin u

a sin u 0

)
. (2.42)

As a result, it is found that all the coefficients of the Gauss equation
(2.30) are represented in terms of gαβ and bαβ (the first and second funda-
mental forms). The following equality of third order derivatives

xαβγ = ∂γ∂β∂αx = xαγβ , (2.43)

is considered to be a condition of integrability of a surface.3

When two sets of tensors gαβ and bαβ are given, one can derive another
important equation of the surface. Using the Weingarten equation (2.19)
and the Gauss equation (2.30), one can derive the following expression:

0 = xαβγ − xαγβ = (Rν
αγβ − Bν

αβγ)xν + VαβγN , (2.44)

where

Rν
αγβ = ∂γΓν

βα − ∂βΓν
γα + Γν

γµΓµ
βα − Γν

βµΓµ
γα, (2.45)

Bν
αβγ = bν

γ bαβ − bν
β bαγ , (2.46)

Vαβγ = Γν
αβbνγ + ∂γbαβ − Γν

αγbνβ − ∂βbαγ . (2.47)

The tensors Rν
αγβ defined by (2.45) are called the Riemann–Christoffel cur-

vature tensors. Because the left-hand side of Eq. (2.44) is zero, both of the
tangential and normal components of (2.44), i.e. the coefficients of xν and

3In §2.7, integrability conditions are given in different ways.
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N respectively, must vanish. Thus we obtain the Gauss’s equation,

Rν
αγβ = bν

γ bαβ − bν
β bαγ , (2.48)

and the Mainardi–Codazzi equation,4

∂γbαβ − Γν
αγbνβ = ∂β bαγ − Γν

αβbνγ . (2.49)

Introducing the notation bαβ;γ := ∂γbαβ−Γν
αγbνβ for the left side, Eq. (2.49)

reduces to bαβ;γ = bαγ;β . Since all the indices take only 1 and 2, the
Mainardi–Codazzi equation consists of only two equations: b11;2 = b12;1

and b22;1 = b21;2.

Remark. When the two sets of tensors gαβ and bαβ are given as the first
and second fundamental tensors (see §2.11 for the uniqueness theorem),
respectively, Eqs. (2.48) and (2.49) must be satisfied for the existence of
the integral surface (represented by Eq. (2.43)), and therefore they are con-
sidered as the integrability conditions. In the geometrical theory of soliton
systems considered in Part IV, the Gauss equation and Mainardi–Codazzi
equation yield a nonlinear partial differential equation, usually called the
soliton equation.

2.5. Gaussian Curvature of a Surface

We consider various curvatures in order to characterize a surface
and curves lying on the surface.

2.5.1. Riemann tensors

From the Riemann tensor Rν
αβγ (third order covariant and first order con-

travariant), one can define the fourth order covariant tensor by

Rδαβγ = gδνRν
αβγ .

In terms of the Christoffel symbols, we have

Rδαβγ = ∂βΓγα,δ − ∂γΓβα,δ + Γµ
αβΓδγ,µ − Γµ

αγΓδβ,µ, (2.50)

which can be shown by using the equation,

∂βΓγα,δ = ∂β(gδνΓν
γα) = gδν∂βΓν

γα + Γν
γα(Γνβ,δ + Γδβ,ν).

This equation can be verified by using (2.38) and (2.40).

4This is sometimes called as Codazzi equation [Cod1869]. However, the equivalent equa-
tion had been derived earlier by Mainardi [Mai1856]. (See [Eis47, Ch. IV, §39].)
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Furthermore, using (2.40) again, one can derive another expression of
Rδαβγ : [Eis47]

Rδαβγ =
1
2
(∂β∂αgδγ − ∂β∂δgαγ − ∂γ∂αgδβ + ∂γ∂δgαβ)

+ gµν(Γαβ,ν Γδγ,µ − Γαγ,ν Γδβ,µ). (2.51)

The last expression shows a remarkable property that the tensor Rδαβγ

is skew-symmetric not only with respect to the pair of indices β and γ,
changing sign with the exchange of both indices, but also with respect to
the pair of indices α and δ.

From (2.51), it can be shown that

Rδαβγ + Rδβγα + Rδγαβ = 0. (2.52)

It is obvious in the expression (2.51) that the Riemann tensors are rep-
resented in terms of the metric tensors gαβ only, characterizing the first
fundamental form, because the Christoffel symbols are also represented in
terms of gαβ by (2.40).5

Considering that the indices α, β · · · take two values 1 and 2, the ten-
sor Rδαβγ has nominally sixteen components, among which the number of
nonvanishing independent components is only one. This can be verified as
follows. Because of the above skew-symmetries with respect to two pairs of
indices (α, δ) and (β, γ), all the tensors with α = δ or β = γ of the form
Rααβγ or Rδαββ vanish, and the remaining nonvanishing components are
only four. However, we obviously have the following relations among the
four by the skew-symmetries:

R1212 = −R1221 = R2121 = −R2112.

Hence all the Riemann tensors are given, once R1212 is known.
When a surface is isometric with the plane, i.e. when their first funda-

mental forms are identical to each other, there necessarily exists a coordi-
nate system for which g11 = g22 = 1 and g12 = 0. Then, we have R1212 = 0,
since R1212 is represented in terms of the Christoffel symbols and their
derivatives (see (2.50)) and the Christoffel symbols, in turn, are given by
derivatives of the metric tensors (see (2.40)) which vanish identically. In
general, a surface is isometric with the plane if and only if the Riemann
tensor is a zero tensor.

5This remarkable property is called the Gauss’s Theorema Egregium.
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From a sheet of paper, we can form a cylinder or cone, but it is not
possible to form a spherical surface without stretching, folding or cutting.
The geometrical property which can be expressed entirely in terms of the
first fundamental form is called the intrinsic geometry of the surface. As
shown in the subsequent sections, the Gaussian curvature of a surface is an
intrinsic quantity. The Gaussian curvature of a plane sheet, circular cylinder
or a cone are all zero, while that of the sphere takes a positive value.

2.5.2. Gaussian curvature

The Gaussian curvature K of a surface is defined by

K := det(bα
β) = R12

12, (2.53)

which will be given another meaning by (2.62) below in terms of the normal
curvatures. Here the following equation, obtained from (2.48), is used:

R12
12 := g2αR1

α12 = g2α(b1
1bα2 − b1

2bα1) = b1
1b

2
2 − b1

2b
2
1. (2.54)

Using (2.48) again and the relation bαβ = gαγbγ
β defined in §2.2 together

with det(bαβ) = det(gαγ) det(bγ
β), one obtains another form of the Gauss

equation (2.48),

R1212 = g1νRν
212 = g1ν(bν

1b22 − bν
2b21) = g1νgνµ(b1µb22 − b2µb21)

= b11b22 − b21b21 = det (bαβ) = det(gαγ) det(bγ
β), (2.55)

since g1νgνµ = δµ
1 . Thus it is found that

K = det(bα
β) =

det(bαβ)
det(gαβ)

=
R1212

g
, (2.56)

where g = det(gαβ) = g11g22 − (g12)2.

Example. Torus (IV). Regarding the torus surface Σtor, we have calcu-
lated already the tensor coefficients of the first and second fundamental
forms in §2.1 and 2.2. Using (2.11) and (2.28), the Gaussian curvature is
found immediately as

Ktor =
det(bαβ)
det(gαβ)

=
a(R + a cos u) cos u

a2(R + a cos u)2
=

cos u

a(R + a cos u)
. (2.57)

The curvature Ktor takes both positive and negative values according to
cos u > 0 or < 0 (Fig. 2.3).
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2.5.3. Geodesic curvature and normal curvature

In order to find another useful expression of K, consider a space curve
C defined by x(s) with s the arc length parameter (see Appendix D.1).
The unit tangent is given by T = dx/ds = xαduα/ds = xαu̇α (where
u̇α = duα/ds). The curvature κ of C at x is defined by

κn :=
dT

ds
= xαβ

duα

ds

duβ

ds
+ xα

d2uα

ds2

= (bαβN + Γγ
αβxγ)u̇αu̇β + xαüα = κNN + κg (2.58)

(using (2.30)), where n is the unit principal normal to the space curve C
(cf. Serret–Frenet formula), and the geodesic curvature defined by

κg = (Γγ
αβ u̇αu̇β + üγ)xγ (2.59)

is the tangential component of dT /ds (Fig. 2.7). The normal n of the
curve is not necessarily parallel to the normal N of the surface on which
the curve C is lying, and the component of the vector κn in the direction
to the surface normal N is given by

κN = 〈κn,N〉 = 〈xαβ , N〉u̇αu̇β = II(T ,T ), (2.60)

in view of the definition (2.23). Equivalently, we have

κN =
〈xαβ ,N〉duαduβ

ds2 =
bαβ duαduβ

gαβ duαduβ
= II(T ,T ).

x

CN

g

�NN�n
C

P

N

T�

Fig. 2.7. Geodesic curvature κg and normal curvature κN (< 0).
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�N (p) = II(T,T )

TPΣ2

p �1

�2

Σ2

N(p)

T

Fig. 2.8. κN (p) = II(T , T ) at p ∈ Σ2.

The κN is called the normal curvature and understood as the second funda-
mental form on the unit tangent T (Fig. 2.8). In general, the curvature vec-
tor κn has a tangential component κg (the geodesic curvature vector). The
above derivation shows that the normal curvature is given by κN = II(T ,T )
under the restricting condition, I(T ,T ) = 〈T ,T 〉 = 1.

2.5.4. Principal curvatures

The plane P spanned by the vectors T and N at a point p ∈ Σ2 cuts the
surface Σ2 with a section called a normal section (a curve CN , Fig. 2.7).
The second fundamental form takes

II(T ,T ) = ±κ,

where the signs ± depend on whether the curve C is curving toward N(+)
or not (−). Next, rotating the tangent direction T with p fixed, the normal
curvature κN = II(T ,T ) changes, in general, with keeping 〈T ,T 〉 = 1 fixed,
and takes a maximum κ1 in one direction, and a minimum κ2 in another
direction (Fig. 2.8). These values and directions are called the principal
values and directions respectively, and are determined as follows.

Observe that the above extremum problem is equivalent to finding the
extrema of the following function,

λ =
bαβTαT β

gαβTαT β
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without the restricting condition 〈T ,T 〉 = 1 (multiplication of Tα with an
arbitrary constant c does not change the value λ). The extremum condi-
tion given by ∂λ/∂Tα = 0 yields the following equation for the principal
direction T β :

(bαβ − λ gαβ) T β = 0, (α = 1, 2). (2.61)

The condition of nontrivial solution of T β , i.e. vanishing of the coefficient
determinant, becomes the equation for the eigenvalue λ yielding a quadratic
equation of λ (Appendix K), which has two roots κ1 and κ2 (principal
curvatures). Product of the two roots is given by κ1κ2 = det(bαβ)/det(gαβ)
from the quadratic equation, which is nothing but the Gaussian curvature
K of (2.56).6 Thus it is found that

K =
det(bαβ)
det(gαβ)

= κ1κ2. (2.62)

In Appendix D.3, for the surface defined by (x, y, f(x, y)), a formula of
its Gaussian curvature K is given, together with the tensors of the second
fundamental form

Example. Torus (V). For the torus Σtor, by using the first and second
fundamental tensors, (2.11) and (2.28), Eq. (2.61) reduces to

(a − λa2) Tu = 0,

(R + a cos u)(cos u − λ(R + a cos u)T v = 0.

Thus we obtain the eigenvalues (principal values) κ1 and κ2 and associated
eigen directions (Tu, T v) given by

κ1 =
1
a
, (1, 0); κ2 =

cos u

R + a cos u
, (0, 1)

Naturally, the product κ1κ2 is equal to Ktor of (2.57).

Figure 2.9 shows two surfaces of positive Gaussian curvature (K > 0).
Figure 2.10 shows a surface of negative Gaussian curvature (K < 0) and an
example of II(T ,T ) taking both signs.

Although the definition (2.53) of the Gaussian curvature K is given
by the coefficients bα

β derived from the second fundamental form bαβ , the
curvature K is determined entirely when the metric tensor fields gαβ(u1, u2)

6Sum of the two roots divided by 2, (κ1 + κ2)/2 = H, is called the mean curvature.
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N(p)

N(p)

p

II (p) > 0 II (p) < 0

p

p

Fig. 2.9. Surfaces of positive Gaussian curvature (K > 0).

Σ

∂1

∂2

∂2

∂1

p

N (p)

T

tan–1√2

TpΣ
II > 0

II > 0

II < 0 II < 0

(a) (b) II (T, T ) = –2(T 1)2+ (T 2)2

Fig. 2.10. A surface of negative Gaussian curvature (K < 0).

are given, i.e. K is intrinsic. This is understood by recalling the observation
given in §2.5.1 (below (2.51)) that R1212 (or equivalently R12

12) is determined
by the metric tensors gαβ . This remarkable property is called the Gauss’s
Theorema Egregium. This is essential in the Riemannian geometry.

According to (2.61), it can be shown that the two principal directions
are orthogonal unless bαβ = cgαβ with c a constant (see also [Eis47]). When
K = 0 at every point, the surface is called flat, while if H = 0 at every
point, the surface is called a minimal surface.

From the definition of the Gaussian curvature (2.53) and the expression
of Riemannian tensor (2.51), the Gaussian curvature is given the following
expression (Liouville–Beltrami formula):

K =
1

2
√

g

[
∂

∂u1

(
g12

g11
√

g

∂g11

∂u2 − 1
√

g

∂g22

∂u1

)

+
∂

∂u2

(
2

√
g

∂g12

∂u1 − 1
√

g

∂g11

∂u2 − g12

g11
√

g

∂g11

∂u1

)]
. (2.63)
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2.6. Geodesic Equation

Geometrical object “geodesics” governs the dynamics of physical
systems to be considered in later chapters.

Geodesic curves are characterized by the property of vanishing geodesic
curvature κg = 0 at every point. Namely, the derivative of the unit
tangent T along the geodesic curve has no component tangent to Σ2

(Fig. 2.11), from (2.58). Hence, using the induced covariant derivative
∇̄ of (2.33), the geodesic curve is described by ∇̄T T = 0. This implies
another definition of the geodesics according to (2.37) of parallel transla-
tion, namely the tangent vector T on the geodesic curve is translated par-
allel along it. When the curve is parametrized by the arc length s, we have
T = dx/ds = (duα/ds)xα = Tαxα, where Tα = duα/ds. Then Eq. (2.33)
reduces to

∇̄T T = xγ [dT γ(T ) + Γγ
αβ T βTα] = 0,

where dT γ(T ) = Tα∂T γ/∂uα = dT γ/ds. Thus, we obtain the geodesic
equation:

dT γ

ds
+ Γγ

αβ Tα T β = 0, (2.64)

which is written in another form by using T γ = duγ/ds as

d2uγ

ds2 + Γγ
αβ

duα

ds

duβ

ds
= 0. (2.65)

This is consisitent with the expression (2.59) for κg = 0.
The above definition of the geodesic curve is a generalization of a rec-

tilinear line on a flat plane. Since such a rectilinear line is not curved,

Geodesic curve Σ2

�n (�g= 0)

N

T

Fig. 2.11. Geodesic curve (κg = 0).
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its geodesic curvature is zero and its tangent vector is translated parallel
along it. Another important property of a rectilinear line on a plane is that
it is a shortest line among those curves connecting two points on a plane.
In §3.8, it will be verified in a general space that the arc-length along a
curve is extremum if the property ∇̄T T = 0 is satisfied.

Example. Torus (VI). For the surface of a torus Σtor, the Christoffel sym-
bols Γγ

αβ are already given in (2.42). The geodesic equation (2.64) for the
tangent vector T (s) = Tu(s)xu+T v(s)xv can be immediately written down
as follows:

dTu

ds
+

Q(u)
a

sin uT vT v = 0, (2.66)

dT v

ds
− 2a

Q(u)
sin uTuT v = 0, (2.67)

where (Tu, T v) = (u′(s), v′(s)), Q(u) = R + a cos u and (ds)2 = a2(du)2 +
Q2(dv)2.

2.7. Structure Equations in Differential Forms

Differential geometry in R
3 is reformulated with differential forms.

2.7.1. Smooth surfaces in RRR
3 and integrability

In this section, differential geometry of surfaces in R
3 is reformulated by

means of the differential forms. Suppose we have a smooth surface Σ2 rep-
resented by (2.1), and choose a right-handed orthonormal moving frame
Kx : {e1, e2, e3} at each point x on the surface Σ2 in such a way that e3

is always normal to Σ2:

Kx : {e1, e2, e3} where (ei, ej) = δij ,

where e1 and e2 span the tangent plane at each point of Σ2. This frame
is analogous to the orthonormal (t, n, b)-frame for a space curve to obtain
the Frenet–Serret equations (Appendix D.1).

The vector dx = x1du1 + x2du2 lies in the tangent plane TxΣ2 where
xα = ∂x/∂uα ∈ TxΣ2. Therefore, we can also represent dx in terms of e1

and e2 as

dx = σ1e1 + σ2e2, (2.68)
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where σ1 and σ2 are 1-forms and σ3 = 0 by definition. If we write xk =
c1
ke1 + c2

ke2, we obtain

σ1 = c1
1du1 + c1

2du2, σ2 = c2
1du1 + c2

2du2. (2.69)

The first fundamental form is given by

I = 〈dx, dx〉 = σ1σ1 + σ2σ2. (2.70)

Analogously to the expression (2.68) for dx, one may write differential forms
for each of the basis vectors ei as follows:

dei = ω1
i e1 + ω2

i e2 + ω3
i e3, (i = 1, 2, 3), (2.71)

where the ωk
i are 1-forms7 and can be represented by a linear combina-

tion of du1 and du2 like (2.69). Since (dei, ej) + (ei, dej) = 0 due to the
orthonomality (ei, ej) = δij , we have the anti-symmetry:

ωj
i = −ωi

j , i, j = 1, 2, 3. (2.72)

Hence, we have ω1
1 = ω2

2 = ω3
3 = 0.

The second fundamental form (see (2.20)) is

II = −〈dx, de3〉 = −〈(σ1e1 + σ2e2), (e1ω
1
3 + e2ω

2
3)〉

= −σ1ω1
3 − σ2ω2

3 . (2.73)

From the differential calculus (Appendix B.3), we have the relation,

d(σkek) = dσkek − σk ∧ dek.

If we take exterior differentiation of (2.68), the left-hand side vanishes iden-
tically,8 and we have

0 = d(dx) = (dσ1 − σ2 ∧ ω1
2)e1 + (dσ2 − σ1 ∧ ω2

1)e2

− (σ1 ∧ ω3
1 + σ2 ∧ ω3

2)e3. (2.74)

Thus, from the first two terms, one obtains the first integrability equations:

dσ1 = σ2 ∧ ω1
2 = −� ∧ σ2, dσ2 = σ1 ∧ ω2

1 = � ∧ σ1, (2.75)

7According to the notation of §1.8.3(iii), dei(= ∇ei) = ek ⊗ ωk
i , where ωk

i is called a
connection 1-form.
8The property d(dx) = d2x = 0 is nothing more than the equality of mixed partial
deivatives. It is the source of most integrability conditions in partial differential equations
and differential geometry.
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where � := ω1
2 = −ω2

1 . In addition, the third term gives the equation,

−σ1 ∧ ω3
1 − σ2 ∧ ω3

2 = σ1 ∧ ω1 + σ2 ∧ ω2 = 0, (2.76)

where ω1 := ω1
3 = −ω3

1 , ω2 := ω2
3 = −ω3

2 . Both pairs of 1-forms, (σ1, σ2)
and (ω1, ω2), can be represented by a linear combination of du1 and du2.
Hence, (ω1, ω2) are expressed by a linear combination of σ1 and σ2 with
constant matrix coefficients βij (say) as follows:

ω1 = −β11σ
1 − β12σ

2, ω2 = −β21σ
1 − β22σ

2. (2.77)

Substituting this into (2.76), we have (β21 − β12)σ1 ∧ σ2 = 0. Hence, we
obtain the symmetry, β12 = β21, and the second fundamental form (2.73)
is written as

II = β11σ
1σ1 + 2β12σ

1σ2 + β22σ
2σ2. (2.78)

Comparing the present first and second fundamental forms (2.70) and (2.78)
(in the local orthonormal frame {e1, e2}) with the previous (2.5) and (2.20)
respectively, it is found that the present metric tensor is gij = δij and

bij = βij . (2.79)

2.7.2. Structure equations

It is convenient to use matrix notations and write as follows:

e =


e1

e2

e3


 , σ = (σ1, σ2, σ3), Ω =


 0 −� −ω1

� 0 −ω2

ω1 ω2 0


 , (2.80)

where Ω = (ωi
j) and σ3 = 0. Then, the first structure equation (2.68) is

dx = σe, with σ3 = 0, (2.81)

where σ is the basis of 1-forms dual to the frame e. One may recall that
dx is a 1-form having a vector value (a vector-valued 1-form). Note that
σ1 ∧ σ2 represents the surface element of Σ.

Similarly, the second structure equation, (2.71) and (2.72), is

de = Ω e, Ω = −ΩT , (2.82)
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where the left-hand superscript T denotes transpose of the matrix. This is
also a vector-valued 1-form. In components, we have

de1 = −�e2 − ω1e3,

de2 = �e1 − ω2e3,

de3 = ω1e1 + ω2e2.

(2.83)

Equation (2.74) is written as

d(dx) = d(σe) = dσe − σ ∧ de

= dσe − σ ∧ Ωe = (dσ − σ ∧ Ω)e = 0. (2.84)

Thus, Eqs. (2.75) and (2.76) are represented by a single expression,

dσ − σ ∧ Ω = 0. (2.85)

Equations (2.82) and (2.85) are called the structure equations. Similarly,
from d(de) = 0, we have

d(de) = d(Ωe) = dΩe − Ω ∧ de

= dΩe − Ω ∧ Ωe = (dΩ − Ω ∧ Ω)e = 0. (2.86)

Thus, we obtain the second integrability equation,

dΩ − Ω ∧ Ω = 0. (2.87)

In components, it is written as dωk
i + ωk

j ∧ ωj
i = 0 (i, k = 1, 2, 3), or as

d� − ω1 ∧ ω2 = 0, dω1 + � ∧ ω2 = 0, dω2 − � ∧ ω1 = 0. (2.88)

Thus, from two vectorial structure equations (2.81) and (2.82), we have
obtained six integrability conditions (2.75), (2.76) (equivalent to (2.85)) and
(2.88). Almost all of local surface theory is contained in these equations.

In particular, from the first equation of (2.88), we obtain

d� = ω1 ∧ ω2 = Kσ1 ∧ σ2, (2.89)

K = b11b22 − b12b21, (2.90)

where (2.77) and (2.79) are used. This is often called the Cartan’s second
structure equation. From (2.56), it is seen that the coefficient K is the
Gaussian curvature since det(gαβ) = 1.
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It is reminded that Eq. (2.75) of the first integrability condition are

dσ1 = σ2 ∧ �, dσ2 = � ∧ σ1, (2.91)

while Eq. (2.89) is deduced from the second integrability condition.
The first equation (2.89) implies that the Gaussian curvature K is given

once we know σ1, σ2 and �. When σ1 and σ2 are given, Eqs. (2.75) suffice
to determine �. In fact, if the two equations of (2.75) give dσ1 = Aσ1 ∧ σ2

and dσ2 = Bσ1∧σ2, we must have � = −Aσ1−Bσ2. Thus, K is completely
determined from σ1 and σ2. General consideration of this aspect will be
given in §3.5.

2.7.3. Geodesic equation

On a geodesic curve γ(s), its tangent vector T is translated parallel along
itself. This is represented by ∇̄T T = 0. From (2.36), this is written as

(dTα)eα + Tαd̄eα = 0.

From (2.83), we have d̄e1 = −�e2 and d̄e2 = �e1. Therefore we obtain

dT 1 + T 2� = 0, dT 2 − T 1� = 0. (2.92)

If the parameter s is taken as the arc-length of the curve, T = dγ/ds is a
unit tangent vector and can be represented as

T 1 = cos ϕ(s), T 2 = sin ϕ(s), (2.93)

where ϕ(s) is the angle of the tangent T with respect to the axis e1 at a
point s (Fig. 2.12). It is easily shown that T 1dT 2 − T 2dT 1 = dϕ. From
(2.92), we also obtain T 1dT 2 − T 2dT 1 = �. Thus, it is found that

� = dϕ. (2.94)

S

T = (T 1, T 2)

	 (s)




1

Fig. 2.12. Angle φ(s).
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2.8. Gauss Spherical Map

In Appendix D.2, the curvature κ of a plane curve is interpreted by the
Gauss map G, which indicates that the κ is given by the ratio of the arc-
length over the Gauss’ unit circle with respect to the arc-length along which
a point x moves. This can be generalized to the surface in R

3 [Kob77].
It is recalled that σ1 ∧σ2 is a surface element on Σ2. As a point x moves

over Σ2, e3 moves over a region on a unit sphere S2. This is a map G,
called the Gauss spherical map or spherical image, i.e. G : x(p) �→ e3(p) for
p ∈ Σ2. The two unit vectors e1 and e2 orthogonal to e3 lie in the tangent
plane to the spherical image as well as in Σ2, and form an orthonormal frame
on the sphere S2. From the equation dx = σ1e1 + σ2e2, it is understood
that the 2-form σ1 ∧ σ2 represents a surface element of Σ2. Analogously,
from the equation de3 = ω1e1 + ω2e2, it is read that the 2-form ω1 ∧ ω2

represents a surface element of the spherical image S2 (Fig. 2.13).
Because there exists only one linearly independent 2-form on the two-

dimensional manifold,9 the two 2-forms, σ1 ∧ σ2 and ω1 ∧ ω2, are linearly
dependent, and one can write the connecting relation in terms of a scalar
K ′ in the following form:

ω1 ∧ ω2 = K ′σ1 ∧ σ2. (2.95)

Equations (2.89) and (2.62) show that the scalar coefficient K ′ is nothing
but the Gaussian curvature K = κ1κ2. This is analogous to the curvature
interpretation of a plane curve by the Gauss map in Appendix D.2 where

p� 1∧� 2

dx ( p)

Σ2

S 2

�1∧ �2 3 ( p)

3 ( p)

Fig. 2.13. Gauss spherical map.

9Dimension of 2-forms on vectors in R
2 is 1, since the formula (B.6) gives

(2
2

)
= 1 with

n = 2 and k = 2.
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the line element ∆p of a plane curve corresponds to the surface element
σ1 ∧ σ2 of Σ2.

Similarly, we have a 2-form σ1 ∧ ω2 − σ2 ∧ ω1 on Σ2, which can be
represented as

σ1 ∧ ω2 − σ2 ∧ ω1 = (b11 + b22)σ1 ∧ σ2 = 2Hσ1 ∧ σ2,

where the scalar coefficient H is the mean curvature of Σ2 since 2H =
b11 + b22 = κ1 + κ2 due to gij = δij (see the footnote of §2.5.4).

2.9. Gauss–Bonnet Theorem I

Consider a subdomain A on a surface Σ2 with a boundary ∂A. Let us
integrate Eq. (2.89) over A and transform it by using the Stokes theorem
(B.46), then we obtain

∫
A

Kσ1 ∧ σ2 =
∫

A

d� =
∫

∂A

�. (2.96)

Let us consider the integral over a geodesic triangle A(3), that is a triangle
whose three sides are geodesics. The triangle is assumed to enclose a simply
connected area such that the curvature K has the same sign within or on
the triangle. Such a triangle is shown in Fig. 2.14(a). Three oriented sides
are denoted by ∂A1, ∂A2 and ∂A3, and three exterior angles are denoted
by ε1, ε2, ε3.

�3

ε1

�2

i3

i1

i1

A(3)

A(2)

∂A1

∂A3

∂A2 ∂A2

∂A1

(b)(a)

i2

i2

Fig. 2.14. (a) Geodesic triangle, (b) Geodesic di-angle.
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Then from (2.94), we have

∫
∂A(3)

� =
∫

∂A(3)
dϕ =

3∑
k=1

∫
∂Ak

dϕ, (2.97)

for the piecewise-geodesics ∂A(3) = ∂A1 + ∂A2 + ∂A3. On the other hand,
going around the closed curve consisting of the three piecewise-geodesics,
we have

3∑
k=1

∫
∂Ak

dϕ +
3∑

k=1

εk = 2π. (2.98)

Combining the above three equations, we find the following equation,∫
A(3)

Kσ1 ∧ σ2 = 2π −
3∑

k=1

εk. (2.99)

This is the Gauss–Bonnet Theorem for a geodesic triangle. This is imme-
diately generalized to a geodesic n-polygon A(n) by replacing

∑3
k=1 εk by∑n

k=1 εk in the above equation.
Since the exterior angle εk is given as π − ik in terms of the interior

angle ik, the Gauss–Bonnet Theorem for the geodesic n-polygon is given by∫
A(n)

Kσ1 ∧ σ2 = (2 − n)π +
n∑

k=1

ik. (2.100)

For a geodesic triangle n = 3, we obtain∫
A(3)

Kσ1 ∧ σ2 = −π + (i1 + i2 + i3). (2.101)

It follows that the sum of the interior angles is greater or smaller than π

according to the Gaussian curvature being positive or negative respectively,
and that the sum is equal to π for a triangle on a flat plane (K = 0) as is
well-known in the euclidean geometry.

For a geodesic di-angle (n = 2, Fig. 2.14(b)), Eq. (2.100) reduces to∫
A(2)

Kσ1 ∧ σ2 = i1 + i2.

This makes sense for A(2) of positive K, while it does not for A(2) of negative
K since i1 + i2 should be positive if it exists. As a consequence, it follows
that two geodesics on a surface of negative curvature cannot meet at two
points and cannot enclose a simply connected area.
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2.10. Gauss–Bonnet Theorem II

Suppose that M2
0 is a closed submanifold of R

3. The total curvature of M0

is given by

∫
M0

KdA, dA = σ1 ∧ σ2. (2.102)

Then, the (Brower) degree, Deg(Gn), of the Gauss normal map (Gn),
M2 → S2, is defined as

Deg(M0) :=
1
4π

∫
M0

KdA =
1
4π

∫
S2

dS2 = 1, (2.103)

by (2.95), where dS2 = ω1 ∧ ω2, since the area of the unit sphere S2

is 4π. If we smoothly deform M0, the curvature K will change smoothly
and likewise the area form dA, yet the total curvature normalized by 4π
remains constant to be the integer 1. This implies that the degree Deg is a
topological invariant.

For a surface Mg of genus g, i.e. the surface of a multihole doughnut
with g-holes (Fig. 2.15), we have

Deg(Mg) :=
1
4π

∫
Mg

KdA = 1 − g. (2.104)

This is another form of the Gauss–Bonnet Theorem, and gives a mea-
sure of the genus of the surface. For example, the degree of a single-hole
doughnut, that is T 2, is Deg(T 2) = 0.

V 2 = �M

M 3

Fig. 2.15. A surface ∂M of genus g = 2 of a manifold M3.
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For a closed manifold M2, the Euler characteristic χ(M2) is also
defined by

χ(M2) = #(vertices) − #(edges) + #(faces), (2.105)

for all triangulations of M2 (breaking M2 up into a number of triangle-
simplexes), where #(A’s) denotes the number of A’s, and χ(M2) is inde-
pendent of the triangulation. It can be shown that

χ(M2) = (1/2π)
∫

M2
KdA = 2 − 2g (2.106)

from the above Gauss–Bonnet Theorem [Fra97, Ch. 16, 17, 22.3]. Euler
characteristic of a single-hole doughnut T 2 is χ(T 2) = 2 − 2 = 0, whereas
for a sphere (without a hole), χ(S2) = 2.

Regarding a circular disk D2, we obtain χ(D2) = 1 (Fig. 2.16). This is
obtained with a simple-minded argument that a sphere S2 may be collapsed
into two disks (top and bottom). Topologically, the unit disk (with two
antipodal points on the unit circle identified) is equivalent to the real pro-
jective space RP 2, whose Euler characteristic is half of S2 [Fra97, §16.2b].
Likewise, a ring which is defined by a circular disk with a circular hole
inside has the Euler characteristic χ = 0, a half of χ(T 2) = 0.

An example of triangulation of a torus T 2 is made as in Fig. 2.17. In T 2,
the edge P1R1 is identified with P4R4, and likewise, P1P4 with R4R4 (Exam-
ple: Torus of §2.1). Namely, the two vertical edges are brought together by
bending and then sewn together, and moreover the two horizontal edges are
brought together by bending and then sewn together. Therefore, the num-
ber of vertices, P1, P2, P3, Q1, Q2, Q3, is six, whereas the number of edges
is 18, and the number of faces is 12. Thus, the Euler characteristic of T 2 is
χ(T 2) = 6 − 18 + 12 = 0, consistent with the above, which is independent
of the triangulation.

(a) (b)

= 0= 1 χχ

Fig. 2.16. (a) Circular disk, (b) circular annulas.
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R1 R2 R3 R4

P1 P2 P3 P4

Q1 Q2 Q3 Q4

Fig. 2.17. A triangulation of torus T 2.

2.11. Uniqueness: First and Second Fundamental Tensors

The first and second fundamental tensors gαβ and bαβ of a surface satisfy
the Gauss equation (2.48) and the Mainardi–Codazzi equation (2.49). In
this section, we inquire conversely whether the two tensors satisfying these
equations denote in fact the fundamental tensors of a certain surface. This
means that we investigate integrability of the Weingarten equation (2.19)
and the Gauss’s surface equation (2.30).

In order to answer this question, we introduce the tangent vector p

defined by

pα = (pi
α) :=

∂xi

∂uα
= xα, (i = 1, 2, 3), (2.107)

and recall Eqs. (2.3) and (2.18), from which we have

〈pα,pβ〉 = gαβ , 〈N , N〉 = 1, 〈N ,pα〉 = 0. (2.108)

The Weingarten equation and the surface equation are reproduced here,

Nα = −bαβ gβγpγ ,

(pα)β = bαβN + Γγ
αβ pγ ,

}
(2.109)

respectively, for N = (N i),pα = (pi
α) ∈ R

3 and α, β, γ = 1, 2.
The nine equations (2.109) (for N , p1, p2) and six functional equations

(2.108) constitute a mixed system of a first order partial differential equa-
tions for N i and pi

α, [Eis47, §23] where N i, pi
α (i = 1, 2, 3; α = 1, 2) are

nine dependent variables, whereas Eq. (2.108) constitutes six constraint
conditions on such nine variables, when the tensors gαβ and bαβ are given.
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The existence conditions of an integral surface are given by the Gauss
equation (2.48) and the Mainardi–Codazzi equation (2.49), which are
presupposed to be satisfied. When Eqs. (2.108) are differentiated with
respect to uα, the resulting equations are satisfied in consequence of (2.109),
and consequently we have three independent equations among the equations
(2.109). According to the theorem [23.2] of [Eis47, §23], the solution to
Eq. (2.109) under (2.108) involves three arbitrary constants (say a1, a2, a3)
associated with initial values.

When such a solution is given, the equations of the surface are given by
the quadratures:

xi =
∫

pi
αduα + bi,

by (2.107), where bi are three additional constants. The vector N is a unit
normal to this surface due to the second and third of (2.108).

We have now six arbitrary constants (ai, bi) involved in the present
problem for a surface in R

3. This arbitrariness is interpreted on the basis
of the following observation. Namely, suppose that x = (xi) and N =
(N i) constitute a solution of Eqs. (2.107)–(2.109). Consider a pair of new
quantities x̄ = (x̄i) and N̄ = (N̄ i) defined by

x̄ = Ax + (bi), N̄ = AN , (2.110)

(and p̄ = Ap), where bi are constants, and A = (ai
k) is an element of SO(3),

i.e. a constant 3×3 tensor, representing rotational transformation (§1.8.2).
The position vector x̄ is obtained by rotating x with the orthogonal matrix
A and translating the origin by (bi), while the vector N̄ is obtained by
rotating the normal N with the matrix A. The matrix A is subject to the
following orthogonality condition:

AAT (= ATA) = I, (det A = 1). (2.111)

This condition keeps the inner product of (2.108) invariant, and the equa-
tions of (2.109) are unchanged for the overbar variables too. From the first
equation of (2.110), the two surfaces defined by x and x̄ may be obtained
from one another by a rotation and a translation, that is, a rigid motion
without change of form. This transformation of rigid-motion involves arbi-
trary constants whose number is 6 since the number of bi is 3 and the
number of matrix elements of A is 9, with the total 12. However the con-
straint conditions (2.111) are 6. Therefore we have 6 arbitrary constants.
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Thus, the transformation of rigid-motion involves the same number of
arbitrary constants as the general solution of the present problem of deter-
mining a surface in R

3 for a given set of fundamental tensors satisfying
(2.48) and (2.49). It follows that any two surfaces with the same tensors
gαβ and bαβ which satisfy the equations of Gauss and Mainardi–Codazzi
are transformed into one another by a rigid-motion in space.
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Chapter 3

Riemannian Geometry

We consider the “inner” geometry of a manifold which is not
a part of an euclidean space. We consider only tangential vec-
tors, and any vector normal to the manifold is not available.
We presuppose that each tangent bundle possesses an inner
product depending on points of its base space smoothly. The
space is curved in general. The Riemannian curvature of a
manifold governs the behavior of geodesics on it and corre-
sponding dynamical system. Dimension of the manifold is not
always finite.

3.1. Tangent Space

3.1.1. Tangent vectors and inner product

If a manifold under consideration were a part of an euclidean space, it would
inherit a local euclidean geometry (such as the length) from the enveloping
euclidean space, as is the case of surfaces in R

3 considered in §2.1–2.3. What
we consider here is not a part of an euclidean space, so the existence of a
local geometry must be postulated.

Let Mn be an n-dimensional manifold. The problem is how to define a
tangent vector X when we are constrained to the manifold Mn. According
to the theory of manifolds in Chapter 1, we introduced a local coordi-
nate frame (x1, . . . , xn). In §1.2, guided by the experience of a flow in an
euclidean space, we defined a tangent vector X ∈ TxMn by

X = Xi ∂

∂xi
= Xi∂i,

where ∂/∂x1, . . . , ∂/∂xn is a natural frame associated with the coordinate
system. Furthermore, in the language of the differential form (§1.10.3(ii)),

77
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we defined a vector-valued 1-form,1

ω = ∂i ⊗ dxi.

From the calculus of differential forms, we have

ω[X] = ∂i ⊗ dxi[X] = Xi∂i = X.

This is interpreted as follows. The 1-form ω yields the same vector X by
eating a vector X.

We consider the intrinsic (inner) geometry of the manifold Mn. It is
supposed that an inner product 〈·, ·〉 is given in the tangent space TxMn

at each point x of Mn. If X and Y are two smooth tangent vector fields of
the tangent bundle TMn (see §1.3.1, 1.4.2), then 〈X,Y 〉 is a smooth real
function on Mn.

Every inner product space has an orthonormal basis ([Fla63], §2.5).
Let us introduce the natural coordinate frame of the orthonormal vectors,
e1, . . . ,en for TxMn, where ∂i = Aj

iej . Then, one can write a tangent
vector as dx = ∂i ⊗ dxi = ej ⊗ σj , where σj are 1-forms represented in the
form, σj = Aj

idxi.

3.1.2. Riemannian metric

On a Riemannian manifold Mn, a positive definite inner product 〈·, ·〉 is
defined on the tangent space TxMn at x = (x1, . . . , xn) ∈ M and assumed
to be differentiable. For two tangent fields X = Xi(x)∂i, Y = Y j(x)∂j ∈
TMn (tangent bundle), the Riemannian metric is given by

〈X,Y 〉(x) = gijX
i(x)Y j(x),

as already defined in (1.28),2 where the metric tensor, gij(x) = 〈∂i, ∂j〉 =
gji(x), is symmetric and differentiable with respect to xi. This bilinear
quadratic form is called the first fundamental form. In terms of differential

1This definition is independent of the local coordinate system. Indeed, if u1, . . . , un is
another system, then dui = (∂ui/∂xk)dxk and (∂/∂ui) = (∂xl/∂ui)(∂/∂xl). Hence, we
have dui(∂/∂ui) = (∂ui/∂xk)(∂xl/∂ui)dxk(∂/∂xl) = δl

kdxk(∂/∂xl) = dxk(∂/∂xk).
2If the inner product is only nondegenerate rather than positive definite like that in
Minkowski space, the resulting structure on Mn is called a pseudo-Riemannian.
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1-forms dxi, this is equivalent to

I := gijdxi ⊗ dxj .

Eating two vectors X = Xi(x)∂i and Y = Y j(x)∂j , this yields

I(X,Y ) = gijdxi(X)dxj(Y ) = gijX
iY j . (3.1)

The inner product is said to be nondegenerate,

if 〈X,Y 〉 = 0, ∀Y ∈ TMn, only when X = 0. (3.2)

3.1.3. Examples of metric tensor

(a) Finite dimensions
Consider a dynamical system of N degrees of freedom in a gravitational
field with the potential V (q̄) and the kinetic energy,

T =
1
2
aij q̇

iq̇j , where q̄ = (qi), (i = 1, . . . , N).

The metric is defined by gij q̇
iq̇j , where, for an energy constant E,

gij = gJ
ij(q̄) := 2(E − V (q̄))aij , for i, j = 1, . . . , N, (3.3)

is the Jacobi’s metric tensor [Ptt93]. In Chapter 6, we consider another
metric called the Eisenhart metric gE

ij .

(b) Infinite dimensions
For two tangent fields X = u(x)∂x, Y = v(x)∂x on the tangent space
TidD(S1), an inner product is defined by

〈X,Y 〉 :=
∫

S1
u(x)v(x) dx.

Correspondingly, a right-invariant metric on the group D(S1) of diffeomor-
phisms (§1.8) is defined in the following way:

〈U, V 〉ξ :=
∫

S1
(Uξ ◦ ξ−1, Vξ ◦ ξ−1)x dx =

∫
S1

(u, v)x dx = 〈X,Y 〉, (3.4)

(see also §7.2), where Uξ and Vξ are right-invariant fields defined by Uξ(x) =
u ◦ ξ(x) and Vξ(x) = v ◦ ξ(x) for ξ ∈ D(S1), and (·, ·)x denotes the scalar
product pointwisely at x ∈ S1.
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This metric is right-invariant, and we have 〈U, V 〉ξ = 〈U, V 〉id = 〈X,Y 〉.
We will see a left-invariant metric in Chapter 4, and right-invariant metrics
in Chapters 5 and 8.

3.2. Covariant Derivative (Connection)

We are going to introduce an additional structure to a manifold
that allows to form a covariant derivative, taking vector fields into
second-rank tensor fields.

3.2.1. Definition

Here, a general definition is given to a covariant derivative, called a con-
nection in mathematical literature, on a Riemannian curved manifold Mn.
Let two vector fields X,Y be defined near a point p ∈ Mn and two vectors
U and V be defined at p. A covariant derivative (or connection) is an oper-
ator ∇. The operator ∇ assigns a vector ∇UX at p to each pair (U, X) and
satisfies the following relations:

(i) ∇U (aX + bY ) = a∇UX + b∇UY,

(ii) ∇aU+bV X = a∇UX + b∇V X,

(iii) ∇U (f(x)X) = (Uf)X + f(x)∇UX,


 (3.5)

for a smooth function f(x) and a, b ∈ R, where Uf = df [U ] = U j∂jf

(§1.4.1), and U = U j∂j . Using the representations,

X = Xi∂i, Y = Y j∂j ,

and applying the above properties (i)–(iii), we obtain

∇XY = ∇Xi∂i
(Y j∂j) = Xi∇∂i

(Y j∂j)

= (Xi∂iY
k)∂k + XiY jΓk

ij∂k = (∇XY )k∂k, (3.6)

∇∂i∂j := Γk
ij∂k, (3.7)

where Γk
ij is called the Christoffel symbol. The ith component of ∇XY is

(∇XY )i = Xj ∂Y i

∂xj
+ Γi

jkXjY k = Xj∇jY
i (3.8)

= dY i(X) + (Γi
jkY k)dxj(X) := ∇Y i(X) (3.9)

∇Y i = dY i + Γi
jkY kdxj , ∇jY

i = ∂jY
i + Γi

jkY k, (3.10)

where ∇Y i is called a connection 1-form.
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On a manifold Mn, an affine frame consists of n vector fields ek = ∂k

(k = 1, . . . , n), which are linearly independent and furnish a basis of the
tangent space at each point p. Writing (3.7) and (3.9) in the form of vector-
valued 1-forms, we have

∇ej = ωk
j ek, ∇Y = (dY k)ek + ωk

j Y jek, (3.11)

respectively, where ωk
j = Γk

ijdxi. The operator ∇ is called the affine con-
nection, and we have the following representation,

∇Y (X) = ∇XY. (3.12)

3.2.2. Time-dependent case

Most dynamical systems are time dependent and every tangent vector is
written in the form, X̃ = X̃i∂i = ∂t + Xα∂α, where x0 = t (time), and
α denotes the indices of the spatial part, α = 1, . . . , n (see (1.13), roman
indices denote 0, 1, . . . , n). Correspondingly, the connection is written as

∇X̃ Ỹ = ∇X̃i∂i
Ỹ j∂j = ∇∂t Ỹ

j∂j + Xα∇∂α(Ỹ j∂j),

where Ỹ = ∂t + Y α∂α. We assume that the time axis is straight, which is
represented by3

∇∂t
∂k = 0, ∇∂k

∂t = 0. (3.13)

The first property is equivalent to (3.15) below, and the second means
∇∂k

Ỹ = ∇∂k
Y . Namely, the time part vanishes identically. Corresponding

to (3.13), we obtain

Γi
0k = Γi

k0 = 0 (i, k = 0, . . . , n). (3.14)

Writing the spatial part of X̃ and Ỹ as X = Xα∂α and Y = Y α∂α, respec-
tively, we obtain

∇∂t Ỹ = ∂tY :=
∂Y α

∂t
∂α, (3.15)

∇X̃ Ỹ = ∂tY + ∇XY. (3.16)

3This is drawn cartoon-like in Fig. 1.9.
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3.3. Riemannian Connection

There is one connection that is of special significance, having
the property that parallel displacement preserves inner products of
vectors, and the connection is symmetric.

3.3.1. Definition

There is a unique connection ∇ on a Riemannian manifold M called the
Riemannian connection or Levi–Civita connection that satisfies

(i) Z〈X,Y 〉 = 〈∇ZX,Y 〉 + 〈X, ∇ZY 〉 (3.17)

(ii) ∇XY − ∇Y X = [X,Y ] (torsion free), (3.18)

for vector fields X,Y, Z ∈ TM , where Z〈·, ·〉 = Zj∂j〈·, ·〉. The property
(i) is a compatibility condition with the metric. The torsion-free property
(ii) requires the following symmetry, Γk

ij = Γk
ji. In fact, writing X = Xi∂i

and Y = Y j∂j , the definitive expression (3.6) leads to

(∇XY − ∇Y X)k = (XY − Y X)k + (Γk
ij − Γk

ji)X
iY j , (3.19)

where XY = Xi∂i(Y k∂k) = Xi∂iY
k∂k + XiY k∂i∂k. One consequence of

the first compatibility with metric will be given at the end of the next
section. (See also [Fra97; Mil63].)

Owing to the above two properties, the Riemannian connection satisfies
the following identity,

2〈∇XY, Z〉 = X〈Y, Z〉 + Y 〈Z,X〉 − Z〈X,Y 〉

+ 〈[X,Y ], Z〉 − 〈[Y, Z], X〉 + 〈[Z,X], Y 〉. (3.20)

This equation defines the connection ∇ by means of the inner product 〈·, ·〉
and the commutator [·, ·].4

4It is postulated that this formula would be applied to a system of infinite dimensions as
well if an inner product and a commutator are defined consistently, under the restriction
that other properties do not contradict with those of a finite dimensional system.
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3.3.2. Christoffel symbol

The Christoffel symbol Γk
ij can be represented in terms of the metric tensor

g = (gij) by the following formula:

Γk
ij = gkαΓij,α, Γij,α =

1
2
(∂igjα + ∂jgαi − ∂αgij), (3.21)

where gkα denotes the component of the inverse g−1, that is gkα = (g−1)kα,
satisfying the relations gkαgαl = glαgαk = δk

l . The symmetry Γk
ij = Γk

ji with
respect to i and j follows immediately from (3.21) and gij = gji.

The formula (3.21) can be verified by using (3.17), gij(x) = 〈∂i, ∂j〉 and
∇∂i∂j = Γk

ij∂k, and noting that

∂mgij = ∂m〈∂i, ∂j〉 = 〈∇∂m
∂i, ∂j〉 + 〈∂i,∇∂m

∂j〉 (3.22)

= Γk
migkj + Γk

mjgki, (3.23)

and that ∂igjm + ∂jgmi − ∂mgij = 2gkmΓk
ij .

3.4. Covariant Derivative along a Curve

3.4.1. Derivative along a parameterized curve

Consider a curve x(t) on Mn passing through a point p whose tangent at
p is given by

T = T k∂k =
dx

dt
= ẋ = ẋk∂k,

and let Y be a tangent vector field defined along the curve x(t). According
to (3.6) or (3.9), the covariant derivative ∇T Y is given by

∇T Y :=
∇Y

dt
= [dY i(T ) + Γi

kjT
kY j ]∂i (3.24)

=
[

d
dt

Y i + Γi
kj ẋ

kY j

]
∂i, (3.25)

since T k = ẋk. When Y i is a function of xk(t), then (d/dt)Y i =
ẋk(∂Y i/∂xk). The expression ∇Y/dt emphasizes the derivative along the
curve x(t) parameterized with t.
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x (t)

TY =

∆

Y i (x (t)) + Γi
kjx

kY j = 0·
dt
d

x (t)
Y

·

Fig. 3.1. Parallel translation.

3.4.2. Parallel translation

On the manifold Mn endowed with the connection ∇, one can define parallel
displacement of a vector Y along a parameterized curve x(t) (Fig. 3.1).
Geometrical interpretation of the parallel displacement will be given in
§3.7.1. Mathematically, this is defined by

∇Y

dt
= ∇T Y = 0. (3.26)

Thus, Y = Y i∂i is translated parallel along the curve x(t) when5

∇Y = (dY i + ωi
jY

j)∂i = 0, (3.27)

by using the connection-form representation of (3.11), or more precisely
when ẋk(∂Y i/∂xk) + Γi

kj ẋ
kY j = 0.

For two vector fields X and Y translated parallel along the curve, we
obtain

〈X,Y 〉 = constant (under parallel translation), (3.28)

because the scalar product is invariant:

T 〈X,Y 〉 = 〈∇T X,Y 〉 + 〈X, ∇T Y 〉 = 0, (3.29)

by (3.17), where each term vanishes due to (3.26).

3.4.3. Dynamical system of an invariant metric

As for the metric of right-invariant fields defined in §3.1.3(b), the scalar
product 〈X,Y 〉 is unchanged by right-translation. Moreover, in most
dynamical systems to be studied below (Chapters 4, 5 and 8), the met-
rics are kept constant by the flows determined by tangent fields. In other

5For another interpretation of the covariant derivative, see §3.7.2.
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words, the physical system evolves with time such that every metric for any
pair of tangent fields is kept invariant.

Provided that the scalar products are constant along every flow, the first
three terms on the right-hand side of (3.20) vanish identically.6 Hence on
the Riemannian manifold of left-invariant (or right-invariant) vector fields
with an invariant metric, Eq. (3.20) reduces to

2〈∇XY, Z〉 = 〈[X,Y ], Z〉 − 〈[Y, Z], X〉 + 〈[Z,X], Y 〉. (3.30)

We will examine this formula in §3.7.3 and confirm its consistency. In fact,
the covariant derivative ∇XY determined by this formula assures that the
metric is conserved, in which the combination of two terms in (3.29) van-
ishes, in contrast with the parallel translation.

3.5. Structure Equations

We consider reformulation of the theory on the basis of the
differential forms and structure equations. As a simplest example
of a two-dimensional Riemannian space, a surface of negative con-
stant curvature will be considered at the end. A manifold of constant
positive Gaussian curvature is called a sphere, while a manifold of
negative constant curvature is called a pseudosphere.

3.5.1. Structure equations and connection forms

We investigate the geometry determined only by the first fundamental form,
i.e. the intrinsic geometry. In §3.1, we introduced a structure equation of
Mn already for local Riemannian geometry given by

dx = dxi ⊗ ∂i = σ1e1 + · · · + σnen, (3.31)

which is a mixed form that assigns to each vector the same vector, where
e1, . . . ,en are the orthonormal basis vectors for TxMn and σ1, . . . , σn are
its dual form-basis taking the value σi[xkek] = xi. The first fundamental
form is given by

I = 〈dx, dx〉 = σ1σ1 + · · · + σnσn, (3.32)

where gαβ = δαβ . These are analogous to (2.68) (equivalently (2.81)) and
(2.70) of §2.7. However, there is an essential departure from it for the struc-
ture equations now defined analogously to (2.82), since we are constrained

6It would be sufficient to say that we consider such vector fields only.
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to the manifold Mn which is not a part of an euclidean space. Here, we can
consider only the “tangential” component, and no “normal” component is
available.

We define the connection form in the following way,

∇ek = ωi
kei, (3.33)

which is a vector-valued 1-form,7 and try to find the connection 1-forms ωk
i

which are consistent with the following two conditions:

〈∇ei, ej〉 + 〈ei,∇ej〉 = 0, (3.34)

d(dx) = 0.

The first condition is associated with the orthonormality, 〈ei, ej〉 = δij , and
the second is the euclidean analogue. The expressions (3.33) and (3.34) are
consistent with the first of (3.11) of §3.2 and (3.22) for gij = δij (constant).
From the above equations, we obtain

ωj
i + ωi

j = 0, dσi − σj ∧ ωi
j = 0, (3.35)

respectively, which are generalization of Eqs. (2.72) and (2.75) for TxΣ2

of §2.7.1. It can be verified that this problem has exactly one solution,
represented as

ωk
j = Γk

ijσ
i, (3.36)

([Fla63], §8.3), where ωk
j are called connection 1-forms, and the coefficients

Γk
ji the Christoffel symbols (connection coefficients). Using the property

that ωk
i is a 1-form, we have from (3.33) and (3.36),

∇ej [ei] = ekωk
j [ei] = Γk

ijek.

The left-hand side corresponds to ∇ei
ej = ∇∂i

∂j in §3.2.
Introducing the matrix notation,

e =




e1
...

en


 , σ = (σ1, . . . , σn), Ω =




0 . . . ωn
1

...
. . .

...
ω1

n . . . 0


 , (3.37)

7The symbol ∇ is used in order to avoid confusion with an ordinary exterior derivative d,
and is consistent with the connection defined in §3.2. The equation d(dei) = 0 of §2.7
held since it is for surfaces Σ2 in the space R

3. Here, it is not assumed.
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the structure equations are summarized as

dx = σe, (a vector-valued 1-form) (3.38)

∇e = Ωe, Ω + ΩT = 0, (3.39)

dσ = σ ∧ Ω, (3.40)

where dx is the form that assigns to each vector the same vector, Ω is
the connection 1-form, and the last equation is a condition of integrability
(second of (3.35)) without any torsion form. Equations (3.39) and (3.40)
are Cartan’s structural equations.

For a tangent vector v = vjej , the covariant derivative of v in the
direction X is ∇Xv, which is written as

∇v(X) = ejdvj(X) + vj∇ej(X) = ek(dvk + vjωk
j )(X), (3.41)

from (3.12) and (3.11).
There is no reason for believing d(∇e) = 0, which holds only for surfaces

in euclidean space R
n. Here, we have

d(∇e) = d(Ωe) = (dΩ)e − Ω ∧ Ωe = Θe,

where we defined the curvature 2-form Θ by

Θ := dΩ − Ω ∧ Ω. (3.42)

In the euclidean space R
n, we have the flat connection,

dΩ − Ω ∧ Ω = 0. (3.43)

In general spaces, writing (3.42) with components, we have

θi
j = dωi

j − ωk
j ∧ ωi

k, (3.44)

where Θ = (θi
j). Each 2-form entry θi

j is skew-symmetric, since ωi
j = −ωj

i

and ωk
j ∧ ωi

k = −ωk
i ∧ ωj

k. Equation (3.44) may be written as

θi
j =

1
2
Ri

jklσ
k ∧ σl, (3.45)

by using the tensor coefficient Ri
jkl = −Rj

ikl = −Ri
jlk, called the

Riemannian curvature tensor (see §3.9.2).



August 2, 2004 16:3 WSPC/Book Trim Size for 9in x 6in chap03

88 Geometrical Theory of Dynamical Systems and Fluid Flows

3.5.2. Two-dimensional surface M2

Let us consider a simpler two-dimensional Riemannian manifold M2, where
gαβ = δαβ . The vector-valued 1-form (3.38) that assigns to each vector the
same vector is represented by

dx = σ1e1 + σ2e2, (3.46)

and the skew-symmetric connection form is given by

Ω =
(

0 −�

� 0

)
, (3.47)

where � = ω1
2 = −ω2

1 . Hence, Ω is completely given by a single entry �.
The same is true of the curvature 2-form Θ. Since Ω∧Ω = 0 from (3.47), we
obtain Θ = dΩ. Hence, it is found that the curvature 2-form θ2

1 is exact,8

that is,

θ1
2 = dω1

2 = d�. (3.48)

The second of the structure equations, (3.39), is written as

∇e1 = −�e2, ∇e2 = �e1, (3.49)

and the third structure equation (3.40) is

(dσ1, dσ2) = (σ1, σ2) ∧
(

0 −�

� 0

)
(3.50)

(Fig. 3.2). Equation (3.45) of the curvature form reduces to

θ1
2 =

1
2
R1

2klσ
k ∧ σl = R1

212σ
1 ∧ σ2 := Kσ1 ∧ σ2. (3.51)

Note that the tensor R1
212 = g2αR1α

12 = R12
12 is the Gaussian curvature

K for the present Riemannian metric of g22 = 1 and g21 = 0. As noted
in the footnote, the Gaussian curvature at a point p gives the angle of
rotation under parallel translation of vectors along an infinitely small closed
parallelogram around p.

It is interesting to observe close similarity between the present expres-
sions (3.40), (3.51) and Eqs. (2.85) and (2.89) of §2.7.2, respectively. In

8The curvature 2-form on a pair of tangent vectors is equal to the angle of rotation
under parallel translation (§3.7.1) of vectors along an infinitely small closed parallelogram
determined by these vectors [Arn78, App. 1].
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Fig. 3.2. Riemannian surface M2.

particular, the 1-forms � in both cases are playing the same role. Equa-
tions (3.50) and (3.51) with (3.48) are rewritten as follows:

dσ1 = σ2 ∧ �,

dσ2 = � ∧ σ1,

d� = Kσ1 ∧ σ2.


 (3.52)

Remarkably, these are equivalent to the equations of integrability (2.91)
and (2.89) in §2.7.

3.5.3. Example: Poincaré surface (I)

Let us consider an example of M2, which is the upper half-plane
(y > 0,−∞ < x < ∞) equipped with the first fundamental form defined by

I =
1
y2 (dx)2 +

1
y2 (dy)2, (3.53)

called the Poincaré metric. This implies that all small line-elements whose
length (in the (x, y) plane) is proportional to their y-coordinate (with a
common proportional constant) is regarded as having the same magnitude
(horizontal arrows along the vertical line L in Fig. 3.3). Corresponding
to (3.32), we obtain the 1-form basis,

σ1 =
dx

y
, σ2 =

dy

y
. (3.54)

The vector-valued 1-form (3.31), or (3.38), that assigns to each vector the
same vector is represented as follows:

dx = dx ⊗ ∂x + dy ⊗ ∂y = σ1e1 + σ2e2, (3.55)
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Fig. 3.3. Parallel translation on Poincaré surface.

so that the orthonormal basis vectors are given by e1 = y∂x and e2 = y∂y.
From the expressions of σ1 and σ2, we obtain

dσ1 =
1
y2 dx ∧ dy = σ1 ∧ σ2, dσ2 = 0. (3.56)

Hence, we obtain a structure equation,

dσ = (dσ1, dσ2) = (σ1, σ2) ∧
(

0 σ1

−σ1 0

)
(3.57)

which corresponds to the third structure equation (3.40). Comparing with
(3.50), it is found that −� = σ1 = dx/y. Therefore, the second structure
equation (3.49) is

∇e1 =
dx

y
e2, ∇e2 = −dx

y
e1. (3.58)

Furthermore, comparing the first equation of (3.56) with (3.51) implies the
remarkable result,

K = −1. (3.59)

Namely, the Poincaré surface has a constant negative curvature K = −1,
often called a pseudosphere.

Consider a vector defined by u = e1, i.e. u1 = 1 and u2 = 0 (Fig. 3.3).
Covariant derivative of u in the direction e2 is

∇u(e2) = ∇e1(e2) = e2
dx(e2)

y
= 0,
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since dx(e2) = 0. This says that the horizontal vector e1 = y∂x of same
magnitude (proportional to y) is parallel when translated along the direc-
tion e2 = y∂y, i.e. along the line L (Fig. 3.3).

Next, consider another vector v = e1 sin θ + e2 cos θ = a sin θ(sin θ ∂x +
cos θ ∂y) defined at the point p = (−a cos θ, a sin θ) located on the circle C
of radius a in the Fig. 3.3 where θ is the angle from the negative x-axis.
The vector v is tangent to the circle C with its length equal to y = a sin θ.
Let us take the covariant derivative (defined by (3.41)) of v along itself v.
Then we have

∇v(v) = ∇(e1 sin θ)(v) + ∇(e2 cos θ)(v)

= e1d(sin θ)(v) + sin θ ∇e1(v) + e2d(cos θ)(v) + cos θ ∇e2(v)

= e1

(
sin θ cos θ − cos θ

dx(v)
y

)
+ e2

(
− (sin θ)2 + sin θ

dx(v)
y

)
= 0,

since dx(v) = y sin θ, where df(θ)(v) = y(sin θ ∂x + cos θ ∂y)f = sin θ ∂θf .
Thus it is found that the vector v tangent to the curve C is parallel-

translated along itself, i.e. Y = T in (3.26) (Fig. 3.3). This means that the
semi-circle C is a geodesic curve (see (3.60) below).

In §3.6.3, it will be shown that both the semi-straight line L and the
semi-circle C are geodesic curves on the Poincaré surface.

3.6. Geodesic Equation

One curve of special significance in a curved space is the geodesic
curve, whose tangent vector is displaced parallel along itself locally.

3.6.1. Local coordinate representation

A curve γ(t) on a Riemannian manifold Mn is said to be geodesic if its
tangent T = dγ/dt is displaced parallel along the curve γ(t), i.e. if

∇T T =
∇T

dt
=

∇
dt

(
dγ

dt

)
= 0. (3.60)

In local coordinates γ(t) = (xi(t)), we have dγ/dt = T = T i∂i = (dxi/dt)∂i.
By setting Y = T in (3.24) and (3.25), we obtain

∇T T =
[
dT i

dt
+ Γi

jkT jT k

]
∂i = 0. (3.61)
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Thus the geodesic equation is

dT i

dt
+ Γi

jkT jT k = 0, (3.62)

or
d2xi

dt2
+ Γi

jk

dxj

dt

dxk

dt
= 0, (T i = dxi/dt). (3.63)

It is observed that the geodesic equations (2.64) or (2.65) for Σ2 are equiv-
alent in form with (3.62) and (3.63), respectively.

3.6.2. Group-theoretic representation

On the Riemannian manifold of invariant metric considered in §3.4.3,
another formulation of the geodesic equation is possible, because most
dynamical systems considered below are equipped with invariant metrics
(with respect to either right- or left translation). In such cases, the follow-
ing derivation would be useful. Using the adjoint operator adXZ = [X,Z]
introduced in (1.63), let us define the coadjoint operator ad∗ by

〈ad∗
XY, Z〉 := 〈Y, adXZ〉 = 〈Y, [X,Z]〉. (3.64)

Then Eq. (3.30) is transformed to

2〈∇XY, Z〉 = 〈adXY, Z〉 − 〈ad∗
Y X,Z〉 − 〈ad∗

XY, Z〉.

The nondegeneracy of the inner product (see (3.2)) leads to

∇XY =
1
2
(adXY − ad∗

XY − ad∗
Y X). (3.65)

Geodesic curve γ(t) is a curve whose tangent vector, say X, is displaced
parallel along itself, i.e. X satisfies ∇XX = 0. From (3.65), another form
of the geodesic equation is given by

∇XX = −ad∗
XX = 0, (3.66)

since adXX = [X,X] = 0.
In a time-dependent problem, the covariant derivative is represented by

(3.16) as ∇Ỹ X̃ = ∂tX + ∇Y X where the time part vanishes identically (so
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that X̃ is replaced by X), and

X̃ = ∂t + Xα∂α, Ỹ = ∂t + Y α∂α.

Thus, the geodesic equation of a time-dependent problem is given by

∇X̃X̃ = ∂tX + ∇XX = ∂tX − ad∗
XX = 0. (3.67)

Remark. It should be remarked that there is a difference in the sign ± for
the expression of the commutator of the Lie algebra depending on the time
evolution as described by left-translation or right-translation, as illustrated
in §1.8.1 and the footnote there.

When the time evolution is described by left-translation (Lγ)∗ as in the
case of the rotation group of §1.6.1 or Chapter 4, the negative sign should
be taken for both adXY and [·, ·] to obtain the time evolution equation. In
this regard, it is instructive to see the negative sign in front of the term
t(ab−ba) of (1.65) (and the footnote to (1.63)). This requires that ∇(L)

X Y

should be defined by using the [·, ·](L) of (1.66) in place of [·, ·].
In the case of the right-translation (Rγ)∗ for the time evolution, the

commutator is the Poisson bracket {X,Y } of (1.77) and the time evolution
is represented by (3.67).

See §3.7.3 for more details.

3.6.3. Example: Poincaré surface (II)

In §3.5.3, we considered the metric and structure equations of the Poincaré
surface, and found that it is a pseudosphere with a constant negative cur-
vature. Here we are going to derive its geodesic equation, which can be
carried out in two ways, and obtain geodesic curves by solving it.

(a) Direct method. The line element is represented as (from (3.53))

(ds)2 =
1
y2 (dx)2 +

1
y2 (dy)2. (3.68)

Therefore the metric tensor g is given by gxx = 1/y2, gxy = 0, gyy = 1/y2,
and its inverse g−1 is given by gxx = y2, gxy = 0, gyy = y2 from (2.26).
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The Christoffel symbols Γij,x and Γij,y are calculated by (3.21), as was
done in §2.4 for the torus. The result is

Γij,x =
(

0 −y−3

−y−3 0

)
, Γij,y =

(
y−3 0
0 −y−3

)
. (3.69)

Next, using the inverse g−1, we obtain Γx
ij = gxxΓij,x + gxyΓij,y = gxxΓij,x

since gxy = 0. Similarly, we have Γy
ij = gyyΓij,y. Thus,

Γx
ij =

(
0 −y−1

−y−1 0

)
, Γy

ij =
(

y−1 0
0 −y−1

)
. (3.70)

The tangent vector in the (x, y)-frame is T = (x′, y′) where x′ = dx/ds.
Thus, the geodesic equation (3.62) is written down as follows:

d
ds

x′ − 2
y
x′y′ = 0, (3.71)

d
ds

y′ +
1
y
(x′)2 − 1

y
(y′)2 = 0. (3.72)

(b) Structure equations in differential forms. We considered the struc-
ture equations of the Poincaré surface in §3.5.3 (Eqs. (3.54)–(3.58)). The
geodesic equation is an equation of parallel translation of a tangent vector
X = Xkek in the local orthonormal-frame representation,

∇X(X) =
dXk

ds
ek + Xk∇ek(X) = 0, (3.73)

(see §3.5.1 for ∇X(X)), where X1 = σ1(X) = x′/y and X2 = σ2(X) =
y′/y since σ1 = dx/y and σ2 = dy/y according to (3.54) and (3.55). The
connection form ∇ek is given by (3.58), which is now written as ∇e1 = σ1e2

and ∇e2 = −σ1e1. Using these and writing X = X1 and Y = X2, the above
geodesic equation reads

d
ds

X − XY = 0, (3.74)

d
ds

Y + XX = 0 (3.75)

[Kob77]. It is readily seen that Eqs. (3.74) and (3.75) reduce to (3.71) and
(3.72) respectively by using X = x′/y and Y = y′/y.

(c) Geodesic curves (Solutions). We can show that geodesic curves in the
(x, y)-plane are upper semi-circles of any radius centered at any point on
the x-axis, and upper-half straight lines parallel to the y-axis (Fig. 3.4).
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Fig. 3.4. Geodesic curves on Poincaré surface.

Multiplying (3.74) with X and (3.75) with Y , and taking their sum, we
immediately obtain XX ′ + Y Y ′ = 0. Integrating this, we obtain

X2 + Y 2 = 1, (3.76)

where the integration constant on the right-hand side must be unity because
of Eq. (3.68). Hence, we can represent X and Y in terms of a parameter t as

X =
x′

y
= sin t, Y =

y′

y
= cos t. (3.77)

Next, Eq. (3.74) is rewritten as

X ′

X
= Y =

y′

y
.

This can be integrated immediately, which leads to the relation y = aX for
a nonzero constant a if X �= 0. The right-hand side is aX = a sin t from
the first of (3.77). Therefore, we obtain

y = a sin t (> 0). (3.78)

Accordingly we assume a > 0 and 0 < t < π. Substitution of X = y/a in
(3.76) leads to

(y′)2 = y2(1 − (y/a)2) = a2 sin2 t cos2 t.

Since y′ = a cos t(dt/ds) from (3.78), we obtain

ds = ±dt/sin t.
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Since y y = y aX = a(dx/ds) = ±a sin t(dx/dt), we obtain (dx/dt) =
±a sin t. Integrating this, we have

x = ∓a cos t + b, (b : a constant). (3.79)

Thus, eliminating t between (3.78) and (3.79), we find

(x − b)2 + y2 = a2, (y > 0),

which represents an upper semicircle of radius a centered at (b, 0).

If X = 0, the system of Eqs. (3.74) and (3.75) results in Y =
y′(s)/y(s) = c (constant). Then we have the solution (x(s), y(s)) =
(x0, y0e

cs) for constants x0 and y0 (> 0). This represents upper-half straight
lines parallel to the y-axis.

From the Gauss–Bonnet theorem (§2.9), it was verified for a negative-
curvature surface M2 such as the Poincaré surface that two geodesic curves
do not intersect more than once (as inferred from the curves of Fig. 3.4).
Furthermore, the sum of three inner angles i1 + i2 + i3 of a geodesic triangle
is less than π on the negative-curvature surface.

3.7. Covariant Derivative and Parallel Translation

A geodesic curve is characterized by vanishing of the covariant
derivative of its tangent vector along itself, i.e. parallel translation
of its tangent vector. How is a vector translated parallel in a curved
space?

3.7.1. Parallel translation again

Parallel translation of a tangent vector X along a geodesic γ(s) with unit
tangent T is defined by (3.26) as ∇T X = 0. By setting Y = Z = T in the
second property (3.17) of the Riemannian connection, we obtain

d
ds

〈X,T 〉 = T 〈X,T 〉 = 〈∇T X,T 〉, (3.80)

since ∇T T = 0 by the definition of a geodesic. Hence, the inner product
〈X,T 〉 is kept constant by the parallel translation (∇T X = 0).

Let us define the angle θ between two vectors X and T by

cos θ =
〈X,T 〉

‖X‖ ‖T‖ =
〈X,T 〉
‖X‖ , ‖X‖ = 〈X,X〉1/2, (3.81)

as before (see (2.15)), where ‖T‖ = ‖dγ/ds‖ = 1. First, the parallel trans-
lation along the geodesic γ is carried out such that the vector X translates



August 2, 2004 16:3 WSPC/Book Trim Size for 9in x 6in chap03

Riemannian Geometry 97

�
�

�

T T

T
S1

S2
S3

||X||

||X||

||X||

	(s)

d
ds � = 0

d
ds ||X|| = 0

Fig. 3.5. Parallel translation in M2.

along γ smoothly by keeping its angle θ and its magnitude ‖X‖ invari-
ant. Then, differentiating (3.81) with respect to the arc-length s and using
(3.80), we obtain

d
ds

〈X,T 〉 = 〈∇T X,T 〉 =
d
ds

(‖X‖ cos θ) = 0. (3.82)

This can define the parallel translation on two-dimensional Riemannian
manifold M2 uniquely (Fig. 3.5). However, in general, this is not sufficient
for the parallel translation, because in higher dimensions (than two) the
direction of the translated vector can rotate around T and it is not deter-
mined uniquely by θ only. To fix that, a surface including the geodesic γ(s)
must be chosen for the parallel translation. This can be done as follows.

At the initial point p of the geodesic, a plane Σ0 spanned by X and T is
defined. We consider all geodesics starting from p with their tangents lying
in Σ0. The set of all such geodesics close to p forms a smooth surface S0

containing γ(s). At a small distance ∆ from p, a new tangent plane Σ1 is
defined so as to be tangent to the surface S0 and contain γ(s) at the new
point p1. Next, we take p1 as the initial point and use the tangent plane Σ1

to construct a new geodesic surface S1. Moving along the γ(s) again by ∆
and so on, we repeat the construction successively. As ∆ → 0, we obtain a
field of two-dimensional tangent planes ΣX along the geodesic γ(s) in the
limit [Arn78, App. 1].

Thus the parallel translation along a geodesic is defined such that the
vector X must remain in the tangent plane field ΣX , keeping its magnitude
and the angle θ invariant. By this construction, we obtain a vector field Xs

of parallel translation of the vector X0 = X at s = 0. This is a linear map
P s

0 from 0 to s, where Xs = P s
0 X0. Thus, we obtain ∇T X = 0 from this

and (3.82).
Parallel translation along any smooth curve is defined by a limiting

construction. Namely the curve is approximated by polygons consisting of
geodesic arcs, and then the above procedure is applied to each geodesic arc.
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3.7.2. Covariant derivative again

Writing a geodesic curve as γt = γ(t) with t the time parameter, one can
give another interpretation of the covariant derivative ∇T X, i.e. it is the
time derivative of the vector P 0

t Xt at γ0. The vector P 0
t Xt is defined as

a vector obtained by parallel-translating the vector Xt = X(γt) back to
γ0 along the geodesic curve γt (Fig. 3.6). This is verified by using the
property ∇T T = 0 of the geodesic curve γt and the invariance of the
scalar product of parallel-translated vector fields along γt in the follow-
ing way.

The left-hand side of (3.80) is understood as the time derivative by
replacing s with t. It is rewritten, by using Tt = T (γt), as follows:

T 〈X,T 〉|γ0 = lim
t→0

1
t
(〈Xt, Tt〉 − 〈X0, T0〉) =

〈
d
dt

P 0
t Xt|γ0 , T0

〉
(3.83)

since 〈Xt, Tt〉 = 〈P 0
t Xt, T0〉 (Fig. 3.7). Comparing with the right-hand side

of (3.80) at γ0, we find that

∇T X =
d
dt

P 0
t Xt. (3.84)

3.7.3. A formula of covariant derivative

In §3.6.2, we obtained an expression of the covariant derivative (3.65), which
is reproduced here:

∇XY =
1
2
([X,Y ] − (ad∗

XY + ad∗
Y X)), (3.85)

where [X,Y ] = adXY from (1.63). Comparing (3.85) with (3.84), rewriting
it as ∇XY = (d/dt)P 0

t Yt, it can be shown that the term 1
2 [X,Y ] came from

the t-derivative of the factor Yt.

Xo Xt

To Tt

P o
t Xt

	o

	t

geodesic curve

T T= 0

∆

Fig. 3.6. Covariant derivative.
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To show this, it is useful to note that the following identity holds for
any tangent vectors A and B (likewise matrices):

(exp A)(exp B) = exp
(

A + B +
1
2
(AB − BA) + O(A2, B2)

)
.

Substituting A = Xt and B = Y s, differentiating with s and setting s = 0,
we obtain Y (γt) := (d/ds)γtηs|s=0, which is given by

exp(Xt)
(

Y +
1
2
[X,Y ]t + O(t2)

)
:= exp(Xt)Yt, (3.86)

where [X,Y ] = XY − Y X = [X,Y ](L) by definition (1.66) of left-invariant
fields. The γt and ηs denote flows generated by X and Y , respectively.
Writing Y (γt) = exp(Xt)Yt, we have Yt = Y + 1

2 [X,Y ]t + O(t2).
As for the right-invariant fields, one can regard Eq. (1.74) to be an

expansion of

ηsγt = exp
(

tX + sY +
1
2
[tX, sY ]

)
,

where X = Xk∂k and Y = Y k∂k, and [X,Y ] = [X,Y ](R) := {X,Y } defined
by (1.76) and (1.77). Differentiating with s and setting s = 0, we obtain

Y (γt) =
(

Y +
1
2
[X,Y ]t + O(t2)

)
exp(Xt) = Yt exp(Xt), (3.87)

with the same expression for Yt as (3.86) with [X,Y ](R). Thus the above
statement that 1

2 [X,Y ] came from the t-derivative of the factor Yt has been
verified.

Likewise, the terms ad∗
XY + ad∗

Y X came from the t-derivative of the
operation P 0

t . For its verification, we just refer to the paper [Arn66], where
ad∗

XY is written as B(Y, X).
It can be shown by the covariant derivative (3.85) that the right-

invariant metric 〈Y, Z〉 of right-invariant fields Y (γt) and Z(γt) is constant
along the flow γt (generated by X). In fact, taking the derivative along γt,
we find

X〈Y, Z〉 = 〈∇XY, Z〉 + 〈Y,∇XZ〉 = 0. (3.88)

The first equality is the definition relation of (3.17). Substituting the for-
mula (3.85), the first term is

〈∇XY, Z〉 =
1
2
(〈[X,Y ], Z〉 − 〈Y, [X,Z]〉 − 〈X, [Y, Z]〉)
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by using (3.64). The second term is obtained by interchanging Y and Z

in the above expression. Thus, it is seen that summation of both terms
vanishes [Arn66]. This shows that the formula (3.85) for ∇XY is consistent
with the assumption made in §3.4.3 to derive the formula (3.30). The same
is true for the left-invariant case.

The parallel translation conserves the scalar product as well (§3.4.2). In
this case, each term of (3.88) vanishes.

3.8. Arc-Length

A geodesic curve denotes a path of shortest distance connecting two
nearby points, or globally of an extremum distance.

A geodesic curve is characterized by the property that the first variation of
arc-length vanishes for all variations with fixed end points. Let C0 : γ0(s)
be a geodesic curve with the length parameter s ∈ [0, L]. We consider the
first variation of arc-length as we vary the curve. A varied curve is denoted
by Cα : γ(s, α) with γ(s, 0) = γ0(s) (Fig. 3.7), where α ∈ (−ε, +ε) is a
variation parameter (ε > 0) and s is the arc-length for γ0(s).

The arc-length of the curve Cα is defined by

L(α) =
∫ L

0

∥∥∥∥∂γ(s, α)
∂s

∥∥∥∥ds =
∫ L

0

〈
∂γ(s, α)

∂s
,
∂γ(s, α)

∂s

〉1/2

ds

=
∫ L

0
〈T (s, α), T (s, α)〉1/2 ds, T =

∂γ

∂s
.

Its variation is given by

L′(α) =
∫ L

0

∂

∂α

〈
∂γ

∂s
,
∂γ

∂s

〉1/2

ds =
∫ L

0

∥∥∥∥∂γ(s, α)
∂s

∥∥∥∥
−1 〈 ∇

∂α

∂γ

∂s
,
∂γ

∂s

〉
ds.

�

�
�

–�

0 L
S

�J = � ∂�	(s,o)

T

P

Q

	(s,–�)

	o(s)

Fig. 3.7. Varied curves.
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For α = 0, we have ‖∂γ(s, 0)/∂s‖ = 1 by definition, and we have

L′(0) =
∫ L

0

〈 ∇
∂α

∂sγ, ∂sγ

〉
ds (3.89)

=
∫ L

0

∂

∂s
〈∂αγ, ∂sγ〉ds −

∫ L

0

〈
∂αγ,

∇
∂s

∂sγ

〉
ds, (3.90)

where ∂sγ = ∂γ/∂s and ∂αγ = ∂γ/∂α. To obtain the last expression, we
used the following identity:( ∇

∂α

)
∂sγ =

( ∇
∂s

)
∂αγ. (3.91)

This is verified as follows. Using local coordinate (x1, . . . , xn) for Mn, we
represent ∂αγ and ∂sγ as (∂xi/∂α)∂i and (∂xi/∂s)∂i respectively. Then,
we take the covariant derivative of ∂αγ along the s-curve with α fixed:

∇
∂s

(∂αγ) =
∇
∂s

(
∂xi

∂α
∂i

)
=
(

∂2xi

∂s∂α

)
∂i +

(
∂xi

∂α

)
∇∂s∂i

=
(

∂2xi

∂s∂α

)
∂i +

(
∂xi

∂α

)(
∂xj

∂s

)
Γk

ij∂k.

The last expression is symmetric with respect to α and s, thus equal to
(∇/∂α)(∂xi/∂s)∂i = (∇/∂α)∂sγ, which verifies (3.91).

The vectors T = ∂sγ and ∂αγ are denoted as T and J and termed the
tangent field and Jacobi field, respectively in §3.10.1. Equation (3.91) is
shown to be equivalent to the equation LT J = 0 in (8.53) of §8.4, and
interpreted as the equation of J-field frozen to the flow generated by T .

Thus, the first variation L′(0) of arc-length is given by

L′(0) = 〈J, T 〉Q − 〈J, T 〉P −
∫ L

0

〈
J,

∇
∂s

T

〉
ds, (3.92)

where T = ∂sγ(s, 0), J = ∂αγ(s, 0) and P= γ(0, 0), Q= γ(L, 0).
Suppose that all variations vanish at the endpoints P and Q. For such

variations, we have J = 0 at P and Q for all α. Then we have〈
J,

∇
∂s

T

〉
= 0 for 0 < s < L, (3.93)

for every vector J tangent to M along the geodesic C0. Thus the vector
∇T/∂s = ∇T T = 0 must vanish at all s ∈ (0, L) by the nondegeneracy of
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the metric. This is necessary, and also sufficient for vanishing of the first
variation L′(0).

Thus, it is found that the geodesic curve described by ∇T T = 0 is char-
acterized by the extremum L′(0) = 0 of the arc-length among nearby curves
having common endpoints.

If the endpoints are sufficiently near, the geodesic curve denotes a path
of shortest distance connecting the two nearby points.

3.9. Curvature Tensor and Curvature Transformation

Parallel translation in a curved space results in a curvature trans-
formation represented by curvature tensors. The curvature tensors
are given once Christoffel symbols are known.

3.9.1. Curvature transformation

Let us consider parallel translation of a vector along a small closed path
C. Take any vector Z in the tangent space TpM at a point p ∈ C ⊂ M .
After making one turn along C from p to p, the vector does not necessarily
return back to the original one in a curved space, but to a different vector
of the same length. This is considered a map of the tangent space to itself,
which represents small rotational transformation of vectors, in other words,
an orthogonal transformation (close to the identity e). Any operator g of an
orthogonal transformation group (or a group SO(n)) near e can be written
in the form, g(A) = exp[A] = e + A + (A2/2!) + · · · , where e is an identity
operator and A is a small skew-symmetric operator (see Appendix C).

Let X and Y be two tangent vectors in TpM . We construct a small
curvilinear parallelogram Πε, in which the sides of Πε are given by εX and
εY emanating from p, where ε is a small parameter. We carry out a parallel
translation of Z along the sides of Πε, making a circuit C∗ from p along
the side εY first and returning back to p along the side εX (Fig. 3.8).9

The parallel translation results in an orthogonal transformation of TpM

close to the indentity e, which can be represented in the following form:

gε(X,Y ) = e + ε2R(X,Y ) + O(ε3), (3.94)

9The sense of circuit is opposite to that of [Arn78, App. 1.E], but consistent with the
definition of the covariant derivative (3.84).
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Fig. 3.8. Curvature transformation.

where R is a skew-symmetric operator depending on X and Y . Thus, the
R is defined by

R(X,Y ) = lim
ε→0

gε(X,Y ) − e

ε2 . (3.95)

The function R takes a real value for a pair of vectors X and Y in TpM ,
namely a 2-form. The 2-form R(X,Y ) is called a curvature 2-form, cur-
vature tensor, or curvature transformation. The curvature transformation
describes an infinitesimal rotational transformation in the tangent space,
obtained by parallel translation around an infinitely small parallelogram.
The explicit representation is given by (E.8) in Appendix E. In order to
derive the formula, the circuit must be closed by appending a line-segment
of ε2[X,Y ] to fill in the gap in the incomplete curvilinear parallelogram
(hence the circuit is five-sided). It is found that the curvature transforma-
tion R(X,Y ) is given by

R(X,Y ) = ∇X∇Y − ∇Y ∇X − ∇[X,Y ]. (3.96)

3.9.2. Curvature tensor

The curvature transformation is represented in terms of curvature tensors.
Namely, for a vector field Z ∈ TM , the transformation Z → R(X,Y )Z is
defined by

R(X,Y )Z := ∇X(∇Y Z) − ∇Y (∇XZ) − ∇[X,Y ]Z (3.97)

= (Rα
kijZ

kXiY j)∂α, (3.98)

Rα
kij := ∂iΓα

jk − ∂jΓα
ik + Γm

jkΓα
im − Γm

ikΓα
jm, (3.99)
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for the vector fields X,Y ∈ TM , where X = Xi∂i, Y = Y j∂j , Z =
Zk∂k. This describes a linear transformation TxM → TxM , i.e. Zα∂α →
(Rα

kijZ
kXiY j)∂α, where Rα

kij is the Riemannian curvature tensor and
the tri-linearity (with respect to each one of X,Y, Z) is clearly seen. This is
verified by using the definition (3.6) for the covariant derivative repeatedly
and using [X,Y ] = {X,Y }k∂k for ∇[X,Y ] (see (1.76) and (1.77)).

In fact, writing ∇Y Z = U l∂l, we have U l = Y j∂jZ
l + Y jZkΓl

jk from
(3.6). Then, we obtain

∇X(∇Y Z) = Xi∇∂i
(U l∂l) = Xi∂iU

α + XiU lΓα
il.

Hence, by using the definition, ∇XZ = V l∂l = (Xj∂jZ
l + XjZkΓl

jk)∂l,

∇X(∇Y Z) − ∇Y (∇XZ) = (Xi∂iU
α + XiU lΓα

il − Y i∂iV
α − XiV lΓα

il)∂α

= [(Xi∂iY
j − Y i∂iX

j)(∂jZ
α + ZkΓα

jk)

+ XiY jZk(∂iΓα
jk −∂jΓα

ik

+ Γm
jkΓα

im −Γm
ikΓα

jm)]∂α. (3.100)

On the other hand, we have

∇[X,Y ]Z = {X,Y }j∇∂j
(Zk∂k) = (Xi∂iY

j − Y i∂iX
j)(∂jZ

α + ZkΓα
jk).

Thus the equality of (3.97) and (3.98) is verified. All the derivative terms
of Xi, Y j , Zk cancel out and only the nonderivative terms remain, resulting
in the expressions (3.98) with the definition (3.99) of the Riemann tensors
Rα

kij . The expression (3.99) can also be derived compactly as follows. Using
the particular representation, X = ∂i, Y = ∂j and Z = ∂k, we have

R(∂i, ∂j)∂k = ∇∂i
(∇∂j

∂k) − ∇∂j
(∇∂i

∂k) = Rα
kij∂α, (3.101)

where the third term ∇[∂i,∂j ] does not appear because [∂i, ∂j ] = 0. The
definitive equation ∇∂i

∂j = Γk
ij∂k leads to the representation (3.99), defin-

ing Rα
kij in terms of Γk

ij only. It can be shown that the tensor Ri
jkl in

(3.45) is equivalent to the present curvature tensorRα
kij , by using (3.36)

and (3.44).
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From the definition (3.96), one may write

R(X,Y ) = [∇X , ∇Y ] − ∇[X,Y ], (3.102)

The anti-symmetry with respect to X and Y is obvious:

R(X,Y ) = −R(Y, X), or Rα
kij = −Rα

kji. (3.103)

Taking the inner product of R(X,Y )Z with W = Wα∂α ∈ TM , we have

〈W, R(X,Y )Z〉 = 〈∂α, ∂m〉Rm
βijW

αZβXiY j = RαβijW
αZβXiY j ,

(3.104)

where Rαβij = gmαRm
βij and gmα = 〈∂m, ∂α〉. In addition to the

anti-symmetry

〈W, R(X,Y )Z〉 + 〈W, R(Y, X)Z〉 = 0 (3.105)

due to (3.103), one can verify the following anti-symmetry [Mil63],

〈W, R(X,Y )Z〉 + 〈Z,R(X,Y )W 〉 = 0. (3.106)

In fact, using (3.17) repeatedly, we obtain

〈W, ∇X∇Y Z〉 = −〈∇X∇Y W, Z〉 + XY 〈W, Z〉
− 〈∇XW, ∇Y Z〉 − 〈∇Y W, ∇XZ〉,

and a similar expression for 〈W, ∇Y ∇X Z〉. Noting that (XY −
Y X)〈W, Z〉 = [X,Y ]〈W, Z〉 = 〈∇[X,Y ]W, Z〉 + 〈W, ∇[X,Y ]Z〉, we obtain
(3.106). Thus, we find the following anti-symmetry with respect to (α, β)
from (3.106), in addition to (i, j) from (3.103):

Rαβij = −Rβαij . (3.107)

Finally, another useful expression is given as follows:

〈W, R(X,Y )Z〉 = X〈W, ∇Y Z〉 − Y 〈W, ∇XZ〉 − 〈∇XW, ∇Y Z〉
+ 〈∇Y W, ∇XZ〉 − 〈W, ∇[X,Y ]Z〉. (3.108)

3.9.3. Sectional curvature

Consider a two-dimensional subspace Σ in the tangent space TpM , and
suppose that geodesics pass through the point p in all directions in Σ. These
geodesics form a smooth two-dimensional surface lying in the Riemannian
manifold M . One can define a Riemannian curvature at p of the surface
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Y

X

SXY

Fig. 3.9. Sectional curvature, K̂(X, Y ) = 〈R(X, Y )Y, X〉/SXY .

thus obtained. The curvature in the two-dimensional section determined
by a pair of tangent vectors X and Y (Fig. 3.9) can be expressed in terms
of the curvature tensor R by

K̂(X,Y ) =
〈R(X,Y )Y, X〉

SXY
, (3.109)

SXY := ‖X‖2 ‖Y ‖2 − 〈X,Y 〉2, (3.110)

where SXY denotes square of the area of the parallelogram spanned by
X and Y . The K̂(X,Y ) is called the Riemannian sectional curvature. If
X and Y are orthogonal unit vectors, then K̂(X,Y ) is given simply by
〈R(X,Y )Y, X〉 since SXY = 1 in this case.10 Using (3.108), we have

K(X,Y ) := 〈R(X,Y )Y, X〉 = X〈∇Y Y, X〉 − Y 〈∇XY, X〉
− 〈∇XX, ∇Y Y 〉 + 〈∇XY,∇Y X〉 − 〈∇[X,Y ]Y, X〉 (3.111)

= 〈R(Y, X)X,Y 〉 = Y 〈∇XX,Y 〉 − X〈∇Y X,Y 〉
− 〈∇Y Y,∇XX〉 + 〈∇Y X, ∇XY 〉 − 〈∇[Y,X]X,Y 〉. (3.112)

Equality of (3.111) and (3.112) is obvious since

XY 〈X,Y 〉 − Y X〈X,Y 〉 = [X,Y ]〈X,Y 〉

and due to (3.18). In general, because of the two anti-symmetries (3.105)
and (3.106), we have K(X,Y ) = K(Y, X) and K̂(X,Y ) = K̂(Y, X).

10According to the definition, the expression of (3.96) is opposite in sign to the definition
of [Arn78]. However, the sectional curvature K̂(X, Y ) becomes same in both formulations,
owing to the difference of respective definitions.
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3.9.4. Ricci tensor and scalar curvature

A certain average of the sectional curvatures are sometimes useful. The
Ricci tensor is defined by contracting the first and third indices of the
Riemann tensor:

Rij := Rk
ikj . (3.113)

Suppose that a vector X is given at a point p ∈ Mn. Let us introduce
an orthonormal frame of TpM

n: (e1, . . . ,en−1, en), where X = Xnen. A
sectional curvature for the plane spanned by eα and eβ is

K(eα, eβ) = 〈R(eα, eβ)eβ , eα〉
= glmRl

ikj(eβ)i(eα)k(eβ)j(eα)m = Rαβαβ . (3.114)

Then, one can define the Ricci curvature KR at p specified by the direction
X = Xnen as the sum of sectional curvatures in the following way:

KR(p, X) :=
n−1∑
α=1

K(eα, X) =
∑
α

glmRl
ikjX

iXj(eα)k(eα)m

=
∑
α

Rα
iαjX

iXj = RijX
iXj = RnnXnXn. (3.115)

The scalar curvature R is defined by the trace of Ricci tensor:

R := Ri
i = gikRki. (3.116)

In an isotropic manifold, i.e. all sectional curvatures being equal to a
constant K, the Riemann curvature tensors have remarkably simple form,

Rα
jkl = K(δα

k gjl − δα
l gjk), Rijkl = K(gikgjl − gilgjk), (3.117)

where K is a constant (equal to the sectional curvature, Rαβαβ = K, for
orthonormal basis eα). Then, the Ricci tensors are

Rij = Rk
ikj = KR gij (3.118)

where KR = (n − 1)K. The scalar curvature is

R = gikRki = nKR = n(n − 1)K. (3.119)
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3.10. Jacobi Equation

Behavior of a family of neighboring geodesic curves describes
stability of a system considered.

3.10.1. Derivation

Let C0 : γ0(s) be a geodesic curve with the length parameter s ∈ [0, L],
and Cα : γ(s, α) a varied geodesic curve where α ∈ (−ε, +ε) is a variation
parameter (ε > 0) and γ0(s) = γ(s, 0) with s being the arc-length for
α = 0.11 Because γ(s, α) is a geodesic, we have ∇(∂sγ)/∂s = 0 for all α. An
example is the family of great circles originating from the north pole on the
sphere S2. The function γ(s, α) is a differentiable map γ : U ⊂ R

2 → S (a
surface) ⊂ Mn with the property [∂/∂s, ∂/∂α] = 0 on S, since α = const
and s = const are considered as coordinate curves on the surface S (see
(1.79)). Under these circumstances, the following identity is useful,

∇
∂s

(∇Z

∂α

)
− ∇

∂α

(∇Z

∂s

)
= R(∂sγ, ∂αγ)Z (3.120)

[Fra97], where Z(s, α) is a vector field defined along S.
This is verified as follows. Using local coordinate (x1, . . . , xn) on Mn,

we represent ∂αγ and ∂sγ as (∂xi/∂α)∂i and (∂xi/∂s)∂i, and write Z =
zi(s, α)∂i. Then we have the double covariant derivative,

∇
∂s

(∇Z

∂α

)
=
(

∂2zi

∂s∂α

)
∂i +

(
∂zi

∂α

) ∇∂i

∂s
+
(

∂zi

∂s

) ∇∂i

∂α
+ zi ∇

∂s

(∇∂i

∂α

)
,

which is obtained by carrying out covariant derivatives ∇/∂α and ∇/∂s

consecutively, where we note

∇∂i

∂α
= ∇∂αγ∂i =

(
∂xj

∂α

)
∇∂j

∂i

(
∂αγ =

∂xj

∂α
∂j

)
,

and furthermore,

∇
∂s

(∇∂i

∂α

)
=
(

∂2xj

∂s∂α

)
∇∂j ∂i +

(
∂xj

∂α

)(
∂xk

∂s

)
∇∂k

∇∂j ∂i. (3.121)

11In this section, the variable s is used in the sense of length parameter instead of t.
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Changing the order of α and s, we obtain a similar expression of
(∇/∂α)(∇/∂s)Z. Taking their subtraction, we obtain

∇
∂s

(∇Z

∂α

)
− ∇

∂α

(∇Z

∂s

)
= zi

( ∇
∂s

(∇∂i

∂α

)
− ∇

∂α

(∇∂i

∂s

))
. (3.122)

Thus, using (3.121), this equation reduces to

∇
∂s

(∇Z

∂α

)
− ∇

∂α

(∇Z

∂s

)

= zi

((
∂xj

∂α

)(
∂xk

∂s

)
−
(

∂xj

∂s

)(
∂xk

∂α

))
∇∂k

∇∂j
∂i

= zi

(
∂xj

∂α

)(
∂xk

∂s

)(
∇∂k

∇∂j ∂i − ∇∂j ∇∂k
∂i

)
= zi

(
∂xj

∂α

)(
∂xk

∂s

)
R(∂k, ∂j)∂i

= R

((
∂xk

∂s

)
∂k,

(
∂xj

∂α

)
∂j

)
(zi∂i)

= R(∂sγ, ∂αγ)Z.

See (3.97), (3.98) and (3.101) for the last three equalities. The last shows
(3.120).

Along the reference geodesic γ0(s), let us use the notation T = ∂sγ

(α = 0) for the tangent to the geodesic and

J = ∂αγ(s, α)|α=0 (3.123)

for the variation vector. The geodesic variation is γ(s, α)− γ(s, 0), which is
approximated linearly as

γ(s, α) − γ(s, 0) ≈ α∂αγ(s, α)|α=0 = αJ. (3.124)

Setting Z = T in (3.120) and using ∇T/∂s = 0 and (3.91), we have

0 =
∇
∂α

∇T

∂s
=

∇
∂s

∇T

∂α
− R(T, J)T =

∇
∂s

∇
∂α

∂sγ + R(J, T )T

=
∇
∂s

∇
∂s

∂αγ + R(J, T )T =
∇
∂s

∇
∂s

J + R(J, T )T,

where we used the anti-symmetry R(T, J) = −R(J, T ).
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Fig. 3.10. Jacobi field.

Thus we have obtained the Jacobi equation for the geodesic variation J ,

∇
∂s

∇
∂s

J + R(J, T )T = 0. (3.125)

The variation vector field J is called the Jacobi field (Fig. 3.10). Note that
the Jacobi equation has been derived on the basis of the geodesic equation
∇T/∂s = 0, the equation of frozen field (3.91), and the definition of the
curvature tensor (3.97).

We are allowed to restrict ourselves to the study of the component J⊥
normal to the tangent T . In fact, writing J = J⊥+cT (c: constant) satisfying
〈J⊥, T 〉 = 0, we immediately find that Eq. (3.125) reduces to

∇
∂s

∇
∂s

J⊥ + R(J⊥, T )T = 0, (3.126)

since R(J, T )T = R(J⊥, T )T + cR(T, T )T and R(T, T ) = 0, and
(∇T/∂s) = 0.

Defining ‖J‖2 := 〈J, J〉 and differentiating it two times with respect to
s and using (3.125) and (3.17), we obtain

d2

ds2

1
2
‖J‖2 = ‖∇T J‖2 − K(T, J), (3.127)

where (d/ds) 1
2‖J‖2 = 〈∇T J, J〉, ∇T J = ∇J/∂s, and

K(T, J) := 〈R(J, T )T, J〉 = RijklJ
iT jJkT l (3.128)

is a sectional curvature factor associated with the two-dimensional section
spanned by J and T . The proper sectional curvature K̂(T, J) is defined by
(3.109), which reduces to K(T, J) when T and J are orthonormal, hence
STJ = 1.
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Writing J = ‖J‖eJ where ‖eJ‖ = 1, Eq. (3.127) is transformed to

d2

ds2 ‖J‖ = (‖∇T eJ‖2 − K(T, eJ))‖J‖. (3.129)

3.10.2. Initial behavior of Jacobi field

Jacobi field J(s) is defined by a C∞ vector field along the geodesic γ0(s)
satisfying Eq. (3.125). Such a Jacobi field is uniquely determined by its
value and the value of ∇T J at a point (at the origin e, say) on the geodesic
[Hic65, §10], where T = ∂s is the unit tangent vector to γ0. This is a
consequence of the uniqueness theorem for solutions of the second order
differential equation (3.125).

Suppose that the initial values are such that J(0) = 0 and J ′(0) =
A0 �= 0. This corresponds to considering a family of geodesics emanating
from the origin e radially outward on a curved manifold M . Let us write
J = sA. Then, we obtain

T |J | = T |sA| = T (〈sA, sA〉)1/2 = 〈∇T sA, sA〉/|sA|
= |A| + s〈∇T A, A〉/|A|, (3.130)

where |sA| = 〈sA, sA〉1/2 and ∇T sA = A + s∇T A. Applying T again,
we have

T 2|sA| = (〈∇T ∇T sA, sA〉 + 〈∇T sA,∇T sA〉)/|sA| − 〈∇T sA, sA〉2/|sA|3

= −〈R(sA, T )T, sA〉
|sA| +

|∇T sA|2
|sA| − 〈∇T sA, sA〉2

|sA|3

= −|sA|κ(s) + H(s), (3.131)

where

κ(s) =
〈R(A, T )T, A〉

|A|2 =
〈R(J, T )T, J〉

|J |2 . (3.132)

H(s) = |∇T sA|2/|sA| − 〈∇T sA, sA〉2/|sA|3

=
s

|A|3 (|∇T A|2|A|2 − 〈∇T A, A〉2).

For J = sA, Eq. (3.125) gives ∇T ∇T (sA) = 0 at s = 0, whereas we have
∇T ∇T (sA) = 2∇T A + s∇T ∇T A. Hence, we obtain ∇T A = 0 at s = 0.
Therefore, we have H ′(0) = 0 as well as H(0) = 0.
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In view of T = ∂s and J = sA, the above results give

|J |(0) = 0, |J |′(0) = A0, |J |′′(0) = 0, |J |′′′(0) = −A0 κ(0).

Therefore, we have

|J |(s)/A0 = s − κ(0)
s3

3!
+ O(s4) (3.133)

[Hic65]. Using the definition cos θ = 〈J, T 〉/|J | |T |, we have

κ(0) =
〈R(J, T )T, J〉

|J |2
∣∣∣
s=0

=
|J |2|T |2 − 〈J, T 〉2

|J |2 K̂(J, T )

= |T |2 sin2 θ K̂(J, T ), (3.134)

K̂(J, T ) =
〈R(J, T )T, J〉

|J |2|T |2 − 〈J, T 〉2 . (3.135)

Thus it is found that initial development of magnitude of the Jacobi field
is controlled by the sectional curvature K̂(J, T ).

3.10.3. Time-dependent problem

In the following chapters, we consider various dynamical systems in which
field variables are time-dependent. A tangent vector to the geodesic curve is
represented in the form, T̃ = T̃ i∂i = ∂t + Tα∂α according to §3.2.2, where
x0 = t (time) and α denotes the indices of the spatial part. The covariant
derivative is given by (3.16) as ∇T̃ J̃ = ∂tJ + ∇T J where J = Jα∂α. Thus,
using the time t instead of s, we have

∇J̃

∂t
= ∂tJ + ∇T J, (3.136)

where T and J are the spatial parts.
Note that the curvature tensor in the Jacobi equation is unchanged, i.e.

R(J̃ , T̃ )T̃ = R(J, T )T which does not include any ∂t component, because
the curvature tensor Rα

kij of (3.98) vanishes, when one of k, i, j takes 0,
owing to the definition (3.99) using (3.14), under the reasonable assumption
that the metric tensor and the Christoffel symbols do not depend on t. Thus,
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the Jacobi equation (3.125) is replaced by

∂2
t J + ∂t(∇T J) + ∇T ∂tJ + ∇T ∇T J + R(J, T )T = 0. (3.137)

This equation provides the link between the stability of geodesic curves and
the Riemannian curvature, and one of the basic elements for the geometrical
description of dynamical systems.

3.10.4. Two-dimensional problem

On a two-dimensional Riemannian surface M2, Eq. (3.125) is much simpli-
fied. We introduce a unit vector field e along γ0(s) that is orthogonal to
its tangent T = ∂sγ0. The unit tangent T is displaced parallel along γ0(s),
likewise the unit normal e is also displaced parallel along γ0(s) because
〈e, T 〉 = 0 is satisfied along γ0(s) (§3.4). Hence we have (∇e/∂s) = 0 as
well as (∇T/∂s) = 0. Let us represent the Jacobi field J(s) as

J(s) = x(s) T (s) + y(s)e(s),

where x(s) and y(s) are the tangential and normal components. Then, we
obtain from (3.125)

( ∇
∂s

)2

J =
d2x

ds2 T +
d2y

ds2 e = −R(xT + ye, T )T = −yR(e, T )T.

Taking a scalar product with e, we obtain

d2y

ds2 = −y〈R(e, T )T, e〉.

Representing vectors and tensors with respect to the orthonormal frame
(e1, e2) = (T, e) along γ0(s), we have

〈R(e, T )T, e〉 = 〈R(e2, e1)e1, e2〉 = R2121 = R1
212

= K(e2, e1) = K(e1, e2) := K(s),

which is the only nonzero sectional curvature on M2. Thus, the Jacobi
equation becomes

d2y

ds2 + K(s)y = 0. (3.138)
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On the Poincaré surface considered in §3.5.3, we found that K =
R1

212 = −1. Therefore, the Jacobi field on the Poincaré surface is rep-
resented as a linear combination of es and e−s:

y(s) = Aes + Be−s.

3.10.5. Isotropic space

For an isotropic manifold, the curvature tensor is given by (3.117). Then
we have

R(J⊥, T )T = Rα
ikjT

iJk
⊥T j = KJα

⊥〈T, T 〉 − KTα〈J⊥, T 〉 = KJα
⊥.

Thus, the Jacobi equation (3.126) reduces to

( ∇
∂s

)2

Jα
⊥ + KJα

⊥ = 0. (3.139)

Choosing an orthonormal frame (e1, . . . ,en), the covariant derivative
becomes ordinary derivative, i.e. ∇/∂s = d/ds, since the orthonormal frame
can be transported parallel along the geodesic (see the previous section
and §3.4).

3.11. Differentiation of Tensors

In §1.8.3, we learned the Lie derivatives of a scalar function and a
vector field. Here, we consider Lie derivative of 1-form and covariant
derivative of tensors.

3.11.1. Lie derivatives of 1-form and metric tensor

The value of 1-form ω ∈ (TMn)∗ for a vector field W (x) ∈ TMn is a
function ω(W )(x) = ωiW

i ∈ R. Lie derivative of ω(W ) along a tangent
vector U ∈ TMn is

LU [ω(W )] = U j∂j(ωiW
i) = ωi(U j∂jW

i) + (U j∂jωi)W i

:= ωi(LUW )i + (LUω)iW
i, (3.140)
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where

(LUW )i := [U, W ]i = U j∂jW
i − W j∂jU

i, (3.141)

(LUω)i := Uk∂kωi + ωk∂iU
k. (3.142)

In terms of a metric tensor gij , 1-form may be written as ωi(V ) = gijV
j

(V ∈ TMn). Then,

(LUω)i(V ) = Uk(∂kgij)V j + gijU
k∂kV j + gkjV

j∂iU
k (3.143)

= (LUg)ijV
j + gij(LUV )j , (3.144)

where the Lie derivative of the metric tensor g is defined by

(LUg)ij := Uk∂kgij + gik∂jU
k + gkj∂iU

k. (3.145)

Thus, the Lie derivative of ω(W ) = ωiW
i = gijV

jW i = 〈V, W 〉 is given by

LU [gijV
iW j ] = (LUg)ijV

iW j + gij(LUV )iW j + gijV
i(LUW )j

= (LUg)ijV
iW j + 〈LUV, W 〉 + 〈V, LUW 〉. (3.146)

3.11.2. Riemannian connection ∇
On a Riemannian manifold with the metric tensor gij and Riemannian
connection ∇, time derivative d/dt of the inner product 〈Y, Z〉 (Y, Z ∈
TMn), along a parameterized curve φt generated by a vector field V =
V k∂k ∈ TMn, is given by

d
dt

〈Y, Z〉 = 〈∇V Y, Z〉 + 〈Y,∇V Z, 〉 (3.147)

(see §3.4). In components, this is rewritten as

V k∂k(gijY
iZj) = gijV

k

(
∂Y i

∂xk
+ Γi

klY
l

)
Zj + gijY

iV k

(
∂Zj

∂xk
+ Γj

klZ
l

)
.

Since this holds for all Y and Z (∈ TMn), it is concluded that the Rieman-
nian metric tensor gij must satisfy

∂gij

∂xk
− gljΓl

ki − gilΓl
kj = 0. (3.148)

This is understood to mean that covariant derivative of the metric tensor
vanishes (see next section).
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3.11.3. Covariant derivative of tensors

We have already defined the covariant derivative of a vector field v = vi∂i as

vi
;k := ∇kvi = ∇vi(∂k) = ∂kvi + Γi

klv
l. (3.149)

We define the covariant derivative of a covector field ω = ωidxi such that
the following “rule of derivative” holds:

∂k(ωiv
i) = ωiv

i
;k + ωi;kvi. (3.150)

Using (3.149), we obtain

ωi∂k(vi) + (∂kωi)vi = ωi(∂kvi + Γi
klv

l) + (∂kωi − Γl
kiωl)vi.

So, the covariant derivative of ωi is defined by

∇kωi = ωi;k := ∂kωi − Γl
kiωl. (3.151)

We generalize the above rules regarding general tensors. For a mixed tensor
of the type (p, q), M

i1···iq

j1···jp
(see §1.10.3(v)), we define

∇kM
i1···iq

j1···jp
= M

i1...iq

j1...jp;k := ∂kM
i1···iq

j1···jp
+ Γi1

krM
ri2···iq

j1···jp
+ Γi2

krM
i1r···iq

j1···jp
+ · · ·

− Γr
kj1M

i1···iq

rj2···jp
− Γr

kj2M
i1···iq

j1r···jp
− · · · . (3.152)

This is obtained by using the rules (3.149) and (3.151) repeatedly for each
covariant and each contravariant index of M

i1···iq

j1···jp
. The covariant derivative

of the mixed tensor M i
j is

M i
j;k = ∂kM i

j + Γi
krM

r
j − Γr

kjM
i
r, (3.153)

while the covariant derivative of the tensor Mij of (0, 2) type is

Mij;k = ∂kMij − Γr
kiMrj − Γr

kjMir. (3.154)

Hence, Eq. (3.148) means that

gij;k = 0. (3.155)

Using contraction on i and j in M i
j in (3.153), we have

M i
i;k = ∂kM i

i + Γi
krM

r
i − Γr

kiM
i
r = ∂kM i

i , (3.156)

which is consistent with (3.150). Therefore, the covariant differentiation
commutes with contraction, that is, contraction of the covariant derivative
of M i

j is equal to the covariant derivative of contracted tensor (scalar) M i
i ,

i.e. (∂/∂xk)M i
i .
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3.12. Killing Fields

We consider Killing vector field, Killing tensor fields and associated
invariants.

3.12.1. Killing vector field X

A Killing field (after the mathematician Killing) is defined to be a vector
field X such that the Lie derivative of the metric tensor g along it vanishes:

(LXg)ij = Xk∂kgij + gik∂jX
k + gkj∂iX

k = 0, (3.157)

from (3.145). Using the property (3.148) of the Riemannian metric tensor
gij , this is rewritten as

0 = (LXg)ij = Xk(gljΓl
ki + gilΓl

kj) + gik∂jX
k + gkj∂iX

k

= gik(∂jX
k + Γk

ljX
l) + gjk(∂iX

k + Γk
liX

l)

= gikXk
;j + gjkXk

;i = (gikXk);j + (gjkXk);i
:= Xi;j + Xj;i, (3.158)

where Xi = gikXk, since gik;j = 0 from (3.155).12 Thus, we have found
another relation equivalent to (3.157),

(LXg)ij = Xi;j + Xj;i = 0, (3.159)

which is called the Killing’s equation. This equation implies

(LXg)ijY
iZj = 〈∇Y X,Z〉 + 〈Y,∇ZX〉 = 0. (3.160)

In problems of infinite dimensions considered in Chapters 5 and 7, the
inner product is defined by an integral, and the Killing field X is required
to satisfy identically

〈∇Y X,Z〉 + 〈Y,∇ZX〉 = 0, for ∀Y, Z ∈ TM. (3.161)

Using the definition relation (3.30) for the connection, this is transformed to

〈[Y, X], Z〉 + 〈Y, [Z,X]〉 = 0, for ∀Y, Z ∈ TM. (3.162)

12Note that Xj
;i is equivalent to ∇iX

j = ∇Xk(∂j) defined by (3.10) in §3.2.
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3.12.2. Isometry

A Killing field X generates a one-parameter group φt = etX of isometry. If
Y and Z are fields that are invariant under the flow (see Remark of §1.8.3),
the inner product 〈Y, Z〉 = gijY

iZj is independent of t along the flow φt.
From (3.147), invariance of 〈Y, Z〉 is given by

d
dt

〈Y, Z〉 = 〈∇XY, Z〉 + 〈Y,∇XZ〉 = 0. (3.163)

This is satisfied if the vector fields Y and Z are invariant, i.e. Y φt = φtY

and Zφt = φtZ. Such a field as Y or Z is also called a frozen field (frozen
to the flow φt). Then, we have from (1.81),

LXY = ∇XY − ∇Y X = 0, LXZ = ∇XZ − ∇ZX = 0.

Thus, it is found that the two Eqs (3.160) and (3.163) are equivalent.
Using (3.146) and the property of Killing field (3.157), we obtain another

expression for the invariance,

d
dt

〈Y, Z〉 = LX〈Y, Z〉 = 〈LXY, Z〉 + 〈Y,LXZ〉 = 0. (3.164)

In an unsteady problem, ∇XY should be replaced by ∂tY + ∇XY . Hence
the equation ∇XY = ∇Y X, representing invariance of Y along φt, is
replaced by13

∂tY + ∇XY = ∂tX + ∇Y X. (3.165)

3.12.3. Positive curvature and simplified Jacobi equation

The sectional curvature KX in the section spanned by a Killing field X and
an arbitrary variation field J can be shown to be positive. The curvature
KX is given by the formula (3.111)14:

KX(X, J) = 〈R(X, J)J, X〉 = −〈∇XX, ∇JJ〉
+ 〈∇JX, ∇XJ〉 + 〈∇[X,J]X, J〉. (3.166)

13Usually Killing field X is stationary: ∂tX = 0. Examples will be seen in §5.5 and 9.6.
14The formula U〈Y, Z〉 = 〈∇UY, Z〉 + 〈Y, ∇UZ〉 = 0 is used repeatedly since the metric
is invariant.
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The first term vanishes because the Killing field X satisfies the geodesic
equation ∇XX = 0. The second term is rewritten by using the Killing
equation (3.161) for X as

〈∇JX, ∇XJ〉 = −〈∇(∇XJ)X, J〉,

where Y and Z are replaced by J and ∇XJ , respectively. To the third term,
we apply the two properties, the torsion-free [X, J ] = ∇XJ −∇JX and the
property (ii) of (3.5), ∇(U−V )X = ∇UX − ∇V X, and obtain

〈∇[X,J]X, J〉 = 〈∇(∇XJ)X, J〉 − 〈∇(∇JX)X, J〉.

Substituting these into (3.166), we find

KX(X, J) = −〈∇(∇JX)X, J〉 = 〈∇JX, ∇JX〉
= ‖∇JX‖2 = ‖∇XJ‖2, (3.167)

by using (3.161) again. The last equality holds when J is a Jacobi field
and the equation of frozen field ∇JX = ∇XJ is satisfied. Thus, it is found
that the sectional curvature KX between a Killing field X and an arbitrary
variation field J is positive.

In this case, the Jacobi equation (3.127) reduces to

d2

ds2

1
2
‖J‖2 = ‖∇XJ‖2 − K(X, J) = 0. (3.168)

Hence, the Jacobi field grows only linearly with s (does not grow exponen-
tially with s): ‖J‖2 = as+ b (a, b: constants). Thus, stability of Killing field
is verified.

3.12.4. Conservation of 〈X, T 〉 along γ(s)

If the curve γ(s) is a geodesic with its tangent dγ/ds = T = T i∂i and in
addition X is a Killing vector field, then we have

d
ds

〈X,T 〉 = 〈∇T X,T 〉 + 〈X, ∇T T 〉 = 〈∇T X,T 〉

= gik(∇T X)iT k = gikXi
;jT

jT k

=
1
2
(Xk;j + Xj;k)T jT k = 0, (3.169)
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where ∇T T = 0 is used. Thus, the following inner product,

〈X,T 〉 = XiT
i, (3.170)

is conserved along any flow γ(s), where Xi = gikXk is the Killing covector.

3.12.5. Killing tensor field

Equation (3.169) is rewritten as

d
ds

(Xiv
i) =

1
2
(Xi;j + Xj;i)vivj = 0.

This states that the quantity I = Xiv
i is conserved along a geodesic flow

gt(v) generated by ∀v = vi∂i ∈ TMn. A generalization can be made to a
tensor field Xk1k2···kp

, where I = Xk1k2···kp
vk1vk2 · · · vkp is conserved along

any geodesic flow. According to [ClP02], we look for the condition that
assures

d
ds

(Xk1k2···kpvk1vk2 · · · vkp) = vj∇j(Xk1,k2,...,kpvk1vk2 · · · vkp) = 0

for ∀v = vi∂i ∈ TMn. Using (3.152) for the covariant derivative of the
tensor Xk1k2···kp and in addition (3.149) for the covariant derivative of the
vector vk (which vanishes because vj∇jv

k = 0), we obtain

d
ds

(Xk1k2···kp
vk1vk2 · · · vkp) = vk1vk2 · · · vkpvj∇jXk1k2···kp

=
1

p + 1
vk1vk2 · · · vkpvj∇(j)X(K)p

, (3.171)

after deleting terms of the form vi∇jv
k which must vanish by the geodesic

condition. The second equality is due to the permutation invariance of
k1, k2, . . . , kp, and j, where

∇(j)X(K)p
:= ∇jXk1k2···kp + ∇k1Xjk2···kp + · · · + ∇kpXk1k2···j .

Thus, the invariance of I = Xk1k2···kp
vk1vk2 · · · vkp along the geodesic flow

gt(v) is guaranteed by the tensor field Xk1k2···kp fulfilling the conditions (for
fixed value of p),

∇(j)X(K)p
= 0, (3.172)

where each one of (j, k1, k2, . . . , kp) takes values, 1, 2, . . . , n. Hence the
number of equations is np+1, whereas the number of unknown variables
is (n + p − 1)!/p!(n − 1)!. These overdetermined equations generalize the



August 2, 2004 16:3 WSPC/Book Trim Size for 9in x 6in chap03

Riemannian Geometry 121

Killing’s equation (3.159) for the Killing vector field (p = 1). Such tensors
Xk1k2···kp

are termed the Killing tensor fields [ClP02], whose existence is
rather exceptional.

3.13. Induced Connection and Second Fundamental Form

Space of volume-preserving flows is a subspace embedded in a space
of general (compressible) fluid flows. An induced connection for the
subspace can be defined analogously to the case of a curved surface
in R

3. Here, we consider such a case with finite-dimensional spaces.

Let V r be a submanifold of a Riemannian manifold Mn equipped with a
metric gij . Let us consider the restriction of the Riemannian metric gij of
Mn to the space tangent to V r. This induces a Riemannian metric (an
induced metric) for V r. An arbitrary vector field Z of Mn defined along V r

can be decomposed into two orthogonal components15: Z(p) = ZV + ZN ,
where ZV = P{Z} is the projected component to TpV

r at a point p ∈ V r

and ZN = Q{Z} is the component perpendicular to TpV
r. The symbols P

and Q denote the orthogonal projections onto the space V r and the space
orthogonal to it, respectively. Let ∇M be the Riemannian connection for
Mn, and define a new connection ∇V for V r (r < n) as follows. Consider a
vector X tangent to V r and a vector field Z in Mn defined along V r where
Z is not necessarily tangent to V r. Then, the ∇V is defined by

∇V
XZ(p) := P{∇M

X Z} = ∇M
X Z − Q{∇M

X Z}, (3.173)

where the right-hand side is the projection of ∇M
X Z onto the tangent space

of TpV
r. It can be checked that the operator ∇V satisfies the properties

(3.5) and an induced connection. Suppose that X, Y and Z are tangent
to V r, then one has Q{X} = 0, Q{Y } = 0 and Q{Z} = 0, and furthermore
Q{[X,Y ]} = 0.

This is shown as follows. Extending the vectors X and Y to the vectors
in Mn, which is accomplished just by adding 0 components in the space
perpendicular to V r, we consider [X,Y ] in Mn. By the torsion-free of the
Riemannian connection ∇M , one has

Q{[X,Y ]} = Q{∇M
X Y − ∇M

Y X} = 0, (3.174)

15See Appendix F for the Helmholtz decomposition of vector fields.
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which is verified by using the expression (3.6). In fact, all the terms includ-
ing the terms Γk

ij cancel out with the symmetry Γk
ij = Γk

ji and the remaining
terms are within the space V r. Hence, ∇M

X Y −∇M
Y X = P{∇M

X Y −∇M
Y X} =

∇V
XY −∇V

Y X. Thus, it is found that the connection ∇V is also torsion-free:

∇V
XY − ∇V

Y X = [X,Y ]. (3.175)

Therefore the connection ∇V is also Riemannian. The second condi-
tion (3.18) is satisfied by (3.175). The first condition (3.17) is also valid
for ∇V .

In §2.3, we considered a relation between the connection ∇ in the
enveloping R

3 and the induced connection ∇̄ of a curved surface Σ2, which
is represented by the Gauss’ s surface equation (2.35) including the second
fundamental form.

Analogously for the case r = n − 1, taking the second fundamental
form as S(X,Y ) instead of II(X,Y )N , the corresponding Gauss’ formula
is given by

∇M
X Y = ∇V

XY + S(X,Y ), X, Y ∈ TV n−1. (3.176)

This equation can be generalized for the case n = r+p as follows (Fig. 3.11):

∇M
X Y := ∇V

XY + S(X,Y ), (3.177)

S(X,Y ) =
∑

a

〈∇M
X Y,Na〉Na,

where Na (a = 1, . . . , p) are p normal vector fields along V r that are
orthonomal. This is the surface equation generalizing the Gauss’s equation
(2.35). According to (3.174), it is not difficult to see that the function

∇X
MY

∇X
VY

S(X,Y )

V r

M n

Fig. 3.11. Gauss’s surface equation.
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S(X,Y ) satisfies the following relation,

S(X,Y ) := ∇M
X Y − ∇V

XY

= Q{∇M
X Y } = Q{∇M

Y X} = S(Y, X). (3.178)

Thus, S(X,Y ) is found to be symmetric with respect to X and Y .
Corresponding to ∇M and ∇V , we have two kinds of curvature tensors,

RM (X,Y )Z and RV (X,Y )Z, respectively. Using the definition (3.97) of
R(X,Y )Z and the above relations (3.177) and (3.178), one can show the
following formula:

〈W, RM (X,Y )Z〉 = 〈W, RV (X,Y )Z〉
+ 〈S(X,Z), S(Y, W )〉 − 〈S(X,W ), S(Y, Z)〉, (3.179)

where X,Y, Z,W ∈ TV r.
This can be verified by using the definition (3.173) repeatedly. For exam-

ple, we have

∇V
X∇V

Y Z = ∇M
X (∇M

Y Z − Q{∇M
Y Z}) − Q{∇M

X (∇M
Y Z − Q{∇M

Y Z})}.

Taking the scalar product with W ∈ TV r, we obtain

〈W, ∇V
X∇V

Y Z〉 = 〈W, ∇M
X ∇M

Y Z〉 − 〈W, ∇M
X S(Y, Z)〉 (3.180)

= 〈W, ∇M
X ∇M

Y Z〉 + 〈S(X,W ), S(Y, Z)〉. (3.181)

The last equality can be shown by using

(i) 〈W, ∇M
X S(Y, Z)〉 + 〈∇M

X W, S(Y, Z)〉 = X〈W, S(Y, Z)〉 = 0,

(ii) W ⊥ S(Y, Z), and
(iii) Q{∇M

X W} = S(X,W ).

Similar expressions can be derived for the other terms. Using those expres-
sions, one verifies (3.179).
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Chapter 4

Free Rotation of a Rigid Body

We now consider a physical problem and try to apply the geometrical the-
ory formulated in Part I to one of the simplest dynamical systems: Euler’s
top, i.e. free rotation of a rigid body (free from external torque). We begin
with this simplest system in order to illustrate the underlying geometrical
ideas and show how powerful is the method. The basic philosophy is that
the governing equation is derived as a geodesic equation over a manifold
of a symmetry group, i.e. the rotation group SO(3) (a Lie group) in three-
dimensional space. The equation thus obtained describes rotational motions
of a rigid body. A highlight of this chapter is the metric bi-invariance on the
group SO(3) and associated integrability. Some new analysis on the stabil-
ity of regular precession is presented, in addition to the basic formulation
according to [LL76; Arn78; Kam98; SWK98].

4.1. Physical Background

4.1.1. Free rotation and Euler’s top

A rigid body has six degrees of freedom in general, and equations of motion
can be put in a form which gives time derivatives of momentum P and
angular momentum M of the body as

dP

dt
= F,

dM

dt
= N,

where F is the total external force acting on the body, and N is the total
torque, i.e. the sum of the moments of all the external forces about a refer-
ence point O. Correspondingly, the angular momentum M is defined as the

127
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M

B

�(const)

Fig. 4.1. Free rotation in fixed frame F (inertial frame).

one about the point O. If the body is free from any external force, we obtain
the conservation of total momentum and angular momentum: P = const
and M = const.

When the rigid body is fixed at the point O but the external torque N

about O is zero, then the equation of angular momentum is again given by
dM/dt = 0. This situation reduces to the problem of free rotation of a top,
termed the Euler’s top (Fig. 4.1).

In either case of the Euler’s top or the free rotation (with no external
force and the point O coinciding with the center of mass), the equation of
angular momentum is given by the same equation,

dM

dt
= 0. (4.1)

However, in order to describe detailed rotational motion of the body, it
is simpler to consider it in the body frame (i.e. in the frame of reference
fixed to the moving body), which is noninertial. Equation (4.1) in the iner-
tial frame is transformed into the following Euler’s equations in the rotat-
ing frame,

J1
dΩ1

dt
− (J2 − J3)Ω2Ω3 = 0, J2

dΩ2

dt
− (J3 − J1)Ω3Ω1 = 0,

J3
dΩ3

dt
− (J1 − J2)Ω1Ω2 = 0,

(4.2)

where Ω = (Ω1, Ω2, Ω3) is the angular velocity (a tangent vector) relative
to the body frame, and (J1, J2, J3) are principal values of the moment of
inertia of the body B. In general, the moment of inertia is a second order
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symmetric tensor defined by

Jαβ =
∫

B

(|x|2δαβ − xαxβ)ρd3x, |x|2 = xαxα, (4.3)

(which is also called the inertia tensor J), where ρ is the body’s mass
density, assumed constant. Like any symmetric tensor of rank 2, the inertia
tensor can be reduced to a diagonal form by an appropriate choice of coor-
dinate frame for the body, called a principal frame (x1, x2, x3), in which the
inertia tensor is represented by a diagonal form J = diag(J1, J2, J3).1

Relative to the instantaneous principal frame, the angular momentum
is given by the following (cotangent) vector,

M = (Mα) = JΩ = (JαβΩβ) = (J1Ω1, J2Ω2, J3Ω3). (4.4)

The kinetic energy K is given by the following expression,

K =
1
2
MαΩα =

1
2
(JΩ, Ω)s, (4.5)

where

(M, T )s = MαTα = M1T
1 + M2T

2 + M3T
3 (4.6)

is the scalar product, i.e. a scalar pairing of a tangent vector T and a
cotangent vector M (see (1.55)). The kinetic energy K is a scalar, that
is, invariant with respect to the frame transformation from a fixed inertial
frame to the moving frame fixed instantaneously to the body.

It is an advantage that the moments of inertia (J1, J2, J3) are fixed to
be constant in the frame relative to the moving body although Eqs. (4.2)
became nonlinear, while the inertia tensors were time-dependent in the
fixed system, i.e. in the nonrotating inertial frame, where Eq. (4.1) is much
simpler.

Using the angular momentum M = JΩ, the Euler’s equation (4.2) is
converted into a vectorial equation:

d
dt

M = M × Ω. (4.7)

1From the definition (4.3), we obtain the following inequality in the principal frame:
J2 + J3 =

∫
([(x3)2 + (x1)2] + [(x1)2 + (x2)2])ρd3x ≥ J1, and its cyclic permutation for

the indices (1, 2, 3).
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4.1.2. Integrals of motion

Two integrals of the Euler’s equation (4.2), or (4.7), are known:

1
2
(J−1

1 M2
1 + J−1

2 M2
2 + J−1

3 M2
3 ) = E, (4.8)

M2
1 + M2

2 + M2
3 = |M |2. (4.9)

It is not difficult to see from (4.2) and (4.4) that E and |M | are invariants of
the motion. The first represents the conservation of the energy 1

2 (M, Ω) and
the second describes the conservation of the magnitude |M | of the angular
momentum.

From these equations, one can draw a useful picture concerning the orbit
of M(t). In the space of angular momentum (M1, M2, M3), the vector M(t)
moves over the sphere of radius |M | given by (4.9), and simultaneously
it must lie over the surface of the ellipsoid of semiaxes

√
2J1E,

√
2J2E,

and
√

2J3E (the energy surface (4.8) corresponds to an ellipsoid in the
angular momentum space). Hence the vector M(t) moves along the curve
of intersection of the two surfaces (Fig. 4.2). It is almost obvious that the
solutions are closed curves (i.e. periodic), or fixed points, or heteroclinic
orbits (connecting different unstable fixed points). Thus it is found that
the system of equations (4.2) is completely integrable. In fact, the solutions
are represented in terms of elliptic functions (see e.g. [LL76, §37]).

3Μ

1
Μ

2Μ

Fig. 4.2. Orbits over an energy ellipsoid in M -space for J1 < J2 < J3.
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4.1.3. Lie–Poisson bracket and Hamilton’s equation

The Euler’s equation (4.7) can be interpreted as a Hamilton’s equation,
which is written in the form,

d
dt

Mα = {Mα, H}, (4.10)

where M = Mαeα, and eα (α = 1, 2, 3) is the orthonormal base vectors.
The Hamiltonian function H is given by (4.5):

H =
1
2

(
M2

1

J1
+

M2
2

J2
+

M2
3

J3

)
, (4.11)

and the bracket {·, ·} is defined by the following rigid-body Poisson bracket
(a kind of the Lie–Poisson bracket2),

{A, H} := −M · (∇MA × ∇MH), (4.12)

where ∇M = (∂/∂M1, ∂/∂M2, ∂/∂M3). We have

∇MH = (M1/J1, M2/J2, M3/J3) = Ω, ∇MMα = eα.

Then, we obtain

d
dt

Mα = {Mα, H} = −M · (eα × Ω) = eα · (M × Ω). (4.13)

This is nothing but the αth component of Eq. (4.7).
In the following sections, the system of governing equations (4.2) will be

rederived from a geometrical point of view, and stability of the motion will
be investigated by deriving the Jacobi equation for the geodesic variation.

4.2. Transformations (Rotations) by SO(3)

Rotation of a rigid body is regarded as a smooth sequence of transforma-
tions of the body, i.e. transformations of the frame fixed to the body with

2A general definition of (±) Lie–Poisson brackets is given by {F, G} ± (µ) :=

±
〈
µ,

[
δF
δµ

, δG
δµ

]〉
, where δF/δµ is a functional derivative and [·, ·] is the Lie bracket

[MR94; HMR98].
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respect to the nonrotating fixed space F (an inertial space). The transforma-
tions are represented by matrix elements in the group of special orthogonal
transformation in three-dimensional space SO(3) (see Appendix C.3).3

4.2.1. Transformation of reference frames

Let us take a point yb fixed to the body which is located at x = X1e1 +
X2e2 + X3e3 at t = 0, where ei (i = 1, 2, 3) are orthonormal basis fixed
to the space F . By a transformation matrix A = (Ai

j) ∈ SO(3), the initial
point x = (Xi) is mapped to the current point yb at a time t:

yb(t) = A(t)x = yi(t)ei, yi(t) = Ai
j(t)X

j . (4.14)

In terms of the group G = SO(3), this transformation is understood such
that an element gt(= A(t)) of the group G represents a position of the
body at a time t attained by its motion over G from the initial position
e (represented by the unit tensor I).

On the other hand, relative to the body frame FB which is the frame
instantaneously fixed to the moving body, the same point yb(t) fixed to the
body is expressed as

Y (= yb) = Y 1b1 + Y 2b2 + Y 3b3,

where bi (i = 1, 2, 3) are orthonormal basis fixed to the body which coin-
cided with ei (i = 1, 2, 3) at t = 0 (Fig. 4.3). From the property of a rigid

b3
b2

Y = yb

e1

b1

e2

x

e3

Fig. 4.3. Frames of reference F (ei) and FB(bi).

3The group G = SO(3) is a Lie group and consists of all orientation-preserving rotations,
i.e. AT = A−1, det A = +1 for A ∈ G, where AT is transpose of A.
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body, it is required that Y i = Xi which do not change with t. According
to §1.5.1(b), the basis-transformation is written as (see (1.40))

bk(t) = Bi
k(t)ei, hence Y = Y kbk = Y kBi

kei, (4.15)

where B = (Bi
k) ∈ SO(3), i.e. BBT = I. The transformation matrices B

and A are identical, i.e. A = B.
This is because Y of (4.15) must be equal to yb of (4.14), whence we have

yi = Ai
jX

j = Bi
kY k (Xi = Y i).

Note that (4.14) is an example of §1.6.1(a).
In mechanics, the configuration of a rotating rigid body is represented

by a set of three angles called the Eulerian angles, that is, the configuration
space of a rotating rigid body is three-dimensional. In the present formula-
tion, this is described by the manifold of the group SO(3), whose dimension
is also three (Appendix C.1).

4.2.2. Right-invariance and left-invariance

Rotational motion of a rigid body is described by a curve C : t → gt on the
manifold of the group G with t the time parameter [Arn66; Arn78]:

gt = A(t), g0 = I, where A(t) ∈ SO(3), t ∈ R.

For an infinitesimal time increment δt, motion of the body from the position
gt is described by the left-translation gt+δt = gδtgt. This is interpreted as
an infinitesimal rotation δt Ω̄ at gt represented by a matrix Ω̄ defined by

A(t + δt) − A(t) = A(δt)A(t) − A(t) = δt Ω̄ · A(t),

A(t + δt)i
k = (A(δt)A(t))i

k = A(δt)i
lA(t)l

k. (4.16)

In the language of the geometrical theory, the matrix Ω̄ = (A(δt)− I)/δt is
called a tangent vector at the identity e. This is because the tangent vector
ġt is defined by

ġt :=
dgt

dt
=

dA

dt
= Ω̄gt, Ω̄ = ġt ◦ (gt)−1, (4.17)

namely Ω̄ is obtained from the tangent vector ġt by the right-translation
with (gt)−1, since A(t) evolves by the left translation according to (4.16) (see
§1.7). The matrix Ω̄ can be shown to be skew-symmetric (Appendix C.3).
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It is instructive to see that the Ω̄ is identified as an axial vector Ω̂ of
the angular velocity of the body rotation relative to the fixed space. In fact,
operating gt on x, we have gtx = y(t) and gt+δtx = y(t + δt), hence

y(t + δt) = gtx + δtΩ̄gtx = y(t) + δtΩ̂ × y(t) (4.18)

(see Eq. (C.15) in Appendix C). Differentiating,

vy = dy/dt = ġtx = Ω̄ · gtx = Ω̂ × y. (4.19)

This means that the point y(t) is moving with the velocity vy = Ω̂×y, i.e.
Ω̂ is the angular velocity in the fixed space.

Corresponding to the right-invariant expression ġt = Ω̄gt of the tangent
vector, the angular momentum is similarly written in the right-invariant
way as

Mt = Jġt = M̄gt, M̄ = JΩ̄, (4.20)

where J is an inertia operator and time-dependent in the fixed space.
In mechanics [LL76], the angular momentum is defined by Mt =∫

(y × vy)ρd3y =
∫

(gtx × (Ω̄gtx))gt(ρd3x). This enables us the definition,
Mt := M̄gt.

Relative to the body frame FB , the same velocity (relative to the fixed
space) is represented as dyb/dt = vi

bbi, as shown below, where

vb = Ω̂b × Y (4.21)

(see (4.26)), and Ω̂b is the angular velocity relative to the body frame. The
matrix version of Ω̂b is derived by left-translation of the tangent vector ġt

with (gt)−1 as

Ω̄b = g−1
t ◦ ġt = g−1

t Ω̄gt, (4.22)

(verified below). An important point is that the tangent vector ġt is repre-
sented by the left-invariant form (see §1.6 and 1.7)

ġt = gtΩb, (4.23)

by the Ωb at e, whereas it is also represented by the right-invariant form,
ġt = Ω̄gt with Ω̄ at e in (4.17) (Fig. 4.4).

Proof of Ωb = g−1
t Ω̄gt. By the motion y(t) = Y kbk, the basis is trans-

formed by (4.15) as bi(t) = ejB
j
i (t). Therefore,

bi(t + δt) = Bk
i (t + δt)ek = Bl

i(δt)B(t)k
l ek

= B(t)k
l Bl

i(δt)ek, (4.24)
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�b= g t gt =

� = gt  g t

e

gt

gt

= g t � gt = Adg
t

�

�1

�1

�1
�1

Fig. 4.4. Ω̄ and Ωb.

namely, the element B(t+δt) is obtained from B(t) by the right-translation
with B(δt). Taking yb(t) = yj

bej which is given by Y iBj
i (t)ej , we have the

transformation law for the components yj
b :

yj
b = Bj

i (t)Y
i, yb = BY, (4.25)

where Y is a constant vector. Owing to the right-translation property of
B(t), one may write dB/dt = BΩ̄b, and

d
dt

yb =
d
dt

(eB(t)Y ) = eBΩ̄bY = bΩ̄bY.

Writing dyb/dt = biv
i
b, we find that the rotation velocity vb = (vi

b) relative
to the instantaneous frame FB is given by

vb = Ω̄bY = Ω̂b × Y, (4.26)

since Ω̄b is skew-symmetric. Now we have A(t) = B(t), however ∂tA = Ω̄A

and ∂tB = BΩ̄b. Thus, we obtain

Ωb = A−1Ω̄A = g−1
t Ω̄gt.

This verifies the expression of (4.22).

4.3. Commutator and Riemannian Metric

Aiming at geometrical formulation of rotational motion of a rigid body, we
define the commutation rule for the Lie algebra so(3) (already considered
in §1.8.2), and introduce a metric for the tangent bundle TSO(3).

A tangent vector at the identity e of the group G = SO(3) is said to be
an element of the Lie algebra so(3). The space of such vectors is denoted
by TeG = so(3). It is useful to replace each element of skew-symmetric
tensor Ω̄b ∈ TeG with an equivalent axial vector denoted by Ω̂b. According
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to (1.66) and (1.67) in §1.8.2, the commutator [·, ·](L) for the left-invariant
field such as (4.22) (or (4.23)) is given by the vector product in R

3:

[X,Y ](L) := X̂ × Ŷ , for X,Y ∈ TeG = so(3). (4.27)

Kinetic energy K is given by the scalar pairing of a tangent vector
ġt = Ω̄gt and a corresponding cotangent vector Mt = M̄gt (see (4.20)), both
of which are right-invariant fields. Thus, the kinetic energy K is defined by
the following scalar product in the right-invariant way (see (3.4)):

K :=
1
2
(Mt(gt)−1, ġt(gt)−1)s. (4.28)

The factor gt on the right of ġt = Ω̄gt indicates that the tangent vector is
represented in terms of the original position x, whereas its right-translation
ġt(gt)−1 = Ω̄ denotes the tangent vector at the current position y(t) =
gtx (see (4.19)).4 The same is true for Mt(gt)−1 = M̄ (see (4.20)). This
expression (4.28) can be rewritten in terms of Ω̂ and the angular momentum
M̄ = JΩ̂ as

K =
1
2
(M̄, Ω̄)s =

1
2
(JΩ̂, Ω̂)s, (4.29)

where J is the inertia tensor (called an inertia operator) relative to the
fixed space.

The kinetic energy is a frame-independent scalar. In other words, it is
invariant with respect to the transformation from a fixed inertial frame
(ei) to the instantaneous frame (bi) fixed to the body. In this case, the
tangent vector was given by the left-invariant form ġt = gtΩb in the previous
section.5 Correspondingly, the angular momentum is written as Mt = gtMb,
where Mb = (gt)−1M̄gt and M̄ = JΩ̄. Hence, left-invariance on the group
results in the following. The energy K of (4.28) is given by

K =
1
2
(gtMb(gt)−1, gtΩb(gt)−1)s (4.30)

=
1
2
(JgtΩ̂b, gtΩ̂b)s =

1
2
(JbΩ̂b, Ω̂b)s, (4.31)

4Equation (4.28) is a symbolic expression in the sense that each entry should be provided
with an equivalent vector to obtain the scalar product (, )s, as in (4.29).
5There, the body frame (bi) is transformed by the right-translation (4.24), which results
in the left-invariant vector field ġt = (gt)∗Ωb. See §1.7.
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where the second equality is due to the right-invariance and

gtMb = M̄gt = JΩ̄gt = JgtΩb,

and in the last expression, Jb = (gt)−1Jgt since (gt)T = (gt)−1 for gt ∈
SO(3). Equivalence of (4.29) and (4.31) is due to the fact that the kinetic
energy K is frame-independent between the ei-frame and bi-frame. The
symmetric inertia tensor Jb can be made a diagonal matrix (relative to the
principal axes) with positive elements Jα(>0), owing to the definition (4.3).
Then, the expression (4.31) is equivalent to (4.5).

Now, one can define the metric 〈·, ·〉 on TeG by

〈X,Y 〉 := (JX̂, Ŷ )s ≡ JX̂ · Ŷ , for X,Y ∈ TeG, (4.32)

where (·, ·)s is defined by (4.6). Then the kinetic energy is given by K =
1
2 〈Ω, Ω〉 for Ω ∈ TeG. Thus, the group G = SO(3) is a Riemannian manifold
endowed with the left-invariant metric (4.32) (which is also right-invariant
in a trivial way as given by (4.28)).

4.4. Geodesic Equation

4.4.1. Left-invariant dynamics

Let us consider the geodesic equation on the manifold SO(3). We have
already introduced the commutator (4.27) and the metric (4.32). Further-
more, the metric is left-invariant. In such a case, the connection ∇XY sat-
isfies Eq. (3.30), where X,Y Z ∈ so(3). In a time-dependent problem such
as in the present case, the geodesic equation is given by the form (3.67):

∂tX + ∇XX = 0. (4.33)

In terms of the operators ad and ad∗ of §3.6.2, we have the expression (3.65)
for the connection ∇XY :

∇XY =
1
2
(adXY − ad∗

XY − ad∗
Y X). (4.34)

The expression of ad∗
XY is obtained by using the present commutator

[X,Y ](L) = X̂ × Ŷ and the definition 〈ad∗
XY, Z〉 = 〈Y, [X,Z](L)〉, which

leads to (by using (4.32))

〈ad∗
XY, Z〉 = (JŶ , X̂ × Ẑ)s = (JŶ × X̂, Ẑ)s = 〈J−1(JŶ × X̂), Z〉. (4.35)
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Hence, the nondegeneracy of the metric yields

ad∗
XY = J−1(JŶ × X̂). (4.36)

Thus it is found from the above that

∇XY =
1
2
J−1(J(X̂ × Ŷ ) − (JX̂) × Ŷ − (JŶ ) × X̂)

=
1
2
J−1(K̃X̂ × Ŷ ), (4.37)

[Kam98; SWK98], where K̃ is a diagonal matrix with the diagonal ele-
ments of

K̃α := −Jα + Jβ + Jγ (4.38)

for (α, β, γ) = (1, 2, 3) and its cyclic permutation (all K̃α > 0 according to
the definition (4.3) and the footnote there).

The tangent vector at the identity e is the angular velocity vector Ω̂.
The geodesic equation of a time-dependent problem is given by (4.33) with
X replaced by Ω̂ and using the ordinary time derivative d/dt in place of ∂t

(since t is the only independent variable):

d
dt

Ω̂ − ad∗
Ω̂Ω̂ = 0.

Using (4.36) and multiplying J on both sides, we obtain

J
d
dt

Ω̂ − (JΩ̂) × Ω̂ = 0. (4.39)

This is nothing but the Euler’s equation (4.7) if it is represented with
components relative to the body frame, i.e. instantaneously fixed to the
moving body. In fact, the component with respect to the b1 axis (one of
the principal axes) is written as J1(dΩ1/dt) − (J2Ω2Ω3 − J3Ω3Ω2) = 0. In
the body frame, the inertia tensor J is time-independent.

Thus, based on the framework of geometrical formulation, we have suc-
cessfully recovered the equation of motion for free rotation of a rigid body
well known in mechanics.

4.4.2. Right-invariant dynamics

Let us try to see this dynamics in the fixed space, where it can be verified
that (d/dt)JΩ̂ = 0. In this space, the inertia tensors J = (Jαβ) are time-
dependent, and we have (d/dt)JΩ̂ = (dJ/dt)Ω̂ + J(dΩ̂/dt). In fact, from
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the definition (4.3), we obtain

d
dt

Jαβ = J̇αβ =
∫

(xkẋkδαβ − ẋαxβ − xαẋβ)ρd3x,

since dxα/dt = ẋα = (Ω̂ × x)α = εαjkΩjxk (see (B.27) in Appendix B.4).
Obviously, xkẋk = x · (Ω̂ × x) = 0 (see B.4). Hence,

J̇αl = −εαjkΩj

∫
xkxlρd3x − εljkΩj

∫
xkxαρd3x = JαjlΩj , (4.40)

introducing the notation I0 =
∫

|x|2ρd3x,

Jαjl = εαjk(Jkl − I0δkl) + εljk(Jkα − I0δkα) = εαjkJkl + εljkJkα. (4.41)

The last equality is obtained since

εαjkδklI0 + εljkδkαI0 = I0(εαjl + εljα) = I0(εαjl + εαlj) = 0

due to the definition (B.26) of εijk in Appendix B.4. Then, we obtain the
following expression,

J̇αlΩl = JαjlΩjΩl = εαjkJklΩjΩl + εljkJkαΩjΩl.

The second term vanishes because εljkΩjΩl = 0 owing to the skew symme-
try εljk = −εjlk. Hence, we obtain

J̇αlΩl = εαjkΩj(JklΩl) = (Ω̂ × (JΩ̂))α.

Therefore, it is found that, by using Eq. (4.39),

d
dt

(JΩ̂) =
dJ

dt
Ω̂ + J

dΩ̂
dt

= Ω̂ × (JΩ̂) + (JΩ̂) × Ω̂ = 0. (4.42)

Thus, we have recovered Eq. (4.1), describing conservation of the angular
momentum in the fixed inertial space.

4.5. Bi-Invariant Riemannian Metrices

There is a bi-invariant metric on every compact Lie group [Fra97, Ch. 21].
The group SO(3) is a compact Lie group. We investigate these properties,
aiming at applying it to the present problem.
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4.5.1. SO(3) is compact

The group G = SO(3) is considered as the subset of real 32-dimensional
space of 3 × 3 matrices, satisfying AT A = I (orthogonality), i.e. AT

ijAjk =
AjiAjk = δik, and detA = 1 (see C.1). In particular, its magnitude ‖A‖
may be defined by

‖A‖2 :=
∑
jk

(Ajk)2 =
∑
jk

AT
kjAjk =

∑
k

δkk = 3.

Hence, SO(3) consists of points that lie on the sphere ‖A‖ =
√

3 that satisfy
det A = 1. Therefore it is a bounded subset. It is also clear that the limit
of a sequence of orthogonal matrices is again orthogonal. Thus, SO(3) is a
closed, bounded set, i.e. a compact set. The compactness can be generalized
to SO(n) for any integer n without any difficulty.

4.5.2. Ad-invariance and bi-invariant metrices

In the vector space of the Lie algebra g = so(3), a scalar product is
defined by

〈a, b〉so(3) := −1
2
tr(ab), (4.43)

for a, b ∈ g = so(3) (see Appendix C.4). Using equivalent axial vectors
â = (âi), b̂ = (b̂i), this scalar product is

〈a, b〉so(3) = (â, b̂s) = δij â
ib̂j , (4.44)

i.e. the metric tensor is euclidean. The scalar product 〈a, b〉so(3) is invariant
under the adjoint action of G = SO(3) on g. In fact, for g ∈ G, we have
Adga = gag−1 (see (1.62)), and

〈gag−1, gbg−1〉so(3) = −1
2
tr(gag−1gbg−1) = −1

2
tr(ab) = 〈a, b〉so(3)

since g−1 = gT . This is called the ad-invariance.
Suppose that g is represented as eta with a parameter t. From the

Ad-invariance for a, b, c ∈ g = so(3), we have

〈etabe−ta, etace−ta〉 = 〈b, c〉. (4.45)
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Differentiating with t and putting t = 0, we obtain

〈[a, b], c〉 + 〈b, [a, c]〉 = 0, (4.46)

which is useful to obtain a formula of sectional curvature below.
Let us define a Riemannian metric on the group G by the right-

invariant form,

〈ag, bg〉 := 〈agg
−1, bgg

−1〉e.

Then, we claim that it is also left-invariant. This is verified as follows. From
the Ad-invariance, we have,

〈ae, be〉 = 〈gaeg
−1, gbeg

−1〉 = 〈gae, gbe〉.

The second equality is due to the right-invariance (where ag = gae and
bg = gbe). The above shows the left-invariance. Thus, we have obtained
the bi-invariance of the metric 〈, 〉. This can be generalized to SO(n) for
any integer n.

For any bi-invariant metric 〈, 〉 on a group G, one-parameter subgroups
are geodesics. This is verified as follows.

Let ag be a left-invariant field represented as ga where a ∈ g. The
tangent vector a at e generates a one-parameter subgroup At = eta of right
translation. Let γt be a geodesic through e with the bi-invariant metric
that is tangent to ga ≡ at at g = γt and Tt = T (γt) = γtT0 be the unit
tangent to γt there. Consider the scalar product 〈at, Tt〉 along γt. By the
left invariance, we have

〈at, Tt〉 = 〈a0, T0〉. (4.47)

This infers that ∇T a = 0, from (3.83) and (3.84), that represents parallel
translation of the tangent vector at along γt with its magnitude unchanged
due to (4.47). Therefore the curve At = eta coincides with the geodesic γt

with T0 parallel to a = a0.
The flow At = eta is a one-parameter group of isometry. In fact,

Eq. (4.45) holds for any pair of b, c ∈ so(3), which results in (4.46). Using
the scalar product (4.44) and the commutator (4.27), Eq. (4.46) becomes

(â × b̂) · ĉ + b̂ · (â × ĉ) = (â × b̂) · ĉ + (b̂ × â) · ĉ = 0.

This is satisfied identically for any pair of b̂, ĉ. Thus, it is found that
a is a Killing field (see §3.12), because the above equation is equivalent
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to (3.161): 〈∇b̂â, ĉ〉 + 〈∇ĉâ, b̂〉 = 0 since ∇b̂â = 1
2 b̂ × â = − 1

2 â × b̂. This
means that any element of so(3) generates a Killing field.

The scalar product 〈a, b〉so(3) of (4.43) is equivalent to the metric
(JX̂, Ŷ )s of (4.32) if the inertia tensor J is the unit tensor I (i.e. euclidean)
that corresponds to a spherical rigid body, called a spherical top. In this
case, the angular momentum JbΩ̂b reduces to Ω̂b. Generally for rigid bodies,
the inertia tensor J is not cI (c: a constant), but a general symmetric ten-
sor which is regarded as a Riemannian metric tensor. Then, the equality of
(4.30) and (4.31) of scalar products represents the ad-invariance. Thus, it is
seen that the rotation of a rigid body is a bi-invariant metric system as well.
The formulation in §4.3 describes an extension to such a general metric ten-
sor J . It would be interesting to recall the property of complete-integrability
of the free rotation of a rigid body mentioned in §4.1.

4.5.3. Connection and curvature tensor

It is verified in the previous subsection that integral curves of a left-invariant
field ag = ga for a ∈ g are geodesics in the bi-invariant metric. Hence we
have ∇aa = 0. Likewise we have ∇(a+b)(a + b) = 0 for a, b ∈ g. Since
∇aa = 0 and ∇bb = 0,

∇(a+b)(a + b) = ∇ab + ∇ba = 0. (4.48)

Therefore, we obtain the Riemannian connection given by

2∇ab = ∇ab − ∇ba = [a, b], (4.49)

by the torsion-free property (3.18).
In this case, the curvature tensor (3.97) takes a particularly simple form.

First note, e.g. ∇a(∇bc) = 1
4 [a, [b, c]], by (4.49). Then, we obtain

R(a, b)c = ∇a(∇bc) − ∇b(∇ac) − ∇[a,b]c

=
1
4
([a, [b, c]] − [b, [a, c]] − 2[[a, b], c]) = −1

4
[[a, b], c], (4.50)

by using the Jacobi identity (1.60). For the sectional curvature defined by

K(a, b) := 〈R(a, b)b,a〉, (4.51)

we obtain,

4K(a, b) = −〈[[a, b]b],a〉 = 〈[b, [[a, b],a]〉
= −〈[b, [a, [a, b]]〉 = 〈[[a, b], [a, b]]〉,
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where the formula (4.46) is used repeatedly. Hence,

K(a, b) =
1
4
‖[a, b]‖2. (4.52)

Thus, we have found non-negativeness of the sectional curvature,
K(a, b) ≥ 0.

4.6. Rotating Top as a Bi-Invariant System

Rotating motion of a rigid body is regarded as an extension of the bi-
invariant system (considered in the previous section) in the sense that the
tangent vectors are time-dependent (i.e. there is an additional dimension t)
and the metric tensor is not the euclidean δij , but given by a general sym-
metric tensor J .

4.6.1. A spherical top (euclidean metric)

A spherical top is characterized by the isotropic inertia tensor J = cI where
I is the unit tensor with c a constant. Then, the metric is defined by (4.32)
with J replaced by I:

〈X,Y 〉 = X̂ · Ŷ , for X,Y ∈ so(3). (4.53)

In order to apply the formulae of the bi-invariance to the time-dependent
problem of a spherical top, every tangent vector such as a, b, etc. should
be replaced with a vector of the form, X̃ = ∂t + Xα∂α, where X = (Xα) ∈
so(3). For example, ∇aa = 0 (in the previous section) must be replaced by
the form,

∇X̃X̃ = ∂tX + ∇XX = 0. (4.54)

The equation ∇(a+b)(a + b) = 0 is replaced by ∇X̃+Ỹ (X̃ + Ỹ ) = 0. Corre-
sponding to (4.48), we have

∇XY + ∇Y X = 0.

This is rewritten as 2∇XY = [X,Y ], where [X,Y ] = ∇XY − ∇Y X by the
torsion-free property,6 and the commutator [X,Y ] is given by X × Y .

6[X̃, Ỹ ] = [X, Y ] + ∂tY − ∂tX, and ∇X̃ Ỹ − ∇Ỹ X̃ = [X̃, Ỹ ] reduces to ∇XY − ∇Y X =
[X, Y ].
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a

x

Fig. 4.5. Spherical top.

The connection ∇XY is given by (4.37). When J = cI, this reduces to
the following form just obtained:

∇XY =
1
2
X × Y. (4.55)

The geodesic equation is given by ∂tX + X × X = ∂tX = 0, i.e. X is
time-independent. The one-parameter subgroup etX is a geodesic and X

is a Killing field, as mentioned in §4.5.2. Namely, the general solution of
free rotation of a spherical top is steady rotation described by any element
a ∈ so(3) (Fig. 4.5).

Note that, even in the time-dependent problem, the curvature tensor is
unchanged, i.e. R(X̃, Ỹ )Z̃ = R(X,Y )Z, as explained in §3.10.3. This is also
verified directly by applying the expression ∇Ỹ Z̃ = ∂tZ + ∇Y Z repeatedly
and using ∇[X̃,Ỹ ]Z̃ = ∇[X,Y ]Z+∇(∂tY −∂tX)Z (the time component vanishes
identically on the right-hand side). Thus, we obtain

R(X̃, Ỹ )Z̃ = −1
4
(X × Y ) × Z, (4.56)

K(X̃, Ỹ ) =
1
4
‖X × Y ‖2 = ‖∇XY ‖2, (4.57)

from (4.50), (4.52) and (4.55). It is found that the sectional curvature
K(X̃, Ỹ ) is positive if X and Y are not parallel. This characterizes the
free steady rotation of a spherical top.

4.6.2. An asymmetrical top (Riemannian metric)

The case of free rotation of a general asymmetrical top is already studied in
§4.3 and 4.4. The commutator is given by (4.27), and the metric is (4.32),
which is reproduced here:

〈X,Y 〉 = JX̂ · Ŷ , for X,Y ∈ so(3). (4.58)
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The geodesic equation is given by (4.39). Here, we consider some aspects of
its stability. The variables, say X̂ or Ŷ , will be written simply as X or Y .
In particular, the connection is given by (4.37):

∇XY =
1
2
J−1(K̃X × Y ). (4.59)

Relation between the stability of a geodesic curve γ(t) and Riemannian
curvature tensors is described by the Jacobi equation (§3.10). The equation
of the Jacobi field B, defined by (3.123) (using B instead of J), along the
geodesic generated by T̃ is given by (3.137), which is reproduced here:

∂2
t B + ∂t(∇T B) + ∇T ∂tB + ∇T ∇T B + R(B, T )T = 0, (4.60)

where T is the tangent vector to the geodesic γ(t).
To calculate the curvature tensor R(B, T )T , we apply the expression of

the connection ∇ of (4.59) repeatedly in the formula (3.97) together with
the definition of the commutator (4.27). Finally it is found that

R(X,Y )Z = − 1
4J1J2J3

(κ̃(X × Y )) × JZ, (4.61)

where κ̃ = diag(κ1, κ2, κ3) is a diagonal matrix of third order with the
diagonal elements,

κα = −3J2
α + (Jβ − Jγ)2 + 2Jα(Jβ + Jγ)

with (α, β, γ) = (1, 2, 3) and its cyclic permutation. It is readily seen that
the right-hand side of (4.61) reduces to that of (4.56) when J is replaced by
cI and also to that of (4.50) if the bracket is replaced by a vector product.

In the steady rotation of a spherical top, the Jacobi equation is given
by (3.127):

d2

dt2
‖ B ‖2

2
=‖ ∇T B ‖2 −K(T, B), (4.62)

along γ(t) = etT . The right-hand side vanishes because ∇T B = 1
2T × B

and K(T, B) = 1
4‖T × B‖2. Thus, we find a linear growth: ‖B(t)‖ = at + b

(a, b: constants), and the stability of the geodesic etT is neutral, because
‖B‖ exhibits neither exponential growth, nor exponential decay.

Even in the asymmetrical top, there are solutions of steady rotation. In
fact, if we substitute (Ω1, 0, 0) for (Ω1, Ω2, Ω3) for the Euler’s equation (4.2),
we immediately obtain dΩ1/dt = 0. Hence, the rotation about the principal
axis e1 is a steady solution of (4.2). The same is true for rotation about the
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other two axes. Thus, each one of the three, (Ω1, 0, 0) = Ω1e1, (0, Ω2, 0) =
Ω2e2 or (0, 0, Ω3) = Ω3e3, is a steady solution.

Using the unit basis vectors (e1, e2, e3) in the principal frame and defin-
ing the sectional curvature by K(ei, ej) = 〈R(ei, ej)ej , ei〉, one obtains
from (4.61) that K(ei, ei) = 0 (for i = 1, 2, 3), and that

K(e1, e2) =
κ3

4J3
, K(e2, e3) =

κ1

4J1
, K(e3, e1) =

κ2

4J2
. (4.63)

It can be readily checked that K(ei, ej) reduces to 1
4‖ei × ej‖2 of (4.57)

when J is an isotropic tensor cI. For general vectors X = Xiei and Y =
Y iei and with general J , we obtain

K(X,Y ) = 〈R(X,Y )Y, X〉 = RijklX
iY jXkY l, (4.64)

where Rijkl = 〈R(ek, el)ej , ei〉 (see (3.101) and (3.104)).

4.6.3. Symmetrical top and its stability

(a) Regular precession
If two of Ji are equal (say, J2 = J3 := J⊥ and J1 �= J⊥),7 we have a
symmetrical top. If the symmetry axis is e1, the Euler’s equation (4.2) can
be solved immediately, yielding a solution,

Ω1 = β, Ω2(t) + iΩ3(t) = α exp(iωpt) (4.65)

where ωp = Ω1(J1 − J⊥)/J⊥ (nonzero constant) and α, β are constants.
With respect to the total angular velocity Ω̂ = (Ω1, Ω2, Ω3), we may write
β = |Ω̂| cos θ and α = |Ω̂| sin θ, where θ denotes the constant polar angle of
Ω̂ from the pole e1.

The steady rotation X̂ = (X1, 0, 0) is a Killing vector, because the
condition (3.161) is satisfied. In fact, the covariant derivative is, from (4.37),

∇Y X =
1
2
J−1(K̃Ŷ × X̂) =

1
2
J−1(0, K3Y

3X1,−K2Y
2X1),

where J = diag(J1, J⊥, J⊥) and K̃ = diag(−J1 + 2J⊥, J1, J1) from (4.38).
Then, for Ŷ = (Y i) and Ẑ = (Zi), we have

〈∇Y X,Z〉 =
1
2
(K̃Ŷ × X̂) · Ẑ =

1
2
(Ẑ × K̃Ŷ ) · X̂

=
1
2
J1(Z2Y 3 − Z3Y 2)X1.

7In this case, we have κ1 = (4 − 3k)J1J⊥, and κ2 = κ3 = k2 of (4.63).
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Fig. 4.6. Regular precession in (a) FB and (b) F , for J1 > J⊥.

Thus, it is obvious that we have the indentity equation of (3.161),
〈∇Y X,Z〉 + 〈∇ZX,Y 〉 = 0 with any Y, Z ∈ so(3), for the Killing vector
X̂ = (X1, 0, 0). This implies existence of a conserved quantity (§3.12.4),
which is given by

〈X,Y 〉 = X̂ · JŶ = X1J1Y
1 = const (4.66)

along the geodesic flow generated by Y . Because X1 is a constant, this
means that the first component J1Y

1 of the angular momentum M is con-
served, which interprets the first of (4.65) since J1 is a constant.

Relative to the body (top) frame FB , the angular momentum vector
M = (J1Ω1, J⊥Ω2, J⊥Ω3) rotates with the constant angular velocity ωp

about the symmetry axis e1 with its component J1Ω1 being constant and
the magnitude J⊥α perpendicular to e1 also constant. On the other hand,
relative to the fixed space F , the angular momentum M is a constant
vector. Relatively speaking, the symmetry axis e1 of the top rotates about
M , simultaneously the top itself rotates uniformly with β about its axis
e1. This motion is called the regular precession [LL76] (Fig. 4.6, where the
points O, P, N, Q are in a plane and the same for O, P′, N, Q′ in (b)).

With respect to the regular precession about the axis e1, one can solve
the Jacobi equation (4.60) where

T = Ω1e1 + Ω2(t)e2 + Ω3(t)e3, B = B1e1 + B2e2 + B3e3.

The following is a new analytical study of stability of the regular preces-
sion (4.65).

(b) Stability of regular precession
In order to make the equations formally compact, we employ complex rep-
resentations such as Ω∗(t) = Ω2 + iΩ3 = α exp(iωpt) and B∗(t) = B2 + iB3,
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and introduce the variables defined by

(P, Q, R)(t) := (B1, Ω̄∗B∗, Ω∗B̄∗).

where R = Q̄ and the overbar symbol denotes complex conjugate. Then,
after some nontrivial calculations given in §4.6.5, the Jacobi equation (4.60)
reduces to the following three second order differential equations with con-
stant coefficients (obtained from (4.81) and (4.82)):

P̈ − 1
2
iQ̇ +

1
2
iṘ = 0,

Q̈ + ikβQ̇ − ikα2Ṗ + γQ − γR = 0,

R̈ − ikβṘ + ikα2Ṗ + γR − γQ = 0,


 (4.67)

where Ω̇∗ = iωpΩ∗ and ωp = β(k − 1) were used, together with the
definitions,8

k =
J1

J⊥
, α2 = |Ω∗|2, β = Ω1, γ =

1
2
(1 − k)α2.

Setting (P, Q, R) = (P0, Q0, R0)eipt for an exponent p (where P0, Q0, R0 are
time-independent complex constants), one can obtain a system of linear
homogeneous equations for the amplitudes (P0, Q0, R0). Nontrivial solu-
tion of (P0, Q0, R0) is obtained when the determinant of their coefficients
vanishes: ∣∣∣∣∣∣

−2p2 p −p

−q F+(p) γ

q γ F−(p)

∣∣∣∣∣∣ = 0, (4.68)

where F±(p) = p2 ± kβp − γ and q = kα2p. This reduces to

2p2(F+F− − γ2) − pq(F+ + F− + 2γ) = 2p4(p2 − α2 − k2β2) = 0.

Hence, we have the roots of the eigenvalue equation (4.68):

(a) p = 0; (b) p = ±λ,

where λ =
√

α2 + k2β2, and p = 0 is a quadruple root. Thus, it is found
that all the six roots are real.

8From the inequality J2 + J3 ≥ J1, in the footnote of §4.1.1, we have 2 ≥ k ≥ 0.
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Case (a) p = 0: Equations (4.67) result in P̈ = 0 and Q = R = const (real).
Then the Jacobi field is given by

B1 = c1t + c0, B∗ = B0eiωpt.

This shows neutral stability of the basic state (4.65) since the Jacobi field
does not grow exponentially.
Case (b) p = ±λ: For these eigenvalues, we obtain

B1 = B1
0e±iλt, B∗ = B0ei(ωp±λ)t.

The Jacobi fields are represented by periodic functions, hence we have the
neutral stability again. In general, the fields B = (B1, B2, B3) are rep-
resented in terms of three different frequencies, λ and (ωp ± λ) which are
incommensurate to each other, therefore the Jacobi fields are quasi-periodic.

Thus, the present geometrical formulation has enabled us to study the
stability of the regular precession of a symmetrical top, and the Jacobi
equation predicts that the motion is neutrally stable in the sense that the
Jacobi field does not grow exponentially.

4.6.4. Stability and instability of an asymmetrical top

It is shown in §4.6.2 that each of Ω1e1, Ω2e2, or Ω3e3 is a steady solution
of the Euler’s equation (4.2). Let us try a classical stability analysis to see
whether they are stable or not. Suppose that an infinitesimal perturbation
ω = (ω1, ω2, ω3) is superimposed on the steady rotation Ω = (Ω1, 0, 0).
Substituting Ω + ω into the Euler’s equation (4.2) and linearizing it with
respect to the perturbation ω, we obtain the following perturbation equa-
tions: ω̇1 = 0, and

J2ω̇
2 − (J3 − J1)Ω1ω3 = 0,

J3ω̇
3 − (J1 − J2)Ω1ω2 = 0.

Assuming the normal form (ω2, ω3) = (a, b)eiλt, we obtain an eigenvalue
equation for λ:

λ2 =
(J1 − J2)(J1 − J3)

J2J3
.

If J1 is the highest out of the three (J1, J2, J3), then (J1 − J2)(J1 − J3) is
positive and λ is real, meaning stability of the steady rotation Ω1e1. If J1

is the lowest among the three, the same is true. However, if J1 is middle
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among the three, λ is pure imaginary. Then, the steady rotation Ω1e1 is
unstable. Same reasoning applies to the other two steady rotations.

The analysis of the Jacobi field made for a symmetrical top in the pre-
vious section clarified that the regular precession is neutrally stable. Here
are some considerations for an asymmetrical top in geometrical terms on
the basis of numerical analysis [SWK98] for the sectional curvature,

K(Ω1e1, B) = K(e1, e2)(Ω1B2)2 + K(e1, e3)(Ω1B3)2 (4.69)

(see (4.63) and (4.64)) defined for the section spanned by the steady rotation
Ω1e1 and a Jacobi field B = B2e2 + B3e3. For the stable motion (with
J1 being the highest or lowest), it is found that the sectional curvature
K(Ω1e1, B) defined by (4.69) takes either positive values always, or both
positive and negative values in oscillatory manner, depending on the inertia
tensor J . However, it is found that the time average K̄ is always positive
for any J in the linearly stable case. On the other hand, in the case of linear
instability of the middle J1 value, there exist some inertia tensors J which
make K̄ negative.

As a whole, the geometrical analysis is consistent with the known prop-
erties of rotating rigid bodies in mechanics.

4.6.5. Supplementary notes to §4.6.3
With respect to the regular precession about the axis e1 (considered in
§4.6.3), let us write down the Jacobi equation (4.60),

∂2
t B + ∇T (∂tB) + ∂t(∇T B) + ∇T ∇T B + R(B, T )T = 0, (4.70)

explicitly for a general Jacobi field B = B1e1 + B2e2 + B3e3 along the
geodesic of the regular precession with a periodic tangent vector T = Ω1e1+
Ω2(t)e2 +Ω3(t)e3 given by (4.65), where Ω∗ := Ω2 + iΩ3 = α exp(iωpt) and
ωp = (k − 1)Ω1.

The first term is

∂2
t B = B̈1e1 + B̈2e2 + B̈3e3, (4.71)

where a dot denotes d/dt. Using the covariant derivative (4.59), we have

∇T B = Ωk∇ek
B =

1
2J1

(K̃2Ω2B3 − K̃3Ω3B2)e1

+
1

2J2
(K̃3Ω3B1 − K̃1Ω1B3)e2

+
1

2J3
(K̃1Ω1B2 − K̃2Ω2B1)e3, (4.72)
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where J2 = J3 = J⊥, and K̃1 = −J1 + 2J⊥, K̃2 = J1, K̃3 = J1 from (4.38).
From this, we obtain

∇T (∂tB) =
1
2
(Ω2Ḃ3 − Ω3Ḃ2)e1 +

1
2
(kΩ3Ḃ1 − (2 − k)Ω1Ḃ3)e2

+
1
2
((2 − k)Ω1Ḃ2 − kΩ2Ḃ1)e3, (4.73)

where Bk of (4.72) is replaced simply by Ḃk, and k = J1/J⊥ is
used. This is the second term of (4.70). The third term is obtained by
differentiating (4.72):

∂t(∇T B) = ∇T (∂tB) +
1
2
(Ω̇2B3 − Ω̇3B2)e1

+
1
2
k(Ω̇3B1e2 − Ω̇2B1e3). (4.74)

The fourth term is obtained by operating ∇T on (4.72) again:

∇T (∇T B)

=
1
4
[−k((Ω2)2 + (Ω3)2)B1 + (2 − k)Ω1Ω2B2 + (2 − k)Ω1Ω3B3]e1

+
1
4
[k(2 − k)Ω1Ω2B1 − k(Ω3)2B2 − (2 − k)2(Ω1)2B2 + kΩ2Ω3B3]e2

+
1
4
[k(2 − k)Ω1Ω3B1 + kΩ2Ω3B2 − k(Ω2)2B3 − (2 − k)2(Ω1)2B3]e3.

(4.75)

Regarding the last term, the curvature tensor R(B, T )T is decomposed into
several components as

R(B, T )T = BiΩjR(ei, ej)T, (4.76)

by using the property of tri-linearity of general curvature tensor R(X,Y )Z
with respect to X,Y, Z (see (3.98)) as well as (4.61). Actually, the number
of independent components are only three: R(e1, e2)T , R(e1, e3)T and
R(e2, e3)T , since R(ei, ej)T is anti-symmetric with respect to i and j.
Using (4.61), we obtain

R(e1, e2)T =
1
4
kΩ2e1 − 1

4
k2Ω1e2,

R(e2, e3)T =
1
4
(4 − 3k)(Ω3e2 − Ω2e3),

R(e3, e1)T =
1
4
k2Ω1e3 − 1

4
kΩ3e1,
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where κ1 = (4 − 3k)J1J⊥, and κ2 = κ3 = kJ1J⊥ are used for (4.61).
Substituting these into (4.76), we find

R(B, T )T

=
1
4
[k((Ω2)2 + (Ω3)2)B1 − kΩ1(Ω2B2 + Ω3B3)]e1 +

1
4
[−k2Ω1Ω2B1

+ k2(Ω1)2B2 + (4 − 3k)(Ω3)2B2 − (4 − 3k)Ω2Ω3B3]e2 +
1
4
[−k2Ω1Ω3B1

− (4 − 3k)Ω2Ω3B2 + k2(Ω1)2B3 + (4 − 3k)(Ω2)2B3. (4.77)

Collecting all the terms (4.71), (4.73)–(4.75) and (4.77), we find that each
component of the Jacobi equation (4.70) with respect to e1, e2 and e3 is
written down in the following way:

B̈1 − Ω3Ḃ2 + Ω2Ḃ3 +
1
2
(−Ω̇3 + (1 − k)Ω1Ω2)B2

+
1
2
(Ω̇2B2 + (1 − k)Ω1Ω3)B3 = 0, (4.78)

B̈2 + kΩ3Ḃ1 + (k − 2)Ω1Ḃ3 +
1
2
k(Ω̇3 + (1 − k)Ω1Ω2)B1

− (1 − k)((Ω1)2 − (Ω3)2)B2 − (1 − k)Ω2Ω3B3 = 0, (4.79)

B̈3 − kΩ2Ḃ1 − (k − 2)Ω1Ḃ2 +
1
2
k(−Ω̇2 + (1 − k)Ω1Ω3)B1

− (1 − k)Ω2Ω3B2 − (1 − k)((Ω1)2 − (Ω2)2)B2 = 0. (4.80)

Using complex representations such as Ω∗(t) = Ω2 + iΩ3 = α exp(iωpt) and
B∗(t) = B2 + iB3, these are rewritten as

B̈1 +
1
2
i(Ω∗ ˙̄B∗ − Ω̄∗Ḃ∗) − 1

2
ωp(Ω∗B̄∗ − Ω̄∗B∗) = 0, (4.81)

B̈∗ − ikΩ∗Ḃ1 − i(k − 2)Ω1Ḃ∗ − 1
2
ikΩ̇∗B1 +

1
2
k(1 − k)Ω1B1Ω∗

− (1 − k)(Ω1)2B∗ +
1
2
(1 − k)[|Ω∗|2B∗ − (Ω∗)2B̄∗] = 0, (4.82)

where the overbar symbol denotes complex conjugate. The first is obtained
from (4.78) by using Ω̇∗ = iωpΩ∗. The second is derived from (4.79) and
(4.80). One more equation is obtained from them, which is found to be
equivalent to the complex conjugate of (4.82) where B1 and Ω1 are real.
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Chapter 5

Water Waves and KdV Equation

We consider the second class of dynamical systems. Physically, the equa-
tions are regarded to describe nonlinear waves, which are familiar as sur-
face waves in shallow water, and are studied extensively in fluid mechanics.
Mathematically, this is reformulated as a problem of smooth mappings of
a circle S1 along itself. This corresponds to problems of nonlinear waves
under space-periodic condition. A smooth sequence of diffeomorphisms is a
mathematical concept of a flow and the unit circle S1 is one of the simplest
base manifolds for physical fields. The Virasoro algebra on S1 is considered
as a fundamental problem in physics.

The manifold S1 is spatially one-dimensional, but its diffeomorphism has
infinite degrees of freedom because pointwise mapping generates arbitrary
deformation of the circle. Collection of all smooth orientation-preserving
maps constitutes a group D(S1) of diffeomorphisms of S1, as noted in §1.9.
Two problems are considered here: the first is the geodesic equation over a
manifold of the group D(S1), describing a simple diffeomorphic flow on S1,
and the second is the KdV equation, which is the geodesic equation over
an extended group D̂(S1),1 obtained by the central extension of D(S1). A
highlight of this chapter is the dynamical effect of the central extension, i.e.
a phase shift enabling wave propagation.

In the first section, we review the physical background of long waves
in shallow water, and then consider infinite-dimensional Lie groups, D(S1)
and D̂(S1), including an infinite-dimensional algebra called the Virasoro
algebra [AzIz95]. This chapter is based on [OK87; Mis97; Kam98], and some

1The derivation on D(S1) (or D̂(S1)) in the present chapter can be made more accurate
to the group Ds(R1) (or D̂s(R1)) of diffeomorphisms of Sobolev class Hs(R) (see §8.1.1
and Appendix F with M = R

1). Cauchy problem is known to be well posed for a
nonperiodic case as well in the Sobolev space Hs(R) for any s > 3/2 [Kat83], [HM01].

153
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additional consideration is given on a Killing field. In addition, formulae of
Riemannian curvatures are given.

5.1. Physical Background: Long Waves in Shallow Water

Before considering the geometrical theory of diffeomorphic flow and the
KdV equation in the subsequent sections, it would be helpful first to present
its physical aspect by reviewing the historical development of the theory of
water waves.

(a) Long waves of infinitesimal amplitudes (of wavelength λ) in shallow
water of undisturbed depth h∗ (Fig. 5.1) is described by a wave equation,

∂2
t u − c2

∗∂
2
xu = 0,

[LL87, §12], where λ/h∗ � 1, a/h∗ � 1 with a the wave amplitude. The
parameter c∗ =

√
gh∗ (g: the acceleration of gravity) denotes the phase

velocity of the wave. The function u(x, t) denotes the velocity of water par-
ticles along the horizontal axis x (or the surface elevation from undisturbed
horizontal level h∗).

(b) Next, approximation that takes into account the finite-amplitude
nonlinear effect is described by the following set of equations,

[∂t + (u ± c)∂x](u ± 2c) = 0 (5.1)

[Ach90, §3.9], where c(x, t) =
√

gh(x, t), and h(x, t) denotes the total depth,
the surface elevation given by ζ := h(x, t) − h∗. Equation (5.1) represents
two equations corrresponding to the upper and lower signs. This system of
equations state a remarkable fact that the two variables u±2c are constant
along the two systems of characteristic curves determined by dx/dt = u±c.
This property can be used in solving the problem of obtaining two variables
u(x, t) and c(x, t).

bottom

surface

λ

a*
h*

Fig. 5.1. Long waves in shallow water.
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Consider a particular case with the following initial condition,

t = 0 :
{

u = 0, c = c∗ =
√

gh∗ for x > 0,

u = U > 0, c = c1 =
√

gh1 > c∗ for x < 0

(h1 > h∗). Then along the characteristic curves (dx/dt = u − c) emanating
from the undisturbed region of x > 0 where u = 0, we have u − 2c = −2c∗
from the above property. Substituting c = c∗ + 1

2u, the equation of the
upper sign of (5.1) reduces to

∂tu +
(

3
2
u + c∗

)
∂xu = 0. (5.2)

Multiplying by 3
2 , this is rewritten simply as (since c∗ is a constant),

∂tv + v ∂xv = 0, (5.3)

where v = 3
2u + c∗. The general solution of this equation is

v = f(x − vt), (5.4)

for an arbitrary differentiable function f(x).
A wave profile such as that in Fig. 5.2 becomes more steep as time goes

on because the point of the value v(>0) moves faster than the point in front
with smaller values than v. There will certainly come a time when the wave
slope ∂v/∂x becomes infinite at some particular xc. Beyond that time the
wave will be broken. This critical time tc is determined in the following
way. Differentiating (5.4) with x, we obtain

∂xv =
f ′(ξ)

1 + tf ′(ξ)
, ξ = x − vt.

So, the critical time when the derivative ∂xv first becomes infinite is

tc = min
ξ

[−(1/f ′(ξ))].

t1 t2 tc

xc

Fig. 5.2. Nonlinear wave becoming more steep.



August 2, 2004 16:4 WSPC/Book Trim Size for 9in x 6in chap05

156 Geometrical Theory of Dynamical Systems and Fluid Flows

This finite-time breakdown occurs at a point where f ′(ξ) < 0, i.e. at the
front part of the wave. This is understood as representing the mechanism
of breakdown of waves observed in nature.

(c) However, stationary waves are also observed in nature. A well-known
example is the observation by John Scott Russel in 1834, which is regarded
as the first recognized observation of the solitary wave, now called the
soliton. His observation suggested that the wave propagates with speed√

g(h∗ + a) (a: wave amplitude), which was confirmed later with compu-
tation by Rayleigh (see below), although Russel’s observation was exposed
to criticism by his contemporaries because of the known property of break-
down described above.

Later, Korteweg and de Vries [KdV1895] succeeded in deriving an equa-
tion allowing stationary advancing waves, i.e. solutions which do not show
breakdown at a finite time. In the problem of long waves in a shallow
water channel (Appendix G), it is important to recognize that there are
two dimensionless parameters which are small:

α =
a∗
h∗

, β =
(

h∗
λ

)2

, (5.5)

where a∗ is a normalization scale of wave amplitude and λ is a representa-
tive horizontal scale characterizing the wave width. In order to derive the
equation allowing permanent waves, it is assumed that α ≈ β � 1. Per-
forming an accurate order of magnitude estimation under such conditions,
one can derive the following equation,

∂τu +
3
2
u ∂ξu +

1
6
∂3

ξu = 0 (5.6)

(see Appendix G for its derivation), where

ξ =
(

α

β

)1/2
x − c∗t

λ
, τ =

(
α3

β

)1/2
c∗t
λ

. (5.7)

The function u(x, t) denotes not only the surface elevation normalized by
a∗, but also the velocity (normalized by ga∗/c∗),

u = dxp/dt, (5.8)

of the water particle at x = xp(t). Comparing (5.6) with (5.2), it is seen
that there is a new term (1/6)∂3

ξu. An aspect of this term is interpreted as
follows. Linearizing Eq. (5.6) with respect to u, we have ∂τu + α ∂3

ξu = 0
(where α = 1/6). Assuming a wave form uw ∝ exp[i(ωτ − kξ)] (the wave
number k and frequency ω) and substituting it, we obtain a dispersion
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relation (i.e. a functional relation between k and ω), ω = −αk3. Phase
velocity of the wave is defined by c(k) := ω/k = −αk2. Namely, a small
amplitude wave uw propagates with nonzero speed c(k) = −αk2 propor-
tional to α = 1/6, and the speed is different for different wavelengths
(= 2π/k). This effect is termed as wave dispersion. What is important
is that the new term takes into account an effect of wave propagation, in
addition to the particle motion dxp/dt. (See the ‘Remark’ of §5.4.)

Replacing u by v = 3
2u, we obtain

∂τv + v ∂ξv +
1
6
∂3

ξv = 0. (5.9)

This equation is now called the KdV equation after Korteweg and de
Vries (1895). Equation (5.9) allows steady wave solutions, which are called
the permanent waves. Setting v = f(ξ − bτ) (b: a constant) and substitut-
ing it into (5.9), we obtain f ′′′ + 6ff ′ − 6bf ′ = 0. This can be integrated
twice. Choosing two integration constants appropriately, one finds two wave
solutions as follows:

v = A sech2

[√
A

2

(
ξ − A

3
τ

)]
(solitary wave), (5.10)

v = A cn2

[√
d

2

(
ξ − c

3
τ
)]

, c = 2A − d, (5.11)

where sech x ≡ 2/(ex + e−x) and cnx ≡ cn(βx, k) (Jacobi’s elliptic func-
tion) with β =

√
d/2 and k =

√
a/d. The first solitary wave solution is

obtained by setting two integration constants zero (and b = A/3). The

1

0
�3 �2 �1 0 1 2 3 4

x

sech2 x

1

0

k = 0.99

x

0 10

(a)

(b)
 = 2K(k)βλ

cn2 (   x, k)β

β

Fig. 5.3. (a) Solitary wave, (b) cnoidal wave.
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second solution represents a periodic wave train called the cnoidal wave
(Fig. 5.3).

The propagation speed of the solitary wave (5.10) is found to be consis-
tent with Russel’s observation. Namely the speed is given by

√
g(h∗ + a) ≈

c∗
(
1 + 1

2a/h∗
)
. In fact, the argument of (5.10) is written as

ξ − A

3
τ =

(
α

β

)1/2 1
λ

(
x −

(
1 +

1
2

a

h∗

)
c∗t

)
,

by using (5.5) and (5.7), and by noting that the amplitude of the wave is
given by a/a∗ = uamp = (2/3)vamp = (2/3)A.

5.2. Simple Diffeomorphic Flow

It was seen in the previous section that the equations of water waves
describe not only the surface elevation, but also the moving velocity of
the water particles. In other words, the wave propagation is regarded as
continuous diffeomorphic mapping of the particle configuration. That is,
the particle configuration is transformed from time to time. This observa-
tion motivates the study of a group D(S1) of diffeomorphisms of a circle
S1, corresponding to the space-periodic wave train (not necessarily time-
periodic) in the water wave problem. For the manifold S1[0, 2π), every point
x + 2π ∈ R is identified with x.

5.2.1. Commutator and metric of D(S1)

In §1.9, we considered diffeomorphisms of the manifold S1 (a unit circle in
R

2) by a map (Fig. 5.4),

g ∈ D(S1) : x ∈ S1 �→ g(x) ∈ S1,

6′ 7′ 0′ 1′ 2′ 3′ 4′ 5′ 6′′ 7′′

6 7 0 1 2 3 4 5 6 7 0 1 2

0 2π
x ∈S1

x

g(x)

Fig. 5.4.
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and defined the tangent field,

X(x) = u(x)∂x ∈ TS1

by (1.84). There, we defined the Lie bracket (commutator) of two tangent
fields X = u(x)∂x, Y = v(x)∂x ∈ TS1 as

[X,Y ] = (uv′ − vu′)∂x, (5.12)

where u′ = ∂xu = ux. Furthermore in §3.1.3(b), we introduced a right-
invariant metric on the group D(S1) defined by

〈U, V 〉g :=
∫

S1
(Ug ◦ g−1, Vg ◦ g−1)xdx,

for right-invariant tangent fields Ug(x) = u◦g(x) and Vg(x) = v ◦g(x) with
g ∈ D(S1). This is rewritten as

〈U, V 〉g =
∫

S1
u(x)v(x)dx = 〈X,Y 〉e, (5.13)

where X = u(x)∂x, Y = v(x)∂x ∈ TeD(S1) are tangent fields at the iden-
tity e. Because of this metric invariance, the Riemannian connection ∇ is
given by the expression (3.65):

∇XY =
1
2
(adXY − ad∗

Y X − ad∗
XY ). (5.14)

Using the definition (1.63) of the ad-operator and the definition (5.12)
of the commutator, we have adXY = [X,Y ] = (uv′ − vu′)∂x. Then by
the definition (3.64) of ad∗

XY for X = u(x)∂x, Y = v(x)∂x, Z = w(x)∂x,
we have

〈ad∗
XY, Z〉 = 〈Y, adXZ〉 =

∫
S1

v(uw′ − wu′)dx = −
∫

S1
(uv′ + 2vu′)wdx,

(5.15)
where integration by parts is performed with the periodic boundary condi-
tions u(x + 2π) = u(x), etc. Hence, one obtains

ad∗
XY = −(uv′ + 2vu′)∂x.

From (5.14), the Riemannian connection on D(S1) is given by

∇XY = (2uv′ + vu′)∂x. (5.16)
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5.2.2. Geodesic equation on D(S1)

The geodesic equation is given by (3.67):

∂tX + ∇XX = ∂tX − ad∗
XX = 0.

Thus, the geodesic equation on the manifold D(S1) is

ut + 3uux = 0. (5.17)

This is equivalent to Eq. (5.3). Compared with the KdV equation (5.9)
with v = 3u, this equation has no third order dispersion term uxxx. The
third order derivative term is introduced only after considering the central
extension in the next section. The above equation (5.17) would be termed
as the one governing a simple diffeomorphic flow. Its solution exhibits finite-
time breakdown in general as given in §5.1.

5.2.3. Sectional curvatures on D(S1)

Using the definition (5.16) of ∇XY and ∇Y Y = 3vv′∂x repeatedly, we have

∇X(∇Y Y ) = 6u(vv′)′ + 3vv′u′,

∇Y (∇XY ) = 2v(2uv′ + vu′)′ + (2uv′ + vu′)v′,

∇[X,Y ]Y = 2(uv′ − vu′)v + v(uv′ − vu′)′,

where u′ = ∂xu, etc. Therefore,

R(X,Y )Y = ∇X(∇Y Y ) − ∇Y (∇XY ) − ∇[X,Y ]Y

= 2v′(uv′ − vu′)v + v(uv′ − vu′)′.

Thus, we obtain the sectional curvature,

K(X,Y ) = 〈R(X,Y )Y, X〉 =
∫

S1
(uv′ − vu′)2dx, (5.18)

where integration by part is carried out for the integral
∫

S1 uv(uv′−vu′)′dx,
and the integrated term vanishes due to periodicity. It is remarkable that
the sectional curvature K(X,Y ) is positive, except in the case, u(x) = cv(x)
for c ∈ R, resulting in K(X,Y ) = 0.
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5.3. Central Extension of D(S1)

An element g of the diffeomorphism group D(S1) represents a map g : x ∈
S1 → g(x) ∈ S1. One may write x = eiφ and instead consider the map φ �→
g(φ) such that g(φ+2π) = g(φ)+2π. Corresponding to the map φ �→ g(φ),
one defines the transformation of a function fe := eiφ �→ fg(φ) := eig(φ),
where e(φ) = φ. Furthermore, associated with the group D(S1), one may
define a phase shift η(g) : D(S1) → R, which is to be introduced in a new
transformed function Fg. Namely, in addition to fg(φ), the transformation
φ �→ φ′ = g(φ) defines a new function,

Fe = eiφ �→ Fg(φ′) = exp[iη(g)] exp[ig(φ)].

It is described in Appendix H that fg = eig(x) is a function on D(S1),
whereas Fg is a function on an extended group D̂(S1). Associated with this
Fg, the transformation law results in the central extension of D(S1).

An extension of the group D is denoted by D̂, and its elements are
written as

f̂ := (f, a), ĝ := (g, b) ∈ D̂(S1),

for f, g ∈ D(S1) and a, b ∈ R, where D̂(S1) = D(S1) ⊕ R. The group
operation is defined by (see (H.10)):

ĝ ◦ f̂ := (g ◦ f, a + b + B(g, f)), (5.19)

B(g, f) :=
1
2

∫
S1

ln ∂x(g ◦ f)d ln ∂xf, (5.20)

where B(g, f) is the Bott cocycle (Appendix H). It can be readily shown
that the following subgroup D̂0 is a center of the extended group D̂, where
D̂0 is defined by {f̂0 | f̂0 = (e, a), a ∈ R}.

5.4. KdV Equation as a Geodesic Equation on D̂(S1)

We now consider the geodesic equation on the extended manifold D̂(S1),
studied by [OK87].

Nontrivial central extension of TeD(S1) to TêD̂(S1) is known as the
Virasoro algebra [AzIz95]. A tangent field at the identity ê := (e, 0) on the
extended manifold D̂(S1) is denoted by û = (u(x)∂x, α). For two tangent



August 2, 2004 16:4 WSPC/Book Trim Size for 9in x 6in chap05

162 Geometrical Theory of Dynamical Systems and Fluid Flows

fields at ê,

û = (u(x, t)∂x, α), v̂ = (v(x, t)∂x, β) ∈ TêD̂(S1),

one can associate two flows: one is t �→ ξ̂t := (ξt, αt) starting at ξ̂0 = ê in the
direction û = (u(x)∂x, α) and the other is t �→ η̂t = (ηt, βt) in the direction
v̂ = (v(x)∂x, β), where α, β ∈ R. Then, the commutator is given by

[û, v̂] := ((u ∂xv − v ∂xu)∂x, c(u, v)), (5.21)

c(u, v) :=
∫

∂2
xu ∂xv dx = −c(v, u). (5.22)

For the derivation of c(u, v), see Appendix H.3. The extended component
c(u, v) is called the Gelfand–Fuchs cocycle [GF68].

The metric is defined by

〈û, v̂〉 :=
∫

S1
u(x)v(x)dx + αβ. (5.23)

Following the procedure of §5.2, the covariant derivative is derived as

∇ûv̂ =
(

w(u|v)∂x,
1
2
c(u, v)

)
, (5.24)

w(u|v) = 2uvx + vux +
1
2
(αvxxx + βuxxx). (5.25)

The geodesic equation is written as ∂û/∂t + ∇ûû = 0. This results in the
following two equations:

ut + 3uux + αuxxx = 0,
(5.26)

∂tα = 0.

The second equation follows from the property,
∫

S1 uxxuxdx = 0. The first
equation is of the form of KdV equation (5.9). The coefficient α is called
the central charge, which was 1/6 in (5.9) for water waves (where v = 3u).

Remark. The central extension is associated with a phase-shift η(g) of
the transformation g describing particle rearrangement, while the central
charge α represents the rate of phase-shift. The term including α induces
wave motion whose phase speed is different from the speed u of particle
motion. Recalling the explanation below (5.8), the term αuxxx describes
the wave dispersion, in other words it implies the existence of wave motion.
In fact, the KdV equation describes the motion of a long wave in shallow
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water, where the fluid particles move translationally with speed u different
from the wave speed c(k).

5.5. Killing Field of KdV Equation

It may appear to be trivial that the following constant field,

Û = (U∗∂x, α), U∗, α ∈ R (5.27)

is a solution of the KdV equation (5.26). This is in fact a Killing field, and
it would be worth investigating from a geometrical point of view.

5.5.1. Killing equation

One can verify that the Killing equation is satisfied by X = Û . In fact, the
Killing equation (3.161) reads

〈∇ûÛ , v̂〉 + 〈û, ∇v̂Û〉 = 0, (5.28)

for any û = (u(x, t)∂x, α), v̂ = (v(x, t)∂x, α) ∈ TêD̂(S1). In order to show
this, we apply (5.23), (5.24) and (5.25) to each of the two terms. The second
term is then

〈û, ∇v̂Û〉 =
∫

S1

(
U∗vx +

1
2
αvxxx

)
u dx, (5.29)

and an analogous expression is obtained for 〈∇ûÛ , v̂〉. Therefore, the left-
hand side of Eq. (5.28) becomes

LÛ 〈û, v̂〉 =
∫

S1

[
U∗∂x(uv) +

1
2
α∂x(uxxv + uvxx − uxvx)

]
dx.

The right-hand side can be integrated, and obviously vanishes by the peri-
odicity of u(x) and v(x). Thus, the Killing equation (5.28) is satisfied, and
it is seen that the tangent field Û is the Killing field.

5.5.2. Isometry group

A Killing field X̂ generates a one-parameter group of isometry φt = etX̂ .
According to §3.12.2, along the flow φt generated by X̂, the inner product
〈û, v̂〉 is invariant for two fields û and v̂ that are invariant under the flow X̂.
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Suppose that Û is a Killing field, then the invariance of the vector field
v̂ = (v(x, t)∂x, α) along φt is represented by (3.170):

∂tv̂ + ∇Û v̂ = ∂tÛ + ∇v̂Û (∂tÛ = 0). (5.30)

In the time-dependent problem, one can introduce the enlarged vectors
ṽ = ∂t + v̂ and Ũ = ∂t + Û . Then, this is rewritten as2

∇Ũ ṽ = ∇ṽŨ ,= ∇v̂Û . (5.31)

Using (5.27) and the covariant derivative (5.24), the equation (5.30) (or
(5.31)) takes the form,

vt + 2U∗vx +
1
2
αvxxx = U∗vx +

1
2
αvxxx, ≡ ∇ṽŨ . (5.32)

Namely, we obtain

vt + U∗vx = 0, therefore v = f(x − U∗t),

for an arbitrary differentiable function f(x). For two such invariant fields
û and v̂, we have

LŨ 〈ũ, ṽ〉 = 〈∇Ũ ũ, v̂〉 + 〈û, ∇Ũ v̂〉 = 〈∇ûÛ , v̂〉 + 〈û, ∇v̂Û〉 = 0, (5.33)

(see (3.163) and (3.164)) by the Killing equation (3.161).
Thus it is found that the vector field Û is the Killing field which gen-

erates a one-parameter group of isometry, φt = etÛ in D̂(S1), which is a
stationary geodesic (Û is stationary).

5.5.3. Integral invariant

The stationary Killing field Û is analogous to the steady rotation X̂ =
(X1, 0, 0) of a symmetrical top in §4.6.3(a). We consider an associated
invariant analogous to 〈X,Y 〉.

According to §3.12.4, we have the following integral invariant,

〈Ũ , w̃〉 = U∗
∫

S1
w(x)dx + α2, (5.34)

along a geodesic generated by w̃ = ∂t + ŵ, where ŵ = (w(x, t)∂x, α) and
∇w̃w̃ = 0, with the replacement of X and T by Ũ and w̃, respectively. The
invariance can be verified directly, as follows, by setting u = w in (5.29)

2The invariant field ṽ does not necessarily satisfy the geodesic equation ∇ṽ ṽ = 0.
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since the right-hand side of the first line of (3.169) is

〈∇w̃Ũ , w̃〉 =
∫

S1

(
U∗wx +

1
2
αwxxx

)
wdx

=
∫

S1

[
U∗∂x

(
1
2
w2

)
+

1
2
α

(
∂x(wwxx) − 1

2
∂x((wx)2)

)]
dx = 0.

(5.35)

5.5.4. Sectional curvature

Moreover, the curvatures of the two-dimensional sections spanned by the
Killing field φ̇t(= Û ◦ φt) and any vector field v̂ = (v(x, t)∂x, α) are non-
negative. The sectional curvature K(û, v̂) is calculated in the next section
§5.6 for two arbitrary tangent fields û and v̂. For the particular vector û = Û

with constant components, the formula (5.47) is simplified to

K(Û , v̂) =
∫

S1

(
U∗vx +

1
2
αvxxx

)2

dx, (5.36)

(where vx = ∂xv, etc.). This shows positivity of K(Û , v̂).
This can be verified by a different approach. According to the definition

of sectional curvature (3.112) and using K(Ũ , ṽ) = K(Û , v̂) noted in §3.10.3,
the sectional curvature K(Û , v̂) is given by

K(Û , v̂) = 〈R(Û , v̂)v̂, Û〉
= −〈∇v̂ v̂,∇Û Û〉 + 〈∇v̂Û ,∇Û v̂〉 − 〈∇[v̂,Û ]Û , v̂〉 (5.37)

where v̂〈∇Û Û , v̂〉 = 0 and Û〈∇v̂Û , v̂〉 = 0.3 Because the tangent field Û

generates a geodesic flow φt, we have ∇Û Û = 0. Hence the first term which
includes ∇Û Û disappears. Using the torsion-free relation (3.18) [Ũ , ṽ] =
∇Ũ ṽ − ∇ṽŨ , the second term can be written as

〈∇v̂Û ,∇Û v̂〉 = 〈∇v̂Û ,∇v̂Û〉 + 〈∇v̂Û , [Û , v̂]〉,

3This is because ∇Û Û = 0 (geodesic equation) and 〈∇v̂Û , v̂〉 = 0 by (5.35). The latter is
also verified by 〈∇v̂Û , v̂〉 = v̂〈Û , v̂〉 − 〈Û , ∇v̂ v̂〉 = 0. The extended components of ∇Û Û

and ∇v̂Û are zero due to (5.24).
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v s

t (Killing)φ

ψ

Fig. 5.5. A Killing geodesic φt and a nearby geodesic ψs.

where [Û , v̂] = (U∗vx∂x, 0) by (5.21) and (5.22). Using (5.24) and (5.25),
the third term is

−〈∇[v̂,Û ]Û , v̂〉 =
∫

s1
(U∗(U∗vx)x +

1
2
α(U∗vx)xxx)vdx.

It is not difficult to show that this term cancels the second term
〈∇v̂Û , [Û , v̂]〉. Thus we finally obtain the non-negativity of K(Ũ , ṽ):

K(Ũ , ṽ) = 〈∇ṽŨ ,∇ṽŨ〉 = ‖∇ṽŨ‖2 ≥ 0 (5.38)

where ∇ṽŨ is given in (5.32). This confirms the formula (5.36). This is
analogous to the curvature (4.57) for the rotation of a spherical top in §4.6.1.

This positivity of K(Û , v̂) means that the nearby geodesic ψs generated
by v̂, where ψ̇s(= v̂ ◦ψs), will be pulled toward φt initially, according to the
Jacobi equation (3.125). This could be interpreted as a kind of stability of
the flow φt (Fig. 5.5), and furthermore investigated in the next subsection.

5.5.5. Conjugate point

The geodesic flow φt = etÛ in D̂(S1) with initial condition φ0 = (e, 0), gen-
erated by the Killing field Û = (U∗∂x, α), has points conjugate to φ0 = (e, 0)
along φt. This is verified, in the following way, by using the Jacobi equation
(3.127) along the flow generated by Ũ = ∂t + Û , which is reproduced here:

d2

dt2
‖J‖2

2
= ‖∇ŨJ‖2 − K(Û , J), (5.39)

where the vector J is a Jacobi field,

J = (v(x, t)∂x, 0).

The sectional curvature K(Û , J) is calculated in the previous subsection,
and is given by (5.36).

As for the first term on the right-hand side, we have

‖∇ŨJ‖2 = 〈∇ŨJ,∇ŨJ〉 =
∫

S1

(
vt + 2U∗vx +

1
2
αvxxx

)2

dx
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where vt = ∂tv. The left-hand side of (5.39) is

d2

dt2
‖J‖2

2
=

1
2

d2

dt2

(∫
S1

v2dx + α2
)

=
∫

S1
(vvtt + (vt)2)dx.

Collecting these three terms, Eq. (5.39) becomes

0 =
∫

S1
(vvtt − 3U2

∗ v2
x − 4U∗vtvx − αvtvxxx − αU∗vxvxxx)dx

=
∫

S1
v(vtt + 3U2

∗ vxx + 4U∗vtx + αvtxxx + αU∗vxxxx)dx, (5.40)

where integration by parts are carried out for all the terms and the inte-
grated terms are deleted by the periodicity.

Thus, requiring this is satisfied with non-trivial Jacobi field v(x, t),
we obtain

vtt + 3U2
∗ vxx + 4U∗vtx + αvtxxx + αU∗vxxxx = 0. (5.41)

We have recovered the equation for the Jacobi field v(x, t), obtained by
[Mis97] (Eq. (3.1) in the paper).

Equation (5.41) is satisfied by the function,

v(x, t) = sin(ωnt) sin(nx − νnt), n: an integer,

where ωn = n
(
U∗ − 1

2αn2
)

and νn = ωn + U∗n. This is orthogonal to
Û = (U∗∂x, α) (the inner product vanishes), and the magnitude is

‖J‖ = | sin(ωnt)|
(∫

S1
sin2(nx − νnt)dx

)1/2

=
√

π|sin(ωnt)|.

This magnitude ‖J‖ vanishes at the times tk (conjugate points),

tk =
π

ωn
k =

2π

(2U∗ − αn2)n
k, for k = 0,±1,±2, . . . .

Thus, the neighboring geodesic ψs intersects with the flow φt a number
of times (Fig. 5.6), which is regarded as a kind of neutral stability of the
flow φt.

t�1 t0 t1 t2

t

 J

Fig. 5.6. The Jacobi field ‖J‖ and conjugate points.
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5.6. Sectional Curvatures of KdV System

By the geometrical theory formulated in Chap. 3, the stability of geodesic
curves on a Riemannian manifold is connected with the sectional curva-
tures. The link is expressed by the Jacobi equation for geodesic variation
J in §3.10. An evolution equation of its norm ‖J‖ is given by Eq. (3.127),
where the second term on the right-hand side K(J, T ) is the sectional cur-
vature associated with the two-dimensional section spanned by J and T

(the tangent to the geodesic). If K(J, T ) is negative, the right-hand side is
positive. Then the equation predicts exponential growth of the magnitude
‖J‖, which indicates that the geodesic is unstable. It was found in the previ-
ous section that the geodesic flow φt generated by the Killing field is stable.
The sectional curvatures of the KdV system can be estimated according to
the definition (3.111) [Mis97; Mis98; Kam98].

Expressing two tangent vectors with a common charge α as

û = (u(x, t)∂x, α), v̂ = (v(x, t)∂x, α),

we have the sectional curvature K(û, v̂) = K(v̂, û) in the section spanned
by û and v̂ as (see Eq. (3.112), with X = û, Y = v̂),

K(û, v̂) = 〈R(v̂, û)û, v̂〉 = −〈∇ûû, ∇v̂ v̂〉 + 〈∇ûv̂,∇v̂û〉 + 〈∇[û,v̂]û, v̂〉.
(5.42)

In order to calculate the right-hand side,4 we use the definition (5.24) of
the covariant derivative, and obtain

∇ûv̂ =
(

w(u|v)∂x,
1
2
H(u|v)

)
, H(u|v) =

∫
S1

uxxvxdx, (5.43)

where w(u|v) is defined by (5.25) and uxx = ∂2
xu, etc. It is readily shown

that H(v|u) = −H(u|v) by using periodicity of functions after integration
by part. Then by the definition of inner product (5.23), the second term of
(5.42) is

〈∇ûv̂,∇v̂û〉 =
∫

S1
w(u|v) w(v|u)dx +

1
4
H(u|v) H(v|u), (5.44)

4The curvature tensor is represented by spatial parts û and v̂ even in the unsteady
problem, as explained in §3.10.3 and also verified directly in §4.6.1.



August 2, 2004 16:4 WSPC/Book Trim Size for 9in x 6in chap05

Water Waves and KdV Equation 169

Similarly, the first term of (5.42) is

−〈∇ûû, ∇v̂ v̂〉 = −
∫

S1
w(u|u)w(v|v)dx,

since H(u|u) =
∫

uxxuxdx =
∫

∂x

(
1
2
(ux)2

)
dx = 0,

by periodicity. Substituting the expression (5.25) for w(u|v), we obtain the
sum of two terms as

− 〈∇ûû, ∇v̂ v̂〉 + 〈∇ûv̂,∇v̂û〉

= −1
4
[H(u|v)]2 + 2

∫
(uv′ − vu′)2dx − α

∫
(uv′ − vu′)(u′′′ − v′′′)dx

+
1
4
α2

∫
(u′′′ − v′′′)2dx − 9α

∫
u′v′(u′′ + v′′)dx

+
1
2
α

∫
(u′′ − v′′)(uv′′ − vu′′)dx, (5.45)

where integration by parts are carried out several times (when necessary)
with integrated terms being deleted by the periodicity. As for the third
term of (5.42), we use the definition (5.22),

[û, v̂] = ((uv′ − vu′)∂x, H(u|v)).

Then we obtain ∇[û,v̂]û = (W (u|v)∂x, L(u|v)), where

W (u|v) = 2u′(uv′ − vu′) + u(uv′ − vu′)′ +
1
2
H(u|v)u′′′ +

1
2
α(uv′ − vu′)′′′

L(u|v) = −1
2

∫
(uv′ − vu′)′u′′dx,

according to the definition (5.24) of the covariant derivative. Finally, the
last term of (5.42) is

〈∇[û,v̂]û, v̂〉 =
1
2
H(u|v)

∫
u′′′v dx −

∫
(uv′ − vu′)2dx

− 1
2
α

∫
(u′′ − v′′)(uv′′ − vu′′)dx. (5.46)

Note that
∫

u′′′vdx = −
∫

u′′v′dx = −H(u|v). Thus, collecting (5.45) and
(5.46), the curvature K(û, v̂) of (5.42) is given by

K(û, v̂) = F − 3
4
H2 − G, (5.47)
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where

F =
∫

S1

(
(uv′ − vu′) − 1

2
α(u′′′ − v′′′)

)2

dx, (5.48)

G = 9α

∫
S1

u′v′(u′′ + v′′)dx, H =
∫

S1
u′′v′dx. (5.49)

Note that the terms including the factor α and the integral H(u|v) originate
from the central extension. If those terms are deleted, the curvature K(û, v̂)
is seen to reduce to K(X,Y ) of (5.18).

The curvatures are calculated explicitly for the sinusoidal periodic fields
ûn = (an sin nx ∂x, α) and v̂n = (bn cos nx ∂x, α). For n ≥ 3, we have

K(v̂1, ûn) =
π

4
(
α2b2

1 + α2(ann3)2 + 2(b1an)2(1 + n2)
)

> 0,

K(v̂1, v̂n) =
π

4
(
α2b2

1 + α2(bnn3)2 + 2(b1bn)2(1 + n2)
)

> 0.

Therefore, both of the sectional curvatures K(v̂1, ûn) and K(v̂1, v̂n) are
positive for n ≥ 3. Thus, most of the sectional curvatures are positive.
However, there are some sections which are not always positive. In fact,

K(v̂1, û1) =
π

4
(a1b1)2

(
−3π + 8 + α2 a2

1 + b2
1

a2
1b

2
1

)
.

The term −(3/4)(πa1b1)2 was derived from the term −(3/4)H2, namely
from the central extension.

Similarly it can be shown that K(v̂n, ûn) is not always positive for any
integer n as well.
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Chapter 6

Hamiltonian Systems: Chaos,
Integrability and Phase Transition

A self-interacting system of N point masses is one of the typical dynamical
systems studied in the traditional analytical dynamics. Such a system is
a Hamiltonian dynamical system of finite degrees of freedom. We try to
investigate this class of dynamical systems on the basis of geometrical the-
ory, mainly according to [Ptt93; CPC00], and ask whether the geometrical
theory is able to provide any new characterization. A simplest nontriv-
ial case is the Hénon–Heiles system, a two-degrees-of-freedom Hamiltonian
system, which is known to give rise to chaotic trajectories. A geometrical
aspect of Hamiltonian chaos will be considered with particular emphasis
[CeP96]. Next, integrability of a generalized Hénon–Heiles system will be
investigated for a special choice of parameters [ClP02].

Recently some evidence has been revealed that the phenomenon of phase
transition is related to a change in the topology of configuration space char-
acterized by the potential function [CCCP97; CPC00], which is described
briefly in the last section.

Highlights of the present chapter are chaos and phase transition in cer-
tain simplified dynamical systems.

6.1. A Dynamical System with Self-Interaction

6.1.1. Hamiltonian and metric tensor

Consider a dynamical system described by the Lagrangian function,

L(q̄, ˙̄q) := E − V =
1
2
aij(q̄)q̇iq̇j − V (q̄), (6.1)

where q̄ := (q1, . . . , qN ) and ˙̄q := (q̇1, . . . , q̇N ) are the generalized coordi-
nates of the configuration space and generalized velocities of the N degrees

171
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of freedom system, respectively, and V (q̄) is a potential function of self-
interaction or gravity. The first term K = (1/2)aij q̇

iq̇j is the kinetic energy,
with aij (i, j = 1, . . . , N) being the mass tensor. We consider only the case
aij = δij (Kronecker’s delta). The Hamiltonian H is

H := piq̇
i − L(q̄, ˙̄q) = (1/2)aijpipj + V (q̄) = K + V, (6.2)

where pi = aij q̇
j is the generalized momentum, and (aij) is the inverse of

(aij) = a, i.e. (aij) = a−1.
In order to make geometrical formulation, one can define an enlarged

Riemannian manifold equipped with the Eisenhart metric gE(Mn ×R
2) by

introducing two additional coordinates q0(= t) and qN+1 [Eis29; Ptt93].1

Introducing an enlarged generalized coordinate Q := (qα) = (q0, q̄, qN+1),
the arc-length ds is given by

ds2 = gE
αβ(Q)dQαdQβ = aijdqidqj − 2V (q̄)dq0dq0 + 2dq0dqN+1,

(q0 = t), where the metric tensor gE = gE
αβ(Q) is represented by, for α, β =

0, . . . , N + 1,2

gE =
(
(gE)αβ

)
=


−2V (q̄) 0 1

0T a 0T

1 0 0


 , (6.3)

(gE)−1 =
(
(gE)αβ

)
=


 0 0 1

0T a−1 0T

1 0 2V (q̄)


 , (6.4)

where a := (aij), 0 is the null row vector and 0T is its transpose.
The Christoffel symbols Γk

ij are given in (3.21) with the metric tensors
gE . Since the matrix elements aij(= δij) are constant, it is straightforward
to see that only nonvanishing Γk

ij ’s are

Γi
00 = gil ∂V

∂ql
= ∂iV, ΓN+1

0i = ΓN+1
i0 = −g0N+1 ∂V

∂qi
= −∂iV (6.5)

[CPC00]. The natural motion is obtained as the projection on the space-
time configuration space (t, q̄) and given by the geodesics satisfying ds2 =
k2dt2 and dqN+1 = (k2/2−L(q̄, ˙̄q))dt. The constant k can be always set as
k = 1, resulting in ds2 = dt2.

1The same system can be formulated in terms of the Jacobi metric of (3.3) as well.
2Greek indices such α, β run for 0, 1, . . . , N, N + 1, whereas Roman indices such as i, j
run for 1, . . . , N , in this chapter.
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6.1.2. Geodesic equation

The geodesic equation is given by (3.63):

d2xi

dt2
+ Γi

jk

dxj

dt

dxk

dt
= 0.

Using (6.5) and ds = dt (and a = a−1 = (δij)), we obtain

d2

dt2
qi = −∂V

∂qi
(i = 1, . . . , N),

dq0

dt
= 1, (6.6)

d2

dt2
qN+1 = 2

∂V

∂qi

dqi

dt
= 2

dV

dt
= −dL

dt

(
since

dK

dt
= −dV

dt

)
.

Choosing arbitrary constants appropriately, we have q0 = t and dqN+1/dt =
1/2 − L. Alternatively, we may define dqN+1/dt = 2V (q̄). Equation (6.6)
is the Newton’s equation of motion, and we have the following energy
conservation from it,

dH

dt
=

dK

dt
+

dV

dt
= q̇iq̈i + q̇i∂qiV = 0.

An enlarged velocity vector v̂ is written as

v̂ = Q̇ = (1, v, 2V ) = (1, v1, . . . , vN , 2V (q̄)), v = ˙̄q. (6.7)

Thus, it is found that the geometric machinery works for the present
dynamical system too. The Eisenhart metric (regarded as a Newtonian
limit metric of the general relativity) is chosen here as can be seen imme-
diately below to have very simple curvature properties, although there is
another metric known as the Jacobi metric (§3.1.3(a)), which is useful as
well [CeP95; ClP02].

6.1.3. Jacobi equation

The link between the stability of trajectories and the geometrical character-
ization of the manifold (M(q̄)⊗R

2, gE) is expressed by the Jacobi equation
(3.125) (rewritten):

(∇
ds

)2

J + R(J, Q̇)Q̇ = 0, (6.8)
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for the Jacobi field J , i.e. a geodesic variation vector. From (3.99), it is
found that the nonvanishing components of the curvature tensors are

Ri
0j0 = −Ri

00j = ∂i∂jV, for i, j = 1, . . . , N. (6.9)

The Ricci tensor (see §3.9.4), defined by Rkj := Rl
klj , has only a nonzero

component R00 = Rl
0l0 = ∆V . The scalar curvature, defined by R :=

gijRij = g00R00, vanishes identically since g00 = 0 from (6.4). Note that
the curvature tensor is

R(J, Q̇)Q̇ = Ri
αβγQ̇αJβQ̇γ = (∂i∂jV )Jj , (6.10)

where the Jacobi vector J is defined by

J = (0, J i, 0), (6.11)

in view of the definition (3.123).
It is interesting to find that the Jacobi equation (6.8) is equivalent to the

equation of tangent dynamics, that is, the evolution equation of infinitesimal
variation vector ξ(t) along the reference trajectory q̄0(t). In fact, writing
the perturbed trajectory as qi(t) = qi

0(t) + ξi(t) and substituting it to
the equation of motion, d2qi/dt2 = −∂V/∂qi, a linearized perturbation
equation with respect to ξ(t) results in

d2

dt2
ξi = −

(
∂2V (q̄)
∂qi∂qj

)
q̄=q̄0(t)

ξj .

This is equivalent to the Jacobi equation (6.8) by using (3.25), (6.5) and
(6.10) because, noting J0 = 0 and Q̇0 = 1, one has(∇J

ds

)i

=
dJ i

dt
+ Γi

00J
0Q̇0 =

dJ i

dt
.

6.1.4. Metric and covariant derivative

Introducing the velocity vectors defined by

û = (uα) = (1, uk, 2V ), v̂ = (1, vk, 2V ), (6.12)

and using the metric tensor gE of (6.3), we obtain the corresponding cov-
ectors Û = (Uα) and V̂ = (Vα) represented as

Û = (gE)αβuβ = (0, uk, 1), V̂ = (0, vk, 1). (6.13)
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The metric is defined by

〈û, v̂〉 = (gE)00u0v0 + ukvk + u0vN+1 + uN+1v0 (6.14)

= ukvk + 2V (q̄), (6.15)

or 〈û, v̂〉 = Uαvα = ukvk + 2V (q̄).

This definition is reasonable because we obtain 〈û, û〉 = 2K + 2V = 2H,
which is an invariant of motion.

Covariant derivative is defined by (∇ûv̂)α = dvα(û) + Γα
βγuβvγ . Using

the Christoffel symbols defined by (6.5), we obtain

(∇ûv̂)0 = dv0 + Γ0
βγuβvγ = 0,

(∇ûv̂)i = dvi(û) + ∂iV, (6.16)

(∇ûv̂)N+1 = 2dV (û) − (uk∂k + vk∂k)V = uk∂kV − vk∂kV. (6.17)

It is quite natural that the geodesic equation ∇v̂ v̂ = 0 is consistent with
(6.6), since dvi(v̂) = dvi/dt and dV (v̂) = (d/dt)V (q̄) = vk∂kV (see (3.25)).

6.2. Two Degrees of Freedom

6.2.1. Potentials

All information of dynamical behavior, either regular or chaotic, is included
in the geometrical formulation in the previous section. In order to see
this, let us investigate a two-degrees-of-freedom system described by the
Lagrangian,

L =
1
2
((q̇1)2 + (q̇2)2) − V (q1, q2),

and consider two particular model systems: one is known to be integrable
and the other (Hénon–Heiles system) to have chaotic dynamical trajecto-
ries. In this chapter (only), we denote the coordinates by the lower suffices
such as q1 (or J2), in order to have a concise notation of its square, e.g.
(q1)2 = q2

1 . The enlarged coordinate and velocity are

Q = (t, q1, q2, q3), Q̇ = (1, q̇1, q̇2, 2V (q1, q2)).

To begin with, let us introduce a potential of generalized Hénon–Heiles
model, which is defined by

V (q1, q2) =
1
2
(q2

1 + q2
2) + Aq2

1q2 − 1
3
Bq3

2 , (6.18)
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where the constant parameters A and B are

A = 1, B = 1, (6.19)

for the Hénon–Heiles model, which is known to yield chaotic trajectories.
With special choices of parameters, this system is known to be globally

integrable [CTW82]: one is the case of A = 0 and B = 0, and the other is
the case of A = 1 and B = −6.

In the next section (§6.3), we consider the first Hénon–Heiles model and
show some evidence that the trajectories are influenced by the Riemannian
curvatures, according to [CeP96]. In §6.5, we will investigate the latter
integrable cases and try to find Killing fields and associated invariants of
motion.

6.2.2. Sectional curvature

In order to study stability or instability of geodesic flows, i.e. existence
or nonexistence of chaotic orbits, the Jacobi equation (6.8) for a geodesic
variation J is useful, in which the sectional curvature is an important factor,
to be studied in §6.3.

The geodesic variation vector from (6.11) is given as J =
(J0 = 0, J1, J2, 0). On the constant energy surface and along the geodesic
flow Q(t), one can always assume that J is orthogonal to Q̇, i.e. 〈J, Q̇〉 =
gijJiQ̇j = 0. In fact, expressing as J = J⊥ + c Q̇ and substituting it in
Eq. (6.8), it is readily seen that the terms related to the parallel compo-
nent c Q̇(= cT ) drop out and the equation is nothing only for the orthogonal
component J⊥ (see (3.126)).

The equation for the norm of geodesic variation ‖J‖ is given by
Eq. (3.127). The Jacobi vector is chosen as J = (0, q̇2,−q̇1, 0), hence
〈J, Q̇〉 = 0 ([CeP96]). Then the sectional curvature normalized by ‖J‖2

is given by

K̂(Q̇,Q) :=
K(J, Q̇)

‖J‖2

=
1

2(Et − V (q̄))

(
∂2V

∂q2
1

q̇2
2 − 2

∂2V

∂q1∂q2
q̇1q̇2 +

∂2V

∂q2
2

q̇2
1

)
,

(Et = K + V , total energy), which can be computed on the surface SE of
constant energy where Et =const.

In order to get the geometrical characterization of the dynamical orbits
of the Hénon–Heiles model, it is useful to define the average value of negative
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curvature, K̂− = {K̂ : K̂(Q̇,Q) < 0} by

〈K̂−〉 :=
1

A(SE)

∫
SE

K̂−dq̄d ˙̄q,

where A(SE) is the area in the (q̄, ˙̄q)-plane SE which is accessible by
the dynamical trajectories. The quantity 〈K̂−〉 was estimated at different
energy values E.

6.3. Hénon–Heiles Model and Chaos

In the Hénon–Heiles (1964) model, the Hamiltonian is H = (1/2)(p2
1+p2

2)+
V (q1, q2), and the potential V is chosen as

V (q1, q2) =
1
2
(q2

1 + q2
2) + q2

1q2 − 1
3
q3
2 =

1
2
r2 +

1
3
r3 sin 3θ,

where q1 = r cos θ and q2 = r sin θ. Originally this was derived to describe
the motion of a test star in an axisymmetric galactic mean gravitational
field [HH64].

6.3.1. Conventional method

It was shown that the transition from order to chaos is quantitatively
described by measuring, on a Poincaré section, the ratio µ of the area
covered by the regular trajectories divided by the total area accessible to
the motions.

At low values of the energy Et, the whole area is practically covered
by regular orbits and hence the ratio µ is almost 1. As Et is increased
but remains below Et ≈ 0.1, µ decreases very slowly from 1. As Et is
increased further, µ begins to drop rapidly to very small values (Fig. 6.1). At
Et = 1/6 ≈ 0.167, the accessible area is marginal because the equipotential
curve V (q1, q2) = 1/6 is an equilateral triangle (including the origin within
it). Beyond Et = 1/6, the equipotential curves are open, and the motions
are unbounded. Thus the accessible area becomes infinite.

6.3.2. Evidence of chaos in a geometrical aspect

It is shown in [CeP96] that, for low values of Et, the integral of the negative
curvature is almost zero, but that, at the same Et value (≈ 0.1) at which µ

begins to drop rapidly, the value 〈K̂−〉 starts to increase rapidly (Fig. 6.1).
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Fig. 6.1. µ (open circles versus left axis) and 〈K̂−〉 (full dots versus right axis) with
respect to Et, due to [CeP96, Fig. 8] (reprinted with permission of American Physical
Society c© 1996).

The exact coincidence between the critical energy levels for the µ-decrease
below 1 and for the 〈K̂−〉-increase above 0 is understood to be the onset of
sharp increase of chaotic domains detected by the increase of the negative
curvature integral 〈K̂−〉. Along with this, the fraction of the area A−(SE)
where K̂ < 0 is also estimated as a function of Et. The transition is again
detected by this quantity as well.

6.4. Geometry and Chaos

In geodesic flows on a compact manifold with negative curvatures, nearby
geodesics tend to separate exponentially. Since the geodesic flows are
constrained in a bounded space, the geodesic curves are obliged to fold
in due course of time. Such joint action of stretching and folding is just the
mechanism yielding chaos. Ergodicity and mixing of this type of flows are
investigated thoroughly [Ano67; AA68]. The particular system of Hénon–
Heiles model considered in the previous section is regarded to be another
example of chaos controlled by negative curvatures, but it includes positive
curvatures as well.
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Recently, a series of geometrical study of chaotic dynamical systems
[Ptt93; CP93; CCP96; CPC00] suggested that chaos can be induced not
only by negative curvatures, but also by positive curvatures, if the curva-
tures fluctuate stochastically along the geodesics.

In order to quantify the degree of instability of dynamical trajectories,
the notion of Lyapunov exponent is introduced (e.g. [Ott93; BJPV98]).
However, the Lyapunov exponents are determined only asymptotically
along the trajectories, and their relation with local properties of the phase
space is far from obvious. The geometrical approach described below allows
us to find a quantitative link between the Largest Lyapunov exponent and
the curvature fluctuations. Under suitable approximations [CPC00], a sta-
bility equation in high-dimensions can be written in the following form,

(
d
dt

)2

J + k(t)J = 0,

which is similar to the Jacobi equation (3.139) for an isotropic manifold.
Here however, the curvature k(t) is not constant, but fluctuates as a function
of time t. The fluctuation is modeled as a stochastic process. This enables
us to estimate the Largest Lyapunov exponent.

Four assumptions are made before the analysis: (i) the manifold is quasi-
isotropic, (ii) k(t) is modeled as a stochastic process, (iii) statistics of k(t)
is the same as the Ricci curvature KR (§3.9.4), and (iv) time average of
KR is replaced by a certain static phase average. After some nontrivial
procedures, the following effective stability equation is derived:

(
d
dt

)2

J +
[
〈kR〉 + 〈δ2kR〉1/2η(t)

]
J = 0, (6.20)

where J stands for any component of the Jacobi field J⊥, and η(t)
is a Gaussian random process with zero mean and unit variance, and
furthermore

〈kR〉 =
1

n − 1
〈KR(s)〉, 〈δ2kR〉 =

1
n − 1

〈[KR(t) − 〈KR〉]2〉.

Equation (6.20) looks like an equation of a stochastic oscillator of frequency
Ω = [〈kR〉 + 〈δ2kR〉1/2η(t)]1/2 with a Gaussian stochastic process with the
average k̄ = 〈kR〉 and the variance σk = 〈δ2kR〉1/2.
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The largest Lyapunov exponent λ is determined by the following limit
[CCP96; CPC00; Ott93; BJPV98]:

λ = lim
t→∞

1
2t

log
J2(t) + J̇2(t)
J2(0) + J̇2(0)

. (6.21)

Applying a theory of stochastic oscillator [vK76; CPC00] to (6.20), the
largest Lyapunov exponent is estimated as

λ ∝ 〈δ2kR〉 ≈ 1
n − 1

〈[KR(t) − 〈KR〉]2〉 (6.22)

for the case σk � 〈kR〉. A formula is also given for σk ≈ O(〈kR〉).
A numerical exploration was carried out to compare (6.22) with (6.21)

for a three-degree-of freedom system [CiP02], in which the potential was

V (x, y, z) = Ax2 + By2 + Cz2 − axz2 − byz2,

where A, B, C, a, b are constants. This is a potential of nonlinearly coupled
oscillators, which was originally derived to represent central regions of a
three-axial elliptical galaxy [Cont86].

Estimate of the lyapunov exponent λ through the analytic formula
(6.22) and its generalization (not shown here) shows a fairly good com-
parison with the largest Lyapunov exponent (6.21) obtained by solving
numerically a tangent dynamics equation (equivalent to the Jacobi equa-
tion with the Eisenhart metric). Figure 6.2 shows such comparison, plotted
with respect to the parameter a for fixed values of A = 0.9, B = 0.4, C =
0.225, b = 0.3 and Et = 0.00765.

Another numerical exploration had been carried out to compare (6.22)
with (6.21), for a chain of coupled nonlinear oscillators (the FPU β model)
and a chain of coupled rotators (the 1-d XY model) [CP93; CCP96]. The
sectional curvatures are always positive in the former model, while there is
a very small probability of negative sectional curvatures in the latter model.
Agreement between the relations (6.21) and (6.22) is excellent for the former
case. There is some complexity in the latter case, but not inconsistent with
the geometrical theory.

This series of investigations made it clear that chaos occurs in dynam-
ical systems with positive sectional curvatures if they fluctuate stochasti-
cally, and moreover that the largest Lyapunov exponent depends on the
variance of the curvature fluctuation (confirmed in general cases including
σk = O(k̄)). This describes, in fact, a geometrical origin of the chaos in the
models investigated.
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a

�

Fig. 6.2. Comparison of the largest Lyapunov exponent λ. Full circle: analytic formula
(6.22) and its generalization, full triangle: (6.21) obtained by numerical computation
[CiP02, Fig. 11] (with kind permission of Kluwer Academic Publishers).

6.5. Invariants in a Generalized Model

Let us investigate a class of invariants in a generalized Hénon–Heiles model,
whose potential is given by

V (q1, q2) =
1
2
(q2

1 + q2
2) + Aq2

1q2 − 1
3
Bq3

2 , (6.23)

from (6.18). First we consider a Killing vector field and its associated invari-
ant, and next briefly describe an invariant associated with a Killing tensor
field of second order. There is a known invariant of motion, i.e. the total
energy: E = K + V . With a special choice of parameters A and B, one
can show the existence of another invariant. If there exist two invariants in
a two-degrees-freedom Hamiltonian system, the system is completely inte-
grable (Liouville’s theorem: [Arn78, §49; Whi37]).

6.5.1. Killing vector field

According to the definition (6.13) of a covector, a Killing covector is denoted
as X̂ = (Xα) = (0, X1, X2, 0), and its covariant derivative is given by

Xα;β = ∂βXα − Γγ
βαXγ , (6.24)
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from (3.151). By (3.159), we have ten Killing equations,

Xα;β + Xβ;α = 0 (α, β = 0, 1, 2, 3). (6.25)

Using (6.24) and the Christoffel symbol Γk
ij of (6.5), and in particular,

noting that X0;β = −XγΓγ
β0, we obtain

X0;k = 0, X0;0 = −Xk∂kV, (k = 1, 2).

Xk;0 = ∂tXk.

Thus, the Killing equation (6.25) for α = 0 and β = k results in

X0;k + Xk;0 = ∂tXk = 0,

i.e. the Killing field must be steady. In addition, for β = 0,

X0;0 = −Xk∂kV = −X1(q1 + 2Aq1q2) − X2(q2 + Aq2
1 − Bq2

2) = 0. (6.26)

The steady Killing field X1(q1, q2) and X2(q1, q2) must satisfy this equation.
It can be shown that X3;α = 0 and Xα;3 = 0, hence the four equations
Xα;3 +X3;α = 0 are identically satisfied. The remaining three equations are

X1;1 = 0, X2;2 = 0, X1;2 + X2;1 = 0. (6.27)

Using (6.24) and (6.5), we have

Xk;l = ∂lXk, (k, l = 1, 2).

Then, the first two equations of (6.27) lead to X1 = X1(q2) and X2 =
X2(q1). The third equation results in

X ′
1(q2) = −X ′

2(q1) = c (const).

Hence, we have X1 = cq2 + a and X2 = −cq1 + b. Substituting these into
(6.26), it is found that the following equation,

0 ≡ aq1 + bq2 + 2aAq1q2 + b(Aq2
1 − Bq2

2) + 2cAq1q
2
2 − cAq2

1q2 + cBq3
2 ,

must hold identically. This is only satisfied by

a = 0, b = 0; A = 0, B = 0,

to obtain a nontrivial solution of Killing field. Thus, we find that the Killing
covector (covariant vector) is given by

X̂ = (Xα) = (0, cq2,−cq1, 0). (6.28)
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Corresponding Killing (contravariant) vector is

X = ((gE)αβXβ) = (0, cq2, −cq1, 0).

The vector (X1, X2) = (cq2,−cq1) denotes a rotation velocity in the (q1, q2)
plane with an angular velocity −c.

The associated invariant 〈X, Q̇〉 is given by (6.14) as

I1 = 〈X, Q̇〉 = cq2q̇1 − cq1q̇2 = cM,

where M = q1q̇2 − q2q̇1 is the angular momentum. Thus, it is found that
the angular momentum M is conserved. This is analogous to the invariant
(4.66) of a symmetrical top. Here, the potential V (q1, q2) of (6.23) has a
rotational symmetry with respect to the origin since A = 0 and B = 0.

6.5.2. Another integrable case

It is shown in [ClP02] that there exists another Killing tensor field Xij

for the potential V (q1, q2) of A = 1 and B = −6. The Killing tensors Xij

were found on the basis of the Jacobi metric (3.3) to satisfy Eq. (3.172),
∇(j)X(K)p

= 0, in §3.12.5 with the definition of covariant derivative given
in §3.11.3. The associated constant of motion is given as

I2 = q4
1 + 4q2

1q2
2 − q̇2

1q2 + 4q̇1q̇2q1 + 4q2
1q2 + 3q̇2

1 + 3q2
1 .

This is consistent with that reported in [CTW82], worked out with a com-
pletely different method.

6.6. Topological Signature of Phase Transitions

Evidence has been gained recently to show that phenomena of phase tran-
sition are related to change in the topology of configuration space of
the system. This is briefly described here according to [CPC00; CCP02;
ACPRZ02].

There is a certain relationship between topology change of the config-
uration manifold and the dynamical behaviors on it. This is shown with
a k-trigonometric model defined just below, which is a solvable mean-field
model with a k-body interaction. According to the value of the parameter k,
it is known that the system has no phase transition for k = 1, undergoes a
second order phase transition for k = 2, or a first order phase transition for
k ≥ 3. This behavior is retrieved by investigation of a topological invariant,
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the Euler characteristics, of some submanifolds of the configuration space
in terms of a Morse function defined by a potential function. However, it
should be noted that not all changes of topology are related to a phase
transition, but a certain characteristic topological change is identified to
correspond to it.

The mean-field k-trigonometric model is defined by the following
Hamiltonian for a system of N degrees of freedom,

Hk(q, p) = K(p) + Vk(q) =
1

2m

N∑
i=1

p2
i + Vk(q), (6.29)

where the potential energy is given by

Vk(q) =
A

Nk−1

∑
i1,...,ik

(1 − cos(ϕi1 + · · · + ϕık)), (6.30)

where q = (q1, . . . , qN ), and A is a energy scale constant, and ϕi = (2π/L)qi

with L as a scale length. Note that

V1 = A
∑

i

(1 − cos ϕi), V2 =
A

N

∑
i1,i2

(1 − cos(ϕi1 + ϕi2)),

V3 =
A

N2

∑
i1,i2,i3

(1 − cos(ϕi1 + ϕi2 + ϕi3)), · · ·

6.6.1. Morse function and Euler index

Given a potential function f(q), we define a submanifold of the configura-
tion space MN by

Ma := {q ∈ M | f(q) ≤ a}.

Morse theory [Mil63] provides a way of classifying topological changes of
the manifod Ma and links global topological properties with local analytical
properties of a smooth function such as the potential f(q) defined on M .

A point qc ∈ M is called a critical point of f if df = 0, i.e. if the
differential of f at qc vanishes. The function f(q) is called a Morse function
on M if its critical points are all nondegenerate, i.e. if the Hessian of f at
qc has only nonzero eigenvalues, so that the critical points qc are isolated.
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We now define the Morse function by the potential energy per particle,

f(q) := V̄ (q) = V (q)/N.

The submanifold is defined by Mv = {q | V̄ ≤ v}. Suppose that the param-
eter v is increased from the minimum value v0 where v0 = minq V̄ (if any).
All the submanifolds have the same topology until a critical level lc is
crossed, where the level set is defined by V̄ −1(lc) = {q ∈ M | V̄ (q) = lc}.
At this level, the topology of Mv changes in a way completely determined
by the local properties of the Morse function V̄ (q). Full configuration space
M can be constructed sequentially from the Mv by increasing v.

At any critical point qc where ∂V̄ /∂qi|qc = 0 (i = 1, . . . , N), an index k

of the critical point is defined by the number of negative eigenvalues of the
Hessian matrix Hij at qc:

Hij =
∂2V̄

∂qi∂qj
, i, j = 1, . . . , N.

Knowing the index of all the critical points below a given level v, one can
obtain the Morse index (number) µk defined by the number of critical points
which have index k, and furthermore obtain the Euler characteristic of the
manifold Mv, given by

χ(Mv) =
N∑

k=0

(−1)kµk(Mv),

[Fra97; CPC00, App. B]. The Euler characteristic is a topological invariant
of the manifold Mv (see §2.10 for M2).

6.6.2. Signatures of phase transition

Morse indexes µk are given explicitly for the potential function (6.30)
[CCP02; ACPRZ02]. Thus, the Euler characteristics χ(Mv) of the mani-
fold Mv are calculated explicitly for general k. It is found that behaviors of
χ(Mv) are characteristically different between different values of k = 1, 2,

and 3, which correspond to no phase transition, a second order phase tran-
sition, and a first order phase transition, respectively.

Based on the exact analysis [CCP02] of the case k = 2, called the mean-
field XY model, it is found that the phase transition occurs when the Euler
characteristic changes discontinuously from a big value of O(eN ) to zero,
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e.g. a large number of suddles existing on Mv disappear all of a sudden at
the level of phase transition.

It is shown [ACPRZ02] that the Euler characteristic χ(Mv) shows a
discontinuity in the first order derivative with respect to v at the phase
transition, and the order of phase transition can be deduced from the
sign of the second order derivative d2χ/dv2, i.e. d2χ/dv2 > 0 for the
first order phase transition and d2χ/dv2 < 0 for the second order tran-
sition. From this result, it is proposed that the thermodynamic entropy
is closely related to a function derived from the Euler characteristic, i.e.
σ(v) = limN→∞ N−1 log |χ(v)| at the phase transition.

6.6.3. Topological change in the mean-field XY model

In the mean-field XY model, the potential energy per degree of freedom is
given by

V̄ (q) =
V (q)
N

=
1

2N2

N∑
i,j=1

(1 − cos(ϕi − ϕj)) − h

N

N∑
i=1

cos ϕi,

where ϕi ∈ [0, 2π], and h is a strength of the external field. At the level
of phase transition, it is remarkable that not only the Euler characteristic
changes discontinuously from a big value of O(eN ) to zero, but also fluctu-
ations of configuration-space curvature exhibit cusp-like singular behaviors
at the phase transition [CPC00].

In this XY model, it is possible to project the configuration space onto
a two-dimensional plane, an enormous reduction of dimensions. To this end,
it is useful to define the magnetization vector m by

m = (mx, my) =
1
N

(
N∑

i=1

cos ϕi,
N∑

i=1

sin ϕi

)
. (6.31)

By this definition, the potential energy can be expressed as a function of
mx and my alone:

V̄ (ϕi) = V̄ (mx, my) =
1
2
(1 − m2

x − m2
y) − hmx,

which is regarded as a mean-field character. The minimum energy level is at
V̄ = v0 = −h, whose configuration corresponds to m2

x+m2
y = 1 and mx = 1

(therefore my = 0). The maximum energy level is at V̄ = vc = 1
2 (1 + h2),

whose configuration corresponds to mx = −h and my = 0. The number
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of such configurations grows with N quite rapidly. The critical value vc is
isolated and tends to 1

2 as h → 0.
All the critical levels lc where dV̄ = 0 are included in the interval

lc ∈ [v0, vc]. The submanifold Mv is defined by {q | V̄ ≤ v} as before.
First, for v < v0, the manifold Mv is empty. The topological change that

occurs at v = v0 is that corresponding to the emergence of manifold from
the empty set. Subsequently, there are many topological changes at levels
lc ∈ (v0,

1
2 ], and there is a final topological change which corresponds to

the completion of the manifold. Note that the number of critical levels lc in
the interval [v0,

1
2 ] grows with N and that eventually the set of lc becomes

dense in [v0,
1
2 ] in the limit N → ∞. However, the maximum critical value

vc remains isolated from other critical levels lc.
According to (6.31), the accessible configuration space in the two-

dimensional (mx, my)-plane is not the whole plane, but only the disk D

defined by

D = [(mx, my) : m2
x + m2

y ≤ 1].

Instead of Mv, the submanifold Dv is defined by

Dv = [(mx, my) ∈ D : V̄ (mx, my) ≤ v].

The sequence of topological changes undergone by Dv is very simplified in
the limit h → 0.

The Dv is empty as long as v < 0 (since h → 0 is assumed). The
submanifold Dv first appears as the circle m2

x + m2
y = 1, i.e. the boundary

circle of D (Fig. 6.3). Then as v grows, Dv becomes an annulus (a ring)

v= 0

= 0 = 0 = 1

0 < v <
1

2
v=

1

2

χ χ χ

Fig. 6.3. Sequence of topological changes of Dv with increasing v (in the limit
h → 0). [CPC00].
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bounded by two circles of radii 1 and 1 − 2v:

1 − 2v ≤ m2
x + m2

y ≤ 1.

Inside it, there is a disk-hole of radius 1 − 2v. As v continues to grow
(until 1

2 ), the hole shrinks and is eventually filled completely at v = vc = 1
2

(Fig. 6.3). In this coarse-grained two-dimensional description, all the topo-
logical changes that occur between v = 0 and 1

2 disappear. Only two topo-
logical changes occur at v = 0 and vc = 1

2 .
The topological change at vc is characterized by the change of Euler

characteristic χ from the value of an annulus, χ(annulus) = 0, to the value
of a disk, χ(disk) = 1 (see §2.10). Despite the enormous reduction of dimen-
sions to only two, there still exists a change of topology. This topological
change is related to the thermodynamic phase transition of the mean-field
XY model.
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Chapter 7

Gauge Principle and Variational
Formulation

7.1. Introduction: Fluid Flows and Field Theory

Fluid mechanics is, in a sense, a theory of field of fluid flows in Newtonian
mechanics. In other words, it is a field theory of mass flow subject to Galilei
transformation.

There are various similarities between fluid mechanics and electromag-
netism. For instance, the functional relation between the velocity and vor-
ticity field is the same as the Biot–Savart law in electromagnetism between
the magnetic field and electric current [Saf92]. One may ask whether the
similarity is merely an analogy, or has a solid theoretical background.

In the theory of gauge field, a guiding principle is that laws of physics
should be expressed in a form that is independent of any particular coordi-
nate system. In §7.3, before the study of fluid flows, we review the scenario
of the gauge theory in quantum field theory and particle physics [Fra97;
Qui83; AH82]. According to the scenario, a free-particle Lagrangian is
defined first in such a way as having an invariance under Lorenz trans-
formation. Next, a gauge principle is applied to the Lagrangian, requir-
ing it to have a symmetry, i.e. the gauge invariance. Thus, a gauge
field such as the elecromagnetic field is introduced to satisfy local gauge
invariance.

There are obvious differences between the fluid-flow field and the quan-
tum field. Firstly, the field of fluid flow is nonquantum, which however
causes no problem since the gauge principle is independent of the quantiza-
tion principle. In addition, the fluid flow is subject to the Galilei transfor-
mation instead of Lorenz transformation. This is not an obstacle because
the former is a limiting transformation of the latter as the relative ratio of
flow velocity to the light speed tends to zero. Thirdly, relevant gauge groups

191
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should be different. Certainly, we have to find appropriate guage groups for
fluid flows. A translation group and a rotation group will be shown as such
groups relevant to fluid flows.

Here, we seek a scenario which has a formal equivalence with the gauge
theory in the quantum field theory. We first review the Lagrangian and
variational principle of fluid flows in §7.2. In order to go further over a
mere analogy of the flow field to the gauge field, we define, in §7.4 and sub-
sequent sections, a Galilei-invariant Lagrangian for fluid flows and exam-
ine whether it has gauge invariances in addition to the Galilei invariance.
Then, based on the guage principle with respect to the translation group,
we deduce the equation of motion from a variational formulation. How-
ever, the velocity field obtained by this gauge group is irrotational, i.e. a
potential flow.

In §7.11 and subsequent sections, we consider an additional formula-
tion with respect to the gauge group SO(3), a rotation group in three-
dimensional space. It will be shown that the new gauge transformation
introduces a rotational component in the velocity field (i.e. vorticity), even
though the original field is irrotational. In complying with the local gauge
invariance, a gauge-covariant derivative is defined by introducing a new
gauge field. Galilei invariance of the covariant derivative requires that the
gauge field should coincide with the vorticity. As a result, the covariant
derivative of velocity is found to be the so-called material derivative of
velocity, and thus the Euler’s equation of motion for an ideal fluid is derived
from the Hamilton’s principle.

If we have a gauge invariance for the Lagrangian of a system, i.e. if
we have a symmetry group of transformation, then we must have an equa-
tion of the form ∂αJα = 0 from the local gauge symmetry [Uti56; SS77;
Qui83; Fra97], where J is a conserved current 4-vector (or tensor), i.e. a
Noether current. This is called the Noether’s theorem for local symmetry.
Corresponding to a gauge invariance, the Noether’s theorem leads to a con-
servation law. In fact, the gauge symmetry with respect to the translation
group results in the conservation law of momentum, while the symmetry
with respect to the rotation group results in the conservation of angular
momentum. (See §7.15.5, 6.)

In addition, the Lagrangian has a symmetry with respect to particle
permutation, which leads to a local law of vorticity conservation, i.e. the
vorticity equation as well as the Kelvin’s circulation theorem. Thus, the
well-known equations in fluid mechanics are related to various symmetries
of the Lagrangian.
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7.2. Lagrangians and Variational Principle

7.2.1. Galilei-invariant Lagrangian

The field of fluid flow is subject to Galilei transformation, whereas the
quantum field is subject to Lorentz transformation. Galilei transformation is
considered to be a limiting transformation of the Lorentz transformation
of space-time (xµ) = (c t,x) as v/c → 0.1 In the Lorentz transformation
between two frames (t, x) and (t′,x′), a line-element of world-line is a vector
represented in the form, ds = (cdt, dx), and its length |ds| = 〈ds,ds〉1/2

Mk is
a scalar, namely a Lorentz-invariant:

〈ds,ds〉Mk = −c2dt2 + 〈dx, dx〉 = −c2(dt′)2 + 〈dx′, dx′〉, (7.1)

where the light speed c is an invariant (e.g. [Chou28]). Scalar product of a
4-momentum P = (E/c, p) of a particle of mass m with the line element
ds is given by

〈P, ds〉Mk = −E

c
c dt + p · dx = (p · ẋ − E)dt (= Λdt)

= m(v2 − c2)dt = −m0c
2dτ, (7.2)

where m0 is the rest mass, v and p(:= mv) are 3-velocity and 3-momentum
of the particle respectively [Fra97; LL75], and

E = mc2, m =
m0

(1 − β2)1/2 , β =
v

c
,

dx = vdt, dτ = (1 − β2)1/2dt (proper time).

Either the leftmost side or rightmost side of (7.2) is obviously a scalar, i.e.
an invariant with respect to the Lorentz transformation, and Λ = p · ẋ − E

is what is called the Lagrangian in Mechanics. Hence it is found that either
of the five expressions of (7.2), denoted as Λdt, might be taken as the
integrand of the action I to be defined below.

Next, we consider a Lorentz-invariant Lagrangian Λ(0)
L in the limit as

β = v/c → 0, and seek its appropriate counterpart ΛG in the Galilei system.
In this limit, the mass m and energy mc2 are approximated by m0 and
m0(c2 + 1

2v2 + ε) respectively (neglecting O(β2) terms) in a macroscopic
fluid system ([LL87], §133), where ε is the internal energy per unit fluid mass

1Spatial components, e.g. x, p (called 3-vector), are denoted by bold letters, with their
scalar product being written such as 〈p, x〉. In addition, a scalar product 〈·, ·〉Mk is
defined with the Minkowski metric gij = diag(−1, 1, 1, 1).
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which is a function of density ρ and entropy s in a single phase in general.
The first expression of the second line of (7.2) is, then asymptotically,

mv2 − mc2 ⇒ m0v
2 − m0(c2 + 1

2v2 + ε)

= (ρd3x)
( 1

2v2 − ε − c2),
where m0 is replaced by ρ(x)d3x. Thus, the Lagrangian Λ(0)

L would be
defined by

Λ(0)
L dt =

∫
M

dV (x)ρ(x)
(

1
2 〈v, v〉 − ε − c2

)
dt. (7.3)

The third −c2dt term is necessary so as to satisfy the Lorenz-invariance
([LL75], §87). It is obvious that the term 〈v,v〉 is not invariant with the
Galilei transformation, v �→ v′ = v − U . Using the relations dx = vdt and
dx′ = v′dt = (v − U)dt′ with respect to two frames of reference moving
with a relative velocity U , the invariance (7.1) leads to

dt′ = dt +
(

1
c2

(
− 〈v, U〉 + 1

2U2)+ O
(
β4))dt (7.4)

The second term of O(β2) makes the Lagrangian Λ(0)
L dt Lorenz-invariant

exactly in the O(β0) terms in the limit as β → 0. Note that this invariance
is satisfied locally at space-time, as inferred from (7.2).

When we consider a fluid flow subject to the Galilei transformation,
the following prescription is adopted. Suppose that the flow is investigated
in a finite domain M in space. Then the third term including c2 in the
parenthesis of (7.3) gives a constant c2Mdt, where M =

∫
M

d3xρ(x) is the
total mass in the domain M . In carrying out variation, the total mass M is
fixed at a constant. Next, keeping this in mind implicitly [SS77], we define
the Lagrangian ΛG of a fluid motion in the Galilei system by

ΛGdt = dt

∫
M

dV (x)ρ(x)
(

1
2 〈v,v〉 − ε

)
. (7.5)

Only when we need to consider its Galilei invariance, we use the Lagrangian
Λ(0)

L . In the Lagrangian formulation of subsequent sections, local conserva-
tion of mass is imposed. As a consequence, the mass is conserved globally.
Thus, the use of ΛG is justified (except in the case when its Galilei invari-
ance is required).

Under Galilei transformation from one frame x to another x∗ which is
moving with a velocity U relative to the frame x (Fig. 7.1), the four-vectors
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0 x-frame

x*-frame
Ut

x
x*

0*

P

Fig. 7.1. Galilei transformation.

x = (t, x) and v = (1,v) are transformed as

x = (t, x) ⇒ x∗ = (t∗,x∗) = (t, x − U t), (7.6)

v = (1,v) ⇒ v∗ = (1,v∗) = (1,v − U). (7.7)

Since v∗ = v − U , the kinetic energy term 1
2 〈v,v〉 is transformed as

1
2 〈v∗,v∗〉 ⇒ 1

2 〈v,v〉 − 〈v, U〉 + 1
2U2.

Second and third terms are written in the following form of time derivative,
(d/dt)[−〈x(t),U〉 + 1

2U2t].2 Transformation laws of derivatives are

∂t = ∂t∗ − U · ∇∗, ∇ = ∇∗, (7.8)

∇ = (∂1, ∂2, ∂3), ∂t = ∂/∂t, ∂k = ∂/∂xk.

Hence, we have the invariance of combined differential operators:

∂t + (v · ∇) = ∂t∗ + (v∗ · ∇∗). (7.9)

In the following, we reconsider the Lagrangian from the point of view of
the gauge principle, and try to reconstruct the Lagrangian ΛG of (7.5).

2It is understood in Newtonian mechanics that these additional terms do not play any
role in the variational formulation of the action integral, where end values at two times
are fixed in the variation of (7.5).
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7.2.2. Hamilton’s variational formulations

Variational principle is formulated in terms of the action functional I

defined by the following integral of a Lagrangian L. The variational princi-
ple, i.e. principle of least action, is

δI = 0, where I =
∫ t1

t0

L[v, ρ, · · · ] dt, (7.10)

where the Lagrangian L is a functional depending on velocity field v, density
ρ, internal energy ε, etc.

In a system of point masses of classical mechanics, the Lagrangian L

is usually defined by a sum of kinetic energies of each particle
∑

a ka and
potential energy −V : L =

∑
a ka−V , and the variational principle is called

the Hamilton’s principle.3 However, for flows of a macroscopic continuous
material such as a fluid, a certain generalization must be made. In addition,
as already seen with (7.5), the Lagrangian must include a term of the inter-
nal energy ε in a form

∫
ε, which will be given a certain gauge-theoretic

meaning in the present formulation. As a consequence of the Hamilton’s
principle, we have the energy conservation equation.

The Hamilton’s principle for an ideal fluid was formulated variously by
[Heri55; Ser59; Eck60; SS77]. There are two main approaches, Lagrangian
particle representation and Eulerian spatial representation (see the footnote
to §7.6.1), which are reviewed by [Ser59; Bre70; Sal88]. The Lagrangian
function in every case is composed of the terms of kinetic energy, internal
energy and potential energy, with additional constraint conditions. (The
potential energy term missing in (7.5) can be taken into account with-
out difficulty.) However, it may be said that there are some complexity or
incompleteness in those formulations made so far.

In the variational formulation with the Lagrangian particle representa-
tion, the equation of motion finally derived includes a term of particle accel-
eration dv/dt [Ser59; Sal88], where the time derivative d/dt is replaced by
∂t + v · ∇ with an intuitive argument. When this time derivative acts on a
scalar function, then it is given a definite sense. However, if it acts on vec-
tors, we need a careful consideration. In fact, the Lie derivative of a vector
v is different from dv/dt (§1.8.3). The derivative dv/dt = ∂tv + (v · ∇)v

3Originally, Lagrange (Mécanique Analytique, 1788) extended the principle of virtual
displacements, by applying the d’Alembert’s principle, from static equilibrium systems
to dynamical systems. The d’Alembert–Lagrange principle is expressed equivalently in
the form of Hamilton’s principle. [Ser59]
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(accepted in the Euler’s equation of motion) is defined as an extension of
the operation on a scalar function. In the gauge theory which we are going
to consider, we will arrive at dv/dt = ∂tv+(v ·∇)v from the gauge priciple.

On the other hand, it was pointed out by [Bre70] and [Sal88] that
the connection between Hamilton’s principle and the variation with the
Eulerian representation is obscure. This vagueness is partly due to the
fact that no mention is made of how the positions of massive particles
in the physical system are related to the field variables in a standard
Eulerian formulation, and that the system is described by the velocity field
u(x, t) at a fixed spatial point x, regardless of which material particle is
actually there. In other words, the equation of particle motion dxp/dt =
u(xp(t), t) is not specified in the variation. Lin’s constraint [Lin63; Ser59;
Sal88] was introduced to bridge the gap between the two approaches, but
it remains as local validity only in a neighborhood of the point under con-
sideration, and in addition physical significance of the new fields (called
potentials) thus introduced is not clear. In particular, for a homentropic
fluid in which the entropy s takes a constant value everywhere, the veloc-
ity field is limited only to such a field as the vortex lines are not knotted
[Bre70].

7.2.3. Lagrange’s equation

Consider that we have a system of n point masses whose positions are
denoted by x1 = (q1, q2, q3), · · · , xn = (q3n−2, q3n−1, q3n), and velocities
by v1 = (q1

t , q2
t , q3

t ), · · · ,vn = (q3n−2
t , q3n−1

t , q3n
t ), and that we have a

Lagrangian L of the form,

L = L[q, qt], (7.11)

which depends on the coordinates q = (qi) and the velocities qt = (qi
t) for

i = 1, 2, · · · , N , where N = 3n. It is said that the Lagrangian L describes
a dynamical system of N degrees of freedom.

The action principle (7.10) may be written as

δI =
∫ t1

t0

δL[q, qt]dt = 0. (7.12)

We consider a variation to a reference curve q(t), where the varied curve
is written as q′(t, ε) = q(t) + εξ(t) and q′

t = q̇(t) + εξ̇(t) with an
infinitesimal parameter ε by using a virtual displacement ξ(t) satisfying
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ξ(t0) = ξ(t1) = 0. Resulting variation of the Lagrangian is

δL =
∂L

∂q
δq +

∂L

∂qt
δqt =

∂L

∂qi
εξi +

∂L

∂qi
t

εξ̇i

= ε

[
∂L

∂qi
− ∂t

(
∂L

∂qi
t

)]
ξi + ε∂t

(
∂L

∂qi
t

ξi

)
. (7.13)

When this is substituted in (7.12), the second term vanishes because of the
assumed conditions ξ(t0) = ξ(t1) = 0. Therefore, it is deduced that, for an
arbitrary variation ξ(t), the first term of δL must vanish at each time t.
Thus, we obtain the Euler–Lagrange equation:

∂t

(
∂L

∂qi
t

)
− ∂L

∂qi
= 0. (7.14)

If the Lagrangian is given by the following form of kinetic energy of the
same mass m,

mLf(qt) = 1
2m〈qt, qt〉, (7.15)

then the above equation (7.14) describes free motion of point masses. In
fact, Eq. (7.14) results in ∂t(qt) = 0, i.e. the velocity qt is constant.

7.3. Conceptual Scenario of the Gauge Principle

Typical successful cases of the gauge theory are the Dirac equation or Yang–
Mills equation in particle physics, which are reviewed here briefly for later
purpose. A free-particle Lagrangian density Λfree, e.g. for a free electron,
is constructed so as to be invariant under the Lorenz transformation of
space-time (xµ) for µ = 0, 1, 2, 3, where

Λfree = ψ̄iγµ∂µψ − mψ̄ψ, ψ̄ = ψ†
(

I 0
0 −I

)
, (7.16)

m is the mass, ψ is a Dirac wave function of four components for electron
and positron with ±1/2 spins, ψ† the hermitian conjugate of ψ, and γµ the
Dirac matrices (µ = 0, 1, 2, 3) with x0 = t (time), I being 2×2 unit matrix.
In the Yang–Mills case, the wave functions are considered to represent two
internal states of fermions, e.g. up and down quarks, or a lepton pair.

The above Lagrangian has a symmetry called a global gauge invariance.
Namely, its form is invariant under the transformation of the wave function,
e.g. ψ �→ eiα ψ for an electron field. The term global means that the phase α
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is a real constant, i.e. independent of coordinates. This keeps the probability
density, |ψ|2, unchanged.4

In addition, we should be able to have invariance under a local gauge
transformation,

ψ(x) �→ ψ′(x) = eiα(x)ψ(x) := g(x)ψ(x), (7.17)

where α = α(x) varies with the space-time coordinates x = (xµ). With this
transformation too, the probability density |ψ|2 obviously is not changed.

However, the free-particle Lagrangian Λfree is not invariant under such a
transformation because of the derivative operator ∂µ = ∂/∂xµ in Λfree. This
demands that some background field interacting with the particle should be
taken into account, that is the Electromagnetic field or a gauge field. If
a new gauge field term is included in the Lagrangian Λ, the local gauge
invariance will be attained [Fra97, Ch.19 & 20; Qui83; AH82]. This is the
Weyl’s principle of gauge invariance.

If a proposed Lagrangian including a partial derivative of some matter
field ψ is invariant under global gauge transformation as well as Lorentz
transformation, but not invariant under local gauge transformation, then
the Lagrangian is to be altered by replacing the partial derivative with a
covariant derivative including a gauge field A(x), ∂ → ∇ = ∂ + A(x), so
that the Lagrangian Λ acquires local gauge invariance [Uti56]. The second
term A(x) is also called connection. The aim of introducing the gauge field
is to obtain a generalization of the gradient that transforms as

∇ψ �→ ∇′ψ′ = (∂ + A′)g(x)ψ = g(∂ + A)ψ = g∇ψ, (7.18)

where ψ′ = g(x)ψ. In dynamical systems which evolve with respect to the
time coordinate t, the replacement ∂ → ∇ = ∂ + A(x) is carried out only
for the t derivative. This will be considered below again (§7.5.1).

Finally, the principle of least action is applied,

δI = 0, I =
∫

M4
Λ(ψ, A)d4x

where M4 is a certain (xµ) space-time manifold, and I is the action func-
tional. Let us consider two examples.

4The gauge invariance results in conservation of Noether current. See §7.4, 7.15.
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(i) In the case of an electron field, the local gauge transformation is given by
an element g of the unitary group U(1),5 i.e. g(x) = eiqα(x) at every point
x with α(x) a scalar function, and q a charge constant.6 Transformation of
the wave function ψ is

ψ′(x) = g(x)ψ(x) = eiqα(x)ψ(x). (7.19)

The gauge-covariant derivative is then defined by

∇µ = ∂µ − i q Aµ(x), (7.20)

where Aµ = (−ϕ, Ak) is the electromagnetic potential (4-vector potential
with the electric potential ϕ and magnetic 3-vector potential Ak, k =
1, 2, 3). The electromagnetic potential (connection term) transforms as

A′
µ(x) = Aµ(x) + ∂µα(x). (7.21)

It is not difficult to see that this satisfies the relation (7.18), ∇′ψ′ = g∇ψ.
Thus, the Dirac equation with an electromagnetic field is derived. (See
Appendix I for its brief summary.)

(ii) In the second example of Yang–Mills’s formulation of two-fermion field,
the local gauge transformation of the form (7.17) is given with g(x) ∈
SU(2).7 Consider an infinitesimal gauge transformation written as

g(x) = exp [iqσ · α(x)] = I + iqσ · α(x) + O(|α|2), |α| � 1, (7.22)

where σ · α = σ1α
1 + σ2α

2 + σ3α
3 with real functions αk(x) (k = 1, 2, 3),

and σ = (σ1, σ2, σ3) are the Pauli matrices,

σ1 =
[

0 1
1 0

]
, σ2 =

[
0 −i

i 0

]
, σ3 =

[
1 0
0 −1

]
, (7.23)

5The unitary group U(1) is a group of complex numbers z = eiθ of absolute value 1.
6q = e/(�c) with c the light-speed, e the electric-charge, and � the Planck constant.
7SU(2) is the special unitary group, consisting of complex 2 × 2 matrices g = (gij) with
det g = 1. The hermitian conjugate g† = (g†

ij) = (ḡji) is equal to g−1 where the overbar
denotes complex conjugate. Its Lie algebla su(2) consists of skew hermitian matrices of
trace 0.
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composing a basis of the algebra su(2) which is considered as a real three-
dimensional (3D) vector space.8 The commutation relations are given by9

[σj , σk] = 2iεjklσl, (7.24)

The second term on the right-hand side of (7.22) is a generator of an
infinitesimal gauge transformation. The gauge-covariant derivative is rep-
resented by

∇µ = ∂µ − iqσ · Aµ(x), (7.25)

where the connection consists of three terms, σ ·Aµ = σ1A
1
µ +σ2A

2
µ +σ3A

3
µ

in accordance with the three-dimensionality of su(2), and q the coupling
constant of interaction. The connection Aµ = (A1

µ, A2
µ, A3

µ) transforms as

A′
µ = Aµ − 2qα × Aµ + ∂µα, (7.26)

instead of (7.21). The three gauge fields Ak
YM = (Ak

0 , Ak
1 , Ak

2 , Ak
3) for

k = 1, 2, 3 (3D analogues of the electromagnetic potential, associated with
three colors) are thus introduced and called the Yang–Mills gauge fields.
A characteristic feature distinct from the previous electrodynamic case,
compared with (7.21), is the non-abelian nature of the algebra su(2), repre-
sented by the new second term of (7.26) arising from the non-commutativity
of the gauge transformations, i.e. the commutation rule (7.24).

In the subsequent sections, we consider fluid flows and try to formulate
the flow field on the basis of the generalized gauge principle.10 It will be
found that the flow fields are characterized by two gauge groups: a trans-
lation group and a rotation group. Interestingly, the former is abelian and
the latter is non-abelian. So, the flow fields are governed by two different
transformation laws.

8Vector space su(2) is closed under multiplication by real numbers αk, e.g. [Fra97].
9The structure constant εjkl takes 1 or −1 according to (jkl) being an even or odd
permutation of (123), and 0 if (jkl) is not a permutation of (123).
10Gauge symmteries are often referred to as internal symmetries because gauge transfor-
mations correspond to rotation in an internal space. In the general gauge theory [Uti56],
however, gauge invariance with respect to Poincaré transformation of space-time yields
the gravitational field of general relativity theory. The present study of fluid flows con-
siders gauge invariance with respect to Galilei transformation (translation invariance).
See §7.5, 6, 7.
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7.4. Global Gauge Transformation

Suppose that our system is characterized by a symmetry group of transfor-
mation (of a Lie group G), and the action is invariant under an associated
infinitesimal transformation [Uti56]:

q(t) → q(t) + δq

δqi = ξαT i
αj qj , δqt = ∂t(δq),

}
(7.27)

where Tα (α = 1, · · · , K) are generators of the group G (represented in a
matrix form T i

αj
), i.e. Lie algebra of dimension K (say), and ξα are infinites-

imal variation parameters. An example of Tα is given by (7.40). In terms
of the group theory (§1.8), the operators Tα are elements of the Lie algebra
g = TeG, and in general satisfy the commutation relation,

[Tα, Tβ ]ij = Cγ
αβT i

γ j ,

where Cγ
αβ are the structure constants.

If ξα (α = 1, . . . , K) are constants, i.e. if the transformation is global,
then invariance of I under the transformation results in

0 ≡ δL =
∂L

∂qi
δqi +

∂L

∂qi
t

ξαT i
α j∂tq

j (7.28)

=
[

∂L

∂qi
− ∂t

(
∂L

∂qi
t

)]
δqi + ∂t

(
∂L

∂qi
t

δqi

)
. (7.29)

Using δqi of (7.27), vanishing of the right-hand side of (7.28) gives

∂L

∂qi
T i

αjq
j +

∂L

∂qi
t

T i
αj∂tq

j = 0, (7.30)

since the parameters ξα can be chosen arbitrarily. The first term of (7.29)
vanishes owing to the Euler–Lagrange equation (7.14). Hence the second
term must vanish identically, and we obtain the Noether’s theorem for the
global invariance:

∂t

(
∂L

∂qi
t

δqi

)
= 0 ⇒ ∂t

(
∂L

∂qi
t

T i
αjq

j

)
= 0. (7.31)

7.5. Local Gauge Transformation

When we consider local gauge transformation, the physical system under
consideration is to be modified. Concept of local transformation allows us
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to consider a continuous field, rather than the original discrete system. We
replace the discrete variables qi by continuous parameters a = (a1, a2, a3)
to represent continuous distribution of particles in a three-dimensional
Euclidean space M . Spatial position x = (x1, x2, x3) of each mass par-
ticle of label a (Lagrange parameter) is denoted by xk

a(a, t), a function of
a as well as the time t. Conversely, the particle locating at the point x at
a time t is denoted by ak(x, t). Functions xk

a(a, t) or ak(x, t) (k = 1, 2, 3)
may be taken as field variables.

Thus, we consider a continuous distribution of mass, i.e. fluid, and
its motion. The variation field is represented by differentiable functions
ξα(x, t). Suppose that we have a local transformation expressed by

q = xa → q′ = xa + δq, δqi = ξα T i
α j xj ,

qt = ∂txa → q′
t = ∂txa + δqt, δqt = ∂t(δq),

ξα = ξα(x, t),


 (7.32)

and examine local gauge invariance, i.e. gauge invariance at each point x

in the space. In this case, the variation of L[q, qt] is

δL =
[

∂L

∂qi
− ∂t

(
∂L

∂qi
t

)]
δqi + ∂t

(
∂L

∂qi
t

δqi

)
. (7.33)

This does not vanish owing to the arbitrary function ξα(x, t) depending on
time t. In fact, using the Euler–Lagrange equation (7.14), we have

δL = ∂t

(
∂L

∂qi
t

δqi

)
=

∂L

∂qi
t

∂tξ
α(x, t)T i

α jx
j , (7.34)

where (7.31) is used. Note that this vanishes in the global transformation
since ∂tξ = 0.

7.5.1. Covariant derivative

According to the gauge principle, the nonvanishing of δL is understood
such that there exists some background field interacting with flows of a
fluid, and that a new field A must be taken into account in order to achieve
the local gauge invariance of the Lagrangian (i.e. in order to have vanishing
of (7.34)). To that end, the partial time derivative ∂t must be replaced by
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a covariant derivative Dt. The covariant derivative is defined by

Dt = ∂t + A, (7.35)

where A is a gauge-field operator. Correspondingly, the time derivatives ∂tξ

and ∂tq are replaced by

Dtξ = ∂tξ + Aξ, u := Dtq = ∂tq + Aq. (7.36)

In most dynamical systems like the present case, the time derivative is the
primary concern in the analysis of local gauge transformation.

7.5.2. Lagrangian

The Lagrangian mLf of (7.15) is replaced by

LF = 1
2

∫
〈Dtq, Dtq〉 d3a = 1

2

∫
〈u, u〉 ρ d3x, (7.37)

where d3a = ρ d3x denotes the mass in a volume element d3x of the x-space
with ρ as the mass-density (see §7.8.1), and the integrand is L′(q, qt,A) =
1
2 〈Dtq, Dtq〉.

In fact, assuming that the Lagrangian density is of the form L′(q, qt,A),
the invariance postulate demands

δL′ =
∂L′

∂q
δq +

∂L′

∂qt
δqt +

∂L′

∂A δA = 0.

Suppose that the variations are given by the following forms:

δqi = ξαTαqi,

δqi
t = δ(∂tq)i = ∂t(δqi) − (Dtξ)αTαqi

= ξαTαqi
t − (Aξ)αTαqi,

δAi = ξαTαAi + (Aξ)i,


 (7.38)

(see the footnote11)where A is assumed to be represented as A = AkTk and
Dtξ = ∂tξ + A ξ. It will be seen that these variations are consistent with
the translational transformation (Fig. 7.2) considered in §7.7. Substituting

11According to the local Galilei transformation in §7.7, we have δ(∂tq) = [∂t −
(Dtξ)αTα](q + δq) − ∂tq = ∂t(δqi) − (Dtξ)αTα qi + O(|δq|2) (see (7.8)). The form of
δAi determines the character of the present gauge field A.
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x

x�=
gx

�

�� = �(gx)

Fig. 7.2. Translational transformation:
x → x′ = gx := x + ξ, u → u′ = u(gx) + Dtξ.

δxi = ξi = ξαTαxi, δui = ξαTαui + Dtξi.

these, we obtain a variational equation for arbitrary functions of ξ(x, t) and
Aξ(x, t). Requiring the coefficient of (Aξ)k to vanish, we have

−∂L′

∂qi
t

Tkqi +
∂L′

∂Ak
= 0. (7.39)

From this, it is found that A should be contained in L′ only through the
combination:

qt + AkTkq = ∂tq + Aq = Dtq,

confirming the second expression of (7.36). This implies that the operators
∂t and A = AkTk are to be combined as Dt = ∂t + AkTk = ∂t + A. Thus,
the expression (7.35) has been found. In case that L′ does not include q

explicitly, the above result implies that LF of (7.37) is a possible Lagrangian.
Before carrying out variational formulation with a complete Lagrangian,

we must first define the variation field ξ(x, t) which should be the subject
of a certain consistency condition considered in §7.6.3. Next, we determine
the form of the gauge operator A in §7.7, and then define a Lagrangian LA

associated with the gauge-field A in §7.8 for translational invariance.

7.6. Symmetries of Flow Fields

It is readily seen that the Lagrangian (7.15) of point masses has symmetries
with respect to two transformation groups, a translation group and rotation
group. Lagrangian of flows of an ideal fluid has the same properties as the
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point-mass system globally. Local gauge invariance of such a system is one
of primary concerns in the study of fluid flows.

7.6.1. Translational transformation

First, we consider translational transformation.12 The coordinates qi are
regarded as the spatial coordinates xα (α = 1, 2, 3) where xα are continuous
variables, and qi

t are taken as the velocity components uα of fluid flow. The
operator of translational transformation is given by Tα = ∂/∂xα, denoted
also as ∂α. This is rewritten in a matrix form,

T i
α,j = δi

j∂α, (7.40)

so as to have the same notations as those in §7.4, where T i
α,j is the (i, j)

entry of the matrix operator Tα and δi
j the Kronecker delta. (This form can

be applied to the other case as well, i.e. the rotational transformation to be
considered next.) Then, variations of qi and qi

t (Fig. 7.2) are defined by

δxi = ξαT i
α,jx

j = ξαTα xi = (ξ · ∇) xi = ξi, (7.41)

δui = (ξ · ∇)ui + Dtξ
i. (7.42)

The last term Dtξ
i is a characteristic term related to fluid flows.

The generators are commutative, i.e. the commutator is given by

[Tα, Tβ ] = ∂α∂β − ∂β∂α = 0.

Hence all the structure constants Cγ
αβ vanish, i.e. abelian.

7.6.2. Rotational transformation

When we consider local rotation of a fluid element about a reference point
x = (x1, x2, x3), attention is directed to relative motion at neighboring
points x+s for small s. Mathematically speaking, at each point within the
fluid, local rotation is represented by an element of the rotation group SO(3)
(a Lie group). Local infinitesimal rotation is described by the generators of

12When the author (Kambe) discussed rotational gauge invariance of fluid flows and its
noncommutative property (in China, 2002), Professor MoLin Ge (Nankai Institute of
Mathematics) suggested that there would be another gauge symmetry of commutative
property which is the subject of this subsection.
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SO(3), i.e. Lie algebra so(3) of three dimensions. The basis vectors of the
space of so(3) are denoted by (e1, e2, e3):

e1 =


0 0 0

0 0 −1
0 1 0


 , e2 =


 0 0 1

0 0 0
−1 0 0


 , e3 =


0 −1 0

1 0 0
0 0 0


 .

which satisfy the non-commutative relations:

[eα, eβ ] = eαeβ − eβeα = εαβγeγ (7.43)

where εαβγ is the third order completely skew-symmetric tensor.
A rotation operator is defined by θ = (θi

j) = θα eα where θ̂ = (θ1, θ2, θ3)
is an infinitesimal angle vector. Then, an infinitesimal rotation of the dis-
placement vector s = (s1, s2, s3) is expressed as θi

js
j . The same rotation is

represented by a vector product as well:

(θ̂ × s)i = θi
js

j = θα ei
α,j sj . (7.44)

The left-hand side clearly says that this represents a rotation of an infinites-
imal angle |θ̂| around the axis in the direction coinciding with the vector θ̂.
Thus the operator of rotational transformation is given by Tα = eα, where
T i

α,j is the (i, j)-th entry of the matrix operator eα.
In the rotational transformation, the generalized coordinte qi is replaced

by the displacement sk from the reference point x, and qi
t is the velocity at

neighboring points x + s with qt(s = 0) being u(x). Hence, we have

qi = si, qi
t = Dtq

i(s) = ui(x) + sj ∂ju
i(x). (7.45)

Then, variations of qi and qi
t are defined by

δqi = θα ei
α j sj = θ̂ × s, (7.46)

δqi
t = Dt(δqi) = Dt

(
θα ei

α j sj
)
. (7.47)

7.6.3. Relative displacement

We consider local deformation of a fluid element about a reference point x,
and direct our attention to relative motion of neighboring points x + s for
small s. Suppose that the point x is displaced to a new position X(x) = x+
ξ(x). Correspondingly, a neighboring point x + s is displaced to X(x + s).
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s

s + �s

�s = �s�
x

�(x)

�(x + s)

irrotational

1
2
��× s+

rotational

Fig. 7.3. Relative local motion.

Relative variation δs is defined by

δs := X(x + s) − [X(x) + s] = (s · ∇)ξ(x) + O(|s|2) (7.48)

(Fig. 7.3). To the first order of |s|, we have

δs = ∇sφ + 1
2ωξ × s, (7.49)

[Bat67, §2.3], where the first term (which came from the symmetric part
of ∂jξ

k) is a potential part of δs with the potential φ(x, s) = 1
2ejk(x)sjsk

(where ejk(x) = 1
2 [∂jξ

k(x)+∂kξj(x)]). The second term (which came from
the anti-symmetric part of ∂jξ

k) represents a rigid-body rotation with an
infinitesimal rotation angle 1

2ωξ, where

ωξ(x) = curl ξ(x)

i.e. curl of the displacement vector ξ(x). Requiring that the transformation
should be commutative, we must have curl ξ(x) = 0. Therefore, we have

curl ξ(x) = 0, ξ(x) = gradϕ. (7.50)

A vector field ξ(x) satisfying curl ξ(x) = 0 is said to be irrotational. For
such an irrotational field, there always exists a certain scalar function ϕ,
and ξ is represented as above.

7.7. Laws of Translational Transformation

7.7.1. Local Galilei transformation

For the translational transformation, we represented in §7.6.1 the variations
of position and velocity as δxi = ξi and δui = (ξ · ∇)ui + Dtξ

i respectively,
by using the operator Dt = ∂t + A according to the gauge principle. The
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x

�(x, t)x�

curl � = 0

x� = gx = x +�(x, t)

v� = v(gx) + Dt�

Dt� = �t� � + ��
= v + 	v

Fig. 7.4. Local translational gauge transformation.

same transformations are rewritten as

x′ = gx := x + ξ(x, t), (7.51)

u′ = u(gx) + Dtξ, (7.52)

(Fig. 7.4), which are supplemented with the (unchanged) transformation of
spatial derivatives:

∇′ = ∇, ∂/∂x
′ α = ∂/∂xα. (7.53)

This is, in fact, the local Galilei transformation. Namely, the transfomations
(7.51) and (7.52) are understood to mean that the local coordinate origin is
moving with the velocity −Dtξ (in accelerating motion) which corresponds
to U of (7.6) if x′ and u′ are replaced by x∗ and v∗, respectively. Under
the above local transformation, the time derivative is transformed as

∂t′ = ∂t − (Dtξ) · ∇.

7.7.2. Determination of gauge field A

We require that the covariant derivative Dtu, like u, should be transformed
as follows:

(Dtu)′(≡ ∂t′u′ + A′ u′) = Dtu(gx) + Dt(Dtξ). (7.54)

This requirement results in

[A′ − (Dtξ) · ∇ − A] (u(gx) + Dtξ) = 0.

As a consequence, we obtain the transformation law of A:

A′ = A(gx) + (Dtξ) · ∇.



August 3, 2004 13:25 WSPC/Book Trim Size for 9in x 6in chap07

210 Geometrical Theory of Dynamical Systems and Fluid Flows

Eliminating Dtξ by (7.52) and using (7.53), this is rewritten as

A′ − u′ · ∇′ = A(gx) − u(gx) · ∇.

This means that the operator A − u · ∇ is independent of reference frames.
Denoting the frame-independent scalar, or tensor, of dimension (time)−1

by Ω, we have

A = u · ∇ + Ω. (7.55)

Then, we shall have Dtξ = ∂tξ+(u·∇) ξ+Ωξ. However, the global invariance
of translational transformation requires Ω = 0, because we should have
Dtξ = Ωξ for constant ξ (if that is the case) and Eq. (7.34) does not vanish
in the global transformation if ∂t is replaced by Dt.13 Thus, we obtain

A = u · ∇ = Ak ∂k, Ak = uk. (7.56)

In this case, the covariant derivative Dtu is represented by

Dtu = ∂tu + Au = ∂tu + (u · ∇)u, (7.57)

which is usually called the time derivative of u following the particle motion,
i.e. material derivative, or the Lagrange derivative.

7.7.3. Irrotational fields ξ(x) and u(x)

Local gauge transformation x → X(x, t) = x + ξ(x, t) is determined by
the irrotational ξ(x) (see (7.50)), i.e. the vector ξ(x) can be represented in
terms of a potential ϕ(x, t):

ξ(x, t) = gradϕ(x, t) = (∂iϕ). (7.58)

As a consequence, it can be verified that the velocity field u must be irro-
tational as well, i.e. we have potential flows of the form, u = grad f with a
certain scalar potential f , in the following way.

Transformed velocity is given by (7.52) with A = u · ∇:

u′(x) = u(X) + ∂tξ(x) + u(X) · ∇ξ(x), (7.59)

13The case of nonzero tensor Ω will be considered in the next rotational transformation.
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where X(x) = x + ξ. Suppose that ξ is infinitesimal, then we have

∆u = u′(x) − u(x) = ∂tξ + (u · ∇)ξ + (ξ · ∇)u, (7.60)

to the first order of |ξ|. The last equation can be rewritten in component
form by using (7.58) as

∆ui = ∂t∂iϕ + ∂i(uk∂kϕ) + ∂kϕ(∂kui − ∂iu
k). (7.61)

This implies a remarkable property that if the velocity u is irrotational, i.e.
if ∂kui − ∂iu

k vanishes, ∆ui has a potential function ∆f . Namely,

∆ui = ∂i∆f, ∆f = ∂tϕ + uk∂kϕ = Dt ϕ. (7.62)

Hence, if the original velocity field u(x) is irrotational, the transformed
velocity u′ will be irrotational as well.

The case of finite transformation ξ(x, t) is verified as follows. Suppose
that we have a velocity potential f(x, t), and u is given by

u = grad f. (7.63)

Let us consider the variation of the transformed velocity u′ of (7.59) about
the reference point x∗, i.e. we consider the variational field δu′(s) = u′(x∗+
s) − u′(x∗), which is developed as

δ(u′)k(s) =
∂uk

∗
∂X l

(sl + sm∂mξl) + ∂t(sl∂lξ
k)

+sl∂l[um(X∗)∂mξk(x)], (7.64)

(see (7.48) for comparison) to the first order of |s|, where uk
∗ = uk(X∗)

and X∗ = x∗ + ξ(x∗). Using the potential functions ϕ and f , the above
equation can be written as δ(u′)k(s) = Dkl(x∗) sl, where14

Dkl(x∗) = ∂k∂lf + ∂k∂l(∂tϕ) + um∂m(∂k∂lϕ)

+ (∂∗kum
∗ ) ∂lξ

m + (∂∗lu
m
∗ ) ∂kξm + (∂∗num

∗ ) ∂lξ
n∂kξm

= Dlk(x∗),

and ∂k = ∂/∂xk, ∂∗k = ∂/∂Xk
∗ and

∂∗kum
∗ = ∂um(X∗)/∂Xk

∗ = ∂∗k∂∗mf(X∗) = ∂∗muk
∗ (symmetric).

14∂mξk = ∂m∂kϕ = ∂kξm, ∂l um(X∗) = (∂∗num∗ )(δnm + ∂lξ
m), and

(∂∗lu
k∗)sm(∂mξl) = sl(∂∗m∂∗kf∗)(∂l∂mϕ) = sl(∂∗kum∗ )(∂lξ

m).
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Thus, we obtain

δ(u′)k(s) = Dkl(x∗) sl =
∂

∂sk

[ 1
2Dij(x∗)sisj

]
.

It is found that the transformed field u′(x) is irrotational if both ξ and u

are irrotational, namely that the irrotational property is preserved by the
(locally parallel) translational transformations.

For the potential velocity field (7.63), the gauge term is given by a
potential form as well:

Au = (u · ∇)u = grad
( 1

2 |u|2
)
, (7.65)

since uk∂kui = (∂kf)∂k∂if = (∂kf)∂i∂kf = ∂i(u2/2).
The covariant derivative Dtu is represented as

Dtu = ∂tu + (u · ∇)u = grad ∂tf + grad
( 1

2 |u|2
)
. (7.66)

This leads to an important consequence in §7.9.4 that the equation of
motion can be integrated once.

Remark. There exist some fluids such as the superfluid He4 or Bose–
Einstein condensates, composed of indistinguishable equivalent particles.
In such a fluid, local rotation would not be captured because there should
be no difference by such a local rotation that would be conceived in an ordi-
nary fluid (i.e. nonquantum fluid). Therefore the flow should be inevitably
irrotational [SS77; Lin63]. This is not the case when we consider the motion
of an ordinary fluid composed of distinguishable particles.

7.8. Fluid Flows as Material Motion

7.8.1. Lagrangian particle representation

From the local gauge invariance under the local (irrotational) translation,
we arrived at the covariant derivative (7.66), which is regarded as a deriva-
tive following a material particle moving with the irrotational velocity
u = grad f . This suggests such a formulation which takes into account
displacement of individual mass-particles [Eck60; Bre70]. In other words,
the gauge invariance requires that laws of fluid motion should be expressed
in a form equivalent to every individual particle.

Suppose that continuous distribution of mass-particles is represented
by three continuous parameters, a = (ai) = (a, b, c) in R

3, and that each
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dV

xa(�)

v
� dV

� � dV

Fig. 7.5. Motion of material particles (2D case).

particle a is moving with a velocity va. Their motion as a whole is described
by a flow φτ which takes a particle located at φ0a ≡ a when τ = 0 to the
position φτa = φ(τ, a) = x(τ, a) at a time τ .15 The coordinate parameters
(a, b, c) = a remain fixed during the motion of each paticle, so that a fluid
particle is identified by a (Fig. 7.5). Then the particle velocity is given by

ua(τ) = u(τ, a) := ∂τφ(τ, a) = ∂τxa, (7.67)

where xa(τ) := x(τ, a) denotes the position of a particle a at a time τ .
Suppose that the velocity ∂τxa is defined continuously and differentiably

at points in space and represented by the velocity field u(t, x) (= ∂τxa) in
terms of the Eulerian coordinates x and t. Note that

∂τ |a=const = Dt = ∂t + u · ∇,

which is called the Lagrange derivative. By definition, we have

∂τa = Dta = ∂ta + u · ∇a = 0. (7.68)

The covariant derivative of the potential velocity u is given by

Dtu = ∂τu|a=const = ∂tu + grad
( 1

2 |u|2
)
. (7.69)

Next, consider a small volume δV consisting of a set of material particles of
total mass δm. Suppose that the motion of its center of mass from τ = 0 to
τ is described by the displacement from xa(0) = a to xa(τ) (Fig. 7.6). The
volume of the same mass will change, and equivalently the density ρ will
change. The density is expressed in two ways by ρa(τ) with the Lagrangian

15The configuration space of a fluid flow is represented in two ways: one is the Lagrangian
particle coordinates (τ, a), and the other is the Eulerian coordinates (t, x). The time
coordinate used in combination with a = (a, b, c) is denoted by τ . Inverse map of the
function x = φ(τ, a) is a = a(t, x) and τ = t, where x = (x, y, z) and t is the time.
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b

a

y

x

a

� = 0

��

��a = x(�, a) = xa(�)

a

b

Fig. 7.6. Map a(a, b) �→ x(x, y) (2D case).

	ax = �x
�a 	a, 	ay = 

�y
�a 	a

	bx = �x
�b 	b, 	by = 

�y
�b 	b

	ax = (	ax, 	ay)
	ax = (	bx, 	by)

	ax     	ay
	bx     	by

	S = =
�(x, y)
�(a, b)

∆b

∆a

∆bx

∆ax

∆S
	a	b

Fig. 7.7. 2D problem: change of area: ∆a ∆b → ∆S.

description and by ρ(t, x) with the Eulerian one, and the invariance of mass
in a volume element during the motion is represented by

δm = ρ(t, x)dV = ρa(0)dVa,

where dV = dxdy dz = d3x and dVa = da db dc = d3a.
It is useful to normalize that ρa(0) = 1, so that the Lagrangian coordi-

nates a = (a, b, c) represent the mass coordinates. Then, we have

ρ(t, x)d3x = d3a, (7.70)

Since d3x = Jad3a (Fig. 7.7), where Ja is the Jacobian Ja = ∂(x)/∂(a) of
the map a �→ x:

Ja =
∂(x)
∂(a)

=
∂(x, y, z)
∂(a, b, c)

, (7.71)

we have

ρ(t, x) = 1/Ja. (7.72)
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The relation u(t, x) = ∂τxa(τ) has an important consequemce. Namely, this
kinematical constraint connects the velocity fired u(t, x) with the change
of volume dV = d3x. This is considered below.

7.8.2. Lagrange derivative and Lie derivative

Given a velocity field u(x) = (u, v, w), the divergence of u, written as
divu, is defined by relative rate of change of a volume element δV during
an infinitesimal time δt along the flow φτ generated by u(x), namely

δdV/dV = (divu) δt (7.73)

(Fig. 7.8), where divu = ∂xu + ∂yv + ∂zw for x = (x, y, z) ∈ M .
In the external algebra (Appendix B), a volume element δV is repre-

sented by a volume form V3(= dx∧dy∧dz). The rate of change of V3 along
the flow φτ is defined by the Lie derivative Lu in the form,

Lu V3 = (divu) V3, (7.74)

given by (B.44) in Appendix B.6.
The differential operator Dt = ∂t + u · ∇ defines a time derivative

analogous to Lu, but their difference must be remarked. The operator Dt

defined by (7.57) was derived by the gauge principle (a physical principle)
in §7.5, 7.7, whereas the Lie derivative L of forms is mathematically defined
by the Cartan’s formula (B.20) in Appendix B.4.16 It is already explained

s
r

x

r = (r, 0)
s = (0, s)
S(t) = rs
v = (u(x, y), v(x,y))

t

ux = ∂u/∂x
vy = ∂v/∂y

x′

t′= t+ ∆t x → x′= x+v(x) ∆t
r → r′= r + r .�v ∆t
s → s′ = s + s .�v ∆t

S(t) = r × s = r
0

0
s

= rs

S(t′) = r′ × s′ =
rx′ ry′
sx′ sy′

∆S = S(t′) – S(t)

= S(t)
1 + ux ∆t

uy ∆t

vx ∆t

1 + vy ∆t
– 1

= S(t) (ux + vy) ∆t + O((∆t)2)

Fig. 7.8. Fluid flow and div u.

16§3.11.1 describes Lie derivatives of 1-forms and metric tensors.
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in §1.8.3 that both Dt and Lu yield the same result on 0-forms, but different
results on vectors. Actually, we have Dtu = ∂tu + (u · ∇)u, while Luu = 0
according to (1.81) and (1.83) of §1.8.3. Luu = 0 because u is “frozen” to
the velocity field u itself. The derivative Dt refers to the rate of change of
a variable following the motion of a moving point of interest, whereas the
derivative Lu acting on a vector refers to the rate of change of a vector field
along a flow generated by u (i.e. describing deviation from the frozen field).

Acting on a volume form, its rate of change is defined by the Lie deriva-
tive Lu, and Dt(dV ) is defined to be equivalent to Lu V3:

Lu V3 = (divu) V3 ⇐⇒ Dt(dV ) = (divu)dV. (7.75)

7.8.3. Kinematical constraint

Rate of change of mass in a volume element dV along a flow generated by
X = ∂t + u · ∇ is given by17

Dt

(
ρ dV

)
= (Dtρ)dV + ρ (DtdV ) =

(
∂tρ + (u · ∇)ρ

)
dV

+ ρ divudV := ∆tρ dV, (7.76)

where (7.75) is used. Invariance of the mass ρ dV along the flow is repre-
sented by Dt(ρ dV ) = 0. Thus, from the kinematical argument in the above
two subsections, we obtain the following equation of continuity,

∆tρ = Dtρ + ρ div(u) = ∂tρ + div(ρu) = 0. (7.77)

This must be satisfied in all the variations carried out below as a kinematical
constraint.

7.9. Gauge-Field Lagrangian LA (Translational Symmetry)

7.9.1. A possible form

In order to consider possible type of the Lagrangian LA for the background
gauge field with Ak = ∂kf (f : a potential function), we suppose that LA is

17The time part ∂t is included since the fields are assumed to be time-dependent.
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a function of Ak and its derivatives:

LA = LA(Ak,Ak;ν), Ak;ν = ∂νAk = ∂Ak/∂xν .

We take the following variations:

δx = ξ, where ξα = ∂αϕ,

δAk = ξα∂αAk + ∂tξ
k + Aα∂αξk,

δAk;ν = ∂ν (δAk) = ∂νξα ∂αAk + ξα ∂ν∂αAk

+ ∂ν∂kϕt + ∂νAα ∂αξk + Aα∂ν∂k∂αϕ, (ϕt = ∂tϕ),




(7.78)

where δAk is taken according to (7.42) with u replaced by A. The invariance
of LA with respect to such variations is given by

δLA =
∂LA

∂Ak
δAk +

∂LA

∂Ak;ν
δAk;ν = 0. (7.79)

Substituting the variations (7.78), we have a variational equation for arbi-
trary functions of ξk, ∂αξk, ∂tξ

k, ∂ν∂kϕt, ∂ν∂k∂αϕ. Each coefficient of
five terms are required to vanish. From the symmetry of the coefficient
of ∂ν∂kϕt(= ∂k∂νϕt) with respect to exchange of k and ν, we have

∂LA

∂Ak;ν
+

∂LA

∂Aν;k
= 0.

Hence, the derivative terms Ak;ν should be contained in LA through the
combination,

A[k,ν] := Ak;ν − Aν;k.

In the present case, Ak = ∂kf . Then, we have A[k,ν] = ∂ν∂kf − ∂k∂νf = 0.
Therefore, the Lagrangian LA is not able to contain the derivative terms
Ak;ν , and we have LA(Ak). However, vanishing of the coefficient of ∂tξ

k in
the variational equation requires ∂LA/∂Ak = 0. Hence, LA is independent
of Ak as well. Thus, the Lagrangian LA can contain only a scalar function
(if any, say ε(x)) independent of A : LA = LA(ε(x)).

7.9.2. Lagrangian of background thermodynamic state

According to the physical argument in §7.2.1 and [Kam03a; Kam03c]
regarding the Lorentz invariance of a mechanical system, it is found that
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the scalar function (implied in the previous section) should be the internal
energy ε(ρ, s) (per unit mass) and the Lagrangian LA can be given as

Lε = −
∫

M

ε(ρ, s)ρ dV, (7.80)

where ρ is the fluid density and s the entropy. Thus, the thermodynamic
state of a fluid is regarded as the background field, which is represented
by the internal energy ε of the fluid, given as a function of density ρ and
entropy s (in a single phase) with ε and s defined per unit mass.

On the other hand, the Lagrangian of the fluid motion is

LF = 1
2

∫
〈u, u〉d3a (7.81)

(see (7.37)), where 〈u,u〉 ≡ uiui = u1u1 + u2u2 + u3u3.

7.10. Hamilton’s Principle for Potential Flows

On the basis of the preliminary considerations with respect to the transla-
tional invariance made so far, now, we can derive the equation of motion
on the basis of the Hamilton’s principle by using the total Lagrangian LP

to be defined just below. To accomplish it, some constitutive or constraint
conditions are required for the variations of the Lagrangian of an ideal fluid.

7.10.1. Lagrangian

According to the scenario of the gauge principle, the full Lagrangian is
defined by

LP := LF + Lε =
∫

M

1
2 〈 u,u 〉 ρ dV −

∫
M

ε(ρ, s) ρ dV, (7.82)

where u = Dtx. The first integral is the Lagrangian of fluid flow includ-
ing the interaction with background field which is represented by Ax in
u = Dtx.18 The second is the Lagrangian of a thermodynamics state of
background material. The action principle is given by δI = 0, i.e.

δ I =
∫ t1

t0

δLP dt = 0. (7.83)

18Dtx = ∂tx + Ax = Ax = (u · ∇)x = u. If x is substituted by xp(t), Dtx = dxp/dt.
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7.10.2. Material variations: irrotational and isentropic

We carry out material variations in the following way. All the variations
are taken so as to follow particle displacements. Writing an infinitesimal
variation of the particle position as δxa = ξ(x, t) and the variation of
particle velocity as ∆ua, we have

xa �→ xa + ξ(xa, t), (7.84)

ua �→ ua + ∆ua = u(xa) + (ξ · ∇)u + Dtξ, (7.85)

(see (7.51), (7.52)), where xa(t) := x(t, a) denotes the position of the par-
ticle a. The displacemnet ξ(x) must be irrotational, i.e. ξ = gradϕ. All the
variations are taken so as to satisfy the mass conservation.

Variations of density and internal energy consist of two components:

∆ρ = ξ · ∇ρ + δρ, ∆ε = ξ · ∇ε + δε. (7.86)

The first terms are the changes due to the displacement ξ, while the second
terms are proper variations explained below. The entropy s (per unit mass)
is written as s = s(τ, a), and the variation is carried out adiabatically,

δs = 0, (7.87)

i.e. isentropically. Such a fluid is called an ideal fluid. Namely, in an ideal
fluid, there is no mechanism of energy dissipation and the fluid motion is
isentropic. Sometimes such a fluid is called an inviscid fluid too, because
kinetic energy would be dissipated if there were viscosity.

On the other hand, variation δρ of the density is caused by the change of
volume dV composed of the same material mass ρdV which is fixed during
the displacement δxa = ξ(x, t). The condition of the fixed mass is given by

δ(ρdV ) = (δρ)dV + ρ(δdV ) = (δρ + ρ div ξ)δdV = 0, (7.88)

where δdV = div ξ dV . Hence, we have

δρ = −ρ div ξ. (7.89)

Invariance of the mass ρ dV along the flow is Dt(ρ, dV ) = 0. From the
kinematical argument (§7.8.3), we have obtained the following equation of
continuity,

Dtρ + ρ div(u) = ∂tρ + div(ρu) = 0. (7.90)

This must be satisfied in all variations as a kinematical constraint.
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Similarly, δs = 0 of (7.87) implies that ∂τs(τ, a) = 0, i.e. the entropy
s is invariant during the motion of particle a. This may be represented
alternatively by LXs = Dts = 0 for the 0-form s with X = ∂t + u · ∇:

∂τs = Dts = ∂ts + u · ∇ s = 0. (7.91)

Then, proper variation of the internal energy ε(ρ, s) is expressed in terms
of the density variation δρ only by using (7.87), since

δε =
∂ε

∂ρ
δρ +

∂ε

∂s
δs =

p

ρ2 δρ, (7.92)

where p is the fluid pressure, since ∂t/∂p = p/ρ2.
The variation field ξ(x, t) is constrained to vanish on the boundary

surface S of M , as well as at both ends of time t0, t1 for the action I:

ξ(xS , t) = 0, for any ∀t, for xS ∈ S = ∂M, (7.93)

ξ(x, t0) = 0, ξ(x, t1) = 0, for ∀x ∈ M. (7.94)

7.10.3. Constraints for variations

As a consequence of the material variation,19 irrotational flows is derived
under the constraints of the continuity equation and the isentropic flow.
Schutz and Sorkin [SS77, §4] verified that any variational principle for an
ideal fluid that leads to the Euler’s equation of motion must be constrained.
This is related to the property of fluid flows that the energy (including the
mass energy) of a fluid at rest can be changed by adding particles (i.e.
changing density) or by adding entropy without violating the equation of
motion. (In addition, adding a uniform velocity to a uniform-flow state
is again another state of uniform flow.) They proposed a minimally con-
strained variational principle for relativistic fluid flows that obey the con-
servations of particle number and entropy. However, gauge principle in the
current formulation was out of scope in [SS77]. Actually, they showed only
the momentum conservation equation derived in the Newtonian limit from
their relativistic formulation which is gauge-invariant in the framework of
the theory of relativity.

19In most variational problems of continuous fields, both coordinate and field are varied.
It is said that a variation of coordinate is external, whereas field variation is internal. In
the material variation, both variations are inter-related.
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7.10.4. Action principle for LP

We now consider variation of each term of (7.82) separately.

(i) Variation of the first term (denoted by LF) is carried out as follows.
Variation of the integrand of LF is composed of two parts:

ξ · ∇
[ 1
2 〈u,u〉 ρ dV

]
+ δ

[ 1
2 〈u, u〉ρ dV

]
. (7.95)

The first is the change of integrand due to the displacement ξ and the
second is the proper change by the kinematical condition, as explained in
(7.86) for ρ and ε separately. It is useful to note the vector identity:

ξ · ∇[F (x)dV ] = (ξ · ∇F )dV + Fξ · ∇(dV )

= (ξ · ∇F )dV + F (div ξ)dV = div[F (x)ξ]dV

If F is set to be 1
2 〈u,u〉ρ, this becomes the first term of (7.95). The equality

ξ · ∇(dV ) = (divξ)dV is obtained by setting uδt = ξ and δdV = ξ · ∇(dV )
in (7.73). Thus, the variation of LF is given by

δLF =
∫

M

(
div

[ 1
2 〈u,u〉ρ ξ

]
dV + δ

[ 1
2 〈u,u 〉 ρ dV

])
=
∮

S

1
2 〈u,u〉ρ 〈n, ξ〉dS +

∫
M

〈u, Dtξ〉ρdV (7.96)

since δ(ρdV ) = 0 and δu = Dtξ, where n is the unit outwardly normal to
S. The first term vanishes due to the boundary condition (7.93). Thus,

δLF =
∫

M

〈u, Dtξ〉ρ dV =
∫

M

Dt

[
〈u, ξ〉ρ dV

]
−
∫

M

〈Dtu, ξ〉ρ dV −
∫

M

〈u, ξ〉Dt

[
ρ dV

]
(7.97)

= ∂t

∫
M

[
〈u, ξ〉ρ dV

]
−
∫

M

〈Dtu, ξ 〉ρ dV, (7.98)

where
∫

M
and Dt are interchanged uniformly) and Dt is replaced with

∂t in the last equation, because the integral
∫

M
is a function of t only.

The last term of (7.97) disappears due to the kinematical condition (7.76)
with (7.90).
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(ii) Variation of the second term (denoted by Lε) of (7.82) is given by

−δLε =
∫

M

(
div(ερ ξ)dV + δ

[
ε(ρ, s)ρ(x)dV

])
=
∮

S

ερ 〈n, ξ〉dS +
∫

M

δ
[
ε(ρ, s)

]
ρ dV,

analogously to (7.96). The first term vanishes due to the boundary condition
(7.93), and δ(ρ dV ) = 0 is used for the first term. Thus, we obtain

δLε = −
∫

M

δε(ρ, s)ρdV = −
∫

M

p

ρ2 δρ ρ dV,

from (7.92). Substituting in (7.89),

δLε =
∫

M

p div ξ dV =
∮

S

p〈n, ξ〉dS −
∫

M

〈grad p, ξ〉dV. (7.99)

The first surface integral vanishes by the condition (7.93), but is retained
here for later use.

Thus, collecting (7.98) and (7.99), the variation of the action I is
given by

δI =
∫ t1

t0

(δLF + δLε)dt

=
[∫

M

〈u, ξ〉ρ dV

]t1

t0

+
∫ t1

t0

dt

∮
S

p〈n, ξ〉dS

−
∫ t1

t0

dt

∫
M

〈(
Dtu + ρ−1grad p

)
, ξ
〉
ρ dV. (7.100)

The first line on the right-hand side vanishes owing to the boundary con-
ditions (7.93) and (7.94). Therefore, the action principle δ I = 0 leads to

Dtu + ρ−1grad p = 0,

or ∂tu + (u · ∇)u + ρ−1grad p = 0, (7.101)

for arbitrary variation ξ under the conditions: ξ = gradϕ.



August 3, 2004 13:25 WSPC/Book Trim Size for 9in x 6in chap07

Gauge Principle and Variational Formulation 223

Equation (7.101) must be supplemented by the equation of continuity
(7.90) and the isentropic equation (7.91):

∂tρ + div(ρu) = 0, (7.102)

∂ts + u · ∇ s = 0. (7.103)

As a consequence of the isentropy, the enthalpy h := ε + p/ρ is written as

dh = ρ−1dp + Tds = ρ−1dp. (7.104)

Using this in (7.101), we obtain the equation of motion for potential flows:

∂tu + grad
( 1

2 |u|2
)

= −gradh, (7.105)

since (u · ∇) ui = ∂i( 1
2 |u|2) for u = grad f . As a consequence, Eq. (7.105)

ensures that we have a potential flow represented as u = grad f at all times.
Substituting u = grad f , we obtain an integral of (7.105):

∂tf + 1
2 |grad f |2 + h = const. (7.106)

It is remarkable that the equation of motion is integrable. It is interesting
to recall that the flow of a superfluid in the degenerate state is irrotational
[SS77; Lin63] (see the remark of §7.7.3).

The degenerate ground state is consistent with the Kelvin’s theorem of
minimum energy [Lamb32], which asserts that a potential flow has a mini-
mum kinetic energy among all possible flows satisfying given conditions.20

This is not the case when we consider motion of fluids composed of dis-
tinguishable particles like ordinary fluids. Local rotation is distinguishable
and there must be a formal mathematical structure to take into account the
local rotation of fluid particles. The analysis in the present section should
apply to the former class of fluids, whereas the latter class of ordinary fluids
will be investigated next.

20Suppose that the velocity is represented as u = ∇φ + u′ with div u′ = 0 and div u =
∇2φ (given), and that the normal component n · u′ vanishes and n · u = n · ∇φ is
given on the boundary surface S (n being a unit normal to S), where φ is a scalar
function solving ∇2φ =given with values of n · ∇φ on S. Then

∫
(∇φ + u′)2d3x =∫

(∇φ)2d3x +
∫

(v′)2d3x + 2
∫

S φu′ · ndS =
∫

(∇φ)2d3x +
∫

(v′)2d3x ≥ ∫
(∇φ)2d3x.

(This is a proof generalized to a compressible case.)
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7.11. Rotational Transformations

So far, we have investigated the translational symmetry, which is commu-
tative. From this section, we are going to consider the rotational trans-
formation briefly considered in §7.6.2. Related gauge group is the rotation
group SO(3) (Appendix C), i.e. a group of orthogonal transformations of
R

3 characterized with unit determinant, detR = 1 for R ∈ SO(3).

7.11.1. Orthogonal transformation of velocity

Consider the scalar product of velocity v, i.e. 〈v, v〉 which is an integrand
of the Lagrangian LF. With an element R ∈ SO(3), the transformation of
a velocity vector v is represented by v′ = R v. Then, the magnitude |v| is
invariant, i.e. isometric: |v′|2 ≡ 〈v′,v′〉 = 〈v,v〉. This is equivalent to the
definition of the orthogonal transformation (Fig. 7.9). In matrix notation
R = (Ri

j), a vector vi is mapped to (v′)i = Ri
j vj , and we have

〈 v′, v′ 〉 = (v′)i(v′)i = Ri
jv

jRi
kvk = vk vk = 〈 v, v 〉.

Therefore, the orthogonal transformation is described by

Ri
j Ri

k = (RT )j
i Ri

k = (RT R)j
k = δj

k, (7.107)

where RT is the transpose of R and found to be equal to the inverse R−1.
Using the unit matrix I = (δj

k), this is rewritten as

RT R = R RT = I. (7.108)

Taking its determinant, we have (det R)2 = 1. Note that every element R

of SO(3) is defined by the property detR = 1.
The Lagrangian LF is invariant for a fixed R. In fact, the mass in a

volume element dV is invariant by the rotational transformation:

v′ = Rv

v
|v′| = |v|

Fig. 7.9. Orthogonal transformation.
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R [ρ(x)dV ] = ρ(x) R[dV ] = ρ(x)dV , since scalar functions such as ρ(x) are
not influenced by the rotational transformation and the volume element is
invariant. Thus, LF has the global gauge invariance.

Likewise, it is not difficult to see that the Lagrangian LF is invariant
under a local transformation, v(x) �→ v′(x) = R(x) v(x) depending on each
point x, where R(x) ∈ SO(3) at ∀x ∈ M , becasue the above invariance
property of rotational transformation applies at each point.

7.11.2. Infinitesimal transformations

For later use, we take an element R ∈ SO(3) and its varied element R′ =
R + δR with an finitesimal variation δR. Suppose that an arbitrary vector
v0 is sent to v = Rv0. We then have δv = δR v0 = (δR)R−1v, so that
v + δv is represented as

v → v + δv =
(
I + (δR)R−1)v =

(
I + θ

)
v,

where θ = (δR)R−1 is skew-symmetric for R ∈ SO(3).21 This term
θ = (δR)R−1 is an element of the Lie algebra so(3), represented as
θ = θkek in §7.6.2 where (e1, e2, e3) is the basis set of the Lie algebra
so(3) (Appendix C.4). θ is a skew-symmetric 3 × 3 matrix. Analogously to
(7.22), the infinitesimal gauge transformation is written as

R(x) = exp[θ] = I + θ + O(|θ|2)
= I +

(
θ1e1 + θ2e2 + θ3e3

)
+ O(|θ|2), (7.109)

where θk ∈ R, |θ| � 1. The operator θ = (θi
j) = θα eα describes an

infinitesimal rotation, where θ̂ := (θ1, θ2, θ3) is an infinitesimal angle vec-
tor (Fig. 7.10). Then, an infinitesimal rotation of the displacement vector
s = (s1, s2, s3) is given by (7.44). According to (7.49), the same local rota-
tion is represented by 1

2ωξ × s, where 1
2ωξ = 1

2curl ξ corresponds to θ̂.
It is remarkable that the local rotation R(x) of velocity u gives rise to a

rotational component in the velocity field v(x)(= R(x)u(x)) even though
u(x) is irrotational. In fact, the velocity v is

u(x) → v = exp[θ(x)] u ≈ u + θu = u + θ̂ × u. (7.110)

21Since RRT = I and (R + δR)(R + δR)T = I from (7.108), we have (δR)R−1 +
(R−1)T (δR)T = 0.
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e

�
s

s′
� × s

Fig. 7.10. Rotational transformation.

The transformed field v = R(x)u(x) is rotational. The second term can be
represented in terms of a vector potential B and a scalar potential f ′ as

θ̂ × u = curl B + grad f ′, (7.111)

(together with the gauge condition, divB = 0, to fix an additional arbi-
trariness). Taking curl,

curlv = curl (θ̂ × u) = curl (curlB) = −∇2 B,

which does not vanish in general, where ∇2 is the Laplacian. The vector
potential B is determined by the equation, ∇2 B = −curl (θ̂ × u). Thus, it
is found that the rotational gauge transformation introduces a rotational
component. Henceforth, it is understood that the vector v denotes a rota-
tional velocity field.

This property distinguishes itself from the previous translational trans-
formation which preserves irrotationality (§7.7.3). A gauge-covariant deriva-
tive is defined in the next section by introduing a gauge field Ω with respect
to the rotational transformation.

7.12. Gauge Transformation (Rotation)

7.12.1. Local gauge transformation

The rotational symmetry of the flow field was considered in §7.6.2, where
qi and qi

t are defined as qi = si and qi
t = Dtq

i(s) = ui(x) + sj ∂ju
i(x).

Namely, q(= s) is a local displacement vector and qt = Dtq ≈ u(x + s).
Suppose that, in order to satisfy the local rotational gauge invariance,

an old form L′(q, qt) of the Lagrangian is modified to

L′′(q, qt, Ω), qt = Dtq, (7.112)
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where the third variable Ω is the newly introduced guage field. Assume that
the local transformations are represented by

q = (si) → q′ = q + δq, δqi = θβ(x, t) ei
β j qj = (θ̂ × s)i,

qt → q′
t = qt + δqt, δqt = Dt(δq),

Ω → Ω′ = Ω + δΩ, δΩα = εαβγθβ Ωγ − Dtθ
α.


 (7.113)

7.12.2. Covariant derivative ∇t

Local invariance of L′′ under the above transformation is given by

δL′′ =
∂L′′

∂q
δq +

∂L′′

∂qt
δqt +

∂L′′

∂Ω
δΩ = 0.

Substituting (7.113) and setting the coefficients of θβ and Dtθ
β to be zero

separately, we obtain

0 =
∂L′′

∂qi
ei
β j qj +

∂L′′

∂qi
t

ei
β j qj

t +
∂L′′

∂Ωα
εαβγΩγ , (7.114)

0 =
∂L′′

∂qi
t

ei
β j qj − ∂L′′

∂Ωβ
. (7.115)

The second equation (7.115) means that the gauge field Ω is contained in
L′′ only through the combination expressed as

Dtq
i + Ωβ ei

β j qj = Dtq
i + (Ω̂ × s)i =: ∇tq

i, (7.116)

where Ω̂ = (Ωβ). Thus, a new velocity v is defined by ∇tq
i:

v = ∇tq, v(x + s) = u(x + s) + Ω̂ × s. (7.117)

Variation of ∇tq defined by (7.116) is given as

δ∇tq = θα(x, t) eα ∇tq = θα(x, t) ei
α j ∇tq

j . (7.118)

Using v, this is δv = θα(x, t) ei
α j vj = θ̂ × v.
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7.12.3. Gauge principle

According to the gauge principle, the operator Dt is replaced by the covari-
ant derivative ∇t defined by

∇t = Dt + Ω, (7.119)

where the gauge-field operator Ω is characterized by

Ω = Ωα eα, Ωi
j = Ωα ei

α j , Ωj
i = −Ωi

j .

According to the previous section, the Lagrangian is written as

L′′(q, qt, ; Ω) = L(q, ∇tq). (7.120)

Using this form, we have the relations:

∂L′′
∂qi = ∂L

∂qi

∣∣∣
∇tq:fixed

+ ∂L
∂∇tqj

∣∣∣
q:fixed

ej
α i Ωα,

∂L′′
∂qi

t
= ∂L

∂∇tqj

∣∣∣
q:fixed

, ∂L′′
∂Ωα = ∂L

∂∇tqj

∣∣∣
q:fixed

ej
(α) i qi.


 (7.121)

In addition, global invariance of L(q, ∇tq) for the variations δq and (7.118)
results in

∂L′′

∂qi
ei
β j qj +

∂L

∂∇tqj

∣∣∣
q:fixed

ei
β j(∇tq)j = 0. (7.122)

Substituting (7.121) into (7.114) and using (7.122) and (7.116), it can be
verified that Eq. (7.114) is satisfied identically.

Therefore, replacing the differential operator Dt in (7.98) with ∇t, we
obtain the variation δLF of (7.98) for the rotational symmetry as

δLF = ∂t

∫
M

[
〈v, ξ〉ρdV

]
−
∫

M

〈∇tv, ξ 〉ρdV. (7.123)

7.12.4. Transformation law of the gauge field Ω

We now require that not only the Lagranginan but its variational form
should be invariant under local rotational transformations. We propose the
following replacement:

Dtv → ∇t v := Dtv + Ω v = ∂tv + grad (v2/2) + Ω̂ × v, (7.124)

where Dtv = ∂tv + grad (1
2v2) defined by (7.69), and Ω is the gauge-field

operator, Ω ∈ so(3), i.e. a 3 × 3 skew-symmetric matrix, and Ω̂ the axial
vector counterpart of Ω.
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Recall that local translational gauge transformation permits a term of
the form Ωv for Av (§7.7.2). In the previous translational gauge invariance,
this term must vanish to satisfy the global transformation. However, it will
be seen that the term Ω v makes sense in the present rotational transfor-
mation.

According to the scenario of the gauge principle (e.g. [Qui83; FU86]), the
velocity field v and the covariant derivative ∇tv should obey the following
transformation laws:

v �→ v′ = exp[θ(t, x)] v (7.125)

∇tv �→ ∇′
tv

′ = exp[θ(t, x)] ∇tv (7.126)

where θ ∈ so(3), i.e. θ being a skew-symmetric matrix.22

From the above equations (7.124)–(7.126), it is found that the gauge
field operator Ω is transformed as

Ω → Ω′ = eθ Ω e−θ −
(
Dt eθ

)
e−θ. (7.127)

Corresponding to the infinitesimal transformation, we have the expansion,
eθ = 1 + θ + (|θ|2). Using δθ instead of θ,

v → v′ =
(
1 + δθ

)
v = v + δθ̂ × v, (7.128)

up to the first order, and the gauge field Ω̂ is transformed as

Ω̂ → Ω̂′ = Ω̂ + δθ̂ × Ω̂ − Dt(δθ̂). (7.129)

The second term on the right-hand side came from δθ Ω − Ω δθ. This is
equivalent to the non-abelian transformation law (7.26) for the Yang–Mills
gauge field Aµ (only for µ = t) if 2qAµ is replaced by Ω and 2qα by −δθ.

7.13. Gauge-Field Lagrangian LB (Rotational Symmetry)

Let us consider a possible type of the Lagrangian LB for the gauge potential,
newly defined by Ak for the rotational symmetry.23 Its relation with the

22The property θ, Ω ∈ so(3) means that we are considering the principal fiber bundle.
23Note that the new notation Ak of the gauge potential for the rotational symmetry
is used by the analogy with the electromagnetic gauge potential. This is completely
different from the gauge field Ak (no more used below) of the translational symmetry.
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gauge field Ω will be considered elsewhere. Suppose that

LB = LB(Ak, Ak;l), Ak;l = ∂lAk = ∂Ak/∂xl.

In an analogy with the electromagnetism, it is assumed that variations are
assumed to be a potential-type, i.e.

δAk = ∂kφ,

δAk;l = ∂l(δAk) = ∂l∂kφ,

}
(7.130)

and in addition, it is required that the Lagrangian LB is invariant with
respect to such variations:

δLB =
∂LB

∂Ak
δAk +

∂LB

∂Ak;l
δAk;l = 0.

Substituting the variations (7.130), we have a variational equation for arbi-
trary functions of ∂kφ, ∂l∂kφ. From the symmetry with respect to exchange
of k and l of ∂l∂kφ, the vanishing of the coefficient of ∂l∂kφ is

∂LB

∂Ak;l
+

∂LB

∂Al;k
= 0.

Thus, the derivative terms Ak;l should be contained in LB through

Bkl := ∂kAl − ∂lAk = Al;k − Ak;l. (7.131)

In addition, the vanishing of the coefficient of ∂kφ is ∂LB/∂Ak = 0. Thus,
the Lagrangian LB depends only on Bkl: LB = LB(Bkl).

According to the theory of electromagnetic field, we define 1-form A1

and its associated 2-form B2 in the case of constant density ρ by

A1 = Ak dxk = A1 dx1 + A2 dx2 + A3 dx3,

B2 = dA1 = B12 dx1 ∧ dx2 + B23 dx2 ∧ dx3 + B31 dx3 ∧ dx1,

}
(7.132)

where (7.131) is used. One can define a 1-form version of B2 by

B1 := Bk dxk, Bi = εijk ∂jAk,

B := ∇ × A = (Bi), A := (Ai).

}
(7.133)

In addition, we introduce a vector V 1 defined by

V 1 = Vk dxk = V1 dx1 + V2 dx2 + V3 dx3, (7.134)

B := ρ V = (ρ Vk), (ρ = const). (7.135)
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A scalar depending on Bkl quadratically is defined by the following external
product (since V 1 depends on Bkl linearly):

V 1 ∧ B2 = 〈V , B〉d3x = 〈V ,V 〉 ρ d3x.

Then, a quadratic Lagrangian is defined by

LB = 1
2

∫
〈V ,B〉d3x = 1

2

∫
〈V , V 〉 ρ d3x. (7.136)

Its generalization to variable density is considered in §7.16.5 (with no formal
change). Thus, it is concluded that the total Lagrangian LT is defined as

LT := 1
2

∫
M

〈v,v〉ρd3x −
∫

M

ε(ρ, s)ρd3x + 1
2

∫
M

〈V ,B〉d3x. (7.137)

7.14. Biot–Savart’s Law

7.14.1. Vector potential of mass flux

With respect to the newly introduced field A, we try to find an equation
to be derived from the total Lagrangian LT with respect to the variation
of the gauge potential A = (Aj) with other variables fixed.

Before carrying it out, we first take differential dLT obtained by the
difference of values of the integrands at two infinitesimally close points x

and x + dx. It is assumed that the density ρ is a uniform constant. Since
ρ is constant, we obtain

dLT = ρ

∫
M

〈 v, dv 〉 d3x − ρ

∫
M

dε(ρ, s)d3x + ρ

∫
M

〈 V , dV 〉d3x,

where ρ V = B = curl A, and

dv = v(x + dx) − v(x), dV = V (x + dx) − V (x) = ρ−1 curl dA.

Using the relation dv = ∇tdx, and carrying out integration by parts, we
obtain

dLT = −ρ

∫
M

〈 ∇tv, dx 〉 d3x − ρ

∫
M

dε d3x +
∫

M

〈 ΩV , dA 〉d3x,

where ∇tv = ∂tv + ∇
( 1

2 v2
)

+ Ω̂ × v and ΩV = ∇ × V .
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Now, consider variations of the gauge fields

δA, ρ δV = ∇ × δA, δΩV = ∇ × δV ,

with v(x), dx being held fixed with ρ as a constant. Assuming that
δΩV (x) = δΩ̂, and collecting nonzero terms from the first and third terms
of dLT and setting dLT = 0, we obtain∫

M

〈
δΩ̂, [−ρ v × dx + 2dA]

〉
d3x = 0.

The last equation must hold for arbitrary δΩ̂. Hence, we obtain

dA = 1
2ρ v × dx, dAi = 1

2 εijk ρ vjdxk. (7.138)

Taking curl of A (equal to B), we have

εαβγ∂βAγ = 1
2εαβγεγjk ρ vj ∂xk/∂xβ = ρ vα.

Thus, we find a connecting relation between v and A:

∇ × A = B = ρ v (ρ : const). (7.139)

This means that the gauge potential A is the vector potential of the mass-
flux field ρv(x), which reduces to the stream function in case of two-
dimensional flows. Taking curl again, we obtain

Ω̂ ≡ ∇ × V = ρ−1 ∇ × B = ∇ × v ≡ ω, (7.140)

where ω ≡ ∇×v is the vorticity. This is just the Biot–Savart’s law between
the vorticity ω and the gauge field V = B/ρ.

This is analogous to the electromagnetic Biot–Savart’s law j = ∇×Bm

beween the electric current density j and and the magnetic field Bm (an
electromagnetic gauge field).

As a result, the covariant derivative ∇tv is given by

∇tv = ∂tv + ∇
( 1

2 v2)+ ω × v = ∂tv + (v · ∇) v. (7.141)

The last expression denotes the material derivative in the rotational case,
where an vector identity in R

3 is used.24 In terms of the particle coordinate
a, Eq. (7.141) is rewritten as

∇tv = ∂τv(τ, a) |a=const. (7.142)

24v × (∇ × v) = ∇( 1
2 |v|2) − (v · ∇)v.
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7.14.2. Vorticity as a gauge field

In the previous section, we have found that the gauge operator Ω̂ is in fact
the vorticity by the assumption of the relation δΩA = δΩ̂. The equality
Ω̂ = ∇×v can be verified from the requirement of Galilei invariance of the
covariant derivative ∇tv of (7.124), as follows.

Applying (7.7) and (7.8) (e.g. v is replaced by v∗ + U), the covariant
derivative ∇tv = ∂tv + grad(v2/2) + Ω̂ × v is transformed to

(∂t∗ − U · ∇∗)(v∗ + U) + ∇∗ 1
2 |v∗ + U |2 + Ω̂ × (v∗ + U)

= ∂t∗v∗ + ∇∗ (v2
∗/2) + Ω̂ × v∗

−(U · ∇∗)v∗ + Ω̂ × U + ∇∗
(
v∗ · U

)
,

since U is a constant vector and ∇∗(U2) = 0. We require that the right-
hand side is equal to ∂t∗v∗ + ∇∗(v2

∗/2) + Ω̂∗ × v∗, therefore

0 = (Ω̂ − Ω̂∗) × v∗ − (U · ∇∗)v∗ + Ω̂ × U + ∇∗
(
v∗ · U

)
= (Ω̂ − Ω̂∗) × v∗ + (Ω̂ − ∇∗ × v∗) × U , (7.143)

where the following vector identity was used:

U × (∇∗ × v∗) = −(U · ∇∗)v∗ + ∇∗(U · v∗),

with U as a constant vector. Equation (7.143) is satisfied identically, if

Ω̂ = ∇ × v, Ω̂∗ = ∇∗ × v∗ = ∇ × v = Ω̂. (7.144)

The second relation holds by the Galilei transformation (7.8). Thus, the
Galilei invariance of ∇tv results in the first relation, i.e. the gauge field Ω̂
coincides with the vorticity: ω = ∇ × v.

7.15. Hamilton’s Principle for an Ideal Fluid
(Rotational Flows)

We now consider the variational principle of general flows. By the require-
ment of local rotational gauge invariance in addition to the translational
one, we have arrived at the covariant derivative (7.141), that is the material
derivative of velocity. The variation should take into account the motion of
individual particles, as carried out in §7.10 for irrotational flows. The gauge
invariances require that laws of fluid motion should be expressed in a form
equivalent to every individual particle.
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7.15.1. Constitutive conditions

In order to comply with two gauge invariances (translational and rota-
tional), we carry out again the material variations under the following three
constitutive conditions.

(i) Kinematic condition: The x-space trajectory of a material particle a is
denoted by xa(τ) = x(τ, a), and the particle velocity is given by

v(τ, a) = ∂τx(τ, a) (7.145)

(Lagrangian representation). All the variations are taken with keeping a

fixed, i.e. following trajectories of material particles. During the motion, the
particle mass is kept constant. As a consequence, the equation of continuity
must be satisfied, which is given by (7.90) with u replaced by v. In the
Eulerian representation, the velocity field is written by

v = v(t, x). (7.146)

(ii) Ideal fluid: An ideal fluid is characterized by the property that there
is no disspative mechanism within it such as viscous dissipation or ther-
mal conduction [LL87, §2, 49]. As a consequence, the entropy s per unit
mass (i.e. specific entropy) remains constant following the motion of each
material particle, i.e. isentropic. This is represented as s = s(a), and its
governing equation is given by (7.103) with u replaced by v. The fluid is
not necessarily homentropic, i.e. the entropy is not necessarily constant at
every point.

(iii) Gauge covariance: All the expressions of the formulation must satisfy
both global and local gauge invariance. Therefore, not only the action I

defined just now, but also its varied form must be gauge-invariant, and the
gauge-covariant derivative ∇t of (7.141) must be used for the variation.

7.15.2. Lagrangian and its variations

Total Lagrangian of flows of an ideal fluid was given by (7.137), which is
reproduced here:

LT = LF + Lε + LB = 1
2

∫
M

〈v,v〉ρd3x −
∫

M

ε(ρ, s)ρd3x + LB , (7.147)

where LB is the Lagrangian depending on the gauge potential A which is
assumed to be a function of a only and depends on x and t only through the
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function a(x, t). The Lagrangian LB is invariant with respect to the mate-
rial variation, and its explicit form will be given in the next section (§7.16.5).

The action principle is δI =
∫ t1

t0
δLT dt = 0. Variations of the

Lagrangian LT are carried out in two ways, with an analogy in mind of
the case of quantum electrodynamics (QED), which is summarized briefly
in Appendix I. In the QED case, the total Lagrangian density is composed
of Λ(ψ, Aµ) of matter field ψ and ΛF (= −(1/16π)FµνFµν) of the gauge field
Aµ. The variation of Λ(ψ, Aµ) with respect to the wave function ψ (with
Aµ fixed) yields the QED equation, i.e. the Dirac equation with electro-
magnetic field, while the variation with respect to the gauge field Aµ (with
ψ fixed) yields the equations for the gauge field, i.e. Maxwell’s equations of
electromagnetism.

In the present case of fluid flows, the equation of motion is derived
from the variation with respect to the particle position xa in the x-space
by keeping a (therefore A(a)) fixed. This is called the material variation.
This will yield the Euler’s equation of motion.

In §7.14.1, we carried out the variation of the gauge potential A with
other variables (such as v(x), dx and a(x)) fixed, under the condition of
constant density ρ. There, we found the relation curlA (≡ B) = ρv and
curlB = ρ ω (Biot–Savart’s law). This is a connecting relation between the
vorticity field ω(x) and the gauge field B(x).

Our system of fluid flows allows a third variation which is the varia-
tion with respect to the particle coordinate a in the a-space by keeping
x, v(x) and ρ(x) fixed. This is called particle permutation. This variation
yields a gauge-field equation in the Lagrangian coordinate a-space. The a-
variation is related to the symmetry of Lagrangian with respect to particle
permutation, which leads to a local law of vorticity conservation, i.e. the
vorticity equation. It is seen that there is a close analogy to the electro-
magnetic theory in this framework of the gauge theory (see comments in
§7.14.1, 7.16.5).

In §7.15, we only consider the material variation, and the particle per-
mutation symmetry will be considered in §7.16.

7.15.3. Material variation: rotational and isentropic

According to the scenario outlined in the previous subsections, we carry out
an isentropic material variation. As a result of the variation satisfying local
gauge invariance, we will obtain the Euler’s equation of motion for an ideal
fluid. In addition to the conservation of momentum associated with the
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translational invariance (considered in §7.4 briefly as a Noether’s theorem),
we will obtain another Noether’s conservation law, i.e. the conservation of
angular momentum, from the SO(3) gauge invariance.

All variations are taken so as to follow particle displacement (a, B(a):
fixed) under the kinematical constraint (7.90) and the isentropic condition
(7.103). Associated with the variation of particle position given by

xa �→ xa + ξ(xa, t), (7.148)

the variation of particle velocity is represented by

v(xa) �→ v(xa + ξ) + Dtξ(xa) = v + (ξ · ∇)v + Dtξ (7.149)

up to O(|ξ|) terms (see (7.85) and Fig. 7.11). Variations of density and
internal energy consist of two components as before:

∆ρ = ξ · ∇ρ + δρ, ∆ε = ξ · ∇ε + δε. (7.150)

It is assumed that their variations are carried out adiabatically:

δs = 0. (7.151)

The appropriate part δρ of the density variation is caused by the displace-
ment δxa = ξ(x, t). From the condition of fixed mass, we have, as before
(§7.10.2),

δρ = −ρ div ξ. (7.152)

xa

va

va

∆va

∆va = (� .�)v + Dt�

�(xa, t)

Fig. 7.11. Material variation.
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Then, the proper part δε(ρ, s) is expressed in terms of the density variation
δρ and the pressure p:

δε =
∂ε

∂ρ
δρ +

∂ε

∂s
δs =

p

ρ2 δρ. (7.153)

The variation field ξ(x, t) is constrained to vanish on the boundary surface
S of M , as well as at both ends of time t0, t1 for the action I:

ξ(xS , t) = 0, for any ∀t, for xS ∈ S = ∂M, (7.154)

ξ(x, t0) = 0, ξ(x, t1) = 0, for ∀x ∈ M. (7.155)

7.15.4. Euler’s equation of motion

It is noted that the variations of xa, v, ε, ρ and s, given in (7.148), (7.149)–
(7.153), are different from those of irrotational case (§7.10.2) in the sense
that those are extended so as to include rotational components, although
their precise expressions look the same. Therefore, formal procedure of the
variation of the Lagrangian LT does not change. But, new consequences
are to be deduced in the following sections.

Using (7.147), the variation δI is given by

δ I =
[∫

M

〈v, ξ〉 ρdV

]t1

t0

+
∫ t1

t0

dt

∮
S

p 〈n, ξ〉dS

−
∫ t1

t0

dt

∫
M

〈(
∇tv + ρ−1grad p

)
, ξ
〉

ρdV, (7.156)

which is the same as (7.100) in the formal structure except ∇t replaces Dt

(see (7.123)). The first line on the right-hand side vanishes owing to the
boundary conditions (7.154) and (7.155). Thus, the action principle δ I = 0
for arbitrary ξ results in

∇tv +
1
ρ

∇p = 0, (7.157)

under the conditions (7.151) and (7.152). This is the Euler’s equation of
motion. In fact, using (7.141), we have

∂tv + (v · ∇) v = −1
ρ

∇p. (7.158)
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Using another equivalent expression of ∇tv in (7.141) and the thermody-
namic equality (1/ρ)∇p = ∇h (see (7.104)), this can be rewritten as

∂tv + ω × v + ∇
( 1

2 v2) = −∇h. (7.159)

This equation of motion must be supplemented by the equation of continu-
ity and the isentropic equation:

∂tρ + div(ρv) = 0, (7.160)

∂ts + v · ∇ s = 0. (7.161)

Note: The form of Lagrangian LT of (7.147) is compact with no constraint
term, and the variation is carried out adiabatically by following particle tra-
jectories. In the conventional variations [Ser59; Sal88], the Lagarangian has
additional constraint terms which are imposed to obtain rotational compo-
nent of velocity field.25 In the conventional approaches including [Bre70],
the formula (7.141) for the derivative of v is taken as an identity for the
acceleration of a material particle without any further interpretation. How-
ever, in the present formulation, the expression (7.141) for ∇tv is the covari-
ant derivative, an essential building block of gauge theory. There is another
byproduct of the present gauge theory for the vorticity equation, which will
be described in §7.16.

7.15.5. Conservations of momentum and energy

We now consider the Noether’s theorem as a consequence of a symme-
try of the system, which applies to every variational formulation with a
Lagrangian.

We consider the global gauge transformation, x �→ x+ξ with a constant
vector ξ ∈ R

3 (where a is fixed so that LB does not change), which is a
uniform translation. Variation of the Lagrangian δLT = δLF + δLε due to
this transformation is

δLT = δLF + δLε = ∂t

∫
M

〈v, ξ〉 ρdV +
∮

S

p 〈n, ξ〉dS

−
∫ t1

t0

dt

∫
M

〈(
∇tv + ρ−1grad p

)
, ξ
〉

ρdV. (7.162)

25Although the Lin’s constraint yields a rotational component [Lin63; Ser59; SS77;
Sal88], it is shown that the helicity of the vorticity field for a homentropic fluid in
which grad s = 0 vanishes [Bre70]. Such a rotational field is not general because the
knotted vorticity field is excluded.
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(see (7.156), (7.98) and (7.99)). This time, the second line vanishes because
of the equation of motion (7.157). Thus, the Noether’s theorem obtained
from δLT = 0 is as follows:

∂t

∫
M

〈v, ξ〉 ρdV +
∮

S

p 〈n, ξ〉dS = 0,

for any compact space M with a bounding surface S. Since ξ is an arbitrary
constant vector, this implies the following:

∂t

∫
M

v ρdV = −
∮

S

p ndS. (7.163)

This is the conservation law of total momentum. In fact, the left-hand side
denotes the time rate of change of total momentum within the space M ,
whereas the right-hand side is the resultant pressure force on the bounding
surface S, where −pndS is a pressure force acting on a surface element dS

from outside.
Equation (7.163) can be rewritten in the following way. Noting that

∂t

∫
M

=
∫

M
∇t, and that

∇t(ρv) = ∂t(ρv) + v · ∇(ρv), ∇t(dV ) = (∇ · v)dV,

the left-hand side is rewritten as∫
M

[
∂t(ρv) + ∇ · ρvv

]
dV, where (∇ · ρvv)i = ∂k(ρvkvi).

The right-hand side is transformed to

−
∫

M

∇ p dV = −
∫

M

∇ · (pI) dV

where I = (δij) is a unit tensor. Substituting these into (7.163), we obtain
the momentum conservation equation26:

∂t(ρv) + ∇ ·
(
ρvv + pI

)
= 0, (7.164)

since Eq. (7.163) must hold with any compact M . This describes that the
change of momentum density ρv is equal to the negative divergence of the

26The ith component of ∇ · (
ρvv + pI

)
is ∂k(ρvkvi + p δki).
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momentum flux tensor ρvivk + pδik in the ideal fluid. Equation (7.164) is
decomposed to

ρ (∂tv + v · ∇ v + ρ−1∇ p) + v (∂tρ + ∇ · (ρv)) = 0.

Because of the continuity equation (7.160), this reduces to the equation of
motion (7.158).

Equation of energy conservation is obtained as follows. Taking scalar
product of v with the equation of motion (7.158) by using the enthalpy h

on the right-hand side, we obtain

∂t

( 1
2v2)+ (v · ∇) 1

2v2 = −v · ∇ h.

Add the null-equation 1
2v2(∂tρ + div(ρv)) = 0 to this equation multiplied

with ρ, we obtain

∂t

( 1
2ρv2)+ ∇ ·

( 1
2ρv2v

)
= −ρv · ∇ h.

Next, we note that ∂tε = (p/ρ2)∂tρ = −(p/ρ2)∇ · (ρv) by using the conti-
nuity equation. Then, we have

∂t(ρε) = (∂tρ) ε + ρ (∂tε) = −
(

ε +
p

ρ

)
∇ · (ρv) = −h ∇ · (ρv),

where h = ε + p/ρ. Adding the last two equations, we obtain

∂t

[
ρ
( 1

2v2 + ε
)]

+ ∇ ·
[
ρv
( 1

2v2 + h
)]

= 0. (7.165)

This describes the change of energy density ρ
( 1

2v2 + ε
)

under the energy
flux vector ρv

( 1
2v2 + h

)
in the ideal fluid.

7.15.6. Noether’s theorem for rotations

Next we consider a consequence of the rotational invariance. Global rota-
tional transformation of a vector v is represented by v(x) �→ v′(x) = R v(x)
with a fixed element R ∈ SO(3) at every point x ∈ M , which is equiva-
lent to a uniform rotation. Let us take a rotation vector δθ̂ = |δθ̂| e of the
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rotation angle |δθ̂| about the axis e. Then, an infinitesimal global transfor-
mation is defined for the position vector x as

x′ = x + δθ̂ × x. (7.166)

Next, we consider an infinitesimal variation of the Lagrangian (with A and
a fixed) due to this transformation. From (7.156), the variation is given by

δLT =
∂

∂t

∫
M

〈
v, ξ

〉
ρdV +

∮
S

p 〈 ξ,n〉 dS

−
∫

M

〈 (
∇tv +

1
ρ

∇ p
)
, ξ

〉
ρdV. (7.167)

where ξ = δθ̂×x with a constant vector δθ̂, and n is a unit outward normal
to S. The last term vanishes owing to the equation of motion (7.157). The
Noether’s theorem is given by δLT = 0, which reduces to

∂

∂t

∫
M

〈
v, ξ(x)

〉
ρdV +

∫
S

p 〈 ξ(xS),n〉 dS = 0. (7.168)

Using ξ = δθ̂ × x, it is verified that this represents the conservation of
total angular momentum. In fact, using the vector identity 〈v, δθ̂ × x〉 =
〈δθ̂, x × v〉 ≡ δθ̂ · (x × v) with δθ̂ being a constant vector, the first term is

δθ̂ · ∂

∂t

∫
M

x × v ρdV = δθ̂ · ∂

∂t
L(M). (7.169)

The integration term denoted by L(M) is the total angular momntum of
M . Similarly, the second term is

δθ̂ ·
∫

S

x × (p ndS) = −δθ̂ · N(S). (7.170)

The surface integral over S is denoted by −N(S), since N(S) is the resul-
tant moment of pressure force −pndS acting on a surface element dS from
outside. Since δθ̂ is an arbitrary constant vector, Eq. (7.168) implies the
following:

∂

∂t
L(M) = N(S). (7.171)

Thus, it is found that the Noether’s theorem leads to the conservation law
of total angular momentum from the SO(3) gauge invariance.
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7.16. Local Symmetries in a-Space

It is instructive to formulate the action principle in terms of the particle
coordinates a = (a1, a2, a3). First, the equation of motion will be derived
with respect to the independent variables (τ, a). Next, local rotation sym-
metry concerning the a-coordinate results in an associated local conserva-
tion law of vorticity in the a-space. Recall that a = (a, b, c) is defined as
the mass coordinate in §7.8.1.

7.16.1. Equation of motion in a-space

Variation of LT with respect to xa in the x-space is written as

δLT = δLF + δLε =
∫

M

〈 v, δv 〉d3a −
∫

M

δε(ρ, s) ρdV, (7.172)

under the condition that A and a are fixed so that δLB = 0. In the first term
(denoted by δLF), ρdV is replaced by d3a. In the second term (denoted by
δLε), we have kept the original form ρdV by the reason that will become
clear just below.

Following the particle motion, the variables (a1, a2, a3) = (a, b, c) are
invariant by definition, which is expressed as

Dta
i = ∂ta

i + (v · ∇)ai = 0. (7.173)

In the variation xa �→ xa + δxa of (7.148), the particle which was located
originally at xa is displaced to a new position xa +δxa with the coordinate
a fixed. Suppose that the particle which was located at xa + δxa originally
had the coordinate a + δa (Fig. 7.12), then we have

δxk
a =

∂xk

∂ai
δai, δai =

∂ai

∂xk
δxk

a. (7.174)

xa = x(a, �)

x(a + �a, �)

�x a(a
, �)

Fig. 7.12. Relation between δxa and δa, with δv = ∂τ (δxa).
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As for δε, using (7.153) and (7.152), we have δε = −(p/ρ) div δxa. Then,
the variation of the second term δLε = −

∫
M

δε ρdV becomes

δLε =
∫

M

p (div δxa)dV =
∮

S

p 〈n, δxa〉dS −
∫

M

δxa · grad p dV

=
∮

S

p 〈n, δxa〉dS −
∫

M

δai ∂xk

∂ai

∂p

∂xk

1
ρ

ρdV

=
∮

S

p 〈n, δxa〉dS −
∫

M

〈∇ah, δa〉 d3a, (7.175)

∇a :=
∂

∂ai
=

∂xk

∂ai

∂

∂xk
, (7.176)

where ∇a is the nabla operator with respect to the variables ai, and ∇ah =
(1/ρ)∇ap = (1/ρ)(∂p/∂ai). Thus, we have obtained δLε represented in
terms of the coordinate a only.

We seek a similar representation of the first term of (7.172). Using the
relation δvk = ∂τ (δxk

a), we obtain

δLF :=
∫

d3a vk δvk =
∫

d3a vk ∂τ (δxk
a)

=
∂

∂τ

∫
d3a vk δxk

a −
∫

d3a ∂τvk ∂xk

∂ai
δai (7.177)

=
∂

∂τ

∫
d3a vk δxk

a −
∫

d3a 〈dτV a, δa〉, (7.178)

where vk = ∂τxk, and ∂τvk is defined by (7.142), and

dτV a := (∂τvk) ∇a xk = ∂τV a − ∇a(v2/2), (7.179)

V a := vk ∇a xk, (Va)i = vk
∂xk

∂ai
. (7.180)

Here a covector V = (vk) is introduced by the definition, vk = δkl v
l = vk.

The covector V a is the velocity covector transformed to the a-space. This
is seen on the basis of a 1-form V 1 defined by

V 1 = v1dx1 + v2dx2 + v3dx3 (:= V · dx) (7.181)

= (Va)1da1 + (Va)2da2 + (Va)3da3 (:= V a · da). (7.182)

Then, the variation of the action I with δLT = δLF + δLε is given by∫ t1

t0

δLT dτ = −
∫

dτ

∫
d3a

〈[
dτV a + ∇ah

]
, δa

〉
,
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where boundary terms are deleted by the boundary conditions (7.154)
and (7.155) as before. Thus the action principle δI = 0 results in

dτV a + ∇ah = (∂τvk) ∇a xk + ∇ah = 0. (7.183)

This is the Lagrangian form of the equation of motion [Lamb32, §13].

7.16.2. Vorticity equation and local rotation symmetry

We next consider a symmetry with respect to particle permutation. Suppose
that a material particle a is replaced by a particle a′ of the same mass, and
that this permutation is carried out without affecting the current velocity
field v(x) and carried out adiabatically, hence s being invariant. Therefore,
we are going to investigate a hidden symmetry with respect to permutation
of equivalent fluid particles.

To be precise, suppose that the permutation is represented by the fol-
lowing infinitesimal variation of particle coordinates, a → a′ = a + δa(a).
By this permutation, a fluid particle a which occupied a spatial point x

shifts to a new spatial point x+δx where a particle a′ = a+δa(τ, a) occu-
pied before, and the position x where a was located before is now occupied
by a particle a′′ (Fig. 7.13). Therefore, we have δxk = (∂xk/∂ai) δai.

Since the particle a is now located at a point where the velocity is
v(a′) = v(a) + δv, Eq. (7.173) is replaced by

∂ta
i + (v + δv) · ∇ ai = 0.

a″

v

v′

�x

a′ = a + �a

a′

Stream lines at

x(a,  )

x(a′,  )

Fig. 7.13. Relation between δxa and δa, with v(x) unchanged.
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Analogously, the equation for the particle a′′ = a − δa + (|δa|2) (derived
from the definition a = a′′ + δa(τ, a′′)) is written as

∂t(ai − δai) + v · ∇ (ai − δai) = 0.

Eliminating the unvaried terms between the two equations, we obtain
∂tδa

i + (v · ∇)δai = −(δv · ∇)ai, which is rewritten as

∂τ δai = − ∂ai

∂xk
δvk,

where ∂τ δai = ∂tδa
i + (v · ∇)δai. This equation can be solved for δvk by

multiplying ∂xk/∂ai, and we obtain

δvk = −∂xk

∂ai
∂τδai(τ, a), (7.184)

since (∂xk/∂ai)(∂ai/∂xj)δvj = δk
j δvj = δvk.

Because the mass da′db′dc′ at a′ = (a′, b′, c′) is replaced by the same
amount of mass dadbdc at a = (a, b, c), we have

∂(a′, b′, c′)
∂(a, b, c)

= 1. (7.185)

For an infinitesimal transformation a′ = a+δa(a) = (a+δa(a), b+δb(a), c+
δc(a)), Eq. (7.185) implies

∂δa

∂a
+

∂δb

∂b
+

∂δc

∂c
= 0.

Such a divergence-free vector field δa(τ, a) is represented as

δa = ∇a × δΨ(a), (7.186)

by using a vector potential δΨ(τ, a).27

Variation of the Lagrangian is given by (7.172) again, and variations of
each term are given by (7.175) and (7.178) respectively, since the relation
between δai and δxi takes the same form as the previous (7.174) although
their background mechanisms are different. Assuming the same boundary
conditions (7.154) and (7.155) as before, both first terms of (7.175) and
(7.178) vanish.

27The expression (7.185) is called unimodular or measure-preserving transformation by
Eckart [Eck60]. See (7.176) for the definition of ∇a.
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Substituting (7.186) into the second term of (7.175), we have

δLε = −
∫

M

〈∇ah, ∇a × δΨ〉d3a

= −
∫

M

〈∇a × ∇ah, δΨ〉d3a = 0, (7.187)

since ∇a × ∇ah ≡ 0,28 where partial integrations are carried out with
respect to the a-variables.

By the particle permutation symmetry, it is required that the action I is
invariant with respect to the variation (7.186) for arbitrary vector potential
δΨ(τ, a). Using (7.178) and (7.187), the variation δI is given by

δI = −
∫

dτ

∫
d3a 〈dτV a, ∇a × δΨ 〉

= −
∫

dτ

∫
d3a 〈∂τ (∇a × V a), δΨ 〉,

To obtain the integrand of the last line, we used the definition (7.179) of
dτV a:

∇a × dτV a = ∇a × (∂τV a − ∇a(v2/2)) = ∂τ (∇a × V a).

The variation of the vector potential δΨ is regarded as arbitrary, hence the
action principle δI = 0 requires

∂τ (∇a × V a) = 0. (7.188)

This equation, found by Eckart (1960) [Eck60; Sal88], represents a conser-
vation law of local rotation symmetry in the particle-coordinate space, and
may be regarded as the vorticity equation in the a-space. Its x-space version
will be given next.

7.16.3. Vorticity equation in the x-space

To see the meaning of (7.188) in the x-space, it is useful to realize that
∇a ×V a is the vorticity transformed to the a-space. Curl of a vector V a =
(Va, Vb, Vc) is denoted by Ωa = (Ωa, Ωb, Ωc) := ∇a × V a. In differential-
form representation, this is described by a two-form Ω2 = dV 1 (using V 1

28Salmon [Sal88] introduced the vector potential T = δΨ(a) which has been later found
useful, but δLε = 0 is not mentioned explicitly.
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defined by (7.182)):

Ω2 = dV 1 = Ωadb ∧ dc + Ωbdc ∧ da + Ωcda ∧ db = Ωa · S2

= ω1dx2 ∧ dx3 + ω2dx3 ∧ dx1 + ω3dx1 ∧ dx2 = ω · s2, (7.189)

where ω = ∇×v = (ω1, ω2, ω3) is the vorticity in the physical x space, and
the 2-forms s2 and S2 are surface forms.29 From Eqs. (7.188) and (7.189),
one can conclude that

0 = ∂τ [Ωa · S2] = ∂τ [Ω2] = ∂τ [ω · s2] = 0. (7.190)

Let us introduce a gauge potential covector Aa of particle coordinates
only: Aa(a) = (Aa, Ab, Ac), and define a 1-form A1 by

A1 = Aada + Abdb + Acdc. (7.191)

The exterior product of Ω2 and A1 is

Ω2 ∧ A1 = 〈Ωa, Aa〉d3a, d3a = da ∧ db ∧ dc. (7.192)

In the x = (x, y, z)-space, the same exterior product is given by

Ω2 ∧ A1 = 〈ω, A〉d3x, d3x = dx ∧ dy ∧ dz, (7.193)

where A is defined by (7.132). Relation between A and Aa is the same as
that of V and V a in (7.181) and (7.182).

From the equality of (7.192) and (7.193) and d3a = ρd3x, we obtain
the following transformation law between ω and Ωa [Sal88]:

〈ω, A〉 = ρ 〈Ωa, Aa〉. (7.194)

The derivative ∂/∂τ is understood to be the Lie derivative LX with the
vector X defined by

X = ∂τ

∣∣
a:fixed = ∂t + vk(t, x) ∂k.

Thus, we obtain

∂τ [Ω2] = LX [Ω2] = L∂t+vk∂k
[Ω2] = L∂t [Ω

2] + Lvk∂k
[Ω2] = 0,

29s2 = (dx2 ∧ dx3, dx3 ∧ dx1, dx1 ∧ dx2), and S2 = (da2 ∧ da3, da3 ∧ da1, da1 ∧ da2).
For example, the db ∧ dc component of ∇a × V a is given by

Ωa =
∂Vc

∂b
− ∂Vb

∂c
=

∂

∂b

(
vk

∂xk

∂c

)
− ∂

∂c

(
vk

∂xk

∂b

)
.
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from (7.190). With the x-space notation, this is written as

∂tω + curl(ω × v) = 0. (7.195)

To verify this, we write Ω2 = ω · s2. Then,

L∂t
(Ω2) = (∂tω) · s2.

Next, for Lv with v = vk∂k, we use the Cartan’s formula (B.20) (Appendix
B.4): Lv Ω2 = (d ◦ iv + iv ◦ d) Ω2. Then,

Lv(Ω2) = d ◦ ivΩ2 + iv ◦ d Ω2

= d[(ω × v) · dx] + iv(divω)d3x = [∇ × (ω × v)] · s2,

since div ω = 0. Thus, we find the vorticity equation (7.195) from the equa-
tion above it.

It is remarkable that the vorticity equation (7.195) in the x-space has
been derived from the conservation law (7.188) associated with the rotation
symmetry in the a-space. In addition, using the vector identity,

∇ × (ω × v) = (v · ∇)ω + (∇ · v)ω − (ω · ∇)v,

(since ∇·ω = 0) together with the continuity equation (7.102), Eq. (7.195)
is transformed to the well-known form of the vorticity equation for a com-
pressible fluid:

d

dt

(
ω

ρ

)
=
(

ω

ρ
· ∇

)
v. (7.196)

7.16.4. Kelvin’s circulation theorem

The local law (7.188) in the a-space leads to the Kelvin’s circulation the-
orem. Consider a closed loop Ca in a-space and denote its line-element by
da. Using (7.180), we have

V a · da = v · dxa, (7.197)

where dxa is a corresponding line-element in the physical x-space
(Fig. 7.14). Integrating (7.197) along a loop Ca fixed in the a-space, we
obtain the following integration law:

∂τ

∮
Ca

V a · da = ∂τ

∫
Sa

(∇a × V a) · dSa =
∫

Sa

∂τ (∇a × V a) · dSa = 0,
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a-space x-space

Ca

Ca(xa)

dxa
da Va v

t + ∆t

t

Fig. 7.14. Closed material loops in a-space and x-space.

by (7.188), where Sa and dSa are an open surface bounded by Ca and its
surface element in a-space, respectively. Thus, using (7.197), we obtain the
Kelvin’s circulation theorem:

∂τ

∮
Ca(xa)

v · dxa = 0, (7.198)

where Ca(xa) is a closed material loop in x-space corresponding to Ca.
Bretherton [Bre70] considered the invariance of the action integral under

a reshuffling of indistinguishable particles which leaves the fields of velocity,
density and entropy unaltered, and derived the Kelvin’s circulation theorem
directly. The present derivation is advantageous in the sense that the local
form (7.188) is obtained first, and then the circulation theorem is derived.

7.16.5. Lagrangian of the gauge field

In view of the relation Ωa = ∇a × V a, we have the transformation,∫
Ma

〈Ωa, Aa〉d3a =
∫

Ma

〈V a, ∇a × Aa〉d3a, (7.199)

by integration by parts (omitting the integrated terms). We seek a related
expression in terms of V a and Ba. Using A1, B2, B = ∇ × A defined
in §7.13 and recalling A1 of (7.191) in terms of Aa, we have a 2-form
B2 = dA1:

B2 = dA1 = Badb ∧ dc + Bbdc ∧ da + Bcda ∧ db = Ba · S2

= B1dx2 ∧ dx3 + B2dx3 ∧ dx1 + B3dx1 ∧ dx2 = B · s2.

This is analogous to Ω2 = dV 1 of (7.189). Thus, an exterior product of B2

and V 1 (defined by (7.181) and (7.182)) is

V 1 ∧ B2 = 〈V a,Ba〉d3a = 〈V a, ∇a × Aa〉d3a, (7.200)
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since Ba = (Ba, Bb, Bc) = ∇a × Aa. This is also written as

V 1 ∧ B2 = 〈V , B〉 d3x = 〈V , ∇ × A〉d3x = 〈V , ρV 〉d3x, (7.201)

where the gauge potential covector A is defined by

∇ × A = ρ V . (7.202)

It is understood that ρ V is the divergence-free part of the mass flux ρ v

(see (7.139)).
Thus, it is found that the Lagrangian LB of (7.136) (which was given

for constant ρ previously) can now be generalized to the case of variable
density as

LB = 1
2

∫
〈V , B〉d3x = 1

2

∫
〈Ωa, Aa〉d3a. (7.203)

The last expression was shown to depend only on a in §7.16.3 and invariant
with respect to change of time variable τ . Therefore, in the material vari-
ation with a fixed, the LB is unchanged. Moreover, it is remarkable that
the Lagrangian LB has an internal symmetry, i.e. a local conservation law
of vorticity in the a-space, which is expressed by ∂τ (∇a × V a) = 0. This is
analogous to the electromagnetic Lagrangian Λem, which has internal sym-
metries equivalent to the Faraday’s law and the conservation of magnetic
flux [LL75, §26].

7.17. Conclusions

Following the scenario of the gauge principle in the field theory of physics, it
is found that the variational principle of fluid motions can be reformulated
in terms of the covariant derivative and gauge fields for fluid flows. The
gauge principle requires invariance of the Lagrangian and its variations
with respect to both a translation group and a rotation group.

In complying with the local gauge invariance (with respect to both trans-
formations), a gauge-covariant derivative is defined in terms of gauge fields.
Local gauge invariance imply existence of a background material field.

Gauge invariance with respect to the SO(3) rotational transformations
requires existence of a gauge potential which is found to be the vector poten-
tial of the mass flux field ρv. This results in the relation of Biot–Savart law
between curl of a gauge field and the vorticity ω. This is in close anal-
ogy to the electromagnetic Biot–Savart law between curl of the magnetic
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field and current density. The invariance of Lagrangian with respect to the
gauge transformation and Galilei invariance determine that the vorticity
is the gauge field to the rotational gauge transformations. As a result, the
covariant derivative of velocity is given by the material derivative of velocity
(§7.14).

Using the gauge-covariant derivative, a variational principle is formu-
lated by means of isentropic material variations, and the Euler’s equation
of motion is derived for isentropic flows from the Hamilton’s principle in
§7.15, where the Lagrangian consists of three terms: a Lagrangian of fluid
flow, a Lagrangian of internal energy representing the background material,
and a Lagrangian of rotational gauge field. This is also analogous to the
electromagnetic case (see Appendix I and [LL75, Chap. 4]).

In addition, global gauge invariances of the Lagrangian with respect to
two transfomations, translation and rotation, imply Noether’s conservation
laws which are interpreted from the point of view of classical field theory
in [Sap76].30 Those laws are the conservations of momentum and angular
momentum, respectively. Furthermore, the Lagrangian has an internal sym-
metry with respect to particle permutation, which leads to a local law of
vorticity conservation, i.e. the vorticity equation. The Kelvin’s circulation
theorem results from it.

The present gauge theory can provide a theoretical ground for phys-
ical analogy between the aeroacoustic phenomena associated with vor-
tices [KM83; Kam86; KM87] and the electron and electromagnetic-field
interactions.

30In [Sap76, Chap. 4], the particle coordinate labels are called basic fields and regarded
as a sort of gauge fields.
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Chapter 8

Volume-Preserving Flows
of an Ideal Fluid

In the pervious chapter, we have considered a variational formulation of
flows of an ideal fluid on the basis of the gauge principle. This leads to a
picture that a fluid (massive) particle moves under interaction with a back-
ground material field (gauge field) having mass and internal energy and the
material field is also moving rotationally and isentropically. From the invari-
ance of the Lagrangian with respect to both translational and rotational
gauge transformations as well as Galilei transformation, a covariant deriva-
tive ∇t is defined, and the Euler’s equation of motion has been derived. It is
said that the fluid flows have gauge groups such as a group of translational
transformations and a group of rotational transformations. The covariant
derivative ∇t is interpreted as the time derivative following the motion of
a fluid particle, or a material derivative.

In this chapter, we are going to investigate volume-preserving flows of
an ideal fluid. Corresponding gauge group of such flows is known to be
the group of volume-preserving diffeomorphisms, for which mathematical
machineries are well developed. Volume-preserving is another word for con-
stant fluid density. Under the restricting conditions of constant density and
constant entropy of fluid flows, the internal energy is kept constant during
the motion. Therefore, the Lagrangian reduces to the kinetic energy inte-
gral only. In this respect, from a geometrical point of view it is said that
the group of volume-preserving diffeomorphisms has the metric defined by
the kinetic energy.

By the conventional approach, flows of an inviscid fluid are studied
in great detail in the fluid dynamics. However, the present geometrical
approach can reveal new aspects which are missing in the conventional
fluid dynamics. Based on the Riemannian geometry and Lie group theory,
developed first by [Arn66], it is found that Euler’s equation of motion is

253
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a geodesic equation on a group of volume-preserving diffeomorphisms with
the metric defined by the kinetic energy, and the behaviors of the geodesics
are controlled by Riemannian (sectional) curvatures, which are quantitative
characterizations of the flow field. In particular, the analysis shows that
the curvatures are found to be mostly negative (with some exceptions),
which can be related to mixing or ergodicity of the fluid particle motion
in a bounded domain. Primary concern of the geometrical theory is the
behaviors of particles and streamlines.

The present chapter is based on the works of [Arn66; EbMa70; Luk79;
NHK92; Mis93; HK94; EM97]. It is known that the geodesic equation on
a central extension of the group of volume-preserving diffeomorphisms is
equivalent to the flow of a perfectly conducting fluid. Here, only the follow-
ing references are noted: [Viz01] (and [Zei92]).

8.1. Fundamental Concepts

8.1.1. Volume-preserving diffeomorphisms

We consider flows of an inviscid incompressible fluid on a manifold M . The
flow region M may be a bounded domain D, or T 3, or R

3 (Fig. 8.1). In
§7.8.1, a fluid flow was described by a map φτa = x(τ, a) from the particle
coordinate a to the spatial coordinate x. Here, we are going to make the
description more precise, and we represent the flow of an incompressible
fluid on M by a continuous sequence of volume-preserving diffeomorphisms
of M , because each volume element is conserved in flows of an incompress-
ible fluid. Mathematically, the set of all volume-preserving diffeomorphisms
of M composes a group Dµ(M). An element g ∈ Dµ(M) denotes a map,
g : M → M .

D

2�

2�

2�

T3

R3u

n
(a) (b)

(c)

0

Periodic B.C.

Fig. 8.1. Flow regions: (a) A bounded domain, (b) T 3, (c) R
3.
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Suppose that a flow is described by a curve, t(∈ R) → gt(x) (with t

a time parameter), where a particle initially (t = 0) located at a point x

is mapped to the point gt(x) at a time t. All the particles at ∀x ∈ M (at
t = 0) are mapped to gt(x) simultaneously. The product of two maps gs

and gt is given by the composition law:

gt ◦ gs(x) = gt(gs(x)).

The expression gt(x) is the Lagrangian description of flows. The Lagrangian
description is alternatively written as

x = x(τ, a) = xa(τ), x(0,a) = a, (8.1)

(see §7.8.1), where τ = t. In the expression of gt(x), the variable x assume
the role of the particle coordinate a. Hence, we may write (8.1) as x = gta.
Its inverse is a = g−1

t x.
The volume-preserving map gt is characterized by unity of the Jacobian

J(gt) of the map a �→ x ((7.72), (7.73)):

J(gt) :=
∂(x)
∂(a)

=
∂(x1, x2, x3)
∂(a1, a2, a3)

= 1. (8.2)

The group Dµ(M), composed of all η satisfying J(η) = 1 for η ∈ D(M), is
a closed submanifold of D(M) which is a group of all diffeomorphisms of
M (see §8.5.2).

Displacement of a material particle x during a time ∆t is denoted by
gt+∆t(x) − gt(x). Therefore, the particle velocity is given by

ġt(x) = lim
∆t→0

gt+∆t(x) − gt(x)
∆t

= lim
∆t→0

g∆t − e

∆t
◦ gt(x)

= ut ◦ gt(x) = ut(gt(x)), (8.3)

at a time t, where gt+∆t = g∆t ◦ gt (Fig. 8.2). The velocity field

Ut(x) := ġt(x) = ut ◦ gt(x) (8.4)

e ut

gt gt

gt + ∆t
gt = ut gt

Fig. 8.2. Tangent vector ġt.



August 2, 2004 16:4 WSPC/Book Trim Size for 9in x 6in chap08

256 Geometrical Theory of Dynamical Systems and Fluid Flows

is a tangent vector field at gt for ∀x ∈ M . The subscript t denotes that
the tangent fields are time-dependent. In §7.15.1, Ut(x) was denoted as
v(τ, a) = ∂τxa(τ) in (7.143).

The expression Ut = ġt = ut ◦ gt is a right-invariant representation by
the definition (§1.7). Operating g−1

t (a right-translation) on Ut = ut ◦ gt,
we obtain the velocity field at g0 = e(= identity):

ut = Ut ◦ g−1
t = ġt ◦ g−1

t , ut ∈ TeDµ(M).

In §7.15.1, this was written as v(t, x), because the operation g−1
t from the

right of ġt (equivalent to v(τ, a)) means inverse transformation to express
a in terms of x. The ut(x) is the Eulerian representation of the velocity
field, where

ut(x) = ġt ◦ g−1
t x, = ġt(a),

hence ut(x) = ut(x) with x = x = gta, whereas Ut = ġt(a) is the
Lagrangian counterpart.

The volume-preserving condition (8.2), that is the invariance of the vol-
ume element Ja = dV/dVa = 1, is equivalent to Dt(dV ) = 0. From (7.76),
this leads to the divergence-free condition, divut = 0, for the Eulerian
velocity field ut.

In mathematical language, u = ut is an element of a Lie algebra
TeDµ(M), satisfying

divu = 0. (8.5)

The boundary condition (BC) for a bounded domain D is

BC : (u, n) = 0 on ∂D, (8.6)

where n is a unit outward normal to ∂D, i.e. the velocity vector u is tangent
to the boundary ∂D. If M = T 3, periodic boundary condition should be
imposed for the velocity u. If M = R

3, the velocity field u is assumed to
decay sufficiently rapidly at infinity so that volume integrals including u

converge.
For the sake of mathematically rigorous analyses, it is useful to con-

sider a manifold Ds
µ(M) which is a subgroup of volume-preserving dif-

feomorphisms (of M) of Sobolev class Hs, where s > n/2 + 1 and n =
dim M (see Appendix F). That is, Ds

µ(M) = {η ∈ Ds : η∗(µ) = µ},
where µ is the volume form of M , and η is a bijective map (Appendix A.2):
M → M such that η and η−1 are of Sobolev class Hs. The group Ds

µ(M)
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grad f

v

v

div v = 0

Fig. 8.3. Orthogonal projection.

is a weak Riemannian submanifold of the group Ds(M) of all Sobolev Hs-
diffeomorphisms of M [Mis93].

An arbitrary tangent field v ∈ TηDs(M) can be decomposed into
L2-orthogonal components of divergence-free part v̄ and gradient part
(Fig. 8.3):

v = v̄ + grad f, f ∈ Hs+1(M), (8.7)

(Appendix F), where div v̄ = 0. Using the operator P to denote the projec-
tion to the divergence-free part, we have

v̄ = P[v], Q[v] := v̄ − P[v] = grad f, (8.8)

where Q is the projection operator orthogonal to the divergence-free part.

8.1.2. Right-invariant fields

For the geometrical theory of hydrodynamics, it is important to realize that
the flow field can be represented in a right-invariant way. We saw already
in (8.4) that the velocity field Ut had the form of a right-invariant field.

Consider a tangent field Uξ at ξ ∈ Dµ(M) (ξ: a volume-preserving dif-
feomorphism on M), and suppose that Uξ is right-invariant:

Uξ(x) := u ◦ ξ(x), for ∀ξ ∈ Dµ(M), u ∈ TeDµ(M), (8.9)

where Ue = u. Correspondingly, a right-invariant L2-metric can be intro-
duced on Dµ(M). With any two tangent fields

u = u(x)∂ = uk(x)∂k, v = v(x)∂ = vk(x)∂k
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in the tangent space TeDµ(M), an inner product is defined by

〈u, v〉 :=
∫

M

(u(x), v(x))xdµ(x), (8.10)

where (u, v)x denotes the scalar product uk(x)vk(x) and dµ(x) the volume
form, defined pointwisely at x ∈ M .

With two right-invariant fields Uξ = u ◦ ξ and Vξ = v ◦ ξ in the tangent
space TξDµ(M), the right-invariant metric is defined by

〈Uξ, Vξ〉e :=
∫

M

(Uξ ◦ ξ−1, Vξ ◦ ξ−1) (ξ−1)∗dµξ =
∫

M

(u, v)xdµe = 〈u, v〉e,

(8.11)

where (ξ−1)∗dµξ is the pull-back of the volume form dµξ (Appendix B.6)
which is equal to dµe in the original space M(x) by the volume-preserving
property. Applying the right translation by ξ on the integrand of (8.11),
we have∫

ξ(M)
(Uξ ◦ ξ−1, Vξ ◦ ξ−1)x ◦ ξ dµξ =

∫
ξ(M)

(Uξ, Vξ)ξ dµξ := 〈Uξ, Vξ〉ξ.

(8.12)

The two integrals (8.11) and (8.12) are equal by the pull-back integration
formula (B.50) of Appendix B.7.2. Thus the present L2-metric is isometric,
〈Uξ, Vξ〉ξ = 〈u, v〉e, with respect to the right translation by any ξ ∈ Dµ(M).

In the previous section, we saw that the right-invariant velocity Ut =
ut ◦ gt is equivalent to the Lagrangian expression of the particle velocity
v(τ, a) = ∂τx(τ, a). Analogously, we may express the particle acceleration
∂τv(τ, a) in the right-invariant form. However, we must recall that the rep-
resentation ∂τv(τ, a) = ∇tv of (7.141) has been obtained on the basis of the
gauge principle. Correspondingly, we must regard the following connections
of the right-invariant form as the law of gauge principle.

Perhaps, the most essential premise in the formulation of hydrody-
namics given below is the right-invariance of the connections. For any
right-invariant vector fields Uξ, Vξ ∈ TξDs

µ(M), we define the following
right-invariant connection (Fig. 8.4),

∇̂Uξ
Vξ := (∇uv)e ◦ ξ, (8.13)

for ξ ∈ Dµ(M) and u, v ∈ TeDµ(M), where ∇ is the covariant deriva-
tive on M (manifold of Eulerian description). Similarly on the group
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1

2

3 (∇u v)3

(∇u v)1
(∇u v)2

Fig. 8.4. Right-invariant connection.

Dµ(M) of volume-preserving diffeomorphisms, we have the right-invariant
connection ∇̄,

∇̄Uξ
Vξ := P[∇uv] ◦ ξ, (8.14)

where the symbol P is the projection operator to the divergence-free part.
The difference between the two connections ∇̂ and ∇̄ is the second

fundamental form S of Dµ(M):

S(Uξ, Vξ) := ∇̂Uξ
Vξ − ∇̄Uξ

Vξ = Q[∇uv] ◦ ξ, (8.15)

(see (3.178)), where Q[∇uv] = ∇uv −P[∇uv]. This is right-invariant as well.
The curvature tensors are also defined in the right-invariant way. For

tangent fields U, V, W, Z ∈ TξDs
µ(M), the curvature tensor R̂ is defined on

D(M) by

(R̂(U, V )W )ξ := (R(U ◦ ξ−1, V ◦ ξ−1)W ◦ ξ−1) ◦ ξ, (8.16)

where R is the curvature tensor on M :

R(u, v)w := ∇u(∇vw) − ∇v(∇uw) − ∇[u,v]w (8.17)

for u, v, w ∈ TeDµ(M) (see (3.97)). The curvature tensor R̄ on the
divergence-free fields TDµ(M) is given by replacing ∇ of (8.17) with ∇̄:

R̄(u, v)w := ∇̄u(∇̄vw) − ∇̄v(∇̄uw) − ∇̄[u,v]w. (8.18)

Both curvature tensors R and R̄ are related by the following Gauss–
Codazzi equation (3.179) on TeDµ(M):

〈R(u, v)w, z〉L2 = 〈R̄(u, v)w, z〉 + 〈S(u, w), S(v, z)〉 − 〈S(u, z), S(v, w)〉.
(8.19)
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8.2. Basic Tools

We are going to present basic tools for the geodesic formulation of hydro-
dynamics (of incompressible ideal fluids) on a group of volume-preserving
diffeomorphisms of M , i.e. Dµ(M). Let M be a compact (bounded and
closed) flow domain of a Riemannian space. The Lie algebra corresponding
to the group Dµ(M) consists of all vector fields u on M , i.e. u ∈ TeDµ,
such that

divu(x) = 0 at x ∈ M, (u, n) = 0 on ∂M, (8.20)

where n is unit outward normal to the boundary ∂M (Fig. 8.5). The metric
is defined by (8.10) or (8.11).

8.2.1. Commutator

Commutator of the present problem of volume-preserving diffeomorphisms
is given by

[u, v] = {u, v} = uk∂kv − vk∂ku (8.21)

(see (1.76) and (1.77)). The right-hand side can be shown as divergence-free
if each one of the vector fields u and v is so, i.e. u, v ∈ TeDµ. In fact, we
have the vector identity,

∇ × (u × v) = (v · ∇)u + (∇ · v)u − (u · ∇)v − (∇ · u)v (8.22)

= (v · ∇)u − (u · ∇)v = −{u, v}. (8.23)

Obviously, the left-hand side is divergence-free.

u
n

div u = 0

M
�M

Fig. 8.5. Flow domain M and boundary ∂M .
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By the torsion-free property,

[u, v] = ∇uv − ∇vu,

of the Riemannian connection (§3.3.1), the commutator [Uξ, Vξ] = ∇Uξ
Vξ −

∇Vξ
Uξ is also represented in a right-invariant form, since each term on the

right-hand side is so:

[Uξ, Vξ] = [u, v] ◦ ξ. (8.24)

8.2.2. Divergence-free connection

The Riemannian connection ∇ is defined by Eq. (3.30), which is repro-
duced here:

2〈∇uv, w〉 = 〈[u, v], w〉 − 〈[v, w], u〉 + 〈[w, u], v〉, (8.25)

for u, v, w ∈ TeDµ(M), where u = uk∂k, etc. This is assured by the right-
invariance of the metric 〈·, ·〉 defined in the previous section, and also by the
right-invariance of the vector fields defined by (8.9) (see (3.87) and notes
in §3.7.3 and 3.4.3).

The adjoint action advw = [v, w] is defined in §1.8, and the coadjoint
action ad∗

vu is defined by (3.64) in §3.6.2 as

〈ad∗
vu,w〉 = 〈u, advw〉 = 〈u, [v, w]〉. (8.26)

From (8.25), we obtain

∇uv =
1
2
([u, v] − ad∗

uv − ad∗
vu) + grad f, (8.27)

by the nondegeneracy of the metric (§3.1.2 and 1.5.2), where f(x) is an
arbitrary differentiable scalar function. The last term grad f can be added
because

〈w, grad f〉 =
∫

M

(w, grad f)dµ =
∫

M

div(fw)dµ =
∫

∂M

f(w,n)dS = 0,

i.e. the grad f term does not provide any contribution to the inner product
with a divergence-free vector w satisfying (8.20). This is also satisfied by
periodic boundary condition when M = T 3.
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Taking projection to the divergence-free part, we have

∇̄uv = P

[
1
2
([u, v] − ad∗

uv − ad∗
vu) + grad f̄

]
, (8.28)

where the function f̄(x) is to be determined so as to satisfy the condition,
div ∇̄uv = 0.

8.2.3. Coadjoint action ad∗

One can give an explicit expression to the coadjoint action ad∗
uv defined by

(8.26). In M = R
3, this is represented as follows:

B ≡ ad∗
uv = −(∇ × v) × u + grad f. (8.29)

This formula can be verified in two ways. First one is a direct derivation
from (8.26). In fact, using the definition (8.10), and (8.21), (8.23), we obtain

〈ad∗
uv, w〉 = 〈v, [u,w]〉 =

∫
M

(v, [u, w])xdx

= −
∫

M

(v,∇ × (u × w))xdx = −
∫

M

(∇ × v, u × w)xdx

= −
∫

M

((∇ × v) × u, w)xdx = −〈(∇ × v) × u,w〉.

This verifies the expression (8.29) for any triplet of u, v, w ∈ TeDµ(M)
satisfying (8.20), because 〈grad f, w〉 = 0.

There is a more general approach to verify (8.29), which relies on differ-
ential forms on a Riemannian manifold Mn (of dimension n). To every tan-
gent vector v = vk∂k, one can define a 1-form α1

v = vidxi where vi = gikvk

(§1.5.2). Then, we have α1
v[w] = gikvkwi = 〈v, w〉 for any tangent vector w.

In addition, setting

B = Bi∂i ≡ ad∗
uv,

we can define a corresponding 1-form by α1
B = gikBkdxi.
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Then, we have a theorem for the vector field B = ad∗
uv ∈ TeDµ(M).

That is, the corresponding 1-form α1
B is given by the formula [Arn66]1:

α1
B = −iudα1

v + df, (8.30)

where iu is the operator symbol of interior product (Appendix B.4), u, v ∈
TeDµ(M), and df = ∂ifdxi. Its proof is given in the last section §8.9 for a
Riemannian manifold Mn generally.

If M = R
3 and gij = δij , the machinery of vector analysis in the

euclidean space is in order (Appendix B.5). First, since α1
v = vxdx+vydy+

vzdz (where vi = δikvk = vi), we have

dα1
v = Vxdy ∧ dz + Vydz ∧ dx + Vzdx ∧ dy,

where V = (Vx, Vy, Vz) = ∇ × v. Then the first term of (8.30) is

iudα1
v = (Vyuz − Vzuy)dx + (Vzux − Vxuz)dy + (Vxuy − Vyux)dz

= Wxdx + Wydy + Wzdz,

where W = (Wx, Wy, Wz) = V × u = (∇ × v) × u. In view of α1
B =

Bxdx+Bydy+Bzdz, Eq. (8.30) implies B ≡ ad∗
uv = −(∇×v)×u+grad f ,

which is (8.29) itself.

8.2.4. Formulas in RRR
3 space

Following convention, we use bold face letters to denote vectors in R
3 and

a dot to denote the scalar product, in this chapter. Then, the expression
(8.21) is written for u,v ∈ TeDµ(R3) as

aduv ≡ [u,v] = (u · ∇)v − (v · ∇)u. (8.31)

Equation (8.29) is

ad∗
uv = −(∇ × v) × u + ∇fuv. (8.32)

Noting the following vector identity,

(∇ × v) × u = (u · ∇)v − uk∇vk, (8.33)

the coadjoint action is also written as

ad∗
uv = −(u · ∇)v + uk∇vk + ∇fuv. (8.34)

1Due to the difference of definition of [v, w] by ±, [Arn66] gives α1
B = iudα1

v + df .
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If v = u and uk∇vk = ∇(u2/2), we may write

ad∗
uu = −(u · ∇)u − ∇p (8.35)

= −(∇ × u) × u − ∇1
2
u2 − ∇p, (8.36)

where p = −fuu − 1
2u2. The scalar function p must satisfy

∇2p = −div((u · ∇)u) = −∂i∂k(uiuk), (8.37)

to ensure div(ad∗
uu) = 0, where div u = ∂iu

i = 0.
Using (8.31) and (8.34), the connection (8.27) is given by

∇uv =
1
2
([u,v] − ad∗

uv − ad∗
vu) + grad f = (u · ∇)v + ∇p′, (8.38)

where p′ = f − 1
2 (ukvk + fuv + fvu). Furthermore, the divergence-free con-

nection (8.28) is

∇̄uv = P[(u · ∇)v + ∇p′] = (u · ∇)v + ∇p∗, (8.39)

where the scalar function p∗ must satisfy

∇2p∗ = −div((u · ∇)v) = −∂k∂i(uivk), (8.40)

since ∂iu
i = 0. In particular, for v = u, we have

∇̄uu = (u · ∇)u + ∇p. (8.41)

The property div(∇̄uu) = 0 is assured by p satisfying (8.37). Using the
vector identity (8.33) with v = u, the divergence-free connection (8.41) can
be written also as

∇̄uu = (∇ × u) × u + ∇
(

1
2
u2
)

+ ∇p. (8.42)

8.3. Geodesic Equation

In §3.6.2, we derived the geodesic equation of a time-dependent problem
which is given by (3.67): ∂tX −ad∗

XX = 0 for the tangent vector X (spatial
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part). Setting X = u and using (8.35), the geodesic equation becomes

∂tu + (u · ∇)u + ∇p = ∇tu + ∇p = 0, (8.43)

where ∇t = ∂t + u · ∇, and p should satisfy (8.37). This is also written as

∂tu + ∇̄uu = 0. (8.44)

Taking divergence, we obtain ∂t(divu) = 0. Therefore, the divergence-free
condition divu = 0 is satisfied at all times if it is satisfied initially at all
points. This is nothing but the Euler’s equation of motion for an incom-
pressible fluid. Equivalently, the geodesic equation is also written as

∂tu + (∇ × u) × u + ∇1
2
u2 = −∇p. (8.45)

This is consisitent with (7.158) in Chapter 7.
The above is the Eulerian description for the velocity u(t, x). In order

to obtain the right-invariant representation, consider a curve: t → gt ≡ ξ

and its tangent ġt = ξ̇.2 Using (8.13) and (3.16) with Vξ = Uξ and ξ̇ = u◦ξ,
the right-invariant connection of a time-dependent problem is given by

∇̂Uξ
Uξ =

∂

∂t
(ξ̇ ◦ ξ−1) ◦ ξ + (∇(ξ̇◦ξ−1)ξ̇ ◦ ξ−1) ◦ ξ, (8.46)

where ξ̇ ◦ ξ−1 = u and Uξ = ξ̇. This right-invariant form must be regarded
as representing the gauge principle, as noted in §8.1.2.

The geodesic equation on the group Dµ(M) is given by vanishing of the
projection to the divergence-free part as P[∇̂ġt

ġt] = P[∇̂Uξ
Uξ] = 0, i.e.

0 = P[(∇̂ġt
ġt)gt

] = P[∂tu + ∇uu] ◦ gt. (8.47)

The Euler’s equation of motion is obtained by the right translation g−1
t as

P[∂tu + ∇uu] = 0, which is also written as

∂tu + ∇uu = −grad p, divu = 0. (8.48)

This form is valid in a general manifold M . In the euclidean manifold R
3,

we have

∇uu = ∇uk∂k
u = uk∇∂k

u = uk∂ku = (u · ∇)u, (8.49)

by the definition of the connection (3.6) in the flat space where Γk
ij = 0.

Using the projection operator Q orthogonal to the divergence-free part, the

2In order to simplify the notation, ξ is used instead of gt.
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above equation reduces to

Q[∇uu] = −grad p. (8.50)

This is another expression of (8.37).

8.4. Jacobi Equation and Frozen Field

Consider a family of geodesic curves g = g(t, α) with α as the varia-
tion parameter. A reference geodesic is given by g0(t) = g(t, 0). Behav-
iors of its nearby geodesics are described by the Jacobi field J , defined by
J = ∂g/∂α|α=0. The equation governing J is given by (3.127), which is
reproduced here,

d2

dt2
‖J‖2

2
= ‖ ∇̄T J‖2 − K(T, J), (8.51)

where T = ∂g/∂t|α=0 is the tangent to the geodesic g0, and J is the
Jacobi vector where ‖J‖2 = 〈J, J〉. The K(T, J) is the sectional curvature
defined by

K(T, J) := 〈R̄(J, T )T, J〉 = RijklJ
iT jJkT l.

The above Jacobi equation (8.51) has been derived from the definitions of
the geodesic curve and Riemannian curvature tensor in §3.10. It is seen that
the sectional curvature K(T, J) controls the stability behavior of geodesics.
Writing J = ‖J‖eJ where ‖eJ‖ = 1, Eq. (8.51) is rewritten as

d2

ds2 ‖J‖ = (‖∇T eJ‖2 − K(T, eJ))‖J‖. (8.52)

Let us consider the Jacobi field from a different point of view. According
to the above definitions of T and J , Eq. (3.91) is written as ∇̄T J = ∇̄JT by
applying the definition (3.24) to the divergence-free connection ∇̄. There-
fore, the vector fields T and J commute by the torsion-free property (3.18).
Thus, it is found that the Lie derivative vanishes:

LT J = [T, J ] = ∇̄T J − ∇̄JT = 0 (8.53)

(see (1.81)). The argument given above the equation (3.174) asserts that
the torsion-free is valid not only with the divergence-free connection ∇̄, but
also with the general connection ∇̂ as well. Thus, we have ∇̂T̂ Ĵ − ∇̂Ĵ T̂ =
[T̂ , Ĵ ] = 0.
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In the time-dependent problem in R
3, it is noted that the tangent vector

(velocity vector) of a flow is written as T̂ = (∂t, u
k∂k), whereas the Jacobi

vector (non-velocity vector) is written as Ĵ = (0, Jk∂k). Then, the equation
[T̂ , Ĵ ] = 0 is rewritten as

∂tJ + (u · ∇)J = (J · ∇)u, (8.54)

by (8.21). This is equivalent to (1.81) under the divergence-free condition.
Assuming ∇ · J = 0,3 this equation is transformed to

∂tJ + ∇ × (J × u) = 0, (8.55)

by using the vector identity (8.22), because ∇·u = 0. This is usually called
the equation of frozen field, (see Remark of §1.8) since it indicates that the
divergence-free field J is carried along with the flow u and behaves as if J

were frozen to the carrier fluid (Fig. 8.6).
The vorticity defined by ω = curlu is regarded as an example of the

Jacobi field. Taking the curl of Eq. (8.45), we obtain the vorticity equation,

∂tω + ∇ × (ω × u) = 0. (8.56)

Obviously, this is an equation of frozen-field with J replaced by ω in (8.55).
Note that this equation can be rewritten as

∂tω + (u · ∇)ω − (ω · ∇)u = [û, ω̂] = 0. (8.57)

g(t, �)

g(t, 0)
J J

T
eJ

Fig. 8.6. Frozen-in field.

3Equation (8.54) is rewritten as ∂tJ + ∇ × (J × u) = (∇ · u)J − (∇ · J)u. Taking div
and using ∇·u = 0, we obtain ∂t(∇·J)+(u ·∇)(∇·J) = 0. Hence, if ∇·J = 0 initially,
we have ∇ · J = 0 thereafter.
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Comparing Eq. (8.54) with (1.82) in view of D/Dt = ∂t + u · ∇, we
obtain the Cauchy’s solution (1.83) written as

Jk(t) = Jj(0)
∂xk

∂aj
, (8.58)

where the Lagrangian description (8.1) of the map from the particle coor-
dinate a to the space coordinate x is used.

Remark. Equation (8.55) can be extended to the compressible flow of
divv �= 0 but with keeping divJ = 0 without change, where the veloc-
ity field is denoted by v instead of u. This is the case of the vorticity
equation (7.195) for the vorticity ω = ∇ × v instead of J . Introducing
the fluid density ρ and using the continuity equation (7.160), the vorticity
equation is transformed to

d
dt

(
ω

ρ

)
=
(

ω

ρ
· ∇

)
v (8.59)

(see (7.196)). Comparing this equation with (1.82), we obtain the Cauchy’s
solution

ωk(t, x)
ρ(t, x)

=
ωj(0,a)
ρ(0,a)

∂xk

∂aj
, (8.60)

since ω/ρ takes the part of Y in (1.82).
It is well-known that the magnetic field B in the ideal magneto-

hydrodynamics is also governed by the same equation of frozen field as
(8.59), where ω is just replaced with B [Moff78].

8.5. Interpretation of Riemannian Curvature of Fluid Flows

8.5.1. Flat connection

It is instructive to consider a model system on a manifold D∗(M),
governed by

∂tu + (u · ∇)u = 0, (8.61)

instead of the geodesic equation ∂tu + ∇̄uu = 0 of (8.44) on Dµ(M)
(volume-preserving) for M ⊂ R

3. In this model system, the connection
is flat, i.e. the sectional curvatures vanish identically. This is verified as
follows.
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First, note the following equations,

∇XZ = X · ∇Z = Xk∂kZ,

∇X∇Y Z = Xk∂k((Yl∂l)Z) = (Xk∂kY l)∂lZ + XkY l∂k∂lZ,

∇[X,Y ]Z = [X,Y ] · ∇Z = (Xk∂kY l∂l − Y l∂lX
k∂k)Z,

for three arbitrary tangent vectors X = Xk∂k, Y = Y l∂l, Z ∈ TeDµ(M).
Then, the curvature tensor R(X,Y )Z defined by (8.17) is given by

R(X,Y )Z = ∇X(∇Y Z) − ∇Y (∇XZ) − ∇[X,Y ]Z

= Xk∂k((Y l∂l)Z) − Y l∂l((Xk∂k)Z)

− ((Xk∂kY l)∂l − (Y l∂lX
k)∂k))Z = 0, (8.62)

that is, the curvature tensor R(X,Y )Z vanishes for any X,Y, Z. Therefore,
all the sectional curvatures defined by K(X,Y ) = 〈R(X,Y )Y, X〉 vanish.
Such a connection is said to be flat.

Thus the motion governed by (8.61) is considered to be one on a
flat manifold. However, the geodesic equation (8.43) on Dµ(M) (volume-
preserving) has an additional term grad p, and the fluid motion is char-
acterized by non-vanishing Riemannian curvatures as investigated below.
Therefore, it may be concluded that the pressure term gives rise to curva-
tures of fluid motion.

8.5.2. Pressure gradient as an agent yielding curvature

Let us consider how the fluid motion acquires a curvature and what the
curvature of a divergence-free flow is. On the group Dµ(M) of volume-
preserving diffeomorphisms of M , the Jacobian J(η(x)) for η ∈ D(M) is
always unity for any x ∈ M :

J(η(x)) :=
∂(η)
∂(x)

= 1, ∀x ∈ M.

From the implicit function theorem, the group Dµ(M), composed of all η

satisfying J(η) = 1, is a closed submanifold of D(M). According to the
formulation of §3.13 and 8.1.2, the difference of the two connections, ∇̂ in
D(M) and ∇̄ in Dµ(M), is given by the second fundamental form S of
(8.15) (see (3.178)).

The curvature of the closed submanifold Dµ(M) is given by
〈R̄(U, V )W, Z〉 in the Gauss–Codazzi equation (8.19). In particular, the
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sectional curvature of the section spanned by the tangent vectors X,Y ∈
TηDµ(M) is given by

K̄(X,Y )Dµ := 〈R̄(X,Y )Y, X〉Dµ

L2

= 〈R(X,Y )Y, X〉M + 〈S(X,X), S(Y, Y )〉 − ‖S(X,Y )‖2,

(8.63)

where the Dµ raised to the superscript emphasizes that K̄(X,Y ) denotes
the sectional curvature on the group of volume-preserving diffeomorphisms.
This describes a non-trivial fact that, even when the manifold D(M) is flat,
i.e. 〈R(X,Y )Y, X〉M = 0, the curvature K̄(X,Y )Dµ of Dµ(M) does not
necessarily vanish due to the second and third terms associated with the
second fundamental form S. Namely, the curvature of a divergence-free flow
originates from the following part,

K̄S(X,Y ) := 〈S(X,X), S(Y, Y )〉L2 − ‖S(X,Y )‖2.

Thus it is found that the restriction to the volume-preserving flows gives
rise to the additional curvature K̄S .

It is useful to see that the second fundamental form is related to the
pressure gradient. In fact, we have

S(X,Y ) := ∇̂XY − ∇̄XY = Q[∇XY ] (8.64)

from (8.15). The decomposition theorem (Appendix F) says that an arbi-
trary vector field v can be decomposed orthogonally into a divergence-free
part and a gradient part. Setting v = ∇XY in (F.1) of Appendix F, one
obtains immediately

Q[∇XY ] = gradG(∇XY ), G(v) = FD(v) + HN(v).

Thus it is found that the curvature is related to the “grad” part of the
connection ∇XY which is orthogonal to TeDµ(M).

In particular, for ηt ∈ Dµ(M) and η̇t(e) = X, we have S(X,X) =
Q[∇XX] from (8.64). Using (8.50), we obtain

S(X,X) = Q[∇XX] = −grad pX , (8.65)

where pX is the pressure of the velocity field X. It is found that the second
fundamental form S(X,X) is given by the pressure gradient (Fig. 8.7).

The first term of K̄S is represented as 〈S(X,X), S(Y, Y )〉 =
〈grad pX , grad pY 〉, a correlation of two pressure gradients, and the second
term is non-positive.
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D�(Μ) –∇px

∇px

e ∇xX

∇xX�t

Fig. 8.7. Pressure gradient, grad pX .

Thus, the K̄S part of the curvature is given by

K̄S(X,Y ) = 〈grad pX , grad pY 〉 − ‖gradG(∇XY )‖2. (8.66)

8.5.3. Instability in Lagrangian particle sense

Stability in Lagrangian particle sense is different from the stability of the
velocity field in Eulerian sense. In the stability analysis of conventional
fluid dynamics, growth or decay of velocity perturbations are of concern. A
velocity field is said to be stable in the Eulerian sense if, at fixed points x,
small perturbations in the initial velocity field do not grow exponentially
with time t.

Consider a steady parallel shear flow (Fig. 8.8), whose velocity field is
given by

X = (U(y), 0, 0), and p = const. (8.67)

This is an exact solution of the equation of motion (8.43). Since ∂tX = 0
and ∇XX = (X · ∇)X = U∂xX = 0, Eq. (8.43) results in grad p = 0 and
hence we have p = const.

In [Mis93, Example 4.4], it is shown that the geodesic curve gt = (x +
t sin y, y, z) in Dµ(M) is stable in the Eulerian sense. Noting X = ġt ◦ g−1

t ,
the velocity X has the form (8.67), where

U(y) = sin y for 0 ≤ y ≤ π, (8.68)

(and −π ≤ x, z ≤ π, say). It is claimed that this flow is stable in the
Eulerian sense because the velocity profile U(y) = sin y has no inflection
point within the flow domain 0 < y < π. The Rayleigh’s inflection point
theorem [DR81] requires existence of inflection points where U ′(y) = 0 in
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y

0

z

x

U(y)

Fig. 8.8. Parallel shear flow.

the velocity profile as a necessary condition for instability of an inviscid
fluid flow.4

However, in the Lagrangian particle sense, the above flow is regarded
as unstable, since perturbations to the diffeomorphisms of particle config-
uration grow with time. This is seen by using Eq. (8.51) for the Jacobi
field J and the sectional curvature (8.63), where K(T, J) is replaced by
K̄(X, J)Dµ . Suppose that the manifold M is the euclidean space R

3 char-
acterized with zero sectional curvatures, i.e. 〈R(J, X)X, J〉M = 0 (shown
in §8.5.1). Then, we have

K̄(X, J)Dµ = 〈S(X,X), S(J, J)〉 − ‖S(X, J)‖2.

The above flow (8.68) is a constant-pressure flow, hence the first term on
the right vanishes because S(X,X) = 0 due to (8.65) and (8.67). Therefore
we obtain

K̄(X, J)Dµ = K(X, eJ)‖J‖2 ≤ 0.

Then Eq. (8.52) is

1
‖J‖

d2

ds2 ‖J‖ = (‖∇XeJ‖2 − K(X, eJ)) ≥ 0. (8.69)

This equation implies that the Jacobi vector J grows exponentially at initial
times, provided that the coefficient ‖∇XeJ‖2 − K(X, eJ) takes a positive
value (i.e. not zero). Therefore, the flow (8.68) is unstable in the Lagrangian
particle sense. This is because the variation of a nearby geodesic of the
parameter α is given by αJ for an infinitesimal α.

4In the present geometrical theory, the fluid is regarded as ideal, i.e. the viscosity ν is
zero. The ideal fluid is inviscid. The velocity profile U = sin y (0 ≤ y ≤ π) is chosen due
to mathematical simplicity and is somewhat artificial.
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The above analysis suggests that all the parallel shear flows represented
by (8.67) are unstable in the Lagrangian particle sense, because they are
constant-pressure flows. This is investigated again in §8.7 by calculating the
sectional curvatures explicitly.

8.5.4. Time evolution of Jacobi field

Jacobi field J(t) is uniquely determined by its value J(0) and the value of
∇T J at t = 0 on the geodesic gt in the neighborhood of t = 0. Provided
that J(0) = 0 and

‖∇T J‖t=0 = ‖∂tJ‖t=0 := a0,

initial development of the magnitude of Jacobi field is given by Eq. (3.133)
(with t replacing s) in §3.10.2,

‖J‖
a0t

= 1 − t2

6
κ(0) + O(t3), κ(0) ≡ 〈R(J, T )T, J〉

|J |2

∣∣∣∣
t=0

. (8.70)

Therefore, if κ(0) < 0, then ‖J‖/a0t > 1, and if κ(0) > 0, then ‖J‖/a0t < 1
for sufficiently small t. Thus, the time development of the Jacobi vector is
controlled by the curvature 〈R(J, T )T, J〉 and in particular by its sign.

8.5.5. Stretching of line-elements

Consider two nearby geodesic flows gt(x : v1) and gt(x : v2) emanating
from the identity e with two different initial velocity fields v1 and v2 in a
bounded domain D (hence g0(x : v1) = g0(x : v2) = x). An L2-distance
between the two flows at a time t may be defined (Fig. 8.9) by

d(v1, v2 : t) :=
(∫

D

|gt(x : v1) − gt(x : v2)|2d3x

)1/2

.

v2

x
v1

gt (x : v2)

g
t (x : v1)

d

Fig. 8.9. Distance between two flows.
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Evidently, one has d(v1, v2 : 0) = 0. By definition, we have a Taylor expan-
sion with respect to the time t:

gt(x : v) = x + tv(gt(x), t) +
1
2
t2∇tv +

t3

6
(∇t)2v + O(t4), (8.71)

where ∇t = ∂t + v · ∇ (see (8.43)). The distance d is the mean L2-distance
between two particles starting at the same position x but evolving with
different initial velocity fields v. Let us introduce v̄ and v′ by

v̄ = (v1 + v2)/2, εv′ = (v1 − v2)/2,

with an infinitesimal constant ε, then the Jacobi field is defined by J(t) =
(∂/∂ε)gt(x, : v̄ + εv′)|ε=0, and we have

d ≈ 2ε‖J‖

for infinitesimally small ε, and a0 = ‖v′‖. Then, from the formula (8.69),
we have

d(v1, v2 : t) = 2ε‖v′‖
(

t − t3

6
‖v̄‖2 sin2 θK̂(v̄, v′)

)
+ O(ε2t, εt5),

K̂(v̄, v′) = 〈R(v′, v̄)v̄, v′〉/(‖v̄‖2‖v′‖2 − 〈v̄, v′〉2),

where cos θ = 〈v̄, v′〉/‖v̄‖‖v′‖. This formula was verified for two-dimensional
flows on a flat two-torus T 2 by [HK94]. It is found that the sectional curva-
ture appears as a factor to the t3 term with a negative sign and determines
the departure from the linear growth of the L2-distance. This means, if
the curvature is negative, the L2-distance d grows faster than the linear
behavior, and furthermore Eq. (8.52) implies an exponential growth of the
distance d ∼ 2ε|v′|J for negative K̂(v̄, v′). The variable d is also interpreted
as the mean distance between two neighboring particles in the same flow
field [HK94].

In the case of flows in a bounded domain D without mean flow, the
negative curvature implies mixing of particles. Consider a finite material
segment δl connecting two neighboring particles. The segment δl will be
stretched initially by the negative curvature. In due time, the segment δl

will be folded by the boundedness of the domain. The stretching and folding
of segments are two main factors for chaotic mixing of particles. Stretching
of line segments was studied for a two-dimensional turbulence in [HK94],
and it was found that average size of δl actually grows exponentially with
t if the average value of sectional curvatures is negative initially.



August 2, 2004 16:4 WSPC/Book Trim Size for 9in x 6in chap08

Volume-Preserving Flows of an Ideal Fluid 275

8.6. Flows on a Cubic Space (Fourier Representation)

Explicit expressions can be given for space-periodic flows in a cube of
(2π)3 by Fourier representation, i.e. for flows on a flat 3-torus M = T 3 =
R

3/(2πZ)3 [NHK92; HK94]. With x ∈ T 3, we have x = {(x1, x2, x3);
mod 2π}. The manifold T 3 is a bounded manifold without boundary
(Fig. 8.10). The elements of the Lie algebra of the volume-preserving dif-
feomorphism group Dµ(T 3) can be thought of as real periodic vector fields
on T 3 with divergence-free property. Such periodic fields are represented by
the real parts of corresponding complex Fourier forms. The Fourier bases
are denoted by ek = eik·x where k = (ki) is a wave number covector with
ki ∈ Z (integers) and i = 1, 2, 3.5 Now the representations are complexified
so that all the fields become linear (or multilinear) in the complex vector
space of the complexified Lie algebra. The bases of this vector space are
given by the functions ek (k ∈ Z3, k �= 0). The velocity field u(x, t) is
represented as

u(x, t) =
∑
k

uk(t)ek,

where uk(t) is the Fourier amplitude, also written as ui(k) (i = 1, 2, 3).
The amplitude must satisfy the two properties,

k · uk = 0, u−k = u∗
k, (8.72)

T3 = R3/(2�Z)3 y

y = �

x = –�

z = –�

y = –�

z = �

x = �

0

z

x

BC:

u(x = �) = u(x = –�)
u(y = �) = u(y=–�)
u(z= �) = u(z = –�)

Fig. 8.10. 3-torus T 3 and BC.

5In this section, the subscript k and other roman letters in the subscript are understood
to denote three-component vectors which are written with bold faces otherwise.
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to describe the divergence-free condition and reality condition respectively,
where the asterisk denotes the complex conjugate.6 It should be noted that
uk has two independent polarization components. For example, if k =
(kx, 0, 0), then uk = (0, uy

k, uz
k).

Let us take four tangent fields satisfying (8.72): ukek,vlel,wmem,znen,
and use the scalar product convention such as (u ·v) = u1v1 +u2v2 +u3v3.
Then we have the following metric, covariant derivative, commutator, etc.

The metric is defined by (8.10) with M = T 3, which results in

〈ukek,vlel〉 = (2π)3(uk · vl)δ0,k+l,

where δ0,k+l = 1 (if k + l = 0) and 0 (otherwise).
The covariant derivative is obtained from (8.39) with p∗ satisfying

(8.40). In fact, the simple connection is

∇(ukek)(vlel) = ek(uk · ∇)vlel = i(uk · l)vlek+l. (8.73)

The function p∗ must satisfy

∇2p∗ = −div[∇(ukek)(vlel)] = −i2(uk · l)(vl · (k + l))ek+l.

This is satisfied by

p∗ = − 1
|k + l|2 (uk · l)(vl · (k + l))ek+l. (8.74)

The divergence-free connection is defined by

∇̄(ukek)(vlel) = ∇(ukek)(vlel) + ∇p∗

= i(uk · l)
k + l

|k + l| ×
(

vl × k + l

|k + l|

)
ek+l. (8.75)

It is seen that the amplitude vector on the right is perpendicular to k + l.
Therefore ∇̄(ukek)(vlel) is divergence-free.

The commutator is defined by (8.21), which results in

[ukek,vlel] = ∇(ukek)(vlel) − ∇(vlel)(ukek)

= i((uk · l)vl − (vl · k)uk)ek+l

= −i(k + l) × (uk × vl)ek+l. (8.76)

The right side is also perpendicular to k + l. Hence [ukek,vlel] is
divergence-free as well.

6We obtain div u =
∑

k ik · ukek = 0, and ukek + u−ke−k = ukek + u∗
ke∗

k = 2�[ukek].
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The geodesic equation (8.44) reduces to

∂

∂t
ul(k) + i

∑
p+q=k

∑
m,n

(
δln − klkn

k2

)
kmum(p)un(q) = 0, (8.77)

by using (8.75).
From the definition (8.17) with ∇ replaced by the divergence-free ∇̄

and by using (8.75), the curvature tensor is found to be nonzero only for
k + l + m + n = 0, and expressed as

R̄klmn := 〈R̄(ukek,vlel)wmem,znen〉

= (2π)3 ×
(

− (uk · m)(wm · k)
|k + m|

(vl · n)(zn · l)
|l + n|

+
(vl · m)(wm · l)

|l + m|
(uk · n)(zn · k)

|k + n|

)
, (8.78)

and R̄klmn = 0 if k + l +m+n �= 0. In case when one of the denominators
vanishes, then the term originally possessing it should be excluded. In other
words, if k + m = 0 (then l + n = 0 too), the first term in the parenthesis
of (8.78) should be annihilated, but the second term is retained as far as
k + n �= 0 and l + m �= 0. When k + m = 0, we obtain ∇̄(ukek)(wmem) =
i(uk · m)wme0 = const by using (8.39) and (8.40) with p∗ = const. The
vanishing of the first term is a consequence of this property.

The two-dimensional problem of flows on T 2 was first studied by Arnold
[Arn66]. When two-dimensionality is imposed, the above formulas reduce
to those of [Arn66]. Because of difference of the definitions, the signs of
curvature tensors are reversed.

8.7. Lagrangian Instability of Parallel Shear Flows

8.7.1. Negative sectional curvatures

On the basis of the representations deduced in the previous section for
the flows in a cubic space with periodic boundary conditions, we again
consider sectional curvature of steady parallel shear flows of the form Y =
(U(y), 0, 0) (and p = const), where U(y) = sin ky or cos ky (Fig. 8.11).
Introducing a constant wave vector k and Fourier amplitude uk as

k = (0, k, 0), uk =
(

1
2i

, 0, 0
)

, or uk =
(

1
2
, 0, 0

)
, (8.79)
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y = �

x = –�

z = –�

U = sin y
x = �y

x

z z = �

0

y = –�

Fig. 8.11. Parallel shear flow Y = (sin y, 0, 0) for k = 1.

together with the cartesian coordinate x = (x, y, z), we have

Y = ukek + u−ke−k = (sin ky, 0, 0) or (cos ky, 0, 0)

for −π ≤ x, y, z ≤ π.
Let X =

∑
vmem be any velocity field, satisfying the properties (8.72).

Then, the sectional curvature 〈R̄(X,Y )Y, X〉 can be shown to be non-
positive for both U(y) = sin ky and cos ky. Procedure of its verification
is similar and the result is also the same for both flows, which is as follows.

Substituting the above Fourier representations of X and Y and using
the property that nonzero R̄klmn must satisfy k+ l+m+n = 0, we obtain
the following,

〈R̄(X,Y )Y, X〉 =
∑
m

(〈R̄(vmem,ukek)ukek,v−m−2ke−m−2k〉

+ 〈R̄(vmem, ukek)u−ke−k, v−me−m〉
+ 〈R̄(vmem, u−ke−k)ukek, v−me−m〉
+ 〈R̄(vmem, u−ke−k)u−ke−k,v−m+2ke−m+2k〉).

Substituting (8.78) and (8.79), we obtain

〈R̄(X,Y )Y, X〉 = −(2π)3
k2

4


 ∑

m( 	=−k)

m2
x

|m + k|2 (vmv−m ± vmv−m−2k)

+
∑

m( 	=k)

m2
x

|m − k|2 (vmv−m ± vmv−m+2k)


 ,
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where uk · m = (uk)xmx and vm · k = k(vm)y = kvm, with the upper sign
for U = sin ky, the lower sign for U = cos ky. Replacing m in the second
term with m + 2k, the above is transformed to

〈R̄(X,Y )Y, X〉 = −(2π)3
k2

4

∑
m( 	=−k)

m2
x

|m + k|2

× (vmv−m ± vmv−m−2k ± vm+2kv−m + vm+2kv−m−2k)

= −(2π)3
k2

4

∑
m( 	=−k)

m2
x

|m + k|2 |vm ± vm+2k|2, (8.80)

since v−m = v∗
m and v−m−2k = v∗

m+2k. Thus, it is found

〈R̄(X,Y )Y, X〉 ≤ 0. (8.81)

It is remarkable that this result is valid for both U = sin ky and U = cos ky.
This non-positive sectional curvature is a three-dimensional counterpart of
the Arnold’s two-dimensional finding [Arn66].

8.7.2. Stability of a plane Couette flow

The sinusoidal parallel flows U(y) = sin ky or cos ky considered in the previ-
ous subsection are chosen by mathematical simplicity, i.e. they are Fourier
normal modes. In the context of fluid mechanics, a simplest example is a
flow with a linear velocity profile, i.e. a plane Couette flow Y = (U(y), 0, 0),
where

U(y) = y, p = const, (8.82)

for −π ≤ x, y, z ≤ π (Fig. 8.12). The term plane means two-dimensional,
but here, this is investigated as a flow in M = T 3. Obviously, this is
a solution of the equation of motion (8.48) since ∂tY = 0 and ∇Y Y =
(Y · ∇)Y = U∂xY = 0. Therefore,

∇̄Y Y = Y · ∇Y + grad p = 0. (8.83)

In the linear stability theory with respect to the velocity field, it is well
known that the plane Couette flow is (neutrally) stable.

In the hydrodynamic stability theory, the linear stability equation of the
plane Couette flow takes an exceptional form owing to the linear velocity
profile U(y) = y, i.e. the second derivative U ′′(y) vanishes. For that reason,
its linear stability is studied by a viscous theory taking account of fluid
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�

–�

�

� x

z
–�

–�0

U
=

y
Fig. 8.12. Couette flow (y, 0, 0).

viscosity ν. In the Couette flow of a visous fluid, all the disturbance modes
(eigen-solutions) of velocity field are stable, i.e. decay exponentially [DR81].
In the limit ν → +0, all the modes become neutrally stable, i.e. do not decay
nor grow exponentially with time. So that, the Couette flow of an ideal fluid
is regarded as neutrally stable with respect to the velocity field.

Now we consider stability of the plane Couette flow in the Lagrangian
particle sense. Denoting any velocity field as X =

∑
vlel, let us calculate

the sectional curvature K(X,Y ) = 〈R̄(Y, X)X,Y 〉 for

X =
∑

l

vlel, Y = (U(y), 0, 0),

where U(y) = y and el = exp[il · x] = exp[i(lxx + lyy + lzz)]. It will be
found that K(X,Y ) is non-positive.

Using the definition of the curvature tensor,

R̄(X,Y )Z = ∇̄X(∇̄Y Z) − ∇̄Y (∇̄XZ) − ∇̄[X,Y ]Z,

the sectional curvature is given by

K(X,Y ) = 〈R̄(X,Y )Y, X〉
= −〈∇̄Y Y, ∇̄XX〉 + 〈∇̄XY, ∇̄Y X〉 − 〈∇̄[X,Y ]Y, X〉, (8.84)

where the following formula has been used: Z〈X,Y 〉 = 〈∇ZX,Y 〉 +
〈X, ∇ZY 〉 = 0 for X,Y, Z ∈ TDµ(T 3) (see (3.88) of §3.7.3).7 Note that
∇̄XY, ∇̄Y Y ∈ TDµ(T 3).

7This is valid for the right-invariant metric 〈X, Y 〉 of right-invariant fields X and Y along
the flow generated by Z.
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Because the steady tangent field Y is the solution of the geodesic equa-
tion (8.83), i.e. ∇̄Y Y = 0, the first term vanishes:

〈∇̄Y Y, ∇̄XX〉 = 0. (8.85)

In order to obtain the second term, let us calculate ∇̄XY , which is
given by (8.39) as

∇̄XY = (X · ∇)Y + grad pXY . (8.86)

The first simple covariant derivative is

(X · ∇)Y = el(vl · ∇)(U(y), 0, 0) = el(v
y
l U ′(y), 0, 0), (8.87)

where vy
l is the y-component of vl, which is a function of the wave number

l = (lx, ly, lz) and independent of x = (x, y, z).8 The scalar function pXY

must be determined so that ∇̄XY is divergence-free. Hence,

∇2pXY = −div[(X · ∇)Y ] = −ilxvy
l U ′(y)el (8.88)

Since U ′(y) = 1, the right side is a function of el = exp[il · x] with a
coefficient depending on only the wave number l. Therefore, we obtain

pXY = i
lx
l2

vy
l U ′(y) exp[il · x]. (8.89)

Thus, substituting (8.87) and (8.89) into (8.86), we have

∇̄XY = el(v
y
l U ′(y), 0, 0) − lx

l2
vy

l U ′(y)el(lx, ly, lz). (8.90)

Next, to obtain ∇̄Y X = Y · ∇X + grad pY X , it is noted that

(Y · ∇)X = U(y)∂x(emvm) = imxU(y)emvm. (8.91)

Taking divergence, we obtain

∇2pY X = −div[(Y · ∇)X] = −imxvy
mU ′(y)em − imxU(y)em(im · vm)

= −imxvy
mU ′(y)em,

since m·vm = 0. The right-hand side is seen to be the same as that of (8.88),
hence we find that pY X is given by (8.89) as well. Thus, we have found

∇̄Y X = imxU(y)emvm − mx

m2 vy
mU ′(y)emm. (8.92)

8In Eq. (8.87) (and below) and Eq. (8.91) (and below), the summation with respect
to the wavenumber l or m is meant implicitly, although the symbol

∑
is omitted for

simplicity. Only when considered to be necessary, it is written explicitly.
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Then, the second term of (8.84) is

〈∇̄XY, ∇̄Y X〉

=
∑

l

∑
m

[
imxvy

l vx
mU ′〈el, U(y)em〉 − imx

lx
l2

vy
l (l · vm)U ′〈el, U(y)em〉

− m2
x

m2 vy
l vy

m(U ′)2〈el, em〉 +
lxmx

l2m2 vy
l vy

m(l · m)(U ′)2〈el, em〉
]

.

(8.93)

In order to obtain the third term of (8.84), it is noted that

[X,Y ] = X · ∇Y − Y · ∇X = el(v
y
l U ′(y), 0, 0) − ilxU(y)vlel.

Then, we have

∇[X,Y ]Y = ([X,Y ] · ∇)Y = (elv
y
l U ′(y)∂x − ilxU(y)elvl · ∇)Y

= −ilxvy
l (U(y)U ′(y)el, 0, 0), (8.94)

since ∂xY = 0. Writing the divergence-free connection ∇̄ as

∇̄[X,Y ]Y = ∇[X,Y ]Y + grad p[∗], (8.95)

the scalar function p[∗] must satisfy

∇2p[∗] = −div[([X,Y ] · ∇)Y ] = −l2xvy
l U ′U(y)el. (8.96)

A difference from Eq. (8.88) should be remarked that there is a factor
U(y) = y, a function of y, in addition to el = exp[il · x] (U ′(y) = 1). Due
to this factor, the function p[∗] satisfying the above equation is given by

p[∗] =
l2x
l2

vy
l U ′U(y)el + 2i

l2xly
l2l2

vy
l (U ′)2el. (8.97)

It can be readily checked that operating ∇2 on the above p[∗] gives the
right-hand side of (8.96). Thus, it is found that the expression (8.95) is
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written by

∇̄[X,Y ]Y = −ilxvy
l U ′U(y)(el, 0, 0) + ilx

lx
l2

vy
l U ′U(y)ell

+
l2x
l2

vy
l (U ′)2(0, el, 0) − 2

l2xly
l2l2

vy
l (U ′)2ell. (8.98)

Then, the third term of (8.84) is

〈∇̄[X,Y ]Y, X〉

=
∑

l

∑
m

[
−ilxvy

l vx
mU ′〈U(y)el, em〉 + ilx

lx
l2

vy
l (l · vm)U ′〈U(y)el, em〉

+
l2x
l2

vy
l vy

m(U ′)2〈el, em〉 − 2
l2xly
l2l2

vy
l vy

m(l · vm)(U ′)2〈el, em〉
]

.

(8.99)

Thus, it is found from (8.85), (8.93) and (8.99) that the sectional curvature
of (8.84) is given by

K(X,Y ) = 〈∇̄XY, ∇̄Y X〉 − 〈∇̄[X,Y ]Y, X〉

=
∑

l

∑
m

[
i(mx + lx)vy

l vx
mU ′〈U(y)el, em〉

− i(mx + lx)
lx
l2

vy
l (l · vm)U ′〈U(y)el, em〉

+
(

−
(

m2
x

m2 +
l2x
l2

)
+

lxmx

l2m2 (l · m)
)

vy
l vy

m(U ′)2〈el, em〉

− 2
l2xly
l2l2

(l · vm)vy
l vy

m(U ′)2〈el, em〉
]
, (8.100)

where

〈el, em〉 =
∫

T 3
exp[i(l + m) · x]d3x

= (2π)3δ(lx + mx)δ(ly + my)δ(lz + mz), (8.101)

〈U(y)el, em〉 =
∫

T 3
U(y) exp[i(l + m) · x] d3x

= (2π)2δ(lx + mx)δ(lz + mz)
∫ π

π

U(y) exp[i(ly + my)y] dy,

(8.102)

and the function δ(lx + mx) denotes 1 if lx + mx = 0, and 0 otherwise.
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The first two terms of (8.100) vanish owing to (8.102) since (mx + lx)
〈U(y)el, em〉 = 0. The fourth term vanishes as well since (l · vm)〈el, em〉 =
−(2π)3(m · vm) = 0 by (8.72). Thus, using (8.101), we obtain

K(X,Y ) = −(2π)3(U ′)2
m2

x

m2 |vy
m|2. (8.103)

This states that the curvature K(X,Y ) is non-positive in the section
spanned by the plane Couette flow U = y and any tangent field X. It will
be readily seen that this is consistent with (8.80) in §8.7.1 for U = sin ky.
Thus, the plane Couette flow is unstable in the Lagrangian particle sense,
but it is neutrally stable with respect to the velocity field, as noted in the
beginning.

8.7.3. Other parallel shear flows

Negative sectional curvature can be found for any parallel shear flow of the
velocity field

X = (U(y), 0, 0),

as already remarked in §8.5.3. Since ∂tX = 0 and ∇XX = (X · ∇)X =
U∂xX = 0, we obtain that the pressure p is constant by the equation of
motion (8.43). Hence, we have S(X,X) = 0. Therefore, the Jacobi equation
is given by (8.69). Thus, any parallel shear flow of the form X = (U(y), 0, 0)
is unstable in the Lagrangian particle sense.

A realistic velocity field (more realistic than U(y) = sin y) would be the
plane Poiseuille flow (Fig. 8.13),

U(y) = 1 − y2, −1 ≤ y ≤ 1,

which is established between two parallel plate walls at y = ±1. This is
an exact solution of a viscous fluid flow under constant pressure gradient.

1

y

x0

–1

U(y) = 1 – y2

Fig. 8.13. Plane Poiseuille flow U(y) = 1 − y2.
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However, in the case of an inviscid flow (the viscosity ν being 0), this
is an exact solution under constant pressure likewise as above. The plane
Poiseuille flow is unstable as a viscous flow [DR81], but it tends to neutral
stability (not unstable) in the limit as the viscosity ν tends to zero. In
fact, the parabolic velocity profile does not have any inflection point. It is
obvious that the plane Poiseuille flow is unstable in the Lagrangian particle
sense by the reasoning given above.

The axisymmetric Poiseuille flow in a circular pipe of unit radius,

U(r) = 1 − r2, 0 ≤ r ≤ 1,

is also an exact solution of a viscous fluid flow under constant pressure
gradient in the axisymmetric frame (x, r, θ) with x taken along the pipe
axis and r the radial coordinate in the circular cross-section. In the case of
an inviscid flow, this is a solution under constant pressure as well. The same
is true for this axisymmetric Poiseuille flow as for the plane flow, except
that this axisymmetric flow is linearly stable as a viscous fluid [DR81] with
respect to velocity field. The axisymmteric Poiseuille flow is unstable in the
Lagrangian particle sense.

8.8. Steady Flows and Beltrami Flows

In this section, we consider steady flows which do not depend on time.

8.8.1. Steady flows

From (8.43), the equation of a steady flow of an incompressible ideal fluid
in a bounded domain M ⊂ R

3 is given by

(u · ∇)u + ∇p = 0, (8.104)

where the velocity field u satisfies div u = 0,9 or equivalently by

u × curlu = −∇B, (8.105)

(see (8.45)), B = p + 1
2u2. The function B : M → R is called the Bernoulli

function.

9In arbitrary n-dimensional Riemannian manifold Mn with measure µ, the same equa-
tion takes the form: ∇vv + ∇p = 0 for a velocity field v satisfying Lvµ = 0.
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Bernoulli surface

ω

u

B = p
u 2= const

1
2

Fig. 8.14. Bernoulli surface.

Equation (8.105) describes that the velocity field u as well as the vor-
ticity field ω = curlu are perpendicular to the vector ∇B. If u and ω are
not collinear, i.e. if u×ω �= 0, both of them are tangent to the level surface
of the function B. This means that B = p+ 1

2u2 is a first integral of motion
in M . Indeed, because (u ·∇)B = 0 and (ω ·∇)B = 0, B is constant over a
surface composed of streamlines (generated by u) and intersecting vortex-
lines (generated by ω). Such an integral surface may be called a Bernoulli
surface (Fig. 8.14). See Appendix J for the condition of integrability.

It is interesting to see that steady flows with such Bernoulli surfaces
have non-negative (or positive) sectional curvatures. This is verified by not-
ing that u satisfies the geodesic equation ∇̄uu = 0, and that the steady
vorticity equation is

0 = (u · ∇)ω − (ω · ∇)u = ∇̄uω − ∇̄ωu = [u,ω],

(see (8.53)), since the scalar function p∗ is common for both ∇̄uω and ∇̄ωu

from (8.40). Thus we have [u,ω] = 0, i.e. the two fields u and ω commute
with one another.

Noting that ∇̄[u,ω] = 0 for [u,ω] = 0, and that ∇̄uω = ∇̄ωu, Eq. (8.84)
of the sectional curvature reduces to

K(u,ω) = 〈∇̄uω, ∇̄ωu〉 = ‖∇̄uω‖2 ≥ 0. (8.106)

It is interesting to compare this non-negativity of the sectional cur-
vature with the following theorem. From the property that steady veloc-
ity field u commutes with ω, one can deduce a topological structure of
steady flows of ideal fluids in a bounded three-dimensional domain. The
flow domain is partitioned by analytic submanifolds into a finite number
of cells. Namely, the Bernoulli surface must be a torus (invariant under
the flow), or an annnular surface (diffeomorphic to S1 × R, invariant under
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(a) (b)

Fig. 8.15. Regions of a steady flow (u × ω �= 0), fibered into (a) tori, and (b) annuli.

the flow) [Arn66; Arn78; AK98]. This is verified by using the Liouville’s
theorem [Arn78, §49]. Streamlines are either closed or dense on each torus,
and closed on each annulus (Fig. 8.15).

In the case where u and curlu are collinear, we may write that curl u =
ζ(x)u at each point x. The function ζ(x) is a first integral of the field u.
In fact, we have

0 ≡ div(curlu) = div(ζu) = (u · ∇)ζ,

since div u = 0. The function ζ(x) is constant along a streamline (as well
as a overlapping vortexline). It may so happen that the streamline fills
the entire space M . In this collinear case, we have u × curlu = 0, and
∇B = 0. Therefore, B = const at all points x ∈ M . It is interesting to
see that the condition of integrability (J.1) of Appendix J is violated in the
collinear case. In the context of magnetohydrodynamics, the field satisfying
u × curlu = 0 is called a force-free field [AK98].

8.8.2. A Beltrami flow

A Beltrami field is defined by a velocity field u(x) satisfying

∇ × u = λu, λ ∈ R, (8.107)

i.e. u is an eigenfield of the operator “curl” with a real eigenvalue λ. Such
a force-free field can have a complicated structure, and flows with the
Beltrami property are characterized by negative sectional curvatures.

Consider a velocity field in M = T 3{(x, y, z) | mod 2π}, defined by

uB = upep + u−pe−p, (8.108)

with the divergence-free property p · up = 0 and the reality u−p = u∗
p. If

p = (0, p, 0), then up = (ux
p , 0, uz

p).
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Suppose that the velocity field u(x) satisfies the Beltrami condition
(8.107). Then, we have λ2 = |p|2. In fact, the Beltrami condition is
(∇ × upep =) ip × upep = λupep and its complex conjugate. Taking cross
product with ip, we have

i2p × (p × up) = p2up = λip × up = λ2up.

Thus we obtain p2 = λ2. Hence, the flow field (8.108) has the Beltrami
property ∇ × uB = |p|uB , if up = i|p|−1p × up is satisfied. An example
of such a velocity field is a one-mode Beltrami flow uB = (u, v, w), with
p = (0, p, 0) and up = 1

2c(1, 0,−i), which is

u = c cos py, v = 0, w = c sin py. (8.109)

It can be readily checked that this satisfies ∇ × uB = puB . As y (taken
vertically upward) increases, the velocity vector uB = c(cos py, 0, sin py),
which is uniform in a horizontal (z, x)-plane, but rotates clockwise (seen
from the y axis) in the (z, x)-plane together with the vorticity vector ∇×uB .
This is a directionally shearing flow (Fig. 8.16).

According to Eq. (8.105), this velocity u is regarded as a steady solution
to the equation where p + 1

2u2 is constant. Let X =
∑

vlel be any velocity
field satisfying (8.72). Then one can show that K(uB , X) is non-positive
[NHK92]. This is another class of flows of negative sectional curvatures
in addition to the parallel shear flows considered in the previous section.
In this Beltrami flow (directional shearing), the vorticity vector ∇ × uB is
parallel to the flow velocity, whereas in the parallel shear flows the vorticity
is perpendicular to the flow velocity. The negative sectional curvature leads
to exponential growth of the Jacobi vector ‖J‖ according to (8.51), and
means that infinitesimal line-elements are stretched on the average.

z

0

y
x

uB uB = (u(y), 0, w(y))
/4

y =   /2

Fig. 8.16. One-mode Beltrami flow uB .



August 2, 2004 16:4 WSPC/Book Trim Size for 9in x 6in chap08

Volume-Preserving Flows of an Ideal Fluid 289

8.8.3. ABC flow

Another family of Beltrami field is given by the following ABC flow vABC

in T 3{(x, y, z) | mod 2π}:

u = ±A sin z + C cos y,

v = ±B sin x + A cos z,

w = ±C sin y + B cos x.


 A, B, C ∈ R (8.110)

It is obvious that the velocity field vABC = (u, v, w) with the three param-
eters (A, B, C) is divergence-free, and it can be readily checked that this
satisfies ∇ × v = ±v.10 There is numerical evidence that certain trajecto-
ries are chaotic (Fig. 8.17), i.e. densely fill in a three-dimensional domain
[DFGHMS86]. On the other hand, if one of the parameters (A, B, C) van-
ishes, the flow is integrable.

The quantity (v,∇×v)x/|v|2 = ±1 is often called the helicity. It is obvi-
ous that the ABC flow of the helicity −1 is obtained by the transformation
(x, y, z) → (−x,−y, −z) of the ABC flow of helicity +1.

D

Fig. 8.17. A Poincare map at the section y = 0 for the streamlines of an ABC flow
(A = 1, B = C = 1/

√
2). Each dot signifies crossing of a streamline through the section

y = 0. Each dot uniquely determines a next dot. Irregular distribution of such dots in
the part D of the diagram represents chaotic behavior of one streamline.

10The ABC flow was studied earlier by Gromeka (1881) and Beltrami (1889), and in the
present context by Arnold (1965) and Childress (1967). [AK98].
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The same ABC flow can be represented by a linear combination of three
uB-type flows, i.e. a three-mode Beltrami flow:

vABC = A[(∓i, 1, 0)eiz + (±i, 1, 0)e−iz] + B[(0, ∓i, 1)eix + (0,±i, 1)e−ix]

+ C[(1, 0,∓i)eiy + (1, 0,±i)e−iy]. (8.111)

With a single mode uB flow considered in the previous subsection, the sec-
tional curvature K(uB , X) is already non-positive (for any velocity field X),
it is highly likely that K(vABC , X) is non-positive. Even in an intgegrable
case where one of (A, B, C) vanishes, K(vABC , X) will be negative.

Suppose that we have another ABC flow with (A′, B′, C ′) �= (A, B, C). It
is straightforward to show [KNH92] that the normalized sectional curvature
is a negative constant:

K∗(X,Y ) =
〈R̄(X,Y )Y, X〉

|X|2|Y |2 − 〈X,Y 〉2 = − 1
64π3 ,

where X = vABC and Y = vA′B′C′
. This means that, even in the case

that both (A, B, C) and (A′, B′, C ′) are close and the streamlines are not
chaotic, the particle motion by vA′B′C′

will deviate from that of vABC and
not be predicted from the particle motion of vABC in the course of time.

8.9. Theorem: α1
B = −iudα1

w + df

In §8.2.3, associated with the vector field B = ad∗
uw ∈ TeDµ(M), a corre-

sponding 1-form α1
B was given by the formula (8.30),11

α1
B = −iudα1

w + df, (8.112)

where iu is the operator symbol of interior product (Appendix B.4), u,w ∈
TeDµ(M), and df = ∂ifdxi. Its proof for a general Riemannian manifold
Mn is as follows [Arn66].

11To any tangent vector B, one can define a 1-form by α1
B [ξ] = iξα1

B := (B, ξ), the
scalar product with any tangent vector ξ, i.e. α1

B = gjkBkdxj . By (8.26), B is defined
by (B, ξ) = (ad∗

uw, ξ) = (w, [u, ξ]) = α1
B [ξ].
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Let τ be a Riemannian volume element on M (an n-form, n = dimM).
Then, for any tangent vector fields u, v, we have

α1
u ∧ (ivτ) = (u, v)τ,

by definition of exterior algebras (Appendix B, (B.43)), where (u, v) is the
scalar product at a point in M . For any tangent field u, v, w ∈ TeDµ(M),
we have

〈w, [u, v]〉 =
∫

M

(w, {u, v})τ =
∫

M

α1
w ∧ i{u,v}τ (8.113)

= 〈ad∗
uw, v〉 = 〈B, v〉 =

∫
M

ivα1
Bτ (8.114)

(see (8.21) for {u, v}). Note that we have the following definition and
identity:

iu∧vτ := iv(iuτ), (8.115)

d(iu∧vτ) = −i{u,v}τ + iud(ivτ) − ivd(iuτ). (8.116)

Since d(ivτ) = (div v)τ = 0 and d(iuτ) = (divu)τ = 0, Eq. (8.116) leads to

i{u,v}τ = −d(iu∧vτ).

Using this, the integration
∫

M
α1

w ∧ i{u,v}τ is transformed to∫
M

α1
w ∧ i{u,v}τ = −

∫
M

α1
w ∧ [d(iu∧vτ)]

= −
∫

M

dα1
w ∧ (iu∧vτ) +

∫
∂M

α1
w ∧ (iu∧vτ), (8.117)

by the Stokes theorem (Appendix B). The second integral over ∂M vanishes
for u, v, w tangent to ∂M , satisfying (8.6).

From (8.115) and (B.10), we have dα1
w ∧ (iu∧vτ) = iviuτ ∧ dα1

w. The
factor iuτ ∧ dα1

w is equal to 0, because it is of degree n + 1. Then we have

(iviuτ) ∧ dα1
w = (−1)n(iuτ) ∧ (ivdα1

w).

The form τ ∧ (ivdα1
w) is also of degree n + 1, hence vanishes. As a conse-

quence, we have

(iuτ) ∧ (ivdα1
w) = −(−1)n[τ ∧ iuivdα1

w] = (−1)n(iviudα1
w)τ. (8.118)
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Collecting the formulae (8.113), (8.114), (8.117) and (8.118), we obtain

〈w, [u, v]〉 =
∫

M

α1
w ∧ i{u,v}τ = −

∫
M

iviudα1
wτ =

∫
M

ivα1
Bτ,

by (8.114). Therefore, we find

−iviudα1
w = iv(α1

B − df) = (v, B − grad f), (8.119)

since the field v ∈ TeDµ(M) is orthogonal to grad f : 〈v, grad f〉 = 0. Thus,
it is found that α1

B = −iudα1
w + df . This verifies the theorem given in the

beginning.
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Chapter 9

Motion of Vortex Filaments

The significance and importance of vorticity for description of fluid flows
is already stated explicitly in Chapter 7 as being a gauge field and we
saw that irrotational flow fields are integrable (§7.10.4). In the last part
(§8.8) of Chapter 8, some consideration is given to the role of vorticity with
respect to the Lagrangian instability, contributing to particle mixing. In
this chapter, we consider another aspect, i.e. by contrast there are some
vortex motions which are regarded as completely integrable.

Notion of a vortex tube is useful to describe a tube-like structure in flows
where magnitudes of the vorticity ω are much larger than its surrounding.
Mostly, this tube is approximately parallel to the vector ω at every section
so as to satisfy div ω = 0. A mathematical idealization (§9.1) is derived by
supposing the vortex tube to contract on to a curve (a line-vortex) with
the strength of the vortex tube remaining constant, equal to γ say, and
assuming the vorticity being zero elsewhere. We then have a spatial curve,
called a vortex filament.

The dynamics of a thin vortex filament, embedded in an ideal incom-
pressible fluid, is known to be well approximated by the local induction
equation (§9.2), when the filament curvature is sufficiently small. A vor-
tex filament is assumed to be spatially periodic in the present geometrical
analysis,1 and given by a time-dependent C∞-curve x(s, t) in R

3 with the
arc-length parameter s ∈ S1 and the time parameter t.

As described in §9.3, this system is characterized with the rotation group
G = SO(3) pointwise on the S1 manifold.2 The group G(S1) of smooth

1The derivation here for the periodic case would be generalized to a non-periodic case
by imposing appropriate conditions at infinity. See the footnote on the first page of
Chapter 5 and the description of §8.1.1 with M = R

1.
2Suzuki, Ono and Kambe [SOK96]; Kambe [Kam98].

293
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mappings, g : s(∈ S1) �→ G = SO(3), equipped with the pointwise compo-
sition law,

g′′(s) = g′(s) ◦ g(s) = g′(g(s)), g, g′, g′′ ∈ G,

is an infinite-dimensional Lie group, i.e. a loop group. The corresponding
loop algebra leads to the Landau–Lifshitz equation, which is derived as the
geodesic equation (§9.4). Furthermore, the loop-group formulation admits
a central extension3 in §9.8.

Based on the Riemannian geometrical point of view, this chapter
includes a new interpretation of the local induction equation and the equa-
tion of Fukumoto and Miyazaki [FM91] by applying the theory of loop
group and its extension.

Two-dimensional analogue of a line-vortex is a point-vortex. It is well
known that a system of finite number of point-vortices is described by
a Hamiltonian function [Ons49; Bat67; Saf92]. A Riemannian geometri-
cal derivation of the Hamiltonian system is given in [Kam03b], where the
Finsler geometry [Run59; BCS00], rather than the Riemannian geometry,
is applied to the Hamiltonian system of point vortices.

9.1. A Vortex Filament

We consider the motion of a vortex filament F embedded in an ideal incom-
pressible fluid in R

3. Given a velocity field u(x) (at x ∈ R
3) satisfying

divu = 0, the vorticity is given by ω = curl u, which vanishes at all points
except at points on F . The vortex filament F of strength γ, expressed by
a space curve, is assumed to move and change its shape (the time variable
is omitted here for the time being). The Biot–Savart law4 (Fig. 9.1) can
represent the velocity u at a point x induced by an element of vorticity,
ωdV = γtds, at a point y(s) where s is an arc-length parameter along the
filament F , ds is an infinitesimal arc-length and t unit tangent vector to F

3Azcárraga and Izquierdo [AzIz95].
4According to the Biot–Savart law in electromagnetism, an electric current element Ids

at a point y(s) induces magnetic field H at a point x. The field H(x) is given by
−(1/4π)[(x−y(s))×Ids]/|x−y(s)|3. This is equivalent to the local differential relation,
curl H = J , where JdV = Ids with dV as a volume element and ds a line element.
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Y(s)

x – Y(s)

γ t

u

x

ds

Fig. 9.1. Biot–Savart law.

at y(s). Namely, the velocity u(x) is expressed as

u(x) = − γ

4π

∫
F

(x − y(s)) × t(s)
|x − y(s)|3 ds (9.1)

=
γ

4π
curlx

∫
F

t(s)ds

|x − y(s)| , (9.2)

[Bat67, §7.1; Saf92, §2.3], where curlx denotes taking curl with respect to the
variable x. In fact, using the property that f = −1/4π|x| is a fundamental
solution of the Laplace equation, i.e. ∇2f = δ(x) with δ(x) a 3D delta
function, we have

curlx curlx
1

|x − y(s)| = −∇2 1
|x − y(s)| = 4πδ(x − y(s)).

Recalling γtds = ωdV , we obtain curlu = ω from (9.2) as expected
[Eq. (7.139)].

We consider the velocity induced in the neighborhood of a point P on
the filament F . We choose a local rectilinear frame K determined by three
mutually-orthogonal vectors (t,n, b), where n and b are unit vectors in
the principal normal and binormal directions (and t unit tangent to F),
as indicated in Fig. D1 of Appendix D. With P taken as the origin of K,
the position vector x of a point in the plane normal to the filament F (i.e.
perpendicular to t) at P can be written as (Fig. 9.2)

x = yn + zb.

We aim at finding the form of velocity u(x) taken in the limit as x approach-
ing the origin P , i.e. r = (y2 + z2)1/2 → 0.
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o

r

t

x

n

y

Y(s) = st + κ0 s2n + o(s3)1
2

Fig. 9.2. Local representation.

Let us denote the origin P by s = 0. Then, the point y(s) on the curve
F near P is expanded in the frame K as

y(s) = y′(0)s +
1
2
y′′(0)s2 + O(s3) = st +

1
2
κ0s

2n + O(s3), (9.3)

where y(0) = 0, and κ0 is the curvature of the curve F at s = 0 (see
Appendix D.1). After some algebra, it is found that the integrand of (9.1)
behaves like

zn − yb

(r2 + s2)3/2

(
1 +

3
2
κ0

ys2

r2 + s2

)
− κ0

1
2s2b + yst

(r2 + s2)3/2 + O(κ2
0). (9.4)

To determine the behavior of u(x) as r → 0, we substitute (9.4) into
(9.1), and evaluate contribution to u from the above nearby portion of the
filament (−λ < s < λ). Changing the variable from s to σ = s/r and taking
limit λ/r → ∞, it is found that the Biot–Savart integral (9.1) is expressed
in the frame K as

u(x) =
γ

2π

(
y

r2 b − z

r2 n

)
+

γ

4π
κ0

(
log

λ

r

)
b + (b.t.), (9.5)

where (b.t.) denotes remaining bounded terms. The first term proportional
to γ/2π represents the circulatory motion about t, i.e. about the vortex
filament, anti-clockwise in the (n, b)-plane. This is the right motion as it
should be called a vortex. However, there is another term, i.e. the second
term proportional to the curvature κ0 which is not circulatory, but directed
towards b. These two terms are unbounded, whereas the remaining terms
are bounded, as r → 0.

The usual method to resolve the unboundedness is to use a cutoff.
Namely, every vortex filament has a vortex core of finite size a, and r
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should be bounded below at the order of a. If r is replaced by a, the second
term is

uLI =
γ

4π
κ0

(
log

λ

a

)
b + (b.t.), (9.6)

which is independent of y and z. This is interpreted such that the vortex
core moves rectilinearly with the velocity uLI in the binormal direction b.
There is additional circulatory fluid motion about the filament axis. These
are considered as main terms of u(x).

The magnitude of velocity uLI is proportional to the local curvature κ0

of the filament at P , and called the local induction. This term vanishes with
a rectilinear vortex because its curvature is zero. This is consistent with the
known property that a rectilinear vortex has no self-induced velocity and
its motion is determined solely by the velocities induced by other objects.

The same locally induced velocity uLI can be derived by the Biot–Savart
integral for the velocity at a station x = x(s∗) right on the filament. How-
ever, paradoxically, the portion −ka < s−s∗ < ka (a → 0 and k: a constant
of O(1)) must be excluded from the integral [Saf92, §11]. This is permitted
because there is no contribution to the uLI from an infinitesimally small
rectilinear portion.

9.2. Filament Equation

When interested only in the motion of a filament (without seeing circulatory
motion about it), the velocity is given by uLI(s), whose dominant term can
be expressed as

uLI(s) = cκ(s)b(s) = cκ(s)t(s) × n(s), (9.7)

where c = (γ/4π) log(λ/a) is a constant independent of s. Rates of change of
the unit vectors (t,n, b) (with respect to s) along the curve are described
by the Frenet–Serret equation (D.4) in terms of the curvature κ(s) and
torsion τ(s) of the filament.

A vortex ring is a vortex in the form of a circle (of radius R, say), which
translates with a constant speed in the direction of b. The binormal vector
b is independent of the position along the circle and perpendicular to the
plane of circle (directed from the side where the vortex line looks clockwise
to the side where it looks anti-clockwise). The direction of b is the same
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as that of the fluid flowing inside the circle. This is consistent with the
expression (9.7) since κ = 1/R = const.

It has been just found from above that the vortex ring in the rectilinear
translational motion (with a constant speed) depicts a cylindrical surface
of circular cross-section in a three-dimensional euclidean space R

3. The
circular vortex filament coincides at every instant with a geodesic line of
the surface which is to be depicted in the space R

3. This is true for gen-
eral vortex filaments in motion under the law given by Eq. (9.7), because
the tangent plane to the surface to be generated by the vortex motion is
formed by the two orthogonal tangent vectors t and uLIdt. Therefore the
normal N to the surface coincides with the normal n to the curve C of the
vortex filament. This property is nothing but that C is a geodesic curve
(§2.5.3, 2.6).

Suppose we have an active space curve C: x(s, t), which moves with the
above velocity. Namely, the velocity ∂tx at a station s is given by the local
value u∗ = cκ(s)b(s), i.e. ∂tx = cκ(s)b(s) (the local induction velocity).
It can be shown that the separation of two nearby particles on the curve,
denoted by ∆s, is unchanged by this motion. In fact,

d
dt

∆s = (∆s ∂su∗) · t, (9.8)

where ∂su∗ = cκ′(s)b + cκb′(s). From the Frenet–Serret equation (D.4), it
is readily seen that b · t = 0 and b′(s) · t = 0. Thus, it is found that

d
dt

∆s = 0, (9.9)

i.e. the length element ∆s of the curve is invariant during the motion, and
we can take s as representing the Lagrangian parameter.

Since b = t×n and in addition ∂sx = t and ∂2
sx = κn (Appendix D.1),

the local relation (9.7) for the curve x(s, t) is given by

∂tx = ∂sx × ∂2
sx, (9.10)

where the time is rescaled so that the previous ct is written as t here.
This is termed the filament equation (Fig. 9.3). In fluid mechanics, the
same equation is called the local induction equation (approximation).5

5This equation was given by Da Rios [DaR06] and has been rediscovered several times
historically [Ric91; Ham88; Saf92].
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x
s

∂tx = κb

∂s
2 x = κn

∂sx = t

Fig. 9.3. Filament motion.

Some experimental evidence is shown in [KT71], where in addition, a
circular vortex ring is shown to be neutrally stable with respect to small
perturbations.

It is not difficult to see that there is a solution in the form of a rotating
helical vortex xh to Eq. (9.10). In fact, consider a helix xh = (x, y, z)(s, t)
and its tangent th defined by

xh = a(cos θ, sin θ, hks + λωt), (9.11)

th = ak(− sin θ, cos θ, h), (9.12)

(Fig. 9.4), where θ = ks − ωt, and a, k, h, ω, λ being constants.
The vortex is directed towards t, i.e. increasing s. The left-hand
side of (9.10) is aω(sin θ, − cos θ, λ), whereas the right-hand side is
a2k3h(sin θ, − cos θ, 1/h). Thus, Eq. (9.10) is satisfied if ω = ak3h and
hλ = 1. Requiring that s is an arc-length parameter, i.e. ds2 = dx2 +
dy2 + dz2, we must have a2k2(1 + h2) = 1. Hence, once the radius a and
the wave number k of the helix are given, all the other constants h, ω, λ

are determined. The helix translates towards positive z-axis and rotates
clockwise (seen from above), whereas the circulatory fluid motion about
the helical filament is anti-clockwise.

It is remarkable that the local induction equation can be transformed
to the cubic-nonlinear Schrödinger equation. A complex function ψ(s, t) is
introduced by

ψ(s, t) = κ(s) exp
[
i

∫ s

τ(s′)ds′
]
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Fig. 9.4. Helical vortex.

(called Hasimoto transformation), where κ and τ are the curvature and
torsion of the filament. The local induction equation (9.10) is transformed to

∂tψ = i

(
∂2

sψ +
1
2
|ψ|2ψ

)
(9.13)

[Has72; LP91]. As is well known, this is one of the completely integrable
systems, called the nonlinear Schrödinger equation. Naturally, this equation
admits a soliton solution, which is constructed for an infinitely long vortex
filament [Has72] as

ψ(s, t) = κ(ξ) exp[iτ0s], κ = 2τ0 sech τ0ξ, (9.14)

where ξ = s − ct and τ = τ0 = 1
2c = const.

In addition, there are planar solutions which are permanent in form
in a rotating plane [Has71]. Their shapes are equivalent to those of the
elastica [KH85; Lov27]. A thorough description of filaments of permanent
form under (9.10) is given in [Kid81].
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9.3. Basic Properties

9.3.1. Left-invariance and right-invariance

In conventional mechanics terms, the variable x(s, t) ∈ R
3 is a position

vector of a point on the filament. Speaking mathematically, x(s, t) is an
element of the C∞-embeddings of S1 into a three-dimensional euclidean
space R

3, i.e. x : S1 × R → R
3.

The motion of the curve x(s, t) is a map,

φt : x0(s) �→ xt(s) = φt ◦ x0(s) := Φt(s),

or Φt : s �→ xt,

where xt = Φt(s) = x(s, t) is a position vector of the filament at a time t.
Henceforth, the unit tangent vector is denoted by Tt(s) = T (s, t) = ∂sxt

instead of t. Following the motion, the tangent Tt(s) to the curve is left-
translated:

Tt(s) = ∂xt/∂s = φt ◦ ∂x0(s)/∂s = (Lφt
)∗T0(s), (9.15)

that is, Tt(s) is a left-invariant vector field (Fig. 9.5). Likewise, its derivative
is also left-invariant, i.e.

∂sTt = (Lφt)∗(∂sT0), (9.16)

where ∂sTt = κt(s)nt(s).
The tangent vector Tt can be expressed also as a function of the position

vector xt = Φt(s). Hence, the Tt(s) is regarded as a right-invariant vector

(a) (b)
xt xt(s)

xo(s)

xo
To

n

Tt

S1

s
∆s

∆s

Tt

Tt = Tt (xt)

Fig. 9.5. (a) Left-invariant, and (b) right-invariant.
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field. In fact, writing Tt(s) = T̂t(xt(s)) = T̂t ◦ Φt(s), we have

Tt = T̂t(xt) = T̂t ◦ Φt = (RΦt)∗T̂t (9.17)

(Fig. 9.5). Likewise, the curvature is expressed as

κt = κ̂t(xt) = (RΦt
)∗κ̂t. (9.18)

Thus, the curvature κt(s) is a right-invariant vector field as well, where
|dxt| = |ds| by the property (9.9).

9.3.2. Landau–Lifshitz equation

Differentiating Eq. (9.10) with respect to s and setting T = ∂sx, one obtains

∂tT = T × ∂2
sT = −T ′′ × T, (9.19)

since x′′ × x′′ = 0, where a prime denotes the differentiation with respect
to s and the subscript t of Tt being omitted henceforth. This is a particular
case of Landau–Lifshitz equation.6 In this regard, it would be useful to recall
that the vector product plays the commutator of the Lie algebra so(3) (see
§1.8.2 and 4.3).

9.3.3. Lie–Poisson bracket and Hamilton’s equation

Equation (9.19) can be interpreted as a Hamilton’s equation, in an analo-
gous way to the case of the Euler’s top in §4.1.3. To that end, we first verify
that the following integral,

H =
1
2

∫
S1

κ2(s)ds =
1
2

∫
S1

(∂sT, ∂sT )R3ds (9.20)

= −1
2

∫
S1

T (σ) · T ′′(σ)dσ, (9.21)

is an invariant under the Landau–Lifshitz equation (9.19), where
(A, B)R3 = δklA

kBl = A · B.7 Noting ∂sT = T ′ = κn and κ2 = (T ′, T ′),

6General Landau–Lifshitz equation [AK98, Ch. VI] is given by replacing the vector
product A×B by a Lie bracket [A, B]. The equation of the form ∂tX = Ω×X describes
“rotation” of the vector X with the angular velocity Ω. Hence, the factor −∂2

sT = −T ′′(s)
in (9.19) is interpreted as the angular velocity of T (s) at s locally.
7Henceforth the subscript R3 is omitted, and A · B will be often used in place of (A, B)
in this chapter.
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we obtain

∂tκ
2 = 2T ′ · ∂tT

′ = 2T ′ · (T × T ′′′) = ∂s(2κ2τ), (9.22)

from (9.19). The last equality can be shown by using the Frenet–Serret
equation (D.4). In fact, we have

T × T ′′′ = (κτ ′ + 2κ′τ)n + Kb,

where K = κ′′ − κ3 − κτ2. Integrating (9.22) with respect to s, we obtain
dH/dt = 0, since κ2τ is a function on S1.

Suppose that the functional H of (9.21) (or (9.20)) is the Hamiltoninan
for the equation of motion:

d
dt

Tα = {Tα, H}, (9.23)

where Tα(s, t) is the αth component of the unit vector T in the fixed
cartesian frame R

3, and the bracket {·, ·} is defined by the following Poisson
bracket (a kind of the Lie–Poisson bracket8):

{Tα, H} :=
∫

S1
T (σ) ·

(
δTα

δT
× δH

δT

)
dσ, (9.24)

where the βth component of δ/δT (s) is given by δ/δTβ(s), the functional
derivative with respect to Tβ(s) at a position s (where β = 1, 2, 3). Then,
we have

δTα(s)
δT (σ)

= δ(σ − s)eα,
δH

δT (σ)
= −T ′′(σ),

where eα is the unit vector in the direction of αth axis.9 Then, Eq. (9.23)
leads to

d
dt

Tα = {Tα, H} =
∫

S1
T (σ) · (δ(σ − s)eα × (−T ′′(σ)))dσ

= −T (s) · (eα × T ′′(s)) = eα · (T (s) × T ′′(s)). (9.25)

This is nothing but the αth component of Eq. (9.19).

8See the footnote to §4.1.2 for its general definition [MR94; HMR98].
9δH = − ∫

S1 T ′′(σ) · δT (σ)dσ, and T (s) = Tα(s)eα, and Tα(s) =
∫

Tα(σ)δ(σ − s)dσ.
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9.3.4. Metric and loop algebra

According to the observation (given in the footnote in §9.3.2) that the term
−∂2

sT = −T ′′(s) in (9.19) is interpreted as an angular velocity of rotation of
T (s), we may regard the vector −T ′′(s) as an elelment Ω of the Lie algebra
so(3), i.e. Ω = T ′′(s) ∈ so(3) at each s.

Based on the Hamiltonian H of (9.21), the metric of the system of a
vortex filament is defined as

〈Ω, Ω〉 := −
∫

S1
(T, T ′′) ds = −

∫
S1

(T, Ω) ds =
∫

S1
(∂sT, ∂sT ) ds =

∫
S1

κ2 ds.

(9.26)

Integration by parts has been carried out on the second line. We may write
−T = AΩ by introducing an operator A = −∂−2

s .10 Then, the metric is
rewritten as

〈Ω, Ω〉 =
∫

S1
(AΩ, Ω) ds, (9.27)

(see §4.3 for comparison). The operator A = −∂−2
s is often called an inertia

operator (or momentum map) of the system.
The invariance of H together with the left-invariance of ∂sT (shown in

the previous sections) suggests that the metric 〈Ω, Ω〉 is left-invariant.
Thus, using the new symbol L instead of T , one may define

L′′ ∈ Lg := C∞(S1, so(3)),

L(= −AL′′) ∈ Lg∗ := C∞(S1, so(3)∗),

where C∞(S1, so(3)) is the space of C∞ functions of the fiber bundle on
the base manifold S1 with the fiber so(3), while Lg = so(3)[S1] denotes
the loop algebra of the loop group, LG := SO(3)[S1], and C∞(S1, so(3)∗)
is the dual space.11

9.4. Geometrical Formulation and Geodesic Equation

Now let us reformulate the above dynamical system in the following way. Let

X(s), Y (s), Z(s) ∈ Lg = so(3)[S1] = C∞(s ∈ S1, so(3)) (9.28)

10We have AT ′′(s) = −T (s), under the conditions of periodicity and |T | = 1.
11In the sense of the pointwise locality, the group LG(S1) is called a local group.
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be the vector fields. Correspondingly, we define their respective dual fields
by AX, AY, AZ ∈ C∞(S1, so(3)∗) with A = −∂−2

s , together with TX =
−AX, TY = −AY and TZ = −AZ. The left-invariant metric is defined by

〈X,Y 〉 := −
∫

S1
(TX , Y )ds = −

∫
S1

(TY , X)ds (9.29)

=
∫

S1
(AX, Y )ds =

∫
S1

(AY, X)ds, (9.30)

where T ′′
X := X and T ′′

Y := Y . The symmetry of the metric with respect to
X and Y can be easily verified by integration by parts. The commutator is
given by

[X,Y ](L)(s) := X(s) × Y (s) (9.31)

(see (4.27)) at each s, i.e. pointwise.
In the case of the left-invariant metric (9.30), the connection satisfies

Eq. (3.30), and in terms of the operators ad and ad∗, we have the expression
(3.65), which is reproduced here:

∇XY =
1
2
(adXY − ad∗

XY − ad∗
Y X) (9.32)

(see also [Fre88]). By using the definition adXY = [X,Y ](L) and the defi-
nition 〈ad∗

XY, Z〉 = 〈Y, adXZ〉, we obtain

〈ad∗
XY, Z〉 = 〈Y, [X,Z](L)〉 =

∫
S1

(AY, X × Z)ds

=
∫

S1
(AA−1(AY × X), Z)ds,

(see (4.35) for comparison), which leads to

ad∗
XY = A−1(AY × X) = ∂2

s [TY , X](L). (9.33)

Using this, it is found from (3.65) that the connection ∇ of the filament
motion is given in the following form [SOK96; Kam98]:

∇XY =
1
2
(X × Y − ∂2

s (TX × Y ) − ∂2
s (TY × X)), (9.34)

which leads to ∇XX = −∂2
s (TX × X).
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In the time-dependent problem, a tangent vector is expressed in the
form, X̃ = ∂t + Xα∂α, where X = (Xα) ∈ so(3). Then the geodesic
equation is

∇X̃X̃ = ∂tX + ∇XX = 0, (9.35)

on the loop group LG = SO(3)[S1]. This is also written as
∂tX − ∂2

s (TX × X) = 0. Applying the operator ∂−2
s = −A and using

TX = −AX, we get an equation of motion in the dual space,

∂tTX − (TX × X) = 0. (9.36)

Replacing X by T ′′
X , we recover the Landau–Lifshitz equation:

∂tTX = TX × T ′′
X . (9.37)

Furthermore, integrating with respect to s, one gets back to Eq. (9.10).

9.5. Vortex Filaments as a Bi-Invariant System

9.5.1. Circular vortex filaments

In order to get an insight into the filament motions, let us consider a class of
simple filaments for which ∂2

sT = T ′′ = −c2T is satisfied with a constant c.
From the Frenet–Serret equations (D.4), we have T ′′ = −κ2T + κ′n − κτb.
This requires τ = 0 and c = κ, and we have a family of circular fila-
ments (with c−1 denoting a radius). A family of circular vortex filaments
(a sub-family of vortex filaments) has a particular symmetry, and is worth-
while investigating separately since its metric is analogous to that of a
spherical top (§4.6.1).

Replacing Ω = T ′′ = −c2T by −T in (9.26), the metric is defined as

〈Ω, Ω〉 :=
∫

S1
(T, T ) ds =

∫
S1

ds, (9.38)

where (T, T ) = |∂x/∂s|2 = 1 and T = −AΩ. As described in §9.3.1, this
metric is bi-invariant, i.e. both left- and right-invariant, because (Tt, Tt) =
(T0, T0) = 1 in regard to (9.15), and (Tt, Tt) = (T̂t, T̂t) = 1 in regard to
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(9.17) (see Fig. 9.5). The above metric induces the following inner product:

〈X,Y 〉 :=
∫

S1
(X,Y )ds. (9.39)

Suppose that X,Y, Z are C∞ functions taking values of the algebra
so(3)[S1]. Then the commutator is given by (9.31) as before, and the con-
nection is given by (9.32), where adXZ = X × Z. In view of (9.39),

〈ad∗
XY, Z〉 =

∫
S1

(Y, X × Z)ds =
∫

S1
((Y × X), Z)ds.

Therefore, we obtain ad∗
XY = Y × X, which is consistent with (9.33) when

A is set to −I. Then, the connection formula (9.32) reduces to

∇XY (s) =
1
2
X(s) × Y (s) =

1
2
[X,Y ](s), (9.40)

(omitting the superscript (L)). Then the geodesic equation, ∂tX +
∇XX = 0, reduces to

∂tX = 0, since ∇XX =
1
2
X × X = 0. (9.41)

Hence the covector TX tangent to the space curve (defined by T ′′
X = −X)

is also time-independent, where TX ∈ C∞(S1) and |TX | = 1. This is inter-
preted as steady translational motion of a vortex ring, described at the
beginning of §9.2.

The Hamilton’s equation (9.23) results in (d/dt)Tα = 0, for the Hamil-
tonian H = 1

2

∫
S1(T, T )ds = 1

2

∫
S1 ds, since δH/δT = T . Starting from the

Hamilton’s equation with the Hamiltonian H = 1
2

∫
ds (without resorting

to the fact that it is derived under the assumption of a circular filament), the
property Tα = const is understood such that the filament form is invariant
(unchanged) with the Hamiltonian of the filament length.

In §4.6.1, a finite-dimensional system (i.e. free rotation of a rigid body)
with a bi-invariant metric was considered. The metric (9.39) of a circular
filament is analogous to the metric (4.53) of a spherical top. The local
form of the connection (9.40) at s is equivalent in form to (4.55). Note
that ∇X(∇Y Z) = 1

4 [X, [Y, Z]] by (9.40), for example. Then, we obtain the
curvature tensor,

R(X,Y )Z = −1
4
[[X,Y ], Z],

by the Jacobi identity (1.60). This is equivalent to (4.56).
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The sectional curvature is found to be non-negative as before:

K(X,Y ) := 〈R(X,Y )Y, X〉 =
1
4

∫
S1

|X × Y |2 ds ≥ 0.

In this steady problem, the Jacobi equation is given by (3.127):

d2

dt2
‖J‖2

2
= ‖∇T J‖2 − K(T, J).

The right-hand side vanishes because ∇T J = 1
2T ×J and K(T, J) = 1

4‖T ×
J‖2, where ‖J‖2 = 〈J, J〉. Thus, we obtain ‖J‖ = const, as it should be.
This implies that a vortex ring in steady translational motion is neutrally
stable, and that the circular vortex is a Killing field, which is considered
in §9.6.2.

9.5.2. General vortex filaments

Above formulae regarding a vortex ring are analogous to those of a spherical
top in §4.6.1 and the note given pertaining to (4.62) in §4.6.2. A general
rigid body is characterized by a general symmetric inertia tensor J , which
is regarded as a Riemannian metric tensor, and its rotational motion is a
bi-invariant metric system (§4.5.2). Formulations in §4.4 and 4.6.2 describe
the extension to such general metric tensor J . It would be interesting to
recall the property of complete-integrablility of the free rotation of a rigid
body (see §4.1).

The general case of vortex filaments under the metric (9.30) is analo-
gous to the asymmetrical top of the metric (4.58). The filament motions of
general inertia operator A are governed by the filament equation (9.37) (or
(9.10)) and regarded as a system of bi-invariant metric. In this regard, it is
to be noted that this system is known to be completely integrable, i.e. there
are inifinite numbers of integral invariants [LP91]. Two invariants of lowest
orders are found as follows.

9.5.3. Integral invariants

According to the Poisson bracket (9.24), we define the Lie–Poisson
bracket as

{I, H} =
∫

S1
T (σ) ·

(
δI

δT
× δH

δT

)
dσ, (9.42)
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for the Hamiltonian H of (9.20) and an integral I:

H =
1
2

∫
S1

κ2(s)ds, I =
∫

S1
f(s)ds.

The Hamilton’s equation (§9.3.3) for I is written as

d
dt

I = {I, H}. (9.43)

If the bracket {I, H} vanishes, then the integral I is an invariant of motion.
A first simplest integral invariant is given by

I1 =
∫

S1
(T, T )ds =

∫
S1

ds. (9.44)

In fact, since δI1/δT (σ) = 2T (σ), the bracket vanishes:

{I1, H} =
∫

S1
T (σ) ·

(
2T (σ) × δH

δT

)
dσ = 0.

A second integral invariant I2 is given by

I2 =
∫

S1
T · (T ′ × T ′′)ds = −

∫
S1

κ2(s)τ(s)ds, (9.45)

where T ′ × T ′′ = −κ2τT + κ3b by the Frenet–Serret equations (D.4). Its
invariance is verified as follows. Taking functional derivatives of H and I2,
we obtain δH/δT (σ) = −T ′′(σ), and

δI2

δT
= T ′ × T ′′ + (T × T ′′)′ + (T × T ′)′′ = 3T ′ × T ′′ + 2T × T ′′′.

Therefore,

{H, I2} = −
∫

S1
T · (T ′′ × [3T ′ × T ′′ + 2T × T ′′′])dσ.

Recalling the formula of vector triple product, A × (B × C) = (A · C)B −
(A · B)C for three vectors A, B, C ∈ R

3, we obtain

T ′′ × (T ′ × T ′′) = |T ′′|2T ′ − (T ′ · T ′′)T ′′,

T ′′ × (T × T ′′′) = (T ′′ · T ′′′)T − (T · T ′′)T ′′′.

Substituting these and using |T |2 = 1, T · T ′ = 0, we obtain

{H, I2} = −
∫

S1
[3(T · T ′′)(T ′ · T ′′) − 2(T ′′ · T ′′′) + 2(T · T ′′)(T · T ′′′)]ds.
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The second term can be written in the form of a derivative, 2T ′′ · T ′′′ =
(d/ds)(T ′′ · T ′′). Likewise, the first and third terms are written in the form
of derivatives with respect to s as follows:

3(T · T ′′)(T ′ · T ′′) + 2(T · T ′′)(T · T ′′′)

= 2(T · T ′′)[(T ′ · T ′′) + (T · T ′′′)] +
1
2
(T ′ · T ′)′(T · T ′′)

= 2(T · T ′′)
d
ds

(T · T ′′) +
1
2

d
ds

(T ′ · T ′)(−(T ′ · T ′) + (T · T ′)′)

=
d
ds

(T · T ′′)2 − 1
4

d
ds

(T ′ · T ′)2

since T · T ′ = 0. Therefore, we have

{H, I2} =
∫

S1

d
ds

(
(T ′′ · T ′′) − (T · T ′′)2 +

1
4
(T ′ · T ′)2

)
ds = 0.

Thus, it is found that the integral I2 is an integral invariant.

9.6. Killing Fields on Vortex Filaments

Motions of the following three vortex filaments are characterized by trans-
lation and rigid-body rotation, without change of their forms.

9.6.1. A rectilinear vortex

A rectilinear vortex filament xl in the direction of z-axis (say) is defined by
the unit tangent field ∂sxl = TXl

= (0, 0, 1) in the cartesian (x, y, z)-frame
with the algebra element Xl = T ′′

X = (0, 0, 0). One can immediately show
that this field is regarded as a Killing field satisfying (3.161).

In fact, from the definition (9.34) of connection, we have ∇Y Xl =
− 1

2∂2
s (TXl

× Y ). Then, using A = −∂−2
s ,

〈∇Y Xl, Z〉 =
∫

S1
(A∇Y Xl, Z)ds =

1
2

∫
S1

(TXl
× Y, Z)ds

=
1
2

∫
S1

TXl
· (Y × Z)ds.

Likewise, we have 〈∇ZXl, Y 〉 = 1
2

∫
TXl

· (Z × Y )ds. Therefore, the Killing
equation (3.161),

〈∇Y Xl, Z〉 + 〈Y,∇ZXl〉 = 0, (9.46)
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is satisfied, since Y × Z + Z × Y = 0, for any Y, Z ∈ Lg = so(3)[S1]. Thus
it is found that TXl

is a Killing field (§3.12.1).
The corresponding conserved quantity is given by

〈Xl, Y 〉 =
∫

S1
(TXl

, Y )ds =
∫

S1
Yzds,

where Yz is the component of Y in the direction of TXl
= (0, 0, 1).

9.6.2. A circular vortex

A circular vortex is also considered to generate a Killing field Xc. The posi-
tion vector of a circular vortex of radius a is denoted by xc = a(cos s, sin s, 0)
for s ∈ [0, 2π] = S1, where the origin of a cartesian frame is taken at the
center of the vortex and the (x, y)-plane coincides with the plane of the
circular vortex. According to Eq. (9.10), the ring radius a can be made
unity by rescaling the time t to at. Then, the variable s becomes a length
parameter along the circumference of the unit circle. The tangent to the
circle is given by

TXc = ∂sxc = (− sin s, cos s, 0) := tc(s), (9.47)

and Xc = T ′′
Xc

= t′′
c = −tc (Fig. 9.6). The Landau–Lifshitz equation (9.37)

reduces to

∂tTXc
= 0.

From the definition (9.34) of connection, we have

∇Y Xc =
1
2
(Y × Xc − ∂2

s [TY × Xc + TXc × Y ]), (9.48)

y

tc

xc

Xcx

a

a

S

z

κb

κn

Fig. 9.6. Circular vortex.
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since ∂tTXc = 0. Then, we have

〈∇Y Xc, Z〉 = −1
2

∫
S1

TZ · (Y × Xc − ∂2
s [TY × Xc + TXc

× Y ])ds

=
1
2

∫
S1

Xc · (Y × TZ + Z × TY )ds +
1
2

∫
S1

TXc
· (Y × Z)ds,

(9.49)

for Y, Z ∈ Lg = so(3)[S1], where integration by parts is carried out two
times except for the first term, and then T ′′

Z is replaced with Z. Another
term 〈Y,∇ZXc〉 is obtained by interchanging Y and Z. Then, we have

〈∇Y Xc, Z〉 + 〈Y,∇ZXc〉 =
∫

S1
Xc · (Y × TZ + Z × TY )ds, (9.50)

where the last term of (9.49) cancels out with its counterpart.
It is required that all of Y , Z and Y + Z satisfy the Landau–Lifshitz

equation:

∂tTY − TY × Y = 0, ∂tTZ − TZ × Z = 0,

∂t(TY + TZ) − (TY + TZ) × (Y + Z) = 0. (9.51)

Hence, we have

TZ × Y + TY × Z = 0.

Thus, it is found the Killing equation is satisfied:

〈∇Y Xc, Z〉 + 〈Y,∇ZXc〉 = 0,

for any Y, Z ∈ Lg = so(3)[S1] under the condition that the conservation
integral of the form (9.52) makes sense. This verifies that a circular vortex
(called a vortex ring) represented by TXc

= tc = (− sin s, cos s, 0) is a
Killing field. The corresponding conserved quantity is given by

〈Xc, Y 〉 = −
∫

S1
(TXc

, Y )ds = −
∫

S1
tc · Y ds, (9.52)

where tc ·Y is the component of Y in the tangential direction of the circular
vortex. This implies that the circumferential length projected onto the circle
is invariant.
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9.6.3. A helical vortex

A similar analysis applies to a helical vortex (9.11) (with a = 1), repre-
sented by

TXh
= ∂sxh = th = k(− sin θ, cos θ, h), (9.53)

and Xh = −T ′′
Xh

= −t′′
h = k3tc = k3(− sin θ, cos θ, 0), where θ = k(s − ct)

and c = ω/k = hk2. Here, some modification is necessary, because the
helical vortex rotates with respect to the z-axis and translates along it
without change of form.

Introducing a pair of new variables (τ, σ) by σ = s− ct and τ = t where
θ = kσ, the TXh

and Xh are functions of σ only, hence ∂τTh = 0, ∂τXh = 0.
The derivatives are transformed as

∂s = ∂σ, ∂t = ∂τ − c∂σ. (9.54)

Then, Eq. (9.19) is transformed to

∂τTh − c∂σTh = Th × ∂2
σTh.

We may call slide-Killing (according to [LP91]) if the Killing equation,

〈∇Y Xh, Z〉 + 〈Y,∇ZXh〉 = 0, (9.55)

is satisfied for the variable σ. Following the derivation of formulae in the
previous section, it is found that the left-hand side of (9.55) is given by∫

S1
Xh · (Y × TZ + Z × TY )dσ, (9.56)

which is obtained just by replacing Xc and s with Xh and σ in (9.50).
Equations (9.51) are replaced by

∂tTY − c∂σTY − TY × Y = 0, ∂tTZ − c∂σTZ − TZ × Z = 0,

∂t(TY + TZ) − c∂σ(TY + TZ) − (TY + TZ) × (Y + Z) = 0.

From these, we immediately obtain

TZ × Y + TY × Z = 0.

Thus, it is found that Eq. (9.55) of slide-Killing is satisfied, and that the
helical vortex of Xh with Th is a Killing field. The corresponding conserved
quantity is given in the form (9.52) if TXc

and tc are replaced by TXh
and th.
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9.7. Sectional Curvature and Geodesic Stability

Stability of a vortex filament is described by the Jacobi equation. In other
words, an infinitesimal variation field εJ between two neighboring geodesics
(for an infinitesimal parameter ε and the Jacobi field J) is governed by the
Jacobi equation (3.127):

d2

ds2

1
2
‖J‖2 = ‖∇XJ‖2 − K(X, J), (9.57)

where X is the tangent vector to the reference geodesic.
The sectional curvature K(X, J) is defined by (3.166) in §3.12.3, which

is reproduced here:

K(X, J) = 〈R(X, J)J, X〉
= −〈∇XX, ∇JJ〉 + 〈∇JX, ∇XJ〉 + 〈∇[X,J]X, J〉. (9.58)

9.7.1. Killing fields

In §3.12.3, it was verified that the sectional curvature K(X, J) is positive
if the tangent vector X is a Killing field and that the right-hand side of the
Jacobi equation (9.57) vanishes.

First example is the section spanned by a straight-line vortex and an
arbitrary variation field J . The straight-line vortex is characterized by the
(cotangent) vector TXl

= (0, 0, 1) and the vector Xl = (0, 0, 0). From the
connection formula (9.34), we have

∇JXl = −1
2
∂2

s (TXl
× J).

Hence, the curvature formula (3.167) for a Killing field Xl gives

K(Xl, J) = ‖∇JXl‖2 = ‖∇Xl
J‖2 =

1
4

∫
S1

(TXl
× J ′)2ds, (9.59)

i.e. the curvature is positive except for J ′ parallel to TXl
. It is readily seen

that the right-hand side of (9.57) vanishes.
Second example is the section between a circular filament and an arbi-

trary variation field J . A circular vortex is characterized by the tangent
vector field Xc = −tc of (9.47). From the curvature formula (3.167) for a
Killing field Xc, we find

Kc(Xc, J) = ‖∇JXc‖2 = ‖∇XcJ‖2, (9.60)
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where ∇JXc is given by (9.48) with Y = J . Thus, it is found that the
sectional curvature of a vortex ring with an arbitrary field J is positive.
Again, the right-hand side of (9.57) vanishes. This implies that a vortex
ring in steady translational motion is neutrally stable, which is consistent
with the perturbation analysis of [KT71].

Regarding the helical vortex Xh, we have the same properties.

9.7.2. General tangent field X

Using the connection of (9.34) and the curvature formula (9.58), it is found
that the sectional curvature is given by

K(X, J) = 〈R(X, J)J, X〉 =
∫

S1
f(s)ds, (9.61)

for X, J ∈ C∞(S1, so(3)), where12

f(s) = (AX × X) · (AJ × J)′′ − (3/4)[∂−1
s (X × J)]2

+
1
4
[∂s(AX × J + AJ × X)]2 +

1
2
[|X|2(J · AJ) + |J |2(X · AX)]

− 1
2
(X · J)[(AX · J) + (X · AJ)] (9.62)

[SOK96; Kam98].
Regarding a helical vortex, it is assumed to be stable since it is a Killing

field as far as the perturbations belong to those on S1. However, fluid-
dynamically speaking, a physical aspect must be taken into account. If the
wavelength of the perturbation is sufficiently large and the condition of
S1-periodic field is not satisfied, then the stability of a helical vortex is
not guaranteed [SOK96]. In addition, the local induction equation is an
approximate equation in the sense that the filament must be very thin and
in addition, its curvature must be relatively small.

9.8. Central Extension of the Algebra of Filament Motion

The loop algebra Lg = so(3)[S1] yielded the Landau–Lifshitz equa-
tion (9.19). It is possible to formulate its central extension analogously
according to the KdV problem (§5.3, 5.4 and Appendix H). The result is
the Kac–Moody algebra known in the gauge theory [AzIz95]. However, its

12The present X and J correspond to X′′ and J ′′ in [Kam98].
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application to the motion of a vortex filament is not seen in any existing
textbook. It is remarkable to find that the resulting geodesic equation is
that obtained in [FM91] in the context of fluid dynamics.

Let us introduce extended algebra elements defined as

X̂, Ŷ , Ẑ ∈ so(3)[S1] ⊕ R,

where X̂ := (X, a), Ŷ := (Y, b), Ẑ := (Z, c), for a, b, c ∈ R. The extended
metric is defined as

〈X̂, Ŷ 〉 :=
∫

S1
(AX, Y )ds + ab

where A = −∂−2
s . The extended algebra is defined as

[X̂, Ŷ ] := ([X,Y ](L)(s), c(X,Y )), (9.63)

where

c(X,Y ) :=
∫

S1
(X(s), Y ′(s))ds = −c(Y, X),

and the Jacobi identity is satisfied by the new commutator:

[[X̂, Ŷ ], Ẑ] + [[Ŷ , Ẑ], X̂] + [[Ẑ, X̂], Ŷ ] = 0.

It is not difficult to show that the commutator (9.63) is equivalent to that
of the Kac–Moody algebra [AzIz95]. The extended connection is found to
be given by

∇X̂ Ŷ =
(

∇XY,
1
2

∫
S1

(X, ∂sY )ds

)
,

∇XY :=
1
2
([X,Y ](L) + ∂2

s [AX, Y ](L) + ∂2
s [AY, X](L) − ∂2

s (a∂sY + b∂sX)).

Then the geodesic equation (∂tX̂ + ∇X̂X̂ = 0) for the extended system is
obtained as

∂tX + ∂2
s (AX × X) − a∂3

sX = 0,

∂ta = 0.

The second equation follows from
∫

S1(X, ∂sX)ds = 0. Applying the opera-
tor A, we obtain the equation for xs = L = −AX (X = L′′):

∂tL − (L × L′′) − a∂3
sL = 0.
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Integrating this with respect to s, we return to the equation for the space
curve x(s, t):

xt = xs × xss + axsss,

in R
3. From the Frenet–Serret equation (D.4), we have

xsss = −κ2t + κ′n − κτb.

Denoting v3 = axsss, we obtain

∂sv3 = a(−3κκ′t + βn + γb),

where β and γ are certain scalar functions of s. The rate of change of an
arc-length ∆s between two nearby points along the curve is given by (9.8):

(∆s)−1 d
dt

∆s = (∂sv3) · t = −3κκ′a,

where κ(s) is the curvature of the filament at a point s. Therefore the
new term axsss induces change of ∆s. However this local change can
be annihilated by adding a tangential velocity v3∗ = (3/2)aκ2xs with-
out affecting the velocity component perpendicular to t. In fact, we have
(∂sv3∗) · t = 3κκ′a. The shape of the filament is not changed by the addi-
tional term.

Thus, we have found a new equation of motion conserving the arc-length
parameter s:

xt = xs × xss + a(xsss + (3/2)κ2xs). (9.64)

This is equivalent to the equation obtained by Fukumoto and Miyazaki
[FM91] (FM equation). This was originally derived for the motion of a
thin vortex tube with an axial flow along it (Fig. 9.7). The two equations,
(9.10) and (9.64), are known to be the first two members of the hierarchy
of completely integrable equations for the filament motion [LP91].

In Chapter 5, the KdV equation is derived as a geodesic equation on
the diffeomorphism group of a circle S1 with a central extension. Here,

axial flow

x (s,t)

Fig. 9.7. Thin vortex tube with an axial flow.
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it is verified that the motion of a vortex filament governed by Eq. (9.10)
is a geodesic on the loop group LG = SO(3)[S1], with SO(3)-valued and
pointwise multiplication. Furthermore, the infinite-dimensional loop alge-
bra Lg has a non-trivial central extension equivalent to the Kac–Moody
algebra. This is a new formulation verifying that the extended system leads
to another geodesic equation with an additional third derivative term, which
was derived earlier [FM91] and shown to be a completely integrable sys-
tem. It is remarkable that there is a similarity in the forms between the
KdV equation and FM equation. These are two integrable systems defined
over the S1 manifold: one is a geodesic equation over the extended dif-
feomorphism group D̂(S1) and the other is over the extended loop group
ŜO(3)[S1].
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It is well known that some soliton equations admit certain geometric inter-
pretation. An oldest example is the sine–Gordon equation on a pseudo-
spherical surface in R

3 [Eis47]. The Gauss and Mainardi–Codazzi equations
(§2.4) of the differential geometry of surfaces in R

3 yield the sine–Gordon
equation when the Gaussian curvature is constant with a negative value.
On the basis of the surface geometry, the Bäcklund transformation can be
explained as a transformation from one surface to another in R

3. Namely,
the relation between the new and old surfaces is nothing else than the so-
called Bäcklund transformation. Both were already known before modern
soliton theory. This will be described in Chapter 10.

In order to understand a certain background of the Lax representation in
the soliton theory, modern approaches of group-theoretic and differential-
geometric theories were developed on the integrable systems [LR76;
Herm76; Cra78; Lun78], which later led to theories of soliton surfaces.
Among them, two kinds of approaches have been recognized. One is based
on the structure equations which express integrability conditions for sur-
faces, which was proposed by [Sas79] and developed by [CheT86]. Second is
an immersion problem of an integration surface in an envelop space, which
was initiated by [Sym82], and later systematically developed by [Bob94;
FG96; CFG00]. This is an approach by defining surfaces on Lie groups and
Lie algebras. Both are described in Chapter 11. Firstly, we start to consider
a historical geometrical problem to derive the sine–Gordon (SG) equation
on a surface of constant Gaussian curvature.
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Chapter 10

Geometric Interpretations
of Sine–Gordon Equation

This Chapter 10, §11.3.4 and §11.5 are regarded as some
applications of the formulation of Chapter 2 for surfaces
in R

3.

10.1. Pseudosphere: A Geometric Derivation of SG

We consider surfaces of constant Gaussian curvature K. As K is positive or
negative, the surface is called spherical or pseudospherical. On the basis of
the theory of surfaces in R

3 (Chapter 2, §3.5.2, Appendix K), we consider
the coordinate curves that are defined by the lines of curvature1 on the
surfaces of constant K in R

3, and hence, the coordinate curves constitute
an orthogonal coordinate net (u1, u2), and a line-element ds is defined by
ds2 = g11(du1)2 + g22(du2)2. We assume that K is equal to ε/a2, where ε

is +1 or −1 according as K is positive or negative with a being a positive
constant. Such a surface can be covered by a conjugate net. According
to the representation (K.7), the second fundamental tensors (Appendix K
and §2.2) are given by

b11 =
√

g

a
, b12 = 0, b22 = ε

√
g

a
, (10.1)

where g = det gαβ = g11g22.

1A line of curvature is defined by the property that its tangent coincides at each point
with one of two principal directions which are orthogonal to each other. The lines of
curvature intersecting orthogonally satisfy the condition of conjugate directions, and are
hence called self-conjugate [Appendix K].

321
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principal directions

Fig. 10.1. An orthogonal coordinate net.

By the properties g12 = 0 and b12 = 0, the coordinate curves are ortho-
gonal and coincide with the lines of curvature (see (K.5)). On such a coordi-
nate system as given by the lines of curvature, the tangent to the coordinate
curve at each point coincides with one of the principal directions (Fig. 10.1).

Now, the Mainardi–Codazzi equation derived in §2.4 is useful to deter-
mine the surface. Taking γ = α in Eq. (2.49), we have

∂βbαα − ∂αbαβ − Γν
αβbνα + Γν

ααbνβ = 0,

where α �= β. Setting (α, β) = (1, 2), one obtains ∂2b11−Γ1
12b11+Γ2

11b22 = 0,
since b12 = 0. Substituting the above expressions of bαβ and using the
definition (2.40) of Γβν,α with g12 = 0, this reduces to

g11

2a
√

g
∂2(g22 − εg11) = 0,

where g = g11g22. Another pair (α, β) = (2, 1) gives the equation:
(g22/2a

√
g) ∂1(g22 − εg11) = 0. Thus, we obtain

∂

∂u1 (g22 − εg11) = 0,
∂

∂u2 (g22 − εg11) = 0,

since g11 �= 0 and g22 �= 0. These lead to the solution,

g22 − εg11 = const.
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For the case of the pseudospherical surface (ε = −1), this equation is
satisfied by

g11 = a2 cos2 φ, g22 = a2 sin2 φ, (g12 = 0), (10.2)

with an appropriate scaling of u1 and u2 where a is a positive constant.
Then, the line-element length ds is given by

ds2(φ) = a2 cos2 φ (du1)2 + a2 sin2 φ (du2)2.

Therefore, we have ds(0) = a|du1| and ds(π/2) = a|du2|. Hence, the coordi-
nate curves divide the surfaces into small infinitesimal squares. In this sense,
the coordinate net is called an isometric orthogonal net. From (10.1), we
have b11 = −b22 = a sin φ cos φ. (Likewise, the case of the spherical surface
ε = 1 can be solved.)

Substituting the above expressions (10.2) of gαβ in the representation
of the Gaussian curvature (2.63), and using K = −1/a2, one obtains finally(

∂

∂u1

)2

φ −
(

∂

∂u2

)2

φ = sinφ cos φ (10.3)

[Eis47, §49]. For each solution φ(u1, u2) of (10.3), the metric tensors (10.2)
together with the values of bαβ determine a pseudospherical surface with
the coordinate net of lines of curvtures. Introducing the variable Φ = 2φ,
the above equation becomes(

∂

∂u1

)2

Φ −
(

∂

∂u2

)2

Φ = sin Φ. (10.4)

The first and second fundamental forms are

I = a2 cos2(Φ/2)(du1)2 + a2 sin2(Φ/2)(du2)2, (10.5)

II =
a

2
sin Φ(du1)2 − a

2
sin Φ(du2)2. (10.6)

Performing the coordinate transformation defined by x = (u1 + u2)/2 and
y = (u1 − u2)/2, Eq. (10.4) is also written as

∂

∂x

∂

∂y
Φ = sin Φ. (10.7)

Equation (10.7), or (10.4), is called the sine–Gordon equation (SG) in the
soliton theory.

Each solution Φ(u1, u2) gives an explicit representation of the tensor
fields gαβ(u1, u2) and bαβ(u1, u2) of the first and second fundamental forms,
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which can determine a pseudospherical surface in R
3, uniquely within a rigid

motion (§2.11).

10.2. Bianchi–Lie Transformation

Geometric interpretation of the Bäcklund transformation is illustrated by
the Bianchi–Lie transformation [AnIb79]. The outline of the Bianchi’s geo-
metrical construction [Bia1879] is as follows. Consider a surface Σ of con-
stant negative curvature −1/a2 in the euclidean space R

3. Another surface
Σ′ is related to Σ in the following way. To each point p ∈ Σ, there corre-
sponds a point p′ ∈ Σ′, such that

(i) : |pp′| = a, (ii) : pp′ ∈ TpΣ,

(iii) : pp′ ∈ Tp′Σ′, (iv) : TpΣ ⊥ Tp′Σ′,

where |pp′| is the length of the line segment pp′, and TpΣ, Tp′Σ′ are tangent
planes to Σ, Σ′ at p, p′ respectively (Fig. 10.2). It was shown by Bianchi
[Bia1879] that the surface Σ′ thus constructed is also a surface of the same
constant curvature −1/a2.

Σ

a

p

p
Σ

TpΣ

Tp Σ

Fig. 10.2. Sketch of Bianchi’s transformation.
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An analytical interpretation equivalent to the above transformation was
given by Lie [Lie1880]. Any surface z = f(x, y) in R

3(x, y, z) of constant
curvature K = −1/a2 satisfies the following second order partial differential
equation:

fxxfyy − (fxy)2 = − 1
a2

(
1 + (fx)2 + (fy)2

)2 (10.8)

(see (D.10)). At a point k = (x, y, z) on such a surface Σ, the normal
vector N to the tangent plane (TpΣ) is given by N = (p, q, −1) where
p = fx, q = fy, since pdx + qdy − dz = 0. Therefore, a surface element
of Σ is defined by the set (x, y, z, p, q), satisfying the following consistency
condition:

∂p

∂y
=

∂2f

∂y∂x
=

∂q

∂x

(Fig. 10.3). The corresponding surface element of the transformed sur-
face Σ′ (represented by Z = F (X,Y ), P = FX , Q = FY ) is denoted by
(X, Y, Z, P, Q). Then the above Bianchi’s conditions (i) ∼ (iv) are expressed
in the following way:

(i) : (x − X)2 + (y − Y )2 + (z − Z)2 = a2,

(ii) : p(x − X) + q(y − Y ) − (z − Z) = 0,
(iii) : P (x − X) + Q(y − Y ) − (z − Z) = 0,
(iv) : pP + qQ + 1 = 0.


 (LT)

x

z

y

Σ

(x, y)

(x, y, z)

k

z

TkΣ

–N = (–p, –q, 1)

z = f(x, y)

Fig. 10.3. Surface element (x, y, z, p, q).
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It is observed that, given any surface element (x, y, z, p, q), the equations
(LT) give four relationships between the five quantities X, Y, Z, P, Q. There-
fore there is a one-fold infinity of surface elements (X, Y, Z, P, Q) satisfying
(LT), that is, not unique but multi-valued. Next, we quote Lie’s lemma and
theorem without proof [AnIb79; Lie1880].

Lemma. Suppose that a surface element (x, y, z, p, q) of a surface Σ is
given together with the relations (LT). If (X, Y, Z, P, Q) is a surface element,
that is, if the integrability condition ∂P/∂Y = ∂Q/∂X is satisfied on Σ,
then Σ is a surface of constant negative curvature, i.e. Σ satisfies Eq. (10.8).

A statement dual to the above Lemma holds for the symmetry between
the surface elements of Σ and Σ′. As a consequence,

Theorem. The partial differential equation (10.8) is invariant under the
transformation (LT) in the following sense. Suppose that Σ is a surface
of constant curvature −1/a2 and Σ′ is an image of Σ under the action of
(LT), then Σ′ is also a surface of constant curvature −1/a2.

Accordingly, one can construct a family of surfaces of constant negative
curvature starting from a given initial surface. This is recognized as a pos-
sibility that the transformation (LT) converts a solution of Eq. (10.8) into
a family of solutions of the same equation. It also gives us a geometrical
hint to the Bäcklund transformation to be considered in the next section.
It is well known that the sine–Gordon equation equivalent to Eq. (10.8) is
one of the soliton equations.

10.3. Bäcklund Transformation of SG Equation

Bäcklund [Bac1880] generalized the Bianchi’s construction of surfaces Σ
and Σ′, by replacing the orthogonality condition of the two tangent planes
T = TpΣ and T ′ = Tp′Σ′ with the condition that the angle between T
and T ′ is fixed and not necessarily at right angles. Namely, the Bianchi’s
condition (iv) is replaced by (iv’) ∠(T , T ′) = const. Although Bäcklund’s
construction generalized Bianchi’s construction geometrically, it turned out
that it is analytically only a simple extension up to a one-parameter group
of dilatations [AnIb79].

Heuristically, it is as follows. Suppose that a surface z = z(x, y) in
(x, y, z)-space is specified pointwise by the values of z and its derivatives
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p, q, r, s, t, . . . at (x, y). The Bäcklund transformation is represented by the
four conditions:

X = x,

Y = y,

P = f(x, y, z, p, q, Z),
Q = g(x, y, z, p, q, Z).


 (10.9)

Suppose that a surface z = h(x, y) is given, and that this is substituted
into the third and fourth equation of (10.9), the two relationships represent
an overdetermined system of two first order partial differential equations in
one unknown function Z(X,Y ). A consistency condition ∂P/∂Y = ∂Q/∂X

must be satisfied. If z(x, y) satisfies this condition, then the system (10.9)
is regarded as a transformation from a surface z = z(x, y) into a surface
Z = Z(X,Y ), and considered as an integrable system.

Suppose that the function z(x, y) satisfies the sine–Gordon equation
(10.7). In addition, consider a particular transformation of four relation-
ships represented by X = x, Y = y and,

p − P = 2a sin
1
2
(z + Z), (10.10)

q + Q =
2
a

sin
1
2
(z − Z), (10.11)

where P = ZX , Q = ZY . Recall that p = zx, q = zy and py = qx = zxy =
sin z by (10.7). Differentiation of (10.10) with respect to y leads to

py − PY = 2a cos
1
2
(z + Z)

1
2
(q + Q)

= 2 cos
1
2
(z + Z) sin

1
2
(z − Z) = sin z − sin Z.

Likewise, differentiation of (10.11) with respect to x results in qx + QX =
sin z + sinZ. Sine py = qx = sin z, we obtain

∂P

∂Y
= sinZ, and

∂Q

∂X
= sinZ,

respectively. Thus the consistency condition ∂P/∂Y = ∂Q/∂X = ZXY is
satisfied, and we find that Z(X,Y ) satisfies the sine–Gordon equation:

ZXY = sinZ. (10.12)
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The pair of transformations (10.10) and (10.11) is usually called the
(self-)Bäcklund transformation for the sine–Gordon equation. A systematic
derivation of the Bäcklund transformation will be considered later in §11.4.
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Chapter 11

Integrable Surfaces: Riemannian
Geometry and Group Theory

11.1. Basic Ideas

Soliton theory concerns solvable systems of nonlinear partial differential
equations such as the sine–Gordon equation, nonlinear Schrödinger equa-
tion, KdV equation, modified KdV (mKdV) equation and so on. The
inverse scattering transform is one of the methods to solve them [AS81;
AKNS73]. In this framework, a pair of linear systems are introduced:

ψx = Xψ, ψt = Tψ, (11.1)

where ψ is an n-dimensional vector wave function of variables x and t,
and X,T are traceless n × n matrices, called the Lax pair, including a cer-
tain spectral parameter ζ and functions u(x, t), · · · (n = 2 in the following
examples). A solvability condition is obtained by the cross-differentiation
of (11.1) with respect to x and t, and equating ψxt with ψtx:

Xt − Tx + [X,T ] = 0, (11.2)

where [X,T ] = XT − TX (the commutator of X and T ). According to
the scenario of the method, given a matrix operator X, there is a simple
deductive procedure to find T such that the system (11.2) yields nonlinear
evolution equations for u(x, t), . . . . In order for Eq. (11.2) to be useful,
the operator X should have an eigenvalue parameter ζ which is time-
independent, ∂tζ = 0. This problem is solved by the inverse scattering
transform, called the AKNS method coined after the authors of the semi-
nal work [AKNS73].

A geometric aspect, pointed out by Lund and Regge [LR76], was why a
particular linear problem like (11.1) is helpful in solving a certain nonlin-
ear equation. Later, geometrical interpretations for the inverse scattering

329
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problem were developed: some integrable equations describe pseudospheri-
cal surfaces [Sas79; CheT86], and some other integrable equations describe
spherical surfaces [AN84; Kak91]. In addition, a theory of immersion of
a two-dimensional surface described by integrable equations into a three-
dimensional euclidean space has been developed by [Sym82; Bob90; Bob94;
FG96]. Recently, it has been shown that integrable systems are mapped to
the surface of a sphere [CFG00]. We will consider these problems one by
one below.

11.2. Pseudospherical Surfaces: SG, KdV, mKdV, ShG

Let M2 be a two-dimensional differentiable manifold with coordinates (x, t).
The two equations in (11.1) are combined into the following form,

dψ = Ωψ, ψ =
(

ψ1

ψ2

)
, (11.3)

where dψ = ψxdx + ψtdt is a vector-valued 1-form, and Ω = Xdx + Tdt is
a traceless real 2 × 2 matrix with 1-form entry,1 and expressed as

Ω =
1
2

(
−σ2 σ1 − �

σ1 + � σ2

)
, (11.4)

where {σ1, σ2, �} are three 1-forms on R
2 = (x, t), depending on the

function u(x, t) and its partial derivatives, including a certain spectral
parameter ζ.

Equation (11.3), dψ − Ωψ = 0, is read as vanishing of the covariant
derivative of a vector ψ (see Eqs. (3.41) and (3.27)), describing parallel
transport of v, and the matrix Ω is the connection 1-form (§3.5.1). This
observation is the motivation for the following formulation. The key step is
to find appropriate 1-forms {σ1, σ2, �} for a nonlinear partial differential
equation which is completely integrable.

Integrability condition for the Pfaffian system (11.3) is described by
d(dψ) = (ψxt − ψtx)dt ∧ dx = 0 (footnote to §1.5, §2.7, §3.5):

d(dψ) = dΩψ − Ω ∧ dψ = (dΩ − Ω ∧ Ω)ψ = 0.

1A system of 1-form equations like (11.3) is often called as a Pfaffian system.



August 2, 2004 16:5 WSPC/Book Trim Size for 9in x 6in chap11

Integrable Surfaces: Riemannian Geometry and Group Theory 331

This requires vanishing of the 2-form,

dΩ − Ω ∧ Ω = 0, (11.5)

which is equivalent to the solvability condition (11.2).2 Writing with com-
ponents, Eq. (11.5) reduces to

dσ1 = σ2 ∧ �, (11.6)

dσ2 = � ∧ σ1, (11.7)

d� = −σ1 ∧ σ2. (11.8)

Comparing this3 with (3.52) of §3.5.2, the first two equations correspond
to the structure equations describing the first integrability condition, and
the third equation, written as

d� = Kσ1 ∧ σ2 (11.9)

in (3.52), is the second integrability condition. This requires the Gaussian
curvature K to be −1. In the formulation of §3.5, the two-dimensional man-
ifold M2 is structured with 1-forms σ1 and σ2 in the orthonomal directions
e1 and e2 respectively, and the first fundamental form on M2 is given by
I = σ1σ1 + σ2σ2. It is said that the manifold M2 is a pseudospherical
surface, if K = −1 (or a negative constant).

Given the three 1-forms {σ1, σ2, �} appropriately dependent on the
function u(x, t) and its partial derivatives (including a certain spectral
parameter ζ), the integrability conditions (11.6)–(11.8) require that a cer-
tain evolution equation must be satisfied. This determines a differential
equation which describes a pseudospherical surface.

Explicit representations of Ω of (11.4) are now given for four soli-
ton equations. According to [Sas79; CheT86], the connection 1-form
matrix Ω is for

(a) sine–Gordon (SG) equation:

ΩSG =
1
2

(
ζdx + ζ−1(cos u)dt −uxdx + ζ−1(sin u)dt

uxdx + ζ−1(sin u)dt −ζdx − ζ−1(cos u)dt

)
, (11.10)

where the real parameter ζ plays the role of the eigenvalue in the scattering
problem of (11.3).

2This is known as the Maurer–Cartan equation.
3Our � corresponds to −ω of [Sas79]. Our (σ1, σ2, �) correspond to (ω1, −ω2, ω3) of
[CheT86].
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Comparing with (11.4), we have

σ1 = ζ−1(sin u)dt, σ2 = −ζdx − ζ−1(cos u)dt,

� = uxdx.

}
(11.11)

Using these, both Eqs. (11.6) and (11.7) are found to be identity equa-
tions, hence yielding no new relation, whereas the structure equation (11.9)
reduces to uxt = −K sin u. When K = −1, this becomes the sine–Gordon
equation (10.12):

uxt = sinu. (11.12)

Thus, the sine–Gordon equation describes a pseudospherical surface. Note
that this is obtained from the integrability condition d2ψ = 0, equivalent
to ψxt = ψtx. See §11.3.2 for the case K = 1.

(b) KdV equation is described by

ΩKdV =
(
ζdx − (4ζ3 + 2ζu + ux)dt udx − (uxx + 2ζux + 4ζ2u + 2u2)dt

−dx + (4ζ2 + 2u)dt −ζdx + (4ζ3 + 2ζu + ux)dt

)
.

(11.13)

Comparing with (11.4), we have

σ1 = (u − 1)dx + (−uxx − 2ζux − 4ζ2u − 2u2 + 2u + 4ζ2)dt,

σ2 = −2ζdx + 2(ux + 2ζu + 4ζ3)dt,

� = −(u + 1)dx + (uxx + 2ζux + 4ζ2u + 2u2 + 2u + 4ζ2)dt.

Using these, both of Eqs. (11.6) and (11.8) reduce to

[ut + 6uux + uxxx]dx ∧ dt = 0,

whereas (11.7) reduces to an identity such as [0]dx ∧ dt = 0. Thus, we find
that the only nontrivial equation to be satisfied is the KdV equation:

ut + 6uux + uxxx = 0.

This is a differential equation which defines M2 to be a pseudospherical
surface. Likewise, we have
(c) Modified KdV (mKdV) equation,

ΩmKdV

=

(
ζdx − (4ζ3 + 2ζu2)dt udx − (uxx + 2ζux + 4ζ2u + 2u3)dt

−udx + (uxx − 2ζux + 4ζ2u + 2u3)dt −ζdx + (4ζ3 + 2ζu2)dt

)
;
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(d) sinh–Gordon (ShG) equation,

ΩShG =
1
2

(
ζdx + 1

ζ (cosh u)dt 1
2uxdx − 1

ζ (sinhu)dt

uxdx + 1
ζ (sinhu)dt −ζdx − 1

ζ (cosh u)dt

)
. (11.14)

From (c) and (d), we obtain corresponding nonlinear differential equations:

mKdV equation : ut + 6u2ux + uxxx = 0, (11.15)

ShG equation : uxt − sinhu = 0, (11.16)

respectively for K = −1. If these equations are satisfied, we obtain a pseu-
dospherical surface.

11.3. Spherical Surfaces: NLS, SG, NSM

Integrable equations are mapped to the surface of a sphere [CFG00]. This
may sound puzzling after learning that some integable equations describe
pseudospherical surfaces. However, it can be shown that there exists another
integrable system whose underlying surfaces have Gaussian curvature equal
to +1. Here, we consider such systems. The immersion problem of integrable
surfaces will be considered in §11.5 and 6.

11.3.1. Nonlinear Schrödinger equation

According to the formulation in the previous section, the AKNS linear
problem of the inverse scattering method for the nonlinear Schrödinger
(NLS) equation (9.13) of §9.2 may be written as dφ = ΩNLS φ for a two-
component wave function φ = (φ1, φ2)T , where the connection 1-form ΩNLS

is defined as

ΩNLS =

(
−iζdx − iΛdt q(x, t)dx + Bdt

−q∗(x, t)dx − B∗dt iζdx + iΛdt

)
. (11.17)

Here, a complex function q(x, t) = q(r) + iq(i) (equivalent to ψ of (9.13)) is
defined with two real functions q(r) and q(i) independent of a real spectral
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parameter ζ, and

Λ = 2ζ2 − |q|2, B = 2ζq + iqx, (B∗ = 2ζq∗ − iq∗
x), (11.18)

(Λ is a real function).4

The complex matrix ΩNLS is found to be an element of su(2), i.e. skew
hermitian matrices (with trace 0). The Lie algebra su(2) is regarded as a
three-dimensional vector space over real coefficients with the orthonomal
basis (e1, e2, e3) defined by

e1 =
1
2

(
0 −i

−i 0

)
, e2 =

1
2

(
0 −1
1 0

)
, e3 =

1
2

(
−i 0
0 i

)
, (11.19)

which are related to the Pauli matrices (7.23) by σk = 2iek, and satisfy the
commutation relations,

[ej , ek] = εjklel, (11.20)

which is consistent with (7.24).
Let us define three real 1-forms on R

2 = (x, t) by

σ1 = 2(q(i)dx + B(i)dt),

σ2 = 2(ζdx + Λdt),

� = −2(q(r)dx + B(r)dt),


 (11.21)

where B(r) and B(i) are the real and imaginary parts of B. Then, we have

ΩNLS =
1
2

(
−iσ2 iσ1 − �

iσ1 + � iσ2

)
= −σ1e1 + �e2 + σ2e3. (11.22)

Suppose that the three 1-forms satisfy

dσ1 = σ2 ∧ �,

dσ2 = � ∧ σ1,

d� = σ1 ∧ σ2.


 (11.23)

Comparing with (11.9), this describes the underlying surface M2 that has
the Gaussian curvature +1. The manifold M2 (structured with 1-forms

4The formulation of [AS81, §1.2] includes the case where q and Λ are replaced by ±q
and 2ζ2 ∓ |q|2, respectively. Soliton solutions are found with the upper signs.
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σ1 and σ2 in the orthonormal directions e1 and e2, §3.5.2) might be said
to be spherical. The first fundamental form of M2 is given by

I = 〈dx, dx〉 = σ1σ1 + σ2σ2, (11.24)

where dx = σ1e1 + σ2e2.
Using (11.21), the first and third equations of (11.23) reduce to

q
(i)
t = q(r)

xx + 2|q|2q(r), (11.25)

q
(r)
t = −q(i)

xx − 2|q|2q(i). (11.26)

The second of (11.23) reduces to an identity such as [0] dx ∧ dt = 0. Multi-
plying (11.25) by i and summing up with (11.26) result in

qt = i(qxx + 2q|q|2), (11.27)

i.e. the nonlinear Schrödinger equation equivalent to (9.13) with q = 1
2ψ.

This is a differential equation which defines M2 to be a spherical surface,
with the metric defined by (11.24).

Remark. If the problem under investigation is periodic, then there may
be no problem. However, some problems of motion of vortex filaments may
include an unbounded domain x ∈ R

1. The vortex soliton (9.14) of §9.2
is such an example. In this regard, it is to be noted that the 1-form σ1

and the connection form � include linearly the real functions q(r) and q(i)

(since B = 2ζq + iqx), without nonhomogeneous terms. In a problem for
x ∈ R

1, if |q(r)| and |q(i)| decay more rapidly than x−1 as |x| → ±∞, then
the distance in the e1 direction will be bounded as |x| → ±∞. In fact, the
function q of (9.14) decays as e−|τ0x|. In addition, the inverse scattering
problem with the potential q of a vortex soliton (9.14) will be characterized
with a negative value of the spectral parameter ζ, say 2ζ = −c (c > 0).
Then as |x| → ±∞, σ2 → 2ζ(dx−cdt) since |q| → 0. It might be reasonable
that the solution q is regarded as a limiting form of a periodic function of
ξ = x − ct with its periodicity length tending to infinity.

11.3.2. Sine–Gordon equation revisited

It may be puzzling to find that the sine–Gordon equation has a underlying
surface of Gaussian curvature +1 as well. This can be verified according
to the formulation in the previous section. Instead of (11.21), we introduce



August 2, 2004 16:5 WSPC/Book Trim Size for 9in x 6in chap11

336 Geometrical Theory of Dynamical Systems and Fluid Flows

the three real 1-forms on R
2 = (u, v) by

σ1 = Φudu,

σ2 = −ζdu + ζ−1 cos Φdv,

� = ζ−1 sin Φdv.


 (11.28)

In this case, the connection 1-form matrix Ω∗
SG is defined by the same form

as (11.22):

Ω∗
SG =

1
2

(
−iσ2 iσ1 − �

iσ1 + � iσ2

)
= −σ1e1 + �e2 + σ2e3. (11.29)

The first of the structure equation (11.23) leads to the sine–Gordon
equation:

Φuv = sin Φ,

whereas the remaining two equations results in identities, yielding no new
relation. Thus, it is found that the sine–Gordon equation defines a spherical
surface (just like the nonlinear Schrödinger equation does).

The problem of spherical and pseudospherical surfaces M2 will be con-
sidered in the next subsection again by presenting particular solutions
explicitly and also by viewing from the enveloping space R

3, i.e. trans-
forming the surfaces M2 to surfaces of revolution in R3.

11.3.3. Nonlinear sigma model and SG equation

A nonlinear sigma model (NSM) is obtained from a relativistic conformal
field theory in one time and one space dimension, which is described by
an O(3)-invariant Lagrangian for a real field variable n [Poh76; AN84].
The variable n(u, v) is represented as a three-dimensional vector n(u, v) =
(n1, n2, n3) depending on two real parameters (u, v) and its magnitude is
constrained to be unity:

〈n,n〉 := (n1)2 + (n2)2 + (n3)2 = 1.

The vector n describes a unit sphere S2 in R
3, and (u, v) are regarded as

parameters on it. The tangent vectors nu and nv are normalized such that

〈nu,nu〉 = 1, 〈nv,nv〉 = 1,

and satisfy the following conditions:

〈nu,n〉 = 0, 〈nv,n〉 = 0, −1 ≤ 〈nu,nv〉 ≤ 1.
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The equation of motion of the sigma model is described by

nuv + 〈nu,nv〉n = 0. (11.30)

It is useful to introduce the angle variable Φ between the two tangents by

cos Φ = 〈nu, nv〉. (11.31)

In order to investigate the integrability of the sigma model, we introduce a
pair of (original physical) variables (t, x) by

u =
1
2
(x + t), v =

1
2
(x − t), ∂u∂v = −∂t∂t + ∂x∂x,

and define two basis 1-forms σ1, σ2 and connection 1-form � on
(t, x) ∈ R2 by

σ1 = cos(Φ/2)dt,

σ2 = sin(Φ/2)dx,

� = −1
2
(∂xΦdt + ∂tΦdx)




. (11.32)

Using (11.32), the structure equations (11.6) and (11.7) are satisfied iden-
tically, yielding no new relation, whereas Eq. (11.9) becomes Φxx − Φtt =
K sin Φ. When K = 1, this is written as

Φxx − Φtt = sin Φ, (Φuv = sin Φ), (11.33)

the sine–Gordon equation (11.12) [AN84; Kak91].
It should be noted that the equation of the case K = −1,

Φxx − Φtt = − sin Φ, (Φuv = − sin Φ), (11.34)

is another sine–Gordon equation. Obviously, the difference is only the inter-
change of roles of x and t. In other words, the variable v is replaced with −v.
This is illustrated by considering the following two particular solutions
to (11.33):

tan(Φ1/4) = exp[ζu + ζ−1v], (11.35)

tan(Φ2/4) =
√

(1 − ω2)/ω2 sin ωt sech
√

1 − ω2x, (11.36)

where ζ and ω are real constants. The first one Φ1(u, v) is called the kink
solution, while the second Φ2(t, x) is called the breather solution [AS81,
§1.4]. It is straightforward to see that Φ1(u, v) satisfies (11.33), and that
Eq. (11.34) is satisfied by Φ1(u, v) as well if v is replaced with −v. Similarly,
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Φ2(t, x) satisfies (11.33), and if t and x are interchanged, it satisfies (11.34).
Kakuhata [Kak91] considered a dual transformation to the spherical surface
of the sigma model, and found that the transformed system is characterized
with negative curvatures.

11.3.4. Spherical and pseudospherical surfaces

On a surface Σ2(u1, u2) in R
3, geodesic curves are described by (2.65),

which is reproduced here for γ = 2:

d2u2

ds2 + Γ2
αβ

duα

ds

duβ

ds
= 0. (11.37)

Suppose that the coordinate curves u2 = const are geodesics, then we
must have Γ2

11 = 0. When the coordinate curves form an orthogonal net
(Appendix K), this reduces to

∂

∂u2 g11 = 0, hence g11 = g11(u1), (11.38)

by the definition of the Christoffel symbols (2.39) and (2.40). Using this
property, let us rescale du1 as g11(u1) (du1)2 → (du1)2.

Therefore, when the surface Σ2(u1, u2) is referred to a family of geodesics
u2 = const and their orthogonal coordinate u1, the line-element can be
written in the form,

ds2 = (du1)2 + g22(du2)2. (11.39)

In view of g11 = 1 and g12 = 0, the formula (2.63) for the Gaussian curva-
ture K reduces to (

∂

∂u1

)2 √
g22 = −K

√
g22. (11.40)

In the case of sperical surfaces of K = 1/a2, this gives

√
g22 = ϕ(u2) cos(u1/a) + ψ(u2) sin(u1/a).

Choosing ψ(u2) = 0, and rescaling u2 suitably this time, we may write the
line-element

ds2 = (du1)2 + c2 cos2(u1/a)(du2)2. (11.41)
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Although all spherical surfaces have the same intrinsic properties, there is
a distinction among them, when viewed from the envelope space R

3. The
same applies to pseudospherical surfaces of K = −1/a2 as well.

This is seen when we consider surfaces of revolution in R
3 corresponding

to spherical or pseudospherical surfaces. Taking the x3-axis for the axis of
revolution, the transformation is defined by

x1 = u cos v, x2 = u sin v, x3 = ϕ(u), (11.42)

[Eis47, §49], where the line-element in this case is given by

ds2 = (1 + ϕ′(u)2)(du)2 + u2(dv)2,

and the function ϕ(u) is determined by equating this metric with (11.41).
By Eq. (11.38), the curve v = const is a geodesic. Hence the contour x3 =
ϕ(x1) is a geodesic since it is given by v = 0. (Appendix K)

In this transformation, generic cases are represented by periodic
sequence of a zonal surface of revolution along the x3-axis in both cases of a
spherical (Fig.11.1(a), an elliptic type) and a pseudospherical (Fig.11.2(a),
a hyperbolic type) surface [Eis47, §49], where the contours x3 = ϕ(x1)
represent geodesic curves.

(a) (b)

Fig. 11.1. Spherical surfaces of revolution (drawn by Mathematica): (a) An elliptic type,
where u = c cos(u1/a) and ϕ(u) =

∫
[1 − (c/a)2 sin2(u1/a)]1/2du1; (b) a sphere.
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(a) (b)

Fig. 11.2. Pseudospherical surfaces of revolution (drawn by Mathematica): (a) A hyper-
bolic type where u = c cos(u1/a) and ϕ(u) =

∫
[1 − (c/a)2 sinh2(u1/a)]1/2du1; (b) a

parabolic type, where u = c sin θ and ϕ(θ) = a[cos θ−log(sin−1 θ+cot θ)] with a = c = 1.

A particular case in the spherical surface is a sphere (Fig.11.1(b)),
while another particular case in the pseudospherical surface is a surface
of parabolic type extending to infinity along x3-axis (Fig.11.2(b)).

11.4. Bäcklund Transformations Revisited

11.4.1. A Bäcklund transformation

The geometrical properties of a pseudospherical surface provide a systematic
method to obtain Bäcklund transformations [CheT86]. Let M2 be a surface
endowed with a Riemannian metric. Consider a local frame field (e1, e2) and
its dual co-frame (σ1, σ2) with � as the connection form. Then the structure
equations are given by (11.6), (11.7) and (11.9) with K = −1.

Theorem. Suppose that we have Eqs. (11.6), (11.7) and (11.9) with
K = −1, i.e. the structure equations describe a pseudospherical surface.
Then, the following 1-form equation,

dw = � + σ1 sin w − σ2 cos w, (11.43)

is integrable, i.e. d2w = 0. [Propositions 4.2, 4.3 of [CheT86]].
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Proof. Taking the external differential, we have

d2w = d� + sinw dσ1 − cos w dσ2

+ cos w dw ∧ σ1 + sinw dw ∧ σ2.

Substituting (11.6), (11.7), (11.9) and (11.43) to eliminate dσ1, dσ2, d� and
dw, we obtain

d2w = (K + cos2 w + sin2 w)σ1 ∧ σ2 = 0, if K = −1. (11.44)

Corollary. Suppose that we have Eqs. (11.6), (11.7) and (11.9) with K =
1, i.e. the structure equations describe a spherical surface. Then, the fol-
lowing 1-form equation,

dw = � + iσ1 sin w − iσ2 cos w, (11.45)

is integrable, i.e. d2w = 0.

In this case, Eq. (11.44) is replaced by

d2w = (K − cos2 w − sin2 w)σ1 ∧ σ2 = 0,

if K = 1.

Example. Sine–Gordon equation (11.12) with K = −1.

The corresponding 1-forms are given by (11.11). Then, Eq. (11.43)
reduces to

dw = wxdx + wtdt

= [ux + ζ cos w]dx + ζ−1 cos(u − w)dt. (11.46)

This is equivalent to

wx − ux = ζ cos w,

wt = ζ−1 cos(u − w).

}
(11.47)

Taking differential of (11.46) and using (11.47), we obtain

d2w = [uxt − sin u]dt ∧ dx.
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Thus, if the sine–Gordon equation,

uxt = sinu, (11.48)

is satisfied, then dw is integrable. In fact, from (11.47), we obtain

wxt = cos w
√

1 − (ζwt)2, (11.49)

u = w + cos−1(ζwt). (11.50)

The system of equations (11.47) is interpreted as a Bäcklund transformation
beween a function u(x, t) satisfying the sine–Gordon equation (11.48) and a
function w(x, t) satisfying its associated equation (11.49). Given a solution
u of the sine–Gordon equation (11.48), then the system of equations (11.47)
is integrable and w is a solution of (11.49) for each constant ζ. Conversely, if
w is a solution of (11.49) for a constant ζ, then u of (11.50) satisfies (11.48).

11.4.2. Self-Bäcklund transformation

A Bäcklund transformation which relates solutions of the same equa-
tion is called a self-Bäcklund transformation. For the sine–Gordon equa-
tion, we observe that Eq. (11.49) is invariant under the transformation:
(w, ζ) → (π−w,−ζ). If u is a solution of (11.48) and (w, ζ) satisfies (11.47),
then (11.50) holds and w is a solution of (11.49). From the preceding con-
siderations together with transformation invariance of (11.49), it follows
that U defined by

U = π − w + cos−1(ζwt) (11.51)

is another solution of (11.48). Eliminating cos−1(ζwt) between (11.50) and
(11.51), we find

w =
1
2
(u − U + π).

Substituting this into (11.47), we obtain

(u + U)x = 2ζ sin
1
2
(u − U),

(u − U)t = 2ζ−1 sin
1
2
(u + U),


 (11.52)

where U satisfies Uxt = sinU . This is the self-Bäcklund transformation for
the sine–Gordon equation (11.48), and equivalent to (10.10) and (10.11) by
the replacement, (ζ, u, U) → (a, z,−Z).
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This formulation of Bäcklund transformation can be applied to other
integrable equations describing pseudospherical surfaces such as the KdV
equation, mKdV equation, or sinh–Gordon equation considered in §11.2
[CheT86].

11.5. Immersion of Integrable Surfaces on Lie Groups

This section and the next section are concerned with another geometrical
problem of integrable systems where integration surfaces are to be con-
structed in an envelope space, i.e. an immersion problem.

11.5.1. A surface Σ2 in RRR
3

As an introduction to the present problem, we consider a smooth surface
Σ2 in R

3 according to Chapter 2, i.e. immersion of a domain D2 ⊂ R
2 into

a three-dimensional euclidean space,

F (u, v) = (F1, F2, F3) : D2 → R
3,

for (u, v) ∈ D2. The euclidean metric of R
3 induces a certain metric gαβ on

Σ2. Noting that dF = Fudu + Fvdv, the first fundamental form defined by
I = 〈dF, dF 〉 is written as

I = guu(du)2 + 2guvdudv + gvv(dv)2.

Correspondingly, the second fundamental form is denoted by

II = buu(du)2 + 2buvdudv + bvv(dv)2.

The surface Σ2 is uniquely defined within rigid motions by the first and
second fundamental forms (§2.11).

Let N(u, v) be the normal vector field defined at each point on Σ2. Then
the triplet (Fu, Fv, N) defines a basis of a moving frame on Σ2. According
to Chapter 2, the motion of this basis on Σ2 is characterized by the Gauss–
Weingaten equations. The compatibility of these equations are the Gauss–
Mainardi–Codazzi equations (2.48) and (2.49), which are coupled nonlinear
differential equations for gαβ and bαβ . In terms of differential forms, this
was formulated by structure equations in §2.7 and 3.5, and some relation
to integrable equations has been investigated in this chapter.
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11.5.2. Surfaces on Lie groups and Lie algebras

Regarding integrable equations, an immersion problem of a two-dimensional
surface into an envelope space was investigated by Sym [Sym82] first, and
later developed systematically by [Bob94; FG96; CFG00]. This has been
accomplished by defining surfaces on Lie groups and surfaces on Lie algebras
of finite dimensions in general.

As an example of the general formulation [FG96; CFG00], we consider
the case that the group is SU(2). We define an SU(2)-valued function
Ψ(u, v, ζ) satisfying the Lax pair equations:

Ψu = UΨ, Ψv = V Ψ, (11.53)

where U(u, v), V (u, v) ∈ su(2), and ζ is a spectral parameter. In addition,
we introduce an su(2)-valued function F (u, v, ζ),

Fu = Ψ−1AΨ, Fv = Ψ−1BΨ, (11.54)

where A(u, v), B(u, v) ∈ su(2). The functions U, V, A, B are all differen-
tiable functions of u, v in some neighborhood of R

2, and ζ ∈ C. This may
be interpreted as follows. The Ψu and Ψv are tangent vectors at a point
Ψ ∈ SU(2), while Fu and Fv are vectors in the tangent space at the identity
of SU(2), i.e. the Lie algebra. The tangents Fu and Fv are vectors pulled
back from the tangents AΨ and BΨ (at a point Ψ) respectively.

The compatibility condition for (11.53), i.e. ∂vΨu = Ψuv = ∂uΨv,
results in

Uv − Vu + [U, V ] = 0. (11.55)

where [U, V ] = UV − V U . Equations (11.53) and (11.55) are equivalent to
the Lax pair and its solvability (11.1) and (11.2) respectively, and define
a two-dimensional surface Ψ(u, v) ∈ SU(2). The compatibility condition of
(11.54) reduces to

Av − Bu + [A, V ] + [U, B] = 0, (11.56)

since Ψ∂(Ψ−1) = −(∂Ψ)Ψ−1 from ΨΨ−1 = I.
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Then, for each ζ, the su(2)-valued function F (u, v, ζ) defines a two-
dimensional surface x(u, v) in R

3:

x(u, v) = (F 1, F 2, F 3), (11.57)

F = F 1e1 + F 2e2 + F 3e3, (11.58)

where (e1, e2, e3) is an orthonormal basis defined by (11.19), which are
related to the Pauli matrices (7.23) by σk = 2iek, and satisfy the commu-
tation relations,

[ej , ek] = εjklel. (11.59)

We define the inner product by

〈A, B〉 = −2 Tr(AB), A, B ∈ su(2). (11.60)

Then we have the orthonomal property, 〈ek, el〉 = δkl.
The first and second fundamental forms of the surface x(u, v) are

given by

I = 〈A, A〉(du)2 + 2〈A, B〉dudv + 〈B, B〉(dv)2, (11.61)

II = 〈Au + [A, U ], C〉(du)2 + 2〈Av + [A, V ], C〉dudv

+ 〈Bv + [B, V ], C〉(dv)2, (11.62)

C = [A, B]/‖[A, B]‖, ‖A‖ = 〈A, A〉1/2 (11.63)

[FG96]. In fact, the first fundamental form (11.61) is obtained by noting that

I = 〈dx, dx〉, dx = Fudu + Fvdv

(§2.1), and using (11.54), (11.57), (11.58) and (11.60). According to §2.2,
the coefficient bαβ of the second fundamental form is given by (2.23): bαβ =
〈xαβ ,N〉, where, e.g. for α = β = u,

xuu = ∂u(Ψ−1AΨ) = Ψ−1(Au + [A, U ])Ψ,

N =
[Fu, Fv]

‖[Fu, Fv]‖ =
Ψ−1[A, B]Ψ

‖[A, B]‖ . (11.64)

A moving frame on this surface x(u, v) is

Ψ−1AΨ(= Fu), Ψ−1BΨ(= Fv), Ψ−1CΨ(= N).

The Gauss curvature K is given by

K =
det(bαβ)
det(gαβ)

. (11.65)



August 2, 2004 16:5 WSPC/Book Trim Size for 9in x 6in chap11

346 Geometrical Theory of Dynamical Systems and Fluid Flows

In terms of U and V satisfying (11.55), the functions A, B and the immer-
sion function F are given explicitly [FG96] as:

A = µ∂ζU + [R,U ] + ∂u(fU) + guV + g∂vU, (11.66)

B = µ∂ζV + [R, V ] + ∂v(gV ) + fvU + f∂uV, (11.67)

F = Ψ−1[µ∂ζ + R + fU + gV ]Ψ, (11.68)

where µ, f(u, v), g(u, v) are scalar functions depending on ζ, and R is a
constant su(2)-valued matrix. A, B, F are augmented with an additional
term associated with a symmetry of the integrable system [CFG00]. The
first two terms are illustrated below in §11.5.3 and 11.6, term by term.

11.5.3. Nonlinear Schrödinger surfaces

We consider one example of such surfaces described by the nonlinear
Schrödinger equation (NLS). The connection 1-form of NLS is given by
ΩNLS of (11.17). The su(2) functions U and V of (11.53) are defined by the
relation, ΩNLS = U dx + V dt, where u = x and t = v. Thus, we have

U =
(

−iζ q(x, t)
−q∗(x, t) iζ

)
= −2q(i)e1 − 2q(r)e2 + 2ζe3,

V =
(

−iΛ B

−B∗ iΛ

)
= −2B(i)e1 − 2B(r)e2 + 2Λe3

where q(x, t) is a complex function to be determined, and Λ(x, t), B(x, t) are
defined by (11.18), with ζ as a real parameter. The integrability condition
(11.55) results in the NLS equation:

qt = i(qxx + 2q|q|2). (11.69)

Next, let A and B be defined by the first terms of (11.66) and (11.67):

A =
1
2
µ

∂U

∂ζ
=

1
2
µ

(
−i 0
0 i

)
= µe3, (11.70)

B =
1
2
µ

∂V

∂ζ
=

1
2
µ

(
−4iζ 2q

−2q∗ 4iζ

)

= −2µq(i)e1 − 2µq(r)e2 + 4µζe3 = µU + 2µζe3. (11.71)

The integrability condition (11.56) reduces to a form obtained by differen-
tiation of (11.55) with respect to ζ. Therefore, (11.56) is satisfied. Thus, we
have a integration surface x(x, t).
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The first and second fundamental forms of the surface x(x, t) are
given by

I = µ2[(dx + 4ζ dt)2 + 4|q|2(dt)2
]
, (11.72)

II = 2µ|q|[dx + (φx − 2ζ)dt]2 − 2µ|q|xxdt2

where, setting q = |q| exp[iφ], |q| and φ must satisfy

|q|φt = |q|xx − |q|φ2
x + 2|q|3, |q|t = −|q|φxx − 2|q|xφx, (11.73)

by Eq. (11.69).
The definition (11.65) of the Gaussian curvature K leads to

K =
det(bαβ)
det(gαβ)

= − |q|xx

µ2|q| =
1
µ2 (2|q|2 − φ2

x − φt) (11.74)

from the above expressions [CFG00]. It is seen that K can take both positive
and negative values.

The immersion function F is given by

F =
1
2
µΨ−1(∂Ψ/∂ζ).

This is obtained since

Fx =
1
2
µ[(Ψ−1)xΨζ + Ψ−1(∂xΨ)ζ ]

=
1
2
µ[−Ψ−1UΨζ + Ψ−1(UΨ)ζ ] =

1
2
µΨ−1UζΨ = Ψ−1AΨ,

where (Ψ−1)x = −Ψ−1ΨxΨ−1 = −Ψ−1U , and similarly (Ψ−1)t = −Ψ−1V .
Let us consider a particular case of the surface x(x, t). When the param-

eter ζ = 0, we have

I = µ2[(dx)2 + 4|q|2(dt)2
]
,

from the first fundamental form (11.72) of the surface x(x, t). In the case
when φ = −ct (c: a positive constant), the amplitude |q| is a function of x

only: |q| = f(x), and satisfies f ′′(x) = −2f3 − cf by (11.73). According to
§11.3.4, it is therefore seen that the curves of t = const are geodesic, and
we obtain

K = (2f2 + c)/µ2 (> 0)

from (11.74), i.e. positive Gaussian curvature.
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This case is analogous to the surface of revolution considered in §11.3.4,
and the variable t = −φ/c in the present problem corresponds to v there.
The corresponding surface x(x, t) (obtained by [CFG00, Fig.1]) looks sim-
ilar to the spherical surface of Fig.11.1(a). This is based on the similarity
between the transformation (11.42) and the definitions of tangent vectors
A and B by (11.70) and (11.71), the latter being

B = −2µ|q|(sin φ)e1 − 2µ|q|(cos φ)e2, A = µe3.

By Eq. (11.38), the curve φ = const (equivalently t = const) is a geodesic.
Hence the contours in the plane (e1, e3) defined by φ = π/2 and 3π/2 are
geodesics.

11.6. Mapping of Integrable Systems to Spherical Surfaces

Remarkably, every integrable equation having a Lax pair induces a map to
the surface of a sphere [CFG00]. We consider this problem according to the
formulation of the previous section. An SU(2)-valued function Ψ(u, v) and
an su(2)-valued function F (u, v) are defined by (11.53) and (11.54):

Ψu = UΨ, Ψv = V Ψ; Fu = Ψ−1AΨ, Fv = Ψ−1BΨ,

where U and V correspond to the Lax pair in the integrable system. We
assume that the integrability condition (11.55) is satisfied:

Uv − Vu + [U, V ] = 0. (11.75)

This determines a differential equation which is claimed to be as above,
according to the general theory studied in this chapter.

Now, let us take a constant su(2) matrix R, and assume that the su(2)-
valued functions U and A, and V and B, are connected by

A = [R,U ], B = [R, V ], (11.76)

which correspond to the second terms of (11.66) and (11.67). This is under-
stood as an su(2)-rotation by R. These transformations satisfy the compat-
ibility condition (11.56). In fact, one can immediately show the following
equalities:

Av − Bu = [R,Uv] − [R, Vu] = −[R, [U, V ]]

[A, V ] + [U, B] = [[R,U ], V ] + [U, [R, V ]] = [R, [U, V ]]
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where (11.75) is used in the first equation, wheras in the second equation
the Jacobi identity of the triplet {R,U, V } is used as the second equality.
Thus, it is seen that the condition (11.56) is satisfied. So that, one can
expect an integration surface x(u, v) in the three-dimensional su(2)-space.

Let us represent the matrix functions R,U, V with reference to the
orthonormal basis (e1, e2, e3) defined by (11.19) as

R = Rjej , U = U jej , V = V jej ,

where Rj are constants, and U j , V j are scalar functions (j = 1, 2, 3). Corre-
sponding 3-vectors in R

3 are written as R̂ = (Rj), Û = (U j) and V̂ = (V j).
Furthermore, writing A = Ajej and B = Bjej , Eqs. (11.76) are rewritten as

Â = R̂ × Û , B̂ = R̂ × V̂ ,

on account of the commutation relation (11.59).5 This means that the 3-
vectors Â = (Aj) and B̂ = (Bj) are determined from Û and V̂ by a rotation
with the constant vector R̂.

A two-dimensional surface x(u, v) is defined in the three-dimensional
su(2)-manifold. The tangent space spanned by the tangents Fu and Fv

(associated with A and B) is characterized by the first and second funda-
mental tensors defined by (11.61) and (11.62). Its Gaussian curvature K is
given by

K =
1

‖R‖2 , (11.77)

where ‖R‖2 = 〈R,R〉 = R̂ · R̂ is a constant. Namely, the surface is regarded
as a spherical surface. This is verified as follows.

Using the above relations, it is readily shown that

[A, B] = kR, k = R̂ · (Û × V̂ ). (11.78)

The su(2) matrix C defined by (11.63) is given by

C =
[A, B]

‖[A, B]‖ = ε
R

‖R‖ , ε =
k

|k| = ±1.

It can be shown that Au, Av and Bv are orthogonal to R. Hence,

〈Au, C〉 = 0, 〈Av, C〉 = 0, 〈Bv, C〉 = 0.

5The symbols × and · are the external and inner products of 3-vectors, respectively.
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Using these relations, the second fundamental form of (11.62) is

II = 〈[A, U ], C〉(du)2 + 2〈[A, V ], C〉dudv + 〈[B, V ], C〉(dv)2

=
ε

‖R‖
[
〈[A, U ], R〉(du)2 + 2〈[A, V ], R〉dudv + 〈[B, V ], R〉(dv)2

]
= buu(du)2 + 2buvdudv + bvv(dv)2

where bαβ = −(ε/‖R‖)gαβ , and the first fundamental tensors are

guu = 〈A, [R,U ]〉 = (Û · Û)R̂2 − (Û · R̂)(Û · R̂),

guv = 〈A, [R, V ]〉 = (Û · V̂ )R̂2 − (Û · R̂)(V̂ · R̂),

gvv = 〈B, [R, V ]〉 = (V̂ · V̂ )R̂2 − (V̂ · R̂)(V̂ · R̂)

from (11.76) and (11.61).
Thus, the definition (11.65) of the Gauss curvature K leads to

K =
det(bαβ)
det(gαβ)

=
(

ε

‖R‖

)2 det(gαβ)
det(gαβ)

=
1

‖R‖2 .

This verifies (11.77).
Furthermore, the immersion surface is given by

F = Ψ−1RΨ. (11.79)

In fact, we have

Fu = Ψ−1AΨ = Ψ−1(RU − UR)Ψ = Ψ−1RΨu + (Ψ−1)uRΨ = (Ψ−1RΨ)u,

since (Ψ−1)u = −Ψ−1ΨuΨ−1 = −Ψ−1U , and Ru = 0. Similarly, Fv =
(Ψ−1RΨ)v. Thus, we have (11.79).

The above result implies the following. Variations of the parameters u

and v are associated with the evolution of an integrable system. The point
Ψ in the SU(2) space translates according to the variations. The tangent
space TΨ SU(2) at Ψ is pulled back to the tangent space TidSU(2) at the
identity, i.e. the Lie algebra su(2) which is three-dimensional. According
to the motion of u and v, the function F (u, v) describes a surface in the
space su(2). If the map is characterized by a constant su(2)-rotation R, the
surface F (u, v) is a spherical surface of Gaussian curvature 1/‖R‖2.

Thus, it has been found that the evolution of an integrable system
describes a spherical surface. This is a most impressive characterization
of an integrable system.



August 2, 2004 16:6 WSPC/Book Trim Size for 9in x 6in Appendix˙A-K

Appendix A

Topological Space and Mappings

Some basic mathematical notions and definitions of topology
and mappings are presented to help the main text.

(Ref. §1.2)

A.1. Topology

A manifold is a topological space. A topological space is a set M with a
collection of subsets called open sets. An example of open sets is a ball in
the euclidean space R

n defined by

Ba(ε) = {x ∈ R
n| ‖x − a‖ < ε, a ∈ R

n, ε (> 0) ∈ R},

where ‖ · ‖ is the euclidean norm. As a generalization of balls, the open sets
are defined to satisfy the following:

(i) If U and V are open, so is their intersection U ∩ V .
(ii) The union of any collection of open sets (possibly infinite in number)

is open.
(iii) The empty set is open.
(iv) The topological space M is open, that is a generalization of the entire

R
n which is open.

Just as the topology of R
n is said to be induced by the euclidean norm ‖ ·‖,

the topology of M is defined by the open subsets. A subset of M is said to
be closed if its complement is open.

A.2. Mappings

A map F from a space U to a space V , F : U → V , is a rule by which, for
every element x of U , a unique element y of V is associated with y = F (x),

351
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that is, F : x �→ y. For example, a real-valued function f of n real variables
is represented as f : R

n → R. Note that, for every y = F (x) ∈ V , x is not
necessarily unique, and such a map is called many-to-one. For any subset
U∗ in U , the elements F (x) in V mapped from x ∈ U∗ form a set V∗ called
the image of U∗ under F . The image is denoted by F (U∗). Conversely, the
set U∗ is called the inverse image of V∗, denoted by F−1(V∗). If the map is
many-to-one in the sense given above, the correspondence F−1 from V to
U is not called a map since every map is defined to have a unique image.

If every point in F (U∗) has a unique inverse image in U∗, then the
map F is said to be one-to-one, or simply 1-1. In this case, two different
preimages x1, x2 ∈ U have two different images F (x1) �= F (x2) in V . Then
the operation F−1 is another 1-1 map, called the inverse map of F . The
one-to-one map is also called an injection. If a map F : U → V has the
property V = F (U), then F is said to be an onto-mapping or a surjection.
A map which is both 1-1 and onto is called a bijection.

Let us define two maps as F : U → V , and G : V → W . The result
of the two successive maps is a composition map, denoted by G ◦ F , that
is, G ◦ F : U → W . This is understood as follows. For a point x ∈ U , we
obtain F (x) ∈ V , from which we obtain a point G(F (x)) = G ◦ F (x) in W .

Suppose that we have a map F : U → V for two topological spaces
U and V . The function F : x �→ F (x) is said to be continuous at x if
any open set of V containing F (x) contains the image of an open set of U

containing x.
A homeomorphism F takes an open set M into an open set N in the

following sense. Namely, F : M → N is one-to-one and onto (thus the
inverse map F−1 : N → M exists). In addition, both F and F−1 are
continuous.
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Appendix B

Exterior Forms, Products
and Differentials

In physics and engineering, we always encounter integrals
along a line, over an area, or over a volume. Usually, the
integrands are represented in exterior differential forms (see
(B.28), (B.30), (B.33)). Here is a brief account of the exte-
rior algebra. See [Arn78; Fra97] for more details.

(Ref. §1.5, 1.6, 2.2, 2.7.1, 7.6.3, 7.11.3, 8.2.3)

B.1. Exterior Forms

Another name of a covector ω1 is a 1-form. The 1-form ω1 is a linear function
ω1(v) of a vector v ∈ E = R

n, i.e. ω1 : R
n → R, such that

ω1(c1v1 + c2v2) = c1ω
1(v1) + c2ω

1(v2), (B.1)

where c1, c2 ∈ R and v1, v2 ∈ R
n. The collection of all 1-forms on E = R

n

constitutes an n-dimensional vector space dual to the vector space E and
called the dual space E∗.

Similarly, a 2-form ω2 is defined as a function on pairs of vectors
ω2(v1, v2) : E × E → R, which is bilinear and skew-symmetric with respect
to two vectors v1 and v2:

ω2(c1v
′
1 + c2v

′′
1 , v2) = c1ω

2(v′
1, v2) + c2ω

2(v′′
1 , v2),

ω2(v1, v2) = −ω2(v2, v1),

where v′
1, v

′′
1 ∈ R

n. From the second property, ω2(v, v) = 0.
Consider a uniform fluid flow of a constant velocity, U = (U1, U2, U3) =

U1e1 +U2e2 +U3e3, in a three-dimensional euclidean space with the carte-
sian bases e1, e2, e3. An example of 2-form is the flux F 2 of the fluid through

353
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an area S2(v, w) = v×w of a parallelogram spanned by v = (v1, v2, v3) and
w = (w1, w2, w3). In fact, using the vector analysis in the euclidean space,
the flux F 2 is given by

F 2 = U · S2 = U1S2
23 + U2S2

31 + U3S2
12, (B.2)

where S2(v, w) = (S2
23, S

2
31, S

2
12) with S2

ij defined by (B.8) below, and S2

is an area 2-form. The flux F 2(v, w) is bilinear and skew-symmetric with
respect to v and w, as easily confirmed.

The collection of all 2-forms on E ×E becomes a vector space if laws of
addition and multiplication (by a scalar) are introduced appropriately. The
space is denoted by E∗(2) = E∗ ∧ E∗, whose dimension is dim(E∗(2)) =(
n
2

)
= 1

2n(n − 1) (see (B.6)). For n = 3, the dimension is 3.
A 0-form ω0, is specially defined as a scalar. The set of all 0-forms is

real numbers R, whose dimension is one. A 0-form field on a manifold Mn,
[f : x ∈ Mn → R] is a differentiable function f(x).

An exterior form of degree k, i.e. k-form, is a function of k vectors
ωk(v1, . . . , vk) : E × · · · × E (k-product) → R. The k-form ωk is k-linear
and skew-symmetric:

ωk(c1v
′
1 + c2v

′′
1 , v2, . . . , vk) = c1ω

k(v′
1, v2, . . . , vk) + c2ω

k(v′′
1 , v2, . . . , vk),

(B.3)

ωk(va1 , . . . , vak
) = (−1)σωk(v1, . . . , vk), (B.4)

where σ = 0 if the permutation (a1, . . . , ak) with respect to (1, . . . , k) is
even, and σ = 1 if it is odd, and

va = vj
a∂j , j = [1, . . . , n]; a = 1, . . . , k. (B.5)

If the same vector appears in two different entries, the value of ωk is zero.
Therefore, ωk = 0 if k > n.

The set of all k-forms becomes a vector space if addition and multipli-
cation (by a scalar) are defined as

(ωk
1 + ωk

2 )(v) = ωk
1 (v) + ωk

2 (v),

(λωk)(v) = λωk(v),

where v = {v1, . . . , vk}. Using (B.5) and the two laws (B.3) and (B.4),
we have

ωk(v) = vj1
a1

· · · vjk
ak

ωk(∂j1 , . . . , ∂jk
),
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where j1 < · · · < ∂jk
. The number of distinct k-combinations such as

(j1, · · · , jk) from (1, · · · , n) gives the dimension of the vector space of all
k-forms, E∗(k) = E∗ ∧ · · · ∧ E∗ (k-product), which is

dim(E∗(k)) =
(

n

k

)
=

n!
k!(n − k)!

. (B.6)

B.2. Exterior Products (Multiplications)

We now introduce an exterior product of two 1-forms, which associates
to every pair (ω1

α, ω1
β) of 1-forms on E a 2-form on E × E. The exterior

multiplication ω1
α ∧ ω1

β is defined by

ω1
α ∧ ω1

β(va, vb) = ω1
α(va)ω1

β(vb) − ω1
β(va)ω1

α(vb) (B.7)

where ω1
α(va) is a linear function of va, etc. The right-hand side is obviously

bilinear with respect to va and vb and skew-symmetric. For example, if ω1
α

and ω1
β are differential 1-forms, defined by ω1

α = dxi and ω1
β = dxj , then

we have

dxi ∧ dxj(v, w) = dxi(v)dxj(w) − dxj(v)dxi(w)

= viwj − vjwi =
∣∣∣∣vi wi

vj wj

∣∣∣∣ := S2
ij , (B.8)

since dxi(v) = vi, etc. (see (1.23)). This S2
ij is a projected area of the

parallelogram spanned by two vectors v and w in the space R
n onto the

(xi, xj)-plane.
A general differential k-form on E × · · ·×E (k-product) can be written

in the form,

ωk =
∑

i1<···<ik

ai1···ik
dxi1 ∧ · · · ∧ dxik , i1, . . . , ik ∈ [1, . . . , n].

If the set v1, . . . , vk is a k-tuple vector, then

dx1 ∧ · · · ∧ dxk(v1, . . . , vk) = det[dxi(vj)] = det[vi
j ]. (B.9)

Definition of exterior multiplication: The exterior multiplication of an arbi-
trary k-form ωk by an arbitrary l-form ωl is a (k+ l)-form, and satisfies the
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following properties:

skew -commutative: ωk ∧ ωl = (−1)klωl ∧ ωk, (B.10)

associative: (ωk ∧ ωl) ∧ ωm = ωk ∧ (ωl ∧ ωm), (B.11)

distributive: (c1ω
k
1 + c2ω

k
2 ) ∧ ωl = c1ω

k
1 ∧ ωl + c2ω

k
2 ∧ ωl. (B.12)

Example (i): An exterior product of two 1-forms α1 and β1,

α1 = a1dx + a2dy + a3dz, β1 = b1dx + b2dy + b3dz,

(in the space (x, y, z)), is a 2-form:

α1 ∧ β1 = (a2b3 − a3b2)dy ∧ dz + (a3b1 − a1b3)dz ∧ dx

+ (a1b2 − a2b1)dx ∧ dy, (B.13)

which represents the cross product. From (B.10), we obtain

dx ∧ dx = 0, dx ∧ dy = −dy ∧ dx = 0, etc.

Example (ii): An exterior product of three 1-forms α1, β1 and γ1 (where
γ1 = c1dx + c2dy + c3dz) is a 3-form:

α1 ∧ β1 ∧ γ1 = (a2b3 − a3b2)c1dy ∧ dz ∧ dx + (a3b1 − a1b3)c2dz ∧ dx ∧ dy

+ (a1b2 − a2b1)c3dx ∧ dy ∧ dz

= det[a, b, c]dx ∧ dy ∧ dz (B.14)

where a = (a1, a2, a3)T , b = (b1, b2, b3)T , and c = (c1, c2, c3)T .

Example (iii): An exterior product of n 1-forms α1
1, . . . , α

1
n is

α1
1 ∧ · · · ∧ α1

n = det[a1, . . . ,an]dx1 ∧ · · · ∧ dxn (B.15)

where α1
k = akldxl and ak = (ak1, . . . , akn)T . This can be verified by the

inductive method.

Example (iv): As an application of (iii), suppose that local transformation
of coordinates from x = (x1, . . . , xn) to a = (a1, . . . , an) in n-dimensional
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space is represented as

dak =
∂ak

∂xl
dxl.

Then the n-form αn = F (a)da1 ∧ · · · ∧ dan is transformed as

F (a)da1 ∧ · · · ∧ dan =
∂(a)
∂(x)

F (a(x))dx1 ∧ · · · ∧ dxn, (B.16)

where ∂(a)/∂(x) is the Jacobian of the transformation, and F (a) is
a 0-form.

B.3. Exterior Differentiations

Here, we define a differential operator d that takes exterior k-form fields
into exterior (k + 1)-form fields. A scalar function f is a 0-form, then its
differential df = (∂if)dxi is a 1-form (see (1.27)). The ω1 = ai(x)dxi is
a 1-form field, then its differential dω1 is a 2-form. The operator d of the
exterior differentiation is defined to have the following properties:

(i) dα0 = ∂iα
0dxi,

(ii) d(α + β) = dα + dβ,
(iii) d(αk ∧ βl) = dαk ∧ βl + (−1)kαk ∧ dβl,
(iv) d2α = d(dα) := 0, for all forms,

where a form α without upper index denotes any degree. The property (i)
is defined in Sec. 1.5.1 of the main text. Properties (ii) and (iii) are taken
as definitions.

To see (iv), consider a scalar function f(x). Then, d2f is defined as

d2f = d((∂if)dxi) := d(∂if) ∧ dxi.

The first factor is d(∂if) = (∂j∂if)dxj by (i). Substituting this,

d2f =
∑

i

∑
j

∂2f

∂xj∂xi
dxj ∧ dxi = 0,

since ∂i∂jf = ∂j∂if and dxi∧dxj = −dxj∧dxi, where (B.10) and (B.12) are
used. Next, for any two scalar functions f and g, we obtain d(df ∧ dg) = 0
by (iii) and the above equation. By induction, one can verify that d2α = 0
for any form α.
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B.4. Interior Products and Cartan’s Formula

If X is a vector and ωp is a p-form, their interior product (a p − 1 form)
is defined by

iXω0 = 0 for 0-form, (B.17)

iXω1 = ω1(X) for 1-form, (B.18)

(iXωp)(X2, . . . , Xp) = ωp(X,X2, . . . , Xp) for p-form. (B.19)

The Lie derivative LX is defined by the Cartan’s formula,

LX = iX ◦ d + d ◦ iX , (B.20)

where iXωp (for example) is an interior product acting on a p-form ωp,
yielding a (p − 1)-form. This formula (B.20) can be verified by the method
of induction. Operating LX on a function f , we obtain

LXf = iXdf = df(X) = Xf,

by using (B.17) and (B.18). This is equivalent to Eq. (1.68). Operating on
a differential df , we obtain

LXdf = [iXd + diX ]df = diX(df) = d[iX(df)] = d[Xf ] = dLXf,

since ddf = 0. The commutability

LXd = dLX

can be shown from the definition of the Lie derivative [Fra97, §4.2; AM78,
§2.4]. Furthermore, assuming that the equality (B.20) holds for p-forms, the
formula can be verified for p + 1 forms [Fra97; AM78].

B.5. Vector Analysis in R
3R
3

R
3

Let (x, y, z) be a cartesian coordinate frame in R
3, and let 3-vectors in R

3

be given by

a = (ax, ay, az), b = (bx, by, bz), c = (cx, cy, cz).

The inner product of a and b is defined by 〈a, b〉 (§1.4.2). Using the
euclidean metric (1.30) of R

3, the inner product is expressed as

〈a, b〉 = (a, b)R3 := axbx + ayby + azbz. (B.21)
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The right-hand side is also written simply as

axbx + ayby + azbz := a · b. (B.22)

The magnitude of the vector a is defined by ‖a‖ = 〈a, b〉1/2. The angle θ

between two vectors a and b is defined by

cos θ =
〈a, b〉

‖a‖‖b‖ . (B.23)

If 〈a, b〉 = a · b = 0, the vector a is perpendicular to b.
The vector product (cross product) a × b in R

3 is defined such that

〈a × b, c〉 := V3[a, b, c] = (a × b) · c, (B.24)

[Fra97], where V3 is the volume form in R
3 defined by (B.35) below and we

have

V3[a, b, c] = (aybz − azby)cx + (azbx − axbz)cy + (axby − aybx)cz.

It can be readily shown that V3[a, b, c] = V3[b, c, a] = V3[c,a, b]. In com-
ponents, we have

a × b = (aybz − azby, azbx − axbz, axby − aybx). (B.25)

From the definition (B.24) and the definition below, it is readily verified
that a × b is perpendicular to both a and b, i.e. (a × b) · a = 0 and
(a × b) · b = 0.

In order to represent the cross product in component form, it is useful
to introduce a third order skew-symmetric tensor εijk, defined by

εijk =




1, for (1, 2, 3) → (i, j, k) : even permutation

−1, for (1, 2, 3) → (i, j, k) : odd one

0, otherwise: (for repeated indices)

. (B.26)

Using the notation of vectors as a = (a1, a2, a3) and b = (b1, b2, b3), the
vector product is written compactly as

(a × b)i = εijkajbk, (i = 1, 2, 3). (B.27)

Let us introduce a position vector x = (x, y, z) and its infinitesimal
variation dx = (dx,dy, dz). Owing to the eucledian metric structure and
the inner product, differential forms are rephrased with inner products of
vectors in R

3 as follows.
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(a) Exterior differential of a 0-form f is a 1-form df :

df = (∂xf)dx + (∂yf)dy + (∂zf)dz = ∇f · dx. (B.28)

(b) Definition of “curl”: Let α1 be a 1-form given by

α1 = ax(x)dx + ay(x)dy + az(x)dz = a · dx.

Exterior differential of α1 is a 2-form dα1:

dα1 = dax ∧ dx + day ∧ dy + daz ∧ dz

= (∂yaz − ∂zay)dy ∧ dz + (∂zax − ∂xaz)dz ∧ dx

+ (∂xay − ∂yax)dx ∧ dy. (B.29)

This is rewritten in a vectorial form as

dα1 = d(a · dx) = (curla) · s2, s2 = (dy ∧ dz, dz ∧ dx,dx ∧ dy) (B.30)

where s2 is an oriented surface 2-form. Equations (B.29) and (B.30) define
the curl a:

curla = (∂yaz − ∂zay, ∂zax − ∂xaz, ∂xay − ∂yax). (B.31)

(c) Definition of “div”: Let β2 be a 2-form given by

β2 = bx(x)dy ∧ dz + by(x)dz ∧ dx + bz(x)dx ∧ dy = b · s2.

The exterior differential of β2 is

dβ2 = dbx ∧ dy ∧ dz + dby ∧ dz ∧ dx + bz ∧ dx ∧ dy

= (∂xbx + ∂yby + ∂zbz)dx ∧ dy ∧ dz. (B.32)

This is rewritten in a vectorial form as

d(b · s2) = (div b)V3, (B.33)

where V3 = dx ∧ dy ∧ dz is a volume 3-form. Equations (B.32) and (B.33)
define div b:

div b = ∂xbx + ∂yby + ∂zbz. (B.34)
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B.6. Volume Form and Its Lie Derivative

Let us consider a volume form. Let (x1, x2, x3) be a local cartesian coordi-
nate of the three-dimensional space M = R

3. Then the volume form V3 is
a 3-form:

V3(x) := dx1 ∧ dx2 ∧ dx3. (B.35)

Let y = f(x) = y(x) be a coordinate transformation and x = F (y) = x(y)
be its inverse transformation between x = (x1, x2, x3) and y = (y1, y2, y3)
in a neighborhood of the point x ∈ M . Transformation of a differential
1-form is represented by

dxi =
∂xi

∂yk
dyk, (B.36)

which is regarded as the pull-back transformation F from x to y (see (1.50)
with x and y interchanged). Next, the first fundamental form is defined as

I := dxidxi =
∂xi

∂yj

∂xi

∂yk
dyjdyk := gjkdyjdyk, (B.37)

where the metric tensor gjk and its determinant g(y) are

gjk =
∂xi

∂yj

∂xi

∂yk
, g(y) = det(gjk) =

([
∂(x)
∂(y)

])2

, (B.38)

where [∂(x)/∂(y)] is the Jacobian determinant of the coordinate transfor-
mation, which is now represented as[

∂(x)
∂(y)

]
= ±

√
g(y), (

√
g(y) > 0). (B.39)

Using (B.36), the volume form (B.35) is transformed (pull-back to the
y-frame) to

V3(y) = F ∗[V3(x)] (B.40)

= sgn(y)
√

g(y) dy1 ∧ dy2 ∧ dy3, (B.41)

where sgn(y) = ±1 is an orientation factor of the local frame y = (y1, y2, y3)
and chosen according to the sign of the Jacobian determinant [∂(x)/∂(y)],
namely, sgn(y) = 1 if the (y1, y2, y3)-frame has the same orientation as the
(x1, x2, x3)-frame (assumed to be right-handed usually), and sgn(y) = −1
otherwise.
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Next, we consider the Lie derivative L of a volume form V3. If X =
(X1, X2, X3) is a vector field on M3, the divergence of X, a scalar denoted
by divX, is defined by the formula,

(divX)V3 := LXV3 =
d
dt

V3(Y1, Y2, Y3). (B.42)

The Lie derivative LXV3 is defined by the time derivative of V3 as one
moves along the flow φt generated by X, while V3 is given by the value
on three vector fields Y1, Y2, Y3 that are invariant under the flow φt, i.e.
Yi(φtx) = φ∗

t Yi(x). Equation (B.42) defines the divX as the relative change
of the volume element V3 along the flow generated by X.

When operating LX on the volume form V3 = dx1 ∧ dx2 ∧ dx3, the
Cartan’s formula (B.20) is useful. Applying the formula (B.20) to V3, and
noting that dV3 = 0 and

iXV3 = iX [dx1 ∧ dx2 ∧ dx3] = (iXdx1) ∧ dx2 ∧ dx3

− dx1 ∧ (iXdx2) ∧ dx3 + dx1 ∧ dx2 ∧ (iX dx3)

= X1dx2 ∧ dx3 − X2dx1 ∧ dx3 + X3dx1 ∧ dx2, (B.43)

we obtain

LXV3 = d ◦ iXV3 = d[X1dx2 ∧ dx3 − X2dx1 ∧ dx3 + X3dx1 ∧ dx2]

=

(∑
i

∂Xi

∂xi

)
dx1 ∧ dx2 ∧ dx3 = (divX)V3, (B.44)

which is consistent with (B.34) and (B.42), and

divX =
∂X1

∂x1 +
∂X2

∂x2 +
∂X3

∂x3 . (B.45)

B.7. Integration of Forms

B.7.1. Stokes’s theorem

For a continuously differentiable k-form ωk on a manifold Mn, the Stokes’s
Theorem reads ∫

V

dωk =
∫

∂V

ωk, (B.46)

where V = V k+1 ⊂ Mn is a compact oriented submanifold with boundary
(∂V )k in Mn. This formula suggests that (integral of) the exterior derivative
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dωk on a manifold V is defined by an integral of the k-form ωk over a
boundary of V .

Examples
(a) k = 0: Integration of (B.28) along a smooth curve l (= V 1) from a point
x1 to an end point x2 (= (∂V )0) :∫

l

∇f · dx = f(x2) − f(x1). (B.47)

(b) k = 1: Integration of (B.30) over an oriented compact smooth surface
S2 = V 2 with a circumferential curve l1 = (∂V )1:∫

S2
(curla) · s2 =

∮
l1

a · dx. (B.48)

(c) k = 2: Integration of (B.33) over an oriented compact 3-volume V = V 3

with a smooth closed 2-surface S2 = (∂V )2:∫
V 3

(div b)V3 =
∮

S2
b · s2. (B.49)

B.7.2. Integral and pull-back

Let f be a differentiable map of an orientation-preserving diffeomorphism,
f : Mn → V r, from an interior subset σ of Mn onto an interior subset f(σ)
of V r. Then, for any differential k-form ωk on V r, the following general
formula of pull-back integration holds:∫

f(σ)
ωk =

∫
σ

f∗ωk, (B.50)

which is a generalization of the integral formula (1.51) for 1-form. The
integral of a k-form ωk over the image f(σ) is equal to the integral of the
pull-back f∗ωk over the original subset σ.
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Appendix C

Lie Groups and Rotation Groups

Most dynamical systems are characterized by some invari-
ance property with respect to a certain group of transforma-
tions, i.e. a Lie group. Rotation groups are typical symmetry
groups with which some familiar dynamical systems are rep-
resented. This appendix is a brief summary of Lie groups,
one-parameter subgroup and a particular Lie group SO(n),
complementing §1.7, 1.8, 3.8, 7.7 and 11.3, 11.4.

C.1. Various Lie Groups

The set of all rotations of a rigid body in the three-dimensional space R
3 is

a differentiable manifold, since it is parametrized continuously and differ-
entiably by the three Eulerian angles [LL76]. It is a Lie group, SO(3), its
dimension being accidentally 3.

Let M be one of n-dimensional manifolds including R
n. The structure

group of TM is the set of all real n×n matrices with nonzero determinant,
which is a Lie group GL(n, R) called general linear group. Topologically,
GL(n, R) is an open subset of euclidean space of n2-dimensions.

The special linear group SL(n, R) is a set of all real n × n matrices
g ∈ SL(n) with det g = 1, a subgroup of GL(n, R), and has dimension
n2 − 1.

The orthogonal group O(n) is a set of all real n×n matrices ω ∈ O(n) sat-
isfying ωωT = I (the orthogonality condition), where T denotes transpose,
i.e. (ωT )ij = ωji. The matrix satisfying ωωT = I is said to be orthogonal.
The O(n) is a subgroup of GL(n, R) of dimension 1

2n(n − 1). Since the
matrix product ωωT , is a symmetric n × n matrix, the matrix equation
ωωT = I gives (1 + · · · + n) = 1

2n(n + 1) restricting conditions. Therefore
the dimension of the group O(n) is n2 − 1

2n(n + 1) = 1
2n(n − 1). From

ωωT = I, we obtain (detω)2 = 1.

365
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Thus the orthogonal group O(n) consists of a subgroup SO(n), the rota-
tion group (the special orthogonal group), where det ω = 1, and a disjoint
submanifold where detω = −1. The latter does not include the identity
matrix I. The dimensions of SO(2), SO(3) and SO(n) are 1, 3 and 1

2n(n−1)
respectively.

The simplest rotation group is SO(2), which describes rotations of a
plane. Matrix representation of its element R ∈ SO(2) is

R(θ) =
[
cos θ − sin θ

sin θ cos θ

]
, θ ∈ [0, 2π].

To a rotation of a plane through an angle θ, we associate a point on the
unit circle S1 at angle θ. This is also represented by the point of eiθ in
the complex plane. Two successive rotations are represented by the multi-
plication eiθeiφ = ei(θ+φ), i.e. given by addition of angles. Thus, SO(2) is
abelian (commutable), whereas other rotation groups SO(n) for n ≥ 3 are
non-commutable (non-abelian). The rotation eiθ is also an element of the
unitary group U(1).

General linear group GL(n, C) is composed of all n × n matrices of
complex numbers (∈ C) with nonzero determinant, whose dimension is 2n2.

Unitary group U(n) consists of all complex n × n matrices z ∈ U(n)
satisfying zz† = I, where z† = z̄T = z−1 (the overbar denotes complex con-
jugate, the dagger † denotes hermitian adjoint and T the transpose). U(n)
is a submanifold of complex n2-space or real 2n2-space. Since the matrix
product zz† is a hermitian n × n complex matrix, the matrix equation
zz† = I gives (1 + · · · + (n − 1)) = 1

2 (n − 1)n complex conditions and
n real (diagonal) conditions. Therefore the dimension of the group U(n) is
2n2 − (2 1

2 (n − 1)n + n) = n2. From zz† = I, we obtain | det z|2 = 1.
SU(n) is the special unitary group with det z = 1 for ∀z ∈ SU(n), and

has dimension n2 − 1 because of the extra condition det z = 1, since in
general, det z is of the form eiϕ for ϕ ∈ R. See [Fra97; Sch80] for more
details.

C.2. One-Parameter Subgroup and Lie Algebra

One-parameter subgroup of a group G is defined by a trajectory, t ∈ R →
g(t) ∈ G (with g(0) = e), satisfying the rule,

g(s + t) = g(s)g(t) = g(t)g(s),
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i.e. a homomorphism (preserving products) of the additive group of R (real
numbers) to the multiplicative group of G. Differentiating g(s+t) = g(t)g(s)
with respect to s and putting s = 0,

g′(t) = g(t)Xe(= g∗Xe), Xe = g′(0). (C.1)

This indicates that the tangent vector Xe at the identity e = g(0) is left-
translated along g(t). In other words, the one-parameter subgroup g(t) is
an integral curve through e resulting from left-translation of the tangent
vector Xe at e over G. The vector Xe is called the infinitesimal generator
of the one-parameter subgroup g(t).

Consider a matrix group Gm with A = g′
m(0) a constant matrix. Then

Eq. (C.1), g′
m(t) = gm(t)A, can be integrated to give

gm(t) = gm(0) exp[tA] = exp[tA] (C.2)

exp[tA]:=e + tA +
(tA)2

2!
+ · · · = e +

∞∑
k=1

(tA)k

k!
, (C.3)

where e = I (unit matrix).
Analogously, for any Lie group G, a one-parameter subgroup with the

tangent vector X at e is denoted by

g(t) := exp[tX] = etX = e + tX + O(t2), X ∈ TeG (C.4)

The tangent space TeG = g at e of a Lie group G is called the Lie algebra.
The algebra g is equipped with the Lie bracket [X,Y, ] for ∀X,Y ∈ TeG

(§1.7).

C.3. Rotation Group SO(n)

Let us consider the rotation group SO(n). An element g ∈ SO(n) is repre-
sented by an n × n orthogonal matrix (ggT = I) satisfying det g = 1. Let
ξ(t) be a curve (on SO(n)) issuing from the identity e(= I) with a tangent
vector a at e. Then one has ξ(t) = e+ta+O(t2) for an infinitesimal param-
eter t. The vector a = ξ′(0) is an element of the tangent space TeSO(n),
i.e. the Lie algebra so(n) (using lower case letters of bold face).
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The orthogonality condition ξ(t)ξT (t) = e requires a = (aij) ∈ so(n) to
be skew-symmetric. In fact, we obtain

(e + ta + · · · )(e + taT + · · · ) = e, ∴ a = −aT , i.e. aij = −aji.

(C.5)

C.4. so(3)

The dimension of the vector space of Lie algebra so(3) is 3, represented by
the following (skew-symmetric) basis (E1, E2, E3):

E1 =


0 0 0

0 0 −1
0 1 0


 , E2 =


 0 0 1

0 0 0
−1 0 0


 , E3 =


0 −1 0

1 0 0
0 0 0


 . (C.6)

Their commutation relations are given by

[E1, E2] = E3, [E2, E3] = E1, [E3, E1] = E2, (C.7)

where [Ej , Ek] = EjEk − EkEj . In addition, we have the following proper-
ties, − 1

2 tr(EkEl) = δkl, since

tr(E1E1) = tr(E2E2) = tr(E3E3) = −2, (C.8)

tr(E1E2) = tr(E2E3) = tr(E3E1) = 0, (C.9)

where tr denotes taking trace of the matrix that follows.
For a, b ∈ so(3), we have the following representations,

a = a1E1 + a2E2 + a3E3, a1, a2, a3 ∈ R, (C.10)

and a similar expression for b, which are obviously skew-symmetric. Their
scalar product is defined by

〈a, b〉so(3) := −1
2
tr(ab) = −1

2
akbl tr(EkEl) = akbk. (C.11)

Their commutation is given by

ab−ba = (a2b3 − a3b2)E1 + (a3b1 − a1b3)E2 + (a1b2 − a2b1)E3. (C.12)

Let us define a skew-symmetric matrix c and an associated column
vector ĉ by

c = c1E1 + c2E2 + c3E3 := ab − ba, ĉ = (c1, c2, c3)T . (C.13)
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Similarly, we define the vectors â and b̂ associated with the matrices a and
b. The representation of ab − ba in the form of (C.12) is equivalent to
a × b in the form of (B.25). Thus, we can represent the Eq. (C.13) by the
following cross-product,

ĉ = â × b̂. (C.14)

Given a point r = (r1, r2, r3) ∈ M3, an infinitesimal transformation of r

by ξ(t) = e + ta + O(t2) is (up to the O(t) term)

r �→ r′ = ξ(t)r = r + tar = r + t(a1E1 + a2E2 + a3E3)r = r + tâ × r.

(C.15)

Thus, the infinitesimal transformation ξ(t) represents a rotational transfor-
mation of angular velocity â.
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Appendix D

A Curve and a Surface in R
3R
3

R
3

(Ref. §2.1, 2.5.3, 2.5.4, 2.7.1, 2.8, 9.1)

D.1. Frenet–Serret Formulas for a Space Curve

Let a space curve C be defined by x(s) in R
3 with s as the arc-length

parameter. Then, the unit tangent vector is given by

t =
dx

ds
, ‖t‖ = 〈t, t〉1/2 = 1.

Differentiating the equation 〈t, t〉 = 1 with respect to s, we have
〈t, (dt/ds)〉 = 0. Hence, dt/ds is orthogonal to t and is so to the curve
C, and the vector dt/ds defines a unique direction (if dt/ds �= 0) in a plane
normal to C at x called the direction of principal normal, represented by

dt

ds
=

d2x

ds2 = κ(s)n(s), ‖n‖ = 〈n,n〉1/2 = 1, (D.1)

where n is the vector of unit principal normal and κ(s) is the curvature.
Then, we can define the unit binormal vector b by the equation, b = t × n,
which is normal to the osculating plane spanned by t and n. Thus we have
a local right-handed orthonormal frame (t,n, b) at each point x (Fig. D.1).

Analogously to dt/ds ⊥ t, the vector dn/ds is orthogonal to n. Hence,
it may be written as n′ = αt − τb, where the prime denotes d/ds, and
α, τ ∈ R. Differentiating b, we obtain

db

ds
= t × n′ + t′ × n = −τt × b = τ(s)n(s), (D.2)

371
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b = t × n

t

n

x (s)

C

Fig. D.1. A space curve.

where (D.1) is used, and τ is the torsion of the curve C at s. Since n = b×t,
we have

dn

ds
= b × t′ + b′ × t = −κt − τb, (D.3)

where (D.1) and (D.2) are used.
Collecting the three equations (D.1)–(D.3), we obtain a set of differential

equations for (t(s),n(s), b(s)):

d
ds


 t

n

b


 =


 0 κ 0

−κ 0 −τ

0 τ 0




 t

n

b


 . (D.4)

This is called the Frenet–Serret equations for a space curve.

D.2. A Plane Curve in RRR
2 and Gauss Map

A plane curve Cp : p(s) in the plane R
2 is a particular case of the space

curve considered in the previous section D.1. The unit tangent t(s) and unit
principal normal n(s) are defined in the same way. However, the binormal
b defined by t × n is always perpendicular to the plane R

2. Hence b is a
constant unit vector, and db/ds = 0, resulting in the vanishing torsion,
τ = 0. Thus, Eq. (D.4) reduces to

d
ds

(
t

n

)
=
(

0 κ

−κ 0

)(
t

n

)
. (D.5)

As an interpretation of the curvature κ (which can be generalized to
the surface case), let us consider the Gauss map G. The map G is defined
by G : p(s) �→ n(s), where the unit vector n(s) is plotted as a vector
extending from the common origin O of a plane. Therefore, the end point
of n(s) will draw an arc over a unit circle S1

n (Gauss circle) as the point
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∆ p

p (s)
n (s)

n (s + ∆s)

t (s + ∆s)
t (s + ∆s)

t (s)

p (s + ∆s)

∆n = –κ∆ p ∆t =κ∆s n
= ∆� n

t (s)

n(s)

Cp

∆�∆ n

S1
n

Fig. D.2. Gauss map.

p(s) moves along the curve Cp (Fig. D.2). Corresponding to an infinitesimal
translation of the point p(s) along Cp by the length ∆s, where the vectorial
displacement is ∆p = (∆s)t, the displacement of n(s) along the unit circle
is given by ∆n = −κ∆st. Thus the curvature κ is given by the ratio of the
two lengths ‖∆n‖/‖∆p‖. More precisely, we have ∆n = −κ∆p.

In order to define the basis (t, n) in the same sense of the right-handed
(x, y)-frame, it is convenient to introduce both positive and negative values
for the curvature κ. Then the first equation ∆t = κn∆s of (D.5) is under-
stood as ∆t being clockwise or anti-clockwise with respect to t according
as the κ is negative or positive. Since t is a unit vector, the infinitesimal
change ∆t is given by (∆θ)n, where ∆θ is the rotation angle of the vector t

(Fig. D.2). Thus the equation ∆t = κn∆s reduces to another interpretation
of the curvature:

κ =
dθ

ds
. (D.6)

D.3. A Surface Defined by z = f(x, y) in R
3R
3

R
3

Suppose that a surface is defined by z = f(x, y) in the three-dimensional
cartesian space (x, y, z). One may take u1 = x, u2 = y and x =
(u1, u2, f(u1, u2)) in the formulation in §2.1. The line-element is dx =
(dx,dy, df), where df = pdx + qdy and

p = fx =
∂f

∂x
, q = fy =

∂f

∂y
. (D.7)
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Then we have

ds2 = 〈dx, dx〉 = (dx)2 + (dy)2 + (pdx + qdy)2

= (1 + p2)(du1)2 + 2pqdu1du2 + (1 + q2)(du2)2.

Hence the metric tensors are given by

g11 = 1 + p2, g12 = pq, g22 = 1 + q2.

The angle φ of the coordinate curves is given by

cos φ =
pq√

(1 + p2)(1 + q2)
,

according to (2.16) in §2.1. The second fundamental form and its tensors
bαβ are defined by (2.20) and (2.21), where the unit normal N is given by

N =
(

− p√
W

,− q√
W

,
1√
W

)
⊥ dx, (D.8)

where W = 1 + p2 + q2. Then we have

N1 = ∂xN , N2 = ∂yN ,

x1 = ∂xx = (1, 0, p), x2 = ∂yx = (0, 1, q).

Using the notations of the second derivatives defined by

r = fxx =
∂2f

∂x2 , s = fxy =
∂2f

∂x∂y
, t = fyy =

∂2f

∂y2 , (D.9)

we obtain the tensor bαβ as

b11 = −〈x1,N1〉 =
r√
W

b12 = −〈x1,N2〉 =
s√
W

b22 = −〈x2,N2〉 =
t√
W

.

Finally, we obtain the Gaussian curvature,

K =
det(bαβ)
det(gαβ)

=
rt − s2

W 2 . (D.10)
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Appendix E

Curvature Transformation

(Ref. §3.8.1)

Suppose that we have a vector field Z ∈ TM . We consider parallel transla-
tion of a tangent vector Z ∈ TpM at p along a small curvilinear (deformed)
parallelogram Πε. The sides are constructed by using two arcs ξε = eεX and
ηε = eεY emanating from p, where X,Y ∈ TpM and ε is an infinitesimal
parameter. As considered in §1.7.3, there is a gap between ηε◦ξε and ξε◦ηε,
and the gap is given by ηεξε − ξεηε = ε2[X,Y ] in the leading order (see
(1.75)). Hence the circuit is actually five-sided.

The parallel translation of Z is carried out as follows. We make a circuit
Πε in the sense � from p along the side ηε first and back to p along the side
ξε (Fig. E.1). The starting point p is denoted by 4 (where Zp = Z4) and
the end of ηε is 3 (where Z = Z3), and then the end of ξε ◦ ηε is denoted
as 2′ (where Z2′). The gap is denoted by an arc from 2′ to 2 (where Z2).
After passing through the point 1 (where Z1), we trace back to p denoted
by 0 (where Z0 = Z4).

Y

X

��

P 3
4

P 3
2�P 3

4

3

4
p 0 1

2

2�

P 1
2 P 2

2� P 3
2�P 3

4

P 0
1 P 1

2� P
2
2� P 3

2�P 3
4

� = �2[X,Y]

��

��

Fig. E.1. Parallel translation.
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By the definition of covariant derivative (3.84), the parallel translation
of Xt at γt back to γ0 is represented by

P 0
t Xt = X0 + t(∇T X)0 +

1
2
t2(∇T ∇T X)0 + O(t3) (E.1)

where P t
0 is the operator of a parallel translation from γ0 to γt. In the

present case, the parallel translation of Z0 from 0 to 1 is

P 1
0 Z0 = Z1 − ε(∇XZ)1 +

1
2
ε2(∇X∇XZ)1 + O(ε3). (E.2)

Similarly, for the parallel translation of Z4 from 4 to 3, we have

P 3
4 Z4 = Z3 − ε(∇Y Z)3 +

1
2
ε2(∇Y ∇Y Z)3 + O(ε3). (E.3)

Subsequent translation from 3 to 2′ is

(P 2′
3 P 3

4 )Z4 =
(

Z2′ − ε(∇XZ)2′ +
1
2
ε2(∇X∇XZ)2′

)

− ε((∇Y Z)2′ − ε(∇X(∇Y Z))2′) +
1
2
ε2(∇Y ∇Y Z)2′ , (E.4)

up to O(ε2). Performing the next translation from 2′ to 2 which is of the
order ε2 distance, we obtain

(P 2
2′P 2′

3 P 3
4 )Z4 = Z2 − ε((∇XZ)2 + (∇Y Z)2) − ε2(∇[X,Y ]Z)2

+ ε2
(

(∇X(∇Y Z))2 +
1
2
(∇X∇XZ)2 +

1
2
(∇Y ∇Y Z)2

)
,

(E.5)

up to O(ε2). It is instructive to obtain the consecutive parallel translation
of Z0 from 0 to 1 (given by (E.2)) and from 1 to 2, which is given by

(P 2
1 P 1

0 )Z0 = Z2 − ε((∇XZ)2 + (∇Y Z)2)

+ ε2
(

(∇Y (∇XZ))2 +
1
2
(∇X∇XZ)2 +

1
2
(∇Y ∇Y Z)2

)
.

(E.6)

In view of this form, it is finally found that the consecutive parallel trans-
lation of (P 2

2′P 2′
3 P 3

4 )Z4 from 2 to 1 and from 1 to 0 is given by

(P 0
1 P 1

2 P 2
2′P 2′

3 P 3
4 )Z4 = Z0 − ε2(∇[X,Y ]Z)0

+ ε2((∇X(∇Y Z))0 − (∇Y (∇XZ))0). (E.7)
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Now, the transformation operator gε(X,Y ) of the parallel translation (3.94)
is given by (P 0

1 P 1
2 P 2

2′P 2′
3 P 3

4 ). Thus it is found that

gε(X,Y ) = e + ε2R(X,Y )

where R(X,Y ) is the operator of the curvature transformation:

R(X,Y ) = ∇X∇Y − ∇Y ∇X − ∇[X,Y ]. (E.8)
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Appendix F

Function Spaces Lp, Hs and
Orthogonal Decomposition

(Ref. §3.12, 8.1, footnote to Chapter 5)

The totality of functions, which are differentiable up to the qth order with
all the derivatives being continuous over the manifold Mn, is denoted by
Cq(M). A special case is C0, a class of continuous functions, and another is
C∞ which is a class of infinitely differentiable functions, i.e. all the deriva-
tives exist and are continuous.

A function f(x) is said to belong to the function space Lp(M) if the
integral

∫
M

|f(x)|p dµ(x) exists (dµ is a volume form). The L2(M) denotes
the functions which are square-integrable over the manifold Mn.

The Sobolev space W s
p (M) denotes the totality of the functions f(x) ∈

Lp(M) which have the property Dsf(x) ∈ Lp(M), where x = (x1, . . . , xn)
and Dsf denotes a generalized sth derivative (in the sense of the theory
of generalized functions) including the ordinary sth derivative defined by
∂s1
1 · · · ∂sn

n f with s = s1 + · · · + sn.
The space W s

2 (M) is written as Hs(M). If s > n/2, then Hs ⊂ Cq(M)
by the Sobolev’s imbedding theorem, where q ≡ [s − n/2] is the maximum
integer not larger than s − n/2. Therefore, if s > n/2 + 1, then q ≥ 1, and
a function g ∈ Hs is continuously differentiable at least once.

An arbitrary vector field v on M can be decomposed orthogonally into
divergence-free and gradient parts. In fact, an Hs vector field v ∈ TeM is
written as

v = Pe(v) + Qe(v), (F.1)

379
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where

Qe(v) = gradFD + gradHN := grad f,

Pe(v) = v − Qe(v)

(f ∈ Hs+1). The scalar functions FD and HN are the solutions of the
following Dirichlet problem and Neumann problem, respectively,

∆FD(v) = div v, where suppFD ⊂ M,

∆HN(v) = 0, and 〈∇HN,n〉 = 〈v − ∇FD,n〉,

(hence 〈Pe(v),n〉 = 0) where n is the unit normal on the boundary ∂M .
There is orthogonality, 〈gradFD, gradHN〉 = 0. Then, it can be shown that

divPe(v) = 0,

〈Pe(v), Qe(v)〉 = 0.

This orthogonal decomposition into the divergence-free part Pe(v) and
gradient part Qe(v) is called the Helmholtz decomposition or Hodge
decomposition or Weyl decomposition [Mis93].
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Appendix G

Derivation of KdV Equation
for a Shallow Water Wave

(Ref. §5.1)

G.1. Basic Equations and Boundary Conditions

We consider a surface wave of water of depth h. Suppose that water is
incompressible and inviscid, and waves are excited on water otherwise at
rest. Then the water motion is irrotational, and the velocity field v is
represented by a velocity potential Φ: v = grad Φ. We consider the two-
dimensional problem of waves in the (x, y)-plane with the horizontal coor-
dinate x and the vertical coordinate y, and denote the velocity as

v = (u, v) = (Φx, Φy),

where Φx = ∂xΦ, etc. The undisturbed horizontal free surface is specified
by y = 0. Let the water surface be described by

y = z(x, t). (G.1)

Incompressible irrotational motion in the (x, y)-plane must satisfy
ux + vy = 0, which reduces to the following Laplace equation:

∆Φ = Φxx + Φyy = 0, for −h < y < z(x, t). (G.2)

The boundary condition at the horizontal bottom at y = −h is

v = Φy = 0, at y = −h. (G.3)

The surface deforms freely subject to the following two boundary condi-
tions. The first is the pressure condition, that is, the pressure p must be
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equal to the atmospheric pressure p0 over the surface. This is represented by

Φt +
1
2
|v|2 + gz = 0, at y = z(x, t) (G.4)

[Ach90, §3.2], where g is the acceleration of gravity.
The second is the kinematic condition, that is, the fluid particle on the

free surface y = z(x, t) must move with the surface and remain on the
surface. This is represented by

zt + uzx = v, at y = z(x, t). (G.5)

G.2. Long Waves in Shallow Water

There exist three length scales in the problem of long waves in a shallow
water channel: water depth h, wave amplitude a and a horizontal scale of
the wave λ. In order to derive an equation expressing the balance of the
finiteness of wave amplitude and wave dispersion, it is supposed that the
following two dimensionless parameters are small,

α =
a

h
, β =

(
h

λ

)2

, (G.6)

and, in addition, their orders of magnitude are as follows:

α ≈ β (�1). (G.7)

The governing equation and the boundary conditions given in the previous
section can be normalized by using the following dimensionless variables:

ξ =
(

α

β

)1/2
x − c∗t

λ
, τ =

(
α3

β

)1/2
c∗t
λ

,

φ =
(

α

β

)1/2
c∗Φ
gaλ

, ζ =
z

a
, η =

y

h
,
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where c∗ =
√

gh. Using these dimensionless variables, the set of equa-
tions (G.2)–(G.5) are transformed to

(i) φηη + αφξξ = 0 (−1 < η < αζ)

(ii) φη = 0 (η = −1)

(iii) ζ − φξ + αφτ +
1
2
(φ2

η + αφ2
ξ) = 0 (η = αζ)

(iv) φη + α(ζξ − αζτ − αφξζξ) = 0 (η = αζ).

It is not difficult to see that the following function φ(ξ, η, τ) satisfies both
(i) and (ii):

φ(ξ, η, τ) =
∞∑

m=0

(−1)m

(2m)!
αm(η + 1)2m

(
∂

∂ξ

)2m

f(ξ, τ). (G.8)

Let us expand f(ξ, τ) and ζ(ξ, τ) in the power series of α as

f(ξ, τ) = f0(ξ, τ) + αf1(ξ, τ) + α2f2(ξ, τ) + · · · , (G.9)

ζ(ξ, τ) = ζ0(ξ, τ) + αζ1(ξ, τ) + α2ζ2(ξ, τ) + · · · . (G.10)

Substituting (G.9) in (G.8), we have

φ = f0 + α

(
f1 − 1

2
Y 2∂2

ξf0

)
+ α2

(
f2 − 1

2
Y 2∂2

ξf1 +
1
24

Y 4∂4
ξf0

)
+ O(α3),

where Y = 1 + η. Using this and (G.10) and setting Y = 1 + αζ, the
boundary conditions (iii) and (iv) are expanded with respect to α as

(iii)′
ζ0 − ∂ξf0 + α

(
ζ1 − ∂ξf1 +

1
2
∂3

ξf0 + ∂τf0 +
1
2
(∂ξf0)2

)
+ O(α2) = 0,

(iv)′ −∂2
ξf0 + ∂ξζ0 + α

(
−ζ0∂

2
ξf0 − ∂2

ξf1 +
1
6
∂4

ξf0

+ ∂ξζ1 − ∂τζ0 − ∂ξζ0∂ξf0

)
+ O(α2) = 0.

Vanishing of O(α0) terms of (iii)′ and (iv)′ leads to ζ0 − ∂ξf0 = 0 and
∂ξ(ζ0 − ∂ξf0) = 0, respectively. Thus, we obtain the first compatibility
relation,

ζ0 = ∂ξf0, (G.11)

stating that the zeroth order elevation ζ0 is equal to the zeroth order hori-
zontal velocity ∂ξf0.
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Next, vanishing of O(α1) terms of (iii)′ and (iv)′ leads to

ζ1 − ∂ξf1 = −∂τf0 − 1
2
(ζ0)2 − 1

2
∂2

ξ ζ0, (G.12)

∂ξ(ζ1 − ∂ξf1) = ∂τζ0 + 2ζ0∂ξζ0 − 1
6
∂3

ξ ζ0, (G.13)

respectively, where ∂ξf0 = ζ0 is used. Compatibility of both equations
requires that the right-hand side of (G.13) should be equal to ∂ξ of (G.12).
Thus, we finally obtain the following KdV equation for u = ζ0:

2∂τu + 3u∂ξu +
1
3
∂3

ξu = 0. (G.14)
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Appendix H

Two-Cocycle, Central Extension
and Bott Cocycle

(Ref. §5.3, 5.4 and 9.8)

H.1. Two-Cocycle and Central Extension

The elements of the group D(S1) describe diffeomorphisms of a circle S1,
g : z ∈ S1 �→ g(z) ∈ S1. We may write z = eix and consider the map,
x �→ g(x) such that g(x+2π) = g(x)+2π (in the main text the variable x is
written as φ here), with the composition law, g′′(x) = (g′ ◦g)(x) = g′(g(x)),
where g, g′, g′′ ∈ D(S1). Writing eix =: Fe(x), we can consider the following
transformation by the mapping x′ = g(x):

Fg(x′) := exp[iη(g)] exp[ig(x)] = exp[i∆(g, x)]Fe(x)

= exp[i(∆(g, x) + x)], (H.1)

i.e. there is a phase shift η(g) : D(S1) → R in the transformed function Fg,
where

∆(g, x) = g(x) − x + η(g). (H.2)

We are going to show that Fg is a function on D̂(S1), whereas eig(x) is
a function on D(S1). The above transformation allows us to define the
composition law for two successive transformations as follows. For x′′ =
g′x′ = g′g(x), we may write

Fg′g(x′′) = exp[i∆(g′g, x)]Fe(x). (H.3)

385
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The composition is written as

Fg′Fg(x′′) = exp[i∆(g′, x′)]Fg(x′)

= exp[i∆(g′, x′) + i∆(g, x)]Fe(x). (H.4)

Thus, eliminating Fe(x) between (H.3) and (H.4), we obtain

Fg′Fg = ω(g′, g)Fg′g, ω(g′, g) = exp[iΘ(g′, g)], (H.5)

Θ(g′, g) := ∆(g′, x′) + ∆(g, x) − ∆(g′g, x), (H.6)

where Θ(g′, g) is called the local exponent. The transformation (H.5) is
called the projective representation. Requiring that associativity (associa-
tive property) holds for Fg, we obtain the following two-cocycle condition:

ω(g′′, g′)ω(g′′g′, g) = ω(g′′, g′g)ω(g′, g). (H.7)

In fact, we have [Fg′′Fg′ ]Fg = ω(g′′, g′)ω(g′′g′, g)Fg′′g′g and Fg′′ [Fg′Fg] =
ω(g′′, g′g)ω(g′, g)Fg′′g′g. The ω(g′, g) satisfying (H.7) is called the two-
cocycle. In terms of the exponents Θ(g′, g), the two-cocycle condition reads

Θ(g′′, g′) + Θ(g′′g′, g) = Θ(g′′, g′g) + Θ(g′, g). (H.8)

Substituting (H.2) into (H.6), we find

Θ(g′, g) = η(g′) + η(g) − η(g′g) : D × D → R,

ω(g′, g) = γg′γgγ
−1
g′g := ωcob(g′, g), where γg = exp[iη(g)].

With this form, the cocycle condition (H.7) is identically satisfied. In gen-
eral, two two-cocycles ω and Ω are said to be equivalent, if there exists a
factor ωcob such that ω(g′, g) = Ω(g′, g)ωcob(g′, g).1 The ωcob(g′, g) itself is
a two-cocycle corresponding to Ω = 1 and is called a trivial two-cocycle, or
two-coboundary. The present problem is such a case.

Let us now consider briefly the problem of projective (or ray) represen-
tations in order to define the central extension. The ray operators F̄ satisfy
the relation:

F̄g′ F̄g = F̄g′g, g, g′ ∈ D, (H.9)

where the bar indicates the class of equivalent operators which differ in a
phase θ ∈ R, i.e. F, F ′ ∈ F̄ ⇔ F ′ = γF , where γ = eiθ (said to be an
element of the group U(1)). If a representative class Fg is selected in the

1The classes of inequivalent two-cocycles define the second cohomology group
H2(G, U(1)) for a group G.
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class F̄g, (H.9) will be written as Fg′Fg = ω(g′, g)Fg′g like (H.5). Next,
inside the class F̄g, let us take other operators in the form, eiθFg with a
new variable θ. Then

eiθ′
Fg′eiθFg = ei(θ′+θ)eiΘ(g′,g)Fg′g := eiθ′′

Fg′′ .

Suppose that, associated with a group D, we are given a local exponent
Θ : D ×D → R. Then, we can define a new group D̂ consisting of elements
ĝ = (g, θ) together with the group operation:

ĝ′ ◦ ĝ = (g′, θ′) ◦ (g, θ) = (g′ ◦ g, θ′ + θ + Θ(g′, g)). (H.10)

In summary, the extended group D̂ is such that: (1) it contains U(1) as an
invariant subgroup and D̂/U(1) = D. In fact, the invariant subgroup U(1)
is a center i.e. the element (id, θ) commutes with any element (g, θ′) ∈ D̂.
Namely, D̂ is a central extension of D by U(1); (2) D is not a subgroup
of D̂.

H.2. Bott Cocycle

It can be verified that the following [Bott77] satisfies the two-cocycle con-
dition (H.8) for the local exponent B(g′, g) in place of Θ(g′, g):

B(g′, g) =
1
2

∫
S1

ln ∂x(g′ ◦ g)d ln ∂xg. (H.11)

In fact, noting that ∂x(g′ ◦g)(x) = ∂x(g′(g(x)) = g′
xgx, its right-hand side is

B(g′, g) + B(g′′, g′g) =
1
2

∫
S1

[ln(g′
xgx)d ln(gx) + ln(g′′

xg′
xgx)d ln(g′

xgx)]

=
1
2

∫
S1

[ln(g′
x)d ln(gx) + ln(g′′

x)d[ln(g′
x) + ln(gx)]],

since ln(g′
xgx) = ln(g′

x)+ln(gx) and
∫

S1 ln(gx)d ln(gx) =
∫

S1 d(ln(gx))2/2 =
0. Similarly, the left-hand side is

B(g′′, g′) + B(g′′g′, g) =
1
2

∫
S1

[ln(g′′
x)d ln(g′

x) + ln(g′′
xg′

x)d ln(gx)].

Thus, it is found that the two-cocycle condition B(g′, g) + B(g′′, g′g) =
B(g′′, g′) + B(g′′g′, g) is satisfied.
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H.3. Gelfand–Fuchs Cocycle: An Extended Algebra

Here is a note given about the relation between the group cocycle B(g, f)
and the algebra cocycle c(u, v) defined in §5.4. On the extended space
D̂(S1), we consider two flows ξ̂t and η̂s generated by û = (u∂x, α) and
v̂ = (v∂x, β) respectively, defined by

t �→ ξ̂t where ξ̂0 = (e, 0),
d
dt

∣∣∣∣
t=0

ξ̂t = û,

s �→ η̂s where η̂0 = (e, 0),
d
ds

∣∣∣∣
s=0

η̂s = v̂

(see §1.7.3). Lie bracket of the two tangent vectors û and v̂ is defined by

[û, v̂](f) = û(v̂(f))|(e,0) − v̂(û(f))|(e,0).

According to Eq. (1.71), we have

[û, v̂] = (∂t∂sη̂s ◦ ξ̂t − ∂s∂tξ̂t ◦ η̂s)|(e,0).

Denoting only the extended component of the product η̂ ◦ ξ̂ of (5.19) (or
(H.10)) as Ext{η̂s ◦ ξ̂t}, we have

Ext{η̂s ◦ ξ̂t} = at + bs + B(ηs, ξt),

where suffices s and t are parameters. Therefore,

∂t∂s Ext{η̂s ◦ ξ̂t} = ∂t∂sB(ηs, ξt),

and

Ext{[û, v̂]} = ∂t∂sB(ηs, ξt) − ∂s∂tB(ξt, ηs)|(e,0).

Carrying out the calculation, we have

∂sB(ηs, ξt) = ∂s

∫
S1

ln ∂x(ηs ◦ ξt)d ln ∂xξt =
∫

S1

∂x(v ◦ ηs ◦ ξt)
∂x(ηs ◦ ξt)

d ln ∂xξt.

Since the Taylor expansion of ξt is ξt = e + tu(x) + O(t2), its x-derivative
is ∂xξt = 1 + t∂xu + O(t2). Hence, we obtain

ln ∂xξt = ln(1 + t∂xu + O(t2)) = t∂xu + O(t2)

d ln ∂xξt = (tuxx)dx
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and furthermore,

ηs ◦ ξt = (x + sv(x) + · · · ) ◦ (x + tu(x) + · · · )
= x + tu(x) + sv(x + tu(x) + · · · ) + · · ·
= x + tu(x) + sv(x) + O(s2, st, t2)

∂x(ηs ◦ ξt) = 1 + tux + svx + O(s2, st, t2).

Therefore we obtain

∂sB(ηs, ξt) =
∫

S1

∂xv(x + O(s, t))
1 + tux + svx + O(s2, st, t2)

(tuxx)dx.

Differentiating with respect to t and setting t = 0 and s = 0,

∂t∂sB(ηs, ξt)|s=0,t=0 =
∫

S1
vxuxxdx.

Thus finally we find

c(u, v) = Ext{[û, v̂]} =
∫

S1
vxuxxdx −

∫
S1

uxvxxdx

= 2
∫

S1
uxxvxdx = −c(v, u).

This verifies the expression (5.22) of §5.4. This form of c(u, v) is called the
Gelfand–Fuchs cocycle [GF68]. The anti-symmetry of c(u, v) can be shown
by performing integration by parts and using the periodicity.
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Appendix I

Additional Comment on the Gauge
Theory of §7.3

By the replacement of ∂µ with ∇µ = ∂µ − iqAµ(x) defined by (7.20) in the
quantum electrodynamics of §7.3 (i), the Lagrangian density Λfree of (7.16)
is transformed to Λ(ψ, Aµ). A new term thus introduced is an interaction
term −AµJµ between the gauge field Aµ and the electromagnetic current
density (matter field) Jµ = −qψ̄γµψ.

To arrive at the complete Lagrangian, it remains to add an electro-
magnetic field term ΛF = − 1

16π FµνFµν to the Lagrangian, where Fµν =
∂µAν − ∂νAµ, and Fµν = gµαFαβgβν with the metric tensor gαβ =
diag(−1, 1, 1, 1). Assembling all the pieces, we have the total Lagrangian
for quantum electrodynamics,

Λqed = Λ(ψ, Aµ) + ΛF . (I.1)

Thus, variation with respect to Aµ yields the equations for the gauge field
Aµ, i.e. the Maxwell’s equations in electromagnetism, whereas variation of
Λ with respect to ψ yields the equation of quantum electrodynamics, i.e.
the Dirac equation with electromagnetic field.

Using the notations B = ∇×A and E = −∇φ−c−1∂tA of the magnetic
3-vector B and electric 3-vector E, we obtain

Fµν = ∂µAν − ∂νAµ =




0 −E1 −E2 −E3

E1 0 B3 −B2

E2 −B3 0 B1

E3 B2 −B1 0


 .

In the Yang–Mills’s system of §7.3(ii), the gauge-covariant derivative is
defined by ∇µ = ∂µ − iqσ · Aµ(x), where σ = (σ1, σ2, σ3) are the three-
components Pauri matrices given in the main text. In addition, the fol-
lowing three gauge fields (colors) are defined: Ak = (Ak

0 , Ak
1 , Ak

2 , Ak
3) with

391
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k = 1, 2, 3. The new fields A1,A2,A3 are the Yang–Mills gauge fields. The
connection iqσ · Aµ leads to the interaction term, that couples the gauge
field with quark current, corresponding to the middle term of (I.1). Finally,
a gauge field term (called a kinetic term, corresponding to the third term
of (I.1)) should be added to complete the Yang–Mills action functional.
[Fra97, Chap. 20]
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Appendix J

Frobenius Integration Theorem and
Pfaffian System
(Ref. §1.5.1, 8.8.1 and 11.2)

We make a local consideration in a neighborhood U of the origin 0 in R
n.

Let x = (x1, . . . , xn) ∈ U and let ω(x) = a1dx1 + · · · + andxn = aidxi be
a 1-form which does not vanish at 0. We look for an integrating factor for
the first order differential equation ω(x) = 0, called a Pfaffian equation.
In other words, we find the conditions for which functions f and g satisfy
ω = fdg. If ω = fdg, then f does not vanish in a neighborhood of 0, hence

dω = df ∧ dg = df ∧ f−1ω = θ ∧ ω,

where θ = f−1df = dln|f |. So that,

ω ∧ dω = ω ∧ θ ∧ ω = 0.

For a 1-form ω = Pdx + Qdy + Rdz in R
3, this condition leads to

X · curlX = P (Ry − Qz) + Q(Pz − Rx) + (R(Qx − Py) = 0, (J.1)

where X = (P, Q, R). Thus, if ω = fdg, then the equation ω = 0 and
dg = 0 are the same, and hence the solutions or the integral surfaces are
given by the hypersurfaces g = constant. This corresponds to the existence
of the Bernoulli surface (§8.8.1).

For example, let ω = yzdx+xzdy+dz, so that dω = ydz∧dx−xdy∧dz

and X = (yz, xz, 1), and let us consider the integral surfaces obtained
from the Pfaffian equation ω = 0. Since we have X · curlX = (yz, xz, 1) ·
(−x, y, 0) = 0, we can expect to obtain the expression, dω = θ ∧ ω. In fact,
θ = −ydx−xdy will do. This suggests the representation, ω = fdg. In fact,
it can be easily checked that the two functions, f = e−xy, g = zexy, yield
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fdg = e−xy(z(ydx + xdy) + dz)exy = ω. Thus, the integral surfaces are
found to be zexy = constant.

Theorem (Euler’s integrability condition). Let ω = fidxi be a 1-form
which does not vanish at 0. Suppose there is a 1-form θ satisfying dω =
θ ∧ ω. Then there are functions f and g in a sufficiently small neighborhood
of 0 which satisfy ω = fdg.

Here, we only refer to textbooks (e.g. [Fla63; Fra97; AM78]) for its proof.
We now pass to the general problem. Let ω1, . . . , ωk be

1-forms in n(= k + m)-dimensional space, linearly independent at 0. Set
Ω = ω1 ∧ · · · ∧ ωk. The system ω1 = 0, . . . , ωk = 0 is called the Pfaffian
system. The system is called completely integrable if it satisfies any of the
conditions of the following lemma.

Lemma. The following three conditions are equivalent:

(i) There exist 1-forms θi
j satisfying

dωi =
n∑

j=1

θi
j ∧ ωj (i = 1, . . . , k).

(ii) dωi ∧ Ω = 0 (i = 1, . . . , k).
(iii) There exists a 1-form λ satisfying

dΩ = λ ∧ Ω.

Theorem (Frobenius Integration Theorem). Let ω1, . . . , ωk be 1-
forms in R

n(n = k+m) linearly independent at 0. Suppose there are 1-forms
θi

j satisfying

dωi =
k∑

j=1

θi
j ∧ ωj (i = 1, . . . , k).

Then there are functions f i
j and gj satisfying

ωi =
k∑

j=1

f i
j dgj (i = 1, . . . , k).

See Flanders [Fla63] for the proof of the Lemma and Theorem.
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Appendix K

Orthogonal Coordinate Net
and Lines of Curvature

(Ref. §10.1)

The principal directions T β corresponding to the extremum of the nor-
mal curvature κN of a surface Σ2 are determined by (2.61) of §2.5.4:

(bαβ − λgαβ)T β = 0, (α, β = 1, 2). (K.1)

The equation |bαβ −λgαβ | = 0 is necessary and sufficient for the non-trivial
solution. This is a quadratic equation for the eigenvalue (principal value)
λ. The discriminant D of the quadratic equation reduces to

D = (b11g22 − b22g11)2 + 4(b12g11 − b11g12)(b12g22 − b22g12).

Suppose that the coordinate curves, u1 = const and u2 = const, form an
orthogonal net, then we have g12 = 0 from (2.16). For such a system, we
have D = (b11g22 − b22g11)2 + 4b2

12g11g22, which is non-negative, since g11

and g22 are positive (§2.1). Hence the principal values are real.1

In the case of two distinct real eigenvalues, we denote the larger one
(the maximum κN ) by κ1 and the smaller one (the minimum κN ) by κ2,
and the corresponding vectors by Tα

1 and Tα
2 , respectively. Thus we have

(bαβ − κ1gαβ)T β
1 = 0, (bαβ − κ2gαβ)T β

2 = 0.

We multiply these equations by Tα
2 and Tα

1 respectively, sum-up with
respect to α in each equation, and subtract the resulting equations. Then,

1They are distinct unless b12 = 0 and bαβ = cgαβ . Satisfying these two conditions results
in λ = c and the principal direction is not determined (c is a real constant). When this
holds at every point, the surface is either a plane or sphere.
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we get

(κ2 − κ1)gαβTα
1 T β

2 = 0. (K.2)

Since κ1 �= κ2, we find gαβTα
1 T β

2 = 〈T1, T2〉 = 0. It follows that the two
principal directions T1 and T2 are orthogonal.

Thus, the two vectors T1 and T2 are the tangents to the curves of orthog-
onal net on the surface. In order to obtain the differential equation for the
curves, we replace T β by duβ in (K.1) for α = 1, 2. Eliminating λ, one
obtains the following equation,

(b1αduα)(g2αduα) − (b2αduα)(g1αduα) = 0 (K.3)

which defines the lines of curvature.
Suppose that the coordinate curves are the lines of curvature. Setting

(du1, du2) = (∆1u
1, 0) or (0, ∆2u

2), we obtain the following equations:

b11g12 − b12g11 = 0, b12g22 − b22g12 = 0. (K.4)

This states that, unless g12 = b12 = 0, the two fundamental forms gαβ and
bαβ are proportional, which is the case only when the surface is a plane or
sphere.

Since we are considering general surfaces, we have the following. A nec-
essary and sufficient condition that the coordinate curves are orthogonal
and coincide with the lines of curvature is,

g12 = 0 and b12 = 0. (K.5)

However, on a plane or a sphere, these conditions are satisfied by any orthog-
onal net.

Thus, the lines of curvature form an orthogonal coordinate net when
g12 = 0 and b12 = 0. In addition, we ask what condition is necessary if
the coordinate curves are geodesics. If the curve u1 = const is a geodesic,
we have du1/ds = 0 along the curve. Then the geodesic equation (2.65) of
Chapter 2 gives Γ1

22 = 0. Likewise, if the curve u2 = const is a geodesic, we
have Γ2

11 = 0. From the definition (2.40), we obtain

Γ1
22 = −g22

2g

∂g22

∂u1 = − 1
2g11

∂g22

∂u1 ,

since g = g11g22. Therefore, if the coordinate curves u1 = const are geodesic,
we must have ∂g22/∂u1 = 0. Likewise, the coordinate curves u2 = const
are geodesic, if ∂g11/∂u2 = 0. These are also adequate. Thus, the necessary
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and sufficient condition that the curves uα = const be geodesics is that gββ

(where β �= α) be a function of uβ alone.
Suppose that the curves u2 = const are geodesics. Then we have g11 =

g11(u1), and a coordinate u can be chosen so that du = g11(u1)du1, and
the line-element is

I = ds2 = (du)2 + g22(v)(dv)2, (K.6)

where v is used instead of u2.
Suppose that we have an orthogonal conjugate coordinate net.2 In math-

ematical terms, two conjugate directions denoted by two tangents T1 and T2

must satisfy the following: B ≡ bαβTα
1 T β

2 = 0. In fact, writing the tangents
as T1 = (T 1

1 , 0) and T2 = (0, T 2
2 ) for the two lines of curvature intersecting

orthogonally at a point, it is satisfied, since

B = b11T
1
1 T 1

2 + b12T
1
1 T 2

2 + b21T
2
1 T 1

2 + b22T
2
1 T 2

2 = b12T
1
1 T 2

2 = 0

by (K.5). Obviously, the conjugacy of directions is reciprocal, and the prin-
cipal directions T1 and T2 are self-conjugate.

For a surface of nonzero Gaussian curvature (K �= 0), we have
b = det(bαβ) �= 0 by the definition (2.62). In such a case, the second funda-
mental form can be expressed as

II = A((du1)2 + ε(du2)2),

by an appropriate transformation [Eis47, §42], where ε is +1 or −1 accord-
ing as K is positive or negative. Such coordinate curves are said to form an
(isometric-)conjugate net. In this coordinate system, b22 = εb11. For a sur-
face of constant K �= 0, one may write K = ε/a2. Then the definition (2.62)
leads to the equation, (b11)2 = g/a2, where g = det(gαβ) > 0. Thus, we
have

b11 =
√

g

a
, b22 = ε

√
g

a
, b12 = 0. (K.7)

2Through each point of a curve C on a surface, there passes a generator of a developable
surface which is formed by the envelope of a one-parameter family of tangent planes to
the surface at points of the curve. The directions of the generator and the tangent are
said to have conjugate directions. Suppose that two families of curves form a net, such
that a curve of each family passes through a point of the surface and at the point their
directions are conjugate. Such a net is called a conjugate net.
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Cauchy’s solution, 35, 268
center, 161
central

charge, 162
extension, 161, 315, 386

chaos, 177
chaotic, 289
characteristic curves, 154
chart, 6
Christoffel symbol, 41, 52, 54, 80, 83
circle, 35
circle S1, 366, 385
circular vortex, 311

filaments, 306
classical field theory, 251
closed, 351
cnoidal wave, 158
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action, 261
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1-form, 41, 53, 86, 87, 331
form, 86

conservation law
of total angular momentum, 241
of total momentum, 239

conservation of 〈X, T 〉, 119
conserved quantity, 312
constant

Gaussian curvature, 321
negative curvature, 324
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covector, 19, 36
cover, 6
critical point, 184
cross-product, 30, 369
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free rotation, 127
Frenet–Serret equation, 64, 297, 372
Frobenius integration theorem, 393,

394
frozen, 101

field, 34, 110, 266, 267
functional derivative, 303

galilei
invariance, 194
transformation, 193, 194

gauge
covariance, 234
field, 199, 201, 391
field A, 209
field Lagrangian LA, 216
field Lagrangian LB , 229
field operator, 228
groups, 253
potential, 231
principle, 228, 258

gauge-covariant derivative, 391
Gauss

equation, 56
map, 372
spherical map, 69
surface equations, 52

Gauss–Bonnet theorem, 71, 72
Gauss–Codazzi equation, 259, 269
Gauss–Mainardi–Codazzi equation,

54, 343
Gauss–Weingaten equations, 343
Gaussian

curvature, 58, 69, 88, 331, 347,
374

random process, 179
general linear group, 365

generalized
coordinates, 13
momentum, 16
velocities, 13

generator, 27, 367
genus, 72
geodesic

curvature, 59
curve, 63, 91, 94
di-angle, 71
equation, 63, 68, 91, 92, 137,

160, 173, 264, 277, 306, 316,
396

n-polygon, 71
stability, 314
triangle, 70, 71

geometrical origin of the chaos, 180
geometry, 78
GL(n, C), 366
GL(n, R), 365
global, 198

gauge transformation, 202
grad, 21
group, 25

D(S1) of diffeomorphisms, 35
group-theoretic representation, 92

Hs(M), 379
Hamilton’s equation, 17, 131, 302,

307, 309
Hamilton’s principle, 196

for an ideal fluid, 233
for potential flows, 218

Hamiltonian, 13, 309
chaos, 171
dynamical system, 171
function, 131

Hasimoto transformation, 300
Hénon–Heiles system, 175
helical vortex, 299, 313, 315
helicity, 289
Helmholtz decomposition, 121, 380
Hessian matrix, 185
Hodge decomposition, 380
homentropic, 197, 238
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homeomorphism, 5, 352
hyperbolic type, 339

ideal fluid, 219, 234, 253
identity, 25
image, 352

curve, 21
imbed, 5, 23
immersion

function, 346
problem, 343

incompressible, 254
irrotational motion, 381

index k of the critical point, 185
induced

connection, 53, 121
covariant derivative, 53

inertia
operator, 304
tensor, 129

infinite dimension, 10
infinitesimal

gauge transformation, 200
rotation, 225
transformations, 225

injection, 23, 352
inner

geometry, 77
product, 20, 78, 358

instability, 271
integrability, 55, 89

condition, 54, 56, 330
integrable, 223, 340

equations, 330
integral

angle, 71
invariant, 164, 310
of a form, 24
of motion, 130
surface, 75

integrating factor, 393
integration of forms, 362
interior product, 358
internal energy, 218
intrinsic, 78

geometry, 49, 58, 85

invariance of the inner product, 38
invariant, 34, 286

metric, 84
of motion, 309

inverse, 51
image, 352
map, 352
scattering transform, 329

inviscid, 219
irrotational, 208, 381

fields, 210
isentropic, 219, 234, 235

equation, 238
isometric, 49, 224, 258

orthogonal net, 323
conjugate net, 397

isometry, 29, 118
group, 163

isotropic manifold, 107, 114

Jacobi
equation, 110, 173, 266, 314
field, 145, 266, 273
identity, 27
metric tensor, 79
vector, 267

Jacobian, 7
John Scott Russel, 156

k-form, 354
k-trigonometric model, 183
Kac–Moody algebra, 315
KdV equation, 157, 162, 318, 332, 384
Kelvin’s

circulation theorem, 248
theorem of minimum energy, 223

Killing
covector, 181
equation, 117, 163, 182, 310, 312
field, 117, 163, 308, 310, 311, 314
tensor field, 120
tensors, 183
vector, 146

kinematic condition, 234, 382
kinematical constraint, 215, 216, 219
kinetic energy, 129, 136
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kink solution, 337
Korteweg and de Vries, 156

L2-distance, 274
L2-metric, 257
L2(M), 379
Lp(M), 379
Lagrange

derivative, 215
equation, 197

Lagrangian, 13, 197
LB , 250
derivative, 31, 34
description, 255, 268, 271, 284
equation, 15
instability parallel shear flows,

277
particle, 212, 271, 284
particle representation, 196
representation, 8

Landau–Lifshitz equation, 302
Laplace equation, 381
largest Lyapunov exponent, 180
Lax pair, 329
left-invariance, 133
left-invariant, 99, 134

dynamics, 137
field, 26
metric, 80
vector field, 301

left-translation, 26
Legendre transformation, 16
Levi–Civita connection, 82
Lie

algebra, 27, 367
bracket, 28, 32, 36, 367
bracket (commutator), 159
derivative, 31, 215, 358, 362
derivative of a vector, 32
group, 25, 365

Lie’s lemma, 326
Lie–Poisson bracket, 131, 303, 308
Lin’s constraint, 238
line element, 48
lines of curvature, 321, 396
Liouville’s theorem, 181

Liouville–Beltrami formula, 62
local, 199

coordinate, 6, 91
galilei transformation, 208
gauge transformation, 200, 202,

226
group, 304
symmetries in α-space, 242

local induction, 297
approximation, 298
equation, 298

long waves, 154
loop

algebra, 304
group, 294, 304

Lorentz
invariant, 193
transformation, 193

lowering, 20
Lyapunov exponent, 179

magnetization, 186
Mainardi–Codazzi equation,

56, 322
manifold, 4, 351
manifold S1, 35
manifold T 3, 275
map, 351
map φ, 21
mapping of integrable systems, 348
mass

coordinates, 214
tensor, 172

material
derivative, 210, 232
irrotational, 219
variation, 235

matrix group, 367
mean curvature, 61
mean-field k-trigonometric model, 184
metric, 137, 162, 175, 304

tensor, 20, 46, 78
tensor gE , 172

minimal surface, 62
Minkowski metric, 193
mixed tensor, 39
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mixing, 274
Möbius band, 36
modified KdV (mKdV) equation, 332
moment of inertia, 128
momentum

conservation equation, 239
map, 304

Morse
function, 184
index, 185
theory, 184

multilinear, 38

N degrees of freedom, 172
negative curvature, 90, 274
negative Gaussian curvature, 61
Neumann problem, 380
neutral stability, 167
NLS, 333
Noether’s theorem, 238

for rotations, 202, 240
non-abelian, 201, 229
non-commutative, 207
non-commutativity, 33, 201
nondegenerate, 20, 79
nonlinear effect, 154
nonlinear Schrödinger

equation, 299, 300, 333
surfaces, 346

nonquantum fluid, 212
normal

curvature, 60
to Σ2, 50

O(n), 365
one-form (1-form), 19
one-parameter

family, 8
group of isometry, 164
subgroup, 27, 366

one-sphere, 6
one-to-one, 352
onto-mapping, 352
open sets, 351
orientation factor, 361

orientation-preserving, 35
oriented surface 2-form, 360
orthogonal, 270

coordinate net, 396
group, 365
matrix, 29, 367
net, 396
transformation, 224

parabolic type, 340
parallel

displacement, 84
shear flow, 271, 284
translation, 54, 84, 91, 96, 375

parallelogram, 49
parameterized curve, 83
particle

coordinate, 255
permutation, 235, 244

Pauli matrices, 200
permanent form, 300
Pfaff form, 19
Pfaffian

equation, 393
system, 330

phase
shift, 161, 162
space, 17
transition, 183
velocity, 157

plane
Couette flow, 279
curve, 372
Poiseuille flow, 284

Poincaré
metric, 89
section, 177
surface, 89, 93

Poiseuille flow, 285
Poisson bracket, 33, 131, 303
positive curvature, 118
potential flow, 210, 223
pressure

condition, 381
gradient, 270
term, 269
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principal
curvatures, 61
directions, 322
frame, 129
normal, 295, 371
values, 60

projection
map, 8, 14
operator, 257
representation, 386

proper variations, 219
pseudo-Riemannian, 78
pseudosphere, 90
pseudospherical, 321, 339

surface, 323, 330, 331, 340
pull-back φ∗, 23
pull-back integration, 363
push-forward, 21, 35

QED, 235

raising, 21
ray representations, 386
Rayleigh, 156
Rayleigh’s inflection point theorem,

271
rectilinear vortex, 310
regular precession, 147
relative displacement, 207
reshuffling, 249
Ricci tensor, 107, 174
Riemann tensor, 42, 56
Riemann–Christoffel curvature

tensors, 55
Riemannian

connection, 82, 261
curvature, 268
curvature tensor, 87, 104
manifold, 78
metric, 78
metric tensor, 115

right-invariance, 133
right-invariant, 26, 99, 256, 257

connection, 259
dynamics, 138
field, 26

metric, 79, 159, 258
vector field, 302

right-translation, 26
rigid body, 127
rigid-motion, 75
rotation group, 29, 192, 366, 367
rotational, 226

transformation, 206, 224, 369

scalar, 193
curvature, 107, 174
product, 20

second, 345
fundamental form, 51, 65, 270
integrability equation, 67
structure equation, 66

second order phase transition, 185
sectional

curvature, 106, 143, 165, 176,
266, 277, 280, 290, 308, 314,
315

curvatures on D(S1), 160
curvatures on KdV System, 168

self-Bäcklund transformation, 342
self-conjugate, 321, 397
shallow water, 154

wave, 381
simple diffeomorphic flow, 160
sinh–Gordon (ShG) equation, 323,

332, 333, 335, 342
skew-symmetric, 87
slide-Killing, 313
SO(2), 366
SO(3), 192, 206, 224
SO(n), 366, 367
so(3), 207, 368
so(n), 367
Sobolev

imbedding theorem, 379
space, 379

solitary wave, 156, 157
soliton, 156

equation, 56, 331
solvability condition, 329, 331
solvable systems, 329
space curve, 317, 371
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space-periodic flows, 275
special

linear group SL(n, R), 365
orthogonal group, 366
unitary group, 366

spherical, 321, 339
image, 69
surface, 330, 333, 349, 350
top, 142, 143

stability, 279
of geodesic curves, 168
of Killing field, 119
of regular precession, 147
of the geodesic, 145

steady flow, 8, 285
stochastic oscillator, 179
Stokes’s theorem, 362
stream line, 9, 286
stretching, 273
structure

constants, 202
equation, 66, 67, 85, 87, 340
group, 365

SU(2), 200, 344
SU(2)-valued function, 344
su(2), 201
su(2)-rotation, 348
su(2)-valued function, 344
submanifold, 22
superfluid, 212
surface, 373

Σ2, 45
in R

3
R

3
R

3, 371
equation, 122
forms, 247
wave, 153, 381

surjection, 352
symmetrical top, 146
symmetries of flow fields, 205
symmetry, 191, 198

tangent
bundle, 14, 35, 78
dynamics, 174
field, 35

space, 12
space TpΣ2, 45
vector, 11, 21, 77, 133, 256, 367,

371
tensor product, 39, 43
Theorema Egregium, 62
thermodynamic state, 218
time dependent, 12, 81, 92, 112
topological

invariant, 185
space, 5, 351

topology, 351
change, 183

torsion, 300, 372
free, 82, 261

torus, 286
torus Σtor, 47
total

curvature, 72
Lagrangian, 231

transformation
group, 26
law, 11
matrix, 39
vectors, 36

transformation law of the gauge field,
228

translational transformation, 206
triangle-simplexes, 73
triangulation, 73
trivial bundle, 14
two-cocycle condition, 386
two-degrees-of-freedom system, 175
two-dimensional

Riemannian surface, 113
surface, 88

two-form Ω2, 246

U(1), 366
U(n), 366
uniqueness, 74
unitary group, 366
unsteady, 12
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vector, 11
bundle, 14
field, 11, 12
potential, 232
product, 359

vector-valued
1-form, 47, 53, 78
one-form, 40

velocity, 8
vertices, 73
Virasoro algebra, 161
viscosity, 280
volume form, 215, 359, 361
volume-preserving

diffeomorphisms, 254
map, 255

vortex
filament, 293, 296
ring, 297, 307

vortex-lines, 286

vorticity, 232
vorticity equation, 248, 267

in the α-space, 246
in the x-space, 246

W s
2 (M), 379

W s
p (M), 379

water waves, 154
wave

dispersion, 157
propagation, 157

Weingarten equation, 50
Weyl’s principle gauge invariance, 199
Witt algebra, 36

XY model, 180, 186

Yang–Mills gauge fields, 201
Yang–Mills’s system, 391


