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Preface

Turbulence models are required to close forms of the time-independent Navier-
Stokes equations, which involve unknown Reynolds stress correlations. The
equations may be incompressible or compressible, two- or three-dimensional,
appropriate to separated or boundary-layer flows and with correlations that in-
volve from one shear stress to three shear stresses and three normal stresses:
and the averaging may involve ensembles, time and density weighting. In all
cases, the averaging implies more unknowns than equations and assumptions
are necessary to close the set. An important consequence is that solutions of
equations closed with turbulence models are no longer exact representations of
physical problems implied by the boundary conditions, and the uncertainties
associated with the assumptions have to be appraised, usually by comparison
with experiments.

Many models have been suggested over the last forty years, with initial em-
phasis on comparatively simple free flows and wall flows in which the unknown
Reynolds-stress tensor could be reduced to one dominant shear-stress compo-
nent. The ability to measure the shear stress and related mean-velocity gradi-
ents implied that assumptions could be evaluated directly and often, but not
always, with encouraging results. It has proved more difficult to make evalua-
tions of similar quality in more complex flows, for example those involving three
independent variables and for substantial regions of flow separation, for which
the Reynolds stress tensor involves more terms, although the correspondingly
more complex models involve assumptions and empirical coefficients derived by
reference to simpler flows. Thus, the extent to which a turbulence model is able
to represent a flow depends on the complexity involved; assessments can be dif-
ficult and involve subjective judgement. At the same time, the Reynolds-stress
tensor is one group of terms in the equation representing conservation of mean
momentum and its magnitude is, on occasion, small compared to the terms
representing pressure gradients and sources.

The implementation of turbulence models involves the numerical solution of
the conservation equations for mass and momentum with the model assumptions
for turbulent diffusion, and some compatibility between equations and assump-
tions is required to ensure solutions with reasonable computer resources. Thus,
it can be expected that models in algebraic form are likely to allow results to be



VI Preface

obtained with less cost, effort and time than those with models in the form of
added differential equations for turbulence quantities, and some tradeoff may be
required between cost and convenience on the one hand and greater generality
on the other.

In this book, after a brief review of the more popular turbulence models
(Chap. 1), we present and discuss accurate and efficient numerical methods for
solving the boundary-layer equations with turbulence models based on alge-
braic formulas (mixing length, eddy viscosity) or partial-differential transport
equations. In Chap. 2 we discuss the numerical solution of the boundary-layer
equations using the Cebeci-Smith model and the k-e model with and with-
out wall functions, including a zonal method, all for flows without separation.
A computer program employing the Cebeci-Smith model and the k-E model
for obtaining the solution of two-dimensional incompressible turbulent flows is
discussed in detail in Chap. 3 and is presented in the accompanying CD-ROM.

The numerical solution of the boundary-layer equations with flow separa-
tion is discussed in Chap. 4. An inverse boundary-layer method employing the
Cebeci-Smith turbulence model is described in detail. A computer program for
obtaining boundary-layer solutions on airfoils and wakes is discussed and pre-
sented in the accompanying CD-ROM. This code, with Veldman's interaction
law, can also be used interactively with the Hess and Smith panel method de-
scribed in Chap. 5. The panel method, also presented in the accompanying
CD-ROM, includes the viscous effects. It is arranged in such a way that, with
the computer program of Chap. 4, it can be used to obtain solutions of air-
foil flows for a wide range of angles of attack, including stall, as discussed in
Chap. 7. Chapter 6 discusses the application of the computer program for the
Cebeci-Smith and k-e models to other higher-order turbulence models, includ-
ing flows with separation. Finally, in Chap. 7 test cases are presented for the
four companion computer programs in the accompanying CD-ROM. In many
respects, this book can be seen as complementary and supplementary to that
of Cebeci and Smith Analysis of Turbulent Boundary Layers (Academic Press,
1974) and its replacement Analysis of Turbulent Flows by the present author
which is about to be published (Elsevier, 2003).

It is a pleasure to acknowledge the help received from Dr. K. C. Chang, who
read the whole manuscript and assisted with the development of the boundary-
layer codes. Dr. J. P. Shao prepared the CD-ROM for the computer programs
and Professor H. H. Chen provided help in the development of the panel code
with viscous effects. Thanks are also due to Mr. Kurt Mattes who typed the
manuscript and to Mr. Karl Koch who helped with the the production of the
book.

Indian Wells, July. 2003 Tuncer Cebeci
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Turbulence Models

1.0 Introduction

The use of Reynolds-averaged equations, made necessary by our inability to
solve the time-dependent, three-dimensional Navier-Stokes equations with ad-
equate resolution of time and spatial scales, see [1], implies that information
has been lost and that further approximations are required to represent the
fluctuating quantities known as Reynolds stresses and so reduce the number of
unknowns to equal the number of equations. The most common approach to
this problem is to define an eddy viscosity, e,,,,, in the same form as the laminar
viscosity. Thus, for a two-dimensional incompressible flow,

- AuIvi = PE, u (1.0.1)
y

Another approach is to use the mixing length, t, concept and express the

Reynolds shear stress by

2()2 (1.0.2)-
The specification of c,,, or e may be made in terms of algebraic equations

or in terms of a combination of algebraic and differential equations and this
has given rise to terminology involving the number of differential equations.
Thus, the closures may be described in terms of zero, one and two differential
equations. For a two-dimensional boundary-layer, the zero-equation approach
usually treats a turbulent boundary layer as a composite layer with separate
expressions for or a in each region. The Cebeci-Smith (CS) model discussed
in detail in [1, 2] and briefly in Section 1.1 is a typical example for this approach.

In the one-differential-equation approach the eddy viscosity- is written, with
c.. denoting a constant, as
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Em = c,,0"22 (1.0.3)

with k obtained from a differential equation which represents the transport of
turbulence energy and a from an algebraic formula. The Spalart-Allmaras (SA)
model discussed in detail in [1, 3,4] and briefly in Section 1.5 is a good, useful
model that uses this approach.

In the two differential equation approach, the eddy viscosity is written as

E.n, =
c, k2

(1.0.4)
e

with k and E obtained from differential equations which represent the transport
of turbulence energy and its rate of dissipation. While one-equation models have
found little favor except for the SA model, and where transport of turbulence
characteristics is important as in strong adverse gradients or in separated flows,
two equations have found extensive use. Various forms of two-equation models
have been proposed and details have been given, for example in [1, 4]. Three
popular models that are based on this approach are the k-E model discussed in
Section 1.2 and the k-w and SST models briefly discussed in Sections 1.3 and
1.4, respectively.

The Reynolds shear stress can also be modelled by using the Reynolds trans-
port equation as described for example in [1, 4]. A popular model is due to
Launder, Reece and Rodi [5]. As pointed out by Bradshaw "it is so obvious that
stress-transport models are more realistic in principle than eddy viscosity mod-
els that the improvements they give are very disappointing and most engineers
have decided that the increased numerical difficulties (complexity of program-
ming, expense of calculation, occasional instability) do not warrant changing
up from eddy-viscosity models at present. Even stress-transport models often
give very poor predictions of complex flows - notoriously, the effects of stream-
line curvature are not naturally reproduced, and empirical fixes for this have
not been very reliable" [6]. For this reason, the solution of the boundary layer
equations using stress-transport models is not addressed in this book.

1.1 CS Model

For two-dimensional incompressible flows, the continuity and momentum equa-
tions are given by [2]

au 8v
1.1.1x}8y=0 ( )

u8x+vau lax+va
2u _a

y A y2 y

With Bernoulli's equation, the above momentum equation can be written as
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8u 8u du 82u 8_ e
+ Y)

(+
(1 1 3)v8y _ ue dx uu8x v8y2 8y

. .

The boundary conditions for Eqs. (1.1.1) and (1.1.3) are

y=0, u=0, v=0, (1.1.4a)

y=6, u=1Le. (1.1.4b)

The Reynolds shear stress term in Eq. (1.1.3), that is, -cu'v', requires a clo-
sure assumption. In the CS model this is achieved by using Eq. (1.0.1) with
defined by separate expressions in the inner and outer regions of the boundary
layer. Excluding the low-Reynolds-number and mass-transfer effects and as-
suming flow over a smooth surface (no roughness effects), the CS eddy viscosity
model is given by 11j.

Inner region: 0 < y C yc

(Em)i = Z2
au
8y

Here the mixing length l is given by

l'tr (1.1.5)

I = rcy [1 - exp (-A)I (1.1.6a)

where n = 0.40 and A is a damping-length constant, which may be represented
by

A=26Lu1 N=(1-11.8p+)1/2 p+=Vuedue,NT ur dx
Outer region: yc < y < S

(1.1.6b)

to
(E'00 = a fo (Ue - u)dYYtrt (1.1.7)

Here y accounts for the intermittency of the outer region and is represented by

y = 2 11 - erf [Y - a (1.1.8)

where Y and a are general intermittency parameters, with Y denoting the
value of y for which y = 0.5, and a the standard deviation. The dimensionless
intermittency parameters Y/6* and a/S* are expressed as functions of H as
shown in Fig. 1.1a. The variation of the ratio of boundary-layer thickness 6 to
S* with H is shown in Fig. 1.1b. The parameter a is calculated from

0.0168a=
C9 U au l

t?y)m11.5



4 1. Turbulence Models

1.2 1.4 1.6 1.8 20 2.2

(a) H

a
6'

3 1.5 1.7 1.9 21 23

(b) H

Fig. 1.1. Variation of Y/6', a/6' and 6/5 with H according to the data of Fiedler and
Head [7].

Here subscript m denotes the location where turbulent shear is maximum. The
parameter Q is given by

0=
1 + 2Rt(2 - Rt)
1+Rt
Rt

6 Rt<1.0
(1.1.10)

Rt > 10

Here Rt denotes the ratio of wall shear to maximum Reynolds shear stress [1],

Rt = Tw (1.1.11)
(-Q(u'Z'))m

In Eqs. (1.1.5) l'tr is an intermittency factor which represents the streamwise
region from the onset of transition to turbulent flow. It is defined by the following
expression

?tr = 1 - exp [_G(x - xtr dx

2tr ue
(1.1.12)

where Xtr is the location of the start of the transition and the factor C is given
empirically by

3
C = C2 yz

Rxer.34 (1.1.13a)

with Ry,r denoting Reynolds number, RXlr = (uex/v)tr, and C a constant with
a recommended value of 60 for high Reynolds flows. For lower Reynolds number,
C is given by [1]

C2 = 213(log R5 - 4.7323) (1.1.13b)
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1.2 k-e Model

The k-E model due to Jones and Launder (8) is also based on the eddy viscosity
concept, with e,,, given by Eq. (1.0.4). Here cµ denotes a constant and k and E are
obtained from differential equations which represent the transport of turbulence
kinetic energy, k, and its rate of dissipation, e. They are given by [1, 4]

Dk _ a [ (v

+
E,,, \ ak 1

+
aui auj ) aua

Dt axk ak J SXk J ate; + axi axj

,C_ (8-., aua E2DE _ a E aE

Dt - axk + a£ a2k ] + Ce, Em. ((xj T (

aujxy

J iix - Ce2 (1.2.2)

For boundary-layer flows at high Reynolds number, Eqs. (1.2.1) and (1.2.2)
become

ak ak _ a -A) au 2
uax+v ay ay\aksy+Em\ay/ uE (1.2.3)

ae ae a (E,,,, aE' E (au 2

u )+v +c E

e2

-c
(1 2 4)

ax ay ay ae sy/ "k m \ay
The parameters cµ, Ce Ce21 ak and a£ are given by

EZ k
. .

cµ = 0.09, cey = 1.44, ce2 = 1.92, ak = 1.0, ae = 1.3 (1.2.5)

These equations apply only to free shear flows. For wall boundary-layer flows,
they require modifications to account for the presence of the wall. Without wall
functions, it is necessary to replace the true boundary conditions at y = 0 by new
"boundary conditions" defined at some distance yo outside the viscous sublayer
to avoid integrating the equations through the region of large y gradients near
the surface. Usually yo is taken to be

Y

YO = UT YO +,

yo being a constant taken as about 50 for smooth surfaces. For the velocity
field, the boundary conditions at y = yo use the law of the wall and require that

uo=ur(11nyol+cl
!£ Y //

uoyo dur

(1.2.6a)

vo = - - -
ur dx

(1.2.6b)

Here c is a constant about 5 to 5.2. Equation (1.2.6b) results from integrating
the continuity equation with u given by the law of the wall

u+ = U = 01(y+) (1.2.7)
ur
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We also use relations for the changes in shear stress between y = 0 and y = yo
in order to calculate uT from

2 TO
ur = - ayo

10

where To is calculated from

aul
To = (v+en)

Jy vo

with a semi-empirically given by

z
a=0.3 o-uedxe

The friction velocity ur (° T;/e) can also be calculated from

T = Tw +
dxy + v

dx Joy* I- I dy
U-r

with u/ur determined from Thompson's velocity profile given by

y+, y+ < 4
u+ _

c1+c2lny++c3(lny+)2+c4(lny+)3, 4<y+ <50

where cl = 1.0828, c2 = -0.414, c3 = 2.2661, c4 = -0.324.
For y+ > 50, we can use the logarithmic velocity profile, [1, 21.

(1.2.8a)

(1.2.8b)

(1.2.8c)

(1.2.9)

u.H = 1 In y+ + c (1.2.10)
K

where r, = 0.41 and c = 5.0.
There are several ways to specify the "wall" boundary conditions for k and

e. A common one for k makes use of the relation between shear stress r and k.
It is given by Bradshaw [1].

Y = yo, ko =
To

a1
(1.2.11)

where a1 = 0.30. With ro defined by Eq. (1.0.1) and em, by Eq. (1.0.4), Eq.
(1.2.11) becomes

_ ko (8u1
a1 - cR

so ay J o
(1.2.12)

The boundary condition fore can be obtained by equating the eddy viscosity
given by the CS model, (E,,,,)CS, to the eddy viscosity definition used in the k-e
model, Eq. (1.0.4) which, with low Reynolds number correction, can be written
as

z

(em)CS = cµfµ
k

(1.2.13)
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Here fm is a specified function discussed later in this section. Thus,

J=yo (1.2.14)

where I is given by Eq. (1.1.6a).
The edge boundary conditions for the k-e model equations, aside from the

edge boundary condition for the momentum equation,

y-'6, u-'ue(x)

are

y -'b, k 4ke, e- ee

(1.2.15)

(1.2.16)

To avoid numerical problems, ke and ee should not be zero. In addition, ke and
E. cannot be prescribed arbitrarily because their development is governed by
the transport equations (1.2.3) and (1.2.4) written at the boundary-layer edge,

ue
dke = -e (1.2.17a)

2de, = -eel eue (1.2.17b)
e

The above equations can be integrated with respect to x with initial conditions
corresponding to kep and Eeo at xo. The solution provides the evolutions of k(x)
and e(x) as boundary conditions for the k- and e-equations.

Low-Reynolds-Number Effects

To account for the presence of the wall, it is necessary to include low-Reynolds-
number effects into the k-E model. Without such modifications, this model fails
to predict the sharp peak in turbulence kinetic energy close to the surface for
pipe and channel flow as well as fails to predict a realistic value of the additive
constant c in the law of the wall.

There are several approaches that can be used to model Eqs. (1.2.3) and
(1.2.4) near the wall region. For an excellent review of these models, see Wilcox
[4] and Patel et al. [9).

Before we discuss the models considered here, it is useful to write the k-E
model equations in the following general form,

Ok Ok _ 8
I vu

C

e,n) 8k1v+
(5)2

(s-+ D) F+ 2(1 18)Fx aY
FY

l ak
L

FY ..

CAE- 8E a
f

e CAE l E' Ou 2 £2_
ay lCv+ ae) -j en j-) -cc2f2 , +E (1.2.19)

where D, E and F as well as ak, o , c61, ce2, f1, f2 are model dependent and
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e = s - D (1.2.20)

Of the several models to account for low-Reynolds-number effects, we con-
sider the models of Chien [10] and Hwang and Lin [11] in the computer program
given in Chapter 4. Other models discussed in (1, 41 can also be incorporated
into this computer program.

The wall boundary conditions for Eqs. (1.2.18) and (1.2.19) are

y=0, k = 0, 9=0 (1.2.21)

According to Chien's model, the parameters D, E, F, fµ, fl, f2, 0k, ae, cE, and
Cr2 are given by

D=2v7 k, E=-2v(y)exp(-'y+), F=0

fv = 1 - exp(-0.0115y+), fl=1.0, f2 = 1 - 0.22 exp (__q) 3s(1.2.22a)

Qk = 1.0, £ = 1.3, cc, = 1.35, ce2 = 1.8

where

RT =
k2

(1.2.22b)
ev

According to Hwang and Lin's model, the parameters in Eqs. (1.2.18) and
(1.2.19) are given by

F
"y) 1

fi=1.0, f2=1.0,

// `2
D=2v1 I ,

f = 1 - exp(-0.01yA - 0.008y3),

ak = 1.4 - 1.1 exp[-(ya/10)], (1.2.23)

vE = 1.3 - exp[-(ya/10)], ce, = 1.44, c£2 = 1.92,

y
ya

vk/e

Another approach to include the low-Reynolds-number effects in the k-F
model is to employ a simpler model near the wall (a mixing-length model [12]
or a one equation model [13] which is valid only near the wall region) and
the full two-equation model in the outer region of the boundary layer; the two
solutions are matched at a certain point in the boundary layer. This approach
is sometimes referred to as the two-layer method or zonal approach. We shall
use the latter name as we discuss the solution of the k-E models with the CS
model near the wall region.
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1.3 k-w Model

Like the k-E model discussed in the previous section, the k-w model is also
popular and widely used. Over the years, this model has gone over many changes
and improvements as described in (4]. The most recent model is due to Wilcox
[4] and is given by the following defining equations.

With defined by
kEm=-
w

the turbulence kinetic energy and specific dissipation rate equations are

(1.3.1)

Dt a
0

- L \ vk
1 ak ]

+ Rik axk - (1.3.2)

Dw _ a Kv
+

e) aw 1
+

awRaui 2

Dt axk aw J axk J
fk Oxk -/3w

where Rik is given by

(1.3.3)

1
Rik = Em \

aut
+

auk (1.3.4)
axk ax,

and
13,
25, /3of1, /1` _ /3o,fa, ak = 2, Q, = 2 (1.3.5a)

1+70X, 1707 SkiI (1.3.5b)ao =
125 fQ = 1 + 80X;,,, X, _ (fw)3

1, Xk < 0
9 1 ak Ow

100 fp 1 + 680x2 XA: 3 axj axj (1.3.5c)

1 + 400X2' Xk > 0

The tensors Qij and Ski appearing in Eq. (1.3.5b) are the mean rotation and
mean-strain-rate tensors, respectively, defined by

92'i
_ 1 8ui _ auk

Ski =
1 auk + aut

2 (ax3 exi } ' 2 (axi axk }
(1.3.6)

The parameter x, is zero for two-dimensional flows. The dependence of 8 .on
Xu, has a significant effect for round and radial jets [4]. This model takes the
length scale in the eddy viscosity as

(1.3.7a)

and calculates dissipation e from

e _ /3"wk (1.3.7b)
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Wilcox's model equations have the advantage over the k-e model that they
can be integrated through the viscous sublayer, without using damping func-
tions. At the wall the turbulent kinetic energy k is equal to zero. The specific
dissipation rate can be specified in two different ways. One possibility is to force
w to fulfill the solution of Eq. (1.3.3) as the wall is approached [4]:

w-Y2 as y->0 (1.3.8)

The other (14] is to specify a value for w at the wall which is larger than

w,,, > 100R,y

where Rv, is the mean vorticity at the wall.
Menter [14] applied the condition of Eq. (1.3.8) for the first five grid points

away from the wall (these points were always below yT = 5). He repeated some
of his computations with ww = 1000Ru and obtained essentially the same re-
sults. He points out that the second condition is much easier to implement and
does not involve the normal distance from the wall.

The choice of freestream values for boundary-layer flows is

AL , (Em)cc < 10-2(Ernnax, kx = (Em)oowoo (1.3.9)

where L is the approximate length of the computational domain and u. is the
characteristic velocity. The factor of proportionality. A = 10 has been recom-

mended (14].
For boundary-layer flows, Eq. (1.3.2) reduces to Eq. (1.2.18) with

D = 0, 0.09;A. k

The specific dissipation rate equation. Eq. (1.3.3) becomes

C9, aw c? Em (Jia.'l (thi )1l2
-aow2

ux+V

1.4 SST Model

(1.3.10)

(1.3.11)

The SST model of Menter [14] combines several desirable elements of existing
two-equation models. The two major features of this model are a zonal weighting
of model coefficients and a limitation on the growth of the eddy viscosity in
rapidly strained flows. The zonal modeling uses the 1993 version of Wilcox's
k-w model near solid walls and Launder and Sharma's k-s model [1,15] near
boundary layer edges and in free shear layers. This switching is achieved with
a blending function of the model coefficients. The shear stress transport (SST)
modeling also modifies the eddy viscosity by forcing the turbulent shear stress
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to be bounded by a constant times the local turbulent kinetic energy. This
modification, which is similar to the basic idea behind the Johnson-King model
[16], improves the prediction of flows with strong adverse pressure gradients and
separation.

Iii order to blend the k-w model and the k-e model, the latter is transformed
into a k- w formulation. The differences between this formulation and the orig-
inal k-w model of 1993 are that an additional cross-diffusion term appears in
the w-equation and that the modeling constants are different. Some of the pa-
rameters appearing in the k-w model are multiplied by a function F1 and some
of the parameters in the transformed k-e model by a function (1- F1) and the
corresponding equations of each model are added together. The function F1 is
designed to be a value of one in the near wall region (activating the original
model) and zero far from the wall. The blending takes place in the wake region
of the boundary layer.

The SST model also modifies the turbulent eddy viscosity function to im-
prove the prediction of separated flows. Two-equation models generally under-
predict the retardation and separation of the boundary layer due to adverse
pressure gradients. This is a serious deficiency, leading to an underestimation of
the effects of viscous-inviscid interaction which generally results in too optimistic
performance estimates for aerodynamic bodies. The reason for this deficiency
is that two-equation models do not account for the important effects of trans-
port of the turbulent stresses. The Johnson-King model [16] has demonstrated
that significantly improved results can be obtained with algebraic models by
modeling the transport of the shear stress as being proportional to that of the
turbulent kinetic energy. A similar effect is achieved in the SST model by a
modification in the formulation of the eddy viscosity using a blending function
F2 in boundary layer flows [4,14].

In the SST model, the eddy viscosity expression. Eq. (1.3.1), is modified,

alk
(1.4.1)

em max a w QF2)( 1 ,

where al = 0.31. In turbulent boundary layers, the maximum value of the eddy
viscosity is limited by forcing the turbulent shear stress to be bounded by the
turbulent kinetic energy times al, see Eq. (1.2.11). This effect is achieved with
an auxiliary function F2 and the absolute value of the vorticity D. The function
F2 is defined as a function of wall distance y as

F2 = tanh(arg2) (1.4.2a)

where

a = 600v1(2 'Vlk (1 4 2b)rg2 Max ;

0-09W Y yew J
. .
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The two transport equations of the model for compressible flows are defined
below with a blending function F1 for the model coefficients of the original w
and e model equations.

DAk _ 8 8k luui

Dt axk
(A+vkpE)axkJ Awk (1.4.3)

Dgw _ 8 r 8w 1 -y 8i
Dt 8xk + awAEm) axti J + E Rik axk

+ 2(1 - FOP-7-2
1

W

8k 8w
OXk OXk

where

(1.4.4)

Rik = QED,,
C7ui + auk - 2 8uj bik) - 2 gk6ik (1.4.5)axk axi 3 axj 3

The last term in Eq. (1.4.4) represents the cross-diffusion (CD) term that ap-
pears in the transformed w-equation from the original E-equation. The function
F1 is designed to blend the model coefficients of the original k-w model in
boundary layer zones with the transformed k-E model in free shear layer and
freestream zones. This function takes the value of one on no-slip surfaces and
near one over a larger portion of the boundary layer, and goes to zero at the
boundary layer edge. This auxiliary blending function F1 is defined as

F1 = tanh(arg1 (1.4.6)

500v 4Qaw2k
arg1 = min

1

max
0.09w ' CD

(1.4.7)
y JZw } kwy2

where CDk,,, is the positive portion of the cross-diffusion term of Eq. (1.4.4):

1CDku, =max 2Qaw2
1

W
8
8k
xk 8

8wxk' 10_20
(1.4.8)

The constants of the SST model are

,0' = 0.09, n = 0.41 (1.4.9)

The model coefficients,3, -y, ak and au , denoted with the symbol 0, are defined
by blending the coefficients of the original k-w model, denoted as 01, with those
of the transformed k-E model, denoted as 02-

0 = F101 + (1 - FI)02 (1.4.10)

where
0= fake aw,A-Y}

with the coefficients of the original models defined as
inner model coefficients
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ak1 = 0.85, awl = 0.5, /31 = 0.075
2

ry1 = * -awl K = 0.553
(1.4.11)

outer model coefficients

ak2 = 1.0, awe = 0.856, /32 = 0.0828

rye =
N2 - aw2 K2 = 0.440

(1.4.12)
77

The boundary conditions of the SST model equations are the same as those
described in the previous section for the k-w model.

For incompressible boundary-layer flows, Eq. (1.4.3) reduces to the kinetic
energy equation given by Eqs. (1.2.18) and (1.3.2). Equation (1.4.4) is same as
Eq. (1.3.11) except that its right-hand side contains the cross diffusion term,

+ 2(1 - F1)aw2-
k aw

(1.4.13)
y ay

Two-equation models are not entirely reliable in complex flows. The "v2f"
model of Durbin [171 gives generally better results, at the expense of using
one more transport equation, nominally for the -ev72 Reynolds stress, and an
elliptic relaxation equation to represent the effect of pressure fluctuations.

1.5 SA Model

Unlike the Cebeci-Smith model which uses algebraic expressions for eddy vis-
cosity, this model uses a semi-empirical transport equation for eddy viscosity.
Its defining equations are as follows.

Cm = vtfui (1.5.1)

Dvt
tt 1

c 2 av
Dt - cb1 l1 - (cwtfw - Z ft2) (0d ) +

l
1 a

a
xk [(V +vt)

cb2 ai;t arlt
(1. 5.2)

a axk axk

Here

cb1 = 0.1355, c62 = 0.622, cv1 = 7.1. a =
2

(1.5.3a)

cb,
cw 1 =

2
+ (1 acb2) , c,,,2 = 0.3, ct g = 2, ,c = 0.41 (1.5.3b)

3 r 6+ 6 1/6

fvl=X +c3l' fv2=1-1+Xfv,, fw=g
9

+ (1.5.3c)
3
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vt
x= v, g=r+cu,2(r6-r), Vt

r =
Sfc2d2

L
S+K2afV2, S 2i2 i2

z
ft2 = et3e-"4X , ct3 = 1.1, ct4 = 2

(1.5.3d)

(1.5.3e)

(1.5.3f)

where d is the distance to the closest wall and S is the magnitude of the vorticity,

The wall boundary condition is Pt = 0. In the freestream and as initial con-
dition 0 is best, and values below io are acceptable [3].

For boundary-layer flows, Eq. (1.5.2) can be written as

8vt
+ V--

8vt 1 8 rapt
ll

+
8vt )l2

U- =ebi(1-ft2)SVt+1 t L(v+vt)8- jc /l

- (cf- ft2)
()2

(1.5.4)

where
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Solution of the CS
and k-E Model Equations

2.0 Introduction

In this chapter we discuss the numerical solution of the boundary-layer equations
using the CS and k-e models, discussed in Section 1.1 and 1.2 respectively.
In Section 2.1 these equations are expressed in transformed variables, which
stretch the coordinate normal to the flow and allow large steps to be taken in
the x-direction. Section 2.2 discusses the solution procedure for the k-e model
equations with and without wall functions as well as with a zonal method.
Numerical solution of the k-e model equations is addressed in Section 2.3 for
a zonal method and in Section 2.4 for model equations with and without wall
functions.

2.1 Transformed Variables

We use the Falkner-Skan transformation discussed, for example, in [1]. With
the similarity variable defined by

7Le

77= vxy
(2.1.1a)

and the dimensionless stream function f (x, n) by

0(x, J) = uetixf (x, 77), (2.1.1b)

the continuity and momentum equations, Eqs. (1.1.1) and (1.1.2) and the k-e
model equations, Eqs. (1.2.18) and (1.2.19), with k and a defined by

u
, e=ue, (2.1.2)
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and a prime denoting differentiation with respect to 77, can be written as

(bf")' +miff"+m(1-(f')21 =x(f' - f/1afl (2.1.3)

(b2k')'+P-Q+F=2muk-mlfk'+x(u (2.1.4)

of(b3,-')' + P1 - Qi I E = x uax - £'ax) + (3m - 1)uE - mlCIf (2.1.5)

where the tilde has been dropped from the equations and

b=1+e,+,t, b2=1+ m b3=1+ '-n
ak aE

+Em xdue m+1_- v, 7IL=--, m1=Bm ue dx 2

(2.1.6)

In Eq. (2.1.4) (b2k')' denotes the diffusion term, P and Q defined by

P=e (f")2, Q=e+D (2.1.7)

denote the production and dissipation terms, respectively. The right-hand side
of Eq. (2.1.4) represents the convection term.

In Eq. (2.1.5) (b3E')' denotes the diffusion term, P1 and Q1, defined by

P1 = cE'flccff,v2k (2.1.8a)

Q1 = C62f2e2/k (2.1.8b)

denote the generation and destruction terms, respectively. The right hand side
of Eq. (2.1.5) represents the convection term.

The wall boundary conditions depend on whether the above equations are
being solved for high Reynolds flows (without wall functions), for the zonal
method or for flows at low Reynolds numbers (with wall functions).

For high Reynolds numbers the four boundary conditions at y = y0 corre-
spond to Eqs. (1.2.6) (1.2.12) and (1.2.14). In terms of transformed variables,
Eqs. (1.2.6) can be written as

A = wo
1
I In ( xwo17o) + cJ (2.1.9a)

dwol
ax + ml f0 = fort

(ml x
w0 dx J

where

(2.1.9b)

WO
=uT, Rx=uex,

C=5.2, , =0.41 (2.1.10)
ue v

In terms of dimensionless and transformed variables, Eq. (1.2.12) can be
written as
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al =c,,k fit (2.1.11)

all evaluated at 77 = ?70.
The fourth boundary condition, Eq. (1.2.14) becomes

2
K2.q2fo {1 - exp(-

Rxwoi7o/26)12

= c Rx O (2.1.12)
J} CO

For low Reynolds number flows, the wall boundary conditions are given at
71 = 0, that is

f = 0 (no mass transfer), f' = 0 (2.1.13a)

k=0, E=0 (2.1.13b)

In the zonal method where we use, for example the CS model near the wall
region 0 < y < yo, the wall boundary conditions for f and f at 77 = 0 are given
by Eq. (2.1.13a) and those at 77 = rlo by Eqs. (2.1.11) and (2.1.12).

In all cases, the "edge" boundary conditions at 77 = 77e are given by

77=7le, u=1.0, (2.1.14a)

xax + e + 2mk = 0,
z

x ae + ce2 f2
l2

+ (3m - 1)E = 0 (2.1.14b)

2.2 Solution Procedure

The solution procedure of the k-E model equations can be obtained with and
without wall functions. It can also be obtained with a zonal method. In this
case the boundary layer equations axe solved in two regions with each region
employing different turbulence models. In effect this approach may be regarded
as the use of the k-e model with wall functions.

In this book we use Keller's Box method to solve the boundary-layer equa-
tions. This is a second order two-point finite-difference method described in
detail in several references, see for example [1]. In this method the governing
equations are first expressed as a first order system by introducing new functions
to represent the derivatives of f, k and e with respect to rl. The first-order equa-
tions are approximated on an arbitrary net, Fig. 2.1, with "centered-difference"
derivatives and averages at the midpoints of the net rectangle difference equa-
tions. The resulting system of equations which is implicit and nonlinear is lin-
earized with Newton's method and solved by the block-elimination discussed in
Section 2.4 and also in [1].

With the introduction of new variables

f' = u (2.2.1a)

u' =V (2.2.1b)
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`n-1
Xn

Xn-1 Xn-112 X.

Fig. 2.1. Net rectangle for difference approximations

k' = $ (2.2.1c)

E' = q, (2.2.1d)

the k-e model equations given by Eqs. (2.1.3) to (2.1.5) can be reduced to a
system of seven first-order equations given by Eqs. (2.2.1) and by

(bl v)' + ml f v + m(1 - u2) =X Cu
au - v Of

J (2.2.2)

/
8x 8x )

(b2s)'+P-Q+F-2muk+mlfs= (uOx-sax J (2.2.3)

(b34)'+Pi-Qi+E+mlfq-(3m-1)ue=x(uax-qOf I (2.2.4)

As discussed above, the k-e model equations without wall functions use
"wall" boundary conditions specified at some distance 7710 outside the viscous
sublayers. In this case the boundary conditions on f' and f (or u and f) are
represented by Eqs. (2.1.9), that is

1l

1up = w0 In ( Rkwo'+1o) + cJ
L

(2.2.5a)

x dwol8fo

I
=+ f

l+
2(2 5a)ml o uni w dxx8x 0M

. .

and those for k and a by Eqs. (2.1.11) and (2.1.12), that is

1` (2.2.6)
eo

2

2

(em)CS = ie2rlo {1 - exp(- R,r woilo/26) } vo = cU RxLo (2.2.7)
0

although in the latter case, there are other choices. In either case, the friction
velocity, uT ( e) appearing in the it and f equations is unknown and must
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be determined as part of the solution. One approach is to assume uT, (say
from the initial profiles at the previous x-station), and solve the governing
equations subject to the "wall" and edge boundary conditions. From the solution
determine To at yo,

To =
ay )o

(2.2.8)

and compute u . from Eq. (1.2.8). If the calculated value of uT does not agree
with the estimated value within a specified tolerance parameter 61,

uT+1 - url < 61 (2.2.9)

then a new solution is obtained with the updated values of uT and To. This
procedure is repeated until convergence.

This iterative procedure can be replaced with a more efficient one by treating
uT as an unknown. Since uT is a function of x only, we can write

u,. = 0 (2.2.10)

thus increasing the number of first-order equations from seven to eight. Although
we now solve eight first-order equations rather than seven, this procedure allows
the solutions to converge faster, especially for flows with strong adverse pressure
gradient.

In the solution procedure described here the numerical method is formu-
lated for eight unknowns, not only for the k-c model equations with the zonal
approach but also for the k-e model equations with and without wall functions.
This choice does not increase the complexity of the solution procedure, but
paves the way to solve the k-a model equations or others in an inverse mode if
the solution procedure is to be extended to flows with separation (see Section
6.3).

In Keller's Box method, the x-wise derivatives are represented by central
differences. Experience with the Box method has shown that when profiles are
used to start the turbulent flow calculations, the solutions at the subsequent x-
locations oscillate. A common cure to this problem is to compute the first two
x-stations equally spaced and take an average of the solutions at the midpoint of
xo and xl, say x,,, and xl and x2, say xe. Then another average of the solutions
is taken at x.,,,, and xe defining a new solution at xl. When new calculations
begin at x2 with averaged profiles at x = xj, the solutions at x > X2 do not
exhibit oscillations.

While this cure is relatively easy to incorporate into a computer program
and in most cases provides stable solutions in adverse pressure gradient flows
sometimes the solutions may break down due to oscillations. On the other hand,
the author and his colleagues observed that if one uses backward difference
approximations for the x-derivatives in the boundary-layer equations, rather
than central differences as used in the Box method, the solutions do not oscillate
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and are more stable. For this reason, when the Box method is used for turbulent
flow calculations with initial profiles, we will represent the x-derivatives with
backward finite-difference approximations.

2.3 Solution of the Ic-e Equations with a Zonal Method

In this method, the boundary-layer is divided into two zones. The inner zone is
identified by y < yo, yo = (you, /v) - 100, where the continuity and momentum
equations, Eqs. (1.1.1) and (1.1.3), are solved subject to the wall boundary
conditions given by Eq. (1. 1.4a), with eddy viscosity e,,,, given by the inner region
of the CS model. In the outer zone, y > yo, the equations for continuity Eq.
(1.1.1), momentum Eq. (1.1.3), turbulence kinetic energy Eq. (1.2.3) and rate
of dissipation Eq. (1.2.4) are solved subject to the inner boundary conditions
given by Eqs. (1.2.11) and (1.2.14) and the edge boundary conditions given by
Eqs. (1.2.15), (1.2.16) and (1.2.17), with eddy viscosity E,n, computed from Eq.
(1.0.4).

2.3.1 Inner Region

The numerical solution of the k-e model equations with the zonal method re-
quires that in the inner region Eq. (2.1.3) is solved subject to the true wall
boundary conditions f = 0, u = 0. Since, however, the solution procedure is be-
ing formulated for the general case which includes the solution of the k-e model
equations without wall functions, it is necessary to specify a boundary condition
for u,.. This can be done as described below.

From the definition of uT (= ue 2 ), we can write

uT w= cf
(2.3.1a)

uc 2

or in transformed variables,
f,,

ww= 2 3 1b)

The boundary condition for w is

too = i4 (2.3.2)
Rz

Next the eight first-order equations can be written by letting u' = v, k' = 0,
s' = 0, e' = 0, w' = 0, q' = 0, f' = u and the momentum equation (2.2.2). For
j = 0, with the first three equations corresponding to boundary conditions, the
equations for the inner region are ordered as
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fo = 0 (2.3.3a)

ue = 0 (2.3.3b)

WO = 1/4 (2.3.3c)

U/ = v (2.3.3d)

k' = 0 (2.3.3e)

s' = 0 (2.3.3f)

e' = 0 (2.3.3g)

q' = 0 (2.3.3h)

With finite-difference approximations and linearization, they become

bfo = (r1)o = 0 (2.3.4a)

buo = (r2)o = 0 (2.3.4b)

bvo - 2 R;wobwo =(1'3)0 = vo (2.3.4c)

h?
by +bvj_ r- (2.3.4d

bkj - bkj_1 = (rs)j = 0 (2.3.4e)

68j - 63j-1 = (7-6)j = 0 (2.3.4f)

Ssj - bej_1 = (r7)j = 0 (2.3.4g)

bqj - bgj_1 = (r8)j = 0 (2.3.4h)

For 1 < j < j8i the order of the equations is the same as those above, except
that the first three equations are replaced by

w' = 0 (2.3.5a)

f'=u (2.3.5b)

momentum Eq. (2.2.2) (2.3.5c)

which, in linearized form can be written as

5wj - 8wj_1 = (r1)j = 0 (2.3.6a)

bfj - bfj-1 -
J2

(buj + buj_1) = (r2)j = fj-1 - fj + hjuj-1/2 (2.3.6b)

(s1)jbfj + (s2)jbfj_I + (83)j6uj + (84)jbuj_1
(2.3.6c)

+ (85)jbvj + (86)jbvj_l = (r3)j

The finite-difference procedure for Eq. (2.2.2) is identical to the procedure
used in the Box method for the momentum equation described in [1]. The only
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difference occurs in the solution of Eq. (2.2.2) where we use three-point or two-
point backward finite-difference formulas for the x-wise derivatives rather than
central differences as was done in [1]. For this purpose, for any variable V, the
derivative of is defined by

n

(
57x = Al Vix-2 + A2Vn-1 + A3Vn (2.3.7)

where for first-order

Al=0, A2=- 1 , A3= 1
xn - xn-1 xn - xn-1

and second-order
A =

1

(xn - xn-1)

(2.3.8)

(xn_2 - xn-1)(xn-2 - xn)

A2
( /

(xn - Xn-2)
(2.3.9)

xn_1 - xn-2)(xn-1 - xn)
_ 2xn - xn_1 - Xn-2

A3
(xn - xn-2)(xn - xn-1)

Representing the x-derivatives in Eq. (2.2.2) with either two-point or three-point
backward difference approximations at x = xn and using central differences in
the 77-direction, we can write Eq. (2.2.2) as

h; 1[(bv)a - (bv)j_1] +ml(fv)j 112+mn[1 - (u2)j_1,21

n 2)

Ij-1/2
n xn [(Vaf n +

f)n
x

L

a(u (v8
ax 2 ax ax ;_1

Linearizing we get

h;1(bjndvj - bj 1Svj_1)

n
+ 2(f?bv;+v?bf;+f? 1bv;_1+v? 16fj_1)

- mn(ujbuj + uj_lbuj_1)

n n

4 au (a buy
+ au

a (5n2
ax) 6u;_1

n / `j j-1

- 2 l X Jnbv;+v;a (axbff+(ax}n
j f j-1

+ v
;_1

6fj_1 + (r3)j? 1 f ()'ax

From Eq. (2.3.7), it follows that

(2.3.10)

(2.3.11)
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(2)1t
=2A.3uj,

j

aff (ax2--)i = A3,

2
n

a (ax) = 2A3uj-1

j-1

_ f n
= A3of
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(2.3.12)

The linearized expression can be written in the form given by Eq. (2.3.6c). The
coefficients (sl)j to (s6)j and (r3)2 are given by

(si) j = 2 (?7i,' + xnA3)v? (2.3.12a)

(82)3 = 2(mi +xTA3)vj 1 (2.3.12b)

(s3)j (Mn + 2 A3) uj- (2.3.12c)

(s4)j (mn +
2 A3/

u 1 (2.3.12d)

mn /n /a f\n
(s5)j = hj bb + 2f j +

x

2
I x ! (2.3.13e)

(s6)j=h?lb3 1+21 fj 1+ 2 (2.3.13f)

(r3)j = - [h, 1 [(bv)a - (bv) 1) + mi (fv)7 1/2 + M'11 - (u2)7 1/21

r 1n n \n n
+ i xn I a (u2>J tv f J+ i vof

JLax j_1/2 2 Ox j ex j-1
(2.3.14)

The linearized finite-difference equations and their boundary conditions, Eqs.
(2.3.4) and (2.3.6) are written in matrix-vector form as described in [11

Ab=r (2.3.15)

where

AO Co
B1 Al C1

So

b1

r'a

r1

A= b= r= (2.3.16)
Bj Aj C3

Bj-1 AJ-1 CJ-1
Bj Aj I I

bi

bjI I

''j

1'j
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The eight dimensional vectors 5j and r'j for each value of j are defined by

S fj
Suj

Svj

Skj
Ssj

Ssj

8qj
Swj

I rj =

(ri)j

(r2)j

(r3)j

(r4)j

(r5)j

(r6)j

(r7)j

(r8)j

The definitions of 8 x 8 matrices Aj, Bj and Cj in the inner region 0 < j < js
are

AO =

Ci

Aj =

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 -2/wo

0 -1 - Z 0 0 0 0 0

0 0 0 -1 0 0 0 0

0 0 0 0 -1 0 0 0

0 0 0 0 0 -1 0 0

0 0 0 0 0 0 -1 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 1- 2 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

1 -; 0 0 0 0 0 0

(si)j (s3)j (s5)j 0 0 0 0 0

0 -1 - 2 0 0 0 0 0

0 0 0 -1 0 0 0 0

0 0 0 0 -1 0 0 0

0 0 0 0 0 -1 0 0

0 0 0 0 0 0 -1 0

0<j<is -1

(2.3.17)

(2.3.18a)

(2.3.18b)

1 < j < js - 1 (2.3.18c)



2.3

Solution

of the

k-e

E
quations

w
ith

a Z
onal

M
ethod

27

B
j =

0 0 0 0 0 0 0 -1

-1

-IZ

/
0 0 0 0 0 0

($2)j

(S4)j

(S6)j

0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1<
j<

j.,

(2.3.18d)

2.3.2

Interface

B
etw

een

Inner

and

O
uter

R
egions

T
he

first-order

system

of equations

is now

ordered

as

u} = 0 (2.3.19a)

f' = u (2.3.19b)

m
om

entum

E
q.

(2.2.2)

(2.3.19c)

b.c.

E
q.

(2.2.7)

(2.3.19d)

b
.
c
.

E
q
.

(
2
.
2
.
6
)

(
2
.
3
.
1
9
e
)

U
/ = v (2.3.19f)

k
'
= s (

2
.
3
.
1
9
g
)

= q (2.3.19h)

T
he

resulting

A
j

and

C
j m

atrices

from

the

linearized

equations,

w
ith

B
j

given

by E
q.

(2.3.18d)

and

(si)j

to (s6)j

by E
q.

(2.3.13)

at j = jg are

0 0 0 0 0 0 0 1

1 -
2 0 0 0 0 0 0

(
S
1
)
j
s

(
s
3
)
j
,

(
S
5
)
j
=

0 0 0 0 0

0 0 D
1

D
2

0 D
3

0 0

A
j, = 0 0 D

4

D
5

0 D
6

0 0 (2.3.20a)

0 -1 ---2

0 0 0 0 0

0 0 0 -1 - 0 0 0

0 0 0 0 0 -1 -

&
-'

02

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

C
j, = 0 0 0 0 0 0 0 0 (2.3.20b)

0 1 -h; - 0 0 0 0 02

0 0 0 1-

± 0 0 02

0 0 0 0 0 1-

2 0
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Here the fourth and fifth rows of Aje follow from the boundary conditions, Eqs.
(2.2.6) and (2.2.7), at ?7 = rlo. After the application of Newton's method to these
equations, D1 to D6 are given by the following expressions.

Dl = Ejs F (Em)CS , D2 = -2 R. c,,kj, , D3 = (e )CS (2.3.21a)

D4 = 2R,,ck vjg1 D5 = kjg, D6 = -2Ejs (2.3.21b)

The associated (r4)j, and (r,5)j, axe

(r4)js = Rx cpka - (e')CSEjs (2.3.22a)

(r5)j. = 623. - R.c,.(kjsvjs)2 (2.3.22b)

2.3.3 Outer Region

The finite-difference approximations for the outer region defined for js + 1 <
j < J are written by using a similar procedure to that described for the inner
region equations. The first-order system of equations is ordered similar to those
given by Eqs. (2.3.19) except that Eqs. (2.3.19d) and (2.3.19e) are replaced by
Eqs. (2.2.3) and (2.2.4). The resulting matrices from the linearized equations,
with the Cj matrix remaining the same as that given by Eq. (2.3.20b) for
j8<j<J-1,are

Bj =

Aj =

0 0 0 0 0 0 0 -1
-1 -j 0 0 0 0 0 0

(S2)j (34)j (,'6)j (38)j 0 (S12)j 0 0

(a2)j (a4)j ((a6)j (a8)j (a10)j (aR12)j
R0

0

(fl2)j (04)j (,/36)j (08)j 0 (/312)j (N14)j 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1

1 - 0 0 0 0 0 0

(S1)j (S3)j (S5)j (S7)j 0 (Sll)j 0 0

(al)j (a3)j (a5)j (a7)j (a9)j (all)j R0 0

(01)j (03)j ($5)j (07)j 0 (,811)j (N13)j 0

0 -1 - 2 0 0 0 0 0

0 0 0 -1 - 2 0 0 0
h '+L

0 0 0 0 0 -1 - 0

js+1<j<J-1

(2.3.23b)
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/8kl"El = 2m" + x" 8
8k 8x J '

E2 = 1, E3 = -ce2f2
(k2)11,

a lE4=3m" - 1 + x"
8a (F'X J + ce2 f2

k-'knJ J

0 0 0 0 0 0 0 1

-z 0 0 0 0 0 0

(s1)J (s3)J (s5)J (s7)J 0 (sll)J 0 0

AJ _ (al)J (a3)J (a5)J (a7)J (as)J (0111)J 0 0 (2.3.23c)

(fl)J (163)J (f5)J (f7)J 0 (011)J (f13)J 0

0 1 0 0 0 0 0 0
0 0 0 E1 0 E2 0 0
0 0 0 E3 0 E4 0 0

Here (81)j to (s12)j, (al)j, to (a12)j and (/31)j to (914)j given in subsection
3.3.1 correspond to the coefficients of the linearized momentum (2.2.2), kinetic
energy of turbulence (2.2.3), and rate of dissipation (2.2.4) equations written in
the following forms, respectively,

(Sl)j8fj + (s2)j6fj-1 + (s3)jbuj + (S4)jbuj-1 + (S5)jbvj
+ (86)j6vj-1 + (s7)jbkj + (S8)jbkj-1 + (s11)j&j
+ (s12)j&Ej-1 = (r3)j (2.3.24)

(al)jbfj + (a2)j6fj-1 + (a3)jbuj + (a4)jbuj-1 + (a5)jbvj
+ (a6)j6vj-1 + (a7)jbkj + (as)jbkj_l + (a9)j6sj

+ (aio)jbsj-1 + (a11)j&j + (a12)jbej-l = (r4)j (2.3.25)

(f1)jbfj + (f2)jbfj-1 + (f3)j6uj + (f4)j6uj-1 + (a5)jbvj
+ (136)jbvj-1 + (,37)jbkj + (13s)jbkj-1 + (f11)jbcj

+ (f12)j6&5-1 + (f13)jbgj + ()314)j5gj-1 = (r5)j (2.3.26)

The last three rows of the Aj matrix correspond to the edge boundary
conditions and follow from the linearized forms of Eq. (2.1.14). They are given
by

where

29

(2.3.27)

8k 8x)J - A3,
8s x} A3 (2.3.28)

The coefficients (r7)J and (r8)J are given by

(r7)J = -
X. (ax)J

+ej+27n"kjI (2.3.29a)

(rs)J = - fx" (8x)J+ce,f2 (k; +(3m" - 1)ej] (2.3.29b)
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2.3.4 Block-Elimination Method

The linear system expressed in the form of Eq. (2.3.15) can be solved by the
block-elimination method discussed by Cebeci and Cousteix [1]. According to
this method, the solution procedure consists of two sweeps. In the first part of
the so-called forward sweep, we compute Tj, 4j from the recursion formulas
given by

40 = AO (2.3.30a)

1'j4j_1 =Bj j = 1,2,...,J (2.3.30b)

4j = Aj -1'jCj_1 j = 1, 2, ... , J (2.3.30c)

where the Ij matrix has the same structure as Bj. In the second part of the
forward sweep, we compute wj from the following relations

zvo = ro (2.3.31a)

ivj = r"j - rjwj_1 1 < j < J (2.3.31b)

In the so-called backward sweep, we compute Sj from the recursion formulas
given by

4jbj = wj (2.3.32a)

415 = wj - CjSj+1 j = J - 1, J - 2, ... , 0 (2.3.32b)

The block elimination method is a general one and can be used to solve any
system of first-order equations. The amount of algebra in solving the recursion
formulas given by Eqs. (2.3.30) to (2.3.32), however, depends on the order of the
matrices Aj, Bj, Cj. When it is small, the matrices 1'j, 4j and the vector wj can
be obtained by relatively simple expressions, as discussed in [1]. However, this
procedure, though very efficient, becomes increasingly tedious as the order of
matrices increases and requires the use of an algorithm that reduces the algebra
internally. A general algorithm, called the "matrix solver", discussed by Cebeci
and Cousteix [1] and in Section 3.4 can be used for this purpose.

In addition, since the zonal method requires that the linearized inner bound-
ary conditions resulting from Eqs. (2.2.6) and (2.2.7) be satisfied, as well as the
usual boundary conditions at the surface and the boundary-layer edge. Subsec-
tion 3.3.5 presents an algorithm utilizing the "matrix solver" and called KE-
SOLV for this purpose. It employs the block-elimination method and follows
the structure of the solution procedure used in the zonal method, as well as
the procedure used in the solution of the k-E model equations with and without
wall functions discussed in the following section.
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2.4 Solution of the k-e Model Equations
with and Without Wall Functions

The solution of the k-e model equations with and without wall functions is
similar to the solution of the k-E model equations with the zonal method. Their
solution in either case can be accomplished with minor changes to the solution
algorithm described in the previous section. In both cases changes are made
to the Ana matrix, Eq. (2.3.20a), by modifying or redefining the elements of
the first five rows which in this case correspond to the boundary conditions at
n = r!o or q = 0. In either case, for j = 0, after the five boundary conditions are
specified, the next three equations correspond to those given by Eqs. (2.3.19f)
to (2.3.19h). For j > 1, the ordering of the first-order equations is identical to
that used for the outer region, that is, the equations are ordered according to
those given by Eqs. (2.3.19) except that Eqs. (2.3.19d) and (2.3.19e) are replaced
by Eqs. (2.2.3) and (2.2.4), respectively. In addition of course, the coefficients
of the equations for the momentum, kinetic energy and rate of dissipation are
different.

2.4.1 Solution of the k-E Model Equations Without Wall Functions

The transformed k-e model equations without wall functions for high Reynolds
number flows are still given by Eqs. (2.2.3) and (2.2.4) provided we set

MV Q=E, F=01'=e 2,

E2
P1=ce,ficµv2k, E=0, fl=f2=1.0.

(2.4.1)

There are five "wall" boundary conditions; four are given by Eqs. (2.2.5), (2.2.6)
and (2.2.7) for 71 = 710. After linearization they can be expressed in the form

6up + a85wo = (rl )o

131bfo + 02buo + 1386wo = (r2)0

,'3bvo + y46ko +'y66e = (r3)0

036vo + 646ko + 9e6eo = (r4)o

where

as _ - - L ln(,/R__xworlo) + c]

n-1w

01 = a +m1,
xn
kn

+a 1- o A. - --u aQ =- r n0T

w0"`-1

.2 7

L 1 \ w oqo (wOD2

(2.4.2)

(2.4.3)

(2.4.4)

(2.4.5)

(2.4.6a)

(2.4.6b)

13 =c, ko, 14 =cW R.vo, 76 =- cA: (2.4.6c)
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83=-cr,EO, 94=2cf, Ryko, es= -cuvo, 77 damping)2
(2.4.6d)

1(rl)o = w0 - ln( Ry w0i70) + c - u0 (2.4.7a)

n-1
(r2)o = u0770 m.1 + a 1 -win - a(fo - fo -1) - m1fo (2.4.7b)

0

r3 = cu Eo - c,, Vf kovo . (2.4.7c)

T4 = ctL Rx ko (2.4.7d)

If 710 is sufficiently away from the wall, i.e. yo > 60, then the damping term,
such as the one used in the CS model, is equal to 1.0.

The fifth "wall" boundary condition which connects ro at y = yo and r,,,
at y = 0, is obtained from Eq. (1.2.8c). With Thompson's and log law velocity
profiles, it can be written as

r,r0=rw+a*

yo
d

+yo LP
dx dx

Here a* is given by

where

(2.4.8)

a* = 0.5 [c1(lnY)2+c2lnY+ c3 + c+
I

(2.4.9)
YO

cl = 5.9488 , c2 = 13.4682 , c3 = 13.5718 , c4 = -785.20
+ = u 71

X,00 (2.4.10)
y a r 0 , lV

VTI;

In terms of transformed variables, Eq. (2.4.8), after linearization, can be ex-
pressed in the form

6351)0 + 646ko + 666E0 + 686wo = (r5)0

where

2 2

63 = c Rx ke
, 64 = 2cp Rx kovo, 66 = c Rx L2

zo
CO CO E2

(2.4.11)

(2.4.12a)

68 = -2wo{ Rx+a*rlo(a+2mi)}-

- (8a*) 710{a[(w0-)2 - (wo-1)2] + 2m1(w )2} (2.4.12b)
aw o

and



2.4 Solution of the k-e Model Equations with and Without Wall Functions 33

(r5)o = Rxw2+a`710{a[(wo)2-(w0-1)21+2mi(w0)2}

2- nomi - cw Rx akvo
(2.4.13)

0

With the five boundary conditions defined, the Aj9 matrix, which is essen-
tially the A0 matrix in this case, becomes

0 1 0 0 0 0 0 as

01 /32 0 0 0 0 0 638

AO =

0 0 73 74 0 Its 0 0
0 0 03 04 0 06 0 0

o o 63 64 0 66 0 68

o -1 -L 0 0 0 0 0

o o 0 -1-4 0 0 0

0 0 0 0 0 -1 -. 0

(2.4.14)

2.4.2 Solution of the k-e Model Equations with Wall Functions

The solution of the k-e model equations with wall functions is similar to the
procedure described for the case without wall functions. Again the only changes
occur in the first five rows of the Ajs matrix, Eq. (2.3.20a). Of the five boundary
conditions at the wall, the first three are written in the order given by Eqs.
(2.3.3a,b,c) and the fourth and fifth are given by

ko = 0 (2.4.15a)

CO = 0 (2.4.15b)

or in linearized form
Sko = (r4)0 = 0 (2.4.16a)
6co = (r5)o = 0 (2.4.16b)

The structure of the other matrices remains the same but, of course, the coef-
ficients of the linearized momentum, kinetic energy and dissipation equations,
Eqs. (2.3.24) to (2.3.26), respectively are different than those for k-e model
equations without wall functions. These coefficients naturally vary depending
on the wall functions used.

The A0 matrix for the k-E model equations with wall functions, with the last
three rows identical to those in Eq. (2.4.14), is

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 -2v/Rx wo
0 0 0 1 0 0 0 0

A0 = (2.4.17)
0 0 0 0 0 1 0 0

0 -1-z 0 0 0 0 0

0 0 0 -1- . 0 0 0

0 0 0 0 0 -1 _h 0
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Computer Program
for CS and k Models

3.0 Introduction

In this chapter we present and discuss a code for two-dimensional incompressible
turbulent flows. The code, given in the accompanying CD-ROM, includes a
computer program employing the CS model discussed in Section 1.1 and another
program employing the k-e model discussed in Section 1.2. It is prepared in five
parts. In Part 1, discussed in Section 3.1, the components of the computer
program common to both models are described. Part 2, discussed in Section
3.2, describes the components of the CS model, and Parts 3 and 4 describe
the k-e model and its solution algorithm in Sections 3.3 and 3.4, respectively.
The computer program for the k-c model includes the zonal method with a
combination of the CS model for the inner region and the k-e model for the
outer region as discussed in Section 2.3. It also includes the solution of the k-e
model equations with and without wall functions. Finally Part 5 includes a brief
description of the basic tools such as integration, smoothing and differentiation,
used in the computer program.

3.1 Part 1 - Components of the Computer Program
Common to Both Models

Part 1 includes a MAIN routine which contains the logic of the computations
and five subroutines: INPUT, IVPT, GROWTH, GRID and OUTPUT. The
following subsections present a brief description of each routine.

3.1.1 MAIN

Here we first read in input data (subroutine INPUT) and generate the initial
turbulent velocity profile (subroutine IVPT) and the eddy viscosity distribution
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for the CS model (subroutine EDDY), k-profile (subroutine KEINITK), e-profile
(subroutine KEINITK). Since linearized equations are being solved, we use an
iteration procedure in which the solutions of the equations are obtained for
successive estimates of velocity, kinetic energy, dissipation profiles with a sub-
sequent need to check the convergence of the solutions. A convergence criterion
based on Svo is used and the iterations are stopped when

Sva
< 0.02

V0
tt(

During this iteration procedure, we introduce an under-relaxation procedure
for the iterations as described in MAIN. This is useful, especially with transport
equation turbulence models.

When the solutions converge, we also check to see whether the boundary-
layer thickness, 77e, used in the calculations for that x-station is large enough so
that the asymptotic behavior of the solutions is reached. If this is not the case,
we call subroutine GROWTH.

After the convergence of the solutions, the OUTPUT subroutine is called
and the profiles which represent the variables such as fj, uj, v?, k?, sj etc. are
shifted.

3.1.2 Subroutine INPUT

In this subroutine we read in input data and set up the flow calculations ac-
cording to the following turbulence models listed below.

CS model
Huang-Lin k-e model
Chien k-F model
zonal method
high Re # k-E model

In some problems, like airfoil flows, it is convenient to read in the dimension-
less airfoil coordinates x/c, y/c rather than the surface distance required in
the boundary-layer calculations. In all calculations, the external velocity ue(x)
either dimensional or dimensionless, ue/uoo, and freestream or reference veloc-
ity, uoo(uref), kinematic viscosity v (CNU), reference length c (chord), variable
?7-grid parameter K (VGP) discussed in subroutine GRID must be specified to-
gether with Ro (RTHA) and e f (CFA) needed to generate the initial turbulent
velocity profile with subroutine IVPT.

The input also requires the specification of the first grid point needed in the
r7-grid generated by subroutine GRID. This is done by inputting yo (YPLUSW).
defined by

Y tLr
V
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where v, (UTAU) is the friction velocity, ue c f/2 and yo is the variable grid
parameter h1, discussed in subroutine GRID. Its typical values for CS, zonal
and high Reynolds number k-e models are around 0.5 to 1.0. For low Reynolds
number k -E model, values of yo around 0.10 to 0.50 are typical. In the present
program, K is set equal to 1.12, yo equal to 0.5 for low Reynolds number k-e
model and 1.0 for zonal and CS models.

Since equations use transformed variables where y is given by

y = vx/ue?7

and since the location of x where the turbulent flow calculations are started,
x1, can be an arbitrary distance, in this subroutine we calculate xo in order to
control yo better.

The calculation of the pressure gradient parameter m(x) (P2) in the trans-
formed momentum equation is achieved from the given external velocity ue(x)
distribution and from the definition of m. The derivative of due/dx is obtained
by using subroutine DIFF3 given in Section 3.5.

3.1.3 Subroutine IVPT

This subroutine is used to generate the initial turbulent velocity profile for
both models by specifying a Reynolds number based on momentum thickness,
Rp = ue0/v and local skin-friction coefficient e f [= r,,,/jOue]. It makes use of
Eq. (1.2.9) for y+ < 50; and Eq. (1.2.10) for y+ > 50.

In terms of the Falkner-Skan variables, Eq. (1.2.9) can be written as

elr7 77 <
el

4 50
el + c21n(el77) + c3[ln(e1q)]2 + ca[ln(e117)J3 - < <

e1 el

where cl, c2, c3 and C4 are the coefficients of Eq. (1.2.9) and

e1 = R y2c f

'
Rx = uex = RLi RL =

uOOL
(3.1.2)V

v

Similarly, for 712! 50/el, we can use the expression given by Coles with Gran-
ville's correction for the whole profile (1), now with 7 = y/S,

u+ = k In y+ + c+ k [17(1 - cos 7r r7) + (772 - r73)J (3.1.3a)

Here 17 is a profile parameter which is a constant equal to 0.55 for flows with
zero pressure gradient provided that the momentum thickness Reynolds number
Rp is greater than 5000. In terms of transformed variables, Eq. (3.1.3a) can be
written as
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2 3

_ ln(e171) + c + II
(1

- cos 7r ) +
()

- ` 1) (3.1.3b)
e f !r !, 77e 17e rte

where

It is clear that a complete velocity profile for a turbulent boundary-layer can
be obtained from Eqs. (3.1.1) and (3.1.3) provided that the boundary-layer
thickness 6 and the profile parameter 17 are known. Since they are not known
at first, they must be calculated in a manner they are compatible with Re
and c f.

A convenient procedure is to assume 6" (v = 0) and, calculate 17 from Eq.
(3.1.3a) evaluated at the boundary-layer edge, 77 = r/e. The initial estimate of 6
is obtained from the power-law relation,

B_ n
6 (1+n)(2+n)

which for n = 7

Here 0 is calculated from the specified value of Re,

9= vRe
71e

The next values of 6" (v = 1, 2, ... , n) are obtained from

{d}
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7le=V"f 6
6 (3.1.4)

0.10

(3.1.5)

(3.1.6)

where, with 01 ( Ra/R6) given by [1]

\ \2
Ra = e (12 +

77 - ( _) (1.9123016 + 3.056017 + 1.5172) (3.1.7)

and 0 denoting the momentum thickness calculated from Eq. (3.1.5),

0 =6-601 (3.1.8a)

dO
_

_01 - 6 d 1- -
(3.1.8b)

d6 dI7 d6
and with d771

d6 26
(3.1.8c)

obtained by differentiating

/2 ue 1
t in l hue

7aT
\
I+

2171

1

+ c
Cf uT

=
h: \ V ue/ (3.1.9)

with respect to J.
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3.1.4 Subroutine GROWTH

For most laminar-boundary-layer flows, the transformed boundary-layer thick-
ness qe(x) is almost constant. A value of 77e = 8 is sufficient. However, for turbu-
lent boundary-layers, 77e(x) generally increases with increasing x. An estimate
of 77e(x) is determined by the following procedure.

We always require that 77e(xn) > r7e(xn-1), and in fact the calculations start
with 77e(xe) = 77e(x1). When the computations on x = xn (for any n > 1) have
been completed, we test to see if [v fl < e at 77e(xn) where, say s = 5 x 10-4.
This test is done in MAIN. If this test is satisfied, we set 77e(xn}1) = 77e(xn).
Otherwise, we call GROWTH and set Jnew = Jold + t, where t is a number of
points, say t = 1. In this case we also specify values of (fjn, uj , vj, bj , k,,
e,' etc.) for the new 17j points. We take the values of uJ = 1, v = 0, f _
(77j-77e)uj+f,, k,' J=k", Ej'J J J=e7b, sn=0, qjn=0.

3.1.5 Subroutine GRID

The solution procedure for both models requires the generation of a grid normal
to the surface, 77-grid, and along the surface, x-grid. The latter requirement is
satisfied by specifying locations with intervals which can be uniform or nonuni-
form. Its distribution depends on the variation of ue with x so that the pressure
gradient parameter m(x) in the momentum equation can be calculated accu-
rately. To ensure this requirement, it is necessary to take small Ox-steps
where there are rapid variations in ue(x) and where flow approaches separation.

For laminar flows, it is often sufficient to use a uniform grid in the 77-direction.
A choice of transformed boundary-layer thickness 77e equal to 8 often ensures
that the dimensionless slope of the velocity profile at the edge, f"(77e), is suf-
ficiently small (< 10-3) and that approximately 41 j-points satisfies numerical
accuracy requirements. For turbulent flows, however, a uniform grid is not sat-
isfactory because the boundary-layer thickness 77. and dimensionless wall shear
parameter f,,,, are much larger in turbulent flows than laminar flows. Since short
steps in i must be taken to maintain computational accuracy when fu, is large,
the steps near the wall in a turbulent boundary-layer must be shorter than the
corresponding steps in a laminar boundary-layer under similar conditions.

A convenient and useful a7-grid, discussed in [1[ and used in this subroutine
is a geometric progression having the property that the ratio of lengths of any
two adjacent intervals is a constant; that is, hj = Khj_1. The distance to the
j-th line is given by the formula

Ki - 1
7j =h1jK-1' ?=1,2,...,J K>1 (3.1.10)

There are two parameters: h1, the length of the first. 077-step, and K, the ratio
of two successive steps. The total number of points, J, can be calculated by the
formula (see subroutine RIYGRID):
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r11h, x 10"

Fig. 3.1. Variation of K with hl for different ale-values

ln[1 + (K - 1)(77e/hj)] + 1 (3.1.11)
InK

In most problems, calculations are performed by selecting hl and K and
calculating the transformed boundary-layer thickness 71e. An idea about the
number of points taken across the boundary-layer with the variable n-grid that
uses those parameters for different i7,-values can be obtained from Fig. 3.1. For
example, for h1 = 0.01, K = 1.10 and 77e = 100, the ratio of 77,/hl is 104, and
the number of points across the boundary-layer is approximately 70. Here in this
program, we recommend K to be 1.12 (subroutine INPUT) which is sufficient
for most turbulent flow calculations. Of course, if desired, this number can be
changed with guidance from Fig. 3.1.

3.1.6 Subroutine OUTPUT

This subroutine prints out the desired profiles of the momentum, kinetic energy
and rate of dissipation equations, such as fj, uj, vj. kj, ej as a function of q. It
also computes the boundary-layer parameters, c f, S', 0, Rb and R0.

3.2 Part 2 - CS Model

This part of the computer program which uses the CS model has five subroutines
in addition to those described in Part 1. They include subroutines COEFTR,
SOLV3, EDDY, GAMCAL, and CALFA and are briefly described in the follow-
ing subsections.
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3.2.1 Subroutine COEFTR

The solution of the momentum equation, Eq. (2.1.16), is much simpler than the
solution of the k-e model equations. Since this equation is third order, we have
three first-order equations, the first two given by the first two equations in Eq.
(2.2.1) and the third by Eq. (2.2.2). After writing the difference equations for
Eqs. (2.2.1a,b) and linearizing them, we obtain

bfj - 6fj-1 -
hj
2

(buj +buj_1) = (rl)j

buj - 6uj_I - 2- (6vj + bvj_1) = (r3)j_1

where

(3.2.1a)

(3.2.1b)

(r1)j = fj-i - f Itju2 1/2 (3.2.2a)

(r3)j-1 = u()_1 - u(`) + hjvjvll1i2 (3.2.2b)

The third equation is given by

(SI)jbvj + (82)jbVj_1 + ($3)j6fj + (34)jbfj-1 + (s5)jbuj + (36)j6uj-1 = (r2)j
(3.2.2c)

with (r2)j given by Eq. (2.3.14).
The linearized boundary conditions correspond to Eqs. (2.3.4a,b) at 77 = 0

and to buj = 0 at Ii = rlj. This system of equations, as described in subsection
2.3.1, is again written in matrix-vector form given by Eq. (2.3.15) with Aj, Bj
and Cj matrices given by

1 0 0 1 -hj /2 0

AO = 0 1 0 Aj (s3)j (35) j (31)j 1<j<J-1
0 -1 -hi/2 0 -1 -hj+1/2

(3.2.3a)

1 -hi/2 0 -1 -hh/2 0
Aj (s 3)J (so)j ( Si)J Bj = (S4) j (s6)j (32)j 1 < j < J

0 1 0 0 0 0

(3.2.3b)
0 0 0

Ci =- 0 0 0 0< j<J-1 (3.2.3c)
0 1 -hj+I/ 2

and 6j and r"j by

bh l (ri)j
bj = buj r'j = 0 :5j < J (3.2.4)(r2)j

bvj (r2)j
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The solution of the Eq. (2.3.15) is again obtained with the block elimination
method described in subsection 2.3.4.

This subroutine contains the coefficients of the linearized momentum equa-
tion given by Eqs. (3.2.2c), (3.2.1) and (2.3.14). Since the calculations are for
turbulent flow only, these coefficients for the first two computed x-stations are
slightly different due to the use of two-point backward difference formulas (see
subsection 2.3.1) for the streamwise derivatives in the momentum equation. This
is needed to avoid oscillations caused by the specified initial velocity profiles.
At the third x-station, the calculations revert back to the central differences for
the streamwise derivatives described in [1]. In this case the coefficients (s1)j to
(s6) j and (r2) j are given by

(51)j = h310' (3.2.5i ) + 2 fjvl + 2 fjLi/2 a)

(52)j = -tai lbj-1 + 2 fj_i + 2 f3(-)1/2 (3.2.5b)

(53)5 =
C,

n

vjv,1/22 vjvl + 2 (3.2.5 c)

(5 ) = 2(3 5vjUl +
Vjv1

d)3 3
..

1
1/22 2

(85)3 = -a2ujUl (3.2.5 e)

(56)j = -a2uj_1 (3.2.5 f)

-1(r2)j = Rj-1/2

where

h1(bjuy(-) -bj2llvj l1)+ct1(fv)3_1/2

- a2(u2)jv) - an(vn-1 f - fn- I 2vjv,1/2)1/2

j-1/2 7 _1/2 j ll
(3.2.6)

n-1 n-i [(fv)n-i
(U

2)n-1 ] - mnRj_1/2 =-Lj_1/2 + an j-1/2 - u j-1/2 (3.2.7a)

Lj-1 = f hs 1(bjvj - bj-lvj-1) + mi(fv)j-1/2 + m(1 -
(u2)j-1/2]}n-1

1/2
(3.2.7b)

a1=m1+a, a2=m+a
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3.2.2 Subroutine SOLV3

This subroutine is used to solve the linear system given by Eq. (2.3.15) with
the block elimination method discussed in subsection 2.3.4. To describe the
procedure for obtaining the recursion formulas used in this subroutine we first
consider Eq. (2.3.30). Noting that the rj matrix has the same structure as Bj
and denoting the elements of yj, by yik (i, k = 1, 2, 3), we can write rj as

rj=
('Yll)j ('Y12)j ('Y13)j
(721)j (-Y22)j ('123)j

0 0 0

(3.2.8a)

Similarly, if the elements of Aj are denoted by aik. we can write 4j as [note
that the third row of 4j follows from the third row of Aj according to Eq.
(2.3.30c)]

4j
(all)j (a12)j (a13)j
(a21)j (a22)3 (a23)3

0 -1 -hj+1/2
0<j < J-1 (3.2.8b)

and for j = J, the first two rows are the same as the first two rows in Eq.
(2.3.30b), but the elements of the third row, which correspond to the boundary
conditions at j = J, are (0, 1, 0).

For j = 0, do = AO; therefore the values of (aik)o are

(a11)0 = 1 (a12)o = 0 (a13)o = 0

(a21)o = 0 (a22)o = 1 (a23)o = 0

and the values of ('Yik)l are

(1711)1 = -1 ('Y12)1 = -
1

2h1
11

(713)1 = 0

(721)1 = (84)1 ('723)1 = -2 [(S)ul ('722)1 = (S6)1 + (-Y23)1hl

(3.2.9a)

(3.2.9b)

The elements of the Aj matrices are calculated from Eq. (2.3.30a). Using the
definitions of Aj, rj and Cj_1, we find from Eq. (2.3.30c) that for j = 1, 2, ... , J,

(all)j = 1 (a12)j = - 2' - (-Y13)j (a13)j = 21 (-Y13)j

(0!21)j = (83)j (a22)j = (S5)j - ('Y23)j (a23)j = (S1)j +
2j

('Y23)j

(3.2.10a)
To find the elements of the rj matrices, we use Eq. (2.3.30b). With 4j

defined by Eq. (3.2.8b) and Bj by Eq. (3.2.3b), it follows that for 1 < j < J,
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(yll)j = 1 (a23)j-1 + j [(2) (a21)j-1 - (a22)j-1]
J

/zlo

('Y12)j =
- 2'

2j

h +
(yli)j {(c12)j_12 - (a13)j-1J

J
/zo

(y13)j = I(y11)j(a13)j-1 + (-Y12)(a23)j-11/j2

(y21)j = {(S2)j(a21)j-1 - (S4)j(a23)j-1

+ 2, I(S4)j(a22)j-1 - (S6)j(a21)j-ll} /do

(y22)j = 1 (S6)j ZJ - (s2)j + (y21)j 1(a13)j-1 - (a12)j-1 2? J } /dl (3.2.10b)

('Y23)j = (y21)j(0112)j-1 + (y22)j(a22)j-1 - (86)j

do = (a13)j-1(a21)j-1 - (a23)j-1(a11)j-1

- 2? [(a12)j-1(a21)3-1 - (a22)j-1(a11)j-1l

41 = (a22)j-1 2- - (a23)j-1

To summarize the calculation of Pj and aj matrices, we first calculate
aak from Eq. (3.2.9a) for j = 0, Nk from Eq. (3.2.9b) for j = 1, aik from Eq.
(3.2.10a) for j = 1, then yik from Eq. (3.2.10b) for j = 2, a;k from Eq. (3.2.10a)
for j = 2, then yjk from Eq. (3.2.10b) for j = 3, etc.

In the second part of the forward sweep we compute wj from the relations
given by Eq. (2.3.31). If we denote the components of the vector wj by

(wl)j
'15j = (w2)3 0:5j < J (3.2.11)

(w3)j

Then it follows from Eq. (2.3.31a) that for j = 0,

(wl)O = (rl)o (w2)0 = (r2)0 (w3)0 = (r3)o (3.2.12a)

and from Eq. (2.3.31b) for 1 < j < J,

(wl)j = (rl)j - (711)j(wl)j-1 - (y12)j(w2)j-1 - (y13)j(w3)j-1

(w2)j = (r2)j - (' 21)j(w1)j-1 - (y22)j(w2)j-1 - (y23)j(w3)j-1 (3.2.12b)

(w3)j = (r3)j

In the backward sweep, Ej is computed from the formulas given by Eq. (2.3.32).
With the definitions of Sj, dj and i9j, it follows from Eq. (2.3.32a) that

8uj = (w3)J (3.2.13a)
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e2(all)J - el(a21)J
b71J = (3 2 13b)(a23)J(a11)J

- (a13)J(a21)J
. .

bfJ = el
- (al3)JbyJ

(3.2.13c)
(all)J

where
el = (wl)J - (a12)JbuJ

e2 = (w2)J - (a22)J6uJ

The components of b , for j = J - 1, J - 2, ... , 0, follow from Eq. (2.3.32b)

bv = (al l)j [(w2)j + e3(a22)j] - (a21)j (V11 )j - e3(a21)j (a12) j
A2

buj=-hj bvj-e3

b fj - (w1)j - (a12)jbuj - (a13)j6vj
(a11)j

where

e3 = (w3)j - buj+1 + ttj±1 bvj+i
2h

A2 = (a21)j(a12)j 1 - (a21)3(a13)j
2h

(3.2.14a)

(3.2.14b)

(3.2.14c)

(3.2.14d)

- 11(0122)1(all)j + (a23)j(all)j

To summarize, one iteration of Newton's method is carried out as follows.
The vectors Tj defined in Eq. (2.3.15) are computed from Eqs. (2.3.14) and
(3.2.2) by using the latest iterate. The matrix elements of Aj, Bj and Cj de-
fined in Eq. (3.2.3) are next determined by Eq. (3.2.5a) to (3.2.5f). Using the
relations in Eqs. (2.3.30) and (2.3.31), the matrices I'j and dj and vectors
wj are calculated. The matrix elements for Tj defined in Eq. (2.3.30b) are de-
termined from Eqs. (3.2.9b) and (3.2.10b). The components of the vector wi
defined in Eq. (3.2.11) are determined from Eq. (3.2.12). In the backward sweep,
the components of Sj are computed from Eqs. (3.2.13) and (3.2.14).

3.2.3 Subroutines EDDY, GAMCAL, CALFA

These subroutines use the CS algebraic eddy viscosity formulation discussed in
Section 1.1. In terms of transformed variables, (cm +)i and (em+)o are given by

(£,;,)% = 0.16772 Rxv {1 - exp(-RxI4vjw 2/26/cn.)} ytr (3.2.15a)

(E.m)o = a R.(77J - fj) ttry (3.2.15b)

where
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_ m
1/4 3/4

(3.2.16)

Rx v,.,,

Subroutine EDDY contains the expressions for the inner and outer regions.
The intermittency expression used in the outer eddy viscosity formula, Eq.
(1.1.8) is calculated in subroutine GAMCAL and the variable a given by Eq.
(1.1.9) in subroutine CALFA.

3.3 Part 3 - k-e Model

The structure of the k-e model, which includes the zonal method and the model
for low and high Reynolds number flows, is similar to the CS model described
in the previous section. It consists of the subroutines described below.

3.3.1 Subroutines KECOEF, KEPARM, KEDEF and KEDAMP

Again we need a subroutine for the coefficients of the linearized equations for
momentum, turbulent kinetic energy and rate of dissipation. We also need to
generate initial profiles for the kinetic energy and rate of dissipation equations
for both low and high Reynolds number flows. We do not need to generate the
initial turbulent velocity profile for the momentum equation since it is already
generated by subroutine IVPT discussed in Part 1. Then we need an algorithm,
like SOLV3, to solve the linear system of equations for the zonal method and
k-e model with and without wall functions for low and high Reynolds number
flows.

To simplify the coding and discussion and the application of this computer
program to other turbulence models, we use three additional subroutines to
define the coefficients of the linearized equations for momentum, kinetic energy
and rate of dissipation given in subroutine KECOEF. The first of these three
subroutines is subroutine KEPARM, which calculates the parameters b1, b2, b3
and production and dissipation terms and their linearized terms such as ( )7",

n 71 ( n n
( ) , (a )j , (a _&T -87v), , ( ) ;etc. in the equations for kinetic energy and rate

of dissipation.
The second of these three subroutines is subroutine KEDEF, which cal-

culates D, E, F terms, (see Section 1.2), and their linearized terms such as
(6)f , (W) , etc. in the k-E model associated with low Reynolds number

effects, which in the present program correspond to the models of Huang-Lin
and Chien discussed in Section 1.2.

The third of these subroutines is subroutine KEDAMP, which calculates
near-wall damping terms f1, f2, ff, al., ce and their linearized terms which are
for low Reynolds numbers and are model dependent.
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The linearized coefficients of the momentum equation in subroutine
KECOEF use both two and three point backward finite-difference approxima-
tions for the streamwise derivatives. For j < js, the coefficients (s1)j to ($6)j
are given by Eq. (3.2.5) for the CS model. At j = js

(Em)CS = (em)k-e

and (s7)j to (512)j are given by the following equations,

(s7)j = hj vj 8k
_1

01 j
-hj-'vj-l f )j_l

1 (8b)AS-

/8b\
-h.7_1vj_1

J8s j_1

h-
1v- )j

8E j

-h1vj-1 ab
8E j_1

(3.3.1a)

(3.3.1b)

(3.3.1c)

(3.3.1d)

(3.3.1e)

(3.3.1f)

for the k-E model.
This subroutine also presents the coefficients of the kinetic energy equation,

(al)j to (a12)j and (r4)j in Eq. (2.3.25) and the coefficients of the rate of
dissipation equation, (31)j to (,614)j and (rr5)j in Eq. (2.3.26).

To discuss the procedure for obtaining the coefficients of the kinetic energy
and rate of dissipation equations, consider Eq. (2.2.3). With x-wise derivatives
represented either by two- or three-point backward differences, the finite differ-
ence approximations to Eq. (2.2.3) are

hj 1[(b2s)j - (b2s) 11 + mi (,f 2mn(uk)j-1/2 + !j 1/2

f (Ok)n (8fln 1 (3.3.2)
-Qj-1/2 + F? 1/2 = In `u9-1/2 `O2 j-1/2

- S _1/2
j1/2J

Linearizing, we get

n 1n
h?1 [(b2)8j+n ()okj +s (X21 6cj-(b2)?_l6sj_1

j j
8b21

1

- s _,
(Oba)n

6kj_, - sj-1 (-_
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vt \n / n
+2 (ak) bkj+(aP)bej+I OVJ bv

}

n

+ (8p)a-1 bkj_i + ME ) j-i 6sj-1 +
(81n

-1
bvj-1

+ 2 (fj,6sj+sjbfj+fJ_16sj-1+sj-l6fj-1)
-m'[uubkj +kjbuj +ujI-li6kj_1+k? l6uj_1]

l- 1 f(-)j bkj + (a,- -I jkj + (N)j_16kj-l
+

(19E
)j-16E2-i]

+2 [(8k)j6kj +(8e)j66j +(8k)j-lbkj-i+\8s /j
xn 8k{ (buj+buj-1) (8x)j-1/2+ [8k (8x )j bkj

8 (ak)n 1

+ 8k 8x
1

Skj-1
(Of)"

- (bsj + Ssj_1) ax s-1/2

r
f

- 8j_1/2 [af
(8x)n6fj

+ 8 (2f)' 8x6fj-1f j-1
The coefficients of Eq. (2.3.25) can be written as

n 7a

(a1)j = 21 sj +

n2

S
1/2

(
8ff ax j

I (r4) (3.3.3)j

(3.3.4a)

mi xn

n

(af )n
(a ) = s + S

(3 3 4b)
j
-1z j 2 j-1/28 8x2 f -1

. .

= -mnk -
2n

((as)
x

)n
3.4c)(3j

j-1/2
a

.

, - xn k)
= -mnk(a ) (3 3 4d)j 1

4 j
j-1/22 ax

. .

1 n
(a ) = ( (3 3 4e)s j

2

. .

n

(as)3 = 2 (3.3.4f)

n IP) muj(017)j = hj isi (8k
a

) + 2 (c)3 -
1 xn n 8 8k n

+ 2
(OF)n
akj - 2 j-1/28k ().

1 8Q
2 8k

(3.3.4g)
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1

(8b2)n
z (8P) n n(as).i = -h;sj_1 ak i-1 + 2 8k _1

- m uj

1 (8Q )n 1 OF I n xn 8 (0k )n
2 (8k )j-1 + 2 7kj-1 2 uj-1/28k 8x).i_1

m" xn 8 n

(a9)i = hj 1(b2)3 + 21 f.Y + T (af )9-1/2

(3.3.4h)

(3.3.4i)

mn
(alo)3 _ -h, 1(b2)j-1 + 21 fi-1 +

xn
2

(88x
)n

(3.3.4])
9-1/2

n n Q n
(8s) 7 +2

[(,)
-(8E) +(8E) (3.3.4k)

7

(12)J
(0b2)flI n f[ (8P

8Q 8F n l

9-1 + 2 ` 8E) j-1 - 8E) j-1 + 8E) j-1
(3.3.41)

(r4).7 = -[(b2s)7 -
[P 1/2 - Q1/2 + Fj 1/2 - 2mn(uk)3-1/2

+ ,in (3.3.5a)
8k n 8f n

+xn 1Uj_ 1/2 (FX).?-1/2 - Si-112 ()j_1/2]

Remembering the definitions of the diffusion, production, dissipation, convec-
tion and F terms, Eq. (2.9.4a) can also be written as

(r4)j = -[diffusion + production - dissipation + F - convection] (3.3.5b)

The parameter P, Q and F are model-dependent. As a result, the derivatives
with respect to k, E and v will be different for each model. The derivations of

Ok and i with respect to k and f are straightforward.
In term of transformed variables the parameters P, Q and F in Huang and

Lin's model, for example, are (here a is e)

z
P=c,f,,Rxk v2

E

2 216Q=e+2 k, D 2
r

F = 12Q (ss'
-

ll'
2 T

(3.3.6a)

(3.3.6b)

(3.3.6c)

We now consider the rate of dissipation equation given by Eq. (2.2.4). Fol-
lowing a procedure similar to the one used for the kinetic energy equation, the
finite-difference approximation for Eq. (2.2.4) is



50 3. Computer Program for CS and k-e Models

hj l[(b3q)j - (b3q)j 1] + (Pl)7_1/2 - (E) 1/2

+ m1(fq)7 1/2 - (3mn - 1)(ue)7-1/2
(3.3.7)

_ ax u
[--j 1/2(axj-1/2q1/2 (O"f

x)j-1/2
After linearization, the resulting expression can be expressed in the form given
by Eq. (2.3.26),

ml n
xn

n
f

(L)n
2 qj + 2qj-1/2 ax

mi n xn n
{p2)j = 2 qj-1 + 2 q-1/2aff

(L)n
axj-1

n n

(/33)j = -- (ax I - 1(3m - 1)e
2 // j-1/2 2

xn asl n-- (-/ -
2

(3m - 1)ej 12 ax j_1/2

1 (as)j=(8Pl

)n
2av j

(a7)j = h.ilqjn

2

(pp,)n
('66)j _ 1

av j- 1/2

(ak)j+(aklj 2

(OQ,)n

a j
ab3 n 1 (,y,)n 1 (2Q,)n

(68)j = -hilqj
1 (ak )j-1 + 2 ak j_ 2 ak j-1

In I DE'(011)2=h?lqjn(*) 2("' )j+()
- (3mn - 1)un - 2 u7_1/2C8 (ax/

{Q12)j = -h? lq7 1
(*)nI 2

)j-1
+ 1

n n
09- (3mn - 1)u 1 - 2 u7-1128- R

/j

hj
1

(b3)j +
ml

fn + -X

(LaXf)

n

2 2 j_1/2

R n
((314)j = -h11(b3)7_j +

m1 fj 1 +
xn-2 2

(aaxf
n

j-1/2

(3.3.8a)

(3.3.8b)

(3.3.8c)

(3.3.8d)

(3.3.8e)

(3.3.8f)

(3.3.8g)

(3.3.8h)

(3.3.8i)

(3.3.8j)

(3.3.8k)

(3.3.81)
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(r5)7 = -h,-1[(b3q)j - (b3q)j 1[

- P07-1/2 - (Q')j 1/2 + Ej 1/2
+,M11 (fq)j_1/2 - (3mn - 1)(tE)' 1/21

[
(r3E n (8 f n

lug 1/2 ` X)9-1/2
- qj 1/2

Equation (3.3.9a) can

[also

be `written are

(3.3.9a)

(r5)j = -[diffusion + generation - destruction - convection + EJ (3.3.9b)

3.3.2 Subroutine KEINITK

This subroutine generates the initial k-profile for low and high Reynolds num-
bers as well as the profile for the zonal method. For high Reynolds number
flows, the kinetic energy profile k is determined by first calculating the shear
stress r from

c0u
T = (E ) 10)3(3m cs 8y

and using the relation between T and k,

..

Tk=- (3.3.11)
a1

with al = 0.30. The calculation of r is easily accomplished in subroutine IVPT
once the initial velocity profile is generated in that subroutine.

For low Reynolds number flows, we assume that the ratio of r+/k+ is given
by

a(y+)2 + b(y+)3 y+ < 4.0 (3.3.12a)

k+
= C1 + C2Z + C3Z2 + C4Z3 60 ..5 y+ < 4.0 (3.3.12b)

1 0.30 y+ > 60 (3.3.12c)

where z =1n y+. The constants in Eq. (3.3.12a) are determined by requiring
that at y+ = 4,

/
k+ = 0.054, (k+)/ = 0.0145 (3.3.13)

according to the data of [2).
The constants c1 to c4 in Eq. (3.3.12b) are taken as

Cl = 0.080015, c2 = -0.11169
(3.3.14)

c3 = 0.07821, c4 = -0.0095665
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3.3.3 Subroutine KEINITG

In this subroutine the rate of dissipation profile e is determined by assuming
z

(Em)CS = (Em)k-e fAcµ (3.3.15)

or from
f1 cµk2

e
(Em)CS

where (em)CS is determined from the CS-eddy viscosity model in subroutine
EDDY. Whereas f,, is constant for high Reynolds number flows with a typical
value of 1.0, it is not a constant for low Reynolds number flows. Its variation
differs according to different models developed close to the wall, say y+ < 60
[3].

3.3.4 Subroutine KEWALL

This subroutine provides the wall boundary conditions for the k-e model which
includes low (with wall functions) and high Reynolds number (without wall
functions) flows as well as the zonal method. For low Reynolds numbers, there
are four physical wall boundary conditions and one "numerical" boundary con-
dition. They are given by Eqs. (2.1.13) and (2.3.3c). The last one is a numerical
boundary condition and follows from the definition of uT (see Eq. (2.3.1a).

For high Reynolds numbers, the "wall" boundary conditions are specified
at a distance yo = (v/ur)yO . In this case we have a total of five boundary
conditions. The physical boundary conditions are given by Eqs. (2.2.5), (2.2.6),
and (2.2.7). The numerical boundary condition is given by Eq. (2.4.8).

3.3.5 Subroutine KESOLV

This subroutine performs both forward and backward sweeps for low and high
Reynolds numbers, including the zonal method, by using the block elimination
method. When the perturbation quantities um(1, j) to um(8, j) are calculated
so that new values of fj, uj, vj, etc., are calculated, a relaxation parameter rex
is used in order to stabilize the solutions.

In this subroutine, for the zonal method we also reset k, e in the inner region
only. Since the CS model is used for the inner region, there is no need for these
quantities. For safety, they are arbitrarily defined in this region.

3.4 Part 4 - Solution Algorithm

When the system of first-order equations to be solved with the block elimination
method becomes higher than, say 6, the preparation of the solution algorithm
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with the recursion formulas described in subroutine SOLV3 becomes tedious. A
matrix-solver algorithm (MSA) discussed here can be used to perform the matrix
operations required in the block elimination method. This algorithm consists
of three subroutines, namely, subroutines GAUSS, GAMSV and USOLV. To
illustrate its use, we discuss the replacement of SOLV3 with MSA.

(1) Read in

DIMENSION DUMM(3),BB(2,3),YY(3,81),NROW(3,81),GAMJ(2,3,81).

AA(3,3,81),CC(2,3,81)

DATA IROW.ICOL,ISROW,INP/3,3,3,81/

Here IROW, ICOL correspond to number of maximum rows and columns re-
spectively. ISROW denotes the number of "wall" boundary conditions and INP
the total number of j-points in the 77-direction, and

BB=Bj, YY=tVj, GAMJ=Fj, AA=A3, CC=Cj

The first and second numbers in the arguments of AA, BB, CC and GAMJ
correspond to the number of nonzero rows and columns in Aj (or Aj), Bj, Cj
and Tj matrices, respectively (see subsection 2.3.4, for example). Note that Bj
and Tj have the same structure and the last row of Bj and the-first two rows
of Cj are all zero. The index 81 in YY, NROW, GAMJ, AA and CC refers to
INP.

(2) Set the elements of all matrices Aj, Bj, Cj (and dj) equal to zero.

(3) Define the matrices AD and CO by reading in their elements. Note that only
those nonzero elements in the matrices are read in since in (2) we set all the
elements equal to zero.

(4) Call subroutine GAUSS.

(5) Read in the elements of Bj and call subroutine GAMSV to compute I'1.

(6) Define Aj according to Eq. (2.3.23b), call GAUSS and read in the elements
of Cj.

(7) Recall the elements of Bj and call GAMSV to compute r2.

(8) Repeat (6) and (7) for j < J.

(9) At j = J, read in the last row of A,j which is also equal to the last row of
J.

(10) Compute w'o according to Eq. (2.3.31a). Here TD = RRR(1,81).

(11) Define the right-hand side of Eq. (2.3.31b) and compute tVj according to
Eq. (2.3.31b).
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(12) In the backward sweep, with Sj corresponding to UM(I,J), compute b'j
according to Eq. (2.3.32a) by calling USOLV at INP.

(13) Define the right-hand side of Eq. (2.3.32b) and solve for 6j by calling
USOLV for j = J- 1,J-2,...,0.

This algorithm is very useful to solve the linear system for the k-e model
equations. With all Aj, Bj, Cj matrices and r j nicely defined in subroutine
KECOEF, the solution of Eq. (2.3.15) is relatively easy.

3.5 Part 5 - Basic Tools

This part of the computer program includes basic tools to perform smoothing,
differentiation, integration and interpolation. For example, subroutine DIFF-
3 provides first, second and third derivatives of the input function at inputs.
First derivatives use weighted angles, second and third derivatives use cubic
fits. Subroutine INTRP3 provides cubic interpolation. Given the values of a
function (Fl) and its derivatives at N1 values of the independent variable (XI),
this subroutine determines the values of the function (F2) at N2 values of the
independent variable (X2). Here X2 can be in arbitrary order.

Another subroutine used for interpolation is subroutine LNTP; it performs
linear interpolation.
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Computer Program
for CS Model for Flows
with Separation

4.0 Introduction

As discussed, for example, in [1], for a given external velocity distribution, the
solutions of the boundary-layer equations are singular at separation. To continue
calculations beyond separation, it is necessary to compute the external velocity
or pressure as part of the solution. This procedure is known as the inverse mode.
Catherall and Mangler [2] were the first to show that modification of the external
velocity distribution near the region of flow separation leads to solutions free of
numerical difficulties. By prescribing the displacement thickness or wall shear
stress as a boundary condition in addition to the usual boundary conditions,
the boundary-layer equations can be integrated through the separation location
and into the region of reverse flow without any evidence of singularity at the
separation point [1].

A problem associated with using an inverse mode to solve the boundary-
layer equations is the lack of a priori knowledge of the required displacement
thickness or the wall shear. The appropriate value must be obtained as part
of the overall problem from the interaction between the boundary layer and
the inviscid flow. In the case of internal flow, the problem is somewhat easier
because the conservation of mass in integral form can be used to relate pressure
p(x) to velocity u(x, y) in terms of mass balance in the duct.

For two-dimensional external flows, two procedures have been developed to
couple the solutions of the inviscid and viscous equations. In the first procedure,
developed by LeBalleur [3] and Carter and WtTornoin [4], the solution of the
boundary-layer equations is obtained in the standard mode, and a displacement-
thickness, 6*°, distribution is determined. If this initial calculation encounters
separation, then 6*°(x) is extrapolated to the trailing edge, and one complete
cycle of the viscous and inviscid calculation is performed with the boundary-
layer equations now solved in the inverse mode. This will, in general, lead to
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two different external velocity distributions, ue t(x) derived from the inverse
boundary-layer solution, and uC2(x) derived from the updated approximation
to the inviscid velocity past the airfoil with the added displacement thickness.
A relaxation formula is introduced to define an updated displacement-thickness
distribution,

S* = S*0(x) { 1
Lueti(x)

- 11 } (4.0.1)
l I uea(x)

where w is a relaxation parameter, and the procedure is repeated with this
updated mass flux.

In the second approach, developed by Veldman [5), the external velocity
ue(x) and the displacement thickness b*(x) are treated as unknown quantities,
and the equations are solved in an inverse mode simultaneously in successive
sweeps over the airfoil surface. For each sweep, the external boundary condition
for the boundary-layer equation in dimensionless form, with ue(x) normalized
with u,,, is written as

ue(x) = tL(x)+ Sue(x) (4.0.2a)

where u°(x) denotes the inviscid velocity and Sue the perturbation due to the

displacement thickness, which is calculated from the Hilbert integral

Xa

_ T-7
Sue(x) =

7r

if
d

(ues*) xdaor

Sa

(4.0.2b)

The above expression is based on the thin airfoil approximation with the term
d/da(ueS*) denoting the blowing velocity used to simulate the boundary layer
in the interaction region (xa, xb). This approach is more general and will be used
in the present approach for calculating boundary-layer flows with separation.

We consider a laminar and turbulent flow. We assume the calculations start
at the leading edge, x = 0, for laminar flow and are performed for turbulent flow
at any x-location by specifying the transition location. The use of the two-point
finite-difference approximations for streamwise derivatives is proper and does
not cause numerical difficulties if there is no flow separation. If there is one, then
it is necessary to use backward difference formulas as discussed in subsection
2.3.1.

We employ two separate but closely related transformations. The first one is
the Falkner-Skan transformation in which the dimensionless similarity variable
al and a dimensionless stream function f (x, 77) are defined by Eqs. (2.1.1). It
is a convenient and useful transformation to generate initial conditions which
start either as a flat plate flow or stagnation flow. It is also useful to perform
the boundary-layer calculations subject to the boundary conditions that corre-
spond to the standard mode (external velocity distribution given). The resulting
equations from this transformation are given by Eqs. (2.1.3).
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In the inverse mode, since ue(x) is also an unknown, slight changes are made
to the transformation given by Eq. (2.1.1), replacing ue(x) by u"O and redefining
new variables Y and F by

Y = u./vx y, V)(x, y) = u vx F(., Y), = L (4.0.3)

The resulting equation and its wall boundary equations can be written as

(bF'")'
+

FF" _ aF'
- F"

w dw
(4.0.4)('b1 l

Y=O, F'=0, F=O (4.0.5)

Here primes denote differentiation with respect to Y and w = ue/uoo .
The edge boundary condition is obtained from Eq. (4.0.2). By applying a

discretization approximation to the Hilbert integral, Eq. (4.0.2b), we can write
(see subsection 4.2.3)

i-1 N

ue(xi) = CiiDi + ECijDj + > CijDj (4.0.6)
j=1 j=i+1

where the subscript i denotes the c-station where the inverse calculations are
to be performed, Cij is a matrix of interaction coefficients obtained by the
procedure described in subroutine HIC, and D is given by D = ueS*. In terms
of transformed variables, the parameter D becomes

D = _ RL (Yew - Fe) (4.0.7)

and the relation between the external velocity ue and displacement thickness S*
provided by the Hilbert integral can then be written in dimensionless form as

Y = Ye, )(YFe(e1) - Fe(el)] = gi (4.0.8)

where

A = Cii e}/RL (4.0.9a)

_ i-1 N
gi = ue(t) + E CijDj + CijDj (4.0.9b)

j=1 j=i+1
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4.1 Numerical Method

The numerical method for the inverse problem is similar to the numerical
method described for the standard problem in Section 2.3. Since must
be computed as part of the solution procedure, we treat it as an unknown.
Remembering that the external velocity w is a function of 6 only, we write

w = 0 (4.1.1)

As in the case of the standard problem, new variables Y), V(, Y) are
introduced and Eq. (4.0.4) and its boundary conditions, Eq. (4.0.5) and (4.0.8),
are expressed as a first-order system,

F'=U
U'=V

(bV)'+ IFV = (U aU - V OF) -Cwdww

Y=0, F=U=O
Y=Yei U=w, \F+(1- 1Ye)w=9i

(4.1.2a)

(4.1.2b)

(4.1.2c)

(4.1.3a)

(4.1.3b)

Finite-difference approximations to Eqs. (4.1.1) and (4.1.2) are written in a
similar fashion to those expressed in the original Falkner-Skan variables, yielding

hj1(wjn - wj 1) = 0 (4.1.4a)

h1 1(F' - F-1) = Uj 1/2 (4.1.4b)

h371 (Uj,, - UU 1) = V3 1/2 (4.1.4c)

hj-1(bjnVj" - bjn'1)+{2+a"//)(FV)j_1/2

+ an[(w2)j-1/\\2 -FLARE 3-1/21

+ a"(V." 1/2Fj 1/2 - F 1/2Vi 1/2) = (4.1.4d)

where

Rj-1/2 = -LL-1/2 + an[(FV) i/2 - FLARE(U2)j-1/2] (4.1.5a)

Lr-1 - rh-1 b y- b _1v _ 19-1/2 l j (J 7 7 ? 1) + (FV)j-1/2 - a"(w2)j-1/2]n-1 (4.1.5b)

In Eq. (4.1.4d), the parameter FLARE refers to the Flugge-Lotz-Reyhner
approximation [1] used to set uyy equal to zero in the momentum equation
wherever u < 0. As a result, the numerical instabilities that plague attempts to
integrate the boundary-layer equations against the local direction of flow are
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avoided. In regions of positive streamwise velocity (uj > 0), it is taken as unity
and as zero in regions of negative streamwise velocity (u3 < 0).

The linearized form of Eqs. (4.1.4) and (4.1.3) can be expressed in the form
given by Eq. (2.4.15) or

6F0 6U0 6V0 6.0 6Fj 6Uj 6Vj 6wj 6Fj 6Uj 6Vj 6wj
..................................................

b.c. : 1 0 O 0. 0 0 0 0

b.c. : 0 1 0 0 0 0 0 0

0 -1 -21 0 0 1 =41 0

0 0 0 -1 0 0 0 1
...................................}................

1 0 0 1

f-.h

0 0

(34)j ('c)j ('2)j (s8)j; (53)j (s5)3 (31)j (c7)1

0 0 0 0 0 -1 0

0 0 0 0

b.c.

b.c.

1 0 0 0

0 1 0 0

0-1-2 0
0 0 0 -1

with Sj and rj now defined by

bj =

0 0 0 -1
.........................

-1 -jj 0 0

(34)J (3G)J (32)J (ce)J

0 0 0 0

0 0 0 0

(ri)j
(r2)j

(r3)j

(r4)j

and Aj, Bj, Cj becoming 4 x 4 matrices defined by

Ao =

AJ =

, Aj =

6Fj
SUj
6Vj
Swj

0 0 0 0

0 0 0 0

0 0

0 0 0 1

..........................

1 0 0

(33)J (35)j (cl)J (37)J

71 0 0 72

0 1 0 -1

6F0
6UG

6VG

6w0

6Fj

6Uj

6 vj

6wj

6Fj
6Uj

6Vj
6wj

(rl)0

(r2)0

(r3)0

(r4)0

(rl)j

(r2)j

(r3)j

(r4)j

(rl)J

(r2)J

(''3)J
(r4)j

(4.1.6)

(4.1.7), rj =

1 -2 0 0

(s3)j (s5)j (S1)j (s7)j

0 -1 - 0

0 0 0 -1

1 -2 0 0

(s3)J (s5)J (sl)J (s7)J

71 0 0 72

0 1 0 -1

Cj =

, Bj =

0 0 0 0

0 0 0 0

0 1- 2 0
0 0 0 1

, 1<j<J-1

-1 -3 0 02

(84)j (S6)j (s2)j (88)j

0 0 0 0

0 0 0 0

(4.1.8a)

1<j<J

(4.1.8b)

, 0<j<J-1 (4.1.8c)

Here the first two rows of A0 and CO and the last two rows of Bj and Aj
correspond to the linearized boundary conditions,
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6F0 = 6Uo = 0; 5UJ - bwJ = wJ - Uj, 71bFJ + 72bwJ = 73 (4.1.9)

where

71=A, 72=1-)YJ, 73=gi-(71FJ+72wJ) (4.1.10)

As a result

(rl)o = (r2)o = 0 (4.1.11a)

(r3)J = 73, (r4)J = wJ - UJ (4.1.11b)

The third and fourth rows of A0 and Co correspond to Eq. (3.2.1b) and the
linearized form of Eq. (2.3.6a), that is,

bwj - bwj_1 = Wj-1 - wj = (r4)j-1 (4.1.12)

if the unknowns f, u, v are replaced by F. U and V. Similarly, the first and
second rows of Aj and Bj correspond to Eq. (3.2.1a) and (2.3.6c) with two
terms added to its left-hand side,

(s7)j6wj + (s8)jbwj-1 (4.1.13a)

with (s7)j and (s8)j defined by

(S7)j = a'wj, ($8)j = anwj-1 (4.1.13b)

The coefficients (s1) j to (8r,) j defined by Eqs. (3.2.5) remain unchanged provided
we set

a'1=2+a", a2=an

and define (r2)j by

(r2)j = Rs-1/2 - [h?'(bjVj - bj-1Vj-1) + (2 +an)(FV)j-1/2

+ & [(w2)j_1/2 - FLARE(U2)j_1/2I

+ a"(V? 1/2Fj-1/2 - F i/2Vj-1/2))

(4.1.14)

(4.1.15)

The remaining elements of the rj vector follow from Eqs. (3.2.2), (4.1.12) and
(4.1.15) so that, for l < j:5 J, (r1)j, (r2)3. (r3)j_1 are given by Eqs. (3.2.2a),
(4.1.15) and (3.2.2b), respectively. For the same j-values, (r4)j_1 is given by
the right-hand side of Eq. (4.1.12).

The parameters 71, 72 and 73 in Eq. (4.1.9) determine whether the system
given by the linearized form of Eqs. (4.1.4) and their boundary conditions is
to be solved in standard or inverse form. For an inverse problem, they are
represented by the expressions given in Eq. (4.1.9) and for a standard problem
by-11 =0,72=1.0and 73=0.

It should be noted that for flows with separation, it is necessary to use
backward differences as discussed for the CS and k-e models in subsection 2.3.1.
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In that case, the coefficients (Si), to (se)j are given by Eq. (2.3.13), and (r2)j
by Eq. (2.3.14) with the relations given by Eq. (4.1.15).

The solution of Eq. (2.3.15), with bj and rj defined by Eq. (4.1.7) and
with Aj, Bj and Cj matrices given by Eqs. (4.1.8), can again be obtained by
the block-elimination of subsection 2.3.4. The resulting algorithm, similar to
SOLV3, called SOLV4, is given in the accompanying CD-ROM.

Numerical Method for Wake Flows

In interaction problems involving airfoils, it is usually sufficient to neglect the
wake effect and perform calculations on the airfoil only, provided that there
is no or little flow separation on the airfoil. With flow separation, the relative
importance of including the wake effect in the calculations depends on the flow
separation as shown in Fig. 4.1 taken from [1]. Figure 4.1a shows the computed
separation locations on a NACA 0012 airfoil at a chord Reynolds number, Rc of
3 x 106. When the wake effect is included, separation is encountered for angles of
attack greater than 100, and attempts to obtain results without consideration of
the wake effect lead to erroneously large regions of recirculation that increases
with angle of attack, as discussed in [1]. Figure 4.1b shows that the difference
in displacement thickness at the trailing edge is negligible for a = 10° but more
than 30% for a = 16°.

As discussed in [1], the inverse boundary layer method described here can
also be extended to include wake flows. This requires the specification of a tur-
bulence model for wake flows and minor modifications to the numerical method.

The extension of the CS model for wall boundary layers to wake flows is
given by the following expressions described in [1]:

1.0

0.9

x/c
0.8

0.7

0.6
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CL x/c

(a) (b)

Fig. 4.1. Wake effect on (a) flow separation and (b) displacement thickness - NACA 0012
airfoil. -, with wake; - - -, without wake.
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em = (Em)w + [(Em)t.e. - (Em)w] exp
-(x

ASt.e.
(4.1.16)

where 6t,e, is the boundary layer thickness at the trailing edge, A is an empirical
parameter, (Em)t.e. is the eddy viscosity at the trailing edge, and (em)w is the
eddy-viscosity in the far wake given by the larger of

flmin
(em)y, = 0.064

f
(ue - u) dy

00

and

(em)w = 0.064 J (ue - u) dy
vmn,

(4.1.17)

(4.1.18)

with ymin denoting the location where the velocity is a minimum.
The studies conducted in [6] indicate that a choice of A = 20 is satisfactory

for single airfoils. Calculations with different values of A essentially produced
similar results, indicating that the modeling of wake flows with Eq. (4.1.16) was
not too sensitive to the choice of A. The application of the above model to wake
flows with strong adverse pressure gradient, however, indicated that this was
not the case and the value of the parameter is an important one. On the basis
of that study, a value of A = 50 was found to produce best results and is used
in the present computer program.

A modification to the numerical method of the previous section arises due
to the boundary conditions along the wake dividing streamline. The new "wall"'
boundary conditions on f and u now become

77=0, fo=0, v0 =0

so that the second row of Eq. (4.1.6) can de written as

0 0 1 0

(4.1.19)

(4.1.20)

Before the boundary-layer equations can be solved for wake flows, the initial
velocity profiles must satisfy the wall and edge boundary conditions. When the
calculations are first performed for wall boundary layer flows and are then to be
extended to wake flows, it is necessary to modify the velocity profiles computed
for wall boundary layers. This is done in subroutine WAKEPR of the computer
program.

4.2 Computer Program

In the accompanying CD-ROM, we present a computer program for obtaining
boundary-layer solutions on airfoils and their wakes. The code can be used to
solve both standard and inverse problems. For standard problems, it is similar
to the computer program described in Section 3.2 except that it also provides
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solutions to wake flows and is applicable to both laminar and turbulent flows.
For inverse problems, it uses the numerical procedure described in the previous
sections, and when coupled to an inviscid flow, it can also be used in inviscid-
viscous interaction problems, as described in Section 4.3.

The computer program consists of a MAIN and 15 subroutines, INPUT,
IVPL, HIC, EDDY, SWTCH, COEF, WAKEPR, DIFF1, LNTP, INTEG,
AMEAN, SOLV4, EDGCHK, CALFA and GAMCAL. MAIN, as before, is used
to control the logic of the computations. Here the parameter 9i in Eq. (4.0.8) is
also calculated, with

i-1

SUM1 = F CijDj
j=1

and

(4.2.1a)

N
SUM2 = E CijDj (4.2.1b)

j=i+1

The initial displacement thickness (6*) distribution needed in the calculation of
Dj is computed in subroutine INPUT by assuming a 6* distribution based on
a flat-plate flow and given by

6*
= 0.036 HR.,0.20 (4.2.2)

with H = 1.3.
Of the 15 subroutines, subroutine WAKEPR is used to modify the profiles

resulting from wall boundary layers for wake profiles. Except for this subroutine
and except for subroutines INPUT, IVPL and HIC, the remaining subroutines
are similar to those described in Sections 3.2 and 3.3. For this reason, only these
three subroutines are described below.

4.2.1 Subroutine INPUT

This subroutine is used to generate the grid, calculate 7tr in the eddy viscosity
formulas, initial 6*-distribution, and pressure gradient parameters m and m1.
The following data are read in and the number of j-points J(NP) is computed
from Eq. (3.1.11).

NXT Total number of x-stations
NXTE Total number of x-stations on the body
NXS NX-station after which inverse calculations begin
NPT Total number of i7-grid points
ISWPT Number of sweeps in the inverse problem.

Usually a value of 10 is sufficient for low angles of attack;
higher values are needed for high angles of attack
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RL Reynolds number, u,,.c/v
XTR x/c value for transition location
ETAE Transformed boundary layer thickness rle at x = 0, ETAE = 8.0
VGP K is the variable-grid parameter. Take K = 1.0 for

laminar flow and K = 1.14 for turbulent flow. For a flow
consisting of both laminar and turbulent regions, take K = 1.14

DETA(1) Dii(ht) - initial step size of the variable grid system.
Take hl = 0.01 for turbulent flows

P2(1) m at x = 0 (NX = 1)
x/c, y/c Dimensionless airfoil coordinates
ue/uoo Dimensionless external velocity

4.2.2 Subroutine IVPL

At x = 0, Eq. (2.1.3) reduces to the Falkner-Skan equation, which can be solved
subject to the boundary conditions of Eq. (2.1.13a) and (2.1.14a). Since the
equations are solved in linearized form, initial estimates of fj, uj and vj are
needed in order to obtain the solutions of the nonlinear Falkner-Skan equation.
Various expressions can be used for this purpose. Since Newton's method is
used, however, it is useful to provide as good an estimate as is possible and an
expression of the form.

3 l3

up
277e 2

(177,

1
(4.2.3)

usually satisfies this requirement. The above equation is obtained by assuming a
third-order polynomial and by determining constants a, b, c from the boundary
conditions from one of the properties of momentum equation which requires
that f"=0at77=77e.

The other profiles fj, vj follow from Eq. (4.2.3) and are obtained by inte-
grating and/or differentiating Eq. (4.2.3) for fj and vj, respectively.

4.2.3 Subroutine HIC

This subroutine calculates the coefficients of the Hilbert integral denoted by
C. While they can be generated from any suitable integration procedure, we
use the following procedure which is appropriate with the box method (1).

We evaluate

Hi
= Jg' G(a)

da
V - a (4.2.4)

where

G(a) = dF
da
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with F denoting any function, so that over each subinterval Cn), except
the two enclosing the point = i, we replace G(a) by its midpoint value:

L
(s)

d
£n

do-

-1

=a = Gn-1/2 Jan-1 V -a = Gn-1/21n

Making the further approximation,

Fn - Fn-1
Gn-1/2 = n - n-1

we can write

i - cn-1
Ci - n (4.2.5)

£n dF do
= En(Fn - Fn-1) (4.2.6)n-1 da - a

where forn54ior i+1

En' =
i

n
the Ci the cancellation

with the constant term, account should be taken of the linear variation of G
from one interval to the next. Thus, we take the linear interpolation

G-
Gi-1/2(&1 - Ci) + Gi+112W - &1) + 2(Gi+1/2 - Gi_112)(a - 0

ei+I - V-1

so that

&1 Gdo, _ G:-1/2(ea+1 - 0 + Gi+1/2W
In

ci

(4.2.8)

- 2(Gi+1/2 - Gi-1/2)

Replacing the midpoint derivative values by difference quotients, we obtain

0+1 dF - = Eii(Fz . - Fa .- 1) + E?x+1 (Fx+l - Fa.)
le-i doi;t -

where
ei+1 _ i i - `-1

E8i
In V

Li-1

1nS
i - ti-1

+2

-2

(4.2.9)

(4.2.10a)

(4.2.10b)

Thus
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Hi = Ez(F2-Fl)+E3(F3-F2)+...+ELL 1(FL-1 -FL_2)+EL(FL- F)
= -E22F1 + (E2 - E3)F2 +... + (EL-1 - EL)FL-1 + ELFL

so, finally the Cij of Eq. (4.0.6) are given by

Ci? = 1(Ej' - E?+1)
7r

and the Ei are given by Eqs. (4.2.10a) and (4.2.10b) with Elf = EL+1
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Hess-Smith Panel Method
with Viscous Effects

5.0 Introduction

Calculation of separating flows using boundary-layer theory requires inviscid
and boundary-layer methods in which the calculations are performed in an iter-
ative manner so that each successive inviscid flow solution provides the pressure
distribution for the next boundary layer solution. The displacement (viscous)
effect is then used to modify the inner boundary conditions for a near inviscid
calculation; the procedure in this "cycle" known as the interactive boundary-
layer scheme must then be repeated until convergence is obtained, see Fig. 5.1.

Inviscid
Method

Boundary
Layer

Method

Viscous
Effect

Fig. 5.1. Interactive boundary-layer scheme.

For incompressible flows, a panel method is an ideal inviscid method for this
approach. Of the several panel methods, here we choose the one due to Hess
and Smith [1]. After a brief description of the mathematical models for the
interaction process in an inviscid flow (Section 5.1), we discuss the Hess-Smith
(HS) panel method (Section 5.2). The procedure for incorporating the viscous
effects into the panel method is discussed in Section 5.3. Changes required in
an inviscid method to extend the viscous flow calculations into the wake of an
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airfoil are discussed in Section 5.4. A brief description of the computer program
for the HS method with viscous effects is given in Section 5.5.

5.1 Mathematical Models for the Interaction Process
in Inviscid Flows

Viscous effects can be incorporated into an inviscid method by replacing the real
flow with an equivalent fictitious inviscid flow such that the velocity components
at the edge of the boundary layer are equal in both cases. We assume that in the
fictitious flow, u = u,, for y < 6 . This fictitious flow can be modeled by using
either the "solid" displacement surface concept or the "transpiration" model
concept proposed by Lighthill [2]. Figure 5.2a shows the real flow and Figs.
5.2b and 5.2c the equivalent fictitious flow using the displacement surface and
blowing velocity concepts, respectively for two-dimensional flows.

(a)

u.

y

y=8

y=a

(b) (c)

AN

y=s

y=o

Fig. 5.2. Model of viscous effects in inviscid method in two dimensions (a) real flow, (b),
(c) equivalent fictitious flow.

Both displacement surface and transpiration models are based on first-order
boundary-layer theory, that is; the shear layer thickness is assumed to be thin
and the transverse variation in pressure across the layer is assumed to be negligi-
ble. When this is not the case, it is necessary to use second-order boundary-layer
theory, as discussed in [3].

To describe the mathematical models for each concept, it is convenient, fol-
lowing the discussion in (3], to work in terms of the difference between the two
flows corresponding to the real viscous flow and an equivalent inviscid flow de-
fined as analytical continuation, or smooth extrapolation, of the inviscid flow
outside the shear layers in the direction normal to the interface between them.
For a two-dimensional compressible flow with Qu representing the real viscous
flow and oiui the equivalent inviscid flow the difference of the continuity equa-
tions yields

a (Qiui - Qu) + .-(Aivi - Qv) = 0 (5.1.1)
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Integrating across the boundary layer from y = 0 to 6 and representing the
values at the wall by subscript w, we get

6

piwviw =
d

d (Pi'ui - Pu)dy
0

(5.1.2)

since both (givi - ov) and (piui - pu) vanish at y = 6 because of the matching
condition, while v = 0 at the wall (y = 0). If a displacement thickness, 6A is
defined by

6
1 r

6A = J (piui - p'u)dy (5.1.3)
piwuiw

0

then we obtain the blowing velocity defined by Lighthill,

v:w
= 1 d (oiwuiw6A) (5.1.4)

OW dx

The "classical" displacement thickness, 6B, is defined by the condition that
the total mass flow in the equivalent inviscid flow shall equal that in the real
viscous flow, so that

Sp Sr

piuidy oudy (5.1.5)

61 0

It is shown in [3) that y = 6B is indeed a streamline of the equivalent inviscid
flow.

The relation between these two alternative definitions of displacement thick-
ness can be obtained by adding

0

to both sides of Eq. (5.1.5). We obtain

SB

f oiuidy = oiwuiw6A (5.1.6)

0

Thus the transpiration condition given by Eq. (5.1.4) is equivalent to

d
piwviw =

d.L f piuidy (5.1.7)
0

which provides a physical explanation of it; that the mass flow injected normal
to the wall in the equivalent inviscid flow, in order to displace the dividing
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streamline outwards the required distance 6B from the surface, must be equal
to the streamwie rate of change of the mass flow deficit in the boundary layer
in the range 0 < y < 6B.

In summary we see that there are two alternative inner boundary conditions
which can be used in the calculation of the equivalent inviscid flow, namely, (1)
a transpiration condition of nonzero normal velocity at the surface, Eq. (5.1.4),
or (2) the condition that the displacement surface is a streamline, Eq. (5.1.5).
Both mathematical models are equally valid and general representations of the
displacement effect of the boundary layer on the external flow. In practice,
however, the transpiration model is more convenient to use. For example, if
a panel method is used to calculate the inviscid flow, the matrix of influence
coefficients (Section 5.2) can be set up and inverted once and for all, so that
subsequent inviscid calculations become trivial, while with a finite difference or
finite volume method a fixed computational grid can be used throughout. For
this reason, we will only use the transpiration model here.

Matching Conditions in the Wake

With the assumptions inherent in first-order boundary-layer theory, the condi-
tions that are needed to effect a matching between the viscous and inviscid cal-
culations to simulate a turbulent wake with the transpiration model are similar
to those discussed for the conditions on the airfoil surface. A dividing stream-
line is chosen in the wake to separate the upper and lower parts of the inviscid
flow, and on this line discontinuities are required in the normal components of
velocity, so that it can be thought of as a source sheet.

At points C and D on the upper and lower sides of the dividing streamline
(Fig. 5.3), the components of transpiration velocity, vj,,, and vii are, respectively,
see Eq. (5.1.4),

d
Vi. = 1 (Qiuutxc6u)

oiu dx

upper edge of viscous layer

upper displacement surface

bu

' lower displacement surface

`lower edge of viscous layer

Fig. 5.3. Notation for the airfoil trailing-edge region.

(5.1.8)
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and
1 d

vii = - boil dx
(LiiuilSt) (5.1.9)

Here the sign convention has been used that v is measured positive in the
direction of the upward normal to the wake. Hence a jump ,6v in the component
of velocity normal to the wake is required; it is given by

dvi ° viu - uil = 1
d

(Piuuiusu) + 1 d (Pituiiol) (5.1.10)
Piu dx Ail dx

5.2 HS Panel Method

We consider an airfoil at rest in an onset flow of velocity Vim. We assume that
the airfoil is at an angle of attack, a (the angle between its chord line and the
onset velocity), and that the upper and lower surfaces are given by functions
Y,, (x) and Y(x), respectively. These functions can be defined analytically, or (as
is often the case) by a set of (x, y) values of the airfoil coordinates. We denote
the distance of any field point (x, y) from an arbitrary point, b, on the airfoil
surface by r, as shown in Fig. 5.4. Let n also denote the unit vector normal to
the airfoil surface and directed from the body into the fluid, and F a unit vector
tangential to the surface, and assume that the inclination of F to the x-axis is
given by 9. It follows from Fig. 5.4 that with a and j denoting unit vectors in
the x- and y-directions, respectively,

n"=-sine?+cos0j
(5.2.1)

t=cos9?+sin9j

If the airfoil contour is divided into a large number of small segments, ds, then
we can write

dx=cosOds
dy = sin 9 ds

with ds calculated from ds = (dx)' + (dy) .

(5.2.2)

We next assume that the airfoil geometry is represented by a finite number
(N) of short straight-line elements called panels, defined by (N+1)(xj, yj) pairs
called boundary points. It is customary to input the (x, y) coordinates starting
at the lower surface trailing edge, proceeding clockwise around the airfoil, and
ending back at the upper surface trailing edge. If we denote the boundary points
by

(x1, yl), (x2, y2), ... , (XN, YN), (xN+l, YN+1) (5.2.3)

then the pairs (xl, yl) and (xN+1, yN+l) are identical for a closed trailing edge
(but not for an open trailing edge) and represent the trailing edge. It is custom-
ary to refer to the element between (xj, yj) and (xj+1, yj+i) as the j-th panel,
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source and vorticity distributions

trailing edge

V
control points

y ° Yr(x)

boundary

Fig. 5.4. Panel representation of airfoil surface and notation for an airfoil at incidence a.

and to the midpoints of the panels as the control points. Note from Fig. 5.4 that
as one traverses from the i-th boundary point to the (i + 1)-th boundary point,
the airfoil body is on the right-hand side. This numbering sequence is consistent
with the common definition of the unit normal vector iii and unit tangential
vector ti for all panel surfaces, i.e., fij is directed from the body into the fluid
and ti from the i-th boundary point to the (i + 1)-th boundary point with its
inclination to the x-axis given by Bi.

In the HS panel method, the velocity 'Cl at any point (x, y) is represented by

V=U+v (5.2.4)

where U is the velocity of the uniform flow at infinity

U=V.(cosaa+sincaj) (5.2.5)

and v" is the disturbance field due to the body which is represented by two
elementary flows corresponding to source and vortex flows. A source or vortex on
the j-th panel causes an induced source velocity vs at (x, y) or an induced vortex
velocity ii at (x, y), respectively, and these are obtained by taking gradients of
a potential source

s=2-Inr
and a potential vortex

(5.2.6)

Or = -2/8, (5.2.7)

both centered at the origin, so that, with integrals applied to the airfoil surface,

v(x) y) =
J

vsg3(s)dsj + f iYvrj(s)dsi (5.2.8)
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Here gjdsj is the source strength for the element dsj on the j-th panel. Similarly,
Tjdsj is the vorticity strength for the element dsj on the same panel.

Each of the N panels is represented by similar sources and vortices dis-
tributed on the airfoil surface. The induced velocities in Eq. (5.2.8) satisfy the
irrotationality condition and the boundary condition at infinity

(5.2.9a)
y

(5.2.9b)
y

For uniqueness of the solutions, it is also necessary to specify the magnitude
of the circulation around the body. To satisfy the boundary conditions on the
body, which correspond to the requirement that the surface of the body is a
streamline of the flow, that is,

-0 = constant or

an

= 0 (5.2.10)

at the surface on which n is the direction of the normal, the sum of the source-
induced and vorticity-induced velocities and freestrearn velocity is set to zero
in the direction normal to the surface of each of the N panels. It is customary
to choose the control points to numerically satisfy the requirement that the
resultant flow is tangent to the surface. If the tangential and normal components
of the total velocity at the control point of the i-th panel are denoted by (VL)i
and (V')i, respectively, the flow tangency conditions are then satisfied at panel
control points by requiring that the resultant velocity at each control point has
only (V%, and

(V')i=0 i=1,2,...,N (5.2.11)

Thus, to solve the Laplace equation with this approach, at the i-th panel con-
trol point we compute the normal (Vn)i and tangential (Vt)i, (i = 1, 2, .... N)
velocity components induced by the source and vorticity distributions on all
panels, j (j = 1, 2, ... , N), including the i-th panel itself, and separately sum all
the induced velocities for the normal and tangential components together with
the freestaeam velocity components. The resulting expressions, which satisfy the
irrotationality condition, must also satisfy the boundary conditions discussed
above. Before discussing this aspect of the problem, it is convenient to write
Eq. (5.2.4) expressed in terms of its velocity components (V")i and (Vt)i by

N N
(Vn)i = E A?gj + > B injTj + Vo, sin(a - Bi) (5.2.12a)

j=1 j=1

N N
(Vt)i = ALjgj + Bii + V cos(a - 8i) (5.2.12b)

j=1 j=1



74 5. Hess-Smith Panel Method with Viscous Effects

where A'-, B , A(., Btu are known as influence coefficients, defined as the
23

velocities induced at a control point (xzni, ynLi ); more specifically, A and A%
denote the normal and tangential velocity components, respectively, induced at
the i-th panel control point by a unit strength source distribution on the j-th
panel, and BR and B are those induced by unit strength vorticity distribution
on the j-th panel. The influence coefficients are related to the airfoil geometry
and the panel arrangement; they are given by the following expressions:

r 1 [sin(Oi - 8j) In rZ'j+l + cos(O - Bj )/3tij] i # j
AZJ . Tij (5.2.13)

2
1

1 [si,(Oi - Oj)I3ij - cos(Oi - Oj) In r2'j+11
AZ - = 27r 7 i j J

0

Binj =-A2j

Here

i=j

i0j

i=j

Tij+l = [(x"ni - xj+1)2 + (ymi - yj+1)2J
1/2

Ti,j = [(xmi - xj)2 + (ymi - yj)2J 1/2

(5.2.14)

(5.2.15)

xmi = 2 (-Ti + xj+1), ymi =
2 (Yi + Yj+1) (5.2.16)

9i = tan-1 yi+h - yi 8j tan-1 yj+1 - yj=
xi+1 - xi xj+1 - xj

tan-' (Ymi - Yj+1 - tan-1 ymi - yj,Qij = xmi - xj+1 xmi - xj
Regardless of the nature of qj (s) and 7 j (s), Eq. (5.2.12) satisfies the irro-

tationality condition and the boundary condition at infinity, Eq. (5.2.9). To
satisfy the requirements given by Eq. (5.2.11) and the condition related to the
circulation, it is necessary to adjust these functions. In the approach adopted
by Hess and Smith [1], the source strength qj(s) is assumed to be constant over
the j-th panel and is adjusted to give zero normal velocity over the airfoil, and
the vorticity strength Trj is taken to be constant on all panels (Trj = r) and its
single value is adjusted to satisfy the condition associated with the specifica-
tion of circulation. Since the specification of the circulation renders the solution
unique, a rational way to determine the solution is required.

The best approach is to adjust the circulation to give the correct force on the
body as determined by experiment. However, this requires advance knowledge
of that force, and one of the principal aims of a flow calculation method is
to calculate the force and not to take it as given. Thus, another criterion for
determining circulation is needed.
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For smooth bodies such as ellipses, the problem of rationally determining
the circulation has yet to be solved. Such bodies have circulation associated
with them, and resulting lift forces, but there is no rule for calculating these
forces. If, on the other hand, we deal with an airfoil having a sharp trailing
edge, we can apply the Kutta condition [5, 6]. It turns out that for every value
of circulation except one, the inviscid velocity is infinite at the trailing edge. The
Kutta condition states that the particular value of circulation that gives a finite
velocity at the trailing edge is the proper one to choose. This condition does
not include bodies with nonsharp trailing edges and bodies on which the viscous
effects have been simulated by, for example, surface blowing, as discussed (4].
Thus, the classical Kutta condition is of strictly limited validity. It is customary
to apply a "Kutta condition" to bodies outside its narrow definition, but this is
an approximation; nevertheless the calculations are often in close accord with
experiment.

In the panel method, the Kutta condition is indirectly applied by deducing
another property of the flow at the trailing edge that is a direct consequence
of the finiteness of velocity; this property is used as "the Kutta condition."
Properties that have been used in lieu of "the Kutta condition" in panel methods
include the following:

(a) A streamline of the flow leaves the trailing edge along the bisector of the
trailing-edge angle.

(b) Upper and lower displacement total velocities approach a common limit
at the trailing edge. The limiting value is zero if the trailing-edge angle is
nonzero.

(c) Source and/or vorticity strengths at the trailing edge must satisfy conditions
to allow finite velocity.

Of the above, property (b) is more widely used. At first it may be thought
that this property requires setting both the upper and lower surface velocities
equal to zero. This gives two conditions, which cannot be satisfied by adjust-
ing a single parameter. The most reasonable choice is to make these two total
velocities in the downstream direction at the 1st and N-th panel control points
equal so that the flow leaves the trailing edge smoothly. Since the normal veloc-
ity on the surface is zero according to Eq. (5.2.11)1 the magnitudes of the two
tangential velocities at the trailing edge must be equal to each other, that is,

(Vt)N = -(Vt)1 (5.2.17)

Introducing the flow tangency condition, Eq. (5.2.11), into Eq. (5.2.12a) and
noting that Tj = T, we get

N N
Atjgj+Tl3;j+V,osin(a-B;)=0, i=1,2,...,N (5.2.18)

j=1 j=1
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In terms of the unknowns, qj (j = 1, 2, ... , N) and r, the Kutta condition of
Eq. (5.2.17) and Eq. (5.2.18) for a system of algebraic equations which can be
written in the following form,

Ax=b

Here A is a square matrix of order (N + 1), that is

all a12 ... a1j

all a22 ... a2j

A= ail ai2 ... aij

a1N

a2N
a1,N+i
a2,N+1

aiN ai,N-I.1

(5.2.19)

(5.2.20)

aNl aN2 . . . aNj . . . aNN aN,N+l
aN+1,1 aN+1,2 . . . aN+l,j . . . aN+1,N aN+1,N+1

and 9 = (q,. .. , q,.. . , qN, r)T and b = (b,.... ) bi, .... bN, bN+l)T with denot-
ing the transpose. The elements of the coefficient matrix A follow from Eq.
(5.2.18)

_ n i = 1,2,...,N
Aa (5 2 21a)a3, j= 1 2 N . .

N

ai,N+l=EBB, i=1,2,...,N (5.2.21b)
j=1

A? are given by Eq. (5.2.13) and B i'j by Eq. (5.2.15). The relation in Eq. (5.2.20)
follows from the definition of x' where r is essentially xN+l.

To find aN+1,j (J = 1, ... , N) and aN+1,N+1 in the coefficient matrix A, we
use the Kutta condition and apply Eq. (5.2.17) to Eq. (5.2.12b) and, with r as
a constant, we write the resulting expression as

N N
A'jgj 01)

j=1 j=1
N N

ANjgj +TEBNj +V... cos(a-9N)
j=1 j=1

or as
N N

E(Atlj + AttNj)gj + r E(Blj + BNj)
j=1 j=1

= -V,,v cos(a - 01) - Vmm cos(a - 0N)

(5.2.22b)

so that,

aN+l,j = A t l j + A N j , j = 1, 2, ... , N (5.2.23a)
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N

aN+1,N+1 = T(Bzj + BNj) (5,2.23b)
j=1

where now Aij and ANj are computed from Eq. (5.2.14) and Bij and BNj from
Eq. (5.2.15).

The components of b again follow from Eqs. (5.2.18) and (5.2.21). From Eq.
(5.2.18),

bi = -V0,,sin(a - Os), i = 1, ... , N (5.2.24a)

and from Eq. (5.2.22),

bN+1 = -Voo cos(a - 61) - Voo cos(a - 9N) (5.2.24b)

With all the elements of aij determined from Eqs. (5.2.21) and (5.2.23) and
the elements of b' from Eq. (5.2.24), the solution of Eq. (5.2.19) can be obtained
by the Gaussian elimination method [7]. The elements of i are given by

N+1
i = N + 1.... ,1 (5.2.25)xi box-1) - 1:

aii j=i+1

where

a(k)xj

(k-1)
(k-1) aik (k-1)aij -

(k_1)
akj

akk

k = 1,..., N
j=k+1,...,N+1
i=k+1,...,N+1

0
aij = aij

(5.2.26a)

b(k= b(k-1) _ 2:2b (k-1)
a i (k-1) k

akk

5.3 Viscous Effects

k = 1,...,N

i=k+1,...,N+1 (5.2.26b)

b(o) = bi

The viscous effects can be introduced into the panel method by (1) replacing
the zero normal-velocity condition, Eq. (5.2.11), by a nonzero normal-velocity
condition V(x) and by (2) satisfying the Kutta condition, Eq. (5.2.17), not
on the surface of the airfoil trailing edge but at some distance away from the
surface.

Here it will be assumed that the nonzero normal-velocity distribution Vu(x)
along the surface of the airfoil and in its wake is known, together with the dis-
tance from the surface, say displacement thickness 6*, where the Kutta condi-
tion is to be satisfied. We now describe how these two new conditions can be
incorporated into the panel method.
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To include the nonzero normal-velocity condition into the solution procedure,
we write Eq. (5.2.18) as

N N
A qj + r B jqj + V. sin(a - 8z) = vztf(x,,,;) (5.3.1)

j=1 j=1

To satisfy the Kutta condition at the normal distance 6* from the surface
of the trailing edge, called the "off-body" Kutta condition, the total velocities
at the N-th and first off-body control points are again required to be equal.
Since the normal velocity component is not zero, we write the off-body Kutta
condition at distance fi* as

('V)N = -(V)1 (5.3.2)

where V is the total velocity at the two control points. The of body total
velocities are computed from

(V" 2 + (Vt 2 Vn VtV = )
V

) =V"
V

+Vt
V

= Vnsino + Vtcoso (5.3.3)

where V" and Vt are computed by expressions identical to those given by Eqs.
(5.2.12) at the two off-body control points, I = 1. I = N, that is,

N N
(V'), = A jjgj + T E B1 j + V sin(a - 81) (5.3.4a)

j=1 j=1

and where

N N
(Vt)1 = F Ajjgj +T E Bjj + Vo. cos(ct - 8j) (5.3.4b)

j=1 j=1

0 = tan-1[(V")I/(Vt)j] (5.3.5)

With Eqs. (5.3.4), the expression for the total velocity given by Eq. (5.3.3) can
be written as

N
V = (Alj -sinO+Ajj cos(6)gj

j=1
N

+ T E (B72 sin O + Bt cos ¢)
j=1

+ Vo. sin(o - 01) sin, + V... cos(a - 91) cos

or as

(5.3.6a)

N N
VA'Ijgj+TB'' +V,,. cos(a-8j-¢) (5.3.6b)

j=1 j=1

where
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A'I j = A7 . sin O + Al j cos O, B jj =Bjj sin O+Bjj cos q5 (5.3.7a)

I
[ ) In !1>L+1 +An - 8 - 8 ) Qi (O (8 7b)(5 3j j , Ijs n i cos j=

2Tr rl,j ]
. .

1 r1,j+1A i O 9 /3 O B I
1 (5 3 7c)Ij = n[s n( I - j) 1j - cos( i - j)

2rr r1,j J
. .

BIj = -At, , Btj = A7j

If we define

(5.3.7d)

8''=81+0

then it can be shown that Eq. (5.3.6b) can be written as

(5.3.8)

N N
V = E A'Ijgj + T E BIj + V. cos(a - BI) (5.3.9)

where

j=1 j=1

1o- 0 )13 - (8 8) IA' i1 [ (5 10a)33 1] cos - nIi = nis rja J
. .

) In
r1,1+1 +- 8 - 8 ) OBI = 1 [sin(0 (8' (5 3 10b)j j ,r Icos 1j]

27r ri,j
. .

The off-body Kutta condition can now be expressed in a form similar to
that of Eq. (5.2.22). Applying Eq. (5.3.2) to Eq. (5.3.9), we write the resulting
expression as

N N

j=1 j=1
N N

Aljgj+7- >Blj+V,,,, cos(a-0i)
j=1 j=1

or as

N N
(Aij + Avj)gj + r E(Blj + Bvj)
j=1 j=1

+V,, cos(a-0)+V,,,, cos(a-0'N) =0

(5.3.11a)

(5.3.11b)
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5.4 Flowfield Calculation in the Wake

As discussed in Section 4.2, the calculation of airfoils in incompressible viscous
flows can be accomplished without taking into account the wake effect; that is,
the viscous flow calculations are performed up to the trailing edge only and are
not extended into the wake. This procedure, which may be sufficient at low to
moderate angles of attack without flow separation, is not sufficient at higher
angles of attack, including post-stall flows. Additional changes are required in
the panel method (and in the boundary-layer method), as discussed in this
section.

The viscous wake calculations usually include a streamline issuing from the
trailing edge of the airfoil. The computation of the location of this streamline
is relatively simple if conformal mapping methods are used to determine the
velocity field. In this case, the stream function V) is usually known, and because
the airfoil surface is represented by ib(x, y) = const, the calculation of the wake
streamline amounts to tracing the curve after it leaves the airfoil. When the
flowfield is computed by a panel method or by a finite-difference method, how-
ever, the results are known only at discrete points in the field in terms of the
velocity components. In this case, the wake streamline is determined from the
numerical integration of

dy v

dx u
(5.4.1)

aft of the trailing edge with known initial conditions. However, some care is
necessary in selecting the initial conditions, especially when the trailing edge is
blunt. As a general rule, the initial direction of the streamline is given to a good
approximation by the bisector of the trailing-edge angle of the airfoil.

The panel method, which was modified only for an airfoil flow, now requires
similar modifications to include the viscous effects in the wake which behaves as
a distribution of sinks. It is divided into nwp panels along the dividing stream-
line with suction velocities or sink strengths q; = A vi (N + 1 < i < N + nwp),
distributed on the wake panels and determined from boundary-layer solutions
in the wake by Eq. (5.2.12). As before, off -body boundary points and "control"
points are introduced at the intersections of the 6* surface with the normals
through panel boundary points and panel control points, respectively. Sum-
mation of all the induced velocities, separately for the normal and tangential
components and together with the freestream velocity components, produces
(V")r and (Vt)I at I = 1, 2, ... , N - nwp. The wake velocity distribution, as
the airfoil velocity distribution, is computed on the b*-surface, rather than on
the dividing streamline.

The total velocities are again computed from Eq. (5.3.3), with (WI), and
(Vt)I from Eqs. (5.3.4), except that now
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N+nwp N
(Vn), _ Aljgj +T Brj +V,, sin(a - 01) (5.4.2a)

j=1 j=1

N+nwp N
(V')1= Aljgj + r E Bjj + 0j) (5.4.2b)

j=1 j=1

As before, the expression for the total velocity is written in the same form
as Eq. (5.3.6a), except that now

N+nwp

V = (Alj sin 0 + A1 cos c)qj
j=1

N (5.4.3)
(BIj sink+Blj cosh)+TF

j=1
+V, sin(a-0j)sin0+V,,,, cos(a-01)cosct

where AIj Bjj and Bj'j, are identical to those given by Eq. (5.3.7).
Similarly, Eq. (5.3.9) with A13 and B1j given by Eq. (5.3.10) is

N+nwp N

V A'Ijgj+T B'I1+Voocos(a-0'1) (5.4.4)
j=1 j=1

and the Kutta condition given by Eqs. (5.3.11a) becomes

N+nwp N
A'Njgj+TE BNj+V, cos(a-B'N)

j=1 j=1
N+nwp N
E Aljgj+rEBij+V... cos(a-0')
j=1 j=1

or

(5.4.5a)

N+nwp N
(Aij + A'' )qj + r E(Blj + BNj) (5.4.5b)

j=1 j=1
+V,,. cos(a-01)+VVcos(a-0'N) =0

In computing the wake velocity distribution at distances 6* from the wake
dividing streamline, the velocities in the upper wake are equal to those in the
lower wake for a symmetrical airfoil at zero angle of attack. This is, however, not
the case if the airfoil is asymmetric or if the airfoil is at an angle of incidence.
While the external velocities on the upper and lower surfaces at the trailing edge
are equal to each other, they are not equal to each other in the wake region since
the 8*-distribution in the upper wake is different from the 8*-distribution in the
lower wake.
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5.5 Computer Program

In this section we present a computer program for the panel method dis-
cussed in the previous sections. This program can be used interactively with
the boundary-layer program of Chapter 4 so that, as discussed in detail in [4]
and briefly in Section 5.6, more accurate solutions of inviscid and viscous flow
equations can be obtained by including the viscous effects in the panel method
of Section 5.2.

The computer program of the panel method has five subroutines and MAIN,
as described below.

5.5.1 MAIN

MAIN contains the input information which comprises (1) the number of pan-
els along the surface of the airfoil, NODTOT, and the number of panels in the
wake, NW. The code is arranged so that it can be used for inviscid flows with
and without viscous effects. For inviscid flows, NW is equal to zero. (2) The
next input data also comprises airfoil coordinates normalized with respect to
its chord c, s/c, y/c, [_m X(I),Y(I)J. If NW # 0, then it is necessary to spec-
ify the dimensionless displacement thickness 6*/c (-DLSP(I)), dimensionless
blowing velocity u,w/uoa (= VNP(I)) distributions on the airfoil, as well as the
wake coordinates XW(I), YW(I) of the dividing streamline, the dimensionless
displacement thickness distribution on the upper wake DELW(I,1) and lower
wake DELW(I,2) and velocity jump QW(I). It should be noted that all input
data for wake includes values at the trailing edge. The input also includes angle
of attack a (-ALPHA) and Mach number 1L1= (= FMACH).

The panel slopes are calculated from Eq. (5.2.2). The subroutine COEF is
called to compute A and bin Eq. (5.2.19) subroutine OBKUTA to calculate the
of body Kutta condition, subroutine GAUSS to compute i, subroutine VPDIS
to compute the velocity and pressure distributions, and subroutine CLCM to
compute the airfoil characteristics corresponding to lift (CL) and pitching mo-
ment (CM) coefficients.

5.5.2 Subroutine COEF

This subroutine calculates the elements aij of the coefficient matrix A from
Eqs. (5.2.21) and (5.2.23) and the elements of b from Eq. (5.2.24). We note that
N + 1 corresponds to KUTTA, and N to NODTOT

5.5.3 Subroutine OBKUTA

This subroutine is used to calculate the body-off Kutta condition.
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5.5.4 Subroutine GAUSS

The solution of Eq. (5.2.19) is obtained with the Gauss elimination method
described in Section 5.2.

5.5.5 Subroutine VPDIS

Once x is determined by subroutine GAUSS so that source strengths qi (i =
1,2 , ... , N) and vorticity r on the airfoil surface are known, the tangential
velocity component (Vt) at each control point can be calculated. Denoting qi
with Q(I) and r with GAMMA, the tangential velocities (Vt)i are obtained with
the help of Eq. (5.2.12b). This subroutine also determines the distributions of
the dimensionless pressure coefficient Cp (m CP) defined by

_ 1 - PooC 1a)(5 5p _
(1/2)PV.2

which in terms of velocities can be written as

. .

= 1-
(lit)2

(5.5.1b)

It is common to use panel methods for low Mach number flows by introduc-
ing compressibility corrections which depend upon the linearized form of the
compressibility velocity potential equation and are based on the assumption of
small perturbations and thin airfoils [5]. A simple correction formula for this
purpose is the Karman-Tsien formula which uses the "tangent gas" approxi-
mation to simplify the compressible potential-flow equations. According to this
formula, the effect of Mach number on the pressure coefficient is estimated from

,3+ [11100/(1 +)0)] (cp=/2)

and the corresponding velocities are computed from

(5.5.2)

V2=1+ g [1 - (1 + cgcP)1117] (5.5.3)

Here ep; denotes the incompressible pressure coefficient. ?Vl. the freestream
Mach number and

/3 = 1 - N1.2, c6 = ry
2

11Y12o<. c7 =
7

1, e8 = 27R1.2, 7 = 1.47-
(5.5.4)

In this subroutine we also include this capability in the HS panel method.
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5.5.6 Subroutine CLCM

The dimensionless pressure in the appropriate directions is integrated to com-
pute the aerodynamic force and the coefficients for lift (CL) and pitching mo-
ment (CM) about the leading edge of the airfoil.

5.5.7 Subroutine VPDWK

This subroutine calculates the total velocity and pressure coefficient at each
control point along the upper and lower wakes separately. The normal and
tangential components of the total velocities are computed from Eqs. (5.4.2a)
and (5.4.2b).
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Application of the Computer
Program for the CS and k-e:
Models to Other Higher-Order
Turbulence Models

6.0 Introduction

The computer program for CS and k-e models described in Chapter 3 can
also be used to obtain the solution of the boundary-layer equations with other
turbulence models, including flows with separation. Here we first consider non-
separating flows; then we discuss the application of the computer program of
Chapter 3 to k-w and SST models in Section 6.1 and to the SA model in Section
6.2. In Section 6.3 we present a brief description of the extension of the k-e model
to flows with separation.

6.1 Solution of the k-w and SST Model Equations

The solution of the k-w model equations with the computer program of Chap-
ter 3 is similar to the solution of the k-e model equations with wall functions.
Again the k-w model equations, Eqs. (1.2.18), (1.3.10), and (1.3.11), are ex-
pressed in terms of Falkner-Skan variables.

Since the SST model equations make use of the k-w model equations in the
inner region and the k-E model equations in the outer region we express them,
for the sake of compactness, in the following form in transformed variables

[(1+akEin)k']'-2mf'k+ml f k'+c+(f")2-Q*wk = x (flak - k'Lf ) (6.1.1)
FT, ax

((1 + assn )w ]' + 2(1 - Fl)v ,2 Rx kIw' + mlw' f - (m - 1) f'w
8w \ (6.1.2)

- 1aw2 + Rx(f")2 x flax - w exJ
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where w and k are dimensionless, normalized by x/ue and 1/ue, respectively.
Equations (6.1.1) and (6.1.2) are the equations used in the SST model. To
recover Wilcox's k-w model equations expressed in transformed variables, we
let F1 = 1 and take

ak = 0.5, a,,, = 0.5, Q = 0.075,
K2 (6.1.3)

*J9 =0.09, rc=0.41, ry=Q* - vW

In the SST model, the above constants are determined from the relation, Eq.
(1.4.10),

0=F101+(1-F1)02

are

where the constant 01 is determined from Eq. (1.4.11) and the constant '2
from Eq. (1.4.12). Ft is detemined from Eq. (1.4.6), where its arg1 given by Eq.
(1.4.7) can be written as

arg1 = min[max(A1, )2), A3]

In terms of transformed quantities, Al to A3 and CDk,,

A f= vrk- R.l

CD,,,, = max 2Qa 2
1
w

8k 20 =

0.09wy w77 0.09

500u 500
A2 = _y2w 77 W

A3 =
4AQu,2 k

CDk,,,y2

2k

(1.4.10)

(6.1.4)

(6.1.5a)

(6.1.5b)

(6.1.5c)

max( k'w',10-20)ij2

We first find the maximum of Al and A2 (say A4), then calculate the minimum
of A4 and A3 and thus determine arg1 and F1. Once F1 is calculated, then the
constants in Eqs. (6.1.1) and (6.1.2) are determined from the relation given by
Eq. (1.4.10). For example,

o',,,=0.5F1+0.856(1-F1)

,6 = 0.0750F1 + 0.0828(1 - Fl) etc.

Next we determine the eddy viscosity distribution across the boundary layer.
In terms of transformed variables, Eq. (1.4.1) can be written as (v = f1, al =
0.31)

Rx
k

a1w > (F2
+ - E,n w

(6.1.6)E = v y a 1 k
a1w < (F2

I'vIF2
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where

n HH = ueI.f"I vx

and F2 is determined from Eq. (1.4.2a) where arg2 is

arg2 = max(2A1, A2) (6.1.7)

In the SST model, once the constants are determined and the distribution
of eddy viscosity is calculated, then Eqs. (6.1.1) and (6.1.2) are solved together
with the continuity and momentum equations; a new argl, arg2, F1 and F2,
new constants and eddy viscosity distribution are determined. This procedure
is repeated until convergence.

It should be noted that, for F1 = 1, the whole region is the inner region gov-
erned by the k-w model equations. When F1 = 0, the whole region is governed
by the k-E model equations.

Before we discuss the solution procedure for the SST model equations, it is
useful to point out that the structure of the solution algorithm for the k-s model
equations with wall functions is almost identical to the one for the SST model
equations. This means all the Aj, Bj, C, matrices have the same structure; the
difference occurs in the definitions of the coefficients of the linearized momen-
tum, kinetic energy and rate-of-dissipation equations and in the definition of
the boundary condition for w which occurs in the fourth row of A0-matrix.

To describe the numerical method for the k-w model equations, we start
with the kinetic energy equation, Eq. (6.1.1). and write it in the same form as
Eq. (2.1.4) by defining Q and F by

Q = ,0`wk, F=O (6.1.8)

The definition of P remains the same. Next we write Eq. (6.1.2) in the form

(b3w')'+Pi.-Ql+E=x(f'ax -W,af) +(m-1)f'w-miw'f (6.1.9)

where

E = 2(l - Fl) j,,., R,x
k'w'

W

Q1 = 6W2

Pi = 'YR=(f")2

(6.1.10)

With
w'=g

Equation (6.1.9) can be written as

(b3q)'+P1-Q1+E=x(uaW --gaf)+(m-1)uw-mlgf
TX a:r

(6.1.11)



88 6. Application of the Computer Program for the CS and k-c Models

A comparison of Eq. (6.1.11) with Eq. (2.2.4) shows that if we let e = w for
notation purposes, then the coefficients of linearized specific dissipation rate
equation are very similar to those given by Eqs. (3.3.8) and (3.3.9). Except
for the definitions of Q and F in the kinetic energy-equation, Eq. (6.1.1), the
coefficients of the linearized kinetic energy equation are identical to those given
by Eqs. (3.3.4) and (3.3.5). Appropriate changes then can be easily made to
subroutine KECOEF in order to adopt the computer program of Chapter 3 to
solve the kinetic energy and specific dissipation rate kinetic energy equations
in the SST model. Of course, other changes also should be made, but these are
not discussed here. A good understanding of the computer program for the k-e
model equations is needed to make the necessary changes.

6.2 Solution of the SA Model Equations

The solution of the SA model equations with the computer program of Chapter 3
is similar to the solution of the k-e and SST model equations. As before we again
express the equations in transformed variables. Since this model involves the
solution of the continuity and momentum equations with the transport equation
for eddy viscosity, Eq. (1.5.4), and since the continuity and momentum equations
are already transformed we only need to transform Eq. (1.5.4). In terms of the
Falkner-Skan variables, this equation can be written as

x f' 8x - (vi m1(lt )'f = cbi(I - ft2)9*vi

+)2
rwlfw - K2 ft2)

77
2

(+t(yw)2

+ _[[(I + Vt )(vt ),), + Cb2[(Ut )')2]

We now define

(6.2.1)

g=(vt )', u=f', V=u' (6.2.2)

and write the transformed equations (2.1.3) and (6.2.1) as

f' = u (6.2.3a)

u' = v (6.2.3b)

(-t+) ' = g

\
(6.2.3c)

(bv)' + mifv +m(1 - u2) = x ,uax - vax) (6.2.3d)
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a[[(z±Yt ft2}S*Yi
r + 2

=- (cwt fw - -2 ft2) 2 `+t(V* )2 + "'19f
w

aYt - g -aflx u- J
ax ax
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(6.2.3e)

Using the numerical method discussed in Chapter 2, the above equations can
be expressed in the following linearized form (note vt - v+ for convenience)

bfj - bfj-1 - 2(6uj + buj_1) = (rl)j (6.2.4a)

buj - buj_l - 2, (bvj + bvj_l) = (r4)j_l (6.2.4b)

6vj+ - 2 (bgj + 6gj_1) = (r5)j-l (6.2.4c)

(sl)jSfj + (82)j6fj-1 + (83)j6uj + (S4)jSuj-1 + (s5)j6vj
624d

+ (S6)jbvj_i + (87)j5vj+ + (S8)jbvv 1 = (T2)j

(el)jbfj + (e2)j6fj-1 + (e3)j6uj + (e4)36u3_l + (e5)j6vj
+ (e6)jbvj_l + (e7)jbVj + (eg)jbvv 1 + (eg)jbgj (6.2.4e)

+ (elo)j5gj-1 = (r3)j

Here the coefficients of Eq. (6.2.4d) are

(191)j=&vj_1/2+ 21vj (6.2.5a)

(82)j = &vj-1/2 + 2l vj-1 (6.2.5b)

(s3)j = -(rn + &)uj (6.2.5c)

(34)j = -(m+a)uj_1 (6.2.5d)

(s5)j = bjhj l +
m1

fj +0.5x
(XL

J (6.2.5e)
2 aj-1/2

(86)j = -bj_1h- l + 21 fj_1 +0.5x MX (6.2.5f)
2 } j-1/2

(S7)j =
aavjhj 1

ab _1(s8)j = - av+) vj-lh3
j-1

(6.2.5g)

(6.2.5h)
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(T2)j = x
[1 \82c2 vj(80j-1/21l ax

j-1/2
-1/2 a[bjvj

-bj-lyj-1
+m1(fv)j-1/2+m(1-Uj-1/2)J (6.2.6)hj

where with Al, A2i A3 given by Eq. (2.3.9),

m1=m21, a=1A3x
8f n

= Al fj 1l2 + A2 fj11/+ A3 fn
(ax)j-1/2

- -2 j-1/2

(6.2.7a)

(6.2.7b)

The term a denotes the variation of b with respect to v+ and is given by

v+
= A, + v + 49f+

8

The coefficients of Eq. (6.2.4e) are

el = a9j-1/2 +
m219j

e2 a9j-1/2 +
ml

9j-1

1(aY+
e3

2x 8x j-1/2
e4=e3

eg = 1
8pr 8de

2 (9v)j 8v j
1 8pr _ 8de

e6 =
2 8v )j_1 ev j-1

e7 _-auj_1/2+(8U+)j+2 (8U'+)j-(8Uf)j

of,, 1 (LVI)jes = -auj-1/2 + 8v j-1 + 2 8U+ 8v+
- 1

e9 = 1 R`Vi
m1

(af
all,

2x x /2 +2 fj
+ 89 lj

(6.2.8)

(8f 1j m1
e10 8x + 2 fj-1 - (a!A)j-I

-1/2 9
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(/av+1J (!Lf) t(r3)j = Uj-1/2X ( ax'x / j-1/2 - ga-1/2x ax j-1/2
- mi(f g)1/2

(A. + pr " de)j-1/2

Here Pr and de denote the diffusion, production and destruction terms,
respectively; they are given by

fµ = (1 Cz) [(1 + v )gj - (1 + "j 1)9j-ll hj Q vj 1/2(gj - gj-i)hj

v+ 2 l
[2(g2+ Uw)2fv2+ R:IvIv+I

y+ 2
de

772 + lUw)2
[Gui fw -2 ft2

z 0 for wall boundary layers
(v) Rx [1 - ( )2] along the wake

The subscript on x, xte, denotes trailing edge and the term denotes the
variation of the production term with respect to v+; its expression depends
on how the variation is accounted for. In order for the solutions to converge
quadratically, the variation should be performed with respect to v+ on all the
variables in the production term which are functions of v+. () et al. are
given by

apr
= b, (1 ft.) v+ if v > 0

av ° - Rx{-v+}if v<0
ade

-
(V+)2

772 + (vt*»)2
If

a w

lev l a J

aim l+Cb2 9j 1Cb293 93-1
av+ -j a hj 2 a hj

aim 1 + cb2 9j9j=i l cb2 9j - 9j-1
(av+ hj 2 or hjj-i

a fls 1 +Cb2 '+V+ Cb2 3-1/2
ag a hj a hj

v+ 2
fee + v+-cbl (av+}

_2(77s + (vw.)2) I
a

+ cbl(1- ftz)
[_(L'+)2

b,W)2) av+ + av+ + RTlvl

2v+

1

+ 2(g2 + (yw)2) fv2
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Ode (y+)2 r afw _ cbi 0ft21 2i/ cbt l
av+ tj2 + (v* )2 Cwi &V+ K2 av+ + 772 + (v* )2 Cw, fw -

K2
.ft2/

In the above equations, f,,,, f,,,, ft2 and their variations with respect to v
and v+ are as follows

ft2 = Ct3 exp[-ct,(v+)2]

49A2 _
av+ - -2ct4 v+ ft2

f =w 1+ )Cw3g1

where

-1rr =
[772 + (L> )2]Y2 "+v IzI + K2( 2 + (vw)2]

fvz }

afw 9fw 891 a(rr)
av age a(rr) av

Of,,, = afw 8g1 a(rr)
av+ ag1 a(rr) av+

afw _
a91 - [91(1+cws916)]

a(gr)
-1+cu.2(6rr5-1)

K2(2 + *2) 162(112 + xw)
fv2j

z

Rxv+) 1 ifu>0
-1 if v < 0

a(rr)

av
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0(rr)
C9v+

+,2(772+v*w)
[vIvI+ 2(772+v2)f02

93

2 2

K2(772 + v2) IV+v'nx Ivl +
r.2(772 + vw) fv21

x [,2(7)2+YU2) f9 v+
+v'-R-.

IvI+,2(772+v,)fv2

The boundary conditions are

77 =0, f u=v+=0
77=77e, u=1, v+= e

In linearized form

(6.2.9)

Suo = bfo = bvo = 0
(6.2.10)

Su,J = 6V j+ = 0

Next, as before, Eqs. (6.2.4) and (6.2.6) are written in matrix-vector form,
with five-dimensional vectors bj and rj for each value of j defined by

Sfj
(r" j6uj (r2)j

¢j = 6Vj , rj = (r3)j (6.2.11)

6'j (r4)j

6gj (r5)j

The 5 x 5 matrices are

Bj =

Aj =

1 0 0 0 0
0 1 0 0 0

Ao= 0 0 0 1 0

0 -1 -2 0 0

0 0 0 -1 -2
-1 _h0 0 0

(82)j (S4)j (S6)j (S8)j 0

(e2)j (e4)j (e6)j (es)j (eio)j ,
1 < j < J

0 0 0 0 0

0 0 0 0 0

1 -h3/2 0 0 0

(81)j (S3)j (S5)j (s7)j 0

(el)j (e3)j (e5)j (e7)j (e9)j

0 -1 -hj+1/2 0 0

0 0 0 -1 -hj+112

(6.2.12a)

(6.2.12b)

, 1<j<J-1 (6.2.12c)

]-I
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Ci =

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 , 0<j<J-1 (6.2.12d)
0 1 -hh+z/2 0 0
0 0 0 1 -hh+1/2

1 -hJ/2 0 0 0

(si)J (33)J (35)J (37)J 0

AJ = (el)j (33)J (35)J (87)J (s9)J (6.2.12e)

0 1 0 0 0
0 0 0 1 0

6.3 Extension of k-E Model to Flows with Separation

The extension of the k-E model with low Reynolds number effects to flows with
separation is similar to the extension of the CS-model discussed in Chapter 4. We
start with the wall boundary conditions given by Eq. (2.1.13) and edge boundary
conditions given by Eq. (2.1.4). As in Section 4.0 we use the transformation given
by Eq. (4.0.3) and again write the continuity and momentum equations in the
form given in Eq. (4.0.4) and express the kinetic energy and rate of dissipation
equations in a form similar to those given by Eqs. (2.1.4) and (2.1.5). The
difference between Eqs. (2.1.4), (2.1.5) and the new ones are due to the use of a
different transformation. The ordering of the eight first-order equations is done
as described below.

For j = 0, with the first four equations corresponding to the wall boundary
conditions, we write

fo = 0 (6.3.1a)

uo = 0 (6.3.1b)

ko = 0 (6.3.1c)

Eo = 0 (6.3.1d)

w'=0 (6.3.1e)

f' = u (6.3.1f)

U! = v (6.3.1g)

Momentum Eq. (4.1.2c) (6.3.1h)

For1<j<J-1
k' = s (6.3.2a)

p' = q (6.3.2b)

kinetic energy, similar to Eq. (2.2.3) (6.3.2c)
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rate of dissipation equation, similar to Eq. (2.2.4) (6.3.2d)

W, = 0 (6.3.2e)

f' = u (6.3.2f)

u' = v (6.3.2g)

Momentum Eq. (4.1.2c) (6.3.3h)

For j = J
k'=s (6.3.4a)

p' = q (6.3.4b)

kinetic energy, similar to Eq. (2.2.3) (6.3.4c)

rate of dissipation equation, similar to Eq. (2.2.4) (6.3.4d)

uJ = wJ (6.3.4e)

of j + (1 - \r7J)wj = 9i (6.3.4f)

xwJ(kj)+EJ=0 (6.3.4g)

where

` 2

wJ(xdx -EJJ+Ce2kJ =0
J

(6.3.4h)

3
k = kup, E = s u°

x
(6.3.5)

Next we write the difference approximations to the above equations with
FLARE approximation applied to the momentum equation. The resulting non-
linear algebraic system is linearized with Newton's method. The solution of the
linear system is written in the form of Eq. (2.3.15) and is solved by an algorithm
similar to that given by subroutine KESOLV, subsection 3.5.5.





Companion
Computer Programs

7.0 Introduction

The accompanying CD-ROM contains four computer programs (see Section
7.5). The first one is for the CS and k-e models described in Chapter 3. It is
applicable only for turbulent flows. The second computer program is an inverse
boundary-layer method applicable to both laminar and turbulent flows, with
and without flow separation, as described in Chapter 4. It employs the CS
model. The third computer program is the Hess and Smith panel method for
computing inviscid flow around airfoils. It includes viscous effects, so that it
can be coupled to the inverse boundary-layer method of Chapter 4 to compute
flows around airfoils in an interactive manner as shown in the fourth computer
program in the accompanying CD-ROM.

In this chapter we present sample calculations for each computer program.
Section 7.1 contains five test cases for the k-e model. They correspond to zero
pressure gradient, favorable and adverse pressure gradient flows.

Section 7.2 contains sample calculations for the panel method of Chapter 5.
Inviscid flow calculations corresponding to the NACA 0012 airfoil are performed
for several angles of attack to predict the performance characteristics of the
airfoil as well as the external velocity distribution on the airfoil and in the
wake.

Section 7.3 presents boundary-layer calculations for both laminar and turbu-
lent flows with transition location specified. The external velocity distribution
is obtained from the panel method. Typical boundary-layer parameters, such as
dimensionless displacement thickness, b"/c, and local skin friction coefficient,
cf, are calculated as a function of dimensionless chordwise distance x/c.

Section 7.4 discusses the application of the inviscid and inverse boundary
layer methods to the prediction of lift and drag coefficients of the NACA 0012
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airfoil discussed in the previous two sections. Both computer programs are cou-
pled and special arrangements are introduced in order to calculate the airfoil
characteristics at high angles of attack, including stall.

7.1 Test Cases for the CS and k-e Models

There are five test cases for this computer program. They all use the notation
employed in the Stanford Conference in 1968 [1]. For example, flow 1400 cor-
responds to a zero-pressure gradient flow. Flow 2100 has favorable, nearly-zero
and adverse-pressure-gradient flow. All calculations are performed for Model =
1, 2, -1 and -2 (see subroutine 3.1.2). The predictions of four models with
experimental data are given for c f, 6* and R© as a function of x in the accom-
panying CD-ROM.

A summary of the freestream and initial conditions for each flow are sum-
marized below.

1. Flow 1400: Zero-Pressure-Gradient Flow
NXT = 61, ue/uref = 1.0, uref = 33 ms-1,
c f = 3.17 x 10-3, Re = 3856, v = 1.5 x 10-5 m2s-1, REF = 1

2. Flow 2100: Favorable, Zero and Adverse-Pressure-Gradient Flow
NXT = 81, uCef = 100 ft s-1,
cf = 3.10 x 10-3, Re = 3770, v = 1.6 x 10-4 ft2s-1, REF = 1

3. Flow 1300: Accelerating Flow
NXT = 81, uref = 100ms-1,
cf=4.61x10-3, Re= 1010,v=1.54x10-5m2s 1,REF=1

4. Flow 2400: Relaxing Flow
NXT = 81, uc/uref = tabulated values, uref = 1,
cf = 1.42 x 10-3, Re = 27,391, v = 1.55 x 10-4 m2s-1, REF = 1

5. Flow 2900: Boundary Layer Flow in a Diverging Channel
NXT = 81, ue/uref = tabulated values, uref = 1,
c f = 1.77 x 10-3, Re = 22,449.2, v = 1.57 x 10-4 ft2s'1, REF = 1

The input and output for each flow are given in tabular and graphical form
in the accompanying CD-ROM. Figure 7.1 shows a comparison between the cal-
culated results with experimental data for flow 1400 and Fig. 7.2 for flow 2100.
The calculations for Model = 1, 2, -1 and -2 correspond to low Reynolds num-
ber flows with Huang-Lin and Chien models, zonal method and high Reynolds
number flows, respectively.
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0 o Bxp. dew
Baeas.G Xff Model

- CTIMiMMade1
--- CS-X8 Zare[bfed.l
- HR-XH Model

x.mmu

Fig. 7.1. Comparison of calculated results with the experimental data for flow 1400

7.2 Sample Calculations for the Panel Method
Without Viscous Effects

This test case is for a NACA 0012 symmetrical airfoil, with a maximum thick-
ness of 0.12c: the pressure and external velocity distributions on its upper and
lower surfaces are computed and its section characteristics determined using
the panel method. Table 7.1, also given in the accompanying CD-ROM, de-
fines the airfoil coordinates for 184 points in tabular form. This corresponds to
NODTOT = 183. Note that the x/c and y/c values are read in starting on the
lower surface trailing edge (TE), traversing clockwise around the nose of the air-
foil to the upper surface TE. The calculations are performed for angles of attack
of a = 0°, 8° and 16°. In identifying the upper and lower surfaces of the airfoil,
it is necessary to determine the x/c locations where ue(- ue/u,,,) = 0. This lo-
cation, called the stagnation point, is easy to determine since the ue values are
positive for the upper surface and negative for the lower surface. In general it is
sufficient to take the stagnation point to be the x/c location where the change
of sign ue occurs. For higher accuracy, if desired, the stagnation point can be
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62000
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50 is 20 2s 70

X,0

Fig. 7.2. Comparison of calculated results with the experimental data for flow 2100

determined by interpolation between the negative and positive values of 4be as
a function of the surface distance along the airfoil.

Figures 7.3 and 7.4 show the variation of the pressure coefficient Cp and
external velocity "ue on the lower and upper surfaces of the airfoil as a function of
x/c at three angles of attack starting from 0°. As expected, the results show that
the pressure and external velocity distributions on both surfaces are identical to
each other at a = 0°. With increasing incidence angle, the pressure peak moves
upstream on the upper surface and downstream on the lower surface. In the
former case, with the pressure peak increasing in magnitude with increasing a,
the extent of the flow deceleration increases on the upper surface and, we shall
see in the following section, increases the region of flow separation on the airfoil.
On the lower surface, on the other hand. the region of accelerated flow increases
with incidence angle which leads to regions of more laminar flow than turbulent
flow.

These results indicate that the use of inviscid flow theory becomes increas-
ingly less accurate at higher angles of attack since, due to flow separation, the
viscous effects neglected in the panel method become increasingly more im-
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Table 7.1. Tabulated coordinates for the NACA 0012 airfoil

1.000000 .996060 .991140 .984290 .975520 .964880
.952400 .938140 .922150 .904490 .885240 .864460

.842250 .818680 .793860 .767880 .740840 .712850

.684010 .654460 .624290 .593630 .562610 .531330

.499930 .482486 .465056 .447665 .430339 .413103

.395971 .378964 .362108 .345420 .328917 .312618

.296550 .280736 .265190 .249928 .234965 .220333

.206040 .192102 .178538 .165366 .152604 .140264

.128362 .116914 .105932 .095430 .085421 .075921

.066938 .058480 .050557 .043180 .036365 .030116

.028319 .026575 .024883 .023245 .021660 .020130

.018656 .017237 .015874 .014568 .013316 .012120

.010980 .009895 .008867 .007894 .006977 .006116

.005310 .004561 .003868 .003232 .002653 .002132

.001667 .001260 .000910 .000617 .000380 .000201

.000078 .000012 .000012 .000078 .000201 .000380

.000617 .000910 .001260 .001667 .002132 .002653

.003232 .003868 .004561 .005310 .006116 .006977

.007894 .008867 .009895 .010980 .012120 .013316

.014568 .015874 .017237 .018656 .020130 .021660

.023245 .024883 .026575 .028319 .030116 .036366

.043183 .050557 .058480 .066938 .075922 .085424

.095432 .105933 .116916 .128364 .140266 .152607

.165370 .178541 .192106 .206043 .220334 .234966

.249926 .265191 .280738 .296555 .312622 .328918

.345423 .362109 .378968 .395977 .413111 .430347

.447669 .465060 .482490 .499930 .531330 .562610

.593630 .624290 .654460 .684010 .712850 .740840

.767880 .793860 .818680 .842250 .864460 .885240

.904490 .922150 .938140 .952400 .964880 .975520

.984290 .991130 .996060 1.000000

.000000 -.000570 -.001290 -.002270 -.003520 -.005020

-.006760 -.008700 -.010850 -.013170 -.015650 -.018260

-.020990 -.023800 -.026670 -.029590 -.032500 -.035350

-.038180 -.040920 -.043590 -.046150 -.048590 -.050860

-.052940 -.054006 -.055004 -.055926 -.056766 -.057516

-.058179 -.058748 -.059216 -.059580 -.059836 -.059980

-.060015 -.059934 -.059734 -.059412 -.058965 -.058401

-.057710 -.056893 -.055952 -.054892 -.053715 -.052415
-.050992 -.049452 -.047799 -.046040 -.044167 -.042199

-.040134 -.037974 -.035719 -.033376 -.030954 -.028454

-.027674 -.026887 -.026093 -.025292 -.024484 -.023670

-.022849 -.022023 -.021192 -.020355 -.019512 -.018663

-.017809 -.016949 -.016084 -.015213 -.014336 -.013454

-.012567 -.011676 -.010783 -.009883 -.008977 -.008066

-.007149 -.006228 -.005303 -.004373 -.003439 -.002503

-.001565 -.000626 .000626 .001565 .002503 .003439

.004373 .005303 .006228 .007149 .008066 .008977

.009883 .010783 .011676 .012567 .013454 .014336
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Table 7.1. (continued)

.015213 .016084 .016949 .017809 .018663 .019512

.020355 .021192 .022023 .022849 .023670 .024484

.025292 .026093 .026887 .027674 .028454 .030954

.033376 .035717 .037972 .040132 .042198 .044170

.046040 .047803 .049453 .050994 .052414 .053714

.054894 .055953 .056895 .057710 .058398 .058963

.059409 .059734 .059934 .060015 .059980 .059834

.059580 .059217 .058748 .058177 .057513 .056763

.055926 .055003 .054006 .052940 .050860 .048590

.046150 .043590 .040920 .038180 .035350 .032500

.029590 .026670 .023800 .020990 .018260 .015650

.013170 .010850 .008700 .006760 .005020 .003520

.002270 .001290 .000570 .000000

portant. This is indicated in Fig. 7.5, which shows the calculated inviscid lift
coefficients for this airfoil together with the experimental data reported in [2] for
chord Reynolds numbers, Rc (- uc c/v), of 3 x 106 and 6 x 106. As can be seen,
the calculated inviscid flow results agree reasonably well with the measured val-
ues at low and modest angles of attack. With increasing angle of attack, the lift
coefficient reaches a maximum, called the maximum lift coefficient, (C2)m., at
an angle of attack, a, called the stall angle. After this angle of attack, while the
experimental lift coefficients begin to decrease with increasing angle of attack,
the calculated lift coefficient, independent of Reynolds number, continuously
increases with increasing a. The lift curve slope is not influenced by R. at low
to modest angles of attack, but at higher angles of attack it is influenced by R,,
thus making (cg)1 dependent upon R.

Fig. 7.3. Distribution of pres-
sure coefficient on the NACA
0012 airfoil at a = 0°, 8° and
16°.
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Fig. 7.4. Distribution of di-
mensionless external velocity
on the NACA 0012 airfoil at
a = 0°, 8° and 16°.

Fig. 7.5. Comparison of cal-
culated (solid lines) and ex-
perimental (symbols) lift coef-
ficients for the NACA 0012 air-
foil.

7.3 Sample Calculations for the Inverse Boundary-Layer
Program

This test case is again for the airfoil considered in the prevoius section. The
boundary-layer calculations are performed only for the upper surface, for lami-
nar and turbulent flows with transition location specified, at angles of attack of
a = 40, 8°, 120, 140, 16° and 17°. The airfoil coordinates, x/c, y/c are used to
calculate the surface distance. The calculations are done for a chord Reynolds
number of 4 x 106.

In practice, it is also necessary to calculate the transition location. Two
practical methods for this purpose are the Michel method and the en-method
described, for example, in [3, 4]. The former is based on a empirical correlation
between two Reynolds numbers based on momentum thickness, R9, and surface
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distance R. It is given by

} / 22,4001 0.46"per=1.174 1+ )Rxtr
Rx,

where

(7.3.1)

Re=
u", uexRx=-

The accuracy of this method is comparable to the en-method at high Reynolds
number flows on airfoils. The e'-method, which is based on the linear stability
theory, is, however, a general method applicable to incompressible and compress-
ible two- and three-dimensional flows. As discussed in [3, 4], for two-dimensional
flows at low Reynolds numbers, transition can occur inside separation bubble
and can be predicted only by the en-method. For details, see [3, 4].

While the boundary-layer calculations with this program can be performed
for standard and inverse problems, here they are performed for the standard
problem, postponing the application of the inverse method to the following
section.

The accompanying CD-ROM, under Section 7.3, presents the input and
output of the calculations. Here we present a sample of them. The format of
the inverse boundary-layer program is similar to the format of the interactive
code and is discussed in the following section. Figure 7.6 shows the distribution
of local skin friction coefficient, c f, and dimensionless displacement thickness,
6*/c, for several angles of attack. These results were obtained for the external
velocity distribution provided by the panel method without viscous corrections.
The boundary-layer calculations were performed in the inverse mode and several
sweeps on the airfoil and in its wake were made. As can be seen, at low or
medium angles of attack, there is no flow separation on the airfoil corresponding
to the vanishing of cf or v,,,. At higher angles, however, as expected, the flow
separates near the trailing edge and moves forward with increasing angle of

Fig. 7.6. Variation of (a) c1 and (b) 6'/c on the NACA 0012 airfoil and its wake at several
angles of attack for R. = 4 x 106.
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attack. It is interesting to note that at a = 16°, the flow separation occurs at
x/c = 0.6 and at a = 17° at x/c = 0.37. As we shall see in the next section,
interaction between inviscid and viscous results reduces the flow separation on
the airfoil considerably. The results also show that, again as expected, transition
location occurs very close to the stagnation point at higher angles of attack.

7.4 Sample Calculations with the Interactive
Boundary-Layer Program

A combination of an inviscid method with a boundary-layer method allows
the inviscid and viscous flow calculations to be performed in an interactive
way. Using an inverse boundary-layer method allows similar calculations to be
performed for flows including separation.

Before we present sample calculations with the interactive boundary-layer
program, it is first useful to discuss the computational strategy in this program.
For a specified angle of attack a and airfoil geometry (x/c, y/c), the calculations
are first initiated with the panel method in order to calculate the external
velocity distribution and the lift coefficient. The external velocity distribution is
then input to the inverse boundary-layer program in which, after identifying the
airfoil stagnation point, the calculations are performed separately for the upper
and lower surfaces of the airfoil and in the wake. The calculations involve several
sweeps on the airfoil, one sweep corresponding to boundary-layer calculations
which start at the stagnation point and end at some specified c-location in
the wake. In sweeping through the boundary-layer, the right-hand side of Eq.
(4.0.6) uses the values of 5* from the previous sweep when j > i and the values
from the current sweep when j < i. Thus, at each e-station the right-hand side
of Eq. (4.0.6) provides a prescribed value for the linear combination of
and 5*(ci). After convergence of the Newton iterations at each station, the
summations of Eq. (4.0.6) are updated for the next -station. Note that the
Hilbert integral coefficients Cij discussed in subsection 4.2.3 are computed and
stored at the start of the boundary-layer calculations.

At the completion of the boundary-layer sweeps on the airfoil and in the
wake, boundary-layer solutions are available on the airfoil and in the wake. The
blowing velocity on the airfoil viw [see Eqs. (5.1.8) and (5.1.9)] and a jump in
the normal velocity component dvi in the wake (see Eq. (5.1.10)], for which an
incompressible flow are

d
Vi. = dx ('uit55 ) (7.4.2a)

d dQvi =
dx (uiusu) + dx (u:t5t) (7.4.2b)

are calculated and are used to obtain a new distribution of external velocity
uei(x) from the inviscid method. As before, the onset of transition location is
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determined from the laminar flow solutions and the boundary-layer calculations
are performed on the upper and lower surfaces of the airfoil and in the wake by
making several specified sweeps. This sequence of calculations is repeated for
the whole flowfield until convergence is achieved.

The format of the input to this interactive boundary-layer (inviscid/viscous)
program is similar to the input required for the inverse boundary-layer described
in subsection 4.2.1. The code is arranged in such a way that it is only necessary
to read in the airfoil geometry, the angles of attack to be calculated, Mach
number and chord Reynolds number. The rest of the input is done internally.

We now present sample calculations for the NACA 0012 airfoil for Reynolds
numbers corresponding to 3 x 106. In this case, transition locations are calcu-
lated with Michel's formula. The calculations and the results are given in the
accompanying CD-ROM.

Lift, cl, drag, cd, pitching moment, cm, coefficients for R. = 3 x 106 are shown
in Table 7.2 for a = 2° to 16.5° and M,,, = 0.1 together with lift coefficients
calculated with the panel method. As can be seen, while at low and modest
angles of attack, the inviscid lift, cll,,, and viscous lift, cl,,, coefficients agree
reasonably well, at higher angles of attack, as expected, they differ from each
other.

Figure 7.7 shows a comparison between the calculated and experimental
values of lift and drag coefficients. The agreement is good and the stall angle is
reasonably well predicted. For additional comparisons with experimental data,
see [3].

To describe the input and output of the computer program, we now present
additional calculations for the same airfoil, this time for R, = 4 x 106.

The input to the IBL program (Fig. 7.8) includes airfoil geometry and/or
the number of angles of attack (N), the freestream Mach number, M , and

Table 7.2. Results for the NACA 0012 airfoil ar R. = 3 x 106, M°° = 0.1.

a Clin Clvi Cd Cml° Cmvi

2.00000 0.24261 0.21099 0.00586 -0.06326 -0.04971

4.00000 0.48508 0.42567 0.00610 -0.12622 -0.10099

6.00000 0.72727 0.64337 0.00749 -0.18857 -0.15325

8.00000 0.96908 0.86241 0.00955 -0.25003 -0.20621
10.00000 1.21041 1.07109 0.01178 -0.31029 -0.25434

12.00000 1.45120 1.26253 0.01498 -0.36907 -0.29536
13.00000 1.57138 1.34396 0.01658 -0.39782 -0.31005

14.00000 1.69142 1.40836 0.01892 -0.42609 -0.31856

15.00000 1.81133 1.44754 0.02181 -0.45385 -0.31873

15.50000 1.93110 1.45653 0.02366 -0.48107 -0.31636

16.00000 1.99094 1.45811 0.02592 -0.49446 -0.31261
16.50000 1.44226 0.02837 -0.30540
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0.040

l

a
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Cl

(a) (b)

Fig. 7.7. Comparison between calculated (solid lines) and experimental values (symbols)
of. (a) ct vs a, and (b) cd vs cr. NACA 0012 airfoil at R. = 3 x 10".

the Reynolds number, R. The input file in the sample calculations contains the
NACA 0012 airfoil coordinates which are specified by choosing either M1M4
or M1M4INP. The first choice contains only the airfoil geometry and does not
contain either the angles of attack, Mach number or Reynolds number. The
second choice contains airfoil geometry, angles of attack, Mach number and
Reynolds number. If the first one is chosen, then it is necessary to specify N,
MM and R. For example if N = 5, then the angles of attack can be, say, 0°,
4°, 6°, 8° and 9°. Of course, these angles of attack as well as N can be changed.
Then the calculations are started by specifying Mc,, and R. Figure 7.8 shows
a sequence of the screens used for input.

r* Edt
IrvA Fle 8L Output

I

ParrelOutputII Output Summary

Numbs of ante at attack 1' Mach Number Reynolds Number f

1 stAttack Angte 0.0

t
ang e e auaek Ii Mach Nmber

istAttackArgle 0.0

Fig. 7.8. Input format.
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.JJ

.11

File name:

files of typei Next File (".tx@

r Open as read-only

r Open

Cancel

JJJ
BLOu1put 0:1Panel_0L Text1n00128L0ut.txl

Output Summary " 0:1Panel_IBL_Text1n0012SummaryOut.hd

Ql ReynoldoNumber 13000000

He Edit Computation

Input File iL
Panel OtkwtFD:\PaneUBL-Teid\nOM2PanelOtd.txt

Number of angle of attack 114 Mach Ntaiiber

l st angle of attack r

2th angle of attack 14

3th ogle of attack

4th angle of attack la
5th angle of attack 10

0th angle of attack 12

7th angle of attack 13

0th angle of attack 14

91h angle of attack 15

101h angle of attack 15.5

11thangeofattack 16

121h angle of attack
as

13th angle of attack 17

14th angle of attack 17.5

Fig. 7.8. (continued)

Figure 7.9 shows the screen for starting the calculations and Fig. 7.10 shows
the screen for the format of the output and the variation of lift coefficient with
angle of attack. Other plots to include cd vs a, c11 vs a and cd vs cl can also be
obtained as shown in Fig. 7.11. Finally, the screen in Fig. 7.12 shows that one
can copy the plot to the Microsoft Word file.
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Fde Edit i Computation

InpU fqk Scnr,r7Ut. ra BLOutpul D:1Paxl IBL Text1n00128L0u11xt

Panel DNput p_1Panel-IBL Text\nOO12Panequt.txl OWlxd Sunoary D:1Pae1_IBL Tet1n0012SurrmaryOut.txl

Number of angle of attack 14 Mach Number 0.1 Re ids Number 3000000

Id angle of attack

2th angle of attack 1-

3th angle of attack J6

4th angle of attack f 6 _

5ttangleol attack 10

6th angle of attack 12

7th angle of attack 13

8th angle of attack 14

9th angled attack 15

10th angled attack 15.5
0.10l

11th

angle

of

eltadk 16
0.05

12th angle of attack 165 > oA0
13th angie of attack 17 -0.05
14th angle of attack 17.5 .0.10

x

Fig. 7.9. Beginning of calculations.

Rte Edk Computatbn f Slww

Imu Pie
Draw angle vs Cd

Pond 0utpuf 0 Panel_ Draw angle vs Cm

Number of angle of a6ac Draw Cl vs Cd

ld angle c attack r Oraw Cl vs Cm

2th angle of attack r-
3th angle of attack re-
4th angle of attack r- 1.6

5th engie of attack 10

6th angle of attack 12

7th angle of attack 13
1.4

6th angle of attack 14

9th agile of attack 15 1.2

10th angle of attack 15.5

11th angle of aback 16

12th angle of attack 16.5

13th angle of attack 17 0

1.0

0.6

OR

OA

02

2

01

rant to

BL Output D:1Panel-IBLTOM1nO012BLAul.lxl

OutputSumtary D:tPanelIBL_Te0xn0012Summat,Ou1tct

Reyrwlds Number 3000000

Mach - 0.1 Reynolds 300000

4 6 6 10 12

Angle of Made

14 16

1X1

18,

Fig. 7.10. Output format.
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0030
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0010
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0 10 12 n0
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.0.03
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470
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420

435

1 1 1 r
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Fig. 7.11. Calculated results for the NACA 0012 airfoil, R = 4 x 106, Ma, = 0.1. (a) Cd
vs a, (b) Cm VS or.

wFie 1Edt computation Sho ..

Panel Output D:\Panel IBLText\nO012ParrelOut.txt

Nu nber of angle of attack 13 Mach Number 0.1

15t angle of attack

2th angle of attack 4-
4th angle of attack

4th angle of
attack rr- 0.035

5th angle of attack 10

6th angle of attack 12

le of attack71h an 13g 0.030

8th angle of attack 1 d

9th angle of attack 15

1 Olh angle of attack 15.5 0.025

llthangleofattack 16

12th angle of attack 16.5

1301 angle of attack 17 0.020

0.015

0100.

0.0D5

0.2

BLOutpta D:\Panel IBL Text\n0012BL0uttxt

Output Siamrary D:\Panel IBL Text\n0012Summatt0uttxt

Reynodu Number 13000000

each 0.1 Reynolds 3000000

0.60.4 0.8 1.0

ci

12 1.4 1.6

Fig. 7.12. Instruction for copying plots,
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Fig. 7.13. Comparison of results between the inverse boundary-layrr method and the
interactive method. (a) q vs a, (b) cd vs a, (c) cf vs x/c, (d) b'/c vs x/c.

Figure 7.13 shows a comparison between the results of the previous section
where the inviscid flow calculations did not include viscous effects, and the
results of this section which include viscous effects in the panel method. Figures
7.13a and 7.13b show the strong influence of viscosity on c1 and cd. Figure
7.13c shows that with interaction, the extent of flow separation on the airfoil
decreases. For example at ce = 17°, without viscous effects in the panel method,
the flow separation occurs around x/c - 0.37. With interaction, it occurs at
x/c = 0.62. Similarly, with interaction, the peak in 6*/c (Fig. 7.13d) decreases
and is the reason for less flow separation on the airfoil.
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7.5 Computer Programs in the CD-ROM

The CD-ROM accompanying this book contains both source and executable
computer programs and test cases. They are listed below.

CS and k-e Program

Compile kemodel. for (Boundary-Layer Method with k-e Model) and generate
PC executable file kemodel. exe.

Test Case 1300:

a) Huang-Lin Model
Input data: 1300_linp.txt

Output data:1300_1out.txt or 1300_loutS.pdf

b) Chien Model
Input data: 1300_2inp.txt

Output data:1300_2out.txt or 1300_2outS.pdf

c) CS-KE Zonal Model
Input data: 1300_mlinp.txt

Output data:1300_mlout.txt or 1300 mloutS.pdf

d) Standard High-Reynolds Number KE Model
Input data: 1300_m2inp.txt

Output data: 1300m2out.txt or 1300 m2outS.pdf

Results Summary: 1300_out.pdf

Test Case 1400:

a) Huang-Lin Model
Input data: 1400_linp.txt

Output data:1400_lout.txt or 1400_loutS.pdf

b) Chien Model
Input data: 1400_2inp.txt

Output data: 1400_2out. txt or 1400_2outS.pdf
c) CS-KE Zonal Model

Input data: 1400 miinp.txt

Output data: 1400mlout.txt or 1400 mloutS.pdf
d) Standard High-Reynolds Number KE Model

Input data. 1400_m2lnp.txt

Output data: 1400m2out.txt or 1400 m2outS.pdf

Results Summary: 1400_out. pdf
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Test Case 2100:

a) Huang-Lin Model
Input data: 2100_linp.txt

Output data:2100_lout.txt or 2100_loutS.pdf
b) Chien Model

Input data: 2100_2inp.txt

Output data: 2100_2out.txt or2100_2outS.pdf

c) CS-KE Zonal Model
Input data: 2100mlinp.txt
Output data: 2100_mlout.txt or 2100_mloutS.pdf

d) Standard High-Reynolds Number KE Model
Input data: 2100_m2inp.txt

Output data: 2100_m2out. txt or 2100_m2outS. pdf

Results Summary: 2100_out.pdf

Test Case 2400:

a) Huang-Lin Model
Input data: 2400_ iinp . txt
Output data: 2400_lout.txt or 2400_loutS.pdf

b) Chien Model
Input data: 2400_2inp.txt

Output data: 2400_2out. txt or 2400_2outS. pdf
c) CS-KE Zonal Model

Input data: 2400_mlinp.txt

Output data: 2400_miout.txt or 2400_mloutS.pdf
d) Standard High-Reynolds Number KE Model

Input data: 2400_m2inp.txt

Output data: 2400_m2out.txt or 2400_m2outS.pdf

Results Summary: 2400_out.pdf

Test Case 2900:

a) Huang-Lin Model
Input data: 2900_iinp.txt

Output data: 2900_lout.txt or 2900_ioutS.pdf
b) Chien Model

Input data: 2900_2inp.txt

Output data: 2900_2out.txt or2900_2outS.pdf

c) CS-KE Zonal Model
Input data: 2900 mlinp.txt

Output data: 2900mlout.txt or 2900_mloutS.pdf

113
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d) Standard High-Reynolds Number KE Model
Input data: 2900 m2inp.txt
Output data: 2900_m2out. txt or 2900_m2outS. pdf

Results Summary: 2900_out.pdf

Panel Method (HSPM)

Compile pane13. for and generate PC executable file panel3. exe.

Test Cases NACA0012 Airfoil, M = 0.1

1. a = 0° angle of attack.
Input file:
Output file:

deg_00. inp
deg_00. out and deg_00. bdf

2. a = 8° angle of attack.

Input file:
Output file:

deg_08. inp
deg_08.out and deg_08.bdf

3. a = 16° angle of attack.
Input file: deg_ 16 . inp
Output file: deg_16.out and deg_16.bdf

Inverse Boundary-Layer Method (IBLM)

Compile ibim.for (Inverse Boundary-Layer Method) and generate PC exe-
cutable file iblm.exe.

Test Case NACA0012 Airfoil, M = 0.1 and RL = 4.OM

1. a = 0° angle of attack.
Input file: n0012aOinp.txt

Output file: n0012a0out. txt or n0012aOout . pdf
2. a = 4° angle of attack.

Input file: nOO12a4inp.txt

Output file: n0012a4out.txt or nOO12a4out.pdf

3. a = 8° angle of attack.
Input file: n0012a8inp.txt

Output file: n0012a8out.txt or nOO12a8out.pdf

4. a = 12° angle of attack.

Input file: n0012al2inp.txt

Output file: nOO12al2out. txt or nOO12a12out.pdf

5. a = 14° angle of attack.
Input file: n0012a14inp.txt

Output file: nOO12a14out.txt or nOO12a14out.pdf
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6. a = 16° angle of attack.
Input file:

Output file:

n0012a16inp.txt

n0012a16out.txt or nOOl2al6out.pdf

7. a = 17° angle of attack.
Input file: nOOl2al7inp.txt

Output file: n0012a17out. txt or nOOl2al7out.pdf
The results summary nOO12_Out.pdf

Interactive Boundary-Layer (IBL) Program

Compile Interactive Boundary-Layer Program IBL. for (Panel and Inverse
Boundary-Layer Methods) and generate PC DOS executable file IBL.exe. IBL
PC Window Version is also available from this CD IBL_Window_Package.zip.
Click to see installation instruction.

Test Case for NACA 0012 Airfoil, Mach = 0.10

a) RL = 3000000.0
Input data: mlrm3.inp

Output data: Panel Method mirm3Panel . out
IBL Method mlrm3ibl. out
Summary mirm3Summary.out and mlrm3Sur.mary.bdf

b) RL = 4000000.0
Input data: mirm4.inp

Output data: Panel Method mlrm4Panel. out
IBL Method mirm4ibl. out
Summary mirm4Summary.out and m1rm4Summary.bdf

The summary mlrm4SummaryComp.pdf
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